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Chapter 1

Summary

To comprehend how the brain performs efficient computation, it is important to un-

derstand the way sensory information is represented in the nervous system. Under natural

conditions, sensory signals have to be processed with sufficient accuracy under functional

and resources constraints.

Here I use motion vision in the fly Calliphora vicina to study the influence of two

behaviorally relevant environmental properties - temperature and light intensity - on the

representation of motion information in the responses of the neuron H1. The goal was to

quantify how these environmental properties affect the response variability, information

content, coding efficiency and temporal scale.

I show that the firing precision is determined largely by the light intensity rather than

by temperature. Moreover, a better firing precision barely improves the information rate,

which closely follows the mean firing rate. Altogether, my results suggest that the robust-

ness of the motion information processing against temperature variations depends on the

quality of the input signal. Furthermore, flies seem to use the input signal-to-noise ratio

to improve the information rate and reduce the time-scale of the response simultaneously,

by increasing the mean firing rate, rather than the firing precision.
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Chapter 2

Introduction

2.1 Motivation

To comprehend the underlying principles of neural computation, it is important to un-

derstand how sensory information is represented in the nervous system.

Sensory information processing is a complex task for several reasons. One of them is

the limited dynamic range sensory neurons have to encode sensory signals that frequently

range over several orders of magnitude. To avoid saturation or loss of sensitivity, sensory

neurons have to continually adjust their gains. In vision, for example, light intensity spans

over eight orders of magnitude during the day and around three orders in an hour [194],

whereas the dynamic range of the membrane potential of the photoreceptor cells covers

about two orders of magnitude [110, 8].

Another problem in sensory information processing is noise, which can be inherent to

the sensory signal, or intrinsic to the sensory system. Signals that have a discrete char-

acter, like odor concentration or light intensity, pose an additional challenge to receptors

cells, since their concentrations continuously fluctuate. In the same way, noise sources at

cellular or network level arise from thermal-dependent random fluctuations in the concen-
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tration of signaling molecules [56]. To which extent internal and external noises contribute

to the total noise in the system is still elusive. Some studies put forth that the variability

observed in neural signals is due mainly to noise in the sensory signal [9, 17, 115, 132],

whereas other studies claim that in certain conditions, the internal noise might be the bot-

tleneck for information processing [65, 53, 112, 111]. In some cases, noise can even improve

information transmission [114, 45] or enhance the system dynamics [39, 187], which makes

the characterization of the noise impact in the system performance even more challenging.

To counteract undesired noise effects, signals are usually averaged across time and across

parallel processing units, yielding a constant trade-off between processing reliability and

temporal and spatial resolutions. The representation of sensory information is therefore

a dynamic process that can be completely understood only if the adaptation mechanisms

the system uses to deal with internal and external perturbations are taken into account.

Since neural signals are eventually represented by sequences of identical action poten-

tials, it is assumed that the information about the signal is contained in the temporal

pattern of spikes [186, 151, 27]. The noise in the system is therefore manifested by the

spike timing variability, which can be quantified by recording the neural responses to mul-

tiple presentations of the same stimulus.

A convenient measure of information content [166] in the response about the stimu-

lus is defined as the number of stimuli that could be distinguished based on the response

symbols, that is, spike sequences of certain duration, usually shorter than the behaviorally

relevant time-scale of the animal. Thus, the amount of information transmitted by a neu-

ron depends on how many and how precisely spikes can be fired within such an encoding

window.

A compensation mechanism against an increase of the noise level could, for instance,

maintain the same amount of information by augmenting the encoding window, firing more

spikes, or both, limited by functional requirements and energy constraints. An efficient
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information representation would contain the most of information using the least of re-

sources, and it has indeed been suggested that sensory systems approach such optimal

representation strategies [5, 108, 193, 4, 23, 167, 173].

The aim of this work is to explore the issues discussed above using motion vision in the

fly as a model system. Specifically, the following questions will be addressed:

• To what extent does the amount of sensory information in the neural representation

vary, when the quality of the input signal and the internal state of the system change?

• How do noise and gain influence the information content, coding efficiency and tem-

poral scale of the representation?

To analyze these issues, responses from the motion sensitive neuron H1 to a time-varying

stimulus were recorded. The quality of the input signal was controlled by varying the mean

light level and the system state was changed by regulating the temperature.

Although the effect of temperature on the nervous system has been extensively studied

since the early days of modern electrophysiology [1, 89, 144, 130, 93], it is still not easy to

predict the consequences of temperature changes in the system performance. Even though

all biophysical and biochemical processes depend on temperature [43] - e.g. diffusion, chem-

ical equilibrium and reaction kinetics - compensatory mechanisms might easily emerge in

such complex systems that have elaborated regulatory pathways and whose components

have different thermal dependences [93, 156].

Temperature is an environmental property which is behaviorally relevant for Calliphora

flies, since they do not actively thermoregulate, like some bees, moths and dragonflies

[122, 80]. Flies body temperature closely follows the temperature of the surrounding envi-

ronment, because their lower mass, high body surface area, and absence of heavy insulation

facilitate heat exchange. Thus, in addition to daily thermal variations, which can be more

than 10 ◦ C, flies experience short-term body temperature changes. For example, direct
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exposition to sunlight rises their body temperature by about 6 ◦ C within a minute [202].

Despite changes in the body temperature, Calliphora flies are active over a wide tem-

perature range - from 10−12◦ C, where activity ceases [57], up to around 38◦ C [54], which

is the median lethal temperature. In some extreme cases, females were able to fly and lay

eggs in carrion at ambient temperatures of about 5 ◦ C [57].

In summary, flies behave robustly over a temperature range in which the kinetics of

biochemical reactions vary between three and fourfold and their visual system adapts to

wide variations of signal amplitude and noise. The analysis about how and to which extent

the sensory system compensates for such perturbations is not only ecologically relevant,

but also might help us to comprehend the underlying principles of robustness in biological

systems.

In the next section, a brief overview about the fly’s visual system will be presented,

with focus on the motion pathway from the photoreceptors to H1. Aspects relevant for

information processing as well as comparison between the effects of light and temperature

in the system will be highlighted whenever possible. Finally, the main results of a set of

studies that motivated this investigation will be discussed in some detail and the aims of

this work will be briefly summarized.

2.2 Motion vision overview

2.2.1 Phototransduction

Motion vision starts with the transduction of light into electrical signal in the photore-

ceptor cells. In flies, eight photoreceptor cells are found in each ommatidium, an optical

apparatus composed by a lens, a cone and pigment cells [28, 21, 72]. These structures

focus the light into the distal tip of a specialized region of the photoreceptor membrane

called rhabdom, which works as waveguide, trapping the light into it [192, 196, 174] (fig.
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2.1 A). The rhabdom is formed by a stack of tube-like structures, the microvilli, which

have a high concentration of rhodopsin molecules. Each microvillus is thought to be an

elementary light transduction unit.

The phototransduction cascade is an inositol phospholipid signaling pathway [126, 74,

128, 172] - when the rhodopsin absorbs the energy of a photon, it changes its configuration,

activating a G-protein, which in turn activates a phospolipase C (PLC). The activated PLC

hydrolyzes PI(4, 5)P2
1 into IP3

2 and diacylglycerol (DAG) (fig. 2.1 B). The mechanism

that opens the trp3 and trpl channels is not completely understood, but DAG - or one of its

metabolites (PUFAs4)- and calcium are necessary to open the channels. When the channels

open, calcium flows into the cell and triggers several feedback mechanisms that regulate

the termination of the response. In addition, calcium changes the gain of the transduction

cascade [126, 69, 74, 134]. How exactly calcium acts in the cascade is however unknown.

The final product of the cascade is a quantum bump, a depolarization of the membrane

for a short period of the time.

The daily dynamic range of light intensities varies up to eight orders of magnitude,

whereas the dynamic range of the membrane potential is around 60mv [110, 194]. When

light intensity decreases, the photoreceptor sensitivity increases in such a way, that a single

photon is able to generate a detectable bump in the photoreceptor membrane [75]. This

high sensitivity leads to two negative consequences, however. First, temporal resolution is

reduced - the bump duration can reach up to 40 ms at low light levels (at 20◦ C), whereas

at high levels it is around 5ms [153]. Considering that the behaviorally relevant temporal

scale for flying flies can be as short as 100 ms, long delays in the first stages of the visual

system can reduce the animal’s performance. Second, the randomness of photon arrival

makes the membrane potential noisy. This photon noise seems to be responsible for about

1phosphatidylinositol 4,5 - bisphosphate
2inositol 1,4,5 - triphosphate
3transient receptor potential
4polyunsaturated fatty acids
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50% of the total photoreceptor noise at low light intensities [111, 35], but its consequences

downstream the visual system are still elusive [65, 17, 115]. When the mean light intensity

increases, the bump amplitude, latency and duration are reduced [97, 91].

The time constant of the photoreceptor membrane is regulated by a voltage-dependent

potassium conductance [199], which matches the membrane bandwidth to the time scale

of the transduction cascade.

Another gain mechanism is the pseudo pupil - calcium induces the migration of pig-

Figure 2.1: Fly’s visual system. A. Schematic representation of an ommatidium, showing
transversal and horizontal sections. Green lines represents the light pathway. B. The
phototransduction cascade. Rhodopsin absorbs the energy of a photon and initiates a
biochemical cascade which culminates with the opening of the trp channels. Gray arrows
indicates feedback mechanisms. Details in the text. A adapted from ref. [100]

.

ment molecules from the cytoplasm to nearby the rhabdom. These molecules regulate the

amount of light that travels within the rhabdom, by altering the refraction index of the

boundary between rhabdom and cytoplasm [101, 103]. The pupil mechanism also shifts

the spectral sensitivity of the photoreceptors [75, 154, 175], which is set by the rhodopsin

molecule - in the peripheral photoreceptors R1-6, the peak of absorption is around 490
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nm. There is an additional peak in the UV region, caused by the sensitizing pigment 3-

hydroxyretinol, which transfers the energy absorbed in the UV to the 3-hydroxyretinal, the

rhodopsin chromophore [102]. The photoreceptors R1-6 are involved in motion detection,

since the motion sensitive cells in the lobula plate have spectral sensitivities similar to R1-6

[11, 81]. The central photoreceptors R7-8, involved in color vision, have several types of

rhodopsin, depending on the position of the photoreceptors in the eye [75, 72].

An increase in temperature also accelerates the photoreceptor response [61, 200, 153,

185]. The bump duration and latency are reduced almost to one third for a temperature

increase of 10◦C. The bump amplitude, however, seems to be robust against temperature

changes [153]. In Drosophila photoreceptors, the information rate increases by almost sev-

enfold when temperature rises 10◦C [96].

In several invertebrates, the pupil mechanism also depends on temperature - pigment

migration increases with warming, even in absence of light (see ref. [133] and references

therein).

2.2.2 Retina-Lamina signal transmission

The first optic lobe (fig. 2.2 A), the lamina, is formed by an array of anatomical units,

called cartridges. Each cartridge comprises at least 16 identified neurons [168, 182]: the

large monopolar cells (LMCs) L1-L5, the efferents C2 and C3 and TAN1-TAN3, the bas-

ket cell T1 and five amacrine cells. Lateral interactions between cartridges occur via L4,

amacrine and possibly glial cells [168, 22].

Each cartridge receives the output of six photoreceptors R1-6, from different omma-

tidia, which have the same optical axis [99]. Thus, the light of a given spatial position in the

environment is gathered by six different lenses, transduced at six different receptor cells,

whose signals, then, are pooled in lamina cartridge. This neural superposition mechanism

improves the amount of acquired light by sixfold, without increasing the diameter of the
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Figure 2.2: Fly’s visual system. A. Schematic representation of horizontal section of the
fly’s head, showing the visual neuropils involved in motion processing. B. Summary of H1
connections. The H1 in left lobula plate excites the HS and CH cells of the right lobula
plate, which in turn inhibit the right H1. Thus, the two H1s mutually inhibit each other
via HS and CH cells. HS cells also receive input from elementary motion detectors (not
shown) C. Schematic representation showing responses of a photoreceptor in retina, of
a large monopolar cell in the lamina and the H1 in the lobula plate to light flashes and
motion of a periodic square wave grating image. A adapted from ref. [100] and C from
ref. [116]

.

lenses, and therefore keeping the spatial resolution constant. The axons of photoreceptors

R7-8 bypass the cartridges of the lamina and terminate in the next neuropil, the medulla.
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The cells responsible for pooling the photoreceptors signals are the large monopolar

cells L1-L3 and amacrine cells. The L2 and amacrine cells also feedback onto photorecep-

tors [168]. During synaptic transmission between photoreceptors and LMC’s, the signal is

inverted - photoreceptors release histamine [73], which in turn opens chloride channels in

the LMC membrane. Moreover, the synaptic transmission works as a high pass filter - sus-

tained signals are suppressed and transient signals emphasized (fig. 2.2 C). Thus, transient

increases in the light intensity hyperpolarize the LMCs, whereas sudden reductions depo-

larize them. The transmission gain changes with light intensity, so that the operation point

of the photoreceptor-LMC synapses is kept at the region where the characteristic curve has

maximal slope [111, 189]. LMC responses match the statistics of contrasts found in natural

environments, maximizing thus the information transmission of naturalistic stimuli [108].

In the lamina cartridge, photoreceptors’ axons are connected by gap junctions [149].

The purpose of these connections is not yet completely understood. It was suggested

that they could reduce the noise before the chemical synapses between photoreceptors

and LMCs [149] or even lower the coupling between photoreptors, due to the extracellular

potential in the cartridge [191]. Interesting, high frequency oscillations (≈200Hz) can be

observed in the LMC responses when the photoreceptors are not stimulated in balance

[190], a condition that certainly occurs at low light intensities (see also fig. 2.2 C). About

half of the noise measured at LMCs is added during synaptic transmission [111].

2.2.3 Motion detection in the medulla

For motion detection, it is necessary to take at least two spatial points of the visual

field into account. Several response properties of motion sensitive cells, in particular their

dependence on pattern features other than velocity [14, 52], are explained by the Reichardt

correlation model for elementary motion detection [147]. In the simplest version of the

model, one of the inputs is delayed and multiplied by the second input. The physiological
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implementation of the model in the fly’s visual system is elusive. The first neuropil in which

motion sensitive cells are found is the medulla [44, 64, 40, 125]. Like the lamina, the medulla

is also organized in a retinotopic fashion, as an array of columns. Two pathways for motion

processing from the retina to the tangential cells in lobula plate, which integrate the output

of the elementary motion detectors, were proposed - the first involves the photoreceptors

R1-6, the large monopolar cell L2, the transmedullary cell Tm1 and the lobular bushy T5

cell; the second pathway is constituted by the R1-6 photoreceptors, the L1, the intrinsic

transmedullary iTm and bushy T4 cells, localized in the medulla [44, 181, 180]. Whether

the T4 or T5 cells provide input to the H1 is unknown.

2.2.4 Integration of motion information in the lobula plate

The lobula plate is composed by at least 21 classes of neurons [124, 182, 78]. Among

them, there are two well studied classes of directional selective wide field neurons - the

vertical and horizontal cells [47, 77, 49, 18], which provide motion information to the neck

[183, 66, 85] and flight motor systems [58, 10, 12, 62, 79, 66].

The H1 is part of the horizontal system - it is excited by horizontal ipsilateral regressive

motion (from back towards front), and inhibited by ipsilateral progressive motion. The H1

projects its axon (diameter of ≈ 5µm and length of ≈ 1200µm) to the contralateral lobula

plate and provides excitatory input for two horizontal cells (HS) and two centrifugal cells

(CH). These cells, in turn, inhibit the ipsilateral H1 [78] (fig. 2.2 B).

The H1’s dendritic arborization covers the whole lobula plate, and consequently, its

receptive field covers almost the whole ipsilateral visual field, since the mapping is retino-

topic [78]. The maximal sensitivity is found in the centro-equatorial region (elevation 0◦,

azimuth -15◦) [48, 78, 105]. In addition to the position of the stimulus in the visual field,

H1 is also sensitive to several other parameters of the visual stimulus. For example, its

firing rate increases with image contrast [13, 148, 197] and size [78, 113, 13]. For the image
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size, the range covered by the system is remarkable - from a single elementary motion

detector, when just two photoreceptor cells are stimulated [150, 163], up to the stimula-

tion of the entire visual field, when about 5000 ommatidia (in Calliphora) are stimulated

simultaneously.

Equally remarkable is the sensitivity of the system to light intensity [48, 124] - H1 re-

sponses to single photons can be detected [117], and motion responses for intensities above

2.5 10−4 cd m−2 have been observed [163]. Finally, H1 responses adapt to the statistics

of image velocity [120, 23, 55, 16, 158] and to light intensity flicker [37, 15]. When flicker

stimulus is applied prior to a velocity pulse, the firing rate decays faster to the spontaneous

firing level.

2.2.5 H1’s outdoor experiments

Recent studies measured H1 responses in the field, at naturalistic conditions. Flies

were mounted in rotating supports, whose angular velocity could be controlled. One of the

studies measured H1 responses to sinusoidal velocity, at several conditions of light inten-

sity and temperature. The authors found that on average, the mean firing rate increased

85% for a 10 ◦C difference and barely changed with light intensity [53]. The authors also

reported that the spontaneous firing rate did not vary consistently with temperature, a

result that was supported by another study of the same group, done at controlled labo-

ratory conditions [198]. This later study also analyzed H1 responses for velocity steps of

4Hz temporal frequency and reported that the steady-state mean firing rate increased by

about 60%, when the temperature rose from 18-20 to 26-28 ◦C. The latency was reduced

by about 10ms in the same temperature interval [198]. The authors also claimed that the

H1 reliability increased with temperature, by calculating the signal to noise ratio of the

spike count within a window of 100ms. However, such an analysis does not reveal whether

the firing precision changes, and that is for two reasons. First, since the mean firing rate
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increases as well, it is not possible to separate the contributions of the firing precision

from the increased rate combined with H1 refractoriness. Second, the velocity is constant

for the steady-state responses. Therefore, there is no temporal event that can trigger H1

spikes precisely. Although the authors reported the SNR of the transient responses as well,

they used the same coarse time-scale of 100 ms. Moreover, the authors observed that the

slope of the firing rate after stimulus onset did not change with temperature, which is an

indication that firing precision was conserved.

A second study measured H1 responses outdoor to a time-varying angular velocity sim-

ilar to free-flight trajectories [115]. This study observed an increase of the information

content of the response when the light intensity rose and suggested that it was due to the

firing precision, which also improved with light. However, as pointed out in reference [53],

the authors did not report the temperature of the experiments, nor did they consider the

effect of firing rate, which also increased with light intensity, and could be responsible for

the improved information rate [204, 17, 161, 83]. Indeed, the authors observed that the

noise entropy did not change with light intensity [115], which indicates that the improved

firing precision weakly contributed to the information rate. In addition, the information

rates were estimated using a fixed encoding window of 30 ms for all acquisitions, indepen-

dent of light intensity. If the system trades noise by time-scale, as commented before, the

information content between different conditions would not take such adaptation mecha-

nism into account, possibly underestimating the information estimation at conditions of

better input signal-to-noise ratios.
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2.3 Goals

The studies summarized above left several questions open, which will be addressed

in this work. First, although they showed that the firing precision increases with light

intensity, the temperature contribution to it could not be clearly defined. Second, it was

also not possible to evaluate how the firing precision influences the information content,

since the firing rate and precision varied together. Third, the trade-off between noise

and response time-scale was not considered. Finally, the effects of temperature and light

intensity on some response properties of photoreceptors are interdependent [185, 153], and

thus, effects on H1 responses might also be interdependent. Unfortunately, the only study

that took both temperature and light intensity simultaneously into account over a wide

range of conditions measured just the H1 mean firing rate [53].

To address these problems, I recorded H1 responses to a time-dependent stimulus at 42

Figure 2.3: The goals of this work are to map out the effects of temperature and light
intensity on H1 responses and to determine the contribution of the firing rate and precision
to the amount of motion information transmitted and time-scale of the system.

different conditions of light intensity and temperature. The aims are to investigate how H1

responses vary with these environmental perturbations and to determine the contribution

of the firing precision and rate to information rates, coding efficiencies and optimal time-

scales for information transmission.
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Chapter 3

Materials and Methods

3.1 Preparation

Calliphora vicina flies were maintained in the department stock at 19-22◦ C, 50-60%

relative humidity and 12h-12h light-dark cycle. Flies between seven and fourteen days old

(after eclosion) were used in the experiments. Flies were anesthetized with CO2 and the

dorsal part of their thoraxes were waxed to a small piece of glass. Their heads were bent

toward the ventral part of their thoraxes and waxed to them. Wings, legs and antenna

were immobilized with wax. Care was taken to avoid unnecessary heating during waxing.

A small cut was done in the back of their heads to get access to the brains. The air sacs

that cover the lobula plate were pushed to the side, but the tracheae were left as intact as

possible. Flies were then transfered to a metallic case which enclosed their entire bodies,

except their heads.
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3.2 Temperature control

The temperature of metallic case was controlled by a Peltier device attached to it. To

isolate the head thermally from the environment, a soft airstream at temperature approx-

imately of the temperature of metallic case was blown frontally on the head (fig. 3.1 A).

The stability of the head temperature was tested in three flies. Temperature was
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Figure 3.1: Temperature control. A. Schematic representation of the setup to control the
fly temperature. The airflow used to thermally isolate the head from the environment
entered into the heat exchanger at ambient temperature and left it at the temperature of
the exchanger. The temperature of the Ringer’s solution, which was periodically added
to head through a glass electrode (not shown), is controlled in similar way. B. Body
temperature as a function of the nominal temperature of the heat exchanger.

measured using a microthermoprobe (AD instruments) and an thermometer (GMH3210,
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Greisinger electronics, Germany). It was not possible to record head temperature and

H1 responses simultaneously. Thus, a relation between the nominal temperature of the

exchanger and the measured temperature in the head for three flies was used to infer the

head temperature of all acquisitions (fig. 3.1 B). Peltier device, PID controller and heat

exchanger were built at the MPI workshop.

3.3 Data acquisition and visual stimulation

Tungsten electrodes with impedance of ≈ 1MΩ (World Precision Instruments, USA)

were used for extracellular recordings from the H1 neuron, which was identified unambigu-

ously by its localization (fig. 3.2) and characteristic response to visual stimuli - excitation

to horizontal front-to-back motion and inhibition in the opposite direction. Glass elec-

trodes were used as ground and to load Ringer’s solution into the brain to keep it moist.

In some experiments, retinograms were also measured. For these experiments, the elec-

trode was impaled into the eye, and the reference electrode was positioned into the head,

immediately below the eye.

After amplification (gain of 1.5 104) and bandpass filtering (300-3KHz), H1 responses

were processed on-line by a threshold unit which generates a pulse of 1.2 ms when the volt-

age crossed the threshold level, which was adjusted manually. The signal was then sampled

at 1 KHz by the analog input of the Visage system (Cambridge Research Systems, UK)

and saved in the microcomputer for off-line analysis.

To measure the retinograms and the dependence of the H1’s field potentials with tem-

perature at higher sampling rates, a 16 bits AD board (Measurement Computing, USA)

was used, because the Visage sample rate is limited to 1KHz. The signal after the fil-

ter stage was then sampled at 48KHz, saved in the computer and analyzed off-line. The

program that control the acquisitions was written in MATLAB (Mathworks,USA). Pre-
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Figure 3.2: Schematic representation of H1 anatomy and position in fly head, shown here
fully opened from behind. The arrow indicates the flux of information, and the circle the
approximated position of the electrode during recordings. Photo taken by Y. Choe and H1
anatomy adapted from reference [77].

amplifier, amplifier and filters were built at the MPI workshop.

The visual stimulus was presented on CRT-monitor (M21LMAX, Image systems corp.,

USA) updated at 240 Hz. Flies were positioned twenty centimeters from the front of the

monitor, so that just one eye was stimulated, yielding a visual field of 72◦x83◦, starting at

head midline (azimuth=0◦). The image used was a square-wave grating with 10◦ spatial

wavelength and contrast of 67%.

The horizontal image velocity v was drawn from a Gauss-Markov process [152, 7], with

mean µ ≈ 0 ◦s−1, standard deviation σ ≈ 40◦s−1 and correlation time of ς ≈ 400ms.

Although the yaw velocity in free flight can reach up to 2000 ◦s−1 during head saccades,

most of the velocities between saccades is lower than 100 ◦s−1 [160]. The image velocity
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was recursively generated using [7]

v(n) = ρ(n)v(n − 1) + Ω(n)σ
√

1 − ρ2(n)

where n is time, ρ(n) = exp(−(n+1)/ς) and Ω(n) is a random number drawn from a Gaus-

sian distribution, using the MATLAB random number generator. For each acquisition, the

stimulus, whose duration was ten seconds, was repeated 150 times, with two seconds in-

terval between trials. The image was presented without motion for two minutes before the

start of the acquisition, to adapt the photoreceptors to the mean luminance level. The

first fifteen trials and the first second of each trial were discarded to avoid accommodation

effects and transient responses.

In experiments in which the light intensity was also time-varying, the waveform was

also drawn from a Gaussian-Markov process. In these experiments, the visual field was

divided horizontally into two separated rectangular regions, in which motion and flicker

stimulus could be presented independently. Each region had an extension of 57◦x32◦ and

were separated by 10 ◦. The image pattern inside the rectangles was the same as described

above.

In the retinogram experiments, only the light intensity was time-dependent, and the

entire visual field of stimulation (72◦x83◦) was used. The intensity pattern was adapted

from the naturalistic light intensity database of van Hateren [194].

The control of stimulus presentation was done using the real-time sequencer of the

Visage system, interfaced by a custom software written in MATLAB.
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3.4 Data analysis

3.4.1 Pre-analysis

The aim of this work was to measure system performance - variability, reliability and

time scale - to encode time-dependent motion information at different conditions of tem-

perature and luminance. To quantify these response properties, it is necessary to record

H1’s responses to multiple presentations of the same stimulus (fig. 3.3).

An accurate estimation of H1 variability requires that H1’s firing properties are stable

throughout the acquisition. The response stationarity over trials was then quantified by

an accommodation index, defined as the ratio of spike count of the first and hundredth

trials (fig. 3.4). Since a higher accommodation rate would overestimate the response vari-

ability, only acquisitions with accommodation indexes between 0.7 and 1.3 (338 from 359

acquisitions) were used for further analysis.

The estimation of H1 variability might also be compromised if the responses entrain

with refresh rate of the video monitor. The degree of entrainment was measured by the

residual power of the mean time-dependent firing rate at 238-242Hz. The mean firing rate

was calculated as

λ(n) =< r(n) >trials (3.1)

where <> denotes average and r(n) is an approximation of the instantaneous firing rate

for a given trial, defined as the inverse of the interspike intervals, that is,

r(n) =
K∑

k=2

1

nk − nk−1

[U(nk−1) − U(nk)] (3.2)

where U(nk) = 1 for n ≥ nk and 0 otherwise and n1, ..., nK were the action potential

occurrence times. Power spectra were calculated using the Welch-Bartlett method [121].
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Figure 3.3: H1 responses to the time-varying velocity stimulus. A. Two and half seconds
of the horizontal velocity of the square-wave grating image as a function of time. B.H1
responses to stimulus shown in A. Markers represent action potential occurrences. C.

Averaged instantaneous firing rate. D. Average shape of the extracellular field potential.
The peak-to-peak amplitude is around 200µ Volts. The signal was band-pass filtered (300-
3KHz).

The mean firing rate was first windowed to reduce frequency leakage,

λi(n) = λ(iD + n)w(n)
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Figure 3.4: Spike count stationarity. A.Spike count as a function of the trial number.
Examples of mean spike counts for two different flies (crosses and points) with similar mean
spike count, but different accommodation rates. B. Histogram of the accommodation index
of 359 acquisitions.

where

w(n) = 1 − (
n − 0.5L

0.5L
)2

is the Welch window, L is the window length and D is the overlap between subsequent

windows. The Fourier transform of each windowed segment was calculated as

λi(m) =
L−1∑

n=0

λi(n)exp(−2πjmn

L
)

and the power spectrum estimated as the averaged power over all windows

Λ(m) =
1

L
< |λi(m)|2 >i

The sampling frequency used was 1KHz, the window length 512 ms, with overlap of 256ms.

The residual power was obtained by removing the linear trends in the spectrum (fig. 3.5).

Acquisitions in which the averaged residual power pΛ within the interval 238-242 Hz was
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higher than 0.37 dB (three standard deviations of the pΛ distribution ) were discarded (13

of 359 acquisitions).
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Figure 3.5: Response entrainment to the video refresh rate. A. Examples of power-spectra
of the average time-varying firing rates of two different flies (black and gray) with similar
mean spike count, but different entrainment levels. The refresh rate of the monitor is
indicated by the vertical dashed line. B. Histogram for all acquisitions of the average
residual power near the video refresh frequency. The respective residual power spectra are
shown in the inset.

3.4.2 Information theory

The statistical dependence between stimulus and response can be measured by their

mutual information [166, 32, 19] defined as

I(S; R) =
∑

s∈S

∑

r∈R

p(s, r) log2
p(s, r)

p(s)p(r)
(3.3)

where S and R are the sets of stimuli and responses and p(.) denotes probability distribu-

tion. Stimulus and response were discretized in bins of ∆t ms and written as sequences of
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words

S(Ls, ∆t, τ) ≡ {s1,τ , . . . , sK,τ}

R(Lr, ∆t) ≡ {r1, . . . , rK}

where Ls and Lr represent the respective word lengths and τ is the delay of the stimulus

to its respective response. To estimate of the probability distribution p(s, r) in equation

3.3, three stimulus parameters should be chosen - the stimulus length Ls, the delay τ and

the amplitude resolution of s, ∆s. In addition, although the velocity v is the only time-

dependent part of the stimulus in the majority of the experiments, it is not known a priori

whether H1 encodes just stimulus velocity, or some function of it. To avoid these problems

[36, 184], p(r, s) can be substituted by p(s|r)p(r) in equation 3.3, yielding

I(S; R) = −
∑

r∈R,s∈S

p(r, s) log2 p(s) +
∑

r∈R,s∈S

p(r, s) log2 p(s|r) = H(S) − H(S|R)

where H(S) is the entropy of the stimuli and H(S|R) is the conditional entropy of the

stimuli given the responses. The mutual information is symmetric, thus H(S)−H(S|R) =

H(R) − H(R|S). Because the same stimulus was presented multiple times, H(R|S) can

be calculated as H(R|n), where n is time, discretized. The information rate for a given

window length Lr and bin width ∆t can then be estimated as

Î(S; R) =
1

Lr

[H(R) − H(R|n)] (3.4)

without the explicit determination of stimulus parameters. The entropies H(R) and

H(R|n) were corrected for sampling bias using the methods explained in detail in the

next section. A bin width ∆t of 2 ms and window length Lr from 2 to 20 ms were used

to calculate Î(R; S). A bin width of 2ms is the coarsest width in which the responses are

still binary.
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The influence of spike-timing precision in the information rate was inferred by compar-

ing the information rates calculated using two different bin widths: in the timing encoding

mode, the bin width ∆t is fixed to 2ms; in the count encoding mode, the bin width ∆t is

equal to Lr. Thus, in the timing encoding mode, the exact positions of the spikes within

the encoding window were taken into account to calculate the information rate, whereas in

the count encoding mode just the number of spikes within the window was considered. The

difference between the information rates of the two modes reveals how much information

is carried by the precise spike times.

The optimal encoding window L∗
r was defined as

L∗
r = arg max

Lr

Î(R; S)

For a better approximation of L∗
r , the search of the maximum was done in a spline inter-

polated approximation of Î(R; S) (fig. 3.6).

The response latency was defined as the τ that maximizes equation 3.3 [98], making

the assumption that H1 encodes velocity and setting Ls = 1, ∆v = 1◦s−1 and Lr = L∗
r ,

that is

τ ∗ = arg max
τ

I(V ; R)

L∗
r

Standard gradient ascent with an amortization step was used to find points near the max-

imum of I(V ; R), which were then then interpolated using cubic spline. The τ ∗ was found

by direct search in the interpolated points.

The influence of the length of integration window Ls on the determination of τ ∗ was

tested for two different dimension-reduced representations of v - the averaged velocity

within Ls and the first two principal components. Despite changes on I(V ; R)/L∗
r, no

significant difference on τ ∗ was detected for Ls between 2 and maximal Ls allowed by

causality - nv + Ls + τ < nr, where nv and nr are respective starting times of the words v
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and r.

The coding efficiency was defined as

η =
H(R) − H(R|n)

H(R)
(3.5)

and calculated for timing and count modes.
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Figure 3.6: Optimal information rate. A. Example of the information rate as a function
of the encoding window, for timing and count encoding modes. L∗

r is the encoding window
at which the information rate is maximized. B. Respective coding efficiencies.

3.4.3 Bias correction

The bias of the entropy estimator H = H(R), obtained using a set of N observations

{k1, . . . ,kN}, is the difference between its expected value and the true entropy H. A wide

variety of methods to correct for bias is available in the literature (for recent reviews, see

references [87, 195, 138]). Here I used the jackknife [145, 51] combined with surrogate
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datasets to reduce bias. Assuming that the bias can be expanded in power series of 1/N

< H > −H =
b1

N
+

b2

N2
+ . . . (3.6)

where the coefficients bi do not depend on N , the jackknife estimator of H is

H̃ = NH − (N − 1)H(.) (3.7)

where

H(.) =
1

N

kN∑

i=k1

Hi (3.8)

and Hi = H(k1, . . . ,ki−1,ki+1, . . . ,kN) is the estimation of the entropy H without using

the response ki. Asymptotically, H̃ is biased1 only to order 1/N2 [145, 162]. However, for

small datasets H̃ might not eliminate the bias completely. A pilot acquisition with 596

trials was use to estimated the residual bias after jackknife correction as a function of the

dataset size. The residual bias was estimated as the difference between the information

rate calculated using the corresponding number of trials and the ’true’ information rate -

calculated using all trials.

Two additional corrections to eliminate the residual bias were proposed. The first one

used data shuffling [131, 135]. The residual bias was considerably reduced by subtracting

the square-root of the information rate of a surrogate dataset, in which the interspike

intervals within each trial were shuffled (fig.3.7). The corrected rate was then calculated

1it can be easily seem [162] by calculating the expectation of H̃

< H̃ >= N < H > −(N − 1) < H(.) >

< H̃ >= N(H +
b1

N
+

b2

N2
+ . . .) − (N − 1)(H +

b1

N − 1
+

b2

(N − 1)2
+ . . .)

< H̃ > −H =
−b2

N(N − 1)
+ o(

1

N3
)
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as

Î(R; S) = Ijack −
√

Ishuffle (3.9)

The surrogated information Ishuffle was also jackknifed. The squared-root was determined

empirically, by observing the difference of the growth rate of the jackknifed and shuffled

information rates when Lr increased.

Using this method, a minimum of one hundred trials was necessary to reduce the

residual bias to around 1% of the true information rate, for a ∆t of 2ms. For 150 trials,

the maximal error was less than 0.3%.

In the second method, artificial data were created from the original acquisition, using
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Figure 3.7: Bias reduction. A. Original acquisition and its surrogate, with shuffled inter-
spike intervals. B. Residual bias for a bin width ∆t of 2 ms, as a function of the number
of trials and encoding window length, after jackknife and jackknife-shuffle surrogate cor-
rection.

estimations of the firing rate (eq. 3.2) and local interspike interval distributions (ISI).

Responses were generated by the rejection method [142]: for a given time n, an action
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potential was generated if r(n) < c, where c is a (uniform) random number between 0 and

cmax. The firing rate r(n) was then multiplied by a local recovery function, defined as the

cumulative probability distribution of the ISI at time n. The procedure is then repeated

for subsequent times till the end of the trial.

The mean firing rate of the generated data depended on cmax. The values of cmax that

matched the range of the spike count of the original data were found using several datasets

of 50 trials, created using different cmax values within a wide range. The spike counts of

those datasets were calculated, and spline interpolated to find the best cmax values.

From the chosen cmax values, approximately 3000 trials were generated. One thousand

of them were selected by rejection sampling, to match the count distribution of the original

acquisition. The residual bias was then calculated as the difference between the information

rates using 135 and 1000 trials of the artificial dataset, and subtracted from the information

rate calculated from the original acquisition.

The methods described above,
√

Suffle and Monte-Carlo, had superior performance

compared with other non-parametric methods tested (fig. 3.8).

3.4.4 Classification theory

The discrimination between the probability distributions of a determined response prop-

erty, e.g. ISI distributions, was quantified using the Chernoff distance, defined as [32, 94]

Dc(pa, pb) = − min
0≤λ≤1

log
∑

x

pλ
a(x) p1−λ

b (x) (3.10)

For a optimal likelihood ratio classifier, the Chernoff distance bounds the total error prob-

ability [32]

log Pe

N
≤ Dc(pa, pb)

where N is dataset size.



32 3. Materials and Methods

2 4 6 8 10 12 14 16 18
−8

−6

−4

−2

0

2

4

6

8

10

12

L
r
 [ms]

B
ia

s 
[b

its
 s

−
1 ]

 

 
Whithout correction
Jackknife
Extrapolation
Shuffle√

Shuffle
Monte Carlo

Figure 3.8: Comparison of several non-parametric bias correction methods. Error bars are
standard deviations for five estimations using datasets of 150 trials randomly chosen from
the 596 trials of a pilot acquisition.

3.4.5 Statistical analysis

Statistical significance was assessed by non-parametric statistical tests - Wilcoxon sign

rank for single, Wilcoxon rank sum for double and Kruskal-Wallis for multiple comparisons.

The sample size for each condition for double comparison was estimated as 8 independent

measurements (two-sided test, detected difference of 10%, with size of 0.08 and power of

0.85) [63]. If not stated otherwise, error bars reported in the graphs are confidence intervals

(α = 0.08), calculated using non-parametric bootstrap with one thousand replications

[205]. To measure the correlation between random variables, either mutual information or

Spearman rank correlation coefficient was used.
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3.4.6 Temperature and luminance coefficients

The temperature coefficient Q10 of a determined response property f was defined as

Q10(f) =
f(25◦ C)

f(15◦ C)

where f(25◦ C) and f(15◦ C) were obtained from a linear least-square fit of the data. The

coefficient of luminance K1000 was defined as

K1000(f) =
f(100 cd m−2)

f(0.01 cd m−2)

and calculated in the same way as Q10.
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Chapter 4

Results

The first part of this chapter shows the effect of temperature and light intensity on

basic H1 response properties, without motion stimulation. The goal was to verify to which

extent the system state is influenced by these disturbances.

In sequence, the response properties to motion stimulation will be analyzed. It will be

shown that temperature and light intensity act interdependently in some response charac-

teristics, like in the mean firing rate. Other response properties, like the spike jitter, are

influenced mostly by one of perturbations.

Finally, the information rate, coding efficiency and time-scales of the responses will be

shown and the contributions of firing rate and spike jitter to the information rate will be

investigated. In addition, a comparison between count and timing encoding modes will be

made, at scales where information rate is maximized.
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4.1 Extracellular field potentials

The shape of the action potential influences the time scale and gain of synaptic trans-

mission, because the influx of calcium in the presynaptic terminal is driven by the calcium

electrochemical driving-force, which is set by the interaction between the kinetics of the

calcium channels and the shape of the action potential [157, 20].

Action potential duration and amplitude depend on the time courses of sodium and

potassium conductances, which vary with temperature [93, 86]. Because warming speeds

the gating rate of ion channels, the duration reduces when temperature rises [127, 143, 76,

2, 93, 130, 67, 144, 82, 118]. The amplitude, however, depends on how the time-courses of

the conductances vary - it can be reduced [127, 2, 178, 93] or increased [93, 67, 130] with

warming, depending on the preparation.

The measured H1’s field potential arises from a sum of currents of neighbor regions of

the axon

Φe =
1

4πσe

∫

L

im dx√
(x − xp)2 + (y − yp)2 + (z − zp)2

where L is the total length of the region of the axon, (xp, yp, zp) is the position of the elec-

trode, σe is the extracellular conductivity and im is the transmembrane current [139, 179,

90]. Assuming that the axon has just sodium and potassium conductances, the triphasic

shape of the H1 field potential (fig 4.1) can be interpreted as formed by three currents:

a capacitive, with time constant τc; an inward sodium, with peak width of δw and an

outward potassium, with time constant τk.

No consistence changes in the peak amplitudes were observed (p > 0.5 for all peaks,

n=4). The duration was reduced when temperature rose (fig. 4.1 C). The Q10 of time-

scales of the three different phases were similar (≈ 0.82) - note that when the time-axis was

scaled by the width of the sodium peak (fig 4.1 B), the shape of the potentials overlapped.

The duration of the observed extracellular potential depends on the propagation veloc-
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Figure 4.1: Dependence of the extracellular action potential waveform on temperature. A.

Average extracellular field potentials of the same cell at two different temperatures. Signals
were bandpass filtered (300-3KHz). B. The same waveforms shown in A , with time axis
scaled by the width of the sodium peak, δw. C. Averaged Q10 of the time constants and
peak width, for four different flies. Errors bars are bootstrap confidence levels.

ity of the action potential and on its spatial extension. It is not possible to separate their

contributions based solely on the observation of the potential. However, if it is assumed

that the major contribution was due to changes in the propagation velocity, the Q10 for

conduction velocity would be approximately 1.2.

4.2 Spontaneous firing rate

Since H1 pools the output of several thousands of elementary motion detectors, it is ex-

pected that spontaneous events that occur along the pathway upstream H1 will modify its

spontaneous activity. Such synaptic bombardment can change neuron’s gain [31], increase

its response variability by reducing input synchronization [187, 56, 165], or even enhance

the detection of subthreshold input signals [39, 88, 114, 45].

Spontaneous vesicle release [140, 170, 76, 6, 93] and spontaneous neural discharge

[26, 60, 92, 82, 93, 130, 144] usually increase with warming. However, previous studies
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found that H1’s spontaneous firing rate barely changes with temperature [198, 53]. Nev-

ertheless, in these investigations the spontaneous rate was measured in presence of static

illumination, which probably masked the temperature effect, since H1’s spontaneous rate

also increases as light intensity increases [117, 48, 124].

To verify whether temperature influences the spontaneous activity in the system, in-
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Figure 4.2: Spontaneous activity as a function of temperature. A. ISI distributions as
a function of temperature, estimated using a Gaussian kernel, with optimized width [46].
Each record lasted 7.5 minutes. Data from three flies were pooled. B. Chernoff distances
between ISI distributions shown in A. The largest square represent a distance of approxi-
mately 0.9, whereas the smallest, 0.03. C. Mean firing rate as a function of temperature.
Error bars are standard deviations. The Spearman rank correlation coefficient is ρ = 0.91
(p=3.1 10−5, n=3 flies).

terspike interval distributions (ISI) were estimated from H1 recordings in the dark (fig.

4.2 A). Short ISIs became more frequent as temperature increased. The average firing

rate, calculated as the inverse of the mean interspike interval, had a Q10 of 6.42 [3.95;8.38]

(mean and confidence interval, α = 0.08, n=5 flies). Short interspike intervals (10-100ms)
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happened even at lower temperatures, indicating facilitation.

The similarity between distributions was measured using the Chernoff distance, as de-

scribed in section 3.4.4. Apparently, the distributions were divided into two groups (fig.

4.2 B) - below and above 20 ◦C, the temperature which flies were reared.

To test whether light intensity masks the temperature influence in the spontaneous

rate, Chernoff distances between ISI distributions at 15 and 27◦C, in the dark and in the

presence of static illumination (84 cdm−2) were compared. With visual stimulus, the dis-

tance was reduced by approximately fourfold. The Q10 of the mean rate reduced from 6.89

in the dark, to 3.34 in the presence of the image.

In summary, the spontaneous activity in the system rose when light intensity or tem-

perature increased. The effects were interdependent, which means that coefficient of tem-

perature depend on the light level. Interdependent effects were also observed in several

response properties of flies’ photoreceptors [200, 153, 185], like bandwidth, which has a

Q10 of 3 when cells are dark adapted, and 1.9 when light adapted [185].

4.3 Stimulus-induced firing rate

The amplitude of the time-dependent firing rate (fig. 4.3) was reduced when light

intensity or temperature decreased, with exception at 24 ◦C, where the amplitudes hardly

changed over the entire range of light intensities. For temperatures below 22 ◦C, sudden

amplitudes changes occurred at 1 cd m−2. Note that for a given temperature, amplitudes

were rather constant for light intensities above 9.2 cd m−2.

These trends are easily observed when the mean amplitude of the time-varying rate

and the coefficients of temperature and light intensity were calculated (fig. 4.4 A). The

coefficient of temperature of the mean rate decreases with light intensity. At lower light
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intensities, the mean Q10 was above 2, whereas at 84 cdm−2, it was 1.24. Recall that the

Q10 for the inverse mean interspike interval in the dark was around 6.4, consistently with

this trend.

The coefficient of luminance K1000 also depends on temperature - it was above 2 for

temperatures lower than 22◦C, and around 1.8 at 27◦C. At 24◦C, it was not significantly

different from 1 (p=0.92).

A second property of the firing rate that can be observed in fig. 4.3 is the temporal
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Figure 4.3: Time-varying firing rate. H1’s firing rate in response to the first 1.1 seconds
of the velocity profile shown in fig. 3.3, as a function of temperature and light intensity.
Firing rates were pooled across flies, n is the sample size.

modulation. The modulation indirectly reflects the response variability, since spike jitter
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sets the smoothness of the average rate. Somewhat surprisingly, high frequency components

were observed in several conditions of temperature and light intensity, despite the fact

that mean rates at a given condition were calculated from pooled data of several flies.

The temporal modulation of the rate strongly increased with light intensity. The effect of

temperature seemed to be more evident at lower light intensities.

To quantify the temporal modulation, the bandwidth of the firing rate was calculated.

The bandwidth was defined as the frequency at which the power of the rate was zero decibel.

The Q10 for modulation varied only slightly with light intensity, and was not significantly

different from 1 at 31 (p=0.17) and 84 cd m−2 (p=0.53). The K1000 for modulation did

not show a clear dependence on light intensity - its averaged over temperatures was 4.8.

A more direct, yet local way to quantify the response variability is by measuring the

spike timing jitter - the standard deviation of the spike times after some temporal reference

(fig. 4.4 C). The reference chosen was a velocity transition, when it becomes positive.

Because the firing precision varies with the slope of the velocity, the measurements are not

absolute, however.

The effect of temperature on jitter was significant only at 84 cd m−2. When the light

intensity increased, the jitter was heavily reduced, with exception at 24◦C, where the K1000

was not significantly different from 1 (p=0.22).

In summary, the effects of temperature and light intensity on the stimulus-induced firing

rate were different. Whereas the mean firing rate had a relatively similar dependence on

light intensity and temperature, the temporal modulation and firing dispersion were more

strongly influenced by light intensity. Therefore, by varying temperature and light intensity,

responses with similar mean rates and different firing dispersions can be obtained. The

impact of these response properties in the information rate will be analyzed in a later

section.
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Figure 4.4: Mean firing rate and precision. A. Mean firing rate, and B. bandwidth and
C. standard deviation of the time of the first spike fired after a velocity transition (- to +),
as a function of light intensity and temperature. Crosses indicate the conditions where the
experiments were performed. Color code represents the linear interpolation of the mean
values at the experimental points. Q10 and K1000 are the temperature and luminance
coefficients, respectively. Error bars are bootstrap confidence intervals.

4.4 Response stationarity

When the same time-varying stimulus is repeatedly presented to H1, its firing rate

usually decays progressively until certain steady state is reached. The accommodation

rate of the responses as a function of temperature and light intensity was measured (fig
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4.5). The accommodation index (see 3.4.1) was significantly smaller than one at lowers

(15-17◦C) and higher temperatures (27◦C), which means that firing rate was more strongly

reduced over trials in these conditions. No clear dependence of the accommodation index

on light intensity could be observed. These trends are depicted more directly when the data

are pooled across light intensity - the index had a maximum in the middle temperatures and

decayed in the boundaries temperatures (p=0.0068, total sample size n=359, 6 groups). At

15◦C, the spike count in the 100th trial was on average 85% of the count in the first trial.

At temperatures in which the accommodation index was more stable, between 5 and 10 %

of the initial count was lost at the 100th trial. For the pooled data across temperature, no

significant difference between the light conditions was observed (p=0.28, total sample size

n=359, 7 groups).

The accommodation of the response over trials is important for two reasons. First,
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because it is one of the sources of H1’s trial-to-trial variability. Second, because it reflects

the system reliability to a time-dependent stimulus in a relatively long time-scale (order

of several minutes), that occurs even when naturalistic velocities are used to stimulate

the fly [83]. This H1’s long-term desensitization probably has a contribution from the

components upstream the motion pathway. For example, photoreceptors also habituate to

multiple presentations of the same stimulus [95]. However, photoreceptors desensitization

(at 25 ◦ C) seems to be higher at low light levels, effect that was not observed in H1

responses.

4.5 Information rate, encoding window and coding ef-

ficiency

Information rates were estimated as described in section 3.4.2. The time-scale of the

response was considered in the analysis. Thus, instead of extrapolate the entropies values

for infinity encoding windows [184], or take a fixed window to compare information rates at

different experimental conditions [115], the maximal information rate for each acquisition

was taken (fig. 3.6). This analysis was motivated by the fact that behaviorally relevant

time scales for flies are around 40ms [107] - encoding windows of infinity length are thus,

unrealistic. Moreover, as in the photorecepors, the time-scale to encode information might

depend on temperature and light intensity. Thus, a comparison between responses at

different conditions using the same fixed window would, at least, fail to take the temporal

scale variation into account.

The information rate (timing encoding mode) rose when light or temperature increased

(fig. 4.6 A). The effects were interdependent - Q10 varied with light level and the K1000 with

temperature. Note the similarity between the information rate and mean firing rate (fig.

4.4 A). Their mean coefficients of temperature and light intensity were not significantly
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Figure 4.6: A. Optimal information rate, B. encoding window and C. coding efficiency for
the timing encoding mode.

different (p>0.2). The mean information rate ranged from around 30 bits s−1 at 15◦ C,

0.1 cd m−2, to 140 bits s−1 at 27 ◦ C, 31 cd m−2.

The optimal encoding window reduced when the light intensity or temperature increased

(fig. 4.6 A). The minimum average window was around 5 ms and the maximal, 11 ms. Its

Q10 did not depend on light level - the mean value was 0.7. However, the K1000 depended

on temperature. At 24◦ C, it was not significantly different from 1 (p=0.97). In other

temperatures, the mean values were approximately 0.67.

The coding efficiency was around 0.4 for a large set of experimental conditions. Its
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Figure 4.7: A. Optimal information rate, B. encoding window and C. coding efficiency for
the count encoding mode.

minimum average value was 0.2 and the maximal 0.47. For light intensities above 1 cd

m−2, the Q10s were very close or even not significantly different from 1 (p>0.2).

The K1000 for coding efficiency had the same behavior as the K1000 for information rate,

but was significantly smaller (p=0.03). Observe that the coding efficiency increased more

with light level than with temperature - the K1000s were significantly higher than the Q10s

(p=0.05).

The results for the count encoding mode, in which the position of the spike within the

window is irrelevant, can be seem in figure 4.7.
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The information rate in the timing mode was on average 1.06 [0.99;1.14] bits s−1 (mean

and confidence interval, n=325) higher than in the count mode, at the respective optimal

encoding windows. The difference between optimal encoding windows of the two modes

was minimal: 0.46 [0.33;0.59] ms.

As in the timing mode, the average coding efficiency in the count mode was relatively
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Figure 4.8: The difference between the coding efficiency of the timing and count encoding
modes, as a function of temperature and light intensity.

constant over a large set of conditions (fig. 4.7 C). The effect of temperature was significant

only at 0.1 cd m−2 (p=0.04). The K1000s of the two modes were similar.

The count mode was on average 15% more efficient to encode motion information than

the timing mode. The difference between the the coding efficiencies of the two modes

was higher at light intensities above 9 cd m−2 and temperatures below 20◦ C (fig. 4.8).

The Q10s at these light levels were close to 0.8. Note that the K1000s for temperatures

above 22◦C were not significantly different from 1. For these temperatures, when the light

intensity was reduced, noise and encoding window increased, and the difference between
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the coding efficiency of the two modes did not change, which suggests that the augment of

the time-scale was a compensation for the increase of the noise level.

When the temperature was reduced, for light intensities above 1 cd m−2, the difference

between code efficiencies of the two modes increased, because the firing precision was kept

relatively constant whereas the encoding window increased. In this case, there is no trade-

off between noise and time-scale.

The relation between H1’s firing and information rates has been analyzed before. One
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Figure 4.9: Total entropy, noise entropy and information rates as a function of the firing
rate A. and spike jitter B. - the standard deviation of the first spike times after a velocity
transition from negative to positive. n=325 recordings.

of the studies analyzed H1 recordings from different flies, whose firing rates were different

[161]. A second study manipulated H1’s firing rate by changing the image velocity [17]

and a third one compare the firing rates before and after H1 accommodation to repeated

presentations of the same motion stimulus [83]. In these studies, neither the input signal-

to-noise ratio (SNR) nor the internal state of the system was manipulated as in the present

work. The results reported above showed that the information rate closely followed the

firing rate, even when the input signal-to-noise ratio or the internal state of the system
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vary.

It is instructive to analyze the contribution of the total and noise entropies to the

information rate (fig. 4.9) as a function of the firing rate and precision. Although total and

noise entropies rose as the firing rate increased, the slope of the total entropy was stepper

than of the noise entropy, for firing rates above 15 Hz. The correlation coefficients between

firing and information rates and between the firing rate and noise entropy were around

0.94, whereas between firing rate and total entropy was 0.99. The major contribution of

the firing rate to the information rate was, thus, the increase of the response diversity.

The entropies and the information rate were inversely correlated with spike jitter. The

correlation coefficients were similar, between -0.6 and -0.7, which indicates again, that the

information rate is set by response diversity, rather than noise. However, for other response

properties, the effect of the noise might be fundamental, as it will be shown in the next

section.

4.6 Latency

The response latency was calculated as described in section 3.4.2. Assuming that the

H1 encodes velocity, the latency was defined as the delay in which the mutual information

between responses and velocity was maximal.

Previous work defined H1’s latency as the time after stimulus onset, at which the mean

firing rate reaches some threshold value above the spontaneous activity [197]. Using veloc-

ity steps, the authors found a Q10 of about 0.7, for images of mean luminance level of 1.4

cd m−2.

The method applied here does not depend on either spontaneous activity or threshold

values. Moreover, it considers the possible non-linear relation between velocity and spike

trains, and allows the use of complex time-dependent stimuli.



50 4. Results

0.1 0.3   1   3  10  31 100
14

16

18

20

22

24

26

28  

Luminance [cd m−2] 

 

T
em

pe
ra

tu
re

  [
 °  C

] 

La
te

nc
y

  [
m

s]
 

30

50

70

0

0.5

1

Q
10

0 0.5 1
K

1000

Figure 4.10: Response latency as a function of temperature and light intensity.

The latency as a function of temperature and light intensity is shown in fig. 4.10. The

minimum mean value was approximately 22ms, whereas the maximum 75ms. The Q10s

were around 0.8 for light intensities below 9.2 cd m−2, and increased slightly for higher

light intensities. At 84 cd m−2, it was not significantly different from 1 (p=0.68). Recall

that the mean Q10 for the encoding window was about 0.7 and for the H1 action potential

duration approximately 0.8. To investigate whether the early stages of the visual pathway

have similar thermal dependence, retinogram recordings to a time-varying light intensity

were made. The image pattern was the same used in H1 experiments. The latency was

calculated as the lag that maximizes the mutual information between retinogram and light

intensity (fig. 4.11). The Q10 for the retinogram latency was approximately 0.75 (n=3

flies). Therefore, temperature variations seems to have effects of similar magnitude on

temporal scales of different parts of the system. The Q10s for H1 and retinogram latencies,

H1 encoding window and conduction velocity were between 0.7 and 0.8. However, pho-

toreceptors latency to flash stimuli is more thermal-sensitive, with Q10 between 0.35 [153]
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and 0.66 [185]. The Q10 for synaptic delay in clock neurons in the eye of the fly Musca is

0.54 [84].

The latency was strongly reduced when the light intensity increased - the mean K1000

was 0.33, and almost did not change with temperature. Note that similar values of K1000

were obtained for the spike firing precision, but the K1000s for the encoding window were

clearly higher.

The reduced temporal resolution of the photoreceptors at low light intensities could
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Figure 4.11: Retinograms latency. A.Retinograms recordings (lower panel) to light inten-
sity fluctuations (upper panel). Red trace, retinogram measured at 27◦C. Blue trace, 17◦C.
B.Latency was calculated as the lag that maximizes the mutual information between light
intensity and retinogram.

partially explain the remarkable dependence of the H1’s latency with light. A second noise-

related contribution to the latency could be the H1’s integration process. Desynchronized

inputs might lead to a latency increase. At low light levels, the combination of higher gain

and the random arrival of photons yields photoreceptor responses with high variability.

In addition, the pool of the R1-6 photoreceptors outputs by large monopolar cells in the

lamina might generate high frequency oscillations, when the photoreceptors signals are

unbalanced (see sec. 2.2.2).
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A further experiment was done to investigate whether the contribution of the H1’s

integration process to the latency was significant. Light intensity modulation was simul-

taneously presented with motion. The aim of the light modulation was to introduce the

high frequency component in the signal, similar to the one that has been observed at pho-

toreceptors and large monopolar cells at low light intensities.

The image was separated into two regions, as described in section 3.3, to deter-

mine whether the latency was generated by H1’ integration or by processes upstream H1.

Within each region, motion and modulation could be presented simultaneously. The time-

dependent intensity modulation was Gaussian, with mean of 9.2 cd m−2, standard deviation

of 0.9 cd m−2 and correlation time of about 24 ms (fig. 4.12 A). Other parameters were

tested, in a total of 48 recordings (ten flies), yielding similar results. For the experiment

reported below, recordings of five flies at the same experimental conditions were analyzed.

When light intensity was reduced, the response latency was higher after velocity tran-

sitions, as can be seem in the time-varying rate shown fig. 4.12 C, recorded from the same

fly at three different experimental conditions.

In the experiments with light modulation, the latency increased 10.4 ms ([8.9;12.2],

n=5) when motion and light modulation were presented in the same region, in comparison

with the presentation of motion alone. The ratio between the latency without and with

intensity modulation was about 0.7. Note that the latency seems to be longer after veloc-

ity transitions, as in the low light intensity conditions (fig. 4.12 D). The presentation of

motion and modulation in different regions did not alter the latency (p=0.95).

The firing precision also decreased with the intensity modulation (ratio of 0.48). For

most of the flies, however, the firing precision and reliability after small velocity peaks

(v<5 ◦s−1) increased when the intensity was modulated, resembling a stochastic resonance

effect [106, 39, 88, 114, 45].
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Figure 4.12: A. Light intensity modulation as a function of time. B. Image velocity.
C. Time-varying firing rate of the same fly at three different experimental conditions, in
response to the velocity shown in B . The entire stimulation field was used. D. Time-
varying firing rate in response to motion and intensity modulation, presented according to
the legend. The stimulation field was divided into two separated regions, in which motion
and light intensity flicker could be presented simultaneously.

4.7 Summary of the results

In a nutshell, the response properties can be classified into three groups, based on the

effect of temperature and light intensity upon them. This can be seem in figure 4.13, which
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depicts the amplitude of the mean Q10 for high and low light intensities, and the mean

K1000 for high and low temperatures.

Temperature and light intensity had a strong, mutually dependent influence on firing

and information rates. Note the dependence of the Q10 on light intensity and of the K1000

on temperature.

The coefficients of the coding efficiency and encoding window were smaller than the
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Figure 4.13: Overview of the results. The mean Q10 for light intensity at low light levels (≤
1 cd m−2) are represented by black squares, whereas for high light levels, by gray squares.
The shaded region correspond to coefficient of 1. Coefficients smaller than 1 were inverted,
for sake of comparison. Similarly, the red squares represent the mean amplitudes of K1000

for high temperatures (≥ 22◦C), whereas blue squares represent the mean amplitudes for
lower temperatures.

coefficients of the information rate. The K1000 depended more on temperature than the

Q10 for light intensity. The variation of the K1000 with temperature was due mainly to the
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stability of the response properties at 24 ◦C.

Finally, for the latency, bandwidth and firing precision, the effect of the light intensity

was much stronger than of temperature. The Q10 were not significant different from 1 for

some properties at high light intensities.
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Chapter 5

Discussion

Robustness is a common property of living systems. The maintenance of system per-

formance within certain range despite internal and external perturbations usually involves

trade-offs between several system properties [70]. The understanding of the principles

of these processes might not only provide insight about the functionality of other robust

systems but also inspire the design of new technical systems operating in random environ-

ments.

The aim of this work was to analyze how motion vision in flies changes with temperature

and light intensity - two environmental characteristics that influence their visual system

within the range they are behaviorally active. Focus was given on the representation of

motion information.

Two principal issues were investigated in this work. The first was to determine the rel-

ative contributions of external and internal perturbations to H1 response properties. The

second was to quantify to which extent the firing rate and precision influence the amount

of information, coding efficiency and temporal scale of the system.
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5.1 Internal and external perturbations

I demonstrated that the spike timing variability is determined mostly by the light

intensity, in line with the references [9, 115, 17, 34]. Moreover, temperature does not

improve H1 firing precision, contrarily to the suggestion made in ref. [198]. Thus, what

determines the system variability is quality of the input signal, rather than internal noise

or bandwidth - neither spontaneous events occurring throughout the system nor slower

photoreceptors make motion vision less precise. However, temperature influences system

reliability - H1 fails more frequently to fire spikes at low and higher temperatures than at

≈ 24◦ C.

Temperature and light intensity have similar interdependent effects on the mean firing

rate. Thus, firing rate robustness against thermal perturbations depends on the quality of

the input signal. The Q10s continuously decrease as light intensity rises - at 84 cd m−2,

the Q10 was 1.24. It is possible that the Q10 will remain around this value for higher

light intensities, when the pupil mechanism starts to work to prevent saturation in the

photoreceptors. Indeed, a previous investigation found that the effects of light intensity

and temperature are not interdependent at higher light intensities [53].

5.2 Trade-off between noise and time-scale

To analyze the trade-off between temporal scale and noise, optimal encoding windows

and latencies were compared with coding efficiency and standard deviation (STD) of first

spike time after a particular velocity transition.

The encoding window is inversely proportional to the coding efficiency and weakly cor-

relate with the STD (fig. 5.1). One should keep in mind that the STD reflects how precisely

the stimulus can trigger a spike, but it is a local measurement. The coding efficiency on

the other hand is an average measurement, but is also influenced by mean firing rate. The
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latency correlates with the coding efficiency and slightly more with the STD (see also fig.

5.2). These results suggest that the more efficient and less noisy the system is, the shorter

the system time-scales are.

It was shown that the latency increases dramatically when the light intensity is re-
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Figure 5.1: Tradeoff between the noise and temporal scale. Each point represents one ac-
quisition. Data were pooled across temperatures and light intensities. n=325 acquisitions.

duced. It is believed that most of the response delay is due to the phototransduction

cascade, since synaptic delay in flies seems to be short. However, because H1 pools the

output of about several thousands of elementary motion detectors, it is possible that the
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increased noise at low light intensities reduces the input synchronization in the H1 den-

drites, which could increase the latency. In favor of this speculation was the fact that

the latency was longer after velocity transitions, when H1 leaves its inhibited state, but

was reduced after this transient period, probably because spikes that propagate back to

the dendrites help to synchronize the input. If most of the latency was generated before

motion computation, the observed latency in H1 response should be uniform.

To test the hypothesis that the integration process contributes to latency, flicker

Figure 5.2: Schematic showing the mutual information between response properties for the
pooled data (n=325). Data was ranked before the estimation of the probability distribu-
tions. The square sizes are linearly proportional to the mutual information between the
respective response properties. The biggest square represents 1.01 bit.

stimulus together with motion velocity in two different regions of the visual field were

presented. It was shown that the introduction of light perturbations also increased the

response latency after velocity transitions, which confirms that the noise at low light in-

tensities generated after light transduction might be the cause of the longer latency after

velocity transients. However, the flicker stimulus only increases the latency when it was
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presented simultaneously with the motion stimulus, in the same region of the visual field.

Simultaneously presentations of motion and flicker stimulus in separated regions did not

change the response and flicker stimulus presented alone in any of the regions generated

H1 responses. Altogether, the results suggest that the strong noise-dependent latency is

generated during motion computation, but probably upstream H1 integration. Therefore,

the hypothesis that the synchronization in the integration process influences the latency

can be discarded, unless synaptic inputs outside the dendritic region where motion signal

is being integrated are strongly suppressed.

5.3 Firing rate, spike jitter and information rate

The influence of spike timing variability and mean firing rate on information rate and

the possible coding strategies the nervous system might use have been subject of several

theoretical [119, 5, 146, 177, 68] and experimental studies [201, 164, 50, 136, 33, 151, 19,

25, 137, 3, 129] since information theory was developed [166].

These issues were also investigated in the fly’s visual system. The analysis performed in

this work differs from previous studies in the fly [17, 161, 83] because it examines not only

the effect of firing rate and noise on information rate, but also considered the time-scale

of the responses, when signal quality and system state were experimentally manipulated.

My results demonstrated that the information rate is determined by the firing rate. When

the input SNR increases, the strategy used by the fly seems to increase the firing rate and

reduce the encoding window simultaneously.

Information and firing rates are found to be strongly correlated in other sensory systems

as well. In the retina of guinea pigs, the information rates of retinal ganglion cells in

response to naturalistic stimuli were more correlated with firing rate (r=0.9) than with

spike jitter (r=-0.29)[104]. Also in the proprioceptive afferents in crustacean limbs, the
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cross-correlation of information rate and firing rate is 0.93 whereas with spike jitter, 0.39

[42].

However, other sensory modalities make use of very precise spike times [29, 41]. For

example, in the locust auditory receptors, the information rate depends on spike jitter

[155]. In this study, the authors generated stimuli that elicit responses with roughly the

same firing rates but different spike timing precisions. They found that the noise entropy

was positive correlated with spike jitter, whereas the total entropy did not. In my results,

both total and noise entropy were negative correlated with the spike jitter, which indicates

that information rate was determined by the response diversity rather than spike jitter.

Another difference between these two sensory modalities is the dependence of the spike

timing precision with temperature - whereas H1 firing precision barely changes, an increase

in temperature improves the precision of locust auditory receptors [59].

5.4 Timing and count encoding modes

The comparison between the encoding modes reveals that at time-scales where informa-

tion rate was maximized, the improvement of the information rate by taking into account

precise spike times within the window was around 1 bit s−1, for bins of 2ms. The coding

efficiency was on average 15% smaller than of the count encoding mode in these scales.

The existence of the optimum time-scales suggests that H1 conveys most of the infor-

mation in the interspike intervals, as previous investigations already point out [33, 24].

Windows shorter than the optimal window convey information less efficiently because the

intervals are not taken into account. On the other hand, longer windows are almost as

efficient as the optimum window to represent information, but information is lost due to

redundancy in the representation.

The optimum window is strongly correlated with the mode of the interspike interval
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distribution (1.14 bits) (fig. 5.3) and barely correlated to mean interspike interval (0.05

bits).
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Figure 5.3: The optimal encoding window as a function of the most frequent interspike
interval. n=325 acquisitions.

5.5 Behavioral relevance

The temperature range (15-27◦ C) used in this work covers a big part of the range that

flies face at natural conditions. The light intensity range used, however, corresponds to

natural light intensities of only dawn or dusk, or in internal ambients, when the photon

noise becomes important. At dawn, the temperature is usually low as the light intensity

increases. At dusk, the light intensity falls quickly, whereas the temperature decays slowly.

Based on the results presented in this work, it can be said that the fly’s visual system

acquires on average the same motion information content at dawn and dusk. At dawn,

however, the precision of the representation is higher than at dusk, whereas the response

latency at dusk is remarkably high, despite the improved photoreceptor bandwidth that
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might be provided by temperature. It is unknown to which extent optomotor latency

influences the behavior of flies, but some studies reported that flies exposed to direct

sunlight can be active at lower ambient temperatures than without direct exposition (see

[57] and references therein).

It would be interesting to compare the flight behavior under these conditions. At least

in tethered flight, it is known that the yaw torque depends on light intensity [58]. However,

how the flight behavior depends on temperature is unknown. The variation of the wing

beat frequency with temperature is modest - it increases 1 Hz per ◦ C, within a range of

ambient temperatures of 13 - 30 ◦ C (Q10 of about 1.05) [188] - but it is not known whether

the flight velocity and wing beat frequency are correlated, like, for example, in the smaller

fly Phaenicia sericata [203].

It has been suggested that during flight, the increase of the head temperature due to

muscle activity in the thorax would result in an improvement of the sensitivity of motion

vision, matching to the high image velocities that system face during fast maneuvers [198].

However, a careful analysis of the data from reference [176] revels that, for Calliphora

flies during tethered flight at 25◦C, the head temperature increases only 2 ◦C (fig. 5.4).

During free flight, this value might be even smaller, because convective heat loss increases.

The bandwidth improvement in light adapted photoreceptors would be only 13% for an

2◦C increase in temperature. For dark-adapted photoreceptors, 24%. At the highest light

intensity tested here, H1’s information rate would improve 4% for a 2◦C increase. Thus, it

seems very unlikely that Calliphora flies improves motion vision during flight using the heat

generated in thorax - specially at high light intensities, when the photoreceptor responses

are already accelerated by light-dependent mechanisms.

The situation might be different for heavier or more insulated insects [80, 123]. Heat

exchange with the environment depends on several parameters [38, 30, 122], among them

body surface and mass - a fly of the species Calliphora has a body mass of around 85mg,



5.5 Behavioral relevance 65

0 50 100
24

25

26

27

28

29

30

31

Time [s]

T
em

pe
ra

tu
re

 [°
C

]
A

0 50 100
24

25

26

27

28

29

30

31

Time [s]

T
em

pe
ra

tu
re

 [°
C

]

 

 
B

abdomen
head
thorax

Figure 5.4: Time course of body temperature of Calliphora during tethered flight. A.

Warming after start flight. B. Cooling after stop flight. Data reproduced from reference
[176].

whereas, for example, the dragonfly Anax junius can weight more than one gram. The

head temperature of the dragonfly can reach up to 10 ◦C above the ambient temperature

(25◦C) in still air [123], which would make sense to use the internal heat to improve vision,

providing their visual systems have similar thermal sensitivities.

I showed that several response properties were stable to light intensity changes at ≈

24 ◦C. Curiously, respiration (state III) in isolated mitochondria from Calliphora flight

muscles has a maximum at ≈24-29 ◦C [54]. Moreover, 24 ◦C is preferred temperature of

Drosophila flies [159, 71], and also the temperature at which their fitness is maximized

[169]. Whether the optimal operation temperature is maintained at 24 ◦C when the flies

are acclimated at different temperatures remains to be tested.
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5.6 Conclusions and outlook

The results presented in this thesis answered a set of important questions left unan-

swered by the previous investigations that studied H1 neural encoding outdoors and that

analyzed H1 performance as a function of temperature. It has been intensively discussed to

which extent external and internal noise sources influence H1 performance. To determined

the level of internal noise in the system that would be equivalent to the photon shot noise

at different light intensities, I tried to vary the system intrinsic noise by controlling the

temperature. For my surprise - and maybe for the reader too - I found that the thermal

fluctuations in the system hardly changed H1’s firing precision, despite improvement of the

bandwidth of the photoreceptors [185] and considerable increase in the spontaneous activ-

ity in system. Another somewhat interesting result is the low impact of the spike timing

precision in the information rate. Within the encoding window in which the information

transmitted is maximized, the difference between count and timing neural encoding modes

is small. Moreover, I demonstrated that the optimal encoding window varies with the

environmental perturbations.

A further time-scale essential for survival, the response latency, strongly increased at

low light intensities. Using stimulus flicker together with motion stimuli, I showed that

noise after phototransduction might be responsible for such increased latency. The hypoth-

esis that H1 integration process was involved in the determination of the latency remains

elusive. To further investigate this problem and to determine the role of the oscillations

generated in the lamina at low light intensities on H1 signal integration, it would interesting

to combine the microstimulation technique [150, 190], where just a few photoreceptors are

stimulated, with calcium imaging in the lobula plate [171], specially at low temperatures,

when the spontaneous activity of the system is reduced.

A question left out in this work is the relation between the information transmission
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and the metabolic cost. The strategy used by the fly to adjust the response to the input

SNR seems to be very expensive [109] - it varies the mean firing rate. Theoretically, when

the input SNR increases, it could fire the same number of spikes more precisely to better

the information rate. However, I showed that by increasing the firing rate, not only the

information rate is improved but also the encoding window is shortened, which is also

behaviorally important. To estimate the costs of such a strategy, it would be necessary to

measure the energy consumption during motion vision as a function of temperature and

light intensity and relate it with the information rates - assuming that the H1 activity is

proportional to the rest of the visual system during motion processing, which is somewhat

reasonable, given that the H1 integrates motion information from the entire visual field.

Another problem that deserves more attention is the impact of temperature in the H1

intrinsic characteristics. The only feature measured here was the extracellular field poten-

tial, which depends also on the resistivity of the extracellular medium. It is necessary to

do intracellular recordings to get access to H1 biophysical properties and relate them with

the coding strategies observed. However, because of the small sizes of H1 processes, stable

intracellular recordings are difficult to obtain.

The dependence of the synaptic transmission with temperature in the fly’s visual sys-

tem is largely unknown. The only investigation that provides such analysis measured the

synaptic delay of ”clock” neurons that drive some eye muscles [84]. Synapses between

tangential cells in the lobula plate might be appropriate to address this problem. In addi-

tion, the system give us a good opportunity to study the thermal dependence of electrical

synapses, which also can be found in the lobula plate.

Another ambitious continuation of this work would be the characterization of the im-

pact of temperature-sensitive neurons [71] on motion information processing. For example,

in the nematode Caenorhabditis Elegans, temperature-sensitive neurons are able to trigger

the expression of heat-shock proteins in other neurons [141]. It would be interesting to
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investigate whether H1 dependence on temperature would change in the absence of the

corresponding temperature-sensitive neurons in fly.
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unterzogen habe. Die Dissertation wurde in ihrer jetzigen oder ähnlichen Form bei keiner
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