Logo
EnglishCookie löschen - von nun an wird die Spracheinstellung Ihres Browsers verwendet.
Wieser, Christoph (2014): Building a semantic search engine with games and crowdsourcing. Dissertation, LMU München: Fakultät für Mathematik, Informatik und Statistik
[img]
Vorschau
PDF
Wieser_Christoph.pdf

13MB

Abstract

Semantic search engines aim at improving conventional search with semantic information, or meta-data, on the data searched for and/or on the searchers. So far, approaches to semantic search exploit characteristics of the searchers like age, education, or spoken language for selecting and/or ranking search results. Such data allow to build up a semantic search engine as an extension of a conventional search engine. The crawlers of well established search engines like Google, Yahoo! or Bing can index documents but, so far, their capabilities to recognize the intentions of searchers are still rather limited. Indeed, taking into account characteristics of the searchers considerably extend both, the quantity of data to analyse and the dimensionality of the search problem. Well established search engines therefore still focus on general search, that is, "search for all", not on specialized search, that is, "search for a few". This thesis reports on techniques that have been adapted or conceived, deployed, and tested for building a semantic search engine for the very specific context of artworks. In contrast to, for example, the interpretation of X-ray images, the interpretation of artworks is far from being fully automatable. Therefore artwork interpretation has been based on Human Computation, that is, a software-based gathering of contributions by many humans. The approach reported about in this thesis first relies on so called Games With A Purpose, or GWAPs, for this gathering: Casual games provide an incentive for a potentially unlimited community of humans to contribute with their appreciations of artworks. Designing convenient incentives is less trivial than it might seem at first. An ecosystem of games is needed so as to collect the meta-data on artworks intended for. One game generates the data that can serve as input of another game. This results in semantically rich meta-data that can be used for building up a successful semantic search engine. Thus, a first part of this thesis reports on a "game ecosystem" specifically designed from one known game and including several novel games belonging to the following game classes: (1) Description Games for collecting obvious and trivial meta-data, basically the well-known ESP (for extra-sensorial perception) game of Luis von Ahn, (2) the Dissemination Game Eligo generating translations, (3) the Diversification Game Karido aiming at sharpening differences between the objects, that is, the artworks, interpreted and (3) the Integration Games Combino, Sentiment and TagATag that generate structured meta-data. Secondly, the approach to building a semantic search engine reported about in this thesis relies on Higher-Order Singular Value Decomposition (SVD). More precisely, the data and meta-data on artworks gathered with the afore mentioned GWAPs are collected in a tensor, that is a mathematical structure generalising matrices to more than only two dimensions, columns and rows. The dimensions considered are the artwork descriptions, the players, and the artwork themselves. A Higher-Order SVD of this tensor is first used for noise reduction in This thesis reports also on deploying a Higher-Order LSA. The parallel Higher-Order SVD algorithm applied for the Higher-Order LSA and its implementation has been validated on an application related to, but independent from, the semantic search engine for artworks striven for: image compression. This thesis reports on the surprisingly good image compression which can be achieved with Higher-Order SVD. While compression methods based on matrix SVD for each color, the approach reported about in this thesis relies on one single (higher-order) SVD of the whole tensor. This results in both, better quality of the compressed image and in a significant reduction of the memory space needed. Higher-Order SVD is extremely time-consuming what calls for parallel computation. Thus, a step towards automatizing the construction of a semantic search engine for artworks was parallelizing the higher-order SVD method used and running the resulting parallel algorithm on a super-computer. This thesis reports on using Hestenes’ method and R-SVD for parallelising the higher-order SVD. This method is an unconventional choice which is explained and motivated. As of the super-computer needed, this thesis reports on turning the web browsers of the players or searchers into a distributed parallel computer. This is done by a novel specific system and a novel implementation of the MapReduce data framework to data parallelism. Harnessing the web browsers of the players or searchers saves computational power on the server-side. It also scales extremely well with the number of players or searchers because both, playing with and searching for artworks, require human reflection and therefore results in idle local processors that can be brought together into a distributed super-computer.

Abstract

Semantische Suchmaschinen dienen der Verbesserung konventioneller Suche mit semantischen Informationen, oder Metadaten, zu Daten, nach denen gesucht wird, oder zu den Suchenden. Bisher nutzt Semantische Suche Charakteristika von Suchenden wie Alter, Bildung oder gesprochene Sprache für die Auswahl und/oder das Ranking von Suchergebnissen. Solche Daten erlauben den Aufbau einer Semantischen Suchmaschine als Erweiterung einer konventionellen Suchmaschine. Die Crawler der fest etablierten Suchmaschinen wie Google, Yahoo! oder Bing können Dokumente indizieren, bisher sind die Fähigkeiten eher beschränkt, die Absichten von Suchenden zu erkennen. Tatsächlich erweitert die Berücksichtigung von Charakteristika von Suchenden beträchtlich beides, die Menge an zu analysierenden Daten und die Dimensionalität des Such-Problems. Fest etablierte Suchmaschinen fokussieren deswegen stark auf allgemeine Suche, also "Suche für alle", nicht auf spezialisierte Suche, also "Suche für wenige". Diese Arbeit berichtet von Techniken, die adaptiert oder konzipiert, eingesetzt und getestet wurden, um eine semantische Suchmaschine für den sehr speziellen Kontext von Kunstwerken aufzubauen. Im Gegensatz beispielsweise zur Interpretation von Röntgenbildern ist die Interpretation von Kunstwerken weit weg davon gänzlich automatisiert werden zu können. Deswegen basiert die Interpretation von Kunstwerken auf menschlichen Berechnungen, also Software-basiertes Sammeln von menschlichen Beiträgen. Der Ansatz, über den in dieser Arbeit berichtet wird, beruht auf sogenannten "Games With a Purpose" oder GWAPs die folgendes sammeln: Zwanglose Spiele bieten einen Anreiz für eine potenziell unbeschränkte Gemeinde von Menschen, mit Ihrer Wertschätzung von Kunstwerken beizutragen. Geeignete Anreize zu entwerfen in weniger trivial als es zuerst scheinen mag. Ein Ökosystem von Spielen wird benötigt, um Metadaten gedacht für Kunstwerke zu sammeln. Ein Spiel erzeugt Daten, die als Eingabe für ein anderes Spiel dienen können. Dies resultiert in semantisch reichhaltigen Metadaten, die verwendet werden können, um eine erfolgreiche Semantische Suchmaschine aufzubauen. Deswegen berichtet der erste Teil dieser Arbeit von einem "Spiel-Ökosystem", entwickelt auf Basis eines bekannten Spiels und verschiedenen neuartigen Spielen, die zu verschiedenen Spiel-Klassen gehören. (1) Beschreibungs-Spiele zum Sammeln offensichtlicher und trivialer Metadaten, vor allem dem gut bekannten ESP-Spiel (Extra Sensorische Wahrnehmung) von Luis von Ahn, (2) dem Verbreitungs-Spiel Eligo zur Erzeugung von Übersetzungen, (3) dem Diversifikations-Spiel Karido, das Unterschiede zwischen Objekten, also interpretierten Kunstwerken, schärft und (3) Integrations-Spiele Combino, Sentiment und Tag A Tag, die strukturierte Metadaten erzeugen. Zweitens beruht der Ansatz zum Aufbau einer semantischen Suchmaschine, wie in dieser Arbeit berichtet, auf Singulärwertzerlegung (SVD) höherer Ordnung. Präziser werden die Daten und Metadaten über Kunstwerk gesammelt mit den vorher genannten GWAPs in einem Tensor gesammelt, einer mathematischen Struktur zur Generalisierung von Matrizen zu mehr als zwei Dimensionen, Spalten und Zeilen. Die betrachteten Dimensionen sind die Beschreibungen der Kunstwerke, die Spieler, und die Kunstwerke selbst. Eine Singulärwertzerlegung höherer Ordnung dieses Tensors wird zuerst zur Rauschreduktion verwendet nach der Methode der sogenannten Latenten Semantischen Analyse (LSA). Diese Arbeit berichtet auch über die Anwendung einer LSA höherer Ordnung. Der parallele Algorithmus für Singulärwertzerlegungen höherer Ordnung, der für LSA höherer Ordnung verwendet wird, und seine Implementierung wurden validiert an einer verwandten aber von der semantischen Suche unabhängig angestrebten Anwendung: Bildkompression. Diese Arbeit berichtet von überraschend guter Kompression, die mit Singulärwertzerlegung höherer Ordnung erzielt werden kann. Neben Matrix-SVD-basierten Kompressionsverfahren für jede Farbe, beruht der Ansatz wie in dieser Arbeit berichtet auf einer einzigen SVD (höherer Ordnung) auf dem gesamten Tensor. Dies resultiert in beidem, besserer Qualität von komprimierten Bildern und einer signifikant geringeren des benötigten Speicherplatzes. Singulärwertzerlegung höherer Ordnung ist extrem zeitaufwändig, was parallele Berechnung verlangt. Deswegen war ein Schritt in Richtung Aufbau einer semantischen Suchmaschine für Kunstwerke eine Parallelisierung der verwendeten SVD höherer Ordnung auf einem Super-Computer. Diese Arbeit berichtet vom Einsatz der Hestenes’-Methode und R-SVD zur Parallelisierung der SVD höherer Ordnung. Diese Methode ist eine unkonventionell Wahl, die erklärt und motiviert wird. Ab nun wird ein Super-Computer benötigt. Diese Arbeit berichtet über die Wandlung der Webbrowser von Spielern oder Suchenden in einen verteilten Super-Computer. Dies leistet ein neuartiges spezielles System und eine neuartige Implementierung des MapReduce Daten-Frameworks für Datenparallelismus. Das Einspannen der Webbrowser von Spielern und Suchenden spart server-seitige Berechnungskraft. Ebenso skaliert die Berechnungskraft so extrem gut mit der Spieleranzahl oder Suchenden, denn beides, Spiel mit oder Suche nach Kunstwerken, benötigt menschliche Reflektion, was deswegen zu ungenutzten lokalen Prozessoren führt, die zu einem verteilten Super-Computer zusammengeschlossen werden können.