Logo Logo
Help
Contact
Switch language to German
Glucan synthase of Phytophthora sojae. Characterization, purification and attempts of molecular cloning
Glucan synthase of Phytophthora sojae. Characterization, purification and attempts of molecular cloning
Glucans, with the (1-3)-b-glucosidic linkage as major feature, are present in most of the higher plants, in many lower plants, as well as in microorganisms (Stone and Clarke, 1992). The synthesis of (1-3)-b-glucan in vivo is catalysed by the enzyme (1-3)-b-glucan synthase (EC 2.4.1.34; UDP-glucose:1,3-b-D-glucan 3-b-D-glucosyl transferase) using UDP-glucose as substrate. The (1-3)-b-glucan synthase was characterised in a number of fungi and plants, but not much work was done with oomycetes (Stone and Clarke, 1992), even though one of the earliest successful in vitro assays for glucan synthase activity was done using Phytophthora cinnamomi (Wang and Bartnicki-Garcia, 1976, Selitrennikoff 1995). In this work, the glucan synthase of the oomycete Phytophthora sojae was characterised, solubilized, and partially purified, and the cDNA for a protein co-purifying with the glucan synthase activity was cloned. The glucan synthase of P. sojae had several features that distinguish it from what is known for glucan synthases from fungi and plants (callose synthases). Its apparent Km value for UDP-glucose was higher than reported for other glucan synthases. The activity was GTP-independent and shown not to be activated by divalent cations like Mg2+ or Ca2+, and shown to be inhibited by some others, like Cu2+ or Zn2+. Some of these properties are shared with the glucan synthase from Achlya ambisexualis (Cabib and Kang, 1987), an organism that belongs to the same kingdom as P. sojae: the Chromista. It was also demonstrated by NMR analysis and enzymatic degradation that the sole product of the CHAPS-solubilized glucan synthase of P. sojae was composed of long linear (1-3)-b-glucan chains. The glucan synthase was purified by product entrapment. Two proteins, with apparent molecular masses of 108 and 50 kDa, were enriched and microsequenced. With the degenerated oligonucleotides derived from the sequenced peptides, PCR experiments were performed using as a template a cDNA library of actively growing P. sojae mycelium. No positive result could be obtained by using the oligonucleotides derived from the 108 kDa protein. In contrast, a full length cDNA (named Ps-P50) was cloned, using the oligonucleotides derived from the 50 kDa protein (P50). The deduced amino acid sequence of Ps-P50 cDNA contains sequence motifs homologous to the peptides sequenced from P50. This cDNA encodes a protein with a molecular mass of 49.991 Da with no homology found in the data bases. Diversity between the PCR product and the cDNA clone, and various different homologous ESTs indicates that Ps-P50 is a member of a gene family., Glucane mit hauptsächlich (1-3)-b-glycosidischer Bindung kommen in den meisten höheren und niederen Pflanzen vor, ebenso wie in Mikroorganismen. Die Synthese wird in vivo durch das Enzym (1-3)-b-Glucansynthase katalysiert (EC 2.4.1.34;UDP-Glucose:1,3-b-D-Glucan 3-b-D-Glucosyltransferase), das UDP-Glucose als Substrat verwendet. Die (1-3)-b-Glucansynthase wurde bereits in einigen Pilzen und Pflanzen charakterisiert, doch bisher wurde noch wenig mit Oomyceten gearbeitet (Stone and Clarke, 1992), obwohl einer der ersten erfolgreichen in vitro-Tests auf Glucansynthase-Aktivität in Phytophthora cinnamomi durchgeführt wurde (Wang and Bartnicki-Garcia, 1976, Selitrennikoff 1995). In der vorliegenden Arbeit wurde die Glucansynthase des Oomyceten Phytophthora sojae charakterisiert, solubilisiert und teilweise aufgereinigt. Darüber hinaus wurde die cDNA für ein Protein kloniert, das zusammen mit der Glucansynthase-Aktivität aufgereinigt wird. Die Glucansynthase von Phytophthora sojae unterscheidet sich in mehreren Eigenschaften von denen aus Pilzen und Pflanzen (Callose-Synthasen). Der scheinbare Km-Wert für UDP-Glucose ist höher als bei anderen Glucansynthasen berichtet. Die Aktivität ist GTP-unabhängig und wird nicht durch zweiwertige Kationen, wie Mg2+ oder Ca2+, stimuliert und durch einige andere, wie Cu2+ oder Zn2+, inhibiert. Einige dieser Eigenschaften findet man auch bei der Glucansynthase von Achlya ambisexualis (Cabib and Kang, 1987), einem Organismus, der dem selben systematischen Reich angehört wie Phytophthora sojae, den Chromista. Es wurde auch durch NMR-Analyse und enzymatischen Abbau gezeigt, daß die CHAPS-solubilisierte Glucansynthase von Phytophthora sojae als einziges Produkt lange lineare (1-3)-b-Glucan-Ketten hervorbringt. Die Glucansynthase wurde durch „product entrapment“ aufgereinigt. Zwei Proteine mit scheinbaren relativen Molekularmassen von 108 kDa und 50 kDa wurden angereichert und der Mikrosequenzierung unterzogen. Mit den aus der Mikrosequenzierung erhaltenen Oligopeptid-Sequenzen wurden degenerierte Oligonucleotide entworfen und in PCR-Experimenten mit einer cDNA-Bank aus wachsendem Phytophthora sojae-Mycel eingesetzt. Nach Einsatz der vom 108 kDa-Protein abgeleitet Oligonucleotide konnte kein positives Ergebnis erzielt werden. Oligonucleotide, die Peptide des 50 kDa-Protein (P50) repräsentierten, führten zur Isolierung einer cDNA-Vollängenklons für das Ps-P50. Die Aminosäuresequenz, die sich von Ps-P50 cDNA ableitet, weist Homologie zu den sequenzierten Peptiden aus P50 auf. Die cDNA codiert für ein Protein mit der molekularen Masse von 49,991 Da, zu dem keine Ähnlichkeiten in den Datenbanken gefunden wurden. Abweichungen zwischen PCR-Produkt und dem cDNA-Klon, sowie Homologien zu verschiedenen ESTs, weisen darauf hin, daß Ps-P50 ein Mitglied einer Genfamilie ist.
Glucan synthase, Phytophthora sojae
Antelo, Luis
2002
English
Universitätsbibliothek der Ludwig-Maximilians-Universität München
Antelo, Luis (2002): Glucan synthase of Phytophthora sojae: Characterization, purification and attempts of molecular cloning. Dissertation, LMU München: Faculty of Biology
[thumbnail of Antelo_Luis.pdf]
Preview
PDF
Antelo_Luis.pdf

18MB

Abstract

Glucans, with the (1-3)-b-glucosidic linkage as major feature, are present in most of the higher plants, in many lower plants, as well as in microorganisms (Stone and Clarke, 1992). The synthesis of (1-3)-b-glucan in vivo is catalysed by the enzyme (1-3)-b-glucan synthase (EC 2.4.1.34; UDP-glucose:1,3-b-D-glucan 3-b-D-glucosyl transferase) using UDP-glucose as substrate. The (1-3)-b-glucan synthase was characterised in a number of fungi and plants, but not much work was done with oomycetes (Stone and Clarke, 1992), even though one of the earliest successful in vitro assays for glucan synthase activity was done using Phytophthora cinnamomi (Wang and Bartnicki-Garcia, 1976, Selitrennikoff 1995). In this work, the glucan synthase of the oomycete Phytophthora sojae was characterised, solubilized, and partially purified, and the cDNA for a protein co-purifying with the glucan synthase activity was cloned. The glucan synthase of P. sojae had several features that distinguish it from what is known for glucan synthases from fungi and plants (callose synthases). Its apparent Km value for UDP-glucose was higher than reported for other glucan synthases. The activity was GTP-independent and shown not to be activated by divalent cations like Mg2+ or Ca2+, and shown to be inhibited by some others, like Cu2+ or Zn2+. Some of these properties are shared with the glucan synthase from Achlya ambisexualis (Cabib and Kang, 1987), an organism that belongs to the same kingdom as P. sojae: the Chromista. It was also demonstrated by NMR analysis and enzymatic degradation that the sole product of the CHAPS-solubilized glucan synthase of P. sojae was composed of long linear (1-3)-b-glucan chains. The glucan synthase was purified by product entrapment. Two proteins, with apparent molecular masses of 108 and 50 kDa, were enriched and microsequenced. With the degenerated oligonucleotides derived from the sequenced peptides, PCR experiments were performed using as a template a cDNA library of actively growing P. sojae mycelium. No positive result could be obtained by using the oligonucleotides derived from the 108 kDa protein. In contrast, a full length cDNA (named Ps-P50) was cloned, using the oligonucleotides derived from the 50 kDa protein (P50). The deduced amino acid sequence of Ps-P50 cDNA contains sequence motifs homologous to the peptides sequenced from P50. This cDNA encodes a protein with a molecular mass of 49.991 Da with no homology found in the data bases. Diversity between the PCR product and the cDNA clone, and various different homologous ESTs indicates that Ps-P50 is a member of a gene family.

Abstract

Glucane mit hauptsächlich (1-3)-b-glycosidischer Bindung kommen in den meisten höheren und niederen Pflanzen vor, ebenso wie in Mikroorganismen. Die Synthese wird in vivo durch das Enzym (1-3)-b-Glucansynthase katalysiert (EC 2.4.1.34;UDP-Glucose:1,3-b-D-Glucan 3-b-D-Glucosyltransferase), das UDP-Glucose als Substrat verwendet. Die (1-3)-b-Glucansynthase wurde bereits in einigen Pilzen und Pflanzen charakterisiert, doch bisher wurde noch wenig mit Oomyceten gearbeitet (Stone and Clarke, 1992), obwohl einer der ersten erfolgreichen in vitro-Tests auf Glucansynthase-Aktivität in Phytophthora cinnamomi durchgeführt wurde (Wang and Bartnicki-Garcia, 1976, Selitrennikoff 1995). In der vorliegenden Arbeit wurde die Glucansynthase des Oomyceten Phytophthora sojae charakterisiert, solubilisiert und teilweise aufgereinigt. Darüber hinaus wurde die cDNA für ein Protein kloniert, das zusammen mit der Glucansynthase-Aktivität aufgereinigt wird. Die Glucansynthase von Phytophthora sojae unterscheidet sich in mehreren Eigenschaften von denen aus Pilzen und Pflanzen (Callose-Synthasen). Der scheinbare Km-Wert für UDP-Glucose ist höher als bei anderen Glucansynthasen berichtet. Die Aktivität ist GTP-unabhängig und wird nicht durch zweiwertige Kationen, wie Mg2+ oder Ca2+, stimuliert und durch einige andere, wie Cu2+ oder Zn2+, inhibiert. Einige dieser Eigenschaften findet man auch bei der Glucansynthase von Achlya ambisexualis (Cabib and Kang, 1987), einem Organismus, der dem selben systematischen Reich angehört wie Phytophthora sojae, den Chromista. Es wurde auch durch NMR-Analyse und enzymatischen Abbau gezeigt, daß die CHAPS-solubilisierte Glucansynthase von Phytophthora sojae als einziges Produkt lange lineare (1-3)-b-Glucan-Ketten hervorbringt. Die Glucansynthase wurde durch „product entrapment“ aufgereinigt. Zwei Proteine mit scheinbaren relativen Molekularmassen von 108 kDa und 50 kDa wurden angereichert und der Mikrosequenzierung unterzogen. Mit den aus der Mikrosequenzierung erhaltenen Oligopeptid-Sequenzen wurden degenerierte Oligonucleotide entworfen und in PCR-Experimenten mit einer cDNA-Bank aus wachsendem Phytophthora sojae-Mycel eingesetzt. Nach Einsatz der vom 108 kDa-Protein abgeleitet Oligonucleotide konnte kein positives Ergebnis erzielt werden. Oligonucleotide, die Peptide des 50 kDa-Protein (P50) repräsentierten, führten zur Isolierung einer cDNA-Vollängenklons für das Ps-P50. Die Aminosäuresequenz, die sich von Ps-P50 cDNA ableitet, weist Homologie zu den sequenzierten Peptiden aus P50 auf. Die cDNA codiert für ein Protein mit der molekularen Masse von 49,991 Da, zu dem keine Ähnlichkeiten in den Datenbanken gefunden wurden. Abweichungen zwischen PCR-Produkt und dem cDNA-Klon, sowie Homologien zu verschiedenen ESTs, weisen darauf hin, daß Ps-P50 ein Mitglied einer Genfamilie ist.