Logo Logo
Hilfe
Kontakt
Switch language to English
Bayesian inference for structured additive regression models for large-scale problems with applications to medical imaging
Bayesian inference for structured additive regression models for large-scale problems with applications to medical imaging
In der angewandten Statistik können Regressionsmodelle mit hochdimensionalen Koeffizienten auftreten, die sich nicht mit gewöhnlichen Computersystemen schätzen lassen. Dies betrifft unter anderem die Analyse digitaler Bilder unter Berücksichtigung räumlich-zeitlicher Abhängigkeiten, wie sie innerhalb der medizinisch-biologischen Forschung häufig vorkommen. In der vorliegenden Arbeit wird ein Verfahren formuliert, das in der Lage ist, Regressionsmodelle mit hochdimensionalen Koeffizienten und nicht-normalverteilten Zielgrößen unter moderaten Anforderungen an die benötigte Hardware zu schätzen. Hierzu wird zunächst im Rahmen strukturiert additiver Regressionsmodelle aufgezeigt, worin die Limitationen aktueller Inferenzansätze bei der Anwendung auf hochdimensionale Problemstellungen liegen, sowie Möglichkeiten diskutiert, diese zu umgehen. Darauf basierend wird ein Algorithmus formuliert, dessen Stärken und Schwächen anhand von Simulationsstudien analysiert werden. Darüber hinaus findet das Verfahren Anwendung in drei verschiedenen Bereichen der medizinisch-biologischen Bildgebung und zeigt dadurch, dass es ein vielversprechender Kandidat für die Beantwortung hochdimensionaler Fragestellungen ist., In applied statistics regression models with high-dimensional coefficients can occur which cannot be estimated using ordinary computers. Amongst others, this applies to the analysis of digital images taking spatio-temporal dependencies into account as they commonly occur within bio-medical research. In this thesis a procedure is formulated which allows to fit regression models with high-dimensional coefficients and non-normal response values requiring only moderate computational equipment. To this end, limitations of different inference strategies for structured additive regression models are demonstrated when applied to high-dimensional problems and possible solutions are discussed. Based thereon an algorithm is formulated whose strengths and weaknesses are subsequently analyzed using simulation studies. Furthermore, the procedure is applied to three different fields of bio-medical imaging from which can be concluded that the algorithm is a promising candidate for answering high-dimensional problems.
Not available
Schmidt, Paul
2017
Englisch
Universitätsbibliothek der Ludwig-Maximilians-Universität München
Schmidt, Paul (2017): Bayesian inference for structured additive regression models for large-scale problems with applications to medical imaging. Dissertation, LMU München: Fakultät für Mathematik, Informatik und Statistik
[thumbnail of Schmidt_Paul.pdf]
Vorschau
PDF
Schmidt_Paul.pdf

24MB

Abstract

In der angewandten Statistik können Regressionsmodelle mit hochdimensionalen Koeffizienten auftreten, die sich nicht mit gewöhnlichen Computersystemen schätzen lassen. Dies betrifft unter anderem die Analyse digitaler Bilder unter Berücksichtigung räumlich-zeitlicher Abhängigkeiten, wie sie innerhalb der medizinisch-biologischen Forschung häufig vorkommen. In der vorliegenden Arbeit wird ein Verfahren formuliert, das in der Lage ist, Regressionsmodelle mit hochdimensionalen Koeffizienten und nicht-normalverteilten Zielgrößen unter moderaten Anforderungen an die benötigte Hardware zu schätzen. Hierzu wird zunächst im Rahmen strukturiert additiver Regressionsmodelle aufgezeigt, worin die Limitationen aktueller Inferenzansätze bei der Anwendung auf hochdimensionale Problemstellungen liegen, sowie Möglichkeiten diskutiert, diese zu umgehen. Darauf basierend wird ein Algorithmus formuliert, dessen Stärken und Schwächen anhand von Simulationsstudien analysiert werden. Darüber hinaus findet das Verfahren Anwendung in drei verschiedenen Bereichen der medizinisch-biologischen Bildgebung und zeigt dadurch, dass es ein vielversprechender Kandidat für die Beantwortung hochdimensionaler Fragestellungen ist.

Abstract

In applied statistics regression models with high-dimensional coefficients can occur which cannot be estimated using ordinary computers. Amongst others, this applies to the analysis of digital images taking spatio-temporal dependencies into account as they commonly occur within bio-medical research. In this thesis a procedure is formulated which allows to fit regression models with high-dimensional coefficients and non-normal response values requiring only moderate computational equipment. To this end, limitations of different inference strategies for structured additive regression models are demonstrated when applied to high-dimensional problems and possible solutions are discussed. Based thereon an algorithm is formulated whose strengths and weaknesses are subsequently analyzed using simulation studies. Furthermore, the procedure is applied to three different fields of bio-medical imaging from which can be concluded that the algorithm is a promising candidate for answering high-dimensional problems.