Logo
DeutschClear Cookie - decide language by browser settings
Jost, Steffen (2010): Automated Amortised Analysis. Dissertation, LMU München: Faculty of Mathematics, Computer Science and Statistics
[img]
Preview
PDF
Jost_Steffen.pdf

1551Kb

Abstract

Steffen Jost researched a novel static program analysis that automatically infers formally guaranteed upper bounds on the use of compositional quantitative resources. The technique is based on the manual amortised complexity analysis. Inference is achieved through a type system annotated with linear constraints. Any solution to the collected constraints yields the coefficients of a formula, that expresses an upper bound on the resource consumption of a program through the sizes of its various inputs. The main result is the formal soundness proof of the proposed analysis for a functional language. The strictly evaluated language features higher-order types, full mutual recursion, nested data types, suspension of evaluation, and can deal with aliased data. The presentation focuses on heap space bounds. Extensions allowing the inference of bounds on stack space usage and worst-case execution time are demonstrated for several realistic program examples. These bounds were inferred by the created generic implementation of the technique. The implementation is highly efficient, and solves even large examples within seconds.

Abstract

Steffen Jost stellt eine neuartige statische Programmanalyse vor, welche vollautomatisch Schranken an den Verbrauch quantitativer Ressourcen berechnet. Die Grundidee basiert auf der Technik der Amortisierten Komplexitätsanalyse, deren nicht-triviale Automatisierung durch ein erweitertes Typsystem erreicht wird. Das Typsystem berechnet als Nebenprodukt ein lineares Gleichungssystem, dessen Lösungen Koeffizienten für lineare Formeln liefern. Diese Formeln stellen garantierte obere Schranken an den Speicher- oder Zeitverbrauch des analysierten Programms dar, in Abhängigkeit von den verschiedenen Eingabegrößen des Programms. Die Relevanz der einzelnen Eingabegrößen auf den Ressourcenverbrauch wird so deutlich beziffert. Die formale Korrektheit der Analyse wird für eine funktionale Programmiersprache bewiesen. Die strikte Sprache erlaubt: Typen höherer Ordnung, volle Rekursion, verschachtelte Datentypen, explizites Aufschieben der Auswertung und Aliasing. Die formale Beschreibung der Analyse befasst sich primär mit dem Verbrauch von dynamischen Speicherplatz. Für eine Reihe von realistischen Programmbeispielen wird demonstriert, dass die angefertigte generische Implementation auch gute Schranken an den Verbrauch von Stapelspeicher und der maximalen Ausführungszeit ermitteln kann. Die Analyse ist sehr effizient implementierbar, und behandelt auch größere Beispielprogramme vollständig in wenigen Sekunden.