Logo Logo
Hilfe
Kontakt
Switch language to English
Solving dynamical mean-field theory using matrix product states
Solving dynamical mean-field theory using matrix product states
This thesis advances and applies matrix product state (MPS) based algorithms to the solution of dynamical mean-field theory (DMFT) and its variants. The advances enable to solve quantum many-body problems in and out of equilibrium that were previously out of reach for any numerical treatment. In equilibrium, this concerns in particular the computation of the electronic --- such as insulating, metallic, spin-freezed and many other --- phases of highly complex realistic models for correlated materials. In non-equilibrium, this concerns in particular the understanding of the fundamental mechanisms of the relaxation behavior of quantum many-body systems on short and intermediate time scales.
Not available
Wolf, Fabian Alexander
2015
Englisch
Universitätsbibliothek der Ludwig-Maximilians-Universität München
Wolf, Fabian Alexander (2015): Solving dynamical mean-field theory using matrix product states. Dissertation, LMU München: Fakultät für Physik
[thumbnail of Wolf_Fabian_A.pdf]
Vorschau
PDF
Wolf_Fabian_A.pdf

14MB

Abstract

This thesis advances and applies matrix product state (MPS) based algorithms to the solution of dynamical mean-field theory (DMFT) and its variants. The advances enable to solve quantum many-body problems in and out of equilibrium that were previously out of reach for any numerical treatment. In equilibrium, this concerns in particular the computation of the electronic --- such as insulating, metallic, spin-freezed and many other --- phases of highly complex realistic models for correlated materials. In non-equilibrium, this concerns in particular the understanding of the fundamental mechanisms of the relaxation behavior of quantum many-body systems on short and intermediate time scales.