Logo Logo
Help
Contact
Switch language to German
Light curves and multidimensional reconstructions of photon observations
Light curves and multidimensional reconstructions of photon observations
Diese Dissertation konzentriert sich auf die Entwicklung und Anwendung von bayesianischen Inferenzmethoden, um physikalisch relevante Informationen aus verrauschten Photonenbeobachtungen zu extrahieren. Des Weiteren wird eine Methode entwickelt, um Beobachtungen von komplexen Systemen, welche sich stochastisch mit der Zeit entwickeln, anhand weniger Trainingsbeispiele in verschiedene Klassen einzuordnen. Zu letztem Zweck entwickeln wir den Dynamic System Classifier (DSC). Dieser basiert auf der grundlegenden Annahme, dass viele komplexe Systeme in einem vereinfachten Rahmen durch stochastische Differentialgleichungen (SDE) mit zeitabhängigen Koeffizienten beschrieben werden können. Diese werden verwendet, um Informationen aus einer Klasse ähnlicher, aber nicht identischer simulierter Systeme zu abstrahieren. Der DSC ist in zwei Phasen unterteilt. In der ersten Lernphase werden die Koeffizienten der SDE aus einem kleinen Trainingsdatensatz gelernt. Sobald diese gelernt wurden, dienen sie für einen kostengünstigen Vergleich von Daten und abstrahierter Information. Wir entwickeln, implementieren und testen beide Schritte in dem Rahmen bayesianischer Logik für kontinuierliche Größen, nämlich der Informationsfeldtheorie. Der zweite Teil dieser Arbeit beschäftigt sich mit astronomischer Bildgebung basierend auf Zählraten von Photonen. Die Notwendigkeit hierfür ergibt sich unter anderem aus der Verfügbarkeit von zahlreichen Satelliten, welche die Röntgen- und γ−Strahlen im Weltraum beobachten. In diesem Zusammenhang entwickeln wir den existierenden D3PO-Algorithmus weiter, hin zu D4PO, um multidimensionale Photonenbeobachtungen zu entrauschen, zu dekonvolvieren und in morphologisch unterschiedliche Komponenten aufzuteilen. Die Zerlegung wird durch ein hierarchisches bayesianisches Parametermodell gesteuert. Dieses erlaubt es, Felder zu rekonstruieren, die über den Produktraum von mehreren Mannigfaltigkeiten definiert sind. D4PO zerlegt den beobachteten Fluss an Photonen in eine diffuse, eine punktförmige und eine Hintergrundkomponente, während er gleichzeitig die Korrelationsstruktur für jede einzelne Komponente in jeder ihrer Mannigfaltigkeiten lernt. Die Funktionsweise von D4PO wird anhand eines simulierten Datensatzes hochenergetischer Photonen demonstriert. Schließlich wenden wir D4PO auf Daten der Magnetar-Flares von SGR 1806-20 und SGR 1900+14 an, um nach deren charakteristischen Eigenschwingungen zu suchen. Der Algorithmus rekonstruierte erfolgreich den logarithmischen Photonenfluss sowie dessen spektrale Leistungsdichte. Im Gegensatz zu früheren Arbeiten anderer Autoren können wir quasi- periodische Oszillationen (QPO) in den abklingenden Enden dieser Ereignisse bei Frequenzen ν > 17 Hz nicht bestätigen. Deren Echtheit ist fraglich, da diese in das von Rauschen dominierende Regime fallen. Dennoch finden wir neue Kandidaten für Oszillationen bei ν ≈ 9.2 Hz (SGR 1806-20) und ν ≈ 7.7 Hz (SGR 1900+14). Für den Fall, dass diese Oszillationen real sind, bevorzugen moderne theoretische Modelle von Magnetaren relativ schwache Magnetfelder im Bereich von B ≈ 6 × 1013 − 3 × 1014 G., This thesis focuses on the development and application of Bayesian inference methods to extract physical relevant information from noise contaminated photon observations and to classify the observations of complex stochastically evolving systems into different classes based on a few training samples of each class. To this latter end we develop the dynamic system classifier (DSC). This is based on the fundamental assumption that many complex systems may be described in a simplified framework by stochastic differential equations (SDE) with time dependent coefficients. These are used to abstract information from a class of similar but not identical simulated systems. The DSC is split into two phases. In the first learning phase the coefficients of the SDE are learned from a small training data set. Once these are obtained, they serve for an inexpensive data - class comparison. We develop, implement, and test both steps in a Bayesian inference framework for continuous quantities, namely information field theory. Astronomical imaging based on photon count data is a challenging task but absolutely necessary due to todays availability of space based X-ray and γ- ray telescopes. In this context we advance the existing D3PO algorithm into D4PO to denoise, denconvolve, and decompose multidimensional photon observations into morphologically different components. The decomposition is driven by a probabilistic hierarchical Bayesian parameter model, allowing us to reconstruct fields, that are defined over the product space of multiple manifolds. Thereby D4PO decomposes the photon count data into a diffuse, point-like, and background component, while it simultaneously learns the correlation structure over each of their manifolds individually. The capabilities of the algorithm are demonstrated by applying it to a simulated high energy photon count data set. Finally we apply D4PO to analyse the giant magnetar flare data of SGR 1806-20 and SGR 1900+14. The algorithm successfully reconstructs the logarithmic photon flux as well as its power spectrum. In contrast to previous findings we cannot confirm quasi periodic oscillations (QPO) in the decaying tails of these events at frequencies ν > 17 Hz. They might not be real as these fall into the noise dominated regime of the spectrum. Nevertheless we find new candidates for oscillations at ν ≈ 9.2 Hz (SGR 1806-20) and ν ≈ 7.7 Hz (SGR 1900+14). In case these oscillations are real, state of the art theoretical models of magnetars favour relatively weak magnetic fields in the range of B ≈ 6×1013−3×1014 G.
Informationsfeldtheorie, Statistische Methoden, Neutronensterne, Dynamische Systeme
Pumpe, Daniel
2018
English
Universitätsbibliothek der Ludwig-Maximilians-Universität München
Pumpe, Daniel (2018): Light curves and multidimensional reconstructions of photon observations. Dissertation, LMU München: Faculty of Physics
[img]
Preview
PDF
Pumpe_Daniel.pdf

10MB

Abstract

Diese Dissertation konzentriert sich auf die Entwicklung und Anwendung von bayesianischen Inferenzmethoden, um physikalisch relevante Informationen aus verrauschten Photonenbeobachtungen zu extrahieren. Des Weiteren wird eine Methode entwickelt, um Beobachtungen von komplexen Systemen, welche sich stochastisch mit der Zeit entwickeln, anhand weniger Trainingsbeispiele in verschiedene Klassen einzuordnen. Zu letztem Zweck entwickeln wir den Dynamic System Classifier (DSC). Dieser basiert auf der grundlegenden Annahme, dass viele komplexe Systeme in einem vereinfachten Rahmen durch stochastische Differentialgleichungen (SDE) mit zeitabhängigen Koeffizienten beschrieben werden können. Diese werden verwendet, um Informationen aus einer Klasse ähnlicher, aber nicht identischer simulierter Systeme zu abstrahieren. Der DSC ist in zwei Phasen unterteilt. In der ersten Lernphase werden die Koeffizienten der SDE aus einem kleinen Trainingsdatensatz gelernt. Sobald diese gelernt wurden, dienen sie für einen kostengünstigen Vergleich von Daten und abstrahierter Information. Wir entwickeln, implementieren und testen beide Schritte in dem Rahmen bayesianischer Logik für kontinuierliche Größen, nämlich der Informationsfeldtheorie. Der zweite Teil dieser Arbeit beschäftigt sich mit astronomischer Bildgebung basierend auf Zählraten von Photonen. Die Notwendigkeit hierfür ergibt sich unter anderem aus der Verfügbarkeit von zahlreichen Satelliten, welche die Röntgen- und γ−Strahlen im Weltraum beobachten. In diesem Zusammenhang entwickeln wir den existierenden D3PO-Algorithmus weiter, hin zu D4PO, um multidimensionale Photonenbeobachtungen zu entrauschen, zu dekonvolvieren und in morphologisch unterschiedliche Komponenten aufzuteilen. Die Zerlegung wird durch ein hierarchisches bayesianisches Parametermodell gesteuert. Dieses erlaubt es, Felder zu rekonstruieren, die über den Produktraum von mehreren Mannigfaltigkeiten definiert sind. D4PO zerlegt den beobachteten Fluss an Photonen in eine diffuse, eine punktförmige und eine Hintergrundkomponente, während er gleichzeitig die Korrelationsstruktur für jede einzelne Komponente in jeder ihrer Mannigfaltigkeiten lernt. Die Funktionsweise von D4PO wird anhand eines simulierten Datensatzes hochenergetischer Photonen demonstriert. Schließlich wenden wir D4PO auf Daten der Magnetar-Flares von SGR 1806-20 und SGR 1900+14 an, um nach deren charakteristischen Eigenschwingungen zu suchen. Der Algorithmus rekonstruierte erfolgreich den logarithmischen Photonenfluss sowie dessen spektrale Leistungsdichte. Im Gegensatz zu früheren Arbeiten anderer Autoren können wir quasi- periodische Oszillationen (QPO) in den abklingenden Enden dieser Ereignisse bei Frequenzen ν > 17 Hz nicht bestätigen. Deren Echtheit ist fraglich, da diese in das von Rauschen dominierende Regime fallen. Dennoch finden wir neue Kandidaten für Oszillationen bei ν ≈ 9.2 Hz (SGR 1806-20) und ν ≈ 7.7 Hz (SGR 1900+14). Für den Fall, dass diese Oszillationen real sind, bevorzugen moderne theoretische Modelle von Magnetaren relativ schwache Magnetfelder im Bereich von B ≈ 6 × 1013 − 3 × 1014 G.

Abstract

This thesis focuses on the development and application of Bayesian inference methods to extract physical relevant information from noise contaminated photon observations and to classify the observations of complex stochastically evolving systems into different classes based on a few training samples of each class. To this latter end we develop the dynamic system classifier (DSC). This is based on the fundamental assumption that many complex systems may be described in a simplified framework by stochastic differential equations (SDE) with time dependent coefficients. These are used to abstract information from a class of similar but not identical simulated systems. The DSC is split into two phases. In the first learning phase the coefficients of the SDE are learned from a small training data set. Once these are obtained, they serve for an inexpensive data - class comparison. We develop, implement, and test both steps in a Bayesian inference framework for continuous quantities, namely information field theory. Astronomical imaging based on photon count data is a challenging task but absolutely necessary due to todays availability of space based X-ray and γ- ray telescopes. In this context we advance the existing D3PO algorithm into D4PO to denoise, denconvolve, and decompose multidimensional photon observations into morphologically different components. The decomposition is driven by a probabilistic hierarchical Bayesian parameter model, allowing us to reconstruct fields, that are defined over the product space of multiple manifolds. Thereby D4PO decomposes the photon count data into a diffuse, point-like, and background component, while it simultaneously learns the correlation structure over each of their manifolds individually. The capabilities of the algorithm are demonstrated by applying it to a simulated high energy photon count data set. Finally we apply D4PO to analyse the giant magnetar flare data of SGR 1806-20 and SGR 1900+14. The algorithm successfully reconstructs the logarithmic photon flux as well as its power spectrum. In contrast to previous findings we cannot confirm quasi periodic oscillations (QPO) in the decaying tails of these events at frequencies ν > 17 Hz. They might not be real as these fall into the noise dominated regime of the spectrum. Nevertheless we find new candidates for oscillations at ν ≈ 9.2 Hz (SGR 1806-20) and ν ≈ 7.7 Hz (SGR 1900+14). In case these oscillations are real, state of the art theoretical models of magnetars favour relatively weak magnetic fields in the range of B ≈ 6×1013−3×1014 G.