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Deutsche Zusammenfassung

Steffen Jost stellt eine neuartige statische Programmanalyse vor, welche vollautoma-

tisch Schranken an den Verbrauch quantitativer Ressourcen berechnet. Die Grun-

didee basiert auf der Technik der Amortisierten Komplexitätsanalyse, deren nicht-

triviale Automatisierung durch ein erweitertes Typsystem erreicht wird. Das Typsys-

tem berechnet als Nebenprodukt ein lineares Gleichungssystem, dessen Lösungen

Koeffizienten für lineare Formeln liefern. Diese Formeln stellen garantierte obere

Schranken an den Speicher- oder Zeitverbrauch des analysierten Programms dar, in

Abhängigkeit von den verschiedenen Eingabegrößen des Programms. Die Relevanz

der einzelnen Eingabegrößen auf den Ressourcenverbrauch wird so deutlich beziffert.

Die formale Korrektheit der Analyse wird für eine funktionale Programmiersprache

bewiesen. Die strikte Sprache erlaubt: Typen höherer Ordnung, volle Rekursion, ver-

schachtelte Datentypen, explizites Aufschieben der Auswertung und Aliasing. Die

formale Beschreibung der Analyse befasst sich primär mit dem Verbrauch von dy-

namischen Speicherplatz. Für eine Reihe von realistischen Programmbeispielen wird

demonstriert, dass die angefertigte generische Implementation auch gute Schranken

an den Verbrauch von Stapelspeicher und der maximalen Ausführungszeit ermitteln

kann. Die Analyse ist sehr effizient implementierbar, und behandelt auch größere

Beispielprogramme vollständig in wenigen Sekunden.
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English Abstract

Steffen Jost researched a novel static program analysis that automatically infers for-

mally guaranteed upper bounds on the use of compositional quantitative resources.

The technique is based on the manual amortised complexity analysis. Inference is

achieved through a type system annotated with linear constraints. Any solution to

the collected constraints yields the coefficients of a formula, that expresses an upper

bound on the resource consumption of a program through the sizes of its various

inputs.

The main result is the formal soundness proof of the proposed analysis for a functional

language. The strictly evaluated language features higher-order types, full mutual

recursion, nested data types, suspension of evaluation, and can deal with aliased data.

The presentation focuses on heap space bounds. Extensions allowing the inference

of bounds on stack space usage and worst-case execution time are demonstrated

for several realistic program examples. These bounds were inferred by the created

generic implementation of the technique. The implementation is highly efficient, and

solves even large examples within seconds.
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1 Introduction

This thesis is about ensuring the correctness of computer systems in an automated

way. Humanity has reached a point in history where a vast amount of computing

power is readily available to the masses. It has become evident that the main chal-

lenge now lies in harnessing this vast power. Errors in software design have already

caused a lot of damage. While the outstanding failures of expensive endeavours like

space rocketsA or interplanetary probesB are highly regrettable, the problem has al-

ready gained an entirely new dimension by the fact that small embedded computer

systems have become an ubiquitous part of everyday life: approximately four billion

of these small systems were shipped worldwide in 2006 alone [Vol07]. These numerous

systems must be quickly developed under ever increasing economic pressures, while

at the same time it must also be ensured somehow that, for example, an airbag is

inflated at exactly the right time. While industry is currently satisfied that airbags

are inflated when needed in the majority of cases, we believe that it is desirable that

such devices always work as expected – at least they should not fail any more due

to automatically detectable software errors.

We believe that an important step in the solution of the software crisis lies in the

use of automated formal methods. Formal methods are already employed for some

safety-critical projects, but they are expensive because they require highly trained

specialists and can take significant time to perform. A widespread use of these

techniques can only be achieved if the average programmer is able to quickly employ

a proven software analysis tool as a part of the coding process. Once such a highly

complex automated tool is developed, it is cheap to use. In addition to increasing

safety by allowing the programmer to verify that his program meets its specifications,

such automated tools will also reduce the time to market a product by eliminating

the need for expensive testing and redesign cycles. This reduction in the design cost

of a product makes the use of formal methods appealing even for non-safety-critical

applications. More reliable products at a cheaper price is clear win-win situation for

both producer and consumer.

It is our thesis that the wide-spread use of such automated program analysis tech-

niques is now practical. We present such a system together with its implementation,

in this thesis. The analysis that we present will not guarantee the overall correctness

of a program in every respect, for this would be a far too complex a task to achieve

in a single piece of work. Instead, we focus on the resource requirements for a given

program, namely that our analysis establishes an upper bound on a program’s overall

resource usage.

AESA Ariane 5, 4 June 1996, ∼1, 000, 000, 000$, [Dow97]
BNASA Mars Climate Orbiter, 23 September 1999, ∼327, 600, 000$, [NAS99]
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1.1 Contributions

Any compositional quantifiable resource may be accounted for, including worst-case

execution time. However, in this thesis we will mainly focus on heap space memory

for the clarity of the demonstration. Running out of memory usually brings a soft-

ware program to a full stop and therefore causes a total loss of the (sub-)system.

The amount of available memory is still an important cost factor for small embedded

devices. Even for other systems, for which memory has recently become relatively

cheap, it is important to know that the finite amount of available memory is not ex-

hausted due to space leaks or other problems. Being able to manage and address an

overly-large amount of memory also increases the overall complexity of the system.

Hence, a large number of software faults are due to poor memory management on

behalf of the programmer [Joy96]. Other scenarios where memory consumption of a

program is a concern include cloud computing, smart cards, or software for mobile

devices. For example, software offered by download for mobile phones must run on

a multitude of devices, each running a different mix of software. However, malfunc-

tioning phones do not generate any revenue, but will cause expensive hotline traffic

and device returns instead. Therefore it is desirable to have guaranteed bounds on

the memory requirement of a program prior to its runtime, at the design stage.

1.1 Contributions

We present a novel program analysis technique for determining upper-bound func-

tions on the use of quantitative resources. The technique is type-based and applica-

ble to all kinds of typed programming paradigms. We demonstrate the analysis for

strictly evaluated functional programs. The important hallmarks of our analysis are

as follows.

a) The proposed analysis is fully automatic, i.e. no expert knowledge is required

to take advantage of the method.

b) The analysis is entirely static, i.e. it delivers bounds at compile-time, which are

valid for all imaginable runs of the program on any arbitrary input data.

c) The approach is fully formal, i.e. the soundness proofs in this thesis guarantee

the cost bounds are always observed.

d) The analysed language is fully featured, and does not restrict a programmer

to unnatural or inexpressive language constructs. In particular, the analysed

language allows:
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i) higher-order types,

ii) full (mutual) recursion,

iii) nested recursive data types,

iv) suspension of evaluation, and

v) aliasing of data.

e) The produced bounds are data-dependent, which increases precision by provid-

ing custom bounds for easily determinable classes of input data.

f) The analysis is highly efficient and can thus be performed within seconds,

allowing frequent and plentiful use.

g) The inferred bounds hold also for non-terminating programs.

h) The analysis is fully generic, i.e. it can be used to derive bounds for any com-

positional quantifiable resource, such as heap space usage, stack space usage or

even worst-case execution time.

The key aspect of this thesis is that it deals directly with higher-order functions

without requiring source-level transformations that could alter resource usage, unlike

other fully automatic systems proposed for performing a guaranteed resource usage

analysis.

This thesis also has already contributed to the academic research conducted in the

field of program analysis through the following publications:

a) [HJ03] bounds the heap space usage of first-order functional programs;

b) [HJ06] bounds the heap space usage of object-oriented imperative Java pro-

grams;

c) [JLS+09] demonstrates applicability to worst-case execution time;

d) [JLH+09] bounds arbitrary resources, especially worst-case execution time, and

formalises treatment of user-defined recursive data types;

e) [LJ09] treats practical aspects of the technique from a user-perspective; and

f) [JLHH10] extends analysis to both polymorphic and higher-order types.

Furthermore, the research generated by this thesis played an important role in three

notable research projects: Mobile Resource Guarantees [MRG05], EmBounded [EmB09],

and Islay [Isl11].
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1.2 Thesis Overview

In this thesis we describe an automated analysis technique for programs written

in a standard functional programming language, that produces formally guaranteed

data-dependent bounds on the heap space usage.

What is meant by data-dependent is best explained by an example. Consider some

function that inserts a node into a given red-black tree. Red-black trees are a common

textbook [Oka98] example for balanced binary search trees, whose nodes are coloured

either red or black in order to help to efficiently maintain a rough balancing. How this

mechanism works is not important for this example. What is important, is that the

worst-case heap space consumption of the node insertion algorithm depends on these

colours. The analysis is able to recognise this dependency and is able to bound the

heap space usage of the red-black tree insertion function from above by the formula

10R + 28B + 20 heap cell units

where R and B are the respective numbers of red and black nodes in the input

tree into which the new element is to be inserted. So we learn that the insertion is

generally more expensive for a tree having many black nodes.C

However, general input dependent bounds on resource usage are only useful if they

easily allow one to distinguish large classes of inputs of roughly the same resource

usage. Consider having a black box for a program that can compute the precise

execution cost for any particular input. Even if this black box computes very fast,

one still needs to examine all inputs one by one in order to determine the worst case or

to establish an overview of the general cost behaviour. Since the number of concrete

inputs may be large or even infinite, this is generally infeasible. In contrast, we can

guarantee that the cost bounds produced by our automated analysis technique are

always simple. Namely, the bounds are always linear in different input sizes, so we

can easily learn the overall cost behaviour for all possible inputs.

An intuitive overview of the proposed technique and its theoretical underpinnings is

first given in Chapter 2.

Chapter 3 yields an overview over related work that is also concerned with quantita-

tive resource analysis, both our own, which was mainly based on this thesis, and that

CThe cost bound for red-black tree insertion was taken from [LJ09]. The bound is with respect to

a boxed memory model without deallocation. The analysed code is also given in that paper.
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of others. We also discuss future work in this chapter already, in Section 3.2. The

reason being that the work of other researchers on some of the possible extensions

to this thesis has already begun.

A simplified first-order version of the strict functional programming language to

be analysed, which features full recursion and recursive data types, is defined in

Chapter 4. The language is called LF for historic reasons; the name is not an

acronym, in particular the L does not stand for “linear”. We present a standard

monomorphic non-linear type system for the first-order language in Section 4.2, which

will form a basis for the construction of the analysis. We will extend this language

to include higher-order types in one of the later chapters.

The evaluation of the first-order language is formally described by a standard big-

step semantics in Section 4.3. The model deliberately allows freedom for its imple-

mentation in various ways, according to the desired target machine. It also makes

no assumptions on the allocation mechanism, which is modelled by a simple non-

deterministic choice. The operational model thus abstracts away many low-level

implementation details, such as memory fragmentation or the reanimation of stale

pointers through subsequent allocations. We discuss these issues in Section 4.3.1,

but consider them to be orthogonal to our primary concern, the counting heap space

usage.

The language is then illustrated by the discussion of four informative program ex-

amples in Section 4.4, which show how aliasing and deallocation are handled.

Thus far, Chapter 4 stated fairly conventional basics. This changes with its last

Section 4.5, which shows how to augment the previously stated big-step semantics in

order to track the allocation and deallocation of heap space, allowing us to measure

the cost of an execution sequence. This shows how our operational model focuses

on the pure counting of heap space usage. We count heap space usage in terms of

atomic heap cells, which may represent single bytes or entire blocks of memory. This

choice is up to the user, according to the desired target machine, as our model is

formulated variable enough.

An analysis for the first-order fragment of the language is then detailed and proven

sound in Chapter 5. The analysis is formulated as a type system in Section 5.1,

referred to as LF�, which uses annotated types and imposes a set of arithmetic

side conditions on these annotations. Removing these side conditions leaves just the

standard monomorphic type system of LF, which had thus been introduced a basis

for the construction of the analysis in Section 4.2 before. The only peculiarity of
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the type system is the use of explicit structural rules, in order to track the possible

introduction of aliasing later in the annotated type system that makes up the analysis.

Note that the presence of the structural contraction rule does imply that the type

system is not linear.

What happens to be linear are the arithmetic side conditions imposed by our analy-

sis. The generated linear programming problem (LP) can thus be efficiently solved by

a standard LP-solver. The numbers returned by the solver can then be easily inter-

preted to produce a data-dependent bound on the heap space usage of the analysed

program, as discussed in Section 5.2.

The main result of the chapter is then a proof that the result of the analysis is always

sound, stated in Section 5.3. We prove that for each program evaluation that has

unlimited memory resources available, there exists an evaluation leading to the same

result value that only uses at most as many heap cells as predicted by our analysis.

We discuss the inferred results of the analysis for the four introductory program

examples in Section 5.5 and then demonstrate its inference mechanism step-by-step

using a fifth program example in Section 5.6.

Notice that the aforementioned theorem only makes claims about terminating pro-

grams, since non-terminating computations do not have a result value. However, it

is also important to know whether non-terminating programs evaluate with a finite

memory, such as an airbag controller that continuously processes sensor data. We

therefore prove in Section 5.4 that even non-terminating programs cannot exceed the

heap space bounds that have been inferred through our analysis in any arbitrarily

large, but finite, amount of time.

Chapter 6 then extends the previously studied language by higher-order functions

and delayed evaluation; followed by the non-trivial proof of soundness in Section 6.6

again. The structure of that chapter is otherwise largely similar to the structure of

the preceding chapter, albeit being more dense and omitting an unannotated version

of both the type system and the operational semantics. The higher-order language

and type system are referred to by the name Arthur.

We then discuss the implementation of our technique and issues related to the imple-

mentation, such as analysing for the usage of resources other than heap memory, e.g.

worst-case execution time, in Chapter 7. Afterwards we examine some more compli-

cated program examples for various cost metrics, not only heap usage, in Chapter 8

and eventually conclude in Chapter 9.
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1.3 Mathematical Preliminaries

We denote the non-negative rational numbers by Q+. We put D = R+
0 ∪{∞}, i.e., the

set of non-negative real numbers together with an element∞. Ordering and addition

on R+
0 extend to D by ∞ + x = x +∞ = ∞ and x ≤ ∞. If U is a subset of D we

write
∑
U for the (possibly infinite) sum over all its elements. Since D contains no

negative numbers, questions of ordering and non-absolute convergence do not play a

role; any subset of D has a sum, perhaps ∞. We write
∑

i∈I xi for
∑
{xi | i∈I} and

use other familiar notations.

The ordinary union of sets is denoted by ∪, the disjoint union by ∪̇ and the multiset

union by ], in order to distinguish between them. For a binary relation ∼, we may

abbreviate the sentence ∀x. x ∈ A ⇒ x ∼ z by simply writing A ∼ z. For example,

we write {a, b} /∈ A if neither a nor b are elements of set A.

For sets of linear inequalities, we write ψ �φ to denote that ψ entails φ, i.e. that all

solutions to ψ are also solutions to φ. A solution or valuation v to a set of linear

inequalities is a mapping, that maps all variables in the constraint set to non-negative

rational values such that all equations in the constraint set are satisfied, written v �φ.

For partial maps, we use the following notations when used to model stacks, heaps,

or typing contexts: Let f be a partial map. The domain, co-domain and image of f

are denoted by dom(f), codom(f) and img(f) respectively. We specify the domain

and co-domain by writing f : dom(f) ⇀ codom(f). We may abbreviate x ∈ dom(f)

by x ∈ f and sometimes f(x) by writing fx. Furthermore we denote by f [x 7→ y] the

partial map that sends x to y and acts like f otherwise. In the opposite way, f\x
denotes the map which is undefined for x and otherwise acts like f . The restriction

of f on X is written f�X , i.e. the map that acts like f for all x ∈ X and that is

undefined otherwise. The empty map ∅ is often omitted, i.e. [x 7→ y] denotes the

singleton map sending x to y. The notation f ⊆ g is a convenient shorthand for

∀x ∈ dom(f). x ∈ dom(g) ∧ f(x) = g(x), i.e. g is an extension of f .

Typing contexts , which are also partial maps, are traditionally written in a different

notation, e.g. the context assigning variable x the type A is simply written {x:A}.
We may even omit the curly braces for smaller contexts. For two contexts Γ and

∆ having disjoint domains we simply write Γ,∆ to denote the joint context that

maps the variables of Γ and ∆ accordingly, e.g. {x:A, y:B, z:C} denotes the context

that maps the variables x, y, z to the types A,B,C respectively. Γ,∆ is undefined

if the intersection of their domains is not empty. Note that the order of writing for
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a context is without significance, e.g. {x:A, y:B, z:C} = {z:C, y:B, x:A}. The empty

context is written {}.

The free variables of a term t are denoted by FV(t), which will be formally defined

for the terms of our programming languages in Definitions 4.3 & 6.1. We define

capture-avoiding substitution in the standard way and write t[r/x] to denote the

term that is obtained by replacing all free occurrences of variable x within term t

with the term r, where all bound variables are suitably renamed to avoid the capture

of free variables in r. We generally adopt the Barendregt convention [Bar85] and

assume that all bound variables are always suitably fresh. We also assume that the

sets of variables (or identifiers) are generally infinite, but countable.

We write [ ] to denote the empty list and [a, b, c] for the list containing the elements

a, b and c. The concatenation of two lists is written l1 ++ l2. If h is a suitable element

and t is a (possibly empty) list, then h :: t is the list obtained by prepending h to t;

while t++[h] denotes the list obtained by attaching element h at the end of list t.

The cardinality of a list l is denoted by |l|, e.g. |[a, b, c]| = 3. We identify each list

with its own index map, i.e. if l = [a, b, c] then l2 = b according to our previously

introduced abbreviations. The expression l5 is undefined in this example. We may

sometimes write ~l for a list l to enhance readability.

For readability within program examples, we sometimes allow ourselves to replace

free variables which are not of importance by the underscore symbol ‘ ’, in reseblance

to practical conventions found in popular functional programming languages, such as

Haskell and SML. Multiple occurrences of this symbol stand for different unnamed

variables as usual, hence they are not connected with each other in any way.
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We explain our basic approach informally by using an analogy to emissions trading

in the real world: One might consider heap space to be a valuable resource that must

not be wasted recklessly. Like burning fossil fuels for energy, which generates the

greenhouse gas CO2 as a byproduct, we may consider the littering of heap memory

with garbage as an unwanted “emission” of a program. As attempted in the real

world, we will reign in the amount of undesired “emissions” that are produced by

decreeing that each heap space allocation must be justified by spending a valuable

“carbon credit”. Since these “carbon credits” cannot be generated out of thin air, a

program must ask in advance (i.e. through its input) for enough credits to complete

its run. Furthermore these credits must also be handed down to subroutines that

the main program subcontracts do part of its work, so that their use of heap space

is justified just as well. A program may also be rewarded for responsible use of heap

space by receiving extra “carbon credits” for each heap space deallocation, i.e. for

each “emission” that is undone.

The benefit of such a system is, as in the real world, that the total amount of

“emissions” produced is a priori bounded by the number of “carbon credits” that

have been issued. A program can thus never allocate more heap space than the

amount it asked for at its very start. However as opposed to real world bureaucracy,

our control system incurs a zero overhead: ensuring that each unit of heap allocation

is matched by expending a “carbon credit” is achieved through an augmented typing

derivation for the program’s source code. Whether the typing of a program is correct

or not can be checked readily at compile time. The code itself and its actual execution

remains unchanged. Another huge advantage over the real world is that we can and

will rigorously prove that each and every emission is actually registered, in other

words, that no heap allocation escapes our analysis.

2.1 Amortised Analysis

The mathematical foundation behind the principle informally described above is

known as amortised analysis, first described by R. E. Tarjan in [Tar85]. Amortised

analysis is a general tool to determine the complexity of an algorithm, be it time

or space. A good introduction to amortised analysis with respect to functional pro-

gramming was written by C. Okasaki [Oka98]. We will further remark on Okasaki’s

work towards the end of this section.

In an amortised analysis, each state that an algorithm may enter during its process

is abstracted into a single number, called the potential. The amortised cost of an
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operation I performed by the algorithm is then defined as its actual cost (time,

space, etc.) plus the difference in potential of the state before and after performing

the operation.

amortised cost(I) ≥ actual cost(I) − potential before(I) + potential after(I)

If the method of assigning a potential to a state is cleverly chosen, then the amortised

cost of each individual operation may be zero or at least constant (or can be suitably

bounded by a constant), even when their actual cost varies in relation to the state

and is thus difficult to determine. This usually means that expensive operations lower

the potential accordingly, while others, especially resource-beneficial operations such

as deallocations, may increase the potential.

Determining the cost of an entire sequence of operations then becomes very easy:

the total cost is the sum of the amortised costs plus the difference in potential of the

state at the start of the operation sequence and at the very end. Calculating the sum

of all amortised costs can often be made even easier by choosing the potential in such

a way that all individual amortised costs are zero. In that case, the sum is simply

zero, or in other words, all actual costs are fully amortised by the initial potential.

One usually ensures also that the potential is always non-negative. This is not always

necessary, but it has the following two advantages:

a) First, in the presence of operations having a negative actual cost, such as heap

space deallocation, one must ensure that the high watermark of resource usage

is also tracked. For example, an allocation of two bytes which is followed

immediately by the deallocation of two bytes, has a net cost of zero, but still

requires two freely available bytes to succeed. If the potential is somehow not

allowed ever to become negative, then such temporary costs will be revealed

by the increased starting potential that is required.

b) Second, even if the final state is completely unknown, the overall worst-case

cost of all operations can be bounded from above by the potential of the initial

state alone, since the worst-case must assume that the final state has a potential

of zero. Of course, this requires all amortised costs to be non-positive as well,

since otherwise we would still need to track an upper bound on the actual

number of each possible operation, which is unlikely if we do not know the final

state.
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Note that the latter situation applies to the analogy from the introduction: each

carbon credit represents a potential of one and the number of carbon credits in circu-

lation is obviously always non-negative. Furthermore each emission has an amortised

cost of zero, since each emission must be paid for exactly by expending a number of

carbon credits. According to a.), one might also consider awarding newly generated

carbon credits to companies for consuming CO2, without affecting the overall amount

of emissions generated in the observed time period.

If both properties are not required, i.e. the final state is known and all actual costs,

such as execution time costs, are non-negative, then a negative potential can be safely

allowed. This allows costs also to be expressed in relation to the final state, if its

potential happens to be negative, rather than to the initial state alone. Recall that

the overall cost is the sum of the amortised costs for each operation performed, plus

the difference in potential between the initial state and the final state, both of which

can be negative. However, since heap space operations may have negative actual

costs, we will ensure that the potential is always non-negative for the remainder of

this thesis.

2.2 Example: Analysing a Queue

The following standard example is a simplified version of an example provided in

Okasaki’s book [Oka98]. Okasaki himself cites R. Hood and R. Melville [HM81] and

D. Gries [Gri81] as the source for this example. It demonstrates the usefulness of

an amortised analysis by examining an implementation of a queue using two stacks

A and B. Enqueueing is performed on stack A, dequeueing is performed on B. If

a dequeueing request is received while B is empty, the whole contents of A are first

moved to B, thereby reversing their order, prior to dequeueing from B eventually. A

sequence of example operations on such a simulated queue is shown in Figure 2.1 on

the facing page. The costs shown in the figure are the number of elementary stack

operations that are required to perform the requested queue operation, which could

correspond to the execution time. It is easy to see that the enqueueing operation

enqu(·) has a cost of one; while dequeueing with operation dequ() has a variable

cost, which is often one, but which is sometimes proportional to the size of A. This

variable cost is unpleasant, since calculating the cost of a sequence of queue operations

requires us to keep track of the state of stack A somehow.
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� �

� � � �

� � � �

� � � � � �

A B A B A B A B

Potential 3 0 4 0 4 0 0 0

Operation
−−−−−→
enqu(�)

−−−−−−−−→
dequ( ) = �

−−−−−−−−→
dequ( ) = �

Actual Cost 1 1 5

Change of Potential 1 0 −4

Amortised Cost 2 1 1

Figure 2.1: Simulating a queue by using two stacks

However, if we decree that the potential is exactly the size of A, then enqueueing

always has an amortised cost of two (one for the actual cost, one for the increase

in potential) and dequeueing has always an amortised cost of one, since the cost of

moving A over to (the empty stack) B cancels exactly out against the decrease in

potential. It is obvious that the potential, which is equal to the size of stack A, is

always non-negative. Thus, the actual cost of a sequence of operations is bounded by

the initial size of A plus twice the number of enqueues plus the number of dequeues.

Therefore we only need to know about the initial state, but we do not have to track

the full state for determining the cost of an entire sequence of queue operations.

In this particular example, we can verify this analysis by observing that each element

is moved exactly three times: once into A, once from A to B, and once out of B.

Handling each element therefore has a cost of at most three units. The amortised

analysis recognises this. In effect, the cost of moving an element from A to B is

accounted for earlier in time by attributing it to the enqueueing operation rather

than the later dequeueing operation, where the cost actually comes into effect. Note

that the amortised analysis is precise for the entire sequence. In general, however,

the accumulated amortised costs at any point during a sequence present a worst-case

bound on the actual costs.
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2.3 Automatising the Amortised Analysis

The crucial task in applying the amortised analysis technique is to carefully assign

the potential in a useful way. One has to be clever to do this. This restricts the

technique to experts and prevents a widespread use, since it is infeasible to try all

possible ways of assigning potential. We overcome this problem by choosing the

following restriction:

The potential is always chosen to be a linear combination of the number of nodes

required to store a program’s current data structures in the (heap) memory.

This implies that the upper bound on worst-case cost is also linearly tied to the input

data structures, since the bound depends on the potential of the initial state. This

is the price we have to pay for an automated amortised analysis at the press of a

button.

The benefit is that we can construct a type based analysis, which is only concerned

with the entities directly mentioned in the context of each program expression, as

opposed to traditional amortised analysis, which always takes into account the entire

memory configuration.

In the above queue example, both stacks have clearly the same type. However,

the stacks must be treated differently, since each element of A contributes 1 to the

overall potential, whereas each element of B contributes a potential of 0. We choose

to record this information also within the type, by adding a number annotation to

each type constructor: stack A is assigned the type “Stack(Shapes,1)”, while stack

B is assigned the type “Stack(Shapes,0)”. Therefore we can easily compute the

potential of a data structure if we know its assigned type.

The total potential is then a sum of the potential of each data structure based on its

type, plus an independent amount referred to as petty potential that is not tied to

any data, i.e. the constant term of the linear potential formula. It is crucial that this

sum ranges over all typings within the current scope. Hence, one and the same data

structure may contribute more than once to the potential, if any aliasing occurs. We

comment more on the treatment of aliasing in the next section.

The purpose of our annotated type system is then to ensure that each operation

has an amortised cost of zero. Each type rule will therefore pose certain (linear)
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constraints on the potential annotations within the types of the entities that are

manipulated by an expression. An amortised cost of zero is achieved by using the

petty potential. Its role is similar to petty cash, while the potential assigned to

a data structure based on a type is treated more like money sitting in a savings

account, that cannot be used directly for making payments. For example, moving

a single element from stack B to stack A has an amortised cost of two: one for the

actual cost and another one for the increase in potential, which is saved for later.

This saving is represented by the “typecast” of an element of “Stack(Shapes,0)” to

fit the type of elements of “Stack(Shapes,1)”. This cost of two must be paid from

the “petty cash” potential, and this is enforced by the constraints of the type rule

used for typing this operation.

Automating the entire process is then achieved by the following steps:

a) by constructing a standard typing derivation;

b) by annotating each occurring type, including intermediate ones, with a unique

variable ranging over the rational numbers;

c) by constructing an annotated typing derivation, which closely follows the struc-

ture of the standard typing derivation, essentially adding constraints;

d) by collecting all constraints from the annotated typing derivation; and

e) by solving the gathered constraints using a standard solver for linear program-

ming problems (LP).

The solution returned by the LP-solver, if it exists, then yields the numbers for the

potential annotations for the argument types of a program. These in turn allow us to

compute a program’s heap space usage instantly through a simple linear arithmetic

expression, which depends on the actual sizes of the concrete input for the program,

such as the length of a list. The LP is deliberately not restricted to integral solutions,

so that that we can infer and express bounds like, e.g. “three heap units required

for processing two elements of the input list”. We will manually perform the entire

process for an informative program example in Section 5.6.

Note that the process can only fail at the first or the last step, i.e. the generation of the

constraints always succeeds for a well-typed program. In order to increase the range

of programs that admit such an annotated typing derivation, we also allow forfeiting

of potential at various points. For example, if one branch of a conditional admits
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the type “Stack(Shapes,3)” and the other “Stack(Shapes,1)”, then the result will

be simply restricted to type “Stack(Shapes,1)”. Similarly we allow the dropping of

assumptions from the typing context. In terms of the analogy from the introduction

this means that we may discard carbon credits at any time without using them.

This is harmless in the sense that we still have a valid bound on the total amount

of “emissions”, but it may be an over-approximation. We note that one might also

use over-approximations for the actual costs when dealing with resources other than

heap space, for example attributing the worst-case number of clock cycles required

to perform an operation as the actual cost for all such operations.

2.4 Advances over Previous Amortised Analysis

Techniques

In his book [Oka98], Okasaki observes that amortised analysis generally breaks in the

presence of persistent data structures commonly used in functional programming.

The problem is that Okasaki assigns the potential to the data structures as they

exist in the memory. Thus potential only decreases by deallocation. Therefore,

if a persistent data structure is dereferenced more than once, potential is wrongly

duplicated each time that data is processed.

His solution to this dilemma is to resort to lazy evaluation, in the hope that data is

only processed once, with the heap being updated to the result. This works well for a

range of interesting algorithms. However, applying the amortised analysis technique

to a lazy functional language gives rise to further interesting problems, which are

subject to currently ongoing research [Sim10].

Our thesis focuses entirely on a strict functional language, mainly because it seemed

more promising to deliver accurate bounds. We were initially not aware of the prob-

lem described by Okasaki (and Amortised Analysis in general) and thus circumvented

it unintentionally.

We avoid this problem by assigning the potential to one and the same data structure

on a per-reference basis. Therefore each use of a data structure is assigned its own

individual and independent potential.

The price for this is that we need an explicit contraction rule in our type system,

which governs the multiplication of references. A type system is usually oblivious
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to data aliasing and we keep it that way. Aliases are not tracked nor counted,

only their introduction is noted. If a reference must be duplicated, then our explicit

contraction rule ensures that the existing potential of the referenced data structure is

split linearly among the newly created aliased references to that data structure. This

guarantees that the overall potential remains unchanged by aliasing. For example,

a reference of type “Stack(Shapes,9)” can be exchanged for two references of type

“Stack(Shapes,6)” and “Stack(Shapes,3)” which can then be used independently,

despite the persistence of the data structure on the heap.

An important and useful consequence of assigning potential on a per-reference basis

is that aliased data is then assigned the same amount of potential as unaliased data.

This is useful, since in a purely functional language it is impossible for the consumer

of data to recognise aliasing within the input, therefore its execution cost should not

depend on aliasing. Of course, the producer of data may still reduce its execution

costs through aliasing, as we shall see later on.
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In this chapter we provide a survey over the family of research concerned with pro-

gram analysis. We first start by examining directly related research, which are all

concerned with the amortised analysis technique. The second section then lists the

expected future members of that family, which are either already in the making or

still waiting to be conceived. At last, we consider and compare other attempts at

program analysis for estimating the resource usage of programs.

3.1 Affiliated Research

During the very long time that it took to accomplish this thesis, several publications

were spawned, which we now discuss within their historical context. In fact, there

is little left in this thesis that has not been already published somewhere. However,

these publications would have never happened without this thesis. While the research

was exclusively conducted for this thesis, we believe it is highly beneficial to the

research community to learn about our findings as soon as possible, and to integrate

it into large research projects.

The author contributed a significant amount of this thesis towards the success of

the publications [HJ03, HJ06, JLS+09, JLH+09, LJ09, JLHH10]. An overview over

the different features contained in each of these publications is given in Figure 3.1.

Providing a uniform access to this body of work in a common revised notation is

also an important feature of this thesis. Although not all available extensions to the

automated amortised analysis technique could be included in the formal framework

of this thesis, we discuss and explain most features informally, except for the object-

oriented imperative language of [HJ06], which we excluded since it does not deal with

a purely functional language.

The author also wrote several deliverables for research projects. Both, the participa-

tion in research projects and the above mentioned publications, helped the amortised

analysis and its implementation to reach a sound maturity.

Mobile Resource Guarantees [MRG05] The research project Mobile Resource Guar-

antees was primarily concerned with equipping mobile byte code with machine-

checkable certificates, that can be independently verified by the receiver of the

code. The author provided an implementation of the automatic amortised anal-

ysis to determine bounds on heap space usage as a role model for a property

to be encoded in these certificates. An overview that discusses the amortised

analysis in this context can be found in [LMJB09].
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full recursion + + + + + + +

in-place update + +

compilation to C + +

inference + + + + +

aliasing + + + + + +

object-orientation +

imperative update +

storeless semantics + + + +

arbitrary recursive data types + + +

varying resource metrics + + +

interactive solving +

polymorphism +

creating circular data +

resource parametricity + +

higher-order + +

non-termination +

delayed execution +

Figure 3.1: Family feature comparison
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EmBounded [EmB09] The amortised analysis technique as researched by the au-

thor played the leading role in the EmBounded project, which aims “to identify,

to quantify and to certify resource-bounded code in Hume, a domain-specific

high-level programming language for real-time embedded systems” [HM03]. We

detail the cooperation with the EmBounded project further below.

Islay [Isl11] The Islay project on “adaptive hardware systems with novel algorith-

mic design and guaranteed resource bounds” follows a goal similar to the Em-

Bounded project, albeit for software that is executed on reconfigurable and

possibly adaptive FPGAs.

The line of research that lead to this thesis was started with “A type system for

bounded space and functional in-place update” by Hofmann [Hof00], which describes

a linearly typed first-order functional language, called LFPL, that can be compiled

into malloc-free C-code. The system included a special type �, which represented

pointers to free memory regions, making them a first class object inside the functional

language. The �-type later evolved into our abstract notion of potential, essentially

by abstracting it into numbers that count its occurrences for certain pivotal places

in a type. The paper already discussed several possible extensions, including poly-

morphism, higher-order functions and arbitrary recursive data types. Hofmann also

observed in [Hof02] that adding higher-order functions to LFPL increases its expres-

sive power from linear space to exponential time.

The work on this thesis was started by the task of constructing a type inference

for LFPL, which led to the publications [Jos02, HJ03]. The foundations for the

resource analysis laid in these works remained largely unchanged: linear inequalities

arising from the side conditions of a type derivation are solved by an LP-solver,

whose solution yields the factors for a formula that bounds the heap usage of the

typed program. Unlike for LFPL, the considered type system included a rule for

contraction. The paper proved that the generated linear programs always admitted

an integral solution, if they were solvable at all. This is unusual, since determining

whether or not a linear program admits an integral solution is known to be an NP-

hard problem. However, we also showed by an encoding of 3SAT into an LFPL

program that obtaining an optimal solution remained to be a NP-hard problem.

The following work [HJ06] extended the method to successfully analyse a subset of

Java, named RAJA. The object-oriented language included inheritance, up- and

downcast and imperative updates. However, a full inference for RAJA is lacking,

albeit an automatic type-checking algorithm was recently provided by Hofmann and

Rodriguez [HR09]. A combination of the amortised analysis for Java with separation
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logic was proposed by Atkey [Atk10], in order to include the treatment of safety

aspects in conjunction with imperative update.

Note that it was during the preparation of [HJ06] that our colleague Olha Shkaravska

pointed out the connection to Amortised Analysis as proposed by Tarjan [Tar85], of

which we had been hitherto unaware. Together with employing a storeless semantics,

which allowed the abolishment of the unfortunate “benign sharing” from [HJ03], this

led to a much cleaner description of the method.

Extending the technique to deal with a higher-order type system turned out to be

difficult. The first description of a workable type system is found in the later deliver-

ables of the EU-funded research project EmBounded [EmB09]. However, the Hume

language used in the EmBounded project differs notably from the Arthur language

treated in this thesis. Hume uses under-application to create function closures, but

has no general lambda abstraction nor delayed execution [HM03]. Tracking the size

of closures therefore required the technique of closure-chaining. There are numerous

further technical differences, since Hume is a programming language that is geared

towards everyday use, as opposed to the theoretically convenient Arthur. The prac-

tical approach required several extensions, especially since the EmBounded project

placed a high emphasis on the determination of worst-case execution time (WCET),

the first results of the our technique being shown in [HBH+07].

The researched extensions published in [JLH+09] notably included the formal treat-

ment of user-defined recursive data types, which we informally discuss in Section 5.2.1

and illustrate by an example in Section 5.6. Even more important, the work showed

how to generalise the soundness proof in order to have user-defined resource met-

rics as independent plug-ins, briefly discussed in Section 7.1. Metrics for worst-case

execution time, heap and stack space usage were included and applied to several

program examples, yielding quite precise cost bounds for each. The work thereby

showed that our technique is indeed good enough to lift an elaborate machine-level

WCET analysis, such as AbsInt GmbH’s aiT tool [FHL+01], that works on small

blocks of C-code, which represent byte code instructions of an intermediate language

used in the compilation process, up to the high-level source language. The work

thereby confirms earlier experiments with real-time embedded applications reported

in [JLS+09].

Integrating our research with the EmBounded project had the advantage of produc-

ing a robust implementation of the analysis. Some of the technical aspects of this

implementation were examined in [LJ09], such as interactively performing incremen-

tal calls to the LP-solver in order to enable the user to explore the different cost
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bounds a program might simultaneously admit. Another novelty of that work was

to demonstrate a cost metric that counts the maximum number of calls made to a

selectable set of function identifiers.

Brian Campbell published extensions to the technique to infer more precise bounds

for stack-space usage [Cam08, Cam09], loosely based upon a very early draft of this

thesis. It was shown how to account for temporary usage of potential, as well as

assigning potential with respect to depth and maxima of data. These techniques

lend themselves much more naturally to the way stack space is used and thereby

improve the precision of the cost bounds.

The soundness proof for a higher-order version of the amortised analysis technique

was then eventually published in [JLHH10]. The considered language is similar to the

one in this thesis, but additionally allows polymorphism and the creation of circular

data structures. The work also included polymorphism with respect to resource

annotations, named resource parametricity. which we consider to be a must-have for

a successful analysis of higher-order functions. Comments on the simple technique of

using ghost-let constructs, which are vital for measuring time and stack usage with a

big-step semantics, were also included in this work. Compared with this thesis, only

the analysis of non-terminating programs and delayed execution were missing.

3.2 Future Offspring

Although the amortised analysis technique detailed in this thesis has reached a re-

markable maturity, there are still several possibilities for future investigations, which

might be rewarded with useful results.

Super-linear bounds. The first way to surmount the limitation to linear cost bounds,

was investigated by Shkaravska et al. [Svv07], which allowed the use of resource

functions within the constraints for shapely functions only, but the inference

appeared to be quite hard.

A more promising approach by Hoffmann and Hofmann [HH10b] lies in repre-

senting resource bounds as non-negative linear combinations of binomial coef-

ficients. However, this method appears to be limited to list- and tree-like data

structure, although such data structures are indeed the most common ones.
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We believe that a breakthrough might be achieved through a combination with

sized type techniques [Vas08, VH04, HP99, HPS96]. A combination of both

approach would be most useful, since our experience shows that sized type

techniques have good chance of succeeding where the amortised analysis has

problems and vice versa. In addition, even partial information provided by the

sized type analysis can be used to generate super-linear bounds through the

amortised analysis. For example, it is possible to recharge the potential of a

list if a bound to its length is known. The benefit of such an approach would

be that successive application of efficient LP-solving would suffice.

Lazy evaluation. With the advent of many-core processors upon us, it appears that

side-effect free functional languages offer a tremendous advantage: first, by

eliminating the complexity that side-effects incur in a parallel setting [HM00,

MPJS09], and second, by introducing parallelism automatically [HS07]. Hence,

the importance of functional languages is likely to rise in the future. The lazily

evaluated Haskell language is among the most popular functional languages

of the current times. However, all the languages treated by our technique

thus far were assumed to be eagerly evaluated, with the notable exception of

Okasaki’s work [Oka98], which excludes information. So it would already be

highly desirable to analyse a single thread which lazily evaluated on its own.

Of course, worst-case bounds for a strictly evaluated language remain valid if

we switch the evaluation strategy to be lazy, but those bounds would be of

very poor quality. There are many programs that require an infinite amount

of resource when evaluated strictly (due to non-termination), but which only

require a small finite amount of resources under lazy evaluation. For example,

the simple program take 5 (repeat 7), that computes a list containing the

first five elements of an infinite list, would already not terminate under a strict

evaluation strategy, but clearly does so when lazily evaluated. It is therefore

natural to ask whether we can do better than simply performing a standard

strictness analysis to reduce the program beforehand.

Note that the delayed execution included in Arthur is insufficient, since linear

pairs are not allowed to be shared. The power of lazy evaluation lies within

the sharing of a reference, albeit maintaining that only the first access to an

alias requires any evaluation, while any subsequent access cheaply looks up the

previous result.

However, it seems quite possible to fix this. First experiments are very promis-

ing and seem to be quite capable to deal with infinite stream generators. The

27



3 Related Research

technique appears to call for a mixture of our per-reference and Okasaki’s per-

location potential. Further research by Simões et al. [Sim10] is already on its

way, and we expect exciting results in the nearby future.

Negative Potential. A golden rule for amortised analysis is that potential is always

non-negative. This is necessary to track a temporary maximum resource usage.

However, monotonic resources such as worst-case execution time cannot exhibit

temporary highs, and hence possibly allow us to ignore this rule. While a

positive potential accounts cost earlier than they actually occur, a negative

potential would delay the point in time when costs are accounted for. Costs

could then be expressed in terms of the input and output sizes. Of course,

this would require a strict type system, that ensures that types with negative

potential cannot be unlawfully discarded. It would be interesting to learn how

this technique could increase the range of programs that can be successfully

analysed and whether there is a further impact on the aforementioned analysis

of lazily evaluated languages.

Lower bounds. Sized type based analysis systems usually need to track sizes in

ranges in order to work, i.e. both maximal and minimal sizes are accounted for.

Thus far we have only examined worst-case cost, but it seems straightforward

to analyse for best-case costs as well, thereby inferring cost ranges. In addition

to help the integration with sized type approaches, minimal costs might also

be of interest for lazily evaluated languages.

Ghost-data. Amortised analysis is strong when branches of computation closely cor-

respond to the processed data structures, such as recursion over a list or a tree.

However, this is not always the case and the amortised analysis often performs

poorly if the recursion does not match the structure of the data. It might be

possible to salvage these cases by assigning potential to inferred imaginative

data structures, that capture the recursion scheme, thereby turning it explicit.

The idea is that the analysis always produces an answer, that may perhaps

provide more information about resource usage than a simple “fail”.

Numeric potential. The general idea in our amortised analysis is that every con-

structor carries its own potential annotation. However, numbers were neglected,

since one could view the terms 0, 1, 2, . . . as constructors. A difficulty lies in

the fact that it is in practice impossible to add annotations for each number

contained in a numeric type. As an approximation we experimented with as-

signing the number 0 a zero potential and the number r exactly r-times the

potential of the number 1. This corresponds to viewing 0 and succ as the only
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constructors of a number value, and is equivalent to treating a number as a list

of unit elements of the corresponding length. Of course, non-negative fractional

values can clearly be assigned a potential in the same manner, i.e. value times

annotation.

We found that the applications studied during the EmBounded project often

required this experimental extension of numeric potential in order to deal with

loops that are bounded by numeric computations. However, this extension is

unsafe, as negative potential might occur (see above) and must be manually

checked for, which is tedious. It suffices to check that all number values that

carry non-zero potential are non-negative, such that the analogy of treating

numbers similarly to unit lists can be upheld, i.e. that the list length is always

non-negative. Furthermore, assigning the number 0 a zero potential is rather

arbitrary and only works well for loops that count down to zero. Therefore it

should be investigated whether this could be generalised, e.g. numeric types

given two annotations for basis and step, and whether such a generalisation

can be successfully inferred.

3.3 Distant Relatives

In this section we review several works by other authors that are also concerned

with quantitative resource analysis. The section is largely based on our review of

related work presented in [JLHH10], albeit some citations of works that are not di-

rectly concerned with quantitative resource analysis were moved to more appropriate

sections of this thesis (e.g. work concerned with deallocation safety is discussed in

Section 4.3.1).

Note that a direct comparison based on experiments between our amortised analysis

approach and the reviewed works is lacking, since many of the approaches discussed

in this section are experimental and may be concerned with different programming

languages having different operational cost models. Instead, we rely on the evalua-

tions of the authors given in their respective works.

We furthermore concentrate on the comparison of general features provided by each

approach, which we summarised in Figure 3.2 on the next page for convenience. Each

feature receives a rating, where a “+” symbol signifies that a feature was achieved,
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This Thesis ◦ + - Fun + + + + ◦ + - -

[HPS96, HP99] - + + Fun + - - - ◦ + + -

[CK01, CNPQ08] - + - Imp - - + - + + + -

[VH04] ◦ + + Fun + - + ◦ + + + +

[Vas08] ◦ + + Fun - - + ◦ + + + -

[FHL+01] ◦ - - Imp - - ◦ ◦ + - - +

[BCC+03] ◦ - + Imp - - ◦ - + - - -

[Mét88] - ◦ - Fun - - + + - - - +

[Ben01] ◦ + - Fun ◦ - + ◦ ◦ - - +

[GL02] + + + Fun + + + - + - - +

[AAG+07, AGG09] + + ◦ Imp - ◦ ◦ ◦ + + - +

[GMC09] + ◦ - Imp - + ◦ ◦ + - - +

[San90] + + - Fun + - - - - - - +

[CW00] ◦ + + Fun + + - + + ◦ ◦ +

[TEX03] + + - Fun + + + + - + - -

[BFGY08] ◦ - + Imp ◦ ◦ + + + + + -

Figure 3.2: Comparison of related work
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while a “−” symbol stands for a feature that was not or only poorly achieved. The

“◦” symbol stands for considered or partially achieved features. For example, this

thesis receives an “◦” for its range of analysable programs, since it can only success-

fully analyse programs having a linear resource consumption, which is a noteworthy

restriction. Likewise, its implementation receives an “◦” since it uses a somewhat

different syntax and lacks the support for linear pairs of Arthur.

It is noteworthy that many approaches to statically determine the runtime cost of

a program are type based. Types are useful for resource analyses, because they can

relate additional resource relevant information along the dataflow of a program, or

they can provide a sound basis for simplifying the analysis problem through varying

levels of abstraction.

Sized types. Sized types express bounds on the sizes of data structures. The sizes

are attached as annotations to types in a similar fashion as our potential annotations,

but the two should not be confused. The difference is that sized types express absolute

upper bounds on the possible size of data structures (and often a lower bound as

well), whereas our annotations are weight factors of a linear resource bound that are

relative to the size. Sized types are thus a special form of dependent types , where the

type are parametrised with a value. This allows a more fine grained control over the

values that are associated with the type.

A significant problem for sized type approaches are nested data structures, since

the size bounds of sub-lists of a list are then required to be uniform, which may

lead to unacceptable imprecision. Note that this is not at all a problem for our

amortised analysis, as the potential is assigned according to the individual sizes of

nested structures.

The groundbreaking work for the sized type analysis technique was written by Hughes,

Pareto and Sabry [HPS96], who described a type checking algorithm for a simple

higher-order, polymorphic, non-strict functional language to determine progress in a

reactive system. This work was subsequently developed to describe space usage in

Embedded ML [HP99], a strict functional language using regions to control memory

usage. However, their work only dealt with linear data structures, like lists, but not

trees, and the final analysis was not implemented.

Chin and Khoo [CK01] introduced a type inference algorithm that is capable of com-

puting size information from high-level program source. Chin et al. [CNPQ08] then

presented a heap and a stack analysis for a low-level assembly language with explicit
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(de-)allocation, which is also restricted to linear bounds. The system can automati-

cally insert deallocation primitives when sufficient alias information is provided. By

inferring path-sensitive information and using symbolic evaluation they are able to

infer heap and stack space bounds.

Vasconcelos and Hammond developed automatic inferences for a sized type analysis

that are capable of deriving cost equations for abstract time- and heap-consumption

from unannotated program source expressions based on the inference of sized types

for recursive, polymorphic, and higher-order programs [VH04]. Vasconcelos’ PhD

thesis [Vas08] extended these previous approaches by using abstract interpretation

techniques to automatically infer linear approximations of the sizes of recursive data

types and the stack and heap costs of recursive functions. By including user-defined

sizes, it is possible to infer sizes for algorithms on non-linear data structures, such as

binary trees, thereby improving upon the previous works in this line of research. The

runtime of the inference is exponential in the program size. The thesis also corrects

an error in the soundness proof provided by Chin and Khoo [CK01].

The two following works discussed are not quantitative resource analyses per se,

but they employ dependent types and methods that are relevant to this discussion.

Danielsson [Dan08] introduced a library of functions that makes the complexity anal-

ysis of a number of purely functional data structures and algorithms almost fully

formal. He does this by using a dependent type system to encode information about

execution time, and then by combining individual costs into an overall cost using

an annotated monad. However, the system requires some manual cost annotations.

Abel [Abe06] extended higher-order sized types to allow higher-kinded types with

embedded function spaces. He used this system to formalise termination checking

but did not consider resource consumption in general. One should note that a strict

upper bound on resource consumption does not always imply termination. For ex-

ample, one may easily write a non-terminating loop that has a net heap space usage

of zero. Vice versa, one may expect specialised termination checkers, such as the sys-

tem proposed by Abel, to deliver an answer for programs whose quantitative resource

bounds cannot be recognised.

Abstract Interpretation. The basic idea of abstract interpretation is to simplify

and omit all calculations that do not directly influence the execution costs. For

example, instead of computing a numeric value, it is only computed whether it is

positive or negative, thereby speeding up the execution of the program to be ex-

amined. While having the attraction of being very general, one major disadvantage
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of abstract interpretations is that analysis results usually depend on concrete data

input values to perform the abstracted runs of the program. Unlike type-based ap-

proaches, abstraction interpretations also often risk non-termination in analysing

recursive definitions.

Where they can be applied, impressive results can, however, be obtained even for

large commercial applications. For example, AbsInt’s aiT tool [FHL+01], and Cousot

et al.’s ASTREE system [BCC+03] have both been deployed in the design of the

software of Airbus Industrie’s Airbus A380. Typically, such tools are limited to non-

recursive programs and may require significant programmer effort to use effectively.

Note that the ASTREE system is concerned with general software verification and

does not compute quantitative resource bounds, whereas the aiT tool is focused on

determining worst-case execution time.

Considering user-defined higher-order programs appears to be quite difficult. The

work by Le Métayer [Mét88] can handle predefined higher-order functions with known

costs, such as standard map/fold functions. However, the system is restricted to a

single linear data structure and non-mutual recursion.

Benzinger’s work [Ben01] on worst-case complexity analysis for programs extracted

through the higher-order proof assistant NuPrl similarly supports higher-order func-

tions if the complexity information is provided explicitly, but cannot infer such in-

formation by itself.

Gómez and Liu [GL02] have constructed an abstract interpretation for determining

time bounds on higher-order programs. Their analysis executes an abstract version of

the program that calculates cost parameters, but which otherwise mirrors the normal

program execution strategy. Unlike our type-based analysis, the cost of this analysis

therefore depends directly on the complexity (or actual values) of the input data and

the number of iterations that are performed, does not give a general cost metric for

all possible inputs, and will even fail to terminate when applied to non-terminating

programs.

The COSTA system by Albert et al. [AAG+07, AGG09] performs a fully automatic

resource analysis for an object-oriented bytecode language, and is also largely generic

over the resource being analysed. First a set of recurrence relations are generated,

which are then solved by Mathematica or a special recurrence solver that is tailored

for the use of resource analysis and as such produces better results than general recur-

rence solvers. Similar to the amortised analysis technique it produces a closed-form
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upper bound function over the size of the input. Unlike our system, however, data-

dependencies cannot be expressed and the accuracy of the bounds remains unclear,

especially in the case of function composition. Furthermore, higher-order functions

cannot be treated directly.

A powerful, recent analysis which demonstrated high quality bounds for product

code is Gulwani, Mehra and Chilimbi’s SPEED system [GMC09]. The system uses a

symbolic evaluation approach to calculate non-linear complexity bounds for C/C++

procedures using an abstract interpretation-based invariant generation tool. Nu-

merical loop bounds can be automatically inferred, but loops iterating over data

structures require manually produced numerical bounds. In general, their strength

lies in dealing with programs performing many numerical computations, while their

weakness lies in dealing programs that recurse over inductive data types. Their

work is thus complementary to the one presented in this thesis. However, unlike this

thesis, they target only first-order programs and they only consider bounds on worst-

case execution time. They do, however, consider non-linear bounds and disjunctive

combination of cost information.

Further Approaches. The interesting work by Sands [San90] is distinguished by

dealing with a higher-order functional language that is lazily evaluated, a topic that

we are highly interested in as noted in the previous section. The approach relies on

an additional neededness analysis and quickly becomes complex for more elaborate

data structures. The work focuses on time analysis and was intended to aid human

reasoning. However, the approach appears unsuited for constructing a fully automatic

inference.

A simple system that resembles our notion of petty potential, similar to a clock

winding down, was proposed by Crary and Weirich [CW00]. The work allows user-

defined primitive-recursive cost functions rather than fixing a canonical cost function

like we do. The cost functions are intended to limit computational steps, but Crary

and Weirich suggest that imposing bounds space usage is also possible, and especially

straightforward for stack space. Their system is implemented as a type-checker for a

higher-order type system. However, the system only checks given bounds, but is not

able to infer them.

Taha, Ellner and Xi [TEX03] present the multi-staged language GeHB. First stage

computations are allowed to have arbitrary resource consumption, while second stage

computations may not allocate any new heap memory. GeHB programs automati-

cally generate first-order LFPL programs from higher-order specifications, which is
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an interesting feature. The system thereby offers more expressivity than LFPL while

reusing the mechanics developed for LFPL, but it does not deliver a cost formula

for the heap space consumption of the first stage.

Braberman et al. [BFGY08] infer polynomial bounds on the live heap usage for

a Java-like language with an automatic region-based garbage collector for memory

management. The system appears to efficiently compute bounds on heap and stack

space consumption, but cannot cover general recursive methods.
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We define an eager first-order monomorphic functional language, called LF, as a

basis for our compile-time program resource usage analysis. The language is fairly

standard and not linearly typed, despite what the acronym may suggest. The name

was chosen in reminiscence of Hofmann’s LFPL [Hof00], which inspired the research

that eventually led to this thesis.

We first formulate a standard type system and operational semantics as a basis for

our work. We then formulate a cost-aware extension to the type-system of LF,

which we refer to by the name LF�, in Chapter 5. The little precious diamond

symbol representing resource-awareness is also derived from [Hof00], albeit LF� does

not posses a specific resource type. The type system for LF� allows us to bound the

heap space usage of typed terms. We generally distinguish between unannotated and

annotated (or cost-aware) by adding the �-symbol the name of the various rules.

We will extend LF� furthermore in Chapter 6 by higher-order functions, resource

parametricity and delayed execution through linear pairs.

4.1 Syntax of LF

The terms of LF are given in Figure 4.1, consisting of terms for the unit and boolean

constants, variables and let bindings, function calls, conditionals, additive pairs, sums

and lists respectively.

The pattern matches for Sums and Lists must be specified as either read-only or

destructive: using the term match only reads the heap memory without altering it,

whereas using match! on an entity causes it to be deallocated immediately after the

match. There is no destructive match for pairs since they will be stack allocated in

our operational model, unless the pair is ultimately contained in a sum or a list node.

Including a deallocation primitive allows programs to exhibit a much more interesting

resource usage. It seemed natural to us to pair deallocation with pattern matching in

a purely functional language. A general deallocation primitive could have been easily

treated by our analysis, since any syntactic construct can be assigned an arbitrary

positive or negative cost. This is used to employ the amortised analysis method for

stack space usage, as demonstrated in [Cam09, JLH+09], since stack space is affected

by almost all operations. More comments about our choices for memory handling

follow in Section 4.3.
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4.1 Syntax of LF

e ::= * | true | false Constant

| x | let x = e1 in e2 Variable

| f(x1, . . . ,xn) Function Call

| if x then et else ef Conditional

| (x1,x2) | matchx with (x1,x2) → e Pair

| Inl(x) | Inr(x) Sum Construction

| match x with|Inl(y) → el|Inr(z) → er Sum Access

| match!x with|Inl(y) → el|Inr(z) → er Sum Elimination

| Nil | Cons(x1,x2) List Construction

| match x with|Nil → e1|Cons(x1,x2) → e2 List Access

| match!x with|Nil → e1|Cons(x1,x2) → e2 List Elimination

Figure 4.1: Syntax of the simple language LF
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4 Basis Language LF

Further base types could have been added without any difficulties. Note that data

types such as natural numbers or trees can already be build using pairs, sums and the

unit constant as included. The inclusion of primitives for lists is therefore superfluous

from the analysis perspective, but allows us to discuss interesting program examples

in a more succinct manner. Directly including a fixed size type, such as integers,

is analogous to the treatment of booleans. The direct inclusion of user-definable

recursive data types is also possible, as also shown in [JLH+09], but requires a cum-

bersome notation and was hence avoided in this thesis. We will outline the treatment

of arbitrary recursive data types in Section 5.2.1, once the basics of the amortised

analysis have been explained. Our prototype implementation of the amortised anal-

ysis always allowed the use of arbitrary recursive data types, as there would have

been no benefit for a non-general implementation. So for the sake of simplicity we

restrict ourselves here to booleans, pairs, sums and lists. We may occasionally allow

ourselves to use fixed size integers or tree types in some of the program examples

without much further explanations.

4.1.1 Let-normal form.

LF was designed to allow maximum simplicity from a proof-theoretic viewpoint while

covering all the essentials of a functional programming language. This is the reason

why LF only allows terms in a relaxed let-normal form (also known as adminis-

trative normal form [FSDF93]), i.e. subexpressions are restricted to be variables in

most cases. This might require the use of additional let expressions, e.g. writing

let y = g(x) in f(y) instead of the more succinct program term f(g(x)). For another

example, defining a pair of boolean constants also requires two let expressions, e.g.

let x = tt in let y = ff in (x, y).

The reason for this mild restriction, that is often considered as syntactic sugar, is

that it removes boring redundancies from our proof obligations: sequential evaluation

of expressions is dealt with precisely once – in the case that deals with the let

expression. Without the let-normal form the proof steps for the let expression alone

would have to be repeated in all cases that involve subexpressions, thus obscuring

the essential new parts of the proof within each case.

Note that we do not need the full let-normal form for expressions that do not sequen-

tially compose their subexpressions. For example, conditional and pattern match only

require a variable for the entity that decides the branch to execute, but not for the

subexpressions that define the branches themselves. Since only one of the branches
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4.2 Type System

zero-order types: A ::= unit | bool | A×A | A+A | list(A)

first-order types: F ::= (A, . . . , A)→ A

Figure 4.2: Types of the simple language LF

is executed, no threading is required, and hence we allow any subexpression in such

positions, not just variables.

It is important to note that the transformation to let-normal form is harmless and

commonly used in compilers. It has other pleasant side-effects, such as making the

evaluation order explicitly visible in the code, thereby eliminating any ambiguity.

However, this becomes only important for our amortised analysis technique when

dealing with cost metrics that bound stack space or worst-case execution time, for

example. Similarly, the ghost-let technique, discussed later in Section 7.2, is also

unimportant for the heap space metric that is primarily considered in this thesis, so

we ignore these for now.

4.2 Type System

The types of LF are shown in Figure 4.2, and consist of the unit type unit, the type

bool for booleans, the product type A×A, the sum type A+A, the type of lists over

entries of type A, and a first-order type for functions.

We now formulate the standard typing rules for LF. The statement

Σ; Γ ` e : A

means that term e has the type A within the typing context Γ and the program

signature Σ. A typing context is a partial mapping from variables to LF zero-order

types, as already described in the mathematical preliminaries in Section 1.3. A

signature Σ is a partial mapping from function identifiers to LF first-order function

types; since the signature is fixed for a given program, for brevity, we usually omit

to mention Σ throughout the rules.
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4 Basis Language LF

Definition 4.1 (LF Type Rules).

{} ` ∗ : unit
(LF`Unit)

c ∈ {true, false}

{} ` c : bool
(LF`Bool)

x:C ` x : C
(LF`Var)

Γ1 ` e1 : A Γ2, x:A ` e2 : C

Γ1,Γ2 ` let x = e1 in e2 : C
(LF`Let)

Σ(f) = (A1, . . . , Ak)−→C

x1:A1, . . . , xk:Ak ` f(x1, . . . , xk) : C
(LF`Fun)

Γ ` et : C Γ ` ef : C

Γ, x:bool ` if x then et else ef : C
(LF`If)

x1:A, x2:B ` (x1,x2) : A×B
(LF`Pair)

Γ, x1:A, x2:B ` e : C

Γ, x:A×B ` matchx with (x1,x2) → e : C
(LF`E-Pair)

x:A ` Inl(x) : A+B
(LF`Inl)

x:B ` Inr(x) : A+B
(LF`Inr)

Γ, y:A ` el : C Γ, z:B ` er : C

Γ, x:A+B ` match x with |Inl(y) → el|Inr(z) → er : C
(LF`E-Sum)

Γ, y:A ` el : C Γ, z:B ` er : C

Γ, x:A+B ` match!x with |Inl(y) → el|Inr(z) → er : C
(LF`E!-Sum)

{} ` Nil : list(A)
(LF`Nil)
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4.2 Type System

xh:A, xt:list(A) ` Cons(xh,xt) : list(A)
(LF`Cons)

Γ ` e1 : C Γ, xh:A, xt:list(A) ` e2 : C

Γ, x:list(A) ` match x with |Nil → e1|Cons(xh,xt) → e2 : C
(LF`E-List)

Γ ` e1 : C Γ, xh:A, xt:list(A) ` e2 : C

Γ, x:list(A) ` match!x with |Nil → e1|Cons(xh,xt) → e2 : C
(LF`E!-List)

Structural Rules

Γ ` e : C

Γ, x:A ` e : C
(LF`Weak)

Γ, x:A1, y:A2 ` e : C .(A |A1, A2 )

Γ, z:A ` e[z/x, z/y] : C
(LF`Share)

We see that LF type system is entirely standard, except for containing explicit struc-

tural type rules. Of the usual structural rules, only permutation is implicitly built-in

due to our definition of typing contexts in Section 1.3, while weakening and contrac-

tion have been made explicit.

Please note that the presence of explicit structural type rules for weakening and con-

traction do not at all mean that the type system is linear. In order to avoid possible

misunderstandings, we repeat the terminology here as given by Pierce [Pie04]: Once

would obtain an affine type system if we removed contraction (LF`Share); a rele-

vant (or strict) type system if we removed weakening (LF`Weak); or a linear type

system if we removed both structural rules. However, we do not intend to remove

either rule.

The reason for making weakening and contraction explicit will become apparent later,

when we deal with the resource aware type system, since both structural rules are

important for tracking resource usage. For an intuition about this, recall from the

introduction that we intend to derive bounds on resource usage in relation to the sizes
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4 Basis Language LF

of the data handled. Therefore, the application of the weakening rule (LF`Weak)

may introduce over-approximation, since it allows discarding of requested data with-

out looking at it; whereas contraction (LF`Share) allows data to be used twice,

which must therefore adjust the weight of that data within the resource bound for-

mula accordingly. Contraction is therefore defined by using a subsequent sharing

relation ., which is trivial for LF.

Definition 4.2 (LF Sharing). Given the LF types A,B and C, the ternary relation

.(A |B,C ) holds if and only if both A = B and A = C hold.

Note once more that explicit sharing (or contraction) does not enforce a linear typing

discipline. On the contrary, multiple uses of a variable and hence the creation of

aliased data is explicitly allowed, but in order to track resource usage accurately we

must ensure that our type system is aware of such multiple uses, since our analysis

will be encoded within the type system. The sharing relation . will be extended to

the annotated type system LF� of Chapter 5 by Definition 5.4. The sharing relation

will then govern the type annotations only, with the prerequisite that the underlying

LF types of all three types in relation are always equal, entailing the above definition

for LF-types.

For completeness we remark that the third standard structural rule, permutation, is

admissible due to our definition of permutable typing contexts in Section 1.3. We

decided not to mention permutation explicitly, since the order in which data has

been provided has no impact on resource usage. This is a useful fact to notice,

since the amortised analysis just counts resources, but does not distinguish them

otherwise.

Γ, y:B, x:A,∆ ` e:C

Γ, x:A, y:B,∆ ` e:C
(LF`Permute)

We conclude this section with the precise definition of a well-typed LF program,

which in turn requires us to define the set of free variables contained in an LF term

first. The definitions are all standard.
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4.2 Type System

FV(*) = FV(true) = FV(false) = ∅
FV(x) = {x}
FV(let x = e1 in e2) = FV(e1) ∪

(
FV(e2) \ {x}

)
FV(f(x1, . . . , xn)) = {x1, . . . , xn}
FV(if x then et else ef ) = {x} ∪ FV(et) ∪ FV(ef )

FV((x1,x2)) = {x1, x2}
FV(matchx with (x1,x2) → e2) = {x} ∪

(
FV(e2) \ {x1, x2}

)
FV(Inl(x)) = FV(Inr(x)) = {x}
FV(match x with |Inl(y) → el|Inr(z) → er)

= {x} ∪
(
FV(el) \ {y}

)
∪
(
FV(er) \ {z}

)
FV(match!x with |Inl(y) → el|Inr(z) → er)

= {x} ∪
(
FV(el) \ {y}

)
∪
(
FV(er) \ {z}

)
FV(Nil) = ∅
FV(Cons(x1,x2)) = {x1, x2}
FV(match x with |Nil → e1|Cons(x1,x2) → e2)

= {x} ∪ FV(e1) ∪
(
FV(e2) \ {x1, x2}

)
FV(match!x with |Nil → e1|Cons(x1,x2) → e2)

= {x} ∪ FV(e1) ∪
(
FV(e2) \ {x1, x2}

)

Figure 4.3: Free variables of LF terms
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Definition 4.3 (Free Variables of LF Terms). The free variables of an LF term e

are denoted by FV(e), and are defined in the usual way as shown in Figure 4.3 on

the preceding page.

Note that the ordinary let expression of LF does not allow recursive definitions,

hence x ∈ FV(let x = x in e) holds.

Definition 4.4 (Program). A program P is a partial mapping from function iden-

tifiers f to a pair, consisting of an ordered set of variable names (y1, . . . , yk), and

an LF term ef , such that FV(ef ) ⊆ {y1, . . . , yk}. Such a pair is usually written

(y1, . . . , yk → ef ), and we say that ef is defining body of f and that (y1, . . . , yk) are

names of the arguments for the function.

Definition 4.5 (Well-Typed LF Program). An LF program P is well-typed with

respect to a LF type signature Σ, if and only if for all functions f ∈ P with

Σ(f) = (A1, . . . , Ak) → C and P (f) = (y1, . . . , yk → ef ), the LF typing judgement

Σ; {y1:A1, . . . , yk:Ak} ` ef : C can be derived by the LF type rules.

4.3 Operational Semantics

We shall now give meaning to LF terms by formally defining how they are evaluated.

We will use a standard big-step semantics with a store that is split into a heap space

and an (abstracted) stack space, so that the heap space bounds given by our analysis

may be measured against this operational model.

Recall that LF allows the programmer to exert a limited control over memory man-

agement by explicitly specifying whether a pattern match should be destructive or

read-only. This is of course dangerous, since the evaluation becomes stuck if a subse-

quent pattern match tries to access the data deleted by an earlier destructive match.

However, we will not concern ourselves here with the safety of such deallocation prim-

itives; nor do we want to encourage the introduction of side-effect laden constructs in

functional programming languages. The reason for introducing a deallocation prim-

itive is to demonstrate that our resource analysis can handle both the spending and

the regaining of resources equally well. This would hardly be possible without an

explicit deallocation primitive: The standard memory management method for most

functional languages is to use a background garbage collection, which is a highly

dynamic mechanism, whereas our analysis is purely static. Therefore, we would need
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a static approximation of a garbage collector, which is already a tough problem on

its own and outwith the scope of this thesis.

The safe insertion of deallocation primitives is an interesting problem which has

been studied on its own, for example see the usage aspects by Aspinall and Hof-

mann [AH02] or the DEEL type system by Konečný [Kon03]. However, the problem

is rather orthogonal to this thesis: our analysis not only yields reliable bounds if

all deallocations are safe (Theorem 1), but we will also prove that these bounds are

respected up to the point where the evaluation halts in error when trying to access

previously deallocated data (Theorem 2). So the predicted bound is upheld in any

case. The only possibility that could lead to a violation of the predicted bounds

lies in the random reanimation of a dangling pointer due to a fresh allocation at

the previously freed location with data of a matching type, that is then erroneously

accessed through the old reference. However, such a scenario is already prevented by

the previously mentioned techniques, since a safe deallocation entails that all possi-

bly dangling pointers are not dereferenced anymore. Within our thesis we avoid this

problem by the methods discussed in Section 4.3.1.

The exemplary inclusion of an unsafe deallocation primitive can also make sense in

different settings for our general amortised analysis principle. For example, the basic

principle remains the same when applying the method to stack space usage [Cam09,

JLH+09], but static deallocation points for stack space are readily available.

It is also conceivable that some programmers would indeed relish the explicit con-

trol over deallocation, even if safety is not automatically guaranteed. For example

in embedded systems design it is often desired to have precise control over resource

handling. Last but not least, a programmer is not required to use the explicit deal-

location primitives at all, at the expense of increased heap cost.

Definition 4.6 (Store and Values). Let Loc be an arbitrary countable set of locations,

which shall model memory addresses. We use ` to range over elements of Loc. Our

store consists of two finite partial mappings: the stack (or environment) and the

heap. A stack S : Var ⇀ Val is a finite partial mapping from variables to values, and

a heap H : Loc⇀ Val is a finite partial mapping from locations to values.

The values Val, ranged over by v and w, are defined by the following grammar:

v ::= () | tt | ff | (v1, v2) | ` | Null | Bad
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Hence a value is either a constant of a basic type (unit, true and false), a pair of

consecutive values (v1, v2), a general pointer to a location ` ∈ Loc, a constant denoting

the empty list, or the special constant Bad.

There is no particular constant location, especially {Null,Bad} /∈ Loc. The value

Bad is intended as a special marker for deallocated values. The evaluation will simply

get stuck as soon as a location pointing to Bad is dereferenced, since no operational

rule will be applicable. We will comment further on its purpose after stating the

operational rules. Note for now that the value Bad will usually not occur within

tuple values nor the image of a stack. Any configuration where Bad occurs outside

the image of the heap will be considered inconsistent.

We may occasionally refer to a value in the image of a stack as a stack value, and

similarly to a value in the image of a heap as heap value. However, we do not impose

such a distinction between values on their own. Notice that the stack may contain

pointers into the heap (i.e. locations), but there are no pointers from the heap into

the stack. The stack is extended with additional variable bindings whenever we

enter a new scope, inside subterms in the premises of the evaluation rules. When

we evaluate a function body we use a new stack which only mentions the actual

arguments provided in the function call, thereby preventing access beyond the current

stack frame.

The assumption that Loc is infinite avoids irrelevant technical problems, since we

want to analyse programs that may have an arbitrarily large memory consumption.

The sole purpose of the operational semantics defined in this section is to give mean-

ing to LF terms, regardless of the amount of memory required for evaluation. The

augmented operational semantics defined later in Section 4.5 will then enable us to

express limited memory resources, so that we can then compare evaluation under

restricted and unrestricted heap space availabilities.

Evaluation of an expression term e takes place with respect to a given stack and

heap, and yields as its result a value and a possibly updated heap. Thus we have a

relation of the form

P ; S ,H ` e ↓ v,H ′

expressing that, within the context of the LF program P , the evaluation of term e

under initial stack S and heap H succeeds in a finite number of steps and results

in value v and post-heap H ′. Since the program P does not change during the

evaluation, we usually omit to explicitly state it within the premises of each rule. We

shall continue our discussion about memory management after first stating the rules

of our operational semantics.
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Definition 4.7 (LF Operational Semantics). The operational semantics is given

with respect to a fixed program P .

S ,H ` ∗ ↓ (),H
(LF↓Unit)

S ,H ` true ↓ tt,H
(LF↓True)

S ,H ` false ↓ ff ,H
(LF↓False)

S ,H ` x ↓ S(x),H
(LF↓Var)

S ,H ` e1 ↓ v0,H0 S [x 7→v0],H0 ` e2 ↓ v,H ′

S ,H ` let x = e1 in e2 ↓ v,H ′
(LF↓Let)

S(xi) = vi (for i = 1, . . . , k)

P (f) = (y1, . . . , yk → ef ) [y1 7→v1, . . . , yk 7→vk],H ` ef ↓ v,H ′

S ,H ` f(x1, . . . , xk) ↓ v,H ′
(LF↓Fun)

S(x) = tt S ,H ` et ↓ v,H ′

S ,H ` if x then et else ef ↓ v,H ′
(LF↓If-T)

S(x) = ff S ,H ` ef ↓ v,H ′

S ,H ` if x then et else ef ↓ v,H ′
(LF↓If-F)

S ,H ` (x1,x2) ↓
(
S(x1), S(x2)

)
,H

(LF↓Pair)

S(x) = (v1, v2) S [x1 7→v1, x2 7→v2],H ` e ↓ v,H ′

S ,H ` matchx with (x1,x2) → e ↓ v,H ′
(LF↓E-Pair)

w =
(
tt, S(x)

)
` /∈ dom(H )

S ,H ` Inl(x) ↓ `,H [` 7→ w]
(LF↓Inl)

w =
(
ff , S(x)

)
` /∈ dom(H )

S ,H ` Inr(x) ↓ `,H [` 7→ w]
(LF↓Inr)
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S(x) = ` H (`) = w w =
(
tt, w′

)
S [y 7→w′],H ` el ↓ v,H ′

S ,H ` match x with |Inl(y) → el|Inr(z) → er ↓ v,H ′
(LF↓E-Inl)

S(x) = ` H (`) = w w =
(
tt, w′

)
S [y 7→w′],H [ 7̀→Bad] ` el ↓ v,H ′

S ,H ` match!x with |Inl(y) → el|Inr(z) → er ↓ v,H ′
(LF↓E!-Inl)

S(x) = ` H (`) = w w =
(
ff , w′

)
S [z 7→w′],H ` er ↓ v,H ′

S ,H ` match x with |Inl(y) → el|Inr(z) → er ↓ v,H ′
(LF↓E-Inr)

S(x) = ` H (`) = w w =
(
ff , w′

)
S [z 7→w′],H [ 7̀→Bad] ` er ↓ v,H ′

S ,H ` match!x with |Inl(y) → el|Inr(z) → er ↓ v,H ′
(LF↓E!-Inr)

S ,H ` Nil ↓ Null,H
(LF↓Nil)

w =
(
S(xh), S(xt)

)
` /∈ dom(H )

S ,H ` Cons(xh,xt) ↓ `,H [` 7→ w]
(LF↓Cons)

S(x) = Null S ,H ` e1 ↓ v,H ′

S ,H ` match x with |Nil → e1|Cons(xh,xt) → e2 ↓ v,H ′
(LF↓E-Nil)

S(x) = Null S ,H ` e1 ↓ v,H ′

S ,H ` match!x with |Nil → e1|Cons(xh,xt) → e2 ↓ v,H ′
(LF↓E!-Nil)

S(x) = ` H (`) = w w = (wh, wt)

S [xh 7→wh, xt 7→wt],H ` e2 ↓ v,H ′

S ,H ` match x with |Nil → e1|Cons(xh,xt) → e2 ↓ v,H ′
(LF↓E-Cons)

S(x) = ` H (`) = w w = (wh, wt)

S [xh 7→wh, xt 7→wt],H [ 7̀→Bad] ` e2 ↓ v,H ′

S ,H ` match!x with |Nil → e1|Cons(xh,xt) → e2 ↓ v,H ′
(LF↓E!-Cons)
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4.3.1 Storeless Semantics

While our operational semantics may seem fairly standard at first glance, we have es-

sentially adopted what is known in literature as storeless semantics [RBR+05, BIL03,

Deu94, Jon81], which abstracts away from two important aspects of memory man-

agement: fragmentation and the accidental “reanimation” of stale pointers through

recycling of previously issued locations. These issues present interesting and difficult

problems on their own, but they are independent from our problem of bounding re-

source usage. Hence, our suggested strategy is to rely on existing approaches to deal

with them independently. The remainder of this subsection is devoted to explain the

two issues and approaches to solve them in more detail.

Fragmentation. We see that allocation of heap space (rules LF ↓Inl, LF ↓Inr and

LF ↓Cons) expects a currently unused location ` /∈ dom(H ) and stores the new

value at this fresh location `. The choice is non-deterministic. This is in accordance

to common implementations, where a primitive is called that returns a pointer to a

currently unused block of memory of the appropriate size. For example, the machine

could keep a simple list of pointers to free memory blocks, a freelist, from which

pointers are taken at allocation and to which pointers are returned upon deallocation.

Such a freelist-based model was explicitly used in [HJ03]. Notice that since H is a

finite partial mapping and since Loc is assumed to be infinite, there is always an

unused location available. As mentioned before, we do not wish the evaluation to

become stuck due to limited memory resources here, since the operational semantics

are only used to measure memory usage.

However, the important abstraction here is that we ignore possible runtime issues

of memory fragmentation, depending of course on the actual method of memory

management chosen. All unused locations are treated as equal and may serve as

the starting address for storing a value of any finite size. So, for example, if there

are exactly three heap cells left, then we can always allocate a continuous block for

a value of size three, although in reality, this might require defragmentation. We

deliberately want to devise a general, quantitative compile-time memory analysis

without confining ourselves to any specific method of runtime memory management.

In order to deal with fragmentation in the freelist memory model there are several

known possibilities that interact smoothly with the resource counting we require in

the abstract semantics: allocating all data nodes within blocks of the same size;
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allocating data within linked lists of equally sized blocks; maintaining several inde-

pendent freelists for data nodes of various sizes (a slight change to the typing rules

is then required to prevent trading data nodes of different sizes against each other),

and, finally, compacting garbage collection. In the last case, we would simply run a

compacting garbage collection as soon as the freelist does no longer contain a contigu-

ous portion of the required size. All of these strategies would incur some overhead,

but at most twice the predicted amount is already sufficient, for example by relying

on a two-space compacting garbage collector.

Reanimation of Stale Pointers. In connection with deallocation arises another

problem with the allocation mechanism. Deallocation allows the reuse of memory

blocks. Since we allow aliased data structures in LF, there may still be other pointers

to a deallocated memory block, which then become “stale”. Such stale pointers are

not a problem unless they are dereferenced. We would expect a runtime error when-

ever a stale pointer is dereferenced, since obviously the use of an earlier deallocation

primitive had not been safe.

However, the crucial property here is that any subsequent allocation does not by

chance write data of a matching type to a reused location still pointed to by a stale

pointer. In this case the error would go unnoticed even if runtime type checking

would be used. Thus it is likely that the program will continue to evaluate using the

wrong data of the correct type. Note that this property must also be guaranteed by

any conservative garbage collector, usually achieved through conservative reference

counting, since any memory management method whose allocation primitive may

return memory addresses which may still be accessed through preexisting old pointers

is clearly quite risky. While this problem is also orthogonal to bounding memory

usage, we cannot defer the solution to this problem like we did for the defragmentation

issue, since continuing the evaluation with wrong data might lead to a different

memory usage, which we cannot tolerate. We cannot even hope to predict memory

usage once such a random error has occurred.

A solution to counter this problem of randomly recycled locations would be to stati-

cally reject all programs that might somehow access stale pointers at all, for example

using the alias types proposed by Walker and Morrisett [WM01], or the bunched

implication logic as practised by Ishtiaq and O’Hearn [IO01]. Ensuring that dan-

gling pointers are never created in the first place is another possibility, an approach

pursued by Peña, Segura and Montenegro [MPS08, PSM06]. A combination of amor-

tised techniques and separation logic might also deal with such issues, as the work

by Atkey [Atk10] shows.
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However, these interesting and sophisticated techniques are not the focus of this the-

sis. Hence we adopt a much simpler alternative solution, namely to employ indirect

pointers (symbolic handles), as used by earlier implementations of the Sun JVM for

its compacting garbage collector. Allocations then return a pointer to be used by the

program, which itself points to another pointer, eventually leading to the allocated

memory block. While the first pointer may occur in several places through aliasing,

the second remains unique, since it is hidden from the program itself. Therefore a

memory block may be safely reused upon deallocation, which exchange the second

pointer by a null pointer. The pointers visible to the program itself are unique num-

bers that are never reused. They simply become useless, since they just continue

to lead to a null pointer after deallocation. The address range thus appears to the

program to be much bigger than the actual memory available, but any attempts to

dereference such a pointer are guaranteed to lead to a runtime error. The drawback

of this approach is the increased time that it takes to resolve the indirection when it

is dereferenced.

Our operational semantics only simulates the approach of using indirect pointers.

Deallocations (rules LF ↓E-Inl. LF ↓E-Inr and LF ↓E-Cons) will not remove a

previously used location from the heap, but will simply overwrite it with the special

value Bad, which is defined to have zero size. This prevents their reuse through sub-

sequent allocations, since the allocation primitive must always return fresh locations

` /∈ dom(H ). In some sense our operational semantics only deals with the symbolic

handles, whereas the true pointers are omitted. We do allow “stale pointers”, i.e.

pointers to Bad, to be kept around, but any attempt to access such a stale pointer is

guaranteed to causes the evaluation to become stuck, due to the lack of an applicable

rule. Of course, this simple approach cannot guarantee that no dangling pointer is

dereferenced, unlike the more sophisticated approaches mentioned above. However,

since any such attempt causes the abortion of the evaluation, our inferred resource

bounds still hold.

We have thus clearly separated the security problem from our analysis problem. Note

that the somewhat unwieldy invariant of “benign sharing” used in our earlier work

[HJ03] has now been replaced by the more transparent use of a storeless semantics.

We find that the abstract operational semantics used here provides an adequate mod-

ular interface between the resource analysis and concrete implementation issues that

have been and are being researched elsewhere. As a consequence, we can formulate

the following convenient lemma:

Lemma 4.8 (Heap Stability). If S ,H ` e ↓ v,H ′ then for all ` ∈ dom(H ) we

have either H ′(`) = H (`) or H ′(`) = Bad. Furthermore we also have dom(H ) ⊆
dom(H ′).
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Proof. An inspection of the operational rules easily reveals that any existing location

can only be altered by overwriting with the special constant Bad, whereas newly cre-

ated values are always bound to fresh locations not already contained in the domain

of heap H . The statement dom(H ) ⊆ dom(H ′) is a trivial consequence of the first

claim.

4.3.2 Memory Consistency

We now formalise whether a given stack and heap agree with a certain typing con-

text. This ternary relation is later used as an invariant in the inductive proof of the

main theorem. The invariant trivially holds at the very beginning of the program

evaluation, when stack, heap and typing context are empty. It expresses that each

single evaluation step alters the memory in a sane fashion, provided that the con-

figuration was consistent with a certain typing before that step was taken. Such a

notion of consistency between heap, stack and typing context is needed to prevent

the application of Theorem 1 to ill-formed hypothetical configurations, which could

not have been obtained through the evaluation of a sane (well-typed) program.

Definition 4.9 (Consistency of Heap, Stack and Typing Context). Let H be a heap,

v a value and A an LF type. If the statement H � v:A can be derived by the following

rules, we say that the heap H is consistent with value v being of type A.

H � ():unit

H � tt:bool

H � ff :bool

H � v:A H � w:B

H � (v, w):A×B

H (`) = (tt, v) H \` � v:A

H � `:A+B

H (`) = (ff , v) H \` � v:B

H � `:A+B
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H (`) = Bad

H � `:A+B

H � Null:list(A)

H \` � H (`):A×list(A)

H � `:list(A)

H (`) = Bad

H � `:list(A)

We extend this definition naturally to stacks and contexts by defining

∀x ∈ dom(Γ) .H � S(x):Γ(x)

H � S :Γ

Note that H 2 Bad:A, i.e. there exists no heap H and no type A that would be

consistent with the value Bad. This implies that Bad cannot occur within the

image of a consistent stack nor inside another value, such as a pair, sum or list node.

However, it may well be that the location stored inside list node representing the tail

of the list points to Bad.

The type associated with such a deallocated location, i.e. a location that is mapped

to Bad, does not really matter, since any attempt to use such a location would cause

the evaluation to become stuck immediately anyway. However, we require that the

value Bad is only consistent with types whose values are generally stored in the

heap, since only such values can ever be deallocated. This allows us to formulate the

size correspondence Lemma 4.16 later in Section 4.5, although this lemma is just a

convenience rather than a necessity, as described there. Therefore the value Bad is

generally treated as consistent with any arbitrary type in our other works [JLH+09,

JLHH10].

Note that memory consistency does not exclude degenerated configurations where a

single deallocated location is associated with different types at once, although such

a memory configuration cannot be generated through the execution of a well-typed

program. We do not need to prohibit such hypothetical memory configurations,

55



4 Basis Language LF

since Theorem 1 shows that any well-typed program that would continue from such

a strange memory configuration still respects its predicted bounds. Otherwise, the

rules for memory consistency are straightforward, apart from a small peculiarity

which we discuss next.

4.3.3 Circular Data Structures

The rules for sum and list types in the memory consistency Definition 4.9 on page 54

do not allow the location ` to be reused within their premises. It is important to

note that H \` is quite different from H [` 7→ Bad], since the latter allows ` to be

consistent with list and sum types (i.e. any boxed type), while the former implies

that ` is never consistent with any type. Of course, it is still possible that a location

of a sum or list type occurs multiple times in the derivation for memory consistency,

due to the branching of the derivation tree that occurs for pair types. Hence, the

imposed requirement is only that the digraph representing the memory layout must

be acyclic. Or in other words, aliased data is allowed as long as there are no infinite

cycles, like a circular list. Program Example 4.4.1 will show us how acyclic aliased

data can be created and analysed in LF, by constructing lists which share their tails.

The reason for excluding circular data structures in the definition of consistent mem-

ory configurations is simplicity: all derivations of memory consistency become finite.

This is justified by the fact that circular data structures cannot be constructed within

LF, due to the absence of both recursive let definitions and imperative update. Since

memory consistency is meant to be an invariant for evaluation, we thus record the

property that circular data cannot be produced therein.

Circular data structures are not a problem for the amortised analysis technique per se.

We have already shown how to treat circular data that may either be created through

imperative update in [HJ06], or through general recursive let-definition in [JLHH10].

Furthermore, the corresponding definition of memory consistency for the higher-

order system in Chapter 6 does allow cyclic data structures. While our higher-

order programs cannot create cyclic data structures either, the higher-order analysis

requires a coinductive definition for memory consistency regardless, so there would

be no gain in regarding memory configurations containing cyclic data as inconsistent.

We could hence equally allow cyclic data in LF at the expense of using a coinductive

definition for memory consistency. Since allowing cyclic data is independent from the

higher-order extension, let us briefly discuss the implications of dealing with cyclic
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data at this point, as if it were allowed for LF, instead of deferring this discussion

to Chapter 6 or later. Of course, we only have proof that the following observations

hold for the higher-order system Arthur, but since LF is practically a subset of

Arthur, we strongly believe them to be true anyway.

It is conceivable that an LF program receives circular data through its input. Recur-

sion over a cyclic data is possibly infinite, so the resource consumption may suddenly

become infinite as well. However, the program itself has not changed, and thus the

result of the analysis still applies regardless of the input supplied.

Recall from Section 2.3 that our analysis will determine a rational number for each

input, and that it guarantees that the resource usage during the execution of the

program is smaller than the sum of all potentials, where the potential of a certain

input is its inferred rational number multiplied by the number of corresponding

data nodes that a reachable from the root. So a data node that can be reached

in two different ways counts twice, while a node that is reachable in three different

ways counts thrice and so on. This is necessary, since a functional program cannot

distinguish between aliased data and duplicated data, so it matters how often a

certain node can be reached through recursion.

Therefore it follows that the potential associated with cyclic data is necessarily either

zero or infinite. In other words, the analysis can tell us that is safe to supply circular

data for arguments whose annotated types indicate a potential of zero. Since the

potential is the number of reachable nodes (infinite) times the annotation (zero), the

overall potential for that data structure remains zero, thus the size of that input plays

no role in the inferred resource bound and neither whether or not it is cyclic. Con-

sequently, any well-typed program in systems that allow the creation of cyclic data

will always enforce zero potential for potentially cyclic data that is newly generated.

Note though, that [HJ06] relaxes this limitation somewhat by allowing potential to

be ascribed to an initial acyclic fragment of a cyclic data structure.

On the other hand, supplying cyclic data in a position with a non-zero annotation

causes the upper cost bound to become infinite. However, we can still obtain some

useful information about liveness or progress properties of the program. For example,

the analysis ensures that a certain amount of that circular input (or an input stream)

must be processed by the program before it allocates more memory or requires more

processor clock cycles. If each input node is associated with a potential of 1
3
, then

the program can use one unit of a resource for every three input elements processed,

whereas a potential of 5 would allow the program to spend 5 for each processed input

element. So despite the overall potential being infinite in both cases, the presented

analysis still delivers useful information.
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4.3.4 Observations on Memory Consistency

We now record some simple facts about memory consistency. Note that the decora-

tion ? used with variables below has no specific meaning and just serves to distinguish

between separate entities, similarly to using primed letters or adding a subscript nu-

meric index. Since the latter two decorations will be used extensively in the proof

of our main theorem, we introduce the decoration ? here which is primarily intended

to be used for the entities obtained through the application of lemmas, in order to

reduce confusion.

The first lemma simply states that removing elements from the context is just as

harmless as is adding arbitrary data to unused memory locations with respect to

memory consistency.

Lemma 4.10 (Closure of Memory Consistency). For all H ,H ?, S , S ?,∆ and Γ such

that H ⊆ H ? and S ⊆ S ? and ∆ ⊆ Γ, i.e. H ?, S ? and Γ are extensions of H , S and

∆ respectively. If H � S :Γ then also H ? � S ?:∆ holds.

Proof. The proof is trivial for all three extensions. Memory consistency is defined by

quantifying over the domain of the context only, requiring the statement to be true

for each member of the context’s domain individually. Therefore deleting elements

from the domain of the context cannot invalidate the statement. For the same reason

we can also extend the stack, since it plays no further role other than serving a value

for each member of the context. The stack is not used otherwise, so adding extra

uninspected elements is harmless. For the extension of the heap, we observe that

the statement H � S :Γ implies that all reachable locations are already defined in

H . Hence the extension to H ? only adds locations that are never inspected by the

statement H ? � S ?:∆. Therefore adding these locations holding any value is again

harmless.

Memory configurations that do not overlap can be safely merged together.

Lemma 4.11 (Joint Consistency). Fix any heap H , stacks S , S ? and contexts ∆,Γ

such that dom(S)∩ dom(S ?) = ∅ and dom(∆)∩ dom(Γ) = ∅, i.e. both stacks and the

contexts are disjoint. If H � S :Γ and H � S ?:∆ then H � S , S ?:Γ,∆

Proof. Trivial, since the latter is by definition just the conjunction of the previous

two statements. Recall that joining the partial maps by comma was only defined if

the domains are disjoint.
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The “deallocation” of any location from a heap, i.e. replacing its value with the

special tag Bad, is harmless for the memory consistency statement.

Lemma 4.12 (Consistency of Deallocation). If H � S :Γ then for all ` ∈ dom(H )

holds H [ 7̀→Bad] � S :Γ

Proof. Fix any x ∈ dom(Γ). It suffices to show that H [ 7̀→Bad] � S(x):Γ(x) follows

from H � S(x):Γ(x).

The proof is by induction on the length of the derivation of the memory consistency

relation �. The cases for unit, booleans and empty lists are vacuously true, since the

heap H is not inspected at all. The rule for pairs does not inspect the heap either,

and hence follows directly by applying the induction hypothesis for each premise.

The only rules of Definition 4.9 which actually inspect the heap H are the rules for

sums and lists. So in the remaining cases, S(x) is necessarily a location k ∈ Loc

and Γ(x) is either a list or a sum type. If k 6= ` then H (k ) = H [ 7̀→Bad](k ) and

the conclusion follows from applying the induction hypothesis to the corresponding

premise of the memory consistency rule for either list or sum types. Otherwise, if

k = `, we have H [ 7̀→Bad](k ) = Bad and the conclusion follows by the consistency

of deallocated locations with any list or sum type.

The previous statement is intuitively clear, since any location pointing to the special

constant Bad is defined to be consistent with any LF type whose values are stored

in the heap deliberately. However, recall that the value Bad itself is never consistent

with any type, since there is simply no rule to derive H � Bad:A for any type A in

any heap H .

Much more interesting is the following statement, that says that the heap obtained

after evaluation is still consistent with the context and stack before the evaluation

took place. This is a direct consequence of Lemma 4.8, i.e. that the values at heap

locations are only ever altered by overwriting them with the constant Bad. Further

consequences of this are formulated later as Lemma 5.8 and Lemma 5.9, which turn

out be be quite useful in conducting the proof of theorem 1.
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Lemma 4.13 (Preservation). Fix a well-typed LF program P with signature Σ. If

Γ ` e:C (4.1)

S ,H ` e ↓ v,H ′ (4.2)

H � S : Γ (4.3)

then

H ′ � v:C (4.a)

H ′ � S :Γ (4.b)

hold as well.

Proof. Note that claim (4.b) follows directly by Lemma 4.8 and Lemma 4.12. Each

location ` ∈ dom(H ) is either left unaltered or is overwritten by the value Bad and

hence does not invalidate memory consistency.

However, the first claim (4.a) requires a proof by induction on the lengths of the

derivations of (4.2) and (4.1) ordered lexicographically with the derivation of the

evaluation taking priority over the typing derivation. This is required since an in-

duction on the length of the typing derivation alone would fail for the case of function

application: in order to allow recursive functions, the type rule for application is a

terminal rule relying on the type given for the function in the program’s signature.

However, proving this case requires induction on the statement that the body of the

function is well-typed, which is most certainly a type derivation of a longer length

(i.e. longer than one step), prohibiting us from using the induction hypothesis. Note

in this particular case that the length of the derivation for the evaluation statement

does decrease. An induction over the length of the derivation for premise (4.2) alone

fails similarly. Consider the last step in the derivation of premise (4.1) being derived

by the application of a structural rule, then the length of the derivation for (4.2)

remains exactly the same, while the length of the derivation for premise (4.1) does

decrease by one step.

Using induction on the lexicographically ordered lengths of the type and evaluation

derivations allows us to use the induction hypothesis if either the length of the deriva-

tion for premise (4.2) is shortened or if the length of the derivation for premise (4.2)

remains unchanged while the length of the typing derivation is reduced. We first treat

the cases where the last step in the typing derivation was obtained by application of

a structural rule, which are all the cases which leave the length of the derivation for

the evaluation unchanged. We then continue to consider the remaining cases based
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on the evaluation rule that had been applied last to derive premise (4.2), since the

remaining type rules are all syntax directed and thus unambiguously determined by

the applied evaluation rule.

LF`Weak: Let Γ = ∆, x:A, with x being the variable that is dropped and let

` = S(x). By Lemma 4.10 we may directly apply the induction hypothesis

using ∆ alone to obtain (4.a) straight away.

LF`Share: Assume that the last step in the derivation for (4.1) was the application

of rule LF`Share, yielding the expression e[z/x, z/y]. Assume further that

z ∈ FV(e), since otherwise there would be no effect of the application of rule

LF`Share. Let Sxy = (S\z)[x 7→ S(z), y 7→ S(z)]. It is obvious that both

Sxy,H ` e ↓ v,H ′ and H � Sxy : Γ hold, since both new variables refer to the

same values as the old variable before.

We apply the induction hypothesis to derive (4.a) and H ′ � Sxy : Γ0, x : A1, y :

A2. By A = A1 and A = A2 from the definition of the sharing relation, we

conclude that H ′ � Sxy : Γ0, z : A as required.

LF↓Unit, LF↓True, LF↓False: For (4.a) we simply verify that indeed H �
():unit by Definition 4.9. We remark that in this case even H = H ′ holds,

so the claim for (4.b) also follows trivially.

The cases for the boolean values follow analogously.

LF↓Var: Claim (4.a), H ′ � S(x) : Γ(x), follows directly from assumption (4.3)

since we have v = S(x) and again H = H ′.

LF↓Let: Let Γ = Γ1,Γ2, hence H � S :Γ1 and H � S :Γ2 by Lemma 4.10. We thus

apply the induction hypothesis for S ,H ` e1 ↓ v0,H0 and obtain H0 � v0:A.

From the application of Lemma 4.8 and Lemma 4.12 we obtain H0 � S :Γ2

by Lemma 4.11, thus allowing us to apply the induction hypothesis again for

S [x 7→v0],H0 ` e2 ↓ v,H ′ to obtain the desired result.

LF↓Fun: First note that H � [y1 7→v1, . . . , yk 7→vk]:{y1:A1, . . . , yk:Ak} follows from

H � [x1 7→v1, . . . , xk 7→vk]:{x1:A1, . . . , xk:Ak} since both statements are equal

by Definition 4.9, which eliminates the name right away.

By the assumption that program P is well-typed, see Definition 4.5, we obtain

{y1:A1, . . . , yk:Ak} ` ef : C. Hence we may apply the induction hypothesis for

[y1 7→v1, . . . , yk 7→vk],H ` ef ↓ v,H ′ leading directly to the required result.
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LF↓If-T, LF↓If-F: Both case follow trivially by application of the induction hy-

pothesis for the corresponding subterm, i.e. et in the case of S(x) = tt, and ef
the case of S(x) = ff .

LF↓Pair: By inspection of Definition 4.9 H �
(
S(x1), S(x2)

)
:Γ(x1)×Γ(x2) follows

from both H � S(x1):Γ(x1) and H � S(x2):Γ(x2). This suffices, since H = H ′.

LF↓E-Pair: We have Γ(x) = A×B, S(x) = (v1, v2) and H � (v1, v2):A×B. By

Definition 4.9 this can only be derived if both H � v1:A and H � v2:B hold,

the premises of the only applicable rule. Using Lemma 4.11 to merge both

statements we obtain H � S [x1 7→ v1, x2 7→ v2]:{Γ, x1:A, x2:B}. Therefore we

may apply the induction hypothesis to conclude as required.

LF↓Inl,LF↓Inr: We only consider the case for e = Inl(x), since the other case

then follows by symmetry.

We have v = `, ` /∈ dom(H ) (and hence H \ ` = H ) and H ′ = H [` 7→
(tt, S(x))]. The required statement H [` 7→ (tt, S(x))] � `:A+B follows by

Definition 4.9 from premise (4.1), i.e. H � x:A, since Γ = {x:A}.

LF↓E-Inl, LF↓E!-Inl, LF↓E-Inr, LF↓E!-Inr: We only consider the right case,

i.e. H
(
S(x)

)
= (ff , w′), with the other case following by symmetry.

Let Γ = {Γ0, x:A+B}. We have {Γ0, z:B} ` er:C, H � S :{Γ0, x:A+B},
S(x) = ` and H (`) = (ff , w′). Therefore necessarily H \ ` � w′:B by the

premises of the only applicable rule of Definition 4.9 that allowed the derivation

of H � `:A+B. This allows us to deduce H � S [z 7→w′]:{Γ0, z:B} by the clo-

sure properties of memory consistency, i.e. Lemma 4.10, and Lemma 4.11. Fur-

thermore H [ 7̀→Bad] � S [z 7→w′]:{Γ0, z:B} by using Lemma 4.12. The former

allows the application of the induction hypothesis in the case of the read-only

match (LF ↓E-Inr), while the latter allows the use of the induction hypothesis

for the destructive match (LF ↓E!-Inr), depending on which rule had been

used last to derive premise (4.2). Both cases then yield H ′ � v:C. directly.

LF↓Nil: The case is trivial, since by Definition 4.9 we have ∅ � Null:list(A).

LF↓Cons: We have H ′ = H [` 7→
(
S(xh), S(xt)

)
] for some ` /∈ dom(H ). Further-

more our assumptions yield H � S(xh):A and H � S(xt):list(A), which allows

us to deduce H �
(
S(xh), S(xt)

)
:A×list(A) by the rule for pairs of Defini-

tion 4.9. Continuing with the rule for non-empty list of the same definition, we

obtain H [` 7→
(
S(xh), S(xt)

)
] � `:list(A) as required.
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LF↓E-Nil, LF↓E!-Nil: Follows trivially by induction, since both heap H and

stack S as well as value v and post-heap H ′ remain unchanged in the premise

of either evaluation rule.

LF↓E-Cons, LF↓E!-Cons: We have H � `:list(A) and H (`) = (wh, xt).Therefore

necessarily H \ ` � H (`):A×list(A) by the only possible rule of Definition 4.9

to derive the previous statement. This in turn could only be deduced if both

H \ ` � wh:A and H \ ` � wt:list(A) holds. Using Lemma 4.11 to join both

statements into the stack, and Lemma 4.10 to add [` 7→ (wh, wt)] back to the

heap in the read-only case and [` 7→ Bad] in the destructive case, we can then

apply the induction hypothesis to obtain the required result.

4.4 Introductory Program Examples

We now discuss some simple program examples in order to illustrate the use of LF:

tails computes all tails of a given list, thereby producing aliased data;

reverse demonstrates in-place list reversal through destructive matches;

zip merges two lists to a list of pairs, exhibiting ambiguous cost bounds; and

ins sort in-place list sorting by insertion, included for traditional purposes.

These LF program examples are simple enough to be easily understood, yet demon-

strate several interesting features, such as aliasing, in-place update. We will apply

our analysis technique to each example at the end of this chapter, in Section 5.5, and

see what we may learn about these programs through the analysis.
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For all program examples discussed in this thesis, we adopt a series of simplifying

conventions:

• Most program examples may admit several LF type signatures, e.g. the function

reverse can reverse lists of any type, hence the function admits the type

list(bool) → list(bool) just as well as type list(int) → list(int). In such cases we

allow ourselves to simply write list(A) → list(A) instead, although the shown

type system of LF is not polymorphic, unlike the one shown in [JLHH10]. The

letter A should here be interpreted as a meta-variable, meaning that it is to

be instantiated to any arbitrary LF type first. We believe that this actually

helps the reader to understand the crucial parts of the example and avoids

distraction.

• For the same reason we may also use meta-variables for values, e.g. we believe

that an example for explaining function reverse is easier to understand in

the form reverse([a, b, c, d]) = [d, c, b, a]. rather than the concrete version

reverse([tt, ff , tt, tt]) = [tt, tt, ff , tt].

• Similarly we might also make use of integers within examples, although inte-

ger numbers are not a part of LF. Standard operations on the integers, like

+,−, ∗, . . . ,=, >,≥, . . ., might also occur and are to be interpreted as normal

function calls, despite the infix notation. We could have added the integers to

LF, which would have required us to simply expand many definitions in the

standard way. However, it is clear that the integers could be encoded within

LF as it is, e.g. by using lists of unit elements. So our system would only

become bigger and more unwieldy, but not more powerful.

• In some of the larger program examples we may also ignore the requirement for

let-normal form. For example, we may simply write if a > b then e1 else e2

instead of the required let x = a > b in if x then e1 else e2, which is in general

more difficult to read for a human. We will only perform this simplification

when the let-normal form is straightforward to derive.

4.4.1 List Tails

Our first example is the function tails, which computes a list containing all the tail-

lists of the given input list, shown in Figure 4.4. For example the call tails([a, b, c, d])
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Σ(tails) := list(A)→ list(list(A))

P (tails) := l → let r =

match l with

|Nil → Nil

|Cons(h,t) → tails(t)

in Cons(l,r)

Figure 4.4: List tails

evaluates to the list
[
[a, b, c, d], [b, c, d], [c, d], [d], [ ]

]
, where a, b, c and d are some ar-

bitrary values.

The given code for tails, which is in let-normal form as required, first evaluates a

subexpression, whose result is then being bound to a local variable r. This subex-

pression inspects the input list l. If the input is the empty list, then the empty list is

also returned for the subexpression; otherwise the function tails is recursively called

on the tail of the input list. Eventually, a list node is always created, containing the

unmodified input list as its head and the value that was bound to r as its tail.

Suppose we have the heap

H =
[
1 7→ (a, 2), 2 7→ (b, 3), 3 7→ (c, 4), 4 7→ (d,Null)

]
then using our operational semantics, we can derive

[l 7→ 1],H ` let r = match l with

|Nil → Nil

|Cons(h,t) → tails(t)

in Cons(l,r) ↓ 9,H ′

where

H ′ = H
[
5 7→ (Null,Null), 6 7→ (4, 5), 7 7→ (3, 6), 8 7→ (2, 7), 9 7→ (1, 8)

]
Note that there is some choice for the locations of the newly allocated list nodes, as

the rule for cons allows any currently unused location to be used. For this example

we chose the lowest number available at the corresponding point of computation.
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However, the more interesting feature of tails is that it uses its argument list l

twice: once in the match that precedes the recursive call; and another time in the

construction of the result. This forces the match to be read-only, since otherwise

the result of the computation would be of little use. A second effect is that it also

causes the result to contain aliased data, since nodes can be reached through several

differing paths. We can see in H ′ that the heap value (b, 3) can be accessed from

location 9 by two differing paths, namely via 9 ; 1 ; 2 or 9 ; 8 ; 2. Drawing the

heap H ′ as a diagram makes the aliases easy to see:

1:(a, 2)
--
2:(b, 3)

--
3:(c, 4)

..
4:(d,Null)

9:(1, 8)
--

DD

8:(2, 7)
--

DD

7:(3, 6)
--

DD

6:(4, 5)
..

DD

5:(Null,Null)

Since we are interested in the heap consumption of programs, we will have a brief look

at the heap consumption of function tails now, before introducing our automatic

analysis in the following chapter. We can see that the example call with a list of

length four created 5 new list nodes, but is there a general formula to compute the

heap space usage of tails? Well, one may observe that regardless of the outcome of

the case, a call to tails will always create one list node. If the input list was empty,

this is the only node created. If the input list was non-empty, then tails recursively

calls itself again through a tail-call. Hence it is easy to see that for an input list of

length n, tails will allocate n+1 new list nodes only. Thanks to aliasing, this is much

less than one might expect from the large output of
[
[a, b, c, d], [b, c, d], [c, d], [d], [ ]

]
.

We will later see that the automatic analysis is able to derive an exact cost bound

for this program example.

4.4.2 List Reversal

Our next example is the in-place reversal of a list, shown in Figure 4.5. This function

should not allocate any new memory at all, but should deallocate a part of the input

before the new space for the output is allocated.
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Σ(reverse) := list(A)→ list(A)

P (reverse) := l → let n = Nil in rev acc(n, l)

P (rev acc) := r, l → match! l with

|Nil → r

|Cons(h,t) → let s = Cons(h,r)

in rev acc(s, t)

Figure 4.5: In-place list reversal

Function reverse is defined by a recursive helper function rev acc, that uses an

accumulator to gather the output step-by-step:

reverse([a, b, c, d]) = rev acc([ ], [a, b, c, d])

= rev acc([a], [b, c, d])

= rev acc([b, a], [c, d])

= rev acc([c, b, a], [d])

= rev acc([d, c, b, a], [ ]) = [d, c, b, a]

We see that rev acc has two computational paths, depending on whether its input

is the empty list or not. If the input is indeed empty, then nothing is deallocated nor

allocated, only the accumulator is returned as it is. If, on the other hand, the input

list was non-empty, then the first node is deallocated and the contained element

is placed in a newly constructed list node on the top of the accumulator, before

recursively calling itself on the tail of the matches list. So no temporary heap space

is needed, since each allocation is preceded by a deallocation of a node of the same

type.

Note however, that our storeless semantics will produce a result like

[x 7→ 1],H ` reverse(x) ↓ 8,H ′
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where

H =
[

1 7→ (a, 2), 2 7→ (b, 3), 3 7→ (c, 4), 4 7→ (d,Null)
]

H ′ =

[
1 7→ Bad, 2 7→ Bad, 3 7→ Bad, 4 7→ Bad,

5 7→ (a,Null), 6 7→ (b, 5), 7 7→ (c, 6), 8 7→ (d, 7)

]

We see that the former locations are still within the domain of the heap. However,

these should not be interpreted to take up memory space, since the locations should

be regarded as symbolic handles for real memory address only, as explained in Sec-

tion 4.3.1. So the locations are just labels for memory addresses, and one memory

address might have several labels attached to it, with only the last one being live,

and all the previous ones being stale pointers.

4.4.3 List Zipping

The program code for zip, shown in let-normal form in Figure 4.6 on the facing page,

merges two separate lists into a list of pairs, conserving the order of the input lists.

Here are some example computations of zip:

zip( [a, b, c, d], [e, f, g, h] ) = [(a, e), (b, f), (c, g), (d, h)]

zip( [a, b, c, d], [e, f ] ) = [(a, e), (b, f)]

zip( [a], [e, f ] ) = [(a, e)]

zip( [ ], [e, f ] ) = [ ]

We can see that the length of the output is equal to the minimum of the lengths of

the two input lists. Both matches are read-only and no new aliasing is introduced.

Hence the memory usage of function zip is also proportional to the minimum of the

lengths of the input lists.

4.4.4 In-Place Insertion Sort

Our last simple example for Chapter 4 is the well-known insertion sort algorithm,

shown in Figure 4.7 on the next page. The program code assumes the existence of a

suitable comparison function Σ(leq) = (A,A)→ bool.
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Σ(zip) :=
(
list(A), list(B)

)
→ list(A×B)

P (zip) := l, r → match l with

|Nil → Nil

|Cons(x,l′) →
match r with

|Nil → Nil

|Cons(y,r′) →
let p = (x, y) in

let z = zip(l′, r′) in Cons(p,z)

Figure 4.6: List zipping

Σ(ins sort) := list(A)→ list(A)

P (ins sort) := l → match! l with

|Nil → Nil

|Cons(h,t) →
let s = ins sort(t) in insert(h, s)

Σ(insert) := A, list(A)→ list(A)

P (insert) := x, l → match! l with

|Nil → let n = Nil in Cons(x,n)

|Cons(h,t) →
if leq(x, h)

then let t′ = Cons(h,t) in Cons(x,t′)

else let s = insert(x, t) in Cons(h,a)

Figure 4.7: In-place insertion sort
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A list of elements is sorted by successively inserting each element of the input list

into the empty list:

sort
(
[c, d, a, b]

)
= insert

(
c, sort([d, a, b])

)
= insert

(
c, insert

(
d, sort([a, b])

))
= insert

(
c, insert

(
d, insert

(
a, sort([b])

)))
= insert

(
c, insert

(
d, insert

(
a, insert

(
b, sort([ ])

))))
= insert

(
c, insert

(
d, insert

(
a, insert(b, [ ])

)))
= insert

(
c, insert

(
d, insert(a, [b])

))
= insert

(
c, insert(d, [a, b])

)
= insert(c, [a, b, d])

= [a, b, c, d]

Function sort sorts its input list in-place, i.e. without allocating new heap memory.

This is again achieved through step-wise deallocation of the input list and all inter-

mediate lists that are created during the evaluation. Note that no temporary heap

space is required either.

An interesting property of this example program is that sort deallocates a list node,

but never allocates one. On the other hand, insert has a computational branch

which allocates two list nodes, but only deallocates at most one node. We will soon

see how the analysis handles this situation correctly, delivering an exact heap usage

bound.

4.5 Cost-Aware Semantics

We conclude this chapter by augmenting our operational semantics with a counter

for the size of the remaining heap memory. This cost-aware operational semantics

will be the measure for the heap space consumption of a program, that we wish to

predict by the method shown in the next chapter. Similar to the type systems for

LF and LF�, we distinguish the rules for cost-aware operational semantics from the

plain operational semantics in Section 4.3 by adding the symbol � to the name of the

rules.

We must first fix a concrete memory model, which we do as general as possible by

defining a function Size : Val → N. The values chosen for this function should
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fit the intended machine model, but are completely arbitrary otherwise. We will

always refer to Size instead of using actual numeric values, so all proofs are in fact

parametric in Size. For the sake of a simple discussion of our program examples, we

choose a very simple definition of Size as well.

Definition 4.14 (Sizes of Operational Values). We define Size : Val→ N by

Size(()) = 1

Size(tt) = 1

Size(ff) = 1

Size
(
(v1, v2)

)
= Size(v1) + Size(v2)

Size(`) = 1

Size(Null) = 1

Size(Bad) = 0

The idea is that value v occupies Size(v) memory units when stored in the heap.

Since sums and lists are both boxed in our chosen model, i.e. they are always stored

on the heap, a value representing either is a mere pointer ` and hence is of course

assigned the size of a pointer only. Pairs of values are unboxed , which implies that

the sizes of nodes generally depend on their contents, since any node storing a pair of

values has to store both values, and not just a fixed-size pointer to a pair. Note that

the amortised analysis technique can be applied to various memory models, both

boxed and unboxed, as discussed and demonstrated in Chapters 7 and 8 respectively.

The size of a data node is determined by its layout as defined in the rule of the

operational semantics dealing with the specific constructor of that node, e.g. in rule

LF ↓Cons we see that a cons node of a List is a pair consisting of another value

and a pointer. If the value stored in the list is a pair of booleans, then the overall

size of that particular list node would be three (one for each boolean and one for the

pointer to the tail of the list according to the definition shown above). This can be

computed with the definition shown above.

In order to obtain the overall memory occupied by an entity, e.g. an entire list given

by a pointer `, one must sum the sizes of all the nodes which form that list. Since

we only need to account for the size of the remaining heap space, we do not need a

definition to compute the size of a whole actual list stored somewhere in the heap.

It is sufficient for us to be able to determine the size of each node of a compound

data structure individually.
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Our type-based analysis must also know about our choices on the memory model.

However, operational values are not accessible within type rules. We therefore define

an analogous size function TypSize, which maps LF types to natural numbers, and

then prove that the two notions of size agree for consistent memory configurations.

Note that there is an important alternative to this approach, that has been employed

in our works [JLH+09, JLHH10]. If the memory model uses tagged records to store

a value within the heap, then a single size function can be solely based on these

constructor tags. This then allows us to assign different sizes to constructors of one

and the same type, and further size related optimisations, such as variably sized con-

structors, without loosing too much precision. Since both the operational semantics

and the types rules can make use of the constructor-tag based size function, we would

neither need the following Definition 4.15 nor Lemma 4.16.

Definition 4.15 (Sizes of LF Types). We define TypSize : LF-type→ N by

TypSize
(
unit

)
= 1

TypSize
(
bool

)
= 1

TypSize
(
A×B

)
= TypSize

(
A
)

+ TypSize
(
B
)

TypSize
(
A+B

)
= 1

TypSize
(
list(A)

)
= 1

Note that the assigned size for the type of list and sums represents the size of a

pointer to data of that type only, due to the boxing of values for these types as

explained further above.

The actual number of heap units occupied by data node depends on its contents,

there the function TypSize will appear in sums over the contents of a constructor

in the annotated type rules of the next chapter. So the overall size of a cons node

of a list of type list(A) will be the sum of the size of the stored value and the

size of the pointer to the tail, i.e. TypSize
(
A
)

+ TypSize
(
list(A)

)
. For a cons

node of list(bool×bool) holding a pair of booleans, we have TypSize
(
bool×bool

)
+

TypSize
(
list(bool×bool)

)
= TypSize

(
bool

)
+ TypSize

(
bool

)
+ 1 = 3, the same

value that we obtained in our discussion of the operational size Size.

We now state formally that our choices for Size and TypSize, as given in Defini-

tions 4.14 and 4.15 above, agree indeed.

Lemma 4.16 (Size Correspondence). If H � v : A then Size(v) = TypSize
(
A
)
.
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Proof. By induction on the length of the derivation of H � v : A. We proceed by

case distinction on the last rule applied to establish memory consistency.

H � ():unit : We have Size(()) = 1 = TypSize(unit).

H � tt:bool, H � tt:bool : It is clear that Size(tt) = Size(ff) = 1 = TypSize(bool).

H � (v, w):A×B : Observe that Size
(
(v, w)

)
= Size(v)+Size(w) = TypSize(A)+

TypSize(B) = TypSize
(
A×B

)
holds, where the middle equality is justified

by applying the induction hypothesis twice. This is the only case that requires

the use of the induction hypothesis.

H � `:A+B : This statement can be obtained from three different memory consis-

tency rules. However, we have Size(`) = 1 = TypSize(A+B) by definition,

regardless of whether H (`) is equal to either (tt, v), (ff , w) or Bad.

H � Null:list(A) : By definition Size(Null) = 1 = TypSize
(
list(A)

)
.

H � `:list(A) : This statement can be obtained from two different memory consis-

tency rules only. We clearly have Size(`) = 1 = TypSize
(
list(A)

)
by defini-

tion, regardless of whether H (`) = (v, w) or H (`) = Bad holds.

Please note that strict equality is in fact required if we want to safely account for

deallocation of data objects as well as their allocation. Otherwise, if equality could

not be achieved for a given memory model, one would need two different type-based

size functions for allocation and deallocation, which yield the possible maximal size

and the possible minimal size for safely estimating the worst-case cost of allocation

and deallocation respectively, since, e.g., for deallocation we can only expect the

minimal number of heap cells to be freed.

The loss of the strict equality between Size and TypSize would thus render our

analysis less precise by these necessary over-approximations. For example, an un-

boxed sum type would suffer from this imprecision, if its components had different

sizes. However, in practise this is usually avoided, since unboxed data nodes are then

often padded to gain other advantages, such as gaining a speed up in memory access

by simplified calculations on uniformly spaced addresses.
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4.5.1 Measuring Space Usage

The judgement S ,H m

m′ e ↓ v,H ′ means that under the initial stack S and heap

H , the expression e evaluates to value v, and post-heap H ′, provided that there are

at least m ∈ N heap units available before the computation. Furthermore, m′ ∈ N
unused heap units will be available after the computation. In contrast, the statement

S ,H ` e ↓ v,H ′ from the previous unannotated Definition 4.7 just states that e

evaluates to v using an unknown, but finite, amount of heap units.

For example, S ,H 3

1 e ↓ v,H ′ means that three heap cell units are sufficient to allow

e to be evaluated, and that exactly one heap unit is unused after the computation.

This unused cell might or might not have been used temporarily, so we do not know

whether S ,H 2

0 e ↓ v,H ′ is also derivable or not. Of course, it is the goal of

our analysis to determine the minimal number m and m′ such that an evaluation is

possible. Note that the two values can track both the overall net heap space costs

(i.e. total heap allocations minus total deallocations) as well as the minimum number

of free heap memory that are sufficient for the computation to succeed (i.e. maximum

heap residency). Therefore a temporary high usage does not escape our measurement

through the annotated operational semantics.

Definition 4.17 (LF Operational Semantics with Freelist Counter).

S ,H m

m ∗ ↓ (),H
(LF↓�Unit)

S ,H m

m true ↓ tt,H
(LF↓�True)

S ,H m

m false ↓ ff ,H
(LF↓�False)

S ,H m

m x ↓ S(x),H
(LF↓�Var)

S ,H m

m0
e1 ↓ v0,H0 S [x 7→v0],H0

m0

m′ e2 ↓ v,H ′

S ,H m

m′ let x = e1 in e2 ↓ v,H ′
(LF↓�Let)

S(xi) = vi (for i = 1, . . . , k)

P (f) = (y1, . . . , yk → ef ) [y1 7→v1, . . . , yk 7→vk],H m

m′ ef ↓ v,H ′

S ,H m

m′ f(x1, . . . , xk) ↓ v,H ′
(LF↓�Fun)
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S(x) = tt S ,H m

m′ et ↓ v,H ′

S ,H m

m′ if x then et else ef ↓ v,H ′
(LF↓�If-T)

S(x) = ff S ,H m

m′ ef ↓ v,H ′

S ,H m

m′ if x then et else ef ↓ v,H ′
(LF↓�If-F)

S ,H m

m (x1,x2) ↓
(
S(x1), S(x2)

)
,H

(LF↓�Pair)

S(x) = (v1, v2) S [x1 7→v1, x2 7→v2],H m

m′ e ↓ v,H ′

S ,H m

m′ matchx with (x1,x2) → e ↓ v,H ′
(LF↓�E-Pair)

w =
(
tt, S(x)

)
` /∈ dom(H )

S ,H m′ + Size(w)

m′ Inl(x) ↓ `,H [` 7→ w]
(LF↓�Inl)

w =
(
ff , S(x)

)
` /∈ dom(H )

S ,H m′ + Size(w)

m′ Inr(x) ↓ `,H [` 7→ w]
(LF↓�Inr)

S(x) = ` H (`) = w w =
(
tt, w′

)
S [y 7→w′],H m

m′ el ↓ v,H ′

S ,H m

m′ match x with |Inl(y) → el|Inr(z) → er ↓ v,H ′
(LF↓�E-Inl)

S(x) = ` H (`) = w w =
(
tt, w′

)
S [y 7→w′],H [ 7̀→Bad]

m + Size(w)

m′ el ↓ v,H ′

S ,H m

m′ match!x with |Inl(y) → el|Inr(z) → er ↓ v,H ′
(LF↓�E!-Inl)

S(x) = ` H (`) = w w =
(
ff , w′

)
S [z 7→w′],H m

m′ er ↓ v,H ′

S ,H m

m′ match x with |Inl(y) → el|Inr(z) → er ↓ v,H ′
(LF↓�E-Inr)

S(x) = ` H (`) = w w =
(
ff , w′

)
S [z 7→w′],H [ 7̀→Bad]

m + Size(w)

m′ er ↓ v,H ′

S ,H m

m′ match!x with |Inl(y) → el|Inr(z) → er ↓ v,H ′
(LF↓�E!-Inr)

S ,H m

m Nil ↓ Null,H
(LF↓�Nil)
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w =
(
S(xh), S(xt)

)
` /∈ dom(H )

S ,H m′ + Size(w)

m′ Cons(xh,xt) ↓ `,H [` 7→ w]
(LF↓�Cons)

S(x) = Null S ,H m

m′ e1 ↓ v,H ′

S ,H m

m′ match x with |Nil → e1|Cons(xh,xt) → e2 ↓ v,H ′
(LF↓�E-Nil)

S(x) = Null S ,H m

m′ e1 ↓ v,H ′

S ,H m

m′ match!x with |Nil → e1|Cons(xh,xt) → e2 ↓ v,H ′
(LF↓�E!-Nil)

S(x) = ` H (`) = w w = (wh, wt)

S [xh 7→wh, xt 7→wt],H
m

m′ e2 ↓ v,H ′

S ,H m

m′ match x with |Nil → e1|Cons(xh,xt) → e2 ↓ v,H ′
(LF↓�E-Cons)

S(x) = ` H (`) = w w = (wh, wt)

S [xh 7→wh, xt 7→wt],H [` 7→Bad]
m + Size(w)

m′ e2 ↓ v,H ′

S ,H m

m′ match!x with |Nil → e1|Cons(xh,xt) → e2 ↓ v,H ′
(LF↓�E!-Cons)

Note that deallocation only occurs in the operational rules LF ↓�E-Inl, LF ↓�E-Inr
and LF ↓�E-Cons, where the freed location ` is changed to Bad for the ongoing

computation. The counter for the remaining available heap space is correspond-

ingly increased by the size of the deallocated value for the subsequent steps of the

computation.

We observe that additional memory is harmless.

Lemma 4.18 (Additional Memory). Fix an LF� program P with signature Σ. If

S ,H m

m′ e ↓ v,H ′ holds, then for any k ∈ N also S ,H m + k

m′ + k e ↓ v,H ′ as well.

Proof. By induction of the length of the derivation of the evaluation. For each rule we

easily verify that it admits an increase of m, and returns a corresponding increase for

m′, provided that its premises allow the same, which we can assume by the induction

hypothesis.
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It is clear that any evaluation having an unbounded amount of heap memory available

succeeds, if the same evaluation already succeeds with only a finite amount of memory

being available.

Lemma 4.19 (Cost Counting Inviolacy). Fix an LF� program P with signature Σ.

If S ,H m

m′ e ↓ v,H ′ then S ,H ` e ↓ v,H ′ as well.

Proof. The rules for the cost-aware operational semantics always have strengthened

preconditions as compared to the standard operational semantics without cost count-

ing. The rules are in fact identical except for the annotations added above and below

the turnstile symbol.

The opposite statement is also intuitively clear: any finite evaluation can only use a

finite amount of heap space.

Lemma 4.20 (Finite Evaluation Costs). Fix an LF� program P with signature Σ.

If S ,H ` e ↓ v,H ′ then there exists m,m′ ∈ N such that S ,H m

m′ e ↓ v,H ′ holds

as well.

Proof. By induction on the length of the derivation for S ,H ` e ↓ v,H ′. For

each rule that performs allocation or deallocation, we readily verify that the only

restriction on m is that it was chosen to be sufficiently large. The value m′ can

simply be computed from the rule applications. The cases for the other rules follow

trivially from the induction hypothesis, except for rule LF ↓Let, which follows by

Lemma 4.18.
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zero-order types: A ::= unit | bool | A×A | (A, q) + (A, r) | list(A, q)

first-order types: F ::= (A, . . . , A) q . q′−−−→A

for q, q′, r ∈ Q+

Figure 5.1: Types of the cost-aware simple language LF�

We will now augment our basic type system for LF by annotations to capture the

potential of data. We refer to this refinement of the type rules by the name LF�,

and also add a �-symbol to the name of the type rules, in order to distinguish them

from their unannotated counterparts in LF.

The intuition for LF� is that the type of an entity gives rise to a canonical formula

the denotes the potential of all values for that type, as given by Definition 6.20 later.

It is the task of the LF� type system to ensure that the specific parameters used to

specialise the canonical potential are meaningful with respect to the actual evaluation

costs as specified by the cost-aware operational semantics given in Definition 4.17.

The formulation of the LF� type system and proving its soundness are the main

contributions of this chapter.

5.1 Cost-Aware Type System LF�

The types of LF� are shown in Figure 5.1. The sum and list types were augmented by

annotations to reflect their possible potential as outlined in Section 2.3. Furthermore

the function type has received two annotations which will signify the fixed potential

required to execute the function (q) and the amount of potential available after the

computation of the function (q′), both in addition to the potential carried in the

types of the input and output.

We could have assigned potential related annotation to all types, but this would have

only added ambiguity without increasing expressivity. This will only become appar-

ent with Definition 5.7, which formally defines the connection between annotated
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types and potential, so we will comment in more detail on this directly after that

definition. For now, recall from the introduction that the potential associated with a

certain value of a specific annotated type varies with the kind and number of nodes

that represent that value, as well as the annotation.

In order to relate LF� with LF, we define the erasure of type annotations as expected.

Definition 5.1 (LF� Type Reduction).

|unit| = unit

|bool| = bool

|A×B| = |A|×|B|
|(A, q) + (B, r)| = |A|+|B|
|list(A, q) | = list(|A|)∣∣∣(A1, . . . , An) q . q′−−−→B

∣∣∣ = |A1|, . . . , |An| → |B|

We naturally extend this definition to type contexts and type signatures by function

composition.

We extend Definition 4.15, the function TypSize that determines the size of a type,

from unannotated LF types to annotated LF� types by simply erasing the annota-

tions. So the size of an LF� type is equal to the size of its underlying LF type.

Definition 5.2 (Sizes of LF� Types). TypSize : LF�-type → N is defined by

TypSize(A) := TypSize
(
|A|
)
.

The two definitions above are so trivial that we usually ignore them entirely, allowing

ourselves to use LF� types wherever an LF type would formally be required.

We will now formulate the LF� type rules, which allow us to derive a judgement of

the form

Σ; Γ
p

p′ e : A

which means that term e has the LF� type A within context Γ and signature Σ. The

non-negative rationals p and p′ tell us something about the resource usage of the

evaluation of term e as detailed later by Theorem 1.

As an intuition, the theorem will give us an upper-bound on the amount of heap

units required to safely evaluate the term e. This upper-bound is given by a sum

of non-negative rationals, more precisely p plus the potential held by the context Γ.

The exact number depends on the actual stack and heap in correspondence to Γ, of

course, as specified by the definition of potential, explained soon in Section 5.2.
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Definition 5.3 (LF� Type Rules). All number annotations p, p′, q, . . . within the

following type rules are restricted to non-negative rational numbers. The signature

Σ is again implicitly fixed.

{} 0

0 ∗ : unit
(LF`�Unit)

c ∈ {true, false}

{} 0

0 c : bool
(LF`�Bool)

x:C
0

0 x : C
(LF`�Var)

Γ1
p

p0
e1 : A Γ2, x:A

p0
p′ e2 : C

Γ1,Γ2
p

p′ let x = e1 in e2 : C
(LF`�Let)

Σ(f) = (A1, . . . , Ak) p . p′−−−→C

x1:A1, . . . , xk:Ak
p

p′ f(x1, . . . , xk) : C
(LF`�Fun)

Γ
p

p′ et : C Γ
p

p′ ef : C

Γ, x:bool
p

p′ if x then et else ef : C
(LF`�If)

x1:A, x2:B
0

0 (x1,x2) : A×B
(LF`�Pair)

Γ, x1:A, x2:B
p

p′ e : C

Γ, x:A×B p

p′ matchx with (x1,x2) → e : C
(LF`�E-Pair)

x:A
ql + TypSize

(
bool×A

)
0 Inl(x) : (A, ql)+(B, qr)

(LF`�Inl)

x:B
qr + TypSize

(
bool×B

)
0 Inr(x) : (A, ql)+(B, qr)

(LF`�Inr)

Γ, y:A
p + ql
p′ el : C Γ, z:B

p + qr
p′ er : C

Γ, x:(A, ql)+(B, qr)
p

p′ match x with |Inl(y) → el|Inr(z) → er : C

(LF`�E-Sum)
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Γ, y:A
p + ql + TypSize

(
bool×A

)
p′ el : C Γ, z:B

p + qr + TypSize
(
bool×B

)
p′ er : C

Γ, x:(A, ql)+(B, qr)
p

p′ match!x with |Inl(y) → el|Inr(z) → er : C

(LF`�E!-Sum)

{} 0

0 Nil : list(A, q)
(LF`�Nil)

xh:A, xt:list(A, q)
q + TypSize

(
A×list(A, q)

)
0 Cons(xh,xt) : list(A, q)

(LF`�Cons)

Γ
p

p′ e1 : C Γ, xh:A, xt:list(A, q)
p + q

p′ e2 : C

Γ, x:list(A, q)
p

p′ match x with |Nil → e1|Cons(xh,xt) → e2 : C
(LF`�E-List)

Γ
p

p′ e1 : C s = TypSize
(
A×list(A, q)

)
Γ, xh:A, xt:list(A, q)

p + q + s

p′ e2 : C

Γ, x:list(A, q)
p

p′ match!x with |Nil → e1|Cons(xh,xt) → e2 : C

(LF`�E!-List)

Structural Rules

Γ
p

p′ e : C

Γ, x:A
p

p′ e : C
(LF`�Weak)

Γ
q

q′ e : C p ≥ q p− q ≥ p′ − q′

Γ
p

p′ e : C
(LF`�Relax)

Γ, x:A1, y:A2
p

p′ e : C .(A |A1, A2 )

Γ, z:A
p

p′ e[z/x, z/y] : C
(LF`�Share)

Definition 5.4 (LF� Sharing). The ternary relation . is refined on LF� types by

the rules shown in Figure 5.2
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.(unit |unit, unit)

.(bool |bool, bool)
.(A |A1, A2 ) .(B |B1, B2 )

.(A×B |A1×B1, A2×B2 )

.(A |A1, A2 ) .(B |B1, B2 ) q = q1 + q2 r = r1 + r2

.
(
(A, q)+(B, r) |(A1, q1)+(B1, r1), (A2, q2)+(B2, r2)

)
.(A |A1, A2 ) q = q1 + q2

.
(
list(A, q) |list(A1, q1), list(A2, q2)

)

Figure 5.2: Sharing relation on LF� types

The meaning of the sharing relation depends once more on the definition of potential,

Definition 5.7. Intuitively the statement .(A |A1, A2 ) expresses that the potential

held by A is equal to the sum of the potential held by A1 and A2 (with respect to

the same value).

We conclude this section by defining a well-typed LF� program in the same manner

as for LF.

Definition 5.5 (Well-Typed LF� Program). A program P is well-typed with respect

to an LF� signature Σ if for all f ∈ dom(P ) with Σ(f) = (A1, . . . , Ak) p . p′−−−→C and

P (f) = (y1, . . . , yk → ef ) the typing judgement [y1:A1, . . . , yk:Ak]
p

p′ ef :C can be

derived by the LF� typing rules.

Lemma 5.6 (Embedding LF in LF�). If the program P is well-typed with respect to

LF� signature Σ, then it is also well-typed with respect to LF signature |Σ|.

Proof. Every type rule of LF� has a strengthened precondition as compared to its

counterpart type rule within LF. The only LF� type rule that has no counterpart

LF type rule is LF`�Relax, which reduces to an identity within LF.

Therefore, if the statement Γ
p

p′ e:C is derivable in LF�, so is the LF typing judge-

ment |Γ| ` e:|C|.
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5.1.1 Exact Resource Analysis

The above type rules for LF� contain one entirely new rule, LF`�Relax, whose

role is twofold. On one hand, it allows us to carry over excess resources, i.e. if we

can type Γ
42

7 e:C, then adding more potential (which may not actually be used)

certainly causes no harm, hence we should be able to derive Γ
43

8 e:C as well.

On the other hand, it also allows us to discard potential. While this is something

that we generally do not want, it might be necessary to allow us to type certain

programs. Imagine, for example, a conditional, having two branches that will each

use a different amount of heap memory. A static analysis such as ours, which cannot

exclude the possibility that either branch is executed, must then assume the worst-

case for the entire conditional term. The rule LF`�Relax allows us to discard the

superfluous potential in the less expensive branch, either before or after examining

that branch.

Note that the rule LF`�If correspondingly only allows branches having the same

resource consumption. Therefore the application of LF`�Relax will be usually

required for one of the branches. The benefit of having an explicit structural rule

like LF`�Relax is of course a leaner and cleaner proof.

We distinguish between exact bounds, minimal bounds and exact cost formulas . An

exact bound on resource consumption means that there is at least one evaluation that

requires as many resources as the bound allows, i.e. the bound is met. A minimal

bound is smaller than any other bound; they are often non-linear. An exact cost

formula for the resource consumption implies that the bound is both an upper- and

a lower-bound at the same time, i.e. the program always uses as many resources as

predicted by the cost formula.

If one would prefer the analysis to yield an exact cost formula on resource consump-

tion rather than an upper bound, one needs to change two things:

a) Replacing the rule LF`�Relax by the following rule

Γ
p

p′ e:C q ∈ Q+

Γ
p + q

p′ + q e:C
(LF`�Excess)

in order to prohibit the disposal of unused potential.
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b) Removing (or altering) the weakening rule LF`�Weak. Discarding a boxed

type from the context by weakening, i.e. without destroying it, will leak memory

resources, except if the pointer is already Null or Bad. Forgetting a proper

pointer by weakening will leak memory resources, unless the potential gained

through it is zero and it is pointing to an aliased data structure that will be

destroyed in an orderly way or returned later through another handle.

Since the above are all conditions to be checked at runtime, a simpler (statically

viable), but still safe alternative would be to allow weakening only for stack-

allocated types, i.e. unit, bool and products built from these types.

It is clear that these changes decrease the number of programs that the analysis can

be successfully applied to. For example, programs that require a different amount

of resources for different inputs, despite those inputs have the same structure and

number of nodes, may then not be typable anymore.

We remark that our implementation of the amortised analysis will generally apply

the type rule LF`�Relax at each possible step. This causes many inequalities to

appear within the generated linear program. However, if none of the inequalities is

strict under a given solution, then we know that our inferred cost formula happens

to be exact for all evaluations of the examined program.

However, the converse is not true: a solution having strict constraints may still yield

an exact cost formula (as opposed to an upper bound). In such a case the strict

inequalities can all be derived by the rule LF`�Excess shown above. Whether or

not this is the case is easy to determine, even for an LP generated using LF`�Relax.

All one has to check is whether the second inequality produced by the applications

of rule LF`�Relax becomes an equality under the given solution.

5.2 Potential

The definition of potential expresses the data dependency of the cost bound. It

shows us how to map concrete input values to cost values, as formally expressed by

Theorem 1 in the next section.
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ΦH (() : unit) = 0

ΦH (tt : bool) = 0

ΦH (ff : bool) = 0

ΦH
(
(v, w) : A×B

)
= ΦH (v : A) + ΦH (w : B)

ΦH (` : (A, q) + (B, p)) =


q + ΦH (v : A) If H (`) = (tt, v)

p+ ΦH (v : B) If H (`) = (ff , v)

0 If H (`) = Bad

ΦH (` : list(A, q)) =


q + ΦH \`

(
(vh, vt) : A×list(A, q)

)
If H (`) = (vh, vt)

0 If H (`) = Null

0 If H (`) = Bad

Figure 5.3: Potential

Definition 5.7 (Potential). The potential Φ : Heap × Val × LF�-type → Q+ is a

map from a type, a value and a heap to a non-negative rational number. We define

the potential of a value v of LF� type A within heap H recursively by the equations

shown in Figure 5.3.

We extend this definition to Φ : Heap × Stack × LF�-type-context → Q+ naturally

by summation.

ΦH (S : Γ) =
∑

x∈dom(Γ)

ΦH (S(x) : Γ(x))

So the overall potential is a sum over all the nodes of a data structure, where each

node contributes potential according to its kind and the annotation within its type.

Any node may contribute several times to this sum with different annotated types,

if the data structure is aliased.

It is very important to note that the potential can be easily computed for huge classes

of input data. For example, if the input is of type list(list(bool, 2), 3), then we know

instantaneously that the potential for a value of this type is three times the length of
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the outer list, plus two times the sum of the lengths of the inner boolean lists. The

bound is very easy to understand and encompasses all possible inputs.

For a cost analysis to be of any use, it is paramount that we can easily glean the

overall cost behaviour of the analysed code. It is not just enough to make it easier to

compute the evaluation cost for a specific input data than just running the program

on this input, since then one still has to consider all possible input values separately,

which is usually infeasible.

5.2.1 Generalisation to Arbitrary Recursive Data Types

The reason for adding annotations only to sums and lists (and functions) is that the

number and kind of nodes for values of these types may vary and are only known as

we process these types. That is, the potential only becomes available again for direct

use if we have matched against them and know for sure whether there is another

node of a certain kind or not.

If we were to add annotations everywhere, we would only introduce ambiguity without

increasing expressivity. For example, the overall potential contributed by any value of

the hypothetical type
(
(bool, 1)× (bool, 2) , 0

)
would always be equivalent to the over-

all potential contributed by any element of hypothetical type
(
(bool, 0)× (bool, 0) , 3

)
.

Both types will always have the same number of nodes per type, regardless of the

underlying operational value. Therefore the potential will be 3 for all values that

fit either type above. We see that we can always shift the potential outwards

to the next enclosing type that has a varying number of nodes, such as a list of

type list(bool×bool, 3) . If there is no enclosing type having a varying number of

nodes, then the function type can carry the annotation. So, for example, the hy-

pothetical type
(
(bool, 1)× (bool, 2) , 3

)
4 . 5−−→(bool, 5) would equivalent to the type(

(bool, 0)× (bool, 0) , 0
)

10 . 10−−−−→(bool, 0).

We remark that the type system in [Hof00] could not abstract away this ambiguity,

since potential was represented by first-class objects, namely pointers of the special

type �. Clearly, the type list(A×�) is different from the type list(�×A) then, but

both are equivalent to the LF� type list(A, 1).

Treating general user-defined recursive data types is straightforward, but requires

a clumsy notation, as shown in our work [JLH+09]. Since we discuss an elaborate
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example that uses user-defined data types later on in Section 5.6, we outline the

principal idea here.

In general, one should attach an individual annotation to each constructor of a type.

This annotation denotes the potential bound upon construction and released upon

destruction of that particular constructor of that annotated type. The idea is that

the matching of a constructor decides upon the branch taken in the program, and

since each computational branch has its individual cost, each constructor should

bring along its individual potential to amortise it.

The two annotations for the sum type naturally arise this way. The single annotation

for lists in LF� is precisely the annotation of the Cons() constructor only, while

the annotation of the Nil constructor is omitted due to ambiguity. Every well-

typed value of a list type has precisely one Nil constructor, therefore any potential

assigned to the Nil constructor can be safely shifted outwards, as described in the

above paragraph. However, our implementation rigorously assigns one annotation

per constructor, including the Nil constructor.

5.2.2 Potential Properties

We continue with three technical observations.

Lemma 5.8 (Potential Deallocation). For any heap H , stack S and context Γ, if

H � S :Γ holds, then the potential ΦH (S : Γ) is well-defined and furthermore for all

` ∈ dom(H ) holds ΦH (S : Γ) ≥ ΦH [` 7→Bad](S : Γ)

Proof. By the definition of potential for stacks and contexts it suffices to prove

ΦH (v : A) ≥ ΦH [` 7→Bad](v : A) for an arbitrary value v and type A such that H � v:A.

The proof is then by induction on both the complexity of type A and the size of the

heap H , with the size of the heap taking priority over the complexity of the type.

The claim is vacuously true for most cases, since they do not inspect heap H . Note

though that the complexity of the type decreases in the case of pairs and sums. The

only non-trivial case is the potential of a non-empty list. Here, the complexity of the

type increases, but the domain of the heap is diminished, allowing us to apply the

induction hypothesis thanks to Lemma 4.12.

Furthermore by inspection of Definition 5.7 we know that the potential is always a

sum of non-negative rationals and thus can only diminish by overwriting a location

with the value Bad, which will always contribute a potential of zero to the sum for

any LF� type.
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One should not be misled by this lemma. The overall potential may increase during

evaluation (e.g. through deallocation). However, this potential must then be associ-

ated with the result of the computation; while the potential of the input can only be

consumed. The following lemma also makes use of this fact, by conveniently ignoring

the potential that is contributed by the result of the evaluation.

Lemma 5.9 (Non-Increasing Potential). Fix a well-typed LF� program P with sig-

nature Σ. If Γ
p

p′ e:C and S ,H ` e ↓ v,H ′ and H � S : Γ holds, then ΦH (S : Γ) ≥
ΦH ′(S : Γ) is true as well.

Proof. Since both context Γ and stack S remain are unchanged, the sums for ΦH (S : Γ)

and ΦH ′(S : Γ) range over the same locations with the same type. By Lemma 4.8, the

only changes between H and H ′ are either added locations or changing the value of

a location to Bad. In the first, the added locations cannot affect the sum, since they

are not ranged over. The latter can only lower the sum, according to Lemma 5.8.

Note that the previous two lemmas only hold due to the functional setting and the

absence of heap updates via pointers (as frequently found in imperative code). While

these two lemmas greatly simplify our burden of proof, they are not strictly necessary,

as our successful treatment of imperative code, including heap update, shows [HJ06].

The last lemma of this section states that sharing preserves potential, i.e. that the

potential of the original entity is always equal to the sum of its shared parts.

Lemma 5.10 (Shared Potential). If H � v : A and .(A |A1, A2 ) holds, then

ΦH (v : A) = ΦH (v : A1) + ΦH (v : A2).

Proof. The proof is by induction on the length of the derivation for .(A |A1, A2 ).

The claim is trivial for the base types unit and bool, since they never carry any

potential by Definition 5.7.

For pair types, the claim follows straightforwardly from induction, since the potential

of a product type is defined to be equal to the sum of the potential of its parts.

For sum types, we have .
(
(B, q) + (C, r) |(B1, q1) + (C1, r1) , (B2, q2) + (C2, r2)

)
and

both q = q1+q2 and r = r1+r2. Without loss of generality, we assume H (v) = (tt, w),

since the other case follows then by symmetry. Thus we have

ΦH (v : (B, q) + (C, r)) = q + ΦH (w : B)

= (q1 + q2) + ΦH (w : B)

= (q1 + ΦH (w : B1)) + (q2 + ΦH (w : B2))
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where the last equality follows from ΦH (w : B) = ΦH (w : B1) + ΦH (w : B2) which

we obtained by using the induction hypothesis for B.

For the last case of list types we have .(list(B, q) |list(B1, q1), list(B2, q2)) and q =

q1 + q2. The premise of memory consistency implies that v points to a chain of cons

nodes, which is either terminated by Null or Bad. Without loss of generality, we

assume that this list has length n and that the values in the cons nodes are v1, . . . , vn.

Whether it is terminated by Null or Bad does not matter, since both values will

always have a potential of zero. Thus, we observe

ΦH (v : list(B, q)) =
n∑

i=1

(
q + ΦH (vi : B)

)
= nq +

n∑
i=1

ΦH (vi : B)

= n(q1 + q2) +
n∑

i=1

ΦH (vi : B1) +
n∑

i=1

ΦH (vi : B2)

=
n∑

i=1

(
q1 + ΦH (vi : B1)

)
+

n∑
i=1

(
q2 + ΦH (vi : B2)

)
where the penultimate inequality requires the application of the induction hypothesis

n-times.

5.3 Soundness of the First-Order Analysis

We will now formulate and prove the main theorem of this chapter of the thesis.

As opposed to Lemma 5.8, the following theorem captures the overall change of

potential for the entire heap during the evaluation. This theorem thus allows us

to statically determine the overall heap consumption of a program during its entire

(finite) evaluation. We will later on prove in Theorem 2 that even non-terminating

programs will obey our predicted bounds.

Theorem 1 (Soundness LF). Fix a well-typed LF� program P with signature Σ. If

Γ
p

p′ e:C (1.A)

S ,H ` e ↓ v,H ′ (1.B)

H � S : Γ (1.C)

then for all r ∈ Q+ and for all m ∈ N such that m ≥ p + ΦH (S : Γ) + r there exists

m′ ∈ N satisfying m′ ≥ p′ + ΦH ′(v : C) + r and S ,H m

m′ e ↓ v,H ′.
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Proof. The proof is by induction on the lengths of the derivations of (1.B) and

(1.A) ordered lexicographically with the derivation of the evaluation taking priority

over the typing derivation. The reason is identical to the one stated in the proof

of Lemma 4.13: Induction over the length of the typing derivation alone would not

succeed, since the case for function application required us to use the induction

hypothesis on the defining body of the function, whose type is obtained by the

signature. The condition that the program P is well-typed allows us to assume an

LF� typing derivation for the function body, but the length of this typing derivation

is of course arbitrary. However, the evaluation of the entire program does progress

in this case, so we can use induction on its length.

Similarly, induction over the length of the evaluation alone would fail, since the cases

for all structural rules requires the application of the induction hypothesis without

any change to the evaluation statement (1.B). In these cases, only the length of the

typing derivation was shortened by one step.

We first treat the cases where the last step in the typing derivation was obtained by

application of a structural rule, which are all the cases which leave the length of the

derivation for the evaluation unchanged, but reduce the size of the type derivation

by one step. The other cases use the induction hypothesis only for evaluations with

strictly decreased sizes.

For completeness, the proof is written here in full. However, not all cases are in-

teresting. We therefore advise the reader to focus attention on the cases LF ↓Let,

LF ↓Fun, LF ↓Cons, LF ↓E-Cons, LF`�Relax and LF`�Share.

Since the projection of LF� to LF is trivial, we will not always explicitly mention the

applications of Lemma 4.19 and Lemma 5.6 for brevity and readability. These two

Lemmas simply state that the deletion of cost annotations preserve the derivations

for the operational semantics and the typing respectively.

LF`�Weak: Suppose that the last applied rule in the typing derivation was the

rule LF`�Weak. Let Γ = ∆, x:A. We apply the induction hypothesis for

∆
p

p′ e:C, with both (1.B) and (1.C) remaining unchanged. Thus we have

for all r ∈ Q+ and m ∈ N with m ≥ p + ΦH (S : ∆) + r, that there ex-

ists m′ ≥ p′ + ΦH ′(v : C) + r with S ,H m

m′ e ↓ v,H ′. The desired result is

already subsumed therein, as a further restriction to the forall-quantified m:

ΦH (S : Γ) = ΦH (S : ∆) + ΦH (S(x) : A) ≥ ΦH (S : ∆) since the potential is

always non-negative by its definition (Definition 5.7).

92



5.3 Soundness of the First-Order Analysis

LF`�Relax: This case illustrates the use of r within the theorem, which is a nec-

essary tool in the let-rule case.

Fix an arbitrary r ∈ Q+. In order to apply the induction hypothesis we then

choose r′ =
(
(p − q) + r

)
, with r′ ∈ Q+ as required by p ≥ q following from

the premise of rule LF`�Relax. Now applying the induction hypothesis for

Γ
q

q′ e:C, with both (1.B) and (1.C) remaining unchanged, yields for all m ∈ N
with m ≥ q + ΦH (S : ∆) + (p− q + r) = p+ ΦH (S : ∆) + r there exists

m′ ≥ q′ + ΦH ′(v : C) + (p− q + r)

≥ q′ + ΦH ′(v : C) + (p′ − q′ + r)

(using the premise p− q ≥ p′ − q′ of rule LF`�Relax). Hence we have

m′ ≥ p′ + ΦH ′(v : C) + r

allowing for S ,H m

m′ e ↓ v,H ′ as required.

LF`�Share: Thanks to Lemma 5.10, we know that sharing does not affect the

overall potential. Hence this case follows trivially by induction.

LF ↓Unit: By premise (1.A) we have {} 0

0 ∗:unit, hence p = 0 and Γ = {} in

terms of the formulation of the theorem. From premise (1.B) we have S ,H `
∗ ↓ Null,H and thus H = H ′ as well.

Fix r ∈ Q+ arbitrarily and fix any m ∈ N such that m ≥ 0 + 0 + r, since

ΦH (S : {}) = 0 by the definition of potential (Definition 5.7 on page 87). Thus

we choose m′ = m, which satisfies both m′ ≥ 0 + ΦH (Null : unit) + r = r and

the additional requirement of rule LF ↓�Unit to derive S ,H m

m ∗ ↓ Null,H
as needed.

LF ↓True & LF ↓False: These two cases are analogous to the proof of the pre-

vious case for LF ↓Unit, since all concerned rules are structurally identical

and ΦH (Null : unit) = ΦH (tt : bool) = ΦH (ff : bool) = 0 holds regardless of

heap H by Definition 5.7.

LF ↓Var: The term e is a simple variable in this case. Fix r ∈ Q+ arbitrarily

and fix any m ∈ N such that m ≥ 0 + ΦH (S : {x:C}) + r. We set m′ =

m ≥ 0 + ΦH (S(x) : C) + r. By (1.B) and rule LF ↓�Var we then derive

S ,H m

m x ↓ S(x),H as required.
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LF ↓Let: Fix r ∈ Q+ arbitrarily. Fix any m ∈ N such that

m ≥ p+ ΦH (S : Γ1,Γ2) + r

≥ p+ ΦH (S : Γ1) + ΦH0
(S : Γ2) + r

where the last inequality follows by Lemma 5.9 and (1.B). From (1.C) fol-

lows H � S : Γ1, so we can apply the induction hypothesis choosing r0 =

ΦH0
(S : Γ2) + r and obtain for all m ∈ N such that m ≥ p + ΦH (S : Γ1) + r0

that there exists m0 ∈ N satisfying m0 ≥ p0 + ΦH0
(v0 : A) + r0 and eventually

S ,H m

m0
e1 ↓ v0,H0.

We can apply Lemma 4.13 to obtain H0 � S [x 7→v0]:Γ2[x 7→A]. Hence we ap-

ply the induction hypothesis a second time: Since m0 ≥ p0 + ΦH0
(v0 : A) +

ΦH0
(S : Γ2)+r = p0+ΦH0

(S [x 7→v0] : Γ2[x 7→A])+r from above, there exists m′ ∈
N satisfying m′ ≥ p′ + ΦH ′(v : C) + r and S [x 7→v0],H m0

m′ e2 ↓ v,H ′. Com-

bining the above by rule LF ↓�Let then yields S ,H m

m′ let x = e1 in e2 ↓
v,H ′ as desired.

LF ↓Fun: By the assumption that P is a well-typed LF� program with signa-

ture Σ (Definition 4.5 on page 46), we have [y1:A1, . . . , yk:Ak]
p

p′ ef :C. Note

that [y1:A1, . . . , yk:Ak] is just a renamed version of Γ. Furthermore the stack

[y1 7→v1, . . . , yk 7→vk] is clearly a renamed fragment of S ; with ∀z ∈ dom(Γ) . z ∈
dom

(
[y1 7→v1, . . . , yk 7→vk]

)
. Hence the desired result follows directly from the

induction hypothesis in this case. Note that the induction hypothesis is indeed

applicable, since the derivation of (1.B) has in fact been shortened and takes

precedence over the derivation of (1.A), which has grown in this case.

LF ↓If-T & LF ↓If-F: We consider the case of rule LF ↓If-T first, the case for rule

LF ↓If-F follows then similarly.

Fix r ∈ Q+ arbitrarily and m ∈ N such that m ≥ p + ΦH (S : Γ, x:bool) + r =

p + ΦH (S : Γ, x:bool) + r. Applying the induction hypothesis for Γ
p

p′ et:C

from (1.A) and S ,H ` et ↓ v,H ′ from (1.B) yields m′ with m′ ≥ p′ +

ΦH ′(v : C) + r and S ,H m

m′ et ↓ v,H ′. Hence by the rule LF ↓�If-T also

S ,H m

m′ if x then et else ef ↓ v,H ′ follows as required.

LF ↓Pair: The term e is pair of variables in this case. Fix r ∈ Q+ arbitrarily and

any m ∈ N such that m ≥ 0 + ΦH (S : x1:A1, x2:A2) + r. Rule LF ↓�Pair re-

quires m′ = m, hence it suffices to show that 0 + ΦH (S : {x1:A1, x2:A2}) + r ≥
0 + ΦH

((
S(x1), S(x2)

)
: A1×A2

)
+ r. This follows from the definition of po-

tential (5.7) by ΦH (S : {x1:A1, x2:A2}) = ΦH
(
S(x1) : A1

)
+ ΦH

(
S(x2) : A2

)
=

ΦH

((
S(x1), S(x2)

)
: A1×A2

)
.
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5.3 Soundness of the First-Order Analysis

LF ↓E-Pair: This is the case for pair elimination. Fix any r ∈ Q+ arbitrarily

and choose any m ∈ N such that m ≥ p + ΦH (S : {Γ, x:A×B}) + r = p +

ΦH (S [x1 7→v1, x2 7→v2] : {Γ, x1:A, x2:B})+r, where the last equality follows from

S(x) = (v1, v2) and and ΦH
(
S(x1) : A

)
+ ΦH

(
S(x2) : B

)
= ΦH

((
S(x1), S(x2)

)
:

A×B
)

from the definition of potential (Definition 5.7 on page 87).

We apply the induction hypothesis for S [x1 7→v1, x2 7→v2],H m

m′ e ↓ v,H ′ and

obtain m′ with m′ ≥ p′ + ΦH ′(v : C) + r already completing the proof of this

case.

LF ↓Inl & LF ↓Inr: Without loss of generality, we only consider the case of rule

LF ↓Inl, since the case for rule LF ↓Inr is almost identical.

Fix r ∈ Q+ arbitrarily and any m ∈ N such that

m ≥
(
ql + TypSize(bool×A)

)
+ ΦH (S(x) : A) + r

By Lemma 4.16 and 1.C we have TypSize(bool×A) = Size(tt, w′) and thus

m ≥ ql + Size(tt, w′) + ΦH (S(x) : A) + r

m− Size(tt, w′) ≥ 0 + ΦH [` 7→(tt,w′)](` : (A, ql) + (B, qr)) + r

by Definition 5.7 as required, since m′ = m− Size(tt, w′) by rule LF ↓Inl.

LF ↓E-Inl, LF ↓E-Inr, LF ↓E!-Inl & LF ↓E!-Inr: We concentrate on the case for

LF ↓E!-Inl, with the other cases following similarly.

Fix r ∈ Q+ arbitrarily and any m ∈ N such that

m ≥ p+ ΦH (S : Γ, x: (A, ql) + (B, qr)) + r

By premise (1.B) we have S(x) = `0 and H (`0) = w and w = (tt, w′), therefore

by the definition of potential

m ≥ p+ ΦH (S : Γ) + ql + ΦH (w′ : A) + r

m+ Size(w) ≥ p+ ql + TypSize
(
bool×A

)
+ ΦH (S [y 7→w′] : Γ, y:A) + r

where the last inequality follows by TypSize
(
bool×A

)
= Size (w) obtained

through Lemma 4.16 and premise (1.C). We can thus apply the induction

hypothesis for S [y 7→w′],H [x 7→ Bad]
m + Size(w)

m′ el ↓ v,H ′ to obtain

m′ ≥ p′ + ΦH ′(v : C) + r

as required by rule LF ↓�E!-Inl.
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LF ↓Nil: We have {} 0

0 Nil:list(A, q) from (1.A) and S ,H ` Nil ↓ Null,H from

(1.B). Fix r ∈ Q+ arbitrarily and fix any m ∈ N such that m ≥ 0 + 0 + r.

By rule LF ↓�Nil we have S ,H m

m Nil ↓ Null,H and thus require m′ = m,

which satisfies m′ ≥ 0 + ΦH (Null : list(A, q)) + r = r as needed.

LF ↓Cons: Let s = TypSize
(
A×list(A, q)

)
. By the premise (1.A) we have that

xh:A, xt:list(A, q)
q + s

0 Cons(xh,xt):list(A, q) and from (1.B) we know that

S ,H ` Cons(xh,xt) ↓ `,H [` 7→ v] with v =
(
S(xh), S(xt)

)
and ` /∈ dom(H ).

Fix r ∈ Q+ arbitrarily and fix any m ∈ N such that

m ≥ (q + s) + ΦH
(
S : {xh:A, xt:list(A, q)z}

)
+ r

We now choose m′ = m− s, hence we have

m′ ≥ q + ΦH
(
S : {xh:A, xt:list(A, q)z}

)
+ r

= q + ΦH (S(xh) : A) + ΦH (S(xt) : list(A, q)) + r

= q + ΦH (v : A×list(A)) + r

= 0 + ΦH [ 7̀→v](` : list(A, q)) + r

as required, where the equations follow directly from the definition of poten-

tial (5.7).

Now in order to prove that S ,H m

m′ Cons(xh,xt) ↓ `,H [` 7→ v] holds by virtue

of rule LF ↓�Cons, it remains to remark that m = m′ + s and furthermore

s = Size(v) by Lemma 4.16.

LF ↓E-Nil & LF ↓E!-Nil: We only treat the case for LF ↓E-Nil without loss of

generality, since deallocation has no effect on an empty list, which is represented

by a null pointer.

Fix r ∈ Q+ and choose any m ∈ N with m ≥ p + ΦH (S : {Γ, x:list(A, q)}) + r.

From premise (1.A) we have Γ
p

p′ e1:C and from (1.B) we obtain both S ,H `
e1 ↓ v,H ′. and also S(x) = Null. Hence by Definition 5.7 we deduce that

m ≥ p + ΦH (S : Γ) + r and apply the induction hypothesis for e1 to obtain

m′ ≥ p′ + ΦH ′(v : C) + r. and S ,H m

m′ e1 ↓ v,H ′ as required.

LF ↓E-Cons: Fix r ∈ Q+ and choose any m ∈ N with

m ≥ p+ ΦH (S : {Γ, x:list(A, q)}) + r
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From (1.B) we obtain S(x) = ` and H (`) = v and v = (vh, vt), hence by using

Definition 5.7 three times we have

m ≥ p+ ΦH (S : Γ) + ΦH (v : A×list(A, q)) + r

= p+ ΦH (S : Γ) + q + ΦH (vh : A) + ΦH (vt : list(A, q)) + r

= p+ q + ΦH (S [xh 7→vh, xt 7→vt] : {Γ, xh:A, xt:list(A, q)}) + r

since xh, xt /∈ dom(Γ). We have Γ, xh:A, xt:list(A, q)
p + q

p′ e2:C from premise

(1.A), and using (1.B) we obtain S [xh 7→vh, xt 7→vt],H ` e2 ↓ v,H ′. Applying

the induction hypothesis for e2 now yields m′ ≥ p′ + ΦH ′(v : C) + r. and

S [xh 7→vh, xt 7→vt],H
m

m′ e2 ↓ v,H ′ as required for rule LF ↓�E-Cons.

LF ↓E!-Cons: Fix r ∈ Q+ and choose any m ∈ N with

m ≥ p+ ΦH (S : {Γ, x:list(A, q)}) + r

From (1.B) we obtain S(x) = ` and H (`) = v and v = (vh, vt), hence by using

Definition 5.7 three times we have

m ≥ p+ ΦH (S : Γ) + ΦH (v : A×list(A, q)) + r

= p+ ΦH (S : Γ) + q + ΦH (vh : A) + ΦH (vt : list(A, q)) + r

= p+ q + ΦH (S [xh 7→vh, xt 7→vt] : {Γ, xh:A, xt:list(A, q)}) + r

since xh, xt /∈ dom(Γ). Now by applying Lemma 5.8, we deduce

m ≥ p+ q + ΦH [ 7̀→Bad](S [xh 7→vh, xt 7→vt] : {Γ, xh:A, xt:list(A, q)}) + r

Let s = TypSize
(
A×list(A, q)

)
. In addition we also have s = Size(v) ≥ 0 by

Lemma 4.16. Hence by adding s to both sides we have

m+s ≥ p+ q + s+ ΦH [ 7̀→Bad](S [xh 7→vh, xt 7→vt] :{Γ, xh:A, xt:list(A, q)}) + r

From premise (1.A) we have furthermore Γ, xh:A, xt:list(A, q)
p + q + s

p′ e2:C and

using (1.B) we obtain S [xh 7→vh, xt 7→vt],H [ 7̀→Bad] ` e2 ↓ v,H ′. Applying

the induction hypothesis for e2 now yields m′ ≥ p′ + ΦH ′(v : C) + r. and

S [xh 7→vh, xt 7→vt],H [ 7̀→Bad]
m + s

m′ e2 ↓ v,H ′ as required for LF ↓�E!-Cons.
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5.4 Misbehaving Programs and Non-Termination

Theorem 1 requires as a premise that S ,H ` e ↓ v,H ′ holds. This is somewhat

unsatisfactory, as it requires that the term e evaluates in a finite number of steps.

There are, however, several reasons why this might not hold, e.g. the evaluation of the

term matchx with |Nil → e1|Cons(xh,xt) → e2 becomes stuck if H
(
S(x)

)
= Bad.

Another likely reason might be that the evaluation of e simply does not terminate

due to a never-ending recursion.

In both cases, it would be highly desirable to know for sure that a program does

not exceed its allowed memory resources, especially in the case when things do go

wrong. While a big-step (or natural) operational semantics cannot distinguish be-

tween non-termination and becoming stuck, we will use this to our advantage now

and devise a big-step semantics which exactly captures only those evaluations that

do try to allocate more memory than they are allowed, and which would be otherwise

legitimate. This is possible since all programs that exceed the available free memory,

even non-terminating ones, must do so already after a finite number of steps. This

basic approach to reason about non-termination with a big-step semantics is not new;

similar techniques have been used before [ABH+07, Cam08].

It is fairly easy to see that the extension of the operational semantics in order to

capture memory abuse, as given below, is properly defined to complement the cost

operational semantics given in Definition 5.3 on page 82.

Definition 5.11 (Out of Memory Semantics).

S ,H m
e1 ↓ Out of Memory

S ,H m
let x = e1 in e2 ↓ Out of Memory

(LF6 ↓Let I)

S ,H m

m0
e1 ↓ v0,H0 S [x 7→v0],H0

m0 e2 ↓ Out of Memory

S ,H m
let x = e1 in e2 ↓ Out of Memory

(LF6 ↓Let II)

S(xi) = vi (for i = 1, . . . , k)

P (f) = (y1, . . . , yk → ef ) [y1 7→v1, . . . , yk 7→vk],H m
ef ↓ Out of Memory

S ,H m
f(x1, . . . , xk) ↓ Out of Memory

(LF6 ↓Fun)

S(x) = tt S ,H m
et ↓ Out of Memory

S ,H m
if x then et else ef ↓ Out of Memory

(LF6 ↓ If-T)
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S(x) = ff S ,H m
ef ↓ Out of Memory

S ,H m
if x then et else ef ↓ Out of Memory

(LF6 ↓ If-F)

S(x) = (v1, v2) S [x1 7→v1, x2 7→v2],H m
e ↓ Out of Memory

S ,H m
matchx with (x1,x2) → e ↓ Out of Memory

(LF6 ↓E-Pair)

w =
(
tt, S(x)

)
m < Size(w)

S ,H m
Inl(x) ↓ Out of Memory

(LF6 ↓ Inl)

w =
(
ff , S(x)

)
m < Size(w)

S ,H m
Inr(x) ↓ Out of Memory

(LF6 ↓ Inr)

S(x) = ` H (`) = w w =
(
tt, w′

)
S [y 7→w′],H m

el ↓ Out of Memory

S ,H m
match x with |Inl(y) → el|Inr(y) → er ↓ Out of Memory

(LF6 ↓E-Inl)

S(x) = ` H (`) = w w =
(
tt, w′

)
S [y 7→w′],H [` 7→Bad]

m + Size(w)
el ↓ Out of Memory

S ,H m
match!x with |Inl(y) → el|Inr(y) → er ↓ Out of Memory

(LF6 ↓E!-Inl)

S(x) = ` H (`) = w w =
(
ff , w′

)
S [y 7→w′],H m

er ↓ Out of Memory

S ,H m
match x with |Inl(y) → el|Inr(y) → er ↓ Out of Memory

(LF6 ↓E-Inr)

S(x) = ` H (`) = w w =
(
ff , w′

)
S [y 7→w′],H [ 7̀→Bad]

m + Size(w)
er ↓ Out of Memory

S ,H m
match!x with |Inl(y) → el|Inr(y) → er ↓ Out of Memory

(LF6 ↓E!-Inr)

v =
(
S(xh), S(xt)

)
m < Size(v)

S ,H m
Cons(xh,xt) ↓ Out of Memory

(LF6 ↓Cons)

S(x) = Null S ,H m
e1 ↓ Out of Memory

S ,H m
match x with |Nil → e1|Cons(xh,xt) → e2 ↓ Out of Memory

(LF6 ↓E-Nil)
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S(x) = Null S ,H m
e1 ↓ Out of Memory

S ,H m
match!x with |Nil → e1|Cons(xh,xt) → e2 ↓ Out of Memory

(LF6 ↓E!-Nil)

S(x) = ` H (`) = v v = (vh, vt)

S [xh 7→vh, xt 7→vt],H
m

e2 ↓ Out of Memory

S ,H m
match x with |Nil → e1|Cons(xh,xt) → e2 ↓ Out of Memory

(LF6 ↓E-Cons)

S(x) = ` H (`) = v v = (vh, vt)

S [xh 7→vh, xt 7→vt],H [ 7̀→Bad]
m + Size(v)

e2 ↓ Out of Memory

S ,H m
match!x with |Nil → e1|Cons(xh,xt) → e2 ↓ Out of Memory

(LF6 ↓E!-Cons)

We can now prove that each finite evaluation which exceeds the available free memory

must have been started with a smaller amount of free memory than predicted by our

analysis. Consequently, no well-typed program will exceed the predicted memory

resources within any finite number of steps.

Theorem 2 (Soundness for Non-Terminating LF). Fix a well-typed LF� program P
with signature Σ. If

Γ
p

p′ e:C (2.A)

S ,H m
e ↓ Out of Memory (2.B)

H � S : Γ (2.C)

then m < p+ ΦH (S : Γ) holds.

Proof. The proof is by induction on the lengths of the derivations of (2.A). and (2.B)

ordered lexicographically with the derivation of Out of Memory taking priority over

the typing derivation.

The most interesting case is probably the case for rule LF6 ↓Let II, which requires

the application of Theorem 1.
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LF6 ↓Let I: The induction hypothesis directly yields m < p + ΦH (S : Γ1) and thus

by the non-negativity of the potential also m < p + ΦH (S : Γ1,Γ2) as claimed

in the theorem.

LF6 ↓Let II: First, suppose that m ≥ p + ΦH (S : Γ1) holds, for otherwise we argue

as in the previous case that we obtain the desired result immediately. Therefore

we may choose r = m −
(
p + ΦH (S : Γ1)

)
∈ Q+ with m ≥ p + ΦH (S : Γ1) + r

(in fact equality holds).

By premise (2.B), we have S ,H ` e1 ↓ v0,H0 and hence we apply Theorem 1

to obtain S ,H m

m0
e1 ↓ v0,H0 with

p0 + ΦH0
(v0 : A) + r ≤ m0

From the induction hypothesis for e2 we then know that

m0 < p0 + ΦH0
(S [x 7→v0] : {Γ2, x:A})

and therefore, by combining our knowledge about m0 from above, we have

p0 + ΦH0
(v0 : A) + r < p0 + ΦH0

(S : Γ2) + ΦH0
(v0 : A)

r < ΦH0
(S : Γ2)

m−
(
p+ ΦH (S : Γ1)

)
< ΦH0

(S : Γ2)

m < p+ ΦH (S : Γ1) + ΦH0
(S : Γ2)

By Lemma 5.9 we obtain ΦH0
(S : Γ2) ≤ ΦH (S : Γ2) and thence

m < p+ ΦH (S : Γ1) + ΦH (S : Γ2)

m < p+ ΦH (S : Γ1,Γ2)

as required.

LF6 ↓Fun: Applying the induction hypothesis yields

m < p+ ΦH ([y1 7→v1, . . . , yk 7→vk] : {y1:A1, . . . , yk:Ak})

and thus also, as required, we have

m < p+ ΦH (S : {x1:A1, . . . , xk:Ak})

since S(xi) = vi and P was assumed to be a well-typed LF� program (Defini-

tion 4.5).
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LF6 ↓ If-T & LF6 ↓ If-F: Since the potential for boolean types is always zero, we have

ΦH (S : Γ, x:bool) = ΦH (S : Γ, x:bool) in either case. The type rule LF`�If
furthermore leaves the petty potential p and p′ unchanged, hence the claim

follows trivially from the application of the induction hypothesis.

LF6 ↓E-Pair: The case for pair elimination follows similarly trivial from the induc-

tion hypothesis as the previous case. By the definition of potential, Defini-

tion 5.7, we have ΦH (S : Γ, x:A×B) = ΦH (S : Γ, x1:A, x2:B), while the petty

potential p and p′ remains unchanged by type rule LF`�E-Pair.

LF6 ↓ Inl & LF6 ↓ Inr: According to rule LF6 ↓ Inr we have m < Size (ff , S(x)) and

Size (ff , S(x)) = TypSize
(
bool×B

)
by Lemma 4.16. According to type rule

LF`�Inr we also have p = qr + TypSize
(
bool×B

)
. Since both qr and

ΦH (S(x) : B) are non-negative, we derive m < p + ΦH (S(x) : B) as desired.

The case for LF6 ↓ Inl follows by symmetry.

LF6 ↓E-Inl & LF6 ↓E-Inr: Assume without loss of generality that S(x) = ` and

H (`) = w and w = (ff , w′) holds according to rule LF6 ↓E-Inr.

By the definition of potential (Definition 5.7 on page 87) we have p+ΦH (S : Γ)+

ΦH (S(x) : (A, ql) + (B, qr)) = p+ ql + ΦH (S : Γ) + ΦH (S(x) : A), which fits the

required premise of type rule LF`�E-Sum. Thus we obtain the required result

directly from the application of the induction hypothesis.

LF6 ↓E!-Inl & LF6 ↓E!-Inr: Assume again without loss of generality that S(x) = `

and H (`) = w and w = (tt, w′) holds according to rule LF6 ↓E!-Inl.

By the definition of potential (Definition 5.7 on page 87) we have p+ΦH (S : Γ)+

ΦH (S(x) : A+qlBqr) = p + ql + ΦH (S : Γ) + ΦH (S(x) : A). Lemma 6.17 then

allows us to deduce Size (w) = TypSize
(
bool×A

)
, so we can again derive the

required result directly from the induction hypothesis.

LF6 ↓Cons: Let s = TypSize
(
A×list(A, q)

)
. From the premise (2.C) we have H �

S(xh):A and H � S(xt):list(A, q) and hence by Lemma 4.16 we also have s =

Size
(
S(xh), S(xt)

)
and therefore by (2.B) necessarily that m < s.

By premise (2.A) we have p = q + s and thus the desired result follows by the

non-negativity of both q and ΦH (S : {xh:A, xt:list(A, q)}).
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LF6 ↓E-Nil & LF6 ↓E!-Nil: We treat both cases simultaneously, since the only dif-

ference in the rules is that match is replaced by match!, which has no other

effect in the case of Nil.

Applying the induction hypothesis yields m < p+ΦH (S : Γ). By premise (2.B)

we know that S(x) = Null, and thus by the definition of potential again we

have ΦH (S : {x:list(A, q)}) = 0 and therefore we deduce that the required result

m < p+ ΦH (S : {Γ, x:list(A, q)}) holds.

LF6 ↓E-Cons: The proof is an almost identical subset of the steps taken to prove

the case of LF6 ↓E!-Cons below. From (2.C) we have H � S [xh 7→vh, xt 7→vt] :

{Γ, xh:A, xt:list(A, q)} by unfolding the definition of � once. Furthermore by

Lemma 4.12 we have H � S [xh 7→vh, xt 7→vt] : {Γ, xh:A, xt:list(A, q)}. Thus we

apply the induction hypothesis and obtain

m < p+ q + ΦH (S [xh 7→vh, xt 7→vt] : {Γ, xh:A, xt:list(A, q)})

also ΦH (S [xh 7→vh, xt 7→vt] : {xh:A, xt:list(A, q)}) = q+ ΦH (S : {x:list(A, q)}) by

Definition 5.7 since H
(
S(x)

)
= (vh, vt) and hence

m < p+ ΦH (S : {Γ, x:list(A, q)})

as required.

LF6 ↓E!-Cons: Let s = TypSize
(
A×list(A, q)

)
. By premise (2.C) and Lemma 4.16,

we also have s = Size
(
S(x)

)
.

Again from (2.C) we have H � S [xh 7→vh, xt 7→vt] : {Γ, xh:A, xt:list(A, q)} by

unfolding the definition of � once. Furthermore by Lemma 4.12 we have

H [ 7̀→Bad] � S [xh 7→vh, xt 7→vt] : {Γ, xh:A, xt:list(A, q)}. Thus we apply the

induction hypothesis and obtain

m+ s < p+ q + s+ ΦH [ 7̀→Bad](S [xh 7→vh, xt 7→vt] : {Γ, xh:A, xt:list(A, q)})
m < p+ q + ΦH [ 7̀→Bad](S [xh 7→vh, xt 7→vt] : {Γ, xh:A, xt:list(A, q)})

thus by Lemma 5.8

m < p+ q + ΦH (S [xh 7→vh, xt 7→vt] : {Γ, xh:A, xt:list(A, q)})

also ΦH (S [xh 7→vh, xt 7→vt] : {xh:A, xt:list(A, q)}) = q+ ΦH (S : {x:list(A, q)}) by

Definition 5.7 since H
(
S(x)

)
= (vh, vt) and hence

m < p+ ΦH (S : {Γ, x:list(A, q)})

as required.
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5.5 Introductory Program Examples Analysed

We will now revisit the program examples from Section 4.4 and examine them with

our automated amortised analysis technique and discuss the obtained result. We will

focus on the meaning of the obtained results. Since the examples are sufficiently

small, it should be easy for the reader to independently verify the findings of the

analysis and recognise them as correct.

We show how the analysis is actually performed by examining a fifth example, an

evaluator for arithmetic expressions, which also demonstrates mutual recursion. For

this last example, we will perform each single step of the analysis technique in great

detail, showing how the linear program is generated and what it actually looks like.

That example also includes user-defined recursive data types as discussed in Sec-

tion 5.2.1. We will discuss the effects of different choices for the memory model

and their outcome, as well as seeing the effect of switching read-only matches to

destructive ones.

5.5.1 List Tails Analysed

Recall that the function tails, whose program code and type was previously shown

in Figure 4.4 on page 65, computes a list containing all the tail-lists of a given

input list. For example, the call tails([a, b, c, d, e]) with an argument of length five,

evaluates to the result list
[
[a, b, c, d, e], [b, c, d, e], [c, d, e], [d, e], [e], [ ]

]
.

It is important to note that the output of tails is aliased. While a consumer of the

output above would see 15 inner cons nodes and 6 outer cons nodes, only 11 out of

these 21 nodes exist in the memory. The function tails only allocates the 6 outer

cons nodes during its computation.

Applying the amortised analysis yields the following LF� type for tails:

tails : list(A, 2) 2 . 0−−→list(list(A, 0), 0)

so according to the Definition 6.20 of potential, a call requires 2n+ 2 heap cell units,

where n is the length of the input list. Since a cons node occupies two heap units for

storage, we see that the worst-case bound is exact for the computation example that

we considered. There is at least one computation that meets the predicted bound.
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However, we can also inspect the generated LP to learn more about the precision

of the inferred cost bound. The inferred cost formula only over-approximates if at

least one of the constraints becomes a strict inequality under the chosen solution. In

this case, the solution achieves equality for all constraints, hence we know that the

cost formula is always exact by the observations made in Section 5.1.1. The function

tails will always allocate 2n+2 for an input of length n, no more, no less, regardless

of what that input actually is.

For the generalised type tails : list(A, a) x . y−−−→list(list(A, b), c) we obtain the following

generated linear program, after some unimportant simplifications to improve read-

ability:

x ≥ TypSize
(
A×list(A)

)
+ c+ y a ≥ TypSize

(
A×list(A)

)
+ c b = 0

So we see that the outer cons nodes of the result may carry potential, while the inner

cons nodes can never carry any potential. This is as expected, since the assignment

of potential ignores aliasing, hence any potential held by the inner cons nodes of the

output would be non-linear in the input.

Note that our implementation does not simplify the generated LP before handing

it to the LP-solver. We found that a transformation of the generated LP often

introduced numeric instabilities, which then significantly increased the time to solve

the LP. Since the generated LPs are sparse and also quite small, efficiency is not a

concern. For all the program examples in this chapter, the generated LP could be

solved almost instantaneously by our solver LP-solve [BEN] on our contemporary

laptop (2.53GHz Intel Core 2 Duo, with 6MB cache and 4GB memory). It is also

likely that the result from our earlier work [HJ03], that any solvable generated LP

also admits an (usually non-optimal) integral solution, applies to LF� as well.

5.5.2 List Reversal Analysed

Recall that function reverse and its auxiliary recursive helper rev acc, whose

code was shown in Figure 4.5 on page 67, reverses a list: reverse([a, b, c, d]) =

rev acc([b, a], [c, d]) = [d, c, b, a].

We claimed that the reversal was in-place, i.e. by stepwise deallocation of the input

list and reassembly of the reversed list in the space that became free through the

deallocations, no additional heap memory is required for the computation. A call to

function reverse should not allocate any new memory at all.
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Our analysis infers the types

reverse = list(A, 0) 0 . 0−−→list(A, 0)

rev acc = (list(A, 0), list(A, 0)) 0 . 0−−→list(A, 0)

which confirms that neither function will allocate any heap space.

A worst-case bound of 0 is necessarily an exact bound. However, it is not neces-

sarily an exact cost formula, since a program might deallocate more memory than

it allocates. However, again all inequalities become equalities under the inferred

solution.

This distinction can be neatly illustrated if we ask about the correctness of the

program. One desired property of list-reversal is, that the length of the result is the

same as the length of the input. The worst-case bound of 0 only tells us that the

result is certainly not bigger than the input. The exact cost formula tells us that

the length of output and input are the same, provided that there is no application

of LF`Weak in the unannotated LF type derivation, which in turn excludes the

possibility that allocated memory is reachable from the output.

We remark that the amortised analysis can also successfully produce a bound for the

non-destructive list-reversal. In this case the following types are inferred

reverse = list(A, x) 0 . 0−−→list(A, 0)

rev acc = (list(A, x), list(A, 0)) 0 . 0−−→list(A, 0)

where x is the size of a cons node of type A. Thus, the maximum heap space cost

of executing non-destructive list-reversal is identical to the size of the spine of input

list to be reversed, which is clearly an exact bound.

5.5.3 List Zipping Analysed

We now analyse the zipping of two lists, with the code as shown in Figure 4.6 on

page 69. We recall the example zip([a, b, c, d], [e, f, g]) = [(a, e), (b, f), (c, g)], and

that the length of the output is equal to the minimum of the lengths of the two input

lists.

For the general annotated type

zip : list(A, a), list(B, b) x . y−−−→list(A×B, c)
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we automatically infer the linear program

x ≥ y x+ a ≥ y a+ b ≥ TypSize
(
(A×B)×list(A×B)

)
+ c

For readability, we set A and B to the boolean type bool, so that the last inequality

becomes a+ b ≥ 3 + c. We also ignore solutions that have potential assigned to the

result, which are uninteresting for the purpose of this example, and therefore add

the constraints c = 0 and y = 0. The resulting linear program still admits several

solutions:

zip : list(A, 3), list(B, 0) 0 . 0−−→list(A×B, 0)

zip : list(A, 0), list(B, 3) 0 . 0−−→list(A×B, 0)

zip : list(A, 1.5), list(B, 1.5) 0 . 0−−→list(A×B, 0)

Let n denote the list length of the first argument and m the length of the second,

then we can derive the following cost bounds from these types, respectively:

3n 3m 1.5(n+m)

Neither of these upper-bounds is minimal, since the minimal upper-bound is clearly

3·min(n,m) as observed earlier in Section 4.4.3. However, the three delivered bounds

are the best we could have hoped for our technique to produce, since we sacrificed

the ability to infer non-linear bounds in order to achieve automation.

We see that the result of our amortised analysis is really the generated linear program,

that describes several bounds on the memory consumption of the analysed program.

However, multi-dimensional linear programs are not very easy to understand for

humans. The implementation of our analysis thus employs a simple heuristic that

simply picks one LF� type for a program. The user can ask for another solution, if

the presented solution is unsatisfactory. More specifically, if the user has external

knowledge, for example knowing that the second argument of zip will always be the

smaller one, the user can ask for an attempt to specifically increase or decrease a

certain annotation.

The heuristic employed by our implementation prefers small values on the left-hand

side of arrows and, to a lesser extend, larger values on the right-hand side of an arrow.

The nesting depth of an annotation has also an effect on the importance to minimise

or maximise it. Overall, solutions with fewer strict inequalities are preferred as well,

which is achieved by turning all inequalities to equalities with a fresh slack variables,

that is penalised in the objective function generated by the heuristic.
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It is furthermore interesting to note that the solution leading to the second LF�
type for zip shown above achieves equality for all constraints in the generated linear

program. However, we do not obtain an exact cost formula from this solution, since

the type derivation for the program requires an application of type rule LF`Weak

in its second computational branch, the one leading to the second inequality.

5.5.4 In-Place Insertion Sort Analysed

The in-place insertion sort algorithm, as implemented in Figure 4.7 on page 69, has

been subjected to the amortised analysis technique before [Hof00, HJ03, JLHH10],

and we mainly include it here for completeness.

For the generalised annotated types

ins sort = list(A, a) x . u−−−→list(A, b)

insert = A, list(A, c) y . v−−−→list(A, d)

leq = (A,A) z .w−−−→bool

we obtain the linear program shown in Figure 5.4, which includes a constant C≤A to

denote the heap space costs incurred by comparing two values of type A. Assuming

that this comparison has no heap space costs, i.e. C≤A = 0, the LP admits a solution

yielding the following LF� types

ins sort = list(A, 0) 0 . 0−−→list(A, 0)

insert = A, list(A, 0) 2 . 0−−→list(A, 0)

leq = (A,A) 0 . 0−−→bool

We learn that function ins sort has indeed a worst-case heap usage bound of 0.

Hence it must sort the input list in-place. The annotation 2 for insert shows that

the function may allocate an additional list node. In fact, it always does so, by

inserting the first argument into the list received as its second argument. However,

function ins sort is able to pay this fixed cost, since it always deallocates a list node

before calling insert.

We remark that the LP becomes infeasible for C≤A being larger than zero, since the

number of calls to leq, i.e. the number of comparisons, required to sort a list, is

non-linear in its length. Note that the function insert remains still analysable on

its own it this case, since inserting an element into a sorted list of length n requires

at most n comparisons.
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x ≥ u (5.1)

x+ a ≥ x (5.2)

x+ a ≥ x− u+ y (5.3)

x+ a ≥ x− u+ y − v (5.4)

b ≥ c (5.5)

d ≥ b (5.6)

y ≥ TypSize
(
A×list(A)

)
+ d+ v (5.7)

y + c ≥ z (5.8)

y + c ≥ z − w + 2 ·TypSize
(
A×list(A)

)
+ 2d+ v (5.9)

y + c ≥ z − w + y (5.10)

y + c ≥ z − w + y − v + TypSize
(
A×list(A)

)
+ d+ v (5.11)

z ≥ C≤A + w (5.12)

Analysing function ins sort generates an LP with 11 inequalities over 10 variables.

The constant C≤A stands for the heap cost incurred by the comparison for type A.

Figure 5.4: LP generated for in-place insertion sort
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data expr = Val int | Plus expr expr

eval : expr→ int

eval(Val n) = n

eval(Plus n m) = eval n+ eval m

Figure 5.5: Semantics for a simple language of arithmetic expressions

5.6 Analysing an Abstract Machine for Arithmetic

Expressions

We will now analyse the program code for an abstract machine that evaluates arith-

metic expressions, described by Hutton and Wright in [HW06]. This program exam-

ple is not only interesting because of employing mutual recursion, but also because

it was not specifically designed to study space usage. Hutton and Wright calculated

the abstract machine from the specification of a simple language of arithmetic ex-

pressions, whose semantics is shown in Figure 5.5. This exemplary language is very

simple, just consisting of integer values and addition operations. It would be easy to

add further operations, but we would not gain much more insight, since all numeric

operations would have identical heap space costs anyway.

Hutton and Wright first make the evaluation order explicit by rewriting the semantics

in continuation-passing style [Rey72]. In the second step, they perform the well-

known defunctionalisation technique, also described by Reynolds [Rey72]. At last,

they refactor the obtained program by a simple renaming of identifiers in order to

ease the understanding of the calculated code. The program, transformed into an

extended LF syntax, is shown in Figure 5.6.

For brevity, we extended LF by adding two new built-in data types. The type expr

essentially represents binary trees with unlabelled nodes and integer labels on its

leaves, or in other words, an arithmetic formula over integers and the plus operator.

The type cont is a list, whose nodes either carry the aforementioned binary tree

expression or a simple integer, representing a partially evaluated expression. We

must also fix the allocation costs for each constructor, in order to complete our
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data expr = Val(int) | Plus(expr,expr)
data cont = Stop | Eval(expr,cont) | Add(int,cont)

Σ(eval) :=
(
expr, cont

)
→ int

P (eval) := e, c → match e with

|Val(n) → exec(c,n)

|Plus(n,m) →
let d = Eval(m,c) in eval(n,d)

Σ(exec) :=
(
cont, int

)
→ int

P (exec) := c, n → match c with

|Stop → n

|Eval(e,d) →
let f = Add(n,d) in eval(e,f)

|Add(m,d) →
let s = n+m in exec(d,s)

Σ(run) := expr→ int

P (run) := e → let s = Stop in eval(e,s)

Figure 5.6: Abstract machine for evaluating arithmetic expressions
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memory model. Since we want to keep some flexibility, we say that the constructors

Val,Plus, Stop,Eval,Add require the constant amount of CVal,CPlus,CStop,CEval,CAdd

heap cells to store, respectively, including its arguments (in this case either an integer

or a pointer).

We exemplary perform the analysis by hand for this example, following the steps

as outlined in Section 2.3. However, performing the analysis exactly as described

manually is very tedious and we therefore compact the steps as much as possible,

without losing anything essential. We also omit writing down the full LF� type

derivation tree, but only record the side-conditions arising from it.

First, we verify that the program code is indeed well-typed. This is a standard step,

giving us a tree-like derivation for the typing judgement of each of the three first-

order functions. Our analysis then follows the structures of these derivations, looking

at each rule application precisely once to identify the side-condition. We omit stating

the full derivations here, but still follow the overall structure.

Next, we enrich the LF type signature to LF� by assigning meta-variables to the

type. Before we can do this, we must decide upon the potential assigned to the two

new types. Following the discussion in Section 5.2.1, each constructor is assigned its

own annotation, denoting the potential bound on construction and released again on

matching that particular constructor, regardless of whether the matching is destruc-

tive or read-only. Doing this adds some considerable overhead to writing down the

type, since we need to write out each constructor and its arguments including their

annotations.

For example, writing the simple LF� type for boolean lists, list(bool, q), in this generic

form would result in list
{
Nil | Cons(bool,#,q)

}
where the symbol # stand for a self-

reference, i.e. the innermost enclosing type with the exactly the same annotations,

in this case the whole list type itself. So we see that lists have two constructors:

the Nil-constructor, having no arguments and no annotationA; and the Cons(, )-

constructor, having two arguments, one for the boolean value stored in the list node

of type bool and one for the pointer to the tail of the list. Lists are a recursive data

type, hence the tail of the list has the same type with the same annotation as the

overall type, of course.

ARecall from Section 5.2.1 that this is an optional optimisation. We could award Nil-constructors

their own annotations, but it would always turn out to be zero anyway.
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Annotating the types expr and cont accordingly yields the unwieldy types

expr
{
Val(int, q1) | Plus(#,#, q2)

}
cont

{
Stop(q1)

| Eval(expr
{
Val(int, q2) | Plus(#expr,#expr, q3)

}
,#cont, q4)

| Add(int,#cont, q5)
}

In order to avoid too many line breaks, we abbreviate the notation for these annotated

types by reducing the constructors to single letters and hiding base types and self-

reference. There is no loss of information implied, this is only a short-hand notation

that leaves some less important information implicit.

expr
{
V:q1 | P:q2

}
cont

{
S:q1 | E:expr{V:q1 | P:q2}, q4 | A:q5

}
The extension of the definition of potential is canonical, i.e. each occurring node

contributes an amount of potential that is equal to its annotation for its type.

We can now enrich the signature of the program with variables for the yet unknown

annotations. We refer to these meta-variables by the name resource variables , in

order to distinguish them from term variables. Each inserted resource variable has a

fresh unique name. We use different letters for the names of the resource variables

purely to enhance readability.

Σ(eval) :=
(
expr{V:v1 | P:p1}, cont

{
S:s1 | E:expr{V:v4 | P:p4}, r1 | A:a1

}) x1 . y1−−−−→ int

Σ(exec) :=
(
cont

{
S:s2 | E:expr{V:v2 | P:p2}, r2 | A:a2

}
, int

) x2 . y2−−−−→ int

Σ(run) :=
(
expr{V:v3 | P:p3}

) x3 . y3−−−−→ int

From the definition of potential we immediately know that the heap space consump-

tion of run is bounded by x3 + v3 · #V + p3 · #P, where #V and #P respectively

denote the number of Val- and Plus-nodes in the input argument of run. Note that

fixing the shape of the cost bound formula in advance to a canonical form is what

allows us to automate the analysis, as explained in Section 2.3. All that is left to do

is to determine possible values for the resource variables.

In the next step, we need to gather all the constraints on the resource variables

imposed by the typing rules of LF�. Fortunately, it is easy to do this informally,

if we consider each possible branch of computation for each function individually.

Please recall the analogy to money from Section 2.3 again. Some potential, that is

not associated with any data, is always ready to be spent to pay costs. This is like
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petty cash in your pocket, to which we refer to as petty potential. Some potential,

i.e. the part that is associated with data, is like money sitting in a bank account,

that we first have to withdraw before we can spend it on buying more heap memory.

Analysing function “run”. We start with the most simple function run of Fig-

ure 5.6. According to its LF� type, we have a petty potential of x3 available

to spend at the start of the evaluation of this function.

According to the LF� type rules, the let -expression does not cost us anything,

but just says that the costs add up, i.e. only the petty potential that is left after

allocating the constructor Stop can be used to pay the subsequent function call.

The cost for allocating the constructor Stop is determined by the type rule for

that constructor, which we did not define. However, the pattern is identical

to the type rule LF`Cons for list constructors. So the cost for allocating the

constructor Stop is just the actual cost plus the potential according to the type

of the constructor,

Glancing ahead to the call to function eval, we see that the potential for the

newly created Stop-constructor must be equal to s2 in order to fit the required

argument type. The call to eval also costs a petty potential of x1.

Collecting these observations, we arrive at the constraint

x3 = (CStop + s2) + (x1) (5.13)

Further equality constraints arise from matching resource variables in the types

of the arguments with those required by the signature of eval.

v3 = v1 p3 = p1 (5.14)

y3 = y1 (5.15)

The last equation follows since run performs no more computations after the

call to eval, hence it returns all the petty potential that it receives back

from eval.

Analysing function “eval”. We start with a petty potential of x1. The pattern

match then increases the petty potential by either v1 or p1, depending on the

branch taken.
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Let us consider the branch for Val first, which is a simple function call, that

produces the following equations by matching annotations, while the last one

follows by the rule LF`Fun as outlined in the analysis of function rub.

x1 + v1 = x2 (5.16)

s1 = s2 r1 = r2 a1 = a2 (5.17)

v4 = v2 p4 = p2 (5.18)

y1 = y2 (5.19)

In the branch for Plus, we have a petty potential of x1 + p1 available, some

of which is used to allocate an Eval-node with potential r1, while the rest is

handed on to a recursive call.

x1 + p1 = (CEval + r1) + (x1) (5.20)

v1 = v4 p1 = p4 (5.21)

The last two equations follow by matching the LF� type of m with the anno-

tated type required by the constructor Eval, which in turn is determined by its

use as an argument for a call to eval.

Note that the recursive call is treated like any other, there is nothing special

about it. However, the recursive nature causes the resource variable x1 to

appear on both sides of equation (5.20). This would allows us to simplify the

equation to p1 = r1.

The call also forces us to match the annotations of the LF� types of the argu-

ments with the annotations in the type signature for the called function, but

due to recursion, these turn all out be useless identities like v1 = v1, p1 = p1,

etc.

Analysing function “exec” The petty potential we start with is x2. The first branch,

which gains a potential of s2 by the matching, simply yields one equation.

x2 + s2 = y2 (5.22)

The second branch gains the potential of r2, but must pay CAdd+a1 for creating

an Add-node with potential a1 and then x1 for calling function eval.

x2 + r2 = (CAdd + a1) + (x1) (5.23)
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The third branch receives the potential a2 from the match, and must pay for

the heap space cost of adding two integers, which we define as the unknown

constant C+, and a recursive call.

x2 + a2 = C+ + x2 (5.24)

Note that we omitted some redundant equations, that we have already recorded

earlier. Those equations arose from identifying the annotations of supplied

argument types with the LF� type of a function or a constructor.

We see that, with the exception of the xi, we can ignore the indices of all the other

resource variables occurring in this example, since they have all been identified due

to the mutual recursive nature of the program. This leaves us with only six essential

equations

x3 = CStop + s+ x1 x1 + v = x2

p = CEval + r x2 + s = y

x2 + r = CAdd + a+ x1 a = C+

Given actual values for the four constants in accordance to our desired memory

model, we can feed this linear program to any LP-solver, to obtain a solution, if one

exists.

We can also simplify the LP further, to determine the general solution

x3 = CStop p = CEval + CAdd + C+ r = CAdd + CStop

with the resource variables x1, x2, y, v, s, a all being zero. By inserting this solution

into the cost formula determined from run in the beginning, we learn that a call

to run costs exactly CStop +
(
CEval + CAdd + C+

)
· #P where #P is the number of

Plus-nodes in the input.

A simple way to interpret this result is that each Plus-node in an input argument to

run causes the allocation of precisely one Eval and one Add-node, as well as executing

one plus-operation on two integers; plus a fixed cost for allocating the initial Stop-

node.

Note that this cost bound is exact, since we neither used the type rule LF`Weak

nor LF`�Relax. Whether or not rule LF`Weak is needed is determined by the

program code, but there is no obvious criterion for deciding whether the use of

LF`�Relax is necessary. In practice, we simply apply the rule LF`�Relax at
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each possible step. The interested reader can see the result by simply replacing =

with ≥ in each of the constraints above, since we took care to state each equation

the right way around. Any solution with a strict inequality then corresponds to a

computing branch that requries an over-approximated bound. The inequations also

result in fewer resource variables to be identified, essentially allowing some choice

in the solution, simply shifting the point in the program when petty potential is

discarded.

We conclude this interesting program example with the observation, that the eval-

uator can also be run entirely in-place, without performing any fresh heap space

allocation, if the read-only matches are replaced by destructive ones. This would

exchange the equations (5.16), (5.20), (5.22), (5.23) and (5.24) respectively by the

following ones

x1 + v1 + CVal = x2

x1 + p1 + CPlus = (CEval + r1) + (x1)

x2 + s2 + CStop = y2

x2 + r2 + CEval = (CAdd + a1) + (x1)

x2 + a2 + CAdd = C+ + x2

Whether or not in-place evaluation is possible, is then determined by the memory

model. For example, any memory model with

CPlus ≥ CEval CEval ≥ CAdd CAdd ≥ C+

would allow in-place update; and so also do all memory models satisfying

CPlus ≥ CEval CEval ≥ CAdd + C+

In order to find all memory models that allow evaluation of arithmetic expressions

within a constant amount of heap space, all one has to do is to simplify the entire

LP with the added constraints p = 0.
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In this chapter we extend the amortised analysis technique to deal directly with a

higher-order language. One possibility to analyse a higher-order program would be to

rely on program transformations, such as defunctionalisation [Rey72], to transform

a program using higher-order types it into one that only requires first-order types.

However, such a method has several drawbacks over a direct analysis of a higher-order

program.

Firstly, transformations generally change the properties of the programs that are be-

ing analysed, especially time and space consumption. This is unacceptable in any

context where the preservation of costs is important, such as resource-aware applica-

tions. Moreover, they may also change which programs can be costed (e.g. by making

linear programs non-linear), and they can destroy the programmers’ intuitions about

cost, making it more difficult to rectify unwanted resource behaviour. Failure to un-

derstand operational cost is a known obstacle to adopting functional languages, so it

is important not to change costs in a seemingly arbitrary way.

Secondly, relying on program transformation destroys compositionality, requiring a

whole-program analysis. This would make it impossible to analyse programs that

make use of closed-source libraries which export higher-order definitions. In contrast,

the technique proposed in this chapter can analyse a program that uses such a closed

source library, provided that the annotated types for all the exported functions of the

library are provided. These annotated types, which represent usage-dependent upper-

bound functions on costs, can be automatically generated at the compile time of the

library and then packaged with its distribution.A We would expect that transforming

(or just simplifying) the linear programs contained in the annotated types could meet

all requirements for obfuscation, despite the (usually desired) transparency of the

generated linear programs with respect to the code that caused their generation.

6.1 Defining Arthur

We now define A Resource-aware Type system for Higher-order heap space Usage

Reasoning, called Arthur.B The syntax of Arthur is defined in Figure 6.1, with

AOf course, in such a scenario one might also want machine-checkable certificates which guarantee

that the shipped annotated types indeed agree to the accompanying code. This can be ensured

by methods such as those researched in the EU project Mobile Resource Guarantees [MRG05].
BArthur was originally conceived as an analysis tool to accompany the Camelot compiler gen-

erated by the MRG research project [MRG05]. The output of the Camelot compiler was a

bytecode language called Grail.

120



6.1 Defining Arthur

e ::= * | true | false Constant

| x | let x = e1 in e2 Variable

| rec y = fun x → e1 Abstraction

| x1x2 Application

| if x then et else ef Conditional

| (e1 & e2) | fst(x) | snd(x) Additive Pair

| (x1,x2) | matchx with (x1,x2) → e2 Multiplicative Pair

| Inl(x) | Inr(x) Sum Construction

| match x with|Inl(y) → el|Inr(z) → er Sum Access

| match!x with|Inl(y) → el|Inr(z) → er Sum Elimination

| Nil | Cons(x1,x2) List Construction

| match x with|Nil → e1|Cons(x1,x2) → e2 List Access

| match!x with|Nil → e1|Cons(x1,x2) → e2 List Elimination

The changes between Arthur and LF are highlighted for convenience.

Figure 6.1: Syntax of the language Arthur
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the changes as compared to LF being highlighted for convenience. The obsolete

function call from LF is replaced by general application. Possibly recursive functions

can be defined through general lambda abstraction. The type rules following in

Section 6.3 will generally allow any type for the abstracted variable, thereby allowing

higher-order functions.

The second novelty of Arthur over LF is the introduction of additive (or linear)

pairs, discussed in Section 6.1.3. The term former for additive pairs is necessarily not

in let-normal form, since it would defy the purpose of an additive pair to suspend the

evaluation of its subexpression. This is not a loss, since the reason for let-normal form

was the avoidance of endless repetitions for threading the petty potential within our

proofs, which is confined by the let-normal form to the let -construct only. However,

no threading of petty potential is required, since only one of the subexpressions is

ever evaluated, similar to the branches of a conditional.

Everything else remains unchanged, so in the following sections we will concentrate

on the novel elements only.

Definition 6.1 (Free Variables of Arthur Terms). The definition is almost identical

to Definition 4.3, hence we only treat the five new term formers here.

FV(rec y = fun x → e1) = FV(e1) \ {x, y}
FV(x1x2) = {x1, x2}
FV((e1 & e2)) = FV(e1) ∪ FV(e2)

FV(fst(x)) = {x}
FV(snd(x)) = {x}

6.1.1 Recursive Let Definitions

We may often abbreviate let y = rec y = fun x → e1 in e2 by the short form

let rec y = fun x → e1 in e2, as is commonly done. Note that our prototype

implementation of Arthur furthermore allows mutual recursive functions by terms

of the form

let rec y = fun x1 → e1 and · · · and fun xk → ek in e

Mutually recursive functions were already treated in LF and while it would be

straightforward to include them in the theoretical work on Arthur as well, we

refrained from doing so for the sake of simplicity.
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Lambda abstraction is bundled with the introduction of recursive definitions, again

for the sake of simplicity. Treating general (mutual) recursive let-definitions, which

additionally allow the creation of cyclic data structures (see Section 4.3.3), is possi-

ble and was demonstrated in [JLHH10]. However, a general recursive let-construct

complicates the operational semantics. One must ensure that any possibly created

entity is eventually stored at a predicted location, since this location is needed for

recursive references. This is difficult, as there might not even be a fresh allocation in

all cases. For example, let rec x = y in e just returns the location of a pre-existing

non-recursive object, so we cannot simply enforce that the location is mentioned in

the result of the defining clause. A solution is usually to employ indirect pointers

or to alter locations stored throughout the memory. All cases would require a much

stronger invariant for our main soundness result, as the invariant must then deal with

partially created data and its update. Bundling recursive definitions with lambda-

abstraction side-steps these technical issues, since the recursive closure can always

be allocated right away, since all the required information for the closure is readily

available at that point. This allows us to keep our focus on the treatment of recursive

high-order functions.

6.1.2 Currying, Uncurrying and Partial Application

An Arthur function always takes one single argument, as is standard for lambda

abstraction. Of course, the single argument can be of any type, including a product

type. One should note that the distinction between the type (A×B) → C and

A→ B → C cannot be neglected. A function of the latter type may either perform

a computation upon application with an argument of type A, in which case the result

must be stored, or it must store the store the argument of type A until the argument

of type B is provided. Either case results in the creation of a new closure of B → C,

which requires heap space for storage. So currying and uncurrying is not for free in

a resource-aware language, and the programmer must make a conscious choice which

type is preferred.

Note that instead of lambda abstraction, one may also use partial application to the

same effect of creating function closures. An amortised analysis for partial applica-

tion was documented and implemented by the author for the EmBounded research

project [EmB09]. The notable difference to lambda abstraction is the added difficulty

that the size of a closure generated by partial application is not statically known. Any

partially applied function could already be a closure of an arbitrary size, whose size

is extended by the newly provided arguments. This problem was circumvented by
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using incremental closures (or closure chains): Only the newly provided arguments

are stored in the closure, plus a pointer to the previous closure. While this saves

heap memory at the expense of a small runtime overhead (which can also be dealt

with by the amortised analysis for worst-case execution time), it would also make the

deallocation of closures more difficult. However, note that neither system allows for

the deallocation of closures. Including a primitive for closure deallocation, similar to

the one for data types, would be possible, if the sizes of closures were tracked within

their type. Similarly, the safety of such deallocations should be guaranteed by a

separate analysis method. We will not consider partial application in the remainder

of this thesis, and focus on lambda abstraction instead.

6.1.3 Additive Pairs

Another novelty in Arthur is the addition of additive pairs, written (e1 & e2), which

allows the explicit suspension of evaluation. Applying either one of the projections

fst or snd causes e1 or respectively e2 to be evaluated within its original context.

Thus additive pairs store their evaluation context in the heap at their point of cre-

ation, in the same manner as function definitions.

One may argue that additive pairs might be simulated through lambda abstraction

and sum types, in the sense that an additive pair takes an implicit boolean argument,

and returns its result as sum type again. This is not quite equivalent, since the type

system cannot guarantee to which branch of the sum type the returned result value

belongs to. In contrast, choosing the projection for an additive pair also determines

its result type, thereby avoiding unnecessary case distinctions.

The more important difference to function closures is that an additive pair is de-

stroyed by projection, allowing the reuse of the memory that stored the pair and

its context. Moreover, the fact that a context of an additive pair is only used once

naturally allows the closures of additive pairs to carry potential, while the contexts

of a function closure is restricted to zero potential.

If we choose to allow a closure context to carry potential, then we must ensure that

there is no unlawful duplication of potential by accessing the context with the same

annotated multiple times. This is easily enforced for closures of additive pairs, since

their evaluation destroys the closure according to our operational semantics, clearly

preventing them to be evaluated twice. For function closures we solved this problem

by choosing to restrict their potential to zero in all cases. The big benefit of this
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restriction is that function closures can then be reused arbitrarily, without any risk

of unlawful duplication of potential. The consequence is that functions must gain

all their required potential in association with their input, except for a constant

amount; This is a relatively minor restriction, which causes the analysis to fail for

functions that only recurse over a captured variable alone. We have not yet found

an interesting program example where this would be an issue.

We therefore showcase two extreme versions of dealing with closures in an amortised

analysis in this thesis. In general, one could deal with use-n-times closures, which

can then be shared and applied up to n-times. However, a “sized-type” analysis,

such as [VH04], or similar would then be required to bound the number of uses of a

closure. Such a bound would then also imply a constant upper bound on the overall

potential carried by a closure, provided that all the entities within can be prescribed

with a size bound as well. In this case, we do not need to associate a potential with

the closure any more, since any constant potential can always be requested upon

evaluation. We do not investigate the issue any further in this thesis, since by the

above observations, use-n-times closures appear to be of limited use.

6.2 Evaluating Arthur

We now describe the evaluation of Arthur terms by giving the operational seman-

tics. Most of the following is quite similar to Sections 4.3 and 4.5, we will mainly

focus on the changes that are needed for the Arthur extension.

The notions of stack and heap remain unchanged. A stack is a finite partial mapping

from variables to Arthur values; and a heap is a finite partial mapping from the set

of locations Loc to Arthur values.

Definition 6.2 (Arthur Values). The set of Arthur values Val is defined by the

following grammar

v ::= () | tt | ff | (v1, v2) | ` | Null | Bad | 〈e , S〉

where e is an Arthur term and S is a stack.

So we still retain values for the unit and boolean constants; pairs; locations; the empty

list; the special tag for deallocated locations, whose purpose had been extensively

discussed in Section 4.3.1; and a new value for closures. Closures are always pairs,
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storing an Arthur term together with an evaluation environment, a stack. Since

terms for abstraction are commonly found in closures, we introduce a shorthand

notation for brevity. Instead of the long 〈rec y = fun x → e , S〉, we shortly write

〈y:x.e , S〉.

We fix a concrete memory model again by defining a function Size : Val → N. We

set the size of a closure to be one plus the size of all values stored in its stack.

The rationale being that the Arthur term is assumed to be stored in the form

of a code pointer, and the size of a location being defined as one. Of course, if a

different machine model is desired, this definition may be changed arbitrarily, as long

as Definition 6.7 is adjusted accordingly, so that Lemma 6.17 is preserved.

Definition 6.3 (Sizes of Arthur Values). We define Size : Val→ N by

Size(()) = 1

Size(tt) = 1

Size(ff) = 1

Size
(
(v1, v2)

)
= Size(v1) + Size(v2)

Size(`) = 1

Size(Null) = 1

Size(Bad) = 0

Size
(
〈e , S〉

)
= 1 +

∑
x∈dom(S)

Size
(
S(x)

)
Contrary to Chapter 4, we will only define an instrumented version of the operational

semantics, which always measures cost. Thus we have a relation of the form

S ,H m

m′ e ↓ v,H ′

which means that given an initial memory configuration consisting of stack S and

heap H , the Arthur expression e can be evaluated to Arthur value v and modified

heap H ′. Moreover, during the entire evaluation, at most m additional heap cell units

are occupied, and at least m′ heap cell units are unused at the end of the evaluation.

The unused heap cells may stem from deallocations within the initial heap H or

from the initially unused m heap cell units. Please recall that the variables m and

m′ always denote natural numbers, unlike the annotations used in the type systems.

An evaluation statement without the cost annotations is understood in the sense of

Lemma 4.20, i.e. the statement S ,H ` e ↓ v,H ′ is taken to be equivalent to saying

that there exist m,m′ ∈ N such that the judgement S ,H m

m′ e ↓ v,H ′ is derivable

by the operational rules of Arthur.
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Definition 6.4 (Arthur Operational Semantics).

S ,H m

m * ↓ (),H
(Arthur↓Unit)

S ,H m

m true ↓ tt,H
(Arthur↓True)

S ,H m

m false ↓ ff ,H
(Arthur↓False)

S ,H m

m x ↓ S(x),H
(Arthur↓Var)

S ,H m

m0
e1 ↓ v0,H0 S [x 7→ v0],H0

m0

m′ e2 ↓ v,H ′

S ,H m

m′ let x = e1 in e2 ↓ v,H ′
(Arthur↓Let)

S ? = S \ {x, y} ∩ FV(e) w = 〈y:x.e , S ?〉 ` /∈ dom(H )

S ,H m′ + Size(w)

m′ rec y = fun x → e ↓ `,H [` 7→ w]
(Arthur↓Rec )

S(y′) = ` H (`) = 〈y:x.e , S ?〉
S ?[y 7→ `, x 7→ S(x′)],H m

m′ e ↓ v,H ′

S ,H m

m′ y′ x′ ↓ v,H ′
(Arthur↓App )

S(x) = tt S ,H m

m′ et ↓ v,H ′

S ,H m

m′ if x then et else ef ↓ v,H ′
(Arthur↓If-T)

S(x) = ff S ,H m

m′ ef ↓ v,H ′

S ,H m

m′ if x then et else ef ↓ v,H ′
(Arthur↓If-F)

` /∈ dom(H ) w =
〈
(e1 & e2) , S�FV(e1) ∪ FV(e2)

〉
S ,H m′ + Size(w)

m′ (e1, e2) ↓ `,H [` 7→ w]
(Arthur↓LinPair )

S(x) = ` H (`) =
〈
(e1 & e2) , S ?

〉
S ?,H [` 7→Bad]

m + Size
(
H (`)

)
m′ e1 ↓ v,H ′

S ,H m

m′ fst(x) ↓ v,H ′

(Arthur↓Fst )
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S(x) = ` H (`) =
〈
(e1 & e2) , S ?

〉
S ?,H [` 7→Bad]

m + Size
(
H (`)

)
m′ e2 ↓ v,H ′

S ,H m

m′ snd(x) ↓ v,H ′

(Arthur↓Snd )

S ,H m

m (x1,x2) ↓
(
S(x1), S(x2)

)
,H

(Arthur↓Pair)

S(x) = (v1, v2) S [x1 7→v1, x2 7→v2],H m

m′ e ↓ v,H ′

S ,H m

m′ matchx with (x1,x2) → e ↓ v,H ′
(Arthur↓E-Pair)

w =
(
tt, S(x)

)
` /∈ dom(H )

S ,H m′ + Size(w)

m′ Inl(x) ↓ `,H [` 7→ w]
(Arthur↓Inl)

w =
(
ff , S(x)

)
` /∈ dom(H )

S ,H m′ + Size(w)

m′ Inr(x) ↓ `,H [` 7→ w]
(Arthur↓Inr)

S(x) = ` H (`) = w w =
(
tt, w′

)
S [y 7→w′],H m

m′ el ↓ v,H ′

S ,H m

m′ match x with |Inl(y) → el|Inr(y) → er ↓ v,H ′
(Arthur↓E-Inl)

S(x) = ` H (`) = w w =
(
tt, w′

)
S [y 7→w′],H [ 7̀→Bad]

m + Size(w)

m′ el ↓ v,H ′

S ,H m

m′ match!x with |Inl(y) → el|Inr(y) → er ↓ v,H ′
(Arthur↓E!-Inl)

S(x) = ` H (`) = w w =
(
ff , w′

)
S [y 7→w′],H m

m′ er ↓ v,H ′

S ,H m

m′ match x with |Inl(y) → el|Inr(y) → er ↓ v,H ′
(Arthur↓E-Inr)

S(x) = ` H (`) = w w =
(
ff , w′

)
S [y 7→w′],H [ 7̀→Bad]

m + Size(w)

m′ er ↓ v,H ′

S ,H m

m′ match!x with |Inl(y) → el|Inr(y) → er ↓ v,H ′
(Arthur↓E!-Inr)

S ,H m

m Nil ↓ Null,H
(Arthur↓Nil)
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w =
(
S(xh), S(xt)

)
` /∈ dom(H )

S ,H m′ + Size(w)

m′ Cons(xh,xt) ↓ `,H [` 7→ w]
(Arthur↓Cons)

S(x) = Null S ,H m

m′ e1 ↓ v,H ′

S ,H m

m′ match x with |Nil → e1|Cons(xh,xt) → e2 ↓ v,H ′
(Arthur↓E-Nil)

S(x) = Null S ,H m

m′ e1 ↓ v,H ′

S ,H m

m′ match!x with |Nil → e1|Cons(xh,xt) → e2 ↓ v,H ′
(Arthur↓E!-Nil)

S(x) = ` H (`) = w w = (wh, wt)

S [xh 7→wh, xt 7→wt],H
m

m′ e2 ↓ v,H ′

S ,H m

m′ match x with |Nil → e1|Cons(xh,xt) → e2 ↓ v,H ′

(Arthur↓E-Cons)

S(x) = ` H (`) = w w = (wh, wt)

S [xh 7→wh, xt 7→wt],H [ 7̀→Bad]
m + Size(w)

m′ e2 ↓ v,H ′

S ,H m

m′ match!x with |Nil → e1|Cons(xh,xt) → e2 ↓ v,H ′

(Arthur↓E!-Cons)

The rules for function abstraction and the creation of additive pairs deserve some

explanation, since both have the requirement that the stored stack is only allowed to

store entities that are actually used in the type. One might usually expect this anyway

as a regular optimisation, since there is no need to store a bloated environment.

However, for Arthur this is even more important, since the type system has no

chance to statically guess the amount of junk that is additionally stored, thereby

leading to an under-estimation of heap space required to store the closure.

It is also important to note that the projections for linear pairs deallocate the closure

right away. Following our discussion in Section 6.1.3, additive pairs are only allowed

to be used once, hence it is always safe to deallocate their closures right away. No

extra analysis to ensure the safety of this deallocation is needed, since our type system

ensures that additive pair types are treated linearly.

The observations from Section 4.3.1 apply analogously for the operational semantics

of Arthur as well, thus Lemma 4.8 can be reformulated:
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Lemma 6.5 (Heap Stability). If S ,H ` e ↓ v,H ′ then for all ` ∈ dom(H ) we

have either H ′(`) = H (`) or H ′(`) = Bad. Furthermore we also have dom(H ) ⊆
dom(H ′).

Proof. An inspection of the operational rules for Arthur reveals that any existing

location can only be altered by overwriting with the special constant Bad, whereas

newly created values are always bound to fresh locations.

Note that unlike for LF, it would be useless to define memory consistency at this

point. Memory consistency expresses that the values found in memory fit the type

associated with them by the typing context and the typing environment (stack).

For example, we do not only expect to find a closure at a location that is associated

with a function type, but also that argument and result types fit the defining body

of the function. This connection is naturally expressed by a typing derivation for

the term stored in the closure, so the definition of memory consistency for Arthur

must necessarily involve typing judgements.

Given an unannotated version of the type system, like LF for LF�, we could clearly

define memory consistency. However, such a definition would then be useless as

an invariant for our soundness theorem. An Arthur function type also describes

the resource usage of a function. Hence memory consistency for Arthur must also

express that the term stored in a closure can be evaluated with the limited resource

as specified by the associated type. This in turn is expressed by the annotated type

system. Therefore, we omit stating an unannotated version of the Arthur type

system altogether, and define the annotated type system right away.

We remark that for the same reasons we cannot prove a separate preservation lemma

similar to Lemma 4.13, since the strengthened memory consistency would require

full soundness of the resource consumption for function types. However, such a

statement is inherently a part of our main soundness theorem, in which preservation

must necessarily be integrated.

6.3 Typing Arthur

The type system for Arthur shall be able to track the worst-case heap space costs

of evaluating a typed term. Since Arthur is a higher-order language, the type
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system must be strong enough to express the cost bounds of functions as well. In

order to be useful, the type system must also allow function types to be resource

parametric, meaning that a function that requires 5 heap cells to evaluate can also

be used where a function that consumes 7 heap cells was expected. For another

example, any function that requires an argument of type list(bool, q) should clearly

also accept an argument of the type list(bool, r), provided that r ≥ q holds. Receiving

more potential than required, or a reduction in resource demands should never be an

obstacle, but at the same time, it should not lead to too much over-approximation

either.

In order to satisfy these requirements, the Arthur type system must be able to

directly manipulate constraints on the annotations. Unlike for LF�, whose type sys-

tem only dealt with rational numbers as annotations, the Arthur type system must

therefore deal with so called resource variables instead. For example, in the LF�
type rule for let-expressions let x = e1 in e2, the free resources available after evalu-

ating the defining subexpression e1 is required to be identical to the resource variable

denoting the amount of resources that are available for evaluating the body of the

let-expression e2. In the Arthur type system we do not talk about numerical values,

and must therefore make such connections explicit. The Arthur type rule for let-

expression then uses different resource variables for each premise and then explicitly

notes an equation that ensures the equality between the two resource variables.

Let RV be an infinite set of resource variables , being disjoint from the set of identifiers

used in terms. Resource variables range over Q+. We denote sets of resource variable

by the lower-case Greek letters α, β, γ. A valuation v is a map from resource variables

to Q+.

Sets of linear inequalities over rational constants and resource variables are denoted

by the lower-case Greek letters ξ, φ, ψ. We write v �φ if valuation v satisfies all

constraints in φ. and ψ �φ to denote that ψ entails φ, i.e. that all valuations that

satisfy ψ also satisfy all constraints in φ. We extend valuations to annotated types,

mapping the free resource variables to their associated value. It is trivial to see that

the relation � between constraint sets is a preorder, i.e. it is reflexive and transitive.

It is neither symmetric nor anti-symmetric.

The type grammar of Arthur is shown in Figure 6.2 on the following page, and

contains all zero-order LF� types as well as two new types for additive pairs and

functions.
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A ::= unit | bool | A×A | (A, q) + (A, r) | list(A, q)

| Aq . q′&Br . r′ | ∀α ∈ ψ.A q . q′−−−→A

with q, q′, r, r′ ∈ RV; α ⊂ RV; and φ a set of linear constraints over resource variables.

Figure 6.2: Arthur type grammar

The type Aq . q′&Br . r′ for additive pairs bears four additional resource variables

as annotations, two for each part of the additive pair. As we have discussed in

Section 6.1.3, an additive pair can be interpreted as a pair of use-once functions

which take no arguments each, so the role of each annotation pair is the same as

for the first-order type in LF�. Projecting an additive pair causes the evaluation

of the stored expression. The cost of this evaluation must be amortised against

the potential associated with the values that were stored in the closure upon the

construction of the additive pair, plus a constant amount, the petty potential for

that evaluation. This petty potential must be paid when the projection is applied,

and its maximal amount is denoted by the first annotation in each pair, q and r. The

second annotation in each pair, q′ and r′, then stands for the least amount of petty

potential that is left over after the evaluation of the projection is finished.

The pair of annotations in the function type ∀α ∈ ψ.A q . q′−−−→C serves the same purpose

of noting the amount of petty potential spend and returned on calling a function

of that type. However, functions can be used several times in different contexts,

and each application might call for a different way of dealing with potential. The

function type therefore allows the binding of a set α of resource variables. The linear

constraints imposed by the expression stored in the closure are recorded in ψ. Each

application of the function will rename all resource variables in α to a fresh name

and insert the substituted constraints ψ. So each use of a function can have its own

partial solution to the constraints on function body. Note that resource parametricity

may thereby cause an increase of the generated LP that is exponential in the depth

of the call graph, as noted later in Section 9.1. If both α and ψ are empty sets,

i.e. the function type is not resource parametric, we may abbreviate it by simply

writing A q . q′−−−→A.

We remark that the observations in Section 5.2.1 also apply for Arthur. User-

definable recursive data types, subsuming lists and trees, can be straightforwardly
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FV�(unit) = ∅
FV�(bool) = ∅
FV�(A×B) = FV�(A) ∪ FV�(B)

FV�
(
(A, q) + (B, r)

)
= {q, r} ∪ FV�(A) ∪ FV�(B)

FV�
(
list(A, q)

)
= {q} ∪ FV�(A)

FV�
(
Aq . q′&Br . r′

)
= {q, q′, r, r′} ∪ FV�(A) ∪ FV�(B)

FV�

(
∀α ∈ ψ.A q . q′−−−→B

)
=

(
FV�(ψ) ∪ FV�(A) ∪ {q, q′} ∪ FV�(B)

)
\ α

Figure 6.3: Free resource variables of Arthur types

included. However, for clarity we restrict ourselves to lists and binary trees in this

thesis, although our Arthur implementation actually know no built-in primitives

for lists and trees, but only a single mechanism to deal with user-definable recursive

data types.

Definition 6.6 (Free Resource Variables of Arthur Types). The free resource

variables of an Arthur type A are denoted by FV�(A), and are recursively defined

as shown in Figure 6.3. We extend the definition naturally to contexts by summation

over the domain FV�(Γ) =
⋃

x∈dom(Γ) FV�(Γ(x)). In addition, if ψ is a set of linear

constraints, then let FV�(ψ) also denote the set of resource variables occurring within

all constraints.

We must also fix static sizes for operational values based on their associated Arthur

type, as we did for LF� before. We prove the correspondence to the Definition 6.3

by Lemma 6.17, after memory consistency has been defined.

Definition 6.7 (Sizes of Arthur Types). We refine Definition 4.15 from the pre-
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vious chapter to cover annotated Arthur types in the following way

TypSize
(
unit

)
= 1

TypSize
(
bool

)
= 1

TypSize
(
A×B

)
= TypSize

(
A
)

+ TypSize
(
B
)

TypSize
(
(A, q) + (B, r)

)
= 1

TypSize
(
list(A, q)

)
= 1

TypSize
(
Aq . q′&Br . r′

)
= 1

TypSize
(
∀α ∈ ψ.A q . q′−−−→A

)
= 1

We extend the definition as usual to contexts by summation, i.e.

TypSize
(
Γ
)

=
∑

x∈dom(Γ)

TypSize
(
Γ(x)

)

Closures for linear pairs and functions are never stored directly in a container, simi-

larly to sums and lists they are boxed, i.e. only a pointer is held in such a case. The

size of a pointer was arbitrarily chosen to be one, so we set TypSize
(
Aq . q′&Br . r′

)
and TypSize

(
∀α ∈ ψ.A q . q′−−−→A

)
to one accordingly.

Let Γ be a Arthur typing context mapping a finite set of identifiers to Arthur

types, and let p, p′ be resource variables ranging over Q+. An Arthur typing judge-

ment

Γ
p

p′ e:A | φ

then reads “the expression e has Arthur type A under context Γ; furthermore, for

all valuations v that satisfy all constraints in φ and all initial memory configurations

in accordance with Γ, consisting of a stack S and a heap H , evaluating e requires at

most v(p)+ΦH (S : v(Γ)) heap cell units and leaves at least v(p′)+ΦH ′(v : v(A)) heap

cell units available afterwards, where v is the result value and H ′ the post-heap”.

We formalise this statement in Section 6.6 as our main soundness result, Theorem 3,

which requires memory consistency as a precondition, of course.

Definition 6.8 (Arthur Type Rules).

{} p

p′ * : unit | {p = 0, p′ = 0}
(Arthur`Unit)

c ∈ {true, false}

{} p

p′ c : bool | {p = 0, p′ = 0}
(Arthur`Bool)
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x:C
p

p′ x : C | {p = 0, p′ = 0}
(Arthur`Var)

Γ1
p

p′1
e1 : A | φ Γ2, x:A

p2
p′ e2 : C | ψ

Γ1,Γ2
p

p′ let x = e1 in e2 : C | φ ∪ ψ ∪ {p′1 = p2}
(Arthur`Let)

dom(Γ) = FV(e) \ {x, y} α ∩
(
FV�(Γ) ∪ FV�(φ)

)
= ∅

Γ, x:A, y:∀α ∈ ψ.A q . q′−−−→B
q

q′ e : B | ξ φ ∪ ψ � ξ

φ�{p = 1 + TypSize(Γ), p′ = 0} ∪
⋃

D∈img(Γ) .(D |D,D )

Γ
p

p′ rec y = fun x → e : ∀α ∈ ψ.A q . q′−−−→B | φ
(Arthur`Rec )

x:A, y:∀α ∈ ψ.A r . r′−−−→B
q

q′ yx : B | ψ ∪ {r = q, r′ = q′}
(Arthur`App )

Γ
p1
p′1

et : A | φ Γ
p2
p′2

ef : A | ψ

Γ, x:bool
p

p′ if x then et else ef : A | φ ∪ ψ ∪ {p = p1, p = p2, p
′ = p′1.p

′ = p′2}
(Arthur`If)

dom(Γ) = FV(e1) ∪ FV(e2) Γ
p1
p′1

e1 : A | φ Γ
p2
p′2

e2 : B | ψ
ξ = { p = 1 + TypSize(Γ), p′ = 0, p1 = q + p, p2 = r + p, p′1 = q′, p′2 = r′ }

Γ
p

p′ (e1 & e2) : Aq . q′&Br . r′ | φ ∪ ψ ∪ ξ
(Arthur`LinPair )

x:Aq . q′&Br . r′ p

p′ fst(x) : A | {p = q, p′ = q′}
(Arthur`Fst )

x:Aq . q′&Br . r′ p

p′ snd(x) : B | {p = r, p′ = r′}
(Arthur`Snd )

x1:A, x2:B
p

p′ (x1,x2) : A×B | {p = 0, p′ = 0}
(Arthur`Pair)

Γ, x1:A, x2:B
p

p′ e : C | φ

Γ, x:A×B p

p′ matchx with (x1,x2) → e : C | φ
(Arthur`E-Pair)

x:A
p

p′ Inl(x) : (A, ql)+(B, qr) | {p = ql + TypSize(bool×A), p′ = 0}
(Arthur`Inl)
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x:B
p

p′ Inr(x) : (A, ql)+(B, qr) | {p = qr + TypSize(bool×B), p′ = 0}
(Arthur`Inr)

Γ, y:A
pl
p′ el : C | φ Γ, z:B

pr
p′ er : C | ψ ξ =

{
pl = p+ ql, pr = p+ qr

}
Γ, x:(A, ql)+(B, qr)

p

p′
match x with|Inl(y) → el

|Inr(z) → er
: C | φ ∪ ψ ∪ ξ

(Arthur`E-Sum)

Γ, y:A
pl
p′ el : C | φ Γ, z:B

pr
p′ er : C | ψ

ξ =
{
pl = p+ ql + TypSize

(
bool×A

)
, pr = p+ qr + TypSize

(
bool×B

)}
Γ, x:(A, ql)+(B, qr)

p

p′
match!x with|Inl(y) → el

|Inr(z) → er
: C | φ ∪ ψ ∪ ξ

(Arthur`E!-Sum)

{} p

p′ Nil : list(A, q) | {p = 0, p′ = 0}
(Arthur`Nil)

φ = {p = q + TypSize
(
A×list(A, q)

)
, p′ = 0}

xh:A, xt:list(A, q)
p

p′ Cons(xh,xt) : list(A, q) | φ
(Arthur`Cons)

Γ
p

p′ e1 : C | φ Γ, xh:A, xt:list(A, q)
p0
p′ e2 : C | ψ ξ = {p0 = p+ q}

Γ, x:list(A, q)
p

p′ match x with |Nil → e1|Cons(xh,xt) → e2 : C | φ ∪ ψ ∪ ξ
(Arthur`E-List)

ξ =
{
p0 = p+ q + TypSize

(
A×list(A, q)

)}
Γ

p

p′ e1 : C | φ Γ, xh:A, xt:list(A, q)
p0
p′ e2 : C | ψ

Γ, x:list(A, q)
p

p′ match!x with |Nil → e1|Cons(xh,xt) → e2 : C | φ ∪ ψ ∪ ξ
(Arthur`E!-List)

Structural rules

Γ
p

p′ e : C | φ

Γ, x:A
p

p′ e : C | φ
(Arthur`Weak)

Γ
p

p′ e : C | φ ψ �φ

Γ
p

p′ e : C | ψ
(Arthur`Generalise )
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Γ, x:B
p

p′ e : C | φ ψ �A <: B

Γ, x:A
p

p′ e : C | φ ∪ ψ
(Arthur`Supertype )

Γ
p

p′ e : C | φ ψ �C <: D

Γ
p

p′ e : D | φ ∪ ψ
(Arthur`Subtype )

Γ
q

q′ e : C | φ

Γ
p

p′ e : C | φ ∪ {p ≥ q, p− q ≥ p′ − q′}
(Arthur`Relax)

Γ, x:A1, y:A2
p

p′ e : C | φ ψ �.(A |A1, A2 )

Γ, z:A
p

p′ e[z/x, z/y] : C | φ ∪ ψ
(Arthur`Share)

Similar to LF, all terminal rules require that the context does not include any un-

used typings. This is not a restriction in any way, since we can always get rid of

unnecessary typing through the application of the structural weakening type rule.

While the reason to use explicit weakening was largely cosmetic for LF, it is more

important for Arthur. The type rules for function abstraction and the creation of

additive pairs actually contain premises that dictate that the context only mentions

variables that are actually mentioned in the term. This is required, since the context

is also the basis to determine the size of the created closure through TypSize.

Another peculiarity of type rule Arthur`Rec is the requirement that all types

in the context for the function can be shared to themselves. The reason lies in an

observation that will be formulated as Lemma 6.22, which essentially says that the

potential of such types must be zero. Restricting the context stored in function

closure to zero potential is important to allow the unlimited application of that

closure, as outlined in Section 6.1.3.

One should also note that the type rule Arthur`Relax, in addition to the roles

described for rule LF`�Relax in Section 5.1.1, takes on yet one more feature,

namely the simple renaming of the resource variables for the petty potential.

Renaming of resource variables inside types is possible through subtyping and su-

pertyping, which also add another way to introduce over-approximation of costs in

Arthur, in addition to the application of Arthur`Relax and Arthur`Weak.
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6 Higher-Order Analysis Arthur

The type rules Arthur`Supertype and Arthur`Subtype depend on the ternary

subtyping relation, which we define next. We follow the standard notation A <: B,

as used by Pierce in [Pie02], which reads as “every value of type A is also a value of

type B”, hence B is the “bigger” type in the sense that it encompasses more values.

Note, however, that we will have list(unit, 7) <: list(unit, 2), so the inequality is turned

the other way around for resource annotations. This is indeed natural, since the type

list(unit, 7) holds a higher potential and is thus much more “precious or scarce”, than

the more “common” type list(unit, 2).

Definition 6.9 (Subtyping). For any two Arthur types A,B and constraint set ξ,

we inductively define the ternary subtyping relation ξ �A <: B by the rules shown

in Figure 6.4.

We write A <: B as a shorthand for ∅�A <: B.

Our implementation uses a simple heuristic for choosing σ when applying SubFun,

which unifies the bound variables of the involved types as far as possible

For any fixed ξ, the relation is both reflexive and transitive, but not necessarily anti-

symmetric, e.g. two different, but α-equivalent Arthur types are subtyps of each

other under the constraints that express α-equivalence.

Lemma 6.10 (Transitivity of Subtyping). Fix a set ξ of linear constraints. For three

arbitrary Arthur types A,B,C, if we have both ξ �A <: B and ξ �B <: C, then

also ξ �A <: C holds.

Proof. The proof is by induction of the length of the derivation for subtyping, and

trivial for all cases, except for SubFun, which follows by the composition of the

two substitutions obtained from the premises. This is harmless thanks to the Baren-

dregt convention [Bar85] that has been adopted here, which assumes that all bound

variables are always suitably fresh.

The sharing relation from LF� turns into a function for Arthur, since instead of

verifying constraints, it just returns the constraints.

Definition 6.11 (Arthur Sharing). The partial function ., which maps three

Arthur types to a set of constraints, is recursively defined as shown in Figure 6.5,

and is undefined otherwise.
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6.3 Typing Arthur

ξ �A <: A
(SubRef)

φ�D <: A ψ �C <: B ξ �φ ∪ ψ

ξ �D×C <: A×B
(SubPair)

φ�D <: A ψ �C <: B ξ �φ ∪ ψ ∪ {d ≥ a, c ≥ b}

ξ � (D, d) + (C, c) <: (A, a) + (B, b)
(SubSum)

ψ �B <: A ξ �ψ ∪ {b ≥ a}

ξ � list(B, b) <: list(A, a)
(SubList)

φ�C <: A ψ �D <: B

ξ �φ ∪ ψ ∪ {a ≥ c, c′ ≥ a′, b ≥ d, d′ ≥ b′}

ξ �Cc . c′&Dd . d′ <: Aa . a′&Bb . b′
(SubLin)

σ : β → RV a substitution

ξ ∪ φ�σ(ψ) ξ ∪ φ�
{
q ≥ σ(p), σ(p′) ≥ q′

}
ξ ∪ φ�D <: σ(C) ξ ∪ φ�σ(A) <: B

ξ � ∀β ∈ ψ.C p . p′−−−→A <: ∀α ∈ φ.D q . q′−−−→B
(SubFun)

Figure 6.4: Ternary subtyping relation for Arthur
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.(unit | unit, unit) = ∅

.(bool | bool, bool) = ∅

.

(
A×B

∣∣∣∣∣A1×B1,

A2×B2

)
= .(A |A1, A2 ) ∪ .(B |B1, B2 )

.

(
(A, a) + (B, b)

∣∣∣∣∣ ((A1, a1) + (B1, b1)),

((A2, a2) + (B2, b2))

)
=
{a = a1 + a2, b = b1 + b2} ∪
.(A |A1, A2 ) ∪ .(B |B1, B2 )

.
(
list(A, a) | list(A1, a1), list(A2, a2)

)
= {a = a1 + a2} ∪ .(A |A1, A2 )

.

(
∀α ∈ ψ.B q . q′−−−→C

∣∣∣∣∣∀α ∈ ψ.B
q . q′−−−→C,

∀α ∈ ψ.B q . q′−−−→C

)
= ∅

Figure 6.5: Sharing relation for Arthur

Note that functions may be freely shared and reused; while additive pairs cannot be

duplicated at all, as one would expect from our observations in Section 6.1.3. The

potential of boxed types (lists and sums) is split between the copies, thus preserving

the overall potential, which we will formalise by Lemma 6.22.

Any type can only be shared to subtypes of itself. This is intuitively clear, since

sharing only affect the resource variable annotations of a type, and generates the

constraints that ensures that the resource variables of the shared types are sum up

to the one in the original type.

Lemma 6.12 (Shared Subtyping). If .(A |B,C ) = φ holds then also φ�A <: B

and φ�A <: C as well.

Proof. The proof is by induction over the size of the type.

The claim is trivial for base types and function types, since these are identical under

sharing and subtyping is reflexive regardless of φ.

It is also trivial for additive pairs, since these cannot be shared at all.
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For pairs, we simply apply the induction hypothesis twice and apply the subtyping

rule SubPair.

For sums and lists we observe that for each resource variable a in A we have the

equality a = b + c in φ, where b, c are the corresponding resource variables at the

same position in B and C, respectively. Since resource variables are always non-

negative, we deduce both a ≥ b and a ≥ c from the equation as expected. This

and the induction hypothesis then allows us to apply subtyping rule SubSum or

SubList, depending on the case, to obtain the required result.

Due to the presence of structural rules in Arthur, we cannot know whether the

typing judgement for an abstraction term was derived by the application of type rule

Arthur`Rec. Therefore we cannot know whether the type given for an abstraction

is indeed a function type or whether all the premises of Arthur`Rec hold. We

therefore require an inversion lemma (or sometimes called generation lemma), which

essentially shows that this indeed the case. A similar problem arises for all Arthur

types, but we only require this property for additive pairs and function types.

Lemma 6.13 (Inversion Lemma). We state standard inversion for functions and

additive pairs.

Functions. If the Arthur typing judgement Γ
p

p′ rec y = fun x → e : C | φ
is derivable, then there exists Γ0, ξ0,∀α0 ∈ ψ0.A0

q0 . q′0−−−−→B0 such that all of the

following holds

φ�
(
∀α0 ∈ ψ0.A0

q0 . q′0−−−−→B0

)
<: C (6.1)

Γ0, x:A0, y:∀α0 ∈ ψ0.A0
q0 . q′0−−−−→B0

q0
q′0

e : B0 | ξ0 (6.2)

Γ0 ⊆ Γ ∧ dom(Γ0) = FV(e) \ {x, y} (6.3)

α0 ∩
(
FV�(Γ0) ∪ FV�(φ)

)
= ∅ (6.4)

φ ∪ ψ0 � ξ0 (6.5)

φ�
⋃
z∈Γ0

.
(
Γ0(z)|Γ0(z),Γ0(z)

)
(6.6)

Note the premise φ� p = 1 + TypSize(Γ0), p′ = 0 of rule Arthur`Rec is

missing among the conclusions of the lemma. In fact, both p and p′ are not

mentioned at all. The reason is that we need not care for how the creation of

the closure had been paid for at the point of closure application, which is where

this generation lemma will be needed.
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Linear Pairs. If the Arthur typing judgement Γ
p

p′ (e1 & e2) : C | ξ is derivable,

then there exists Γ0, φ0, ψ0, A
q0 . q′0&Br0 . r′0 such that all of the following holds

φ�
(
Aq0 . q′0&Br0 . r′0

)
<: C (6.7)

Γ0
q0
q′0

e1 : A | φ0 (6.8)

Γ0
r0
r′0

e2 : B | ψ0 (6.9)

Γ0 ⊆ Γ ∧ dom(Γ0) = FV(e1) ∪ FV(e2) (6.10)

ξ �φ0 ∪ ψ0 (6.11)

Proof. The proof is by induction on the length of the type derivation of the premise.

Since the term is specified, only a few type rules apply in the last step towards the

given judgement, namely any of the structural rules or either Arthur`Rec for a

function definition or Arthur`LinPair an additive pair.The proof is standard and

hence we only consider the case for function abstraction here.

Arthur`Rec This case is trivial, since we have Γ0 = Γ and ξ0 = ξ as well as

∀α0 ∈ ψ0.A0
q0 . q′0−−−−→B0 = C. Conclusion (6.1) holds trivially since subtyping is

reflexive; the remaining conclusions are all verbatim among the premises of

type rule Arthur`Rec, with (6.6) being a weakened version.

Arthur`Weak This case follows trivially, since the conclusions from the induction

hypothesis remain unchanged, since by the (6.3), Γ0 was already a minimal

subset of Γ, so any element thrown away by weakening could not appear in Γ0

anyway.

Arthur`Generalise This case is also trivial, since the induction hypothesis yields

all the desired results for a weaker constraint set, that is entailed by φ according

to the premise of Arthur`Generalise.

Arthur`Supertype Let z:D ∈ Γ be the variable focused on by the type rule,

with φ2 �D <: D′ and φ = φ1 ∪ φ2. We apply the induction hypothesis

for Γ′
p

p′ rec y = fun x → e : C | φ1 where Γ′ = Γ\z, z:D′ and obtain

Γ′0, x:A0, y:∀α0 ∈ ψ0.A0
q0 . q′0−−−−→B0

q0
q′0

e : B0 | ξ′0.

Assume z ∈ Γ′0, since otherwise the claim is trivial. We apply the type rule

Arthur`Supertype to derive

Γ0, x:A0, y:∀α0 ∈ ψ0.A0
q0 . q′0−−−−→B0

q0
q′0

e : B0 | ξ′0 ∪ φ2

where Γ0 = Γ′0\z, z:D as required. Almost all claims then follow easily by

φ�φ1. Except φ ∪ ψ0 � ξ′0 ∪ φ2, which follows from φ1 ∪ ψ0 � ξ′0 by additionally

using φ2 ⊆ φ, concluding this case.
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Arthur`Subtype According to the type rule Arthur`Subtype, the constraint

set φ can be partitioned into φ1 and φ2 such that both φ2 �D <: C and

Γ
p

p′ rec y = fun x → e : D | φ1 for some type D hold. We apply the

induction hypothesis and observe that (6.1) holds by the transitivity of the

subtype relation, Lemma 6.10. The conclusions (6.5) and (6.6) hold since φ1

is a subset of φ. The other conclusions follow unchanged from the induction

hypothesis.

Arthur`Relax According to the typing rule Arthur`Relax, we have φ = ψ ∪
{p ≥ q, p − q ≥ p′ − q′} and the typing Γ

q

q′ rec y = fun x → e : C | ψ.

Applying the induction hypothesis directly yields the desired conclusions, with

the exception of using the weaker constraint set ψ. Since φ�ψ, we can replace

ψ throughout by φ, concluding the proof. Intuitively, the case is trivial since

relaxation only deals with the petty potential for defining a function, which is

unrelated to the cost of executing a function.

Arthur`Share This case follows trivially from the induction hypothesis, since the

conclusions remain unchanged, except for contracting two variables in Γ′0.

6.4 Arthur’s Memory Consistency

We now formulate the memory consistency invariant, similar to the one previously

stated for LF in Section 4.3.2. Memory consistency expresses that values found in

memory fit their expected types. For functions and additive pairs, it is not just

enough to find a closure in the memory, but it must also entail that the term within

the closure is well-typed, too.

A problem arises in dealing with closures of recursive functions, since the consistency

of a closure with a certain type depends on the consistency of the values that are

stored in the closure. So for a recursive function, the consistency of the closure

naturally depends on itself, thereby leading to infinite derivations. We are following

the approach of Milner and Tofte [MT91], who define their memory consistency

relation coinductively.

We remark that it might be possible to avoid the coinductive definition, since we ex-

pect that any infinite derivation for memory consistency would only mention a finite
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number of related triples. Therefore one could obtain finite derivations by pruning

all repetitions, similarly to the technique of undefining previously encountered lo-

cations in order to avoid circular structures, as used in Definition 4.9, the memory

consistency for LF. However, adding a set of previously encountered triples appears

to require a cumbersome notation. Furthermore, we gain little from an inductive

definition, since the memory consistency only serves as an invariant in our sound-

ness theorem, but does not play any role in any implementation of the automated

amortised analysis technique. Quite the opposite is true, since the coinductive defi-

nition easily allows us to accept the existence of circular data structures. Although

circular data cannot be created in Arthur, it can processed by Arthur programs,

as we have previously discussed in Section 4.3.3. Another benefit of the coinductive

definition is that throughout the whole derivation, all occurring heaps are identical,

which is not true for Definition 4.9, where the premises of some derivation rules are

concerned with partial heaps only.

A good tutorial to the concept of coinductive definitions has been published by Gor-

don [Gor94]. The basic idea of a coindutive definition is due to the Knaster-Tarski

theorem, whose consequence is that the greatest fixpoint of a monotone operator F

is equal to the union of all consistent sets, i.e. X ⊆ F (X). In our context, the set

contains triples, each consisting of a heap, a value and a type; while the monotone

operator is the set of inference rules given below. This operator is obviously mono-

tone, since adding more assumptions can never prevent the application of previously

valid inference rules. We distinguish inference rules that are to be interpreted coin-

ductively with double horizontal lines, following the convention used by Leroy and

Grall [LG09].

Definition 6.14 (Memory Consistency). Memory consistency is a coinductively de-

fined family of ternary relations between a heap H , a value v and an Arthur type A.

Each memory consistency relation is indexed by a valuation v . There are no inter-

dependencies among the family, i.e. any derivation only mentions a single valuation.

We write H �v v :: A to denote that the value v is consistent with Arthur type

A in the heap H under valuation v . The relation is coinductively defined to be the

largest relation, such that each related triple is justified by one of the following rules.

H �v () :: unit
(CMunit)

H �v tt :: bool
(CMtrue)
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H �v ff :: bool
(CMfalse)

H �v v :: A H �v w :: B

H �v (v, w) :: A×B
(CMtuple)

H (`) = (tt, v) H �v v :: A

H �v ` :: (A, q) + (B, q)
(CMinl)

H (`) = (ff , v) H �v v :: B

H �v ` :: (A, q) + (B, q)
(CMinr)

H �v Null :: list(A, q)
(CMnull)

H �v H (`) :: A×list(A, q)

H �v ` :: list(A, q)
(CMcons)

H (`) = Bad

Type C has boxed values, i.e. C /∈ {unit, bool, A×B} for all A,B.

H �v ` :: C
(CMbad)

H (`) =
〈
(e1 & e2) , S ?

〉
There exists Γ?, p?, p′?, φ? such that all of the following are satisfied:

H \` �v S ? :: Γ? v � φ? Γ? p?

p′? (e1 & e2) : Aa . a′&Bb . b′ | φ?

H �v ` :: Aa . a′&Bb . b′
(CMadd )

H (`) = 〈y:x.e , S ?〉
There exists Γ?, p?, p′?, φ? such that all of the following are satisfied:

H �v S ? :: Γ? v � φ? Γ? p?

p′? rec y = fun x → e : ∀α ∈ ψ.A q . q′−−−→B | φ?

H �v ` :: ∀α ∈ ψ.A q . q′−−−→B
(CMfun )

We extend this definition pointwise to contexts as usual by writing H �v S :: Γ if

and only if for all x ∈ dom(Γ) holds H �v S(x) :: Γ(x).
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6 Higher-Order Analysis Arthur

The notion of memory consistency must be strong enough to describe the resource

usage of a closure, as previously outlined at the end of Section 6.2. Hence, the

statement necessarily involves an annotated Arthur typing judgement for the terms

that are stored in the heap memory. The memory consistency invariant for Arthur

is thus significantly more complex than for LF. The occurring typing judgements

have intentionally no restrictions on the petty potential p?, p′?. The petty potential

only expresses the cost of constructing the closure, but since the closure already exists

in memory, this value is of no concern anymore.

The two rules dealing with closures, rule CMadd and CMfun, both ensure that

the term stored within a closure is in accordance with the type for the closure by

requiring the existence of an Arthur typing derivation for the stored term. Both

rules also require that the stored environment is consistent with the existentially

quantified context. For a recursive function, the environment contains a reference to

the closure itself, leading to a non-wellfounded (infinite) derivation.

This is not the case for additive pairs, since the premise in rule CMadd requires

that the location of the closure is not mentioned in the derivation of the consistency

of the environment. However, this requirement is non-essential: the start of the

evaluation of an additive pair immediately causes the deallocation of that additive

pair. An additive pair can thus be evaluated at most once, so the use of a reference

to itself would cause the evaluation to get stuck before any possible violation of the

predicted resource bounds could occur. So requiring that closures of additive pairs

are non-recursive has no technical reason, but simply satisfies our intuition about

additive pairs.

The existential quantification of closure contexts is a convenient way to restore the

typing that was necessarily present at the point of creation of the closure, without

actually artificially storing it. The drawback is that we cannot ensure to reconstruct

exactly the same typing. An alternative that avoids existential quantification over

contexts for closures and which restores the original contexts could possibly be ob-

tained by adopting store specifications as used by Abadi and Leino [AL97]. However,

we did not investigate this possibility, since a variation in the context is harmless for

us: the cost of evaluating a function body, the potential available through the input

and the potential returned through the output are all fixed by the Arthur type

already. The context only yields a justification for connecting the three, but it does

not matter for the memory consistency invariant how the resource usage is justified,

as long as it is justified.

We have already remarked earlier that we cannot hope to prove preservation for

Arthur independently from the main soundness theorem, since Arthur types for
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6.4 Arthur’s Memory Consistency

functions and additive pairs imply bounds on the resources required for the evaluation

of a term of the given type. It is only through Theorem 3 that memory consistency

for Arthur becomes strong enough to tell us that a term stored within a closure

respects the ascribed resource bounds.

However, while there is no corresponding result to LF Lemma 4.13, we can prove a

weakened version, namely that the consistency of pre-existing data is preserved by

evaluation. This is intuitively evident due to the stability of the heap as expressed

by Lemma 6.5, and that deallocated locations are consistent by definition.

Lemma 6.15 (Consistent Memory Extension). Let H and H ′ be two heaps with

dom(H ) ⊆ dom(H ′) and for all ` ∈ dom(H ) either H ′(`) = H (`) or H ′(`) = Bad.

If for any value w and any type A we have H �v w :: A then also H ′ �v w :: A.

Proof. The proof uses the principle of coinduction: Memory consistency is defined

as the largest relation that is consistent with the rules of Definition 6.14. We thus

define a new ternary relation that is implied by premises of the Lemma, and then

show that this relation is also consistent with the rules of Definition 6.14. By the

coinduction principle, memory consistency must then encompass this relation.

We define Rv
(
H ′, w,A

)
to hold if and only if there exists a heap H with H �v w :: A

and such that for all locations ` ∈ dom(H ) either H ′(`) = H (`) or H ′(`) = Bad

holds (which already implies dom(H ) ⊆ dom(H ′) as well).

Assume Rv
(
H ′, w,A

)
holds. We must now show that this statement is justifiable by

one of the memory consistency rules, i.e. we must exhibit a memory consistency rule,

wherein we may replace the memory consistency relation by Rv
(
·, ·, ·

)
, such that all

its premises are satisfied and which has Rv
(
H ′, w,A

)
as its conclusion.

If the relation Rv
(
H ′, w,A

)
holds, then by definition there exist a H of which H ′

is an extension with deallocations such that H �v w :: A holds. We proceed by

case distinction on the last memory consistency rule that had been applied to derive

H �v w :: A.

CMunit We necessarily have w = () and A = unit. By rule CMunit the value

() is consistent with type unit in any heap. Thus Rv
(
H ′, (), unit

)
is justifiable

through rule CMunit as well.

CMtrue, CMfalse These two cases follow analogously to the case for CMunit.
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CMtuple We have H �v (t, u) :: B×C by rule CMtuple, hence necessarily both

H �v t :: B and H �v u :: C hold. Therefore, by definition Rv
(
H ′, t, B

)
and

Rv
(
H ′, u, C

)
hold. Thus the premises of rule CMtuple for Rv

(
H ′, (t, u), B×C

)
are satisfied as required.

CMinl, CMinr We have Rv
(
H ′, `, (C, q) + (B, q)

)
, where the last rule to derive

H �v ` :: (C, q) + (B, q) was by rule CMinl. Thus necessarily H (`) = (tt, u)

and H �v u :: B.

By assumption we either have H ′(`) = (tt, u) or H ′(`) = Bad. In the for-

mer case Rv
(
H ′, `, (C, q) + (B, q)

)
is obviously justifiable by rule CMinl again,

whereas in the latter case the all the premises of rule CMbad are satisfied.

The case for rule CMinr follows correspondingly.

CMnull This case follows analogously to the case for rule CMunit again: Only

one unique memory consistency rule is applicable for the value Null, and this

rule ignores the heap entirely.

CMcons We have H �v H (`) :: A×list(A, q), and thus Rv
(
H ′,H (`), A×list(A, q)

)
.

We have either H (`) = H ′(`) or H (`) = Bad by the assumptions on H and

H ′. In the first case the claim is trivially justifiable by rule CMcons, and in

the second case justification follows through rule CMbad, whose premises are

all satisfied.

CMbad We have H (`) = Bad and thus by assumption H ′(`) = Bad as well.

Therefore, Rv
(
H ′,Bad, A

)
is directly justifiable through rule CMbad again.

CMadd We have H (`) =
〈
(e1 & e2) , S ?

〉
and the existence of Γ?, p?, p′?, φ? with

H \` �v S ? :: Γ? and v � φ? and Γ? p?

p′? (e1 & e2) : Cc . c′&Bb . b′ | φ?.

By assumption either H ′(`) = Bad, in which case the premises of rule CMbad

are all satisfied, or H ′(`) = 〈y:x.e , S ?〉. Consider the latter. For each z ∈ Γ?

we have H \` �v S ?(z) :: Γ?(z) through the pointwise extension of memory con-

sistency to stacks and contexts, and we can derive Rv
(
H ′\`, S ?(z),Γ?(z)

)
as

well, since undefining the same location in both H and H ′ does not invalidate

the requirement that H ′\` is an extension of H \` with possibly some deallo-

cations. Therefore Rv
(
H ′, `, Cc . c′&Bb . b′

)
is justifiable through rule CMadd,

whose premises are all satisfied with Γ?, p?, p′?, φ? unmodified from above being

the witnesses for the existentially quantified entities.
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CMfun This case is largely similar to the previous one. We have H (`) = 〈y:x.e , S ?〉
and the existence of Γ?, p?, p′?, φ? with H �v S ? :: Γ? and v � φ? and also

Γ? p?

p′? rec y = fun x → e : ∀α ∈ ψ.C q . q′−−−→B | φ?.

There are two case by our assumption on H and H ′. In the case that H ′(`) =

Bad, the premises of rule CMbad are satisfied. Otherwise, we have H ′(`) =

〈y:x.e , S ?〉. For each z ∈ Γ? we obtain Rv
(
H ′, S ?(z),Γ?(z)

)
through the defi-

nition of pointwise extension of memory consistency to stacks and contexts.

Rv
(
H ′, `,∀α ∈ ψ.C q . q′−−−→B

)
is thus justifiable through rule CMfun, whose

premises are all satisfied, using Γ?, p?, p′?, φ? unmodified from above as the

witnesses for the existentially quantified entities.

In combination with heap stability we immediately obtain the following consequence.

Lemma 6.16 (Memory Consistency Preservation). If S ,H ` e ↓ v,H ′ then for all

values w, we do have that H �v w :: A implies H ′ �v w :: A.

Proof. By Lemma 6.5 we know that for all locations ` ∈ dom(H ) either H ′(`) = H (`)

or H ′(`) = Bad holds and can thus apply Lemma 6.15 to derive H ′ �v w :: A as

required.

Of course, one could have proven preservation for an unannotated version of both the

Arthur type rules and memory consistency, like we did in Chapter 4 for LF, but

this would be of little use for proving our main soundness result for Arthur. For

proving soundness, we obviously need an invariant that is strong enough to tell us

that all closures stored in the heap respect the annotated typing, which, through the

induction hypothesis, then tells us that the terms in the closures can be evaluated

with the limited resources as detailed by their types.

Other results from LF, which also depend on memory consistency, can be corre-

spondingly formulated for Arthur, and carry over without any surprise.

Lemma 6.17 (Size Correspondence). If H �v v :: A then Size(v) = TypSize(A).

Proof. The proof is by induction on the structure of type A. We proceed by case

distinction on the value v
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() Only one rule of Definition 6.14 can justify the consistency of the unit value. This

single rule requires A = unit. We observe that Size(()) = 1 = TypSize(unit)

holds as required.

tt, ff Similarly to the previous case, only two memory consistency rules apply to

boolean values, both requiringA = bool. We observe that Size(tt) = Size(ff) =

1 = TypSize(bool) holds as required.

(v1, v2) This is the only case that requires the invocation of the induction hypoth-

esis. Only one memory consistency rule can justify a pair value. We nec-

essarily have A = B1×B2 and H �v vi :: Bi. Applying the induction hy-

pothesis yields Size(vi) = TypSize(Bi). Hence we observe Size
(
(v1, v2)

)
=

Size(v1) + Size(v2) = TypSize
(
B1×B2

)
= TypSize(B1) + TypSize(B2),

where the first equality follows by Definition 6.3 and the third equality follows

by Definition 6.7.

Null Necessarily A = list(B, q), hence Size(Null) = 1 = TypSize(list(B, q)) = 1.

` We have Size(`) = 1. Memory consistency for a location requires that type A has

boxed values, i.e. it is either a sum, a list, an additive pair or a function type.

In all of these four cases we have TypSize(A) = 1 as required.

A trivial, but important consequence of the previous Lemma is that the type fully

determines the size.

Lemma 6.18 (Size Determination). If we have both H �v v :: A and H �v v :: B

then TypSize(A) = TypSize(B) follows.

Proof. Applying Lemma 6.17 twice yields the equations TypSize(A) = Size(v) and

Size(v) = TypSize(B).

The subtyping relation must also respect memory consistency, which is expressed by

the following lemma.

Lemma 6.19 (Consistent Subtyping). If the three statements H �v v :: A and

ξ �A <: B and v � ξ hold, then H �v v :: B holds as well.

150



6.5 Arthur’s Potential

Proof. The proof is by induction over the length of the derivation for ξ �A <: B.

The claim is trivial for SubRef, since this implies A = B and thus conclusion is

equal to the premise.

Rule SubPair only applies for pair types. We can applying the induction hypothesis

once for each part of the pair and derive memory consistency by its rule for pairs.

For SubSum, we have ξ � (D, d) + (C, c) <: (A, a) + (B, b). We assume H (`) =

(tt, w) without loss of generality, since the proof for the only other case allowed by

memory consistency follows by the symmetry of sum values and sum types. By the in-

duction hypothesis, we obtain H \` �v w :: A and hence also H �v ` :: (A, a) + (B, b)

by the definition of memory consistency.

The case for rule SubList we have ξ � list(B, b) <: list(A, a). and ξ �B <: A. The

case is trivial for v = Null, so we assume v 6= Null and hence by the first assumption

H \` �v H (`) :: A×list(A, q), which allows us to use the induction hypothesis on pair

types.

The cases of rule SubLin and rule SubFun follow the same pattern. Memory consis-

tency yields the existence of Γ?, p?, p′?, φ? such that H \` �v S ? :: Γ? and v � φ? and

also Γ? p?

p′? e : A | φ? hold. Using the structural type rule Arthur`subtype yields

Γ? p?

p′? e : B | φ? ∪ ξ which in turn allows us to deduce the required H �v v :: B by

the definition of memory consistency, concluding the proof.

6.5 Arthur’s Potential

The definition of potential remains the same as for LF�, except that a valuation is

needed to determine the sum, and that we must extend the definition of potential

for the types of additive pair and functions.

Definition 6.20 (Potential). We define the potential of a value v of LF� type A

within heap H under valuation v , written Φv
H (v : a) recursively as shown in Figure 6.6

on the next page.

We extend this definition to Φ : Heap× Stack× LF�-type-context→ Q+ by

ΦH (S : Γ) =
∑

x∈dom(Γ)

Φv
H (S(x) : Γ(x))
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Φv
H (() : unit) = 0

Φv
H (tt : bool) = 0

Φv
H (ff : bool) = 0

Φv
H
(
(v, w) : A×B

)
= Φv

H (v : A) + Φv
H (w : B)

Φv
H
(
` : A, q+B, p

)
=


v(q) + Φv

H (v : A) If H (`) = (tt, v)

v(p) + Φv
H (v : B) If H (`) = (ff , v)

0 If H (`) = Bad

Φv
H
(
` : list(A, q)

)
=


v(q) + Φv

H \`
(
(vh, vt) : A×list(A, q)

)
If H (`) = (vh, vt)

0 If H (`) = Null

0 If H (`) = Bad

Φv
H

(
` : Aa . a′&Bb . b′

)
=

min
Γ?∈G

Φv
H \`(S ? : Γ?) If H (`) =

〈
(e1 & e2) , S ?

〉
0 otherwise

Φv
H

(
` : ∀α ∈ ψ.A q . q′−−−→B

)
= 0

where G in the clause for additive pairs stands for the set of all admissible contexts:

G =

Γ?

∣∣∣∣∣∣∣
H \` �v S ? :: Γ?

Γ? q

q′ (e1 & e2) : Aa . a′&Bb . b′ | ψ
v �ψ



Figure 6.6: Potential of Arthur types
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The potential for function closures is always zero, thereby allowing the infinite reuse

of function closures, as discussed in Section 6.1.3. The potential associated with a

closure for an additive pair may hold some potential through free variables captures

at its creation. The captured free variables may contain potential through their own

typing, which requires us to recover their typing. Memory consistency guarantees

that such a context exists, but there may be more than one. Therefore we choose

the context with the minimal potential necessary, which is the safest approximation.

If the originally used context at the creation of the closure held more potential, then

this amount is lost. However, the type and value of the result fully determines the

potential of the result, so any additional potential of the original context would have

been lost anyway.

Our next result shows that subtyping is safe with respect to potential, i.e. subtyping

can only lower the potential by throwing it away.

Lemma 6.21 (Subtyped Potential). From the three statements

H �v ` :: A (6.12)

ξ �A <: B (6.13)

v � ξ (6.14)

follows Φv
H (` : A) ≥ Φv

H (` : B) as well.

Proof. We use induction on the number of summands in Φv
H (` : A). The proof is

trivial for base types and function types, since neither of these types may contribute

any potential under any circumstances.

For pairs, the proof follows trivially by applying the induction hypothesis twice.

For sums, we have ξ �
(

(C, q)+ (D, p)
)
<:
(

(C?, q?)+ (D?, p?)
)

. Without loss of

generality, assume H (`) = (tt, w), since the other case then follows by symmetry.

Thus we have Φv
H (` : (C, q) + (D, p)) = v(q) + Φv

H (w : C). From (6.14) and the

subtyping rule SubSum we have v(q) ≥ v(q?) and from the induction hypothesis

follows Φv
H (w : C) ≥ Φv

H (w : C?), concluding this case since we have shown that

each part of the sum is replaced by a value that is less then or equal to the original

value.

For lists, we observe, similarly to the case for sums, that the subtyping rule requires ξ

to enforce that the annotation of the subtype is less or equal to the supertype, while

the required inequality for the other summand follows by the induction hypothesis.
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For additive pairs, we have ξ �Cc . c′&Dd . d′ <: Aa . a′&Bb . b′ , the most interesting

case. We have Φv
H
(
` : Cc . c′&Dd . d′

)
= minΓ?∈G Φv

H \`(S ? : Γ?) where G is set of all

admissible contexts for the additive pair, i.e.

G =
(

Γ?
∣∣∣H \` �v S ? :: Γ? ∧ Γ? q?

q′? (e1 & e2) : Cc . c′&Dd . d′ | ψ ∧ v �ψ
}

which is non-empty by (6.12). However, each context in Γ0 ∈ G can also be used

to derive Γ0
q?

q′? (e1 & e2) : Aa . a′&Bb . b′ | ψ through an application of type rule

Arthur`Subtype by premise (6.13). Therefore, the set of contexts ranged over

to obtain the minimal potential for the type Aa . a′&Bb . b′ contains G , which implies

that the minimum must be smaller or equal, as required.

One would expect an even stronger result, namely that the potential that is obtained

for two shared entities is equal to the potential of the original entity, i.e. that sharing

does not increase potential. This is indeed the case, as the next lemma shows.

Lemma 6.22 (Shared Potential). If H �v ` :: A and .(A |B,C ) = φ holds and

v �φ then Φv
H (` : A) = Φv

H (` : B) + Φv
H (` : C). Moreover, for A = B and A = C, it

follows that Φv
H (` : A) = 0 also holds.

Proof. The claim is trivial for base types and function types, since they never carry

potential. It is also trivial for additive pairs, since those cannot be shared at all.

For the remaining cases, we have by Lemma 6.12 that φ�A <: B and φ�A <: C and

obtain H �v ` :: B and H �v ` :: C. The proof is then similar to that for Lemma 6.21.

The final observation follows since q = 0 is the only solution to q = q + q.

Note that this lemma almost entails Lemma 6.21 via the subtyping of shared types,

Lemma 6.12, except for the interesting case for additive pairs, which cannot be

deduced via Lemma 6.12, since additive pairs cannot be shared.

6.6 Soundness of the Higher-Order Analysis

The Arthur type for a term is intended to describe its worst-case heap space usage,

through the definition of potential. We will now prove this intention to be sound.

The soundness of the Arthur type system is the main result of this thesis.
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Intuitively, the theorem says that for an Arthur typing judgement Γ
p

p′ e:A | φ
and given a valuation v that satisfies the constraints φ, the evaluation of term e in

a consistent memory configuration requires at most v(p) + ΦH (S : v(Γ)) heap units.

Moreover, the theorem also tells us about the amount of heap units that are guaran-

teed to be unused after the evaluation is finished. These may or may not have been

used during the evaluation. For technical reasons, the theorem also includes a value

r, which represents additional free heap cell units, and shows that these are harmless

and preserved, similar in the sense of Lemma 4.18.

Theorem 3 (Soundness Arthur).

Γ
p

p′ e:D | φ (3.A)

S ,H ` e ↓ v,H ′ (3.B)

v �φ (3.C)

H �v S :: Γ (3.D)

If the four statements above are all satisfied, then for all r ∈ Q+ and m ∈ N with

m ≥ v(p) + ΦH (S : v(Γ)) + r

there exists an m′ ∈ N satisfying

m′ ≥ v(p′) + ΦH ′(v : v(D)) + r

such that S ,H m

m′ e ↓� v,H ′ holds and furthermore H ′ �v v :: D as well.

Note that the important property of memory consistency conservation during evalu-

ation, i.e. that H ′ �v S :: Γ holds, is missing from the conclusions, since this follows

independentlyC by Lemma 6.16.

Proof. The proof is by induction on the derivation of premise (3.B) and a subordinate

induction on the derivation of premise (3.A). An induction over the length of the

evaluation derivation alone would be insufficient for the cases when (3.A) was derived

by a structural rule, since evaluation remains the same in these cases. An induction

over the length of the typing derivation would fail for the cases when (3.A) was

derived by function application or the projection of additive pairs; these are terminal

rules, i.e. they typing derivation has length 1, but we need to apply the theorem for

CThe author thanks Hugo Simoes for pointing out this convenient simplification of the proof.
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the term stored in the closure, for which we obtain a typing judgement from (3.D),

which is a possibly, and most likely, longer.

We begin the examination of the cases for the structural rules, which leave the

evaluation (3.B) unchanged and hence also the length of its derivation. For these

cases induction is only possible if length of the typing derivation was shortened.

Afterwards we examined the remaining cases, distinguished by the rule that was last

applied to derive the evaluation statement. Using the induction hypothesis is then

possible if the length of the derivation for (3.B) has been shortened, while the length

of the typing derivation becomes unimportant.

The most interesting cases are the ones for function application and the projection of

additive pairs. We only treat a few selected cases of the language constructs that are

identical in both Arthur and LF�, since the proof for their cases follow analogously

to the ones shown in the proof of Theorem 1.

Arthur`Weak: The type rule Arthur`Weak allows the introduction of a su-

perfluous binding x:A to the typing context Γ. We show that the validity of

all five premises is preserved if we drop the additional binding from the typing

context, in order to apply induction for the shorter typing judgement without

mentioning the binding x:A. Since neither of the three conclusions mention the

typing context, this already suffices to prove this particular case.

Fix any r ∈ Q+ and anym such thatm ≥ v(p)+ΦH
(
S :v(Γ)

)
+ΦH

(
S(x) : A

)
+r

holds. Since potential is always non-negative by Definition 6.20, we also have

that m ≥ v(p) + ΦH
(
S :v(Γ)

)
+ r holds. We now apply the induction hypoth-

esis for the same premises, apart from dropping x:A from the typing context.

Applying induction is possible, since the length of the typing derivation (3.A)

is exactly one step shorter, whereas the length of the derivation for the evalu-

ation (3.B) remains unchanged. Furthermore observe that H �v S :: Γ, {x:A}
trivially implies H �v S :: Γ by Definition 6.14. The induction directly yields

all the desired results.

Arthur`Generalise: This type rule allows the strengthening of the linear con-

straint set. We observe that (3.C) together with the premise ψ �φ from

(3.A) readily implies v �φ by definition. We can therefore apply the induc-

tion hypothesis for the type derivation shortened by the omission of type rule

Arthur`Generalise and directly obtain all required conclusions, since the

constraint set does not affect any premise nor conclusion apart from (3.A) and

(3.C).
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Arthur`Supertype: Choose any m such that

m ≥ v(p) + Φv
H (S : Γ) + Φv

H (S(x) : A) + r

≥ v(p) + Φv
H (S : Γ) + Φv

H (S(x) : B) + r

where the latter inequality follows by Lemma 6.21 and v �A <: B from (3.A)

and (3.C).

The induction hypothesis then yields m′ ≥ v(p′) + Φv
H (v : C) + r as required.

The application of the induction hypothesis is justified, since the derivation for

(3.A) was one step shorter, while the length of the derivation for (3.B) remained

unchanged. Furthermore the required premise H �v S(x) :: B can be derived

by Lemma 6.19.

The memory consistency of the result v follows trivially from the application

of the induction hypothesis, since both ts type C and (3.B) remain unchanged.

Arthur`Subtype: We apply the induction hypothesis right away and receive for

each m ≥ v(p) + Φv
H (S : Γ) + r the existence of

m′ ≥ v(p′) + Φval
H (S(x) : C) + r

≥ v(p′) + Φval
H (S(x) : D) + r

as required, where the last inequality follows by Lemma 6.21 from the typing

statement’s premise ψ �C <: D and v �φ ∪ ψ (3.C).

Memory consistency for the result H �v v :: D follows from H �v v :: D by

Lemma 6.19.

Arthur`Relax: We observe

m ≥ v(p) + Φv
H (S : Γ) + r

= v(q) + Φv
H (S : Γ) + r′

if we choose r′ = r + v(p)− v(q) for applying the induction hypothesis, which

we can do since v(p) − v(q) ≥ 0 holds by the constraints added by rule

Arthur`Relax. We thus obtain the existence of m′ with

m′ ≥ v(q′) + Φv
H (S : Γ) + r′

= v(q′) + Φv
H (S : Γ) + r + v(p)− v(q)

≥ v(q′) + Φv
H (S : Γ) + r + v(p′)− v(q′)

= v(p′) + Φv
H (S : Γ) + r
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6 Higher-Order Analysis Arthur

which follows by v(p)−v(q) ≥ v(p′)−v(q′) from the other constraint added in

rule Arthur`Relax. The rule not only allows us to discard resource before

and after the execution of the term e, but also allows us to carry over excess

resources, up to (p− q).

Since this is a structural rule concerned with potential only, the consequences

concerning the memory consistency of the result v follows trivially form the

application of the induction hypothesis.

Note that this case is the only one were we need to make use of r, which

essentially allows to preserve superfluous resource. In previous work, this was

also necessary for the case dealing with the let-construct, in order to thread

the resource needed for the body through the defining clause. However, in

Arthur the same effect can already be achieved by applying the (improved)

Arthur`Relax rule at the last step of the defining clause.

Arthur`Share: First observe that Φv
H (z : A) = Φv

H (x : A1) + Φv
H (x : A1) follows

directly by Lemma 6.22 from v �.(A |A1, A2 ) from (3.A) and (3.C). Hence

m,m′ are identical to what we will obtain from applying the induction hypoth-

esis.

We assume that z ∈ FV(e), for otherwise there would be no effect of the

application of rule Arthur`Share. Let S ? = (S\z)[x 7→ S(z), y 7→ S(z)].

Obviously S ,H m

m′ e[z/x, z/y] ↓ v,H ′ is equivalent to S ?,H m

m′ e ↓ v,H ′

both having a derivation of the same length and structure. The same is true

for the uncosted operational semantics.

Before we can make use of the induction hypothesis, we must verify that H �v

S(z) :: A justifies both H �v S ?(x) :: A2 and H �v S ?(y) :: A2. This follows by

the applications of Lemma 6.12 and Lemma 6.19, once in each case. Applying

the induction hypothesis concludes the proof for this case, with H ′ � v :: D

following directly once again.

Arthur↓Unit, Arthur↓True & Arthur↓False: We consider the case of e =

*, the cases for e = true and e = false follow analogously. Observe that by

the premises we have v(p) + Φv
H (S : Γ) + r = r, since φ�{p = 0} and Γ is

required to be the empty typing context by the typing rule. For any m ≥ r

we must choose m′ = m by the requirements of the annotated evaluation rule

for the unit constant. We can easily verify that m′ ≥ v(p′) + Φv
H (() : unit) + r

holds as required, since the sum on the right hand side is in fact equal to r, for
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the unit type (or boolean type) never carries any potential by Definition 6.20

and v �{p′ = 0} by premises (3.A) and (3.C).

The final remaining claim, memory consistency for the result value, written

H �v () :: unit, follows regardless of v and H directly from Definition 6.14 (in

the same manner we have H �v tt :: bool and H �v ff :: bool too), concluding

the proof for this case.

Arthur↓Rec: We have v = ` for some fresh ` /∈ dom(H ); H ′(`) = w and w =

〈y:x.e1 , S ?〉 with S ? = S \ {x, y} ∩ FV(e1). Fix r ∈ Q+ and choose any m ∈ N
such that m ≥ v(p)+Φv

H (S : Γ)+r =
(
1+TypSize(Γ)

)
+Φv

H (S : Γ)+r, since

φ� p = 1 + TypSize(Γ).

We observe that Γ has no potential, since Φv
H (S : Γ) = 0 holds by Lemma 6.22,

using φ�
⋃

z∈Γ .
(
Γ(z)|Γ(z),Γ(z)

)
and v �φ (3.C). By the premises (3.A) and

(3.B) we have dom(S ?) = dom(Γ). Hence for all z ∈ dom(Γ) we deduce

that TypSize
(
Γ(z)

)
= Size

(
S ?(z)

)
by Lemma 6.17 and premise (3.D). We

therefore obtain m ≥ Size(w) + r, since by Definition 6.3 we have Size(w) =

1 +
∑

z∈dom(S?) Size
(
S ?(z)

)
.

We choose m′ = m − Size(w) = r accordingly to rule Arthur ↓Rec and

verify that m′ ≥ v(p′) + Φv
H ′(v : ∀α ∈ ψ.A q . q′−−−→B) + r holds as required, since

φ� p′ = 0 and because the potential of function types is defined to be zero in

Definition 6.20.

It remains to show that H ′ �v v :: ∀α ∈ ψ.A q . q′−−−→B holds, which follows easily

by choosing the existentially quantified entities exactly as given in the anno-

tated typing, premise (3.A). Note that H \` �v S ? :: Γ holds by premise (3.D)

and the requirement that ` was fresh, ` /∈ dom(H ), which is a premise of rule

Arthur ↓Rec (3.B).

Arthur↓App: In this case, premise (3.A) was derived through a terminal rule,

Arthur`App, while (3.B) is not. This is the reason for the induction over the

lexicographically ordered lengths of both derivations. We will reconstruct the

typing context for the function’s body from the invariant (3.D), which had to

be strengthened considerably for this particular purpose, in order to apply the

induction hypothesis to glean information about the functions resource usage.

This approach is also taken in the proof cases for the linear pair projections.
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6 Higher-Order Analysis Arthur

Fix r ∈ Q+ and choose m ∈ N such that m ≥ v(q) + ΦH (S : v(Γ)) + r.

We recall that the term at hand is y′x′ with the typing context being Γ =

{x′:A, y′:∀α ∈ ψ.A q . q′−−−→B}. By premise (3.B) we have S(y′) = ` and H (`) =

〈y:x.e , S ?〉. Hence there is only one possible rule of Definition 6.14 that could

have led to premise (3.D), which yields the existence of a typing context Γ?,

variables p?, p′? and a constraint set φ? having the following properties:

H \` �v S ? :: Γ? (6.15)

v �φ? (6.16)

Γ? p?

p′? rec y = fun x → e : ∀α ∈ ψ.A q . q′−−−→B | φ? (6.17)

We apply the inversion lemma 6.13 and obtain

φ? �
(
∀α0 ∈ ψ0.A0

q0 . q′0−−−−→B0

)
<: ∀α ∈ ψ.A q . q′−−−→B (6.18)

Γ0, x:A0, y:∀α0 ∈ ψ0.A0
q0 . q′0−−−−→B0

q0
q′0

e : B0 | ξ0 (6.19)

Γ0 ⊆ Γ? ∧ dom(Γ0) = FV(e) \ {x, y} (6.20)

α0 ∩
(
FV�(Γ0) ∪ FV�(φ)

)
= ∅ (6.21)

φ? ∪ ψ0 � ξ0 (6.22)

φ? �
⋃
z∈Γ0

.
(
Γ0(z)|Γ0(z),Γ0(z)

)
(6.23)

Using almost all of the above, we apply the type rule Arthur`Rec to derive

Γ0
1 + TypSize(Γ0)

0 rec y = fun x → e : ∀α0 ∈ ψ0.A0
q0 . q′0−−−−→B0 | φ? which we

immediately use together with (6.16) and H \` �v S ? :: Γ0 (from (6.15) and

(6.20)) to derive

H �v ` :: ∀α0 ∈ ψ0.A0
q0 . q′0−−−−→B0 (6.24)

by applying a rule of Definition 6.14.

There is a slight abuse of notation above by writing integer constants directly

on the turnstile again, as we did in Chapter 4, instead of introducing two

fresh resource variables and adding two corresponding constraints. It is clear

that adding a constraint of the form “variable equals non-negative constant” is

harmless if that variable is fresh and occurs nowhere else. The actual values of

these two resource variables, apart from their existence, does not matter either,

since these values do not occur anymore in the statement (6.24). The reason

that we do not need to care about these two values is that they represent the

cost incurred at the creation of the closure that is now applied to, a concern

that was dealt with in the previous case.
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6.6 Soundness of the Higher-Order Analysis

We apply the induction hypothesis for

Γ0, x:A0, y:∀α0 ∈ ψ0.A0
q0 . q′0−−−−→B0

q0
q′0

e : B0 | ξ0 (6.25)

S ?[y 7→ `, x 7→ S(x′)],H m

m′ y′x′ ↓ v,H ′ (6.26)

v � ξ0 (6.27)

H �v S ?[y 7→ `, x 7→ S(x′)] :: Γ0, y:∀α0 ∈ ψ0.A0
q0 . q′0−−−−→B0, x:A0 (6.28)

(6.25) is identical to (6.19).

(6.26) is a premise of (3.B).

(6.27) follows from v �φ? (6.16), φ? ∪ ψ0 � ξ0 (6.22) and v �ψ0. The latter

itself being directly derived from v �ψ(3.C), again v �φ? (6.16) and (6.18) via

subtyping rule SubFun.

(6.28) follows in three steps: first, from (6.15) and (6.20) we obtain H \` �v

S ? :: Γ0; second, from (6.24); and third, from (3.D) we have H �v S(x′) :: A

to which we apply Lemma 6.19 using φ? ∪ ψ �A <: A0 which in turn is a

consequence of (6.18).

For the application of the induction hypothesis We choose m such that it sat-

isfies our original requirements, which is possible since

m ≥ v(q) + Φv
H (S(x′) : A) + Φv

H

(
` : ∀α ∈ ψ.A q . q′−−−→B

)
+ r

= v(q) + Φv
H (S(x′) : A) + r

≥ v(q0) + Φv
H (S(x′) : A0) + r

= v(q0) + Φv
H (S(x′) : A0) + Φv

H

(
` : ∀α0 ∈ ψ0.A0

q0 . q′0−−−−→B0

)
+ Φv

H (S ? : Γ0) + r

The first equality follows directly by Definition 6.20. The next inequality

follows from (6.18), which yields both v(q) ≥ v(q0) and Φv
H (S(x′) : A) ≥

Φv
H (S(x′) : A0) via Lemma 6.21 from φ? �A <: A0. The last equality follows

since Φv
H (S ? : Γ0) = 0 by (6.23) and Lemma 6.22.

Thus we obtain m′ such that

m′ ≥ v(q′0) + Φv
H ′(v : B0) + r ≥ v(q′) + Φv

H ′(v : B) + r

as required, where the latter inequality follows again from (6.18) and Lemma 6.21.

Furthermore, the induction hypothesis also yields H ′ �v v :: B0 as well, from

which the required H ′ �v v :: B can be derived by (6.18) and Lemma 6.19,

concluding this case.
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Arthur↓LinPair: For the term in consideration we have e = (e1 & e2) of type

Aa . a′&Bb . b′ under the constraint set φ ∪ ψ ∪ ξ. The result of the evaluation

being v = ` with the post heap H ′ = H [` 7→ w]. The newly added value is a clo-

sure w =
〈
(e1 & e2) , S ?

〉
having the contextual stack S ? = S�FV(e1) ∪ FV(e2).

The annotated evaluation rule Arthur ↓LinPair requires that m = m′ +

Size(w). Hence it already suffices to show that v(p)+Φv
H (S : Γ)+r−Size(w) ≥

v(p′)+Φv
H ′

(
` : Aa . a′&Bb . b′

)
+r. We prove this inequality by separately showing

Φv
H (S : Γ) ≥ Φv

H ′

(
` : Aa . a′&Bb . b′

)
and v(p) = Size(w). Note that we already

have v(p′) = 0 by the annotated typing rule Arthur`LinPair (3.A).

By Definition 6.3 we have Size(w) = 1+
∑

x∈dom(S?) Size
(
S ?(x)

)
. From premise

(3.D) we know that there exists a typing context Γ? with H \` �v S ? :: Γ?

and dom(Γ?) = FV(e1) ∪ FV(e2). By Lemma 6.17 the value- and type-sizes

agree, therefore
∑

x∈dom(S?) Size
(
S ?(x)

)
=
∑

x∈dom(Γ?) TypSize
(
Γ?(x)

)
. As-

sumption (3.D) furthermore allows us to apply Lemma 6.18, eventually yield-

ing Size(w) = 1 +
∑

x∈dom(Γ) TypSize
(
Γ(x)

)
. Since we have v(p) = 1 +

TypSize(Γ) from v � ξ we have thus established v(p) = Size(w).

In order to prove the inequality Φv
H (S : Γ) ≥ Φv

H ′

(
` : Aa . a′&Bb . b′

)
we observe

that by Definition 6.20 we have Φv
H ′

(
` : Aa . a′&Bb . b′

)
= minΓ?∈G Φv

H \`(S : Γ),

where G is the set of all suitable typing contexts as in the definition. The

inequality then follows by Γ ∈ G , which is a trivial consequence from the

premises (3.A), (3.C) and (3.D). Note that the removal of location ` from heap

H ′ is not problematic, since H ′\` = H as ` was ascertained to be fresh by the

premises of rule Arthur ↓LinPair (3.A).

For the remaining claim we observe that H ′ �v ` :: Aa . a′&Bb . b′ follows by the

same premises that we have already checked to compute Φv
H ′

(
` : Aa . a′&Bb . b′

)
.

Arthur↓Fst & Arthur↓Snd: We only consider Arthur ↓Fst, since the case

for Arthur ↓Snd follows analogously. Let e = fst(x), S(x) = `, H (`) = w

and w =
〈
(e1 & e2) , S ?

〉
. From premise (3.D) we know that there exists some

annotated typing context Γ?, resource variable p, p′ and a constraint set ψ

such that H \` �v S ? :: Γ? and Γ? q

q′ (e1 & e2) : Aa . a′&Bb . b′ | ψ and v �ψ
holds. We choose Γ? minimal with respect to its potential in accordance to

Definition 6.20 such that Φv
H
(
` : Aa . a′&Bb . b′

)
= Φv

H \`(S ? : Γ?) holds. Note

that our choice is guaranteed by premise (3.D).

The judgement Γ? q

q′ (e1 & e2) : Aa . a′&Bb . b′ | ψ must have been justified

by rule Arthur`LinPair, having among its premises Γ? p1
a′ e1 : A | ξ and
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6.6 Soundness of the Higher-Order Analysis

ψ �{p1 = a + q, q = 1 + TypSize(Γ?)}. Since the evaluation of e1 is one step

shorter than for e (3.B), we may apply the induction hypothesis to obtain that

for any m0 ≥ v(a) + v(q) + Φv
H \`(S ? : Γ?) + r there exists an m′ ≥ v(a′) +

Φv
H ′(v : A) + r with S ?,H [` 7→Bad]

m0

m′ e1 ↓ v,H ′.

According to rule Arthur ↓Fst we choose m = m0 − Size(w). and ob-

tain S ,H m

m′ fst(x) ↓ v,H ′. Note that by our choice of Γ? we have m ≥
v(a) + Φv

H
(
` : Aa . a′&Bb . b′

)
+ r as required, provided that v(q) = Size(w),

which in turn follows exactly as already described in the previous case for rule

Arthur ↓LinPair, using the Lemmas 6.17 and 6.18.

Memory consistency for the result follows directly from the application of the

induction hypothesis, since the result value and type remains unchanged.
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Performing the automated amortised analysis technique proposed in Chapter 6 by

hand is not only non-automatic, but it is also extremely tedious and error-prone. The

in-depth manual LF� analysis in Section 5.6 required already a lot of simplification in

order to become digestible. We will therefore use results by an actual implementation

of the Arthur system to evaluate its performance on several program examples. The

amortised analysis technique presented in this thesis was actually implemented by

the author three times.

First, the first-order version shown in [HJ03] was implemented in OCaml, comprising

a total of 5220 lines of code. This implementation was used in the Mobile Resource

Guarantees project [MRG05]. It notably included an interpreter to measure cost

and already allowed user-defined recursive data types, including the ability, to assign

user-defined heap space costs to each constructor.

Second, a prototype implementation of the early higher-order Arthur system, which

was not yet fully defined at that point in time, was written. The implementation,

although performed in OCaml again, was not based on the first, but rewritten from

scratch. It consisted of 6440 lines of code overall. The implementation was rough,

but fully usable and included lambda abstraction and additive pairs.

Third, a Haskell implementation was required for the integration into the Em-

Bounded project [EmB09], which is concerned with the domain-specific high-level lan-

guage Hume [HM03]. Therefore, the second implementation was ported to Haskell

by Hans-Wolfgang Loidl, who also maintains the front-end of the analysis that gen-

erates an abstract syntax from a program file. The abstract syntax tree is delivered

in ghost-let-normal form (see Section 7.2 below) and contains several useful annota-

tions, such as framedepth, number of variables in patterns, feedback from compiler

optimisations, and standard types for each node. The back-end of the analysis is

maintained by the author. This implementation comprises about 16000 lines of well-

commented Haskell code, excluding the transformation to let-normal form, which

was integrated into the Hume compiler.

Hume differs notably from Arthur by using under- and over-application instead of

lambda abstractions. Support for the forms added, and the capability to treat the

latter was kept, unlike support for additive pairs, which were dropped. The capabil-

ity to account for destructive matches was also kept, despite Hume not supporting

this feature. Hume uses a box-basedA deallocation mechanism instead, which indis-

criminately reclaims all the memory used during the execution of a box at the end

AThe Hume language features a coordination layer that describes multiple, interacting, re-entrant

processes; called “boxes”. Each box itself is a functional program expression. The coordination

layer links the boxes together and allows interaction with an external, imperative state through

streams, which are delivered piece-wise to the system of concurrent boxes.
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of the execution cycle for that box. Some additional experimental features, such as

numeric potential, were also implemented.

Overall, adjusting the implementation of Arthur to Hume was a huge benefit for

the analysis, since the tool gained a significant maturity. Notable features of the

implementation, most of which being described more closely in [LJ09], include:

a) several comfortable language features required by proper languages, such as

i) mutually recursive let-definitions,

ii) under- and over-application of functions,

iii) lambda abstraction,

iv) built-in functions for arithmetic and optimised vector operations,

v) pattern matches with multiple branches,

vi) user-definable recursive data types, and

vii) nested pattern matches;

b) good performance through the integration of the LP-solver lp solve [BEN];

c) an easy-to use web-interface with several program examples

(see http://www.embounded.org/software/cost/cost.cgi, [EmB09]);

d) the formulation of cost-bounds in a non-technical human-readable language, as

opposed to pure annotated types (see Section 7.4);

e) the possibility to interactively explore the entire solution space of admissible

cost-formulae (see Section 7.5); and

f) the availability of several interesting cost metrics (see Section 7.1), namely

i) worst-case heap space usage for LFPL, Arthur, HAM-interpreter and

Hume (all are available in both a boxed and an unboxed variant),

ii) maximum stack space usage for Arthur and Hume (boxed and unboxed),

iii) call-count metric to bound the number calls made to a user-defined set of

function identifiers from above, and

iv) worst-case execution time of Hume code on the Renesas M32C/85U and

PowerPC MPC8280 microcontrollers.
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7.1 Interchangeable cost metrics

The point about the use of interchangeable cost metrics is quite an important one. We

will take an advantage of the availability of these resource metrics in the discussion

of our program examples in Chapter 8.

Note that in order to define cost metrics that are not just concerned with heap mem-

ory, it is not enough to change the definitions of Size and TypSize. For example, any

operation has a time cost, so a worst-case execution time (WCET) metric requires

slight changes to all type rules. Fortunately, it is possible to do this in a generic way,

which also subsumes the cost metrics for heap space, as shown in our work [JLH+09].

The basic idea is to insert fresh resource constants , which are subtracted from the

petty potential at any possible step. For example, the constraints added through the

type rule Arthur`Let for local definitions then changes to

Γ1
p1
p′1

e1 : A | φ Γ2, x:A
p2
p′2

e2 : C | ψ
ξ = {p = KLet1 + p1, p

′
1 = KLet2 + p2, p

′
2 = KLet3 + p3}

Γ1,Γ2
p

p′ let x = e1 in e2 : C | φ ∪ ψ ∪ ξ

We see that the Arthur type rule can be easily recovered by simply setting the

resource constants KLet1, KLet2 and KLet3 to zero. The operational semantics are

augmented accordingly, which allows us to prove the soundness of the analysis inde-

pendently from the actual values for the resource constants. Their actual values do

not matter, as long as each constant always matches up with itself between opera-

tional semantics and type rules. Thereby we gain a very flexible analysis, that can

bound the usage of any compositional quantifiable resource.

A WCET metric then requires one to obtain static bounds on each resource constant,

so that the augmented annotated operational semantics match with reality. In prac-

tise, this requires the examination of the code fragments that are generated by the

compiler that correspond to each resource constant. It is paramount that the WCET

for the code fragments is compositional. If the target architecture suffers from timing

anomalies due to the design of its cache and pipeline, a significant overhead may be

incurred to obtain compositional bounds on WCET.

The aiT tool from AbsInt GmbH [FHL+01] was used during the EmBounded research

project to obtain the resource constants for the WCET of Hume code on Renesas
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M32C/85U and PowerPC MPC8280 microcontrollers. The WCET was determined

in terms of processor clock cycles. For example, the worst-case clock cycle values

obtained to execute a Hume let expression on a Renesas M32C/85U microcontroller

are

KLet1 = 142 KLet2 = 0 KLet3 = 3 + RetLab

where RetLab is an intermediate parameter obtained from the compilation process,

specifically depends on the number of return labels contained in the intermediate

C-code through the formula RetLab = max
(
116, 51 + 15 · (#ReturnLabels)

)
.

7.2 Ghost-let-normal form

Our implementation of the analysis transforms a program into a ghost-let-normal

form first. The transformation to entirely harmless and straightforward, and was

first discussed in our work [JLHH10]. It is also important to note that this technique

is entirely independent of the amortised analysis technique, but simply facilitates the

modelling of actual resource usage by our operational semantics. It allows us to apply

our generic cost-aware operational semantics to a wider range of actual machine cost

behaviour.

The translation to ghost-let-normal form adopts a much stricter policy than the

ordinary let-normal form. The let-normal form just restricts most subexpressions to

variables only, whereas the ghost-let-normal form demands that all variables used in

subexpressions are unique ghost variables . A ghost-variable is a use-once variable,

that was introduced by a so called ghost-let-expression, an addition to the syntax of

the language. Only the defining clause of the ghost-let-construct must use normal

program variables.

The ghost-let construct is otherwise semantically identical to the normal let-construct.

We distinguish it from the normal let-construct by writing it in upper-case, i.e.

LET v = e1 IN e2. The annotated type rule is also equivalent to the ordinary let, ex-

cept for using a separate set of resource constants. Therefore the ghost-let construct

can be assigned a different cost than the ordinary let-expression, which is important

for the modelling of stack-space and worst-case execution time metrics as we shall see.

The idea is that the automatic transformation into let-normal form only introduces

these ghost-lets, in order to distinguish them from ordinary let-expressions that are

used by the programmer.
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For an example, the expression foo(x, bar(x, 5)) will be translated into

LET x1 = x IN LET z1 = (LET x2 = x IN LET y1 = 5 IN bar x2 y1) in (foo x1 z1)

The identifiers with indices are ghost-variables, all others are not. We see that this

translation also expresses the order in which entities are placed upon the stack, since

the ghost-let defining x1 is inserted before the one for z1. Note that the above

example is formulated in terms of the first-order system, where foo and bar are

top-level function names. In the higher-order system, foo and bar must be wrapped

through a ghost-let before their use, just like all other ordinary identifiers.

The advantage of adopting such a policy is that the cost metrics for stack space and

worst-case execution time become much simpler. In these metrics, the cost of creating

a constant on the top of the stack might differ from pushing a variable onto the top

of the stack, etc. However, thanks to the ghost-let we do not need to distinguish

this for all expressions that have subexpressions, since these can now expect that the

cost for preparing their arguments on the stack has already been accounted for. The

ghost-let itself is assigned a zero cost, but the defining clause will incur the cost for

pushing a variable, or creating a constant through the ordinary rules.

7.3 Inference of Annotated Types

The automatice inference of the annotated types is performed in five stages:

a) In the first stage of the analysis process, a program is parsed and transformed

into ghost-let-normal form, as described in the previous section. This interme-

diate form is branched out of the compilation process, after possible optimisa-

tions have been performed by the compiler. The analysis must be informed of

any optimisations, since these might have an affect on whether a cost bound

can be guaranteed or not.

b) The second stage then performs the analysis itself on all top-level functions.

This is done for each block of mutual recursive functions within the call-graph

at once, first starting the with block of functions that do not depend on any

other functions. Analysing each block itself consists of three steps:
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i) For each block of mutual recursive functions, the type signature is enriched

with fresh resource variables. Each function type is non-parametric at first,

i.e. for the generic function type ∀α ∈ ψ.A q . q′−−−→C we have both α and ψ

being empty initially. Together with the types obtained from analysing

all previous blocks, this yields an annotated typing signature for all the

functions that might be called within the current block.

ii) Afterwards, in the second step of stage two, the defining body of each

function is analysed by constructing the Arthur type derivation. This is

done by traversing the standard typing derivation once only. All occur-

ring types are always given fresh resource variables as needed, which are

then restricted by subtyping upon application to functions or construc-

tors, or by merging the annotated result types of different conditional

branches. This process is syntax-driven, without any choice. Structural

rules such as subtyping, weakening and sharing are only used when re-

quired by the syntax, based on the free variables of subterms, and at the

latest point possible. Suptyping simply generates the necessary inequal-

ities, similar to sharing. Both always succeed in generating constraints,

although the generated constraints might not be solvable in all cases. Rule

Arthur`Relax is built-into every other rule, so it is effectively applied

in each step.

iii) The third step of the second stage simply refines the annotated signature,

by placing the whole generated constraint into the type of each function

within the mutual block, setting α simply as the set of all free variables

within that constraint set. Note that resource parametricity thus only

applies to calls to functions which are strictly below the current function

in the call graph. Recursive calls or calls between mutually recursive

functions cannot make use of resource parametricity. The reason is that

generation of the constraints for a block of mutual recursive functions

depends on itself. The problem is similar to polymorphic recursion [Hen93,

KTU93] and is likely to require a similarly complicated technique to allow

resource parametric recursion.

Note that if there is a main expression given in the program besides function

definitions, then it is analysed at the very end of stage two, just using step b.ii

above.

c) For the third stage, an objective function is generated based on a heuristic,

which generally prefers small values on the left-hand sides of function arrows
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and large values for resource variables occurring on the right-hand side of func-

tions. A unique slack variable is also introduced for each inequality, turning

it into an equation. The slack variables are also minimised by the objective

function, in order to minimise waste.

d) The fourth stage consists of simply feeding the constrains to an LP-solver, such

as lp solve [BEN]. In practise, we have found that the generated constraints

can always be easily solved as they are by lp solve. In fact, attempts to simplify

the constraints both in their number and the number of variables used showed

an increase in runtime and a loss of numeric stability.

The efficiency of solving the generated constraint sets is not an issue. The LPs

generated for the program examples in Chapter 8, which usually involve less

than 5000 constraints over less than 10000 variables, can all be solved within

a single second on typical contemporary hardware (2.53GHz Intel Mobile Core

2 Duo, with 6MB cache and 4GB memory). Note that in general, even simple

linear programs may require a long time to solve. The reason that the large

linear programs generated by our amortised analysis technique are easy to solve

lies likely in the observation that they always admit an integer solution, if they

are solvable at all, as noted in our work [HJ03].

Actual runtime measurements for inferring the annotated types for a number of

realistic program examples are given in [LJ09], and are repeated for convenience

in Section 9.1, where we discuss the asymptotic complexity of the inference

process.

It is noteworthy that the implementation can also print the generated con-

straints into a file, both solved and unsolved. Due to the constraint generation

in stage two being syntax driven, each constraint can be prefixed with the pre-

cise line and column number of the syntactic construct that triggered its gen-

eration. Each constraint is furthermore labelled with three letters that identify

the applied type rule. It is also possible to see symbolic sums using the names

of the resource constants that led to the constant coefficient of a constraint.

This yields a very high transparency to the amortised analysis process.

e) For the final stage, any solution that is found by the LP-solver in the previous

stage is then presented to the user in the form of an annotated type and/or a

human-readable closed cost formula for the analysed program.
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7.4 Bounds in Natural Language

The implementation allowed us to gather informative feedback from programmers.

A prominent complaint was that the presentation of resource bounds in the form of

numeric annotations to the types is difficult to understand for the non-expert user.

We therefore implemented an elaboration module, which translates the annotated

types, produced by our analysis, into more easily digestible closed form expressions.

Communicating the cost bound through type annotations allows for a high precision,

but listing all constructors within a type produces a long an unwieldy output. Fur-

thermore we experienced that most annotations turn out be zero anyway for many

program examples. Only a few annotations are crucial, and it is therefore desirable

to focus the attention of the user on these. Therefore, elaboration module helps to in-

terpret the annotated types by ignoring irrelevant information, summing up weights

in equivalent positions and producing a commented cost-formula, parametrised over

a program’s input.

Recall the example of a function that inserts an integer into a balanced red-black

tree from Section 1.2. Again, it is not important for this example what this function

actually does. The result of the analysis for the function is the following annotated

type, which according to our observation in Section 5.2.1, lists each type together

with all its constructors for its annotation, as well as the annotated types of the

arguments of each constructor. The symbol # represents the “self-type”, i.e. the

innermost enclosing type.

(int,tree[Leaf|Node<0>:colour[Red<10>|Black<28>],#,int,#]) -(20/0)->

tree[Leaf|Node:colour[Red|Black],#,int,#]

This annotated type gives rise to the same simple arithmetic cost formula that we

had stated in Section 1.2, through the definition of potential. However, the annotated

type is certainly much harder to digest than the equivalent arithmetic cost formula.

Therefore, the elaboration module of the implementation now automatically yields

this simplification on demand and prints this cost formula after the annotated type.

Worst-case Heap-units required in relation to input:

20 + 10*X1 + 18*X2

where X1 = number of "Node" nodes at 1. position

X2 = number of "Black" nodes at 1. position
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There is nothing deep in this transformation from annotated type to natural language.

First, some simplifications are applied, such as shifting potential outwards as far as

possible without worsening the bound, as discussed in Section 5.2.1. Second, it just

applies the definition of potential, to generate a simple sum.

Note, however, that the first step looses some minor information. The cost formula

tells us that we need at most 10 resource units per tree node, plus 18 for those nodes

that are black, whereas the annotated type tells us that we do not need any resources

per tree node, but 10 for red nodes and 28 for black nodes. The subtle difference lies in

the timing: with the annotated type, we know that there is no resource consumption

until after matching on the colour of a node, because the potential only becomes

available at that point. It is conceivable that the programmer might make use of

this information to optimise the code. However, the heuristic used to determine the

objective function does not guarantee that we will always receive the above annotated

type. LP-solver might just as well return also return the type

(int,tree[Leaf|Node<10>:colour[Red<0>|Black<18>],#,int,#]) -(20/0)->

tree[Leaf|Node:colour[Red|Black],#,int,#]

7.5 Interactive Solution Space Exploration

Programs often admit several possible resource bounds and it is in general not clear

which bound is preferable. Recall the example for zipping two lists from Section 4.4.3,

whose heap space consumption is proportional to the length of the shorter input list.

The implementation of our analysis returns the following result.

zip: (list[Nil|Cons<0>:int,#],list[Nil|Cons<3>:int,#])

-(0/0)-> list[Nil|Cons<0>:int,#]

Worst-case Heap-units required to call zip in relation to input:

3*X1

where X1 = number of "Cons" nodes at 2. position

So the heuristic employed for the objective function cause the LP-solver to choose a

bound in relation to the length of the second input list.
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However, we might have further knowledge about our program that tells is that we

usually call function zip with the first input list being shorter. The implementation

allows the user to explore the entire space of admissible solutions for the linear

program by increasing or decreasing the penalty attached to a resource variable in

the type.

Enter variable for weight adjustment or "label","obj" for more info;

leave blank to proceed: X1

Old objective weight: 8.0 Enter relative weight change: 10

Setting CVar ’155’ to weight ’18.0’ in objective function.

Attempting solving now...Done!

(4.999876022338867e-3s required for solving.)

zip: (list[Nil|Cons<0>:int,#],list[Nil|Cons<3>:int,#])

-(0/0)-> list[Nil|Cons<0>:int,#]

Worst-case Heap-units required to call zip in relation to input:

3*X1

where X1 = number of "Cons" nodes at 1. position

So we choose to increase the penalty for X1 arbitrarily by 10. We learn that the name

X1 actually refers to resource variable 155, which we could have equally used, since it

is also possible to view the type annotated with the names of its resource variables.

Note that the implementation keeps the linear program in memory, and only adjusts

the objective function. The solver that has been used here, lp solve [BEN], supports

this through incremental solving, i.e. its starts the search from the previously found

solution, instead of starting from scratch, which results in almost instantaneous solv-

ing. Concrete performance statistics about this particular improvement for solving

the generated LPs can be found in [LJ09].

The new solution is printed on the screen again, and the user may then specify

another cost variable to be altered, until the cost bound is satisfactory. Step-by-step,

the user can thus explore the entire solution space for the analysed program.

The built-in heuristic for the objective function is usually able to guess a “good”

result for many program examples right away. However, allowing the user to tune the

solver’s priorities is also a good way of understanding the overall resource behaviour

of a program. So even in the many cases that are already properly resolved by the

heuristic, this interaction may offer valuable insights.
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In this chapter we will evaluate our analysis method by discussing the cost bounds in-

ferred by our automated amortised analysis for various interesting program examples.

The examples discussed in this chapter focus on the use of higher-order types. Several

of these examples were first discussed in a limited form in our work [JLHH10]. All

cost bounds presented in this chapter were inferred by our implementation, which

was created during the EmBounded project [EmB09] as discussed in the previous

chapter.

In order to match the implementation used, the programs in this chapter are pre-

sented in the syntax of expression-level Hume [HM03], which is quite similar to

Haskell. However, recall from the previous chapter that lambda abstraction and

destructive matches are extensions to Hume which are not officially supported. The

notation that we use here is more compact than Arthur, and not in let-normal

form, since a transformation to let-normal form is a part of our implementation, as

described in Section 7.2. Functions are defined in a Haskell-style notation that

uses multiple rules with pattern matching, which is equivalent to a top-level match

expression. The basic type of integers is parametrised with its bit-size precision.

We also use the familiar notation of [] for Nil and _:_ for Cons in the pre-defined

list type: data [a] = Nil | Cons a [a] for some of the program examples. This

notation is automatically de-sugared before the analysis is performed.

We apply the amortised analysis technique to the following program examples:

List Folding. Widely-used list folding can be precisely bounded for all cost metrics.

Composition and Nesting. Our technique can easily deal with function composition

and nested data structures.

Twice, Quad and Quad of Quad. Second and third order types mixed and mingled

for the repeated application of an unknown function.

Tree Operations. Two higher-order tree traversal examples.

Sum-of-Squares. Compares first-order and higher-order version of a simple program

and demonstrates the experimental feature of numeric potential.

Abstract Machine for Arithmetic Expressions. Revisits the example from Section 5.6,

before defunctionalisation. Fails due to lack of resource parametric recursion.

Expression Evaluator. Higher-order evaluator for a loop-free programming language,

that includes local definitions and conditionals.

Inverted Pendulum. Demonstrates a successful worst-case execution time analysis

for a real-world embedded application.
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data list = Cons int list | Nil;

foldl :: (int -> int -> int) -> int -> list -> int;

foldl f n l = match l with

| Nil -> n

| Cons x xs = foldl f (f n x) xs;

add :: int -> int -> int;

add x y = x + y;

sum :: list -> int;

sum xs = foldl add 0 xs;

Figure 8.1: Source code of list-sum

8.1 List Folding

Our first example demonstrates the probably most common use of higher-order types

in functional languages: list folding. This is an important standard example for a

higher-order function, and thus the analysis of this function is also discussed in our

earlier publications [LJ09, JLHH10].

The code shown in Figure 8.1 defines the standard fold-left function, and then applies

it to sum up a list of integers values. We see that foldl has the second order type

(int→ int→ int)→ int→ list(int)→ int and successively reduces a list by applying a

function, which is parametrised through the first-order argument to function foldl.

A bound on the heap usage for the sum function is given by an annotated type,

as printed out by the implementation of the analysis. Recall from the discussion

in Section 5.6 that we need to mention each constructor for its annotation, and

that the symbol # represents the “self-type”, i.e. the innermost enclosing type.

For example, the print out “list[Cons<2>:int,#|Nil]” is to be interpreted as

µX.list[Cons<2>:int,X|Nil] and thus represents the type of lists of integers,

that also has a potential of two times the length of the list; the equivalent Arthur

type notation would be list(int, 2).
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ARTHUR3 typing for ArthurHeapUnboxed:

foldl: ((int,int) -(0/0)-> int, int, list[Cons: int, #| Nil:])

-(0/0)-> int

ARTHUR3 typing for ArthurHeapUnboxed:

add: (int,int) -(0/0)-> int

ARTHUR3 typing for ArthurHeapUnboxed:

sum: (list [Cons: int, #| Nil:]) -(1/0)-> int

So we learn from the annotated type for sum that computing the sum of an integer

list by folding only requires a single heap cell in the unboxed memory model. This

bound is exact, since the heap cell is required to create an empty closure for add in

the definition of function sum, in order to submit it to foldl, since only closures can

be given as arguments.

A much more interesting cost bound for this example can be obtained if we exchange

the cost metric from heap space usage to the worst-case clock cycles required to

process these functions on a Renesas M32/85U.

ARTHUR3 typing for HumeTimeM32:

foldl: ((int,int) -(0/525)-> int,

int,list[Cons:<517> int, #| Nil:<225>])

-(330/0)-> int

ARTHUR3 typing for HumeTimeM32:

add: (int,int) -(637/0)-> int

ARTHUR3 typing for HumeTimeM32:

sum: (list[Cons:<1714> int, #| Nil:<394>]) -(826/0)-> int

The bound for function foldl on its own is rather meaningless, since the cost of foldl

naturally depends on the resource behaviour of the supplied higher-order argument.

This is what we refer to by resource parametricity: the specialisation of an annotated

function type is delayed until all higher-order arguments are provided. Just for the

purpose of printing the annotated type, some rather random annotations are picked

for the higher-order arguments. The annotated type tells us which annotations were

picked by the solver; in this instance the unlikely beneficial type int×int 0 . 525−−−−→int had

been chosen in order to obtain a concrete type for the screen print.
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The type for function add is inferred as int×int 637 . 0−−−−→int, so it takes at most 637

clock cycles to add two arbitrary integers in the given worst-case execution time cost

metric. Inserting this annotated type of add for the function argument of foldl then

leads to a useful bound on executing function sum. Recall that, thanks to resource

parametricity, there is no need to re-analyse foldl again: the linear constraints that

were inferred and used for the annotated typing of foldl are just solved again, with

the added constraints that the annotated types of the argument and function add

must agree.

In order to understand the annotated type of sum, we ask the tool to print the results

in a more human-readable format, as described in Section 7.4. This then yields the

following printout.

Worst-case Time-units required to call foldl in relation to its input:

555 + 0*Y1 + 517*X2

where Y1 = (overall bound depends on the 1. function argument)

X2 = number of "Cons" nodes at 1. position

Worst-case Time-units required to call add in relation to its input:

637

Worst-case Time-units required to call sum in relation to its input:

1220 + 1714*X1 where X1 = number of "Cons" nodes at 1. position

So we learn that a call to function sum is linearly dependent on the length of the input

list. For a list of length n we have the bound 1220+1714n on the worst-case execution

time. The analysis uses the fact that any list has precisely one nil constructor, and

hence adds its potential of 394 to the petty potential of 826, in order to arrive at

the value 1220 for the constant term of the cost formula. The number 1714 is just

the potential attached to each cons constructor, as seen in the annotated type. Also,

note the warning attached to Y1, saying that the bound for foldl may vary with

this input argument through resource parametricity, as we have just observed above.

A comparison between predicted worst-case and measured usage for calculating sums

of integer lists by folding is shown in Table 8.1 on the next page. The measurements

were obtained from an instrumented version of the underlying abstract machine, that

counts resources used during the execution, and has been provided by Hans-Wolfgang

Loidl for the EmBounded research project. The resource metric used is the boxed
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Metric N = 1 N = 2 N = 3 N = 5 N = 10 N = 500

Heap

Analysis 16 24 32 48 88 4008

Measured 16 24 32 48 88 4008

Ratio 1.00 1.00 1.00 1.00 1.00 1.00

Stack

Analysis (35) 34 (46) 34 34 34 34 34

Measured 34 34 34 34 34 34

Ratio 1.00 1.00 1.00 1.00 1.00 1.00

Time

Analysis 3603 5615 7627 11651 21711 1007591

Measured 3066 4606 6146 9266 16926 771526

Ratio 1.18 1.22 1.24 1.26 1.29 1.31

Table 8.1: Analysis predictions and measurements for calculating sums of integer lists

of length N by folding

Hume memory model, which implies that adding two integer values incurs a heap

space cost of two units, in order to store the new integer value. Note that the table

shows inferred bounds and measurements for the entire code, which also includes the

costs for generating the test input. The absolute values given in the table are thus

higher than the values calculated from the annotated type for function sum alone.

We see that the inferred bounds on heap and stack space usage are the best possible

in all cases, since the execution demand meets the predicted worst-case. There is a

small glitch for the stack usage bounds for lists of length 1 and 2, where the default

heuristic chooses the loose bound shown in parenthesis, in order to maximise the

return of unused resources at the end of the computation. However, the better bound

of 34 is inferred if we disable the punishment of slack variables through command

line option --nsl, which is recommended for stack space bounds. Finally, we see

that our predictions on worst-case execution time are a pretty good match to actual

execution times, with the estimated worst-case being between 18% and 31% higher

than the observable cost, which is well below the stated target goal of 50% for the

EmBounded project.
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type num = int 32;

-- foldr :: (a -> b -> b) -> b -> [a] -> b;

foldr f n [] = n;

foldr f n (x:xs) = f x (foldr f n xs);

foldr1::( num -> [[num]] -> [[num]] )-> [[num]] -> [num] -> [[num]] ;

foldr2::([num]->[[[num]]]->[[[num]]])->[[[num]]]->[[num]]->[[[num]]];

-- compose :: (b -> (c -> d)) -> (a -> b) -> a -> (c -> d);

compose f g n l = f (g n) l;

compose1 :: ( [num] -> [[num]] -> [[num]] ) ->

( num -> [num] ) -> num -> [[num]] -> [[num]] ;

compose2 :: ([[num]] -> [[[num]]] -> [[[num]]]) ->

([num] -> [[num]]) -> [num] -> [[[num]]] -> [[[num]]];

-- cons :: a -> [a] -> [a];

cons n l = (n:l);

cons1 :: [num] -> [[num]] -> [[num]] ;

cons2 :: [[num]] -> [[[num]]] -> [[[num]]];

-- map :: (a -> b) -> [a] -> [b];

map f l = foldr (compose cons f) [] l;

map1 :: ( num -> [num] ) -> [num] -> [[num]] ;

map2 :: ([num] -> [[num]]) -> [[num]] -> [[[num]]];

aomt :: num -> [num];

aomt x = let xp = x + 1 in [xp, 2*xp];

expression

map2 (map1 aomt) (map1 aomt (aomt 0));

Figure 8.2: Source code for composite mapping
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8.2 Nesting and Function Composition

Our second program example shows that our amortised analysis technique can easily

deal with function composition and nested data structures. Function composition

is very essential for higher-order functional programs, since higher-order types allow

highly generalised library functions, which are then composed to build programs.

Similarly, nested data structures allow the reuse of familiar operators on different

levels of the structure.

The central function of this example is the well-known map function, which takes a

function and a list and applies the function to each element of the list separately,

returning the list of results. Instead of defining map directly, we make things more

interesting by defining map through right-associative list folding and function com-

position. The composition is between the supplied function parameter and a simple

cons function that just adds an element to a list.

The function to be mapped is an arbitrary demo function called aomt, which takes

an integer, adds one and then multiplies the result by two. Function aomt returns an

integer list of length two, which includes the intermediate result. Note that it does

not matter for this example what aomt actually does, or that the length of its result

list happens to be always two. Any mixture of functions of type A → list(A) would

serve equally well for this example, provided that their resource consumption can be

linearly bounded by their input through our analysis.

For an example, we have the following computations:

aomt 0 = [1,2]

map aomt (aomt 0) = [[2,4],[3,6]]

map (map aomt) (map aomt (aomt 0)) = [[[3,6],[5,10]],[[4,8],[7,14]]]

This can be continued further by applying maps of aomt to the result without any

problem for our analysis.

The analysed code is shown in Figure 8.2 on the preceding page. Since our implemen-

tation is monomorphic, the code requires some duplication to obtain all necessary

typings for map, which were omitted in the figure. Note that function mapn actually

makes calls to foldrn, composen and consn. Of course, we could have chosen to

avoid using the functions cons and compose, by directly using the Cons: constructor

in the body of a lambda abstraction.

184



8.2 Nesting and Function Composition

Applying our analysis yields the following results for the main expression

map2 (map1 aomt) (map1 aomt (aomt 0))

where the constructors Cons and Nil are abbreviated by their first letter:

ARTHUR3 typing for ArthurHeapUnboxed:

64, list [C: list [C: list [C: int, #| N:], #| N:], #| N:] ,0

ARTHUR3 typing for HumeHeapBoxed:

221, list [C: list [C: list [C: int, #| N:], #| N:], #| N:] ,0

ARTHUR3 typing for HumeStackBoxed:

128, list [C:<11> list [C:<6> list [C: int, #| N:], #| N:], #| N:] ,61

ARTHUR3 typing for HumeTimeM32:

55647, list [C: list [C: list [C: int, #| N:], #| N:], #| N:] ,0

ARTHUR3 typing for CallCount ["aomt"]:

7, list [C: list [C: list [C: int, #| N:], #| N:], #| N:] ,0

The bound for unboxed Arthur heap space usage is exact, as we shall see in the

next paragraph. The instrumented Hume cost model execution confirms that the

bound for the boxed Hume heap usage is exact, i.e. 221 heap units were indeed

used, while the stack and WCET metrics have a slack of 20.8% and 59.3% respec-

tively. The slack for both bounds drops below 9% if we look at the degenerated

case map2 (map1 aomt) (map1 aomt []), which must also be accounted for. The

annotated type for stack usage also informs us that at least 11 · 2 + 6 · 4 + 61 = 107

of the requested 128 stack units can be reclaimed after the execution, which is only

one more than were actually used. The last resource metric CallCount ["aomt"]

bounds the overall number of calls to function aomt by 7, which is exact as well:

one initial call, two calls during the first mapping and two calls for each of the two

subsequent mappings.

We now investigate how the resource usage of 64 heap units comes to pass for the

unboxed Arthur heap metric. The expression clearly computes in three stages:
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a) The first stage, the call aomt 0 requires 4 heap units in order to construct a

list of length two, since each list node requires two cells.

b) The second stage, which maps function aomt over the previous result, initially

requires one heap cell for the creation of an empty closure for aomt, in order to

pass it as a function argument. In the body of map1 we similarly require one cell

for turning cons1 into an empty closure and three heap units for the closure

that holds the composition of cons1 and aomt (i.e. one plus two to remember

the two pointers to the two supplied argument functions). So we see that the

constant consumption of stage two is five.

Executing function foldr1 then requires another 12 heap units in total: 2 for

each node of the two nodes of the outer list and again 2 each node of the two

inner lists, which themselves are of length 2 each. Hence, the overall heap usage

of stage two is 17.

We can also apply the analysis on the expression map1 aomt to obtain the type

ARTHUR3 typing for ArthurHeapUnboxed:

map2 aomt: 3, (list [C:<6> int, #| N:]) -(4/0)->

list [C: list [C: int, #| N:], #| N:] ,0

which confirms the computation. Each node of the argument list requires a

potential of 6, since it triggers the generation of one outer and two inner list

nodes. The call also requires 4 heap cells for the closures of cons1 and the

composition of this closure with function aomt.

Note that the cost of the initial empty closure for aomt is not included in the

annotated function type above, since it must have been created earlier in order

to form the expression map1 aomt in the first place. This cost is included in the

three that precedes the type, which shows the cost that is incurred for defining

the expression. The other two heap units of these three are required to store

the result of the expression map1 aomt, which is a closure due to the missing

list argument for the map operation. The closure is not generated for the

occurrence of map1 aomt in stage two of the evaluation of the large expression,

since the call to map1 is fully applied at this point.

c) The third stage requires again a heap unit to create an empty closure for

function aomt, since our compiler does not recognise that it could reuse the
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previously generated closure. Whether or not such an optimisation is imple-

mented does not affect our analysis directly, since it would just lead to different

code after ghost-let-normalisation (i.e. another push-variable instead of under-

application).

Another two cells are now required to hold the closure for map1 aomt as an

argument for map2. This leads to a fixed overhead of 3 + 4 = 7, since another 4

heap cells are required for the closures of cons2 and the composition of cons2

with the closure for map1 aomt, for the same reason as observed above for stage

two.

The inner list nodes of the argument to map2 (map1 aomt) must supply a

potential of 6, again following our observation from stage two. The outer list

nodes must coincidentally also carry a potential of 6. For each outer node of the

input, we require four heap units to store the closures generated by executing

map1 aomt on it, plus two to create the outermost list node that holds the

result in the end.

Since the argument for map2 (map1 aomt) is a list of length two having inner

lists of length two, we compute an overall heap space usage of 7+2·6+2·2·6 = 43

for stage three.

We can again use the analysis on the expression map2 (map1 aomt) to confirm

these observations by inferring the function type

ARTHUR3 typing for ArthurHeapUnboxed:

5, (list [C:<4> list [C:<6> int, #| N:<2>], #| N:]) -(4/0)->

list [C: list [C: list [C: int, #| N:], #| N:], #| N:] ,0

Worst-case Heap-units required in relation to input:

9 + 6*X1 + 6*X2

where X1 = number of "C" nodes at 1. position

x2 = number of "C" nodes at 2. position

which again includes a requirement of two additional heap cells for creating

the resulting closure, that is not created during the computation of the large

expression.

We must also remark that the heuristic for the objective function delivers a

slightly inferior type for the partial expression, namely one that requires 4 ad-

ditional heap cells, but that also assigns a potential of 4 to the output. Howe-

ber, the bound is equivalent, since the code contains no destructive matches,
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hence the four cells that are guaranteed to be left unused at the end of the

computation must have been unused throughout. Using the interactive solving

procedure to adjust the heuristic for the objective function, as described in

Section 7.5, can also deliver the above printed type in a single step.

All the heap usage throughout the evaluation of the expression is cumulative, since

the program has no destructive matches. Therefore, we see that the overall heap

space usage is 64 = 4 + 17 + 43, as automatically inferred by our automated analysis

for that expression in the first place, without any manual intervention nor interactive

solving.

We conclude this example by remarking that the amortised analysis technique is well

suited for dealing with nested data structures. This example only dealt with sub-lists

having an equal length, but losing this property would not diminish the quality of

the inferred bounds, unlike for sized type based approaches. No over-approximation

to accommodate the largest sub-list is required. The key point is that potential is

always assigned per node, so sub-lists of differing lengths can be assigned precisely

the potential they require individually.

8.3 Applying Twice, Quad and Quad of Quad

We now discuss an interesting example of two simple higher-order polymorphic func-

tions, shown in Figure 8.3. The function twice simply applies a given (endo-)function

twice on an argument. The function quad applies twice twice, effectively applying a

given function four times on a given argument. While this example may appear very

simple, one should note the difficulty of higher-order composition between twice and

quad, which is certainly not trivial to analyse. The first three expressions already

require second order types, while the fourth example expressions involves third order

types.

We obtain the following polymorphic type as heap bound for quad:

ARTHUR3 typing for HeapBoxed:

(a -(0/0)-> a) -(0/0)-> a -(5/0)-> a
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succ :: int -> int;

succ x = x + 1;

doubl :: [int] -> [int];

doubl [] = [];

doubl (h:t) = h:h:(doubl t);

twice :: (A -> A) -> A -> A;

twice f x = f (f x);

quad :: (A -> A) -> A -> A;

quad f x = twice f (twice f x);

expr1 :: int;

expr1 = twice succ 0;

expr2 :: int;

expr2 = quad succ 0;

expr3 :: int;

expr3 = quad (quad succ) 0;

expr4 :: int;

expr4 = (quad quad) succ;

Figure 8.3: Twice and Quad
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The resource consumption for quad is expressed by the annotation on the top level

function type: five heap cells are required to build a closure for twice f, which

contains one fixed argument. The zeros for the function argument are provisional,

the LP-solver has simply chosen a possible solution. When applied to a concrete

function, the merged constraints will need to be solved once again. Applying the

successor function succ, which has a fixed cost of four heap units per call, then

yields the correct typing of:

ARTHUR3 typing for HeapBoxed: int -(21/0)-> int

Using a call-count metric for the number of calls to the function succ required to

evaluate the second expression quad succ 0, we obtain the following bound. This

accurately indicates that succ is called precisely four times.

ARTHUR3 typing for CallCount ["succ"]: 4, int ,0

Similarly, for the third expression, which applies quad once more we obtain:

ARTHUR3 typing for CallCount ["succ"]: 16, int ,0

We must note, though, that the current implementation still needs an experimental

switch in order to obtain the above result. The treatment of polymorphic types was

not originally included in the implementation, and therefore some minor tweaks are

still necessary. The same is true for the next result.

An even more interesting result is the one for the fourth expression, where function quad

is first applied to itself alone, before applying the result to function succ again:

ARTHUR3 typing for CallCount ["succ"]:0, int -<256>/<0>-> int ,0

It may surprise that the automatic amortised analysis presented in this thesis is

capable of inferring the correct, but seemingly exponential bound, since the presented

technique can only infer linear bounds. However, the bound is in fact constant, since

the number of calls to succ made by the generated closure does not at all depend on

the input to the closure.
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data tree = Leaf num | Node tree tree;

dfsAcc ::(num -> [num] -> [num]) -> tree -> [num] -> [num];

dfsAcc g (Leaf x) acc = g x acc;

dfsAcc g (Node t1 t2) acc = let acc’ = dfsAcc g t1 acc

in dfsAcc g t2 acc’;

cons :: num -> [num] -> [num];

cons x xs = x:xs;

revApp :: [num] -> [num] -> [num];

revApp [] acc = acc;

revApp (y:ys) acc = revApp ys (y:acc);

flatten :: tree -> [num];

flatten t = revApp (dfsAcc cons t []) [];

Figure 8.4: Source code of tree-flattening (flatten)

8.4 Tree Operations

The next two examples operate over trees. The first is a tree flattening function,

using a higher-order depth-first-traversal of a tree structure that is parametrised by

the operation that is applied at the leaves of the tree. The source code is given

in Figure 8.4 and was written by Hans-Wolfgang Loidl, who also performed the

measurements.

Again, the bounds for heap, stack, and time consumption are linear in the number of

leaves (l) and nodes (n) in the input structure: the heap consumption is 8l + 8, the

stack consumption is 10l+16n+14, and the time consumption is 2850l+938n+821.

ARTHUR3 typing for HeapBoxed:

(tree[Leaf<8>:int|Node:#,#]) -(8/0)-> list[Cons:int,#|Nil]

ARTHUR3 typing for StackBoxed:

(tree[Leaf<10>:int|Node<16>:#,#]) -(14/23)-> list[Cons:int,#|Nil]

ARTHUR3 typing for TimeM32:

(tree[Leaf<2850>:int|Node<938>:#,#]) -(821/0)-> list[Cons:int,#|Nil]
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Metric N = 1 N = 2 N = 3 N = 4 N = 5

Heap

Analysis 21 38 55 72 89

Measured 21 38 55 72 89

Ratio 1.00 1.00 1.00 1.00 1.00

Stack

Analysis 34 60 66 82 98

Measured 34 50 50 66 66

Ratio 1.00 1.20 1.32 1.24 1.49

Time

Analysis 4485 8732 12979 17226 21473

Measured 4275 7970 11665 15360 19055

Ratio 1.05 1.10 1.11 1.12 1.13

Table 8.2: Predictions and measurements for higher-order depth-first tree traversal

Table 8.2 compares analysis and measurement results for the tree-flattening example.

The bounds for heap are exact. For stack, the analysis delivers a linear bound,

whereas the measured costs are logarithmic in general. Here, we could usefully apply

the extension of the amortised analysis technique proposed by Campbell [Cam09],

as discussed in Section 3.1. Campbell describes methods for associating potential

in relation to the depth of data structures, as well as the temporary “borrowing”

of potential. Both techniques are generally more helpful for determining stack-space

usage. Note that the benefits of tail-call optimisation are already accounted for in our

implementation. The time bounds give very good predictions, with an over-estimate

of at most 13% for the range of inputs shown here.

The second operation on trees considered is the repmin function, shown in Figure 8.5.

The function repmin replaces all leaves in a tree with the minimal value. This

function is implemented in two phases, both using higher-order functions: the first

phase computes the minimal element using a tree-fold operation; the second phase

fills in this minimal element using a tree-map function.

Table 8.3 on page 194 compares analysis and measurement results for the repmin

example. Again the bounds for heap are exact. For stack, we observe a linear bound

but with an increasing gap between the measured and analysed costs. This is due to

the two tree traversals. The time bounds, however, show a good match against the

measured costs, with an over-estimate of at most 22%.
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type num = int 16;

type list = [num];

data tree = Leaf num | Node tree tree;

treefold :: (num -> num -> num) -> tree -> num;

treefold f (Leaf x) = x;

treefold f (Node t1 t2) = f (treefold f t1) (treefold f t2);

treemap :: (num -> num) -> tree -> tree;

treemap f (Leaf x) = Leaf (f x);

treemap f (Node t1 t2) = Node (treemap f t1) (treemap f t2);

mymin :: num -> num -> num;

mymin x y = if (x<y) then x else y;

k1 :: num -> num -> num;

k1 x _ = x;

getmin :: tree -> num;

getmin t = treefold mymin t;

fill :: num -> tree -> tree;

fill z t = treemap (k1 z) t;

repmin :: tree -> tree;

repmin t = let z = getmin t

in fill z t;

Figure 8.5: Source code for repmin program example
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Metric N = 1 N = 2 N = 3 N = 4 N = 5

Heap

Analysis 17 35 53 71 89

Measured 17 35 53 71 89

Ratio 1.00 1.00 1.00 1.00 1.00

Stack

Analysis 42 69 96 123 150

Measured 42 52 61 62 71

Ratio 1.00 1.33 1.57 1.98 2.11

Time

Analysis 5020 10991 16962 22933 28904

Measured 4633 9395 14157 18919 23681

Ratio 1.08 1.17 1.20 1.21 1.22

Table 8.3: Analysis predictions and measurements for higher-order tree replacement

8.5 Sum-of-Squares Variations

In this section, we study 3 variants of the classic sum-of-squares example (Figure 8.6

on page 196). This function takes an integer n as input and calculates the sum of all

squares ranging from 1 to n. The first variant is a first-order program using direct

recursion, which does not construct any intermediate list structures. The second

variant uses the higher-order functions map and fold to compute the squares over

all list elements and to sum the result, respectively. The third version additionally

uses the higher-order function unfold to generate the initial list of numbers from 1

to n. The code was written and measurements were performed by Hans-Wolfgang

Loidl for the EmBounded project.

Note that since all variants receive a integer as their sole input, this would imply

that the analysis could only infer a constant cost bound, since all integers have

the same fixed size. We therefore analyse this example with the experimental feature

numeric potential enabled. Numeric potential, as described in Section 3.2, essentially

determines the potential of a non-negative numeric value as if it would be a list of unit

elements of the same length. This is only an analogy, so fractional values are allowed.

Likewise, there is no runtime overhead, since the program remains unchanged and

deals with numeric values as normal. For an example, the type (int, 3.3) simply means

that the potential required is 3.3 times the actual value supplied.

The feature of numeric potential is still considered experimental, since it is not dealt

with in our main soundness proof. Furthermore, the inferred bounds may indeed be
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N = 10
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sum-of-squares (variant 1: direct recursion)

Analysis 22 114 30 18091

Measured 22 108 30 16874

Ratio 1.00 1.06 1.00 1.07

sum-of-squares (variant 2: with map and fold)

Analysis 56 200 114 53612

Measured 56 200 112 42252

Ratio 1.00 1.00 1.02 1.27

sum-of-squares (variant 3: also unfold)

Analysis 71 272 181 77437

Measured 71 272 174 59560

Ratio 1.00 1.00 1.04 1.30

Table 8.4: Results for three variants of the sum-of-squares function

invalid if a numeric value with a non-zero potential is actually negative at runtime.

Our implementation contains no safety checks on the sign for numeric values. How-

ever, for this program example it is easy to see that all occurring numerical values

will always be non-negative.

Table 8.4 summarises analysis and measurement results for all three variants. As

expected, the higher-order versions of the code exhibit significantly higher resource

consumption, notably for the second and third variants which generate two inter-

mediate lists. These additional costs are accurately predicted by our analysis. In

particular, the heap costs are exactly predicted and the stack costs are almost exact.

The time results are within 30% of the measured costs. We consider this to be a very

good worst-case estimate for higher-order code.

We exploit the capability to easily exchange the resource metric used by our analysis

once more and determine bounds on the total number of function calls in a program

expression. This call-count metric is of particular interest for higher-order programs,
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-- common code

sq n = n*n; add m n = m+n;

-- map, (left-) fold over lists are standard

-- enumFromTo m n generates [m..n] (tail-recursive)

-------------------------------------------------------

-- variant 1: direct recursion

sum_sqs’ n m s = if (m>n)

then s

else sum_sqs’ (n-1) m (s+(sq n));

sum_sqs n = sum_sqs’ n 1 0;

-------------------------------------------------------

-- variant 2: uses h-o fcts fold and map

sum xs = fold add 0 xs;

sum_sqs n = sum (map sq (enumFromTo 1 n));

-------------------------------------------------------

-- variant 3: uses h-o fcts unfold, fold and map

data maybenum = Nothing | Just num;

unfoldr :: (num -> maybenum) -> num -> [num];

unfoldr f z = case f z of Nothing -> []

| (Just z’) -> z’:(unfoldr f z’);

countdown :: num -> maybenum;

countdown m = if (m<1) then Nothing else Just (m-1);

enum :: num -> [num]; -- this generates [n,n-1..1]

enum n = if (n<1) then [] else n:(unfoldr countdown n);

sum_sqs :: num -> num;

sum_sqs n = sum (map sq (enum n));

Figure 8.6: Source code of sum-of-squares (3 variants)
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and discussed in more detail in [LJ09]. The results are also included as the first

column in Table 8.4 on page 195. The first variant exhibits the lowest number of

function calls, since all three phases of the computation are covered by one recursive

function. Thus, we have one function call to the square function and one recursive

call for each iteration. The number of iterations is identical to the initial integer

value given as input. Additionally, we have one call to the top level function:

ARTHUR3 typing for CallCount: (int<2>) -(2/1)-> int

The second variant separates the phases of generating a list, computing the squares

and summing them. The generation phase, implemented using direct recursion, needs

one call per iteration. The other two phases each need two calls per iteration: one

for the higher-order function, and one for the function being applied. In total we

have 5n+ 6 calls, as encoded by the following type:

ARTHUR3 typing for CallCount: (int<5>) -(6/0)-> int

The third variant again has three phases. Now all three phases use higher-order

functions, with the enumeration being implemented through a call to unfold. The

number of calls therefore increases to 7n+ 1. This is encoded by the following type:

ARTHUR3 typing for CallCount: (int<7>) -(1/0)-> int

8.6 Revisiting an Abstract Machine for Arithmetic

Expressions

In Section 5.6 we analysed an abstract machine for evaluating arithmetic expression,

which was calculated by Graham and Hutton [HW06] from a specification essen-

tially through adding continuations and defunctionalisation. It is now natural to

ask whether we can perform the analysis directly on the high-order code before the

defunctionalisation step, which is shown in Figure 8.7 on the next page.

Unfortunately, the linear program generated by our analysis is infeasible for any

interesting resource metric, since the technique does not support resource parametric

recursion.
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data expr = Val(int) | Plus(expr,expr)

let rec eval = fun e → -- eval :: expr→
(
int→ int

)
→ int

let rec ev aux = fun c →
match e with

|Val(n) → c n

|Plus(x,y) →
let rec f = fun n →

let rec g = fun m →
let s = n+m in c s

in eval y g

in eval x f

in ev aux

in

let rec run = fun e → -- run :: expr→ int

let rec id = fun x → x

in eval e id

in run

Figure 8.7: Continuation-passing arithmetic evaluator
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In order to understand the problem, consider a simple cost metric where the binary

+-operator on integers incurs a cost of one, while everything else has a cost of zero.

The cost is clearly linear in the input, since precisely one integer addition will be

executed per Plus:-constructor in the input.

Note that the problem persists similarly for other cost metrics, especially when the

construction of function closures incurs some non-zero cost, as one would normally

expect.

Consider the following general annotated type for function eval.

eval :: expr{Val:v | Plus:p} x0 . y0−−−−→
(
int x2 . y2−−−−→int

) x1 . y1−−−−→int

Hence the annotated type of function g necessarily is int x2+1 . y2−−−−−→int, since g performs

an integer addition (for the cost of one in the considered metric) and then applies

function c of type int x2 . y2−−−−→int. The use of function g as an argument in a recursive

call to eval will then produce the unsolvable inequality x2 ≥ x2 + 1.

The problem is that resource parametricity is not allowed for recursive calls. Given

a valuation, any recursive call within the body of the function definition must use

the same valuated type as the one obtained from that definition. It seems likely that

using techniques similar to polymorphic recursion [Hen93, KTU93] may be able to

achieve resource parametric recursion, but we leave this for future work.

8.7 Higher-Order Expression Evaluator with Local

Definitions

We now examine another evaluator, which was written directly to make use of high-

order functions by Hans-Wolfgang Loidl [JLHH10]. The evaluator not only encom-

passes arithmetic expressions, but also variable definitions and conditionals, but is

loop-free. Its code for the evaluation function eval is shown in Figure 8.8 on the

following page.

We see that the data type of expressions expr has 6 constructors: constant integer

values; variables; conditionals; definition of local variables; unary operations; and

binary operations. The evaluator uses a function rho to model the environment,

hence variable lookup simply applies this environment function to variable names.

The evaluation of a let expression then defines a new environment function rho′,

which returns the newly computed value x for the freshly bound variable v and which

acts like rho otherwise.
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The code for this higher-order program evaluator is shown in regular Hume-style syn-

tax, which can be directly processed by the Hume tools that implement our amortised

analysis technique. The lambda abstraction added to Hume uses a standard notation

combined with let-definitions, i.e. let fx = e in is equal to let f = fun x → e in .

type val = int 16;

type var = int 16;

type env = var -> val;

data exp = Const val

| VarOp var

| IfOp var exp exp

| LetOp var exp exp

| UnOp (val->val) exp

| BinOp (val->val->val) exp exp;

_true = 1; _false = 0;

eval :: (var -> val) -> exp -> val;

eval rho (Const n) = n;

eval rho (VarOp v) = rho v;

eval rho (IfOp v e1 e2) = if (rho v)==_false

then eval rho e2

else eval rho e1;

eval rho (LetOp v e1 e2) = let x = eval rho e1 ;

rho’ v’ = if v==v’

then x

else rho v’

in eval rho’ e2;

eval rho (UnOp f e1) = f (eval rho e1);

eval rho (BinOp f e1 e2) = f (eval rho e1) (eval rho e2);

Figure 8.8: Higher-order program evaluator
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The analysis of the function eval produces the following heap bound for an unboxed

Hume heap cost metric:

ARTHUR3 typing for HeapUnboxed:

eval: (int -(0/0)-> int) -(0/0)->

exp[Const:int

|VarOp:int

|IfOp:int,#,#

|LetOp<9>:int,#,#

|UnOp:(int -(0/ANY)-> int<ANY>),#

|BinOp:(int -> int -(0/ANY)-> int<ANY>),#,#]

-(0/0)->int

We see that the cost of executing function eval is at most 9 times the number of let

expressions contained in its input, since the LetOp constructor is assigned a potential

of 9, while all other constructors yield no potential.

The cost for evaluating let expressions is due to the update of the environment,

which creates another closure for the update of the rho function. The cost is 9,

since in the unboxed Hume memory model, a closure always occupies 4 cells plus the

cells required to store the captured free variables, in this case two integers for 2 cells

each (v and x) plus 1 cell for the pointer to the function representing the previous

environment rho.

Similarly, for the unboxed Arthur model we obtain

ARTHUR3 typing for ArthurHeapUnboxed:

eval: (int -(0/0)-> int) -(0/0)->

exp[Const: int

|VarOp: int

|IfOp: int, #, #

|LetOp:<4> int, #, #

|UnOp: ((int) -(0/ANY)-> int), #

|BinOp: ((int,int) -(0/ANY)-> int), #, #]

-(0/0)-> int
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since an Arthur closure occupies 1 cell for the code pointer and uniformly 1 cell for

each of the three captured entities.

Unfortunately, the eval function cannot be analysed under the boxed memory mod-

els, again due to the lack of resource parametric recursion. Executing the comparison

operation in a boxed memory model causes the allocation of a boolean value within

the heap memory. Therefore the cost of executing function rho′ is increased as com-

pared to function rho, hence a different annotated type is required for the second

recursive call to eval in the branch dealing the the LetOp constructor.

The analysis succeeds if the we remove the branch dealing with the LetOp constructor

from this example and we obtain the following result for the boxed Arthur heap

cost metric.

ARTHUR3 typing for ArthurHeapBoxed:

eval: (int -(0/0)-> int,

exp[Const: int

|VarOp: int

|IfOp:<2> int, #, #

|LetOp: int, #, #

|UnOp: ((int) -(0/0)-> int), #

|BinOp: ((int,int) -(0/0)-> int), #, #]) -(0/0)-> int

Since the comparison and the creation of the false constant in the branch that pro-

cesses the IfOp constructor both have a cost of 1 the boxed Arthur heap memory

model, the analysis attaches a potential of two to this constructor. In other words:

Worst-case Heap-units required to call eval in relation to its input:

2*d010 where d010 = number of "IfOp" nodes at 1. position

8.8 WCET of a Real-Time Controller for an Inverted

Pendulum

Our last example is an inverted pendulum controller, which is a typical example for

embedded controllers found in automotive systems. This example demonstrates that
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our technique is able to deliver good bounds on worst-case execution time for real

hardware.

The inverted pendulum is a simple, real-time control engineering problem. A pen-

dulum is hinged upright at the end of a rotating arm. The controller receives as

input the angles of the pendulum and the rotating arm and should produce as its

output the electric potential for the motor that rotates the arm in such a way that

the pendulum remains in an upright position.

The control program was executed on a Renesas M32C/85U development board,

which was connected through voltage-scaling circuits to the sensors and motor of an

actual inverted pendulum. It perpetually computes the motor output through differ-

ential equation reasoning, plus some routines handling button presses that are used

for initialisation and calibration of sensors and motor. A more detailed description

can be found in our publication [JLS+09]. The program comprises about 180 lines

of Hume code, and it is one of the examples covered on the demonstration web page

of our analysis, http://www.embounded.org/software/cost/cost.cgi. The hard-

ware setup, implementation and measurements were performed by Norman Scaife for

the EmBounded research project [EmB09].

The measurements conducted during the experiment showed a best-case of 36118,

a worst-case of 47635, and average of 42222 clock cycles for processing an iteration

of the main control loop. About 6000 iterations were performed during an actual

run, where the Renesas M32C/85U actually controlled the inverted pendulum and

kept it upright. Since we have used a chip with a clock frequency of 32Mhz, the

execution time in milliseconds is obtained by multiplying the number of clock cycles

with the factor 0.00003125. The worst-case measured loop time is thus 1.489ms. The

pendulum controller can only be made stable with a reaction time of less than 10ms.

The automatic translation from Hume code into the ghost-let-normal form produces

about eight hundred lines of code to be analysed. Our implementation of the amor-

tised analysis then generated 1115 linear constraints over 2214 different variables.

The overall runtime of the analysis itself was less than second (∼ 0.67s) on a sea-

soned single core laptop (1.73Ghz Intel Pentium M processor with 2MB cache and

1GB of memory). This includes the time for solving the generated linear program-

ming problem (∼0.26s).

The bound on WCET that is inferred by our automated analysis is 63678 clock

cycles, or up to 1.990ms on a Renesas M32C/85U. This proves that the controller
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is guaranteed to be fast enough to successfully control the pendulum under all cir-

cumstances, since it is well below the 10ms limit on the sample rate. Compared to

the worst measured runtime during experimentation, our inferred bound on WCET

has an margin of 33.7%. This is quite a remarkable margin, since our inferred cost

bound is based on the resource constants obtained by the aiT tool [FHL+01], which

already, and necessarily, include a significant over-approximation on the WCET for

each bytecode instruction.

We must also remark that the margins of the WCET on the supplementary branches

of the code, that deal with the starting, calibrating and stopping of the experiment

through button presses, were initially much worse. This is due to the fact that the

execution cost of these branches is very small, and thus entirely dominated by the

initial pattern matches that decides between those branches. For a WCET bound,

we must necessarily assume that a match on a nested pattern can fail on the very

last sub-pattern, whereas during the experimented, the match always failed on an

early pattern. These over-approximations builds up, if there are several long patterns

which are tested subsequently, especially for the very last branch, whose worst-case

execution time must include the time for all previous patterns to fail. By manually

rearranging the order of the pattern matches (moving the fail-safe patterns to the

end), we could reduce the guaranteed WCET from 7702 down to a reasonable 2711

clock cycles for branch with worst margin. This branch had a measured execution

time of up to 2669 clock cycles. We therefore reduced the margin from 188.6% to

just 1.6%.

It should also be noted that our automated analysis technique was capable of inferring

exact bounds on memory consumption for the inverted pendulum controller, namely

299 heap and 93 stack units, which were indeed required by the execution during the

conducted experiments.

204



8.8 WCET of a Real-Time Controller for an Inverted Pendulum

205





9 Conclusion

207



9 Conclusion

We have presented and proven sound a novel automatic compile-time analysis for

determining upper-bound formulas on the use of quantitative resources for strict,

higher-order, recursive programs. The bounds we infer depend on the sizes of the

various inputs to a program. They thus expose the impact of specific inputs on the

overall cost behaviour.

A noteworthy merit of our analysis technique lies in its versatility. Firstly, it is not

only restricted to functional languages, but extends to imperative object-oriented

languages, such as Java [HJ06, HR09].

Secondly, it is not only restricted to heap space usage, but can be used to bound

other resource requirements of a program. In fact, any compositional quantifiable

resource that admits a static worst-case bound for the execution of each elementary

language construct can be accounted for. Adaptations of the technique to analyse

the worst-case usage of other resources have already been published (e.g. worst-case

execution time [JLH+09], stack-space usage [Cam09], and call-counts to selectable

functions [LJ09]). The treatment of realistic program examples clearly demonstrates

that the technique is truly capable to provide useful and precise bounds for all these

resources.

The usefulness of the approach was also demonstrated through its adoption by three

successful research projects [MRG05, EmB09, Isl11], and five peer-reviewed publica-

tions [HJ03, HJ06, JLH+09, LJ09, JLHH10] at respected conferences.

9.1 Complexity of the Inference

Our experiments based on our implementation show that we created a highly efficient

automated resource usage analysis, that can be performed in mere seconds. Relying

on linear constraint solving gives us a good intuition that our method is efficient, but

we did not prove any statement concerned with the efficiency of our proposed method.

We will therefore include some informal considerations about the complexity of the

analysis in this conclusion.

The focus of this thesis is placed on proving the soundness of our newly devised

automated program analysis. This is evident, for example, in type rules such as

Arthur`Generalise, which allows to replace a set of linear constraints with any

other constraint set that entails the original one, i.e. that is at least as restrictive. It

208



9.1 Complexity of the Inference

is obvious that such a natural rule is sound and how it can be used, but its general

formulation leaves it unclear how this rule should be used. Even worse, rules such

as this one allow things that may be sound, but are nonsensical. For example, one

might add arbitrarily many superfluous trivial constraints to a constraint set through

Arthur`Generalise. This means that the asymptotic complexity of our system,

as stated in this thesis, is trivially unbounded.

Nevertheless, our implementation shows that the analysis can be performed effi-

ciently. We believe that the analysis scales linearly with the size of the program,

provided that one assumes the maximum type size and the depth of the call graph

to be constant.

We will now informally underpin this belief, but the following considerations are

not a rigorous proof, since we did not formulate an algorithmic type system. Note

that the implementation, as discussed in Section 7, does not only differ from the

formally stated type rules through language features, such as excluding the treatment

of linear pairs, but also by directing the search for an annotated type. This direction

was based on our intuition, but has not been formalised besides the code. The way

structural rules are to be applied is left unspecified by the type rules themselves. We

thus used common sense alone to decide upon their application. For example, the

sharing rule is always applied as late as possible and only when absolutely needed

(i.e. when a context must be split and a variable occurs free in either branch). The

implementation therefore does not cover all valid Arthur type derivations, but we

hope that only nonsensical types are excluded. The following considerations about

the complexity therefore orient themselves on the design decisions taken during the

prototype implementation.

The implementation examines each syntactic construct of the program precisely once

to construct the annotated typing derivation. Most type rules introduce a small

constant number of constraints, on average two. This agrees with a linear complexity,

so we do not need examine these type rules here any further. The exceptional type

rules that may introduce a varying number of constraints are:

Arthur`Rec Arthur`Generalise Arthur`Supertype
Arthur`App Arthur`Share Arthur`Subtype

Let us thus examine the complexity of these type rules more closely, and we will see

that of these six rules, only the two type rules Arthur`Rec and Arthur`App

affect the number of generated constraints significantly in practice.
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Arthur`Generalise: Let us first consider the type rule Arthur`Generalise.

Like we already observed above, this rule alone allows the introduction of arbi-

trarily many constraints, since it allows to replace the current constraint set by

any constraint set that entails the old one. So the new constraint set might be

arbitrarily larger, e.g. by adding superfluous constraints over fresh variables or

trivial constraints such as 0 = 0. The new constraint set might also be smaller,

but in general there is no bound on the size of the newly introduced constraint

set. Therefore, the complexity of our analysis is trivially unbounded.

However, our implementation only applies this rule to create the union of two

constraint sets by concatenation, so it does not affect the overall complexity

of the implemented algorithm at all. The rule is only invoked at the end of

stage b.iii, as depicted in Section 7.3. For each block of mutually recursive

functions, the constraint set for the body of each function is inferred separately

first, but in the end all functions of the block share the same set of constraints

within their resource parametric function type. This is achieved by simply

taking the union of the constraint sets that had been inferred independently

for each function body. This is justified in terms of the Arthur type rules by

applying Arthur`Generalise once at the end of examining each function

definition, with the newly introduced constraint set ψ being the union of all

the individually inferred constraint sets.

We also experimented with optimising the generated constraint sets upon merg-

ing, in order to reduce their size. Again, this would be clearly permitted through

Arthur`Generalise. However, it turned out that this only happened to in-

crease the difficulty for our chosen LP-solver through numeric instabilities.

Arthur`Share: Inspecting the rules for sharing given in Figure 6.5 shows that

sharing generates at most one linear constraint for each resource variable con-

tained in the type to be shared. This leads to a quadratic complexity on its

own, since the number of resource variables in a type can only be generously

bounded by the overall program size. For example, consider a silly program

that just creates an empty list of a highly nested list type, and then returns a

pair of this type created by sharing the value, i.e. let x = [ ] in (x,x) : (A×A)

where A = list(list(· · · list(unit, qn) · · ·, q2), q1). However, the maximum size of

the types occurring within a realistic program is in practice independent from

the overall size of the program. So it is reasonable to assume the number of

annotations per type to be a small constant. Under this assumption sharing

does not increase the complexity.
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Arthur`Supertype & Arthur`Subtype: The considerations for the number

of constraints created due to super- and subtyping, governed by the rules shown

in Figure 6.4 are similar to both previous observations. For example, rule

SubPair technically allows an arbitrary enlargement of constraints like de-

scribed for Arthur`Generalise. However, again the implementation only

concatenates constraint sets to obtain the (multiset) union.

Unlike for Arthur`Generalise, subtyping may also require certain new

constraints, whose number is clearly bounded by the number of resource vari-

ables contained in the types that are involved in the subtyping. As discussed

above, it is reasonable to assume the number of resource variables per type to

be constant, so it does not raise the complexity either.

Arthur`Rec & Arthur`App: These are the only two rules that, in conjunction,

may significantly increase the number of linear constraints that are inferred in

practice.

The type rule Arthur`Rec not only adds two constraints plus those obtained

from sharing the context of the closure (i.e. sharing the type of each unbound

implicit parameter of the function), but more importantly it allows to store a

portion of previously generated constraints within the type, in order to allow

for resource parametricity. Each subsequent function application through type

rule Arthur`App then copies the entire constraint set, that had previously

been stored in the resource parametric function type.

Assume for a moment that Arthur`Rec is only required once throughout

typing the entire program. Since we can apply a function over and over again,

we already end up with a quadratic complexity: the size of the constraint

set in the parametric type is only bounded by the overall program size, and

similarly the number of function applications is also only bounded by the overall

program. For example, if half the code of a program of size n was used to define

a function, while the other half just repeatedly applies the function, the number

of constraints is already O
(
n
2

)
·O
(
n
2

)
= O

(
n2
)
.

A program that requires Arthur`Rec for defining another independent func-

tion simply leads to a constraint set having twice the size. However, if we wrap

the above program that leads to a quadratic constraint set size within the

defining body of another function, and then repeatedly apply this function in-

stead, we have already reached a complexity of O
(
n22
)
, since each application

already produces a constraint set of quadratic size. Of course, we can repeat
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Program Lines of Constraints Run-time Constr.

Code Number Variables Total LP-Solve per LoC

pendulum 190 1115 2214 0.67s 0.260s 5.87

biquad 400 2956 5756 1.43s 0.418s 7.39

gravdragdemo 190 2692 5591 2.14s 1.065s 14.17

cycab 270 3043 6029 2.75s 1.385s 11.27

meanshift 350 8110 15005 11.01s 6.414s 23.17

matmult 100 21485 36638 84.17s 21.878s 214.85

Table 9.1: Run-time for Analysis and for LP-solving

this schema again and again, increasing the size of the constraint set stored in

a resource parametric function type, by calling a previously defined resource

parametric function in the definition of another. Therefore, if the depth of the

call graph of a program is denoted by d, we obtain a complexity of at least

O
(
n2d
)
. However, we argue that the depth of the call graph of a program is

again independent from its overall size.

We therefore conclude from the above observations that our inference algorithm, at

least as we have implemented it (see Section 7), scales linearly with the program

size, if one assumes that the maximum type size and the depth of the call graph are

constant. It is otherwise exponential in the depth of the call graph and quadratic

in the type size. This is confirmed by our experiments conducted primarily for the

EmBounded research project [EmB09].

For convenience, we repeat a relevant fragment of the results presented in [LJ09] here.

Table 9.1 summarises, for several realistic applications written in Hume, the sizes of

the generated constraint sets, the number of variables used in the constraint sets, the

observed overall runtime of the inference in seconds (i.e. both constraint generation

and LP solving), the portion of the runtime spent on solving the constraints only,

and the ratio between the number of generated constraints and the lines of code.

Note that “lines of code” is quite a coarse measure. We counted the lines in the

program files as they were supplied by the programmer. Some programs also incur

some syntactic overhead due to using Hume boxes, a mechanism for coordination,

which therefore also figures in the number of code lines required. LP-solving was done

through calling the lp solve library [BEN] through the foreign function interface of
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Haskell, which also requires some marshalling of the data types. The measurements

were performed on a somewhat older 1.73GHz Intel Pentium M with 2MB cache and

1GB main memory only.

The applications used in Table 9.1 to examine the performance of the analysis are as

follows. The pendulum application balances an inverted pendulum on a robot arm

with one degree of freedom, as previously described in Section 8.8. It is a first-order

program with few function definitions and accordingly requires few constraints. The

biquad application is a biquadratic filter application; it uses many Hume boxes. The

gravdragdemo application is a simple, textbook satellite tracking program using a

Kalman filter and vector types. The cycab application is the messaging component

of an autonomous vehicle. The number of contained function definitions is about av-

erage. The meanshift computer vision application is a simple lane tracking program,

using several functions and vectors. Finally, matmult is a function for matrix mul-

tiplication, which was automatically generated from low-level, C-like code, through

an independent experiment conducted at Heriot-Watt university [GMH+09]. The

process of automatic program generation makes heavy use of higher-order functions

and of vectors for modelling the state space. The intensive use of higher-order func-

tions leads to a complicated call-graph and in turn to a high number of constraints,

requiring a compute-intensive analysis phase. Nevertheless, the time to solve the LP

remains well manageable.

9.2 Limitations

Note that, by itself, our analysis is only partially correct, as must be expected for

any such analysis dealing with a Turing-complete language. Any bounds reported

by our analysis for supplied programs are proven to be upper bounds, however, our

analysis may fail in finding such a bound for a specific program.

In particular, it will fail for all programs whose heap space usage is not linearly

bounded by its input sizes. Nevertheless, the range of interesting programs and pro-

gram fragments that can be successfully analysed is large, since we can expect that

there exists an analysable program for every problem belonging to the complexity

class O(2cn) due to an earlier result of Hofmann [Hof02]. Indeed, the covered pro-

gram examples in this thesis are far from being trivial, showing the usefulness of the

approach.
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Another important limitation is that our technique only counts resource usage, but

cannot by itself guarantee a safe use of resource. So we rely on other independent

work to ensure the safety of deallocation, or that no stale pointer is accidentally

reanimated, for example. However, these issues were cleanly separated, hence we

would not expect any interference when adopting such techniques for safety.

Further work in continuation of this thesis has already been extensively examined in

Section 3.2 on page 26, so we only summarize the previously discussed possibilities

here:

a) super-linear bounds, in order to increase the range of programs that can be

successfully analysed;A

b) lazy evaluation, which is still an unsolved problem for program analysis in

general, but appears to be manageable by our technique in ongoing research;

c) negative potential, allowing more precise bounds for worst-case execution time

in dependency of also the output, rather than the input alone;

d) lower bounds, to obtain a complete picture on the resource usage of a program;

e) ghost-data, to expose the recursion structure of a program and to provide a

fail-safe analysis, thereby enhancing its acceptance; and

f) numeric potential, to greatly increase precision for programs that perform in-

tensive arithmetic operations.

In addition to these, one might further explore whether resource parametricity can

be extended for (mutual) recursive calls as well, similarly to polymorphic recursion,

as pointed out in Sections b.iii on page 171, 8.6 on page 199, and 8.7 on page 202; or

whether use-n-times closures add anything essential, as mentioned in Section 6.1.3

on page 125. However, we believe that especially the latter is relatively minor with

respect to the usefulness of the analysis.

Overall, we can safely conclude that none of these limitations would severely restrict

the already impressive usefulness of the proposed amortised analysis technique as it

is right now.

ANote added in print: in the meantime amortised analysis with super-linear bounds has been

successfully studied in [HAH11, HH10a], albeit not with higher-order functions.
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