Logo Logo
Hilfe
Kontakt
Switch language to English
Kraftspektroskopie an lebenden Zellen
Kraftspektroskopie an lebenden Zellen
Das Kraftmikroskop hat sich in vieler Hinsicht als effizientes Gerät für Untersuchungen und Manipulationen auf molekularer Ebene erwiesen. Dabei wird selbst unter physiologischen Bedingungen eine Auflösung erreicht, die Proteinsubstrukturen erkennen läßt. Als Kraftspektroskop kann es mechanische Eigenschaften wie Dehnungsverhalten und Reißfestigkeit einzelner Moleküle, die zwischen der Sensorfeder und der Unterlage eingespannt werden, untersuchen. Sogar die Bindungskräfte zwischen einem Molekül am Kraftsensor und einem anderen am Substrat können mittels Kraftspektroskopie mit etwa 3 pN Genauigkeit ermittelt werden. Von besonderem Interesse solcher Untersuchungen sind Moleküle mit spezifischer Affinität nach dem Schlüssel-Schloß-Prinzip, wie Rezeptor-Ligand- Systeme und Adhäsionsmoleküle. Bisher waren hauptsächlich wasserlösliche Moleküle solchen Messungen zugänglich. Bindungen zwischen amphiphilen Proteinen oder Membranproteinen zu messen, die durch hydrophobe Wechselwirkungen in der Membran verankert sind, erfordert neue Konzepte. Diesen Molekülen gilt das Augenmerk dieser Arbeit. Da die Verankerung in sogenanten „supported bi-layern“ und Vesikeln nicht immer zum gewünschten Erfolg führt, wird hier eine ungewöhnliche, aber sehr natürliche Alternative vorgestellt: Das Adhäsionsmolekül wird nicht aufwendig isoliert und der Meßmethode zugänglich gemacht, sondern bleibt in seiner natürlichen Umgebung, der Zelle, wohingegen die Methode angepasst wird. Dies ist durch die Befestigung einer Zelle am Kraftsensor eines Kraftspektroskopes geglückt und es gelang damit erstmals die Adhäsionskraft eines einzelnen Adhäsionsmoleküls in einer lebenden Zelle zu messen. So einfach diese Methode beschrieben ist, so viele Unwägbarkeiten treten dabei durch die hohe Komplexität der Zelle und der Zelloberfläche im Besonderen auf. Daher wird einleitend eine grobe Einführung in die Funktionen und den Aufbau einer Zelle und die üblichen Meßmethoden im Bereich der Zelladhäsionsmessung vorgestellt. Die Beschreibung der Meßmethode und der Umrüstung des Kraftmikroskopes zum Zelladhäsionskraftspektroskop sind durch technische Details im Anhang vervollständigt. Etwas aufwendig ist die Zusammenstellung der Daten, Theorien und Annahmen zum Aufbau eines semi-empirischen Modells zur Beschreibung der Adhäsionskraftmeßkurven beim Trennen adhärierender Zellen, auf der Basis vieler unabhängiger Einzelmolekülbindungen. Mit dem Zelladhäsionkraftspektroskop wurden dafür die Youngs-Moduli und die viskoelastischen Kelvin-Modell-Parameter verschiedener Zellen in dem eigens entwickelten „visko-elastic-response-mode“ vermessen. Ebenso wurden die Einflüsse der Zellkontaktkraft und der Kontaktzeit, sowie der Zuggeschwindigkeit auf die Zelladhäsionsantwort studiert und in Formeln gefaßt. Das Modell simuliert diese Meßdaten in guter Übereinstimmung und gibt dadurch einen Einblick in die physikalischen Randbedingungen für das einzelne Adhäsionsmolekül während solcher Experimente unter Berücksichtigung des zelltypischen Phänomens der Tetherbildung. Insbesondere kann damit die Bindungsdichte bei Adhäsionen auf verschiedenen Oberflächen berechnet werden. Demnach schließt eine Epithelzelle etwa vier Bindungen pro Quadratmikrometer mit einer Glasoberfläche, zwei mit einer anderen Epithelzelle und nur 0,8 mit einer passivierten Oberfläche. Mit kraftspektroskopischen Messungen der Adhäsionskräfte bei der Einnistung eines Trophoblasten in die Gebärmutter an einem naturnahen Laborsystem kann eine andersartige - mit dem Modell unabhängiger Bindungen nicht beschreibbare - Wechselwirkung identifiziert werden. Die Meßergebnisse deuten auf einen kooperativen Prozeß der molekularen Adhäsionsinselbildung hin. Kontrollmessungen an funktionalisierten Oberflächen erhärten diese Hypothese. Mit ersten Ergebnissen von Adhäsionsmessungen zwischen Knochenzellen und potentiellen Implantatoberflächen wird neben dem Einfluß der Oberflächenbeschaffenheit auch der des Meßmediums nachweisbar, wodurch die Generalität dieser Methode verdeutlicht wird. Im letzten Kapitel über die Interaktionen einzelner Zellen wird anhand der induzierten Lektinwechselwirkung zwischen roten Blutkörperchen die prinzipielle Möglichkeit der Zelladhäsionskraftspektroskopie Einzelmolekülereignisse zu vermessen nachgewiesen. Die dafür nötigen geringsten Kontaktkräfte von unter 40 pN, konnten durch extrem weiche Kraftsensoren (<5 mN/m) verwirklicht werden. Schließlich gelang die Vermessung der wahrscheinlichsten Abrißkraft der homophilen Einzelmolekülwechselwirkung des Adhäsionsproteins csA am Einzeller Dictyostelium discoideum. Sie beträgt bei einer Zuggeschwindigkeit von etwa 2 µm/s 22.5 pN ±5 pN. Mit einer Dictyosteliummutante, bei der die Verankerung des csA-Moleküls in der Membran verstärkt war, konnte zudem nachgewiesen werden, daß nicht etwa die Haltekraft des Lipidankers gemessen wurde. Die An- und Abschaltbarkeit der csA- Wechselwirkung, sowie die wirksame Unterdrückung kompetitiver Adhäsionsmoleküle durch Kalziumentzug waren dabei von entscheidender Bedeutung für den Nachweis der Spezifität und Effektivität dieser Meßmethode.
Not available
Benoit, Martin
2000
Deutsch
Universitätsbibliothek der Ludwig-Maximilians-Universität München
Benoit, Martin (2000): Kraftspektroskopie an lebenden Zellen. Dissertation, LMU München: Fakultät für Physik
[thumbnail of Benoit_Martin.pdf]
Vorschau
PDF
Benoit_Martin.pdf

55MB

Abstract

Das Kraftmikroskop hat sich in vieler Hinsicht als effizientes Gerät für Untersuchungen und Manipulationen auf molekularer Ebene erwiesen. Dabei wird selbst unter physiologischen Bedingungen eine Auflösung erreicht, die Proteinsubstrukturen erkennen läßt. Als Kraftspektroskop kann es mechanische Eigenschaften wie Dehnungsverhalten und Reißfestigkeit einzelner Moleküle, die zwischen der Sensorfeder und der Unterlage eingespannt werden, untersuchen. Sogar die Bindungskräfte zwischen einem Molekül am Kraftsensor und einem anderen am Substrat können mittels Kraftspektroskopie mit etwa 3 pN Genauigkeit ermittelt werden. Von besonderem Interesse solcher Untersuchungen sind Moleküle mit spezifischer Affinität nach dem Schlüssel-Schloß-Prinzip, wie Rezeptor-Ligand- Systeme und Adhäsionsmoleküle. Bisher waren hauptsächlich wasserlösliche Moleküle solchen Messungen zugänglich. Bindungen zwischen amphiphilen Proteinen oder Membranproteinen zu messen, die durch hydrophobe Wechselwirkungen in der Membran verankert sind, erfordert neue Konzepte. Diesen Molekülen gilt das Augenmerk dieser Arbeit. Da die Verankerung in sogenanten „supported bi-layern“ und Vesikeln nicht immer zum gewünschten Erfolg führt, wird hier eine ungewöhnliche, aber sehr natürliche Alternative vorgestellt: Das Adhäsionsmolekül wird nicht aufwendig isoliert und der Meßmethode zugänglich gemacht, sondern bleibt in seiner natürlichen Umgebung, der Zelle, wohingegen die Methode angepasst wird. Dies ist durch die Befestigung einer Zelle am Kraftsensor eines Kraftspektroskopes geglückt und es gelang damit erstmals die Adhäsionskraft eines einzelnen Adhäsionsmoleküls in einer lebenden Zelle zu messen. So einfach diese Methode beschrieben ist, so viele Unwägbarkeiten treten dabei durch die hohe Komplexität der Zelle und der Zelloberfläche im Besonderen auf. Daher wird einleitend eine grobe Einführung in die Funktionen und den Aufbau einer Zelle und die üblichen Meßmethoden im Bereich der Zelladhäsionsmessung vorgestellt. Die Beschreibung der Meßmethode und der Umrüstung des Kraftmikroskopes zum Zelladhäsionskraftspektroskop sind durch technische Details im Anhang vervollständigt. Etwas aufwendig ist die Zusammenstellung der Daten, Theorien und Annahmen zum Aufbau eines semi-empirischen Modells zur Beschreibung der Adhäsionskraftmeßkurven beim Trennen adhärierender Zellen, auf der Basis vieler unabhängiger Einzelmolekülbindungen. Mit dem Zelladhäsionkraftspektroskop wurden dafür die Youngs-Moduli und die viskoelastischen Kelvin-Modell-Parameter verschiedener Zellen in dem eigens entwickelten „visko-elastic-response-mode“ vermessen. Ebenso wurden die Einflüsse der Zellkontaktkraft und der Kontaktzeit, sowie der Zuggeschwindigkeit auf die Zelladhäsionsantwort studiert und in Formeln gefaßt. Das Modell simuliert diese Meßdaten in guter Übereinstimmung und gibt dadurch einen Einblick in die physikalischen Randbedingungen für das einzelne Adhäsionsmolekül während solcher Experimente unter Berücksichtigung des zelltypischen Phänomens der Tetherbildung. Insbesondere kann damit die Bindungsdichte bei Adhäsionen auf verschiedenen Oberflächen berechnet werden. Demnach schließt eine Epithelzelle etwa vier Bindungen pro Quadratmikrometer mit einer Glasoberfläche, zwei mit einer anderen Epithelzelle und nur 0,8 mit einer passivierten Oberfläche. Mit kraftspektroskopischen Messungen der Adhäsionskräfte bei der Einnistung eines Trophoblasten in die Gebärmutter an einem naturnahen Laborsystem kann eine andersartige - mit dem Modell unabhängiger Bindungen nicht beschreibbare - Wechselwirkung identifiziert werden. Die Meßergebnisse deuten auf einen kooperativen Prozeß der molekularen Adhäsionsinselbildung hin. Kontrollmessungen an funktionalisierten Oberflächen erhärten diese Hypothese. Mit ersten Ergebnissen von Adhäsionsmessungen zwischen Knochenzellen und potentiellen Implantatoberflächen wird neben dem Einfluß der Oberflächenbeschaffenheit auch der des Meßmediums nachweisbar, wodurch die Generalität dieser Methode verdeutlicht wird. Im letzten Kapitel über die Interaktionen einzelner Zellen wird anhand der induzierten Lektinwechselwirkung zwischen roten Blutkörperchen die prinzipielle Möglichkeit der Zelladhäsionskraftspektroskopie Einzelmolekülereignisse zu vermessen nachgewiesen. Die dafür nötigen geringsten Kontaktkräfte von unter 40 pN, konnten durch extrem weiche Kraftsensoren (<5 mN/m) verwirklicht werden. Schließlich gelang die Vermessung der wahrscheinlichsten Abrißkraft der homophilen Einzelmolekülwechselwirkung des Adhäsionsproteins csA am Einzeller Dictyostelium discoideum. Sie beträgt bei einer Zuggeschwindigkeit von etwa 2 µm/s 22.5 pN ±5 pN. Mit einer Dictyosteliummutante, bei der die Verankerung des csA-Moleküls in der Membran verstärkt war, konnte zudem nachgewiesen werden, daß nicht etwa die Haltekraft des Lipidankers gemessen wurde. Die An- und Abschaltbarkeit der csA- Wechselwirkung, sowie die wirksame Unterdrückung kompetitiver Adhäsionsmoleküle durch Kalziumentzug waren dabei von entscheidender Bedeutung für den Nachweis der Spezifität und Effektivität dieser Meßmethode.