Logo Logo
Hilfe
Kontakt
Switch language to English
Regulation der Podosomendynamik in primären humanen Makrophagen
Regulation der Podosomendynamik in primären humanen Makrophagen
Podosomen sind aktinreiche Adhäsionsstrukturen, die vor allem in monozytären Zellen, aber auch in dendritischen Zellen, Osteoklasten, Endothelzellen oder glatten Muskelzel-len vorkommen. In primären humanen Makrophagen gibt es zwei Subpopulationen von Podosomen: größere, hochdynamische Precursor in der Peripherie sowie kleinere, sta-bilere Podosomen im Zellzentrum. Die Regulation der Podosomendynamik in der Zell-peripherie erfolgt durch das Mikrotubuli-basierte Motorprotein KIF1C, wahrscheinlich durch den Transport von Regulationsfaktoren. Ein Schwerpunkt der vorliegenden Ar-beit lag daher in der Identifizierung dieser Regulatoren. • Die Aufreinigung KIF1C-GFP positiver Vesikel mittels FACS ist grundsätzlich funk-tionell. Die Analyse zahlreicher Vesikel-assoziierter Proteine spricht weiter für die Hypothese, dass es sich bei der von KIF1C transportierten Fracht um vesikuläre Struk-turen handelt. Die Detektion zahlreicher unspezifischer Proteine zeigt jedoch auch, dass die Methode der Aufreinigung zukünftig noch verbessert werden muss. • RabGTPasen, die auch am Transport von Vesikeln beteiligt sind, haben oftmals eine ähnliche subzelluläre Lokalisation wie KIF1C. Vor allem zwischen Rab6a und KIF1C war ein häufiger und länger dauernder Kontakt in der Zellperipherie zu beobachten. Mittels GFP-Immunpräzipitation konnte eine Interaktion bestätigt werden. • Auf der Suche nach weiteren potentiellen Interaktionspartnern von KIF1C wurde das Protein HAX1 identifiziert. Sowohl in fixierten als auch in lebenden primären humanen Makrophagen konnte eine eindeutige Kolokalisation der Proteine in der Zellperipherie beobachtet werden. Bei Einsatz der Rigormutante von KIF1C (KIF1C-K103A) akku-mulierten beide Proteine am MTOC. Diese Ergebnisse lassen auf eine Interaktion zwi-schen KIF1C und HAX1 schließen. Das Motorprotein KIF9 lokalisiert vor allem an den stabileren Podosomen im Zentrum der Zelle. Bei der Ermittlung der Rolle von KIF9 hinsichtlich der Regulation dieser Po-dosomensubpopulation wurden folgende Erkenntnisse gewonnen: • Knock-down von KIF9 reduziert die Anzahl der Podosomen und inhibiert bei noch bestehenden Podosomen den Abbau extrazellulärer Matrix. Für KIF9 konnte demnach nicht nur eine Beteiligung an der Podosomenregulation sondern auch eine Rolle im Matrixabbau zugewiesen werden. • KIF9-GFP positive Vesikel assoziieren mit Mikrotubuli und kontaktieren mehrere Podosomen nacheinander. Dies spricht für eine direkte Verbindung von KIF9-vermitteltem, mikrotubuli-basiertem Transport mit Podosomen, die durch KIF9 regu-liert werden. • Durch Immunpräzipitationsversuche wurden Hinweise gefunden, dass KIF9 mögli-cherweise in unterschiedlichen Spleißvarianten oder verschieden phosphorylierten Zu-ständen existiert. • Als Interaktionspartner für KIF9 konnte Reggie-1 identifiziert werden. Durch knock-down von Reggie-1 und auch Reggie-2 konnte diesen Proteinen eine Beteiligung am Abbau extrazellulärer Matrix zugeschrieben werden. Die Teilung der Podosomen-Precursor sowie Auflösung der regulären Podosomen sind grundlegende Vorgänge. Unterschiede in der molekularen Zusammensetzung der Podo-somen-Subpopulationen waren bisher allerdings unbekannt. • Supervillin konnte als erstes Protein identifiziert werden, das differentiell an die unter-schiedlichen Subpopulationen lokalisiert. Dies zeigt zum ersten Mal eine unterschiedli-che molekulare Zusammensetzung der Podosomen-Subpopulationen. • Podosomen reichern Supervillin an, bevor diese sich auflösen. Überexpression von GFP-Supervillin führte außerdem zu einem Verlust von Podosomen, wohingegen shRNA-basierter knock-down die Lebensdauer verlängerte. Supervillin scheint somit eine Rolle in der Regulation von Podosomen zu spielen. • Die Myosin IIA-Bindedomäne ist sowohl für die Anzahl der Podosomen als auch für die differentielle Rekrutierung an die unterschiedlichen Subpopulationen essentiell. • Supervillin steht mit Myosin IIA und der phosphorylierten leichten Kette von Myosin in Verbindung und koppelt kontraktiles Myosin an Podosomen, was deren Auflösung auslöst. • Durch siRNA-basierten knock-down konnte gezeigt werden, dass Supervillin erst zu-sammen mit Myosin IIA und/oder Gelsolin die Effektivität der Podosomen hinsichtlich Matrixabbau beeinflusst. Die Podosomenanzahl hingegen war nicht verändert.
Not available
Cornfine, Susanne
2010
Deutsch
Universitätsbibliothek der Ludwig-Maximilians-Universität München
Cornfine, Susanne (2010): Regulation der Podosomendynamik in primären humanen Makrophagen. Dissertation, LMU München: Fakultät für Biologie
[thumbnail of Cornfine_Susanne.pdf]
Vorschau
PDF
Cornfine_Susanne.pdf

2MB
[thumbnail of Cornfine_container.zip] ZIP
Cornfine_container.zip

99MB

Abstract

Podosomen sind aktinreiche Adhäsionsstrukturen, die vor allem in monozytären Zellen, aber auch in dendritischen Zellen, Osteoklasten, Endothelzellen oder glatten Muskelzel-len vorkommen. In primären humanen Makrophagen gibt es zwei Subpopulationen von Podosomen: größere, hochdynamische Precursor in der Peripherie sowie kleinere, sta-bilere Podosomen im Zellzentrum. Die Regulation der Podosomendynamik in der Zell-peripherie erfolgt durch das Mikrotubuli-basierte Motorprotein KIF1C, wahrscheinlich durch den Transport von Regulationsfaktoren. Ein Schwerpunkt der vorliegenden Ar-beit lag daher in der Identifizierung dieser Regulatoren. • Die Aufreinigung KIF1C-GFP positiver Vesikel mittels FACS ist grundsätzlich funk-tionell. Die Analyse zahlreicher Vesikel-assoziierter Proteine spricht weiter für die Hypothese, dass es sich bei der von KIF1C transportierten Fracht um vesikuläre Struk-turen handelt. Die Detektion zahlreicher unspezifischer Proteine zeigt jedoch auch, dass die Methode der Aufreinigung zukünftig noch verbessert werden muss. • RabGTPasen, die auch am Transport von Vesikeln beteiligt sind, haben oftmals eine ähnliche subzelluläre Lokalisation wie KIF1C. Vor allem zwischen Rab6a und KIF1C war ein häufiger und länger dauernder Kontakt in der Zellperipherie zu beobachten. Mittels GFP-Immunpräzipitation konnte eine Interaktion bestätigt werden. • Auf der Suche nach weiteren potentiellen Interaktionspartnern von KIF1C wurde das Protein HAX1 identifiziert. Sowohl in fixierten als auch in lebenden primären humanen Makrophagen konnte eine eindeutige Kolokalisation der Proteine in der Zellperipherie beobachtet werden. Bei Einsatz der Rigormutante von KIF1C (KIF1C-K103A) akku-mulierten beide Proteine am MTOC. Diese Ergebnisse lassen auf eine Interaktion zwi-schen KIF1C und HAX1 schließen. Das Motorprotein KIF9 lokalisiert vor allem an den stabileren Podosomen im Zentrum der Zelle. Bei der Ermittlung der Rolle von KIF9 hinsichtlich der Regulation dieser Po-dosomensubpopulation wurden folgende Erkenntnisse gewonnen: • Knock-down von KIF9 reduziert die Anzahl der Podosomen und inhibiert bei noch bestehenden Podosomen den Abbau extrazellulärer Matrix. Für KIF9 konnte demnach nicht nur eine Beteiligung an der Podosomenregulation sondern auch eine Rolle im Matrixabbau zugewiesen werden. • KIF9-GFP positive Vesikel assoziieren mit Mikrotubuli und kontaktieren mehrere Podosomen nacheinander. Dies spricht für eine direkte Verbindung von KIF9-vermitteltem, mikrotubuli-basiertem Transport mit Podosomen, die durch KIF9 regu-liert werden. • Durch Immunpräzipitationsversuche wurden Hinweise gefunden, dass KIF9 mögli-cherweise in unterschiedlichen Spleißvarianten oder verschieden phosphorylierten Zu-ständen existiert. • Als Interaktionspartner für KIF9 konnte Reggie-1 identifiziert werden. Durch knock-down von Reggie-1 und auch Reggie-2 konnte diesen Proteinen eine Beteiligung am Abbau extrazellulärer Matrix zugeschrieben werden. Die Teilung der Podosomen-Precursor sowie Auflösung der regulären Podosomen sind grundlegende Vorgänge. Unterschiede in der molekularen Zusammensetzung der Podo-somen-Subpopulationen waren bisher allerdings unbekannt. • Supervillin konnte als erstes Protein identifiziert werden, das differentiell an die unter-schiedlichen Subpopulationen lokalisiert. Dies zeigt zum ersten Mal eine unterschiedli-che molekulare Zusammensetzung der Podosomen-Subpopulationen. • Podosomen reichern Supervillin an, bevor diese sich auflösen. Überexpression von GFP-Supervillin führte außerdem zu einem Verlust von Podosomen, wohingegen shRNA-basierter knock-down die Lebensdauer verlängerte. Supervillin scheint somit eine Rolle in der Regulation von Podosomen zu spielen. • Die Myosin IIA-Bindedomäne ist sowohl für die Anzahl der Podosomen als auch für die differentielle Rekrutierung an die unterschiedlichen Subpopulationen essentiell. • Supervillin steht mit Myosin IIA und der phosphorylierten leichten Kette von Myosin in Verbindung und koppelt kontraktiles Myosin an Podosomen, was deren Auflösung auslöst. • Durch siRNA-basierten knock-down konnte gezeigt werden, dass Supervillin erst zu-sammen mit Myosin IIA und/oder Gelsolin die Effektivität der Podosomen hinsichtlich Matrixabbau beeinflusst. Die Podosomenanzahl hingegen war nicht verändert.