Logo
DeutschClear Cookie - decide language by browser settings
Kraus, Andreas (2007): Model Driven Software Engineering for Web Applications. Dissertation, LMU München: Faculty of Mathematics, Computer Science and Statistics
[img]
Preview
PDF
Kraus_Andreas.pdf

2771Kb

Abstract

Model driven software engineering (MDSE) is becoming a widely accepted approach for developing complex applications and it is on its way to be one of the most promising paradigms in software engineering. MDSE advocates the use of models as the key artifacts in all phases of the development process, from analysis to design, implementation and testing. The most promising approach to model driven engineering is the Model Driven Architecture (MDA) defined by the Object Management Group (OMG). Applications are modeled at a platform independent level and are transformed to (possibly several) platform specific implementations. Model driven Web engineering (MDWE) is the application of model driven engineering to the domain of Web application development where it might be particularly helpful because of the continuous evolution of Web technologies and platforms. However, most current approaches for MDWE provide only a partial application of the MDA pattern. Further, metamodels and transformations are not always made explicit and metamodels are often too general or do not contain sufficient information for the automatic code generation. Thus, the main goal of this work is the complete application of the MDA pattern to the Web application domain from analysis to the generated implementation, with transformations playing an important role at every stage of the development process. Explicit metamodels are defined for the platform independent analysis and design and for the platform specific implementation of dynamic Web applications. Explicit transformations allow the automatic generation of executable code for a broad range of technologies. For pursuing this goal, the following approach was chosen. A metamodel is defined for the platform independent analysis and for the design of the content, navigation, process and presentation concerns of Web applications as a conservative extension of the UML (Unified Modeling Language) metamodel, together with a cor-responding UML profile as notation. OCL constraints ensure the well-formedness of models and are checked by transformations. Transformations implement the systematic evolution of analysis and design models. A generic platform for Web applications built on an open-source Web platform and a generic runtime environment is proposed that represents a family of platforms supporting the combination of a broad range of technologies. The transformation to the platform specific models for this generic platform is decomposed along the concerns of Web applications to cope in a fine-grained way with technology changes. For each of the concerns a metamodel for the corresponding technology is defined together with the corresponding transformations from the platform independent design models. The resulting models are serialized to code by means of serialization transformations.