Logo Logo
Hilfe
Kontakt
Switch language to English
Probing Early Dark Energy and primordial non-Gaussianity with cosmological simulations
Probing Early Dark Energy and primordial non-Gaussianity with cosmological simulations
Die Entwicklung des ersten präzisen kosmologischen Modells, des LCDM Modells, ist eine bedeutende Errungenschaft der modernen, beobachtenden Kosmologie. Trotzdem bleiben eine Reihe von wichtigen Fragen über Zusammensetzung und Entwicklungsgeschichte des Universums unbeantwortet: Abgesehen von der Natur der Dunklen Materie ist der physikalische Ursprung der Dunklen Energie eine der ganz großen Fragen der theoretischen Physik. Ebenso bedürfen die statistischen Eigenschaften der anfänglichen Dichtefluktuationen im frühen Universum einer genauen überprüfung. Kleinste Abweichungen von den Gauß'schen Fluktuationen des Standardmodells würden, sofern sie nachgewiesen werden, eine Vielzahl von Informationen über die Physik des frühen Universums enthalten. In dieser Arbeit benutze ich numerische Verfahren, um neue, hochpräzise Vorhersagen zur kosmischen Strukturbildung in generalisierten Dunkle Energie Kosmologien zu treffen. Außerdem berücksichtige ich Modelle mit nicht-Gauß'schen Anfangbedingungen. Im ersten Abschnitt untersuche ich die nicht-lineare Strukturentstehung in sogenannten `Early Dark Energy' (EDE) Modellen und vergleiche sie mit dem LCDM Standardmodell. Interessanterweise zeigen meine Ergebnisse, dass der Sheth and Tormen (1999) Formalismus, mit dem üblicherweise die Anzahldichte von Halos aus Dunkler Materie geschätzt wird, in EDE Kosmologien weiterhin anwendbar ist, im Widerspruch zu analytischen Berechnungen. In diesem Zusammenhang untersuche ich auch das Verhältnis zwischen Masse und Geschwindigkeitsdispersion der Dunklen Materie in Halos. Dabei stelle ich eine gute übereinstimmung mit der Normalisierung der LCDM Kosmologien fest, wie sie in Evrard et al. (2008) beschrieben ist. Allerdings führt das frühere Anwachsen der Dichtestrukturen in EDE Modellen zu großen Unterschieden in der Massenfunktion der Halos bei hohen Rotverschiebungen. Dies könnte direkt in Beobachtungen gemessen werden, indem man die Anzahl der Gruppen als Funktion der Geschwindigkeitsdispersion der enthaltenen Galaxien entlang der Sichtlinie bestimmt. Insbesondere würde dadurch das Problem der mehrdeutigen Massebestimmung von Halos umgangen. Schließlich ermittele ich die Beziehung zwischen dem Konzentrationsparameter von Halos und der Halomasse in den EDE Kosmologien. Im zweiten Teil meiner Arbeit verwende ich ein Set an hochaufgelöste hydrodynamische Simulationen um die globalen Eigenschaften der thermischen und kinetischen Sunyaev Zeldovich (SZ) Effekte zu untersuchen. Dabei stellen wir fest, dass in den SZ-Beobachtungskarten der EDE Modelle der Compton-y-Parameter systematisch größer ist als im LCDM Modell. Erwartungsgemäß finde ich daher auch, dass das Leistungsspektrum der thermischen und kinetischen SZ Fluktuationen in EDE Kosmologien größer ist als im Standardmodell. Allerdings reicht diese Steigerung für realistische EDE Modelle nicht aus, um die theoretischen Voraussagen in übereinstimmung mit aktuellen Messungen der Mikrowellenhintergrundanisotropie bei großen Multipolwerten zu bringen. Eine Zählung der durch den SZ Effekt detektierbaren Halos in den simulierten Karten zeigt nur einen leichten Anstieg in den massereichsten Haufen für EDE Kosmologien. Ebenso sind Voraussagen für zukünftige Zählungen von SZ-detektierten Haufen durch das South Pole Telescope (SPT Ruhl, 2004) stark durch Unsicherheiten in der Kosmologie beeinträchtigt. Schließlich finde ich, dass die Normalisierung und die Steigung der Relation zwischen thermischem SZ-Effekt und Halomasse in vielen EDE Kosmologien unverändert bleibt, was die Interpretation von Beobachtungen des SZ Effekts in Galaxienhaufen vereinfacht. In weiteren Untersuchungen berechne ich eine Reihe von hochaufgelösten Vielteilchensimulationen für physikalisch motivierte nicht-Gauß'sche Kosmologien. In umfangreichen Studien untersuche ich die Massenverteilungsfunktion der Halos und deren Entwicklung in nicht-Gauß'schen Modellen. Zudem vergleiche ich meine numerischen Experimente mit analytischen Vorhersagen von Matarrese et al. (2000) und LoVerde et al. (2008). Dabei finde ich eine sehr gute übereinstimmung zwischen Simulation und analytischer Vorhersage, vorausgesetzt bestimmte Korrekturen für die Dynamik des nicht-sphärischen Kollapses werden berücksichtigt. Dazu werden die Vorhersagen dahingehend modifiziert, dass sie im Grenzfall sehr seltener Ereignisse einem geeignet veränderten Grenzwert der kritischen Dichte entsprechen. Desweiteren bestätige ich jüngste Ergebnisse, nach denen primordiale nicht-Gauß'sche Dichtefluktuationen eine starke skalenabhänginge Verzerrung auf großen Skalen verursachen, und ich lege einen physikalisch motivierten mathematischen Ausdruck vor, der es erlaubt, die Verzerrung zu messen und der eine gute Näherung für die Simulationsergebnisse darstellt.
Not available
Grossi, Margherita
2010
Englisch
Universitätsbibliothek der Ludwig-Maximilians-Universität München
Grossi, Margherita (2010): Probing Early Dark Energy and primordial non-Gaussianity with cosmological simulations. Dissertation, LMU München: Fakultät für Physik
[thumbnail of Grossi_Margherita.pdf]
Vorschau
PDF
Grossi_Margherita.pdf

24MB

Abstract

Die Entwicklung des ersten präzisen kosmologischen Modells, des LCDM Modells, ist eine bedeutende Errungenschaft der modernen, beobachtenden Kosmologie. Trotzdem bleiben eine Reihe von wichtigen Fragen über Zusammensetzung und Entwicklungsgeschichte des Universums unbeantwortet: Abgesehen von der Natur der Dunklen Materie ist der physikalische Ursprung der Dunklen Energie eine der ganz großen Fragen der theoretischen Physik. Ebenso bedürfen die statistischen Eigenschaften der anfänglichen Dichtefluktuationen im frühen Universum einer genauen überprüfung. Kleinste Abweichungen von den Gauß'schen Fluktuationen des Standardmodells würden, sofern sie nachgewiesen werden, eine Vielzahl von Informationen über die Physik des frühen Universums enthalten. In dieser Arbeit benutze ich numerische Verfahren, um neue, hochpräzise Vorhersagen zur kosmischen Strukturbildung in generalisierten Dunkle Energie Kosmologien zu treffen. Außerdem berücksichtige ich Modelle mit nicht-Gauß'schen Anfangbedingungen. Im ersten Abschnitt untersuche ich die nicht-lineare Strukturentstehung in sogenannten `Early Dark Energy' (EDE) Modellen und vergleiche sie mit dem LCDM Standardmodell. Interessanterweise zeigen meine Ergebnisse, dass der Sheth and Tormen (1999) Formalismus, mit dem üblicherweise die Anzahldichte von Halos aus Dunkler Materie geschätzt wird, in EDE Kosmologien weiterhin anwendbar ist, im Widerspruch zu analytischen Berechnungen. In diesem Zusammenhang untersuche ich auch das Verhältnis zwischen Masse und Geschwindigkeitsdispersion der Dunklen Materie in Halos. Dabei stelle ich eine gute übereinstimmung mit der Normalisierung der LCDM Kosmologien fest, wie sie in Evrard et al. (2008) beschrieben ist. Allerdings führt das frühere Anwachsen der Dichtestrukturen in EDE Modellen zu großen Unterschieden in der Massenfunktion der Halos bei hohen Rotverschiebungen. Dies könnte direkt in Beobachtungen gemessen werden, indem man die Anzahl der Gruppen als Funktion der Geschwindigkeitsdispersion der enthaltenen Galaxien entlang der Sichtlinie bestimmt. Insbesondere würde dadurch das Problem der mehrdeutigen Massebestimmung von Halos umgangen. Schließlich ermittele ich die Beziehung zwischen dem Konzentrationsparameter von Halos und der Halomasse in den EDE Kosmologien. Im zweiten Teil meiner Arbeit verwende ich ein Set an hochaufgelöste hydrodynamische Simulationen um die globalen Eigenschaften der thermischen und kinetischen Sunyaev Zeldovich (SZ) Effekte zu untersuchen. Dabei stellen wir fest, dass in den SZ-Beobachtungskarten der EDE Modelle der Compton-y-Parameter systematisch größer ist als im LCDM Modell. Erwartungsgemäß finde ich daher auch, dass das Leistungsspektrum der thermischen und kinetischen SZ Fluktuationen in EDE Kosmologien größer ist als im Standardmodell. Allerdings reicht diese Steigerung für realistische EDE Modelle nicht aus, um die theoretischen Voraussagen in übereinstimmung mit aktuellen Messungen der Mikrowellenhintergrundanisotropie bei großen Multipolwerten zu bringen. Eine Zählung der durch den SZ Effekt detektierbaren Halos in den simulierten Karten zeigt nur einen leichten Anstieg in den massereichsten Haufen für EDE Kosmologien. Ebenso sind Voraussagen für zukünftige Zählungen von SZ-detektierten Haufen durch das South Pole Telescope (SPT Ruhl, 2004) stark durch Unsicherheiten in der Kosmologie beeinträchtigt. Schließlich finde ich, dass die Normalisierung und die Steigung der Relation zwischen thermischem SZ-Effekt und Halomasse in vielen EDE Kosmologien unverändert bleibt, was die Interpretation von Beobachtungen des SZ Effekts in Galaxienhaufen vereinfacht. In weiteren Untersuchungen berechne ich eine Reihe von hochaufgelösten Vielteilchensimulationen für physikalisch motivierte nicht-Gauß'sche Kosmologien. In umfangreichen Studien untersuche ich die Massenverteilungsfunktion der Halos und deren Entwicklung in nicht-Gauß'schen Modellen. Zudem vergleiche ich meine numerischen Experimente mit analytischen Vorhersagen von Matarrese et al. (2000) und LoVerde et al. (2008). Dabei finde ich eine sehr gute übereinstimmung zwischen Simulation und analytischer Vorhersage, vorausgesetzt bestimmte Korrekturen für die Dynamik des nicht-sphärischen Kollapses werden berücksichtigt. Dazu werden die Vorhersagen dahingehend modifiziert, dass sie im Grenzfall sehr seltener Ereignisse einem geeignet veränderten Grenzwert der kritischen Dichte entsprechen. Desweiteren bestätige ich jüngste Ergebnisse, nach denen primordiale nicht-Gauß'sche Dichtefluktuationen eine starke skalenabhänginge Verzerrung auf großen Skalen verursachen, und ich lege einen physikalisch motivierten mathematischen Ausdruck vor, der es erlaubt, die Verzerrung zu messen und der eine gute Näherung für die Simulationsergebnisse darstellt.