Kahra, Steffen (2011): Trapping and cooling of single molecular ions for time resolved experiments. Dissertation, LMU München: Faculty of Physics |
Preview |
PDF
Kahra_Steffen.pdf 11MB |
Abstract
In der vorliegenden Arbeit werden isolierte, einzeln ortsaufgelöste molekulare Ionen mit einer Femtosekundenspektroskopie auf der Basis von Einzelreaktionsereignissen untersucht. Für die zur simultanen Speicherung von atomaren und molekularen Ionen notwendige Radiofrequenzfalle wurde eine transportable Vakuumapparatur konzipiert und realisiert sowie die zugehörigen Lasersysteme aufgebaut und eingerichtet. Um die Ultrahochvakuumbedinungen bei 2e-10 mbar auch bei häufiger Molekülpräparation gewährleisten zu können, wurde ein modularer Aufbau gewählt, bei dem Präparations- und Expermentierbereich durch differentielle Pumpstrecken voneinander getrennt sind. Durch diese hindurch führt ein 48 cm langer Quadrupolionenleiter, in welchem Ionen zwischen den Kammern transferiert werden können. Entlang des Ionenleiters ermöglichen ringförmige Gleichspannungselektroden eine dreidimensionale Speicherung der Ionen. Im Rahmen dieser Arbeit wurde mit atomaren 24Mg+ und molekularen 24MgH+ Ionen gearbeitet. Erstere werden durch Photoionisation von Magnesiumatomen aus einem thermischen Strahl erzeugt und ihre Bewegungsenergie durch Laserkühlung soweit reduziert, dass sie in etwa 20 μm Abstand voneinander in einer kristallinen Struktur erstarren. Magnesiumhydridionen werden nach Einleiten von Wasserstoffgas in einer photochemischen Reaktion mit 24Mg+ generiert und – von verbleibenden atomaren Ionen sympathetisch gekühlt – auf Gitterplätze des Kristalls integriert. Bei der Laserkühlung von 24Mg+ ausgesendete Fluoreszenzphotonen ermöglichen die optische Detektion der Ionen mit derzeit bis zu 1 μm Ortsauflösung. Die nicht fluoreszierenden molekularen Ionen werden indirekt als vermeintlich unbesetzte Stellen der Kristallstruktur sichtbar. Neben der Demonstration des Erfolges unseres Fallenkonzepts sowie dessen Charakterisierung bildet der verlustfreie, kontrollierte Transport von atomaren und molekularen Ionen aus dem Präparations- in den Experimentierbereich, eine wichtige Errungenschaft, welche zu einem kontinuierlichen Nachladen von Ionen mit einer Rate von über 100 Hz ausgebaut werden kann. Diese Arbeit präsentiert eine Machbarkeitsstudie zur Kombination von Präzisionsmethoden zweier Forschungsgebiete. Dazu wurde die Fallenapparatur mit einem weiteren Vakuumsystem, in dem ultraviolette Femtosekundenpulse erzeugt werden können, über ein System von differenziellen Pumpstrecken verbunden. Als Resultat werden 5 fs zeitaufgelöste Pump-Probe Experimente vorgestellt, die die Oszillation eines Vibrationswellenpaketes von individuellen 24MgH+ Molekülionen zeigen. Dabei wird die Bewegung des Wellenpaketes auf die Dissoziationswahrscheinlichkeit in einem bestimmten Zerfallskanal abgebildet. Einzelne Reaktionsereignisse konnten eindeutig nachgewiesen und daraus das zeitabhängige Verhalten extrahiert werden. Diese Resultate untermauern das Potenzial der von uns angestrebten Kombination der exzellenten Kontrolle über externe und interne Freiheitsgrade gespeicherter Ionen mit der extremen Zeitauflösung von modernen Kurzpulslasern. Weitere Arbeiten können die Vorteile beider Gebiete nutzen um bisher unzugängliche Experimente zu realisieren. Die besonderen Eigenschaften der präsentierten Apparatur sollten es beispielsweise erlauben, einzelne isolierte molekulare Ionen mit hoher räumlicher Präzision und wohl kontrollierten Anfangsbedingungen für zukünftige Strukturuntersuchungen mittels derzeit entstehender, intensiver Kurzpuls-Röntgenquellen an freien Elektronenlasern bereitzustellen.
Item Type: | Theses (Dissertation, LMU Munich) |
---|---|
Subjects: | 500 Natural sciences and mathematics 500 Natural sciences and mathematics > 530 Physics |
Faculties: | Faculty of Physics |
Language: | English |
Date of oral examination: | 14. March 2011 |
1. Referee: | Schätz, Tobias |
MD5 Checksum of the PDF-file: | 152e644ea21092de0e97fe054ff31a61 |
Signature of the printed copy: | 0001/UMC 19339 |
ID Code: | 12880 |
Deposited On: | 30. Mar 2011 09:53 |
Last Modified: | 23. Oct 2020 13:05 |