Logo Logo
Help
Contact
Switch language to German
Gauge/Gravity duality. Exploring universal features in quantum matter
Gauge/Gravity duality. Exploring universal features in quantum matter
In der vorliegenden Arbeit wird mit Hilfe der verallgemeinerten Eichtheorie/Gravitations-Dualität, welche stark gekoppelte Eichtheorien mit schwach gekrümmten gravitativen Theorien verbindet, stark korrelierte Quantenzustände der Materie untersucht. Der Schwerpunkt liegt dabei in Anwendungen auf Systeme der kondensierten Materie, insbesondere Hochtemperatur-Supraleitung und kritische Quantenzustände bei verschwindender Temperatur. Die Eichtheorie/Gravitations-Dualität entstammt der Stringtheorie und erlaubt eine Umsetzung des holographischen Prinzips. Aus diesem Grund wird eine kurze Einführung in die Konzepte der Stringtheorie und ihre Auswirkungen auf das holographische Prinzip gegeben. Für das tiefere Verständnis der effektiven Niederenergie-Feldtheorien wird zusätzlich die Supersymmetrie benötigt. Ausgestattet mit einem robusten Stringtheorie-Hintergrund wird die unterschiedliche Interpretation der Dirichlet- oder D-Branen, ausgedehnte Objekte auf denen offene Strings/Fäden enden können, diskutiert: Zum einen als massive solitonische Lösungen der Typ II Supergravitation und auf der anderen Seite, ihre Rolle als Quelle für supersymmetrische Yang-Mills Theorien. Die Verbindung dieser unterschiedlichen Betrachtungsweise der D-Branen liefert eine explizite Konstruktion der Eichtheorie/Gravitations-Dualität, genauer der AdS_5/CFT_4 Korrespondenz zwischen der N=4 supersymmetrischen SU(N_c) Yang-Mills Theorie in vier Dimensionen mit verschwindender beta-Funktion in allen Ordnungen, also eine echte konforme Theorie, und Type IIB Supergravitation in der zehn dimensionalen AdS_5 X S^5 Raumzeit. Darüber hinaus wird das Wörterbuch, das zwischen den Operatoren der konformen Feldtheorie und den gravitativen Feldern übersetzt, im Detail eingeführt. Genauer gesagt, die Zustandssumme der stark gekoppelten N=4 supersymmetrischen Yang-Mills Theorie im Grenzwert großer N_c, ist identisch mit der Zustandssumme der Supergravitation unter Berücksichtigung der zugehörigen Lösungen der Bewegungsgleichungen, ausgewertet am Rand des AdS-Raumes. Die Anwendung der perturbativen Quantenfeldtheorie und die Verbindungen zur quantenstatistischen Zustandssumme erlaubt die Erweiterung des holographischen Wörterbuchs auf Systeme mit endlichen Dichten und endlicher Temperatur. Aus diesem Grund werden alle Aspekte der Quantenfeldtheorie behandelt, die für die Anwendung der ``Linear-Response''-Theorie, der Berechnung von Korrelationsfunktionen und die Beschreibung von kritischen Phänomenen benötigt werden, wobei die Betonung auf allgemeine Zusammenhänge zwischen Thermodynamik, statistischer Physik bzw. statistischer Feldtheorie und Quantenfeldtheorie liegt. Des Weiteren wird der Renormierungsgruppen-Formalismus zur Beschreibung von effektiven Feldtheorien und kritischen Phänomene im Kontext der verallgemeinerten Eichtheorie/Gravitations-Dualität ausführlich dargelegt. Folgende Hauptthemen werden in dieser Arbeit behandelt: Die Untersuchung der optischen Eigenschaften von holographischen Metallen und ihre Beschreibung durch das Drude-Sommerfeld Modell, ein Versuch das Homes'sche Gesetz in Hochtemperatur-Supraleitern holographisch zu beschreiben indem verschiedene Diffusionskonstanten und zugehörige Zeitskalen berechnet werden, das mesonische Spektrum bei verschwindender Temperatur und schlussendlich holographische Quantenzustände bei endlichen Dichten. Entscheidend für die Anwendung dieses Rahmenprogramms auf stark korrelierte Systeme der kondensierten Materie ist die Renormierungsgruppenfluss-Interpretation der AdS_5/CFT_4 Korrespondenz und die daraus resultierenden emergenten, holographischen Duale, welche die meisten Beschränkungen der ursprünglichen Theorie aufheben. Diese sogenannten ``Bottom-Up'' Zugänge sind besonders geeignet für Anwendungen auf Fragestellungen in der Theorie der kondensierten Materie und der ``Linear-Response''-Theorie, mittels des holographischen Fluktuations-Dissipations-Theorem. Die Hauptergebnisse der vorliegenden Arbeit umfassen eine ausführliche Untersuchung der R-Ladungs-Diffusion und der Impulsdiffusion in holographischen s- und p-Wellen Supraleitern, welche durch die Einstein-Maxwell Theorie bzw. die Einstein-Yang-Mills Theorie beschrieben werden, und eine Vertiefung des Verständnisses der universellen Eigenschaften solcher Systeme. Als zweites wurde die Stabilität der kalten holographischen Quantenzustände der Materie untersucht, wobei eine zusätzliche Diffusions-Mode entdeckt wurde. Diese Mode kann als eine Art ``R-Spin-Diffusion'' aufgefasst werden, die der Spin-Diffusion in Systemen mit frei beweglichen ``itineranten'' Elektronen ähnelt, wobei die Entkopplung der Spin-Bahn Kopplung die Spin-Symmetrie in eine globale Symmetrie überführt. Das Fehlen der Instabilitäten und die Existenz einer ``Zero-Sound'' Mode, bekannt von Fermi-Flüssigkeiten, deuten eine Beschreibung der kalten holographischen Materie durch eine effektive hydrodynamische Theorie an., In this dissertation strongly correlated quantum states of matter are explored with the help of the gauge/gravity duality, relating strongly coupled gauge theories to weakly curved gravitational theories. The main focus of the present work is on applications to condensed matter systems, in particular high temperature superconductors and quantum matter close to criticality at zero temperature. The gauge/gravity duality originates from string theory and is a particular realization of the holographic principle. Therefore, a brief overview of the conceptual ideas behind string theory and the ramifications of the holographic principle are given. Along the way, supersymmetry and supersymmetric field theories needed to understand the low energy effective field theories of superstring theory will be discussed. Armed with the string theory background, the double life of D-branes, extended object where open strings end, is explained as massive solitonic solutions to the type II supergravity equations of motion and their role in generating supersymmetric Yang-Mills theories. Connecting these two different pictures of D-branes will give an explicit construction of a gauge/gravity duality, the AdS_5/CFT_4 correspondence between N=4 supersymmetric SU(N_c) Yang-Mills theory in four dimensions with vanishing beta-function to all orders, describing a true CFT, and type IIB supergravity in ten-dimensional AdS_5 X S^5 spacetime. Furthermore, the precise dictionary relating operators of the conformal field theory to fields in the gravitational theory is established. More precisely, the partitions functions of the strongly coupled N=4 supersymmetric Yang-Mills theory in the large N_c limit is equal to the on-shell supergravity partitionevaluated at the boundary of the AdS space. Applying the knowledge of perturbative quantum field theory and its relation to the quantum partition function the dictionary may be extended to finite temperature and finite density states. Thus, all aspects of quantum field theory relevant for the application of linear response theory, the computation of correlation functions, and the description of critical phenomena are covered with emphasis on elucidating connections between thermodynamics, statistical physics, statistical field theory and quantum field theory. Furthermore, the renormalization group formalism in the context of effective field theories and critical phenomena will be developed explaining the critical exponents in terms of hyperscaling relations. The main topics covered in this thesis are: the analysis of optical properties of holographic metals and their relation to the Drude-Sommerfeld model, an attempt to understand Homes' law of high temperature superconductors holographically by computing different diffusion constants and related timescales, the mesonic spectrum at zero temperature and holographic quantum matter at finite density. Crucially for the application of this framework to strongly correlated condensed matter systems is the renormalization flow interpretation of the AdS_5/CFT_4 correspondence and the resulting emergent holographic duals relaxing most of the constraints of the original formulation. These so-called bottom up approaches are geared especially towards applications in condensed matter physics and to linear response theory, via the central operational prescription, the holographic fluctuation-dissipation theorem. The main results of the present work are an extensive analysis of the R-charge- and momentum diffusion in holographic s- and p-wave superconductors, described by Einstein-Maxwell theory and the Einstein-Yang-Mills model, respectively, and the lessons learned how to improve the understanding of universal features in such systems. Secondly, the stability of cold holographic quantum matter is investigated. So far, there are no instabilities detected in such systems. Instead, an interesting additional diffusion mode is discovered, which can be interpreted as an ``R-spin diffusion'', resembling spin diffusion in itinerant electronic systems where the spin decouples from the orbital momenta and becomes an internal global symmetry. The lack of instabilities and the existence of a zero sound and diffusion mode indicates that cold holographic matter is closely described by an effective hydrodynamic theory.
AdS/CFT, Holography and Condensed Matter Physics (AdS/CMT), Gauge-Gravity Correspondence, D-Branes, Brane Dynamics in Gauge Theories
Klug, Steffen
2013
English
Universitätsbibliothek der Ludwig-Maximilians-Universität München
Klug, Steffen (2013): Gauge/Gravity duality: Exploring universal features in quantum matter. Dissertation, LMU München: Faculty of Physics
[thumbnail of Klug_Steffen.pdf]
Preview
PDF
Klug_Steffen.pdf

3MB

Abstract

In der vorliegenden Arbeit wird mit Hilfe der verallgemeinerten Eichtheorie/Gravitations-Dualität, welche stark gekoppelte Eichtheorien mit schwach gekrümmten gravitativen Theorien verbindet, stark korrelierte Quantenzustände der Materie untersucht. Der Schwerpunkt liegt dabei in Anwendungen auf Systeme der kondensierten Materie, insbesondere Hochtemperatur-Supraleitung und kritische Quantenzustände bei verschwindender Temperatur. Die Eichtheorie/Gravitations-Dualität entstammt der Stringtheorie und erlaubt eine Umsetzung des holographischen Prinzips. Aus diesem Grund wird eine kurze Einführung in die Konzepte der Stringtheorie und ihre Auswirkungen auf das holographische Prinzip gegeben. Für das tiefere Verständnis der effektiven Niederenergie-Feldtheorien wird zusätzlich die Supersymmetrie benötigt. Ausgestattet mit einem robusten Stringtheorie-Hintergrund wird die unterschiedliche Interpretation der Dirichlet- oder D-Branen, ausgedehnte Objekte auf denen offene Strings/Fäden enden können, diskutiert: Zum einen als massive solitonische Lösungen der Typ II Supergravitation und auf der anderen Seite, ihre Rolle als Quelle für supersymmetrische Yang-Mills Theorien. Die Verbindung dieser unterschiedlichen Betrachtungsweise der D-Branen liefert eine explizite Konstruktion der Eichtheorie/Gravitations-Dualität, genauer der AdS_5/CFT_4 Korrespondenz zwischen der N=4 supersymmetrischen SU(N_c) Yang-Mills Theorie in vier Dimensionen mit verschwindender beta-Funktion in allen Ordnungen, also eine echte konforme Theorie, und Type IIB Supergravitation in der zehn dimensionalen AdS_5 X S^5 Raumzeit. Darüber hinaus wird das Wörterbuch, das zwischen den Operatoren der konformen Feldtheorie und den gravitativen Feldern übersetzt, im Detail eingeführt. Genauer gesagt, die Zustandssumme der stark gekoppelten N=4 supersymmetrischen Yang-Mills Theorie im Grenzwert großer N_c, ist identisch mit der Zustandssumme der Supergravitation unter Berücksichtigung der zugehörigen Lösungen der Bewegungsgleichungen, ausgewertet am Rand des AdS-Raumes. Die Anwendung der perturbativen Quantenfeldtheorie und die Verbindungen zur quantenstatistischen Zustandssumme erlaubt die Erweiterung des holographischen Wörterbuchs auf Systeme mit endlichen Dichten und endlicher Temperatur. Aus diesem Grund werden alle Aspekte der Quantenfeldtheorie behandelt, die für die Anwendung der ``Linear-Response''-Theorie, der Berechnung von Korrelationsfunktionen und die Beschreibung von kritischen Phänomenen benötigt werden, wobei die Betonung auf allgemeine Zusammenhänge zwischen Thermodynamik, statistischer Physik bzw. statistischer Feldtheorie und Quantenfeldtheorie liegt. Des Weiteren wird der Renormierungsgruppen-Formalismus zur Beschreibung von effektiven Feldtheorien und kritischen Phänomene im Kontext der verallgemeinerten Eichtheorie/Gravitations-Dualität ausführlich dargelegt. Folgende Hauptthemen werden in dieser Arbeit behandelt: Die Untersuchung der optischen Eigenschaften von holographischen Metallen und ihre Beschreibung durch das Drude-Sommerfeld Modell, ein Versuch das Homes'sche Gesetz in Hochtemperatur-Supraleitern holographisch zu beschreiben indem verschiedene Diffusionskonstanten und zugehörige Zeitskalen berechnet werden, das mesonische Spektrum bei verschwindender Temperatur und schlussendlich holographische Quantenzustände bei endlichen Dichten. Entscheidend für die Anwendung dieses Rahmenprogramms auf stark korrelierte Systeme der kondensierten Materie ist die Renormierungsgruppenfluss-Interpretation der AdS_5/CFT_4 Korrespondenz und die daraus resultierenden emergenten, holographischen Duale, welche die meisten Beschränkungen der ursprünglichen Theorie aufheben. Diese sogenannten ``Bottom-Up'' Zugänge sind besonders geeignet für Anwendungen auf Fragestellungen in der Theorie der kondensierten Materie und der ``Linear-Response''-Theorie, mittels des holographischen Fluktuations-Dissipations-Theorem. Die Hauptergebnisse der vorliegenden Arbeit umfassen eine ausführliche Untersuchung der R-Ladungs-Diffusion und der Impulsdiffusion in holographischen s- und p-Wellen Supraleitern, welche durch die Einstein-Maxwell Theorie bzw. die Einstein-Yang-Mills Theorie beschrieben werden, und eine Vertiefung des Verständnisses der universellen Eigenschaften solcher Systeme. Als zweites wurde die Stabilität der kalten holographischen Quantenzustände der Materie untersucht, wobei eine zusätzliche Diffusions-Mode entdeckt wurde. Diese Mode kann als eine Art ``R-Spin-Diffusion'' aufgefasst werden, die der Spin-Diffusion in Systemen mit frei beweglichen ``itineranten'' Elektronen ähnelt, wobei die Entkopplung der Spin-Bahn Kopplung die Spin-Symmetrie in eine globale Symmetrie überführt. Das Fehlen der Instabilitäten und die Existenz einer ``Zero-Sound'' Mode, bekannt von Fermi-Flüssigkeiten, deuten eine Beschreibung der kalten holographischen Materie durch eine effektive hydrodynamische Theorie an.

Abstract

In this dissertation strongly correlated quantum states of matter are explored with the help of the gauge/gravity duality, relating strongly coupled gauge theories to weakly curved gravitational theories. The main focus of the present work is on applications to condensed matter systems, in particular high temperature superconductors and quantum matter close to criticality at zero temperature. The gauge/gravity duality originates from string theory and is a particular realization of the holographic principle. Therefore, a brief overview of the conceptual ideas behind string theory and the ramifications of the holographic principle are given. Along the way, supersymmetry and supersymmetric field theories needed to understand the low energy effective field theories of superstring theory will be discussed. Armed with the string theory background, the double life of D-branes, extended object where open strings end, is explained as massive solitonic solutions to the type II supergravity equations of motion and their role in generating supersymmetric Yang-Mills theories. Connecting these two different pictures of D-branes will give an explicit construction of a gauge/gravity duality, the AdS_5/CFT_4 correspondence between N=4 supersymmetric SU(N_c) Yang-Mills theory in four dimensions with vanishing beta-function to all orders, describing a true CFT, and type IIB supergravity in ten-dimensional AdS_5 X S^5 spacetime. Furthermore, the precise dictionary relating operators of the conformal field theory to fields in the gravitational theory is established. More precisely, the partitions functions of the strongly coupled N=4 supersymmetric Yang-Mills theory in the large N_c limit is equal to the on-shell supergravity partitionevaluated at the boundary of the AdS space. Applying the knowledge of perturbative quantum field theory and its relation to the quantum partition function the dictionary may be extended to finite temperature and finite density states. Thus, all aspects of quantum field theory relevant for the application of linear response theory, the computation of correlation functions, and the description of critical phenomena are covered with emphasis on elucidating connections between thermodynamics, statistical physics, statistical field theory and quantum field theory. Furthermore, the renormalization group formalism in the context of effective field theories and critical phenomena will be developed explaining the critical exponents in terms of hyperscaling relations. The main topics covered in this thesis are: the analysis of optical properties of holographic metals and their relation to the Drude-Sommerfeld model, an attempt to understand Homes' law of high temperature superconductors holographically by computing different diffusion constants and related timescales, the mesonic spectrum at zero temperature and holographic quantum matter at finite density. Crucially for the application of this framework to strongly correlated condensed matter systems is the renormalization flow interpretation of the AdS_5/CFT_4 correspondence and the resulting emergent holographic duals relaxing most of the constraints of the original formulation. These so-called bottom up approaches are geared especially towards applications in condensed matter physics and to linear response theory, via the central operational prescription, the holographic fluctuation-dissipation theorem. The main results of the present work are an extensive analysis of the R-charge- and momentum diffusion in holographic s- and p-wave superconductors, described by Einstein-Maxwell theory and the Einstein-Yang-Mills model, respectively, and the lessons learned how to improve the understanding of universal features in such systems. Secondly, the stability of cold holographic quantum matter is investigated. So far, there are no instabilities detected in such systems. Instead, an interesting additional diffusion mode is discovered, which can be interpreted as an ``R-spin diffusion'', resembling spin diffusion in itinerant electronic systems where the spin decouples from the orbital momenta and becomes an internal global symmetry. The lack of instabilities and the existence of a zero sound and diffusion mode indicates that cold holographic matter is closely described by an effective hydrodynamic theory.