
Spatial Database Support for
Virtual Engineering

Dissertation im Fach Informatik

an der Fakultät für Mathematik und Informatik

der Ludwig-Maximilians-Universität München

von

Martin Pfeifle

Tag der Einreichung: 21. April 2004

Tag der mündlichen Prüfung: 15. Oktober 2004

Berichterstatter:

Prof. Dr. Hans-Peter Kriegel, Ludwig-Maximilians-Universität München

Prof. Dr. Bernhard Seeger, Philipps-Universität Marburg

i

Acknowledgments

Many people supported and encouraged me in the past three years while I was

working on this dissertation. I would like to thank them here, even if I cannot mention

them all by name.

I would like to express my deepest thanks to my supervisor Prof. Dr. Hans-Peter

Kriegel. Without his confidence in me and my ideas, and without the productive and

inspiring working atmosphere he created, this work could never have come into ex-

istence. I am also very grateful to Prof. Dr. Bernhard Seeger for his interest in my

work and his immediate willingness to act as a second referee.

This work would not have been possible without the cooperation of my colleagues

in the database group. In particular, I would like to thank Dr. Marco Pötke and

Prof. Dr. Thomas Seidl who introduced me into the area of spatial databases and

guided my first research efforts. Their suggestions and judgments have always been

a rich source of inspiration. Furthermore, I would like to thank Matthias Renz, Peter

Kunath, Stefan Brecheisen, Eshref Januzaj, Peer Kröger, Matthias Schubert, Karin

Kailing and Stefan Schönauer for constructive and productive team-work.

I also appreciate the substantial help of the students whose study thesis or diploma

thesis I supervised, including Stefan Brecheisen, Peter Kunath, Felix Leis, Olaf

Schmitt, Maximillian Viermetz, Petra-Maria Strauß, Ralf Hofmann, Hans Maier,

Wolfgang Mühlberger, Markus Veith, Marc Hiller and Michael Passer.

I want to express special thanks to Franz Krojer, for taking care of our technical

environment, and to Susanne Grienberger, for bearing much of the administrative

burdens.

Furthermore, I would like to thank Stefan Brecheisen and Peter Kunath for care-

fully reading significant portions of this work and for providing valuable hints on

improving the presentation.

ii

In particular, I would like to express my deepest thanks to my parents, who con-

stantly supported me. They brought me up and taught me the readiness to work hard

for my goals. I know that I would be nothing without them. Last but not least, my

special thanks go to my wife Valerie for her encouragement and sacrificial love.

Without her considerateness, this work could never have been accomplished. She

took care of our two lovely little sons, Samuel and Benito, and answered their prob-

ing questions about the whereabouts of their father with a patient smile: “He is writ-

ing his dissertation in Munich”. Thank you!

Martin Pfeifle

Munich, April 2004.

iii

Abstract

The development, design, manufacturing and maintenance of modern engineering

products is a very expensive and complex task. Shorter product cycles and a greater

diversity of models are becoming decisive competitive factors in the hard-fought

automobile and plane market. In order to support engineers to create complex prod-

ucts when being pressed for time, systems are required which answer collision and

similarity queries effectively and efficiently. In order to achieve industrial strength,

the required specialized functionality has to be integrated into fully-fledged database

systems, so that fundamental services of these systems can be fully reused, including

transactions, concurrency control and recovery.

This thesis aims at the development of theoretical sound and practical realizable

algorithms which effectively and efficiently detect colliding and similar complex

spatial objects.

After a short introductory Part I, we look in Part II at different spatial index struc-

tures and discuss their integrability into object-relational database systems. Based on

this discussion, we present two generic approaches for accelerating collision queries.

The first approach exploits available statistical information in order to accelerate the

query process. The second approach is based on a cost-based decompositioning of

complex spatial objects. In a broad experimental evaluation based on real-world test

data sets, we demonstrate the usefulness of the presented techniques which allow

interactive query response times even for large data sets of complex objects.

In Part III of the thesis, we discuss several similarity models for spatial objects. We

show by means of a new evaluation method that data-partitioning similarity models

yield more meaningful results than space-partitioning similarity models. We intro-

duce a very effective similarity model which is based on a new paradigm in similarity

iv

search, namely the use of vector set represented objects. In order to guarantee effi-

cient query processing, suitable filters are introduced for accelerating similarity que-

ries on complex spatial objects. Based on clustering and the introduced similarity

models we present an industrial prototype which helps the user to navigate through

massive data sets.

v

Abstract (in German)

Ein schneller und reibungsloser Entwicklungsprozess neuer Produkte ist ein wich-

tiger Faktor für den wirtschaftlichen Erfolg vieler Unternehmen insbesondere aus der

Luft- und Raumfahrttechnik und der Automobilindustrie. Damit Ingenieure in immer

kürzerer Zeit immer anspruchsvollere Produkte entwickeln können, werden effek-

tive und effiziente Kollisions- und Ähnlichkeitsanfragen auf komplexen räumlichen

Objekten benötigt. Um den hohen Anforderungen eines produktiven Einsatzes zu

genügen, müssen entsprechend spezialisierte Zugriffsmethoden in vollwertige

Datenbanksysteme integriert werden, so dass zentrale Datenbankdienste wie Trans-

aktionen, kontrollierte Nebenläufigkeit und Wiederanlauf sichergestellt sind.

Ziel dieser Doktorarbeit ist es deshalb, effektive und effiziente Algorithmen für

Kollisions- und Ähnlichkeitsanfragen auf komplexen räumlichen Objekten zu ent-

wickeln und diese in kommerzielle Objekt-Relationale Datenbanksysteme zu

integrieren.

Im ersten Teil der Arbeit werden verschiedene räumliche Indexstrukturen zur effi-

zienten Bearbeitung von Kollisionsanfragen diskutiert und auf ihre Integrations-

fähigkeit in Objekt-Relationale Datenbanksysteme hin untersucht. Daran an-

knüpfend werden zwei generische Verfahren zur Beschleunigung von Kollisionsan-

fragen vorgestellt. Das erste Verfahren benutzt statistische Informationen räumlicher

Indexstrukturen, um eine gegebene Anfrage zu beschleunigen. Das zweite Verfahren

beruht auf einer kostenbasierten Zerlegung komplexer räumlicher Datenbank-

Objekte. Diese beiden Verfahren ergänzen sich gegenseitig und können unabhängig

voneinander oder zusammen eingesetzt werden. In einer ausführlichen experiment-

ellen Evaluation wird gezeigt, dass die beiden vorgestellten Verfahren interaktive

Kollisionsanfragen auf umfangreichen Datenmengen und komplexen Objekten er-

möglichen.

vi

Im zweiten Teil der Arbeit werden verschiedene Ähnlichkeitsmodelle für räum-

liche Objekte vorgestellt. Es wird experimentell aufgezeigt, dass datenpartitionier-

ende Modelle effektiver sind als raumpartitionierende Verfahren. Weiterhin werden

geeignete Filtertechniken zur Beschleunigung des Anfrageprozesses entwickelt und

experimentell untersucht. Basierend auf Clustering und den entwickelten Ähnlich-

keitsmodellen wird ein industrietauglicher Prototyp vorgestellt, der Benutzern hilft,

durch große Datenmengen zu navigieren.

vii

Survey of Chapters

PART I. INTRODUCTION TO VIRTUAL ENGINEERING

1 Introduction 3

2 Spatial Engineering Databases 15

PART II. DATABASE SUPPORT FOR DIGITAL MOCKUP

3 Object Relational Indexing 29

4 A Cost Model for Spatial Intersection Queries 67

5 Statistic-Driven Acceleration of Relational Index Structures 95

6 Cost-based Decompositioning of Complex Spatial Objects 121

PART III. DATABASE SUPPORT FOR SIMILARITY SEARCH

7 Foundations of Similarity Search 171

8 Similarity Models for Voxelized CAD Data 199

9 Effectiveness of Similarity Models 223

10 Efficiency of Similarity Models 243

11 BOSS: Browsing Optics-Plots for Similarity Search 289

12 Conclusions 313

viii Survey of Chapters

ix

Table of Contents

Acknowledgments . i

Abstract .iii

Abstract (in German) . v

Survey of Chapters. vii

Table of Contents . ix

PART I. INTRODUCTION TO VIRTUAL ENGINEERING

1 Introduction 3

1.1 Industrial Applications . 4

1.1.1 Digital Mockup . 5

1.1.2 Similarity Search . 6

1.1.3 Further Applications . 7

1.2 Outline of the Thesis . 10

1.2.1 Virtual Engineering (Part I) . 11

1.2.2 Database Support for Digital Mockup (Part II) 11

1.2.3 Database Support for Similarity Search (Part III) 12

2 Spatial Engineering Databases 15

2.1 Spatial Engineering Data . 16

2.1.1 Triangle Meshes . 17

2.1.2 Voxelized Data . 18

2.1.3 Feature Vectors. 21

x Table of Contents

2.2 Spatial Engineering Query Processing . 22

2.2.1 Effective Query Processing . 22

2.2.2 Efficient Query Processing . 23

PART II. DATABASE SUPPORT FOR DIGITAL MOCKUP

3 Object Relational Indexing 29

3.1 Object Relational Databases. 30

3.1.1 Classification of Data Models . 30

3.1.2 Abstract Data Types . 32

3.2 Extensible Query Language . 32

3.2.1 Extensible Indexing . 32

3.2.2 Extensible Optimizing . 34

3.3 Implementation of Access Methods . 36

3.3.1 Integrating Approach . 37

3.3.2 Generic Approach . 41

3.3.3 Relational Approach . 43

3.4 Basics of Relational Access Methods . 44

3.4.1 Paradigms of Access Methods . 44

3.4.2 Relational Storage of Index Data . 46

3.5 Operations on Relational Access Methods . 47

3.5.1 Cursor-Bound Operations . 48

3.5.2 Cursor-Driven Operations . 49

3.6 Navigational Scheme of Index Tables . 51

3.6.1 RR-tree – An Example for the Navigational Scheme 52

3.7 Direct Scheme of Index Tables . 55

3.7.1 RQ-tree – An Example for the Direct Scheme 55

3.7.2 RI-tree - Another Example for the Direct Scheme 57

3.8 Industrial Application . 61

3.8.1 Spatial Data Management . 62

3.8.2 Query Processing . 62

3.8.3 Efficient Execution Plans. 63

xi

3.8.4 Experimental Evaluation of Query Processing 64

3.8.5 System Architecture. 65

4 A Cost Model for Spatial Intersection Queries 67

4.1 Introduction . 68

4.2 Related Work . 70

4.2.1 Selectivity Estimation . 70

4.2.2 Cost Estimation . 71

4.3 Selectivity Estimation . 71

4.3.1 Histogram-Based Selectivity Estimation . 72

4.3.2 Quantile-Based Selectivity Estimation . 73

4.4 Model for I/O Cost . 76

4.5 Extension to Spatial Interval Sequences . 80

4.5.1 Aggregates on Interval Sequences . 81

4.5.2 Extended Selectivity Estimation . 83

4.5.3 Extended I/O Cost Model . 84

4.6 Empirical Evaluation . 87

4.6.1 Experimental Setup . 87

4.6.2 Computation of Statistics . 88

4.6.3 Selectivity Estimation . 89

4.6.4 Cost Estimation . 91

4.7 Summary . 93

5 Statistic-Driven Acceleration of Relational Index Structures 95

5.1 Introduction . 96

5.2 Acceleration of Relational Space-Partitioning Access Methods. 96

5.2.1 Statistics Related to the Relational Access Method. 97

5.2.2 Statistics Related to the Built-in Index Structure. 98

5.2.3 Statistics Related to the Object Decompositioning 104

5.3 Acceleration of Relational Data-Partitioning Access Methods 105

5.3.1 Relational Mapping of a Hierarchical Index Structure 106

5.3.2 General Idea . 107

5.3.3 Adaption to the RR-tree . 111

xii Table of Contents

5.4 Experimental Evaluation. 112

5.4.1 Space-Partitioning Index Structures . 112

5.4.2 Data-Partitioning Index Structures . 117

5.5 Summary . 118

6 Cost-based Decompositioning of Complex Spatial Objects 121

6.1 Introduction . 122

6.2 Related Work . 123

6.3 Decompositioning of High-Resolution Spatial Objects. 124

6.3.1 Gray Containers . 125

6.3.2 Storing Gray Containers in an ORDBMS 128

6.3.3 Compression of Gray Containers. 129

6.3.4 Grouping into Gray Containers . 134

6.4 Object Relational Query Processing . 138

6.4.1 The intersect SQL Statements . 138

6.4.2 Optimizations . 140

6.5 Spatial Join . 143

6.5.1 Related Work . 145

6.5.2 Cost Model. 146

6.5.3 Decompositioning Algorithm . 147

6.5.4 Join Algorithms . 149

6.6 Experimental Evaluation. 154

6.6.1 Storage Requirements . 155

6.6.2 Update Operations . 156

6.6.3 Collision Queries based on the MaxGap-Grouping. 157

6.6.4 Collision Queries based on the GroupCon-Grouping 160

6.6.5 Spatial Join Processing . 162

xiii

6.7 Conclusion. 166

PART III. DATABASE SUPPORT FOR SIMILARITY SEARCH

7 Foundations of Similarity Search 171

7.1 Similarity Query Types . 172

7.1.1 Similarity Range Queries . 172

7.1.2 Similarity k-nn Queries . 173

7.1.3 Similarity Ranking Queries . 174

7.1.4 Further Similarity Queries . 175

7.2 Similarity Queries within Object-Relational Database Systems. 176

7.2.1 Integration of Range Queries . 176

7.2.2 Integration of k-nn Queries . 176

7.2.3 Integration of Ranking Queries . 178

7.3 Access Methods for Similarity Search. 178

7.3.1 Multi-Dimensional Access Methods . 178

7.3.2 One-Dimensional Access Methods . 180

7.3.3 Scan-Based Access Methods . 182

7.3.4 Metric Access Methods . 183

7.3.5 Miscellaneous Access Methods . 184

7.4 One-Step Similarity Query Processing . 185

7.4.1 Index based Range Queries . 186

7.4.2 Index based k-nn Queries. 186

7.4.3 Index based Ranking Query. 187

7.5 Multi-Step Similarity Query Processing . 188

7.5.1 The Lower-Bounding Property . 189

7.5.2 Multi-Step Range Queries . 189

7.5.3 Multi-Step k-nn Queries . 190

7.5.4 Multi-Step Ranking Queries . 191

7.6 Similarity Models . 192

7.6.1 Feature-Based Similarity Search . 193

7.6.2 Geometry-Based Similarity Search . 196

7.6.3 Summary . 198

xiv Table of Contents

8 Similarity Models for Voxelized CAD Data 199

8.1 Object Similarity . 200

8.1.1 Normalization of CAD Data . 201

8.2 Space Partitioning Similarity Models . 204

8.2.1 Shape Histograms for Voxelized CAD Data 204

8.2.2 The Volume Model. 205

8.2.3 The Solid-Angle Model . 206

8.2.4 The Eigen-Value Model . 207

8.3 Data Partitioning Similarity Models. 209

8.3.1 The Cover Sequence Model. 209

8.3.2 The Vector Set Model . 213

9 Effectiveness of Similarity Models 223

9.1 A New Approach for Evaluating Similarity Models 224

9.1.1 k-nn Queries. 224

9.1.2 OPTICS: A Density-Based Hierarchical Clustering Algorithm . 225

9.2 Experimental Evaluation. 233

9.2.1 Experimental Setup . 233

9.2.2 Evaluation of the Space Partitioning Similarity Models 234

9.2.3 Evaluation of the Data Partitioning Similarity Models 237

9.2.4 Summary . 240

10 Efficiency of Similarity Models 243

10.1 The NB-Tree: A Filter for the Single Vector Models 244

10.2 Filters for the Minimal Matching Distance. 246

10.2.1 The Centroid Approach . 247

10.2.2 The Euclidean Norm Approach . 249

10.2.3 The Closest Pair Approach . 252

10.2.4 Combined Filters . 254

10.2.5 Conclusion . 254

10.3 The Optimized Relational M-Tree . 255

10.3.1 The M-tree . 256

10.3.2 The Relational M-tree . 259

xv

10.3.3 The Scanning M-Tree . 260

10.3.4 The Filtering M-tree. 263

10.3.5 The Caching M-tree . 268

10.4 Experimental Evaluation. 269

10.4.1 Single Vector Models: The NB-Tree . 270

10.4.2 Vector Set Model: Filters for the Minimal Matching Distance . . 276

10.4.3 Vector Set Model: M-tree. 282

10.5 Summary . 287

11 BOSS: Browsing Optics-Plots for Similarity Search 289

11.1 Introduction . 290

11.2 Hierarchical Clustering. 291

11.2.1 Major Advantages of OPTICS . 291

11.2.2 Application Ranges . 292

11.3 Cluster Recognition. 295

11.3.1 Recent Work. 296

11.3.2 Gradient Clustering . 298

11.4 Cluster Representatives . 301

11.4.1 The Extended Medoid Approach . 303

11.4.2 The Minimum Core-Distance Approach 303

11.4.3 The Maximum Successor Approach . 304

11.5 System Architecture . 306

11.6 Evaluation . 307

11.6.1 Cluster Recognition . 308

11.6.2 Cluster Representation . 310

11.6.3 Summary . 310

11.7 Summary . 311

12 Conclusions 313

12.1 Summary and Contributions . 314

12.1.1 Virtual Engineering (Part I) . 314

12.1.2 Database Support for Digital Mockup (Part II) 314

12.1.3 Database Support for Similarity Search (Part III) 315

xvi Table of Contents

12.2 Potentials for Future Work . 317

12.2.1 Efficient Haptic Simulation . 317

12.2.2 A Similarity Model based on Patterns . 318

12.2.3 Efficient Density-Based Clustering . 318

12.2.4 Navigating through Massive Multimedia Data Sets 319

12.2.5 Browsing Distributed Data Sets. 320

List of Figures . 321

List of Definitions . 327

References . 329

Curriculum Vitae . 345

Part I

Introduction to
Virtual Engineering

2

3

Chapter 1
Introduction

In the automotive and aerospace industry, millions of technical documents are

generated during the development of complex engineering products. Particularly, the

universal application of Computer Aided Design (CAD) from the very first design to

the final product created the need for transactional, concurrent, reliable, and secure

data management. The huge underlying CAD databases, occupying terabytes of dis-

tributed secondary and tertiary storage, are typically stored and referenced in Engi-

neering Data Management (EDM) systems and organized by means of hierarchical

product structures. Existing EDM systems are based on fully-fledged object-relation-

al database servers. They organize and synchronize concurrent access to the CAD

data of an engineering product. The distributed CAD files are linked to global prod-

uct structures which allow a hierarchical view on the many possible product config-

urations emerging from the various versions and variants created for each compo-

nent.

Although most CAD files represent spatial objects or contain spatially related da-

ta, existing EDM systems do not efficiently support the evaluation of spatial predi-

cates, e.g. collision queries and similarity queries. If we look at CAD databases from

a spatial point of view, each instance of a part occupies a specific region in the

three-dimensional product space (cf. Figure 1). Together, all parts of a given product

version and variant thereby represent a virtual prototype of the constructed geometry.

Virtual engineering requires access to this product space in order to “find all parts

4 Introduction

intersecting a specific query volume”. Furthermore, the system should support que-

ries as for instance “find the five parts which are most similar to a specific hydraulic

hose”. Unfortunately, the inclusion of these spatial predicates is not supported effi-

ciently by common, structure-related EDM systems.

Although the EDM system maintains a consistent knowledge about the storage

location of each native CAD file, only a few spatial properties, including the position

and bounding box of the respective part in the product space, are immediately acces-

sible. But many applications of virtual engineering require a more fine-grained spa-

tial selection. Thus the EDM system has to be extended by suitable representations of

the product geometry.

In this thesis, we introduce spatial database technology into the file-based world of

CAD. As we integrate 3D spatial data management into standard object-relational

database systems, the required support for data independence, transactions, recovery,

and interoperability can be achieved.

1.1 Industrial Applications

In this section, we present four different industrial applications of virtual engineer-

ing which immediately benefit from an object-relational database integration. We

have analyzed and evaluated them in cooperation with partners in the automotive and

aerospace industry, including the DaimlerChrysler AG, Stuttgart, the Volkswagen

AG, Wolfsburg, the German Aerospace Center DLR e.V., Oberpfaffenhofen, and the

Boeing Company, Seattle.

Figure 1: Partial virtual prototype of a car.

Industrial Applications 5

1.1.1 Digital Mockup

For a long time industrial practice in automotive, aerospace, and other manufac-

turing industries involves the creation of a number of physical product models. Dur-

ing the product development phase, both the product and the process are verified on

the basis of physical mock-up (PMU). However, hardware checks cause tremendous

time delays. Moreover, a late hardware verification very often leads to respectively

late design changes, which are cost intensive (cf. Figure 2). In the car industry, late

engineering changes caused by problems with fit, appearance or shape of parts al-

ready account for 20-50 percent of the total die cost [CF 91].

Nowadays, the different industries do not have to build real test models anymore.

The real models currently required for automobile development, for instance, are

being dispensed with new digital mockup (DMU) methods, which combine all digital

data from Computer Aided Design (CAD), Computer Aided Engineering (CAE) and

Computer Aided Manufacturing (CAM), including the results from simulations and

animations. The tools for the digital mockup of engineering products allow a fast and

early detection of colliding parts, purely based on the available digital information.

Unfortunately, these systems typically operate in main-memory and are not capa-

ble of handling more than a few hundred parts. They require as input a small, well-as-

sembled list of the CAD files to be examined. With the traditional file-based ap-

proach, each user has to select these files manually. This can take hours or even days

of preprocessing time, since the parts may be generated on different CAD systems,

Figure 2: Digital mock-up (DMU) [IWB 01].

6 Introduction

spread over many file servers and are managed by a variety of users [BKP 98]. In a

concurrent engineering process, several cross-functional project teams may be re-

cruited from different departments, including engineering, production, and quality

assurance to develop their own parts as a contribution to the whole product. However,

the team working on section 12B of an airplane may not want to mark the location

and the format of each single CAD file of the adjacent sections 12A and 12C. In order

to do a quick check of fit or appearance, they are only interested in the colliding parts.

Moreover, the internet is gaining in importance for industrial file exchange. Engi-

neers, working in the United States, may want to upload their latest component de-

sign to the CAD database of their European customer in order to perform interference

checks. Thus, they need a fast and comfortable DMU interface to the EDM system.

Figure 3 depicts two typical spatial queries on a three-dimensional product space,

retrieving the parts intersecting a given box volume (box volume query), and detect-

ing the parts colliding with the geometry of a query part (collision query). A spatial

filter for DMU-related queries on huge CAD databases is easily implemented by a

spatial access method which determines a tight superset of the parts qualifying for the

query condition. Then, the computationally intensive query refinement on the result-

ing candidates, including the accurate evaluation of intersection regions

(cf. Figure 3a), can be delegated to an appropriate main memory-based CAD tool.

1.1.2 Similarity Search

In the last ten years, an increasing number of database applications has emerged

for which efficient and effective support for similarity search is substantial. The im-

portance of similarity search grows in application areas such as multimedia, medical

Figure 3: Spatial queries on CAD data.

a) Box volume query b) Collision query

Industrial Applications 7

imaging, molecular biology, computer aided engineering, marketing and purchasing

assistance. Particularly, the task of finding similar shapes in 2D and 3D becomes

more and more important.

The development, design, manufacturing and maintenance of modern engineering

products is a very expensive and complex task. Shorter product cycles and a greater

diversity of models are becoming decisive competitive factors in the hard-fought

automobile and plane market. These demands can only be met if the engineers have

an overview of already existing CAD parts. An engineer should be able to find those

parts which are most similar to the one he has in mind. Even if he has no concrete part

in mind, it would be very helpful for the user, if he could browse through the already

existing parts in order to get an overview (cf. Figure 4). Such a system would help

the companies to save time and money by avoiding unnecessary redesigns.

To sum up, with an increasing number of already existing CAD files we have to

face new challenges. The question at issue is no longer how we can create new CAD

files, but how we can find already designed and approved parts.

1.1.3 Further Applications

In this section, we shortly sketch two further application ranges of virtual engi-

neering, while concentrating on digital mockup and similarity search throughout the

remainder of this thesis.

Figure 4: Browsing through a hierarchy of CAD objects.

8 Introduction

Haptic Rendering. The modern transition from the physical to the digital mockup

has stimulated the well-known problem of simulating real-world engineering and

maintenance tasks. Therefore, many approaches have been developed to emulate the

physical constraints of natural surfaces, including the computation of force feedback,

to capture the contact with virtual objects and to prevent parts and tools from inter-

penetrating [GLM 96] [LSW 99] [MPT 99]. Figure 5a depicts a common haptic de-

vice to transfer the computed force feedback onto a data glove. The simulated envi-

ronment, along with the force vectors, is visualized in Figure 5b. By using this

combination of haptic algorithms and hardware, a realistic force loop between the

acting individual and the virtual scene can be achieved. Naturally, a real-time com-

putation of haptic rendering requires the affected spatial objects to reside in

main-memory. In order to perform haptic simulations on a large scale environment

comprising millions of parts, a careful selection and efficient prefetching of the spa-

tially surrounding parts is indispensable. Figure 6 illustrates the complexity of usual

virtual environments by the example of the International Space Station (ISS). In or-

der to simulate and evaluate maintenance tasks, e.g. performed by autonomous ro-

Figure 5: Sample scenario for haptic rendering.

a) Haptic device b) Virtual environment

Figure 6: Virtual environment of the International Space Station.

Industrial Applications 9

bots, an index-based prefetching of persistent spatial objects can be coupled with

real-time haptic rendering.

Spatial Document Management. During the development, documentation, and

maintenance of complex engineering products, many other files besides the geomet-

ric surfaces and solids of product components are generated and updated. Most of

this data can also be referenced by spatial keys in the three-dimensional product

space (cf. Figure 7), including kinematic envelopes which represent moving parts in

any possible situation or spatial clearance constraints to reserve unoccupied regions,

e.g. the minimal volume of passenger cabins or free space for air circulation around

hot parts. Furthermore, technical illustrations, evaluation reports or even plain busi-

ness data like cost accounting or sales reports for specific product components can be

spatially referenced. Structurally referencing such documents can become very labo-

rious. For example, the meetings concerning the design of a specific detail of a prod-

uct may affect many different components. Spatial referencing provides a solution by

simply attaching the meetings to a spatial key created for the region of interest. A

very intuitive query could be: “retrieve all meetings of the previous month concern-

ing the spatial region between parts A and B”. Such queries can be efficiently sup-

ported by spatial indexes.

Figure 7: Spatial referencing of engineering documents.

a) Parts

b) Envelopes

c) Clearances

d) Illustrations

e) Business

10 Introduction

1.2 Outline of the Thesis

This thesis discusses problems and solutions related to spatial database support for

virtual engineering. It is divided into a short introductory part, called virtual engi-

neering, and two major parts, called database support for digital mockup and data-

base support for similarity search. The algorithms and ideas discussed in the differ-

ent chapters of this thesis have already been published in parts. For clearness and

convenience, we list these own publications in this section, while refining from citing

them repeatedly throughout the remainder of this thesis:

Part I Virtual Engineering

Chapter 1
Chapter 2

Spatial Data Management for Virtual Product Development [KPP+ 03]

Part II Database Support for Digital Mockup

Chapter 3

The Paradigm of Relational Indexing: A Survey [KPPS 03b]

Object-Relational Spatial Indexing [KPP+ 04]

Stochastic Driven Relational R-Tree [KKP+ 03]

Chapter 4
A Cost Model for Interval Intersection Queries on RI-Trees [KPPS 02]

A Cost Model for Spatial Intersection Queries [KPPS 04]

Chapter 5

Acceleration of Relational Index Structures based on Statistics [KKPR 03a]

Efficient Query Processing on the Relational Quadtree [KKPR 03b]

Statistic Driven Acceleration of
Object-Relational Space-Partitioning Index Structures [KKPR 04b]

Efficient Query Processing on Relational
Data-Partitioning Index Structures [KKPR 04d]

Chapter 6

Spatial Query Processing for High Resolutions [KPPS 03a]

Cost-based Decompositioning of Complex Spatial Objects
for Efficient Relational Indexing [KKPR 04a]

Effective Decompositioning of Complex Spatial Objects into Intervals [KKPR 04c]

Spatial Join Processing for High-Resolution Objects [KKPR 04e]

Part III Database Support for Similarity Search

Chapter 8
Chapter 9

Effective Similarity Search on Voxelized CAD Objects [KKM+ 03]

Using Sets of Feature Vectors
for Similarity Search on Voxelized CAD Objects [KBK+ 03]

Chapter 10
Efficient Query Processing on Sets of Feature Vectors [BKP 04a]

Indexing of Complex Objects for Efficient Density-Based Clustering [KKPS 04]

Chapter 11

Representatives for Visually Analyzing Cluster Hierarchies [BKK+ 03]

BOSS: Browsing OPTICS-Plots for Similarity Search [BKK+ 04]

Visually Mining Through Cluster Hierarchies [BKKP 04]

Outline of the Thesis 11

1.2.1 Virtual Engineering (Part I)

In this first introductory part, we shortly discuss various aspects related to virtual

engineering. After having mentioned some industrial application ranges of virtual

engineering, in the first chapter, we look at spatial engineering databases in

Chapter 2. We list various engineering data types and query types. Furthermore, we

shortly sketch a generic approach for efficient spatial query processing.

1.2.2 Database Support for Digital Mockup (Part II)

The process of digital mockup is based on an effective and efficient detection of

colliding spatial objects.

Chapter 3 motivates the use of an object-relational database management system

(ORDBMS) for virtual engineering. We discuss the possibilities and limitations of

extensibility in an ORDBMS. For the seamless integration of spatial index structures,

two basic interfaces have to be addressed. First, a high-level interface is required to

embed index operations into the declarative query language, i.e. into SQL. Second, a

low-level interface of the index structure to the database kernel has to be implement-

ed. We will show that the high-level interface is well supported by common

ORDBMSs. After discussing the difficulties of implementing the low-level interface,

we will present the paradigm of relational indexing which solves the low-level inter-

face problem. We will develop the main properties of relational access methods, and

illustrate the presented concepts by discussing the Relational R-tree (RR-tree), the

Relational Quadtree (RQ-tree) and the Relational Interval Tree (RI-tree).

Chapter 4 completes the object-relational integration of spatial indexing by intro-

ducing a cost model to estimate the selectivity and I/O cost of spatial queries on the

RI-tree. Similar to the integration of the index structure, the integration of the cost

model into the ORDBMS can be achieved by implementing a high- and low-level

interface. By design, the models immediately fit to common extensible indexing/

optimization frameworks, and their implementation exploit the built-in statistics fa-

cilities of the database server. In a broad empirical evaluation, we show that the

presented techniques yield accurate results which are indispensable for determining

the best possible query execution plan.

12 Introduction

Chapter 5 explains how we can accelerate the query process based on relational

index structures. For space-partitioning index-structures, e.g. the RI-tree and the

RQ-tree, we propose to use statistics which are required and maintained by the corre-

sponding cost models to accelerate the query process. The main idea is to reduce the

number of generated join partners which results in less logical reads. We cut down on

the number of join partners by grouping different join partners together according to

a statistic driven grouping algorithm. For hierarchical data-partitioning index struc-

tures, e.g. the RR-tree, we reduce the navigational index traversal cost by using “ex-

tended index range scans”. If a directory node is “largely” covered by the actual

query, the recursive tree traversal for this node can beneficially be replaced by a scan

on the leaf level of the index instead of navigating through the directory any longer.

In our experiments, we show that the presented techniques considerably accelerate

the RR-tree, the RQ-tree and the RI-tree.

Chapter 6 presents a cost based decompositioning approach for complex spatial

objects. In contrast to common black-and white decompositioning algorithms which

suffer from the lack of intermediate solutions, we introduce gray containers as a new

and general concept which are stored in a compressed way within an ORDBMS. The

gray containers are created by using a cost-based decompositioning algorithm which

takes the access probability and the decompression cost of the gray containers into

account. The experimental evaluation on real-world test data points out that our new

concept accelerates collision queries on the RR-tree, the RQ-tree, and the RI-tree as

well as spatial join processing by up to two orders of magnitude.

1.2.3 Database Support for Similarity Search (Part III)

The effective and efficient retrieval of similar objects is a crucial factor for cutting

down the time spent for developing and designing modern engineering products. In

this part of the thesis, we show how effective similarity models supported by efficient

access methods can turn themselves useful to an industrial user.

Chapter 7 is dedicated to the related work in the area of effective and efficient

similarity search. After introducing the basic similarity query types, we explain how

they can be integrated into an off-the-shelf ORDBMS. Thereafter, we present differ-

ent similarity models and access methods from the literature which are used for ef-

fective and efficient similarity search.

Outline of the Thesis 13

Chapter 8 discusses invariance properties for effective similarity search on voxel-

ized CAD data together with different similarity models. First, we introduce three

different space partitioning similarity models, namely the volume model, the solid-

angle model and the eigen-value model. Then, we turn our attention to data partition-

ing similarity models, starting with the cover-sequence model. This model serves as

a starting point for the vector set model which is based on a new paradigm in similar-

ity search. In contrast to the other four models, the vector set model uses sets of

feature vectors for representing an object instead of single feature vectors.

Chapter 9 introduces density-based hierarchical clustering as a new and effective

way to analyse and compare similarity models. We motivate this new evaluation

approach by demonstrating its superiority compared to the commonly used k-nn que-

ries which are subjective and error-prone. Based on this new evaluation method, we

compare the quality of the different similarity models. We show that among the space

partitioning models, the eigen-value model is the most suitable model. The quality of

the space partitioning eigen-value model is comparable to the quality of the data-

partitioning cover sequence model. Nevertheless, both of these models are outper-

formed by our data partitioning vector set model. To sum up, we show in this chapter

that the vector set model yields by far the highest quality of all investigated similarity

models.

Chapter 10 presents the efficiency evaluation of the five introduced similarity

models. In order to accelerate the query processing for the feature vector based sim-

ilarity models, i.e. the volume model, the solid-angle model, the eigen-value model

and the cover sequence model, we use a common access method which can easily be

integrated into an ORDBMS. For improving the query response time of the vector set

model, we introduce three different filter steps, the centroid approach, the Euclidean

norm approach and the closest pair approach. We present a broad experimental eval-

uation showing that the introduced filter steps considerably accelerate similarity que-

ries based on the vector set model. Especially the combination of the centroid ap-

proach and the Euclidean norm approach yields very good results. Furthermore, we

present the Relational M-tree (RM-tree) along with suitable optimizations. Neverthe-

less, similarity queries based on the high quality vector set model are still slower than

similarity queries on the single feature vector models. The efficiency evaluation of

this chapter together with the effectiveness evaluation of the last chapter help the user

to find an individual trade-off between quality and query response time.

14 Introduction

Chapter 11 illustrates how an appropriate visualization of the hierarchical cluster-

ing structure can aid the user in his time consuming task to find similar objects. We

introduce approaches which automatically extract the significant clusters in a hierar-

chical cluster representation along with suitable cluster representatives. These tech-

niques can be used as a basis for visual data mining. We implemented our algorithms

resulting in an industrial prototype which was also used for the experimental evalua-

tion presented in Chapter 9.

Chapter 12 recapitulates the main contributions of this thesis and suggests some

directions for future work.

15

Chapter 2
Spatial Engineering Databases

A database system (DBS) is designed to manage and analyze huge amounts of

persistent data, offering important advantages compared to a file-based organization.

DBSs provide logical and physical data independence, transactions, concurrency

control, integrity checking, recovery, security, standardization, and distribution

[Dat 99].

One of the most promising data models for DBSs is the object-relational model. It

provides two substantial advantages. First, the practical impact of object-relational

database management systems is very strong, as object-relational functionality has

been added to most commercially available relational database servers, including

Oracle [Doh 98], IBM DB2 [CCN+ 99], and Informix IDS/UDO [Bro 01]. Secondly,

its extensibility is a necessary prerequisite for the seamless embedding of user-

defined data types and predicates, which is vital for virtual engineering. Defining

spatial data types and spatial predicates on top of any off-the-shelf ORDBMS enables

us to ask all kinds of similarity and intersection queries. Furthermore, integrating

these spatial features into an ORDBMS allows us to combine structural queries as,

for instance, “retrieve all documents, that refer to the current version of the jet en-

gine” with the evaluation of geometric predicates. To put it another way, ORDBMSs

allow us to easily combine EDM systems with spatial database systems.

16 Spatial Engineering Databases

According to Güting [Güt 94], spatial database systems could be defined in the

following way:

 • A spatial database system is a database system.

 • It offers spatial data types in its data model and query language.

 • It supports spatial data types in its implementation, providing at least spatial in-

dexing.

This definition points up, that a spatial database system is a fully-fledged database

system, with additional modules for handling spatial data. The extensibility interfac-

es of most ORDBMSs, including Oracle [Ora 99a][SMS+ 00], IBM DB2 [IBM 99]

[CCF+ 99], or Informix IDS/UDO [Inf 98][BSSJ 99], enable us to integrate spatial

requirements into off-the-shelf object-relational database systems.

In Section 2.1, we introduce different data representation types for managing

spatial objects within an ORDBMS. In Section 2.2, we look at effective and efficient

spatial query processing. First, we introduce the main spatial query predicates dis-

cussed in this thesis. Second, we sketch the general paradigm of multi-step query

processing.

2.1 Spatial Engineering Data

An engineering product can be regarded as a collection of individual, three-dimen-

sional parts, while each part potentially represents a complex and intricate geometric

shape. The original surfaces and solids are designed at a very high precision. In order

to cope with the demands of accurate geometric modeling, highly specialized CAD

applications are employed, using different data primitives and native encodings for

spatial data. To homogenize these different encodings, several neutral file formats

have been defined, including the popular standards VDAFS [VDA 87], IGES

[IGES 96], STEP [STEP 94+], and VRML [CBM 97]. An enterprise-wide spatial

CAD database should rely on one or more of these data exchange formats. In order to

integrate the different geometric semantics, we propose a set of universal representa-

tions which can be derived from any native geometric surface and solid. The support-

ed geometric data models include triangle meshes for visualization and interference

detection (cf. Section 2.1.1), as well as voxel sets as conservative approximations for

spatial keys (cf. Section 2.1.2). In the area of similarity search, feature vectors are

Spatial Engineering Data 17

used to represent spatial objects (cf. Section 2.1.3). Dependent on the chosen similar-

ity model, the feature vectors contain compact information which is derived from

another appropriate data representation of the spatial object, e.g. triangle meshes or

voxel sets.

As already mentioned, we will concentrate on database support for digital mock-

up (cf. Section 1.1.1) and similarity search (cf. Section 1.1.2) in this thesis. For these

two application ranges, voxel sets form an adequate representation of CAD objects.

Although we confine ourselves to this specific data model throughout the remainder

of this thesis, we place voxel sets in a broader context in this section.

2.1.1 Triangle Meshes

Accurate representations of CAD surfaces are typically implemented by paramet-

ric bicubic surfaces, including Hermite, Bézier, and B-spline patches. For many op-

erations, such as graphical display or the efficient computation of surface intersec-

tions, these parametric representations are too complex [MH 99]. As a solution,

approximative polygon (e.g. triangle) meshes can be derived from the accurate sur-

face representation. These triangle meshes allow for an efficient and interactive dis-

play of complex objects, for instance by means of VRML encoded files, and serve as

an ideal input for the computation of spatial interference. We distinguish three ac-

tions for interference detection [MH 99]: collision detection, collision determina-

tion, and collision response:

 • Collision detection: This basic interference check simply detects if the query part

q and a database object o collide. Thus, collision detection can be regarded as a

geometric intersection join of the triangle sets for S and Q which already terminates

after the first intersecting triangle pair has been found.

 • Collision determination: The actual intersection regions between a query part

and a stored part are computed. In contrast to the collision detection, all intersect-

ing triangle pairs and their intersection segments have to be reported by the inter-

section join.

 • Collision response: Determines the actions to be taken in consequence of a posi-

tive collision detection or determination. In our case of a spatial database for virtual

engineering, a textual or visual feedback on the interfering parts and, if computed,

the intersection lines seems to be appropriate.

18 Spatial Engineering Databases

2.1.2 Voxelized Data

In order to employ spatial index structures for our CAD database, we propose a

conversion pipeline to transform the geometry of each single CAD part to an interval

sequence by means of voxelization. In the following, we assume a uniform three-

dimensional voxel grid covering the global product space.

The voxelization of polygon meshes is a major research topic in the field of com-

puter graphics and CAD. Voxelization techniques and applications have been pro-

posed for instance for interactive volume visualization [HYFK 98] and haptic ren-

dering [MPT 99]. A basic algorithm for the 3D scan-conversion of polygons into a

voxel-based occupancy map has been proposed by Kaufmann [Kau 87]. If we apply

this conversion to the given triangle mesh of a CAD object (cf. Figure 8a), a conser-

vative approximation of the part surface is produced (cf. Figure 8b).

Solid Object. If a triangle mesh is derived from an originally solid object, each

triangle can be supplemented with a normal vector to discriminate the interior from

the exterior space. Thus, not only surfaces, but also solids could potentially be mod-

eled by triangle meshes. Unfortunately, triangle meshes generated by most faceters

contain geometric and topological inconsistencies, including overlapping triangles

and tiny gaps on the surface. Thus, a robust reconstruction of the original interior

becomes very laborious. Therefore, we follow the common approach to voxelize the

triangle mesh of a solid object first (cf. Figure 9a), which yields a consistent repre-

sentation of the object surface. Next, we apply a 3D flood-fill algorithm [FDFH 00]

to compute the exterior voxels of the object (cf. Figure 9b), and thus, determine the

outermost boundary voxels of the solid. We restrict the flood-fill to the bounding box

of the object, enlarged by one voxel in each direction. The initial fill seed is placed at

the boundary of this enlarged bounding box. In the final step, we simply declare all

Figure 8: Scan conversion on a triangulated surface.

a) Triangulated surface b) Voxelized surface

Spatial Engineering Data 19

voxels as interior which are neither boundary nor exterior voxels (cf. Figure 9c). In

consequence, we obtain a volumetric reconstruction of the original solid, marking

any voxels behind the outermost surface as interior [Pöt 01].

Space Filling Curves. The voxels correspond to cells of a grid, covering the com-

plete data space. By means of space filling curves, each cell of the grid can be encod-

ed by a single integer number, and thus an extended object is represented by a set of

integers. Most of these space filling curves achieve good spatial clustering proper-

ties. Therefore, cells in close spatial proximity are encoded by similar integers or,

putting it another way, contiguous integers encode cells in close spatial neighbor-

hood. Examples for space filling curves include Hilbert-, Z-, and the lexicographic-

order, depicted in Figure 10.

Spatial Index Entries. Voxels can be grouped together to tiles, intervals, or boxes

which can efficiently be managed by spatial index structures. A basic parameter for

the mapping of extended objects to these basic spatial data types is the granularity,

i.e. the resolution of the underlying grid. When refining the resolution, the approxi-

mations become more accurate but redundancy increases. Figure 11a illustrates the

granularity-bound decomposition into variable-sized Z-tiles (top row) and into

Figure 9: Filling a closed voxelized surface.

a) Voxelized surface b) Filled exterior c) Inverted result

Figure 10: Examples of space-filling curves in the two-dimensional case.

Hilbert-order Z-order lexicographic order

20 Spatial Engineering Databases

Z-ordered interval sequences (bottom row). The approximation error is the ratio of

the dead space to the object area. According to the extensive analysis given in

[FJM 97] and [MJFS 96], the asymptotic redundancy of a tile- or interval-based de-

composition is in both cases proportional to the surface of the approximated object.

Nevertheless, as intervals on a Z- or Hilbert-curve may span many tiles, their average

number is lower than the number of tiles [Vei 03] (cf. Figure 11). The Hilbert-order

generates the minimum number of intervals and tiles per object [Jag 90] [FR 89] but

unfortunately, it is the most complex linear order. Taking redundancy and complexity

into consideration, the Z-order seems to be a good solution.

Decompositioning. On top of the resolution of the data space and the clustering

properties of the space-filling curve, a more fine-grained control of the trade-off

between redundancy and accuracy is desired for many applications. First, the granu-

larity may have to differ for each individual object rather than to apply the same

resolution to all objects. Second, the resolution is fixed at database creation time

whereas an object may have to be approximated differently at insertion time and at

query time. An approach to control this trade-off is the concept of size-bound and

error-bound approximation [Ore 89] beyond the mentioned granularity-bound

approximation [Gae 95]. The decompositioning is based on a recursive subdivision

17 intervals

Figure 11: Object decompositions.
a) Granularity-bound, b) Size-bound, c) Error-bound decomposition into
Z-tiles (top row) and Z-ordered interval sequences (bottom row) [KPS 01].

41 intervals

+14% error

+14% error

20 intervals
+26% error

+61% error

+30% error

+30% error

30 tiles

a) b) c)

20 tiles60 tiles

Spatial Engineering Data 21

procedure which stops if the desired redundancy (size-bound) or the desired maxi-

mum approximation error (error-bound) is reached. In [KPS 01], it was demonstrated

how to adapt the algorithms of [Ore 89] by integrating the management of generated

intervals into the recursive spatial decomposition. Figure 11b illustrates the size-

bound approximation of a polygon into variable-sized tiles (top row) and into

Z-ordered interval sequences (bottom row). Examples for an error-bound approxi-

mation are depicted in Figure 11c.

2.1.3 Feature Vectors

Triangle meshes as well as voxel sets are representations which are both unsuit-

able for similarity search as there exist no appropriate distance functions for sets of

voxels and for sets of triangle meshes. As distance functions form the foundation of

similarity search, we need an object representation which allows efficient and mean-

ingful distance computations. As we can easily compute the distance between two

numerical vectors, a common approach is to represent a spatially extended object by

a numerical vector. In this case a feature transformation extracts distinguishable spa-

tial characteristics which are represented by numerical values grouped together in a

feature vector (cf. Figure 12).

On the basis of such a feature transformation and under the assumption that simi-

larity corresponds to feature distance, it is possible to define a similarity measure

(function) for two data objects as the distance between the corresponding feature

vectors. Thus, searching for similar data objects to a given query data object is trans-

formed into proximity search in the feature space. Most applications use the Euclid-

ean metric (L2) to evaluate the feature distance, but there are several other metrics

commonly used, e.g. the Manhattan metric (L1), and the Maximum metric (L∞).

Figure 12: Feature transformation.

F0

F1

F2

F3

feature
transformation

 voxel set feature vector

22 Spatial Engineering Databases

2.2 Spatial Engineering Query Processing

Based on the different data representations discussed in the last section, we can

effectively and efficiently process engineering queries. In this section, we first intro-

duce those query types which we will focus on in this thesis. The first two query types

are related to collision queries (cf. Part II), and the remaining ones to similarity

search (cf. Part III). Secondly, we will shortly outline the foundation of efficient

query processing, namely spatial index structures and the paradigm of multi-step

query processing.

2.2.1 Effective Query Processing

A CAD database management system should enable engineers to find colliding

and similar parts. In this section, we will informally introduce the necessary query

types, without specifying the actual data representation of the CAD objects. The

queries can be based on triangle meshes, or on some derived information, as for

instance voxelized data. More detailed definitions are presented in Part II and Part III

of this thesis when required.

In the following, let O be the domain of all objects that may occur as database

objects or query objects. Furthermore, let denote a database.

 • Boolean Intersection Query: A boolean intersection query yields true, if

two objects intersect and false if they do not intersect, i.e.

intersectboolean: . Note, that they might intersect based on

their voxelization, but do not intersect if we look at the finer triangle meshes

(cf. collision detection in Section 2.1.1). If it is clear from the context, we simply

use the term intersect instead of intersectboolean.

 • Ranked Intersection Query: In contrast to a boolean intersection query a ranked

intersection query intersectranked yields not a boolean return value, but a numerical

one, i.e. intersectranked: . For voxelized data, the return value of

intersectranked indicates the intersection volume, whereas for triangle meshes it is

equal to the intersection length. If two objects do not intersect, i.e.

intersectboolean (o1, o2) = false, then intersectranked (o1, o2) = 0 holds (cf. collision

determination in Section 2.1.1).

DB O⊆

o1 o2, O∈
O O true, false{ }→×

O O IR0
+→×

o1 o2, O∈

Spatial Engineering Query Processing 23

 • Similarity Range Query: In a similarity range query simrange: ,

the user specifies a query object and a query radius . The system

retrieves all objects from the database that have a distance, e.g. a feature distance,

from q which does not exceed ε.

 • Similarity k-nn query: In a similarity k-nn query simknn: , the user

specifies a query object and the cardinality of the result set. The sys-

tem retrieves those k objects from the database which are closest to q.

 • Similarity Ranking Query: In a similarity ranking query the user specifies a que-

ry object and the system retrieves all objects from the database ordered by

their distance to q, i.e. simrank: . For reasons of efficiency,

the ranking procedure should not be performed and completed in advance at query

initialization time. Instead, the ranking procedure should incrementally proceed,

especially, because users are often satisfied with the first few elements.

2.2.2 Efficient Query Processing

A CAD database system has to provide an effective and efficient query processor

in order to render itself useful for the user. Spatial indexing and the multi-step query

processing strategy are the basic concepts of this fundamental system component

[BKSS 94]. In this section, we will briefly look at spatial indexing and multi-step

query processing which form the foundation for efficient query processing.

Spatial Index Structures. Spatial index structures, or synonymously, spatial ac-

cess methods, partition the multidimensional search space for spatial queries. Partic-

ularly for spatial selections and spatial similarity search, spatial indexing allows the

query processor to quickly exclude many irrelevant objects. Thereby, only a subset of

the database has to be considered to detect the actual query results. As the accurate

representations of spatial objects can have arbitrary complexity, spatial index struc-

tures typically use conservative approximations (cf. Figure 13) to maintain their

knowledge about the spatial shape and location of each object.

O IR0
+

2
DB→×

q O∈ ε IR0
+∈

O IN 2
DB→×

q O∈ k IN∈

q O∈
O 1.. DB{ } DB→()→

object conservative progressive

Figure 13: Conservative and progressive approximations.

24 Spatial Engineering Databases

Multi-Step Strategy. The use of approximations results in a multi-step strategy to

process spatial queries (cf. Figure 14). First, a filter step is executed returning a su-

perset of the objects qualifying for the spatial predicate. As the filter step is based on

conservative approximations of the objects, no false drops are possible, i.e. all ob-

jects satisfying the predicate are included in the resulting set of candidates. A cascade

of subsequent filter steps may further reduce the number of candidates, e.g. by the

usage of more accurate representations or progressive approximations (cf. Figure 13)

[BKS 93a] [BKSS 94]. These progressive approximations are also adequate for iden-

tifying objects which already belong to the result set. For highly selective predicates,

the first filter step should be processed on a suitable spatial access method (SAM).

The multi-step query process is finished by the refinement step (cf. Figure 14), which

checks the exact geometry.

 • Intersection Queries: In the case of intersection queries, the filter step is based

on the voxelized data, whereas the refinement step is carried out on the triangle

meshes. For many applications, the voxelized data are accurate enough so that we

can abstain from an additional refinement step. In this thesis, we solely concentrate

on efficiently detecting intersecting voxelized objects.

Figure 14: Multi-step query processing.

candidates

SAM

candidates

false hits

response set

processing of
spatial queries

$

multi-step

exact geometry
processor

geometry
filter

hits false hits

Spatial Engineering Query Processing 25

 • Similarity Queries: In the case of similarity queries the filter step might be carried

out on feature vectors or single numerical values approximating the objects coarse-

ly. Sometimes there is a more accurate distance function, which might be applied

in the refinement step. In order to omit false hits, the distance function applied in

the filter step has to lower bound the object distance function (cf. Definition 22).

26 Spatial Engineering Databases

Part II

Database Support for
Digital Mockup

28

29

Chapter 3
Object Relational Indexing

The design of extensible architectures represents an important area in database

research. The object-relational data model marked an evolutionary milestone by in-

troducing abstract data types into relational database servers. Thereby, object-rela-

tional database systems may be used as a natural basis to design an integrated user-

defined database solution. The ORDBMSs already support major aspects of the de-

clarative embedding of user-defined data types and predicates. In order to achieve a

seamless integration of custom object types and predicates within the declarative

data definition language (DDL) and data manipulation language (DML), ORDBMSs

provide the database developer with extensibility interfaces. They enable the declar-

ative embedding of abstract data types within the built-in optimizer and query pro-

cessor. Corresponding frameworks are available for most object-relational database

systems. Custom server components using these built-in services are called data car-

tridges, database extenders, and data blades, in Oracle, DB2 and Informix, respec-

tively.

In this section, we categorize possible approaches to incorporate third-party in-

dexing structures into an object-relational database system by what we call Relation-

al Indexing. After shortly discussing the main properties of ORDBMSs in Section

3.1, we will look at the extensible indexing facilities of modern database systems in

Section 3.2. In Section 3.3, we discuss three different implementations of user-

defined access methods, including the relational approach. In Section 3.4, basic con-

cepts of relational access methods are introduced, and in Section 3.5, the design of

30 Object Relational Indexing

the corresponding update and query operations are investigated. In Section 3.6 and

Section 3.7, we identify two generic schemes for modeling relational access methods

which are discussed with respect to their support of concurrent transactions and re-

covery. Finally, in Section 3.8, we introduce an industrial prototype which allows

interactive spatial data management on top of object-relational database systems.

3.1 Object Relational Databases

3.1.1 Classification of Data Models

Users of database systems want to manage data of very different types, depending

on the particular application area. While office applications, for example, mainly

perform simple access and update operations on records of simple data types, spatial

data usually have a complex structure and demand specialized operations. It is not a

choice for vendors of database management systems to provide data types and man-

agement functions for each conceivable domain. So the design of extensible architec-

tures allowing users to adapt systems to their special needs represents an important

area in database research.

Stonebraker and Brown [SB 98] considered the complexity of the stored data and

submitted queries to classify some common data models. Four major groups were

identified (cf. Figure 15):

File system. File-based applications use the file system of the underlying operat-

ing system to access data located on secondary storage. When a user opens a file, the

content of the file is being read into main memory on behalf of the user. Then the user

can make modifications that update the main memory object. Finally, when the user

is finished he can close the file, thereby causing the main memory copy to be stored

back to the file system. The only query made by a file-based application is getfile, and

the only update is putfile. The application is satisfied with the data model presented

by the file system, namely as an arbitrary length sequence of characters. Therefore,

file-based applications are “simple query - simple data” applications.

Relational DBMS (RDBMS). In an RDBMS, all data have to be mapped on rows

of flat tables consisting of attributes with simple types like numbers, character strings

or dates. For the retrieval and manipulation of data, there exist only generic opera-

tions for selecting, inserting, updating and deleting (parts of) rows within tables. Data

Object Relational Databases 31

of more complex types cannot be stored directly as a unit in the database but have to

be split across several tables. To restore the data from the system, complex queries

with many joins have to be performed. Alternatively, the data can be coded within a

large object which prevents direct access to single components of the data using the

database language. Operations on complex types have to be implemented within the

application and cannot be used within the database language directly.

Object-oriented DBMS (OODBMS). OODBMSs seem to provide solutions for

most of the cited problems of relational databases. An OODBMS has an extensible

type system which allows the user to define new data types (by the nested application

of type constructors) together with corresponding operations. The resulting object

types then describe the structure as well as the behavior of the objects based on this

type. Furthermore, subtypes (inheriting the properties of their supertypes) can be

derived from existing object types.

Object-relational DBMS (ORDBMS). In order to provide object-oriented and

extensibility features also in relational systems, database researchers and manufac-

turers proposed and implemented corresponding enhancements for the relational

model during the last years. The resulting ORDBMSs retain all features of the rela-

tional model, especially the storage of data within tables and the powerful declarative

query processing with the relational database language SQL. Beyond that, the object-

relational data model introduces abstract data types into relational database servers.

Thereby, object-relational database systems may be used as a natural basis to design

an integrated user-defined database solution. The ORDBMSs already support major

aspects of the declarative embedding of user-defined data types and predicates. In

order to achieve a seamless integration of custom object types and predicates within

the declarative DDL and DML, ORDBMSs provide the database developer with ex-

tensibility interfaces. They enable the declarative embedding of abstract data types

within the built-in optimizer and query processor.

Figure 15: Classification of data models.

Simple data Complex data

Simple queries File system Object-oriented DBMS

Complex queries Relational DBMS Object-relational DBMS

32 Object Relational Indexing

In this thesis, we focus on object-relational database management systems, as they

combine the advantages of both, the object-oriented and the relational data model.

Their extensible design enables us to integrate new access methods which are neces-

sary for efficiently carrying out engineering queries. In addition, the practical impact

of ORDBMSs is very strong as object-relational functionality has been added to most

commercially available relational database servers, including Oracle [Doh 98], IBM

DB2 [CCN+ 99], and Informix IDS/UDO [Bro 01].

3.1.2 Abstract Data Types

DDL statements like CREATE, ALTER and DROP have been extended in

SQL:1999 [SQL 99] to support the declaration and implementation of abstract data

types [Bro 01][CZ 01], often also referred to as object types. According to [Ora 99c],

an object type is a schema object with three kinds of components:

• A name, which identifies the object type uniquely within that schema.

• Attributes, which model the structure and state of the real-world entity. Attributes

can be built-in types or object types.

• Methods of an object type are functions or procedures that are called by the

application to model the behavior of the objects. Methods can be stored in the

database, which is preferable for data-intensive procedures and short procedures

that are called frequently.

3.2 Extensible Query Language

Most ORDBMSs, including Oracle [Ora 99a] [SMS+ 00], IBM DB2 [IBM 99]

[CCF+ 99], or Informix IDS/UDO [Inf 98] [BSSJ 99], provide extensibility interfac-

es in order to enable database developers to seamlessly integrate custom object types

and predicates within the declarative DDL and DML. In this section, we shortly

outline the extensible indexing and optimizing frameworks of modern ORDBMSs.

3.2.1 Extensible Indexing

An important requirement for applications is the availability of user-defined ac-

cess methods. Extensible indexing frameworks proposed by Stonebraker [Sto 86]

enable developers to register custom secondary access methods at the database server

in addition to the built-in index structures. An object-relational indextype encapsu-

Extensible Query Language 33

lates stored functions for creating and dropping a custom index and for opening and

closing index scans. The row-based processing of selections and update operations

follows the iterator pattern [GHJV 95]. Thereby, the indextype complements the

functional implementation of user-defined predicates. Figure 16 shows some basic

indextype methods invoked by extensible indexing frameworks. Additional func-

tions exist to support query optimization, and user-defined aggregates.

If the optimizer decides to include a custom index into the execution plan for a

declarative DML statement, the appropriate indextype functions are called by the

built-in query processor of the database server. Thereby, the maintenance and access

of a custom index structure is completely hidden from the user, and the desired data

independence is achieved. Furthermore, the framework guarantees any redundant

index data to remain consistent with the user data.

Exemplarily, we create an object type CADOBJECT to encapsulate the data and

semantics of three-dimensional CAD objects. Instances of this custom object type are

stored as elements of relational tuples. Figure 17 depicts some of the required ob-

ject-relational DDL statements in pseudo SQL thus abstracting from technical details

which depend on the chosen product.

After having created a custom indextype CADINDEX for the intersect predicates

on the type CADOBJECT, we can create an index CADIDX on the geom attribute of

the CADOBJECTS table by submitting the usual DDL statement (cf. Figure 18).

By using either the functional or the index-based binding of the user-defined pred-

icate intersect_boolean, object-relational queries can be expressed in the usual de-

clarative fashion (cf. Figure 19a).

Function Task

index_create(),
index_drop()

Create and drop a custom index.

index_open(),
index_close()

Open and close a custom index.

index_fetch()
Fetch the next record from the index that meets
the query predicate.

index_insert(),
index_delete(),
index_update()

Add, delete and update a record of the index.

Figure 16: Methods for extensible index definition and manipulation.

34 Object Relational Indexing

The integration of ranked intersection queries is a little bit more complex, but can

be achieved by means of ancillary operators [Ora 99b]. An ancillary operator, e.g.

Rank, has a functional implementation that has access to state generated by the index

based implementation of the primary operator, e.g intersect_ranked, occurring in the

WHERE clause. By means of a common tag, e.g. 1, the ancillary operator and the

primary operator are connected to each other (cf. Figure 19b). Note, the execution of

this statement requires an index scan for the intersect_ranked operator [Ora 99b].

3.2.2 Extensible Optimizing

Query optimization is the process of choosing the most efficient way to execute a

declarative DML statement. Object-relational database systems typically support

rule-based and cost-based query optimization, whereby the cost-based approach is

preferable to the rule-based approach when referencing user-defined methods as

// Type declaration

CREATE TYPE VOXEL AS OBJECT (x NUMBER, y NUMBER, z NUMBER);

CREATE TYPE VOXELSET AS TABLE OF VOXEL;

CREATE TYPE CADOBJECT AS OBJECT (
voxels VOXELSET,
MEMBER FUNCTION intersect_boolean (o CADOBJECT)

RETURN BOOLEAN,
MEMBER FUNCTION intersect_ranked (o CADOBJECT)

RETURN NUMBER
) ;

// Type implementation
// …

// Functional predicate binding

CREATE OPERATOR intersect_boolean (a CADOBJECT, b CADOBJECT)
RETURN BOOLEAN BEGIN RETURN a.intersect_boolean(b); END;

CREATE OPERATOR intersect_ranked (a CADOBJECT, b CADOBJECT)
RETURN NUMBER BEGIN RETURN a.intersect_ranked (b); END;

// Table definition

CREATE TABLE CADOBJECTS
(id NUMBER PRIMARY KEY, geom CADOBJECT);

Figure 17: Object-relational DDL statements for CAD data.

Extensible Query Language 35

predicates [BO 99][HS 93]. The extensible indexing framework comprises interfac-

es to tell the built-in optimizer about the characteristics of a custom indextype.

Figure 20 shows some cost-based functions, which can be implemented to provide

the optimizer with feedback on the expected index behavior. The computation of

custom statistics is triggered by the usual administrative SQL statements. With a cost

model registered at the built-in optimizer framework, the cost-based optimizer is able

CREATE TYPE CADINDEX_IM AS OBJECT (

// Attributes
// ODCII-Functions
STATIC FUNCTION ODCIIndexCreate ...,
STATIC FUNCTION ODCIIndexStart ...,
MEMBER FUNCTION ODCIIndexFetch ...,
MEMBER FUNCTION ODCIIndexClose ...,

// Additional Functions

....);

CREATE INDEXTYPE CADINDEX
FOR intersect_boolean(CADOBJECT, CADOBJECT),

intersect_ranked (CADOBJECT, CADOBJECT)
USING CADINDEX_IM;

CREATE INDEX CADIDX ON CADOBJECTS (geom)
INDEXTYPE IS CADINDEX;

Figure 18: A custom index CADINDEX for CAD objects.
a) Implementation of indextype, b) Creation of indextype, c) Creation of an instance

a)

b)

c)

// Collision query

SELECT id FROM CADOBJECTS
WHERE intersect_boolean (geom, :query_obj);

// Ranked collision query

SELECT id, Rank (1)
FROM CADOBJECTS db
WHERE intersect_ranked (geom, :query_obj,1)

Figure 19: SQL-statements for intersection queries.
a) Boolean intersection queries, b) Ranked intersection queries

a)

b)

36 Object Relational Indexing

to rank the potential usage of a custom access method among alternative access

paths. Thus, the system supports the generation of efficient execution plans for que-

ries containing user-defined predicates. This approach preserves the declarative par-

adigm of SQL, as it requires no manual query rewriting.

To sum up, the main advantages of extensible indexing and optimizing frame-

works are:

• The maintenance and access of a custom index structure is completely hidden

from the user, achieving thereby data independence.

• Any redundant index data remains consistent with the user data. The declarative

paradigm of SQL is preserved.

• The index structure can be integrated into the cost-based query optimization pro-

cess.

3.3 Implementation of Access Methods

In the previous section, we have outlined how object-relational database systems

support the logical embedding of custom indextypes into the declarative query lan-

guage and into the optimizer framework. The required high-level interfaces can be

found in any commercial ORDBMS and are continuously improved and extended by

the database vendors. Whereas the embedding of a custom indextype is therefore

well supported, its actual implementation within a fully-fledged database kernel re-

mains an open problem. In the following, we discuss three basic approaches to imple-

ment the low-level functionality of a user-defined access method: the integrating, the

generic, and the relational approach (cf. Figure 21).

Function Task

stats_collect(),
stats_delete()

Collect and delete persistent statistics on the custom
index.

predicate_sel()
Estimate the selectivity of a user-defined predicate
by using the persistent statistics.

index_cpu_cost(),
index_io_cost()

Estimate the CPU and I/O cost required to evaluate a
user-defined predicate on the custom index.

Figure 20: Methods for extensible query optimization.

Implementation of Access Methods 37

3.3.1 Integrating Approach

By following the integrating approach, a new spatial access method (AM) is

hard-wired into the kernel of an existing database system (cf. Figure 21b). In conse-

quence, the required support of ACID properties, including concurrency control and

recovery services (CC&R) has to be implemented from scratch and linked to the

corresponding built-in components. Furthermore, a custom gateway to the built-in

storage, buffer, and log managers has to be provided by the developer of the new AM.

Most standard storage structures are hard-wired within the database kernel, including

plain table storage, hash indexes, bitmap indexes, and B+-trees. Only a few non-stan-

dard access methods have been implemented into commercial systems in the same

way, including the R-Link-tree in Informix IDS/UDO for spatially extended objects

[Inf 99] and the UB-tree in TransBase/HC for multidimensional point databases

[RMF+ 00]. The integrating approach comprises the extending approach and the en-

hancing approach.

Figure 21: Approaches to implement custom access methods.

a) Standard ORDBMS kernel b) Integrating approach

c) Generic approach d) Relational approach

ORDBMS

CC&R

Table
Storage

CC&R

Hash-
index

Query Processor & Extensibility Interface

CC&R

Bitmap-
index

Storage, Buffer, Log

CC&R

B+-
tree

...

ORDBMS

CC&R

Bitmap-
index

...

CC&R

B+-
tree

Query Processor & Extensibility Interface

CC&R

New
AM 1

Storage, Buffer, Log

CC&R

New
AM 2

...

ORDBMS

Storage, Buffer, Log

CC&R

Bitmap-
index

...

CC&R

B+-
tree

...

Query Processor & Extensibility Interface

...

New AM 2New AM 1

ORDBMS

Storage, Buffer, Log

CC&R

Bitmap-
index

...

CC&R

B+-
tree

CC&R

GiST

New AM 1

Query Processor & Extensibility Interface

New AM 2
...

38 Object Relational Indexing

The Extending Approach. Adding a completely new access method to a database

system is quite expensive because in addition to the actual index algorithms all the

concurrency, recovery and page management has to be implemented for the new

access method. Carey et al. [CDG+ 90] guess that the actual index algorithms only

comprise about 30 percent of the overall code for the access method while the other

70 percent are needed to integrate the access method properly into the database sys-

tem.

Several approaches to facilitate the implementation of access methods and other

components for special-purpose database systems have been proposed in database

research. Under the assumption that it is practically impossible to implement a data-

base management system capable to fulfill the demands of arbitrary application do-

mains, tools and generic database components have been developed that should en-

able a domain specialist to implement his or her required database system with

minimum effort, may it be a document management system or a CAD database. The

resulting systems might have completely different characteristics, e. g. different que-

ry languages, different access methods, different storage management, and different

transaction mechanisms.

The database system toolkit EXODUS [CDG+ 90][CDF+ 91] provides a storage

manager for objects, a library of access methods, a library of operator methods for the

data model to generate, a rule-based generator for query optimizers, tools for con-

structing query languages and a persistent programming language for the definition

of new access methods and query operators. Using these “tools”, the domain special-

ist can build an application-specific database system with suitable access methods.

Another system of this category is the database generator GENESIS [BBG+ 90]

which provides a set of composable storage and indexing primitives and a “database

system compiler” for assembling an appropriate storage manager from a specifica-

tion. Unfortunately, these universally extensible database systems have essentially

proven to be hard to use in practice. Though these systems support the user with the

implementation of single database components, still a lot of expertise is required to

use them. In some ways, they are also a bit too inflexible and incomplete to imple-

ment a fully-fledged database management system. So in practice, only few databas-

es have been implemented using such toolkits or generators.

In [BBD+ 01][BDS 00], XXL (eXtensible and fleXible Library) was introduced

which is a high-level, easy-to-use, platform independent Java library. It supports the

Implementation of Access Methods 39

implementation of new access methods by providing a powerful collection of generic

index structures along with some concrete implementations. XXL could be used as a

starting point for creating a new domain specific database system. In this case, the

user has to augment the library with indispensable database relevant functions, e.g.

ACID support.

The Enhancing Approach. In contrast to the extending approach the enhancing

approach is much cheaper, since already existing access methods are augmented to

support a broader range of data. The code of the access methods to be enhanced has

to be adapted in such a way that it gets independent of the indexed data type. As an

example, Figure 22a depicts the pseudocode of a B-tree index routine next_node that

determines (for a given node and a key value) the node that has to be visited next

within a B-tree traversal. This routine only works on key values of type integer, i.e.

an index using this routine can only be created on columns of type integer. In order to

create B-tree indexes also on columns of type real, the type of the key parameter has

to be changed accordingly (Figure 22b).

Figure 22: B-tree routine next_node for different data types.
a) Integer, b) Real, c) Arbitrary data type

next_node(n:node; key:integer);
…
while n.son[index].value < key

increment(index);
next := fetch(n.son[index].address); ...

end;

next_node(n:node; key:real);
…
while n.son[index].value < key

increment(index);
next := fetch(n.son[index].address); ...

end;

template <keytype>
next_node(n:node; key:keytype);

…
while lessthan(n.son[index].value, key)

increment(index);
next := fetch(n.son[index].address); ...

end;

a)

b)

c)

40 Object Relational Indexing

In general, to support arbitrary (ordered) types, the B-tree code has to be modified

in such a way that it can handle key parameters of any type. Figure 22c depicts a

type-independent version of the next_node routine. Here, the key type is not deter-

mined but has to be instantiated when applying the index. The function lessthan has

the same functionality as the operator ’<’ for built-in types. If the user defines a new

type and wants to use the enhanced B-tree index for columns of this type, he or she

has to provide a corresponding lessthan function that can handle values of the new

type. Alternatively, the built-in operator ’<’ could be overloaded, if the database

system used supports this. As a further example, if the user defines a new type Frac-

Num for the storage of fraction numbers (consisting of numerator and denominator)

in the database system (Figure 23a), he or she has to implement a special version of

the function lessthan that takes two fraction numbers as parameters (Figure 23b).

Whenever the routine next_node is called with a key parameter of type FracNum, the

newly defined version of lessthan is used.

In general, to enhance (generalize) an access method in this way, all type-specific

operations within the code of the access method have to be identified and isolated so

that the user can provide overloaded versions of these operations for his user-defined

types. It is necessary to note that not every access method is appropriate for every

data type. B-trees e. g. can only be used for types with a linear ordering. In contrast,

R-trees are designed to support access to spatially extended and to multi-dimensional

data. Depending on the access method and the predicates to be supported by the

index, the user has to implement corresponding operations for new data types. To use

an enhanced B-tree index, the user must provide implementations of the usual com-

Figure 23: User-defined data type FracNum.
a) Data type for fraction numbers, b) Function lessthan for comparing fraction numbers

CREATE TYPE FracNum (num INTEGER; denom INTEGER)

CREATE FUNCTION lessthan (f1 FracNum, f2 FracNum)
RETURNS BOOLEAN
LANGUAGE SQL DETERMINISTIC
BEGIN

RETURN (f1.num/f1.denom) < (f2.num/f2.denom);
END

a)

b)

Implementation of Access Methods 41

parison operators ’<’, ’≤’, ’>’, ’≥’, and ’=’ for a new data type whereas an R-tree

index requires spatial operations like “overlaps”, “contains”, “within”, or “equals”.

A further possibility to enhance existing access methods is to implement function-

al indexes that give quick access to the results of a function defined on the attributes

of a table. The type of the function value has to be supported by the enhanced index.

In conclusion, we identify the following properties of the integrating approach:

• Implementation: The implementation of a new AM becomes very sophisticated

and tedious if writing transactions have to be supported [Bro 01]. In addition, the

code maintenance is a very complex task, as new kernel functionality has to be

implemented for any built-in access method. Moreover, the tight integration

within the existing kernel source produces a highly platform-dependent solution

tailor-made for a specific ORDBMS. The enhancement of pre-existing access

methods to support user-defined data types and functional indexes is a straight-

forward task but does not really augment the functionality of the database server

(in the sense of having new ways for query processing).

• Performance: The integrating approach potentially delivers the maximal possi-

ble performance, if the access method is implemented in a closed environment,

and the number of context switches to other components of the database kernel is

minimized.

• Availability: The implementation requires low-level access to most kernel com-

ponents. If the target ORDBMS is not distributed as open-source, the affected

code and documentation will not be accessible to external database developers.

To sum up, the integrating approach is the method of choice only for a few,

well-selected access methods serving the requirements of general database applica-

tions. It is not feasible for the implementation of rather specialized access methods.

3.3.2 Generic Approach

To overcome the restrictions of the integrating method, Hellerstein, Naughton and

Pfeffer [HNP 95] proposed a generic approach to implement new access methods in

an ORDBMS. Their Generalized Search Tree (GiST) has to be built only once into an

existing database kernel. The GiST serves as a high-level framework to plug in

block-based tree structures with full ACID support (cf. Figure 21c).

As in the previous approaches, the database implementor has to integrate the ex-

tensibility framework into the database server regarding all tedious tasks like concur-

42 Object Relational Indexing

rency and recovery. Once implemented, a domain specialist can use the GiST frame-

work to derive new index types for particular applications. In contrast to database

toolkits or generators, the index implemented does not have to stop the database

server and recompile it every time an index type is added. It is just necessary to

implement (overload) a number of predefined functions which define the behavior of

keys in the tree. This is quite similar as in the enhanced index approach at first glance.

However, while enhanced indexes only support new data types for already existing

index structures, it is possible to support completely new query predicates with the

GiST framework. B-trees and R-trees are both derivable from the GiST framework,

for example. Such derived index types may not be as performant as directly integrat-

ed ones but require much less effort to realize.

Many extensions to the GiST framework have been presented, including generic

support for concurrency and recovery [KMH 97], and additional interfaces for near-

est-neighbor search, ranking, aggregation, and selectivity estimation [Aok 98]. In

detail, the GiST approach has the following characteristics:

• Implementation: Whereas the implementation of block-based spatial access

methods on top of the GiST framework can be done rather easily, the intruding

integration of the framework itself remains a very complex task. As an advan-

tage, an access method developed for GiST can basically be employed on any

ORDBMS that supports this framework. In contrast to the generic GiST imple-

mentation, the specialized functionality of a new access method is therefore plat-

form independent.

• Performance: Although the framework induces some overhead, we can still

achieve high performance for GiST-based access methods. Kornacker [Kor 99]

has shown that they may even outperform built-in index structures by minimiz-

ing calls to user-defined functions.

• Availability: Due to its complex implementation, the GiST framework is not

generally available in present-day systems. To our best knowledge, it has only

been implemented in the open-source system PostgreSQL but without concurrent

access and write-ahead logging of updates for derived indexes. It is an open

question, whether and when a comparable functionality with industrial-strength

implementation will be a standard component of major commercial ORDBMSs.

In [DKD+ 02][DK 02], it was shown how GiST implemented access methods

could be linked to a standard database system. The authors combined Oracle’s

Implementation of Access Methods 43

Cartridge technology with the GiST-framework so that they were able to index

any kind of data stored in an ORDBMS with any kind of balanced trees realized

within the GIST framework. Let us note that this approach is not limited to the

GiST-framework, but can also be applied to all library approaches discussed in

the last section, e.g. the XXL-library could be connected to a standard database

system in a similar way.

The GiST concept basically delivers the desired properties to implement spatial

access methods. It delegates crucial parts of the implementation to the database ven-

dors. Unfortunately, its full functionality is not available in any major commercial

database system at present.

3.3.3 Relational Approach

A natural way to avoid the above obstacles is to map the custom index structure to

a relational schema organized by built-in access methods (cf. Figure 21d). Such rela-

tional access methods are designed to operate on top of a relational query language.

They require no extension or modification of the database kernel, and, thus, any

off-the-shelf ORDBMS can be employed as it is. We identify the following advantag-

es for the relational approach:

• Implementation: As no internal modification or extension to the database server

is required, a relational access method can be implemented and maintained with

less effort. Substantial parts of the custom access semantics may be expressed by

using the declarative DML. Thereby, the implementation exploits the existing

functionality of the underlying ORDBMS rather than duplicating basic database

services as done in the integrating and generic approaches. Moreover, if we use a

standardized DDL and DML like SQL:1999 [SQL 99] to implement the

low-level interface of our access method, the resulting code will be platform

independent.

• Performance: The major challenge in designing a relational access method is to

achieve both a high usability and performance. The capability and efficiency of

the relational approach was proven for interval data [KPS 00] and 3D spatial data

[KPPS 03a].

• Availability: By design, a relational access method is supported by any rela-

tional database system. It requires the same functionality as an ordinary database

user or a relational database application.

44 Object Relational Indexing

By following the relational approach to implement new access methods, we obtain

a natural distinction between the basic services of all-purpose database systems and

specialized, application-specific extensions. By restricting database accesses to the

common SQL interface, custom access methods and query procedures are well-

defined on top of the core server components. In addition, a relational access method

immediately benefits from any improvement of the ORDBMS infrastructure.

3.4 Basics of Relational Access Methods

The basic idea of relational access methods relies on the exploitation of the built-in

functionality of existing database systems. Rather than extending any internal com-

ponent of the database kernel, a relational access method just uses the native data

definition and data manipulation language to process updates and queries on abstract

data types. Without loss of generality, we assume that the underlying database system

implements the standardized Structured Query Language SQL-92 [SQL 92] with

common object-relational enhancements in the sense of SQL:1999 [SQL 99], includ-

ing object types and collections.

3.4.1 Paradigms of Access Methods

A relational access method delegates the management of persistent data to an un-

derlying relational database system by strictly implementing the index definition and

manipulation on top of an SQL interface. Thereby, the SQL layer of the ORDBMS is

employed as a virtual machine managing persistent data. Its robust and powerful

abstraction from block-based secondary storage to the object-relational model can

then be fully exploited. This concept also perfectly supports database appliances, i.e.

dedicated database machines running the ORDBMS as a specialized operating sys-

tem [KP 92] [Ora 00]. We add the class of relational access methods as a third para-

digm to the known paradigms of access methods for database management systems:

• Main Memory Access Methods (Figure 24a). Typical applications of these

techniques can be found in main memory databases [DKO+ 85] [GS 92] and in

the field of computational geometry [PS 93]. A popular example taken from the

latter is the binary Interval Tree [Ede 80]. It serves as a basic data structure for

plane-sweep algorithms, e.g. to process intersection joins on rectangle sets. Main

Basics of Relational Access Methods 45

memory structures are not qualified for indexing persistent data, as they disre-

gard the block-oriented access to secondary storage.

• Block Oriented Access Methods (Figure 24b). These structures are designed to

efficiently support the block-oriented I/O from and to external storage and are

well suited to manage large amounts of persistent data. The External Memory

Interval Tree [AV 96] is an example for the optimal externalization of a main

memory access method. Its analytic optimality is achieved by adapting the

fanout of the Interval Tree to the disk block size. In the absence of a generalized

search tree framework [HNP 95], the implementation of such specialized storage

structures into existing database systems, along with custom concurrency control

and recovery services, is very complex, and furthermore, requires intrusive

modifications of the database kernel [RMF+ 00].

• Relational Access Methods (Figure 24c). In contrast, relational access methods

are designed to operate on relations rather than on dedicated disk blocks. The

persistent storage and block-oriented management of the relations is delegated to

the underlying database server. Therefore, the robust functionality of the data-

base kernel including concurrent transactions and recovery can potentially be

reused. A primary clustering index can be achieved by also delegating the clus-

tering to the ORDBMS. For this, the payload data has to be included into the

index relations and the clustering has to be enabled by organizing these tables in

a cluster or as index-organized tables [SDF+ 00].

Figure 24: Paradigms and characteristics of access methods.
a) Main memory access methods, b) Block-oriented access methods,

c) Relational access methods

Main Memory

RDBMS

Disk Pages

SQL Layer

Block Manager

Main Memory

Disk Pages

Block Manager

Main Memory

a) – transient storage b) + persistent storage
– complex to implement

c) + persistent storage
+ easy to implement

46 Object Relational Indexing

3.4.2 Relational Storage of Index Data

In the remainder of this section, we will discuss the basic properties of relational

access methods with respect to the storage of index data, query processing and the

overhead for transaction semantics, concurrency control, and recovery services. We

start with a basic definition:

Definition 1 (Relational Access Method).

An access method is called a relational access method, iff any index-related data is

exclusively stored in and retrieved from relational tables. An instance of a relational

access method is called a relational index. The following tables comprise the persis-

tent data of a relational index:

(i) User table: a single table, storing the original user data being indexed.

(ii) Index tables: n tables, n ≥ 0, storing index data derived from the user table.

(iii) Meta table: a single table for each database and each relational access method,

storing O(1) rows for each instance of an index.

The stored data is called user data, index data, and meta data.

To illustrate the concept of relational access methods, Figure 25 presents the min-

imum bounding rectangle list (MBR-List), a very simple example for indexing

three-dimensional CAD objects. The user table is given by the object-relational table

CADOBJECTS (Figure 25a), comprising attributes for the geometry (geom) and the

Figure 25: The MBR-List, a simple example for a relational access method.

CADOBJECTS

id geom

A
CADOBJECT((1,10,3),

(5,15,3), …, (3,4,7))

B
CADOBJECT((2,3,6),
(78,3,9), …, (30,9,2))

… …

CAD_MBR

id mbr
A BOX((1,4,3), (5,15,7))

B BOX((2,3,2), (78,9,9))

… …

MBR_INDEX_METADATA

index_name user_table index_table
‘CADIDX’ ‘CADOBJECTS’ ‘CAD_MBR’

… … …

a) User table b) Index table

c) Meta table

Operations on Relational Access Methods 47

object identifier (id). Any spatial query can already be evaluated by sequentially

scanning this user table. In order to speed up spatial selections, we decide to define

an MBR-List CADIDX on the user table. Thereby, an index table is created and pop-

ulated (Figure 25b), assigning the minimum bounding rectangle (MBR) of each CAD

object to the foreign key id. Thus, the index table stores information purely derived

from the user table. All schema objects belonging to the relational index, in particular

the name of the index table, and other index parameters are stored in a global meta

table (Figure 25c).

In order to support queries on the index tables, a relational access method can

employ any built-in secondary indexes, including hash indexes, B+-trees, and bitmap

indexes. Alternatively, index tables may be clustered by appropriate primary indexes.

Consequently, the relational access method and the database system cooperate to

maintain and retrieve the index data [DDSS 95]. This basic approach of relational

indexing has already been applied in many existing solutions, including Linear

Quadtrees [TH 81][RS 99][FFS 00] and Relational R-trees [RRSB 99] for spatial

databases, Relational X-trees [BBKM 99] for high-dimensional nearest-neighbor

search, or inverted indexes for information retrieval on text documents [DDSS 95].

3.5 Operations on Relational Access Methods

In the strict sense of the Definition 1, the procedural code of an arbitrary

block-oriented storage structure can immediately be transformed to a relational ac-

cess method by replacing each invocation of the underlying block manager by an

SQL-based DML operation1. Thus, the original procedural style of an index opera-

tion remains unchanged, whereas its I/O requests are now executed by a fully-fledged

RDBMS. The object-relational database server is thereby reduced to a plain block

manager. In consequence, only a fraction of the existing functionality of the underly-

ing database server is exploited. In this section, we define operations on relational

access methods which maximize the architecture-awareness postulated in [JS 99].

This can be achieved by using declarative operations.

1 E.g. we replace “blocks.get(block_id)” by “select * from blocks where id = :block_id”.

48 Object Relational Indexing

3.5.1 Cursor-Bound Operations

In order to guarantee a better exploitation of the database infrastructure, we have

to restrict the possible number of DML operations submitted from a procedural envi-

ronment:

Definition 2 (Cursor-Bound Operation).

A query or update operation on a relational access method is termed cursor-bound,

iff the corresponding I/O requests on the index data can be performed by submitting

O(1) DML statements, i.e. by sequentially and concurrently opening in total O(1)

cursors provided by the underlying RDBMS.

Cursor-bound operations on relational access methods are largely bound to the

declarative DML engine of the underlying RDBMS rather than to user-defined

opaque code. Thus, the database server gains the responsibility for significant parts

of the query and update semantics. Advantages of this approach include:

• Declarative Semantics: Large parts of a cursor-bound operation are expressed

by using declarative SQL. By minimizing the procedural part and maximizing

the declarative part of an operation, the formal verification of the semantics is

simplified if we can rely on the given implementation of SQL to be sound and

complete.

• Query Optimization: Whereas the database engine optimizes the execution of

single, closed-form DML statements, a joint execution of multiple, indepen-

dently submitted queries is very difficult to achieve [Sel 88][CD 98][BEKS 00].

By using only a constant number of cursors, the RDBMS captures significant

parts of the operational semantics at once. In particular, complex I/O operations

including external sorting, duplicate elimination or grouping should be processed

by the database engine, and not by a user-defined procedure.

• Cursor Minimization: The CPU cost of opening a variable number of cursors

may become very high. For typical applications, the resulting overhead sums up

to 30% of the total processing time [RMF+ 00]. In some experiments, we even

reached barrier crossing cost of up to 75% for submitting a variable number of

pre-parsed DML statements out of a stored procedure. For cursor-bound opera-

tions, the relatively high cost of opening and fetching multiple database cursors

remains constant with respect to the complexity of the operation and the database

size.

Operations on Relational Access Methods 49

3.5.2 Cursor-Driven Operations

A very interesting case occurs if the potential result of a cursor-bound operation

can be retrieved as the immediate output of a single cursor provided by the DBMS.

Thus, the semantics is revealed to the database server at once in its full completeness:

Definition 3 (Cursor-Driven Operation).

A cursor-bound operation on a relational access method is called cursor-driven, iff it

can be divided into two consecutive phases:

(i) Procedural phase: In the first phase, index parameters are read from the meta

tables. Query specifications are retrieved and data structures required for the

actual query execution may be prepared by user-defined procedures and func-

tions. Additional DML operations on user data or index data are not permitted.

(ii) Declarative phase: In the second phase, only a single DML statement is submit-

ted to the ORDBMS, yielding a cursor on the final results of the index scan

which requires no post-processing by user-defined procedures or functions.

Note that any cursor-driven operation is also cursor-bound, while all I/O requests

on the index data are driven by a single declarative DML statement. The major ad-

vantage of cursor-driven operations is their smart integration into larger execution

plans. After the completion of the procedural phase, the single DML statement can be

executed with arbitrary groupings and aggregations, supplemented with additional

predicates, or serve as a row source for joins. Furthermore, the integration into exten-

sible indexing frameworks is facilitated, as the cursor opened in the declarative phase

can be simply pipelined to the index scan routine. Note that the ability to implement

cursor-bound and cursor-driven operations heavily relies on the expressive power of

the underlying SQL interface, including the availability of recursive queries [Lib 01].

The single DML statement submitted in the declarative phase may contain

user-defined functions. The CPU cost of cursor-driven operations is significantly

reduced, if the number of barrier crossings due to calls to user-defined functions is

minimized [Kor 99]. We can achieve this by preprocessing any required transforma-

tion, e.g. of a query specification, in the procedural phase and by bulk-binding the

prepared data to the query statement with the help of transient collections. If such

data structures become very large, a trade-off has to be achieved between the

minimization of barrier crossings and the main-memory footprint of concurrent

50 Object Relational Indexing

sessions [Pfe 01]. Splitting a single query into multiple cursor-driven operations can

then be beneficial.

To pick up the MBR-List example of the previous section, Figure 26a shows a

simple box query on the database of three-dimensional CAD objects, testing the ex-

act geometry of each stored polygon for intersection with the query rectangle. In

order to use the relational index as primary filter, the query has to be rewritten into

the form of Figure 26b. An efficient execution plan for the rewritten query may first

check the intersection with the stored bounding boxes, and refine the result by per-

forming the equijoin with the CADOBJECTS table. Note that the box query is a

cursor-driven operation on the MBR-List, having an empty procedural phase. There-

fore, the index-supported query can be easily embedded into a larger context as

shown in Figure 26c. Already this small example shows that an object-relational

wrapping of relational access methods is essential to control redundant data in the

index tables and to avoid manual query rewriting. The usage of an extensible index-

ing framework preserves the physical independence of DML operations and enables

the usual query optimization.

Figure 26: Box queries on CAD data.

SELECT id FROM CADOBJECTS
WHERE intersect (geom, BOX((0,0,0),(100,100,100)));

a) Box volume query on the user table

SELECT usr.id AS id FROM CADOBJECTS usr, CAD_MBR idx
WHERE intersect (idx.mbr, BOX((0,0,0),(100,100,100)))
AND idx.id = usr.id
AND intersect (usr.geom, BOX((0,0,0),(100,100,100)));

b) Box volume query using the relational index as primary filter

SELECT id FROM CAD_TYPE
WHERE type = ‘ENGINE’
AND id IN (

SELECT usr.id FROM CADOBJECTS usr, CAD_MBR idx
WHERE intersect (idx.mbr, BOX((0,0,0),(100,100,100)))
AND idx.id = usr.id
AND intersect (usr.geom, BOX((0,0,0),(100,100,100))));

c) Index-supported box volume subquery

Navigational Scheme of Index Tables 51

3.6 Navigational Scheme of Index Tables

As an immediate result of the relational storage of index data and meta data, a

relational index is subject to the built-in transaction semantics, concurrency control,

and recovery services of the underlying database system. In the following two sec-

tions, we discuss the effectiveness and performance provided by the built-in services

of the ORDBMS on relational access methods. For that purpose, we identify two

generic schemes for the relational storage of index data, the navigational scheme and

the direct scheme. For each of these schemes we exemplarily introduce appropriate

index structures and show how we can process intersection queries on top of these

index structures. Let us start with the navigational scheme.

Definition 4 (Navigational Scheme).

Let P = (T, R1, ..., Rn) be a relational access method on a data scheme T and index

schemes R1 ,..., Rn . We call P navigational ⇔ (∃ t ⊆ T) (∃ ri ⊆ Ri, 1 ≤ i ≤ n): at least

one ρ ∈ ri is associated with rows {τ1, ..., τm} ⊆ t and m > 1.

Therefore, a row in an index table of a navigational index may logically represent

many objects stored in the user table. This is typically the case for hierarchical struc-

tures that are mapped to a relational schema. Consequently, an index table contains

data that is recursively traversed at query time in order to determine the resulting

tuples. Examples for the navigational scheme include the Oracle Spatial R-tree

[RRSB 99] and the Relational X-tree [BBKM 99] which store the nodes of a tree

directory in a flat table. To implement a navigational query as a cursor-bound opera-

tion, a recursive version of SQL like SQL:1999 [SQL 99] [EM 99] is required.

Although the navigational scheme offers a straightforward way to simulate any

hierarchical index structure on top of a relational data model, it suffers from the fact

that navigational data is locked like user data. As two-phase locking on index tables

is too restrictive, the possible level of concurrency is unnecessarily decreased. For

example, uncommitted node splits in a hierarchical directory may lock entire sub-

trees against concurrent updates. Built-in indexes solve this problem by committing

structural modifications separately from content changes [KB 95]. Unfortunately,

this approach is not feasible on the SQL layer without braking up the user transaction.

A similar overhead exists with logging, as atomic actions on navigational data, e.g.

node splits, are not required to be rolled back in order to keep the index tables consis-

52 Object Relational Indexing

tent with the data table. Therefore, relational access methods implementing the nav-

igational scheme are only well suited for read-only or single-user environments.

3.6.1 RR-tree – An Example for the Navigational Scheme

We illustrate the properties and drawbacks of the navigational scheme by the ex-

ample of Relational R-trees, like they have been used by the Oracle developers Ravi

Kanth et al. [RRSB 99]. Figure 27 depicts a hierarchical R-tree along with a possible

relational mapping (page_id, page_lev, son_id, son_mbr). The column page_id con-

tains the logical page identifier, while page_lev denotes its level in the tree. Thereby,

0 marks the level of the data objects, and 1 marks the leaf level of the directory. The

attribute son_id contains the page_id of the connected entry, while son_mbr stores its

minimum bounding box. Thus, page_id and son_id together comprise the primary

key. In our example, the logical page 2 represents a partition of the data space which

contains the CAD objects A and B. The corresponding index row (1, 2, 2, …) is

therefore logically associated with the rows (A, …) and (B, …) in the user table

CADOBJECTS (cf. Figure 25). Thus, the Relational R-tree implements the naviga-

tional scheme of relational access methods.

The severe overhead of the navigational scheme already becomes obvious if a

transaction inserts a new CAD object, and subsequently enlarges the bounding box of

Figure 27: Relational mapping of an R-tree directory.

CAD_RTREE

page_id page_lev son_id son_mbr

ROOT 3 1
BOX((0,0,0),

(200,120,300))

1 2 2
BOX((0,0,10),

(80,60,70))

1 2 3
BOX((60,20,20),

(100,120,70))

1 2 4
BOX((140,20,0),
(200,120,300))

2 1 5 …

2 1 6 …

5 0 A …

6 0 B …

… … … …

1 2

3

4

5
6

7 8
9

…
A

B

a) Hierarchical directory b) Relational index table

Navigational Scheme of Index Tables 53

a node, e.g. of the root node. Due to the common two-phase locking, this transaction

will hold an exclusive lock on the row (ROOT, 3, 1, …) until commit or rollback.

During this time, no concurrent transaction can insert CAD objects that induce an

enlargement of the root region. The database server has to guarantee non-blocking

reads [Ora 99c] to support at least concurrent queries on the Relational R-tree index.

To support the navigation through the R-tree table at query time, a built-in index

can be created on the page_id column. Alternatively, the schema can be transformed

to NF2 (non-first normal form), where page_id alone represents the primary key and

a collection of (son_id, son_mbr) pairs is stored with each row. A cursor-driven pri-

mary filter for a window query using recursive SQL is shown in Figure 28. We expect

that future implementations of the SQL:1999 statement yield a depth-first traversal

which is already hard-wired into the existing CONNECT BY clause of the Oracle

server. The effectiveness of cursor-driven operations is illustrated by the fact that the

depicted statements already comprise the complete, pipelined query processing on

Figure 28: Cursor-driven window query on a Relational R-tree.

WITH RECURSIVE TREE_TRAVERSAL (page_lev, son_id, son_mbr) AS (
SELECT page_lev, son_id, son_mbr FROM CAD_RTREE
WHERE page_id = ROOT
UNION ALL
SELECT next.page_lev, next.son_id, next.son_mbr
FROM TREE_TRAVERSAL prior, CAD_RTREE next
WHERE intersect (prior.page_mbr, BOX((0,0,0),(100,100,100)))
AND prior.son_id = next.page_id

) // declarative tree traversal
SELECT son_id AS id
FROM TREE_TRAVERSAL
WHERE page_lev = 0; // select data objects

a) Recursive window query on a Relational R-tree using SQL:1999

SELECT son_id AS id FROM CAD_RTREE
WHERE page_lev = 0 // select data object
START WITH page_id = ROOT
CONNECT BY

 intersect (PRIOR son_mbr, BOX((0,0,0),(100,100,100)))
AND PRIOR son_id = page_id; // declarative tree traversal

b) Recursive window query on a Relational R-tree using Oracle SQL

54 Object Relational Indexing

the R-tree index. If the low concurrency of the Relational R-tree is acceptable, the

relational mapping opens up a wide range of potential improvements. We have devel-

oped and evaluated various extensions to the presented concept [Str 04][KKP+ 03]

[KKPR 04d]:

• Variable Fanout. Due to the relational mapping, we are basically free to allow

an individual fanout for each tree node. Similar to the concept of supernodes for

high-dimensional indexing [BKK 96], larger nodes could be easily allocated, e.g.

if the contained geometries show a very high overlap or are almost equal. Thus,

splitting such pages would not improve the spatial clustering. Instead, page splits

could be triggered by measuring the clustering quality with a proximity measure

similar to [KF 92]. Especially for CAD databases, where many variants of the

same parts occupy almost identical regions of the data space, this approach can

be beneficial.

• Page Clustering. In order to achieve a good clustering among the entries of each

tree node, a built-in primary index can be defined on the page_id column. For

bulk-loads of Relational R-trees, the clustering can be further improved by care-

fully choosing the page identifiers: For instance, by assigning linearly ordered

page_ids corresponding to a breadth-first traversal of the tree, a sibling cluster-

ing of nodes [KC 98] can be very easily achieved.

• Positive Pruning. By ordering the page_ids according to a depth-first tree tra-

versal, a hierarchical clustering of the R-tree nodes is materialized in the primary

index. In consequence, the page identifiers of any subtree form a consecutive

range. Similarly, if the leaf pages are hierarchically clustered in a separate

B+-tree, a single range query on the page_id column yields a blocked output of

all data objects stored in any arbitrary subtree of the R-tree directory. Thus, the

recursive tree traversal below a node completely covered by the query region can

be replaced by an efficient range scan on the leaf table. Consequently, the tree

traversal is not only pruned for all-negative nodes (if no intersection of the node

region with the query region is detected), but also for all-positives (the node

region is completely covered by the query region). Moreover, heuristics to prune

already largely covered nodes can also be very beneficial (cf. Chapter 5).

Direct Scheme of Index Tables 55

3.7 Direct Scheme of Index Tables

Definition 5 (Direct Scheme).

Let P = (T, R1, ..., Rn) be a relational access method on a data scheme T and index

schemes R1 ,..., Rn . We call P direct ⇔ (∀ t ⊆ T) (∀ ri ⊆ Ri, 1 ≤ i ≤ n): each ρ ∈ ri is

associated with a single row τ ∈ t.

In consequence, for a relational access method of the direct scheme, each row in

the user table is directly mapped to a set of rows in the index tables. Inversely, each

row in an index table exclusively belongs to a single row in the user table. In order to

support queries, the index table is organized by a built-in index, e.g. a B+-tree. Exam-

ples for the direct scheme include our MBR-List (cf. Figure 25), the Linear Quadtree

[Sam 90b] and the Relational Interval Tree [KPS 00].

The drawbacks of the navigational scheme with respect to concurrency control

and recovery are not shared by the direct scheme, as row-based locking and logging

on the index tables can be performed on the granularity of single rows in the user

tables. For example, an update of a single row r in the user table requires only the

synchronization of index rows exclusively assigned to r. As the acquired locks are

restricted to r and its exclusive entries in the index tables, they do not unnecessarily

block concurrent operations on other user rows. In contrast to navigational indexes,

the direct scheme inherits the high concurrency and efficient recovery of built-in

tables and indexes.

3.7.1 RQ-tree – An Example for the Direct Scheme

A paradigmatic example for a spatial access method implementing the direct

scheme is the Linear Quadtree [Sam 90b]. Several variants of this well-known con-

cept have been proposed for stand-alone balanced trees [TH 81][OM 84][Bay 96],

for object-oriented database systems [Ore 86][OM 88][GR 94], and as relational ac-

cess methods [Wan 91][IBM 98][Ora 99b][RS 99][FFS 00]. In this subsection, we

present the basic idea of the Relational Quadtree, called RQ-tree throughout this

thesis, according to the in-depth discussion of Freytag, Flasza and Stillger [FFS 00].

The RQ-tree organizes the multidimensional data space by a regular grid. Any

spatial object is approximated by a set of tiles. Among the many possible one-dimen-

sional embeddings of a grid approximation, the Z-order is one of the most popular

[Güt 94]. The corresponding index representation of a spatial object comprises a set

56 Object Relational Indexing

of Z-tiles which is computed by recursively bipartitioning the multidimensional grid.

By numbering the Z-tiles of the data space according to a depth-first recursion into

this partitioning, any set of Z-tiles can be represented by a set of linear values. Note

that thereby redundancy is introduced to approximate spatially extended data.

Figure 29 depicts some Z-tiles on a two-dimensional grid1 along with their linear

values. The linear values of the Z-tiles of each spatial object can be stored in an index

table obeying the schema (zval, id), where both columns comprise the primary key.

This relational mapping implements the direct scheme, as each row in the index table

exclusively belongs to a single data object. The linear ordering positions each Z-tile

of an object on its own row in the index table. Thus, if a specific row in the user table

CAD is updated, e.g. (B, …), only the rows (6, B), (17, B), and (29, B) in the index

table are affected, causing no problems with respect to the native two-phase locking.

In order to process spatial selection on the RQ-tree, the query region is also re-

quired to be decomposed to a set of Z-tiles. We call the corresponding function

ZDecompose. For each resulting linear value zval, the intersecting tiles have to be

extracted from the index table. Due to the Z-order, all intersecting tiles having the

same or a smaller size than the tile represented by zval occupy the range

ZLowerHull(zval) = [zval, ZHi(zval)] which can be easily computed [FFS 00]. In the

example of Figure 29, we obtain ZLowerHull(17) = [17, 23]. In a similar way, we

1 We used a two-dimensional grid, instead of a three dimensional one for representation reasons.

12 15 27

Figure 29: Relational mapping of a Linear Quadtree.

0

1 16

2 17

9 24

3 6 18 21

10 13 25 28

176

29

4 7 19 22
5 8 20 23

11 14 26 29
305 A

B

CAD_QUADTREE

zval id

5 A

6 B

17 B

29 B

… …

a) Regular grid b) Recursive partitioning c) Index table

Direct Scheme of Index Tables 57

also compute ZUpperHull(zval), the set of all larger intersecting tiles. As in the case

of ZUpperHull(17) = {0, 16} the corresponding linear values usually form no con-

secutive range. To find all intersecting tiles for a given zval, a range scan on the index

table is performed with ZLowerHull(zval) and multiple exact match queries are exe-

cuted for ZUpperHull(zval). These queries are optimally supported by a built-in

B+-tree on the zval column. Figure 30 depicts the complete cursor-driven window

query on an instance of the RQ-tree using SQL:1999. Alternatively, the transient

rowsets generated by the functions ZDecompose and ZUpperHull can be precomput-

ed in the procedural phase for all Z-tiles of the query box and passed to the SQL layer

in one step by using bind variables. This approach reduces the overhead of barrier

crossings between the declarative and procedural environments to a minimum.

3.7.2 RI-tree - Another Example for the Direct Scheme

The Relational Interval Tree (RI-tree) [KPS 00] is an application of extensible

indexing for interval data. Based on the relational model, intervals can be stored,

updated and queried with an optimal complexity. In this section, we briefly review

the basic concepts of the RI-tree and introduce interval sequences as stored objects

and queries. After discussing a naive application that simply considers an interval

sequence to be a set of independent entities, we present an optimized version that

exploits the connection between the elements of an interval sequence [KPS 01].

The Relational Interval Tree. The RI-tree strictly follows the paradigm of rela-

tional storage structures since its implementation is restricted to (procedural) SQL

and does not assume any lower level interfaces. In particular, the built-in index struc-

tures of a DBMS are used as they are, and no intrusive augmentations or modifica-

tions of the database kernel are required.

SELECT DISTINCT idx.id //select data object
FROM CAD_QUADTREE idx,

TABLE(ZDecompose(BOX((0,0,0),(100,100,100)))) tiles,
TABLE(ZUpperHull(tiles.zval)) uh

WHERE (idx.zval BETWEEN tiles.zval AND ZHi(tiles.zval))
OR (idx.zval = uh.zval);

Figure 30: Cursor-driven window query for the RQ-tree.

58 Object Relational Indexing

The conceptual structure of the RI-tree is based on a virtual binary tree of height h

which acts as a backbone over the range [1…2h–1] of potential interval bounds.

Traversals are performed purely arithmetically by starting at the root value 2h–1 and

proceeding in positive or negative steps of decreasing length 2h–i, thus reaching any

desired value of the data space in O(h) time. This backbone structure is not material-

ized, and only the root value 2h–1 is stored persistently in a metadata tuple. For the

relational storage of intervals, the nodes of the tree are used as artificial key values:

Each interval i is assigned to a fork node, i.e. the first node contained in i when

descending the tree from the root node down to the interval location.

An instance of the RI-tree consists of two relational indexes which in an extensible

indexing environment are at best managed as index-organized tables. The indexes

then obey the relational schema lowerIndex (node, lower, id) and upperIndex (node,

upper, id) and store the artificial fork node value node, the bounds lower and upper

and the id of each interval. Any interval is represented by exactly one entry in each of

the two indexes and, thus, O(n/b) disk blocks of size b suffice to store n intervals. For

inserting or deleting intervals, the node values are determined arithmetically, and

updating the indexes requires O(logb n) I/O operations per interval. We store an in-

terval sequence by simply labelling each associated interval with the sequence iden-

tifier. Figure 31 illustrates the relational interval tree by an example.

John
Mary
Bob
Ann

31J26J

2M 13M

4J

10B 23J

21B

29M19M

lowerIndex (node, lower, id):

upperIndex (node, upper, id):

8, 2, Mary 12, 10, Ann 16, 4, John 16, 10, Bob 24, 19, Mary

8, 13, Mary 12, 15, Ann 16, 21, Bob 16, 23, John 24, 29, Mary

30A21A15A10A

24, 30, Ann

24, 21, Ann 28, 26, John

28, 31, John

root = 16

248

4 12 20 28

2 6 10 14 18 22 26 30

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

a)

b)

c)

Figure 31: The Relational Interval Tree.
a) Four sample interval sequences, b) The virtual backbone positions the intervals,

c) Resulting relational indexes

Direct Scheme of Index Tables 59

Interval Query Processing. To minimize barrier crossings between the procedur-

al runtime environment and the declarative SQL layer, an interval intersection query

(lower, upper) is processed in two steps. In the procedural query preparation step,

range queries are collected in two transient tables, leftNodes and rightNodes, which

are obtained by a purely arithmetic traversal of the virtual backbone from the root

node down to lower and to upper, respectively. At most 2·h different nodes are

visited. Nodes to the left of lower are collected in leftNodes since they may contain

intervals which overlap lower. Analogously, nodes to the right of upper are collected

in rightNodes since their intervals may contain the value of upper. As a third class of

affected nodes, the intervals registered at nodes between lower and upper are guaran-

teed to overlap the query range since their fork node value is contained in the query

interval and, therefore, are reported without any further comparison by a so-called

inner query. The query preparation procedure is purely main memory-based and,

thus, yields no I/O operations.

In the second step, i.e. the declarative query processing, the transient tables are

joined with the relational indexes upperIndex and lowerIndex by a single, three-fold

SQL statement shown in Figure 32. The upper bound of each interval registered at

nodes in leftNodes is checked against lower, and the lower bounds of intervals from

rightNodes are checked against upper. We call the corresponding queries left queries

and right queries, respectively. The inner query corresponds to a simple range scan

over the nodes within (lower, upper). If b denotes the average number of index en-

tries per disk block, the SQL query yields O(h · logb n + r/b) I/Os to report r results

from an RI-tree of height h. The height h of the backbone tree depends on the expan-

sion and resolution of the data space, but is independent of the number n of intervals.

Furthermore, output from the relational indexes is fully blocked for each join partner.

SELECT id FROM upperIndex i, :leftNodes left
WHERE i.node = left.node AND i.upper >= :lower

UNION ALL
SELECT id FROM lowerIndex i, :rightNodes right

WHERE i.node = right.node AND i.lower <= :upper
UNION ALL
SELECT id FROM lowerIndex i // or upperIndex i

WHERE i.node BETWEEN :lower AND :upper;

Figure 32: SQL statement for a single query interval with bind variables.
Bind variables: leftNodes, rightNodes, lower, upper.

60 Object Relational Indexing

Interval Sequence Intersections. The naive way to process interval sequence

intersections on an RI-tree is to perform independent queries for each of the intervals.

As an example, let us consider the interval sequence 〈(43, 52), (55, 85), (87, 91)〉.
Figure 33 illustrates the resulting 24 queries for the three query intervals which we

encode by the shadings white, gray and black for further reference. The traversed

paths of the target RI-tree of height 8 are depicted, and the numbers denote the node

values, e.g. 128 for the root of the virtual backbone. In the example, the 7 gray queries

are generated for the first interval (43, 52), the 9 white queries for (55, 85), and the 8

black queries for (87, 91). From the total of 24 queries, 11 are left queries, 10 are right

queries, and 3 are inner queries.

Gap Optimization for Interval Sequences. In this subsection we sketch a very

efficient way to process boolean intersection queries. A naive approach for this kind

of queries would consider each interval of a spatial interval sequence individually.

However, this approach disregards the important fact that the individual intervals of

an interval sequence all represent the same object. As a major disadvantage, many

overlapping queries are generated. This redundancy causes an unnecessary high

main memory footprint for the transient query tables, an overhead of query time, and

lots of duplicates in the result set which have to be eliminated. The basic idea of gap

optimization is to avoid the generation of redundant queries, rather than to discard the

respective queries after their generation.

In the example, the root node (128) is queried by three right queries. An interval

registered at the root node is reported three times if its lower bound is less or equal to

8555 91875243

Figure 33: Naive query processing for an interval sequence.

64

96
32

8048

40

44

42

43

56

52

54

88

9284
86

85 87

90

9155

128

left queries

right queries

inner queries

Industrial Application 61

52, and twice if its lower bound is greater than 52 but not greater than 85. The right

query of the rightmost (black) interval suffices to report all resulting intervals from

node 128, and discarding the gray and the white query prevents the generation of

duplicates without yielding false dismissals.

In [KPS 01], it was shown that for a sorted interval sequence q = 〈q1, …, qn〉 with

intervals qi = (loweri, upperi), the result of an intersection query is complete if for

each qi, query generation is restricted to nodes n with upperi–1 < n < loweri+1 where

upper0 = –∞ and lowern+1 = ∞. The optimized RI-tree is based on this fact together

with an approach to integrate the inner queries into the set of left queries [KPS 01]. If

we apply these two optimizations to the example in Figure 33 we get only 9 queries

instead of the original 24 queries without producing false dismissals.

The optimized RI-tree leads to an average speed-up factor of 2.9 compared to the

naive RI-tree, and outperforms competing methods by factors of up to 4.6 (Linear

Quadtree) and 58.3 (Relational R-tree) for query response time [KPS 01].

Similar optimizations are possible for the RQ-tree by eliminating duplicates from

the upper hulls resulting from different query tiles of a given query sequence. Let us

note, that for both index structures these optimizations are only applicable to boolean

intersection queries, but fail to support ranked intersection queries.

3.8 Industrial Application

In mechanical engineering, three-dimensional CAD is employed throughout the

entire development process. From the early design phase to the serial production of

vehicles or airplanes, thousands to millions of CAD files and associated documents

are generated. Recently, a new class of CAD tools has emerged to support virtual

engineering on this data, i.e. the evaluation of product characteristics without build-

ing a physical prototype. Typical applications include the digital mockup [BKP 98]

or haptic rendering of product configurations [MPT 99].

EDM systems organize the huge underlying CAD databases by means of hierar-

chical product structures. Thus, structural queries such as “retrieve all documents

that refer to the current version of the braking system” are efficiently supported.

Virtual engineering, however, requires access to the product data by geometric pred-

icates, such as “find all parts in the immediate spatial neighborhood of the disk

brake” (cf. Figure 3). Unfortunately, spatial queries are not supported efficiently by

common EDM systems. In this section, we shortly present the DIVE (Database

62 Object Relational Indexing

Integration for Virtual Engineering) architecture [KMPS 01a] [KMPS 01b][Pöt 01],

a proposal to embed virtual engineering into the existing EDM infrastructure of an

enterprise. Thereby, we focus on the integration of interactive spatial data manage-

ment into off-the-shelf object-relational database systems.

3.8.1 Spatial Data Management

The geometry of a part occupies a specific region in the product space. By using

this region as a spatial key, related documents such as native CAD files, VRML

scenes or production plans may be spatially referenced. The key challenges in devel-

oping a robust and dynamic database layer for virtual engineering have been (1) to

store spatial CAD data in a conventional relational database system, (2) to enable the

efficient processing of the required geometric query predicates and (3) to determine

efficient execution plans for queries consisting of geometric and structural predi-

cates.

Only few spatial access methods have been designed to operate on the object-

relational data model without any intrusive modifications or additions to the physical

kernel of the database server. As outlined in Section 3.7.2, the RI-tree is a

light-weight access method that efficiently manages extended data on top of any

relational database system while fully supporting the built-in transaction semantics

and recovery services. In [KPS 01], it was shown that its spatial application outper-

forms competing techniques with respect to usability and performance. Therefore the

RI-tree is used as a spatial engine for the DIVE system.

The original parts are converted from the various native CAD formats to triangu-

lated facets in VRML. Furthermore, 3D scan conversion on a regular grid is used to

voxelize these geometries. To enable the generated voxel set to be used as a spatial

key, it is transformed to an interval sequence on a space-filling curve and stored in the

RI-tree. The redundancy and accuracy of each interval sequence can be controlled

individually by size-bound or error-bound approximation (cf. Section 2.1).

3.8.2 Query Processing

The DIVE server maps geometric query predicates to region queries on the in-

dexed data space. Our multi-step query processor performs a highly efficient and

selective filter step based on the stored interval sequences. The non-spatial remainder

Industrial Application 63

of the query, e.g. structural exclusions, is processed by the EDM system. The current

DIVE release contains filters for the following spatial queries:

 • Volume Query: Determine all spatial objects intersecting a given rectilinear box

volume.

 • Collision Query: Find all spatial objects that intersect an arbitrary query region,

e.g. a volume or a surface of a query part.

 • Clearance Query: Given an arbitrary query region, find all spatial objects within

a specified Euclidean distance.

Furthermore, an optional refinement step for the digital mockup to compute inter-

sections on high-accurate triangulated surfaces has been integrated. A part resulting

from the previous spatial query may be used as a query object for the next geometric

search. Thereby, the user is enabled to spatially browse a huge persistent database at

interactive response times. The DIVE server also supports the ranking of query re-

sults according to the intersection volume of the query region and the retrieved spa-

tial keys. For digital mockup, this ranking can be refined by computing the shape and

length of the intersection segments on the part surfaces. Thus, the attention of the user

is immediately guided to the most relevant problems in the current product design.

3.8.3 Efficient Execution Plans

In order to fully integrate the RI-tree into an ORDBMS, we need an appropriate

cost model for intersection queries on interval sequences (cf. Chapter 4). The accura-

cy of the cost model is decisive for the efficiency of the generated execution plans.

For queries containing geometric and structural predicates, the system has to decide

which predicate has to be carried out first. In general, highly selective predicates

should be carried out as early as possible and should be supported by efficient access

methods. For both the geometric as well as the structural predicates there exist index

supported implementations as well as functional implementations, i.e. without index

support.

Figure 34 shows different possibilities in what order the predicates can be evalu-

ated. If the predicates are evaluated consecutively, the index-based implementation

of the first predicate can be used, whereas the second one is always based on the

functional implementation. If both predicates are carried out in parallel, we can use

the index based implementation of both and finally merge the two result sets.

64 Object Relational Indexing

For efficient query processing, it is decisive to choose the best possible execution

plan. The best-possible plan heavily depends on the selectivity of both predicates.

Figure 35 shows for a test data set, how the best plan depends on the selectivity of the

predicates. The background shading of each cell symbolizes the best possible execu-

tion plan. The value in brackets denotes the percentage deviation of the second-best

execution plan to the optimum one. Already the second-best execution plan can be

much slower than the best one, not to speak of the other plans. For more detail we

refer the interested reader to [Hof 01]. Already this small example points out that an

exact selectivity estimation is essential for efficient query processing. In Section 4.5,

we will discuss in detail how we can efficiently and accurately estimate the selectiv-

ity of spatial queries together with the related I/O cost.

3.8.4 Experimental Evaluation of Query Processing

We have evaluated the DIVE server in collaboration with the Volkswagen AG on

real product data. An installation on an Athlon/750 machine with IDE hard drives

Figure 34: Different execution plans.
Execution plans for queries containing geometric and structural predicates.

SF

GF

GF

SF

SI

GF

GI

SF

SI GI

Query consisiting of
a structural and a geometric predicate

Choosing the best access path

result

SF

GF

GF

SF

SI

GF

GI

SF

SI GI

Query consisiting of
a structural and a geometric predicate

Choosing the best access path

result

SF: functional implementation of structural predicate SI: index based implementation of structural predicate

GF: functional implementation of geometric predicate GI: index based implementation of geometric predicate

legend

Industrial Application 65

and a buffer pool of 800 KB performed average volume and collision queries in

0.7 seconds response time on a database containing 11.200 spatial keys (2 GB of

compressed VRML data). Due to the logarithmic scale-up of the spatial query pro-

cessor and an accurate selectivity estimation, interactive response times can still be

achieved for much larger databases and complex queries consisting of both geomet-

ric and structural information.

3.8.5 System Architecture

Figure 36 presents the three-tier client/server architecture of the DIVE system.

The client application runs on a conventional web browser and enables the user to

specify spatial and non-spatial query conditions (1). The query evaluation is distrib-

uted to the DIVE and EDM servers (2). The DIVE server can be implemented on top

of any relational database system, whereas extensible object-relational database sys-

tems facilitate the seamless embedding of complex spatial datatypes and operators.

Figure 35: Optimal access paths.
Access paths, depending on the selectivity of the geometric and the structural
predicate for a test data set of the Volkswagen AG consisting of 2000 parts.

100

64

32

8.8

4.2

1.4

0

100502514.84.61.40

(58)(55)(17)(50)(191)(538)(14588)

(2.1)(6.3)(7.4)(4.8)(105)(352)(9988)

(6.2)(0.2)(4.1)(6.4)(6.2)(142)(5087)

(36)(21)(4.5)(1.3)(0.6)(3.4)(1375)

(55)(24)(11)(1.8)(2.9)(3.8)(825)

(73)(39)(7.9)(1.1)(1.1)(11)(575)

(140)(77)(44)(35)(21)(15)(183)

100

64

32

8.8

4.2

1.4

0

100502514.84.61.40

(58)(55)(17)(50)(191)(538)(14588)

(2.1)(6.3)(7.4)(4.8)(105)(352)(9988)

(6.2)(0.2)(4.1)(6.4)(6.2)(142)(5087)

(36)(21)(4.5)(1.3)(0.6)(3.4)(1375)

(55)(24)(11)(1.8)(2.9)(3.8)(825)

(73)(39)(7.9)(1.1)(1.1)(11)(575)

(140)(77)(44)(35)(21)(15)(183)

selectivity of the structural predicate (in %)

se
le

ct
iv

it
y

of
 th

e
ge

om
et

ri
c

pr
ed

ic
at

e
(i

n
%

)

functional implementation of structural predicate, index based implementation of geometric predicate

index based implementation of structural predicate, index based implementation of geometric predicate

index based implementation of structural predicate, functional implementation of geometric predicate

functional implementation of structural predicate, functional implementation of geometric predicate

legend

66 Object Relational Indexing

The DIVE server has been integrated into Oracle8i by using PL/SQL and Java Stored

Procedures. Therefore, the queries are simply submitted in the standard SQL syntax

via Oracle’s Net8 protocol. After completion of the spatial and structural filter steps

and the optional query refinement, the query result is returned to the client as a table

of document URLs (3). Finally, the browser may be used to display the contents of

the corresponding documents or, alternatively, their content may be downloaded to a

specialized application (4).

D IV E C lien t
(We b Browser)

V olum e Query

Collis ion Query

C learance Q uery

(1) Q uery
Conditions

(H TTP)
(4) Docum ents
(H TTP)

(2) Q uery D istribution
(SQ L)

(3) Query Results
(H TTP)

W eb S erv er
(ORDBM S)

File Services
(Converters)

…
Reposito ry

D IV E Server
(ORDBM S)

…
…

S pa tia l
Da tabase

ED M Server
(RD BMS)

Product
S tructure

A pplications
(CAD Tools)

Haptics

DM U

…

Figure 36: Processing a query on the DIVE system.

67

Chapter 4
A Cost Model for Spatial
Intersection Queries

The efficient management of interval sequences represents a core requirement for

many temporal and spatial database applications. With the Relational Interval Tree

(RI-tree), an efficient access method has been proposed to process intersection que-

ries of spatial objects encoded by interval sequences on top of existing object-

relational database systems. This chapter complements that approach by effective

and efficient models to estimate the selectivity and the I/O cost of interval sequence

intersection queries in order to guide the cost-based optimizer whether and how to

include the RI-tree into the execution plan. By design, the models immediately fit to

common extensible indexing/optimization frameworks, and their implementations

exploit the built-in statistics facilities of the database server. According to our exper-

imental evaluation on an Oracle database, the average relative error of the estimated

cost to the actual cost of index scans ranges from 0% to 32%, depending on the

resolution of the persistent statistics as well as the size and the structural complexity

of the query objects.

68 A Cost Model for Spatial Intersection Queries

4.1 Introduction

After two decades of temporal and spatial index research, the efficient manage-

ment of one- and multi-dimensional extended objects has become an enabling tech-

nology for many novel database applications. The interval, or, more generally, the

sequence of intervals, are basic datatypes for temporal and spatial data. Interval se-

quences are used to handle finite domain constraints [Ram 97] or to represent periods

on transaction or valid time dimensions [TCG+ 93]. Typical applications of one-

dimensional interval sequences include the temporal tracing of user activity for ser-

vice providers: a query like “Find all customers who were online last month on any

day between 5 and 6 pm” maps to an intersection query of interval sequences on a

database storing online periods of all registered users. In general, any time series may

be aggregated to an interval sequence, such as periods of “high” stock prices for

technical chart analysis. When applied to space-filling curves, interval sequences

naturally represent spatially extended objects with even intricate shapes. By express-

ing spatial region queries as interval sequence intersections, vital operations for

two-dimensional GIS and environmental information systems [MP 94] can be sup-

ported. Efficient and scalable database solutions are also required for two- and

three-dimensional CAD applications to cope with rapidly growing amounts of dy-

namic data and highly concurrent workflows.

Highly accurate but still efficient selectivity estimation and cost prediction are the

fundamentals of effective query optimization. As pointed out in [SJS 01], standard

selectivity estimation does not estimate well the result cardinalities of selections hav-

ing temporal or spatial predicates, and standard built-in methods are not directly

suitable for interval intersection queries, in particular. For complex query objects and

query predicates, the recent object-relational database servers provide extensible op-

timization frameworks that come along with the extensible indexing frameworks, in

order to complete the seamless integration of user-defined index structures into the

declarative DML. As an example for such an extension, we propose a cost model for

the RI-tree that fits well to the extensible frameworks by design. Though the RI-tree

immediately maps intervals to built-in B+-trees, the built-in cost models for B+-trees

do not estimate well the processing cost since they do not take the particular structure

and partitioning of interval data into account.

Introduction 69

Our techniques aim at the collection of statistics, the estimation of selectivity, and

the prediction of I/O cost. Thereby, the optimizer of the database system is enabled to

place the user-defined index at its optimal position in the query execution plan. Ac-

cording to [BO 99] and [HS 93], such a cost-based approach is preferable to

rule-based approaches when referencing user-defined methods as predicates. The

two main design aspects for the above mentioned functions are:

Effectiveness. The extensible optimizer uses the selectivity estimation to deter-

mine a good join order for complex SQL queries. It then evaluates the available cost

models to choose the most efficient access path to the data. The objective is to keep

the relative error of selectivity and cost estimations sufficiently small to rank the

user-defined index accurately among alternative access methods.

Efficiency. In order to obtain an efficient execution plan for a DML operation, the

optimizer framework calls the estimation functions for each contained interval pred-

icate. To reduce the total runtime of query optimization, the execution cost for the

estimation functions should be kept minimal. Furthermore, data statistics required

for the estimation functions should also be efficiently collected.

The architecture of extensible optimization is analogous to extensible indexing as

illustrated in Figure 37. Whereas the new methods are built on top of the relational

SQL layer, they are object-relationally embedded by implementing the respective

interfaces of the frameworks. In case of our new cost models, we particularly propose

methods to estimate the selectivity of a given range query on a database of intervals

(function getSelectivity) and a method to predict the cost of processing that query

Figure 37: Extensible indexing / optimization frameworks.
Analogous architectures for the object-relational embedding of user-defined index
structures and cost models into extensible indexing and optimization frameworks.

Extensible Indexing Framework
Object-relational interface for index
maintenance and querying functions.

User-defined Index Structure

Relational Implementation
Mapping to built-in indexes (B+-trees);
SQL-based query processing.

Extensible Optimization Framework
Object-relational interface for selectivity
estimation and cost prediction functions.

User-defined Cost Model

Relational Implementation
Mapping to built-in statistics facilities;
SQL-based evaluation of cost model.

70 A Cost Model for Spatial Intersection Queries

(function getIndexCost). In this chapter, we focus on the predicate overlaps (= inter-

sects) which is considered to be the most important one [GG 98]. Furthermore, we

extend the proposed techniques to spatial queries, i.e. interval sequences.

The organization of this chapter follows the requirements of extensible optimiza-

tion frameworks and proceeds in the following way: First, we sketch in Section 4.2

the related work on selectivity estimation and cost prediction. In Section 4.3, we

propose two approaches to estimate the selectivity of intersection queries on interval

data. The first approach is based on user-defined histograms, whereas the second one

relies on the built-in statistics of standard database systems. Section 4.4 derives a

cost model for estimating the I/O cost of a given query on the RI-tree. In Section 4.5,

we extend the proposed techniques to interval sequences. After an empirical evalua-

tion of the presented methods in Section 4.6, this chapter is concluded in Section 4.7.

4.2 Related Work

4.2.1 Selectivity Estimation

In order to determine a good estimate for the selectivity of a specific predicate

without retrieving the actual results, the predicate has to be evaluated on a sufficient-

ly accurate approximation of the data distribution. The computation of such an ap-

proximation is known as one of the most difficult problems, for instance in case of

selectivity estimation of extended objects [APR 99]. The many existing approaches

fall into three different classes: parametric techniques, sampling, and statistics.

Parametric techniques. Parametric techniques approximate the given data by

using a standard mathematical distribution. For databases comprising extended ob-

jects, many proposals exploit intrinsic characteristics of the stored data, including the

usage of the Correlation Fractal Dimension on point sets by Belussi and Faloutsos

[BF 95] or the SLED property of real segment data proposed by Proietti and Falout-

sos [PF 99]. A limitation for parametric techniques results from the requirement of

a-priori assumptions about the data distribution.

Sampling. In contrast, sampling adapts to the actual data distribution by process-

ing a small fraction of the stored tuples. This paradigm has been pursued and evalu-

ated by Lipton, Naughton and Schneider [LNS 90] and by Haas et al. [HNSS 95].

Selectivity Estimation 71

Statistics. Statistics are a very popular approach in database systems, as they typ-

ically can be efficiently computed and occupy only a small amount of secondary

storage. For linearly ordered domains, the most commonly used statistics type in

commercial database servers are quantiles of the original data. For the selectivity

estimation on non-uniform distributions of extended objects, histograms are a com-

mon technique. An extensive analysis on different kinds of spatial histograms has

been published by Acharya, Poosala and Ramaswamy [APR 99]. Whereas histo-

grams can be naturally applied to one-dimensional interval data, a quantile-based

approach has to operate on a linear representation of the original intervals. In this

chapter, we present and evaluate techniques for interval data on both types of statis-

tics, histograms as well as quantiles.

4.2.2 Cost Estimation

A wide range of cost models has been presented in the literature for various index

structures for extended objects, including the technique of Kamel and Faloutsos

[KF 93] for intersection queries on packed R-trees, or the REGAL law for R-tree

entries by Proietti and Faloutsos [PF 99]. Recently, cost models have also been ex-

tended to handle joins of extended objects and the presence of database buffers as in

the proposals of Huang, Jing and Rundensteiner [HJR 97], Leutenegger and Lopez

[LL 98], or Theodoridis, Stefanakis and Sellis [TSS 00]. Whereas previous research

has mainly concentrated on the design and evaluation of cost models for stand-alone

access methods, the following sections develop an approach that can be fully imple-

mented on top of existing object-relational database systems.

4.3 Selectivity Estimation

Accurate estimations of query result sizes are a necessary input for many compo-

nents of the underlying database system. In particular, the selectivity estimation for

an interval intersection query can be used by the built-in optimizer to find an efficient

join order and to determine the best available access method [SAC+ 79][Ora 99b].

Selectivity estimation is also required to provide the user with an approximate pre-

diction about the potential execution time of DML statements. In the following, we

propose a histogram-based approach (‘equi-width histograms’) and a quantile-based

approach (‘equi-count histograms’).

72 A Cost Model for Spatial Intersection Queries

4.3.1 Histogram-Based Selectivity Estimation

In order to cope with arbitrary interval distributions, histograms can be employed

to capture the data characteristics at any desired resolution. We start by giving the

definition of an interval histogram.

Definition 6 (Interval Histogram).

Let D = [1, 2h – 1] be a domain of interval bounds, h ≥ 1. Let the natural number

ν ∈ IN be the resolution, and βν = (2h – 1)/ν the corresponding bucket size. Let bi,ν =

[1 + (i – 1)·βν,1 + i·βν) denote the span of bucket i, i ∈ {1, …, ν}. Let further I =
{(l, u), l ≤ u} ⊆ D2 be a database of intervals. Then, H(I, ν) = (n1, …, nν) ∈ INν is

called the interval histogram on I with resolution ν, iff for all i ∈ {1, …, ν}:

ni = |{ψ ∈ I | ψ intersects bi,ν}|

In order to compute an interval histogram on a database I of n intervals, O(n/b)

disk blocks have to be touched, assuming a blocked storage of I by a page size b. The

computation is performed by standard SQL and wrapped by a stored procedure that

complies with the statistics collection interface of the extensible optimization frame-

work (function getSelectivity). Based on H(I, ν), we compute a selectivity estimate

by evaluating the intersection of the query interval with each bucket span bi,ν
(cf. Figure 38).

Definition 7 (Histogram-based Selectivity Estimate).

Given an interval histogram H(I, ν) = (n1, …, nν) with bucket size β, we define the

histogram-based selectivity estimate σI(I, τ), 0 ≤ σI(I, τ) ≤ 1 for an intersection que-

ry τ = (lτ, uτ) by the following formula:

σI(I, τ) =

where overlap returns the intersection length of two intersecting intervals, and 0,

if the intervals are disjoint.

Note that long intervals may span multiple histogram buckets. Thus, in the above

computation, we normalize the expected output to the sum of the number ni of inter-

vals intersecting each bucket i rather than to the original cardinality n of the database.

overlap τ bi ν,,()
β

--- ni⋅
i 1=

ν∑ nii 1=

ν∑
1–

⋅

Selectivity Estimation 73

In order to support query intervals with a very small duration, the average length of

the stored intervals could also be considered for the estimation.

4.3.2 Quantile-Based Selectivity Estimation

Due to the replication of intervals across bucket boundaries, the accuracy of the

histogram-based selectivity estimation may deteriorate with longer interval lengths

or higher histogram resolutions. In addition, the runtime required for the histogram

computation is increased by the cost of barrier-crossings between the declarative

environment of the SQL layer and our stored procedure. Fortunately, most ORDBMS

comprise efficient built-in functions to compute single-column statistics, particularly

for cost-based query optimization. Available optimizer statistics are accessible to the

user by the relational data dictionary. The basic idea of our quantile-based selectivity

estimation is to exploit these built-in index statistics rather than to add and maintain

user-defined histograms. We start with the definition of a quantile vector, the typical

statistics type supported by relational database kernels. Then, we describe its appli-

cation to node values of the RI-tree.

Definition 8 (Quantile Vector).

Let (S, ≤) be a totally ordered multi-set. Without loss of generality, let

S = {s1, s2, …, sk} with sj ≤ sj+1, 1 ≤ j < k. Then, Q(S, ν) = (q0, …, qν) ∈ Sν is called

a quantile vector for S and a resolution ν ∈ IN, iff the following conditions hold:

(i) q0 = s1

(ii) ∀i ∈ 1, …, ν: ∃j ∈ 1, …, k: qi = sj ∧ < ≤

Definition 9 (Node Quantiles).

Let lowerIndex be the relational index on (node, lower, id) for an instance T of the

RI-tree. Let N = πnode(lowerIndex) be the projected multi-set of node values. Then,

Q(N, ν) is called the vector of node quantiles on T with resolution ν.

bi + 1,ν

τ
lτ uτ

H(I, ν)

Figure 38: Selectivity estimation on an interval histogram.

bi – 1,ν bi,ν

j 1–
k

i
ν

j
k
--

74 A Cost Model for Spatial Intersection Queries

Based on the node ordering materialized in the lowerIndex (or upperIndex), the

computation of Q(N, ν) on an RI-tree storing n intervals has an I/O complexity of

O(n/b), where b is the disk block size. By using the node quantiles for an RI-tree

index, we get an aggregated view on the locations of the stored intervals. In addition,

we may use some knowledge about the one-dimensional durations which is given by

the following definition that captures the average distances of the interval bounds to

the respective fork node:

Definition 10 (Average Node Distances).

Let T be an instance of the RI-tree with lowerIndex and upperIndex relations. Then,

the average lower distance δlower(T) and the average upper distance δupper(T) is

defined as:

 (i) δlower(T) = avg(node – lower)

(ii) δupper(T) = avg(upper – node)

The average values δlower and δupper are computed with O(n/b) I/O complexity,

and if possible, along with the quantile statistics. If the built-in statistics of the host-

ing database system comprise single-column averages on node, lower, and upper,

then δlower and δupper can be simply derived from these existing statistics:

δlower = avg(node) – avg(lower) and δupper = avg(upper) – avg(node). For interval

databases with a highly skewed distribution of interval lengths, δlower and δupper can

be replaced by quantiles on πnode – lower(lowerIndex) and πupper – node(upperIndex).

Our goal is to compute the selectivity estimate in constant time, i.e. independent

not only from the cardinality, but also from the granularity of the interval data. In-

stead of submitting the O(h = log2root + 1) node queries on the RI-tree, we evaluate

the quantiles with respect to the span of nodes touched during the processing of a

potential interval intersection query.

Definition 11 (Span of Touched Nodes).

For a given RI-tree T and an intersection query τ, the range θ(T, τ) = (lθ, uθ) is called

the span of touched nodes, iff lθ is the minimal and uθ is the maximal node on the

virtual backbone that is touched while processing the query τ on T.

Selectivity Estimation 75

Lemma 1. Let D = [1, 2h – 1] be the interval domain covered by an RI-tree T with

root = 2h – 1. For an intersection query τ = (lτ, uτ) ∈ D, the span of touched nodes

θ(T, τ) = (lθ, uθ) ∈ D is computed by the following formulas:

 (i) lθ = 2k, k = log2(lτ),

(ii) uθ = 2h – 2k, k = log2(2h – uτ).

Proof. (i) The leftmost node touched during the arithmetic traversal of the backbone

is the last node before we first step into a right subtree. Following the left branch

yields a 0-bit, following the right branch yields a 1-bit in the binary representation of

the actual node value. Thus, the leftmost node lθ has exactly one bit set at the first

position of a 1-bit in lτ. (ii) Analogously, the rightmost node uθ is derived from the

first 0-bit in the binary representation of uτ by a mirrored consideration. �

We estimate the number of results yielded by the inner, left, and right queries for

an intersection query τ = (lτ, uτ) based on the node quantiles Q(N, ν) = (q0, …, qν).

Figure 39 provides a graphical interpretation of the following calculations: the num-

ber of results rinner from the inner query can be estimated by evaluating the overlap

of τ with the quantiles (analogously to Section 4.3.1):

To estimate the number of results rleft retrieved by the left queries, we only have to

consider quantiles falling into the range (leftBoundτ, lτ), where leftBoundτ =

max(lθ, lτ – δupper(T)) and θ(T, τ) = (lθ, uθ):

The estimation of the number of results rright of the right queries is done analo-

gously to rleft. Finally, we define:

Definition 12 (Quantile-based Selectivity Estimate).

The quantile-based selectivity estimate σN(I, τ) of the intersection query τ on an

interval database I is given by

rinner

overlap τ qi 1– qi,(),()
qi qi 1––

--
N
ν

------⋅ 
 

i 1=

ν
∑=

rleft

overlap leftBoundτ lτ,() qi 1– qi,(),()
qi qi 1––

N
ν

------⋅ 
 

i 1=

ν
∑=

σN I τ,()
rleft rinner rright+ +

N
--=

76 A Cost Model for Spatial Intersection Queries

As desired, the quantile vector is a non-replicating statistics on interval data, and

the data sets contributing to the results rleft, rinner, and rright are disjoint. In conse-

quence, 0 ≤ rleft + rinner + rright ≤ |N| holds and, thus, 0 ≤ σN(I, τ) ≤ 1.

4.4 Model for I/O Cost

In order to achieve a seamless declarative integration of the Relational Interval

Tree into extensible indexing frameworks as provided by modern object-relational

database systems, a cost model has to be registered at the extensible optimization

framework. In this section, we present a cost model for interval intersection queries

on the RI-tree, based on the estimated selectivity and the range queries generated for

the underlying B+-trees.

We assume the selectivity estimation σ(I, τ) for an intersection query τ = (lτ, uτ)

on an interval data set I to be determined as shown above. In our derivation of a cost

model to estimate the number of touched B+-tree blocks for arbitrary intersection

queries τ, we use that expected selectivity as input for the estimation of the I/O oper-

ations.

Let us recall from Section 3.7.2 that the query preparation step does actually cause

no I/O operations since the traversal of the backbone structure is done purely arith-

metically, and the generated join partners are managed in main memory. The I/O

complexity of O(h · logbn + r/b) for an intersection query retrieving r results from an

RI-tree of height h comprises components of the following two types:

 • First, the directories of the relational indexes (built-in B+-trees) have to be tra-

versed in order to navigate on the disk to the first result, if any, for each join partner.

qi+1qi …

rinner

τ

lθ

lτ – δupper(T) lτ uτ

rleft

Q(N, ν)

Figure 39: Selectivity estimation on node quantiles.

Model for I/O Cost 77

Let us denote this portion of I/O operations by joinI/O and let us recall that

joinI/O = O(h · logbn).

 • Second, the results for each join partner are reported by scanning contiguous leaf

blocks of the relational indexes. We call this portion of I/O operations outputI/O.

Since the output is blocked, i.e. there are no gaps between the answers for a single

range query, the complexity outputI/O = O(r/b) is guaranteed.

In contrast to the very general complexity analysis, a cost model has to compute

actual numbers of I/O operations for specific interval queries. Our model relies on the

following two observations:

 • In a real user environment with many concurrent queries, substantial parts of the

B+-directories typically reside in the main memory and can be managed by the

built-in LRU-cache of the DBMS [Lom 98]. According to a common assumption,

we count two I/O operations for each leaf-block access in order to estimate the

number of blocks actually read from disk.

 • The transient join partners are processed in increasing order (left queries, inner

query) or decreasing order (right queries) with respect to the node value in the

composite indexes on (node, upper, id) and (node, lower, id), respectively. Due to

this ordered access, pages that are read several times during query processing will

rarely be displaced from the LRU cache between the accesses. We therefore as-

sume that each leaf page is retrieved only once from secondary storage.

Based on these assumptions, we derive individual formulas for the components

outputI/O and joinI/O in the following.

outputI/O. For a given RI-Tree T on a set I of intervals, let L = leaf-blocks(upper-

Index) ≈ leaf-blocks(lowerIndex) be the number of leaf blocks in the B+-trees,

L = O(n/b), and τ be an interval intersection query performed on T. The answers

retrieved from upperIndex and from lowerIndex are guaranteed to be disjoint, and we

estimate outputI/O(T, τ) as the fraction of L predicted by the selectivity estimate

σ(I, τ) on T:

outputI/O(T, τ) = σ(I, τ) · L

78 A Cost Model for Spatial Intersection Queries

joinI/O. The formula for joinI/O includes the number of leaf block accesses caused

by the navigation in the B+-tree directories for the join partners. Since the leaf blocks

are read from two independent B+-tree indexes, we capture the join overhead for the

set of left queries and inner queries on the one hand and for the set of right queries on

the other hand separately.

Figure 40 provides an illustration for our considerations and depicts the leaf

blocks in the lowerIndex and upperIndex that are read for a query τ = (lτ, uτ). Note

that the virtual backbone is drawn to the scale of the population in the indexes, and

not to the original domain of D = [1, 2h – 1].

The leaf block p in the upperIndex, for example, is touched multiple times during

query processing. According to the locality-preserving read schedules for LRU buff-

ers, the multiple accesses to block p count for a single leaf access only. This estima-

tion is complemented by the additional heuristics to count two physical disk accesses

for a single leaf block access in order to take care of the I/O caused by traversing the

index directory.

An important observation for joinI/O is that the results of different join partners in

general do not form a contiguous range of entries in the leaf blocks of the indexes.

Although the results are blocked for each single left query, inner query, and right

...

root
τ

Queries on upperIndex

Queries on lowerIndex

Virtual backbone

Figure 40: Touched leaf blocks and query gaps for an intersection query τ.

...
L

1

1

left block gaps

right block gaps

Leaf blocks of upperIndex

Leaf blocks of lowerIndex

leaf block

accessed block

stored intervals (light+dark),
range query (dark)

fork node of stored intervals

Lp

Model for I/O Cost 79

query, there are typically gaps between the blocked result sets of different join part-

ners. In order to model the distribution of gaps, we first determine the gaps between

the node values, NGapsleft(τ) and NGapsright(τ), for a given intersection query τ on

an RI-tree T. Then, we derive the expected corresponding gaps between disk blocks,

BGapsleft(τ) and BGapsright(τ).

Estimation of Node Gaps. For the estimation of node gaps, we traverse the virtual

backbone on D = [1, 2h – 1], and we collect the lengths NGapsleft(τ) = {ζ1, …, ζl} of

gaps to the left of the query interval τ, i.e. in the range [1, lτ] between consecutive

nodes touched by the left and inner queries, and the lengths NGapsright(τ) =

{ξ1, …, ξr} of gaps to the right of τ, i.e. in the range [uτ, 2h – 1] between the right

queries, respectively.

Estimation of Block Gaps. Let Lθ be the average number of nodes per leaf block

in the span θ(T, τ) of touched nodes for τ. We estimate the corresponding block gaps

among the range queries for τ by the multi-sets BGapsleft(τ) and BGapsright(τ) of real

numbers:

BGapsleft(τ) = , BGapsright(τ) = .

The value of Lθ is easily estimated by using the persistent statistics on T along with

the cardinality n and the number of leaf blocks L, similarly to Section 4.3. After

having computed the number and extension of gaps between the blocked sections of

outputI/O, we use this information to estimate joinI/O. Depending on the length and

the position of each block gap g, a specific number of leaf block accesses occurs. For

gaps smaller than one disk block, i.e. g ≤ 1, the I/O is increased by this very gap

length g with a weight of 1 (cf. Figure 41a). According to Figure 41b, the I/O over-

head for larger gaps depends on the gap offset to the leaf blocks and is restricted to

blocks at the gap border. For gaps g > 1, our formula to estimate the contribution

gapI/O(g) of a gap g to joinI/O therefore focuses on the fraction g’ = g – g. Since we

assume a uniform distribution of gap offsets with respect to the leaf blocks in the

upperIndex and lowerIndex, the mean contributions of the left and right borders of a

gap g > 1 to gapI/O(g) are 1 + g’ with weight 1 – g’ and g’ with weight g’. The overall

value then sums to (1 – g’)·(1 + g’) + g’·g’ = 1, and the distinction of cases simplifies

to

gapI/O(g) = min(1, g).

ζ1
Lθ
------ …

ζl
Lθ
------, ,

ξ1
Lθ
------ …

ξr
Lθ
------, ,

80 A Cost Model for Spatial Intersection Queries

With respect to I/O cost, random access to a leaf block is, therefore, only beneficial

if the preceding block gap is larger than the size of a disk block. In consequence, gaps

covering only fractions of a disk block could be sequentially scanned without causing

any I/O overhead. This observation opens up a promising potential to further im-

prove the performance of the RI-tree (cf. Chapter 5). For all gaps between the range

queries on the upperIndex and lowerIndex for a given query interval τ on an RI-tree

T, we estimate the additional I/O for the join processing as

joinI/O(T, τ) = .

The total I/O cost for an interval intersection query τ on an RI-tree T is then sum-

marized by

total_costI/O(T, τ) = outputI/O(T, τ) + joinI/O(T, τ).

4.5 Extension to Spatial Interval Sequences

The presented functions for selectivity and cost estimation of interval intersection

queries can be extended naturally to interval sequences. To enable query optimiza-

tion for spatial queries on multidimensional extended objects, the corresponding in-

terval sequence query for the chosen space-filling curve has to be evaluated. Unfor-

tunately, a straightforward application of the proposed techniques to each single

interval of the interval sequence can be too inefficient due to the following reasons:

 • A spatial query is specified by an extended, multidimensional object. For arbitrary

query objects, in particular objects not already indexed in the RI-tree, we have to

...

leaf block

...

Figure 41: Additional I/O due to block gaps g between range queries.

gg

1 – g’

g’

a) g = g’ = 0.75 b) g = 2.75; g’ = 0.75

1

gap offset

additional I/O

skipped I/O

block gap g

gapI/O g()
g BGapsleft τ() BGapsright τ()∪∈∑

Extension to Spatial Interval Sequences 81

compute the corresponding interval sequence before the above functions can be

applied. This would typically be the case for window or box queries.

 • As the cardinality of the interval sequence of a spatial object is proportional to its

multidimensional surface [Gae 95][FJM 97][MJFS 96], the estimation for each

single interval consumes very much CPU cost in the context of pure query optimi-

zation, even if the interval sequence of the spatial object has already been comput-

ed.

Thus, the evaluation on the full interval sequence anticipates substantial parts of

the merely potential query processing on the RI-tree. The extensible optimizer might

choose another access path instead, e.g. a full table scan on the base table or an index

scan for a non-spatial predicate. In this case, the interval sequence filter may be

skipped, and the query processor may refine the spatial predicate directly on the

accurate representation of the spatial objects, e.g. on triangle meshes. Thus, the spa-

tial decomposition and linearization of the query object into intervals would have

been done in vain. The following paragraphs address these issues by extending the

selectivity estimation and the cost model of the foregoing sections to a coarse aggre-

gation of the potential query interval sequence. We will rely on the optimized ap-

proach to process interval sequence intersections, as presented in paragraph 3.7.2.

4.5.1 Aggregates on Interval Sequences

In order to minimize the cost of generating and evaluating the fine-grained interval

sequence F of a spatial query, we compute a coarse size-bound approximation C

[Ore 89] which conservatively approximates F with c intervals. The bound c could be

set to a low constant number of intervals, or alternatively, c may depend on the spatial

extension of the query object.

Let F = (ψ1, ψ2, …, ψf) be the fine-grained interval sequence which would be the

result of a granularity-, size- or error-bound decomposition of the spatial query ob-

ject. Let C = (ϕ1, ϕ2, …, ϕc) be a coarse approximation of the query interval se-

quence (cf. Figure 42), where c << f. The basic idea is to materialize and use C in-

stead of F for the query optimization phase, because deriving an estimation of the

selectivity and the cost from F would already reach the CPU complexity of process-

ing the exact query itself.

82 A Cost Model for Spatial Intersection Queries

We first define an intersection ranking function ρintersect and, based on this defini-

tion, two aggregates coverage and cardinality on interval sequences.

Definition 13 (Intersection Ranking Function).

Let be a domain of interval bounds and let be the

corresponding interval domain. For intervals τ = (lτ, uτ) ∈ D and κ = (lκ, uκ) ∈ D, the

intersection ranking function, , is defined by

Definition 14 (Aggregates on Interval Sequences).

Let F = (ψ1, ψ2, …, ψf), f ≥ 1, and C = (ϕ1, ϕ2, …, ϕc), c ≥ 1, be two interval se-

quences representing the same spatial object. Let C be a conservative approximation

of F, i.e. c ≤ f and

For each i, 1 ≤ i ≤ c, we define the following aggregates on F with respect to C:

(i) Let ρintersect be the intersection ranking function. The coverage along ϕi of F is

(ii) The cardinality along ϕi of F is

Thus, coverage denotes the fine-grained hyper-volume within a single interval of

the coarse interval sequence C, while cardinality denotes the number of the respec-

tive fine-grained intervals. These aggregates can be computed or estimated by the

volume and surface of the query region [MJFS 96]. In the following, we will give a

Figure 42: Approximation C of a fine-grained interval sequence F.

ϕi

ψj

C:

F:

ϕ1 ϕc

ψfψ1

...

... ...

...

B IR⊆ D l u(,) B
2∈ l u≤{ }=

ρintersect:D D× IR→

ρintersect τ κ,()
min uτ uκ,() max lτ lκ,(), if τ and κ intersect;–

0 , otherwise;



=

ψi

i 1…f=
∪ ϕi

i 1…c=
∪⊆

coverage ϕi F,() ρintersect ϕi ψj,()

j 1=

f

∑ .=

cardinality ϕi F,() j 1 j f≤ ≤, ϕi intersects ψ
j

{ } .=

Extension to Spatial Interval Sequences 83

short example of the computation of C and its aggregates without a prior materializa-

tion of F. Let the query region be a rectilinear box, and let c = 1: Assuming that the

multi-dimensional data space is ordered according to the Z-ordering, the boundaries

of the span ϕ1 = (lmin, umax) of F can be easily computed by mapping just the two

diagonal vertices with the lowest and highest x-,y- and z-values of the query box onto

the Z-curve [RMF+ 00]. Thereby, we get the coarsest approximation that is possible,

C = (ϕ1). If F would be generated by a granularity-bound decomposition,

coverage(ϕ1, F) is equal to the grid volume of the query box, and cardinality(ϕ1, F)

is equal to the number of intervals in F. This number can be computed in a similar

way as the number of respective quadtree tiles, as it has been presented by Faloutsos,

Jagadish, and Manolopoulos [FJM 97].

4.5.2 Extended Selectivity Estimation

For each interval ϕi = (li, ui) in C, we can assume a data space of coverage(ϕi, F)

to be occupied by the corresponding intervals in F. Starting from a selectivity estima-

tion σ(I, ϕi) for an intersection query ϕi on the intervals I, we estimate the total selec-

tivity σ(I, C, F) for the fine-grained interval sequence F by

where σ1(I, ϕ1) = σ(I, ϕ1). The computation of σi(I, ϕi), 1 < i ≤ c, is similar to

σ(I, ϕi), but considers only the portions of the ranges for rleft, rinner, and rright which

have not already contributed to σi-1(I, ϕi-1). Thereby, the range queries on the quan-

tile statistics are kept disjoint, and 0 ≤ σ(I, C, F) ≤ 1 holds.

More typically, spatial objects are stored by multiple intervals. As the quantiles or

histogram statistics do not recognize the intervals of an interval sequence as an entity,

the above selectivity is estimated with respect to the total number of intervals, and not

with respect to the total number of interval sequences, i.e. stored spatial objects. In

Section 4.6, we will empirically evaluate the deviation to the object-based selectivi-

ty. Nevertheless, as the interval-based selectivity directly reflects the actual cost of

query processing on the database of replicated objects, it will be used as input for the

cost estimation.

σ I C F, ,() σi I ϕi,()
coverage ϕi F,()

ui li–
-------------------------------------⋅ 

  ,

i 1=

c

∑=

84 A Cost Model for Spatial Intersection Queries

4.5.3 Extended I/O Cost Model

Next, we present an I/O cost model for coarse interval sequences with aggrega-

tion. Whereas the computation of outputI/O for F can be done straightforward, the

non-blocked overhead joinI/O has to be estimated for a sequence of interval intersec-

tions. We assume that the two observations of Section 4.4 also hold for interval se-

quences. In particular, the locality assumption of random I/Os is correct, as for sorted

query sequences, the transient join partners are generated in ascending order over all

gaps [KPS 01]. The local descending ordering of the right queries within each gap is

typically absorbed even by small LRU caches. Thus, our former approach to estimate

joinI/O is applicable with the slight modification that the fine-grained intervals of F

are not known this time.

For each interval ϕi = (li, ui) in C, we assume a number of cardinality(ϕi, F) of

covered intervals in F. The average interval length among these intervals is

Similarly, the average gap length along ϕi is estimated by

For each ϕi, the number and distribution of contained left and right queries could

be estimated, and the multi-sets NGapsleft(ϕi, F) and NGapsright(ϕi, F) of query gaps

among the fine-grained representation of ϕi in F could be populated similarly as in

Section 4.4. But, as this extensive analysis would already be based on the estimated

input of C and would increase the computational complexity of the cost model, we

simply assume that the mean value of NGapsright(ϕi, F) is equal to the sum of

avgGap(ϕi, F) and avgInt(ϕi, F). As the inner queries are integrated with the left

queries, the mean value of NGapsleft(ϕi, F) then corresponds to avgGap(ϕi, F).

Thereby, we subsume all potential queries within gaps of F by single left and single

right queries (cf. Figure 43):

(i)

(ii)

avgInt ϕi F,()
coverage ϕi F,()

cardinality ϕi F,()
-- .=

avgGap ϕi F,()
ui li–() coverage ϕi F,()–

cardinality ϕi F,() 1–
-- .=

avg NGapsleft ϕi F,()() avgGap ϕi F,(),=

avg NGapsright ϕi F,()() avgGap ϕi F,() avgInt ϕi F,().+=

Extension to Spatial Interval Sequences 85

The respective averages on the block gaps BGapsright(ϕi, F) and BGapsleft(ϕi, F)

can be computed analogously to Section 4.4.

When applied to the lexicographic ordering, these plain averages suffice since

particularly for convex spatial objects, the variance among the interval gaps is very

small. Unfortunately, on the far more powerful concept of fractal space filling curves,

including the Z- and Hilbert-ordering, the variance among the gap lengths is extreme-

ly high. In this case, the above averages provide a very weak characterization for the

expected gap distribution. We have observed that the binary logarithms of fractal

gaps typically obey an exponential distribution. Furthermore, histograms on fractal

gaps show local peaks at whole multiples of the original data dimension d, i.e. at gap

lengths around 2k·d, k ≥ 0. This behavior is caused by the fact that many gaps repre-

sent empty square-shaped (2D) or cubical (3D) regions at the boundary of spatial

objects [Pfe 01]. The shaded area in Figure 44 depicts a real gap distribution among

100 Z-ordered query regions for a two-dimensional real-world database. In

Section 6.6, it is shown that similar distributions occur for 3D CAD data. Our pro-

posed estimation gapest of this distribution is as simple as effective: the overall expo-

nential shape is approximated by a geometric distribution on the base points

F

→ avgInt(ϕi,F)

→ avgGap(ϕi,F)

→ avg(NGapsright(ϕi,F))

→ avg(NGapsleft(ϕi,F))

ϕi

ψj ψj+1

left queries

right queries

inner queries

Figure 43: Extended RI-tree cost model.
Contributors (→) to the averages avgInt(ϕi, F) and avgGap(ϕi, F) for a
coarse interval, and the mean of NGapsleft(ϕi, F) and NGapsright(ϕi, F).

86 A Cost Model for Spatial Intersection Queries

pk = (2k·d)k, k ≥ 0. We use a constant mean value µ according to the complexity of the

spatial objects and to the chosen space-filling curve:

For typical Z-ordered spatial objects, for example, we observed that µ = 2.3 seems

to be a good choice. Between two base points, we assign fractions of the cardinality

of the larger base point to model the observed decreasing frequency of the corre-

sponding tile shapes:

Figure 44 depicts the estimated gap distribution gapest, normalized to the total

cardinality of gaps. In most cases, gapest is an accurate estimation of the real distri-

bution of fractal gaps among a fine-grained interval sequence F which can be used

instead of avgGap(ϕi, F) to get better distributions for BGapsright(ϕi, F) and

BGapsleft(ϕi, F).

0

1

2

3

4

5

6

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

gap size [nodes]

n
u

m
b

er
 o

f
g

ap
s

[x
 1

0,
00

0]

R e a l g a p d i s t r i b u t i o n

Estimated gap distribution

database = 2D-REAL
µ = 2.3

Figure 44: Real and estimated gap distribution.
(Z-ordered interval sequences of 2D spatial objects)

gapest pk()
1
µ
--- 1

1
µ
---– 

  k
k 0.≥,⋅=

gapest 2
i

pk⋅()
1

2i
---- gapest pk 1+() k 0≥ 1, i d.<≤,⋅=

Empirical Evaluation 87

4.6 Empirical Evaluation

4.6.1 Experimental Setup

We implemented the proposed functions for the estimation of selectivity and exe-

cution cost on the Oracle Server Release 8.1.6 using built-in methods for statistics

collection, analytic SQL functions, and the PL/SQL procedural runtime environ-

ment. All experiments were performed on an Athlon/750 machine with IDE hard

drives. The database block cache was set to 500 disk blocks with a block size of 8 KB

and was used exclusively by one active session.

The experiments for the evaluation of statistics, selectivity estimation, and cost

model have been executed on various interval databases. We have used a synthetic

data set of intervals following a uniform starting point and length distribution (UNI)

and intervals derived from a real spatial data set (REAL). For both databases UNI and

REAL, Figure 45 depicts the histogram statistics. A peak in the histogram

0

4

8

12

16

1 256 65536 2E+07 4E+09

 length of intervals

n
u

m
b

er
 o

f
in

te
rv

al
s

[x
 1

.0
00

]

0

1

2

3

0 10 20 30

length of intervals
[x 1.000]

n
u

m
b

er
 o

f
in

te
rv

al
s

[x
 1

.0
00

]

0,0

0,6

1,2

1,8

0 200 401 602 802
bucket (lower bound)

 [x 1.000]

n
u

m
b

er
 o

f
in

te
rv

al
s

[x
 1

.0
00

]

database = UNI
db size = 100,000 intervals
resolution = 100 buckets

a)

Figure 45: Histograms of interval distributions.
a) for uniform data, b) for real data

0

2

4

6

8

10

62 232 402 572 741
bucket (lower bound)

[x 1.000.000]

n
u

m
b

er
 o

f
in

te
rv

al
s

 [
x

1.
00

0]

database = REAL
db size = 115,000 intervals
resolution = 100 buckets

b)

88 A Cost Model for Spatial Intersection Queries

visualization denotes a high density of interval data. In case of the UNI data set,

the data space [1..1,000,000] is covered with a uniform density. Furthermore, we

used Z-ordered interval sequences representing polygons of real world spatial

objects (REALsequence).

To evaluate the quality of the selectivity and cost prediction, we determined the

average relative error of the estimates. This measure denotes the ratio of the absolute

estimation error to the actual query result, averaged over a set of queries S. If ei is the

estimated and ri is the actual result size of a query qi, the average relative error of the

estimated selectivity for S is defined as:

Avg relative error (selectivity) =

For the estimations of the actual I/O cost, the average relative error is defined

analogously. This measure is a common technique to evaluate selectivity estimations

and cost models, see e.g. [APR 99]. It is undefined if all queries in a query set pro-

duce zero output or zero cost. The following results show the averages of, in total,

100 intersection queries for the UNI, REAL and REALsequence databases.

4.6.2 Computation of Statistics

The persistent statistics must be recomputed in order to adapt to changing data

distributions. For highly dynamic data, the database administrator might even decide

to trigger the computation of important statistics periodically. Therefore, a low exe-

cution cost for the creation of statistics is essential. Figure 46 compares the total

ri ei–
qi S∈
∑

 
 
  riqi S∈

∑
 
 
 ⁄

Figure 46: Computation cost of histogram-based and quantile-based statistics.

0

10

2 0

3 0

4 0

10 0 ,0 0 0 2 0 0 ,0 0 0 3 0 0 ,0 0 0 4 0 0 ,0 0 0

d a t a b a s e s iz e [# in t e r v a ls]

re
al

 t
im

e
[s

ec
]

h is to g r a m s

q u a n t ile s

d a ta b a s e = UNI
r e s o lu t io n = 1 0 0 b u c ke ts /q u a n tile s

Empirical Evaluation 89

runtime of computation for the histogram statistics to the quantile statistics for in-

creasing database size, using 100% samples. Due to the overhead of barrier crossing

between PL/SQL and SQL, the quantile-based approach outperforms the histo-

gram-based approach by a factor of 2.

4.6.3 Selectivity Estimation

In the next set of experiments, we evaluate the average relative error with respect

to the query size, i.e. the percentage of the data space covered by the query region.

Figure 47 shows the relative error of the histogram-based and quantile-based statis-

tics on the UNI and REAL database. The resulting accuracy of both, the quan-

tile-based approach and the histogram-based approach is very high. For higher selec-

tivities, the quantile-based approach performs slightly better, yielding estimation

errors around 4.5% and 2.9% for the UNI and REAL database, respectively. This

result can be explained by the fact that quantiles adapt to the local density of the data,

whereas histograms partition the whole data space using buckets of identical size.

The next experiment in Figure 48 depicts the average relative error for different res-

olutions of the persistent statistics, evaluated for a set of intersection queries having

10% average query size. As expected, the estimation error increases significantly for

coarser resolutions. Beyond a global optimum at some 100 buckets, the error of the

histogram-based approach increases for higher resolutions, due to the replication of

intervals spanning multiple histogram buckets. Therefore, we focus on the quan-

tile-based approach in the following experiments, as the representation of intervals is

non-redundant.

0

1

2

3

4

0 25 50 75 100

query size [%]

re
la

ti
ve

 e
rr

o
r

[%
]

quantiles

histograms

database = REAL
db size = 115,000 intervals
resolution = 100 buckets/quantiles

0

2

4

6

8

0 25 50 75 100

query size [%]

re
la

ti
ve

 e
rr

o
r

[%
]

histograms

quantiles

database = UNI
db size = 100,000 intervals
resolution = 100 buckets/quantiles

Figure 47: Relative error of selectivity estimation for histograms and quantiles.
a) on uniform data, b) on real data

a) b)

90 A Cost Model for Spatial Intersection Queries

Figure 49 also shows the results on the REALsequence database. For a coarseness

of c = 1, we get relative estimation errors between 15% and 30%. Thus, even with the

maximal aggregation, the computed estimate gives the query optimizer a good im-

pression of the spatial selectivity. The quality of this hint improves with increasing c,

as for c = max (i.e. c = f) in the experiment. For the actual query results we measured

both selectivities: with respect to the total number of stored intervals, and with re-

spect to the stored interval sequences, i.e. polygons. Note that the relative error to the

actual polygon-based selectivity (Polygons) is roughly in the order of the relative

error to the actual interval-based selectivity (Intervals). Thus, the selectivity on the

single intervals largely reflects the selectivity on the original spatial objects. Never-

0

5

10

15

0 100 20 0 300 40 0

resolution [buckets/quantiles]

re
la

ti
ve

 e
rr

o
r

[%
]

quantiles

histograms

database = REAL
query size = 10%

Figure 48: Relative error of selectivity estimation for varying statistic resolutions.

0

10

20

30

40

0 25 50 75

query size [%]

re
la

ti
ve

 e
rr

o
r

[%
]

F i n e - g r a i n e d e s t i m a t i o n (c = m a x)

C o a r s e e s t i m a t i o n (c = 1)

[Po lyg o ns]

[I n t e r v a l s]

[Po lyg o ns]

[I n t e r v a l s]

database = REAL
db size = 57,500 polygons / 5,000,000 intervals
resolution = 100 quantiles

Figure 49: Relative error of selectivity estimation.
(REALsequence database)

sequence

Empirical Evaluation 91

theless, what we have to provide as input for the cost estimation is the more accurate

interval-based estimate. The achieved results seem to be comparable to the perfor-

mance of originally multidimensional statistics [APR 99].

Regarding the runtime, a single selectivity estimation using statistics with a reso-

lution of 100 quantiles for the UNI, REAL and REALsequence (c = 1) databases took

about 0.05 seconds on the average.

4.6.4 Cost Estimation

We used the estimated selectivity of the previous section as input for the I/O cost
model. The extensible query optimizer uses the resulting estimations to decide upon
the usability of the RI-tree for specific queries. Figure 50a presents the relative error
of the estimated cost for the UNI and REAL databases. The relative errors stay below
14% and 23%, respectively. Figure 50b depicts the corresponding results for a
coarseness of c = 1 and c = max on the REALsequence database. The I/O error for
c = 1 at a query size near 0% averages 24.9% and decreases to 10.2% at 75% query
size.

Figure 51 and Figure 52 compare the absolute estimations and the actual cost for

the blocked output of results (outputI/O). In addition, joinI/O denotes the overhead due
to the nested-loop join with the transient query tables. For the sake of comparability
to the analytical I/O complexity, the results are shown with respect to the actual query
selectivity. Our interpretation of these results is twofold: First, the real I/O cost show
that the total I/O is largely determined by the cardinality of the query result, whereas
the overhead for the join processing remains almost constant. The relative cost of the
join overhead decreases from 100% at 0% selectivity to almost 0% at 100% selectiv-

0

10

20

30

0 25 50 75
query size [%]

re
la

ti
ve

 e
rr

o
r

[%
]

I/ O er ro r (c = 1)

I/ O er ro r (c = max)

database = REAL
db size = 57,500 polygons / 5,000,000 intervals
resolution = 100 quantiles

0

10

20

30

0 25 50 75 100

query size [%]

re
la

ti
ve

 e
rr

o
r

[%
]

database = REAL
db size = 115,000 intervals
resolution = 100 quantiles

database = UNI
db size = 100,000 intervals
resolution = 100 quantiles

Figure 50: Relative error for cost estimation.
a) on UNI and REAL, b) on REALsequence

a) b) sequence

92 A Cost Model for Spatial Intersection Queries

ity. According to these empirical results, the overhead of joinI/O is negligible for

higher values of the query selectivity. Second, we observe that our cost model not

only yields tight estimations for the total query cost, but also reflects the distribution

between the output and join cost rather accurately.

As expected, Figure 52 shows that the accuracy of the cost estimation increases

with a higher granularity c of the coarse interval sequence. Considering the compara-

ble empirical results for cost-models on stand-alone R-trees [HJR 97][TSS 00], and

the often significant difference to the cost of alternative access paths including

0

1

2

3

4

5

0 10 20 30 40 50 60 70 80 90 100

actual selectivity [%]

p
h

ys
ic

al
 r

ea
d

s
 [

x
10

0
b

lo
ck

s]

 es t . o u tpu t I/O

 es t . jo in I/O

 e s t . t o t a l I / O
 rea l jo in I/O

 r e a l t o t a l I / O

database = UNI
db size = 100,000 intervals
resolution = 100 quantiles

Figure 51: Output cost and join overhead for queries evaluated.
a) on uniform data, b) on real data

0

1

2

3

4

5

0 10 20 30 40 50 60 70 80 90 100

actual selectivity [%]

p
h

ys
ic

al
 r

ea
d

s
 [

x
10

0
b

lo
ck

s]

 es t . o u tpu t I/O

 es t . jo in I/O

 e s t . t o t a l I / O
 rea l jo in I/O

 r e a l t o t a l I / O

database = UNI
db size = 100,000 intervals
resolution = 100 quantiles

0

1

2

3

4

5

0 10 20 30 40 50 60 70 80 90 100

actual selectivity [%]

p
h

ys
ic

al
 r

ea
d

s
 [

x
10

0
b

lo
ck

s]

 e s t . o u tpu t I/O
 e s t . jo in I/O
 e s t . t o t a l I / O
 rea l jo in I/O
 r e a l t o t a l I / O

database = REAL
db size = 115,000 intervals
resolution = 100 quantiles

a) b)

0

10

20

30

0 10 20 30 40 50 60 70 80 90 100

actual selectivity [%]

p
h

ys
ic

al
 r

ea
d

s
 [

x
1,

00
0

b
lo

ck
s]

database =REAL
db size = 57,500 polygons / 5,000,000 intervals
resolution = 100 quantiles

Figure 52: Output cost and join cost for queries using interval sequences.
a) c = 1 and b) c = max (on the REALsequence database)

a)

0

10

20

30

0 10 20 30 40 50 60 70 80 90 10
0

actual selectivity [%]

p
h

ys
ic

al
 r

ea
d

s
 [

x
1,

00
0

b
lo

ck
s]

 est. output I/O

 est. join I/O

 est. total I/O
 real join I/O

 real total I/O

b)
sequence

Summary 93

full-table scans, we conjecture that already a coarse estimation with c = 1 is well
suited for spatial queries on the RI-tree. A fine-grained computation is, of course,
much more accurate, but already anticipates a significant amount of the cost of the
potential query.

Regardless of the actual query selectivity, the cost computation on the databases

UNI, REAL, and REALsequence (c = 1) took about 0.05 seconds.

4.7 Summary

High quality selectivity estimation and cost prediction are the fundamentals of

effective query optimization. Particularly for complex query objects and complex

query predicates, the recent object-relational database servers provide extensible op-

timization frameworks that go along with the extensible indexing frameworks, in

order to complete the seamless integration of user-defined index structures into the

declarative DML. In this chapter, we presented an example for such an extension

focusing on the RI-tree that already fits well to modern object-relational extensible

indexing frameworks. We particularly propose models to estimate the selectivity of

interval (sequence) intersection queries and to predict the cost for query processing.

With respect to the generation and management of statistics, the proposed quan-

tile-based selectivity estimation reuses as much built-in functionality of the RDBMS

as possible. According to our experimental evaluation, the computed estimations are

very accurate.

94 A Cost Model for Spatial Intersection Queries

95

Chapter 5
Statistic-Driven Acceleration of
Relational Index Structures

Relational index structures, as for instance the RI-tree, the RQ-tree or the RR-tree,

support efficient query processing on top of existing object-relational database sys-

tems. Furthermore, there exist effective and efficient models to estimate the selectiv-

ity and the I/O cost in order to guide the cost-based optimizer whether and how to

include these index structures into the execution plan. By design, the models imme-

diately fit to common extensible indexing/optimization frameworks, and their imple-

mentations exploit the built-in statistics facilities of the database server. In this chap-

ter, we show how these statistics can also be used for accelerating the access methods

themselves. For space-partitioning index structures we propose to reduce the number

of generated join partners which results in less logical reads and consequently im-

proves the overall runtime. We cut down on the number of join partners by grouping

different join partners together according to a statistic driven grouping algorithm. For

hierarchical data-partitioning index structures, we propose to reduce the navigational

index traversal cost by using “extended index range scans”. If a directory node is

“largely” covered by the actual query, the recursive tree traversal for this node can

beneficially be replaced by a scan on the leaf level of the index instead of navigating

through the directory any longer. Our experiments on an Oracle9i database yield an

average speed-up between 20% and 10,000% for spatial collision queries on the

RI-tree, the RQ-tree and on the RR-tree.

96 Statistic-Driven Acceleration of Relational Index Structures

5.1 Introduction

The efficient management of complex objects has become an enabling technology

for many novel database applications. Former approaches which try to generate effi-

cient read schedules for a given set of disk pages must have access to the exact infor-

mation where the blocks are located on the disk [SLF 93]. As this information is not

available on top of an ORDBMS, we pursue another idea which exploits already

existing statistics in order to accelerate spatial query processing. We introduce our

approach in general for space- and data-partitioning index structures as well as exem-

plarily for spatial intersection queries performed on the RR-tree, the RQ-tree and the

RI-tree.

The remainder of this chapter is organized as follows. In Section 5.2, we show

how we can use the already existing statistics to accelerate the query process on

space-partitioning relational access methods. In addition to the known error- and

size-bound decomposition approaches, we present a new statistic-bound decomposi-

tion approach for decomposing spatially extended objects. In Section 5.3, we present

our approach for hierarchical data-partitioning index structures where at each direc-

tory node it is individually decided whether it is beneficial to switch to a range scan

on the leaf level of the index or whether it is beneficial to take further advantage of

the index-directory. In Section 5.4, we present convincing experimental results and

conclude the chapter, in Section 5.5, with a short summary.

5.2 Acceleration of Relational Space-Partitioning Access Methods

For commercial use, a seamless and capable integration of spatial indexing into

industrial-strength databases is essential. In order to integrate these index structures

into modern ORDBMSs, we need suitable cost models (cf. Chapter 4), which exploit

the built-in statistics facilities of the database server. In this section, we discuss how

we can use these statistics to accelerate the query processing itself.

In addition to the query optimizer of an ORDBMS, which uses statistics for

cost-based optimizations, we use the statistics to minimize the overall navigational

cost of a relational index structure. Our approach accelerates relational access meth-

ods by trying to reduce the total number of logical reads for a given query. The

relational access method can be any custom index structure mapped to a fine granular

Acceleration of Relational Space-Partitioning Access Methods 97

relational schema which is organized by built-in access methods, as for instance the

B+-tree.

There already exist variants of basic relational index structures which try to mini-

mize the number of join partners and, consequently, the number of logical reads and

the overall query response time. For instance, there exist index structures which were

especially tuned for coping efficiently with sequences. One example is the RI-tree as

introduced in Section 3.7.2. It supports the efficient detection of intersecting spatial

objects, which are represented by interval sequences. The main idea of this index

structure is to neglect such nodes as join partners which are already handled by the

previous query interval or which will be handled by the following one. The main

disadvantage of this approach is that only specific predicates are supported by this

kind of index structures. For instance the RI-tree according to [KPS 01] only sup-

ports boolean intersection queries, but already fails to compute the intersection vol-

ume. Similar optimizations are possible for the RQ-tree by eliminating duplicates

from the upper hulls resulting from different query tiles of a given query sequence. In

contrast to these optimizations which do not take the actual data distribution into

account, our new approach accelerates both boolean and ranked intersection queries

by exploiting existing statistics, i.e. taking the data distribution into consideration.

In this section, we first look at very comprised statistic values, which can already

be very useful for accelerating spatial relational index structures (cf. Section 5.2.1).

In Section 5.2.2, we show how we can benefit from the statistics, used by the

cost-models belonging to a relational access method. Finally, in Section 5.2.3, we

introduce a new statistic-based decomposition approach in addition to the existing

error- and size-bound decomposition approaches. In all three subsections, we first

introduce our ideas in general and then show how to adapt them to the RI-tree and the

RQ-tree.

5.2.1 Statistics Related to the Relational Access Method

As already indicated in Definition 1 and Figure 25, the metadata table is a single

table for each database and each relational access method, storing O(1) rows for each

instance of an index. All schema objects belonging to the relational index, in partic-

ular the name of the index table, and other index parameters are stored in this global

meta table. Especially in the case of space partitioning index structures, often a few

values, describing the actual data distribution, help to reduce the I/O cost dramatical-

98 Statistic-Driven Acceleration of Relational Index Structures

ly. If we assume for instance that one half of the data space is completely empty, and

we carry out a box volume query in this area, we can omit a lot of unnecessary I/O

accesses if we take the actual data distribution into consideration. Consequently, it is

beneficial if we store coarse information about the actual data distribution along

with the fixed data space extension in the metadata table.

In Table 1, we summarized some optimizations which are suitable for the RI-tree

and the RQ-tree.

These simple statistics are especially useful for indexing extended spatial objects.

If we use the RI-tree or the RQ-tree for indexing extended objects, very often only the

lower levels of the virtual primary structure are engaged, as spatial objects tend to

decompose into numerous small tiles or intervals [KPPS 03a] (cf. Section 5.4).

5.2.2 Statistics Related to the Built-in Index Structure

In Chapter 4, it was shown that using quantiles (‘equi-count histograms’) is more

suitable for estimating the selectivity and the corresponding I/O cost than using his-

tograms (‘equi-width histograms’). In addition, the runtime required for the histo-

denotation explanation

MaxNodeLevel
MinNodeLevel
(RI-tree)

These two parameters reflect the highest and lowest level of
the fork-nodes of the intervals in the database.
If we arithmetically traverse the primary structure for a
given query interval q = (l,u), we only have to collect those
nodes n as join partners, for which MinNodeLevel ≤
Level (n) ≤ MaxNodeLevel holds.

MaxLeftDist
MaxRightDist
(RI-tree)

These two parameters reflect the maximum distance of the
boundary values of any database interval to its correspond-
ing fork-node.
If we arithmetically traverse the primary structure for a
given query interval q = (l,u), we only have to collect those
nodes n as join partners, for which n-MaxLeftDist ≤ u and
n+MaxRightDist ≥ l holds.

MaxTileLevel
MinTileLevel
(RQ-tree)

These two parameters reflect the highest and lowest level of
stored tiles within the database.
If we compute the upper hull of a given query tile q, we only
have to consider those tiles t as join partners, for which
MinTileLevel ≤ Level (t) ≤ MaxTileLevel holds.

Table 1: Simple Statistics for the RI-tree and the RQ-tree

Acceleration of Relational Space-Partitioning Access Methods 99

gram computation is increased by the cost of barrier-crossings between the declara-

tive environment of the SQL layer and our stored procedure. Fortunately, most

ORDBMS comprise efficient built-in functions to compute single-column statistics,

particularly for cost-based query optimization. Available optimizer statistics are ac-

cessible to the user by the relational data dictionary. The basic idea of our quantile-

based selectivity estimation is to exploit these built-in index statistics rather than to

add and maintain user-defined histograms.

We will now discuss how we can use this information to accelerate the query

process itself. Any query for a relational index structure, e.g. RI-tree or RQ-tree,

leads to several index range scans on the built-in index structures, e.g. B+-tree. The

general idea of our approach is to minimize the overall navigational cost of the

built-in index by applying extended index range scans. Thereby, we read false hits

from the index, which are filtered out by a subsequent refinement step. Our approach

closes the gaps between the index range scans if and only if the number of addition-

ally read data is comparably small, more precisely the cost related to these false hits

is smaller than the navigational cost related to an additional range scan. This decision

whether to close a gap is based on the built-in statistics. We will now formally intro-

duce this idea.

Index Range Scan Sequences. For spatial intersection queries, the query object

Q leads to many disjoint range queries on the built-in index I, e.g. the B+-tree. We

consider them as a sequence SeqQ,I = (〈s1,..., sn〉) of index range scans for which the

following assumptions hold (cf. Figure 53a):

 • The elements ri stored in the index are of the same type as li and ui. Furthermore,

we assume that the elements ri can be regarded as a linear ordered list

L(I) =<r1,...,rN> for which r1 ≤ ... ≤ rN holds.

 • We assume that the data pages pi of the index obey a linear ordering ≤ and fulfill

the following property: r’≤ r’’ ⇔ p(r’) ≤ p(r’’), where p(r) denotes the disk page

of the index I, which contains the entry r.

I/O cost. The I/O cost CI/O(s) associated with one index range scan s = (l, u) of

SeqQ,I = (〈s1,..., sn〉) are composed from two parts: Cn
I/O(s) the navigational I/O cost

for finding the first page of the result set, and Cs
I/O(s) the cost for scanning the re-

maining pages containing the complete result set.

100 Statistic-Driven Acceleration of Relational Index Structures

Formally, CI/O(s) = Cn
I/O(s) + Cs

I/O(s), with the following two properties:

(i) Cn
I/O(s) = Cn

I/O(p(r’)) (navigational cost)

(ii) Cs
I/O(s) = Cs

I/O(<p(r’),...,p(r’’)>) (scan cost)

where r’, r’’ ∈ L(I) and ∀r ∈ L(I) : (r’ ≤ r ≤ r’’) ⇔ (l ≤ r ≤ u) holds.

The I/O cost C(SeqQ,I) associated with SeqQ,I = (〈s1,..., sn〉) are determined by:

C(SeqQ,I) = CI/O(SeqQ,I) =
 .

Extended Index Range Scan Sequences. The main purpose of our approach is to

minimize the overall cost for the navigational part of the built-in index. Therefore, we

try to reduce the number of generated range queries on the index I, while only allow-

ing a small increase in the output cost. This can be achieved by merging two suitable

adjacent range scans s’ = (l’, u’) and s’’ = (l’’, u’’) together to one extended range

scan xs = (l’, u’’).

Cs
I/O(〈s1, s2〉) = 1

s3

pb

Figure 53: Accelerated query processing.
a) Index range scan sequence, b) Extended index range scan sequence

query object Q

query object Q yields to an
index range scan sequence SeqQ,I = (〈s1, s2, s3, s4〉)

s1 s2 s4

l1 u1 l2 u2 l3 u3 l4 u4

p1

Cn
I/O(s1) Cn

I/O(s2) Cn
I/O(s3) Cn

I/O(s4)

extended index range scan sequence
XSeqQ,I = (〈〈s1, s2〉, 〈s3, s4〉〉)

〈s3, s4〉

pb

〈s1, s2〉

l1 u2 l3 u4

p1

Cn
I/O(〈s1, s2〉) = Cn

I/O(s1)

Cs
I/O(〈s3, s4〉) = 7

Cn
I/O(〈s3, s4〉) = Cn

I/O(s3)

blocks of index data I

blocks of index data I
Cs

I/O(s4) = 2Cs
I/O(s3) = 4Cs

I/O(s1) = Cs
I/O(s2) = 1

a)

b)

CI O⁄ si()
i 1=

n

∑ Cn
I O⁄ si() Cs

I O⁄ si()+()

i 1=

n

∑=

Acceleration of Relational Space-Partitioning Access Methods 101

Intuitively, an extended range scan xs = is an ordered list of index range

scans. When carrying it out, we traverse the index directory only once and perform a

range scan (lr, us), as for example (l3, u4) in Figure 53b. Performing the extended

range scan we read false hits from the index I, which have to be filtered out in a

subsequent refinement step. The overall cost C(xs) of an extended range scan xs is

composed from the sum of the I/O cost of the extended range scan and the CPU cost

related to the refinement step: C(xs) = CI/O(xs) + CCPU(xs).

I/O cost. The I/O cost CI/O(xs) associated with one extended range scan xs =

 are composed from two parts CI/O(xs) = Cn
I/O(xs) + Cs

I/O(xs), with the

following properties:

(i) Cn
I/O(xs) = Cn

I/O(sr) (navigational cost)

(ii) Cs
I/O(xs) = Cs

I/O(lr ,us) (scan cost)

CPU cost. The CPU cost CCPU(xs) associated with one extended range scan xs =

 denote the cost which are required to perform the filter operation for all

tuples resulting from the extended range scan:

CCPU(xs) = CCPU(<r’,..,r’’>), where ∀r ∈ L(I) : (r’ ≤ r ≤ r’’) ⇔ (lr ≤ r ≤ us).

The total cost C(XSeqQ,I) associated with an extended index range scan sequence

XSeqQ,I = (〈xs1,..., xsm〉) can be computed as follows:

C(XSeqQ,I) =

.

Obviously, there might exist extended index range scan sequences XSeqQ,I for

which C(XSeqQ,I) << C(SeqQ,I) holds. For each gap g between two adjacent range

queries s’ and s’’ we decide, whether the cost of scanning over the gap g are lower

than the navigational I/O cost related to s’’. The decision whether to merge range scan

s’ and s’’ to one extended range scan and apply an additional refinement step after-

wards in order to filter out false hits is based on statistics, which are necessary for the

cost models anyway.

The multi-set S of our quantile vector (q0, …, qν) (cf. Definition 8) is formed by

the values of the first attribute A1 of the domain values of our index I. By means of

these statistics we can estimate the I/O cost Cs
I/O(s) associated with one range scan

sr,..,ss〈 〉

sr,..,ss〈 〉

sr,..,ss〈 〉

C xsj()
j 1=

m

∑ C
I O⁄

xsj() C
CPU

xsj()+()
j 1=

m

∑=

102 Statistic-Driven Acceleration of Relational Index Structures

s = (l, u). In the following formula, b denotes the average number of index entries per

disk block, v denotes the resolution of the quantile vector, N denotes the overall

number of entries stored in the index I and overlap returns the intersection length of

two intersecting intervals.

We can also apply the above formula to estimate the total cost Cs(g) = Cs
I/O(g) +

CCPU(g) related to scanning over a gap g =]u’, l’’[between two adjacent range

queries s’ and s’’. The CPU cost can be estimated by CCPU(g) = , with a

parameter k > 0, since both the I/O cost and the CPU cost are directly proportional to

the size of the result set of the range scan. If Cs(g) are lower than Cn(s’’), we close the

gap g.

We can find the extended range scan sequence XSeqQ,I, trying to minimize

C(XSeqQ,I), by deciding for each of the n-1 gaps between the index range scans

s1,..., sn of the index range scan sequence SeqQ,I= (〈s1,..., sn〉), whether we close this

gap or skip it. Thus we obtain an extended index range scan sequence XSeqQ,I =

(〈 ,..., 〉), which satisfies the following property:

Usually, the actual navigational cost Cn
I/O are independent of the actual range

scan, and Cn
est can easily be estimated, e.g. by the height of the B+-directory.

In the next paragraphs, we will show how our approach can be applied to the

RI-tree and the RQ-tree.

Adoption to the RQ-tree. Assume object Q in Figure 54 is used as query object.

Then there are multiple exact match and range scan queries which have to be per-

formed in order to detect all intersecting database objects. We can reduce the cost by

closing small gaps on the leaf-level of the underlying B+-tree. By using the informa-

tion stored in the statistics, i.e. using the tile quantiles, the number of join partners,

Cs
I O/ l u,() Cs

est
l u,()≈

overlap l u,() qi 1– qi,(),()
qi qi 1––

N
v
----⋅ 

 
i 1=

v

∑
b

---=

k Cs
I O/ g()⋅

si0 1+ ,..,si1
〈 〉 sim 1– 1+ ,..,sim

〈 〉

i 1... n 1–∈∀ : i i1...im 1–∈ ⇔ Cn
est

si 1+() Cs
est

ui li 1+,()<

Acceleration of Relational Space-Partitioning Access Methods 103

which correspond directly to the navigational cost Cn
I/O, can be reduced drastically.

The quantile vector is built over the values stored in the leaf-level of the B+-tree.

We investigate all gaps included in the sequence of our generated join partners and

decide whether it is beneficial to close this gap. Assume the height of our B+-

directory is hB. If we close the gap, we reduce the navigational cost as follows:

Cn
I/O = Cn

I/O - hB. On the other hand, we estimate the cost Cs(g) required to read the

leaf blocks on our index (zval), which are covered by the database tiles of the actual

investigated gap g. If these estimated cost are lower than hB, we close this gap. Thus

we reduce the join cost Cn
I/O by hB, while not increasing the output cost Cs by more

than hB. This process is depicted in Figure 54.

The above mentioned cost-based grouping step can be carried out in a procedural

preparation step JoinPartGen, leading to one single SQL-statement (cf. Figure 55).

The resulting table tiles contains entries of a type which consists of three attributes

ZvalLow, ZvalHigh and ExactZvalList. The attribute ExactZvalList is a collection of

tile ranges, representing the accurate query information. It is needed for an additional

refinement step to filter out false index hits, by calling TestZval().

For more detail, we refer the interested reader to [Müh 03].

Figure 54: Cost-based tile grouping.

12 15 27
3 6 18 21

10 25 28

4 7 19 22
20 23

11 14 26 29
30

Tile 0 8 24 30 16

cost-based
Quantiles

grouping

B

302513

8 20 23

Q

8 20 23

13

1 16

2 17

9 24

0

0 8 24 30 16 30
25

2320

13

8

0 8 24 30 16 30
25

2320

13

8

corresponding join partners =Query Object

Quadtree tiles

Quadtree tiles

Quadtree tiles

Recursive partitioning of the query object Q
index range scan sequence

extended index range scan sequence

SELECT DISTINCT idx.id
FROM DBTILES idx, TABLE(JoinPartGen(BOX((0,0,0),(10,10,10)))) tiles,
WHERE (idx.zval BETWEEN tiles.ZvalLow AND tiles.ZvalHigh) AND

TestZval(idx.zval, tiles.ExactZvalList);

Figure 55: Accelerated window query on a Relational Quadtree.

104 Statistic-Driven Acceleration of Relational Index Structures

Adoption to the RI-tree. Similarly to the RQ-tree, we can integrate the cost-based

grouping algorithm into the procedural query preparation step of the RI-tree. This

grouping algorithm is independent of the high-level relational index-structure. It is

only based on a B+-tree and on a quantile vector. The quantile vector in the case of

the RI-tree, is formed by the fork-nodes of the intervals stored in the database. Note

that this node quantile was also used for an effective and efficient cost-model for

intersection queries on RI-trees (cf. Chapter 4).

For more detail, we refer the interested reader to [Mai 03].

5.2.3 Statistics Related to the Object Decompositioning

Both the error- and size-bound decomposition approach for spatially extended

objects lead to a sequence of simple query objects, e.g. a sequence of tiles or inter-

vals. In this section, we introduce an additional decomposition approach which de-

composes the object based on the expected I/O cost. The expected I/O cost can be

estimated in the same way the optimizer estimates the cost for a given query. Like the

approach of the last section, the decomposition of the query object is controlled by

the statistics which are available for free and maintained by the cost models of the

available index structures.

Figure 56 depicts this top down grouping algorithm which is beneficial for the

RI-tree and the RQ-tree. The algorithm starts with a query object comprising the

complete object. In each step, we determine the maximum included gap and split

along this gap resulting in a sequence of query objects. Then we estimate the I/O cost

related to the original query object and the cost related to the sequence. If the cost of

the original query object is smaller than the cost of the sequence, we terminate the

algorithm. The query object now consists of a sequence of query objects. In an addi-

tional refinement step, we eliminate the false hits, which result from the fact that we

have not decomposed the spatial object with the maximum possible accuracy.

Box Volume queries. The introduced approach is especially useful for highly

selective box volume queries on the RI-tree or the RQ-tree. The traditional error- and

size-bound decomposition approaches [Ore 89] decompose a large query object into

smaller query objects optimizing the trade off between accuracy and redundancy. In

contrast, the idea of taking the actual data distribution into account in order to decom-

pose the query object, leads to a new selectivity-bound decomposition approach,

Acceleration of Relational Data-Partitioning Access Methods 105

which tries to minimize the overall number of logical reads. We decompose a query

box dependent on the stored data. If there are not many data stored in the query area,

the box is decomposed into comparable few simple query objects, i.e. tiles or inter-

vals. On the other hand, if the query returns a lot of results, we decompose the query

into comparably many simple query objects.

A box can be described by a few parameters, e.g. by two points. The few parame-

ters which are necessary to describe the box are attached to each incompletely de-

composed interval or tile (cf. Section 6.3.3). In the refinement step, we further de-

compose the query intervals or tiles on demand from the compact geometric

information (cf. Section 6.4.1). In Chapter 6, we discuss in detail the problem of

finding an appropriate object decomposition for complex spatial objects.

5.3 Acceleration of Relational Data-Partitioning Access Methods

In contrast to space-partitioning index structures, data-partitioning index struc-

tures naturally adapt to the actual data distribution which results in a very good query

response behavior. In this section, we show how we can achieve efficient query pro-

cessing on data-partitioning index structures within general purpose database sys-

tems. Again, we reduce the navigational index traversal cost by using extended index

range scans. If a directory node is “largely” covered by the actual query, the recursive

Figure 56: Grouping algorithm Decompose.

ALGORITHM Decompose (Q, QV)
BEGIN

query_sequence_list := split_at_maximum_gap(Q);
cost0 := statistic_look_up(Q, QV);
costdec := 0;
FOR EACH q in query_sequence_list DO

costdec := costdec + statistic_look_up(q, QV);
END FOR;
IF cost0 > costdec THEN

FOR EACH q in query_sequence_list DO
Decompose(q, QV);

END FOR;
ELSE

report(Q);
END IF;

END.

106 Statistic-Driven Acceleration of Relational Index Structures

tree traversal for this node can beneficially be replaced by a scan on the leaf level of

the index instead of navigating through the directory any longer. On the other hand,

for highly selective queries, the index is used as usual. In this section, we demonstrate

the benefits of this idea for spatial collision queries on the Relational R-tree.

In Section 10.3, it is shown how we can apply the presented concept to similarity

range queries on the Relational M-tree.

In contrast to an optimizer which has to decide “once and for all” whether to

include a specific access method into the execution plan, the approach of this section

is much more fine-grained. At each directory node of a hierarchical index structure it

is individually decided whether it is beneficial to switch to a range scan on the leaf

level of the index or whether it is beneficial to take further advantage of the index-

directory. The experiments show that our new approach always adapts to the best of

the two worlds “index” and “sequential scan”. Therefore, the optimizer can under all

circumstances include our new approach into the query execution plan.

The remainder of this section is organized as follows: In Section 5.3.1, we shortly

discuss the relational mapping of hierarchical index structures. In Section 5.3.2, we

formally present our general idea. In Section 5.3.3, we show how to apply this idea to

the Relational R-tree.

5.3.1 Relational Mapping of a Hierarchical Index Structure

Generally any tree structure can be mapped to a relation (page_id, son_id,

son_data). Figure 57 depicts such a mapping for the hierarchical R-tree. This map-

Figure 57: An example for an hierarchical index structure (the RR-tree).

CAD_RTREE

page id page_lev son_id son_data
(MBR)

ROOT 2 1 BOX((0,0),(200,120))
1 1 2 BOX((0,0),(80,60))
1 1 3 BOX((60,20),(100,120))
1 1 4 BOX((140,20),(200,120))
2 0 A …
2 0 B …
… … … …

1 2

3

4

A
B C D E

…A B

a) Hierarchical directory b) Relational index table

Acceleration of Relational Data-Partitioning Access Methods 107

ping is slightly different compared to the one presented in Section 3.6.1. It allows that

a page_id of level 0 can be assigned to many tuples in the relational index table. We

chose the mapping of Figure 57 as basis for this section as the following theoretical

outline can be presented more clearly. A primary filter for a window intersection

query using SQL is shown in Figure 58. The recursive tree traversal is realized by the

“connect by”-clause. The intersect-statement within this “connect by”-clause allows

to prune parts of the directory, whereas the intersect statement in the “where”-clause

filters out elements on the leaf level.

5.3.2 General Idea

We assume that the page_ids are ordered according to a depth-first tree traversal

and that we have a B+-tree on this attribute. Furthermore, we assume that an addition-

al B+-tree exists on the attributes page_level, page_id so that we can easily scan over

all data entries, i.e. all entries where the page_level is 0. The general idea is that we

skip the recursive tree traversal at a certain point and perform an extended range scan

on the leaf-level of our index. Thereby, we try to minimize the overall navigational

cost on the hierarchical index while allowing to read false hits from the leaf-level of

the index which are filtered out by a subsequent refinement step. Figure 59b depicts

this general idea. The main advantages of our new approach is that we can reduce the

navigational cost related to the hierarchical index structure (filled triangles in

Figure 59) and to the built-in B+-trees (arrows in Figure 59). On the other hand, we

have higher cost related to the scanning of the leaf-level and higher CPU cost related

to the additionally required refinement step.

In this section, we will discuss the cost related to a hierarchical tree traversal and

the cost related to an extended range scan in general. We will first introduce the

general I/O cost and CPU cost related to a certain directory node which presumably

Figure 58: SQL box intersection query on a RR-tree (Oracle syntax).

SELECT son_id AS id FROM CAD_RTREE
WHERE page_lev = 0 AND // select data object

intersect (son_data, BOX((0,0),(100,100)))
START WITH page_id = ROOT
CONNECT BY

intersect (PRIOR son_data, BOX((0,0),(100,100))) AND
PRIOR son_id = page_id; // declarative tree traversal

108 Statistic-Driven Acceleration of Relational Index Structures

arise when continuing the tree traversal (cf. Figure 59a) and the cost related to an

extended range scan starting at this directory node (cf. Figure 59b). These cost heavi-

ly depend on the “overlap-factor” which denotes the percentage of

accessed tuples during a query q in a certain subtree of a directory node n if the index

structure is used as usual. In the following sections, we will show how we can esti-

mate this “overlap-factor” σ for the intersect predicate on the Relational R-tree

(cf. Section 5.3.3). We will use the following notations.

symbol meaning

m average number of index entries per directory node

b average number of index entries per disk page

L(n) level of the current directory node n

hB height of the B+-tree

kCPU CPU cost for testing one index directory entry

kI/O I/O cost for reading one page from the disk

σ(q, n)

value between 0 and 1 which denotes the percentage of
accessed tuples in the subtree belonging to node n, if the
index structure is used as usual for the query processing
of a query q

costNAVI (q, n) the navigational cost related to a node n and a query q
when further using the hierarchical index

costSCAN (q, n) the scanning cost related to a node n and a query q when
applying an extended range scan for n

Figure 59: Acceleration of hierarchical index structures.

......

......

......

......

page
level

0

1

L

.

.

.di
re

ct
or

y
le

ve
ls

le
af

le
ve

l

{
a) Navigational approach b) Scanning approach

σ σ q n,()=

Acceleration of Relational Data-Partitioning Access Methods 109

Our reasoning is based on the assumptions that we have a uniform data distribu-

tion and uniformly filled nodes. If this is not the case, we can improve the estimation

by storing the data distribution, the actual number of directory nodes, and the number

of leaf-nodes beneath a certain directory node along with this directory element. For

the sake of clarity, we refrain from this more complex approach, and assume that we

have a uniform data distribution and that all nodes are uniformly filled.

We will first discuss the cost related to the navigational approach, before we look

at the cost related to the scanning approach. Finally, we introduce a combined ap-

proach which exploits the advantages of the navigational and the scanning approach.

Navigational Approach. The cost related to a directory node n when using the

hierarchical index structure without further modifications for a query q

(cf. Figure 59a) consist of an I/O and a CPU part and can be expressed as follows:

In the following, we will discuss the detailed I/O and CPU cost of the navigational

approach.

I/O cost. We have to access cnt_n directory nodes:

Each of these nodes has m entries. For locating these nodes on the disk we use a

built-in B+-tree which has a height of hB. Additional to the navigational cost on the

B+-tree, we have cost related to the reading of index en-

tries, i.e. tuples, distributed over disk pages. We penalize each page read

with a factor kI/O. To sum up, we have the following I/O cost:

CPU cost. The CPU cost related to the evaluation of index entries are:

tcos NAVI q n,() tcos NAVI
I/O

q n,() tcos NAVI
CPU

q n,()+=

cnt_nNAVI
I/O

q n,() 1 σ q n,()+ m
i

i 1=

L n() 1–

∑⋅=

cnt_tNAVI m= cnt_nNAVI
I/O⋅

cnt_tNAVI b⁄

tcos NAVI
I/O

q n,() kI O⁄ hB
m
b
----+ 

 ⋅= 1 σ q n,()+ m
i

i 1=

L n() 1–

∑⋅
 
 
 
 

 ⋅

cnt_tNAVI

tcos NAVI
CPU

q n,() kCPU m 1 σ q n,()+ m
i

i 1=

L n() 1–

∑⋅
 
 
 
 

⋅ ⋅ =

110 Statistic-Driven Acceleration of Relational Index Structures

Scanning Approach. If we scan all data belonging to a directory node n on level

L(n), the following cost occur:

The detailed I/O and CPU cost are as follows.

I/O cost. We have to locate the starting point of the scanning area once by using a

B+-tree. Then, we read index entries of the leaf level distributed over

disk pages. Again, we penalize each page read with a factor kI/O. To sum up, we have

the following I/O cost for the scanning approach:

CPU cost. The cost related to the evaluation of values on the leaf-level are

. Thus we have the following CPU cost for the scanning approach:

Combined Approach. Our approach starts with applying the navigational ap-

proach. For each visited node we estimate the navigational and the scanning cost. If

, we abort the recursive tree traversal and apply an

extended range scan. This mixed approach is a kind of greedy approach, which tries

to combine the advantages of the navigational and the scanning approach.

The main point in accurately estimating and is to

forecast the overlap-factor σ as precise as possible. For each hierarchical index struc-

ture such a selectivity estimation function has to be provided for the optimizer any-

way. When the execution plan for a given query q is determined, the optimizer evokes

σ (q, nroot) in order to decide whether to include this index in the query execution

plan or not. We propose to evoke this selectivity estimation function for each visited

directory node in order to decide whether to use the tree directory further or to switch

to an extended range scan. Let us note that our approach inherently benefits from a

good selectivity estimator which can be used as black box by our new indexing meth-

od. Nevertheless, we will present a simple heuristic which aims at estimating the

selectivity efficiently and effectively for collision queries on the Relational R-tree.

Needless to say that you can also use more sophisticated selectivity estimation func-

tions (cf. Section 4.2) to get better results.

tcos SCAN q n,() tcos SCAN
I O⁄

q n,() tcos SCAN
CPU

q n,()+=

m
L n()

m
L n()

b⁄

tcos SCAN
I O⁄

q n,() hB
m

L n()

b
-------------+ 

  kI O⁄
m

L n()

b
------------- kI O⁄⋅≈⋅=

m
L n()

kCPU m
L n()⋅

tcos SCAN
CPU

q n,() m
L n()

kCPU⋅=

tcos SCAN q n,() tcos NAVI q n,()<

tcos SCAN q n,() tcos NAVI q n,()

Acceleration of Relational Data-Partitioning Access Methods 111

5.3.3 Adaption to the RR-tree

In this section, we adapt the results presented in the foregoing section to the inter-

sect predicate on the Relational R-tree.

The overlap-factor σ (q, n) can easily be determined as shown in Figure 60. The

overlap-factor σ (q, n) is equal to the ratio of the intersection volume between

the query object q and the directory node n and the hyper-volume of the directory

node.

As the operation whether two boxes intersect or not can be performed very effi-

ciently, we neglect the CPU cost and concentrate in this section on the accruing I/O

cost. Thus we perform an extended index range scan for a directory node n on level

L(n) and a query q if

If we assume rather high values of m, a significant overlap factor σ (q, n) and a

directory level L(n) higher than 2, we scan if the following simplified condition is

fulfilled:

Or, slightly modified, we scan if:

Vn q∩

Vn

σ q n,()
Vn q∩

Vn
-------------=

tcos SCAN
I 0⁄

tcos NAVI
I 0⁄

 <

 i.e.

hB
m

L n()

b
-------------+ 

  hB
m
b
----+ 

  1 σ q n,()+ m
i

i 1=

L n() 1–

∑⋅
 
 
 
 

 ⋅<

σ q n,() =
Vn q∩

Vn

Figure 60: Determination of the overlap-factor σ (RR-tree).

query q

directory node n

Vn q∩

m
L n()

b
------------- hB

m
b
----+ 

  σ q n,() m
L n() 1–⋅ ⋅<

1 σ q n,() 1
b hB⋅

m
-------------+ 

 ⋅<

112 Statistic-Driven Acceleration of Relational Index Structures

If m is equal to b, i.e. we do not use the “supernode” concept of the X-tree

[BKK 96] (cf. the discussion about variable fanout of relational index structures in

Section 3.6.1), and we assume that we have to perform two reads for navigating

through the B+-tree directory, it is beneficial to scan if the overlap-factor is higher

than 1/3. Note that the resulting simplified formula is independent of the actual level

of the directory nodes.

Let us note, that we can also apply the approach presented in this section to accel-

erate the Relational M-tree. If nodes are already largely covered by a given range

query, it is beneficial not to use the M-tree directory any further, but perform a single

range query on the leaf pages of the B+-tree (cf. Section 10.3).

5.4 Experimental Evaluation

The tests are based on two test data sets CAR and PLANE. These test data sets were

provided by our industrial partners, a German car manufacturer and an American

plane producer, in form of high-resolution voxelized three-dimensional CAD parts.

The CAR data set consists of approximate 14 million voxels and 200 parts, whereas

the PLANE data set consists of about 18 million voxels and 10,000 parts. The CAR

data space is of size 233 and the PLANE data space is of size 242. In both cases, the

Z-curve was used as a space filling curve to enumerate the voxels.

We have implemented our approach for the RI-tree, the RQ-tree and the RR-tree

on top of the Oracle9i Server using PL/SQL for the computational main memory

based programming. All experiments were performed on a Pentium III/700 machine

with IDE hard drives. The database block cache was set to 500 disk blocks with a

block size of 8 KB and was used exclusively by one active session.

5.4.1 Space-Partitioning Index Structures

Test Data Sets. Figure 61 depicts the interval and gap histograms for our two test

data sets. Both test data sets consist of many short intervals and short gaps and only

a few longer ones. Consequently, mainly the lowest levels of the RQ-tree and the

RI-tree contain index entries.

As shown by Gaede [Gae 95] and Faloutsos et al. [FJM 97], the number of inter-

vals generated via a space-filling curve out of a real-world object mainly depends on

Experimental Evaluation 113

the surface and the shape of the objects and on the resolution of the underlying grid.

Unfortunately, there is nothing mentioned about the distribution of the intervals or

the corresponding gap distribution. In Chapter 4, it is asserted that the gap histograms

show local peaks at gap lengths around 23k with k ≥ 0 for 3D data. This behavior is

caused by the fact that many gaps represent empty cube-like (3D) regions at the

boundary of the spatial objects. Figure 61b, which depicts the gap distributions of our

test data sets, supports this assertion.

Figure 62a shows that in the case of the RQ-tree on the CAR data set only the

seven lowest of 33 levels are occupied. Similar observations hold for the RI-tree (cf.

Figure 62b) where most intervals are registered at very low fork-node levels. The

observation that spatial objects are decomposed into many small intervals and tiles

are not confined to our two test data sets but hold for all spatially extended objects

[Gae 95][KPPS 03a]. Therefore, the statistics presented in Section 5.2.1 are very

beneficial for efficient query processing on spatial objects in general.

1

100

10000

1000000

1 65536 4294967296
gap length

n
u

m
b

er
 o

f
g

ap
s

CAR
PLANE

1

100

10000

1000000

1 1024 1048576
Interval-Length

n
u

m
b

er
 o

f
in

te
rv

al
s

CAR
PLANE

Figure 61: RI-tree histograms.
a) Intervals, b) Gaps

a) b)

1

100

10000

1000000

1 4 7 10 13 16 19 22 25
tree-level

n
r.

 f
o

rk
 n

o
d

es

CAR

PLANE

Figure 62: Used index levels.
a) Used tile levels (RQ-tree (CAR)), b) Used fork-node levels ((RI-tree) (CAR & PLANE))

a) b)

60%27%

12%

0.16%

0%

0%

0.03%
1.12%

Level 0

Level 1

Level 2

Level 3

Level 4

Level 5

Level 6

Level 7

114 Statistic-Driven Acceleration of Relational Index Structures

Query Processing. In the following, we examine the benefits of using extended

index range scans for space-partitioning index structures. We first form these extend-

ed range scans based on a simple heuristic without using statistics. In the following

subsection, we use the presented statistics in order to accelerate the query process.

For the RI-tree and the RQ-tree, we used 10% of the database objects as query objects

and report the average results from these queries.

In the last subsection, we elaborate the advantages of our selectivity-based decom-

position approach by showing that we can accelerate box volume queries by several

orders of magnitude when using available statistics for the decomposition of the

query objects.

Extended range scans without statistics. In a first experiment, which does not use

any statistical information, we point out the benefits of using our extended index

range scans (cf. Section 5.2.2). For a given query object, we did not collect all possi-

ble join partners, but omitted the last levels and used an extended index range scan

instead. Figure 63a shows that the number of join partners decreases with an increas-

ing number of scanned tree levels. At the beginning, the number of logical reads also

decreases, but if we neglect too many tree levels of the RI-tree the number of logical

reads increases again along with the increasing number of physical reads. The num-

ber of physical reads stays almost constant if we scan over only a small number of

levels. On the other hand, the number of physical reads dramatically increases if the

number of scanned tree levels exceeds 18 because of the increasing number of false

hits which are filtered out in a consecutive filter step. In Figure 63b, it is shown that

the preparation time decreases with an increasing number of scanned tree levels. Due

0

400

800

1200

1600

0 5 10 15 20

scanned tree-levels

n
u

m
b

er
 o

f
...

logical reads / 1000
physical reads
join partners / 1000

1

10

100

0 5 10 15 20

scanned tree-levels

ru
n

ti
m

e
[s

ec
]

runtime
preperation
query

b)

Figure 63: RI-tree optimizations without using statistics.

a)

Experimental Evaluation 115

to the reduced number of join partners and the decreasing preparation time, the over-

all runtime reaches a minimum, if we neglect the last 10 levels of the RI-tree and

apply an extended range scan instead. By using a fixed scan level, we can already

improve the query response time by 30%. In the following sections, we will see that

if we use statistics to form our extended range scans, we can further improve the

overall query response behavior.

Extended range scans with statistics. In Figure 64, it is shown in detail that our

new statistic-based approach accelerates both the basic variant of the RI-tree

[KPS 00] and the variant which is optimized for efficient handling of sequences

[KPS 01] (cf. Section 3.7.2). Figure 64 depicts that we can reduce the number of

logical reads approximately by an order of magnitude if we exploit the available

statistics. This reduction is achieved without increasing the number of physical reads

so that the overall runtime decreases. If we use the statistics we outperform the sim-

ple scanning approach even for the optimum scanning level (cf. Figure 63). In all our

tests, we accelerate the query process by 20% to 150% if we form the extended range

scans according to the available statistics.

0

1

2

3

ti
m

e
[s

ec
.]

query time
preparation time

Figure 64: Statistic based acceleration for two variants of the RI-tree.
([KPS 00]*, [KPS 01]**)

a) CAR data set, b) PLANE data set

100

10000

1000000

n
u

m
b

er
 o

f
re

ad
s

logical reads
physical reads

a)

RI-tree*
statistic driven

0

20

40

60

80

ti
m

e
[s

ec
.]

query time
preparation time

RI-tree* RI-tree**

RI-tree**
statistic driven

RI-tree*
statistic drivenRI-tree* RI-tree**

RI-tree**
statistic driven

10

1000

100000

10000000

n
u

m
b

er
 o

f
re

ad
s

logical reads
physical reads

RI-tree*
statistic drivenRI-tree* RI-tree**

RI-tree**
statistic driven

RI-tree*
statistic drivenRI-tree* RI-tree**

RI-tree**
statistic driven

b)

116 Statistic-Driven Acceleration of Relational Index Structures

In the next experiments, we applied the statistic based approach to the RQ-tree (cf.

Figure 65). Figure 65a shows that the use of our quantile statistics (cf. Section 5.2.2)

accelerates the RQ-tree by 200%. A further improvement can be achieved by using

the information of the highest and lowest level of stored tiles within the database (cf.

Section 5.2.1), leading to a speed-up of about 300%. Figure 65b depicts the acceler-

ation of the sequence optimized RQ-tree, where we compare the variant without

incorporating the CPU cost of the refinement step with the variant including the CPU

cost (cf. Section 5.2.2). The first variant considers only the I/O cost and neglects the

CPU cost for forming the extended range scan sequences. Figure 65b shows that this

approach leads only to an acceleration in the preparation step, but the overall query

time increases due to the expensive refinement process. On the other hand, if we

incorporate the CPU cost for the cost estimation, we can achieve an overall speed-up

of approximately 30%, even for this highly specialized index structure.

To sum up, similar to the experiments related to the RI-tree, we achieve an accel-

eration of the query process by 30% to 300%, if we form the extended range scans

according to the available statistics considering both expected I/O cost and expected

CPU cost.

Statistic based decomposition. In the next experiments, we carried out different

box volume queries on the RI-tree for the PLANE database. Figure 66 depicts the

average runtime for three different boxes, where we moved each box to 10 different

locations. As shown in Figure 66, our statistic-based decomposition approach can

Figure 65: Statistic based accelerated RQ-tree on the CAR data set.
a) Runtime for the basic RQ-tree, the RQ-tree optimized according to Section 5.2.2, and

the RQ-tree optimized according to Section 5.2.1 and 5.2.2,
b) Runtime for the RQ-tree optimized for sequences (similar to [KPS 01])

0

10

20

30

40

50

ti
m

e
[s

ec
.]

query time
preparation time

b)

cost estimation
with I/O cost

RQ-tree with
sequence optimization
(similar to [KPS 01)

cost estimation
with CPU cost

0

100

200

300

400

500
ti

m
e

[s
ec

.]
query time
preparation time

a)

basic RQ-tree
(Sec. 5.2.1 + 5.2.2)

statistic drivenbasic RQ-tree
basic RQ-tree

(Sec. 5.2.2)

statistic driven

and I/O cost

Experimental Evaluation 117

improve the query response behavior up to 10,000%, i.e. by two orders of magnitude,

compared to the granularity-bound approach. This speed up is mainly due to the

reduced decomposition time. On the other hand, the query response time does not

suffer from the fact that we did not decompose the boxes with the maximum possible

accuracy. The time we need for the additional refinement step to filter out false hits is

compensated by the much smaller number of query intervals resulting from a coarser

decomposition of the query box. To sum up, our statistic-based decomposition ap-

proach is especially useful for commonly used box volume queries.

5.4.2 Data-Partitioning Index Structures

Test Data Set. The test data set for the following experiments consists of approx-

imately 1,400,000 boxes representing approximately 200 car objects. In order to

show how our approach depends on the selectivity of a given query object, we eval-

uated the RR-tree by using varying box-volume queries.

Query Processing. We applied our new scanning approach proposed in

Section 5.3.2 to the Relational R-tree for varying overlap-factors σ which were com-

pared to a full table scan and an unchanged R-tree implementation. Figure 67 shows

that the best results for a large range of selectivity parameters was obtained by using

an overlap-factor of σ = 1/3 which is identical to the theoretically derived value

(cf. Section 5.3.2). For σ = 0 an extended range scan is triggered as soon as the query

Figure 66: Box queries for the RI-tree on the PLANE data set.
(Decomposition and response time).

a) Box size equals 0.00002% of data space yielding 0.03% selectivity,
b) Box size equals 0.003% of data space yielding 0.1% selectivity,
c) Box size equals 0.008% of data space yielding 1.0% selectivity

1

10

100

1000

10000

ti
m

e
[s

ec
]

response time
decomposition time

1

10

100

1000

10000

ti
m

e
[s

ec
]

response time
decomposition time

1

10

100

1000

10000

ti
m

e
[s

ec
]

response time
decomposition time

a) b) c)

granularity-
bound
decomposition

selectivity-
bound
decomposition

granularity-
bound
decomposition

selectivity-
bound
decomposition

granularity-
bound
decomposition

selectivity-
bound
decomposition

118 Statistic-Driven Acceleration of Relational Index Structures

box intersects a directory box. This results in rather high query response times for

highly selective queries compared to the original R-tree. On the other hand, a param-

eter value of σ = 1 forces an extended range scan, if the directory node is completely

covered by the query object resulting in rather good query response times over the

complete range of selectivity parameters. Figure 67 shows that the decision whether

to use the directory of the relational R-tree any longer or to switch to an extended

range scan can be decided for each node with negligible overhead. Our combined

approach can improve the overall query response time by more than 150% for queries

of low selectivity compared to the navigational approach (R-tree). Furthermore, for

highly selective queries our combined approach outperforms the sequential scan by

more than 10,000%. To sum up, the combined approach naturally adapts to the best

of the two worlds, “index” and “sequential scan”.

5.5 Summary

In this chapter, we have shown how we can accelerate spatial query processing by

means of statistics which are available for free, as they are maintained by the cost

models belonging to the corresponding index structures or are index inherently avail-

able. We have implemented our approach for the RI-tree, the RQ-tree as well as for

the RR-tree on top of the Oracle9i database system. According to our experiments,

we achieved speed-up factors of up to two orders of magnitude. Our new statistic-

driven approach accelerates the query processing considerably. This acceleration is

0

50

100

150

200

250

300

0,00 0,10 0,40 1,00

se le ctivity

ru
n

ti
m

e
[s

ec
.]

Figure 67: RR-tree for varying selectivity.

full table scan

R-tree unchanged

R-tree scan σ = 0

R-tree scan σ = 1/3
R-tree scan σ = 1

Summary 119

due to the fact, that we can dynamically switch between a further use of the index

structure and a linear scan. Our statistic-driven approach adapts the access method

continuously variable to the best of these two worlds.

This statistic-based acceleration approach can fruitfully be applied to time critical

applications as for instance the digital mockup process which is based on collision

queries for complex spatial objects.

120 Statistic-Driven Acceleration of Relational Index Structures

121

Chapter 6
Cost-based Decompositioning of
Complex Spatial Objects

Modern database application impose new requirements on efficient spatial query

processing. Particular problems arise from the need of high resolutions for large spa-

tial objects, including cars, space stations, planes and industrial plants, and from the

design goal to use general purpose database management systems in order to guaran-

tee industrial-strength. In the past two decades, various stand-alone spatial index

structures have been proposed but their integration into fully-fledged database sys-

tems is problematic. Most of these approaches are based on the decomposition of

spatial objects leading to replicating index structures. In contrast to common

black-and-white decompositions which suffer from the lack of intermediate solu-

tions, we introduce gray containers as a new and general concept. These gray con-

tainers are stored in a spatial index structure. Additionally, we store the exact infor-

mation of these gray containers in a compressed way. The gray containers are created

by using a cost-based decompositioning algorithm which takes the access probability

and the decompression cost of the gray containers into account. We demonstrate the

benefits of our new method for the RR-tree, the RQ-tree and the RI-tree as well as for

spatial join processing. The experimental evaluation on real-world test data points

out that our new concept leads to an acceleration of up to two orders of magnitude

with respect to the overall query response time. The experiments show that our ge-

neric approach is especially useful for high resolution spatial data, which is becom-

ing the standard case for modern spatial database applications.

122 Cost-based Decompositioning of Complex Spatial Objects

6.1 Introduction

As a common and successful approach, spatial objects can conservatively be ap-

proximated by a set of voxels, i.e. cells of a grid covering the complete data space. By

means of space filling curves, each voxel can be encoded by a single integer and,

thus, an extended object is represented by a set of enumerated voxels. As a principal

design goal, space filling curves achieve good spatial clustering properties since cells

in close spatial proximity are encoded by contiguous integers. As explained in Chap-

ter 2, adjacent cell values can be grouped together to black intervals, black tiles or

black boxes which are basic datatypes for spatial applications. By expressing spatial

region queries as intersections of these spatial primitives, vital operations for CAD

applications can be supported. As outlined in Chapter 3, a seamless and capable

integration of spatial indexing into industrial-strength databases is essential.

Besides the integration into fully-fledged database systems, a further new require-

ment for large spatial objects, including cars, planes or space stations, is a high ap-

proximation quality which is primarily influenced by the resolution of the grid cov-

ering the data space. High resolution spatial objects may consist of several hundreds

of thousands of voxels. Although the voxels can further be grouped together to black

intervals, black tiles or black boxes, the number of the resulting spatial primitives still

remains very high. On the other hand, one-value approximations of spatially extend-

ed objects often are far too coarse. In many applications, GIS or CAD objects feature

a very complex and fine-grained geometry. The rectilinear bounding box of the brake

line of a car, for example, would cover the whole bottom of the indexed data space.

A non-replicating storage of such data causes region queries to produce too many

false hits that have to be eliminated by subsequent filter steps.

In this chapter, we introduce a cost-based decompositioning algorithm for com-

plex spatial objects which helps to range between the two extremes of one-value

approximations and the use of unreasonably many approximations. Our new ap-

proach takes compression algorithms for the effective storage of decomposed spatial

objects and access probabilities of these decompositions into account.

The remainder of this chapter is organized as follows. In Section 6.2, we shortly

review the related work in the area of object decompositioning. In Section 6.3, we

introduce gray container objects, which can be stored within a spatial index. Further-

more, we discuss in detail our cost-based grouping algorithm which can be used

Related Work 123

together with arbitrary packing algorithms. In Section 6.4, we discuss how intersec-

tion queries based on compressed gray containers can be posted on top of the SQL

engine. In Section 6.5, we adapt the presented techniques to the efficient processing

of spatial joins. In Section 6.6, we present the empirical results, which are based on

two real-world test data sets of our industrial partners, a German car manufacturer

and an American plane producer, dealing with high resolution voxelized CAD data.

We resume our work in Section 6.7 and close with a few final remarks on future

work.

6.2 Related Work

In this section we will shortly discuss different aspects related to an effective de-

compositioning of complex spatial objects.

Complex Spatial Objects. Gaede pointed out that the number of voxels repre-

senting a spatially extended object exponentially depends on the granularity of the

grid approximation [Gae 95]. Furthermore, the extensive analysis given in

[MJFS 96] and [FJM 97] shows that the asymptotic redundancy of an interval- and

tile-based decomposition is proportional to the surface of the approximated object.

Thus, in the case of large high-resolution parts, e.g. wings of an airplane, the number

of tiles or intervals can become unreasonably high.

Decompositioning Algorithm. In [SK 93], Kriegel and Schiwietz tackled the

complex problem of “complexity versus redundancy” for 2D polygons. They inves-

tigated the natural trade-off between the complexity of the components and the re-

dundancy, i.e. the number of components, with respect to its effect on efficient query

processing. The presented empirically derived root-criterion suggests to decompose

a polygon consisting of n vertices in many index entries. As this root-

criterion was designed for 2D polygons and was not based on any analytical reason-

ing, it cannot be adapted to complex 3D objects. In this chapter, in contrast, we will

present an analytical cost-based decomposition approach which can be used for all

kinds of spatially extended objects.

O n()

124 Cost-based Decompositioning of Complex Spatial Objects

6.3 Decompositioning of High-Resolution Spatial Objects

High resolution spatial objects may consist of several hundreds of thousands of

voxels (cf. Figure 68a). For each object, there exist a lot of different possibilities to

decompose it into approximations by grouping numerous voxels together. We call

these groups gray containers throughout the rest of this chapter. In the one-

dimensional case, we call the gray containers gray intervals. In the multi-dimensional

case, they are called gray boxes (cf. Figure 68b). Informally spoken, gray containers

bridge the gap between black containers; a formal definition follows later. The ques-

tion at issue is, which grouping is most suitable for efficient query processing. A

good grouping should take the following “grouping rules” into consideration:

 • The number of gray containers should be small.

 • The dead area of all gray containers should be small.

 • The gray containers should allow an efficient evaluation of the contained voxels.

The first rule guarantees that the number of index entries is small, as the hulls of

the gray containers, i.e. the minimum bounding hyper-rectangles covering the com-

plete gray containers, are stored in appropriate index structures, e.g. the RI-tree, the

RR-tree, or the RQ-tree (cf. Figure 68d). The second rule guarantees that many un-

necessary candidate tests can be omitted, as the number and size of gaps included in

the gray container is small. Finally, the third rule guarantees that a candidate test can

be carried out efficiently. A good query response behavior results from an optimum

trade-off between these grouping rules.

In the remainder of this section, we will introduce a cost-based grouping algorithm

which finds an optimum trade-off between these grouping rules. In Section 6.3.1, we

first introduce our gray containers formally. Section 6.3.2 is dedicated to the storage

of these gray containers. In Section 6.3.3, we discuss why it is beneficial to store the

gray containers in a compressed way. Furthermore, we introduce a new spatial pack-

er, called QSDC. In Section 6.3.4, we introduce our cost-based grouping algorithm

for complex spatial objects.

Decompositioning of High-Resolution Spatial Objects 125

6.3.1 Gray Containers

Gray containers are formed by voxels which are used for describing complex spa-

tial objects. We start with defining voxelized objects formally:

Definition 15 (Voxelized Object).

Let O be the domain of all object identifiers and let id ∈ O be an object identifier.

Furthermore, let INd be the domain of d-dimensional points. Then we call a pair

Ovoxel = (id, {v1, ..., vn}) a d-dimensional voxelized object. We call each

of the vi an object voxel, where i ∈ {1, .., n}.

A voxelized object consists of a set of d-dimensional points, which can be natural-

ly ordered in the one-dimensional case. If , such an ordering does not longer

exist. By means of space filling curves, , all multidimensional voxelized

objects can be mapped to one-dimensional voxelized objects (cf. Figure 68a (iii) and

left side of Figure 68b).

Obviously, we can group adjacent voxels together to d-dimensional hyper-rectan-

gles and store these hyper-rectangles in appropriate index structures. If we conserva-

tively approximate an object by only one hyper-rectangle, numerous error voxels are

included in this approximation, which requires an expensive refinement step during

the query process. A promising trade-off between the filter and refinement step can

be found by means of gray containers. Intuitively, a gray container sequence is a

covering of our voxelized object by means of hyper-rectangular boxes, where each

voxel is assigned to exactly one gray container (cf. Figure 68b).

Definition 16 (Gray Container, Gray Container Sequence).

Let (id, {v1, .., vn}) be a d-dimensional voxelized object, and let be a bijective

function . Moreover, let m ≤ n and 0 = i0 < i1 < i2 < …< im =

n ∈ IN+. Then we call Ogray = (id,〈 ,.., 〉) a
gray container sequence. We call each of the j = 1, …, m groups Cj

= of Ogray a gray container.

In the following, we present operators for gray containers which enable us to in-

troduce our approach formally. Throughout this chapter, we refer repeatedly to the

definitions summarized in Table 2 which assumes that Cgray = is a d-di-

mensional gray container and an arbitrary space filling curve. For clar-

O 2IN
d

×∈

d 1>
ρ:INd IN→

π
π: 1 .., n,{ } 1 .., n,{ }→

vπ i0 1+() .., vπ i1(),{ } vπ im 1– 1+() .., vπ im(),{ }

vπ ij 1– 1+() .., vπ ij(),{ }

v1 .., vc,{ }
ρ:IN

d
IN→

126 Cost-based Decompositioning of Complex Spatial Objects

ity, Figure 68c demonstrates the values of the most important operators for gray con-

tainer intervals and boxes. Intuitively, the byte sequence B(Cgray) describes the

enumerated set of voxels as byte-string which might contain long sequences of zero

bytes “00”.

576 584 592 600 608

BLACK intervals

GRAY intervals

I1 I2 I3

BLACK boxes
(obtained from grouping object voxels

GRAY boxes
(obtained from grouping voxels

 together, error voxels excluded)

together including error voxels)

B1

B2

z-curve
object voxel

iii) voxel linearization by a space filling curveii) Voxel seti) Spatial object

b)

a)

d)

c)
GRAY interval Operators I1 I2 I3

hull: H(Ix) [578,579] [586,593] [600,605]

density: D(Ix) 1 5/8 3/6

maximum gap: G(Ix) 0 2 3

byte sequence: B(Ix) ’30’ ’33 40’ ’C4’

GRAY box Operators B1 B2

hull: H(Bx) [(12,1,0),(15,2,0)] [(14,1,1),(15,2,1)]

density: D(Bx) 7/8 3/4

maximum gap: G(Bx) 1 1

byte sequence: B(Bx) ’03 00 04’ ’30 30 40 C0’

BLACK intervals

id cnt data

...

1 1 [578, 579]

1 2 [586, 587]

1 3 [590, 591]

1 4 [593, 593]

1 5 [600, 601]

1 6 [605, 605]

..

GRAY intervals

id cnt
data

H(Ix) D(Ix) B(Ix)

...

1 1 [578, 579] 1 ’30’

1 2 [586, 593] 5/8 ’3340’

1 3 [600, 605] 3/6 ’C4’

1

(obtained from encoding voxels

BLACK boxes

id cnt data

...

1 1 [(12,1,0),(15,1,0)]

1 2 [(13,2,0),(15,2,0)]

1 3 [(14,1,1),(15,1,1)]

1 4 [(15,2,1),(15,2,1)]

...

GRAY boxes

id cnt
data

H(Bx) D(Bx) B(Bx)

...

1 1 [(12,1,0),(15,2,0)] 7/8 ’030004’

1 2 [(14,1,1),(15,2,1)] 3/4 ’303040C0’

...

column organized by a spatial index, e.g. RI-tree column organized by a spatial index, e.g. RR-tree

(obtained from grouping black intervals

voxelization

decomposition into GRAY intervals Ix decomposition into GRAY boxes Bx

together including error voxels)

via a space filling curve)

traditional approach

new approach
to store the data

to store the data
traditional approach

new approachto store the data

to store the data

Figure 68: Gray containers.
a) Voxelized spatial object, b) Black and gray containers,

c) Operators on gray containers, d) Storage of gray containers

Decompositioning of High-Resolution Spatial Objects 127

In the following, we confine ourselves to non-overlapping gray approximations,

which are more suitable for efficient query processing.

Definition 17 (Non-Overlapping Gray Containers).

Let Ogray = (id, 〈C1, .., Cm〉) be a gray container sequence. Ogray is non-overlapping,

iff

Operator Description and Definition
volume

V (Cgray)

number of black voxels
Nb (Cgray) c

number of white voxels
Nw (Cgray) V (Cgray) − Nb (Cgray)

density
D (Cgray) Nb (Cgray) / V (Cgray)

hull

H (Cgray)
 = =

maximum gap

G (Cgray)

set of all voxels

S (Cgray)

byte sequence
B (Cgray) <s0, .., sn>

where 0 ≤ sj < 28,

Table 2: Operators on the gray container Cgray.

max vi
k i 1…c∈,() min vi

k i 1…c∈,()– 1+()
k 1=

d

∏

X
d

k 1=
hl

k hu
k[,] X

d

k 1=
Hl

k Cgray() Hu
k Cgray()[,]

X
d

k 1=
min vi

k i 1…c∈,() max vi
k i 1…c∈,()[,]

max uk lk– 1+()
k 1=

d

∏ , k 1...d{ } hl
k lk uk hu

k≤ ≤ ≤() ∧∈∀
i 1...c{ } k 1...d{ } vi

k lk< uk vi
k<∨()∈∃∈∀ 

 
 

v INd∈ k 1..d{ }: hl
k vk hu

k≤ ≤()∈∀,{ }

n max ρ vi() i 1…c∈,()() 8⁄ min ρ vi() i 1…c∈,()() 8⁄–=

sj
2

7 k–

0
k 0=

7

∑= if v v1 … vc, ,{ }:∈ ρ v() min ρ vi() i 1…c∈,()() 8⁄= 8 8j k+ +⋅()∃()
otherwise

i j 1..m{ } v IN
d
: i j≠() v S Ci()∈() v S Cj()∉⇒∧∈∀∈,∀

128 Cost-based Decompositioning of Complex Spatial Objects

6.3.2 Storing Gray Containers in an ORDBMS

The traditional approach for storing an object id in a database is to map its black

containers to a set of tuples in an object-relational table BlackContainers (id, cnt,

data) (cf. Figure 68d). The primary key is formed by the object identifier id and a

unique number cnt for each black container. If we map our 3D spatial object via

space-filling curves onto one dimension, the black container is an interval. Other-

wise, it is a 3D bounding box which contains no error voxels. A spatial index on the

attribute data supports efficient query processing. For high resolution spatial data,

this approach yields a high number of table and index entries and, consequently, leads

to a critical query response behavior.

A key idea of our approach is to store the non-overlapping gray container se-

quence Ogray = (id, 〈C1, ..., Cm〉) in a set of m tuples in an object-relational table

GrayContainers (id, cnt, data) (cf. Figure 68d). Again, the primary key is formed by

the object identifier id and a unique number cnt for each gray container. The set of

voxels of each gray container Cgray = is mapped to the com-

plex attribute data which consists of aggregated information, i.e. the hull H (Cgray)

and the density D (Cgray), and a byte sequence B(Cgray) containing the complete

information of the voxel set. In order to guarantee efficient query processing, we

apply spatial index structures on H(Cgray) and store B(Cgray) in a compressed way

within a binary large object (BLOB). H(Cgray) is a multi-dimensional bounding box

having a volume V(Cgray). If we map our 3D spatial object via space-filling curves

onto one dimension, H(Cgray) is a gray interval which can be managed by an index

structure suitable for intervals, e.g. the RI-tree (cf. left side of Figure 68d). Other-

wise, it is a 3D gray bounding box which can efficiently be indexed by using for

instance the RR-tree (cf. right side of Figure 68d). The two important advantages of

this approach are as follows: First, the number of table and index entries can be

controlled and reduced dramatically. Secondly, the access to the gray containers is

efficiently supported by established relational access methods, e.g. the RI-tree, the

RQ-tree, or the RR-tree. These access methods have to be created on H(Cgray).

There are two different problems related to the storage of gray container sequenc-

es: the compression problem and the grouping problem which will be discussed in the

following two sections.

v1 ..., vc,{ } v1 ..., vc,{ }

Decompositioning of High-Resolution Spatial Objects 129

6.3.3 Compression of Gray Containers

In this section, we first motivate the use of packers, by showing that B(Cgray)

contains patterns. Therefore, B(Cgray) can efficiently be shrunken down by using

data compressors. After discussing the properties which a suitable compression algo-

rithm should fulfill, we review some of the packers introduced in the literature. Then,

we introduce a new effective packer which exploits gaps and patterns included in the

byte sequence B(Cgray) of our gray container Cgray.

Patterns. To describe a rectangle in a 2D vector space we only need 4 numerical

values, e.g. we need two 2 dimensional points. In contrast to the vector representa-

tion, an enormous redundancy is contained in the corresponding voxel sequence of

this object as depicted in Figure 69a. As space filling curves enumerate the data space

in a structured way, we can find such “structures” in the resulting voxel sequence

representing simply shaped objects. We can pinpoint the same phenomenon not only

for simply shaped parts but also for more complex real-world spatial parts. Assuming

we cover the whole voxel sequence of an object id by one container, i.e. Ogray = (id,

〈Cgray〉), and survey its byte representation B(Cgray) in a hex-editor, we can notice

that some byte sequences occur repeatedly. This phenomenon is depicted in

Figure 69b for one complex object from our test data sets. We will now discuss how

these patterns can be used for the efficient storage of gray containers in an ORDBMS.

Figure 69: Patterns.
a) Voxelized object linearized by using a space-filling curve,

b) Extract from B(Cgray) viewed in a Hex-Editor

b)a)

... ...

... ...Igray

B (Igray) = ...33CC33CC0000000033CC33CC...

a simple rectangular object box
in a 2D data space which is linearly ordered by a z-curve

z-val(box. lower) z-val(box. upper)

130 Cost-based Decompositioning of Complex Spatial Objects

Compression Rules. The voxel set belonging to a gray container

Cgray = can be materialized and stored in a BLOB in many different

ways. A good materialization should consider two “compression rules”:

 • As little as possible secondary storage should be occupied.

 • As little as possible time should be needed for the (de)compression of the BLOB.

A good query response behavior is based on the fulfillment of both aspects. The

first rule guarantees that the I/O cost are relatively small whereas the second

rule is responsible for low CPU cost . The overall cost for

the evaluation of a BLOB is composed of both parts. Unfortunately, these two re-

quirements are not necessarily in accordance with each other. If we compress the byte

sequence B(Cgray), we can reduce the demand of secondary storage and consequently

. Unfortunately, might rise because we first have to decompress the data

before we can evaluate it. On the other hand, if we store B(Cgray) without compress-

ing it, might become very high whereas might be low. Furthermore, a

good update behavior also depends on the fulfillment of both rules.

As we will show in our experiments, it is very important for a good query re-

sponse- and update- behavior to find a well-balanced way between these two com-

pression rules.

Related Work. In this section, we will shortly describe some of the most promi-

nent lossless decompression techniques. For a more detailed survey on lossless and

lossy compression techniques, we refer the reader to [RH 93] and [SN 02].

Run-Length Coding. Data often contains sequences of identical bytes. By replac-

ing these repeated byte sequences by the number of occurrences, a substantial reduc-

tion of data can be achieved. This is known as run-length coding. A variant of this

approach was pursued in [KPPS 03a], which is called differential compression in

[RH 93].

Pattern Substitution. This technique substitutes single characters for patterns that

occur frequently. The eliminated patterns are often stored in a separate dictionary. A

widespread pattern substitution algorithm is LZ77 [LZ 77]. This compression algo-

rithm detects sequences of data that occur repeatedly by using a sliding window. An

n byte sliding window is a record of the last n characters in the input respectively the

output data stream. If a sequence of characters is identical to one that can be found

v1 ..., vc,{ }
v1 ..., vc,{ }

cBLOB
I/O

cBLOB
CPU cBLOB cBLOB

I/O cBLOB
CPU+=

cBLOB
I/O cBLOB

CPU

cBLOB
I/O cBLOB

CPU

Decompositioning of High-Resolution Spatial Objects 131

within the sliding window, the current sequence is replaced by two numbers: a dis-

tance value, indicating the starting point of the found sequence within the sliding

window, and a length value, corresponding to the maximum number of characters for

which the two sequences are identical.

Statistical Coding. There is no fundamental reason that different characters need

to be coded by a fixed number of bits. For instance, in the case of morse code, fre-

quently occurring characters are coded with short strings, while rarely occurring

characters are coded using longer strings. Such statistical coding depends on the

frequency of individual characters or byte sequences. There are different techniques

based on statistical coding, e.g. arithmetic coding [SN 02] and Huffman coding.

Huffman Coding. Given the characters that have to be encoded, together with their

probabilities of occurrence, the Huffman algorithm determines the optimal coding

using the minimum number of bits [Huf 52]. The resulting Huffman coding table is

necessary for the compression and decompression process and has to be stored along

with the encoded data.

ZLIB. This popular approach compresses data first with LZ77, followed by Huff-

man coding. A compressed data set consists of a series of chunks, corresponding to

successive chunks of input data. The chunk sizes are arbitrary. Each chunk has its

own Huffman tree, whereas the LZ77 algorithm is not confined to these chunks and

may refer to identical byte sequences in previous chunks [Deu 96].

BZIP2. This rather new approach implements the Burrows-Wheeler transform

(BWT) followed by Move To Front (MTF) transformation and Huffman coding. The

BWT algorithm takes a chunk of data and applies a sorting algorithm to it. The rear-

ranged output chunk contains the same characters in a different order. The original

ordering of the characters can be restored, i.e. the transformation is reversible

[BW 94]. MTF is a transformation algorithm which does not compress data but can

help to reduce redundancy, especially after a BWT where the data is likely to contain

a lot of repeated characters.

Spatial Compression Techniques. In this section, we look at new specific com-

pression techniques, which are designed for storing the voxel set of a gray container

in a BLOB. The first technique is only suitable for simply structured objects whereas

our new quick spatial data compressor (QSDC) is generally applicable.

Simply Structured Objects. Simply structured objects can often be described by a

few parameters. For instance, a rectilinear box can be described by two three-

132 Cost-based Decompositioning of Complex Spatial Objects

dimensional points, and a sphere can be described by one three-dimensional point

and one additional numerical value. These few parameters can be stored in the BLOB

of each gray container instead of the exact voxel set. They contain the whole infor-

mation in the most compressed way. Storing the exact geometric parameters in the

BLOB, instead of the inflated voxel set, forms a very efficient type of spatial com-

pression technique, which leads to minimal I/O cost. We can create B(Cgray) at any

time from this simple and compact geometric information. For elementary objects, as

for instance spheres, tubes or boxes, this can be done efficiently by means of simple

mathematical functions. As outlined in Section 5.2.3, this compression technique

forms the foundation of the efficient processing of box volume queries.

Quick Spatial Data Compressor (QSDC). The QSDC algorithm is especially de-

signed for high resolution spatial data and includes specific features for the efficient

handling of patterns, gaps and extremely long gaps. It is optimized for speed and does

not perform time intensive computations as for instance Huffman compression.

QSDC is a derivation of the LZ77 technique. However, it compresses data in only one

pass and much faster than other Lempel-Ziv based compression schemes as for ex-

ample SEQUITUR [NW 97], RAY [CWZ 99] or XRAY [CW 00].

QSDC operates on two main memory buffers. The compressor scans an input buff-

er for patterns, gaps and extremely long gaps (cf. Figure 70). QSDC replaces the

patterns with a two- or three-byte compression code, the gaps with a one- or two-byte

compression code and the extremely long gaps with a six byte compression code.

Then it writes the code to an output buffer. QSDC packs an entire BLOB in one piece,

the input is not split into smaller chunks. At the beginning of each compression cycle

QSDC checks if the end of the input data has been reached. If so, the compression

stops. Otherwise another compression cycle is executed. Each pass through the cycle

adds one item to the output buffer, either a compression code or a non-compressed

character. Unlike other data compressors, no checksum calculations are performed to

detect data corruption because the underlying ORDBMS ensures data integrity.

The decompressor reads compressed data from an input buffer, expands the codes

to the original data, and writes the expanded data to the output buffer. When an ex-

tremely long run-length sequence occurs, the actual output buffer containing the

decompressed data is returned to the calling process, and a new output buffer is

allocated.

Decompositioning of High-Resolution Spatial Objects 133

Lemma 2. The worst packed vs. unpacked ratio of QSDC for an input sequence of L

bytes is .

Proof. The QSDC packing algorithm makes sure that a compression code is al-

ways shorter than the original unpacked sequence. This means the only situation

where the output can grow is when the packer encounters unpackable bytes. An input

byte which cannot be packed is directly passed through. Plus, an additional bit is

consumed by the control byte. This sums up to L control bits, i.e. control

bytes, which proves the lemma. �

The QSDC algorithm achieves a much better worst case compression ratio than

the highly sophisticated BZIP2 and ZLIB compressors, which store additional infor-

mation in the stream header of the compressed data. For instance, the ZLIB compres-

sor has a worst case ratio of 12:1 [RG 02]. This worst case behavior is especially

important for the storage of small BLOBs. Not only does the QSDC approach

achieve a good worst case compression ratio, but it also reaches a high unpack speed.

The high unpack speed of our algorithm is due to the fact, that the entire code of the

decompression function compiles down to about 1000 bytes 80x86 assembly code,

fitting into the first level cache of all modern 80x86 processors which reduces the

instruction cache misses to a minimum. Furthermore, QSDC benefits from the fact

that the compression codes are byte aligned.

For more detail we refer the reader to [Kun 02].

L() 8⁄ L+() L⁄

L 8⁄

End-Of-File
Test

Input

Output RLE Scan

Short RLE
(1 Byte)

Long RLE
(2 Bytes)

Pattern Scan

Short Pattern
(2 Bytes)

Long Pattern
(3 Bytes)

Store Byte
 unpacked

18 ≤ Len < 4113 3 ≤ Len < 16 16 ≤ Len < 272Store
Control-Byte
(every eight

cycles)

Extremely
Long RLE
(6 Bytes)

4113 ≤ Len < 2³²
 (only for gaps)

2 ≤ Len < 18

Figure 70: Flow diagram of QSDC compression algorithm.

134 Cost-based Decompositioning of Complex Spatial Objects

6.3.4 Grouping into Gray Containers

Our grouping algorithm takes the expected access cost of the gray containers into

account. The expected cost cost(Cgray) related to a gray container Cgray depend on

the average access probability of Cgray and on the cost related to the evaluation of the

exact byte sequence B(Cgray).

First, the access probability is computed by assuming that we know the average

query distribution for each dimension. Then, the evaluation cost are introduced

which heavily depend on the used data compressor. Finally, our cost-based grouping

algorithm GroupCon is introduced which is used for storing complex objects in an

ORDBMS.

Query Distribution. For many application areas, e.g. in the field of CAD and

GIS, the average query distribution can be predicted very well. It is obvious that

queries in rather dense areas, e.g. a cockpit in an airplane or a big city like New York,

are much more frequently inquired than less dense areas. Furthermore, often small

selective queries are posted. This assumed distribution function influences our de-

compositioning algorithm.

First, we transform an arbitrary d-dimensional box query into a -dimensional

normalized data space D* (cf. Figure 71 for one-dimensional query intervals Qi). We

start with normalizing the coordinates of our d-dimensional query container to ensure

Figure 71: Query distribution functions Pi(x,y).
a) Complex query distribution P1(x,y),

b) Simple query distribution P2(x,y)

Q1=[x1,y1]

x1 y1

D*

x1

y1

0 1

Q2=[x2,y2]

b)a)

k*D*

Q1=[x1,y1]

x1 y1

x1

y1

0 1

Q2=[x2,y2]

x2 y2 x2 y2

low value
of P1(x,y)

high value
of P1(x,y) P2(x,y) = 0

D*

2 d×

Decompositioning of High-Resolution Spatial Objects 135

that all data lies within the hyper cuboid . For clarity, we will first examine

the one-dimensional case looking at intervals and their point transformation into the

upper triangle D*:= of the two-dimensional hyper cuboid. An

interval Q = [x, y] therefore corresponds to the point with . Examples are

visualized in Figure 71. To each of these two-dimensional points Q=(x,y) we assign

a numerical value P(Q) where holds. As the probability is equal to one

that a query is somewhere located in the upper triangle D*, the following equation has

to hold:

Figure 71 shows two different query distribution functions. A potential query Q2

is very unlikely in Figure 71a and does not occur at all in Figure 71b. On the other

hand, query Q1 is very likely in both cases.

Let us note, that we used the simple query distribution function of Figure 71b

throughout our experiments. In all considered application areas the common query

objects only comprise a very small portion of the data space D*. Therefore, we intro-

duce the parameter k*, which restricts the extension of the possible query objects. For

the computation of the access probability we only consider query objects whose ex-

tensions do not exceed k* D* in each dimension.

Access Probability. The access probability P(Cgray) related to a container object

Cgray denotes the probability that an arbitrary query object has an intersection with

the d-dimensional hull H(Cgray). All possible query intervals that intersect C0 are

visualized by the shaded area A(C0) in Figure 72a. The area displays all intervals

whose lower bounds are smaller or equal to b and whose upper bounds are larger or

equal to a. These query intervals are exactly the ones that have a non empty intersec-

tion with C0. The probability that an interval C0 = [a0, b0] is intersected by an arbi-

trary query interval is:

Assuming that the dimensions of the data space are independent from each other,

the derived access probability for the one-dimensional data space can easily be ex-

panded to an arbitrary number of dimensions. The probability for the multi-dimen-

Xd
i 1= 0 1[,]

x y,() 0 1,[]2 x y≤∈{ }

x y,() x y≤

0 P Q() 1≤ ≤

P x y,() xd yd
D

*
∫∫ 1=

⋅

P C0()

P x y,() xd yd
A C0()
∫∫

P x y,() xd yd
D

*
∫∫

--= P x y,() xd yd
A C0()
∫∫=

136 Cost-based Decompositioning of Complex Spatial Objects

sional case is equal to the product of all one-dimensional probabilities which can be

derived for each dimension individually.

Evaluation Cost. Furthermore, the expected query cost depend on the cost related

to the evaluation of the byte sequence stored in the BLOB of an intersected gray

container Cgray. The evaluation of the BLOB content requires to load the BLOB from

disk and decompress the data. Consequently, the evaluation cost depends on both the

size V(Cgray) of the uncompressed BLOB and the size Vcomp(Cgray) << V(Cgray) of

the compressed data. Additional, the evaluation cost costeval depend on a constant

 related to the retrieval of the BLOB from secondary storage, a constant

related to the decompression of the BLOB, and a constant related to the intersec-

tion test. The cost and heavily depend on how we organize B(Cgray)

within our BLOB, i.e. on the used compression algorithm. A highly effective but not

very time efficient packer, e.g. BZIP2, would cause low loading cost but high decom-

pression cost. In contrast, using no compression technique, leads to very high loading

cost but no decompression cost. Our QSDC is an effective and very efficient com-

pression algorithm which yields a good trade-off between the loading and decom-

pression cost. Finally, solely depend on the used system. The overall evaluation

cost are defined by the following formula:

b)a)
D*

C2

a=a1 b2=bb1 a2

C1

C0

a0 b0

D*

a0

b0

0 1

Figure 72: Computation of average access probabilities of gray containers.
a) Intersection area for the one-dimensional container C0=[a0,b0],

b) Intersection area for the decomposed container objects C1 and C2

0 1

A(C0)

A(C1)

A(C2)

cload
I/O

cdecomp
cpu

ctest
cpu

cdecomp
cpu

cload
I/O

ctest
cpu

teval Cgray() =cos

Vcomp Cgray() cload
I/O⋅ V Cgray() cdecomp

cpu
ctest

cpu+()⋅+

Decompositioning of High-Resolution Spatial Objects 137

Grouping Algorithm. Orenstein [Ore 89] introduced the size- and error bound

decomposition approach. Our first grouping rule “the number of gray containers

should be small” can be met by applying the size-bound approach, while applying the

error-bound approach results in the second rule” the dead area of all gray containers

should be small”. For fulfilling both rules, we introduce the following top-down

grouping algorithm for gray containers, called GroupCon (cf. Figure 73). GroupCon

is a recursive algorithm which starts with an approximation Ogray = (id, 〈 Cgray 〉), i.e.

we approximate the object by one gray container. In each step of our algorithm, we

look for the maximum gap g within the bounding box of the actual gray container. We

carry out the split along this gap, if the average query cost caused by the decomposed

containers is smaller than the cost caused by our input container Cgray. The expected

cost related to a gray container Cgray can be computed as described in the foregoing

paragraph. A gray container which is reported by the GroupCon algorithm is stored

in the database and no longer taken into account in the next recursion step. Data

compressors which have a high compression rate and a fast decompression method,

result in an early stop of the GroupCon algorithm generating a small number of gray

intervals. Our experimental evaluations suggest that this grouping algorithm yields

results which are very close to the optimal ones for many combinations of

index-structures, data compression techniques and data space resolutions.

ALGORITHM GroupCon (Cgray, P)

BEGIN
container_list := split_at_maximum_gap(Cgray);

costgray := P(Cgray.) • costeval(Cgray,);

costdec := 0;

FOR EACH c in container_list DO
costdec := costdec + P(c) • costeval(c);

END FOR;
IF costgray > costdec THEN

FOR EACH c in container_list DO
GroupCon (c, P);

END FOR;
ELSE

report (Cgray);

END IF;
END.

Figure 73: Grouping algorithm GroupCon.

138 Cost-based Decompositioning of Complex Spatial Objects

6.4 Object Relational Query Processing

In contrast to the last section, where we focused on organizing the object within

the database, we turn our attention in this section to the query process. We first dis-

cuss when two objects intersect, and how we can express this intersect-operator on

top of the SQL engine. In Section 6.4.2, we introduce useful optimizations for the

discussed intersect predicate. We concentrate on the intersect predicate, as it is the

most important predicate for the digital mockup process of complex spatial objects.

6.4.1 The intersect SQL Statements

In this section we first define formally the intersectboolean predicate, which indi-

cates whether two complex objects share at least one voxel. The intersectranked pred-

icate measures the intersection volume, and the interlace predicate indicates whether

there exist two gray containers with intersecting hulls.

Definition 18 (Object Intersection).

Let Ovoxel = (id, {v1, ..., vn}) and O’voxel = (id’, {v’1, ..., v’n’}) be two d-dimensional

voxelized objects of the domain O. Furthermore, let Ogray = (id, 〈C1, .., Cm〉) and

O’gray = (id’, 〈C’1, .., C’m’〉) be two corresponding gray container sequences.

Then we define the operators intersectboolean: , intersectranked:

, and interlaceboolean: as follows:

• intersectboolean (Ovoxel, O’voxel) = true : .

• intersectranked (Ovoxel, O’voxel) .

• interlaceboolean (Ovoxel, O’voxel) = true :

.

As we defined gray container sequences as a conservative approximation of vox-

elized objects, we can use the hulls of the containers in a first conservative filter step.

Thereby, we can take advantage of standard spatial access methods. As shown in

Section 6.3.1, the gray container sequences can be mapped to an object-relational

schema GrayContainers (id, cnt, data) (cf. Figure 68d). Following this approach, we

can easily express the intersect predicates on top of the SQL engine (cf. Figure 74).

In the case of the intersectboolean predicate (cf. Figure 74a), we use table as a

nesting function that groups references of gray query and database pairs together,

O O boolean→×

O O IN→× O O boolean→×

⇔ i∃ 1,..,n{ } j∃ 1,..,n’{ }∈,∈ vi v’j=

i i 1,..,n{ }, j∃ 1,..,n’{ }:vi v’j=∈∈{ }=

⇔ i∃ 1,..,m{ } j∃ 1,..,m’{ }∈,∈

S Ci() S C’j()∩ ∅≠

Object Relational Query Processing 139

where the hulls of both containers intersect. In our implementation, we realized this

NF2-operator table by a user-defined aggregate function as provided in the

SQL:1999 standard. As we want to find out which database objects are intersected by

a specific query object, we have to test the candidate pairs for intersection. This test

is carried out by a stored procedure blobintersectionboolean. If we find one intersect-

ing gray database and query container pair, we can stop investigating other gray

container pairs belonging to the same database object, and we issue the object’s id.

This skipping principle is realized by means of the exists-clause within the

SQL-statement. This approach actually creates a new spatial access method which

can easily be integrated into common extensible indexing frameworks (cf.

Chapter 3).

In the case of the intersectranked predicate (cf. Figure 74b), the intersection volume

has to be determined for each candidate pair. No BLOB tests can be skipped. The

results are summed up in the user-defined aggregate function blobintersectionranked.

In both blobintersection routines, we first decompress the data and then test the

two byte sequences for intersection. As already mentioned in Section 6.3.3, it is im-

portant that the compressed BLOB size is small in order to reduce the I/O cost. Obvi-

ously, the small I/O cost should not be at the expense of the CPU cost. Therefore, it is

a)

b)

Figure 74: SQL intersection-statements based on gray containers.
a) intersectboolean-predicate, b) intersectranked -predicate

SELECT candidates.id FROM
(SELECT db.id AS id, table (pair(db.rowid, q.rowid)) AS ctable

FROM GrayContainers db, :GrayQueryContainers q
WHERE intersect (hull(db.data), hull(q.data))
GROUP BY db.id) candidates

WHERE EXISTS
(SELECT 1

FROM GrayContainers db, :GrayQueryContainers q, candidates.ctable ctable
WHERE db.rowid = ctable.dbrowid AND q.rowid = ctable.qrowid AND

 blobintersectionboolean (db.data, q.data))

SELECT db.id, blobintersectionranked(pair(db.data, q.data))

FROM GrayContainers db, :GrayQueryContainers q
WHERE intersect (hull(db.data), hull(q.data))
GROUP BY db.id

140 Cost-based Decompositioning of Complex Spatial Objects

important that we have a fast decompressing algorithm in order to evaluate the

BLOBs quickly.

6.4.2 Optimizations

For the intersectboolean predicate, it suffices to find a single intersecting query and

database container pair in order to issue the database id. Obviously, it is desirable to

detect such intersecting pairs as early as possible in order to avoid unnecessary

blobintersection tests. In this section, we present two optimizations striking for this

goal. First, we introduce a fast second filter step which tries to determine intersecting

pairs without examining the BLOBs. This test is entirely based on aggregated infor-

mation of the gray containers. Secondly, we introduce a probability model which

leads to an ordering for the candidate pairs such that the most promising blobinter-

section tests are carried out first. In order to put these optimizations into practice, we

pass D(Cgray) and H(Cgray) as additional parameters to the user-defined aggregate

function table. Thus, the following two optimizations can easily be integrated into

this user-defined aggregate function. If the fast second filter step determines an inter-

secting container pair, all other candidate pairs are deleted so that the resulting table

of candidate pairs, called ctable, consists only of one intersecting pair. Nevertheless,

there might be database objects where this second filter step does not determine an

intersection for any of the corresponding candidate pairs. In this case, we sort the

candidate pairs at the end of our user-defined aggregation function table such that the

most promising blobintersection tests are carried out first.

Optimizations for one-dimensional gray intervals. Let us first mention that a

gray interval with maximum density is also called a black interval. In this paragraph,

we will discuss how gray and black intervals have to look like so that we can decide

whether two interlacing intervals intersect each other or not without accessing their

BLOBs. These optimizations are only suitable for the intersectboolean-predicate.

Two Black Intervals. If two black intervals interlace, they necessarily intersect as

well.

Black and Gray Intervals. In this case, the situation is a little bit more complicated.

In almost all cases where a black interval Iblack = (lblack , ublack) interlaces a gray

interval Igray, with H(Igray) = (lgray , ugray), there is an intersection of Iblack and Igray

as well. If any of the two conditions depicted in Table 3 holds, then Iblack and Igray

intersect.

Object Relational Query Processing 141

Two Gray Intervals. Obviously, two gray intervals Igray and I’gray , with H(Igray) =

(lgray , ugray) and H(I’gray)=(l’gray , u’gray), which interlace do not have to intersect.

Fortunately, there are two cases where we can assert that they intersect without exam-

ining the detailed black interval sequences. The two cases are illustrated in Table 4.

No intersection. There are only two situations, depicted in Table 5, where we can

determine that two interlacing intervals do not intersect. In this case, the interlacing

Condition Explanation Figure

L(Iblack)

>
G(Igray)

If the black interval is longer than the maxi-
mum gap between two black intervals of the
detailed black interval sequence of Igray than

the two intervals intersect.

uinterlace = ugray

or
linterlace = lgray

If one of the two conditions presented in the
box on the left holds, then the black and
gray interval intersect. This is due to the fact
that the gray intervals end and start with
black intervals.

Table 3: Intersection between an interlacing black and gray interval.

Condition Explanation Figure

ugray = u’gray

or
lgray = l’gray

or
lgray = u’gray

If one of the three conditions depicted in the
box on the left holds, then the two gray
intervals intersect (gray intervals start and
end with black intervals). This test is similar
to the polygon boundary test in [HJR 97].

Nw(Igray) +

Nw(I’gray)

<
Linterlace

If the sum of the number of the “white cells”
of two gray interlacing intervals is smaller
than the length of the interlacing area, then
the two intervals necessarily intersect. This
is the generalization of the first case of
Table 3. This test is similar to the false area
test in [BKSS 94].

Table 4: Intersection between two interlacing gray intervals.

smaller than
G(Igray)

G(Igray)
larger than

linterlace=lgray

uinterlace=ugray

l’gray = ugray

u’gray = ugrayl’gray = lgray

L (Igray)

L’ (Igray)

Linterlace

+

Nw (Igray)+Nw (I’gray)

142 Cost-based Decompositioning of Complex Spatial Objects

interval pair is not added to ctable, i.e. we do not carry out the blobintersection test

for this interval pair.

False Area Test. In this paragraph we generalize the false area test [BKSS 94] to

multi-dimensional intervals, i.e. boxes and tiles. If there exist two containers which

interlace, and both containers have a high density, i.e. the number of white cells is

rather small, then we know that the two objects intersect without accessing the data

stored in the BLOB.

Lemma 3. Let O = (id, 〈 C1 , ..., Cm 〉) and O’ = (id’, 〈 C’1 , ..., C’m’ 〉) be two objects

with their hulls H(Cgray) = and H(C’gray) = . Then the

following statement holds:

Proof. Let be the intersection volume

between two gray containers Ci and C’j. Then and

 holds. As ≥ >

V holds, there must be at least one object voxel v belonging to O and O’, i.e. O and

O’ intersect.�

Condition Explanation Figure

Nb (Igray) = 2

and
lgray < l’gray

and
ugray > u’gray

If Igray consists only of two black cells and

I’gray is totally “included” in Igray, then we

know that the two intervals cannot intersect
each other, although they interlace.

Nb(Igray) =

Nb(I’gray) = 2

and

If both gray intervals consist only of two
black cells and, furthermore, have distinct
interval bounds, then the two intervals cer-
tainly do not intersect.

Table 5: No intersection between two interlacing gray intervals.

u’gray < ugray

Lgray

L’gray

lgray < l’gray

Nb(Igray) = 2

lgray l’gray ≠ ≠

ugray u’gray≠

u’gray=ugray

Lgray

L’gray

l’gray=lgray

Nb(Igray) = 2
N’b(Igray) = 2

X
d

k 1=
hl

k hu
k[,] X

d

k 1=
h’l

k h’u
k[,]

i 1..m{ } j 1..m’{ }:Nw Ci() Nw C’j() min hu
k h’u

k,() max hl
k h’l

k,()– 1+()
k 1=

d

∏<+∈∃∈∃

 intersect⇒ O O',() true=

V min hu
k

h’u
k,() max hl

k
h’l

k,()– 1+()
k 1=

d
∏=

Nb Ci() V Nw Ci()–≥

Nb C’j() V Nw C’j()–≥ Nb Ci() Nb C’j()+ V Nw Ci()– V Nw C'j()–+

Spatial Join 143

Ranking. As shown above, we can pinpoint, based on relatively little information,

whether two container pairs intersect or not. Nevertheless, there might be cases

where we cannot do this for any of the database and query candidate pair. But if the

hulls of two gray containers intersect, it is still helpful if we can predict how likely an

object intersection according to Definition 18 might be in order to rank the pairs

properly in the set of all candidate pairs belonging to the same database object.

Lemma 4. Let Cgray and C’gray be two gray intervals with densities d = D(Cgray),

d’ = D(C’gray) and hulls H(Cgray) = and H(C’gray) = . Fur-

thermore, let denote the intersec-

tion volume. Then the probability for an object intersection is:

Proof. As we assume that the black cells of both gray containers are equally dis-

tributed, we can conclude that N = d × V black cells of Cgray are included in the

testing area and likewise N’ = d’ × V black cells from C’gray. The number of all dif-

ferent possibilities how N’ black cells of C’gray can be placed over the V cells of the

testing area is . Assuming that all N black cells of Cgray are already

distributed over V, then the number of different possibilities how N’ black cells of

C’gray can be placed over the remaining V-N white cells such that no intersection

occurs is .

Thus, the probability for a non-intersection is equal to . �

6.5 Spatial Join

One of the most common query types in spatial database management systems is

the spatial intersection join [GG 98]. This join retrieves all pairs of intersecting ob-

jects. A usual spatial join example of 2D geographical data is “find all cities which

are crossed by a river”. In the automobile industry, spatial join processing of more

complex 3D high-resolution objects is required. One query example is to find all

temperature sensitive parts touching hot parts of the engine or the exhaust pipe. The

high complexity of the objects and the fact that these objects are highly clustered

yield a great challenge for efficient join processing.

X
d

k 1=
hl

k
 hu

k[,] X
d

k 1=
h'l

k
 h'u

k[,]

V min hu
k

h'u
k,() max hl

k
h'l

k,()– 1+()
k 1=
d∏= 0>

P 1
V d V×–

d’ V× 
  V

d’ V× 
 ⁄–=

V

N’ 
  V

d’ V× 
 =

V N–

N’ 
  V d V×–

d’ V× 
 =

V d V×–

d’ V× 
  V

d’ V× 
 ⁄

144 Cost-based Decompositioning of Complex Spatial Objects

In this section, we demonstrate the benefits of our cost-based decompositioning

approach of high-resolution spatial objects by integrating it into a simple nested-loop

join procedure and a more efficient sort-merge join variant. Both methods do not

assume the presence of pre-existing spatial indices on the relations.

We start with two relations R and S, both containing a set of tuples (id, mbr, link),

where id denotes a unique object identifier, mbr denotes the minimal bounding rect-

angle conservatively approximating the respective object and link refers to an exter-

nal file containing the complete voxel set of the object (cf. Figure 75a). In this sec-

tion, we assume that the voxel representation of the objects is accurate enough to

determine intersecting objects without any further refinement step. In order to carry

out the intersection tests efficiently, we decompose the high-resolution voxelized

objects. We store the generated approximations in an auxiliary temporary relation

(cf. Figure 75b), which allows us to reload certain approximations on demand keep-

ing the main-memory footprint small.

The remainder of the section is organized as follows: In Section 6.5.1, we shortly

present the related work in the area of spatial joins discussing three different classes

dependent on the availability of index structures. In Section 6.5.2 and Section 6.5.3,

we introduce a cost-based grouping approach into gray intervals, quite similar to the

one presented in Section 6.3. The main difference is that we do not assume a potential

query distribution, but use the statistics of the join partner relation as input parameter

for the grouping algorithm. In Section 6.5.4, we introduce two different join algo-

rithms based on our cost-based decompositioning. The experimental evaluation is

deferred to Section 6.6.5, where we will present the benefits of our approach.

. . .

Figure 75: Spatial join procedure.
a) Object relation, b) Auxiliary relation with decomposed object approximations

Object Relationa)

id

A

B
C

mbr link

’file_A’

’file_B’

’file_C’

Auxiliary Relation

A

B

b)

approxid

Spatial Join 145

6.5.1 Related Work

In this section, we will shortly discuss different aspects of efficient spatial join

processing of complex spatial objects. Numerous spatial join algorithms have been

proposed over the last decade. Most of them rely on the paradigm of multi-step query

processing [BKSS 94]. A fast filter step excludes all objects that cannot satisfy the

join predicate. The subsequent refinement step is applied to the join candidate pairs

which are returned from the filter step. Thereby, the main focus of research is on the

filter step which is applied to geometric object approximations. On the basis of the

availability of indices for processing the filter step, spatial join methods operating on

two relations can be divided into three classes:

 • Class 1: Index on both relations

 • Class 2: Index on one relation

 • Class 3: No indices

The common solutions for the spatial join methods of Class 1 are the algorithms

based on matching two R-trees as presented in [BKS 93b]. In the last few years, the

international research community has focused on methods of Class 2 and Class 3. A

simple Class 2 approach is the index nested loop, where each tuple of the non-

indexed relation is used as query applied to the indexed relation. In [LR 94] seeded

trees were introduced in order to process spatial joins efficiently when only one

R-tree is available. The authors propose to create a second R-tree using the available

tree as a skeleton and apply thereafter a Class 1 algorithm. For spatial join algorithms

of Class 3, initially no indices are available which could be used to improve the query

performance. Several techniques have been proposed which partition the tuples into

buckets and then use hash based techniques, e.g. the spatial-hash join [LR 96] or the

partition based spatial merge join [PD 96]. The scalable sweeping-based spatial join

[APR+ 98] is w.r.t. worst-case efficiency the most promising algorithm for process-

ing spatial joins. Let us note that we use a simplified version of this algorithm as

starting point for our sort-merge join variant presented in Section 6.5.4. Furthermore,

there exist different other approaches to improve Class 3 join algorithms, e.g. in

[DS 00] the problem of redundancy and duplicate detection was investigated and in

[DSTW 02] a generic technique called progressive merge join (PMJ) was introduced

that eliminates the blocking behavior of sorted-based join algorithms.

146 Cost-based Decompositioning of Complex Spatial Objects

Most of the approaches presented in the literature focus on the efficient computa-

tion of the filter step where MBRs are used for approximating spatial objects. Our

approach deals with very complex 3D objects, where the MBRs form rather poor

approximations, leading to low filter selectivities. In the following sections, we will

present a cost-based decompositioning algorithm for spatial join processing, which

aims at finding an optimal trade-off between low redundancy and high approxima-

tion quality.

6.5.2 Cost Model

For our decompositioning algorithm we take the estimated join cost between a

gray interval Igray and a join-partner relation T into account. Let us note that T can be

either of the tables R or S (cf. Figure 75a), or any temporary table containing derived

information from the original tables R and S (cf. Figure 75b). The overall join cost

costjoin for a gray interval Igray and a join-partner relation T are composed of two

parts, the filter cost costfilter and the refinement cost costrefine:

costjoin(Igray,T) = costfilter(Igray,T) + costrefine(Igray,T).

Filter Cost. The costfilter(Igray,T) can be computed by the expected number of

gray intervals Igray,T of the join partner relation T. We penalize each intersection test

by a constant cf which reflects the cost related to the access of one gray interval Igray,T

and the evaluation of the join predicate for the pair (H(Igray),H(Igray,T)):

costfilter(Igray,T) = Ngray(T) · cf,

where Nvoxel(T) (number of voxels) ≥ Ngray(T) (number of gray intervals) ≥
Nobject(T) (number of objects) holds for the join-partner relation T. The value of the

parameter cf depends on the used system.

Refinement Cost. The cost of the refinement step costrefine is determined by the

selectivity of the filter step. For each candidate pair resulting from the filter step, we

have to retrieve the exact geometry B(Igray) in order to verify the intersection predi-

cate. Consequently, our cost-based decompositoning algorithm is based on the fol-

lowing two parameters:

 • Selectivity σfilter of the filter step.

 • Evaluation cost costeval of the exact geometries.

Spatial Join 147

The refinement cost of a join related to a gray interval Igray can be computed as

follows:

costrefine(Igray, T) = Ngray(T) · σfilter(Igray,T) · costeval(Igray).

In Section 6.3.4, it was shown how to calculate the evaluation cost costeval. In the
following, we show how to estimate the selectivity of the filter step σfilter . We use

simple statistics of the join-partner relation T to estimate the selectivity

σfilter(Igray,T). In order to cope with arbitrary interval distributions, histograms can

be employed to capture the data characteristics at any desired resolution

(cf. Section 4.3.1). The selectivity σfilter(Igray,T) related to a gray interval Igray can be

determined by using an appropriate interval histogram H(T, ν) of the join partner

relation T. Based on H(T, ν), we compute a selectivity estimate by evaluating the

intersection of Igray with each bucket span bi,ν (cf. Definition 7 and Figure 38).

σfilter(Igray, T) = ,

Join cost. To sum up, the join cost costjoin(Igray) related to a gray interval Igray and

a join-partner relation T can be expressed as follows:

costjoin(Igray ,T) = Ngray(T) · (cf + σfilter(Igray,T) ·costeval(Igray)).

6.5.3 Decompositioning Algorithm

For each object, there exist a lot of different possibilities to decompose the voxel-

ized object into a gray interval sequence.

Lemma 5. Let Ovoxel = (id, {v1, ..., vn}) be a voxelized object and be

a space filling curve. Furthermore, let W = {(l, u) ∈ IN2, l ≤ u} be the domain of

intervals and let b1 = (l1, u1), …, bn = (ln, un) ∈ W be a sequence of intervals where

ui + 1 < li+1 representing the set {ρ(v1), ...,ρ(vn)}. Then, there exist O(2n) different

gray interval sequences Ogray = (id, 〈 , , …,

〉).

Proof. The interval sequence representing Ovoxel consists of n-1 “gaps”. For each

of these gaps we can decide whether it is included in a gray interval, or whether it

separates two gray intervals. Thus we have 2n-1 different possible gray interval se-

quences. �

overlap H Igray() bi ν,,()
β

--- ni⋅
i 1=

ν

∑

ni
i 1=

ν

∑

ρ:INd IN→

bi0 1+ ,...,bi1
〈 〉 bi1 1+ ,...,bi2

〈 〉
bim 1– 1+ ,...,bim

〈 〉

148 Cost-based Decompositioning of Complex Spatial Objects

Based on the formulas for join cost related to a gray interval Igray and a join-part-

ner relation T, we can find a cost optimum decompositioning algorithm. Unfortunate-

ly, as shown in the above lemma, there exist exponentially many decompositioning

possibilities, which results in a high runtime of an optimum cost-based decomposi-

tioning algorithm. In this section, we will present a greedy algorithm with a guaran-

teed worst-case runtime complexity of O(n) which produces decompositions helping

to accelerate the query process considerably (cf. Section 6.6.5).

For fulfilling the grouping rules presented in Section 6.3, we introduce the follow-

ing top-down decompositioning algorithm for gray intervals, called JoinGroupCon

(cf. Figure 76). JoinGroupCon is a recursive algorithm which starts with a gray inter-

val Igray initially covering the complete object. In each step of our algorithm, we look

for the longest remaining gap. We carry out the split at this gap, if the estimated join

cost caused by the decomposed intervals is smaller than the estimated cost caused by

our input interval Igray. The expected join cost costjoin(Igray,T) can be computed as

described above. Data compressors which have a high compression rate and a fast

decompression method, result in an early stop of the JoinGroupCon algorithm gener-

ating a small number of gray intervals. Let us note that the inequality “costgray >

costdec” in Figure 76 is independent of Ngray(T), and thus Ngray(T) is not required

during the decompositioning algorithm.

Figure 76: Decompositioning algorithm JoinGroupCon.

ALGORITHM JoinGroupCon (Igray, H(T,v), T)

BEGIN
interval_pair := split_at_maximum_gap(Igray);

left := interval_pair.left;
right := interval_pair.right;
costgray := costjoin(Igray,T, H(T,v));

costdec := costjoin(left,T, H(T,v)) + costjoin(right,T, H(T,v));

IF costgray > costdec THEN
RETURN JoinGroupCon (left,H(T,v),T) ∪ JoinGroupCon (right,H(T,v),T);

ELSE
RETURN Igray;

END IF;
END.

Spatial Join 149

6.5.4 Join Algorithms

In this section, we turn our attention to the processing of two different join algo-

rithms. Exemplarily, we explain in detail how our decomposition algorithm can help

to accelerate a variant of the nested loop join and the sort-merge join. Let us note that

the main focus of this section is not the presentation of a new join algorithm, but the

presentation of a theoretically sound and practically relevant decompositioning algo-

rithm which helps to accelerate known join algorithms on complex spatial objects.

Nested Loop Join. Our two phase nested loop join algorithm is shown in

Figure 77. We build the gray intervals by means of the cost-based decompositioning

algorithm presented in Figure 76. In the following, we assume that we have to join

relation R with relation S, both containing complex spatial objects.

Preprocessing Phase. For each voxelized spatial object Ovoxel,S in relation S we

apply the function JoinGroupCon(Igray,S , H(R,v), R), which generates a gray object

interval sequence (cf. Figure 76). This algorithm takes the statistics about the data

R table(id, mbr, link); // objects of relation R (cf. Figure 75a)
S table(id, mbr, link); // objects of relation S (cf. Figure 75a)
S’ table(id, approx); // gray intervals (cf. Figure 75b)

ALGORITHM nested-loop-join(R,S)
BEGIN

FOR EACH object Ovoxel,S in S DO
Igray,S := (min(z-val(Ovoxel,S)), max(z-val(Ovoxel,S)));

Ogray,S’ := JoinGroupCon (Igray,S , H(R,v), R);

store (Ogray,S’) in S’;

END FOR;
result_set := ∅;
FOR EACH object Ovoxel,R in R DO

Igray,R := (min(z-val(Ovoxel,R)), max(z-val(Ovoxel,R)));

Ogray,R’ := JoinGroupCon (Igray,R , H(S’,v), S’);

FOR EACH object Ogray,S’ in S’ DO
IF intersect(Ogray,R’ , Ogray,S’) = true THEN

result_set := result_set ∪ (Ogray,R’ , Ogray,S’);
END IF;

END FOR;
END FOR;

END.

Figure 77: Nested-Loop join algorithm.

}
} jo

in
ph

as
e

pr
ep

ro
ce

ss
in

g
ph

as
e

150 Cost-based Decompositioning of Complex Spatial Objects

distribution of the relation R into account where each object is approximated by a

gray interval Igray = (z-val(mbr.lower), z-val(mbr.upper)) (cf. Figure 69). The gray

object interval sequence Ogray,S’ of each voxelized object Ovoxel,S is materialized in a

temporary relation S’ following the NF2 schema of the relation of Figure 75b.

In the following description of the nested-loop join, we assume that the objects

Ovoxel,R of relation R are accessed only once. Thus, there is no need to materialize the

corresponding gray intervals in the database in contrast to the objects of relation S.

Assuming that one object completely fits into memory, its gray intervals can be built

on-the-fly during the join phase.

Join Phase. The join phase is performed in a nested-loop fashion. For each object,

we execute the function JoinGroupCon(Igray,R , H(S’,v), S’) in the outer loop in order

to build the gray object interval sequence Ogray,R’ . This time, we apply the data dis-

tribution statistics of relation S’ where each object Ogray,S’ might be represented by

several gray intervals. In the inner loop, we test Ogray,S’ for intersection with Ogray,R’

calling the boolean function intersect().

The function intersect(Ogray,R’ , Ogray,S’) checks whether two gray object interval

sequences Ogray,R’ and Ogray,S’ intersect. They intersect, iff there is at least one gray

interval pair (Ogray,R’ .Igray , Ogray,S’ .Igray) which intersects. If we assume that all gray

intervals of Ogray,R’ and Ogray,S’ fit in main memory and are sorted in ascending order

by their starting point, we can efficiently perform the intersection tests by processing

both interval sequences in parallel. As soon as an intersection is detected, the remain-

ing tests for this object pair can be skipped and the value “true” is issued. The actual

intersection test of a gray-interval pair is performed in two steps: in the first step

(filter step) the intervals are tested with respect to their hulls. If the result of the filter

step is positive, i.e. the hulls intersect, a subsequent refinement step verifies the inter-

section with respect to the exact geometric object representations. In order to execute

the expensive exact intersection test, we have to load the byte sequence

B(Ogray,S’ .Igray) from disk, decompress it and test it for an intersection with

B(Ogray,R’ .Igray) which is still in main memory. Furthermore, we suggest to use the

optimizations presented in Section 6.4.2 in order to avoid some of the costly refine-

ment steps.

Sort-Merge Join. In this section, we introduce a variant of the sort-merge join. It

is based on the worst-case optimal interval join algorithm described in [APR+ 98]. In

the following we consider R and S as input relations. Initially each object Ovoxel of

Spatial Join 151

both relations is approximated by one gray interval Igray := (min(z-val(Ovoxel)),

max(z-val(Ovoxel))). The join algorithm is performed in plane-sweep fashion. As we

cannot assume that the sweep-line status completely fits in memory, we additionally

use two auxiliary relations R’ and S’ to hold the actual sweep-line status on disk. Both

relations R’ and S’ follow the schema of S’ of the nested-loop join.

In analogy to the nested-loop join, we apply the algorithm JoinGroupCon

(cf. Figure 76) in order to adjust the object approximations to the data distribution of

the respective join-partner relation. Again, for the computation of the data distribu-

tion we use interval histograms with the exception that we perform the decomposi-

tion in two steps in which we employ two different interval histograms for each data

set. The interval histograms HQ,R’ and HQ,S’ represent the data distribution within the

actual sweep-line status. The other interval histograms HD,R’ and HD,S’ represent the

overall data distribution, derived from R and S in conjunction with the actual

sweep-line status. In the following, we assume that all interval histograms have the

same resolution v, so that their bucket borders are congruent. An example is shown in

Figure 78.

During the join processing, we try to estimate the filter selectivity for each actual

considered gray interval as precisely as possible. For those objects which have al-

ready been processed we take the exact interval distribution into account which is

retrieved from the actual sweep-line status, i.e. from R’ respective S’. For the contri-

ni ni+1 ni+2

sweep-line

} intervals of the
sweep-line status R’

actual considered interval

}not yet decomposed
intervals

ni+3

Figure 78: Intervals stemming from R and the corresponding histograms.

interval histogram

interval histogram
HQ,R’

HD,R’

152 Cost-based Decompositioning of Complex Spatial Objects

bution of the remaining objects, where no decompositioning was performed yet, we

take the distribution of the corresponding undecomposed objects into account, which

can be derived from R and S.

Our sort-merge join algorithm consists of two phases where the second phase in

turn consists of three steps which are performed for each object. The complete join

algorithm described in the following is depicted in Figure 79:

Preprocessing Phase. Initially, we gather the statistics about the data distribution

of R and S and store them in the two interval histograms HD,R’ and HD,S’. Thereby,

HD,R’ is generated from the data of R and HD,S’ from the data of S. Next, we order all

bounding boxes of both relations R and S according to their starting point, i.e.

z-val(mbr.lower). We suggest to use the Z-order as space filling curve so that the

lower left vertex of the bounding box coincides with the starting point of the gray

interval Igray covering the complete object and the upper right vertex coincides with

Figure 79: Two-phase sort-merge join.

list of gray intervals Iri and Isi
 of

relation R and S sorted by as-
cending values z-val(mbr.lower)

sweep-line

Ir1
Ir2 Is1

Is2
Ir3

Ir4

Relation S’
id approx

Relation R’
id approx
r1
r2

s1D

decomposition

collision query of

with relation R’
storage of

in relation S’

Relation R Relation S
id
r1

r2
r3

mbr link

’file_r1’

’file_r2’

’file_r3’

id
s1

s2
s3

mbr link

’file_s1’

’file_s2’

’file_s3’

s1

s1

s2
s2

decomposed s2

decomposed s2

of s2 using HQ,R’

r2

join results

2.

3.

Q decomposition
of s2 using HD,R’

1.

}

}
pr

ep
ro

ce
ss

in
g

ph
as

e
jo

in
ph

as
e

s2
s2

Spatial Join 153

the end point of Igray . Let us note that sorting the objects is rather cheap if we assume

that we have comparatively few objects but rather complex ones.

Join Phase. We apply a plane sweep algorithm to walk through the sorted lists of

gray intervals of both relations R and S. The event points of this algorithm are the

starting points of the gray intervals of both relations. Each encountered interval

Igray = (l, u) from relation S (R) is now processed according to the following three

steps:

 • Step 1: Igray is decomposed based on the data distribution of the actual sweep-line

status by applying HQ,R’ (HQ,S’) and stored in a temporary list Q. In the same step

we decompose Igray applying the statistics HD,R’ (HD,S’) and buffer the result in

another temporary list D.

 • Step 2: The resulting decomposed intervals of Q are used as query objects for the

relation R’ (S’). We report all objects having a gray interval I’gray stored in R’ (S’)

which intersects at least one of the decompositions of Igray . These intersection que-

ries can be efficiently carried out as outlined in Section 6.4.

 • Step 3: The decomposed intervals of D are stored in the temporary relation S’ (R’).

In order to keep the relations R’ and S’ small, we delete all gray intervals

I’gray = (l’, u’) from R’ and S’ where u’ is smaller than l, i.e. all intervals which are

certainly not accessed anymore. Finally, we have to update the interval histograms

HD,S’ and HQ,S’ (HD,R’ and HQ,R’).

Let us note that our algorithm JoinGroupCon (cf. Figure 76) considers in each

step i the i-th longest gap gi independent of the chosen histogram. We suggest to

compute the object decompositions for the respective interval histograms in parallel.

This approach guarantees that we consider each gap only once.

Similar to the nested-loop join algorithm, the presented sort-merge join does not

require any duplicate elimination. Furthermore, the main memory footprint of our

sort-merge join algorithm is negligible because we do not keep the sweep-line status

in main-memory. Even if we kept it in main memory, the use of suitable data com-

pressors would lead to a small main memory-footprint (cf. Section 6.6.5).

154 Cost-based Decompositioning of Complex Spatial Objects

6.6 Experimental Evaluation

In this section, we evaluate the performance of our approach for accelerating rela-

tional spatial index structures and spatial join processing, with a special emphasis on

the various data compression techniques introduced in Section 6.3. We evaluate dif-

ferent grouping algorithms GRP in combination with various data compression tech-

niques DC. We used the following data compressors DC:

Furthermore, we grouped voxels into gray containers depending on two grouping

algorithms GRP:

MaxGap. This grouping algorithm tries to minimize the number of gray contain-

ers while not allowing that a maximum gap G(Cgray) of any gray container Cgray

exceeds a given MAXGAP parameter. By varying this MAXGAP parameter, we can

find the optimum trade-off between the first two opposing grouping rules of

Section 6.3, namely a small number of gray containers and a small number of white

cells included in each of these containers.

GroupCon. We grouped the containers according to our cost-based grouping algo-

rithm GroupCon (cf. Section 6.3 and Section 6.5), where the resolution of the used

histograms was set to 100 buckets. Furthermore, we used the query distribution func-

tion from Figure 71b with k* = 1/100,000. Note, that the grouping based on Max-

Gap(DC) does not depend on DC, whereas GroupCon(DC) takes the actual data

compressor DC into account for performing the grouping.

In order to support the first filter step of GRP(DC), we can take any arbitrary

access method for spatial data, e.g. the RI-tree, the RR-tree or the RQ-tree. We have

implemented the RI-tree and the RQ-tree on top of the Oracle9i Server using PL/SQL

for most of the computational main memory based programming. Furthermore, we

applied GRP(DC) to the RR-tree provided by Oracle [RRSB 99]. The evaluation of

the blobintersection routines was delegated to a DLL written in C. All experiments

were performed on a Pentium 4/2600 machine with IDE hard drives. The database

NOOPT The BLOB is unpacked

BZIP2 The BLOB is packed according to the BZIP2 approach

ZLIB The BLOB is packed according to the ZLIB approach

GEOM The BLOB is packed according to the approach for simply structured objects

OPTRLE The BLOB is packed according to the approach in [KPPS 03a]

QSDC The BLOB is packed according to the QSDC approach

Experimental Evaluation 155

block cache was set to 500 disk blocks with a block size of 8 KB and was used

exclusively by one active session.

Test Data Sets. All tests were carried out on our two test data sets CAR and

PLANE (cf. Section 5.4). The gap distributions of these two data sets was already

discussed in Section 5.4. Figure 80 depicts the interval distribution. It can be seen

that the bucket which includes most intervals is regularly increasing with increasing

MAXGAP. The gap histograms depending on the MAXGAP parameters are obvious

because all gaps smaller than MAXGAP are used to form the gray intervals. On the

other hand, the gaps larger than MAXGAP are unused.

6.6.1 Storage Requirements

First we look at the storage requirements of the RI-tree on the PLANE data set. In

Figure 81a, the storage requirements for the index, i.e. the two B+-trees underlying

the RI-tree, as well as for the complete GrayContainers table are depicted for the

MaxGap(QSDC) approach. In the case of small MAXGAP parameters, the number of

Figure 80: Interval length depending on the MAXGAP parameter.
a) CAR, b) PLANE

1

100

10000

1000000

1 1024 1048576
Interval-Length

n
u

m
b

er
 o

f
in

te
rv

al
s

M=0 M=10^1 M=10^2
M=10^3 M=10^4 M=10^5
M=10^6

1

100

10000

1000000

1 1024 1048576
Interval-Length

n
u

m
b

er
 o

f
 in

te
rv

al
s

M=0 M=10^1 M=10^2
M=10^3 M=10^4 M=10^5
M=10^6

a) b)

0

10

20

30

40

50

10 10.000 10.000.000
MAXGAP

n
u

m
b

er
 o

f
b

lo
ck

s
[x

10
00

]

index
table

1

10

100

1,000

10,000

10 1,000 100,000 10,000,000
M AXGAP

su
m

 o
f

B
L

O
B

-s
iz

es
 [

x1
,0

00
,0

00
]

b
yt

es

NOOPT
OPTRLE
ZLIB
BZIP2
QSDC

b)a)

Figure 81: Storage requirements for the RI-tree (PLANE).
a) Index & BLOB for MaxGap (QSDC), b) BLOB for MaxGap(DC)

156 Cost-based Decompositioning of Complex Spatial Objects

disk blocks used by the index dominates the number of disk blocks for the GrayCon-

tainers table. With increasing MAXGAP parameters, the number of disk blocks used

by the index dramatically decreases hand in hand with the number of gray container

objects, and at high parameter values they yield no significant contributions any

more to the overall sum of used disk blocks.

Figure 81b shows the different storage requirements for the BLOB with respect to

the different data compression techniques. Due to an enormous overhead, the ZLIB

and BZIP2 approaches occupy a lot of secondary storage space for small MAXGAP

values. On the other hand, for high MAXGAP values they yield very high compres-

sion rates. For the PLANE data set the BZIP2 approach yields a compression rate of

more than 1:500 and is at least 20 times more efficient than the approach used in

[KPPS 03a]. The QSDC approach yields good results over the full range of the MAX-

GAP parameter. For high MAXGAP values, the number of disk blocks used for the

BLOBs corresponds to the number of disk blocks used overall. For these high MAX-

GAP parameters, the MaxGap(QSDC), MaxGap(ZLIB) and MaxGap(BZIP2) ap-

proach lead to a much better storage utilization than the MaxGap(NOOPT) and the

MaxGap(OPTRLE) approach.

6.6.2 Update Operations

In this section, we will investigate the time needed for updating complex spatial

objects in the database. For most of the investigated application ranges, it is enough

to confine ourselves to insert and delete operations, as updates are usually carried out

by deleting the object out of the database and inserting the altered object again. Fig-

a) insert

Figure 82: Update operations for the RI-tree (CAR).
(i) Numerous black intervals, (ii) One gray interval with unpacked BLOB,

(iii) Gray intervals grouped by GroupCon(QSDC)

0

1

10

100

1000

(i) (ii) (iii)

d
el

et
e

ti
m

e
[s

ec
.]

1

10

100

1000

10000

(i) (ii) (iii)

in
se

rt
 t

im
e

[s
ec

.]

group

pack

store

b) delete

Experimental Evaluation 157

ure 82a shows that inserting all objects into the database takes very long if we store

the numerous black intervals in the RI-tree (i) or if we store one value approximations

of the unpacked object in the RI-tree (ii). On the other hand, using our Group-

Con(QSDC) approach (iii) accelerates the insert operations by almost two orders of

magnitude. The time spent for grouping and packing pays off, if we take into consid-

eration that we save a lot of time for storing grouped and packed objects in the data-

base. Obviously, the delete operations are also carried out much faster for our Group-

Con(QSDC) approach as we have to delete much less disk blocks (cf. Figure 82b).

6.6.3 Collision Queries based on the MaxGap-Grouping

In this and the following section, we want to turn our attention to the query pro-

cessing by examining different kinds of collision queries. The figures presented in

this paragraph depict the average result obtained from collision queries where we

have taken every part from the CAR data set and the 100 largest parts from the

PLANE data set as query objects.

Packers. In Figure 83 it is shown in which way the overall response time for

boolean intersection queries based on the RI-tree depends on the MAXGAP parame-

ter. If we use small MAXGAP parameters, we need a lot of time for the first filter step

whereas the blobintersection test is relatively cheap. Therefore, the different Max-

Gap(DC) approaches do not differ very much for small MAXGAP values. For high

MAXGAP values we can see that the MaxGap(QSDC) approach performs best with

respect to the overall runtime. The MaxGap(QSDC) approach is rather insensitive

0

1

10

100

10 1.000 100.000 10.000.000

MAXGAP

re
sp

o
n

se
 t

im
e

[s
ec

.]
NOOPT
OPTRLE
ZLIB
BZIP2
QSDC

Figure 83: Boolean intersection queries for MaxGap(DC) (RI-tree (PLANE)).

MaxGap(NOOPT)
resp.time: 20.67 sec.
phy. reads: 10,175

MaxGap(QSDC)
resp.time: 0.61 sec.
phy. reads: 84

158 Cost-based Decompositioning of Complex Spatial Objects

against too large MAXGAP parameters. Even for values where the first filter step is

almost irrelevant, e.g. MAXGAP = 107, the MaxGap(QSDC) approach still performs

well. This is due to the fact that for large MAXGAP values the MaxGap(QSDC)

approach needs much less physical reads, about 1% of the MaxGap(NOOPT) ap-

proach. As a consequence, the query response time of the MaxGap(QSDC) approach

is approximately 1/35 of the query response time of the MaxGap(NOOPT) approach.

Figure 84 depicts the results of the MaxGap(QSDC) approach for the RQ-tree and

the RR-tree. Basically, we made the same observations as in the case of the RI-tree.

In the case of the RR-tree we only implemented the packed version, because the byte

sequence B(Cgray) might contain unreasonably long gaps, which are not taken into

consideration during the grouping process.

In Figure 85 it is shown in what way the different data space resolutions influence

the query response time. Generally, the higher the resolution, the slower is the query

0

1

10

100

1000

10 1,000 100,000 10,000,000
MAXGAPre

sp
o

n
se

 t
im

e
[s

ec
.]

boolean query, QSDC
ranking query, QSDC

0

1

10

100

10 1.000 100.000 10.000.000
MAXGAPre

sp
o

n
se

 t
im

e
[s

ec
]

ranking query, NOOPT
ranking query, QSDC
boolean query, NOOPT
boolean query, QSDC

Figure 84: Intersection queries (CAR).
a) RQ-tree, b) RR-tree

a) b)

Figure 85: Boolean intersection queries for MaxGap(QSDC).
(RI-tree using different resolutions (CAR))

0

1

10

100

10 1.000 100.000

MAXGAP

re
sp

o
n

se
 t

im
e

[s
ec

.]

33 bit QSDC
30 bit QSDC
27 bit QSDC
24 bit QSDC

Experimental Evaluation 159

processing. Our MaxGap(QSDC) is especially suitable for high resolutions, but also

accelerates medium or low resolution spatial data.

To sum up, the MaxGap(QSDC) approach improves the response time of collision

queries for varying index structures and resolutions by up to two orders of magni-

tude.

Number of Tested Candidates. Figure 86 illustrates the number of interval can-

didate pairs and the number of the corresponding tests which are carried out for

boolean intersection queries on the RI-tree. In the second filter step, the number of

the candidate pairs rapidly decreases with increasing MAXGAP value although the

number of candidate object IDs increases (cf. Figure 87). At low MAXGAP values,

we have to test only a fractional amount of candidate pairs as the fast second filter

step works very successfully with this parametrization (cf. Figure 86). Consequently,

there is only a relative small number of candidate pairs left for the blobintersection

tests.

In the blobintersection step, the number of both candidate pairs and corresponding

tests do not vary as much as in the second step. Nevertheless, Figure 86 shows that

this step benefits as well from the skipping principle introduced in Section 6.4.

2nd filter step

1

10

100

1000

10000

100000

10 10000
MAXGAP

n
u

m
b

er
 o

f
C

an
d

id
at

es

0,0

0,2

0,4

0,6

0,8

1,0

n
o

. T
es

ts
 /

n
o

.
C

an
d

.

Figure 86: Tested candidate pairs of gray query and database intervals.
(Boolean intersection queries on the RI-tree)

a) CAR, b) PLANE

blobintersection step

1

10

100

1000

10 10000
MAXGAP

n
u

m
b

er
 o

f
C

an
d

id
at

es

0,0

0,2

0,4

0,6

0,8

1,0

n
o

. T
es

ts
 /

n
o

.
C

an
d

.

2nd filter step

1

10

100

1000

10 10000
MAXGAP

n
u

m
b

er
 o

f
C

an
d

id
at

es

0,0

0,2

0,4

0,6

0,8

1,0

n
o

. T
es

ts
 /

n
o

.
C

an
d

.

blobintersection step

0

1

2

3

10 10000 MAXGAP
n

u
m

b
er

 o
f

C
an

d
id

at
es

0,0

0,2

0,4

0,6

0,8

1,0

n
o

. T
es

ts
 /

n
o

.
C

an
d

.

a)

b)

0
1000Candidates Tests/Candidates

160 Cost-based Decompositioning of Complex Spatial Objects

In Figure 87, it is illustrated that at small MAXGAP values the number of the

different object IDs resulting from the first filter step is only marginally higher than

the number of different IDs in the final result set. Likewise, the number of detected

hits in the second filter step is only marginally smaller. With increasing MAXGAP

values the two curves diverge.

Miscellaneous. The size of the parts in the PLANE data set varies considerably.

We have a lot of small parts and only a few very large ones. In the case of the CAR

data, this peculiarity is far less distinctive. As large query parts produce a large num-

ber of query intervals, it is obvious that the size of a part correlates with the response

time. In Figure 88a, it is shown that for most parts from the PLANE data set the

MaxGap(OPTRLE) method (MAXGAP = 10,000, resolution 33 bit) outperforms the

RI-tree ‘only’ by a factor of 2.9 whereas there are some parts for which this factor is

higher than 100. In Figure 88b, it is illustrated that we have to wait for more than five

minutes for some collision queries when using the RI-tree. On the other hand, using

the MaxGap(OPTRLE) method yields almost interactive response times for all colli-

sion queries.

6.6.4 Collision Queries based on the GroupCon-Grouping

Figures 83 and 84a show that for packed data, the optimum MAXGAP value is

higher than for unpacked data. Furthermore, Figure 85 shows that for increasing

resolutions the optimum MAXGAP also increases. We will now experimentally show

that the GroupCon algorithm produces object decompositions which yield almost

PLANE

3,33

2,27
1,87

1,611,451,37

1,25 1,13 1,07 1,03 1,03 1,03

1,3 1

0

1

2

3

4

10 1000 100000
MAXGAP

n
u

m
b

er
 o

f
ID

s

CAR

28 ,08

20 ,91
16 ,40

13 ,68
12 ,00

10 ,83 7 ,80
4 ,63 2 ,57 1,74 1,37

11,14

0

10

20

30

40

10 1000 100000
MAXGAP

n
u

m
b

er
 o

f
ID

s

Figure 87: Candidate and result sets.
(Boolean intersection queries on the RI-tree)

a) CAR, b) PLANE

a) b)

40,3128,0820,9116,4013,6812,0010,83 7,80 4,63 2,5 7 1,74010203040 Cand. after 1.step Hits after 2. step Hits after BLOB test

Experimental Evaluation 161

optimum query response times for varying index structures, compression techniques

and data space resolutions.

Table 6 depicts the overall query response time for boolean and ranking intersec-

tion queries for the RI-tree based on the GroupCon algorithm.

We can see that for boolean intersection queries this grouping delivers results quite

close to the minimum response times depicted in Figure 83. Furthermore, we notice

that the GroupCon(QSDC) approach outperforms the RI-tree [KPS 01] by a factor of

180 for boolean intersection queries on the PLANE data set. For ranking intersection

queries the RI-tree [KPS 00] is not applicable due to the enormous amount of gener-

ated join partners. On the other hand, the GroupCon(QSDC) approach yields interac-

tive response times even for such queries. The GroupCon algorithm adapts to the

optimum MAXGAP parameter for varying compression techniques, by allowing

2,2

3 16 ,5

0

100

200

300

400

re
sp

o
n

se
 t

im
e

[s
ec

]

10111
2

42

1 0

99 59

2,9

43,6

141,0

7 1,7

48,0

23,0

79 ,6

106,0

1

10

100

1000

10000

10 20 30 40 50 60 70 80 90 100
% of max. response-time

n
u

m
b

er
 o

f
q

u
er

y
p

ar
ts

0

50

100

150

number of parts
resp. time RI-tree / resp. time MaxGap(OPTRLE)
trend response-time-ratio

PLANE

a)

Figure 88: Response time.
a) |resp. time RI-tree | / |resp. time MaxGap(OPTRLE) method|, b) Maximum response times

b)

re
sp

. t
im

e
R

I-
tr

ee
/

re
sp

. t
im

e
M

ax
G

ap
(O

P
T

R
L

E
)

PLANE

MaxGap RI-tree

(OPTRLE)

NOOPT BZIP2 QSDC
RI-tree
[KPS 00][KPS 01]

number of containers 24,453 16,063 15,468 9,289,569

overall runtime for
boolean queries [sec.]

1.35 0.71 0.55 135.01

overall runtime for
ranking queries [sec.]

2.42 1.23 0.92 (not applicable)

Table 6: GroupCon (DC) evaluated for boolean and ranking intersection queries for the
RI-tree (PLANE)

∞

162 Cost-based Decompositioning of Complex Spatial Objects

greater gaps for packed data, i.e the number of generated container objects is smaller

in the case of packed data.

In Table 7 it is shown that the query response times resulting from the GroupCon

algorithm for different index structures, are almost identical to the ones resulting

from a grouping based on an optimum MAXGAP parameter (cf. Figure 84a (RQ-tree)

84b (RR-tree) and 85 (RI-tree with a resolution = 33)).

In Table 8 it is shown that the query response times resulting from the GroupCon

algorithm for varying resolutions, are almost identical to the ones resulting from a

grouping based on an optimum MAXGAP parameter (cf. Figure 85).

To sum up, the GroupCon algorithm produces object decompositions which yield

almost optimum query response times for varying index structures, compression

techniques and data space resolutions.

6.6.5 Spatial Join Processing

In this section, we want to show how our decompositioning algorithm accelerates

the presented join algorithms of Section 6.5.4. We have performed intersection joins

over two relations, each containing approximately a half of the parts from the CAR

data set, i.e. 14×106 voxel and approximately 200 objects. We took care that the data

of both relations have similar characterizations with respect to the object size and

distribution.

Nested Loop Join. In Figure 89 it is shown in which way the response time for the

intersection join query, including the preprocessing step, depends on the MAXGAP

parameter using the QSDC compression (cf. Figure 89a) and no compression (cf.

RR-tree RQ-tree RI-tree

overall runtime for boolean queries [s] 1.21 0.91 0.61

overall runtime for ranking queries [s] 2.34 2.12 1.23

Table 7: GroupCon (QSDC) evaluated for boolean and ranking intersection queries (CAR).

33 bit 30 bit 27 bit 24 bit
overall runtime[s] 0.64 0.7 0.29 0.22

Table 8: GroupCon (QSDC) evaluated for boolean intersection queries for the RI-tree
with different resolutions (CAR).

Experimental Evaluation 163

Figure 89b). The figures depict the overall contributions of the preprocessing phase,

of the on-the-fly decompositioning and of the filter and refinement step. If we use

small MAXGAP parameters, we need a lot of time for the filter step whereas the

refinement step, which is influenced by the BLOB sizes, is relatively cheap. On the

other hand, for high MAXGAP values we can see that the refinement step is very

expensive in contrast to the filter step which is very cheap then. The preprocessing

step itself consists of three parts, i.e. loading of the original voxel sets of relation S,

decompositioning of the voxel sets and storing the resulting gray intervals in relation

S’. Note, that the loading part is independent of the chosen MAXGAP parameter and

the decompositioning according to a MAXGAP parameter is a straightforward task

which does not consume much CPU time. Thus, the differences in the preprocessing

step are caused by storing the gray intervals to disk. Figure 89b shows that for ex-

tremely high and small MAXGAP values these cost are very high. For small values

this is due to the fact that we have to store an enormous amount of gray intervals each

having a constant overhead. For high MAXGAP values, we have to store only a few

very large gray intervals resulting as well in high I/O cost. Note that if we use the

QSDC approach for high MAXGAP values, the I/O cost of the preprocessing step still

remain low (cf. Figure 89a).

0 9

8 6

8 6 4

8 6 4 0

8 6 4 0 0

1E+0 2 1E+0 3 1E+0 4 1E+0 5 1E+0 6 1E+0 7 1E+0 8

Figure 89: GRP(DC) evaluated for the nested loop join (CAR data set).
a) QSDC compression, b) NOOPT (no compression)

0 9

8 6

8 6 4

8 6 4 0

1E+0 2 1E+0 3 1E+0 4 1E+0 5 1E+0 6 1E+0 7 1E+0 8

preprocessing decompositioning
filter refinement

ov
er

al
l e

xe
cu

tio
n

tim
e

[s
]

Jo
in

G
ro

up
C

on

MAXGAP

MAXGAP

ov
er

al
l e

xe
cu

tio
n

tim
e

[s
]

a)

b)

∞

Jo
in

G
ro

up
C

on

m
br

-a
pp

ro
x.

∞

m
br

-a
pp

ro
x.

164 Cost-based Decompositioning of Complex Spatial Objects

Taking all steps together, Figures 89 and 90 show that for packed data the optimum

MAXGAP value is higher than for unpacked data, i.e. MAXGAP = 105 for NOOPT

and MAXGAP = 106 for BZIP2 and QSDC. Both figures show that the JoinGroupCon

algorithm produces object decompositions which yield the optimal trade-off between

the filter and refinement cost for varying compression techniques. Let us note that our

cost-based decompositioning algorithm JoinGroupCon together with our QSDC ap-

proach accelerates the nested-loop join in the best possible way. Furthermore, we

implemented the nested-loop join approach where the mbr approximations of the

objects are used as geometric filter. Note that we also conducted a preprocessing step

in order to generate a more suitable object representation. Without this additional

preprocessing step, the time for the nested loop variant would be very high due to a

much more expensive refinement step. Our approach outperforms the uncompressed

variant of the nested loop join based on the mbr approximations by more than one

order of magnitude.

Sort-merge join. In this paragraph, we demonstrate how our cost-based decom-

positioning algorithm based on the QSDC approach accelerates the sort-merge join

while keeping the main memory-footprint small. Figure 91 shows how the runtime of

the complete join algorithm depends on the available main-memory. We keep as

much as possible of the sweep-line status in main memory instead of immediately

externalizing it. The figure shows that for uncompressed data Step 2 and Step 3 (cf.

Figure 79) are very expensive if the available main memory is limited. If we use our

JoinGroupCon algorithm without any compression, we need 50 MB or more to get

the best possible runtime. If we use JoinGroupCon in combination with the QSDC

approach, we only need about 2 MB to get the best runtime. The two optimum runt-

imes are almost identical because one of the main design goals of the QSDC was high

0 9

8 6

8 6 4

8 6 4 0

8 6 4 0 0

1E+0 2 1E+0 3 1E+0 4 1E+0 5 1E+0 6 1E+0 7 1E+0 8

NOOPT BZIP2 QSDC

Figure 90: Overall nested-loop join performance for different packers.
(CAR data set)

MAXGAP

ov
er

al
l e

xe
cu

tio
n

tim
e

[s
]

m
br

-a
pp

ro
x.

∞

Jo
in

G
ro

up
C

on

m
br

-a
pp

ro
x.

∞

Experimental Evaluation 165

unpack speed. Note that already by a main memory footprint of 0 KB, i.e. the

sweep-line status cache is disabled, the QSDC approach achieves runtimes close to

the optimum ones demonstrating a high compression ratio of the QSDC.

Figure 92 shows the influence of the available main memory for one-value interval

approximations, i.e. Ogray = (id, Igray), and gray approximations formed by our Join-

GroupCon algorithm. The one-value interval approximations produce more false hits

resulting in higher refinement cost. Note, that one-value interval approximations of

uncompressed data cannot be kept in main memory even if allowing a main memory

footprint of up to 1.5 GB. Furthermore the figure demonstrates the superiority of the

QSDC approach compared to the BZIP2 approach independent of the available main

memory. This superiority is due to the high (un)pack speed of the QSDC and a com-

parable compression ratio.

To sum up, our cost-based decompositioning algorithm JoinGroupCon together

with our QSDC approach accelerates the sort-merge join in the best possible way

while keeping the required main memory small. For reasonable main memory sizes

we achieve an acceleration by more than two orders of magnitude for the CAR data

set.

0 0

8 6

173

2 59

3 4 6

4 3 2

518

0 E+0 0 5E+0 1 2 E+0 2 5E+0 2 2 E+0 3 5E+0 3 2 E+0 4 5E+0 4 2 E+0 5 5E+0 5

Preprocessing Step 1 Step 2 Step 3

0 0

8 6

0 E+0 0 5E+0 1 2 E+0 2 5E+0 2 2 E+0 3 5E+0 3 2 E+0 4 5E+0 4 2 E+0 5 5E+0 5

memory size in kb

pr
oc

es
si

ng
 ti

m
e

[s
]

pr
oc

es
si

ng
 ti

m
e

[s
]

memory size in kb

Figure 91: Sort-merge join performance.
(CAR dataset; different cache sizes of the sweep-line status)
a) JoinGroupCon (NOOPT), b) JoinGroupCon (QSDC)

a)

b)

166 Cost-based Decompositioning of Complex Spatial Objects

6.7 Conclusion

In this chapter, we introduced a new approach for accelerating spatial query pro-

cessing for relational index structures. We presented gray containers as a new and

general concept and showed how we can efficiently store them by means of data

compression techniques within ORDBMSs. In particular, we introduced a quick spa-

tial data compressor QSDC, in order to emphasize those packer characteristics which

are important for efficient spatial query processing, namely good compression ratio

and high unpack speed. Furthermore, we introduced a cost-based decompositioning

algorithm for complex spatial objects, called GroupCon. GroupCon takes decom-

pression cost and access probabilities of gray containers into account. This decompo-

sitioning algorithm is applicable for different spatial index structures, data space res-

olutions and compression algorithms. We showed in a broad experimental evaluation

that the combination of GroupCon and QSDC accelerates the RI-tree, the RQ-tree

and the RR-tree by up to two orders of magnitude. Furthermore, we showed that the

combination of a slightly altered GroupCon algorithm, called JoinGroupCon, and

QSDC accelerates spatial join processing of complex objects by more than one order

of magnitude compared to the use of uncompressed one-value approximations. The

main difference between GroupCon and JoinGroupCon is that the latter does not

10

10 0

10 0 0

10 0 0 0

10 0 0 0 0

1E+0 1 1E+0 2 1E+0 3 1E+0 4 1E+0 5 1E+0 6

JoinGroupCon(NOOPT) one-value(NOOPT)
JoinGroupCon(BZIP2) one-value(BZIP2)
JoinGroupCon(QSDC) one-value(QSDC)

pr
oc

es
si

ng
 ti

m
e

[s
]

memory size in kb

Figure 92: Overall sort-merge join performance.
(CAR data set; different cache sizes of the sweep-line status)

Conclusion 167

assume a potential query distribution, but exploits available statistics of the join part-

ner relation as input parameter for the grouping process.

Note that for spatial indexing a similar approach is conceivable by combining the

results of this chapter with the results of the foregoing chapter. In Chapter 5, we

concentrated on the acceleration of relational indexing by means of statistics, where-

as in this chapter we looked at the decompositioning of complex spatial objects based

on an assumed query distribution. Combining these two techniques allows to accel-

erate relational index structures in such a way that interactive response times for

digital mockup and other application ranges of virtual engineering are possible.

168 Cost-based Decompositioning of Complex Spatial Objects

169

Part III

Database Support for
Similarity Search

170

171

Chapter 7
Foundations of Similarity Search

Similarity search has gained increasing importance in many different applica-

tions, including medical imaging [KSF+ 96], molecular biology [AKKS 99], multi-

media [Gud 95], and computer aided design [BKK 97a] [BKK 97b]. The search of

similar database objects for a given query object is typically performed by following

a feature-based approach. The basic idea is to extract important properties from the

original data objects and to map these features into high-dimensional feature vectors,

i.e. points in the feature space. Since the choice which features to extract mainly de-

pends on the considered application, numerous feature transformations have been

proposed. The result of such a transformation is a feature vector which is stored in a

feature database, e.g. spatial databases storing feature transformed landuse maps,

multimedia databases storing feature transformed audio sequences, and CAD data-

bases storing feature transformed industrial parts.

This chapter is dedicated to the foundations of similarity search, with a strong

emphasis on related work. It is organized as follows. In Section 7.1, we formally

introduce the basic similarity query types, and discuss, in Section 7.2, how we can

integrate them into an ORDBMS. In the Sections 7.3 to 7.5, we present different

access methods and algorithms from the literature which are used for efficient simi-

larity search. In Section 7.6, we discuss existing approaches for effective similarity

search.

172 Foundations of Similarity Search

7.1 Similarity Query Types

There are some specific query types that occur in the context of similarity search in

CAD databases. The most important ones are: range queries, k-nearest neighbor que-

ries, and incremental ranking queries. Whereas for range queries, the number of results

is typically unknown in advance, the k-nearest neighbor queries specify the retrieval of

those k objects from the database that have the smallest distances to q. Finally, similarity

ranking queries support incremental fetching of the database objects.

In this section, we provide formal definitions for these fundamental similarity

query types. Let O be the domain of all objects that may occur as database objects or

query objects. For every type of similarity search, a distance function

 has to be provided that measures the (dis-)similarity of two

objects o1 and o2 by . Often we abbreviate simdist by d. By ,

let us denote a database containing objects.

7.1.1 Similarity Range Queries

Range queries are specified by a query object q and a range value ε by which the

answer set is defined to contain all the objects o from the database that have a dis-

tance to the query object q of less than or equal to ε:

Definition 19 (Similarity Range Query).

For a query object and a query range , the similarity range query

simrange: returns the set

.

Note that for the similarity range query, the distance values of the resulting objects

is bounded by the query range ε, but the number of answers is previously unknown.

The result may be empty if no object has a similarity distance to the query object that

is less or equal to the query range, and it may enclose the overall database if no object

has a distance to the query object that is greater than the query range (cf. Figure 93).

A user may thus be forced to iteratively start several queries before getting a feeling

for an appropriate value of ε. For the query range ε = 0, the similarity range query is

equivalent to a point query (i.e. searching for identical database objects). However,

the point query is a seldom used query type in the context of similarity search.

simdist: O O× IR0
+→

simdist o1 o2,() DB O⊆
N DB=

q O∈ ε IR0
+∈

O IR0
+

2
DB→×

simrange q ε,() o DB∈ | simdist o q,() ε≤{ }=

Similarity Query Types 173

7.1.2 Similarity k-nn Queries

The k-nearest neighbor query overcomes the problem of the similarity range que-

ry by giving the user the possibility to specify the size k of the answer set. This query

type does not require a user to provide a query range and is therefore far easier to use

than the similarity range query. The k-nearest neighbor query returns the k most sim-

ilar feature vectors from the database and is defined as follows:

Definition 20 (Similarity k-Nearest Neighbor Query).

For a query object and a query parameter , the k-nearest neighbor query

simknn: returns the set that contains k objects from the

database, and for which the following condition holds:

If there exist several database objects with the same distance as the k-th object in

the answer set, denoted as simdistq,k, this k-th object is a non-deterministic selection

of one of those equally distanced objects. If the query parameter k is equal to 1, we

have the special case of a nearest neighbor query, i.e. finding the most similar object

in the database. Obviously, the value of k depends on the performed task, but in

general, the value for this query parameter is small (). Examples for k-nearest

neighbor queries with several values of k are given in Figure 94. As depicted,

simdistq,k grows monotonically for an increasing value of k.

When considering the k-nearest neighbor query as defined above, we find three

aspects which may be considered as a disadvantage for CAD applications. First, al-

Figure 93: Similarity range query.

ε1
q

ε2
q

ε3

q

a) a reasonable query
range ε1

b) a too small query
range ε2

c) a too large query
range ε3

q O∈ k IN∈
O IN 2

DB→× NNq k() DB⊆

o1 NNq k()∈ o∀ 2 DB\NNq k()∈,∀ : simdist o1 q,() simdist o2 q,()≤()

k 100<

174 Foundations of Similarity Search

though the query parameter k is comparatively easy to select, it may be still difficult

to provide one single value. Rather, the user may be interested in starting with a very

small value, e.g. k = 3, and if the answer set does not meet his expectation, the simi-

larity system should be able to generate further similar objects in an incremental

“give-me-more” manner. Using the k-nearest neighbor query type for this purpose,

the user is forced to increase the value of k and to start another query. This is obvious-

ly inefficient since the already generated similar objects are computed once again.

Secondly, a user may not accept to see answer objects which he already knows from

previous queries. Third, even if a user chooses a rather high value of k, he would like

to get the first results soon, i.e. we need a pipelined query processing.

7.1.3 Similarity Ranking Queries

An incremental similarity search is achieved by the so-called similarity ranking

query. The basic idea of this query type is to rank the database objects in order of their

similarity distance.

For reasons of efficiency, the ranking procedure should not be performed and

completed in advance at query initialization time. In view of very large databases and

of expensive similarity distance functions for complex objects, this course will take

too much time until the user will receive the first answer. While incrementally pro-

ceeding in the ranking procedure, the next object should be reported shortly after the

corresponding user request, as soon as its correct ranking is ensured. Another reason

for deferring as much as possible of the ranking procedure is that the user often may

be satisfied with only a few answers. In this case, the system has spent too much

effort in ranking all the remaining objects in vain.

q q q

Figure 94: Similarity k-nearest neighbor query.

k = 1 k = 5k = 3

Similarity Query Types 175

Definition 21 (Similarity Ranking Query).

Let be a query object and a database. Let

be a bijection which ranks our database DB w.r.t. the query object q as follows:

. Then,

the similarity ranking function simrank: is defined as:

simrank (q) = rankedq

We write for the object oi that is ranked at position i. Note that in

most cases, the ranking is uniquely characterized by this definition. However, if there

are several objects in the database that have the same distance to the query object, i.e.

 for some , the order of oi and oj is

not determined, and there is not a single rankedq-function but a family of ranking

functions which we denote by . Figure 95 provides two examples of similar-

ity ranking queries. In the examples, the top k objects are marked for k = 3.

7.1.4 Further Similarity Queries

Besides the three mentioned query types, there exist other similarity queries, as for

instance approximate nearest neighbor queries and inverse nearest neighbor queries.

In approximate k-nearest neighbor queries the user also specifies a query point

and a number k of answers to be reported. In contrast to exact nearest neighbor que-

ries, the user is not interested exactly in the closest points, but is satisfied with points

which are not much further away from the query point than the exact nearest neigh-

bors. The degree of inexactness is a parameter which is also decisive for the efficien-

cy improvement of the query processing.

In inverse nearest neighbor queries the user only specifies a query point. Given

this query point within a data set, an inverse nearest neighbor query finds all points

for which the query point is a nearest neighbor.

q O∈ DB O⊆ rankedq: 1… DB{ } DB→

i j,∀ 1… DB{ }∈ : i j < simdist rankedq i() q,() simdist rankedq j() q,()≤⇒
O 1.. DB{ } DB→()→

rankedq i() oi=

simdist oi q,() simdist oj q,()= i j, 1… DB{ }∈

RANKq

Figure 95: Examples of a q-ranking for two query points q’ and q”.

q
1

2

3
q’

1
2 3

176 Foundations of Similarity Search

7.2 Similarity Queries within Object-Relational Database Systems

All major database vendors have already added object-relational functionality to

their relational database servers. In order to achieve a seamless integration of custom

object types and predicates within the declarative DDL and DML, ORDBMSs pro-

vide the database developer with extensibility interfaces (cf. Chapter 3). In this sec-

tion we discuss the integration of similarity queries into an ORDBMS. The examples

are based on the table schema CADOBJECTS (id, geom) introduced in Chapter 3.

7.2.1 Integration of Range Queries

The declarative integration of similarity range queries can be achieved in a

straightforward way. We only have to implement a method ObjectIsInRange in order

to allow the user to issue the following SQL-statement.

Both a functional and an index based implementation of this method is possible.

7.2.2 Integration of k-nn Queries

In order to detect the k nearest neighbors of a given query_obj, it would be desir-

able to post an SQL-statement similar in design to the following one:

Unfortunately, the integration of k-nn queries cannot be done in such a straightfor-

ward way. Although it is possible to provide an index based implementation of the

predicate ObjectIsInKNNSet, it is inherently impossible to provide a functional im-

plementation. If we have only access to the two input objects query_obj and db.geom,

we can not decide whether db.geom is one of the k nearest neighbors of our query

object query_obj. On the other hand, an index based implementation, has access to all

SELECT id
FROM CADOBJECTS db
WHERE ObjectIsInRange(:query_obj, db.geom, :eps)

Figure 96: SQL-Statement for a range query.

SELECT id
FROM CADOBJECTS db
WHERE ObjectIsInKNNSet(:query_obj, db.geom, :k)

Figure 97: SQL-Statement for a k-nn query.

Similarity Queries within Object-Relational Database Systems 177

tuples of the table CADOBJECTS and can therefore produce the k nearest neighbors

of a given query object.

Therefore, the database vendors suggest to use hints in order to force the query

optimizer to use the index based implementation. If the optimizer hint is not used, an

internal database error might occur [Ora 99b].

Note, that the k returned database objects do not have to be ordered according to

their distance to the query object. Often, users are also interested in this ordering and

the actual distance to the query object. This can be achieved by using ancillary oper-

ators (cf. Section 3.2.1) [Ora 99b]. By using a common tag (e.g. 1), an ancillary

operator, e.g. kNNDistance, has a functional implementation that has access to state

generated by the index based implementation of the primary operator, e.g. Object-

IsInKNNSet. By means of these ancillary operators, we can order our k nearest neigh-

bors according to their distance to the query object, as shown in the following

SQL-statement:

Frequently, additional constraints have to be taken into consideration for a k-near-

est neighbor search. If we want to find those k nearest neighbors of a query object,

which consist of at least 1.000.000 voxels, we can use the pseudo column rownum in

order to detect the desired k tuples.

Of course, this statement is rather inefficient, if the implementation of the

ObjectIsInKNNSet method is not based on an algorithm which supports ranking queries.

If the implementation is not based on an incremental ranking algorithm, we can also

invoke the ObjectIsInKNNSet method with a last parameter of k instead of . In this

SELECT id, kNNDistance(1) as distance
FROM CADOBJECTS db
WHERE ObjectIsInKNNSet(:query_obj, db.geom, :k,1)
ORDER BY distance

Figure 98: SQL-Statement for a ranked k-nn query.

SELECT id, kNNDistance(1) as distance
FROM CADOBJECTS db

WHERE ObjectIsKNN(:query_obj, db.geom, ,1) AND
CADOBJECT(db.geom).voxels.count >=1.000.000 AND rownum <= :k
ORDER BY distance

Figure 99: SQL-Statement for a ranked k-nn query with additional constraints.

∞

∞

178 Foundations of Similarity Search

case the ObjectIsInKNNSet predicate might be evaluated multiple times in order to re-

turn the desired number of results that satisfy the WHERE clause [Ora 99b]. If the pred-

icate is invoked for the nth time, it returns the to nearest neighbors

to the query object. This approach is quite similar to the aggressive strategy of the stop

after operator introduced by Carey and Kossmann [CS 97], which might need a restart

operator to produce the desired number of results1.

7.2.3 Integration of Ranking Queries

If the ObjectIsInKNNSet predicate is based on an incremental ranking algorithm,

as for instance the one presented in [HS 95], we can use the SQL-statements of the

Figures 97 to 99 without any efficiency problems. Only the necessary number of

nearest neighbors are produced, until all constraints within the WHERE clause are

fulfilled.

7.3 Access Methods for Similarity Search

In this section, we outline some of the index structures suitable for similarity

search on spatial objects. Together with the algorithms of Section 7.4 and 7.5, these

index structures can be used to answer similarity queries efficiently. For a more de-

tailed elaboration on spatial access methods suitable for similarity search and on the

corresponding query processing techniques, we refer the interested reader to [GG 98]

and [BBK 01].

7.3.1 Multi-Dimensional Access Methods

Typically, the similarity search process is a CPU and I/O intensive task and the

conventional approach to address this problem is to use a multidimensional index

structure [GG 98]. The R*-tree [BKSS 90], for example, is an index structure for

multidimensional data objects which hierarchically partitions the data space into sub-

partitions. The concept of minimum bounding rectangles (MBRs) is used to conser-

vatively approximate objects that lie within a subpartition. Since the R*-tree is main-

ly efficient for low-dimensional feature spaces (d < 6, where d denotes the

1 The implementation of the k-nn operator in Oracle 9i is based on the RKV algorithm [RKV 95], which
does not support incremental ranking queries. Therefore, the system might evaluate the k-nn predicate
multiple times in order to produce the desired number of results [Ora 99b].

n 1–() k⋅ 1+ n k⋅

Access Methods for Similarity Search 179

dimension), specialized index structures have been proposed which are also efficient

for medium-dimensional feature spaces (d < 20). Examples are the TV-tree [LJF 94],

SS-tree [WJ 96], and X-tree [BKK 96]. However, when the dimension of the feature

space is very high (e.g. d = 50), even these specialized index structures mostly fail to

efficiently process similarity queries. This effect is usually termed as curse of dimen-

sionality. In the following, we shortly discuss some of these index structures.

The R-Tree. [Gut 84] is the fundament of a whole family (R-tree, R+-tree, and

R*-tree) of height-balanced, multidimensional index structures and was originally

proposed for 2-dimensional, spatially extended data objects (e.g. polygons). The

R-tree is composed of directory pages and data pages, and follows the paradigm of

partitioning the data space hierarchically. Minimum bounding rectangles (MBRs)

are used as page regions. MBRs are multidimensional intervals, which minimally

enclose a point set. Overlapping regions are allowed, although overlaps are bad for

the search performance. Figure 100 shows an R*-tree where the data pages contain

feature vectors.

The TV-Tree. In [LJF 94] Lin, Jagadish and Faloutsos presented the TV-tree

which is an R-tree-like index structure. It is designed especially for real data that are

amenable to the Karhunen-Loeve-Transform, i.e. the principal component analysis.

Such data yield a high variance and therefore a good selectivity in the first few di-

Figure 100: The R*-tree architecture.

Directory Level 1

Directory Level 2

Data Pages storing
Feature Vectors

Directory Pages

Directory Level n

... ...
storing MBRs

Feature Space

... ...

180 Foundations of Similarity Search

mensions, which are used for cutting branches in query processing. The benefit of

this tree lies in its ability to adapt dynamically and use a variable number of dimen-

sions to distinguish between objects or groups of objects. Since this number of re-

quired dimensions is usually small, the method saves space and leads to a larger

fan-out. As a result, the tree is more compact and shallower. The authors compared

the TV-tree with the R*-tree and showed that their method saves up to 80% in disk

accesses.

The SS-Tree. White and Jain presented the SS-tree [WJ 96], an R-tree-like index

structure that uses minimum bounding spheres (MBSs) instead of minimum bound-

ing rectangles (MBRs). The region description comprises therefore the centroid and

the radius. While spheres generally lead to smaller access probability of pages com-

pared to volume-equivalent MBRs, they have the disadvantage that overlap-free

splits are often not possible. In an experimental study, it was shown that the SS-tree

outperforms the R*-tree by a factor of 2.

The X-tree. In [BKK 96], the X-tree was proposed which is an index structure

adapting the algorithms of R * -trees to high-dimensional data using two techniques:

First, the X-tree uses an overlap-free split algorithm which is based on the split histo-

ry of the tree. Secondly, the X-tree is based on the concept of supernodes. Supernodes

are directory nodes which are enlarged by a multiple of the block size. In an experi-

mental study with artificial and real-world data sets, the authors showed that for

high-dimensional data, the X-tree clearly outperforms the R*-tree and the TV-tree.

Furthermore, in [BBKM 99] it was shown how we can integrate the X-tree in a rela-

tional database management system.

7.3.2 One-Dimensional Access Methods

Another approach is based on the mapping of a d-dimensional data point into a

one-dimensional value and then make use of an existing one-dimensional index such

as a B+-tree for instance. We call this approach one-dimensional access methods.

Usually, the performance of the multi-dimensional indexing approach is slightly bet-

ter, however, as the second category makes use of existing and proven technology,

there exist some advantages, too. The mapping techniques can be implemented much

easier and important issues such as recovery or concurrency control can be consid-

ered solved problems, as the techniques make use of existing B+-tree indexes. The

decision which index structure is appropriate for a given application is very complex

Access Methods for Similarity Search 181

and depends on the data distribution, the query mix, the size and the dimensionality

of the database [BBKM 99].

The Pyramid-Tree. Berchtold, Böhm and Kriegel introduced the Pyramid-Tree

[BBK 98] which is an index structure that maps a d-dimensional point into a one-di-

mensional point and uses a B+ -tree to index the one-dimensional points. In the data

pages of the B+-tree, the Pyramid-tree stores both the d-dimensional points and the

one-dimensional key. Thus, no inverse transformation is required and the refinement

step can be done without any further look-ups. The specific mapping used by the

Pyramid-tree is called Pyramid-mapping. It is based on a special partitioning strategy

that is optimized for range queries on high-dimensional data. The Pyramid-tree

achieves the partitioning by first dividing the d-dimensional space into 2d pyramids

having the center point of the space as their top. In a second step, the single pyramids

are cut into slices parallel to the basis of the pyramid forming the data pages.

In an extensive performance analysis the authors show that for almost hypercube

shaped queries the Pyramid-technique clearly outperforms the X-tree and the se-

quential scan on synthetic and real-world data. Most important, for uniformly distrib-

uted feature sets, the performance of the Pyramid-technique does not degenerate

when the dimension of the feature space increases. However, for queries yielding a

low selectivity (i.e. a large answer set) or extremely skewed queries, the sequential

scan outperforms the Pyramid-technique.

iMinMax. Recently, a new index scheme, called iMinMax was introduced

[OTYB 00]. iMinMax maps high-dimensional points to single dimension values, de-

pendant on their minimum and maximum coordinate values. As other dimension

reduction methods, this scheme is also based on the B+-tree.

Experiments carried out by the authors showed that this method is significantly

more efficient than the Pyramid technique. The authors state that performance differ-

ence is expected to increase as the data volume and dimensionality increase, and for

skewed data distribution.

iDistance. In [YOTJ 01], an efficient method called iDistance for k-nearest neigh-

bor search in high-dimensional spaces was presented. iDistance partitions the data

and selects a reference point for each partition. The data in each cluster are trans-

formed into a single dimensional space based on their similarity with respect to a

reference point. This allows the use of a B+-tree for k-nn queries.

182 Foundations of Similarity Search

The authors carried out extensive experiments which reveal that their approach is

superior to a linear scan and the iMinMax approach.

The NB-Tree. In [FJ 03] multidimensional points are mapped to a 1D line by

computing their Euclidean Norm. The one dimensional values are stored in a B+-tree

which forms the foundation for the efficient processing of similarity queries.

The authors carried out experiments on both real world and synthetic data. The

experiments show that this simple approach outperforms the Pyramid Technique, and

the SR-tree (a combination of the R*-tree and the SS-tree)[KS 97] for many data

distributions.

None of the above mentioned mappings from a d-dimensional point to a one-di-

mensional key is bijective. Furthermore, other examples of one-dimensional access

methods which are based on space filling curves such as the Hilbert-curve

[FR 89][Jag 90] are only theoretically bijective. In practice, this difference between

bijective and non-bijective does not exist because bijective mappings are only bijec-

tive if infinite precision is applied [BBKM 00].

As an implication, we cannot process a given query by only using the one-dimen-

sional keys. But fortunately, one can at least guarantee that there exist no false drops.

On the other hand, the answer set might contain false hits. Therefore, we have to

refine the candidate set by taking the d-dimensional feature vectors into account.

7.3.3 Scan-Based Access Methods

Techniques like the VA-file [WSB 98] and the IQ-tree [BBJ+ 00] exploit the fact

that the simple sequential scan often provides better query performance than index

approaches due to the lack of random disk seeks. The VA-file uses a special compres-

sion technique in order to reduce the total amount of data that has to be scanned. The

IQ-tree is a sophisticated technique that combines the paradigm of index selectivity

and the compression concept of the VA-file. Both techniques are well suited for

efficient similarity search in high-dimensional feature spaces.

The VA-File. Weber et al. [WSB 98] developed, an index structure that actually is

not an index structure. The authors prove in the paper that under certain assumptions,

above a certain dimensionality no index structure can process a nearest neighbor

query efficiently. Thus, they suggest to speed-up the sequential scan rather than try-

ing to fight a war that already is lost. The basic idea of the VA-file is to keep two files:

a bit-compressed (quantized) version of the points and the exact representation of the

Access Methods for Similarity Search 183

points. Both files are unsorted, however, the ordering of the points in the two files is

identical. Query processing is equivalent to a sequential scan of the compressed file

with some look-ups to the second file whenever this is necessary.

The VA-File outperforms both the R*-Tree and the X-Tree when the dimension is

higher than six, but its performance is very sensitive to the actual data distribution.

The IQ-Tree. The idea of quantization based compression has also been integrat-

ed to index based query processing. The IQ-tree [BBJ+ 00] combines the ideas of a

tree, a scan, and the quantization. The technique performs an I/O optimizing scan

through the data pages if the index selectivity is not high enough to compensate for

the cost of seek operations. In contrast to the VA-file, the quantization grid of the IQ

tree is related to the data page regions and its resolution is automatically optimized

during index construction and maintenance.

In the experiments it was shown that the IQ-tree yields a performance that is the

“best of two worlds”. In low- and medium-dimensional feature spaces, the IQ-tree

performs comparable to the X-tree and clearly outperforms scan-based approaches

like the VA-file. On the other hand, when indexing high-dimensional feature sets, the

IQ-tree performs comparable to the VA-file and clearly outperforms the X-tree. Thus,

the IQ-tree shows a better overall performance than competing techniques for low-,

medium-, and high-dimensional feature spaces.

7.3.4 Metric Access Methods

In some application domains, it is not possible to apply a feature transformation to

the original data set. However, in most cases it is still possible to provide a similarity

distance function to measure similarity. Since the similarity distance function is re-

quired to be a metric, the triangle inequality can be used to prune the search space.

In this section, we shortly sketch two metric index structures. For more details

about similarity search in metric spaces, we refer the interested reader to

[CNBM 01].

M-tree. In [CPZ 97] a new access method, called M-tree, is proposed to organize

and search large data sets from a generic “metric space”, i.e. where object proximity

is only defined by a distance function satisfying the positivity, symmetry, and triangle

inequality postulates. The M-tree extends the domain of applicability beyond the

traditional vector spaces. It is interesting to remark that Ciaccia et al. [CPZ 97]

184 Foundations of Similarity Search

present preliminary results showing that the M-tree can even outperform a

well-known vector space data structure (the R*-tree) when applied to a vector space.

An M-tree node consists of a set of database objects, which represent all database

objects stored in the corresponding subtrees. Furthermore, each representative stores

its covering radius. At query time, the query is compared to all the representatives of

the node and the search algorithm enters recursively into all those that cannot be

discarded. In Section 10.3.1, an optimized relational implementation of the M-tree is

discussed in full detail.

Slim-Tree. The Slim-tree [TTSF 00] is a dynamic tree for organizing metric data

sets in pages of fixed size. As the degree of overlap directly affects the query perfor-

mance of index structures, the Slim-tree tries to reduce the degree of overlap. It is

based on new algorithms for inserting objects and splitting nodes.

Results obtained from experiments with real-world data sets show that the

Slim-tree outperforms the M-tree by a factor of 35%.

7.3.5 Miscellaneous Access Methods

In this subsection we list some other important access methods which cannot be

assigned to any of the foregoing subsections.

Tree-Striping. In [BBK+ 00] a new technique called tree striping was introduced.

It generalizes the well-known inverted lists and multidimensional indexing ap-

proaches. A theoretical analysis shows that both, inverted lists and multidimensional

indexing approaches, are far from being optimal. Consequently, the tree-striping ap-

proach proposes the use of a set of multidimensional indexes. The basic idea of tree

striping is to use a number k of lower-dimensional indexes.

The experimental evaluation on synthetic and real world data showed that their

approach clearly outperforms both multi-dimensional index structures and the in-

verted list approach.

Voronoi-Approximations. In [BEK+ 98] [BKKS 00] an approach was intro-

duced to overcome the curse of dimensionality problem, by pre-computing the re-

sults of any nearest neighbor query. This pre-computing corresponds to a computa-

tion of the Voronoi cell of each data point. In a second step, the conservative

approximations of the Voronoi cells are stored in a high-dimensional index structure.

As a result, nearest neighbor search corresponds to a simple point query on the index

One-Step Similarity Query Processing 185

structure. Although this technique is based on a precomputation of the solution space,

it is dynamic, i.e. it supports insertions of new data points.

In the experiments the authors compared this approach to the X-tree and showed

that their new approach outperforms the X-tree up to a factor of 4.

Parallel Nearest-Neighbor Search. In [BBB+ 97] the authors present a new par-

allel method for fast nearest-neighbor search in high-dimensional feature spaces. The

core problem of designing a parallel nearest-neighbor algorithm is to find an ade-

quate distribution of the data onto the disks. The basic idea of their data declustering

technique is to assign the buckets corresponding to different quadrants of the data

space to different disks.

The approach was evaluated by using large amounts of real data and by comparing

the approach to other declustering methods. It was shown that their new approach

outperforms other declustering methods, e.g. the Hilbert approach, by a factor of up

to 5.

7.4 One-Step Similarity Query Processing

In this section we look at one-step similarity query processing. All objects are

modelled by simple objects, e.g. numerical values or feature vectors, which can effi-

ciently be managed within one- or multi-dimensional relational index structures.

All query types introduced in section 7.1 can be evaluated by a single sequential

scan on the complete index data. In this case the database is read in very large blocks,

determined by the amount of main memory available to the query processing. After

reading a block from disk, the CPU processes each object. Thereafter, the next block

is read.

Obviously, this might not be the most efficient way to process similarity queries.

In the following, we will introduce algorithms for the query types discussed in

Section 7.1, which exploit the pruning power of the underlying index structures. The

algorithms have originally be introduced for different multi-dimensional index struc-

tures. We will exemplarily introduce them for the family of the R-trees, which might

contain the most important multi-dimensional index structures. Furthermore, we

show how the different query types can be processed on the B+-tree.

186 Foundations of Similarity Search

7.4.1 Index based Range Queries

The algorithm for a range query returns a set of points contained in the query

range, i.e. . The size of the result set is

previously unknown and may reach the size of the entire database. The algorithm can

be formulated independently from the applied distance function.

R-tree. In Figure 101 an algorithm for range queries on R-trees is depicted. It is

important to provide effective and efficient tests for the predicates IsPointInRange

and RangeIntersectsRegion, which in the case of the R-tree family can easily be

achieved.

B+-tree. In the case our objects are modelled by simple numerical values, and are

stored within a B+-tree, a range query can be processed by an index

range scan on the leaf level of the B+-tree. The scan starts at and ends at .

7.4.2 Index based k-nn Queries

The algorithm for a k-nn query simknn (q, k) = returns the k points closest

to q with respect to a given distance function simdist, so that the following expression

is true: .

simrange q ε,() o DB∈ | simdist o q,() ε≤{ }=

ALGORITHM RangeQuery (Object query, float)
BEGIN

PriorityQueue queue;
queue.insert (root);
WHILE NOT queue.isempty() DO

Element first = queue.pop();
CASE first OF

DirNode:
FOR EACH child in first DO

IF RangeIntersectsRegion (child.Region, query,) THEN
queue.insert (child);

DataNode:
FOR EACH object in first DO

IF IsPointInRange (object, query,) THEN
queue.insert (object);

Object:
report (first);

END CASE;
END DO;

END.

Figure 101: Range query processing on R-trees.

ε

ε

ε

simrange q ε,()

q ε– q ε+

NNq k()

o1 NNq k()∈ o∀ 2 DB\NNq k()∈,∀ : simdist o1 q,() simdist o2 q,()≤()

One-Step Similarity Query Processing 187

R-tree. For nearest neighbor search on multidimensional index structures, we

present the algorithm of [RKV 95] which is designed for R-trees. Though developed

for retrieving the single nearest neighbor, the method can easily be extended to

k-nearest neighbor search.

The algorithm follows the classic branch-and-bound paradigm, and as heuristics

to control the search in the underlying index, the functions mindist and minmaxdist

are used. While mindist returns the minimum distance of any point in the MBR and

the query point, minmaxdist determines the minimum of all distances that maximally

can occur for objects in the MBR and the query point. While minmaxdist has a strong

heuristic power and is used to prune paths of the search tree, only the use of mindist

guarantees the minimum number of page accesses as shown in theoretical analyses

[BBKK 97].

B+-tree. In the case our objects are modelled by simple numerical values, and are

stored within a B+-tree, a k-nn query can be processed by two index range

scans on the leaf level of the B+-tree. Both range scans start at q and proceed in opposite

directions. At the beginning, we fetch a tuple from both cursors. Thereafter, we always

fetch data from that cursor, where the last fetched data object is closer to q. After having

fetched k values from our two open cursors, we close both cursors, and return the k tuples

to the caller. Obviously, this algorithm inherently supports ranking queries as well.

7.4.3 Index based Ranking Query

In [HS 95], an algorithm for ranking in spatial databases in the context of 2D

geographic information systems (GIS) is presented. The algorithm requires a multi-

dimensional access method that is hierarchically managed in terms of container

blocks. This paradigm demands that a container at least encloses the space which is

enclosed by subordinate container blocks. While several access methods follow this

structure, e.g. R-trees, the authors focus on the PMR quadtree [NS 87]. Every

quadtree structure hierarchically decomposes the space into partitions for d di-

mensions which results in exorbitant numbers of childs for each node for high-

dimensional spaces .

R-tree. In Figure 102, we present a version of the algorithm that has been adapted

to the family of R-trees. This version of the algorithm is simpler than the original ver-

sion of [HS 95] which has to manage the characteristics of the PMR quadtree. Whereas

the R-tree follows the paradigm of overlapping regions, the PMR quadtree manages

NNq k()

2
d

10 d≤()

188 Foundations of Similarity Search

spatial objects by clipping. Thus, a single object may be stored in more than one leaf of

the tree, and the ranking algorithm has to manage duplicate results which are eliminated

by carefully controlling the order by which the results are reported.

7.5 Multi-Step Similarity Query Processing

Due to the immense and even increasing size of current CAD databases, strong

efficiency requirements have to be met. Thus, for the evaluation of complex similar-

ity queries, fast processing is important. Following the paradigm of multi-step query

processing [OM 88] [BKSS 94], a filter and refinement architecture produces and

reduces candidate sets from the database, yielding an overall result that contains the

correct answer, i.e. producing neither false hits nor false drops (cf. Section 2.2.2).

Filter steps are based on approximated objects. For efficiency reasons, these filter

steps might be supported by suitable index structures (cf. Section 7.3). Approxima-

tions might be feature vectors stored in a spatial access method (SAM), or simply

numerical values which can be managed by a B+-tree. Refinement steps discard false

positive candidates, i.e. false hits, but are not able to reconstruct false negatives, i.e.

false drops, that have been dismissed by a previous filter step. Thus, the strong re-

quirement for filter steps is to prevent from false drops, but the quality of a filter step

ALGORITHM RankingQuery (Object query)
BEGIN

PriorityQueue queue;
queue.insert (0, root);
wait (getnext_is_called);
WHILE NOT queue.isempty() DO

Element first = queue.pop();
CASE first OF

DirNode:
FOR EACH child in first DO

queue.insert (mindist (query, child.region), child);
DataNode:

FOR EACH object in first DO
queue.insert (distance (query, object), object);

Object:
report (first);
wait (getnext_is_called);

END CASE;
END DO;

END.

Figure 102: Incremental ranking query processing on R-trees.

Multi-Step Similarity Query Processing 189

depends on its selectivity. In general, the evaluation of a single object within a refine-

ment step is expensive, and the number of candidates should be as small as possible.

Thus, the less candidates a filter step passes to a subsequent refinement step, the

better is the performance of the overall query processing.

Based on this multi-step query paradigm, we will look at some approved ap-

proaches for similarity query processing as presented in the literature. After introduc-

ing the lower bounding criterion, which forms the foundation of multi-step similarity

query processing, we discuss algorithms for range queries [FRM 94], for k-nearest

neighbor queries [KSF+ 96], and for incremental k-nearest neighbor queries

[SK 98].

7.5.1 The Lower-Bounding Property

As outlined in Section 2.2.2 conservative approximations of the objects guarantee

that a multi-step query processor does not produce any false drops. In Part II of this

thesis it was shown that this concept is decisive for efficiently detecting intersecting

CAD objects. We can also apply this concept to similarity queries. If a filter distance

df lower bounds the object distance do no false drops are produced by a multi-step

query processor.

Definition 22 (Lower-Bounding Property).

Let O be a set of objects. A filter distance function df and an object distance do fulfill

the lower-bounding property, if df underestimates do in any case, i.e. for all objects

: holds.

The lower-bounding criterion is closely related to the concept of conservative

approximations. If the lower-bounding property holds, then the following expression

is true as well:.

Consequently, the lower-bounding property ensures that no false drops occur.

7.5.2 Multi-Step Range Queries

In [FRM 94], a multi-step algorithm is presented that performs similarity search

for complex distance functions by using appropriate filter distance functions df on the

approximation Appr(o) of the objects o. An approximation Appr(o) might be an n-di-

mensional feature vector Fn(o) managed in an R-tree, or a one-dimensional value

o1,o2 O∈ df o1 o2,() do o1 o2,()≤

q O∈ ε IR: o DB∈ :do o q,() ε<{ } o DB∈ :df o q,() ε<{ }⊆∈∀,∀

190 Foundations of Similarity Search

F1(o) managed within a B+-tree. The corresponding lower-bounding property guar-

antees that no false drops occur when applying the filter step. The efficiency of the

method depends on the selectivity of the filter distance function and on the underly-

ing access method. Figure 103 provides a schematic illustration of the algorithm.

7.5.3 Multi-Step k-nn Queries

In the preceding, we investigated algorithms for similarity search that are restrict-

ed to similarity models which are completely defined by a distance function of low-

or medium-dimensional feature vectors. Note that the numerical values managed in

the B+-tree can also be regarded as one-dimensional feature vectors. In practice, it

often occurs that similarity distance functions have a higher complexity and may not

be represented by a simple feature vector distance, or that they are too high in their

dimensionality to be efficiently managed by a multidimensional index structure.

In the context of fast nearest neighbor search in medical image databases, Korn et

al. [KSF+ 96] suggest an algorithm for k-nearest neighbor search that follows the

multi-step query processing paradigm. In Figure 104, we illustrate the architecture of

the algorithm and indicate the interplay with the underlying index structure, manag-

ing the approximated objects.

The k-nearest neighbor search simknn (q, k) = is performed in four steps.

First, we determine the primary candidates by performing a k-nearest neighbor

search on the approximated data around Appr(q) w.r.t. . In a second step, we deter-

Figure 103: Similarity range query processor.

final result

R
an

ge
 Q

ue
ryFilter step:

Range query on the approx. objects to ob-

tain candidate set {o | df (F(o),F(q)) ≤ ε}

Refinement step:
Exact evaluation of the candidates to

obtain result set {o | do (o,q) ≤ ε}

P
ro

ce
ss

orapproximated
objects

accurate
objects

(e.g. seq. scan,
B+-tree, X-tree)

(e.g. B+-tree)

query object q
query range ε

NNq k()

df

Multi-Step Similarity Query Processing 191

mine the range for the primary candidates o, i.e we determine dmax =

. Third, the final candidates are selected, by per-

forming a range query on the approximations to obtain .

Finally, we rank the final candidates o according to , and report the top k

objects.

7.5.4 Multi-Step Ranking Queries

In [SK 98] Seidl and Kriegel formally introduced a criterion for the optimality of

multi-step k-nearest neighbor algorithms with respect to the number of candidates for

which an exact evaluation of the object distance has to be performed. Furthermore,

they presented an optimal multi-step k nearest neighbor algorithm. The algorithm is

depicted schematically in Figure 105.

The algorithm has two basic components: By the incremental ranking query on the

underlying access method, candidates are iteratively generated in ascending order

according to their filter distance to the query object. The second major component

is the result list that manages the k nearest neighbors of the query object q within the

current candidate set, keeping step with the candidate generation. The current k-th

distance is held in which is set to infinity until the first k candidates are retrieved

Figure 104: k-nearest neighbor query processor according to [KSF+ 96].

k-
nn

 Q
ue

ry
 P

ro
ce

ss
or

exact evaluation and

ranking of final candidates to obtain NNq k()

k-nn query on the appr. objects to obtain primary

candidates w.r.t. dfNNq k()

exact evaluation of primary candidates and

determination of dmax

range query on the appr. objects to determine final

candidates o| df F o() F q(),() dmax≤{ }

final result

query object q,
query parameter k

approximated
objects

accurate
objects

(e.g. seq. scan,
B+-tree, X-tree)

(e.g. B+-tree)

max do o q,() o NNq k() wrt. df∈{ }
o df F o() F q(),() dmax≤{ }

do o q,()

df

dmax

192 Foundations of Similarity Search

from the index and evaluated. During the algorithm dmax will be decreased exactly

down to simdistq,k. Based on this fact the termination of the algorithm is controlled.

Ranking Search. Although the algorithm presented in [SK 98] is based on an

incremental ranking on a SAM, it does not support ranking queries itself. In order to

support these queries for complex distance functions do we have to slightly alter the

algorithm. Figure 106 shows that we have to add an additional while-loop in which

we test whether the first object in our result list o1 is closer to q than df (o, q), whereby

o denotes the last object retrieved from our ranking index structure. If this is the case, we

can report o1 and delete it from our result list.

7.6 Similarity Models

In the last ten years, an increasing number of database applications has emerged

for which efficient and effective support for similarity search is substantial. The im-

portance of similarity search grows in application areas such as multimedia, medical

imaging, molecular biology, computer aided engineering, marketing and purchasing

assistance, etc. [Jag 91] [AFS 93] [MG 93] [FEF+ 94] [FRM 94] [ALSS 95]

Figure 105: Multi-step query processor for optimal k-nearest neighbor search.

start incremental ranking on a SAM around F(q)

according to df, initialize result and let dmax ∞=

while for next candidate o, exactly

evaluate and insert o into result

df o q,() dmax≤
do o q,()

k-
nn

 Q
ue

ry
 P

ro
ce

ss
or

final result

result

query object q
query parameter k

report entries o where do o q,() dmax≤

adjust dmaxinsert o

approximated
objects

accurate
objects

(e.g. seq. scan,
B+-tree, X-tree)

(e.g. B+-tree)

Similarity Models 193

[BKK 97a] [BKK 97b] [BK 97] [Kei 99]. Particularly, the task of finding similar

shapes in 2D and 3D becomes more and more important. Examples for new applica-

tions that require the retrieval of similar 3D objects include databases for molecular

biology, medical imaging and computer aided design.

In this section, we discuss some of the approaches presented in the literature to

establish similarity measures. We provide a classification of the techniques into fea-

ture-based models (cf. Section 7.6.1) and direct geometric models (cf. Section 7.6.2).

7.6.1 Feature-Based Similarity Search

Feature Transformation. As distance functions form the foundation of similarity

search, we need object representations which allow efficient and meaningful distance

computations. A common approach is to represent an object by a numerical vector,

resulting in straightforward distance functions. In this case a feature transformation

extracts distinguishable spatial characteristics which are represented by numerical

values and grouped together in a feature vector.

ALGORITHM RankingSearch (Object q)

BEGIN

initialize ranking = index.ranking (F(q), df);

initialize result = new sorted list 〈key, object〉;
initialize ;

wait (getnext_is_called);

WHILE o = ranking.getnext DO

BEGIN

result.insert (, o);

 = result[1].key;

WHILE AND NOT result.isempty() DO

BEGN

report (result[1].object);

result.delete(1);

IF NOT result.isempty() THEN

 = result[1].key;

END IF;

 END DO;

END DO;

END.

dmax ∞=

do o q,()
dmax

dmax df o q,()≤

dmax

Figure 106: Multi-step ranking queries.

194 Foundations of Similarity Search

A 2-dimensional CAD object, for instance, can be transformed into an 8-dimen-

sional feature vector by specifying the perimeter around the object’s center of gravity

first. Then, the perimeter is partitioned into d = 8 sectors and the volume of the ob-

ject lying in each sector is determined [BKK 97b]. Thus, the resulting feature vector

consists of eight ratio values (cf. Figure 107).

Using a feature transform, the objects are mapped onto a feature vector in an ap-

propriate multidimensional feature space. The similarity of two objects is then de-

fined as the proximity of their feature vectors in the feature space: The closer their

feature vectors are located, the more similar two objects are considered. Most appli-

cations use the Euclidean metric (L2) to evaluate the feature distance, but there are

several other metrics commonly used, e.g. the Manhattan metric (L1), and the Maxi-

mum metric (L∞).

Feature-Based Similarity Models. Several reasons lead to the wide use of fea-

ture-based similarity models: First, the more complex the objects are, the more diffi-

cult it may be to find an appropriate similarity distance function. A second reason

wherefore feature-based similarity models are quite popular is that they may be eas-

ily tuned to fit to specific applications. In general, this task is performed in close

cooperation with domain experts who specify appropriate features and adapt them to

the specific requirements. Since the existing techniques for query processing are in-

dependent from the particular definition of the features, efficient support may be

provided without an in-depth insight into the application domain.

F1

F6

F2

F0

F7F4

F3

F5

Figure 107: The Section Coding feature transformation.

F0

F1

F2

F3

F4

F5

F6

F7

CAD-object

volume ratio F1

feature
vector

feature
transformation

Similarity Models 195

Examples where the paradigm of feature-based similarity has been successfully

applied to the retrieval of similar spatial objects include structural features of 2D

contours [GM 93] [MG 93] [MG 95], angular profiles of polygons [BMH 92], rect-

angular covers of regions [Jag 91], algebraic moment invariants [TC 91][FEF+ 94],

and 2D section coding [BKK 97a]. Non-geometric applications include similarity

search on time series [FRM 94][AFS 93], and on color histograms in image databas-

es [FEF+ 94][NBE+ 93][HSE+ 95], among several others.

Agrawal et al. present a method for similarity search in a sequence database of

one-dimensional data [AFS 93]. The sequences are mapped onto points of a low-di-

mensional feature space using a Discrete Fourier Transform, and then a PAM is used

for efficient retrieval. This technique was later generalized for subsequence matching

[FRM 94], and searching in the presence of noise, scaling, and translation

[ALSS 95]. However, it remains restricted to one-dimensional sequence data.

Mehrotra and Gary suggest the use of boundary features for the retrieval of shapes

[MG 93] [GM 93]. Here, a 2D shape is represented by an ordered set of surface

points, and fixed-sized subsets of this representation are extracted as shape features.

All of these features are mapped to points in multidimensional space which are stored

using a Point Access Method (PAM). This method is essentially limited to two di-

mensions.

Jagadish proposes a technique for the retrieval of similar shapes in two dimensions

[Jag 91]. He derives an appropriate object description from a rectilinear cover of an

object, i.e. a cover consisting of axis-parallel rectangles. The rectangles belonging to

a single object are sorted by size, and the largest ones serve as retrieval key for the

shape of the object. This method can be generalized to three dimensions by using

covers of hyperrectangles, as we will see in Chapter 8.

Histograms as Feature Vectors. Histograms represent a quite general class of

feature vectors which have been successfully applied to several applications. For any

arbitrary distribution of objects, a histogram represents a more or less fine grained

aggregation of the information. The general idea is to completely partition the space

of interest into disjoint regions which are called cells, and to map every object onto a

single bin or to distribute an object among a set of bins of the corresponding histo-

gram. Then a histogram can be transformed directly into a feature vector by mapping

each bin of the histogram onto one dimension (attribute) of the feature vector. The

histogram approach applies to geometric spaces as well as to non-geometric spaces.

196 Foundations of Similarity Search

A popular example for the use of histograms to define the similarity of complex

objects is the color histogram approach which is a core component of the QBIC

system [NBE+ 93][FEF+ 94]. Among other techniques, color histograms are used to

encode the percentage of colors in an image [SH 94][HSE+ 95]. Our second example

is taken from a spatial database application: The 2D section coding approach

[BKK 97b] represents a particular histogram technique that is used in the S3 system

[BK 97] for the retrieval of similar mechanical parts. For each object, the circum-

scribing circle is decomposed into a fixed number of sectors around the center point.

For each sector, the fraction of the area is determined that is overlapped by the object.

Altogether, the resulting feature vector is a histogram over the 2D, whose bins repre-

sent the corresponding 2D sectors. Figure 108 illustrates the technique by an example

with 8 sectors.

In [KKS 98] [AKKS 99] the retrieval of similar 3D objects from a biomolecular

database was investigated. The introduced models are based on 3D shape histograms,

where three different approaches were used for space partitioning: shell bins, section

bins and combined bins (cf. Figure 109). Unfortunately, these models are not inher-

ently suitable for voxelized data which are axis-parallel.

7.6.2 Geometry-Based Similarity Search

A class of models that is to be distinguished from the feature-based techniques are

the similarity models that are defined by directly using the geometry. Two objects are

considered similar if they minimize a distance criterion that is purely defined by the

geometry of the objects. Examples include the similarity retrieval of mechanical

0

0,1

0,2

0,3

0,4

0,5

1 2 3 4 5 6 7 8

Figure 108: Section coding of 2D regions.
a) Original object, b) Corresponding histogram, c) Corresponding feature vector

0 39,
0 40,
0 08,
0 12,
0 10,
0 07,
0 11,
0 09, 

 
 
 
 
 
 
 
 
 
 
 
 a) c)b)

Similarity Models 197

parts, the difference volume approach, and the approximation-based similarity model

for 3D surface segments:

Rotational Symmetric Mechanical Parts. In [SKSH 89], a method is presented

to retrieve similar mechanical parts from a database. The similarity criterion is de-

fined in terms of tolerance areas which are specified around the query object. All

objects that fit into the tolerance area count for being similar. Although the parts are

3D, only their 2D contour is taken into account for the retrieval technique.

Difference Volume Approach. The difference volume or error volume of spatial

objects is a promising approach which has been already successfully applied to med-

ical images, for instance [Hig 90][Vin 91]. Furthermore, extensions such as the com-

bination with methods from mathematical morphology have been investigated on a

tumor database [KSF+ 96]. However, they considered only 2D images. A competing

approach is based on a new geometric index structure as suggested in [Kei 99]. The

basic idea of this solution is to use the concept of hierarchical approximations of the

3D objects to speed up the search process.

Approximation-based Similarity of 3D Surface Segments. The retrieval of sim-

ilar 3D surface segments is a task that supports the docking search for proteins in

biomolecular databases. Following the approximation-based model, the similarity of

3D surface segments is measured by their mutual approximation error with respect to

a given multi-parametric surface function which serves as the underlying approxima-

tion model. To state it simply, two segments are the more similar, the better they fit to

the approximation of the partner segment [KSS 97].

Figure 109: Shells and sections as basic models for shape histograms.
(In each of the 2D examples, a single bin is marked)

4 shell bins 12 section bins 48 combined bins

198 Foundations of Similarity Search

7.6.3 Summary

In Figure 110, we summarize our classification of similarity models into fea-

ture-based approaches and direct geometry-based proposals. The list of examples is

by no means complete but provides an impression of the potentials of both para-

digms. In this work, we introduce effective similarity models for CAD objects, which

rely on the feature based histogram approach.

Class Definition of
Similarity

Examples

feature-
based
similarity

similarity is
proximity in
the feature
space

• rectangular cover of regions [Jag 91]

• algebraic moment invariants [TC 91]

• 2D contour features [GM 93][MG 95]

• angular profiles of polygons [BMH 92]

• section coding [BKK 97a]

• time series [AFS 93][FRM 94]

• color histograms [NBE+ 93][FEF+ 94] [HSE+ 95]

geometric
similarity

similarity is
directly
defined by
geometry

• symmetric mechanical parts [SKSH 89]

• difference volume [Vin 91][KSF+ 96][Kei 99]

• 3D surface segments [KSS 97]

Figure 110: Classification of complex similarity models.

Chapter 8
Similarity Models for
Voxelized CAD Data

Although considerable work on similarity search in database systems has been

published, many of the previous approaches deal only with one- or two-dimensional

data, such as time series, digital images or polygonal data. Most of these approaches

do not support three-dimensional objects.

In this chapter, we concentrate on similarity models for voxelized CAD data. In

Section 8.1, we start with introducing object similarity functions, emphasizing in-

variance properties which are required for effective similarity search in the area of

virtual engineering. In Section 8.2, three different space partitioning similarity mod-

els for voxelized CAD data are presented, namely the volume model, the solid-angle

model and the eigen-value model. In Section 8.3, we turn our attention to data parti-

tioning similarity models. We first discuss the cover-sequence model which serves as

a starting point for the vector set model. In contrast to the other four models, the

vector set model uses sets of feature vectors for representing an object instead of

single feature vectors. The discussion of the effectiveness and efficiency of the five

presented models is deferred to the following two chapters.

200 Similarity Models for Voxelized CAD Data

8.1 Object Similarity

The degree of similarity between two objects heavily depends on the chosen dis-

tance function. Ideally a distance measure has the properties of a metric.

Definition 23 (Metric).

Let M be an arbitrary data space. A metric is a mapping such that

for all the following statements hold:

• (reflexivity)

• (symmetry)

• (triangle inequality)

Based on metric distance functions, we can define metric object similarity.

Definition 24 (Metric Object Similarity).

Let O be the domain of the objects and F: O → M be a mapping of the objects into a

metric data space M. Furthermore, let dist: M × M→ IR be a metric distance function.

Then a metric object similarity function simdist: O × O → IR is defined as follows:

simdist (o1, o2) = dist (F(o1), F(o2)).

Often, the d-dimensional vector space IRd is used. By means of a suitable feature

transformation (cf. Section 7.6.1) distinguishable spatial characteristics are extracted

and grouped together in a numerical feature vector. In this important special case, the

similarity of two objects can be defined as follows.

Definition 25 (Feature-Based Object Similarity).

Let O be the domain of the objects and F: O → IRd be a mapping of the objects into

the d-dimensional feature space. Furthermore, let dist: IRd × IRd → IR be a distance

function between two d-dimensional feature vectors. Then a feature-based object

similarity function simdist: O × O → IR is defined as follows:

simdist (o1, o2) = dist (F(o1), F(o2)).

There exist a lot of distance functions which are suitable for similarity search. In

the literature, often the Lp-distance is used, e.g. the Euclidian distance (p = 2).

dist:M M× IR→
x y z M∈, ,

dist x y,() 0 x⇔ y= =

dist x y,() dist y x,()=

dist x z,() dist x y,() dist y z,()+≤

deuclid x y(,) x y– 2
xi yi–()2

i 1=

d

∑2= =

201

8.1.1 Normalization of CAD Data

For effective similarity search it is often required to meet invariance properties

with respect to a certain class of transformations, i.e. applying a transformation from

this class to an object should have no influence on the result of the similarity function.

This leads to the following definition.

Definition 26 (Invariance).

Let O be the domain of the objects and simdist: O × O → IR be a metric object

similarity function. simdist is invariant with respect to a class of transformations C,

iff for all objects o1, o2 ∈ O and all transformations T ∈ C holds:

simdist (o1, o2) = simdist (T(o1), o2) = simdist (o1, T(o2))

Invariance can be achieved by applying appropriate transformations to the objects

in the database. This is called the normalization of data. Invariance properties rele-

vant for similarity search in CAD databases are scaling, translation, rotation and

reflection invariances. It depends on the user as well as on the chosen similarity

model which invariances have to be considered for a particular application. Taking

the desired normalization of the data into account, we get the following extended

similarity definition.

Definition 27 (Extended Metric Object Similarity).

Let O be the domain of the objects and F: O → M be a mapping of the objects into a

metric data space M. Furthermore, let dist: M × M → IR be a metric distance function,

and let C be the set of all user-dependent combinations of scaling, translation, rota-

tion and reflection transformations. Then an extended metric object similarity func-

tion simdist: O × O → IR is defined as follows:

simdist (o1, o2) = min {dist (F(o1), F(T(o2)))}
T∈C

We achieve invariance by taking the minimum of the distances between object o1

and all transformations out of C applied to object o2. In the next four sections, we

discuss each of the mentioned invariance properties in more detail. In particular we

describe the corresponding transformation matrices MT using homogeneous coordi-

nates [Gri 92][NS 86]. By applying such a transformation matrix MT, each voxel

v = (x, y, z)T is mapped onto v’ = (x’, y’, z’)T according to the following equation:

MT (x, y, z, 1)T = (x’, y’, z’, 1)T. ⋅

202 Similarity Models for Voxelized CAD Data

The transformation matrices MT are different for each object o, depending on its

minimal bounding box MBBo = (xmin, ymin, zmin, xmax, ymax, zmax). These minimal

bounding boxes have to be updated after each transformation in order to obtain the

correct transformation matrices MT for the next step.

In the following, we will discuss the different invariances and present the corre-

sponding transformation matrices.

Scaling Invariance. The actual size of the different objects in a CAD database can

vary from a few millimeters to several meters. In order to compare the shape of the

objects, we scale them to a uniform size. We fit each voxelized object into a cubic

voxel space with a predefined extension r in each of the three dimensions. This can

be achieved by applying the following transformation with appropriate parameters

sx, sy and sz.

We distinguish between two scaling methods.

• Proportional scaling: The objects are scaled proportionally with respect to the

three coordinate axes. The shape of the objects is preserved. Using this method

the scaling factors sx, sy and sz are equal and can be determined like this:

sx = sy = sz = where ∆mbbO is the maximal extension of the minimal

bounding box with respect to the three coordinate axes. ∆mbbO can be computed

as follows: ∆mbbO = max { xmax - xmin, ymax - ymin, zmax - zmin}.

• Non-proportional scaling: Here the extensions of the objects are adjusted to the

size of the voxel space independently for each of the coordinate axes. This way

the voxel space is used optimally, but the shape of the objects is distorted. Small

differences of the shape in dimensions with low extension are amplified to a high

degree. The scaling factors sx, sy and sz result from the ratio of the extension of

the voxel space and the extension of the object for each dimension.

We store each object normalized with respect to proportional scaling in the data-

base. Furthermore, we store the scaling factor, so that we can (de)activate scaling

Mscal

sx 0 0 0

0 sy 0 0

0 0 sz 0

0 0 0 1 
 
 
 
 
 
 

=

r
∆mbbO

sx
r

xmax xmin–
-------------------------- sy

r
ymax ymin–
-------------------------- sz

r
zmax zmin–
-------------------------=,=,=

Object Similarity 203

invariance depending on the users needs at runtime, as the actual size of the parts may

or may not exert influence on the similarity model.

Translation Invariance. CAD objects are designed and constructed in a standard-

ized position, normalized to the center of the coordinate system. So similarity models

for CAD data should recognize similar parts, independently of their spatial location.

The four, respectively five, tires of a car are similar, although they are located differ-

ently.

Therefore we move each object, i.e. each voxel of the object, to a uniform position

in the voxel space, so that the center of the minimal bounding boxes lies in the origin

of the coordinate system. The corresponding matrix Mtrans looks like this:

The parameters tx, ty and tz are the coordinates of the center of the minimal bound-

ing box.

We store each object normalized with respect to translation in the database.

Rotation Invariance. In general, we can apply principal axis transformation in

order to achieve invariance with respect to rotation. Here, the idea is to map the

position of each object in such a way that the principal axis of each object is parallel

to the coordinate system.

In this thesis, we pursue another approach. In the case of CAD applications, not all

possible rotations are considered, but only 90°-rotations. This yields up to 24 differ-

ent possible positions for each object. The transformation matrices for 90°-rotation

around the X, Y and Z axes are listed here:

Mtrans

1 0 0 t– x

0 1 0 t– y

0 0 1 t– z

0 0 0 1 
 
 
 
 
 
 

=

tx

xmin xmax+

2
-------------------------- ty

ymin ymax+

2
-------------------------- tz

zmin zmax+

2
--------------------------=,=,=

Mrot
X

1 0 0 0

0 0 1– 0

0 1 0 0

0 0 0 1 
 
 
 
 
 

= Mrot
Y

0 0 1 0

0 1 0 0

1– 0 0 0

0 0 0 1 
 
 
 
 
 

= Mrot
Z

0 1– 0 0

1 0 0 0

0 0 1 0

0 0 0 1 
 
 
 
 
 

=

204 Similarity Models for Voxelized CAD Data

Reflection Invariance. Reflected parts, e.g. the right and left front door of a car,

should be recognized as similar as far as design is concerned. If we look at the pro-

duction, reflected parts are no longer similar and have to be treated differently.

To reflect an object with respect to the X, Y or Z axis, one of the following trans-

formation matrices can be used:

Taking 90°-rotations as well as reflection into account, we may obtain up to

24 × 2 = 48 varying positions. We could achieve 90°-rotation and reflection invari-

ance by storing 48 different feature vectors for each object in the database or by

carrying out 48 different permutations of the query object at runtime.

To sum up, a similarity model for CAD data should take translation and rotation

invariances into account whereas reflection and scaling invariances have to be tun-

able. Throughout our experiments, we considered invariance with respect to scaling,

translation, reflection, and 90°-rotation by permuting the query object.

8.2 Space Partitioning Similarity Models

In this section, we discuss three different space partitioning similarity models

suitable for voxelized CAD data, namely the volume model, the solid-angle model

and the eigen-value model. Each of the models is based on shape histograms.

8.2.1 Shape Histograms for Voxelized CAD Data

Shape histograms are based on a complete partitioning of the data space into dis-

joint cells which correspond to the bins of the histograms. We divide the data space

into axis parallel, equi-sized partitions (cf. Figure 111). This kind of space partition-

ing is especially suitable for voxelized data, as cells and voxels are of the same shape,

i.e. cells can be regarded as coarse voxels. The data space is partitioned in each

dimension into p grid cells. Thus, our histogram will consist of k × p3 bins where

k ∈ IN depends on the model specifying the kind and number of features extracted

from each cell. For a given object o, let be the set of

Mref
X

1– 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1 
 
 
 
 
 

= Mref
Y

1 0 0 0

0 1– 0 0

0 0 1 0

0 0 0 1 
 
 
 
 
 

= Mref
Z

1 0 0 0

0 1 0 0

0 0 1– 0

0 0 0 1 
 
 
 
 
 

=

V
o

v Vi
o∈ 1 i p

3≤ ≤{ }=

Space Partitioning Similarity Models 205

voxels that represents o where are the voxels covered by o in cell i.

denotes the set of voxels at the surface of the objects and denotes the set of

the voxels inside the object, such that and holds. Let r

be the number of voxels of the data space in each dimension. In order to ensure a

unique assignment of the voxels to a grid cell, we assume that .

After partitioning the data space, we have to determine the spatial features of the

objects for each grid cell depending on the chosen model. By scaling the number of

partitions, the number of dimensions of the feature vector can be regulated

(cf. Figure 111). Obviously, the more partitions we use, the more smaller differences

between the objects become decisive. Let fo be the computed feature vector of an

object o. The i-th value of the feature vector of the object o is denoted by fo
(i).

8.2.2 The Volume Model

A simple and established approach to compare two objects is based on the number

of the object voxels in each cell i of the partitioning. In the following, this model

is referred to as the volume model. Each cell represents one dimension in the feature

vector of the object. The i-th dimension of the feature vector of object o

can be computed by the normalized number of voxels of o lying in cell i. Formally,

Figure 111 illustrates the volume model for the 2D case.

Vi
o

V
o

V
o⊆

V·
o

V
o⊆

V
o

V·
o

∪ V
o

= V
o

V·
o

∩ ∅=

r
p
--- IN∈

Figure 111: 2D space partitioning with 4 cells.
The feature vector generated by the volume model is depicted on the right hand side.

fo
1

64

36

43

11

15 
 
 
 
 
 

=object o

Vi
o

1 i p
3≤ ≤()

fo
i() Vi

o

K
----------= where K

r
p
--- 

  3
=

206 Similarity Models for Voxelized CAD Data

8.2.3 The Solid-Angle Model

The solid-angle method [Con 86] measures the concavity and the convexity of

geometric surfaces. It is therefore a good candidate for adequately modelling geo-

metric shapes and has been used in different approaches to spatial similarity model-

ling. In the following, we describe a model that combines the solid-angle approach

with our axis-parallel partitioning.

Let Kc,r be a set of voxels that describes a 3D voxelized sphere with central voxel

c and radius r. For each surface-voxel of an object o the so called solid-angle value

is computed as follows.

The voxels of o which are inside are counted and divided by the size of ,

i.e. the number of voxels of . The resulting measure is called the solid-angle

value . Formally,

where

A small solid-angle value indicates that an object is convex at voxel

(cf. point p1 in Figure 112a). Otherwise, a high value of denotes a concave

shape of an object at voxel (cf. point p2 in Figure 112a). The choice of the radius of

the measurement sphere is a crucial parameter. A particular radius could approximate

a given object very well (cf. radius r1 in Figure 112b), whereas another radius might

be inept (cf. radius r2 in Figure 112b).

v

Kv r, Kv r,

Kv r,

Sa v r,()

Sa v r,()
Kv r, V

o∩
Kv r,

-----------------------=

Kv r, V
o∩ w Kv r, v V

o
: w.x v.x= w.y v.y= w.z v.z=∧ ∧∈∃∈{ }=

Sa v r,() v

Sa v r,()
v

Figure 112: The Solid-Angle model.
a) Different shapes at different surface points, b) Effect of the radius

a) b)

object o

p1

p2

Kp2 ,r

r

r
Kp1 ,r

object o p
r1

r2

Space Partitioning Similarity Models 207

The Solid-Angle values of the cells are transferred into the according histogram

bins as described in the following. We distinguish between three different types of

cells:

• Cell i contains surface-voxels of object o, i.e. . The mean of all Sa-values

of the surface-voxels is computed as the feature value of this cell:

• Cell i contains only inside-voxels of object o, i.e. and . The

feature value of this cell is set to 1 (i.e.).

• Cell i contains no voxels of object o, i.e. . The value of the according

bin of the histogram is 0 (i.e.).

8.2.4 The Eigen-Value Model

In the following, we introduce a new approach to extract local features which is

based on eigen values. The set of voxels of an object can be considered as a set of

points in the 3D data space following a particular scattering. The eigen-value model

uses this scattering of the voxel sets to distinguish the objects by computing the

minimum bounding ellipsoid of the voxel set in each cell of the partitioning indepen-

dently (cf. Figure 113).

A minimum bounding ellipsoid in the 3D space can be described by three vectors.

In order to compute these vectors, we consider each voxel v of the object o as a

Euclidian vector in the 3D data space and apply principal axis transfor-

Vi
o

∅≠

fo
i() 1

m
---- Sa vij

r(,)
j 1=

m

∑= where Vi
o

vi1
,...,vim

{ }=

Vi
o

∅= Vi
o ∅≠

fo
i()

1=

Vi
o ∅=

fo
i()

0=

Figure 113: A 2D example for the eigen-value model.

fo

λ1
1

λ1
2

λ2
1

λ2
2

λ3
1

λ3
2

0

0 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

=

λ1
1

λ2
1

λ2
2

λ1
2

λ1
3

λ2
3

λ1
1

λ2
1

λ2
2

λ1
2

λ1
3

λ2
3

λ1
1

λ2
1

λ2
2

λ1
2

λ1
3

λ2
3

object o

v
o

x y z, ,()=

208 Similarity Models for Voxelized CAD Data

mation. To determine the principal axis of the vectors in cell i, we first compute their

centroid :

After that, for each vector in cell i, the following translation is carried out:

Based on these transformed vectors , the covariance matrix for each cell i

can be computed as follows:

The three eigen vectors (j = 1, 2, 3) of the matrix correspond to the

vectors spanning the minimum bounding ellipsoid of the voxel set . The eigen

values represent the scaling factors for the eigen vectors (cf. Figure 114). Both

eigen values and eigen vectors are determined by the following equation:

The interesting values that are inserted in the bins of the histogram are the eigen

values which describe the scattering along the principal axis of the voxel set. These

three values can be computed using the characteristic polynomial:

C
o

C
o

xC

yC

zC 
 
 
 
 

1

Vi
o

xj
j 1=

Vi
o

∑

yj
j 1=

Vi
o

∑

zj
j 1=

Vi
o

∑
 
 
 
 
 
 
 
 
 
 
 
 
 
 

= =

v
o

v
o

v
o

C
o

–→

v
o

Covi
o

Covi
o 1

Vi
o

1–

xj
2

j 1=

Vi
o

∑ xjyj
j 1=

Vi
o

∑ xjzj
j 1=

Vi
o

∑

xjyj
j 1=

Vi
o

∑ yj
2

j 1=

Vi
o

∑ yjzj
j 1=

Vi
o

∑

xjzj
j 1=

Vi
o

∑ yjzj
j 1=

Vi
o

∑ zj
2

j 1=

Vi
o

∑
 
 
 
 
 
 
 
 
 
 
 
 
 
 

=

ei
j

Covi
o

Vi
o

λi
j

Covi
o

ei
j

λi
j
ei

j
=⋅

det Covi
o λi

j
Id–() 0= for j 1, 2, 3=

Data Partitioning Similarity Models 209

Using this equation we obtain three eigen values which are sorted in descending

order in the vector . The highest value represents the variance along the first prin-

cipal axis, the second value represents the variance along the second principal axis,

and the third value represents the variance along the third principal axis.

For each cell i of the partitioning we compute the vector of the three eigen

values as described right above and register it in the according bins of the histogram:

Note that for p3 cells we obtain a feature vector with 3 × p3 dimensions.

8.3 Data Partitioning Similarity Models

In contrast to the last section where we discussed space partitioning similarity

models, we turn our attention to data partitioning similarity models in this section.

We introduce two different models, namely the cover sequence model and the vector

set model. The cover sequence model (cf. Section 8.3.1) still uses feature vectors for

representing objects, whereas the vector set model (cf. Section 8.3.2) uses sets of

feature vectors for modelling a 3D voxelized CAD object.

8.3.1 The Cover Sequence Model

The three models described in the foregoing sections are based on a complete

partitioning of the data space into disjoint cells. In this section, we adapt a known

Figure 114: The eigen-value model with the principal axis of a sample object.

λ1e1
λ3e3λ2e2

λi

λi

fo
i() λi

λi
1

λi
2

λi
3 

 
 
 
 
 

= =

210 Similarity Models for Voxelized CAD Data

model [Jag 91][JB 91] to voxelized 3D data which is not restricted to this rigid space

partitioning but rather uses a more flexible object-oriented partitioning approach.

This model is in the following referred to as cover sequence model.

General Idea. As depicted in Figure 115a each edge of an object can be extended

infinitely in either direction, to obtain a grid of lines. Each rectangle in this grid is

called grid primitive, and is located either entirely inside the object, or entirely out-

side of the object. Furthermore, any pair of adjacent grid primitives must also form a

rectangle, respectively a cuboid in the 3D data space. The basic idea of this model is

to find large clusters of grid primitives, called covers, which approximate the object

as good as possible [JB 91]. These covers are organized in a cover sequence which

provides a sequential description of the object.

Let o be the object being approximated. The quality of a cover sequence Sk of

some length k ∈ IN is measured by the symmetric volume difference Errk between

the object o and the sequence Sk (cf. Figure 115b). Formally, let the covers be drawn

from the set C of all possible rectangular covers. Then each unit i of the cover se-

quence comprises a pair (Ci ∈ C, σi∈{+,-}), where “+” represents set union and “-”

represents set difference.

grid primitive consisting of 8 voxels

object o

grid primitive consisting of 8 voxelsgrid primitive consisting of 8 voxels

object o

Figure 115: The cover sequence model.
a) Grid primitives, b) Cover sequence

a) b)

S1=(C0+C1) Err1=21
S2=((C0+C1)+C2) Err2=16
S3=(((C0+C1)+C2)-C3) Err3=12

...

C6

C1

C2

C3 C5

C4

C7

object o

S1=(C0+C1) Err1=21
S2=((C0+C1)+C2) Err2=16
S3=(((C0+C1)+C2)-C3) Err3=12

...

C6

C1

C2

C3 C5

C4

C7

S1=(C0+C1) Err1=21
S2=((C0+C1)+C2) Err2=16
S3=(((C0+C1)+C2)-C3) Err3=12

...

C6

C1

C2

C3 C5

C4

C7

object o

S1=(C0+C1) Err1=21

S2=((C0+C1)+C2) Err2=16

S3=((C0+C1)+C2)-C3) Err3=12

...

Data Partitioning Similarity Models 211

The sequence after k units is:

Sk = (((C0 σ1 C1) σ2 C2) ... σk Ck),

where C0 is an initial empty cover at the zero point. The symmetric volume differ-

ence after k units is:

Errk = | o XOR Sk |.

Note that there exists some natural number N such that Sk = o and Errk = 0 for all

k ≥ Ν. At this point an exact description of the object o has been obtained.

If an object o can be described by a sequence Sj with j < k covers and Errj = 0, we

assign ((Sj σj+1 C0) ... σk C0) to Sk. These dummy covers C0 do not distort our simi-

larity notion, but guarantee that all feature vectors are of the same dimensionality.

Thus we can use common spatial index structures [BKK 96][LJF 94][BBJ+ 00] in

order to accelerate similarity queries.

Approximation. Jagadish and Bruckstein [JB 91] suggest two algorithms for the

retrieval of a cover sequence Sk: a branch and bound algorithm with exponential

runtime complexity, and a greedy algorithm with polynomial runtime complexity

which tries to minimize Erri in each step i ≤ k. Throughout our experiments we used

this second algorithm.

Let us call a grid primitive black if it is in the object, and white if it is not. Also, a

grid primitive is in if it is included in the current description of the object, and out if

it is not. At the beginning, all grid primitives are either out-black or out-white. At the

end, when an exact description of the object is obtained, all grid primitives are either

in-black or out-white. The total volume of the grid primitives that are out-black and

those that are in-white gives the error in the current description.

To speed up the retrieval of the cover sequence, not every possible cover has to be

considered in each step, but only those that are not dominated for addition or subtrac-

tion. Cover X is said to dominate cover Y for addition iff X contains every out-black

grid primitive in Y, Y contains every out-white grid primitive in X, and X - Y is either

empty or has at least one out-black grid primitive. Cover X is said to dominate cover

Y for subtraction iff X contains every in-white grid primitive in Y, Y contains every

in-black grid primitive in X, and X - Y is either empty or has at least one in-white grid

primitive.

212 Similarity Models for Voxelized CAD Data

If cover X dominates cover Y for addition or subtraction, we are guaranteed that the

error at the current step is less if cover X is added or subtracted rather than Y, and that

the error will continue to be no greater for all future steps.

In [JB 91], it is shown that it is possible, within time proportional to the perimeter

of the cover, to determine whether a cover is dominated by another cover. This is

faster than calculating the symmetric volume difference for every cover, which takes

time proportional to the volume of the cover.

Feature Extraction. In [Jag 91], Jagadish sketches how a 3D cover sequence

Sk = (((C0 σ1 C1) σ2 C2) ... σk Ck)

of an object o, can be transformed into a 6 × k-dimensional feature vector. There-

by, each cover Ci+1 with 0 ≤ i ≤ k-1 is mapped onto 6 values in the feature vector fo in

the following way:

fo
6i+1 = x-position of Ci+1

fo
6i+2 = y-position of Ci+1

fo
6i+3 = z-position of Ci+1

fo
6i+4 = x-extension of Ci+1

fo
6i+5 = y-extension of Ci+1

fo
6i+6 = z-extension of Ci+1

The position of a cover C = (xL, yL, zL, xU, yU, zU), is given in terms of the mean of

the L and U corner points, i.e. the point

The extension of the cover is obtained by taking the difference between the L and

U corner points. The ratio between two extension values stemming from different

covers, is more meaningful than the difference between these values. By applying the

(natural) logarithms to the normalized extension values, the ratio of these extension

values is used for computing the distance between two feature vectors. This way

common distance functions such as the Euclidian distance can be used to measure the

similarity of cover sequences.

To sum up, the extension of a cover C = (xL, yL, zL, xU, yU, zU), is given by the

triple:

xL xU+

2
----------------- ,

yL yU+

2

zL zU+

2
-----------------(,)

… A Bln–ln()2… … A
B
---ln 

  2
…= for A B, IR

+∈

xU xL–()ln , yU yL–()ln zU zL–()ln(,)

Data Partitioning Similarity Models 213

8.3.2 The Vector Set Model

As described in the foregoing section, a data object is represented as a feature

vector which consists of values obtained from a cover sequence approximation. For

similarity queries this method yields a major problem. Always comparing the two

covers having the same ranking according to the symmetric volume difference, does

not make sense in all cases. Two objects can be considered very different, because of

the order of their covers, although they are very similar by intuition. The reason for

this effect is that the order of the covers does not guarantee that the most similar

covers due to size and position will be stored in the same dimensions. Especially for

objects generating two or more covers having almost the same volume, the intuitive

notion of similarity can be seriously disturbed. Thus, the possibility to match the

covers of two compared objects with more degrees of freedom, might offer a better

similarity measure. Figure 116 displays a 2-dimensional example of a comparison

Figure 116: Advantages of free permutations.
a) Original query object, b) Permuted query object

S4
query (original) = ((((C0 + C1) – C2) – C3) – C4)

(a)

(b)

S4
query (optimal) = ((((C0 + C1) – C3) – C4) – C2)

C1

C3

C4

C2C4

C2

C1

C3

da
ta

ba
se

 o
bj

ec
t

S4
query (original) = ((((C0 + C1) – C2) – C3) – C4)

(a)

(b)

S4
query (optimal) = ((((C0 + C1) – C3) – C4) – C2)

C1

C3

C4

C2C4

C2

C1

C3

da
ta

ba
se

 o
bj

ec
t

214 Similarity Models for Voxelized CAD Data

between a query object and a very similar database object. The first sequence

(cf. Figure 116a) represents the covers of the query object in the order given by the

symmetric volume difference. Let us note that the covers C2, C3 and C4 are not very

similar to the corresponding covers of the database object and therefore, the calculat-

ed similarity is relatively weak. By rearranging the order of these covers the total

distance between the query object and the database object is considerably decreasing,

which is displayed in Figure 116b. Thus, the new order preserves the similarity be-

tween the objects much better.

To overcome the problem, the author in [Jag 91] proposes to generate several good

representations of the query object and then process a query for each of the represen-

tations. Afterwards the union of the returned database objects is taken as a result. We

can obtain different representations by permuting the order of the found covers and

choose the most “promising” orderings to create the query vectors. Though, the

method may offer reasonable results in many cases, there is no guarantee that the

ordering offering the minimum distance is included within this selection. Thus, the

whole similarity measure is dependent on the criteria used to select the most “prom-

ising” orderings. Since there is no well defined selection criterion known so far, the

solution does not necessarily offer a precisely defined similarity measure.

Minimum Euclidian Distance Under Permutation. Another solution for the

problem is to consider all possible permutations. Since the distance between two

objects can now be considered as the minimum distance over all possible orderings,

the distance is defined precisely this way.

Definition 28 (Minimum Euclidian Distance under Permutation).

Let be a function, where exchanges

the d successive components beginning with dimension with

the d successive components beginning with dimension of a

vector . Let be the function, that generates the set

of all vectors that can be generated by applying arbitrary many times to

a vector using any combination for i and j. Then the minimum Euclidian distance

under permutation is defined as follows:

exch:IN IN× IR
k d⋅()

IR
k d⋅()→× exch i j x, ,()

i d⋅ 1 0 i k 1–≤ ≤()+

j d⋅ 1 0 j k 1–≤ ≤()+

x IR k d⋅()∈ Exch:IR k d⋅() 2IR
k d⋅()

→
exch i j x, ,()

x

dΠ euclid– :IR k d⋅() IR k d⋅() IR→×

dΠ euclid– x y(,) min deuclid x z(,){ }=
z Exch y()∈

Data Partitioning Similarity Models 215

With a growing number of describing covers k, the processing time of considering

all possible permutations increases exponentially, since there are k! many permuta-

tions. With computation cost rising this rapidly, it is obvious that the description

length k has to be kept low, which is not acceptable for all applications.

To guarantee that the permutation with the minimal distance is used, our approach

does not work with one single feature vector, but with a set of feature vectors in lower

dimensions. By treating the data objects as sets of d-dimensional feature vectors with

a maximum cardinality of k, we introduce a new model for representing data objects

in similarity search systems, the so called vector set model. In this new approach, an

object is represented by a vector set with .

Reasons for the Use of Vector Set Representation. The representation of ex-

tracted features as a set of vectors is a generalization of the use of just one large

feature vector. It is always possible to restrict the model to a feature space, in which

a data object will be completely represented by just one feature vector. But in our

application the possibilities of vector set representation allow us to model the depen-

dencies between the extracted features more precisely. As the development of con-

ventional database systems in the recent two decades has shown, the use of more

sophisticated ways to model data can enhance both the effectiveness and efficiency

for applications using large amounts of data. In our application the vector set repre-

sentation is able to avoid the problems that occur by storing a set of covers according

to a strict order. Therefore, it is possible to compare two objects more intuitively,

causing a relatively small rise of calculation cost compared to the distance calcula-

tion in the one-vector model. Another advantage of our new approach is the better

storage utilization. It is not necessary to force objects into a common size, if they are

represented by sets of different cardinality. For our current application there is no

need for dummy covers to fill up the feature vectors. If the quality of the approxima-

tion is optimal with less than the maximum number of covers, only this smaller num-

ber of vectors has to be stored and loaded. In the case of a one-vector representation

avoiding dummies is not possible without further modifications of the access struc-

tures used. Furthermore, we are able to distinguish between the distance measure

used on the feature vectors of a set and the way we combine the resulting distances

between the single feature vectors. For example, this possibility might be useful

when defining partial similarity, where it is only necessary to compare the closest

i < k vectors of a set.

X IR
d⊂ X k≤

216 Similarity Models for Voxelized CAD Data

In the following sections, we will discuss the concept of vector set representation

in detail, with the goal of providing a high quality distance measure for vector-

set-represented data and an algorithm for its efficient computation.

Distance Measures on Sets of Feature Vectors. There already exist several dif-

ferent distance measures for sets of objects. In [EM 97] the authors survey the fol-

lowing distance functions, which are computable in polynomial time: the Hausdorff

distance, the sum of minimal distances, the (fair-)surjection distance and the link

distance. The Hausdorff distance is a metric, but does not seem to be suitable as a

similarity measure, because it relies too much on the extreme positions of the ele-

ments of both sets. The last three distance measures are suitable for modelling simi-

larity, but are not metric. This circumstance makes them unattractive, since there are

only limited possibilities for processing similarity queries efficiently when using a

non-metric distance function. In [EM 97] the authors also introduce a method for

expanding the distance measures into metrics, but as a side effect the complexity of

distance calculation becomes exponential. Furthermore, the possibility to match sev-

eral elements in one set to just one element in the compared set, is questionable when

comparing sets of covers like in our application.

The Minimal Matching Distance. A distance measure on vector sets that demon-

strates to be suitable for defining similarity in our application is based on the minimal

weight perfect matching of sets. This well known graph problem can be applied here.

Let us first introduce some notations.

Definition 29 (Weighted Complete Bipartite Graph).

A Graph consists of a (finite) set of vertices V and a set of edges

. A weighted graph is a graph together with a weight function

. A bipartite graph is a graph with and

. A bipartite graph is called complete if .

Definition 30 (Perfect Matching).

Given a bipartite graph a matching of X to Y is a set of edges

such that no two edges in M share an endpoint, i.e.

A matching M of X to Y is maximal if there is no matching M’ of X to Y such that

|M| < |M’|. A maximal matching M of X to Y is called a complete matching if

G V E,()=

E V V×⊆ G V E,()=

w: E IR→ G X Y∪ E,()= X Y ∅=∩
E X Y×⊆ G X Y∪ E,()= E X Y×=

G X Y∪ E,()= M E⊆

x1 y1,() x2 y2,() M: x1 x2= y1 y2=⇔∈,∀

Data Partitioning Similarity Models 217

|M| = min{|X|,|Y|}. In the case |X| = |Y| a complete matching is also called a perfect

matching.

Definition 31 (Minimum Weight Perfect Matching).

Given a weighted bipartite graph together with a weight function

. We call a perfect matching M, a minimum weight perfect matching, iff

for any other perfect matching M’, the following inequality holds:

In our application we build a complete bipartite graph between

two vector sets with . We set and

in order to fulfill the property . The weight of each edge

 in this graph G is defined by the distance between

the vectors and . For example the Euclidian distance can be used here.

A perfect matching is a subset that connects each to exactly one

 and vice versa. A minimal weight perfect matching is a matching with maxi-

mum cardinality and a minimum sum of weights of its edges. Since a perfect match-

ing can only be found for sets of equal cardinality, it is necessary to introduce weights

for unmatched nodes when defining a distance measure.

Definition 32 (Enumeration of a Set).

Let S be any finite set of arbitrary elements. Then is a mapping that assigns

a unique number . This is written as . The set of all

possible enumerations of S is named .

Definition 33 (Minimal Matching Distance).

Let and let be a distance function between two d-

dimensional feature vectors. Let , be two

vector sets. We assume w.l.o.g. . Furthermore, let be a weight

function for the unmatched elements. Then the minimal matching distance

: is defined as follows:

G X Y∪ E,()=

w: E IR→

w x y,()
x y,() M∈

∑ w x y,()
x y,() M’∈

∑≤

G X Y∪ E,()=

X Y IR
d⊂, X Y k≤, X’ X 1{ }×= Y’ Y 2{ }×=

X’ Y’ ∅=∩
x 1,() y 2,(),() X’ Y’×∈ dist x y,()

x X’∈ y Y’∈
M X’ Y’×⊆ x X’∈

y Y’∈

π s S∈
i 1 ..., S,{ }∈ π S() s1 ...,s S,()=

Π S()

V IR
d⊂ dist: IR

d
IR

d× IR→
X x1 ...,x X,{ }= Y y1 ...,y Y,{ } 2

V∈=

X Y k≤ ≤ w: V IR→

dmm
dist w,

2
V

2
V

IR→×

dmm
dist w,

X Y,() min
π Π Y()∈

dist xi yπ i(),() w yπ i()()
i X 1+=

Y

∑+

i 1=

X

∑ 
 
 

=

218 Similarity Models for Voxelized CAD Data

The weight function provides the penalty given to every unassigned

element of the set having larger cardinality. Let us note that minimal matching dis-

tance is a specialization of the netflow distance which is introduced in [RB 00]. The

authors in [RB 00] show that the netflow distance is a metric and that it is computable

in polynomial time. Therefore, we derive the following lemma without further proof.

Lemma 6. Let . The minimal matching distance : is a

metric if the underlying distance function is a metric and the

weight function meets the following conditions for all :

•

•

Definition 34 (Dummy Vectors).

Let be a set of d-dimensional vectors. Let be the Euclidean distance

between . Furthermore, let be a “dummy” vector. Then

: denotes a set of weight functions based on dummy

vectors.

A good choice of for our application is , since it has the shortest average

distance within the position and has no volume. Since there are no covers having no

volume in any data object, the conditions for the metric character of the minimum

matching distance are satisfied (cf. Lemma 6).

The minimum Euclidian distance under permutation can be derived from the min-

imal matching distance. By selecting the squared Euclidian distance as distance mea-

sure on V and taking the squared Euclidian norm as weight function, the distance

value calculated by the minimal matching distance is the same as the squared value

of the minimum Euclidian distance under permutation. This follows exactly from the

definitions of both distance measures. Let us note that it is necessary to extract the

square root from this distance value to preserve the metric character.

The Kuhn-Munkres Algorithm. Though it was shown in [RB 00] that the net-

flow distance can be calculated in polynomial time, it is not obvious how to achieve

it. Since we are only interested in the minimal matching distance, it is sufficient to

calculate a minimal weight perfect matching. Therefore, we apply the method pro-

posed by Kuhn [Kuh 55] and Munkres [Mun 57].

w: V IR→

V IR
d⊂ dmm

dist w,
2

V
2

V
IR→×

dist: IR
d

IR
d

IR→×
w: V IR→ x y, V∈

w x() 0>

w x() w y() dist x y,()≥+

V IR
d⊂ x y– 2

x y, IR
d∈ w IR

d
\V∈

w
w

: V IR→ w
w

x() x w– 2=

w 0

Data Partitioning Similarity Models 219

For the remainder of this section we assume that we are given a weighted complete

bipartite graph with the weight function . As we can

use dummy vectors (cf. Definition 34), we assume w.l.o.g. that X and Y have equal

cardinality k.

The goal of the Kuhn-Munkres algorithm is to find a maximal weight matching in

G. To obtain a minimal weight matching the following trick can be used. We replace

the weight function w by the function w’ with w’(x, y) = -w(x, y) and apply the algo-

rithm to G and w’.

Definition 35 (M-Alternating Path).

Given a matching M of X to Y an edge is called matched if ,

unmatched otherwise. An M-alternating path is a alternating sequence of unmatched

and matched edges with free end nodes.

If the edges of an M-alternating path are flipped in M, i.e. matched edges become

unmatched and vice versa, a matching M’ is obtained with |M’ | = |M| + 1.

Definition 36 (Feasible Vertex Labeling).

A feasible vertex labeling in G is a function such that

It is always possible to find a feasible vertex labeling. One way to do this is to set

l(y) = 0 for all and for each take the maximum value in the correspond-

ing row of edge weights, i.e.

An example of a feasible vertex labeling is depicted in Figure 117. If l is a feasible

labeling, we denote by Gl the subgraph of G which contains those edges where

, together with the endpoints of these edges. This graph Gl is

called the equality subgraph for l. In Figure 117 the edges of Gl are shaded. For

we denote by J(Gl, S) the set of all vertices in Y which

are adjacent to the vertices in S.

G X Y∪ E,()= w: X Y× IR→

x y,() X Y×∈ x y,() M∈

l: X Y IR→∪

x X y Y: l x() l y() w x y,()≥+∈∀,∈∀

y Y∈ x X∈

l x() max w x y,(){ }
y Y∈

 for x X∈=

l y() 0 for y Y∈=

l x() l y()+ w x y,()=

S X⊆

y Y x S x y,() Gl∈∧∈∈{ }

220 Similarity Models for Voxelized CAD Data

Lemma 7. If l is a feasible vertex labeling for G, and M is a perfect matching of X to

Y with , then M is a maximal weight perfect matching of X to Y.

Proof. We must show that no other complete matching can have weight greater

than M. Let any complete matching M’ of X to Y be given. Then

Thus the problem of finding a maximal weight perfect matching is reduced to the

problem of finding a feasible vertex labeling whose equality subgraph contains a

perfect matching of X to Y. Using this result, the Kuhn-Munkres algorithm (also

known as the Hungarian method) works like this:

M Gl⊆

Figure 117: An example of a feasible vertex labeling and an equality subgraph.

w M’() w x y,()
x y,() M’∈

∑=

 l x() l y()+() (feasibility of l)
x y,() M’∈

∑≤

l x() l y()+() (all l x) l y() summed in either matching,()
x y,() M∈

∑=

w x y,() (since M Gl)⊆
x y,() M∈

∑=

w M()=

Data Partitioning Similarity Models 221

1. Start with an arbitrary feasible vertex labeling l, determine Gl, and choose

an arbitrary matching M in Gl.

2. If M is complete for G, then M is optimal. Stop. Otherwise, there is some

unmatched . Set and .

3. If , go to step 4. Otherwise, . Find

and construct a new labeling l’ by

Note, that and . Replace l by l’ and Gl by G’l.

4. Choose a vertex y in , not in T. If y is matched in M, say with

, replace S by and T by , and go to step 3. Other-

wise, there will be an M-alternating path from x to y, and we may use this

path to find a larger matching M’ in Gl. Replace M by M’ and go to step 2.

When necessary, edges are added to the equality subgraph Gl by constructing a

new feasible labeling in step 3. This way a perfect matching will eventually be found.

Since there are at most k phases in which an M-alternating path is constructed and

each phase can be computed in the time complexity of a distance calculation

using the method of Kuhn and Munkres is in the worst case. Let us note that

for larger numbers of k this is far better than the previously mentioned method on k!

many permutations.

x X∈ S x{ }= T ∅=

J Gl S,() T≠ J Gl S,() T=

αl min
x S y Y\T∈,∈

l x() l y() w x y,()–+{ }=

l’ v()

l v() αl for v S∈–

l v() αl for v T∈+

l v() otherwise





=

αl 0> J G’l S,() T≠

J Gl S,()
z X∈ S z{ }∪ T y{ }∪

O k
2()

O k
3()

222 Similarity Models for Voxelized CAD Data

Chapter 9
Effectiveness of Similarity Models

In this chapter, we introduce density-based hierarchical clustering as a new and

effective way to analyse and compare similarity models (cf. Section 9.1). We show

that this new approach is much more suitable for the evaluation of similarity models

than the commonly used k-nn queries which are subjective and error-prone. Based on

clustering, we investigate the quality of the space partitioning similarity models and

the data partitioning similarity models (cf. Section 9.2). Among the space partition-

ing models, the eigen-value model is the most suitable model. The quality of this

space partitioning model is comparable to the quality of the cover sequence model

which is clearly outperformed by the vector set model. Generally, the data partition-

ing similarity models yield more meaningful results than the space partitioning ones.

Especially the combination of the data partitioning cover sequence model and the

new paradigm of using sets of feature vectors for representing objects is a very pow-

erful approach for the detection of similar CAD parts.

224 Effectiveness of Similarity Models

9.1 A New Approach for Evaluating Similarity Models

In general, similarity models can be evaluated by computing k-nearest neighbor

queries (cf. Section 9.1.1). A drawback of this evaluation approach is that the quality

measure of the similarity model depends on the results of few similarity queries and,

therefore, on the choice of the query objects. A model may perfectly reflect the intu-

itive similarity according to the chosen query objects and would be evaluated as

“good” although it produces disastrous results for other query objects. As a conse-

quence, the evaluation of similarity models with sample k-nn queries is subjective

and error-prone.

A better way to evaluate and compare several similarity models is to apply a clus-

tering algorithm (cf. Section 9.1.2). Clustering groups a set of objects into classes

where objects within one class are similar and objects of different classes are dissim-

ilar to each other. The result can be used to evaluate which model is best suited for

which kind of objects.

9.1.1 k-nn Queries

The notion of k-nn queries has been defined in Section 7.1. In Figure 118, the

results of a 5-nn query for two different similarity models A and B are presented,

whereby model A is an inept model and model B a suitable similarity model for

voxelized CAD data. We achieved satisfying results for each model depending on the

query object. For a tire, for example, model A performs very well, yielding objects

that are intuitively very similar to the query object (cf. Figure 118a). Comparably

good results are also produced by model B for a part of the fender (cf. Figure 118b).

Although both models deliver rather accurate results for the chosen query objects,

we also see in Figure 118 that these results are delusive. Figure 118c shows a nearest

neighbor query for an object where there exist several similar parts to this object

within our database. Model A does not recognize this. Furthermore, there might be

objects for which no similarity model can yield any intuitively similar parts (cf. Fig-

ure 118d). Obviously, we should not discard a similarity model if the chosen query

object belongs to noise. This confirms the assumption that the method of evaluating

similarity models using several k-nn queries is subjective and error-prone, due to its

dependency on the choice of the query objects.

In the next section, we introduce the density-based hierarchical clustering algo-

rithm OPTICS in order to overcome the above described difficulties.

225

9.1.2 OPTICS: A Density-Based Hierarchical Clustering Algorithm

A more objective way to evaluate and compare several similarity models is to

apply a clustering algorithm. Clustering groups a set of objects into classes where

objects within one class are similar and objects of different classes are dissimilar to

each other. The result can be used to evaluate which model is best suited for which

kind of objects. Furthermore, if we use clustering, the evaluation of the models is

based on the whole data set and not only on few sample objects.

For the evaluation of similarity models we suggest to use the density-based hierar-

chical clustering algorithm OPTICS [ABKS 99]. The algorithm is similar to hierar-

chical Single-Link clustering methods [JD 88] and is an extension of the clustering

algorithm DBSCAN [EKSX 96].

Figure 118: Results of 5-nn queries for a “good” and “bad” similarity model.
a) “good” query object - “bad” model, b) “good” query object - “good” model,

c) “good” query object - “bad” model, and d) “bad” query object - “good” model

226 Effectiveness of Similarity Models

We choose OPTICS due to the following reasons. First, OPTICS is - in contrast

to most other algorithms - relatively insensitive to its two input parameters ε and

MinPts [ABKS 99]. Second, OPTICS is a hierarchical clustering method which

yields more information about the cluster structure than a method that computes a flat

partitioning of the data (e.g. k-means [McQ 67]).

In this section, we provide a detailed description of the clustering algorithm

OPTICS, which is based on the idea of density-based clustering.

Density-Based Clustering. The key idea of density-based clustering is that for

each object q of a cluster the neighborhood of a given radius ε, i.e. the ε-neighbor-

hood Nε(q), has to contain at least a minimum number of objects MinPts, i.e. the

cardinality of the neighborhood has to exceed a threshold. It is assumed that there is

a metric distance function on the objects in the database (e.g. one of the Lp-norms for

a database of feature vectors). In the following, we will formally introduce densi-

ty-based clustering.

Definition 37 (Directly Density-Reachable).

Object p is directly density-reachable from object q with regard to ε and MinPts in a

set of objects O if

The condition is called the core object condition. If this condi-

tion holds for an object q, then we call q a core object. Only from core objects other

objects can be directly density-reachable.

Definition 38 (Density-Reachable).

An object p is density-reachable from an object q with regard to ε and MinPts in a set

of objects O, if there is a chain of objects p1, ..., pn with p1 = q, pn = p, such that

 and pi+1 is directly density-reachable from pi with regard to ε and MinPts.

Density-reachability is the transitive closure of direct density-reachability. This

relation is not symmetric in general. Only core objects can be mutually densi-

ty-reachable.

1() p Nε q()∈

2() Nε q() MinPts≥

Nε q() MinPts≥

pi O∈

A New Approach for Evaluating Similarity Models 227

Definition 39 (Density-Connected).

Object p is density-connected to object q with regard to ε and MinPts in the set of

objects O, if there is an object such that both p and q are density-reachable

from o with regard to ε and MinPts in O.

Density-connectivity is a symmetric relation. Figure 119 illustrates the definitions

on a sample database of 2-dimensional points from a vector space. Note that the

above definitions only require a distance measure and are also applicable to data from

a metric space.

A density-based cluster is now defined as a set of density-connected objects which

is maximal with regard to density-reachability and the noise is the set of objects not

contained in any cluster.

Definition 40 (Cluster and Noise).

Let O be a set of objects. A cluster C with regard to ε and MinPts in O is a non-empty

subset of O satisfying the following conditions:

1. Maximality: for all : if and p is density-reachable from q

with regard to ε and MinPts, then also .

2. Connectivity: for all : p is density-connected to q with regard to ε
and MinPts in O.

Every object not contained in any cluster is noise.

Note that a cluster contains not only core objects but also objects that do not satisfy

the core object condition. These objects - called border objects of the cluster - are,

however, directly density-reachable from at least one core object of the cluster (in

contrast to noise objects).

o O∈

Figure 119: Density-reachability and density-connectivity.

(a) p density-reachable from q
 q not density-reachable from p

(b) p and q density-connected to
 each other by o

p

q

p

q
o

p q, O∈ q C∈
p C∈

p q, C∈

228 Effectiveness of Similarity Models

DBSCAN. The algorithm DBSCAN [EKSX 96], which discovers the clusters and

the noise in a database according to the above definitions, is based on the fact that a

cluster is equivalent to the set of all objects in O which are density-reachable from an

arbitrary core object in the cluster (cf. lemma 1 and 2 in [EKSX 96]). The retrieval of

density-reachable objects is performed by iteratively collecting directly densi-

ty-reachable objects. DBSCAN checks the ε-neighborhood of each point in the data-

base. If the ε-neighborhood Nε(q) of a point p has more than MinPts points, a new

cluster C containing the objects in Nε(q) is created. Then, the ε-neighborhood of all

points q in C which have not yet been processed is checked. If Nε(q) contains more

than MinPts points, the neighbors of q which are not already contained in C are added

to the cluster and their ε-neighborhood is checked in the next step. This procedure is

repeated until no new point can be added to the current cluster C.

OPTICS. OPTICS emerges from the algorithm DBSCAN which computes a flat

partitioning of the data. The original output of OPTICS is an ordering of the objects,

a so called cluster ordering. To introduce the notion of a density-based cluster-

ordering, we first make the following observation: for a constant MinPts-value,

density-based clusters with respect to a higher density (i.e. a lower value for ε) are

completely contained in density-connected sets with respect to a lower density (i.e. a

higher value for ε). This fact is illustrated in Figure 120, where C1 and C2 are density-

based clusters with respect to ε2 < ε1 and C is a density-based cluster with respect to

ε1 completely containing the sets C1 and C2.

Consequently, the DBSCAN algorithm could be extended such that several dis-

tance parameters are processed at the same time, i.e. the density-based clusters with

respect to different densities are constructed simultaneously.

Figure 120: Nested density-based clusters.

ε1ε2

MinPts = 3C

C1 C2

A New Approach for Evaluating Similarity Models 229

To produce a consistent result, however, we would have to obey a specific order in

which objects are processed when expanding a cluster. We always have to select an

object which is density-reachable with respect to the lowest ε value to guarantee that

clusters with respect to higher density (i.e. smaller ε values) are finished first.

OPTICS works in principle like such an extended DBSCAN algorithm for an infi-

nite number of distance parameters εi which are smaller than a generating distance ε
(i.e.). The only difference is that we do not assign cluster memberships.

Instead, we store the order in which the objects are processed and the information

which would be used by an extended DBSCAN algorithm to assign cluster member-

ships (if this were at all possible for an infinite number of parameters). This informa-

tion consists of only two values for each object: the core-distance and a reachability-

distance, introduced in the following definitions.

Definition 41 (Core-Distance).

Let o be an object from a database DB, let ε be a distance value, let Nε(o) be the

ε-neighborhood of o, let MinPts be a natural number and let MinPts-distance(o) be

the distance from o to its MinPts-th neighbor. Then, the core-distance of o is defined

as:

core-distance ε, MinPts (o) =

Definition 42 (Reachability-Distance).

Let , let Nε(o) be the ε-neighborhood of o, and let MinPts be a natural

number. Then, the reachability-distance of p w.r.t. o is defined as:

reachability-distanceε,MinPts(p, o) =

If it is clear from the context, we omit the parameters ε and MinPts which leads to

the following simplified abbreviations: core-dist (o) = core-distance ε, MinPts (o) and

reach-dist (p,o) = reachability-distanceε,MinPts(p,o).

Intuitively, the reachability-distance of an object p with respect to another object o

is the smallest distance such that p is directly density-reachable from o if o is a core

object. In this case, the reachability-distance cannot be smaller than the core-distance

of o because for smaller distances no object is directly density-reachable from o.

0 εi ε≤<

 , if Nε o() MinPts<

 MinPts-distance(o) , otherwise
∞

 



o p, DB∈

max(core-distanceε,MinPts(o), distance(p,o)) , if p ∈ Nε(o)
∞

 



, otherwise

230 Effectiveness of Similarity Models

Otherwise, if o is not a core object, even at the generating distance ε, the reachability-

distance of p with respect to o is undefined. The reachability-distance of an object p

depends on the core object with respect to which it is calculated. Figure 121 illus-

trates the notions of core-distance and reachability-distance.

In contrast to DBSCAN, OPTICS does not assign cluster memberships but com-

putes an ordering in which the objects are processed and additionally generates the

information which would be used by an extended DBSCAN algorithm to assign clus-

ter memberships. This information consists of only two values for each object, the

core-distance and the reachability-distance.

Definition 43 (Cluster Ordering).

Let , , and CO be a totally ordered permutation of objects. To

each object o additional attributes o.P, o.C and o.R are assigned: o.P

, and

where . We call CO a cluster ordering w.r.t. ε and MinPts if the following

condition holds:

The attribute o.P indicates the position of our object o in the cluster ordering CO,

the attribute o.R is the reachability-distance assigned to object o during the genera-

tion of CO, and the attribute o.C indicates the core-distance of this object in CO. We

call o.R the reachability of object o throughout the remainder of this thesis. Note that

o.R is only well-defined in the context of a cluster ordering.

Figure 121: Illustration of core-distance and reachability-distance.

ε

o

p1

p2

r2

r1

MinPts = 4

c = core-dist(o)

r1 = reach-dist(p1, o)
r2 = reach-dist(p2, o)c

MinPts IN∈ ε IR∈
1 … CO, ,{ }∈

o.C core dist o()–= o.R min reach dist o o’,() o’ CO: ∈∀ o’.P o.P<–{ }=

min∅ ∞=

x y, CO: x.P y.P o CO: o.P x.P reach dist y o,()– x.R≤∧<()∈∃¬⇒<∈∀

A New Approach for Evaluating Similarity Models 231

Intuitively, the condition of Definition 43 states that the order is built on selecting

at each position i in CO that object o having the minimum reachability to any object

before i.

Reachability Plots. The output of OPTICS is a linear ordering of the database

objects minimizing a binary relation called reachability which is in most cases equal

to the minimum distance of each database object to one of its predecessors in the

ordering. This idea is similar to the Single-Link method but instead of a dendrogram,

the resulting reachability-plot is much easier to analyse. The reachability values can

be plotted for each object of the cluster-ordering computed by OPTICS. Valleys in

this plot indicate clusters: objects having a small reachability value are more similar

to their predecessor objects than objects having a higher reachability value.

The reachability plot generated by OPTICS can be cut at any level ε parallel to the

abscissa. It represents the density-based clusters according to the density threshold ε:

A consecutive subsequence of objects having a smaller reachability value than ε
belong to the same cluster. An example is presented in Figure 122. For a cut at the

level ε1 we retrieve two clusters denoted as A and B. Compared to this clustering, a

cut at level ε2 would yield three clusters. The cluster A is split into two smaller clus-

ters denoted as A1 and A2 and cluster B has decreased its size.

Note that the visualization of the cluster-order is independent from the dimension

of the data set. For example, if the objects of a high-dimensional data set are distrib-

uted similar to the distribution of the 2-dimensional data set depicted in Figure 122,

i.e. there are three “Gaussian bumps” in the data set, the reachability plot would look

very similar to the one presented in Figure 122. Furthermore, density-based cluster-

Figure 122: Reachability plot (right) computed by OPTICS for a 2D data set (left).

A B

A2 A1 B

ε1

ε2

B

A

A1

A2

data space reachability plot

232 Effectiveness of Similarity Models

ing is not only restricted to feature spaces but can be applied to all kinds of metric

spaces, e.g. to data spaces where objects are represented by vector sets.

Parameter Settings. A further advantage of this cluster ordering compared to

other clustering methods is that the reachability plot is rather insensitive to the input

parameters of the method, i.e. the generating distance ε and the value for MinPts.

Roughly speaking, the values just have to be “large” enough to yield a good result.

The concrete values are not crucial because there is a broad range of possible values

for which we always can see the clustering structure of a data set when looking at the

corresponding reachability plot. Figure 123 shows the effects of different parameter

settings on the reachability plot for the same data set. The first plot was generated

with appropriate parameter settings, whereas for the second plot a smaller generating

distance ε was used. For the third plot MinPts was set to the smallest possible value.

Although, these plots look very different to each other, the overall clustering struc-

ture of the data set can be recognized in all plots.

The ε−Parameter. Usually, for evaluation purposes, a good value for ε would yield

as many clusters as possible. The generating distance ε influences the number of

clustering-levels which can be seen in the reachability-plot. The smaller we choose

the value of ε, the more objects may have an infinite reachability-distance. Therefore,

we may not see clusters of lower density, i.e. clusters where the core objects are core

objects only for distances larger than ε. The optimal value for ε is the smallest value

so that a density-based clustering of the database with respect to ε and MinPts con-

sists of only one cluster containing almost all points of the database. Then, the infor-

mation of all clustering levels will be contained in the reachability-plot.

Figure 123: Effects of parameter settings on the cluster ordering of OPTICS.
a) Appropriate parameters, b) ε−Parameter too small, c) MinPts-Parameter too small

ε = 10, MinPts = 10 ε = 5, MinPts = 10 ε = 10, MinPts = 2

a) b) c)

ε
infinity

ε
infinity

ε
infinity

Experimental Evaluation 233

The MinPts-Parameter. The effect of the MinPts-value on the visualization of the

cluster-ordering can also be seen in Figure 123. The overall shape of the reachability-

plot is very similar for different MinPts values. However, for lower values the reach-

ability-plot looks more jagged and higher values for MinPts smoothen the curve.

Moreover, high values for MinPts will significantly weaken possible “single-link”

effects.

9.2 Experimental Evaluation

In this section, we will evaluate the similarity models introduced in Chapter 8 by

applying the density-based hierarchical clustering algorithm OPTICS to two real

world test data sets. In Section 9.2.1, we shortly describe the two data sets and the

parameter settings of our similarity models. In Section 9.2.2, we will evaluate the

effectiveness of the space partitioning models, i.e. the volume model, the solid-angle

model and the eigen-value model. In Section 9.2.3, we turn our attention to the qual-

ity of the data partitioning models, i.e. the cover-sequence model and the vector set

model. Finally, we will present a short summary of the main results.

9.2.1 Experimental Setup

Data Sets. We evaluated the proposed models on the basis of two real-world data

sets. The first one - in the following referred to as CAR data set - contains approxi-

mately 200 CAD objects from a German car manufacturer. The CAR data set con-

tains several groups of intuitively similar objects, e.g. a set of tires, doors, fenders,

engine blocks and kinematic envelopes of seats.

The second data set contains 5,000 CAD objects from an American aircraft pro-

ducer and is called PLANE data set in the following. This data set contains many

small objects (e.g. nuts, bolts, etc.) and a few large ones (e.g. wings).

Parameter Settings. For the volume model, the solid-angle model and the

eigen-value model we used a raster resolution of r = 30. Thus, ranges from 1 to

303 = 27,000 for each object o. Furthermore, the data space is partitioned into p = 3

cells in each dimension. We retrieve 33 = 27-dimensional feature vectors for the

volume model and the solid-angle model. The eigen-value model yields feature vec-

tors of dimensionality .

V
O

3 3
3⋅ 81=

234 Effectiveness of Similarity Models

Using the cover sequence model and the vector set model, the data space of both

data sets contains objects represented as voxel approximations using a raster resolu-

tion of r = 15. Here, ranges from 1 to 153= 3375 for each object o.

These values were optimized to the quality of the evaluation results.

9.2.2 Evaluation of the Space Partitioning Similarity Models

Evaluation of the Volume-Model. The reachability plots computed by OPTICS

using the volume model for both the CAR data set and the PLANE data set are depict-

ed in Figure 124a and 124b. Both plots show a minimum of structure indicating that

V
O

Figure 124: Reachability plots for the space partitioning similarity models.

a) volume model (CAR) b) volume model (PLANE)

c) solid-angle model (CAR) d) solid-angle model (PLANE)

e) eigen-value model (CAR) f) eigen-value model (PLANE)

A

B

C

A

B C

D E F

Experimental Evaluation 235

the volume model cannot satisfyingly represent the intuitive notion of similarity.

None of the groups described in Section 9.2.1 were distinguished by the clustering

algorithm. Although we get satisfying results for specific k-nn queries (cf. Figure

118a where the “bad model” was the volume model), the volume model is rather

ineffective if applied to the whole data set. This indicates the suitability of clustering

to evaluate the quality of similarity models.

Evaluation of the Solid-Angle Model. The reachability plots computed by OP-

TICS using the solid-angle model for both the CAR data set and the PLANE data set

are depicted in Figure 124c and 124d. On the CAR data set the solid-angle model

provides three clusters denoted as A, B, and C in Figure 125. We analyzed the result-

ing clusters by picking samples out of the set of objects grouped in each cluster. The

result of this evaluation is presented in Figure 125. As it can be seen, cluster A con-

sists mainly of long and thin objects. This might be still inside the intuitive notion of

similarity. The same observation can be made for the objects in cluster C. But the

objects that are grouped together in cluster B are no more intuitively similar. Further-

more, there are clusters of intuitively similar objects (e.g. doors) which are not de-

tected.

Evaluating the solid-angle model using the PLANE data set we made similar ob-

servations. The reachability plot computed by OPTICS (cf. Figure 124d) yields a

clustering with a large number of hierarchical classes. But the analysis of the objects

within each cluster displays that intuitively dissimilar objects are counted as similar

Figure 125: Objects found by the solid-angle model (cf. Figure 124c).

Class A

Class B

Class C

236 Effectiveness of Similarity Models

according to the model. A further observation is the following: objects, that are intu-

itively similar, are clustered in different groups.

To sum up, the solid-angle model does not generate all clusters for the CAR data

set, whereas for the PLANE data set it yields clusters with dissimilar parts. This

suggests the conclusion that the solid-angle model is also rather unsuitable as a sim-

ilarity model for our real-world test data sets.

Evaluation of the Eigen-Value Model. In contrast to the other two approaches,

the eigen-value model yields valuable results. The plots computed by OPTICS for the

eigen-value model are presented in Figure 124e and 124f.

On the CAR data set (cf. Figure 124e) OPTICS finds six clusters which are ana-

lyzed in Figure 126. Each class consists of intuitive similar objects. Similar to the

solid-angle model (cf. Figure 125), Class A represents a large number of small and

thin objects. Class B consists of fenders, class C represents doors, all objects in class

D are seats, class E consists of engine blocks and class F represents kinematic enve-

Figure 126: Objects found by the eigen-value model (cf. Figure 124e).

Class A

Class B

Class D

Class E

Class F

Class C

Experimental Evaluation 237

lopes of seats. These results show that based on the eigen-value model, OPTICS finds

a lot of meaningful classes in the CAR data set.

Analyzing the PLANE data set with OPTICS based on the eigen-value model

yields affirmative results as well. The reachability plot (cf. Figure 124f) depicts five

clusters containing similar results.

9.2.3 Evaluation of the Data Partitioning Similarity Models

The plots computed by OPTICS for the cover sequence model, the cover sequence

model using the minimum Euclidean distance under permutation and the vector set

model (cf. Figure 127, 128 and 129) look even better than the plots computed for the

eigen value model.

We will confirm this observation in the following, evaluating the effectiveness of

the different models. We analyzed the cover sequence model without permutations as

well as under full permutations, i.e. using the Euclidian distance under permutation.

Note that the Euclidian distance under permutation is too time consuming for a

straightforward calculation, since the runtime complexity increases with the faculty

of the number of chosen covers. Therefore, we used the possibility of deriving this

distance measure from the matching distance by employing the calculation via the

Kuhn-Munkres algorithm as described in Section 8.3.2. Remember that this is

achieved by using the squared Euclidian distance for comparing single feature vec-

tors and drawing the square root from the result. The resulting plots (cf. Figure 128)

look quite similar to the ones we derived from employing the minimal matching

distance based on the normal Euclidian distance, i.e. using the vector set model

(cf. Figure 129c and 129d). A careful investigation of the parts contained in the clus-

ters showed that the cover sequence model using the minimum Euclidian distance

under permutation and the vector set model lead to basically equivalent results. Due

to this observation and the better possibilities for speeding up similarity queries

(cf. Chapter 10), we concentrated on the evaluation of the vector set model. We first

compared the vector set model to the cover sequence model without permutations (cf.

Figure 127). Furthermore, we used different numbers of covers for the vector set

model (cf. Figure 129) in order to show the benefits of a relatively high number of

covers for complex CAD objects.

Comparing the vector set model with the cover sequence model on the CAR data

set (cf. Figure 127a, 129a and 129c) we conclude, that the vector set model is superi-

238 Effectiveness of Similarity Models

or. All plots look similar on the first glance. When evaluating the clusters (cf. Figure

130 and 131), it turned out that there are clusters which are detected by both ap-

proaches and thus appear in both plots, e.g. classes E in Figure 130 and 131. Never-

theless, we observed the following three shortcomings of the cover sequence model:

• Meaningful hierarchies of clusters detected by the vector set model, e.g. G1 and

G2 in Figure 129c which are visualized in Figure 131 are lost in the plot of the

cover sequence model (Class G in Figure 127a evaluated in Figure 130).

• Some clusters found by the vector set model are not found using the cover

sequence model, e.g. cluster F in Figure 131.

• Using the cover sequence model, objects that are not intuitively similar are clus-

tered together in one class (e.g. class X in Figure 127a which is evaluated in Fig-

ure 130). This is not the case when using the vector set model. A reason for the

Figure 127: Reachability plots for the cover sequence model with 7 covers.

a) CAR data set b) PLANE data set

X
A

C E

G

Figure 128: The minimum Euclidean distance under permutation.
Reachability plot for the cover sequence model with the minimum Euclidean distance

under permutation with 7 covers.

a) CAR data set b) PLANE data set

Experimental Evaluation 239

superior effectiveness of the vector set model compared to the cover sequence

model is the role of permutations of the covers. This is supported by the observa-

tions which are depicted in Table 9. In most of all distance calculations carried

out during an OPTICS run there was at least one permutation necessary to com-

pute the minimal matching distance.

The plots in Figure 129a and 129c compare the influence of the number of covers

used to generate the vector sets on the quality of the similarity model. An evaluation

of the clusters yields the observation, that 7 covers are necessary to model real-world

number of covers percentage of permutations

3 68.2%
5 95.1%
7 99.0%
9 99.4%

Table 9: Percentage of proper permutations for the vector set model.

Figure 129: Reachability plots for the vector set model.

a) CAR data set (3 covers) b) PLANE data set (3 covers)

d) PLANE data set (7 covers))c) CAR data set (7 covers)

Y G E C

A1

A2

A} B C D
E

F
G1

G2

} G

240 Effectiveness of Similarity Models

CAD objects accurately. Using only 3 covers we observed basically the same three

problems already noticed when applying the cover sequence model.

All the results of the evaluation on the CAR data set can also be observed evaluat-

ing the models on the PLANE data set. As a consequence, the evaluation shows that

the vector set model outperforms the other models with respect to effectiveness. Fur-

thermore, we see that we need about 7 covers to model similarity most accurately.

9.2.4 Summary

In this section, we shortly summarize the main results of our experimental evalu-

ation. Generally spoken, the data partitioning similarity models, i.e. the cover se-

quence model and the vector set model, reflect the intuitive similarity between CAD

objects better than the space partitioning similarity models, i.e. the volume model, the

solid-angle model and the eigen-value model.

In Section 9.2.2, we showed that the eigen-value model produces the most mean-

ingful results among the three introduced space partitioning similarity models. Using

the eigen-value model as basis for the OPTICS run results in clusters containing

intuitively similar objects. Nevertheless, the eigen value model suffers from the same

shortcomings as the data partitioning cover sequence model. Although both model

produce rather meaningful clusters, they fail to detect important cluster hierarchies.

In Section 9.2.2, we showed that only the vector set model detects these hierar-

chies, which are important for navigating through massive data sets (cf. Chapter 11).

To sum up, our new evaluation method based on clustering showed that the combina-

Figure 130: Objects found by the cover sequence model (cf. Figure 127a).

Class X

Class E

Class G

Experimental Evaluation 241

tion of the data partitioning cover sequence model and the new paradigm of using sets

of feature vectors for representing objects is a very powerful approach for the detec-

tion of similar CAD parts.

Figure 131: Objects found by the vector set model (cf. Figure 129c).

Class A1

Class A2

Class E

Class F

Class G1

Class G2

242 Effectiveness of Similarity Models

Chapter 10
Efficiency of Similarity Models

In this chapter, we present the efficiency evaluation of the five similarity models

introduced in Chapter 8. During this chapter, we do not divide the five models into

space- and data-partitioning models, but instead we use a different partitioning which

divides the similarity models into models using single feature vectors, i.e. the volume

model, the solid-angle model, the eigen-value model and the cover sequence model,

and models using sets of feature vectors, i.e. the vector set model. In order to acceler-

ate the query processing for the feature based similarity models, we can use any of the

presented index structures discussed in Section 7.3. We decided to use the NB-tree

which can easily be integrated into an ORDBMS (cf. Section 10.1). In order to accel-

erate the query processing for the vector set model, we introduce three different filter

steps, the centroid approach, the Euclidean norm approach and the closest pair ap-

proach (cf. Section 10.2). Furthermore, we present the Relational M-tree along with

suitable optimizations (cf. Section 10.3). Finally, we present the experimental effi-

ciency evaluation of our different models. This evaluation is based on two real world

test data sets for which we investigate both k-nn queries as well as ε−range queries

(cf. Section 10.4).

244 Efficiency of Similarity Models

10.1 The NB-Tree: A Filter for the Single Vector Models

The NB-tree proposed by Fonseca and Jorge [FJ 03] is a promising approach for

multi-step similarity search on top of an ORDBMS. As outlined in Section 7.3.2, the

NB-tree maps d-dimensional feature vectors to one-dimensional values by com-

puting their Euclidean norm , which can be organized by a common B+-tree. By

employing the Euclidean norm for dimension reduction, the NB-tree combines sev-

eral beneficial properties.

First, similar objects, i.e. objects with a small distance between their correspond-

ing feature vectors, also have similar norm values, i.e. the norm values are positioned

near to each other on the 1D-line. A schema of the NB-tree for the 2D-case is depict-

ed in Figure 132.

Second, as mentioned in Section 8.1.1, when performing similarity search in CAD

applications, all 48 permutations resulting from 90°-rotations and reflections of the

modelled CAD objects have to be taken into account. As these rotations and reflec-

tions are accomplished on a feature vector by merely resorting the feature values xi

of single dimensions within the vector and possibly switching the algebraic sign for

some of the values xi, the Euclidean norm of is invariant to rotation and reflection.

Thus, a single distance computation between the norms of a query object q and a

database object o is sufficient in the filter step of a similarity query.

Third, the NB-Tree fully exploits the advantages of the B+-tree. As an implemen-

tation of the B+-tree is already provided by all commercial ORDBMSs, no additional

implementation effort is needed. The underlying B+-tree organizes all data objects in

ascending order of the indexed values on the leaf level and links these leaves sequen-

tially. This ordering can easily be exploited for the efficient processing of ε−range

queries (cf. Section 7.4.1), k-nn queries (cf. Section 7.4.2) or ranking queries

(cf. Section 7.4.3). For instance, when computing similarity range queries, the Eu-

clidean norms of all candidate objects lies within a range from to (cf.

Figure 132). By means of a single range scan, we can determine the candidate set for

which the exact distance calculation has to be carried out (cf. Section 7.4.1). As

outlined in Section 7.4.2 and 7.4.3, we also need only 2 range scans for determining

the candidate set based on the NB-tree for k-nn queries and ranking queries.

x

x

x

x

q ε– q ε+

245

In our efficiency studies, we employed the NB-tree as a filter for similarity range

and k-nearest neighbor queries on single-vector represented CAD objects. As object

distance function do on the high-dimensional feature vectors, we used the Euclidean

distance (L2-distance). Additionally, the filter distance function df between the norm

values according to the Manhattan distance (L1-distance) was used. In order to get

correct search results, we have to show that df lower bounds do (cf. Definition 22),

i.e. the L1-distance between the Euclidean norms of and underestimates the Euclid-

ean distance between and for all .

Lemma 8. Let be two arbitrary d-dimensional feature vectors. Then the

difference between the L2-norms of and underestimates the L2-distance between

and :

Proof.:

Figure 132: An ε−range query on an NB-tree.

X

Y

Q

P1

P2

P3

ε

ε2

candidate set

result set

Norm(P1) Norm(P3)

B+-Tree

Norm(P2)

x y

x y x y IR
d∈,

x y IR
d∈,

x y x

y

x 2 y 2– x y– 2≤

x 2 x 0– 2= x y– 2 y 0– 2 x y– 2 y 2 x 2 y 2– x y– 2≤⇒+=+≤
tri. ineq.

y 2 y 0– 2= x y– 2 x 0– 2 x y– 2 x 2 y 2 x 2– x y– 2≤⇒+=+≤
tri. ineq.

Then x 2 y 2– max x 2 y 2– y 2 x 2–,()= x y– 2≤ �

246 Efficiency of Similarity Models

10.2 Filters for the Minimal Matching Distance

Though we discussed the time for a single distance calculation for sets of feature

vectors (cf. Section 8.3.2), the problem of efficiently processing similarity queries in

large databases is still unanswered. Since it is necessary here, to locate the objects

belonging to the result in comparably short time, the use of index structures that

avoid comparing a query object to the complete database is mandatory. For one-

vector-represented data objects there exists a wide variety of index structures that are

suitable for answering similarity queries efficiently like the TV-Tree [LJF 94], the

X-Tree [BKK 96] or the IQ-Tree [BBJ+ 00]. But unfortunately, those index struc-

tures cannot be used directly to retrieve vector-set-represented objects.

To accelerate similarity queries on vector-set-represented objects, the simplest ap-

proach is the use of more general access structures. Since the minimal matching

distance is a metric for the right choice of distance and weight function, the use of

index structures for metric objects like the M-Tree [CPZ 97] offers a good possibility

here. Another approach is the use of a multi-step strategy to process spatial queries.

First, a filter step is executed returning a superset of the objects qualifying for the

spatial predicate. A cascade of subsequent filter steps may further reduce the number

of candidates. The multi-step query process is finished by the refinement step, which

computes the exact minimal matching distance between two sets of feature vectors.

As the minimal matching distance on vector sets has a polynomial runtime complex-

ity of O(k3+k2d), where the cardinality of both sets is not greater than k and each

vector has a dimensionality of d, the employment of high-quality filter distance func-

tions for similarity search is very important. Especially in the case of partial similar-

ity search, we benefit from selective filters. For more details about efficient partial

similarity search on vector set data we refer the interested reader to [BKP 04a]. In this

thesis we concentrate on complete similarity search on vector set data.

In the following, we will introduce three different filters, the centroid approach

(cf. Section 10.2.1), the Euclidean norm approach (cf. Section 10.2.2) and the clos-

est pair approach (cf. Section 10.2.3). Furthermore, we shortly discuss how we can

beneficially combine them (cf. Section 10.2.4). Finally, we will close this section

with a short summary and a few remarks on efficient partial similarity search (cf.

Section 10.2.4).

Filters for the Minimal Matching Distance 247

10.2.1 The Centroid Approach

This filter step is based on the relation between a set of d-dimensional vectors and

its extended centroid.

Definition 44 (Extended Centroid).

Let and . Let be a vector set with and

. Then the extended centroid is defined as follows:

Note how the vector is used as a “dummy” vector to fill up vector sets having a

cardinality of less than k (cf. Section 8.3.2). Based on this definition, we can state the

following theorem.

Theorem 1 (The Centroid Filter).

Let and . Let , , be a weight

function for unmatched nodes. Furthermore, let , ,

 be two vector sets with , let , be their

extended centroids and let : be the minimal matching distance

using as a weight function defined on V. Then the following inequality holds:

Proof. Let be the enumeration of the indices of Y that groups the yi to xi accord-

ing to the minimum weight perfect matching. We assume w.l.o.g. .

V IR
d⊂ w IR

d
\V∈ X 2

V∈ X k≤
X x1 … x X, ,{ }= C

k w, X()

C
k w, X()

xi
i 1=

X

∑ k X–() w⋅+

k
--=

w

V IR
d⊂ w IR

d
\V∈ w

w
:V IR→ w

w
x() x w– 2=

X Y, 2
V∈ X x1 … x X, ,{ }=

Y y1 … y y, ,{ }= X Y, k≤ C
k w, X() C

k w, Y()
dmm

L2 w
w

,
2

V
2

V
IR→×

w
w

k C
k w, X() C

k w, Y()–
2

⋅ dmm

L2 w
w

,
X Y,()≤

π
X m n≤ Y= =

k C
k w, X() C

k w, Y()–
2

⋅

k

xi
i 1=

m

∑ k m–() w⋅+

k
--

yπ i()
i 1=

n

∑ k n–() w⋅+

k
--–

2
⋅=

xi
i 1=

m

∑ yπ i()
i 1=

n

∑– n m–() w⋅+

2

=

xi
i 1=

m

∑ yπ i()
i 1=

m

∑– yπ i()
i m 1+=

n

∑– w
i m 1+=

n

∑+

2

=

248 Efficiency of Similarity Models

The lemma proves that the Euclidian distance between the extended centroids

multiplied with the cardinality of the larger set is a lower bound (cf. Definition 22)

for the minimal matching distance under the named preconditions. Therefore, when

computing e.g. -range queries, we do not need to examine objects whose extended

centroids have a distance to the query object q that is larger than /k. A good choice

of for the cover sequence model is , since it has the shortest average distance

within the position and has no volume. Since there are no covers having no volume

in any data object, the conditions for the metric character of minimum matching

distances are satisfied.

A 2-dimensional example for the extended centroid filter is depicted in Figure 133,

where |X| = |Y| = 2 and .

tri. ineq.
xi yπ i()–()

i 1=

m

∑
2

w yπ i()–()
i m 1+=

n

∑
2

+≤

tri. ineq.
xi yπ i()– 2

i 1=

m

∑ yπ i() w– 2
i m 1+=

n

∑+≤

xi yπ i()– 2
i 1=

m

∑ w
w

yπ i()()
i m 1+=

n

∑+=

dmm

L2 w
w

,
X Y,()= �

ε
ε

w 0

Figure 133: 2-dimensional example for the centroid filter.

x2
x1

y1

y2b1

a1

c1

c1 c1

b1a1

2c1 2= C
k w, X() C

k w, Y()–
2

dmm

L2 w
w

,
X Y,()≤ a1 b1+=

Filters for the Minimal Matching Distance 249

10.2.2 The Euclidean Norm Approach

In this section, we will introduce the Euclidean norm vector, which generalizes the

NB-tree for vector set data. It is based on the Euclidean norms of all vector elements

of a vector set. The idea is as follows: For all vectors of a vector set X, , we

compute the Euclidean norms and organize these norm values in descending

order in a k-dimensional vector, where k is the maximal length of the cover sequence

approximating a CAD object. We call this filter Euclidean norm vector.

Definition 45 (Euclidean Norm Vector).

Let and let be a vector set with . Let be the

sequence of the L2-norm values of the vectors in X in descending order, i.e. for all

 holds . Then the Euclidean norm vector

 is defined as follows:

Note that if X has a cardinality smaller than k, dimensions to k of the

Euclidean norm vector are filled with 0 (cf. Figure 134).

x X k≤
x 2

V IR
d⊂ X 2

V∈ X k≤ x1 2 … x X 2, ,()

i j 1 … X, ,{ }∈< xi 2 xj 2≥ Vk X() =

v1 … vk, ,()t
IR

k∈

vi
xi 2

0



=
for i 1 … X , ,=

 for i X 1+ … k, ,=

X 1+

P1

P3

P2

N(P3) N(P1) N(P2)

















=

)3N(P

)1N(P

)2N(P

PV3)(

X

Y

P1

P3

P2

N(P3) N(P1) N(P2)
X

Y

























=

0

0

PV)3N(P

)1N(P

)2N(P

5)(

P1

P3

P2

N(P3) N(P1) N(P2)

















=

)3N(P

)1N(P

)2N(P

PV3)(

X

Y

P1

P3

P2

N(P3) N(P1) N(P2)
X

Y

























=

0

0

PV)3N(P

)1N(P

)2N(P

5)(

Figure 134: The Euclidean norm vector.
The Euclidean norm vector Vk(P) for a 2-dimensional point set P consisting of 3 points.

a) V3(P), b) V5(P)

a) b)

250 Efficiency of Similarity Models

We employ the Manhattan distance as a distance function between two Euclidean

norm vectors and . This distance measure fulfills the lower-bounding

property w.r.t. the minimal matching distance between the corresponding vec-

tor sets X and Y, if the Euclidean norm is used as weight function for unmatched

elements. Before we present the corresponding theorem (cf. Theorem 2), we will

introduce two additional lemmas which are required for its proof.

Lemma 9. Let . Let , be two

vector sets. We assume w.l.o.g. . Then the following inequality holds:

Proof. The proposition holds if and

this follows directly from Lemma 8. �

Lemma 10. Let and let be two vector sets. Their Euclidean

norm vectors are denoted by and . Let and

 be the sequences of the L2-norm values of the vectors in X and Y

in descending order. We assume w.l.o.g. . Let . Then the follow-

ing inequality holds:

Proof. (Sketch) Let , .

We first show that (*) holds.

Every given permutation can be constructed from adjacent permuta-

tions , such that and for each there is some

, such that , and :

. Given , we show that

. There are in total six cases, because of the ordering within

the Euclidean norm vectors:

Vk X() Vk Y()
dmm

L2 w,

V IRd⊂ X x1 … x X, ,{ }= Y y1 … y y, ,{ }= 2V∈
X Y k≤ ≤

xi 2 yi 2–

i 1=

X

∑ xi yi– 2

i 1=

X

∑≤

i 1 … X, ,{ }: xi 2 yi 2– xi yi– 2≤∈∀

V IR
d⊂ X Y 2

V∈,
Vk X() Vk Y() x1 2 … x X 2, ,()

y1 2 … y Y 2, ,()
X Y k≤ ≤ π Π Y()∈

Vk X() Vk Y()– 1 xi 2 yπ i() 2–

i 1=

X

∑ yπ i() 2

i X 1+=

Y

∑+≤

Vk X() x1 … xk, ,()t
= Vk Y() y1 … yk, ,()t

IR
k∈=

Vk X() Vk Y()– 1 xi yi–
i 1=

k

∑= xi yπ i()–
i 1=

k

∑≤

π Π Y()∈
π1 … πn, , π π= 1°…°πn πl

p 1 … X, ,{ }∈ πl p() p 1+= πl p 1+() p= q p p 1+,{ }∉∀
πl q() q= πl xp yπl p()– xp 1+ yπl p 1+()–+ ≥
xp yp– xp 1+ yp 1+–+

1. xp xp 1+ yπl p 1+() yπl p()≤ ≤ ≤ 4. yπl p 1+() xp xp 1+ yπl p()≤ ≤ ≤

2. xp yπl p 1+() xp 1+ yπl p()≤ ≤ ≤ 5. yπl p 1+() xp yπl p() xp 1+≤ ≤ ≤

3. xp yπl p 1+() yπl p() xp 1+≤ ≤ ≤ 6. yπl p 1+() yπl p() xp xp 1+≤ ≤ ≤

Filters for the Minimal Matching Distance 251

We exemplarily show the third case. The proofs of the other five cases are very

similar.

As for each application of a the sum on the right side of proposition (*) will

grow or remain equal, the sum will grow or remain equal when applying . Thus,

proposition (*) holds. Finally, the following holds:

We can now prove the theorem about the Euclidean norm filter.

Theorem 2 (The Euclidean Norm Filter).

Let and let be two vector sets. Their Euclidean norm vectors

are denoted by and . Furthermore, let , , be the

Euclidean norm and : be the minimal matching distance using w

as weight function. Then the following inequality holds:

Proof. We assume w.l.o.g. . Let and

be the sequences of the L2-norm values of the vectors in X and Y in descending order.

Let be the enumeration of Y that results from the minimum weight perfect

matching of X and Y. We combine the results from Lemma 9 and Lemma 10.

xp yπl p()– xp 1+ yπl p 1+()–+ yp 1+ xp– x+ p 1+ yp– = =

xp 1+ yp 1+–() yp 1+ yp–() yp xp–() yp 1+ yp–()+ + + =

xp 1+ yp 1+– xp yp– 2 yp 1+ yp–+ + ≥

xp 1+ yp 1+– xp yp–+

πl

π

Vk X() Vk Y()– 1 xi yπ i()–
i 1=

k

∑≤ =

xi 2 yπ i() 2–
i 1=

X

∑ 0 2 yπ i()– 2
i X 1+=

Y

∑ 0 2 0– 2
i Y 1+=

k

∑+ + =

xi 2 yπ i() 2–
i 1=

X

∑ yπ i() 2

i X 1+=

Y

∑+

(*)

�

V IR
d⊂ X Y 2

V∈,
Vk X() Vk Y() w:V IR→ w v() v 2=

dmm
L2 w,

2
V

2
V× IR→

Vk X() Vk Y()– 1 dmm
L2 w,

X Y,()≤

X Y k≤ ≤ x1 2 … x X 2, ,() y1 2 … y Y 2, ,()

π Π Y()∈

Vk X() Vk Y()– 1 xi 2 yπ i() 2–
i 1=

X

∑ yπ i() 2
i X 1+=

Y

∑+≤
Lemma 10

 xi yπ i()– 2
i 1=

X

∑ yπ i() 2
i X 1+=

Y

∑+≤
Lemma 9

 dmm
L2 w,

X Y,()= �

252 Efficiency of Similarity Models

A 2-dimensional example for the Euclidean norm filter is depicted in Figure 135,

where |X| = |Y| = 2 and a2’+b2’ = = a2+b2.

10.2.3 The Closest Pair Approach

The closest pair distance between two vector sets X and Y can be used as a filter

distance for the minimal matching distance and is defined as follows.

Definition 46 (The Closest Pair Distance).

Let and let . Let , be

two vector sets. We assume w.l.o.g. . Let be a multiset

with for . Then the closest pair distance :

 is defined as follows:

Let us note that the closest pair filter works directly on the set of vectors, i.e. on the

original data, and not on approximated data. The filter distance can be computed by

scanning the matrix of distance values between each pair of vectors in X and Y for the

closest pairs. The overall runtime complexity is O(k2d). We will now show that the

closest pair distance between two vector sets is a lower bound for the minimal match-

ing distance, if the L2-distance is used as a weight function.

Figure 135: 2-dimensional example for the Euclidean norm filter.

x1

y1

y2b2

a2

x2

a2’
b2’

Vk X() Vk Y()– 1 dmm
L2 w,

X Y,()≤

dmm
L2 w,

V IR
d⊂ w IR

d
\V∈ X x1 … x X, ,{ }= Y y1 … y y, ,{ }= 2

V∈
X Y k≤ ≤ X’ x1 … x Y, ,{ }=

xi w= i X 1+ … Y, ,{ }∈ dcp
L2 X Y,()

2
V

2
V× IR→

dcp
L2 X Y,() max min xi yj– 2()

i 1=

Y

∑ min xj yi– 2()
i 1=

Y

∑,
 
 
 

=
j 1 … Y, ,∈ j 1 … Y, ,∈

Filters for the Minimal Matching Distance 253

Theorem 3 (The Closest Pair Filter).

Let and let . Let ,

be two vector sets. We assume w.l.o.g. . Furthermore, let ,

 be a weight function. Then the following inequality holds:

Proof. Let be the enumeration of Y that results from the minimum

weight perfect matching of X and Y, i.e.

The proof consists of two cases.

(1) .

The inequality holds, if it holds for every pair of i-th addends. This is obviously the

case, as we always pick the which minimizes .

(2) .

Again, the inequality holds, if it holds for every pair of i-th addends. This is obviously

the case, as we always pick the which minimizes (note that

if).�

A 2-dimensional example for the closest pair filter is depicted in Figure 136, where

|X| = |Y| = 3 and . During the

filter distance calculation, x3 is matched to both y1 and y3, as , whereas the mini-

mal matching distance is based on one-to-one matchings.

V IRd⊂ w IRd\V∈ X x1 … x X, ,{ }= Y y1 … y y, ,{ }= 2V∈

X Y k≤ ≤ w:V IR→

w v() v w– 2=

dcp
L2 X Y,() dmm

L2 w,
X Y,()≤

π Π Y()∈

dmm
L2 w,

X Y,() xi yπ i()– 2

i 1=

X

∑ w yπ i()– 2

i X 1+=

Y

∑+=

dcp
L2 X Y,() min xi yj– 2()

i 1=

Y

∑=
j 1 … Y, ,∈

 min xi yj– 2()
i 1=

Y

∑ min xi yj– 2() min w yj– 2()
i X 1+=

Y

∑+
i 1=

X

∑= ≤
j 1 … Y, ,∈ j 1 … Y, ,∈ j 1 … Y, ,∈

xi yπ i()– 2 w yπ i()– 2
i X 1+=

Y

∑+
i 1=

X

∑

yj Y∈ xi yj– 2

dcp
L2 X Y,() min xj yi– 2()

i 1=

Y

∑=
j 1 … Y, ,∈

 min xj yi– 2()
i 1=

Y

∑ min xj yπ i()– 2()
i 1=

Y

∑ ≤=
j 1 … Y, ,∈ j 1 … Y, ,∈

xi yπ i()– 2 w yπ i()– 2
i X 1+=

Y

∑+
i 1=

X

∑

xj X’∈ xj yπ i()– 2 w X’∈

X Y<

a’3 b3 c3+ + dcp
L2 X Y,()= dmm

L2 w,
X Y,()≤ a3 b3 c3+ +=

a’ a≤

254 Efficiency of Similarity Models

10.2.4 Combined Filters

The centroid and the Euclidean norm vector filtering techniques can profitably be

combined. The exact distance computation is only performed if the results of both

filter distance computations on the centroids and the Euclidean norm vectors are

small enough. This way, a good deal of the information in the vector sets is incorpo-

rated in the filter distance computation. The centroid filter maps each dimension to a

single value, resulting in a d-dimensional vector. On the other hand, the Euclidean

norm filter maps each vector to a single value resulting in a k-dimensional vector.

Thus, the combined filter contains aggregated information over both the dimensions

and the vectors and is therefore suitable for a lot of different data distributions. The

time complexity for a combined filter distance evaluation is O(d+k).

10.2.5 Conclusion

If we compute the minimal matching distance between two vector sets, where the

cardinality of both sets is not greater than k and each vector has a dimensionality of

d, we can use the method proposed by Kuhn [Kuh 55] and Munkres [Mun 57] for an

efficient computation of the minimal matching distance which has a time complexity

of O(k3+k2d). Furthermore, we showed in [BKP 04a] that for partial similarity we

can adapt this algorithm resulting in a runtime complexity of ,

where reflects the degree of the desired partial similarity, i.e. the actu-

al number of matched points.

Figure 136: 2-dimensional example for the closest pair filter.

x2
x1

y1

y2b3

a3

b3a3

x3c3

c3

a3’

y3

a3’ b3 c3

O
k

p 
  pk

2
k

2
d+ 

 

p 1 … k, ,{ }∈

The Optimized Relational M-Tree 255

As the computation of the minimal matching distance is rather time-consuming,

we introduced three different filters, namely the centroid filter, the Euclidean norm

filter and the closest pair filter. The centroid approach computes the mean value of all

vectors for each dimension individually, resulting in a d-dimensional feature vector.

The Euclidean norm approach computes the Euclidean norm for each feature vector,

resulting in a k-dimensional feature vector. In contrast to the other two approaches,

which derive a single feature vector for approximating a vector set, the closest pair

filter works directly on the vector sets. The resulting distance measure lower bounds

the minimal matching distance and can be computed more efficiently than the exact

minimal matching distance. The runtime complexities for partial and complete simi-

larity distance calculations based on the three different filters are summed up in the

following table, where we assume a partial similarity parameter and

point sets containing k d-dimensional vectors [BKP 04a].

10.3 The Optimized Relational M-Tree

In this section, we introduce the Relational M-tree (RM-tree) along with suitable

optimizations for efficiently carrying out similarity range queries. We concentrate on

range-queries for two reasons. First, range queries form the foundation of densi-

ty-based clustering [EKSX 96]. Second, we can efficiently carry out k-nn queries

based on range-queries [LS 02].

This section is organized as follows. After recalling, in Section 10.3.1, the M-tree

as introduced in [CPZ 97], we present the RM-tree in Section 10.3.2. In Section

10.3.3, we show how we can adapt the concept of “positive pruning” (cf.

Section 5.3) to the RM-tree. In Section 10.3.4, we combine the two worlds of direct

metric index structures and multi-step query processing based on filtering. Whereas

the filtering part of the M-tree is responsible for a good query response behavior for

high selective queries, the concept of positive pruning accelerates low selective que-

ries enormously which often occur in the area of density-based clustering. Further-

more, we show in this section that filters can be used for improving the query re-

centroid filter Euclidean norm filter closest pair filter

complete similarity O(d) O(k) O(k2d)

partial similarity not applicable O(k log p) O(k2d)

Table 10: Filters for Vector Sets

p 1 … k, ,{ }∈

256 Efficiency of Similarity Models

sponse time of an M-tree and its creation. In Section 10.3.5, we show how caching

can be applied to accelerate the processing of similarity range queries. The experi-

mental evaluation regarding the optimized RM-tree is deferred to Section 10.4.3,

where we compare our new metric indexing approach for complex objects with the

different filters for vector set represented objects. Let us note that the presented opti-

mizations for the M-tree can also be used for accelerating other metric index struc-

ture, e.g. the Slim-Tree [TTSF 00].

10.3.1 The M-tree

The M-tree (metric tree) [CPZ 97] is a balanced, paged and dynamic index struc-

ture that partitions data objects not by means of their absolute positions in the

multi-dimensional feature space, but on the basis of the relative distances of the ob-

jects to each other. The only prerequisite is that the distance function between the

indexed objects complies to the three requirements of a metric. Thus, the M-tree’s

domain is not confined to vector spaces but is much more general. For instance, the

M-tree can be used to manage CAD objects represented by vector sets.

Tree-Structure. In the following we describe an M-tree and assume that the dis-

tance d between two objects forms a metric. The maximum size of all nodes of the

M-tree is fixed. A leaf node entry contains objects od (or at least references to it), a

suitable object representation for distance computations, and the distance (od, P(od))

of the object od to its parent object P(od). Inner nodes contain so-called routing ob-

jects, which correspond to database objects to which a routing role was assigned by

a promotion algorithm. This promotion algorithm is executed whenever a node has to

be split. In addition to the leaf node entries, routing objects or also store their cover-

ing radius r(or) and a pointer ptr(T(or)) to the root node of their subtree, the so-called

covering tree of or . For all objects od in this covering tree, the condition holds that the

distance d(or, od) is smaller or equal to the covering radius r(or). This property induc-

es a hierarchical buildup of an M-tree, with the covering radius of a parent object

always being greater or equal than all covering radii of their children and the root

object of an M-tree storing the maximum of all covering radii.

In the following, we will shortly sketch the algorithms for similarity range queries

as well as the routines for building up the M-tree as proposed in [CPZ 97]. For more

details about the corresponding algorithms, we refer the interested reader to

[CPZ 97].

The Optimized Relational M-Tree 257

Similarity Range Queries. Given a query object q and a similarity range param-

eter ε, a similarity range query starts at the root node of an M-tree and recursively

traverses the whole tree down to the leaf level, thereby pruning all subtrees which

definitely do not contribute to the result set. A description of the algorithm simRange

and the recursive procedure rangeSearch used to traverse the M-tree is given in

Figure 137. In the following sections, we will refer to this algorithm and show how

the presented optimizations can be included into the procedure RangeSearch.

The subtree of a routing object or can be pruned if the distance d(or , q) between the

routing object or and the query object q, is greater than the covering radii r(or) plus ε,

i.e. if the following condition holds (cf. Line 8 of the algorithm of Figure 137):

1 FUNCTION SimRange (q QueryObject, ε Range) RETURN ResultSet;
2 BEGIN
3 result := NIL;
4 rangeSearch (root, q, ε);
5 RETURN result;
6 END;

1 PROCEDURE RangeSearch (N Node, q QueryObject, ε Range);
2 BEGIN
3 op := parent object of node N;
4 IF (N is not a leaf) THEN
5 FOR EACH or in N DO
6 IF () THEN
7 compute ;
8 IF () THEN
9 RangeSearch (T(or), q, ε);
10 END IF;
11 END IF;
12 END FOR;
13 ELSE
14 FOR EACH od in N DO
15 IF () THEN
16 compute ;
17 IF () THEN
18 add od to result;
19 END IF;
20 END IF;
21 END FOR;
22 END IF;
23 END;

Figure 137: Similarity range search on M-trees.

d op q,() d op or,()– r or() ε+≤
d or q,()

d or q,() r or() ε+≤

d op q,() d op od,()– ε≤
d od q,()

d od q,() ε≤

d or q,() r or() ε+>

258 Efficiency of Similarity Models

Furthermore, the subtree of a routing object or can also be pruned if the absolute

value of the distance of the routing object’s parent object op to the query object q,

d(op, q), minus the distance between or and op is greater than the covering radius r(or)

plus ε (cf. Line 6 of the algorithm of Figure 137):

A proof based on the triangle inequality is presented in [CPZ 97]. Thus, as the

distance between op and q has already been computed when accessing a node N,

some subtrees can be pruned without further distance computations.

Insert. Similar to a range query, the insert algorithm recursively descends the

M-tree to locate the “most suitable” leaf node for storing the new object on. At each

level of the tree we descend along a subtree T(or), for which no enlargement of the

covering radius is needed, i.e. d(or , on) ≤ r(or). If multiple subtrees with this property

exist, the one for which object on is closest to or is chosen. If no routing object exists

for which d(or, on) ≤ r(or) holds, the increase of the covering radius, i.e.

d(or, on) - r(or), is minimized.

Split. If an object is inserted into an already full leaf node, a split is triggered. As

any other dynamic balanced tree, an M-tree grows in a bottom-up way. The overflow

of a node N is managed by allocating a new node N’ at the same level of N, partition-

ing the entries among these two nodes, and promoting to the parent node Np two

routing objects to reference the two nodes N and N’ while preserving the semantics

of the covering radii. In [CPZ 97] many different split strategies, i.e. combinations of

promoting and partitioning algorithms, were introduced. In this thesis, we concen-

trate on the mM_Rad approach which is the most promising promoting strategy

[CPZ 97]. As partitioning strategy, we use the generalized hyperplane approach.

mM_Rad. This promoting algorithm considers all possible pairs (o1, o2) of objects

belonging to the set of entries O of node N. After partitioning O, the pair of objects

for which the maximum of the two cover radii becomes minimal is promoted, i.e.

 are promoted iff .

Generalized Hyperplane. Given a set of entries O and two routing objects o1 and

o2 , each object is assigned to the nearest routing object. Formally, if

 then oj is assigned to o1 else to o2.

d op q,() d op or,()– r or() ε+>

o1 o2, O∈ o∀ i oj, O: max r o1() r o2(),() max r oi() r oj(),()≤∈

oj O∈

d oj o1,() d oj o2,()<

The Optimized Relational M-Tree 259

10.3.2 The Relational M-tree

In this section, we introduce the Relational M-tree (RM-tree). In Figure 138,

a possible relational mapping of an M-tree directory onto a relation (page_id,

page_lev, son_id, son_ data) is depicted. This mapping is similar to the mapping of

the Relational R-tree as presented in Section 5.3. The main difference is that we use

routing objects (o, r) consisting of an object o and a covering radius r instead of

MBRs to describe a subtree. For instance, object o3 together with a radius r3 covers

the subtree indicated by the shaded circle in Figure 138. For clarity, we omitted the

distance of an object to its parent object.

Similarity Range Queries. Similarity range queries on the M-trees can be per-

formed analogously to intersection queries on the R-trees (cf. Figure 139). The inter-

Figure 138: Relational mapping of an M-tree directory.
a) Hierarchical directory, b) Index table

objects_mtree

page id page_lev son_id
son_data
(RANGE)

ROOT 3 1 RANGE (o1, r1)

1 2 2 RANGE (o2, r2)

1 2 3 RANGE (o3, r3)

3 1 4 RANGE (o4, r4)

3 1 5 RANGE (o5, r5)

5 0 A RANGE (A, 0)

5 0 B RANGE (B, 0)

… … … …

1

2

3

…A B

a) b)

o1

r1

o2

…

r2

o3

o3

r3
o4

r4

o5

r5

3

4

…

5

complex objects

r3

Figure 139: SQL range query.
SQL range query around q for a radius eps on a Relational M-tree (Oracle syntax).

SELECT son_id AS id FROM objects_mtree
WHERE page_lev = 0 AND // select data object

intersect (son_data, RANGE (:q, :eps))
START WITH page_id = ROOT
CONNECT BY

intersect (PRIOR son_data, RANGE (:q, :eps)) AND
PRIOR son_id = page_id // declarative tree traversal

260 Efficiency of Similarity Models

sect predicate detects whether two ranges intersect each other. If the range around the

query object q with radius eps, does not intersect the range around the actual routing

object oi with radius ri, the corresponding subtree can be pruned.

10.3.3 The Scanning M-Tree

In this section, we adapt our scanning approach based on the cost model for data-

partitioning hierarchical index structures (cf. Section 5.3) to the RM-tree. We start

with discussing similarity range queries which can be handled similar to intersection

queries on the Relational R-tree (cf. Section 5.3) before we look at k-nn queries.

Similar to Section 5.3, we use the following notations:

Range Queries. As already outlined in Section 5.3, an accurate selectivity estima-

tion is a very difficult task. This is especially true for metric data spaces. If our metric

data space is IR2 and we assume equal data distribution, we can estimate the selectiv-

ity similar to the selectivity estimation of collision queries on R-trees

(cf. Figure 140). Unfortunately, such a straightforward computation is not possible

for high dimensions or other kinds of metric data spaces. Other more general ap-

proaches for selectivity estimation are based on sampling and statistics.

If we use statistics, we can add a quantile vector to each routing object reflecting

the distances of the elements contained in the subtree to the routing object or . Then,

the selectivity σ (q, or) can be computed similar to the approach presented in

Section 4.3.2.

We propose to use sampling to estimate the selectivity. As samples we recommend

to use the routing objects from level L(or) - 1 belonging to the subtree of our directory

node or . These objects are arbitrarily distributed and represent the data stored in the

symbol meaning

m average number of index entries per directory node

L(or) level of the current directory node or

σ(q,or)

value between 0 and 1 which denotes the percentage of
accessed tuples in the subtree belonging to node or, if the

index structure is used as usual for the query processing
of a query q

kCPU CPU cost for testing one index directory entry

kI/O I/O cost for reading one page from the disk

The Optimized Relational M-Tree 261

subtree belonging to directory node or very well. Note that all the sampling objects

have the same page_id and are stored in one consecutive range on the disk

(cf. Section 10.3.2). Furthermore, we suggest to memorize the performed distance

computations as we need them later on anyway.

In contrast to the Relational R-tree, the CPU-cost in metric data spaces are often

very high, e.g. distance computations on graphs [KS 03], trees [KKSS 04] or point

sets [KBK+ 03]. If we only take these high CPU-cost into consideration and assume

uniformly filled nodes, we perform an extended index range scan for a query q on a

directory node or if

If we assume rather high values of m and a directory level L(or) higher than 2, we

scan if the following simplified condition is fulfilled

For high values of m, the left part of the above formula is very close to one. There-

fore, we need almost a complete covering of the routing object or by the query object

q in order to perform the extended range scan.

 q

ε
r

or
(routing object)

(query)
d

β 2 acos
ε2

d
2

r
2

–+()
2εd

-------------------------------- 
 ⋅=

α 2 acos
r

2
d

2 ε2
–+()

2rd
-------------------------------- 

 ⋅=

σ q o,() 1

2Πr
2

------------ ε2β ε2
sinβ r

2α r
2
sinα–+–()=

+

+

α

β

Figure 140: The overlap-factor σ for range queries on the Relational M-tree.
(Simplified determination of σ)

 m
L or()

m 1 σ q or,()+ m
i

i 1=

L or() 1–

∑⋅
 
 
 
 

⋅<

1 m
i L or() 1–()–

i 1=

L or() 1–

∑
 
 
 
 

⁄ σ q or,()<

262 Efficiency of Similarity Models

If we also want to include the I/O cost, we can do this analogously to Section 5.3.

Taking the I/O cost into consideration would trigger an extended range scan for

smaller covering-factors, i.e. the index directory would not be used so extensively.

Let us note that the decision whether to scan not only depends on an accurate estima-

tion of the covering-factor σ but also on the ratio of kCPU and kI/O, i.e. on the used

distance functions and the characteristics of the used computer.

A special case occurs, if the directory node is completely covered by the query

range. In this case we can report all objects on the leaf level of the M-tree without

performing any cost intensive distance computations (cf. Figure 141).

Lemma 11. Let be a query object and a query range. Furthermore, let

or be a routing object with a covering radius r(or) and a subtree T(or). Then the

following statement holds:

Proof. The following inequalities hold for all due to the triangle inequality

and due to our assumption that holds:

. �

In the case of “negative pruning”, we skip the recursive tree traversal of a subtree

T(or), if the query range does not intersect the covering radius r(or). In the case of

“positive pruning” we skip the recursive tree traversal if the query range completely

covers the covering radius r(or). In this case we can report all objects stored in the

corresponding leaf nodes of this subtree without performing any further distance

Figure 141: Positive Pruning for the M-tree.

+
+
qor

d(or, q) ε

r(or)

q O∈ ε IR0
+∈

d or q,() r or()+ ε≤ o T or(): d o q,() ε≤∈∀⇒

o T or()∈
d or q,() r or()+ ε≤

d o q,() d o or,() d or q,() r or() d or q,() ε≤+≤+≤

The Optimized Relational M-Tree 263

computations. Figure 142 shows how this concept can be integrated into the original

method RangeSearch depicted in Figure 137.

Note that this approach is very beneficial for accelerating density-based clustering

on complex objects [KKPS 04]. DBSCAN, for instance, only needs the information

whether an object is contained in , but not the

actual distance of this object to the query object q. For a detailed discussion, we refer

the interested reader to [KKPS 04].

10.3.4 The Filtering M-tree

So far the concepts of multi-step query processing and metric index structure have

only been used separately. We claim that those concepts can easily be combined and

that through the combination a significant speed-up compared to both separate ap-

proaches can be achieved. In the following, we will demonstrate the ideas for range

queries.

The M-tree reduces the number of distance calculations by partitioning the data

space even if no filters are available. Unfortunately, the M-tree may suffer from the

navigational cost related to the distance computations during the recursive tree tra-

versal. On the other hand, the filtering approach heavily depends on the quality of the

filters.

When combining both approaches these two drawbacks are reduced. We use the

filter distances to optimize the required number of exact object distance calculations

needed to traverse the M-tree. Thereby, we do not save any I/O cost compared to the

original M-tree, as the same nodes are traversed, but we save a lot of costly distance

calculations necessary for the traversal. The filtering M-tree, stores the objects along

with their corresponding filter values within the M-tree. A similarity query based on

the filtering M-tree always computes the filter distance values prior to the exact dis-

1 PROCEDURE RangeSearch (N Node, q QueryObject, ε Range);
.
.
.

7 compute ;
7a IF THEN
7b report all objects in T(or);
8 ELSE IF () THEN

.

.

.

Figure 142: Positive Pruning on M-trees.

d or q,()
d or q,() r or()+ ε≤

d or q,() r or() ε+≤

simrange q ε,() o DB∈ | d o q,() ε≤{ }=

264 Efficiency of Similarity Models

tance computations. If a filter distance value is already a sufficient criterion to prune

branches of the M-tree, we can spare the exact distance computation. If we have

several filters, the filter distance computation always returns the maximum value of

all filters.

The pruning quality of the filtering M-tree benefits from both the quality of the

filters and the clustering properties of the index structure. The filter distance can be

used in addition to the distance of the routing object’s parent object to the query

object. In the following, we will show that the number of distance calculations used

for range queries as well as for the creation of an M-tree can be optimized by using

lower-bounding filters (cf. Definition 22).

Similarity Range Queries. Similarity range queries are used to retrieve all ob-

jects from a database which are within a certain similarity range from the query

object (cf. Definition 19). By computing the filter distance prior to the exact distance

we can save on many distance computation. Based on the following lemma, we can

prune many subtrees without computing the exact distances between a query object

q and a routing object or (cf. Figure 143).

Lemma 12. Let O be a set of objects and be two distance

functions, for which df lower bounds do, i.e.

holds. Let , . For each routing object in an M-tree with cover-

ing radius and subtree the following statement holds:

Figure 143: Similarity range query based on the filtering M-tree.

+

+
q

or

do(or, q)

+o

do(o, q)
do(or, o)

df (or, q)

r(or)
ε

r(or)ε
=> pruning of T(or) without computing do(or, q)

do df: O O× IR0
+→,

o1 o2 O∈,∀ : df o1 o2,() do o1 o2,()≤
q O∈ ε IR0

+∈ or O∈
r or() IR0

+∈ T or()

o T or()∈∀ : df q or,() r or() ε+>() do q o,() ε>⇒

The Optimized Relational M-Tree 265

Proof. As holds, the following statement is

true:

Based on the triangle inequality and our assumption that holds,

we can prove the above lemma as follows:

Let us note that a similar optimization can be applied, to the objects stored in the

leaf level with the assumption that their “covering radius” is 0. Figure 144 shows how

this concept can be integrated into the original method RangeSearch depicted in

Figure 137.

Building of an M-tree. Filters can also beneficially be used for accelerating the

creation of an M-tree, i.e. the insert routine (cf. Figure145) and the split routine (cf.

Figure 146).

Insert. Figure 145 depicts the routine FindSubTree which decides which tree to

follow during the recursive tree-traversal of the insert operation. The main idea is that

we sort all objects according to the filter distance and then walk through this sorted

list. Thereby, we first test those candidates which might not lead to an increase in the

covering radius. If we detect a routing object for which no increase is necessary, we

postpone the reporting of this object. We first investigate all routing objects which are

o1 o2 O∈,∀ : df o1 o2,() do o1 o2,()≤

 df q or,() r or() ε+> do q or,() r or() ε.+>⇒

 do o or,() r or()≤

df q or,() r or() ε d⇒ o q or,() r or() ε do q or,() r or()– ε>⇒+>+>

 do q or,() do o or,()– ε do q o,() ε>⇒>⇒ �

1 PROCEDURE RangeSearch (N Node, q QueryObject, ε Range);
.
.
.

6 IF () THEN
6a compute filter distance ;
6b IF () THEN
7 compute ;
8 IF () THEN

.

.

.

15 IF () THEN
15a compute filter distance ;
15b IF () THEN
16 compute ;
17 IF () THEN

.

.

.

Figure 144: Filtering M-tree.

d op q,() d op or,()– r or() ε+≤
df or q,()

df or q,() r or() ε+≤
d or q,()

d or q,() r or() ε+≤

d op q,() d op od,()– ε≤
df od q,()

df od q,() ε≤
d od q,()

d od q,() ε≤

266 Efficiency of Similarity Models

closer to the given query object and possibly also do not have to increase their cover-

ing radius. If several of those routing objects exist, we take the one closest to the

inserted object. If no such routing object exists, we walk through the list until we have

found the routing object which leads to a minimal increase of its covering radius. Let

us note that this idea is closely related to the optimum multi-step k-nearest neighbor

search algorithm [SK 98] presented by Seidl and Kriegel.

FUNCTION FindSubTree (oR RoutingObject, o Object) RETURN RoutingObject;
BEGIN

ActResult := (nil, false, ∞); //(object, InCovRad, distance)
FOR EACH or

in T(oR) DO
compute df (or , o);

END FOR;
C1 = {or| df (or , o) - r(or)< 0};
C2 = T(oR) \ C1;
Sort all or ∈ C1 and o’r ∈ C2 ascending according to df (or , o),
resulting in a SortedList = <or1, or2, ..., or|C1|> ° <o’r1, o’r2, ..., o’r|C2|>;

FOR EACH or in SortedList DO
IF ActResult.InCovRad AND or ∈C2 THEN

RETURN ActResult.object;
END IF;
IF df (or , o) > ActResult.distance THEN

IF ActResult.InCovRad THEN
RETURN ActResult.object;

ELSE
compute do(o, or);
IF (do(o, or) - r(or)) < 0 THEN

ActResult := (or, true, do(o, or));
ELSE IF (do(o, or) - r(or)) < (ActResult.distance - r(ActResult.object)) THEN

ActResult := (or, false, do(o, or));
END IF;

END IF;
ELSE

compute do(o, or);
IF ActResult.InCovRad THEN

IF (do(o, or)- r(or)< 0) AND (do(o, or) <ActResult.distance) THEN
ActResult := (or, true, do(o, or));

END IF;
ELSE

IF (do(o, or)- r(or)) < 0 THEN
ActResult := (or, true, do(o, or));

ELSE IF (do(o, or) - r(or)) < (ActResult.distance- r(ActResult.object)) THEN
ActResult := (or, false, do(o, or));

END IF;
END IF;

END IF;
END FOR;

RETURN ActResult.object;
END;

Figure 145: FindSubTree-function for an M-tree.

The Optimized Relational M-Tree 267

Split. If a node overflow occurs due to an insertion, the node has to be split ade-

quately. The “ideal” split strategy should promote two new routing objects, such that

for the thereby obtained regions volume and overlap are minimized.

In Figure 146, it is shown how the filter distances can be used to speed-up the split

of an M-tree node, i.e. the mM_Rad promoting strategy and the generalized hyper-

plane partitioning strategy. The main idea is that we generate a priority queue con-

FUNCTION NodeSplit (N Node) RETURN PromotingObjects;
BEGIN

ActResult := ((nil, nil),∞); // ((PromotingObject1, PromotingObject2), mMRad)
FOR EACH object pair (oi, oj) of node N DO

compute df (oi, oj);
END FOR;
Compute for each of these pairs (oi, oj) the mMrad value mMradFilter based on the filters;
Sort the resulting mMrad_filter values ascending,
resulting in a SortedList = <(oa1

, ob1
, mMradFilter1), .., (oan

, obn
, mMradFiltern)>;

FOR EACH object oi of node N DO
IF mMradFilteri > ActResult.mMRad THEN

RETURN ActResult;
END IF;
mMRadi= 0;
Sort all objects ok of node N descending according to min (df (ok,oai

), df (ok,obi
));

FOR EACH object ok of this sorted list DO
IF df (ok,oai

) < df (ok,obi
) THEN

compute do(ok,oai
);

IF do(ok,oai
) < df (ok,obi

) THEN
mMRadi := max (mMRadi ,do(ok,oai

));
ELSE

compute do(ok,obi
);

mMRadi := max (mMRadi ,min(do(ok,oai
),do(ok,obi

)));
END IF;

ELSE
compute do(ok,obi

);
IF do(ok,obi

) < df (ok,oai
) THEN

mMRadi := max (mMRadi ,do(ok,obi
));

ELSE
compute do(ok,oai

);
mMRadi := max (mMRadi ,min(do(ok,oai

),do(ok,obi
)));

END IF;
END IF;
IF mMRadi > ActResult.mMrad THEN

BREAK;
END IF;

END FOR;
IF mMRadi < ActResult.mMrad THEN

ActResult := ((oai
, obi

), mMRadi);
END IF;

END FOR;
RETURN ActResult;

END;

Figure 146: NodeSplit-function for an M-tree.

268 Efficiency of Similarity Models

taining pairs of promoting objects based on the filter distances. We walk through this

list and if we detect that the mM_Rad value based on the filters is higher than the best

already found mM_Rad value based on exact distance computations, we can stop.

Thus we do not necessarily have to test all O(n2) pairs of promoting objects. Again

this approach is similar to [SK 98]. Furthermore, if we test two actual promoting

objects op1
 and op2

, we have to assign an object o either to op1
 or to op2

. This test can

be accelerated by computing first the actual distance between o and the promoting

object for which the filter distance is smaller. If the resulting exact distance is still

smaller than the filter distance to the other promoting object, we can save on the

second exact distance computation. Note, that we can easily alter the NodeSplit func-

tion in such a way that it returns the two resulting nodes instead of the promoting

objects. For clarity, we only return the promoting objects.

10.3.5 The Caching M-tree

In this section, we present a further technique which helps to avoid costly distance

computations for index construction and query processing.

Cache Based Construction. If we have to cope with distance computations which

are more expensive than accessing a row on secondary storage, we suggest to use an

additional table where we can save the already processed distance computations.

This approach could easily be integrated into an ORDBMS as outlined in Chapter 3.

Especially when splitting the same overflowing node repeatedly, accessing stored

distance computation values can speed up the insertion process, since otherwise the

same distances are computed several times.

Cache Based Range Queries. Efficient query processing of range queries also

benefits from the idea of caching distance calculations. During the navigation

through the M-tree directory, the same distance computations may have to be carried

out several times. Although each object o is stored only once on the leaf level of the

M-tree, it might be used several times as a routing object. Furthermore, we often have

the situation that distance calculations carried out on the directory level have to be

repeated at the leaf level.

As shown in Figure 137, a natural way to implement range queries is by means of

recursion resulting in a depth-first search. We suggest to keep all distance computa-

tions in main memory which have been carried out on the way from the root to the

actual node. After leaving the node, i.e. when exiting the recursive function, we de-

Experimental Evaluation 269

lete all distance computations carried out at this node. This limits the actual main

memory footprint to O() where h denotes the maximum height of a tree and b

denotes the maximum number of stored elements in a node. Even in multi-user envi-

ronments this rather small worst-case main memory footprint is tolerable. The neces-

sary adaptations of the rangeSearch algorithm are drafted in Figure 147.

For more details and optimizations suitable for the RM-tree, we refer the interest-

ed reader to [Sch 04].

10.4 Experimental Evaluation

In this section, we present the results of our extensive efficiency evaluation for

different similarity models, different data sets and different query types. We pro-

cessed similarity range queries as well as k-nearest neighbor queries for all five mod-

els described in Chapter 8 on our two different data sets CAR and PLANE (cf.

Section 9.2.1) using ten representative database objects as query objects. For k-near-

est neighbor queries we used the algorithm of Seidl and Kriegel (cf. Section 7.5.4)

 h b⋅

1 PROCEDURE RangeSearch (N Node, q QueryObject, ε Range);
.
.
.

7 DistCache ;
.
.
.

16 DistCache ;
.
.
.

22 END IF;
22a DeleteCache(N);
23 END;

FUNCTION DistCache (N Node, o1 Object, o2 Object) RETURN float;
BEGIN

result := hashlookup.get(o1, o2);
IF result = nil THEN

result := compute d(o1, o2);
hashlookup.add (N, o1, o2, result);

END IF;
RETURN result;

END;

PROCEDURE DeleteCache (N Node);
BEGIN

hashlookup.delete (N);
END;

Figure 147: Caching M-tree.

N o, r q,()

N o, d q,()

270 Efficiency of Similarity Models

and for similarity range queries the SQL-statement of Figure 148. By using hints we

forced the query optimizer to evaluate the predicates in the WHERE-clause from left

to right. As outlined in Section 7.2, we could easily encapsulate both query types into

an extensible indexing framework. The Euclidean distance was used as distance mea-

sure between single-vector represented data. Distances between sets of feature vec-

tors were computed using an implementation of the Kuhn-Munkres algorithm.

We conducted our experiments on top of the Oracle9i Server using PL/SQL for the

computational main memory based programming. All experiments were performed

on a Pentium III/700 machine with IDE hard drives. The database block cache was

set to 500 disk blocks with a block size of 8 KB and was used exclusively by one

active session.

For all similarity queries, we took 90°-rotations and reflections into account, re-

sulting in 48 permutations of the query object.

10.4.1 Single Vector Models: The NB-Tree

For the four single vector models - the volume model, the solid-angle model, the

eigen-value model and the cover sequence model (with 7 covers) - we used the

NB-tree as filter.

Similarity Range Queries. The average query times resulting from the different

similarity range queries are depicted in Figure 149. As expected, the time needed for

an exact distance computation is linearly dependent on the dimensionality of the

feature vectors. For example, a full table scan on the 27-dimensional feature vectors

resulting from the volume model is approximately 3 times faster than a full table scan

on the 81-dimensional feature vectors of the eigen-value model. The NB-tree proves

to be a suitable filter for all four single-vector models. The additional complexity of

the filter is almost negligible. Even if the NB-tree does not filter out any candidates

at all, the resulting query response times are only slightly higher than for the corre-

sponding full table scans.

SELECT attribute a1, ...,attribute ak

FROM DB
WHERE df1 (o,q) ≤ ε AND df2 (o,q) ≤ ε ... AND dfn (o,q) ≤ ε AND do (o,q) ≤ ε

Figure 148: SQL-Statement for range queries.

Experimental Evaluation 271

If we compare the average number of candidates after the filter step with the aver-

age number of results, the filter quality strongly varies for the different similarity

models (cf. Figure 150). Data represented by the volume model and by the solid-

angle model are filtered exceptionally good, especially for the PLANE data set (cf.

Figure 150b and 150d) which contains some very large objects like aircraft wings

besides a lot of small objects. The small objects are represented by only a few voxels

and are contained entirely in only one histogram bin. This circumstance is also the

cause for the bad effectiveness of these models (cf. Section 9.2.2). Our analysis yield-

ed only 160 different feature vectors for the volume model respectively 1454 differ-

ent vectors for the solid-angle model. Moreover, we also received the same number

of different norm values for these two models, which indicates that the similarity is

modelled by one-dimensional values without a noteworthy loss of quality.

For the eigen-value model, which produced 3510 different Euclidean norm values,

the NB-tree also shows good filtering results, whereas the filter performance is rela-

tively poor for the cover sequence model. A reason for the weaker filter performance

of the NB-tree on the cover sequence model stems from the fact that this is the only

model where feature values may be negative. The algebraic sign is irrelevant for a

vector’s Euclidean norm, as all feature values get squared during its computation.

Thus, two cover sequence vectors with similarly sized cover extensions may have

similar Euclidean norm values, although the cover positions of one feature vector

have positive values and the positions of the other one are negative. On the other

hand, different algebraic signs of the cover positions contribute to a greater Euclidean

distance value between these two vectors. Thus, the difference between the Euclide-

an distance and the filter distance value is quite big resulting in a bad filter perfor-

mance.

Similarity k-nn Queries. We conducted k-nearest neighbor queries for six differ-

ent parameter values k, ranging from 1 to 100 for the PLANE data set and 1 to 50 for

the CAR data set (cf. Figure 151 and 152). The average query times for single-step

and multi-step k-nn queries are displayed in Figure 151. The query time for a filtered

nearest neighbor search is directly dependent on the number of candidate objects for

which an exact distance computation is necessary (cf. Figure 152). As for similarity

range queries, the average filter quality of the NB-tree is best for data represented by

the volume model and the solid-angle model. Furthermore, objects modelled by

eigen values are also filtered well. Again, the worst filtering performance was ob-

272 Efficiency of Similarity Models

with filter without filter

0

0,5

1

1,5

2

2,5

3

3,5

0,5 4,5 8,5 12,5 16,5 20,5

Epsilon

ru
n

ti
m

e
[s

ec
]

0

10

20

30

40

50

60

70

80

90

0,1 0,9 1,7 2,5 3,3 4,1

Epsilon

ru
n

ti
m

e
[s

ec
]

0

0,2

0,4

0,6

0,8

1

1,2

0,1 0,5 0,9 1,3 1,7 2,1

Epsilon

ru
n

ti
m

e
[s

ec
]

0

5

10

15

20

25

30

35

0,01 0,05 0,10 0,14 0,19

Epsilon

ru
n

ti
m

e
[s

ec
]

0

0,2

0,4

0,6

0,8

1

1,2

0,1 0,5 0,9 1,3 1,7 2,1

Epsilon

ru
n

ti
m

e
[s

ec
]

0

5

10

15

20

25

30

0,00 0,01 0,02 0,04 0,05 0,06

Epsilon

ru
n

ti
m

e
[s

ec
]

Figure 149: Query times of range queries on the single vector models.

a) volume model (CAR) b) volume model (PLANE)

c) solid-angle model (CAR) d) solid-angle model (PLANE)

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

0,3 1,3 2,3 3,3 4,3 5,3

Epsilon

ru
n

ti
m

e
[s

ec
]

0
5

10
15
20
25
30
35
40
45
50

0,1 0,9 1,7 2,5 3,3 4,1

Epsilon

ru
n

ti
m

e
[s

ec
]

e) eigen-value model (CAR) f) eigen-value model (PLANE)

g) cover sequence model (CAR) h) cover sequence model (PLANE)

Experimental Evaluation 273

avg. number of results avg. number of candidates

0
20
40
60
80

100
120
140
160
180
200

0,1 0,5 0,9 1,3 1,7 2,1

Epsilonn
o

. o
f

ca
n

d
id

at
es

0
20
40
60
80

100
120
140
160
180
200

0,5 4,5 8,5 12,5 16,5 20,5

Epsilonn
o

. o
f

ca
n

d
id

at
es

0

1000

2000

3000

4000

5000

6000

0,0 0,7 1,5 2,3 3,1 3,9 4,7

Epsilonn
o

. o
f

ca
n

d
id

at
es

0
20
40
60
80

100
120
140
160
180
200

0,1 0,5 0,9 1,3 1,7 2,1

Epsilonn
o

. o
f

ca
n

d
id

at
es

0

1000

2000

3000

4000

5000

6000

0,01 0,05 0,10 0,14 0,19

Epsilonn
o

. o
f

ca
n

d
id

at
es

0

1000

2000

3000

4000

5000

6000

0,00 0,01 0,02 0,04 0,05 0,06

Epsilonn
o

. o
f

ca
n

d
id

at
es

Figure 150: Number of candidates of range queries on the single vector models.

a) volume model (CAR) b) volume model (PLANE)

c) solid-angle model (CAR) d) solid-angle model (PLANE)

0
20
40
60
80

100
120
140
160
180
200

0,3 1,5 2,8 4,0 5,3 6,5 7,8

Epsilonn
o

. o
f

ca
n

d
id

at
es

0

1000

2000

3000

4000

5000

6000

0,1 0,9 1,7 2,5 3,3 4,1

Epsilonn
o

. o
f

ca
n

d
id

at
es

e) eigen-value model (CAR) f) eigen-value model (PLANE)

g) cover sequence model (CAR) h) cover sequence model (PLANE)

274 Efficiency of Similarity Models

w ith f ilter w ithout f ilter

0
0,2
0,4
0,6
0,8

1
1,2
1,4
1,6
1,8

1 5 10 20 50 100
k

ru
n

ti
m

e
[s

ec
]

0

10

20

30

40

50

1 5 10 20 50 100
k

ru
n

ti
m

e
[s

ec
]

0
10
20
30
40
50
60
70
80
90

1 5 10 20 50 100
k

ru
n

ti
m

e
[s

ec
]

0

5

10

15

20

25

30

1 5 10 20 50 100
k

ru
n

ti
m

e
[s

ec
]

0

5

10

15

20

25

30

35

1 5 10 20 50 100
k

ru
n

ti
m

e
[s

ec
]

0

0,5

1

1,5

2

2,5

3

3,5

1 5 10 15 20 50
k

ru
n

ti
m

e
[s

ec
]

0

0,2

0,4

0,6

0,8

1

1,2

1 5 10 15 20 50
k

ru
n

ti
m

e
[s

ec
]

Figure 151: Query times of k-nn queries on the single vector models.

a) volume model (CAR) b) volume model (PLANE)

c) solid-angle model (CAR) d) solid-angle model (PLANE)

e) eigen-value model (CAR) f) eigen-value model (PLANE)

g) cover sequence model (CAR) h) cover sequence model (PLANE)

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1 5 10 15 20 50
k

ru
n

ti
m

e
[s

ec
]

Experimental Evaluation 275

avgerage number of candidates

Figure 152: Number of candidates of k-nn queries on the single vector models.

0

500

1000

1500

2000

2500

3000

3500

4000

1 5 10 20 50 100
k

n
o

. o
f

ca
n

d
id

at
es

0

100

200

300

400

500

600

700

1 5 10 20 50 100
k

n
o

. o
f

ca
n

d
id

at
es

0

50

100

150

200

1 5 10 20 50 100
k

n
o

. o
f

ca
n

d
id

at
es

0

20

40

60

80

100

120

140

160

1 5 10 20 50 100
k

n
o

. o
f

ca
n

d
id

at
es

0

50

100

150

200

1 5 10 20 50 100
k

n
o

. o
f

ca
n

d
id

at
es

0

20

40

60

80

100

120

140

1 5 10 15 20 50
k

n
o

. o
f

ca
n

d
id

at
es

0

20

40

60

80

100

1 5 10 15 20 50
k

n
o

. o
f

ca
n

d
id

at
es

a) volume model (CAR) b) volume model (PLANE)

c) solid-angle model (CAR) d) solid-angle model (PLANE)

e) eigen-value model (CAR) f) eigen-value model (PLANE)

g) cover sequence model (CAR) h) cover sequence model (PLANE)

0

20

40

60

80

100

1 5 10 15 20 50
k

n
o

. o
f

ca
n

d
id

at
es

276 Efficiency of Similarity Models

served for data objects represented by cover sequences. The reasons for these results

are the same as the ones described for similarity range queries.

Summary. This experimental evaluation shows that the runtime for similarity

queries based on a full table scan, depends linearly on the dimensionality of the used

feature vectors. Similarity queries based on the eigen-value model are almost three

times slower than for the volume-model or the solid-angle model. Furthermore, the

experiments show, that the NB-tree is a very effective way to accelerate similarity

queries. Especially the space-partitioning models benefit from the NB-tree, which

can easily be integrated into any ORDBMS. For instance, 1-nn queries for the

eigen-value model can be accelerated by two orders of magnitude when using the

NB-tree. Although the NB-tree also accelerates similarity queries based on the cover

sequence model, the benefits are less pronounced. This worse filter behavior is due

to the negative feature values which might occur in the feature vectors of the cover

sequence model. The NB-tree does not take the algebraic sign into account, so that

equally sized covers located differently might be treated similar by the NB-tree

which results in a poor filter performance.

In [Lei 04] a lot more experiments were carried out which pinpoint the differences

of the query response behavior of similarity queries on our different similarity mod-

els for CAD data. In this section, we only presented a meaningful summary of these

tests. For more details, we refer the interested reader to [Lei 04].

10.4.2 Vector Set Model: Filters for the Minimal Matching Distance

In this section, we investigate the runtime and selectivity of the three presented

filters for vector sets, i.e. the centroid filter, the Euclidean norm filter and the closest-

pair filter. Furthermore, we present the results from a combined filter, which always

computes the maximum from the Euclidean norm and the centroid approach. Both,

the filter steps and the exact distance computations were based on a sequential scan.

Similarity Range Queries. In a first experiment, we carried out different range

queries on a vector set consisting of 3, 5 and 7 6-dimensional points. Figure 153

shows that the selectivity of the closest-pair filter is almost optimal, i.e. almost no

unnecessary candidates are produced. Nevertheless, the overall runtime of this filter-

step is very high, as the runtime complexity of the closest-pair filter is almost as high

as the computation of the minimal matching distance itself (cf. Figure 154).

Experimental Evaluation 277

Although less selective than the closest-pair filter, all the other filters accelerate

the query process more profoundly, especially for sufficiently small values of the

range parameter . Generally spoken, queries using the combined filter are the fast-

est ones. The combined filter performs only slightly better than the centroid approach

but significantly better than the Euclidean norm filter. However, when high -values

are used, i.e. only a few or no data objects could be excluded by the filter step, the

Euclidean norm vector performs slightly superior to the other filters and is nearly as

fast as a full table scan. This is due to the fact that the filter distance between norm

vectors is cheaper to compute than the Euclidean distance between centroids, be-

cause rotation and reflection of the query object do not need to be taken into account

(cf. remark 2 in Section 10.1).

We observed the highest performance gains of combined filters for very small

values of and data sets consisting only of three covers (cf. Figure 154a and 154b).

Using the Euclidean norm filter prior to the centroid filter proves to be more gainful

for combined filters than vice versa. Again, this is due to the low computation cost of

the Manhattan distance between the norm vectors. However, these differences could

only be observed for small values of vanishing for higher values.

Similarity k-nn Queries. We conducted k-nearest neighbor queries for six differ-

ent parameter values k, ranging from 1 to 100 for the PLANE data set and ranging

from 1 to 50 for the CAR data set (cf. Figure 155 and Figure 156). The average query

times of these nearest neighbor queries based on a full table scan are given in the

Table 11:

The results of the k-nearest neighbor queries based on the multi-step query pro-

cessing paradigm are quite similar to the ones for similarity range queries. Again, the

closest-pair filter produces the smallest number of candidates, and the centroid filter

proved to be superior to the Euclidean norm filter (cf. Figure 155). A combination of

data set
average runtime [sec.]

(3 covers)
average runtime [sec.]

(5 covers)
average runtime [sec.]

(7 covers)
CAR 8.3 19.7 40.1

PLANE 236.1 539.6 1014.6

Table 11: Query response times of k-nn queries based on a full table scan
for the vector set model.

ε

ε

ε

ε

278 Efficiency of Similarity Models

0

1000

2000

3000

4000

5000

6000

0,5 2,5 4,5 6,5 8,5 10,5

Epsilon

n
o

. o
f

ca
n

d
id

at
es

0

20

40

60

80

100

120

140

160

180

200

0,5 3,5 6,5 9,5 12,5 15,5 18,5

Epsilon

n
o

. o
f

ca
n

d
id

at
es

0

1000

2000

3000

4000

5000

6000

0,5 2,5 4,5 6,5 8,5 10,5

Eps ilon

n
o

. o
f

ca
n

d
id

at
es

0

20

40

60

80

100

120

140

160

180

200

0,5 3,5 6,5 9,5 12,5 15,5

Epsilon

n
o

. o
f

ca
n

d
id

at
es

0

1000

2000

3000

4000

5000

6000

0,5 1,5 2,5 3,5 4,5 5,5 6,5 7,5 8,5

Ep s ilo n

n
o

. o
f

ca
n

d
id

at
es

0

20

40

60

80

100

120

140

160

180

200

0,5 2,5 4,5 6,5 8,5 10,5

Epsilon

n
o

. o
f

ca
n

d
id

at
es

c) 5 covers (CAR) d) 5 covers (PLANE)

a) 3 covers (CAR) b) 3 covers (PLANE)

e) 7 covers (CAR) f) 7 covers (PLANE)

Figure 153: Number of candidates of range queries on the vector set model.

avg. number of results
avg. number of candidates closest-pair f ilter
avg. number of candidates centroid filter
avg. number of candidates Euclidean norm filter
avg. number of candidates combined f ilter

Experimental Evaluation 279

avg. query time w ithout f ilter avg. query time closest-pair filter

avg. query time Euclidean norm filter avg. query time centroid filter

avg. query time combined filter norm first avg query time combined filter centroid first

0

50

100

150

200

250

300

350

400

0,5 2,5 4,5 6,5 8,5

Epsilon

ru
n

ti
m

e
[s

ec
.]

0

100

200

300

400

500

600

700

800

900

1000

0,5 3,5 6,5 9,5

Epsilon

ru
n

ti
m

e
[s

ec
.]

0

5

10

15

20

25

30

35

0,5 3,5 6,5 9,5 12,5 15,5

Epsilon

ru
n

ti
m

e
[s

ec
.]

0

200

400

600

800

1000

1200

1400

1600

1800

0,5 2,5 4,5 6,5 8,5 10,5

Epsilon

ru
n

ti
m

e
[s

ec
.]

0

10

20

30

40

50

60

70

80

0,5 3,5 6,5 9,5 12,5 15,5 18,5

Epsilon

ru
n

ti
m

e
[s

ec
.]

c) 5 covers (CAR) d) 5 covers (PLANE)

0

2

4

6

8

10

12

14

0,5 3 5,5 8 10,5

Epsilon

ru
n

ti
m

e
[s

ec
.]

a) 3 covers (CAR) b) 3 covers (PLANE)

e) 7 covers (CAR) f) 7 covers (PLANE)

Figure 154: Query times of range queries on the vector set model.

280 Efficiency of Similarity Models

centroid f ilter Euclidean norm filter

combined filter closest-pair filter

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1 5 10 20 50 100

k

n
o

. o
f

ca
n

d
id

at
es

0

20

40

60

80

100

120

140

160

180

1 5 10 15 20 50

k

n
o

. o
f

ca
n

d
id

at
es

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1 5 10 20 50 100

k

n
o

. o
f

ca
n

d
id

at
es

0

20

40

60

80

100

120

140

160

180

1 5 10 15 20 50

k

n
o

. o
f

ca
n

d
id

at
es

0

20

40

60

80

100

120

140

160

180

200

0,5 2,5 4,5 6,5 8,5 10,5

Epsilon

n
o

. o
f

ca
n

d
id

at
es

c) 5 covers (CAR) d) 5 covers (PLANE)

a) 3 covers (CAR) b) 3 covers (PLANE)

e) 7 covers (CAR) f) 7 covers (PLANE)

Figure 155: Number of candidates of k-nn queries on the vector set model.

0

20

40

60

80

100

120

140

160

180

1 5 10 15 20 50

k

n
o

. o
f

ca
n

d
id

at
es

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1 5 10 20 50 100

k

n
o

. o
f

ca
n

d
id

at
es

Experimental Evaluation 281

0
1000

1 5 10 20 50 100 k

centroid f ilter Euclidean norm filter

combined f ilter closest-pair filter

0

100

200

300

400

500

600

700

800

1 5 10 20 50 100

k

ru
n

ti
m

e
[s

ec
.]

0

20

40

60

80

100

120

140

160

1 5 10 20 50 100

k

ru
n

ti
m

e
[s

ec
.]

0

5

10

15

20

25

30

35

40

45

50

1 5 10 15 20 50

k

ru
n

ti
m

e
[s

ec
.]

0

50

100

150

200

250

300

350

400

1 5 10 20 50 100

k

ru
n

ti
m

e
[s

ec
.]

0

5

10

15

20

25

1 5 10 15 20 50

k

ru
n

ti
m

e
[s

ec
.]

0

1

2

3

4

5

6

7

8

9

1 5 10 15 20 50

k

ru
n

ti
m

e
[s

ec
.]

c) 5 covers (CAR) d) 5 covers (PLANE)

a) 3 covers (CAR) b) 3 covers (PLANE)

e) 7 covers (CAR) f) 7 covers (PLANE)

Figure 156: Query times of k-nn queries on the vector set model.

282 Efficiency of Similarity Models

the latter two filters, as described in Section 10.2.4 has a weaker filtering quality than

the closest-pair filter, but produces less candidates than each filter on its own. For

instance on the PLANE data set, the average number of candidates is 17% lower for

the combined filter than for the centroid filter and 61% lower than for the Euclidean

norm vector.

Due to the high computation cost of the closest-pair distance, k-nearest neighbor

queries using this filter are much slower on average than queries employing one of

the other filter types (cf. Figure 156). However, they are still up to five times faster

than the corresponding full table scans. Similarity queries employing the Euclidean

norm vector as a filter are much slower than queries using the centroid or the com-

bined filter. For small values of the parameter k, the centroid and combined filter are

more than 25 times faster than corresponding full table scans. On the CAR data set,

query times for these two filter types are nearly identical. On the PLANE data set,

queries employing the combined filter were more than 11% faster than correspond-

ing queries using the centroid filter.

Summary. For all types of queries, the closest pair filter was the most selective

filter. Nevertheless, this filter does not pay off, as it is rather expensive itself. Let us

note, that for the much more expensive partial similarity search on vector sets, this

filter is both the most selective one and the most efficient one [BKP 04a]. The com-

bination between the Euclidean norm filter and the centroid filter is the best choice

for efficient similarity search on CAD objects modelled by vector sets. The combina-

tion of these two filters can very efficiently be computed and is still selective enough

to accelerate similarity queries on vector sets by up to two orders of magnitude.

10.4.3 Vector Set Model: M-tree

We also tested a cartridge implementation of the M-tree managing vector set rep-

resented data. In all our tests, we used an optimal M-tree fanout of 19. For carrying

out similarity k-nn queries, we used a slightly adapted version of the algorithm pre-

sented in [HS 95] (cf. Section 7.4.3). For more details we refer the reader to

[KKPR 04d].

Furthermore, we integrated the optimizations, introduced in Section 10.3, into this

cartridge implementation. In this section, we present a meaningful summary of a

detailed experimental evaluation carried out on the optimized Relational M-tree. For

more details, we refer the interested reader to [Sch 04].

Experimental Evaluation 283

Relational M-tree. Figure157 and Figure 158 depict the results of similarity que-

ries carried out on the cartridge implementation of the M-tree. Comparing these two

figures with the figures presented in the foregoing section, we can see that the M-tree

outperforms the sequential scan and the closest-pair filter for some values of ε. Nev-

ertheless, in all our experiments, the M-tree was considerably slower than the combi-

nation between the Euclidean norm filter and the centroid filter. The rather bad per-

formance of the M-tree is due to the overhead involved in the cartridge

implementation and due to the high amount of distance computations which are nec-

essary even for small values of k and ε.

0

500

1000

1500

2000

2500

3000

3500

1 5 10 20 50 100

kn
o

. o
f

 d
is

ta
n

ce
 c

o
m

p
u

ta
ti

o
n

s

0

100

200

300

400

500

600

700

800

1 5 10 20 50 100

k

ru
n

ti
m

e
[s

ec
]

0

50

100

150

200

250

1 5 10 15 20 50

kn
o

. o
f

d
is

ta
n

ce
 c

o
m

p
u

ta
ti

o
n

s

c) runtime (PLANE) d) no. of distance computations (PLANE)

Figure 157: k-nn queries on the vector set model (RM-tree).

0

10

20

30

40

50

60

1 5 10 15 20 50

k

ru
n

ti
m

e
in

 [
se

c]

0

10

20

30

40

50

60

1 5 10 15 20 50

k

ru
n

ti
m

e
[s

ec
]

b) no. of distance computations (CAR)a) runtime (CAR)

3 covers 5 covers 7 covers

284 Efficiency of Similarity Models

Let us note that similar observations can be made for other metric data spaces for

which there exist suitable filter steps, e.g. graphs [KS 03] and trees [KKSS 04]. The

M-tree seems to be the method of choice only for metric data spaces for which there

exist no suitable filters.

Optimized Relational M-tree. In this section, we will investigate how the opti-

mizations introduced in Section 10.3 accelerate the Relational M-tree. Thereby we

will concentrate on range queries carried out on the PLANE data set as they form the

foundation of density-based clustering [EKSX 96], and, furthermore, k-nn queries

can efficiently be carried out based on range-queries [LS 02].

0

200

400

600

800

1000

1200

1400

0,
5

2,
5

4,
5

6,
5

8,
5

10
,5

12
,5

14
,5

Epsilonru
n

ti
m

e
 [

se
c]

0

50

100

150

200

250

0,
5

2,
5

4,
5

6,
5

8,
5

10
,5

12
,5

14
,5

16
,5

18
,5

Epsilonn
o

. o
f

d
is

ta
n

ce
 c

o
m

p
u

ta
ti

o
n

s

0

1000

2000

3000

4000

5000

6000

7000

0,
5

2,
5

4,
5

6,
5

8,
5

10
,5

12
,5

14
,5

Epsilon

n
o

. o
f

d
is

ta
n

ce
 c

o
m

p
u

ta
ti

o
n

s

c) runtime (PLANE) d) no. of distance computations (PLANE)

a) runtime (CAR) b) no. of distance computations (CAR)

Figure 158: Range queries on the vector set model (RM-tree).

0

10

20

30

40

50

60

0,
5

2,
5

4,
5

6,
5

8,
5

10
,5

12
,5

14
,5

16
,5

18
,5

Epsilon

ru
n

ti
m

e
[s

ec
]

3 covers 5 covers 7 covers

Experimental Evaluation 285

Range Queries. In Figure 159 and Figure 160 the optimized Relational M-tree is

compared to the original RM-tree and to the best possible filter. First, the figures

show clearly that the used filter, i.e. the combination of the Euclidean norm filter and

the centroid filter, outperforms the RM-tree for all values of ε.

The combination of filtering and metric indexing, i.e. the Filtering M-tree (cf.

Section 10.3.4), outperforms both the best possible filter and the Relational M-tree

for ε-values interesting for density-based clustering, e.g. values around 2 for the data

set of Figure 159.

0

1000

2000

3000

4000

5000

6000

0,5 1 1,5 2 2,5 3 3,5 4 4,5 5 5,5 6 6,5 7 7,5 8 8,5 9 9,5 10

Epsilon

n
o

. o
f

d
is

ta
n

ce
 c

o
m

p
u

ta
ti

o
n

s

Filter M-tree
M-tree+Filter M-tree+Cache
M-tree+Filter+Cache M-tree+Filter+Cache+PosPruninga)

0

200

400

600

800

1000

1200

0,5 1 1,5 2 2,5 3 3,5 4 4,5 5 5,5 6 6,5 7 7,5 8 8,5 9 9,5 10

Epsilon

ru
n

ti
m

e
[s

ec
]

Figure 159: Range queries on the vector set model (7 covers) (optimized RM-tree).
(PLANE data set)

a) Number of distance computations, b) Runtime

b)

286 Efficiency of Similarity Models

The Caching M-tree (cf. Section 10.3.5) leads to a further improvement of the

M-tree. All distance computations carried out at directory nodes are memorized.

Therefore, for high ε-values the Caching M-tree does not need more distance compu-

tations than the sequential scan.

The Relational M-tree using filter and caching techniques considerably acceler-

ates both the filter and the Relational M-tree. It is the method of choice for range

queries, if the boolean information whether an object is included in an ε-range of a

0

1000

2000

3000

4000

5000

6000

0,
5

1,
5

2,
5

3,
5

4,
5

5,
5

6,
5

7,
5

8,
5

9,
5

Epsilon

n
o

. o
f

d
is

ta
n

ce
 c

o
m

p
u

ta
ti

o
n

s

M-tree
Hits
M-tree+Cache+Filter+PosPruning
Filter

0

1000

2000

3000

4000

5000

6000

0,
5

1,
5

2,
5

3,
5

4,
5

5,
5

6,
5

7,
5

8,
5

9,
5

Epsilonn
o

. o
f

d
is

ta
n

ce
 c

o
m

p
u

ta
ti

o
n

s

M-tree+Filter
M-tree+Cache
M-tree+Filter+Cache
M-tree+Filter+Cache+PosPruning

0

1000

2000

3000

4000

5000

6000

0,
5

1,
5

2,
5

3,
5

4,
5

5,
5

6,
5

7,
5

8,
5

9,
5

Epsilonn
o

. o
f

d
is

ta
n

ce
 c

o
m

p
u

ta
ti

o
n

s

M-tree+Filter
M-tree+Cache
M-tree+Filter+Cache
M-tree+Filter+Cache+PosPruning

0

1000

2000

3000

4000

5000

6000

0,
5

1,
5

2,
5

3,
5

4,
5

5,
5

6,
5

7,
5

8,
5

9,
5

Epsilon

n
o

. o
f

d
is

ta
n

ce
 c

o
m

p
u

ta
ti

o
n

s
M-tree
Hits
M-tree+Cache+Filter+PosPruning
Filter

a) comparison of all optimizations
to M-tree and filter (3 covers)

b) comparison of the different optimizations
(3 covers)

Figure 160: Range queries on the vector set model (optimized RM-tree).

c) comparison of all optimizations
to M-tree and filter (5 covers)

d) comparison of the different optimizations
(5 covers)

Summary 287

given query object is not enough. If a database object o is within the ε-range of a

given query object q, this approach also computes the exact distance between o and

q. The density-based clustering algorithm OPTICS, for instance, is based on this

additional information.

On the other hand, if we are satisfied with the boolean information whether an

object is included in the ε-range of a given query object, we can exploit the pre-

clustering of the index structure not only for the negative pruning but also for the

positive one. If a directory node is completely covered by a given ε-range all objects

of the corresponding subtree can be reported without carrying out any additional

distance computations (cf. Section 10.3.3). Taking all these optimizations together,

we can efficiently carry out range queries for all ε-values. The density-based

clustering algorithm DBSCAN, for instance, does benefit from all of these optimiza-

tions and can considerably be accelerated by the introduced techniques [KKPS 04].

Creation of M-tree. The generation of the optimized M-tree was carried out with-

out caching (cf. Figure 161a) and with caching (cf. Figure161b). Without caching,

the number of necessary distance calculations is very high, due to the repeated split-

ting of nodes. Note that the number of distance calculations for one node split is

quadratic w.r.t. the number of elements of this node. In this case, our NodeSplit func-

tion (cf. Figure 146) only needs 1/4 of the distance calculations while still producing

the same M-tree. If we apply caching, the overall number of required distance com-

putations is much smaller as many distance computations necessary for splitting a

node can be fetched from disk. In this case our FindSubTree function (cf. Figure 145)

allows us to reduce the number of required distance calculations even further, i.e. the

number of distance computations is bisected. To sum up, both optimizations, which

are based on the exploitation of available filter information, allow us to build up an

M-tree much more efficiently.

10.5 Summary

In this chapter, we presented a detailed efficiency evaluation of our similarity

models. Thereby, we concentrated on efficient query processing for vector set data.

We introduced three different filters for the minimal matching distance which com-

putes the distance between two vector sets: the centroid filter, the Euclidean norm

filter and the closest pair filter. We showed that the combination of the rather cheap

288 Efficiency of Similarity Models

Euclidean norm filter and the centroid filter is the most efficient filter for the minimal

matching distance although it is less selective than the closest pair filter.

Furthermore, we introduced suitable optimizations for the Relational M-tree, i.e.

the Scanning M-tree, the Filtering M-tree and the Caching M-tree. We showed that

although the Relational M-tree itself is clearly outperformed by the presented filters,

the optimized Relational M-tree is the method of choice for efficiently carrying out

range queries.

0

100000

200000

300000

400000

500000

5 10 19 50 100

fanout of M-tree

n
o

. o
f

d
is

ta
n

ce
 c

al
cu

la
ti

o
n

s

Figure 161: Creation of a Relational M-tree.
a) Without caching distance calculations, b) With caching distance calculations

0

5000000

10000000

15000000

20000000

25000000

5 10 19 50 100
fanout of M-tree

n
o

. o
f

d
is

ta
n

ce
 c

al
cu

la
ti

o
n

s

M-tree M-tree (optimized FindSubtree)

M-tree(optimized Split) M-tree(optimized FindSubtree+Split)

a)

b)

289

Chapter 11
BOSS: Browsing Optics-Plots for
Similarity Search

Similarity search in database systems is becoming an increasingly important task

in modern application domains such as multimedia, molecular biology, medical im-

aging, computer aided engineering, marketing and purchasing assistance as well as

many others. In this chapter, we show how visualizing the hierarchical clustering

structure of a database of objects can aid the user in his time consuming task to find

similar objects. We present related work and explain its shortcomings which led to

the development of our new methods. Based on reachability plots, we introduce ap-

proaches which automatically extract the significant clusters in a hierarchical cluster

representation along with suitable cluster representatives. These techniques can be

used as a basis for visual data mining. We implemented our algorithms resulting in an

industrial prototype which we used for the experimental evaluation. This evaluation

is based on real world test data sets and points out that our new approaches to auto-

matic cluster recognition and extraction of cluster representatives create meaningful

and useful results in comparatively short time.

290 BOSS: Browsing Optics-Plots for Similarity Search

11.1 Introduction

In the last ten years, an increasing number of database applications has emerged

for which efficient and effective support for similarity search is substantial. The im-

portance of similarity search grows in many different application areas. Particularly,

the task of finding similar shapes in 2D and 3D becomes more and more important.

Hierarchical clustering was shown to be effective for evaluating similarity models

(cf. Section 9.1). Especially, the reachability plot generated by OPTICS [ABKS 99]

is suitable for assessing the quality of a similarity model. Furthermore, visually ana-

lyzing cluster hierarchies helps the user, e.g. an engineer, to find and group similar

objects. Solid cluster extraction and meaningful cluster representatives form the

foundation for providing the user with significant and quick information.

In this chapter, we introduce algorithms for automatically detecting hierarchical

clusters along with their corresponding representatives. In order to evaluate our

ideas, we developed a prototype called BOSS (Browsing OPTICS-Plots for Similarity

Search). BOSS is based on techniques related to visual data mining. It helps to visu-

ally analyze cluster hierarchies by providing meaningful cluster representatives.

To sum up, the main contributions of this chapter are as follows:

 • We explain how different important application ranges would benefit from a tool

which allows visually mining through cluster hierarchies.

 • We reason why the hierarchical clustering algorithm OPTICS forms a suitable

foundation for such a browsing tool.

 • We introduce a new cluster recognition algorithm for the reachability plots gener-

ated by OPTICS. This algorithm generalizes all the other known cluster recogni-

tion algorithms for reachability plots. Although our new algorithm does not need

a sophisticated and extensive parameter setting, it outperforms the other cluster

recognition algorithms with respect to the quality and number of recognized clus-

ters and subclusters.

 • We tackle the complex problem of finding suitable cluster representatives. We in-

troduce two new approaches and show that they yield more intuitive representa-

tives than the known medoid approach.

Hierarchical Clustering 291

 • We describe a new browsing tool which comprises algorithms for cluster recogni-

tion and representation. This tool, called BOSS, is based on a client-server archi-

tecture which allows the user to get a quick and meaningful overview over large

data sets.

The remainder of the chapter is organized as follows. In Section 11.2, we first look

at hierarchical clustering with a special emphasize on the advantages of OPTICS.

Furthermore, we discuss the requirements and application areas in the industrial and

in the scientific community which motivated the development of BOSS. In

Section 11.3 and Section 11.4, we introduce suitable algorithms for cluster recogni-

tion and cluster representatives. In Section 11.5, we describe the actual industrial

prototype we developed and used it, in Section 11.6, to evaluate our new cluster

recognition and representation algorithms. In Section 11.7, the chapter concludes

with a short summary.

11.2 Hierarchical Clustering

In this section, we outline the application ranges which led to the development of

our interactive browsing tool, called BOSS (cf. Section 11.2.2). In order to under-

stand the connection between BOSS and the application requirements, we first recall

the major concepts of the hierarchical clustering algorithm OPTICS as introduced in

Section 9.1.2.

11.2.1 Major Advantages of OPTICS

As already mentioned in Section 9.1.2, one of the main advantages of OPTICS is

that the cluster structure can be visualized through so called reachability plots which

are 2D plots. They are generated as follows: the clustered objects are ordered along

the x-axis according to the cluster ordering computed by OPTICS and the reachabil-

ities assigned to each object are plotted along the abscissa. An example reachability

plot is depicted in Figure 122. Valleys in this plot indicate clusters: objects having a

small reachability value are closer and thus more similar to their predecessor objects

than objects having a higher reachability value. The reachability plots computed by

OPTICS help the user to get a meaningful and quick overview over a large data set.

Instead of a dendrogram, which is the common representation of hierarchical cluster-

292 BOSS: Browsing Optics-Plots for Similarity Search

ings, the resulting reachability plot is much easier to analyze (cf. Section 9.1.2).

Further reasons why we chose OPTICS as a foundation of BOSS are the following:

 • OPTICS is - in contrast to most other algorithms - relatively insensitive to its two

input parameters, and MinPts. The authors in [ABKS 99] state that the input pa-

rameters just have to be large enough to produce good results.

 • OPTICS is a hierarchical clustering method which yields more information about

the cluster structure than a method that computes a flat partitioning of the data

(e.g. k-means [McQ 67]).

 • There exists a very efficient variant of the OPTICS algorithm which is based on a

sophisticated data compression technique called “Data Bubbles” [BKKS 01],

where we have to trade only very little quality of the clustering result for a great

increase in performance.

 • There exists an efficient incremental version of the OPTICS algorithm [KKG 03].

11.2.2 Application Ranges

BOSS was designed for three different purposes: visual data mining, similarity

search and evaluation of similarity models. For the first two applications, the choice

of the representative objects of a cluster is the key step. It helps the user to get a

meaningful and quick overview over a large existing data set. Furthermore, BOSS

helps scientists to evaluate new similarity models.

Visual Data Mining. As defined in [Ank 00], visual data mining is a step in the

KDD process that utilizes visualization as a communication channel between the

computer and the user to produce novel and interpretable patterns. Based on the

balance and sequence of the automatic and the interactive (visual) part of the KDD

process, three classes of visual data mining can be identified.

 • Visualization of the data mining result:

An algorithm extracts patterns from the data. These patterns are visualized to

make them interpretable. Based on the visualization, the user may want to return

to the data mining algorithm and run it again with different input parameters

(cf. Figure 162a).

ε

Hierarchical Clustering 293

 • Visualization of an intermediate result:

An algorithm performs an analysis of the data not producing the final patterns but

an intermediate result which can be visualized. Then the user retrieves the inter-

esting patterns in the visualization of the intermediate result (cf. Figure 162b).

 • Visualization of the data:

Data is visualized immediately without running a sophisticated algorithm before.

Patterns are obtained by the user by exploring the visualized data

(cf. Figure 162c).

The approach presented in this chapter belongs to the second class. A hierarchical

clustering algorithm is applied to the data, which extracts the clustering structure as

an intermediate result. There is no meaning associated with the generated clusters.

However, our approach allows the user to visually analyze the contents of the clus-

ters. The clustering algorithm used in the algorithmic part is independent from an

application. It performs the core part of the data mining process and its result serves

as a multi-purpose basis for further analysis directed by the user. This way the user

may obtain novel information which was not even known to exist in the data set. This

is in contrast to similarity search where the user is restricted to find similar parts

respective to a query object and a predetermined similarity measure.

Visualization of
the result

Data

Data

DM-Algorithm

Knowledge Knowledge

Intermediate result

Visualization
of interm. result

Result
Result

Algorithm

Visualization
of the result

User Input

Visualization

Data

Knowledge

a) b) c)

Figure 162: Different approaches to visual data mining.

294 BOSS: Browsing Optics-Plots for Similarity Search

Similarity Search. The development, design, manufacturing and maintenance of

modern engineering products is a very expensive and complex task. Effective simi-

larity models are required for two- and three-dimensional CAD applications to cope

with rapidly growing amounts of data. Shorter product cycles and a greater diversity

of models are becoming decisive competitive factors in the hard-fought automobile

and aircraft market. These demands can only be met if the engineers have an over-

view of already existing CAD parts. It would be desirable to have an interactive data

browsing tool which depicts the reachability plot computed by OPTICS in a user

friendly way together with appropriate representatives of the clusters. This clear il-

lustration would support the user in his time-consuming task to find similar parts.

From the industrial user’s point of view, this browsing tool should meet the following

two requirements:

 • The hierarchical clustering structure of the data set is revealed at a glance. The

reachability plot is an intuitive visualization of the clustering hierarchy which

helps to assign each object to its corresponding cluster or to noise. Furthermore,

the hierarchical representation of the clusters using the reachability plot helps the

user to get a quick overview over all clusters and their relation to each other. As

each entry in the reachability plot is assigned to one object, we can easily illustrate

some representatives of the clusters belonging to the current density threshold εcut

(cf. Figure 163).

Figure 163: Browsing through reachability plots with different thresholds εcut.

Cluster Recognition 295

 • The user is not only interested in the shape and the number of the clusters, but also

in the specific parts building up a cluster. As for large clusters it is rather difficult

to depict all objects, representatives of each cluster should be displayed. To follow

up a first idea, these representatives could be simply constructed by superimposing

all parts belonging to the regarded cluster (cf. Figure 164). We can browse through

the hierarchy of the representatives in the same way as through the OPTICS plots.

This way, the cost of developing and producing new parts could be reduced by

maximizing the reuse of existing parts, because the user can browse through the

hierarchical structure of the clusters in a top-down way. Thus the engineers get an

overview of already existing parts and are able to navigate their way through the

diversity of existing variants of products, such as cars.

Evaluation of Similarity Models. In general, similarity models can be evaluated

by computing k-nearest neighbor queries (k-nn queries). As shown in Section 9.1,

this evaluation approach is subjective and error-prone because the quality measure of

the similarity model depends on the results of a few similarity queries and, therefore,

on the choice of the query objects. A model may perfectly reflect the intuitive simi-

larity according to the chosen query objects and would be evaluated as “good” al-

though it produces disastrous results for other query objects.

A better way to evaluate and compare several similarity models is to apply a clus-

tering algorithm. Clustering groups a set of objects into classes where objects within

one class are similar and objects of different classes are dissimilar to each other. The

result can be used to evaluate which model is best suited for which kind of objects. It

is more objective since each object of the data set is taken into account to evaluate the

data models.

11.3 Cluster Recognition

In this section, we address the first task of automatically extracting clusters from

the reachability plots. After a brief discussion of recent work in that area, we propose

a new approach for hierarchical cluster recognition based on reachability plots, called

gradient-clustering.

296 BOSS: Browsing Optics-Plots for Similarity Search

11.3.1 Recent Work

To the best of our knowledge, there are only two methods for automatic cluster

extraction from hierarchical representations such as reachability plots or dendro-

grams which are both based on reachability plots. Since clusters are represented as

valleys in the reachability plot, the task of automatic cluster extraction is to identify

significant valleys.

The first approach proposed in [ABKS 99] called ξ−clustering is based on the

steepness of the valleys in the reachability plot. The steepness is defined by means of

an input parameter ξ. The method suffers from the fact that this input parameter is

difficult to understand and hard to determine. Rather small variations of the value ξ
often lead to drastic changes of the resulting clustering hierarchy. As a consequence,

this method is unsuitable for our purpose of automatic cluster extraction.

The second approach was proposed recently by Sander et al. [SQL+ 03]. The au-

thors describe an algorithm called cluster_tree that automatically extracts a hierar-

chical clustering from a reachability plot and computes a cluster tree. It is based on

the idea that significant local maxima in the reachability plot separate clusters. Two

parameters are introduced to decide whether a local maximum is significant: The first

parameter specifies the minimum cluster size, i.e. how many objects must be located

between two significant local maxima. The second parameter specifies the ratio be-

tween the reachability of a significant local maximum m and the average reachabili-

Figure 164: Hierarchically ordered representatives.

Cluster Recognition 297

ties of the regions to the left and to the right of m. The authors in [SQL+ 03] propose

to set the minimum cluster size to 0.5% of the data set size and the second parameter

to 0.75. They empirically show, that this default setting approximately represents the

requirements of a typical user.

Although the second method is rather suitable for automatic cluster extraction

from reachability plots, it has one major drawback. Many real-world data sets contain

narrowing clusters, i.e. clusters consisting of exactly one smaller sub-cluster

(cf. Figure 165).

Since the algorithm cluster_tree runs through a list of all local maxima (sorted in

descending order of reachability) and decides at each local maximum m, whether m

is significant to split the objects to the left of m and to the right of m into two clusters,

the algorithm cannot detect such narrowing clusters. These clusters cannot be split by

a significant maximum. Figure 165 illustrates this fact. The narrowing cluster A con-

sists of one cluster B which is itself narrowing consisting of one cluster C. The algo-

rithm cluster_tree will only find cluster A since there are no local maxima to split

clusters B and C. The ξ−clustering will detect only one of the clusters A, B or C

dependent on the ξ−parameter but also fails to detect the cluster hierarchy.

A new cluster recognition algorithm should meet the following requirements:

 • It should detect all kinds of subclusters, including narrowing subclusters.

 • It should create a clustering structure which is close to the one which an experi-

enced user would manually extract from a given reachability plot.

Figure 165: Sample narrowing clusters.
a) Data space, b) Reachability plot, c) Cluster hierarchy

a) b) c)

298 BOSS: Browsing Optics-Plots for Similarity Search

 • It should allow an easy integration into the OPTICS algorithm. We do not want to

apply an additional cluster recognition step after the OPTICS run is completed. In

contrast, the hierarchical clustering structure should be created on-the-fly during

the OPTICS run without causing any noteworthy additional cost.

11.3.2 Gradient Clustering

In this section, we introduce our new gradient-clustering algorithm which fulfills

all of the above mentioned requirements. The idea behind our new cluster extraction

algorithm is based on the concept of inflexion points. During the OPTICS run, we

decide for each point added to the result set, i.e. the reachability plot, whether it is an

inflexion point or not. If it is an inflexion point, we might be at the start or at the end

of a new subcluster. We store the possible starting points of the sublcusters in a list,

called startPts. This stack consists of pairs (o.P, o.R), where o.P denotes the position

of the object o in the cluster ordering CO and o.R the reachability value belonging to

o w.r.t. CO (cf. Section 9.1.2). Our gradient-clustering algorithm can easily be inte-

grated into OPTICS and is described in full detail, after we have formally introduced

the new concept of inflexion points.

In the following, we assume that CO is a cluster ordering as defined in

Definition 43. We call two objects o1, o2 adjacent in CO, if o2.P = o1.P +1. Let

us recall, that o.R is the reachability of assigned by OPTICS while generat-

ing CO. For any two objects o1, o2 adjacent in the cluster ordering, we can

determine the gradient of the reachability values o1.R and o2.R. The gradient can

easily be modelled as a 2D vector where the y-axis measures the reachability values

(o1.R and o2.R) in the ordering, and the x-axis represent the ordering of the objects. If

we assume that each object in the ordering is separated by width w, the gradient of o1

and o2 is the vector

An example for a gradient vector of two objects x and y adjacent in a cluster

ordering is depicted in Figure 166.

CO∈

o CO∈

CO∈

g o1 o2,()
w o2.P o1.P–()⋅

o2.R o1.R– 
 
 

=

Cluster Recognition 299

Intuitively, an inflexion point should be an object in the cluster ordering where the

gradient of the reachabilities changes significantly. This significant change indicates

a starting or an end point of a cluster.

Let be adjacent, i.e. x.P+1 = y.P = z.P-1. We can now measure the

differences between the gradient vector and (=) by comput-

ing the cosinus function of the angle between these two vectors. The cosinus of this

angle is equal to -1 if the angle is 180°, i.e. the two vectors and have

the same direction. On the other hand, if the gradient vectors differ a lot, the angle

between them will be clearly smaller or larger than 180° and thus the cosinus will be

significantly greater than -1. This observation motivates the concepts of inflection

index and inflexion points:

Definition 47 (Inflexion Index).

Let CO be a cluster ordering and be objects adjacent in CO. The inflex-

ion index of y, denoted by II(y), is defined as the cosinus of the angle between the

gradient vector of x, y () and the gradient vector of z, y (), formally:

where := is the length of the vector .

Figure 166: Gradient vector.

Gradient vector of two objects x and y adjacent in the cluster ordering.g x y,()

g (x,y)

x y

x.R

y.R

w

−y.R x.R

x y z, , CO∈
g x y,() g z y,() g y z,()–

g x y,() g y z,()

x y z, , CO∈

g x y,() g z y,()

II y() ϕ g x y,() g z y,(),()cos
w2 x.R y.R–() z.R y.R–()+–

g x y,() g z y,()⋅
--- ,= =

v v1
2

v2
2

+2 v

300 BOSS: Browsing Optics-Plots for Similarity Search

Definition 48 (Inflexion Point).

Let CO be a cluster ordering and be objects adjacent in CO and let

. Object y is an inflexion point iff

The concept of inflexion points is suitable to detect objects in CO which are inter-

esting for extracting clusters. For further distinguishing whether an inflexion point

indicates a starting point or an end point, we introduce the gradient determinant.

Definition 49 (Gradient Determinant).

Let CO be a cluster ordering and be objects adjacent in CO. The gradi-

ent determinant of the gradients and is defined as

If x, y, z are clear from the context, we use the short form gd(y) for the gradient

determinant . The sign of gd(y) indicates whether is a

starting point or end point of a cluster. In fact, we can distinguish the following two

cases which are visualized in Figure 167:

x y z, , CO∈
t IR∈

II y() t>

x y z, , CO∈
g x y,() g z y,()

gd g x y,() g z y,(),() = w w–

y.R x.R– y.R z.R–

gd g x y,() g z y,(),() y CO∈

Figure 167: Inflexion points.
Illustration of inflexion points measuring the angle between the gradient vectors of objects

adjacent in the ordering.

n o p
.

a c d x y zwb

cluster ordering

reachability

cluster Dcluster C

cluster B

cluster A

Cluster Representatives 301

 • II(y) > t and gd(y) > 0:

Object y is either a starting point of a cluster (e.g. object a in Figure 167) or the

first object outside of a cluster (e.g. object z in Figure 167).

 • II(y) > t and gd(y) < 0:

Object y is either an end point of a cluster (e.g. object n in Figure 167) or the second

object inside a cluster (e.g. object b in 167).

Let us note that a local maximum which is the cluster separation point in

[SQL+ 03] is a special form of the first case (i.e. II(m) > t and gd(m) > 0).

The threshold t is independent from the absolute reachability values of the objects

in CO. The influence of t is also very comprehensible because if we know which

values for the angles between gradients are interesting, we can easily compute t. For

example, if we are interested in angles <120° and >240° we set t = cos120° = -0.5.

Obviously, the gradient-clustering algorithm is able to extract narrowing clusters.

Experimental comparisons with the methods in [ABKS 99] and [SQL+ 03] are pre-

sented in Section 11.6.

The pseudo code of the gradient-clustering algorithm is depicted in Figure 168,

which works like this. Initially, the first object of the cluster ordering CO is pushed to

the stack of starting points startPts. Whenever a new starting point is found, it is

pushed to the stack. If the current object is an end point, a new cluster is created

containing all objects between the starting point on top of the stack and the current

end point. Starting points are removed from the stack if their reachability is lower

than the reachability of the current object. Clusters are created as described above for

all removed starting points as well as for the starting point which remains in the stack.

The input parameter MinPts determines the minimum cluster size and the parameter t

was discussed above. Finally, we suggest to set

which yields good results for many different cluster orderings.

11.4 Cluster Representatives

In this section, we present three different approaches to determine representatives

for clusters computed by OPTICS. A simple approach could be to superimpose all

objects of a cluster to build the representative as it is depicted in Figure 164.

m CO∈

w
max o.R o CO:o.R ∞≠∈∀{ }

100
---=

302 BOSS: Browsing Optics-Plots for Similarity Search

However, this approach has the huge drawback that the representatives on a higher

level of the cluster hierarchy become rather unclear. Therefore, we choose real ob-

jects of the data set as cluster representatives.

Figure 168: Pseudo code of the gradient-clustering algorithm.

ALGORITHM gradient_clustering (ClusterOrdering CO, Integer MinPts, Real t)
BEGIN

startPts := emptyStack;
setOfClusters := emptySet;
currCluster := emptySet;

o := CO.getFirst(); // first object is a starting point
startPts.push(o);

WHILE o.hasNext() DO // for all remaining objects
o := o.next;
IF o.hasNext() THEN

IF II(o) > t THEN // inflexion point
 IF gd(o) > 0 THEN
 IF currCluster.size() >= MinPts THEN
 setOfClusters.add(currCluster);

END IF;
currCluster := emptySet;
IF startPts.top().R <= o.R THEN

startPts.pop();
END IF;
WHILE startPts.top().R < o.R DO

setOfClusters.add(set of objects from startPts.top() to last end point);
startPts.pop();

END DO;
setOfClusters.add(set of objects from startPts.top() to last end point);
IF o.next.R < o.R THEN // o is a starting point

startPts.push(o);
END IF;

ELSE
IF o.next.R > o.R THEN // o is an end point

currCluster := set of objects from startPts.top() to o;
END IF;

END IF;
 END IF;

ELSE // add clusters at end of plot
WHILE NOT startPts.isEmpty() DO

currCluster := set of objects from startPts.top() to o;
IF (startPts.top().R > o.R) AND (currCluster.size() >= MinPts) THEN

setOfClusters.add(currCluster);
END IF;
startPts.pop();

END DO;
END IF;

END DO;

RETURN setOfClusters;

END. // gradient_clustering

Cluster Representatives 303

In the following, CO denotes the cluster ordering from which we want to extract

clusters. A cluster C ⊆ CO will be represented by a set of k objects of the cluster,

denoted as REP(C). The number of representatives k can be a user defined number or

a number which depends on the size and data distribution of the cluster C.

11.4.1 The Extended Medoid Approach

Many partitioning clustering algorithms are known to use medoids as cluster rep-

resentatives. The medoid of a cluster C is the closest object to the mean of all objects

in C. The mean of C is also called centroid. For k >1 we could choose the k closest

objects to the centroid of C as representatives.

The choice of medoids as cluster representative is somehow questionable. Obvi-

ously, if C is not of convex shape, the medoid is not really meaningful.

An extension of this approach coping with the problems of clusters with non-

convex shape is the computation of k medoids by applying a k-medoid clustering

algorithm to the objects in C. The clustering using a k-medoid algorithm is rather

efficient due to the expectation that the clusters are much smaller than the whole data

set. This approach can also be easily extended to cluster hierarchies. At any level we

can apply the k-medoid clustering algorithm to the merged set of objects from the

child clusters or -due to performance reasons- merge the medoids of child clusters

and apply k-medoid clustering on this merged set of medoids.

11.4.2 The Minimum Core-Distance Approach

The second approach to choose representative objects of hierarchical clusters uses

the density-based clustering notion of OPTICS. The core-distance o.C = core-dist (o)

of an object (cf. Definition 40) indicates the density of the surrounding re-

gion. The smaller the core-distance of o, the denser the region surrounding o. This

observation led us to the choice of the object having the minimum core-distance as

representative of the respective cluster. Formally, REP(C) can be computed as:

REP(C) := {o ∈ C | ∀x∈C : o.C ≤ x.C}.

We choose the k objects with the minimum core-distances of the cluster as repre-

sentatives. The straightforward extension for cluster hierarchies is to choose the k

objects from the merged child clusters having the minimum core-distances.

o CO∈

304 BOSS: Browsing Optics-Plots for Similarity Search

11.4.3 The Maximum Successor Approach

The third approach to choose representative objects of hierarchical clusters also

uses the density-based clustering notion of OPTICS but in a more sophisticated way.

In fact, it makes use of the density-connected relationships underlying the OPTICS

algorithm.

As mentioned above, the result of OPTICS is an ordering of the database minimiz-

ing the reachability relation. At each step of the ordering, the object o having the

minimum reachability w.r.t. the already processed objects occurring before o in the

ordering is chosen. Thus, if the reachability of object o is not , it is determined by

reach-dist (o, p) where p is an unique object located before o in the cluster ordering.

We call p the predecessor of o, formally:

Definition 50 (Predecessor).

Let CO be a cluster ordering. For each entry the predecessor is defined as

Intuitively, Pre(o) is the object in CO from which o has been reached. Let us note

that an object and its predecessor need not to be adjacent in the cluster ordering.

Definition 51 (Successor).

Let CO be a cluster ordering. For each entry in a cluster ordering comput-

ed by OPTICS, the set of successors is defined as

Let us note that objects may have no predecessor, e.g. each object having a reach-

ability of does not have a predecessor, including the first object in the ordering. On

the other hand, some objects may have more than one successor. In that case, some

other objects have no successors. Again, an object and its successors need not to be

adjacent in the ordering.

We can model this successor-relationship within each cluster as a directed succes-

sor graph where the nodes are the objects of one cluster and a directed edge from

∞

o CO∈

Pre o()
p if

p.P o.P<
 o.R reach dist o p,()– ∞≠=∧

 x CO:x.P o.P ⇒<∈∀∧

reach dist o x,()– reach dist o p,()–≥ 
 
 
 
 
 

if o.R ∞ =










=

UNDEFINED

o CO∈

Suc o() s CO Pre s() o=∈{ }=

∞

Cluster Representatives 305

object o to s represents the relationship . Each edge (x, y) can further be

labeled by reach-dist (y, x), i.e. by y.R. A sample successor graph is illustrated in

Figure 169.

For the purpose of computing representatives of a cluster, the objects having many

successors are interesting. Roughly speaking, these objects are responsible for the

most density-connections within a cluster. The reachability values of these “connec-

tions” further indicate the distance between the objects. For example, for the objects

in the cluster visualized in Figure 169, object B is responsible for the most density-

connections since its node in the successor graph has the most out-going edges.

Our third strategy selects the representatives of clusters by maximizing the num-

ber of successors and minimizing the according reachabilities. For this purpose, we

compute for each object o of a cluster C, the Sum of the Inverse Reachability distanc-

es of the successors of o within C, denoted by SIRC (o):

We add 1 to reach-dist (s, o) in the denominator to weight the impact of the number

of successors over the significance of the reachability values. Based on SIRC(o), the

representatives can be computed as follows:

REP(C) := {o ∈ C | ∀x∈C : SIRC(o) ≥ SIRC(x)}.

s Suc o()∈

Figure 169: Successor graph.
Sample successor graph for a cluster of seven objects with some SIR-values.

C

D

E

F

G

B
A

1.6

2.1

1.9 2.3

1.5

1.7

SIRC A() 0.385=

SIRC B() 1.067=

SIRC C() 0.303=

SIRC D() 0 =

SIRC o()

1
1 reach dist s o,()–+
--- , otherwise

s Suc o()∈
s C∈

∑








=

, if Suc(o)= ∅0

306 BOSS: Browsing Optics-Plots for Similarity Search

In Figure 169, the SIR-values of some objects of the depicted successor graph for

a cluster of seven objects are computed. Since D has no successors, SIRC(D) is zero.

In fact object B has the highest SIR-value indicating the central role of B in the

cluster: B has three successors with relatively low reachability distance values. Our

third strategy would select object B as representative for the cluster.

Let us note that there is no additional overhead to compute the reachability dis-

tances reach-dist(Suc(o),o) for each since these values have been computed

by OPTICS during the generation of CO and reach-dist(Suc(o),o) = Suc(o).R.

If we want to select k representatives for C we simply have to choose the k objects

with the maximum SIRC values.

11.5 System Architecture

The development of the industrial prototype BOSS is an important step towards

developing a comprehensive, scalable and distributed computing solution designed

to make the effectiveness of OPTICS and the proposed cluster recognition and repre-

sentation algorithms available to a broader audience. BOSS is a client/server system

allowing users to provide their own data locally, along with an appropriate similarity

model (cf. Figure 170).

The data provided by the user will be comprised of the objects to be clustered, as

well as a data set to visualize these objects, e.g. VRML files for CAD data

o CO∈

Figure 170: BOSS distributed architecture.

OPTICS

Cluster Recognition

Cluster Representation

Similarity Model

BOSS Client

Object Data Visualization Data

VRML JPEG

Browser

DB1 DBn

BOSS Server

Client Side

Data Repository

Server Side

Evaluation 307

(cf. Figure 171) or JPEG images for multi-media data. Since this data resides on the

user’s local computer and is not transmitted to the server heavy network traffic can be

avoided. In order for BOSS to be able to interpret this data, the user must supply his

own similarity model with which the reachability data can be calculated.

The independence of the data processing and the data specification enables maxi-

mum flexibility. Further flexibility is introduced through the support of external vi-

sual representation. As long as the user is capable of displaying the visualization data

in a browser, e.g. by means of a suitable plug-in, the browser will then load web pages

generated by BOSS displaying the appropriate data. Thus, multimedia data such as

images or VRML files can easily be displayed (cf. Figure 171). By externalizing the

visualization procedure we can resort to approved software components, which have

been specifically developed for displaying objects which are of the same type as the

objects within our clusters.

11.6 Evaluation

We evaluated both the effectiveness and efficiency of our approaches using two

real-world test data sets CAR and PLANE. The first one contains approximately 200

CAD objects from a German car manufacturer, the second one 5000 CAD objects

Figure 171: BOSS screenshot.

308 BOSS: Browsing Optics-Plots for Similarity Search

from an American aircraft producer (cf. Section 9.2.1). We tested on a workstation

with a 1.7 GHz CPU and 2 GB RAM.

In the following, three cluster recognition algorithms will vie among themselves,

after which the three approaches for generating representatives will be evaluated.

11.6.1 Cluster Recognition

Automatic cluster recognition is clearly very desirable when analyzing large sets

of data. In this section, we will first discuss the quality of our three cluster recognition

algorithms. For this evaluation we use the CAR data set. Secondly, we discuss the

efficiency by using the CAR and the PLANE data set.

Effectivity. The CAR data set exhibit the commonly seen quality of unpro-

nounced but nevertheless to the observer clearly visible clusters. The corresponding

reachability plots of the different cluster recognition algorithms are depicted in Fig-

ure 172.

Figure 172a shows that the cluster_tree algorithm does not find any clusters at all

in the CAR data set, with the suggested default ratio-parameter of 75% [SQL+ 03].

In order to detect clusters in the CAR data set, we had to adjust the ratio-input param-

eter to 95%. In this case the cluster_tree algorithm detected some clusters but missed

Figure 172: Cluster recognition of CAR parts.
(Vector set model with 7 covers)

a) Cluster_tree, b) ξ-clustering, and c) Gradient-clustering

a)

b)

c)

recognized

clusters

many meaningful

some clusters
are recognized

no clusters
are recognized

clusters and sub-
clusters recognized

Evaluation 309

out on some other important clusters and did not detect any cluster hierarchies at all.

If we have rather high reachability values, e.g. values between 5-7 as in Figure 172,

the ratio-parameter for the cluster_tree algorithm should be higher than for smaller

values. Let us note that we made similar observations for the PLANE data set. Gen-

erally, in cases where a reachability graph consists of rather high reachability values

or does not present spikes at all, but clusters are formed by smooth troughs in the

waveform, this cluster recognition algorithm is unsuitable. Furthermore, it is inher-

ently unable to detect narrowing clusters where a cluster has one sub-cluster of in-

creased density (cf. Figure 165).

On the other hand, the ξ−clustering approach successfully recognizes some clus-

ters while also missing out on significant subclusters (cf. Figure 172b). This algo-

rithm has some trouble recognizing cluster structures with a significant differential of

“steepness”. For instance, in Figure 165 it does not detect the narrowing cluster B

inside of cluster A because it tries to create steep down-areas containing as many

points as possible. Thus, it will merge the two steep edges if their steepness exceeds

the threshold ξ.

Finally, we look at our new gradient-clustering algorithm. Figure 172c shows that

the recognized cluster structure is close to the intuitive one, which an experienced

user would manually derive. Clusters which are clearly distinguishable and contain

more than MinPts elements are detected by this algorithm. Not only does it detect a

lot of clusters, but it also detects a lot of meaningful cluster hierarchies, consisting of

narrowing subclusters.

To sum up, in all our tests the gradient-clustering algorithm detected much more

clusters than the other two approaches, without producing any redundant and unnec-

essary cluster information.

Efficiency. In all tests, we first created the reachability plots and then applied the

algorithms for cluster recognition and representation. Let us note that we could also

have integrated the gradient-clustering into the OPTICS run without causing any

noteworthy overhead.

The overall runtimes for the three different cluster recognition algorithms are de-

picted in Figure 173. Our new gradient-clustering algorithm does not only produce

the most meaningful results, but also in sufficiently short time.

310 BOSS: Browsing Optics-Plots for Similarity Search

11.6.2 Cluster Representation

After a cluster recognition algorithm has analyzed the data, algorithms for cluster

representation can help to get a quick visual overview of the data. With the help of

representatives, large sets of objects may be characterized through a single object of

the data set. We extract sample clusters from the CAR data set in order to evaluate the

different approaches for cluster representatives. In our first tests, we set the number

of representatives to k = 1.

The objects of one cluster from the car data set are displayed in Figure 174. The

annotated objects are the representatives computed by the respective algorithms.

Both the Maximum Successor and the Minimum Core Distance approaches yield

good results. Despite the slight inhomogeneity of the cluster, both representatives

sum up the majority of the elements within the cluster. This cannot be said of the

representative computed by the commonly used medoid method, which selects an

object from the trailing end of the cluster. This cluster and the corresponding repre-

sentatives are no isolated cases, but reflect our general observations. Nevertheless,

there have been some rare cases where the medoid approach yielded the more intui-

tive representative than the other two approaches.

If we allow a higher number of representatives, for instance k = 3, it might be better

to display the representatives of all three approaches to reflect the content of the

cluster, instead of displaying the three best representatives of one single approach. If

we want to confine ourselves to only one representative per cluster, the best possible

choice is to use the representative of the Maximum Successor approach.

11.6.3 Summary

The results of our experiments show, that our new approaches for the automatic

cluster extraction and for the determination of representative objects outperform ex-

isting methods. It theoretically and empirically turned out, that our gradient-cluster-

CAR
(200 parts)

PLANE
(5000 parts)

cluster_tree 0.06 s 1.93 s
ξ-clustering 0.22 s 5.06 s
gradient-clustering 0.31 s 3.57 s

Figure 173: CPU time for cluster recognition.

Summary 311

ing algorithm seems to be more practical than recent work for automatic cluster ex-

traction from hierarchical cluster representations. We also empirically showed that

our approaches for the determination of cluster representatives is in general more

suitable than the simple (extended) medoid approach. We refer the reader to [Vie 03]

and [BKKP 04] for a more detailed evaluation which confirm the observations made

in this chapter.

11.7 Summary

In this chapter, we proposed hierarchical clustering combined with automatic clus-

ter recognition and selection of representatives as a promising visualization tech-

nique. Its areas of application include visual data mining, similarity search and eval-

uation of similarity models. We surveyed three approaches for automatic extraction

of clusters. The first method, ξ-clustering, fails to detect some clusters present in the

clustering structure and suffers from the sensitivity concerning the choice of its input

parameter. The algorithm cluster_tree is by design unsuitable in the presence of nar-

rowing clusters. To overcome these shortcomings, we proposed a new method, called

Figure 174: Representatives displayed by the BOSS object viewer.

312 BOSS: Browsing Optics-Plots for Similarity Search

gradient-clustering. The experimental evaluation showed that this algorithm is able

to extract narrowing clusters. Furthermore, it can easily be integrated into the hierar-

chical clustering algorithm OPTICS producing no noteworthy overhead. The cluster

hierarchies produced by the gradient-clustering are similar to the clustering struc-

tures which an experienced user would manually extract.

Furthermore, we presented three different approaches to determine representative

objects for clusters. The commonly known medoid approach is shown to be question-

able for real-world data, while the approaches minimizing the core-distance and

maximizing the successors both deliver good results.

Finally, we described our industrial prototype, called BOSS, that implements the

algorithms presented in this chapter.

Chapter 12
Conclusions

In this thesis about “spatial database support for virtual engineering” we have

presented and evaluated techniques for the effective, efficient and seamless integra-

tion of collision queries and similarity queries into standard object-relational data-

base management systems. In this last chapter, we conclude our work with a short

summary of the main theoretical and practical results (cf. Section 12.1). Further-

more, we give indications for possible future research directions (cf. Section 12.2).

314 Conclusions

12.1 Summary and Contributions

This thesis has presented and evaluated techniques for the seamless integration of

spatial data management into standard object-relational databases. In this section, we

summarize the main theoretical and practical contributions of our work.

12.1.1 Virtual Engineering (Part I)

In the first part of this thesis, we discussed different application ranges of virtual

engineering, with a special emphasis on digital mockup and similarity search. We

introduced collision queries and similarity queries based on voxelized CAD objects

which form the foundation of modern engineering information systems. These two

query types can efficiently be carried out by using the paradigm of multi-step query

processing, which was also shortly sketched in this introductory part.

12.1.2 Database Support for Digital Mockup (Part II)

In the second part of this thesis, we concentrated on the efficient detection of

colliding CAD objects on top of off-the-shelf object-relational database management

systems. In order to get both industrial-strength and efficiency, relational access

methods are required. Relational indexing is an interesting and important research

area which attracted an increasing attention in the last years. We presented a detailed

survey and classification of the various and most commonly used relational access

methods. We illustrated the presented concepts by discussing the RR-tree, the

RQ-tree and the RI-tree. In an industrial case study, we integrated geometry based

search into the productive data management system of the Volkswagen AG. Thereby,

we motivated the need of exact selectivity estimation in order to find the most suit-

able query execution plans.

To complete the object-relational integration of spatial index structures, we devel-

oped a cost model for spatial intersection queries on RI-trees. We showed the suit-

ability of a quantile-based selectivity estimation which served as a foundation for the

presented cost model. According to our experimental evaluation, the average relative

error of the estimated selectivity to the actual one was in all tests beneath 30%. Based

on this rather accurate selectivity estimation, the average relative error of the estimat-

ed I/O cost to the actual I/O cost of index scans ranged from 0% to 32%.

Summary and Contributions 315

Not only did we use the quantile-based statistics to estimate the costs, but we also

used it to improve the access methods themselves. We explained how we can apply

the statistics maintained by the cost models to accelerate the query process for space

partitioning index structures. The main idea was to reduce the number of generated

join partners by grouping different join partners together according to a statistic driv-

en grouping algorithm. For hierarchical data partitioning index structures, we pro-

posed to reduce the navigational index traversal cost by using extended index range

scans. In our experiments, we applied the presented techniques to accelerate the

RR-tree, the RQ-tree and the RI-tree. Thereby, we achieved an average speed-up

between 20% and 10,000% for spatial collision queries.

Furthermore, we presented a cost based decompositioning approach for complex

spatial objects into gray containers which are stored in a compressed way within an

ORDBMS. The gray containers have been created by using a cost-based decomposi-

tioning algorithm which takes the access probability and the decompression cost of

the gray containers into account. The experimental evaluation on real-world test data

points out that our new concept accelerates collision queries on the RR-tree, the

RQ-tree, and the RI-tree as well as spatial join processing by up to two orders of

magnitude.

12.1.3 Database Support for Similarity Search (Part III)

In the third part of this thesis, we turned our attention to the effective and efficient

retrieval of similar objects. After shortly sketching various aspects and techniques

from the literature, we concentrated on suitable similarity models for voxelized CAD

objects. We introduced three specific space partitioning similarity models, namely

the volume model, the solid-angle model and our new eigen-value model. Each of

these models is based on a complete partitioning of the data space into disjoint cells.

The volume model compares two objects based on the number of the object voxels

in each cell of the space partitioning, the solid-angle model measures the concavity

and the convexity of geometric surfaces, and the eigen-value model uses the scatter-

ing of the voxel sets to distinguish the objects by computing the minimum bounding

ellipsoid of the voxel set in each cell of the given space partitioning. By means of a

new evaluation method based on density-based hierarchical clustering, we showed

that the eigen-value model yields the most meaningful results of the three space par-

titioning models. Unfortunately, it is almost three times slower than the other two

316 Conclusions

models because of the three times higher dimensionality of the corresponding feature

vectors.

Besides the space partitioning models, we also investigated data partitioning sim-

ilarity models, starting with the cover-sequence model. The basic idea of this model

is to find large covers which approximate the object as good as possible. These covers

are organized in a cover sequence which provides a sequential description of the

object. The cover sequence is organized in a single feature vector, so that the distance

between two objects can easily be determined by the corresponding feature distance.

This model served as a starting point for our new vector set model which is based on

a new paradigm in similarity search. In contrast to all the other four models, the

vector set model uses sets of feature vectors for representing an object instead of

single feature vectors. After introducing an appropriate distance measure on sets of

feature vectors, i.e. the minimal matching distance, we introduced three different

filter steps, the centroid approach, the Euclidean norm approach and the closest pair

approach, helping to accelerate similarity queries. We showed that the combination

of the centroid approach and the Euclidean norm approach is especially suitable for

efficient similarity search on vector set data, as it can be computed efficiently and the

information of each vector and each dimension is taken into consideration. Further-

more, we introduced suitable optimizations for the Relational M-tree, i.e. the Scan-

ning M-tree, the Filtering M-tree and the Caching M-tree. We showed that although

the Relational M-tree itself is clearly outperformed by the presented filters, the opti-

mized Relational M-tree is the method of choice for efficiently carrying out similar-

ity range queries.

To sum up, if a high quality similarity model is needed, the best possible choice is

to use the vector set model. By means of the optimized Relational M-tree, which is

based on the introduced filter techniques, the overall response time of the vector set

model is also acceptable. Nevertheless, similarity queries based on the high quality

vector set model are still slower than similarity queries on the single feature vector

models. Therefore, the cover-sequence model and the eigen-value model might be

the right choice, if the emphasis is on efficiency rather than on effectiveness.

Finally, we illustrated how an appropriate visualization of the hierarchical cluster-

ing structure can aid the user in his time consuming task of finding similar objects.

We introduced a new approach for automatically extracting significant clusters out of

a hierarchical cluster representation, called gradient clustering. Furthermore, we pre-

Potentials for Future Work 317

sented three different approaches for determining suitable cluster representatives, i.e.

the medoid approach, the core-distance approach and the maximum successor

approach. Based on these techniques, we developed a new data mining tool, called

BOSS, which allows the user to get an overview over a large collection of CAD

objects. Thus, even if the user has no specific part in mind, he or she might gain

important insight and extract new knowledge from the hierarchical cluster represen-

tation of the data set.

12.2 Potentials for Future Work

We believe that this work can serve as a starting point for many new research

activities. In the following, we will present different directions of ongoing research

projects which have been motivated by this thesis. In Section 12.2.1, we shortly

sketch how Part II of this thesis might be useful for haptic simulations. In

Section 12.2.2, we describe how the patterns introduced in Chapter 6 can lead to a

new similarity model for voxelized CAD data. In Section 12.2.3, we discuss two

different approaches for accelerating density-based clustering algorithms. In Section

12.2.4, we introduce a new approach for navigating through massive data sets, which

creates clusters of spherical shapes. We close this thesis in Section 12.2.5 with a short

discussion about a browsing tool for distributed data sets.

12.2.1 Efficient Haptic Simulation

Many approaches have been developed to emulate the physical constraints of nat-

ural surfaces, including the computation of force feedback, to capture the contact

with virtual objects and to prevent parts and tools from interpenetrating

(cf. Section 1.1.3). In order to provide real-time haptic rendering, intelligent

pre-fetching strategies have to be combined with efficient spatial index structures.

We think that the cost-based decompositioning algorithm of spatial objects as pre-

sented in Chapter 6 together with the statistic-driven query optimization approach of

Chapter 5 form a good starting point for developing new algorithms suitable for effi-

cient haptic rendering [Had 04].

318 Conclusions

12.2.2 A Similarity Model based on Patterns

In Chapter 6, we showed that space filling curves enumerate the data space in a

structured way, and that we can find these “structures” in the resulting voxel se-

quence describing our spatial object. We used these patterns for the efficient storage

of our decomposed gray containers. As patterns describe the interesting, differentiat-

ing area of an object, we suggest to build a new similarity distance function based on

patterns. As the concrete form of a pattern depends on the location of the object

within the data space, we try to extract information from the patterns which are little

susceptible to translation, rotation, and reflection. A good approach might be to use

aggregated information of the various patterns, i.e. a pattern histogram. This histo-

gram contains information about the number of the patterns, their length and their

density. By means of a suitable distance function between different pattern histo-

grams, we try to get a similarity model which is inherently invariant w.r.t. rotation,

reflection and translation so that no further normalization steps are required [Bra 04].

12.2.3 Efficient Density-Based Clustering

In this section, we introduce two different approaches for accelerating density-

based clustering algorithms which form the foundation of BOSS.

Filter based Clustering. For all complex objects where filters are available, we

can also cluster based on the filter information instead of the exact information. This

would result in a much faster clustering algorithm which, on the other hand, might

produce worse results. Approximated clustering seems to be a very promising re-

search area for many application ranges, e.g. distributed clustering (cf.

Section 12.2.5) and clustering of mobile objects [Tam 04], where a good trade off

between quality and runtime is desired. The quality of the produced results could be

measured as shown in [JKP 04a][JKP 04b].

When we are interested in the exact result, we can use an approach which is quite

similar to the one used by the Filtering M-tree but which requires a little bit more

bookkeeping. The main idea is as follows. We can accelerate clustering algorithms as

for instance OPTICS [ABKS 99] by carrying out the range queries on the filters

instead of computing the exact object representations. The thereby retrieved objects

are inserted into the priority queue according to the filter distances. For the first

element of the queue, we always compute the exact distance and insert it again into

the priority queue. If for the first element of the queue the exact distance has already

Potentials for Future Work 319

been computed, we carry out a range query around this element on the filter database.

This is a slightly simplified presentation of a more complex algorithm which produc-

es exactly the same result as the density-based clustering algorithms DBSCAN and

OPTICS but with less exact distance computations. Similar to the Filtering M-tree,

the speedup of this approach heavily depends on the quality of the filters. Our first

experiments showed that we can accelerate the OPTICS algorithm by up to one order

of magnitude when using the centroid filter as lower bounding filter for the minimal

matching distance.

Let us note that we can apply the idea of “filtering clustering” also to other clus-

tering algorithms, e.g. k-means [McQ 67]. As filter for the feature vectors to be clus-

tered, we might use the Euclidean norm of these vectors (cf. Section 10.1). For more

details we refer the interested reader to [BKP 04b].

Index based Clustering. The above mentioned approach has two drawbacks.

First, we need suitable filters. Second, the approach results in a rather high main

memory footprint. In this section, we sketch a new approach based on metric index

structures without the mentioned drawbacks. For each database object which is with-

in an ε−range of a given query object, we have to perform an exact distance compu-

tation even if we use appropriate index structures. In this new approach, we do not

compute all of these distances. Instead, we compute only the distances necessary to

determine the core-distance of the query object. Furthermore, we manage subtrees

within the priority queues of our density-based clustering algorithms exploiting the

pre-clustering of the metric index structures. We assign two values to each subtree T

indicating its minimal and maximal distance from a possible predecessor object. If a

predecessor oa of a subtree T has a minimum distance to T which is higher than the

maximum distance of a predecessor ob, we do not have to compute any distances

between oa and the objects covered by T. For more details we refer the interested

reader to [BKP 04b].

12.2.4 Navigating through Massive Multimedia Data Sets

BOSS is based on the density-based hierarchical clustering algorithm OPTICS and

on suitable cluster recognition and representation algorithms. In this section we sug-

gest a different approach which helps to navigate through massive data sets which is

not based on the concept of density-connectivity. For each object o, we carry out a

range query around the object o, and determine the core-level of this object. Then we

320 Conclusions

order all objects according to a quality criterion, walk through the sorted list, and

determine thereby a set of representatives. Each representative represents objects

which are in a certain range. For the set of representatives we carry out range queries

with a higher ε-value, order it again according to the quality criterion, and determine

a even smaller subset of representatives. By recursively invoking this approach, we

can create a browsing-tree, containing suitable representatives. For more details we

refer the reader to [KKP 04].

As the representatives are computed while computing the tree, we do not need any

additional algorithms for cluster recognition and representation. The main advantage

of this approach is that the hierarchical clustering structure consists of clusters of

spherical shape which seem more appropriate for similarity search than the

density-connected clusters created by OPTICS. The resulting tree could be regarded

as a browsing tool but also as a new metric index structure which was created by a

bulk- loading operation. In order to make the approach dynamic, we carry out update

operations similar to update operations on Slim-trees [TTSF 00], i.e. we propose to

use a variant of the slim-down algorithm trying to keep the tree tight. The quality of

the resulting dynamic browsing tool could be measured by means of numerical val-

ues reflecting the degree of overlapping nodes (cf. the fat-factor and the bloat-factor

presented in [TTSF 00]). A decreasing quality might trigger a complete reclustering.

12.2.5 Browsing Distributed Data Sets

Nowadays, large amounts of heterogeneous, complex data reside on different, in-

dependently working computers which are connected to each other via local or wide

area networks (LANs or WANs). Examples comprise distributed mobile networks,

sensor networks or supermarket chains where check-out scanners, located at differ-

ent stores, gather data unremittingly. Furthermore, international companies such as

DaimlerChrysler have some data which is located in Europe and some data in the US.

Those companies have various reasons why the data cannot be transmitted to a cen-

tral site, e.g. limited bandwidth or security aspects.

In [JKP 03][JKP 04b] a distributed clustering algorithm based on DBSCAN was

introduced which determines local representatives quite similar to the approach pre-

sented in the foregoing section. This distributed clustering algorithm together with

the approaches outlined in Section 12.2.3 and Section 12.2.4 allow us to create an

efficient and effective distributed browsing tool for complex multimedia objects.

321

List of Figures

1 Introduction

Fig. 1 Partial virtual prototype of a car. 4

Fig. 2 Digital mock-up (DMU) [IWB 01] . 5
Fig. 3 Spatial queries on CAD data. . 6

Fig. 4 Browsing through a hierarchy of CAD objects. . 7
Fig. 5 Sample scenario for haptic rendering. 8

Fig. 6 Virtual environment of the International Space Station. 8
Fig. 7 Spatial referencing of engineering documents. 9

2 Spatial Engineering Databases

Fig. 8 Scan conversion on a triangulated surface. 18

Fig. 9 Filling a closed voxelized surface. . 19
Fig. 10 Examples of space-filling curves in the two-dimensional case 19

Fig. 11 Object decompositions . 20
Fig. 12 Feature transformation. 21

Fig. 13 Conservative and progressive approximations . 23
Fig. 14 Multi-step query processing. 24

3 Object Relational Indexing

Fig. 15 Classification of data models. 31

Fig. 16 Methods for extensible index definition and manipulation 33

Fig. 17 Object-relational DDL statements for CAD data 34
Fig. 18 A custom index CADINDEX for CAD objects. 35

Fig. 19 SQL-statements for intersection queries . 35
Fig. 20 Methods for extensible query optimization . 36

Fig. 21 Approaches to implement custom access methods 37

322

Fig. 22 B-tree routine next_node for different data types 39
Fig. 23 User-defined data type FracNum. 40
Fig. 24 Paradigms and characteristics of access methods 45

Fig. 25 The MBR-List, a simple example for a relational access method. 46
Fig. 26 Box queries on CAD data . 50
Fig. 27 Relational mapping of an R-tree directory . 52
Fig. 28 Cursor-driven window query on a Relational R-tree. 53
Fig. 29 Relational mapping of a Linear Quadtree . 56

Fig. 30 Cursor-driven window query for the RQ-tree . 57
Fig. 31 The Relational Interval Tree . 58
Fig. 32 SQL statement for a single query interval with bind variables. 59
Fig. 33 Naive query processing for an interval sequence. 60
Fig. 34 Different execution plans. 64

Fig. 35 Optimal access paths . 65
Fig. 36 Processing a query on the DIVE system. . 66

4 A Cost Model for Spatial Intersection Queries

Fig. 37 Extensible indexing / optimization frameworks. 69

Fig. 38 Selectivity estimation on an interval histogram. 73
Fig. 39 Selectivity estimation on node quantiles. . 76
Fig. 40 Touched leaf blocks and query gaps for an intersection query τ. 78
Fig. 41 Additional I/O due to block gaps g between range queries. 80
Fig. 42 Approximation C of a fine-grained interval sequence F. 82

Fig. 43 Extended RI-tree cost model. . 85
Fig. 44 Real and estimated gap distribution. 86
Fig. 45 Histograms of interval distributions . 87
Fig. 46 Computation cost of histogram-based and quantile-based statistics. . . . 88
Fig. 47 Relative error of selectivity estimation for histograms and quantiles . . . 89

Fig. 48 Relative error of selectivity estimation for varying statistic resolutions. 90
Fig. 49 Relative error of selectivity estimation . 90
Fig. 50 Relative error for cost estimation . 91
Fig. 51 Output cost and join overhead for queries evaluated 92
Fig. 52 Output cost and join cost for queries using interval sequences 92

5 Statistic-Driven Acceleration of Relational Index Structures

Fig. 53 Accelerated query processing . 100
Fig. 54 Cost-based tile grouping . 103
Fig. 55 Accelerated window query on a Relational Quadtree 103

Fig. 56 Grouping algorithm Decompose . 105

323

Fig. 57 An example for an hierarchical index structure (the RR-tree) 106

Fig. 58 SQL box intersection query on a RR-tree (Oracle syntax) 107

Fig. 59 Acceleration of hierarchical index structures . 108

Fig. 60 Determination of the overlap-factor σ (RR-tree) 111

Fig. 61 RI-tree histograms . 113

Fig. 62 Used index levels. 113

Fig. 63 RI-tree optimizations without using statistics . 114

Fig. 64 Statistic based acceleration for two variants of the RI-tree 115

Fig. 65 Statistic based accelerated RQ-tree on the CAR data set 116

Fig. 66 Box queries for the RI-tree on the PLANE data set 117

Fig. 67 RR-tree for varying selectivity. 118

6 Cost-based Decompositioning of Complex Spatial Objects

Fig. 68 Gray containers . 126

Fig. 69 Patterns . 129

Fig. 70 Flow diagram of QSDC compression algorithm 133

Fig. 71 Query distribution functions Pi(x,y) . 134

Fig. 72 Computation of average access probabilities of gray containers 136

Fig. 73 Grouping algorithm GroupCon . 137

Fig. 74 SQL intersection-statements based on gray containers 139

Fig. 75 Spatial join procedure. 144

Fig. 76 Decompositioning algorithm JoinGroupCon. 148

Fig. 77 Nested-Loop join algorithm. 149

Fig. 78 Intervals stemming from R and the corresponding histograms. 151

Fig. 79 Two-phase sort-merge join. 152

Fig. 80 Interval length depending on the MAXGAP parameter 155

Fig. 81 Storage requirements for the RI-tree (PLANE). 155

Fig. 82 Update operations for the RI-tree (CAR) . 156

Fig. 83 Boolean intersection queries for MaxGap(DC) (RI-tree (PLANE)) . . . 157

Fig. 84 Intersection queries (CAR) . 158

Fig. 85 Boolean intersection queries for MaxGap(QSDC).. 158

Fig. 86 Tested candidate pairs of gray query and database intervals. 159

Fig. 87 Candidate and result sets . 160

Fig. 88 Response time . 161

Fig. 89 GRP(DC) evaluated for the nested loop join (CAR data set) 163

Fig. 90 Overall nested-loop join performance for different packers 164

Fig. 91 Sort-merge join performance. 165

Fig. 92 Overall sort-merge join performance . 166

324

7 Foundations of Similarity Search

Fig. 93 Similarity range query . 173

Fig. 94 Similarity k-nearest neighbor query . 174

Fig. 95 Examples of a q-ranking for two query points q’ and q” 175

Fig. 96 SQL-Statement for a range query . 176

Fig. 97 SQL-Statement for a k-nn query . 176

Fig. 98 SQL-Statement for a ranked k-nn query . 177

Fig. 99 SQL-Statement for a ranked k-nn query with additional constraints . . 177

Fig. 100 The R*-tree architecture . 179

Fig. 101 Range query processing on R-trees . 186

Fig. 102 Incremental ranking query processing on R-trees 188

Fig. 103 Similarity range query processor . 190

Fig. 104 k-nearest neighbor query processor according to [KSF+ 96] 191

Fig. 105 Multi-step query processor for optimal k-nearest neighbor search 192

Fig. 106 Multi-step ranking queries. 193

Fig. 106 Multi-step ranking queries. 193

Fig. 107 The Section Coding feature transformation. 194

Fig. 108 Section coding of 2D regions . 196

Fig. 109 Shells and sections as basic models for shape histograms. 197

Fig. 110 Classification of complex similarity models . 198

8 Similarity Models for Voxelized CAD Data

Fig. 111 2D space partitioning with 4 cells. . 205

Fig. 112 The Solid-Angle model . 206

Fig. 113 A 2D example for the eigen-value model . 207

Fig. 114 The eigen-value model with the principal axis of a sample object 209

Fig. 115 The cover sequence model . 210

Fig. 116 Advantages of free permutations . 213

Fig. 117 An example of a feasible vertex labeling and an equality subgraph . . . 220

9 Effectiveness of Similarity Models

Fig. 118 Results of 5-nn queries for a “good” and “bad” similarity model. 225

Fig. 119 Density-reachability and density-connectivity 227

Fig. 120 Nested density-based clusters . 228

Fig. 121 Illustration of core-distance and reachability-distance. 230

Fig. 122 Reachability plot (right) computed by OPTICS for a 2D data set (left) 231

Fig. 123 Effects of parameter settings on the cluster ordering of OPTICS 232

Fig. 124 Reachability plots for the space partitioning similarity models 234

325

Fig. 125 Objects found by the solid-angle model (cf. Figure 124c) 235

Fig. 126 Objects found by the eigen-value model (cf. Figure 124e) 236

Fig. 127 Reachability plots for the cover sequence model with 7 covers 238

Fig. 128 The minimum Euclidean distance under permutation. 238

Fig. 129 Reachability plots for the vector set model . 239

Fig. 130 Objects found by the cover sequence model (cf. Figure 127a) 240

Fig. 131 Objects found by the vector set model (cf. Figure 129c) 241

10 Efficiency of Similarity Models

Fig. 132 An ε-range query on an NB-tree . 245

Fig. 133 2-dimensional example for the centroid filter. 248

Fig. 134 The Euclidean norm vector . 249

Fig. 135 2-dimensional example for the Euclidean norm filter. 252

Fig. 136 2-dimensional example for the closest pair filter. 254

Fig. 137 Similarity range search on M-trees.. 257

Fig. 138 Relational mapping of an M-tree directory . 259

Fig. 139 SQL range query . 259

Fig. 140 The overlap-factor σ for range queries on the Relational M-tree 261

Fig. 141 Positive Pruning for the M-tree. . 262

Fig. 142 Positive Pruning on M-trees. 263

Fig. 143 Similarity range query based on the filtering M-tree. 264

Fig. 144 Filtering M-tree.. 265

Fig. 145 FindSubTree-function for an M-tree. . 266

Fig. 146 NodeSplit-function for an M-tree. 267

Fig. 147 Caching M-tree. 269

Fig. 148 SQL-Statement for range queries . 270

Fig. 149 Query times of range queries on the single vector models 272

Fig. 150 Number of candidates of range queries on the single vector models . . 273

Fig. 151 Query times of k-nn queries on the single vector models 274

Fig. 152 Number of candidates of k-nn queries on the single vector models . . . 275

Fig. 153 Number of candidates of range queries on the vector set model. 278

Fig. 154 Query times of range queries on the vector set model 279

Fig. 155 Number of candidates of k-nn queries on the vector set model 280

Fig. 156 Query times of k-nn queries on the vector set model 281

Fig. 157 k-nn queries on the vector set model (RM-tree) 283

Fig. 158 Range queries on the vector set model (RM-tree) 284

Fig. 159 Range queries on the vector set model (7 covers) (optimized RM-tree) 285

Fig. 160 Range queries on the vector set model (optimized RM-tree) 286

326

Fig. 161 Creation of a Relational M-tree . 288

11 BOSS: Browsing Optics-Plots for Similarity Search

Fig. 162 Different approaches to visual data mining . 293
Fig. 163 Browsing through reachability plots with different thresholds εcut. . . . 294
Fig. 164 Hierarchically ordered representatives . 296
Fig. 165 Sample narrowing clusters. 297
Fig. 166 Gradient vector . 299
Fig. 167 Inflexion points . 300
Fig. 168 Pseudo code of the gradient-clustering algorithm 302
Fig. 169 Successor graph. . 305
Fig. 170 BOSS distributed architecture . 306
Fig. 171 BOSS screenshot . 307
Fig. 172 Cluster recognition of CAR parts . 308
Fig. 173 CPU time for cluster recognition. 310
Fig. 174 Representatives displayed by the BOSS object viewer 311

12 Conclusions

327

List of Definitions

Def. 1 (Relational Access Method) . 46

Def. 2 (Cursor-Bound Operation).. 48

Def. 3 (Cursor-Driven Operation) . 49

Def. 4 (Navigational Scheme) . 51

Def. 5 (Direct Scheme) . 55

Def. 6 (Interval Histogram). . 72

Def. 7 (Histogram-based Selectivity Estimate). . 72

Def. 8 (Quantile Vector).. 73

Def. 9 (Node Quantiles). 73

Def. 10 (Average Node Distances).. 74

Def. 11 (Span of Touched Nodes). . 74

Def. 12 (Quantile-based Selectivity Estimate). 75

Def. 13 (Intersection Ranking Function). 82

Def. 14 (Aggregates on Interval Sequences) . 82

Def. 15 (Voxelized Object) . 125

Def. 16 (Gray Container, Gray Container Sequence) . 125

Def. 17 (Non-Overlapping Gray Containers) . 127

Def. 18 (Object Intersection) . 138

Def. 19 (Similarity Range Query) . 172

Def. 20 (Similarity k-Nearest Neighbor Query) . 173

Def. 21 (Similarity Ranking Query) . 175

Def. 22 (Lower-Bounding Property) . 189

Def. 23 (Metric). 200

Def. 24 (Metric Object Similarity) . 200

Def. 25 (Feature-Based Object Similarity) . 200

328

Def. 26 (Invariance). 201
Def. 27 (Extended Metric Object Similarity) . 201
Def. 28 (Minimum Euclidian Distance under Permutation) 214
Def. 29 (Weighted Complete Bipartite Graph) . 216
Def. 30 (Perfect Matching) . 216
Def. 31 (Minimum Weight Perfect Matching) . 217
Def. 32 (Enumeration of a Set) . 217
Def. 33 (Minimal Matching Distance) . 217
Def. 34 (Dummy Vectors). 218
Def. 35 (M-Alternating Path) . 219
Def. 36 (Feasible Vertex Labeling) . 219
Def. 37 (Directly Density-Reachable) . 226
Def. 38 (Density-Reachable) . 226
Def. 39 (Density-Connected). 227
Def. 40 (Cluster and Noise). 227
Def. 41 (Core-Distance) . 229
Def. 42 (Reachability-Distance) . 229
Def. 43 (Cluster Ordering) . 230
Def. 44 (Extended Centroid) . 247
Def. 45 (Euclidean Norm Vector) . 249
Def. 46 (The Closest Pair Distance) . 252
Def. 47 (Inflexion Index). 299
Def. 48 (Inflexion Point) . 300
Def. 49 (Gradient Determinant) . 300
Def. 50 (Predecessor) . 304
Def. 51 (Successor) . 304

329

References

[ABKS 99] Ankerst M., Breunig M., Kriegel H.-P., Sander J.: OPTICS: Ordering Points
To Identify the Clustering Structure. Proc. ACM SIGMOD Int. Conf. on Man-
agement of Data, 49-60, 1999.

[AFS 93] Agrawal R., Faloutsos C., Swami A. Efficient Similarity Search in Sequence
Databases. Proc. 4th. Int. Conf. on Foundations of Data Organization and
Algorithms (FODO ’93), LNCS 730, 69-84, 1993.

[AKKS 99] Ankerst M., Kastenmüller G., Kriegel H.-P., Seidl T.: 3D Shape Histograms
for Similarity Search and Classification in Spatial Databases. Proc. Int. Sym-
posium on Large Spatial Databases (SSD), 207-226, 1999.

[ALSS 95] Agrawal R., Lin K.-I., Sawhney H., Shim K.: Fast Similarity Search in the
Presence of Noise, Scaling, and Translation in Time-Series Databases. Proc.
21th Int. Conf. on Very Large Databases (VLDB), 490-501, 1995.

[Ank 00] Ankerst M.: Visual Data Mining. Ph.D. Thesis, Institute for Computer Sci-
ence, University of Munich, 2000.

[Aok 98] Aoki P. M.: Generalizing “Search” in Generalized Search Trees. Proc. 14th
Int. Conf. on Data Engineering (ICDE), 380-389, 1998.

[APR+ 98] Arge L., Procopiuc O., Ramaswamy S., Suel T., Vitter J.S.: Scalable Sweep-
ing-Based Spatial Join. Proc. 24th Int. Conf. on Very Large Databases
(VLDB), 570-581, 1998.

[APR 99] Acharya S., Poosala V., Ramaswamy S.: Selectivity Estimation in Spatial
Databases. Proc. ACM SIGMOD Int. Conf. on Management of Data, 13-24,
1999.

[AV 96] Arge L., Vitter J. S.: Optimal Dynamic Interval Management in External
Memory. Proc. 37th Annual Symp. on Foundations of Computer Science,
560-569, 1996.

[Bay 96] Bayer R.: The Universal B-Tree for multidimensional Indexing. Technical
University of Munich, TUM-I9637, 1996.

330 References

[BBB+ 97] Berchtold S., Böhm C., Braunmüller B., Keim D. A., Kriegel H.-P.: Fast Par-
allel Similarity Search in Multimedia Databases. Proc. ACM SIGMOD Int.
Conf. on Management of Data, Best Paper Award, 1-12, 1997.

[BBD+ 01] Bercken J., Blohsfeld B., Dittrich J.-P., Krämer J., Schäfert T., Schneider M.,
Seeger B.: XXL - A Library Approach to Supporting Efficient Implementa-
tions of Advanced Database Queries. Proc. 27th Int. Conf. on Very Large
Databases (VLDB), 39-48, 2001.

[BBG+ 90] Batory D. S., Barnett J. R., Garza J. F., Smith K. P., Tsukuda K., Twichell B.
C., Wise T. E.: GENESIS: An Extensible Database Management System. In:
Zdonik S. B., Maier D. (eds.): Readings in Object-Oriented Database Sys-
tems. 500-518, Morgan Kaufman, 1990.

[BBJ+ 00] Berchtold S., Böhm C., Jagadish H. V., Kriegel H.-P., Sander J.: Independent
Quantization: An Index Compression Technique for High-Dimensional Data
Spaces. Proc. Int. Conf. on Data Engineering (ICDE), 577-588, 2000.

[BBK 98] Berchtold S., Böhm C., Kriegel H.-P.: The Pyramid-Tree: Breaking the Curse
of Dimensionality. Proc. ACM SIGMOD Int. Conf. on Management of Data,
142-153, 1998.

[BBK 01] Böhm C., Berchtold S., Keim D.: Searching in High-dimensional Spaces:
Index Structures for Improving the Performance of Multimedia Databases.
ACM Computing Surveys, 2001.

[BBK+ 00] Berchtold S., Böhm C., Keim D., Kriegel H.-P., Xu X.: Optimal Multidimen-
sional Query Processing Using Tree Striping. Proc. 2nd. Int. Conf. on Data
Warehousing and Knowledge Discovery (DaWaK'00), 244-257, 2000.

[BBKK 97] Berchtold S., Böhm C., Keim D., Kriegel H.-P.: A Cost Model For Nearest
Neighbor Search in High-Dimensional Data Space. Proc. Int. Symposium on
Principles of Database Systems (PODS), 78-86, 1997.

[BBKM 99] Berchtold S., Böhm C., Kriegel H.-P., Michel U.: Implementation of Multidi-
mensional Index Structures for Knowledge Discovery in Relational Data-
bases. Proc. 1st Int. Conf. on Data Warehousing and Knowledge Discovery
(DaWaK), LNCS 1676, 261-270, 1999.

[BBKM 00] Berchtold S., Böhm C., Kriegel H.-P., Michel U.: Multidimensional Index
Structures in Relational Databases. Journal of Intelligent Information Sys-
tems (JIIS), Vol. 15, No. 1, 51-70, 2000.

[BDS 00] Bercken J., Dittrich J.-P., Seeger B.: javax.XXL: A Prototype for a Library of
Query Processing Algorithms. Proc. ACM SIGMOD Int. Conf. on Manage-
ment of Data, 588, 2000.

[BEK+ 98] Berchtold S., Ertl B., Keim D. A., Kriegel H.-P., Seidl T.: Fast Nearest Neigh-
bor Search in High-dimensional Space. Proc. 14th Int. Conf. on Data Engi-
neering (ICDE), 209-218, 1998.

[BEKS 00] Braunmüller B., Ester M., Kriegel H.-P., Sander J.: Efficiently Supporting
Multiple Similarity Queries for Mining in Metric Databases. Proc. 16th Int.
Conf. on Data Engineering (ICDE), 256-267, 2000.

[BF 95] Belussi A., Faloutsos C.: Estimating the Selectivity of Spatial Queries Using
the ‘Correlation’ Fractal Dimension. Proc. 21st Int. Conf. on Very Large
Databases (VLDB), 299-310, 1995.

331

[BK 97] Berchtold S., Kriegel H.-P.: S3: Similarity Search in CAD Database Systems.
Proc. ACM SIGMOD Int. Conf. on Management of Data, 564-567, 1997.

[BKK+ 03] Brecheisen S., Kriegel H.-P., Kröger P., Pfeifle M., Viermetz M.: Represen-
tatives for Visually Analyzing Cluster Hierarchies. Proc. 4th Int. Workshop on
Multimedia Data Mining MDM/KDD, 64-71, 2003.

[BKK+ 04] Brecheisen S.,Kriegel H.-P., Kröger P., Pfeifle M., Pötke M., Viermetz M.:
BOSS: Browsing OPTICS-Plots for Similarity Search. Proc. 20th Int. Conf.
on Data Engineering (ICDE), 2004.

[BKK 96] Berchtold S., Keim D. A., Kriegel H.-P.: The X-tree: An Index Structure for
High-Dimensional Data. Proc. 22nd Int. Conf. on Very Large Databases
(VLDB), 28-39, 1996.

[BKK 97a] Berchtold S., Keim D. A., Kriegel H.-P.: Using Extended Feature Objects for
Partial Similarity Retrieval. VLDB Journal, 6(4): 333-348, 1997.

[BKK 97b] Berchtold S., Keim D. A., Kriegel H.-P.: Section Coding: Ein Verfahren zur
Ähnlichkeitssuche in CAD-Datenbanken. Proc. 7. GI-Fachtagung Daten-
banksysteme in Büro, Technik und Wissenschaft (BTW), 152-171, 1997 (in
German).

[BKKP 04] Brecheisen S., Kriegel H.-P., Kröger P., Pfeifle M.: Visually Mining Through
Cluster Hierarchies. Proc. SIAM Int. Conf. on Data Mining (SIAMDM'04),
2004.

[BKKS 01] Breuning M., Kriegel H.-P., Kröger P., Sander J.: Data Bubbles: Quality Pre-
serving Performance Boosting. Proc. ACM SIGMOD Int. Conf. on Manage-
ment of Data, 79-90, 2001.

[BKKS 00] Berchtold S., Keim D. A., Kriegel H.-P., Seidl T.: Indexing the Solution
Space: A New Technique for Nearest Neighbor Search in High-Dimensional
Space. IEEE Transactions on Knowledge and Data Engineering (TKDE), Vol.
12, No. 1, 45-57, 2000.

[BKP 98] Berchtold S., Kriegel H.-P., Pötke M.: Database Support for Concurrent Dig-
ital Mock-Up. Proc. IFIP Int. Conf. PROLAMAT, Globalization of Manufac-
turing in the Digital Communications Era of the 21st Century, Kluwer
Academic Publishers, 499-509, 1998.

[BKP 04a] Brecheisen S., Kriegel H.-P., Pfeifle M.: Efficient Query Processing on Sets of
Feature Vectors. Submitted for publication.

[BKP 04b] Brecheisen S., Kriegel H.-P., Pfeifle M.: Efficient Density-Based Clustering
of Complex Objects. University of Munich, Technical Report, 2004.

[BKS 93a] Brinkhoff T., Kriegel H.-P., Schneider R.: Comparison of Approximations of
Complex Objects Used for Approximation-based Query Processing in Spatial
Database Systems. Proc. 9th Int. Conf. on Data Engineering (ICDE), 40-49,
1993.

[BKS 93b] Brinkhoff T., Kriegel H.-P., Seeger B.: Efficient Processing of Spatial Joins
Using R-trees. Proc. ACM SIGMOD Int. Conf. on Management of Data, 237-
246, 1993.

[BKSS 90] Beckmann N., Kriegel H.-P., Schneider R., Seeger B.: The R*-tree: An Effi-
cient and Robust Access Method for Points and Rectangles. Proc. ACM SIG-
MOD Int. Conf. on Management of Data, 322-331, 1990.

332 References

[BKSS 94] Brinkhoff T., Kriegel H.-P., Schneider R., Seeger B.: Multi-Step Processing of
Spatial Joins. Proc. ACM SIGMOD Int. Conf. on Management of Data, 197-
208, 1994.

[BMH 92] Badel A., Mornon J. P., Hazout S.: Searching for Geometric Molecular Shape
Complementarity using Bidimensional Surface Profiles. Journal of Molecular
Graphics, Vol. 10, 205-211, 1992.

[BO 99] Boulos J., Ono K.: Cost Estimation of User-Defined Methods in Object-Rela-
tional Database Systems. ACM SIGMOD Record, 28(3), 22-28, 1999.

[Bra 04] Braun D.: Pattern based Similarity Search. Diploma Thesis, University of
Munich, 2004 (in German).

[Bro 01] Brown P.: Object-Relational Database Development – A Plumber’s Guide.
Informix Press, Menlo Park, CA, 2001.

[BSSJ 99] Bliujute R., Saltenis S., Slivinskas G., Jensen C.S.: Developing a DataBlade
for a New Index. Proc. 15th Int. Conf. on Data Engineering (ICDE), 314-323,
1999.

[BW 94] Burrows M., Wheeler D. J.: A Block-sorting Lossless Data Compression
Algorithm. Digital Systems Research Center Research Report 124, 1994.

[CBM 97] Carey R., Bell G., Marrin C.: ISO/IEC 14772-1:1997 Virtual Reality Model-
ing Language. VRML Consortium, 1997.

[CCF+ 99] Chen W., Chow J.-H., Fuh Y.-C., Grandbois J., Jou M., Mattos N., Tran B.,
Wang Y.: High Level Indexing of User-Defined Types. Proc. 25th Int. Conf. on
Very Large Databases (VLDB), 554-564, 1999.

[CCN+ 99] Carey M. J., Chamberlin D. D., Narayanan S., Vance B., Doole D., Rielau S.,
Swagerman R., Mattos N.: O-O, What Have They Done to DB2? Proc. 25th
Int. Conf. on Very Large Databases (VLDB), 542-553, 1999.

[CD 98] Chen F.-C. F., Dunham M. H.: Common Subexpression Processing in Multi-
ple-Query Processing. IEEE Trans. on Knowledge and Data Engineering,
10(3), 493-499, 1998.

[CDF+ 91] Carey M. J., DeWitt D. J., Frank D., Graefe G., Richardson J. E., Shekita E.
J., Muralikrishna M.: The Architecture of the EXODUS Extensible DBMS. In:
Dittrich K. R., Dayal U., Buchmann A. P. (eds.): On Object-Oriented Data-
base Systems. 231-256, Topics in Information Systems, Springer, 1991.

[CDG+ 90] Carey M. J., DeWitt D. J., Graefe G., Haight D. M., Richardson J. E., Schuh
D. T., Shekita E. J., Vandenberg S. L.: The EXODUS Extensible DBMS
Project: An Overview. In: Zdonik S. B., Maier D. (eds.): Readings in Object-
Oriented Database Systems. 474-499, Morgan Kaufman, 1990.

[CF 91] Clark K. B., Fujimoto T.: Product Development Performance – Strategy,
Organization, and Management in the World Auto Industry. Harvard Busi-
ness Scholl Press, Boston, MA, 1991.

[CNBM 01] Chávez E., Navarro G., Baeza-Yates R., Marroquín J.: Searching in Metric
Spaces. ACM Computing Surveys 33(3): 273-321, 2001.

[Con 86] Connolly M. Shape Complementarity at the Hemoglobin a1b1 Subunit Inter-
face. Biopolymers, 25:1229-1247, 1986.

333

[CPZ 97] Ciaccia P., Patella M., Zezula P.: M-tree: An Efficient Access Method for Sim-
ilarity Search in Metric Spaces. Proc. Int. Conf. on Very Large Data Bases
(VLDB), Athens, 426-435, 1997.

[CS 97] Carey M. J., Kossmann D.: On Saying "Enough Already!" in SQL. Proc.
ACM SIGMOD Int. Conf. on Management of Data, 219-230, 1997.

[CW 00] Cannane A., Williams H.: A Compression Scheme for Large Databases. Aus-
tralian Database Conference (ADC), 6-11, 2000.

[CWZ 99] Cannane A., Williams H., Zobel J.: A General-Purpose Compression Scheme
for Databases. Data Compression Conference (DCC), 519-520, 1999.

[CZ 01] Chaudhri A. B., Zicari R.: Succeeding with Object Databases. Wiley, New
York, NY, 2001.

[Dat 99] Date C. J.: An Introduction to Database Systems. Addison Wesley Longman,
Boston, MA, 1999.

[DDSS 95] DeFazio S., Daoud A., Smith L. A., Srinivasan J.: Integrating IR and RDBMS
Using Cooperative Indexing. Proc. 18th ACM SIGIR Conference on
Research and Development in Information Retrieval, 84-92, 1995.

[Deu 96] Deutsch P.: RFC1951, DEFLATE Compressed Data Format Specification.
http://rfc.net/rfc1951.html, 1996.

[DK 02] Döller M., Kosch H.: Enhancement of Oracle’s Indexing Capabilities through
GiST-implemented access methods. University of Klagenfurt, Technical
Report, No TR/ITEC/02/2.09, 2002.

[DKD+ 02] Döller M., Kosch H., Dörflinger B., Bachlechner A., Blaschke G.: Demon-
stration of an MPEG-7 Multimedia Data Cartridge. Proc. ACM Multimedia
Int. Conf. on Multimedia, 85 - 86, 2002.

[DKO+ 85] DeWitt D. J., Katz R. H., Olken F., Shapiro L. D., Stonebraker M., Wood
D. A.: Implementation Techniques for Main Memory Database Systems.
Proc. ACM SIGMOD Int. Conf. on Management of Data, 1-8, 1984.

[Doh 98] Doherty C. G.: Database Systems Management and Oracle8. Proc. ACM
SIGMOD Int. Conf. on Management of Data, 510-511, 1998.

[DS 00] Dittrich J.-P., Seeger B.: Data Redundancy and Duplicate Detection in Spa-
tial Join Processing. In Proc. ICDE, 2000, 535-546.

[DSTW 02] Dittrich J.-P., Seeger B., Taylor D. S., Widmayer P.: Progressive Merge Join:
A Generic and NON-Blocking Sort-Based Join Algorithm. In Proc. VLDB,
2002, 299-310.

[Ede 80] Edelsbrunner H.: Dynamic Rectangle Intersection Searching. Institute for
Information Processing Report 47, Technical University of Graz, Austria,
1980.

[EKSX 96] Ester M., Kriegel H.-P., Sander J., Xu X.: A Density-Based Algorithm for Dis-
covering Clusters in Large Spatial Databases with Noise, Proc. 2nd Int. Conf.
on Knowledge Discovery and Data Mining (KDD’96), 226-231, 1996.

[EM 97] Eiter T., Manilla H.: Distance Measures for Point Sets and their Computation.
Acta Informatica, 34(2): 103-133, 1997.

[EM 99] Eisenberg A., Melton J.: SQL:1999, formerly known as SQL3. ACM SIG-
MOD Record, 28(1), 131-138, 1999.

334 References

[FDFH 00] Foley J. D., van Dam A., Feiner S. K., Hughes J. F.: Computer Graphics:
Principles and Practice. Addison Wesley Longman, Boston, MA, 2000.

[FEF+ 94] Faloutsos C., Equitz M., Flickner M., Niblack W., Petkovic D., Barber R.:
Efficient and Effective Querying by Image Content. Journal of Intelligent
Information Systems, 3:231-262, 1994.

[FFS 00] Freytag J.-C., Flasza M., Stillger M.: Implementing Geospatial Operations in
an Object-Relational Database System. Proc. 12th Int. Conf. on Scientific
and Statistical Database Management (SSDBM), 209-219, 2000.

[FJ 03] Fonseca M. J., Jorge J. A.: Indexing High-Dimensional Data for Content-
Based Retrieval in Large Databases. Database Systems for Advanced Appli-
cations (DASFAA), 267-274, 2003.

[FJM 97] Faloutsos C., Jagadish H. V., Manolopoulos Y.: Analysis of the n-Dimen-
sional Quadtree Decomposition for Arbitrary Hyperrectangles. IEEE Trans.
on Knowledge and Data Engineering 9(3), 373-383, 1997.

[FR 89] Faloutsos C., Roseman S.: Fractals for Secondary Key Retrieval. Proc. ACM
Symposium on Principles of Database Systems (PODS), 247-252, 1989.

[FRM 94] Faloutsos C., Ranganathan M., Manolopoulos Y.: Fast Subsequence Match-
ing in Time-Series Databases. Proc. ACM SIGMOD Int. Conf. on Manage-
ment of Data, 419-429, 1994.

[Gae 95] Gaede V.: Optimal Redundancy in Spatial Database Systems. Proc. 4th Int.
Symp. on Large Spatial Databases (SSD), LNCS 951, 96-116, 1995.

[GG 98] Gaede V., Günther O.: Multidimensional Access Methods. ACM Computing
Surveys 30(2), 170-231, 1998.

[GHJV 95] Gamma E., Helm R., Johnson R., Vlissides J.: Design Patterns. Addison
Wesley Longman, Boston, MA, 1995.

[GLM 96] Gottschalk S., Lin M. C., Manocha D.: OBBTtree: A Hierarchical Structure
for Rapid Interference Detection. Proc. ACM SIGGRAPH Int. Conf. on
Computer Graphics and Interactive Techniques, 171-180, 1996.

[GM 93] Gary J. E., Mehrotra R.: Similar Shape Retrieval using a Structural Feature
Index. Information Systems, Vol. 18, No. 7, 525-537, 1993.

[GR 94] Gaede V., Riekert W.-F.: Spatial Access Methods and Query Processing in the
Object-Oriented GIS GODOT. Proc. AGDM Workshop, Geodetic Commis-
sion, 1994.

[Gri 92] Grieger I.: Graphische Datenverarbeitung. Springer Verlag, 1992.

[GS 92] Garcia-Molina H., Salem K.: Main Memory Database Systems: An Overview.
IEEE Trans. on Knowledge and Data Engineering 4(6), 509-516, 1992.

[Gud 95] Gudivada V. N.: Spatial Similarity Measures for Multimedia Applications.
Proc. Int. Conf. on Storage and Retrieval for Image and Video Databases
(SPIE), 363-372, 1995.

[Gün 99] Günther O.: Looking Both Ways: SSD 1999 ±10. Proc. 6th Int. Symp. on
Large Spatial Databases (SSD), LNCS 1651, 12-15, 1999.

[Güt 94] Güting R. H.: An Introduction to Spatial Database Systems. VLDB Journal,
3(4), 357-399, 1994.

335

[Gut 84] Guttman A.: R-trees: A Dynamic Index Structure for Spatial Searching. Proc.
ACM SIGMOD Int. Conf. on Management of Data, 47-57, 1984.

[Had 04] Haddad A.: Database Support for Haptic Simulation. Diploma Thesis, 2004
(in German).

[Hig 90] Higgins W. E.: Automatic Analysis of 3D and 4D Radiological Images. Grant
application to the Department of Health and Human Services, Dec 1990.

[HJR 97] Huang Y.-W., Jing N., Rundensteiner E. A.: A Cost Model for Estimating the
Performance of Spatial Joins Using R-trees. Proc. 9th Int. Conf. on Scientific
and Statistical Database Management (SSDBM), 30-38, 1997.

[HNP 95] Hellerstein J. M., Naughton J. F., Pfeffer A.: Generalized Search Trees for
Database Systems. Proc. 21st Int. Conf. on Very Large Databases (VLDB),
562-573, 1995.

[HNSS 95] Haas P. J., Naughton J. F., Seshadri S., Stokes L.: Sampling-Based Estimation
of the Number of Distinct Values of an Attribute. Proc. 21st Int. Conf. on Very
Large Databases (VLDB), 311-322, 1995.

[Hof 01] Hofmann R.: Integration of Spatial Search into PDM Systems. Diploma The-
sis, University of Munich, 2001 (in German).

[HS 93] Hellerstein J., Stonebraker M.: Predicate Migration: Optimizing Queries with
Expensive Predicates. Proc. ACM SIGMOD Int. Conf. on Management of
Data, 267-276, 1993.

[HS 95] Hjaltason G. R., Samet H.: Ranking in Spatial Databases. Proc. 4th Int. Symp.
on Large Spatial Databases (SSD), LNCS 951, 83-95, 1995.

[HSE+ 95] Hafner J., Sawhney H. S., Equitz W., Flickner M., Niblack W.: Efficient Color
Histogram indexing for Quadratic Form Distance Functions. IEEE Trans. on
Pattern Analysis and Machine Intelligence, Vol. 17, No. 7, 729-736, 1995.

[Huf 52] Huffman D. A.: A Method for the Construction of Minimum-Redundancy
Codes. Proc. Inst. Radio Engineers, 40(9), 1098-1101, 1952.

[HYFK 98] Huang J., Yagel R., Filippov V., Kurzion Y.: An Accurate Method for Voxel-
izing Polygon Meshes. Proc. IEEE Symp. on Volume Visualization, 119-126,
1998.

[IBM 98] IBM Corp.: IBM DB2 Spatial Extender Administration Guide and Reference,
Version 2.1.1. Armonk, NY, 1998.

[IBM 99] IBM Corp.: IBM DB2 Universal Database Application Development Guide,
Version 6. Armonk, NY, 1999.

[IGES 96] American National Standards Institute: ANSI/US PRO/IPO 100-1996 (Initial
Graphics Exchange Specification IGES 5.3). New York, NY, 1996.

[Inf 98] Informix Software, Inc.: DataBlade Developers Kit User’s Guide, Version
3.4. Menlo Park, CA, 1998.

[Inf 99] Informix Software, Inc.: Informix R-Tree Index User’s Guide, Version 9.2.
Menlo Park, CA, 1999.

[IWB 01] Digital Mock-up Process Simulation For Product Conception and Down-
stream Processes (Brite-Euram Project BRPR-CT95-0066), http://
www.iwb.tum.de/projekte/dmu-ps.

336 References

[Jag 90] Jagadish H. V.: Linear Clustering of Objects with Multiple Attributes. Proc.
ACM SIGMOD Int. Conf. on Management of Data, 332-342, 1990.

[Jag 91] Jagadish H. V.: A Retrieval Technique for Similar Shapes. Proc. ACM SIG-
MOD Int. Conf. on Management of Data, 208-217,1991.

[JB 91] Jagadish H. V., Bruckstein A. M.: On sequential shape descriptions. Pattern
Recognition, 1991.

[JD 88] Jain A. K., Dubes R. C.: Algorithms for Clustering Data. Prentice-Hall Inc.,
1988.

[JKP 03] Januzaj E., Kriegel H.-P., Pfeifle M.: Towards Effective and Efficient Distrib-
uted Clustering. International ICDM Workshop on Clustering Large Data
Sets, 49-58, 2003.

[JKP 04a] Januzaj E., Kriegel H.-P., Pfeifle M.: A Quality Measure for Distributed Clus-
tering. Proc. International Conference on Databases and Applications (DBA),
2004.

[JKP 04b] Januzaj E., Kriegel H.-P., Pfeifle M.: DBDC: Density Based Distributed Clus-
tering. Proc. 9th International Conference on Extending Database Technol-
ogy (EDBT), 2004.

[JS 99] Jensen C. S., Snodgrass R. T.: Temporal Data Management. IEEE Trans. on
Knowledge and Data Engineering 11(1), 36-44, 1999.

[Kau 87] Kaufman A.: An Algorithm for 3D Scan-Conversion of Polygons. Proc. Euro-
graphics, 197-208, 1987.

[KB 95] Kornacker M., Banks D.: High-Concurrency Locking in R-Trees. Proc. 21st
Int. Conf. on Very Large Databases (VLDB), 134-145, 1995.

[KBJ+ 03] Kriegel H.-P., Brecheisen S., Januzaj E., Kröger P., Pfeifle M.: Visual Mining
of Cluster Hierarchies. Proc. 3rd International ICDM Workshop on Visual
Data Mining VDM@ICDM2003, 151-165, 2003.

[KBK+ 03] Kriegel H.-P., Brecheisen S., Kröger P., Pfeifle M., Schubert M.: Using Sets
of Feature Vectors for Similarity Search on Voxelized CAD Objects. Proc.
ACM SIGMOD Int. Conf. on Management of Data, 587-598, 2003.

[KC 98] Kim K., Cha S. K.: Sibling Clustering of Tree-based Spatial Indexes for Effi-
cient Spatial Query Processing. Proc. ACM CIKM Int. Conf. on Information
and Knowledge Management, 398-405, 1998.

[Kei 99] Keim D.: Efficient Geometry-based Similarity Search of 3D Spatial Data-
bases.Proc. ACM SIGMOD Int. Conf. on Management of Data, 419-430,
1999.

[KF 92] Kamel I., Faloutsos C.: Parallel R-trees. Proc. ACM SIGMOD Int. Conf. on
Management of Data, 195-204, 1992.

[KF 93] Kamel I., Faloutsos C.: On Packing R-trees. Proc. ACM CIKM Int. Conf. on
Information and Knowledge Management, 490-499, 1993.

[KKG 03] Kriegel H.-P., Kröger P., Gotlibovich I.: Incremental OPTICS: Efficient Com-
putation of Updates in a Hierarchical Cluster Ordering. Proc. 5th Int. Conf.
on Data Warehousing and Knowledge Discovery (DaWaK), 224-233, 2003.

337

[KKM+ 03] Kriegel H.-P., Kröger P., Mashael Z., Pfeifle M., Pötke M., Seidl T.: Effective
Similarity Search on Voxelized CAD Objects. Proc. 8th Int. Conf. on Database
Systems for Advanced Applications (DASFAA), 27-36, 2003.

[KKP 04] Kriegel H.-P., Kröger P., Pfeifle M.: Efficient and Effective Computation of
Hierarchical Clusters and their Representatives. University of Munich, Tech-
nical Report, 2004.

[KKPR 03a] Kriegel H.-P., Kunath P., Pfeifle M., Renz M.: Acceleration of Relational
Index Structures Based on Statistics. Proc. 15th Int. Conf. on Scientific and
Statistical Database Management (SSDBM), 2003.

[KKPR 03b] Kriegel H.-P., Kunath P., Pfeifle M., Renz M.: Efficient Query Processing on
the Relational Quadtree. V Simpósio Brasileiro de Geoinformática, 2003.

[KKPR 04a] Kriegel H.-P., Kunath P., Pfeifle M., Renz M.: Cost based Decompositioning
of Complex Spatial Objects for Efficient Relational Indexing. University of
Munich, Technical Report, 2004.

[KKPR 04b] Kriegel H.-P., Kunath P., Pfeifle M., Renz M.: Statistic Driven Acceleration
of Object-Relational Space-Partitioning Index Structures. Proc. 9th Int. Conf.
on Database Systems for Advanced Applications (DASFAA), 2004.

[KKPR 04c] Kriegel H.-P., Kunath P., Pfeifle M., Renz M.: Effective Decompositioning of
Complex Spatial Objects into Intervals. Proc. International Conference on
Databases and Applications (DBA), 2004.

[KKPR 04d] Kriegel H.-P., Kunath P., Pfeifle M., Renz M.: Efficient Query Processing on
Relational Data-Partitioning Index Structures. Proc. 16th Int. Conf. on Sci-
entific and Statistical Database Management (SSDBM), 2004.

[KKPR 04e] Kriegel H.-P., Kunath P., Pfeifle M., Renz M.: Spatial Join Processing for
High-Resolution Objects. Proc. 16th Int. Conf. on Scientific and Statistical
Database Management (SSDBM), 2004.

[KKPS 04] Kailing K., Kriegel H.-P., Pfeifle M., Schönauer S.: Indexing of Complex
Objects for Efficient Density-Based Clustering. Submitted for publication.

[KKP+ 03] Kriegel H.-P., Kunath P., Pfeifle M., Pötke M., Renz M., Strauß P.-M.: Sto-
chastic Driven Relational R-Tree. V Simpósio Brasileiro de Geoinformática,
2003.

[KKS 98] Kastenmüller G., Kriegel H.-P., Seidl T.: Similarity Search in 3D Protein
Databases. Proc. German Conf. on Bioinformatics (GCB), Köln, Germany,
1998.

[KKSS 04] Kailing K., Kriegel H.-P., Schönauer S., Seidl T.: Efficient Similarity Search
in Large Databases of Tree Structured Objects. Proc. 20th International Con-
ference on Data Engineering (ICDE), 2004.

[Klu 04] Kluger M.: The Filtering M-Tree. Diploma Thesis, University of Munich,
2004 (in German).

[KMH 97] Kornacker M., Mohan C., Hellerstein J. M.: Concurrency Control in Gener-
alized Search Trees. Proc. ACM SIGMOD Int. Conf. on Management of
Data, 62-72, 1997.

338 References

[KMPS 01a] Kriegel H.-P., Müller A., Pötke M., Seidl T.: DIVE: Database Integration for
Virtual Engineering (Demo). Demo Proc. 17th Int. Conf. on Data Engineer-
ing (ICDE), 15-16, 2001.

[KMPS 01b] Kriegel H.-P., Müller A., Pötke M., Seidl T.: Spatial Data Management for
Computer Aided Design (Demo). Proc. ACM SIGMOD Int. Conf. on Man-
agement of Data, 614, 2001.

[Kor 99] Kornacker M.: High-Performance Extensible Indexing. Proc. 25th Int. Conf.
on Very Large Databases (VLDB), 699-708, 1999.

[KP 92] Keim D. A., Prawirohardjo E. S.: Datenbankmaschinen – Performanz durch
Parallelität. Reihe Informatik 86, BI Wissenschaftsverlag, Mannheim, 1992.

[KPP+ 03] Kriegel H.-P., Pfeifle M., Pötke M., Renz M., Seidl T.: Spatial Data Manage-
ment for Virtual Product, Lecture Notes in Computer Science, Springer, Vol.
2598, 216-230, 2003.

[KPP+ 04] Kriegel H.-P., Pfeifle M., Pötke M., Seidl S., Enderle J.: Object-Relational
Spatial Indexing. In: Manolopoulos Y., Papadopoulos A., Vassilakopoulos M.
(eds.): Spatial Databases: Technologies, Techniques and Trends. Idea Group
Inc., 2004.

[KPPS 02] Kriegel H.-P., Pfeifle M., Pötke M., Seidl T.: A Cost Model for Interval Inter-
section Queries on RI-Trees. Proc. 14th Int. Conf. on Scientific and Statistical
Database Management, 131-141, 2002.

[KPPS 03a] Kriegel H.-P., Pfeifle M., Pötke M., Seidl T.: Spatial Query Processing for
High Resolutions. Proc. 8th Int. Conf. on Database Systems for Advanced
Applications (DASFAA), 17-26, 2003.

[KPPS 03b] Kriegel H.-P., Pfeifle M., Pötke M., Seidl S.: The Paradigm of Relational
Indexing: a Survey. Proc. 10. GI-Fachtagung Datenbanksysteme in Büro,
Technik und Wissenschaft (BTW), 285-304, 2003.

[KPPS 04] Kriegel H.-P., Pfeifle M., Pötke M., Seidl S.: A Cost Model for Spatial Inter-
section Queries on RI-Trees. Proc. 9th Int. Conf. on Database Systems for
Advanced Applications (DASFAA), 2004.

[KPS 00] Kriegel H.-P., Pötke M., Seidl T.: Managing Intervals Efficiently in Object-
Relational Databases. Proc. 26th Int. Conf. on Very Large Databases
(VLDB), 407-418, 2000.

[KPS 01] Kriegel H.-P., Pötke M., Seidl T.: Interval Sequences: An Object-Relational
Approach to Manage Spatial Data. Proc. 7th Int. Symposium on Spatial and
Temporal Databases (SSTD), LNCS 2121, 481-501, 2001.

[KS 97] Katayama N., Satoh S.: The SR-tree: An Index Structure for High-Dimen-
sional Nearest Neighbor Queries. Proc. ACM SIGMOD Int. Conf. on Man-
agement of Data, 369-380, 1997.

[KS 03] Kriegel H.-P., Schönauer S.: Similarity Search in Structured Data, Proc. 5th
Int. Conf. on Data Warehousing and Knowledge Discovery (DaWaK), 309-
319, 2003.

[KSF+ 96] Korn F., Sidiropoulos N., Faloutsos C., Siegel E., Protopapas Z.: Fast Nearest
Neighbor Search in Medical Image Databases. Proc. 22nd Int. Conf. on Very
Large Databases (VLDB), 215-226, 1996.

339

[KSS 97] Kriegel H.-P., Schmidt T., Seidl T.: 3D Similarity Search by Shape Approxi-
mation. Proc. Fifth Int. Symposium on Large Spatial Databases (SSD’97),
LNCS 1262, 11-28, 1997.

[Kuh 55] Kuhn H.W.: The Hungarian Method for the Assignment Problem. Naval
Research Logistics Quaterly, 2:83-97, 1955.

[Kun 02] Kunath P.: Compression of CAD data. Diploma Thesis, University of
Munich, 2002.

[Lei 04] Leis F.: Efficient Similarity Search on Voxelized CAD Objects. Diploma The-
sis, University of Munich, 2003.

[Lib 01] Libkin L.: Expressive Power of SQL. Proc. 8th Int. Conf. on Database Theory
(ICDT), 1-21, 2001.

[LJF 94] Lin K., Jagadish H. V., Faloutsos C.: The TV-Tree: An Index Structure for
High-Dimensional Data. Int. Journal on Very Large Data Bases (VLDB Jour-
nal), Vol. 3, No. 4, 517-542, 1994.

[LL 98] Leutenegger S. T., Lopez M. A.: The Effect of Buffering on the Performance
of R-Trees. Proc. 14th Int. Conf. on Data Engineering (ICDE), 164-171, 1998.

[LNS 90] Lipton R. J., Naughton J. F., Schneider A. D.: Practical Selectivity Estimation
through Adaptive Sampling. Proc. ACM SIGMOD Int. Conf. on Management
of Data, 1-11, 1990.

[Lom 98] Lomet D.: B-tree Page Size When Caching is Considered. ACM SIGMOD
Record, 27(3), 28-32, 1998.

[LR 94] Lo M-L., Ravishankar C.V.: Spatial Joins Using Seeded Trees. Proc. ACM
SIGMOD Int. Conf. on Management of Data, 209-220, 1994.

[LR 96] Lo M-L., Ravishankar C.V.: Spatial Hash-Joins. Proc. ACM SIGMOD Int.
Conf. on Management of Data, 247-258, 1996.

[LS 02] Lang C., Singh A.: Accelerating High-Dimensional Nearest Neighbor Que-
ries. Proc. 14th Int. Conf. on Scientific and Statistical Database Management
(SSDBM), 109-119, 2002

[LSW 99] Lennerz C., Schömer E., Warken T.: A Framework for Collision Detection
and Response. Proc. 11th European Simulation Symposium (ESS), 309-314,
1999.

[LZ 77] Lempel A., Ziv J.: A Universal Algorithm for Sequential Data Compression.
IEEE Transactions on Information Theory, Vol. IT-23, No. 3, 337-343, 1977.

[Mai 03] Maier H.: Statistic-Driven Acceleration of the Relational Interval Tree.
Diploma Thesis, 2003 (in German).

[McQ 67] McQueen J.: Some Methods for Classification and Analysis of Multivariate
Observations. 5th Berkeley Symp.Math. Statist. Prob., volume 1, 281–297,
1967.

[MG 93] Mehrotra R., Gray J.: Feature-Based Retrieval of Similar Shapes. Proc. 9th
Int. Conf. on Data Engineering (ICDE), 108-115, 1993.

[MG 95] Mehrotra R., Gary J. E.: Feature-Index-Based Similar Shape Retrieval. Proc.
3rd Working Conf. on Visual Database Systems, 1995.

[MH 99] Möller T., Haines E.: Real-Time Rendering. A K Peters, Natick, MA, 1999.

340 References

[MJFS 96] Moon B., Jagadish H. V., Faloutsos C., Saltz J. H.: Analysis of the Clustering
Properties of Hilbert Space-filling Curve. Techn. Report CS-TR-3611, Uni-
versity of Maryland, 1996.

[MP 94] Medeiros C. B., Pires F.: Databases for GIS. ACM SIGMOD Record, 23(1),
107-115, 1994.

[MPT 99] McNeely W. A., Puterbaugh K. D., Troy J. J.: Six Degree-of-Freedom Haptic
Rendering Using Voxel Sampling. Proc. ACM SIGGRAPH Int. Conf. on
Computer Graphics and Interactive Techniques, 401-408, 1999.

[MTT 00] Manolopoulos Y., Theodoridis Y., Tsotras V. J.: Advanced Database Index-
ing. Kluwer, Boston, MA, 2000.

[Müh 03] Mühlbauer W.: Statistic-Driven Acceleration of the Relational Quadtree.
Diploma Thesis, 2003 (in German).

[Mun 57] Munkres J.: Algorithms for the Assignment and Transportation Problems.
Journal of the SIAM, 6:32-38,1957.

[NBE+ 93] Niblack W., Barber R., Equitz W., Flickner M., Glasmann E., Petkovic D.,
Yanker P., Faloutsos C., Taubin G.: The QBIC Project: Querying Images by
Content Using Color, Texture, and Shape. SPIE 1993 Int. Symposium on
Electronic Imaging: Science and Technology Conference 1908, Storage and
Retrieval for Image and Video Databases, 1993.

[NS 86] Newmann W. M., Sproull R. F.: Grundzüge der interaktiven Computer-
graphik. McGraw-Hill Book Company GmbH Hamburg, 1986.

[NS 87] Nelson R.C., Samet H.: A population analysis for hierarchical data struc-
tures. Proc. ACM SIGMOD Int. Conf. on Management of Data, 270–277,
1987.

[NW 97] Nevill-Manning C., Witten I.: Compression and Explanation using Hierar-
chical Grammars. The Computer Journal 40(2/3): 103-116, 1997.

[OM 84] Orenstein J. A., Merrett T. H.: A Class of Data Structures for Associative
Searching. Proc. 3rd ACM SIGACT-SIGMOD-SIGART Symp. on Principles
of Database Systems (PODS), 181-190, 1984.

[OM 88] Orenstein J. A., Manola F. A.: PROBE Spatial Data Modeling and Query
Processing in an Image Database Application. IEEE Transactions on Soft-
ware Engineering, 14(5), 611-629, 1988.

[Ora 99a] Oracle Corp.: Oracle8i Data Cartridge Developer’s Guide, Release 2 (8.1.6).
Redwood Shores, CA, 1999.

[Ora 99b] Oracle Corp.: Oracle Spatial User’s Guide and Reference, Release 8.1.6.
Redwood Shores, CA, 1999.

[Ora 99c] Oracle Corp.: Oracle8i Concepts, Release 8.1.6. Redwood Shores, CA, 1999.

[Ora 00] Oracle Corp.: Oracle8i Appliance – An Oracle White Paper. Redwood
Shores, CA, 2000.

[Ore 86] Orenstein J.A.: Spatial Query Processing in an Object-Oriented Database
System. Proc. ACM SIGMOD Int. Conf. on Management of Data, 326-336,
1986.

[Ore 89] Orenstein J. A.: Redundancy in Spatial Databases. Proc. ACM SIGMOD Int.
Conf. on Management of Data, 294-305, 1989.

341

[OTYB 00] Ooi B. C., Tan K.-L., Yu C., Bressan S.: Indexing the Edges - A simple and yet
efficient approach to high-dimensional indexing. ACM Symposium on Prin-
ciples of Database Systems (PODS), 166-174, 2000.

[PD 96] Patel J.M., DeWitt D.J.: Partition Based Spatial-Merge Join. Proc. of the
ACM SIGMOD Conference, 259-270, 1996.

[PF 99] Proietti G., Faloutsos C.: I/O Complexity for Range Queries on Region Data
Stored Using an R-tree. Proc. 15th Int. Conf. on Data Engineering (ICDE),
628-635, 1999.

[Pfe 01] Pfeifle M.: Object-Relational Management of High-Resolution CAD Data-
bases. Diploma Thesis, University of Munich, 2001.

[Pöt 01] Pötke M.: Spatial Indexing for Object-Relational Databases. Ph.D. Thesis,
Institute for Computer Science, University of Munich, 2001.

[PRS 99] Papadopoulos A.N., Rigaux P., Scholl M.: A Performance Evaluation of Spa-
tial Join Processing Strategies. Proc. of the Symposium on Large Spatial
Databases (SSD), 286-307, 1999.

[PS 93] Preparata F. P., Shamos M. I.: Computational Geometry: An Introduction. 5th
ed., Springer, 1993.

[Ram 97] Ramaswamy S.: Efficient Indexing for Constraint and Temporal Databases.
Proc. 6th Int. Conf. on Database Theory, LNCS 1186, 419-431, 1997.

[RB 00] Ramon J., Bruynooghe M.: A polynomial time computable metric between
point sets. Technical Report CW 301, Katholieke Universiteit Leuven, 2001.

[RG 02] Roelofs G., Gailly J.: zlib, Technical Details. http://www.gzip.org/zlib/
zlib_tech.html, 2002.

[RH 93] Roth M., Van Horn S.: Database Compression. SIGMOD Record 22(3): 31-
39, 1993.

[RKV 95] Roussopoulos N., Kelley S., Vincent F.: Nearest Neighbor Queries. Proc. Int.
Conf. on Management of Data (SIGMOD), 71-79, 1995.

[RMF+ 00] Ramsak F., Markl V., Fenk R., Zirkel M., Elhardt K., Bayer R.: Integrating the
UB-Tree into a Database System Kernel. Proc. 26th Int. Conf. on Very Large
Databases (VLDB), 263-272, 2000.

[RRSB 99] Ravi Kanth K. V., Ravada S., Sharma J., Banerjee J.: Indexing Medium-
dimensionality Data in Oracle. Proc. ACM SIGMOD Int. Conf. on Manage-
ment of Data, 521-522, 1999.

[RS 99] Ravada S., Sharma J.: Oracle8i Spatial: Experiences with Extensible Data-
bases. Proc. 6th Int. Symp. on Large Spatial Databases (SSD), LNCS 1651,
355-359, 1999.

[SAC+ 79] Selinger P. G., Astrahan M. M., Chamberlin D. D., Lorie R. A., Price T. G.:
Access Path Selection in a Relational Database Management System. Proc.
ACM SIGMOD Int. Conf. on Management of Data, 23-34, 1979.

[Sam 90a] Samet H.: The Design and Analysis of Spatial Data Structures. Addison Wes-
ley Longman, Boston, MA, 1990.

[Sam 90b] Samet H.: Applications of Spatial Data Structures. Addison Wesley Long-
man, Boston, MA, 1990.

342 References

[SB 98] Stonebraker M., Brown P.: Object-relational DBMSs – Tracking the Next
Great Wave. Morgan Kaufmann, San Francisco, CA, 1998.

[Sch 04] Schmitt O.: The Relational Filtering M-tree. Diploma Thesis, University of
Munich, 2004 (In German).

[SDF+ 00] Jagannathan Srinivasan, Souripriya Das, Chuck Freiwald, Eugene Inseok
Chong, Mahesh Jagannath, Aravind Yalamanchi, Ramkumar Krishnan, Anh-
Tuan Tran, Samuel DeFazio, Jayanta Banerjee: Oracle8i Index-Organized
Table and Its Application to New Domains. Proc. 26th Int. Conf. on Very
Large Databases (VLDB), 285-296, 2000.

[Sel 88] Sellis T. K.: Multiple-Query Optimization. ACM Transactions on Database
Systems (TODS), 13(1), 23-52, 1988.

[SH 94] Sawhney H., Hafner J.: Efficient Color Histogram Indexing. Proc. Int. Conf.
on Image Processing, 66-70, 1994.

[SJS 01] Slivinskas G., Jensen C. S., Snodgrass R. T.: Adaptable Query Optimization
and Evaluation in Temporal Middleware. Proc. ACM SIGMOD ACM SIG-
MOD Int. Conf. on Management of Data, 127-138, 2001.

[SK 93] Schiwietz M., Kriegel H.-P.: Query Processing of Spatial Objects: Complex-
ity versus Redundancy. Proc. 3rd Int. Symp. on Large Spatial Databases
(SSD), LNCS 692, 377-396, 1993.

[SK 98] Seidl T., Kriegel H.-P: Optimal Multi-Step k-Nearest Neighbor Search. Proc.
ACM SIGMOD Int. Conf. on Management of Data, 154-165, 1998.

[SKSH 89] Schneider R., Kriegel H.-P., Seeger B., Heep S.: Geometry-based Similarity
Retrieval of Rotational Parts. Proc. Int. Conf. on Data and Knowledge Sys-
tems for Manufacturing and Engineering, Gaithersburg, ML, 150-160, 1989.

[SLF 93] Seeger B., Larson P., McFadyen R.: Reading a Set of Disk Pages. Proc. 19th
Int. Conf. on Very Large Databases (VLDB): 592-603, 1993.

[SMS+ 00] Srinivasan J., Murthy R., Sundara S., Agarwal N., DeFazio S.: Extensible
Indexing: A Framework for Integrating Domain-Specific Indexing Schemes
into Oracle8i. Proc. 16th Int. Conf. on Data Engineering (ICDE), 91-100,
2000.

[SN 02] Steinmetz R., Nahrstedt K.: Multimedia Fundamentals, Volume 1: Media
Coding and Content Processing. Second Edition. Prentice Hall, 110-119,
2002.

[Sno 00] Snodgrass R. T.: Developing Time-Oriented Database Applications in SQL.
Morgan Kaufmann, San Francisco, CA, 2000.

[SQL 92] American National Standards Institute: ANSI X3.135-1992/ISO 9075-1992
(SQL-92). New York, NY, 1992.

[SQL 99] American National Standards Institute: ANSI/ISO/IEC 9075-1999
(SQL:1999, Parts 1-5). New York, NY, 1999.

[SQL+ 03] Sander J., Qin X., Lu Z., Niu N., Kovarsky A.: Automatic Extraction of Clus-
ters from Hierarchical Clustering Representations. Proc. 7th Pacic-Asia Con-
ference on Knowledge Discovery and Data Mining (PAKDD), 2003.

343

[STEP 94+] International Organization for Standardization: ISO 10303, Industrial auto-
mation systems and integration – Product data representation and exchange
(STEP, Parts 1-520). Geneva, 1994-2001.

[Sto 86] Stonebraker M.: Inclusion of New Types in Relational Data Base Systems.
Proc. 2nd Int. Conf. on Data Engineering (ICDE), 262-269, 1986.

[Str 04] Strauß P.-M.: Statistic-Driven Acceleration of the Relational R-tree. Diploma
Thesis, University of Munich, 2003.

[Tam 04] Tamcke L.: Clustering Moving Objects. Diploma Thesis, University of
Munich, 2004 (in German).

[TC 91] Taubin G., Cooper D. B.: Recognition and Positioning of Rigid Objects Using
Algebraic Moment Invariants. Geometric Methods in Computer Vision
Vol. 1570, SPIE, 175-186, 1991.

[TCG+ 93] Tansel A. U., Clifford J., Gadia S., Jajodia S., Segev A., Snodgrass R.: Tem-
poral Databases: Theory, Design and Implementation. Redwood City, CA,
1993.

[TH 81] Tropf H., Herzog H.: Multidimensional Range Search in Dynamically Bal-
anced Trees. Angewandte Informatik, 81(2), 71-77, 1981.

[TSS 00] Theodoridis Y., Stefanakis E., Sellis T.: Efficient Cost Models for Spatial
Queries Using R-Trees. IEEE Transactions on Knowledge and Data Engi-
neering, 12(1), 19-32, 2000.

[TTSF 00] Traina C. Jr., Traina A., Seeger B., Faloutsos C.: Slim-Trees: High Perfor-
mance Metric Trees Minimizing Overlap Between Nodes. Int. Conf. on
Extending Database Technology (EDBT), 51-65, 2000.

[VDA 87] Verband der Automobilindustrie: VDA-Flächenschnittstelle VDAFS, Version
2.0. Frankfurt a. M., 1987 (in German).

[Vei 03] Veith M.: Decompositioning of Voxelized CAD Objects. Diploma Thesis,
University of Munich, 2003 (in German).

[Vie 03] Viermetz M.: BOSS: Browsing Optics-Plots for Similarity Search. Diploma
Thesis, University of Munich, 2003.

[Vin 91] Vincent L.: New Trends in Morphological Algorithms. SPIE Proceedings on
Non-linear Image Processing II, San Jose, CA, February 1991.

[Wan 91] Wang F.: Relational-Linear Quadtree Approach for Two-Dimensional Spatial
Representation and Manipulation. IEEE Trans. on Knowledge and Data
Engineering 3(1), 118-122, 1991.

[WJ 96] White D. A., Jain R.: Similarity Indexing: Algorithms and Performance. Proc.
of Storage and Retrieval for Image and Video Databases IV, SPIE Proc. 2670,
62-73, 1996.

[WSB 98] Weber R., Schek H.-J., Blott S.: A Quantitative Analysis and Performance
Study for Similarity-Search Methods in High-Dimensional Spaces. Proc. Int.
Conf. on Very Large Data Bases (VLDB), New York City, 194-205, 1998.

[YOTJ 01] Yu C., Ooi B. C., Tan K.-L., Jagadish H. V.: Indexing the Distance: An Effi-
cient Method to KNN Processing. Proc. 27th Int. Conf. on Very Large Data-
bases (VLDB), 421-430, 2001.

344 References

Curriculum Vitae

Martin Pfeifle was born on December 15, 1967 in Freudenstadt, Germany. After

attending primary school from 1974 to 1978, and high-school from 1978 to 1987, he

served in the military service from 1987 to 1988 in Marburg.

From 1988 to 1991 he attended the University of Cooperative Education in

Stuttgart, studying Electrical Engineering. During this time he attended several

internships at the Bosch GmbH, Stuttgart, culminating in his diploma thesis on

“Model based Measuring of Ignition Variables’ (written in German).

From 1991 to 2004, he continuously worked as a software engineer and a consult-

ant for different companies. For more than seven years he has been working for a

company, called iff, which produces software for the wood-cutting industry.

From 1990 to 2001, he studied computer science with a minor in mathematics at

the Fernuniversität Hagen. His diploma thesis was on “High Resolution Indexing for

CAD Databases”, supervised by Prof. Dr. Ralf Hartmut Güting, Prof. Dr. Hans-Peter

Kriegel, Prof. Dr. Thomas Seidl and Dr. Marco Pötke.

In 2001, he started working at the University of Munich as a research and teaching

assistant in the group of Prof. Dr. Hans-Peter Kriegel, the chair of the teaching and

research unit for database systems at the Institute for Computer Science. The research

interests of Martin Pfeifle include database support for virtual engineering, with a

strong emphasis on spatial index structures and similarity search in spatial databases.

Furthermore, he is interested in the area of knowledge discovery in databases,

especially in density-based clustering.

346

