Logo Logo
Help
Contact
Switch language to German
Femtosecond single-electron diffraction
Femtosecond single-electron diffraction
Die grundlegenden Funktionsprinzipien der Natur zu verstehen, ist seit jeher Antrieb der Naturwissenschaften. Verhalten und Eigenschaften von Festkörpern werden dabei häufig von dynamischen Prozessen auf atomarer Skala (< 10^-10 m) bestimmt, welche typischerweise auf Zeitskalen im Bereich von zehn Femtosekunden (10^-15 s) bis hin zu vielen Picosekunden (10^-12 s) ablaufen. Zeitaufgelöste Elektronenbeugung an kristallinen Festkörpern ermöglicht die direkte Beobachtung solcher Prozesse in Raum und Zeit. Die bislang mit diesem Verfahren erreichte Zeitauflösung von etwa 100 fs eignet sich jedoch nicht zur Beobachtung der schnellsten Prozesse in Festkörpern. Auch die, zur zuverlässigen Auflösung von großen Elementarzellen molekularer Kristalle erforderliche, transversale Kohärenz ist unzureichend. Eine wesentliche Ursache für diese beiden Probleme liegt in der gegenseitigen Coulomb-Abstoßung der Elektronen innerhalb eines Pulses und den daraus resultierenden Veränderungen der Geschwindigkeitsverteilungen in radialer und longitudinaler Richtung. Während erstere zu verringerter transversaler Kohärenz führt, hat letztere längere Elektronenpulsdauern und damit eine begrenzte Zeitauflösung zur Folge. In dieser Arbeit wird ein Messaufbau zur zeitaufgelösten Elektronenbeugung vorgestellt, welcher auf der Erzeugung von nur einem Elektron pro Puls basiert. Aufgrund der Vermeidung von Coulomb-Abstoßung innerhalb der Pulse ist dieser Ansatz eine vielversprechende Basis zur konzeptionell nahezu unbegrenzten Verbesserung der Zeitauflösung. Eine hier eigens entwickelte, thermisch stabilisierte Elektronenquelle garantiert einen hohen Grad an Kohärenz bei gleichzeitig hervorragender Langzeitstabilität der Photoelektronenausbeute. Insbesondere letzteres ist für zeitaufgelöste Beugungsexperimente mit Einzeleelektronen aufgrund der längeren Integrationszeit unerlässlich, konnte jedoch durch vorhergehende Quellen nicht erreicht werden. Darüber hinaus werden in dieser Arbeit die besonderen Ansprüche der Einzelelektronenbeugung an die zu untersuchenden Materialien diskutiert und Strategien zur Vermeidung von Schäden an der Probe durch akkumulierte Anregungsenergie entwickelt. Diese erfordern neue Schwerpunkte bei der Probenpräparation, welche entwickelt und diskutiert werden. Die Beobachtung der komplexen Relaxationsdynamik in Graphit-Dünnfilmen mit zeitaufgelöster Einzelelektronenbeugung demonstriert abschließend die generelle Eignung dieses Verfahrens als zuverlässige Methodik zur Untersuchung von reversibler, struktureller Dynamik in Festkörpern mit atomarer Auflösung. Nicht-relativistische Einzelelektronenpulse können mit Hilfe von zeitabhängigen Feldern bei Mikrowellenfrequenzen bis in den 10 fs-Bereich komprimiert werden, eventuell sogar bis in den Attosekundenbereich. Die hier demonstrierte langzeitstabile und hochkohärente Elektronenquelle, sowie die Methodiken zur Probenpräparation und zeitaufgelösten Beugung mit Einzelelektronenpulsen liefern die Basis für zukünftige Experimente dieser Art., The understanding of nature’s fundamental processes has always been the goal of science. Often, the behavior and properties of condensed matter are determined by dynamic pro- cesses on the atomic scale (< 10^-10 m). The relevant time scales for these processes range from tens of femtoseconds (10^−15 s) to several picoseconds (10^−12 s). Time-resolved electron diffraction on crystalline solids allows the direct observation of such processes in space and time. However, the state-of-the-art temporal resolution is insufficient to observe the fastest processes in solids. The transverse coherence is insufficient to resolve large unit cells of molecular crystals. One major origin for both of these problems is that the electron within the pulse repel each other, resulting in a change of the radial and longitudinal velocity distribution. The former leads to a decrease transverse coherence while the former leads to a significant increase in electron pulse duration, limiting temporal resolution. In this work, a setup for time-resolved electron diffraction is introduced that works with electron pulses each containing only a single electron. Circumventing Coulomb repulsion, this approach can lead to in principle nearly unlimited, improvement of temporal resolu- tion. The novel, thermally stabilized single-electron gun developed here provides a high degree of transverse coherence and excellent long-term stability of the photoemission yield at the same time. The latter is crucial for time-resolved diffraction experiments due to the long integration times required when working with single-electron pulses and has not been achieved prior to this work. Furthermore, the special requirements of single-electron diffraction on the materials under study are discussed. Strategies for avoidance of sam- ple damage from accumulated excitation energy are developed, requiring new emphases in sample preparation. The observation of the complex relaxation dynamics of graphite thin films using time-resolved single-electron diffraction finally demonstrates the general feasi- bility of this technique as a reliable methodology for investigation of reversible, structural dynamics in solids with atomic resolution. Using time-dependent fields at microwave frequencies, non-relativistic single-electron pulses can be compressed to 10 fs and possibly even down to the attosecond regime. The long-term stable and high-coherence electron gun demonstrated here as well as the method- ology developed for sample preparation and time-resolved electron diffraction using single- electron pulses provide the basis for such experiments in the future.
UED, electron diffraction, ultrafast, single-electron, femtosecond
Lahme, Stefan
2014
English
Universitätsbibliothek der Ludwig-Maximilians-Universität München
Lahme, Stefan (2014): Femtosecond single-electron diffraction. Dissertation, LMU München: Faculty of Physics
[thumbnail of Lahme_Stefan.pdf]
Preview
PDF
Lahme_Stefan.pdf

49MB

Abstract

Die grundlegenden Funktionsprinzipien der Natur zu verstehen, ist seit jeher Antrieb der Naturwissenschaften. Verhalten und Eigenschaften von Festkörpern werden dabei häufig von dynamischen Prozessen auf atomarer Skala (< 10^-10 m) bestimmt, welche typischerweise auf Zeitskalen im Bereich von zehn Femtosekunden (10^-15 s) bis hin zu vielen Picosekunden (10^-12 s) ablaufen. Zeitaufgelöste Elektronenbeugung an kristallinen Festkörpern ermöglicht die direkte Beobachtung solcher Prozesse in Raum und Zeit. Die bislang mit diesem Verfahren erreichte Zeitauflösung von etwa 100 fs eignet sich jedoch nicht zur Beobachtung der schnellsten Prozesse in Festkörpern. Auch die, zur zuverlässigen Auflösung von großen Elementarzellen molekularer Kristalle erforderliche, transversale Kohärenz ist unzureichend. Eine wesentliche Ursache für diese beiden Probleme liegt in der gegenseitigen Coulomb-Abstoßung der Elektronen innerhalb eines Pulses und den daraus resultierenden Veränderungen der Geschwindigkeitsverteilungen in radialer und longitudinaler Richtung. Während erstere zu verringerter transversaler Kohärenz führt, hat letztere längere Elektronenpulsdauern und damit eine begrenzte Zeitauflösung zur Folge. In dieser Arbeit wird ein Messaufbau zur zeitaufgelösten Elektronenbeugung vorgestellt, welcher auf der Erzeugung von nur einem Elektron pro Puls basiert. Aufgrund der Vermeidung von Coulomb-Abstoßung innerhalb der Pulse ist dieser Ansatz eine vielversprechende Basis zur konzeptionell nahezu unbegrenzten Verbesserung der Zeitauflösung. Eine hier eigens entwickelte, thermisch stabilisierte Elektronenquelle garantiert einen hohen Grad an Kohärenz bei gleichzeitig hervorragender Langzeitstabilität der Photoelektronenausbeute. Insbesondere letzteres ist für zeitaufgelöste Beugungsexperimente mit Einzeleelektronen aufgrund der längeren Integrationszeit unerlässlich, konnte jedoch durch vorhergehende Quellen nicht erreicht werden. Darüber hinaus werden in dieser Arbeit die besonderen Ansprüche der Einzelelektronenbeugung an die zu untersuchenden Materialien diskutiert und Strategien zur Vermeidung von Schäden an der Probe durch akkumulierte Anregungsenergie entwickelt. Diese erfordern neue Schwerpunkte bei der Probenpräparation, welche entwickelt und diskutiert werden. Die Beobachtung der komplexen Relaxationsdynamik in Graphit-Dünnfilmen mit zeitaufgelöster Einzelelektronenbeugung demonstriert abschließend die generelle Eignung dieses Verfahrens als zuverlässige Methodik zur Untersuchung von reversibler, struktureller Dynamik in Festkörpern mit atomarer Auflösung. Nicht-relativistische Einzelelektronenpulse können mit Hilfe von zeitabhängigen Feldern bei Mikrowellenfrequenzen bis in den 10 fs-Bereich komprimiert werden, eventuell sogar bis in den Attosekundenbereich. Die hier demonstrierte langzeitstabile und hochkohärente Elektronenquelle, sowie die Methodiken zur Probenpräparation und zeitaufgelösten Beugung mit Einzelelektronenpulsen liefern die Basis für zukünftige Experimente dieser Art.

Abstract

The understanding of nature’s fundamental processes has always been the goal of science. Often, the behavior and properties of condensed matter are determined by dynamic pro- cesses on the atomic scale (< 10^-10 m). The relevant time scales for these processes range from tens of femtoseconds (10^−15 s) to several picoseconds (10^−12 s). Time-resolved electron diffraction on crystalline solids allows the direct observation of such processes in space and time. However, the state-of-the-art temporal resolution is insufficient to observe the fastest processes in solids. The transverse coherence is insufficient to resolve large unit cells of molecular crystals. One major origin for both of these problems is that the electron within the pulse repel each other, resulting in a change of the radial and longitudinal velocity distribution. The former leads to a decrease transverse coherence while the former leads to a significant increase in electron pulse duration, limiting temporal resolution. In this work, a setup for time-resolved electron diffraction is introduced that works with electron pulses each containing only a single electron. Circumventing Coulomb repulsion, this approach can lead to in principle nearly unlimited, improvement of temporal resolu- tion. The novel, thermally stabilized single-electron gun developed here provides a high degree of transverse coherence and excellent long-term stability of the photoemission yield at the same time. The latter is crucial for time-resolved diffraction experiments due to the long integration times required when working with single-electron pulses and has not been achieved prior to this work. Furthermore, the special requirements of single-electron diffraction on the materials under study are discussed. Strategies for avoidance of sam- ple damage from accumulated excitation energy are developed, requiring new emphases in sample preparation. The observation of the complex relaxation dynamics of graphite thin films using time-resolved single-electron diffraction finally demonstrates the general feasi- bility of this technique as a reliable methodology for investigation of reversible, structural dynamics in solids with atomic resolution. Using time-dependent fields at microwave frequencies, non-relativistic single-electron pulses can be compressed to 10 fs and possibly even down to the attosecond regime. The long-term stable and high-coherence electron gun demonstrated here as well as the method- ology developed for sample preparation and time-resolved electron diffraction using single- electron pulses provide the basis for such experiments in the future.