Kriegel, Ilka (2013): Near-infrared plasmonics with vacancy doped semiconductor nanocrystals. Dissertation, LMU München: Faculty of Physics |
Preview |
PDF
Kriegel_Ilka.pdf 5MB |
Abstract
Plasmonics with heavily doped semiconductor nanocrystals (NCs) is an emerging field in NC science. However, impurity doping of NCs remains far from trivial and is, as yet, dominated by a low chemical control over the incorporated dopant atoms. An appealing alternative is vacancy doping, where the formation of vacancies in the structure is responsible for an increased carrier density and elegantly circumvents the issues related to impurity doping. Due to high carrier densities of around 10^21cm^(-3) localized surface plasmon resonances (LSPRs) in the near infrared (NIR) are expected, and as such highlighted to close the gap between conventionally doped NCs and noble metal nanoparticles. Copper chalcogenide NCs, namely copper sulfide (Cu2-xS), copper selenide (Cu2-xSe), and copper telluride (Cu2-xTe), are an attractive example of vacancy doped semiconductor NCs, with spectra dominated by intense NIR resonances. Within this study thorough experimental evidence has been given to prove the plasmonic nature of those NIR resonances. By presenting typical plasmonic characteristics, such as refractive index sensitivity of the LSPR, its intrinsic size dependence, plasmon dynamics, or interparticle plasmon coupling, the LSPRs in copper chalcogenide NCs have unambiguously been identified. The chemical nature of vacancy doping turns out to deliver an additional, highly attractive means of control over the LSPR in vacancy doped copper chalcogenide NCs. Through chemical tailoring of the copper vacancy density via controlled oxidation and reduction, as shown in this study, a reversible tuning of the LSPR over a wide range of frequencies in the NIR (1000-2000 nm) becomes feasible. This highlights copper chalcogenide NCs over conventional plasmonic materials. Notably, the complete suppression of the LSPR uncovers the excitonic features present only in the purely semiconducting, un-doped NCs and reveals the unique option to selectively address excitons and highly tunable LSPRs in one material (bandgap Eg~1.2 eV). As such, copper chalcogenide NCs appear to hold as an attractive material system for the investigation of exciton plasmon interactions. Indeed, a quenching of the excitonic transitions in the presence of the developing LSPR is demonstrated within this work, with a full recovery of the initial excitonic properties upon its suppression. A theoretical study on the shape dependent plasmonic properties of Cu2-xTe NCs reveals a deviation from the usual Drude model and suggests that the carriers in vacancy doped copper chalcogenide NCs cannot be treated as fully free. On the other hand, the Lorentz model of localized oscillators appears to account for the weak shape dependence, as observed experimentally, indicating an essential degree of localization of the carriers in vacancy doped copper chalcogenide NCs. Taken together, this work delivers a huge step toward the complete optical and structural characterization of plasmonic copper chalcogenide NCs. The advantages of semiconductor NC chemistry have been exploited to provide access to novel plasmonic shapes, such as tetrapods that have not been feasible to produce so far. A precise size, shape and phase control presents the basis for this study, and together with a thorough theoretical investigation delivers important aspects to uncover the tunable plasmonic properties of vacancy doped copper chalcogenide NCs.
Item Type: | Theses (Dissertation, LMU Munich) |
---|---|
Subjects: | 500 Natural sciences and mathematics 500 Natural sciences and mathematics > 530 Physics |
Faculties: | Faculty of Physics |
Language: | English |
Date of oral examination: | 15. November 2013 |
1. Referee: | Feldmann, Jochen |
MD5 Checksum of the PDF-file: | bb707d4327726cda2d7a2c9684799af5 |
Signature of the printed copy: | 0001/UMC 21763 |
ID Code: | 16455 |
Deposited On: | 13. Jan 2014 14:43 |
Last Modified: | 24. Oct 2020 00:09 |