Logo Logo
Switch language to English
Schindler, Thomas (2015): Type-free truth. Dissertation, LMU München: Fakultät für Philosophie, Wissenschaftstheorie und Religionswissenschaft



This book is a contribution to the flourishing field of formal and philosophical work on truth and the semantic paradoxes. Our aim is to present several theories of truth, to investigate some of their model-theoretic, recursion-theoretic and proof-theoretic aspects, and to evaluate their philosophical significance. In Part I we first outline some motivations for studying formal theories of truth, fix some terminology, provide some background on Tarski’s and Kripke’s theories of truth, and then discuss the prospects of classical type-free truth. In Chapter 4 we discuss some minimal adequacy conditions on a satisfactory theory of truth based on the function that the truth predicate is intended to fulfil on the deflationist account. We cast doubt on the adequacy of some non-classical theories of truth and argue in favor of classical theories of truth. Part II is devoted to grounded truth. In chapter 5 we introduce a game-theoretic semantics for Kripke’s theory of truth. Strategies in these games can be interpreted as reference-graphs (or dependency-graphs) of the sentences in question. Using that framework, we give a graph-theoretic analysis of the Kripke-paradoxical sentences. In chapter 6 we provide simultaneous axiomatizations of groundedness and truth, and analyze the proof-theoretic strength of the resulting theories. These range from conservative extensions of Peano arithmetic to theories that have the full strength of the impredicative system ID1. Part III investigates the relationship between truth and set-theoretic comprehen- sion. In chapter 7 we canonically associate extensions of the truth predicate with Henkin-models of second-order arithmetic. This relationship will be employed to determine the recursion-theoretic complexity of several theories of grounded truth and to show the consistency of the latter with principles of generalized induction. In chapter 8 it is shown that the sets definable over the standard model of the Tarskian hierarchy are exactly the hyperarithmetical sets. Finally, we try to apply a certain solution to the set-theoretic paradoxes to the case of truth, namely Quine’s idea of stratification. This will yield classical disquotational theories that interpret full second-order arithmetic without set parameters, Z2- (chapter 9). We also indicate a method to recover the parameters. An appendix provides some background on ordinal notations, recursion theory and graph theory.