Logo Logo
Help
Contact
Switch language to German
Automatic extraction of agendas for action from news coverage of violent conflict
Automatic extraction of agendas for action from news coverage of violent conflict
Words can make people act. Indeed, a simple phrase ‘Will you, please, open the window?’ can cause a person to do so. However, does this still hold, if the request is communicated indirectly via mass media and addresses a large group of people? Different disciplines have approached this problem from different angles, showing that there is indeed a connection between what is being called for in media and what people do. This dissertation, being an interdisciplinary work, bridges different perspectives on the problem and explains how collective mobilisation happens, using the novel term ‘agenda for action’. It also shows how agendas for action can be extracted from text in automated fashion using computational linguistics and machine learning. To demonstrate the potential of agenda for action, the analysis of The NYT and The Guardian coverage of chemical weapons crises in Syria in 2013 is performed. Katsiaryna Stalpouskaya has always been interested in applied and computational linguistics. Pursuing this interest, she joined FP7 EU-INFOCORE project in 2014, where she was responsible for automated content analysis. Katsiaryna’s work on the project resulted in a PhD thesis, which she successfully defended at Ludwig-Maximilians-Universität München in 2019. Currently, she is working as a product owner in the field of text and data analysis.
agenda for action, agenda setting, framing, speech act, machine learning, text analysis, Syria, chemical weapons
Stalpouskaya, Katsiaryna
2019
English
Universitätsbibliothek der Ludwig-Maximilians-Universität München
Stalpouskaya, Katsiaryna (2019): Automatic extraction of agendas for action from news coverage of violent conflict. Dissertation, LMU München: Faculty of Social Sciences
[img]
Preview
PDF
Stalpouskaya_Katsiaryna.pdf

5MB

Abstract

Words can make people act. Indeed, a simple phrase ‘Will you, please, open the window?’ can cause a person to do so. However, does this still hold, if the request is communicated indirectly via mass media and addresses a large group of people? Different disciplines have approached this problem from different angles, showing that there is indeed a connection between what is being called for in media and what people do. This dissertation, being an interdisciplinary work, bridges different perspectives on the problem and explains how collective mobilisation happens, using the novel term ‘agenda for action’. It also shows how agendas for action can be extracted from text in automated fashion using computational linguistics and machine learning. To demonstrate the potential of agenda for action, the analysis of The NYT and The Guardian coverage of chemical weapons crises in Syria in 2013 is performed. Katsiaryna Stalpouskaya has always been interested in applied and computational linguistics. Pursuing this interest, she joined FP7 EU-INFOCORE project in 2014, where she was responsible for automated content analysis. Katsiaryna’s work on the project resulted in a PhD thesis, which she successfully defended at Ludwig-Maximilians-Universität München in 2019. Currently, she is working as a product owner in the field of text and data analysis.