Logo Logo
Hilfe
Kontakt
Switch language to English
Schmid, Klaus Arthur (2016): Searching and mining in enriched geo-spatial data. Dissertation, LMU München: Fakultät für Mathematik, Informatik und Statistik
[img]
Vorschau
PDF
Schmid_Klaus.pdf

11MB

Abstract

The emergence of new data collection mechanisms in geo-spatial applications paired with a heightened tendency of users to volunteer information provides an ever-increasing flow of data of high volume, complex nature, and often associated with inherent uncertainty. Such mechanisms include crowdsourcing, automated knowledge inference, tracking, and social media data repositories. Such data bearing additional information from multiple sources like probability distributions, text or numerical attributes, social context, or multimedia content can be called multi-enriched. Searching and mining this abundance of information holds many challenges, if all of the data's potential is to be released. This thesis addresses several major issues arising in that field, namely path queries using multi-enriched data, trend mining in social media data, and handling uncertainty in geo-spatial data. In all cases, the developed methods have made significant contributions and have appeared in or were accepted into various renowned international peer-reviewed venues. A common use of geo-spatial data is path queries in road networks where traditional methods optimise results based on absolute and ofttimes singular metrics, i.e., finding the shortest paths based on distance or the best trade-off between distance and travel time. Integrating additional aspects like qualitative or social data by enriching the data model with knowledge derived from sources as mentioned above allows for queries that can be issued to fit a broader scope of needs or preferences. This thesis presents two implementations of incorporating multi-enriched data into road networks. In one case, a range of qualitative data sources is evaluated to gain knowledge about user preferences which is subsequently matched with locations represented in a road network and integrated into its components. Several methods are presented for highly customisable path queries that incorporate a wide spectrum of data. In a second case, a framework is described for resource distribution with reappearance in road networks to serve one or more clients, resulting in paths that provide maximum gain based on a probabilistic evaluation of available resources. Applications for this include finding parking spots. Social media trends are an emerging research area giving insight in user sentiment and important topics. Such trends consist of bursts of messages concerning a certain topic within a time frame, significantly deviating from the average appearance frequency of the same topic. By investigating the dissemination of such trends in space and time, this thesis presents methods to classify trend archetypes to predict future dissemination of a trend. Processing and querying uncertain data is particularly demanding given the additional knowledge required to yield results with probabilistic guarantees. Since such knowledge is not always available and queries are not easily scaled to larger datasets due to the #P-complete nature of the problem, many existing approaches reduce the data to a deterministic representation of its underlying model to eliminate uncertainty. However, data uncertainty can also provide valuable insight into the nature of the data that cannot be represented in a deterministic manner. This thesis presents techniques for clustering uncertain data as well as query processing, that take the additional information from uncertainty models into account while preserving scalability using a sampling-based approach, while previous approaches could only provide one of the two. The given solutions enable the application of various existing clustering techniques or query types to a framework that manages the uncertainty.

Abstract

Das Erscheinen neuer Methoden zur Datenerhebung in räumlichen Applikationen gepaart mit einer erhöhten Bereitschaft der Nutzer, Daten über sich preiszugeben, generiert einen stetig steigenden Fluss von Daten in großer Menge, komplexer Natur, und oft gepaart mit inhärenter Unsicherheit. Beispiele für solche Mechanismen sind Crowdsourcing, automatisierte Wissensinferenz, Tracking, und Daten aus sozialen Medien. Derartige Daten, angereichert mit mit zusätzlichen Informationen aus verschiedenen Quellen wie Wahrscheinlichkeitsverteilungen, Text- oder numerische Attribute, sozialem Kontext, oder Multimediainhalten, werden als multi-enriched bezeichnet. Suche und Datamining in dieser weiten Datenmenge hält viele Herausforderungen bereit, wenn das gesamte Potenzial der Daten genutzt werden soll. Diese Arbeit geht auf mehrere große Fragestellungen in diesem Feld ein, insbesondere Pfadanfragen in multi-enriched Daten, Trend-mining in Daten aus sozialen Netzwerken, und die Beherrschung von Unsicherheit in räumlichen Daten. In all diesen Fällen haben die entwickelten Methoden signifikante Forschungsbeiträge geleistet und wurden veröffentlicht oder angenommen zu diversen renommierten internationalen, von Experten begutachteten Konferenzen und Journals. Ein gängiges Anwendungsgebiet räumlicher Daten sind Pfadanfragen in Straßennetzwerken, wo traditionelle Methoden die Resultate anhand absoluter und oft auch singulärer Maße optimieren, d.h., der kürzeste Pfad in Bezug auf die Distanz oder der beste Kompromiss zwischen Distanz und Reisezeit. Durch die Integration zusätzlicher Aspekte wie qualitativer Daten oder Daten aus sozialen Netzwerken als Anreicherung des Datenmodells mit aus diesen Quellen abgeleitetem Wissen werden Anfragen möglich, die ein breiteres Spektrum an Anforderungen oder Präferenzen erfüllen. Diese Arbeit präsentiert zwei Ansätze, solche multi-enriched Daten in Straßennetze einzufügen. Zum einen wird eine Reihe qualitativer Datenquellen ausgewertet, um Wissen über Nutzerpräferenzen zu generieren, welches darauf mit Örtlichkeiten im Straßennetz abgeglichen und in das Netz integriert wird. Diverse Methoden werden präsentiert, die stark personalisierbare Pfadanfragen ermöglichen, die ein weites Spektrum an Daten mit einbeziehen. Im zweiten Fall wird ein Framework präsentiert, das eine Ressourcenverteilung im Straßennetzwerk modelliert, bei der einmal verbrauchte Ressourcen erneut auftauchen können. Resultierende Pfade ergeben einen maximalen Ertrag basieren auf einer probabilistischen Evaluation der verfügbaren Ressourcen. Eine Anwendung ist die Suche nach Parkplätzen. Trends in sozialen Medien sind ein entstehendes Forscchungsgebiet, das Einblicke in Benutzerverhalten und wichtige Themen zulässt. Solche Trends bestehen aus großen Mengen an Nachrichten zu einem bestimmten Thema innerhalb eines Zeitfensters, so dass die Auftrittsfrequenz signifikant über den durchschnittlichen Level liegt. Durch die Untersuchung der Fortpflanzung solcher Trends in Raum und Zeit präsentiert diese Arbeit Methoden, um Trends nach Archetypen zu klassifizieren und ihren zukünftigen Weg vorherzusagen. Die Anfragebearbeitung und Datamining in unsicheren Daten ist besonders herausfordernd, insbesondere im Hinblick auf das notwendige Zusatzwissen, um Resultate mit probabilistischen Garantien zu erzielen. Solches Wissen ist nicht immer verfügbar und Anfragen lassen sich aufgrund der \P-Vollständigkeit des Problems nicht ohne Weiteres auf größere Datensätze skalieren. Dennoch kann Datenunsicherheit wertvollen Einblick in die Struktur der Daten liefern, der mit deterministischen Methoden nicht erreichbar wäre. Diese Arbeit präsentiert Techniken zum Clustering unsicherer Daten sowie zur Anfragebearbeitung, die die Zusatzinformation aus dem Unsicherheitsmodell in Betracht ziehen, jedoch gleichzeitig die Skalierbarkeit des Ansatzes auf große Datenmengen sicherstellen.