Logo Logo
Hilfe
Kontakt
Switch language to English
Assessing Building Vulnerability to Tsunami Hazard Using Integrative Remote Sensing and GIS Approaches
Assessing Building Vulnerability to Tsunami Hazard Using Integrative Remote Sensing and GIS Approaches
Risk and vulnerability assessment for natural hazards is of high interest. Various methods focusing on building vulnerability assessment have been developed ranging from simple approaches to sophisticated ones depending on the objectives of the study, the availability of data and technology. In-situ assessment methods have been widely used to measure building vulnerability to various types of hazards while remote sensing methods, specifically developed for assessing building vulnerability to tsunami hazard, are still very limited. The combination of remote sensing approaches with in-situ methods offers unique opportunities to overcome limitations of in-situ assessments. The main objective of this research is to develop remote sensing techniques in assessing building vulnerability to tsunami hazard as one of the key elements of risk assessment. The research work has been performed in the framework of the GITEWS (German-Indonesian Tsunami Early Warning System) project. This research contributes to two major components of tsunami risk assessment: (1) the provision of infrastructure vulnerability information as an important element in the exposure assessment; (2) tsunami evacuation modelling which is a critical element for assessing immediate response and capability to evacuate as part of the coping capacity analysis. The newly developed methodology is based on the combination of in-situ measurements and remote sensing techniques in a so-called “bottom-up remote sensing approach”. Within this approach, basic information was acquired by in-situ data collection (bottom level), which was then used as input for further analysis in the remote sensing approach (upper level). The results of this research show that a combined in-situ measurement and remote sensing approach can be successfully employed to assess and classify buildings into 4 classes based on their level of vulnerability to tsunami hazard with an accuracy of more than 80 percent. Statistical analysis successfully revealed key spatial parameters which were regarded to link parameters between in-situ and remote sensing approach such as size, height, shape, regularity, orientation, and accessibility. The key spatial parameters and their specified threshold values were implemented in a decision tree algorithm for developing a remote sensing rule-set of building vulnerability classification. A big number of buildings in the study area (Cilacap city, Indonesia) were successfully classified into the building vulnerability classes. The categorization ranges from high to low vulnerable buildings (A to C) and includes also a category of buildings which are potentially suitable for tsunami vertical evacuation (VE). A multi-criteria analysis was developed that incorporates three main components for vulnerability assessment: stability, tsunami resistance and accessibility. All the defined components were configured in a decision tree algorithm by applying weighting, scoring and threshold definition based on the building sample data. Stability components consist of structure parameters, which are closely related to the building stability against earthquake energy. Building stability needs to be analyzed because most of tsunami events in Indonesia are preceded by major earthquakes. Stability components analysis was applied in the first step of the newly developed decision tree algorithm to evaluate the building stability when earthquake strikes. Buildings with total scores below the defined threshold of stability were classified as the most vulnerable class A. Such the buildings have a high probability of being damaged after earthquake events. The remaining buildings with total scores above the defined threshold of stability were further analyzed using tsunami components and accessibility components to classify them into the vulnerability classes B, C and VE respectively. This research is based on very high spatial resolution satellite images (QuickBird) and object-based image analysis. Object-based image analysis is was chosen, because it allows the formulation of rule-sets based on image objects instead of pixels, which has significant advantages especially for the analysis of very high resolution satellite images. In the pre-processing stage, three image processing steps were performed: geometric correction, pan-sharpening and filtering. Adaptive Local Sigma and Morphological Opening filter techniques were applied as basis for the subsequent building edge detection. The data pre-processing significantly increased the accuracy of the following steps of image classification. In the next step image segmentation was developed to extract adequate image objects to be used for further classification. Image classification was carried out by grouping resulting objects into desired classes based on the derived object features. A single object was assigned by its feature characteristics calculated in the segmentation process. The characteristic features of an object - which were grouped into spectral signature, shape, size, texture, and neighbouring relations - were analysed, selected and semantically modelled to classify objects into object classes. Fuzzy logic algorithm and object feature separation analysis was performed to set the member¬ship values of objects that were grouped into particular classes. Finally this approach successfully detected and mapped building objects in the study area with their spatial attributes which provide base information for building vulnerability classification. A building vulnerability classification rule-set has been developed in this research and successfully applied to categorize building vulnerability classes. The developed approach was applied for Cilacap city, Indonesia. In order to analyze the transferability of this newly developed approach, the algorithm was also applied to Padang City, Indonesia. The results showed that the developed methodology is in general transferable. However, it requires some adaptations (e.g. thresholds) to provide accurate results. The results of this research show that Cilacap City is very vulnerable to tsunami hazard. Class A (very vulnerable) buildings cover the biggest portion of area in Cilacap City (63%), followed by class C (28%), class VE (6%) and class B (3%). Preventive measures should be carried out for the purpose of disaster risk reduction, especially for people living in such the most vulnerable buildings. Finally, the results were applied for tsunami evacuation modeling. The buildings, which were categorized as potential candidates for vertical evacuation, were selected and a GIS approach was applied to model evacuation time and evacuation routes. The results of this analysis provide important inputs to the disaster management authorities for future evacuation planning and disaster mitigation.
Building, Vulnerability, Remote Sensing, GIS, Object-based Image Analysis
Sumaryono, Sumaryono
2010
Englisch
Universitätsbibliothek der Ludwig-Maximilians-Universität München
Sumaryono, Sumaryono (2010): Assessing Building Vulnerability to Tsunami Hazard Using Integrative Remote Sensing and GIS Approaches. Dissertation, LMU München: Fakultät für Geowissenschaften
[thumbnail of Sumaryono_Sumaryono.pdf]
Vorschau
PDF
Sumaryono_Sumaryono.pdf

15MB

Abstract

Risk and vulnerability assessment for natural hazards is of high interest. Various methods focusing on building vulnerability assessment have been developed ranging from simple approaches to sophisticated ones depending on the objectives of the study, the availability of data and technology. In-situ assessment methods have been widely used to measure building vulnerability to various types of hazards while remote sensing methods, specifically developed for assessing building vulnerability to tsunami hazard, are still very limited. The combination of remote sensing approaches with in-situ methods offers unique opportunities to overcome limitations of in-situ assessments. The main objective of this research is to develop remote sensing techniques in assessing building vulnerability to tsunami hazard as one of the key elements of risk assessment. The research work has been performed in the framework of the GITEWS (German-Indonesian Tsunami Early Warning System) project. This research contributes to two major components of tsunami risk assessment: (1) the provision of infrastructure vulnerability information as an important element in the exposure assessment; (2) tsunami evacuation modelling which is a critical element for assessing immediate response and capability to evacuate as part of the coping capacity analysis. The newly developed methodology is based on the combination of in-situ measurements and remote sensing techniques in a so-called “bottom-up remote sensing approach”. Within this approach, basic information was acquired by in-situ data collection (bottom level), which was then used as input for further analysis in the remote sensing approach (upper level). The results of this research show that a combined in-situ measurement and remote sensing approach can be successfully employed to assess and classify buildings into 4 classes based on their level of vulnerability to tsunami hazard with an accuracy of more than 80 percent. Statistical analysis successfully revealed key spatial parameters which were regarded to link parameters between in-situ and remote sensing approach such as size, height, shape, regularity, orientation, and accessibility. The key spatial parameters and their specified threshold values were implemented in a decision tree algorithm for developing a remote sensing rule-set of building vulnerability classification. A big number of buildings in the study area (Cilacap city, Indonesia) were successfully classified into the building vulnerability classes. The categorization ranges from high to low vulnerable buildings (A to C) and includes also a category of buildings which are potentially suitable for tsunami vertical evacuation (VE). A multi-criteria analysis was developed that incorporates three main components for vulnerability assessment: stability, tsunami resistance and accessibility. All the defined components were configured in a decision tree algorithm by applying weighting, scoring and threshold definition based on the building sample data. Stability components consist of structure parameters, which are closely related to the building stability against earthquake energy. Building stability needs to be analyzed because most of tsunami events in Indonesia are preceded by major earthquakes. Stability components analysis was applied in the first step of the newly developed decision tree algorithm to evaluate the building stability when earthquake strikes. Buildings with total scores below the defined threshold of stability were classified as the most vulnerable class A. Such the buildings have a high probability of being damaged after earthquake events. The remaining buildings with total scores above the defined threshold of stability were further analyzed using tsunami components and accessibility components to classify them into the vulnerability classes B, C and VE respectively. This research is based on very high spatial resolution satellite images (QuickBird) and object-based image analysis. Object-based image analysis is was chosen, because it allows the formulation of rule-sets based on image objects instead of pixels, which has significant advantages especially for the analysis of very high resolution satellite images. In the pre-processing stage, three image processing steps were performed: geometric correction, pan-sharpening and filtering. Adaptive Local Sigma and Morphological Opening filter techniques were applied as basis for the subsequent building edge detection. The data pre-processing significantly increased the accuracy of the following steps of image classification. In the next step image segmentation was developed to extract adequate image objects to be used for further classification. Image classification was carried out by grouping resulting objects into desired classes based on the derived object features. A single object was assigned by its feature characteristics calculated in the segmentation process. The characteristic features of an object - which were grouped into spectral signature, shape, size, texture, and neighbouring relations - were analysed, selected and semantically modelled to classify objects into object classes. Fuzzy logic algorithm and object feature separation analysis was performed to set the member¬ship values of objects that were grouped into particular classes. Finally this approach successfully detected and mapped building objects in the study area with their spatial attributes which provide base information for building vulnerability classification. A building vulnerability classification rule-set has been developed in this research and successfully applied to categorize building vulnerability classes. The developed approach was applied for Cilacap city, Indonesia. In order to analyze the transferability of this newly developed approach, the algorithm was also applied to Padang City, Indonesia. The results showed that the developed methodology is in general transferable. However, it requires some adaptations (e.g. thresholds) to provide accurate results. The results of this research show that Cilacap City is very vulnerable to tsunami hazard. Class A (very vulnerable) buildings cover the biggest portion of area in Cilacap City (63%), followed by class C (28%), class VE (6%) and class B (3%). Preventive measures should be carried out for the purpose of disaster risk reduction, especially for people living in such the most vulnerable buildings. Finally, the results were applied for tsunami evacuation modeling. The buildings, which were categorized as potential candidates for vertical evacuation, were selected and a GIS approach was applied to model evacuation time and evacuation routes. The results of this analysis provide important inputs to the disaster management authorities for future evacuation planning and disaster mitigation.