Imprecise probability in epistemology
Imprecise probability in epistemology
There is a growing interest in the foundations as well as the application of imprecise probability in contemporary epistemology. This dissertation is concerned with the application. In particular, the research presented concerns ways in which imprecise probability, i.e. sets of probability measures, may helpfully address certain philosophical problems pertaining to rational belief. The issues I consider are disagreement among epistemic peers, complete ignorance, and inductive reasoning with imprecise priors. For each of these topics, it is assumed that belief can be modeled with imprecise probability, and thus there is a nonclassical solution to be given to each problem. I argue that this is the case for peer disagreement and complete ignorance. However, I discovered that the approach has its shortcomings, too, specifically in regard to inductive reasoning with imprecise priors. Nevertheless, the dissertation ultimately illustrates that imprecise probability as a model of rational belief has a lot of promise, but one should be aware of its limitations also.
imprecise probability, epistemology, Bayes, philosophy
28. Jun 2017
2017
English
Universitätsbibliothek der LudwigMaximiliansUniversität München
Elkin, Lee
(2017):
Imprecise probability in epistemology.
Dissertation, LMU München: Faculty of Philosophy, Philosophy of Science and the Study of Religion

Preview 

PDF
Elkin_Lee.pdf
703kB 
Abstract
There is a growing interest in the foundations as well as the application of imprecise probability in contemporary epistemology. This dissertation is concerned with the application. In particular, the research presented concerns ways in which imprecise probability, i.e. sets of probability measures, may helpfully address certain philosophical problems pertaining to rational belief. The issues I consider are disagreement among epistemic peers, complete ignorance, and inductive reasoning with imprecise priors. For each of these topics, it is assumed that belief can be modeled with imprecise probability, and thus there is a nonclassical solution to be given to each problem. I argue that this is the case for peer disagreement and complete ignorance. However, I discovered that the approach has its shortcomings, too, specifically in regard to inductive reasoning with imprecise priors. Nevertheless, the dissertation ultimately illustrates that imprecise probability as a model of rational belief has a lot of promise, but one should be aware of its limitations also.