Logo Logo
Hilfe
Kontakt
Switch language to English
Creating a new tool for Post-Traumatic Disorder treatment. real-time functional magnetic resonance imaging neurofeedback of rostral anterior cingulate cortex
Creating a new tool for Post-Traumatic Disorder treatment. real-time functional magnetic resonance imaging neurofeedback of rostral anterior cingulate cortex
The first article on real-time functional magnetic resonance imaging (rt-fMRI) neurofeedback was published in 2003 (Weiskopf et al., 2003) with the aim to enable the subject to learn to control activation in rostral-ventral and dorsal anterior cingulate cortex (ACC). Rt-fMRI neurofeedback involves data collection of neural activity, real-time data preprocessing, online statistical analysis, providing the results back to the participant, and active effort of participant in order to either up- and/or down-regulate the target region’s activation. In the last 16 years the topic attracted great attention from different labs around the world and many different brain regions were regulated with the help of rt-fMRI neurofeedback. Nevertheless it had the most distinct impact in the clinical research as it could be used with clinical population in order to normalize their abnormal neural activity. The dissertation focused on the implementation of the rt-fMRI neurofeedback to the Post-Traumatic Stress Disorder (PTSD) patients. PTSD is developed as a result of experiencing a traumatic event in first hand or hearing that a close one experienced it. PTSD has a high prevalence (Kessler et al., 2005) and also high impact on the patient’s life quality (Warshaw et al., 1993). Unfortunately the response rate to the therapy is around 50% (Bradley et al., 2005; Stein et al., 2006). Hence, there is a need for a new treatment tool for PTSD. The neurocircuitry model of PTSD indicate that there is increased activity in amygdala, decreased activity in ventromedial prefrontral cortex (vmPFC)/rostral ACC (rACC) and hippocampus (Rauch et al., 2006). Animal model of PTSD revealed that stimulating rACC led to increase in extinction learning and rats exhibited less PTSD symptoms (Milad & Quirk, 2002). Following these findings, we decided to implement rACC rt-fMRI neurofeedback to PTSD patients. The first study focused to develop a new paradigm to target rACC and tested it with healthy population. We used Ekman faces as functional localizer in order to locate the rACC. Experimental design constituted of four functional runs in one session. The main aim was to assess the methods effectiveness in one session. Surprisingly eight out of sixteen female participants learned to regulate their rACC, whereas only four out of sixteen male participants were able to regulate their rACC at will. Interestingly the learner/non-learners are not widely reported in the rt-fMRI literature and no gender difference has been reported so far. As a result we decided to implement it with only one sex in PTSD group. In the second study we tested the paradigm with the female PTSD patients. Eight out of sixteen PTSD patients gained control over their rACC. We also found that PTSD patients recruited more brain regions, especially multi-sensory brain regions for the upregulation of rACC in comparison to healthy subjects. We failed to find a single factor to predict rACC control success across groups. There is a need for further study to identify the predictor factors. As a result we concluded that the best practice of rt-fMRI with PTSD patients would be to use it as a supportive tool to psychotherapy in order to identify the best working strategy for their treatment. Further research recommendations are discussed below.
rtfmri, neurofeedback, rACC, PTSD
Demircapa, Idil
2020
Englisch
Universitätsbibliothek der Ludwig-Maximilians-Universität München
Demircapa, Idil (2020): Creating a new tool for Post-Traumatic Disorder treatment: real-time functional magnetic resonance imaging neurofeedback of rostral anterior cingulate cortex. Dissertation, LMU München: Graduate School of Systemic Neurosciences (GSN)
[thumbnail of Demircapa_Idil.pdf]
Vorschau
PDF
Demircapa_Idil.pdf

2MB

Abstract

The first article on real-time functional magnetic resonance imaging (rt-fMRI) neurofeedback was published in 2003 (Weiskopf et al., 2003) with the aim to enable the subject to learn to control activation in rostral-ventral and dorsal anterior cingulate cortex (ACC). Rt-fMRI neurofeedback involves data collection of neural activity, real-time data preprocessing, online statistical analysis, providing the results back to the participant, and active effort of participant in order to either up- and/or down-regulate the target region’s activation. In the last 16 years the topic attracted great attention from different labs around the world and many different brain regions were regulated with the help of rt-fMRI neurofeedback. Nevertheless it had the most distinct impact in the clinical research as it could be used with clinical population in order to normalize their abnormal neural activity. The dissertation focused on the implementation of the rt-fMRI neurofeedback to the Post-Traumatic Stress Disorder (PTSD) patients. PTSD is developed as a result of experiencing a traumatic event in first hand or hearing that a close one experienced it. PTSD has a high prevalence (Kessler et al., 2005) and also high impact on the patient’s life quality (Warshaw et al., 1993). Unfortunately the response rate to the therapy is around 50% (Bradley et al., 2005; Stein et al., 2006). Hence, there is a need for a new treatment tool for PTSD. The neurocircuitry model of PTSD indicate that there is increased activity in amygdala, decreased activity in ventromedial prefrontral cortex (vmPFC)/rostral ACC (rACC) and hippocampus (Rauch et al., 2006). Animal model of PTSD revealed that stimulating rACC led to increase in extinction learning and rats exhibited less PTSD symptoms (Milad & Quirk, 2002). Following these findings, we decided to implement rACC rt-fMRI neurofeedback to PTSD patients. The first study focused to develop a new paradigm to target rACC and tested it with healthy population. We used Ekman faces as functional localizer in order to locate the rACC. Experimental design constituted of four functional runs in one session. The main aim was to assess the methods effectiveness in one session. Surprisingly eight out of sixteen female participants learned to regulate their rACC, whereas only four out of sixteen male participants were able to regulate their rACC at will. Interestingly the learner/non-learners are not widely reported in the rt-fMRI literature and no gender difference has been reported so far. As a result we decided to implement it with only one sex in PTSD group. In the second study we tested the paradigm with the female PTSD patients. Eight out of sixteen PTSD patients gained control over their rACC. We also found that PTSD patients recruited more brain regions, especially multi-sensory brain regions for the upregulation of rACC in comparison to healthy subjects. We failed to find a single factor to predict rACC control success across groups. There is a need for further study to identify the predictor factors. As a result we concluded that the best practice of rt-fMRI with PTSD patients would be to use it as a supportive tool to psychotherapy in order to identify the best working strategy for their treatment. Further research recommendations are discussed below.