Logo Logo
Hilfe
Kontakt
Switch language to English
Spatial Database Support for Virtual Engineering
Spatial Database Support for Virtual Engineering
The development, design, manufacturing and maintenance of modern engineering products is a very expensive and complex task. Shorter product cycles and a greater diversity of models are becoming decisive competitive factors in the hard-fought automobile and plane market. In order to support engineers to create complex products when being pressed for time, systems are required which answer collision and similarity queries effectively and efficiently. In order to achieve industrial strength, the required specialized functionality has to be integrated into fully-fledged database systems, so that fundamental services of these systems can be fully reused, including transactions, concurrency control and recovery. This thesis aims at the development of theoretical sound and practical realizable algorithms which effectively and efficiently detect colliding and similar complex spatial objects. After a short introductory Part I, we look in Part II at different spatial index structures and discuss their integrability into object-relational database systems. Based on this discussion, we present two generic approaches for accelerating collision queries. The first approach exploits available statistical information in order to accelerate the query process. The second approach is based on a cost-based decompositioning of complex spatial objects. In a broad experimental evaluation based on real-world test data sets, we demonstrate the usefulness of the presented techniques which allow interactive query response times even for large data sets of complex objects. In Part III of the thesis, we discuss several similarity models for spatial objects. We show by means of a new evaluation method that data-partitioning similarity models yield more meaningful results than space-partitioning similarity models. We introduce a very effective similarity model which is based on a new paradigm in similarity search, namely the use of vector set represented objects. In order to guarantee efficient query processing, suitable filters are introduced for accelerating similarity queries on complex spatial objects. Based on clustering and the introduced similarity models we present an industrial prototype which helps the user to navigate through massive data sets., Ein schneller und reibungsloser Entwicklungsprozess neuer Produkte ist ein wichtiger Faktor für den wirtschaftlichen Erfolg vieler Unternehmen insbesondere aus der Luft- und Raumfahrttechnik und der Automobilindustrie. Damit Ingenieure in immer kürzerer Zeit immer anspruchsvollere Produkte entwickeln können, werden effektive und effiziente Kollisions- und Ähnlichkeitsanfragen auf komplexen räumlichen Objekten benötigt. Um den hohen Anforderungen eines produktiven Einsatzes zu genügen, müssen entsprechend spezialisierte Zugriffsmethoden in vollwertige Datenbanksysteme integriert werden, so dass zentrale Datenbankdienste wie Trans-aktionen, kontrollierte Nebenläufigkeit und Wiederanlauf sichergestellt sind. Ziel dieser Doktorarbeit ist es deshalb, effektive und effiziente Algorithmen für Kollisions- und Ähnlichkeitsanfragen auf komplexen räumlichen Objekten zu ent-wickeln und diese in kommerzielle Objekt-Relationale Datenbanksysteme zu integrieren. Im ersten Teil der Arbeit werden verschiedene räumliche Indexstrukturen zur effizienten Bearbeitung von Kollisionsanfragen diskutiert und auf ihre Integrationsfähigkeit in Objekt-Relationale Datenbanksysteme hin untersucht. Daran an-knüpfend werden zwei generische Verfahren zur Beschleunigung von Kollisionsanfragen vorgestellt. Das erste Verfahren benutzt statistische Informationen räumlicher Indexstrukturen, um eine gegebene Anfrage zu beschleunigen. Das zweite Verfahren beruht auf einer kostenbasierten Zerlegung komplexer räumlicher Datenbank- Objekte. Diese beiden Verfahren ergänzen sich gegenseitig und können unabhängig voneinander oder zusammen eingesetzt werden. In einer ausführlichen experimentellen Evaluation wird gezeigt, dass die beiden vorgestellten Verfahren interaktive Kollisionsanfragen auf umfangreichen Datenmengen und komplexen Objekten ermöglichen. Im zweiten Teil der Arbeit werden verschiedene Ähnlichkeitsmodelle für räum-liche Objekte vorgestellt. Es wird experimentell aufgezeigt, dass datenpartitionierende Modelle effektiver sind als raumpartitionierende Verfahren. Weiterhin werden geeignete Filtertechniken zur Beschleunigung des Anfrageprozesses entwickelt und experimentell untersucht. Basierend auf Clustering und den entwickelten Ähnlichkeitsmodellen wird ein industrietauglicher Prototyp vorgestellt, der Benutzern hilft, durch große Datenmengen zu navigieren.
virtual engineering, similarity search for CAD objects, digital mock-up, relational indexing, CAD databases
Pfeifle, Martin
2004
Englisch
Universitätsbibliothek der Ludwig-Maximilians-Universität München
Pfeifle, Martin (2004): Spatial Database Support for Virtual Engineering. Dissertation, LMU München: Fakultät für Mathematik, Informatik und Statistik
[thumbnail of Martin_Pfeifle.pdf]
Vorschau
PDF
Martin_Pfeifle.pdf

6MB

Abstract

The development, design, manufacturing and maintenance of modern engineering products is a very expensive and complex task. Shorter product cycles and a greater diversity of models are becoming decisive competitive factors in the hard-fought automobile and plane market. In order to support engineers to create complex products when being pressed for time, systems are required which answer collision and similarity queries effectively and efficiently. In order to achieve industrial strength, the required specialized functionality has to be integrated into fully-fledged database systems, so that fundamental services of these systems can be fully reused, including transactions, concurrency control and recovery. This thesis aims at the development of theoretical sound and practical realizable algorithms which effectively and efficiently detect colliding and similar complex spatial objects. After a short introductory Part I, we look in Part II at different spatial index structures and discuss their integrability into object-relational database systems. Based on this discussion, we present two generic approaches for accelerating collision queries. The first approach exploits available statistical information in order to accelerate the query process. The second approach is based on a cost-based decompositioning of complex spatial objects. In a broad experimental evaluation based on real-world test data sets, we demonstrate the usefulness of the presented techniques which allow interactive query response times even for large data sets of complex objects. In Part III of the thesis, we discuss several similarity models for spatial objects. We show by means of a new evaluation method that data-partitioning similarity models yield more meaningful results than space-partitioning similarity models. We introduce a very effective similarity model which is based on a new paradigm in similarity search, namely the use of vector set represented objects. In order to guarantee efficient query processing, suitable filters are introduced for accelerating similarity queries on complex spatial objects. Based on clustering and the introduced similarity models we present an industrial prototype which helps the user to navigate through massive data sets.

Abstract

Ein schneller und reibungsloser Entwicklungsprozess neuer Produkte ist ein wichtiger Faktor für den wirtschaftlichen Erfolg vieler Unternehmen insbesondere aus der Luft- und Raumfahrttechnik und der Automobilindustrie. Damit Ingenieure in immer kürzerer Zeit immer anspruchsvollere Produkte entwickeln können, werden effektive und effiziente Kollisions- und Ähnlichkeitsanfragen auf komplexen räumlichen Objekten benötigt. Um den hohen Anforderungen eines produktiven Einsatzes zu genügen, müssen entsprechend spezialisierte Zugriffsmethoden in vollwertige Datenbanksysteme integriert werden, so dass zentrale Datenbankdienste wie Trans-aktionen, kontrollierte Nebenläufigkeit und Wiederanlauf sichergestellt sind. Ziel dieser Doktorarbeit ist es deshalb, effektive und effiziente Algorithmen für Kollisions- und Ähnlichkeitsanfragen auf komplexen räumlichen Objekten zu ent-wickeln und diese in kommerzielle Objekt-Relationale Datenbanksysteme zu integrieren. Im ersten Teil der Arbeit werden verschiedene räumliche Indexstrukturen zur effizienten Bearbeitung von Kollisionsanfragen diskutiert und auf ihre Integrationsfähigkeit in Objekt-Relationale Datenbanksysteme hin untersucht. Daran an-knüpfend werden zwei generische Verfahren zur Beschleunigung von Kollisionsanfragen vorgestellt. Das erste Verfahren benutzt statistische Informationen räumlicher Indexstrukturen, um eine gegebene Anfrage zu beschleunigen. Das zweite Verfahren beruht auf einer kostenbasierten Zerlegung komplexer räumlicher Datenbank- Objekte. Diese beiden Verfahren ergänzen sich gegenseitig und können unabhängig voneinander oder zusammen eingesetzt werden. In einer ausführlichen experimentellen Evaluation wird gezeigt, dass die beiden vorgestellten Verfahren interaktive Kollisionsanfragen auf umfangreichen Datenmengen und komplexen Objekten ermöglichen. Im zweiten Teil der Arbeit werden verschiedene Ähnlichkeitsmodelle für räum-liche Objekte vorgestellt. Es wird experimentell aufgezeigt, dass datenpartitionierende Modelle effektiver sind als raumpartitionierende Verfahren. Weiterhin werden geeignete Filtertechniken zur Beschleunigung des Anfrageprozesses entwickelt und experimentell untersucht. Basierend auf Clustering und den entwickelten Ähnlichkeitsmodellen wird ein industrietauglicher Prototyp vorgestellt, der Benutzern hilft, durch große Datenmengen zu navigieren.