Logo Logo
Hilfe
Kontakt
Switch language to English
Emotionserkennung bei Nachrichtenkommentaren mittels Convolutional Neural Networks und Label Propagationsverfahren
Emotionserkennung bei Nachrichtenkommentaren mittels Convolutional Neural Networks und Label Propagationsverfahren
Das Ziel dieser Arbeit ist es, anhand der textuellen Emotionserkennung einen Schulterschluss zwischen der Psychologie und der Computerlinguistik herzustellen. Gängige und in der Emotionserkennung verwendete Modelle werden bewertet. In dem dafür erstellten Bewertungsframework werden Validität, Anzahl der Dimensionen bzw. Anzahl der diskreten Emotionen, Vollständigkeit, Balance, Struktur und Realisierbarkeit gegenübergestellt. Nach Eingrenzung auf geeignete Emotionsmodelle wurde ein Datensatz anhand der Emotionstheorie von Merten & Krause (1993) annotiert. Anhand bisheriger Sentimentanalyseforschungen werden Fragestellungen zur Ebene der Granularität, zur methodischen Herangehensweise, zur Datenreduktion und -anreicherung herausgearbeitet. Ergebnisse der Anwendung eines Ansatzes mittels Convolutional Neural Network und des Labelpropagationsverfahrens wurden statistisch gegenübergestellt und zur Klärung der Hypothesen verwendet. Aus psychologischer Perspektive konnte die Struktur der Emotionen näher eingegrenzt und eine praktikable Methode zur Emotionsbestimmung herausgearbeitet werden. Aus computerlinguistischer Sicht stellten sich kürzere Eingabephrasen, der maschinelle Lernansatz, Datenbereinigung und -reduktions-verfahren sowie die Anwendung einer Negation als zielführend heraus.
Emotion, Emotionserkennung, feingranulare Sentimentanalyse, Word Embeddings, Convolu-tional Neural Network, Labelpropagationsverfahren
Aschenbrenner, Andreas
2019
Deutsch
Universitätsbibliothek der Ludwig-Maximilians-Universität München
Aschenbrenner, Andreas (2019): Emotionserkennung bei Nachrichtenkommentaren mittels Convolutional Neural Networks und Label Propagationsverfahren. Dissertation, LMU München: Fakultät für Psychologie und Pädagogik
[thumbnail of Aschenbrenner_Andreas.pdf]
Vorschau
Lizenz: Creative Commons: Namensnennung-Weitergabe unter gleichen Bedingungen 4.0 (CC-BY-SA)
PDF
Aschenbrenner_Andreas.pdf

4MB

Abstract

Das Ziel dieser Arbeit ist es, anhand der textuellen Emotionserkennung einen Schulterschluss zwischen der Psychologie und der Computerlinguistik herzustellen. Gängige und in der Emotionserkennung verwendete Modelle werden bewertet. In dem dafür erstellten Bewertungsframework werden Validität, Anzahl der Dimensionen bzw. Anzahl der diskreten Emotionen, Vollständigkeit, Balance, Struktur und Realisierbarkeit gegenübergestellt. Nach Eingrenzung auf geeignete Emotionsmodelle wurde ein Datensatz anhand der Emotionstheorie von Merten & Krause (1993) annotiert. Anhand bisheriger Sentimentanalyseforschungen werden Fragestellungen zur Ebene der Granularität, zur methodischen Herangehensweise, zur Datenreduktion und -anreicherung herausgearbeitet. Ergebnisse der Anwendung eines Ansatzes mittels Convolutional Neural Network und des Labelpropagationsverfahrens wurden statistisch gegenübergestellt und zur Klärung der Hypothesen verwendet. Aus psychologischer Perspektive konnte die Struktur der Emotionen näher eingegrenzt und eine praktikable Methode zur Emotionsbestimmung herausgearbeitet werden. Aus computerlinguistischer Sicht stellten sich kürzere Eingabephrasen, der maschinelle Lernansatz, Datenbereinigung und -reduktions-verfahren sowie die Anwendung einer Negation als zielführend heraus.