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Abstract

Since Markowitz in 1952 described an efficient and practical way of finding the
optimal portfolio allocation in the normal distributed case, a lot of progress
in several directions has been made. The main objective of this thesis is
to replace the original risk measure of the Markowitz setting by a more
suitable one, Value-at-Risk. In adressing the optimal allocation problem in
a slightly more general setting, thereby still allowing for a large number of
different asset classes, an efficient algorithm is developed for finding the exact
solution in the case of specially distributed losses. Applying this algorithm
to even more general loss distributions results in a not necessarily exact
matching of the VaR optimum. However, in this case, upper bounds for
the euclidean distance between the exact optimum and the output of the
proposed algorithm are given. An investigation of these upper bounds shows,
that in general the algorithm results in quite good approximations to the VaR
optimum. Finally, an application of a stochastic branch & bound algorithm
to the current problem is discussed.
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Zusammenfassung

Die vorliegende Dissertation beschiiftigt sich mit der Losung einer sehr all-
gemeinen Problemstellung, bei der fiir n gegebene Zufallsvariablen

X1, .., X, €R

die gewichtete ” Mischung”

X(z)=z1- X1+ ...+ 2z, X, (0.1)

fiir z4,...,x, € R ndher untersucht werden soll. Hierbei wird unterstellt,
dass die Abhingigkeitsstruktur der Zufallsvariablen X, ..., X,, als bekannt
angenommen werden kann und als explizite Szenarienvektoren

X, =] : X7 eR

der Linge k vorliegen. In dieser Schreibweise ist die Abhéngigkeitsstruktur
durch die Ausprigungen von Xf fir i = 1,...,n implizit gegeben'. Weiter
sollen die Gewichte z; fiir ¢ = 1, ..., n unter Einhaltung einer festgelegten er-
warteten Ausprigung E(X (z)) so gewihlt werden, dass X () eine moglichst
geringe Varianz aufweist.

Dariiber hinaus wurde der Fall untersucht, bei welchem einseitige positive
Abweichungen vom Erwartungswert keiner Beschrinkung unterliegen, wihrend
das Unterschreiten eines vorgegebenen Schwellenwertes als Abweichung von
der Erwartung mit moglichst hoher Konfidenz ausgeschlossen werden kann.

! Durch die Verwendung einer geeigneten Anzahl an Szenarien k konnen iiber diesen
Ansatz auch als stetig vorausgesetzte Zufallsvariable hinreichend approximiert werden.
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Mit anderen Worten soll die optimierte Mischung der X; fiir zuléssige Werte
x; bestimmt werden, so dass zu gegebener Konfidenz das Unterschreiten eines
Schwellenwertes durch die Zufallsvariable X (x) ausgeschlossen werden kann.

Auch wenn der oben beschriebene allgemeine Fall an einem konkreten Beispiel
erarbeitet wird, so ist hervorzuheben, dass an keiner Stelle der Analysen die
Allgemeinheit der Aussage beschrinkende Annahmen einflieen. Wird also
das vorliegende Problem an einem konkreten Praxisbeispiel erléutert, so di-
ent dies einzig und allein der Anschaulichkeit. Unbenommen hiervon handelt
es sich bei dem vorgestellten Algorithmus um eine sehr allgemeine ” Quantils-
Optimierung” einer beliebigen Mischung von Zufallsvariablen, wobei der Er-
wartungswert der untersuchten Verteilung als bekannt vorausgesetzt wer-
den darf. Bei dem beschriebenen Losungsalgorithmus handelt es sich um
eine Vorgehensweise, welche ohne weiteren Anpassungsbedarf auf allgemeine
mathematisch-statistische Problemstellungen angewendet werden kann.

Wie bereits erwidhnt wurde, wird die oben beschriebene allgemeine Problem-
stellung anhand einer konkreten Problemstellung eingehend analysiert. In
der Tat beschiftigen wir uns im vorliegenden Fall mit einer Erweiterung des
klassischen Portfoliooptimierungsproblems, welches erstmals von Markowitz
in seiner wegweisenden Arbeit [34] im Detail untersucht wurde. Die bere-
its beschriebenen Zufallsvariablen X; werden in diesem Zusammenhang als
Verlustverteilungen einzelner Assetklassen interpretiert und in der Markow-
itzschen Analyse als normalverteilt unterstellt. Basierend auf dieser An-
nahme wird das optimale Portfolio als eine Positionierung zwischen Risiko
und erwartetem Verlust formuliert. Uber den urspriinglich von Markowitz
gewihlten Ansatz hinaus wollen wir uns jedoch nicht auf den Fall normalverteil-
ter Zufallsvariablen beschrinken, sondern die Verlustverteilungen, gegeben
als die Zufallsvariablen X;,7 = 1,...,n mit grofitmoglichem Freiheitsgrad
wihlbar erlauben. Interpretieren wir x € R™ als Portfolioallokation der n ver-
schiedenen Assetklassen, so ergibt sich die entsprechende Verlustverteilung
X (x) mittels Gleichung 0.1.

Fine sehr verbreitete Vorgehensweise zur Risikomessung bei nicht normalverteil-
ten Verlustverteilungen stellt die Verwendung des Value-at-Risks zum Kon-
fidenzniveau 7 (VaR, oder kurz VaR) dar. Dieses Risikomafl mifit den kle-
insten zu erwartenden Verlust, so dass die Wahrscheinlichkeit eines den VaR
iibersteigenden Verlust nicht hoher als (1 —n) - 100% ist. Obwohl dieses sehr
bedeutende Risikomafl weite Verbreitung gefunden hat, fehlen ihm einige
sehr wichtige Eigenschaften, welche Risikomafle im Allgemeinen aufweisen
sollten (vgl. [4]). Neben der Tatsache, dass es sich beim VaR um ein im
Allgemeinen duflerst instabiles und in der Optimierung als komplex zu klas-
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sifizierendes Risikomafl handelt, wird die Ausprigung der den VaR iiber-
steigenden Verluste nicht beriicksichtigt. In diesem Sinne wird bei gleicher
Wahrscheinlichkeit des den VaR iibersteigenden Verlusts die Situation, in
welcher eine Konzentration von Verlusten den VaR deutlich iibersteigt nicht
unterschieden von einer (oftmals favorisierten) Verlustverteilung, bei welcher
die Verluste geglittet iiber ein weites Spektrum unterschiedlicher Verlustaus-
prigungen auftreten.

Es gibt eine Vielzahl an Bemiihungen, Optimierungsprobleme der vorliegen-
den Art effizient zu losen. Ein Grund dafiir, dass es noch immer keinen Algo-
rithmus zur effizienten Losung grofldimensionierter Problemstellungen gibt,
ist hauptséchlich in der fehlenden Subadditivitéitseigenschaft des VaR be-
griindet. Eine direkte Konsequenz ist im Allgemeinen das Auftreten zahlre-
icher lokaler Optima, welche die Verwendung klassischer Losungsansitze von
vornherein ausschlieBen. In der Tat kénnen Yang et al. in ([62]) zeigen,
dass die Komplexitit des Optimierungsproblems mit dem VaR als Zielfunk-
tion in die Klasse NP-schwieriger Problemstellungen fillt. Die Behauptung
von Yang et al. wurde erneut aufgegriffen und in verallgemeinertem Kon-
text mit neuer Beweisfiihrung nachvollzogen. Aufgrund der Komplexitéit des
Problems gibt es in der Forschung derzeit verschiedene Richtungen, um das
Problem fehlender Subadditivitit zu umgehen.

In einem ersten Schritt kann eine deutliche Reduktion der Komplexitit durch
die Beschriankung auf bestimmte Verlustverteilungen erzielt werden. Neben
den bereits erwihnten, normalverteilten Verlustverteilungen zdhlen auch el-
liptische Verteilungsannahmen zu jenen Verteilungen, fiir welche das kor-
respondierende Allokationsproblem mittels geeigneter Algorithmen effizient
gelost werden kann. Dariiber hinaus konnte in dieser Arbeit erstmals gezeigt
werden, dass unter der Annahme a-stabil verteilter Verluste und bestimmter
(wenig restriktiver) Beschréinkungen an das zu untersuchende Konfidenzniveau
n das urspriingliche VaR Optimierungsproblem ebenfalls deutlich in seiner
Komplexitét reduziert werden kann.

Will man auf die Annahme méglichst allgemeiner Verlustverteilungen nicht
verzichten, so kann eine Komplexitétsreduktion durch die Verwendung ange-
passter und in der Regel subadditiver Risikomafle erzielt werden. Neben dem
”Smooth Value-at-Risk” (SVaR) oder dem "Worst Conditional Expecta-
tion” ist an dieser Stelle vor allem der ”Conditional Value-at-Risk” (C'VaR)
fiir diese Dissertation von zentraler Bedeutung. Dass es sich bei letztge-
nanntem Risikomafl um ein kohéirentes (und damit subadditives) Risikomaf3
handelt, konnte von den Autoren Uryasev und Rockafellar ([52], [53]) fiir
eine weite Klasse von Verlustverteilungen gezeigt werden. In der vorliegen-
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den Dissertation konnte dieses Resultat dazu verwendet werden, um unter
wenig beschriinkenden Annahmen an die Verlustverteilungen und fiir zahlre-
iche Konfidenzniveaus 7 stets ein affines C'VaR-Konfidenzniveau anzugeben,
so dass die korrespondierende Losung des C'V aR Optimierungsproblems eine
oftmals ausreichende Approximation des urspriinglichen VaR Problems dar-
stellt. Die Subadditivitéit der affinen Problemstellung erlaubt es mit Hilfe von
Optimierungsverfahren zur Losung hochdimensionaler linearer Problemstel-
lungen auch das urspriingliche Optimierungsproblem fiir eine duflerst grofie
Anzahl an Freiheitsgraden z; effizient zu losen. Eine Beschreibung aller hi-
erfiir notwendigen Annahmen als auch Aussagen iiber die Giite der erzielten
Approximation stellt den zentralen Bestandteil dieser Arbeit dar.

Sollen einerseits moglichst allgemeine Verlustverteilungen abgebildet werden
und andererseits die Verwendung des VaR als Zielfunktion aufrecht erhalten
bleiben, so existieren auch hier unterschiedliche Ansitze, welche im Allge-
meinen allerdings nur fiir eine sehr begrenzte Zahl an zu optimierenden Frei-
heitsgraden z; effiziente Anwendung finden. Eine hierunter fallende Klasse
von Losungsalgorithmen mit herausragender Bedeutung stellen heuristische
Algorithmen (Tabu Search, Simulated Annealing, Threshold Accepting, etc.)
dar. Nach dem Abschluss der Analyse zu vorgeschlagener approximativer
Vorgehensweise wird ein speziell auf die Gegebenheiten der V a R Optimierung
angepasster stochastischer Branch & Bound Algorithmus vorgestellt und
dessen Performance anhand eines Beispiels numerisch untersucht. Als ein Re-
sultat zeigt sich, dass dieser Algorithmus interessante Fortschritte beziiglich
der Effizienz stochastischer Algorithmen aufweisen kann. Allerdings zeigt
sich auch an diesem Beispiel die Notwendigkeit alternativer Vorgehensweisen
bei der Handhabung grofidimensionierter Problemstellungen. Die im Haupt-
teil der Dissertation beschriebene approximative Vorgehensweise erfihrt auch
hier eine erneute Rechtfertigung, da nur iiber diesen Weg auch Optimierung-
sprobleme hochster Dimensionalitét in voller Allgemeinheit effizient 1osbar
erscheinen.



Chapter 1

Introduction

Within this thesis we want to address the solution of a very general problem
setting, where for n given random variables

Xi,.., X, €R

the weighted composition

X(x):=21- X1+ ...+ 2, - Xy (1.1)

for xy1,...,x, € R is analyzed in detail. Here, we presume the dependency
structure among the random variables X, ..., X,, to be known and given as
scenario vectors of length k

I
>0
M
=

X;

Using this notation the dependency structure is given implicitly using real-
izations of the X! ¢ = 1,...,n!. Furthermore, the weights z; for i = 1,....n
are to be chosen in such a way that the expected value E(X(z)) admits a
preassigned value and such that X (z) admits the lowest variance possible.

I Using an appropriate number of scenarios k, also continuous random variables can be
approximated sufficiently.



Moreover, the case, where there are no bounds on the one-sided positive
deviations from the mean, whereas the shortfall of a given threshold can be
excluded with high confidence, is analyzed. In other words, the optimized
composition of X (x) for feasible z; is to be determined in such a way that
for some given confidence the shortfall of a threshold can be excluded.

While the general problem setting described above is worked out using a very
special example, it is important to point out that at no point of the analy-
sis the generality of the results restricting assumptions are made. When the
problem at hand is explained using a concrete practical example the only rea-
son for this is clearness. Besides this, the developed algorithm deals with the
optimization of quantiles of a general weighted composition of random vari-
ables under a predetermined value of its expected value E(X (x)). Without
any further efforts, the algorithm can therefore easily be applied to general
mathematical and statistical problem settings.

As already mentioned above the more general problem setting at hand is
analyzed using some concrete example. In fact, we want to address the
classical portfolio optimization problem at first rigorously investigated by
Markowitz’s pioneering work [34] on portfolio selection. There, Markowitz
allows for the different asset classes’ returns to be normally distributed and
based on this forecast he constructs the optimal portfolio as the right trade-
off between risk and expected return. In our setting we will also act on the
assumption that the underlying universe of asset classes has been predefined
by well-known distribution functions. However, we will not restrict to the
case of normal distributions but accept almost any kind of distributions as
given by random variables X;,7 = 1,...,n. Writing x € R" and interpreting it
as some portfolio allocation, the corresponding loss distribution of portfolio
x is then given by equation 1.1.

One possible way of accurately measuring risk in the context of non-normal
distributed asset returns is using the Value-at-Risk (VaR), which measures
the smallest loss value, s.t. the probability of a loss exceeding VaR is not
higher than (1—7)-100%. Although this very important risk measure actually
found its way to be written into industry regulations (see for example [28])
it lacks some very important properties risk measures in general should have
([4]). Apart from being unstable to work with numerically, VaR does not
look at the extent of losses higher than VaR itself. In this sense, as long as
there is the same probability of losses exceeding VaR, the measure does not
distinguish between the situation where there is a cumulate of losses clearly
exceeding VaR and the more preferable one where the tail-losses are more
smoothed out.



There have been many efforts of efficiently solving optimization problems
where the VaR appears either in the objective function or is part of the
constraints. The reason that there is still no solver at hand which can handle
large scale problems is mainly due to the fact that the VaR risk measure lacks
subadditivity. A direct consequence is (in general) the existence of numerous
local optima that exclude the usage of classical solvers such as the steepest
descent method. In fact, Yang et al. show in ([62]) that the plain vanilla
VaR optimization as considered in this thesis is NP hard if accounting for
general loss distributions. Due to this result there are now several different
directions current research addresses the solution of this problem.

The first possible reduction in complexity can be achieved by restricting
oneself to a special class of distribution functions. It is widely known that
assuming normally distributed asset returns results in a VaR optimization
problem that is equivalent to the problem of minimizing standard deviation.
A similar structured problem is the wider class of elliptically distributed
returns, not only since this class again inherits the property of being closed
under taking the sum of elliptically distributed returns. Another class of
distribution function which inherits this property is the class of a-stable
distributed returns. We will show that under some minor assumptions on
the confidence level the complexity of the corresponding VaR optimization
problem will only be of polynomial type.

On the contrary, if one wants to use arbitrary return distributions to match
investment returns, another way of getting around the problem of increased
complexity is the usage of similar but in some sense adapted risk measures.
One example is the further usage of value at risk while smoothing out the
irregular local behavior. Especially dealing with a large number of scenar-
ios, the non-subadditivity and hence the existence of local optima becomes
only important on a very small scale that can well be smoothed out by us-
ing the so called SVaR as further described in ([21]). Away from explicitly
approximating VaR, some authors also investigated new coherent (in par-
ticular subadditive) risk measures hence inheriting all the theoretical and
optimizational desired properties. Among them is the so called ”worst con-
ditional expectation”, proposed by Artzner et al. ([4]). Another in the
context of this thesis very important invention of risk measure is the usage
of "tail value at risk”, "expected shortfall” or simply ”conditional value at
risk” (CVaR) which will be seen to have in many aspects a much more fa-
vorable behavior while in its definition being as simple as VaR. Whereas
the usage of the term CVaR mainly refers to the case of discrete distribu-
tions, all the other notations implicitly account for continuous distribution
functions to be used. In order to avoid any further confusion, we will refer



to this risk measure as C'VaR, regardless of the distribution function being
continuous or discrete. That this measure of risk is in fact a coherent one for
an almost arbitrary choice of distribution functions was shown only recently
by the authors Uryasev and Rockafellar ([52] and [53]). The mean absolute
deviation ([30]), the mean regret ([13]) and the maximum deviation ([63])
are some further examples of risk measures which, dealt as the objective of
the corresponding portfolio optimization problem, can be stated as a linear
optimization problem. Moreover, Cheklov et al. ([9]) develop a risk measure
called conditional drawdown-at-risk (C'DaR) closely related to the concept
of C'VaR. The subadditivity property of C'DaRis also shown to hold true.

Another possible approach in reducing complexity is the restriction to higher
moments such as skewness and kurtosis besides mean value and standard
deviation as in the Markowitz approach. This proceeding is based on the fact
that the value at risk under some assumptions on the distribution function
can be developed into a series of its central moments. This is done in an
analogous way to the Taylor series expansion for differentiable functions and
depends on different techniques such as the Cornish-Fisher or Gram-Charlie
expansion ([25]). The author in [48] chooses a Cornish-Fisher expansion
accounting for an additional skewness parameter in the objective function.
However, this skewness parameter is set to be constant, hence it is not varying
with the different portfolio allocations.

If either the most generality of distribution functions used and VaR as the
objective should be attained, several algorithms were developed. On the one
hand there are some techniques based on solving linear programming prob-
lems and isolating the corresponding V' a R minimum using branch and bound
methods. Pang and Leyffer ([46]) develop some good overview on this strat-
egy. Pflug in [47] also develops some interesting reformulation of the VaR. In
principle, classical methods could be applied to solve this restated objective
function. Besides classical methods of optimization also heuristics such as
Genetic Algorithms, Tabu Search, Simulated Annealing or Threshold Ac-
cepting (for a good overview compare e.g. [61]) among others were adjusted
to match the particularities of the VaR objective. However, all the proceed-
ings of this paragraph have in common not to be able to address problems
of higher (i.e. higher than 15) dimensions efficiently. After concentrating on
the development of a good approximating algorithm to handle the VaR opti-
mization problem we will also present a stochastic branch & bound algorithm
at the end of this thesis. Using a slight reformulation of the original problem
it is possible to apply stochastic optimization tools which appear to obtain
interesting features regarding the efficiency of the corresponding solvers.



Investigation of the strong relationship between CVaR and VaR being the
central topic of this thesis, it is worth to mention again the very promising
approach of using C'VaR instead of the VaR objective in portfolio optimiza-
tion. Whereas from a practitioner’ss point of view C'VaR can be shown to
be always the more conservative measure of risk Uryasev and Rockafellar
succeed in proving the coherence of this measure thereby showing superior-
ity when compared to VaR since it is exactly this property which allows for
optimization problems to be easily solved. Dealing with a relatively easy to
solve measure of risk on the other hand enables numerous other authors to
solve for more advanced settings. For example Krokhmal et al. in [31] extend
the setting to problems with C'VaR being part of the constraints. Moreover,
they investigate the efficient line within the C'VaR framework.

We now want to give a short overview on the different meander towards our
final result as stated in section 3.3. Before using g-and-h distributions to
cope the matching of arbitrary distributions, we tried to investigate several
other methods of approximation. First, as already mentioned before, we
used different series such as Edgeworth-, Gram-Charlier- or Cornish-Fisher-
Series which all approximate the respective probability functions in terms
of their cumulants, hence can be used to approximately express both VaR
and C'VaR. However, convergence of the corresponding series is not always
guaranteed and the error of truncating the series after some finite cumulant to
our knowledge cannot be estimated within the portfolio context. Moreover,
it is not entirely clear how to handle the additional cumulants in the portfolio
optimization process.

Next we tried to use the approximate result for stable distributed returns
already at hand to extend it to arbitrary distributions by approximating
them through a-stable distributions. It is important to note, that using
stable distributions to approximate the original V' aR-problem directly, one
has to find an appropriate function on the n-dimensional sphere, since such
a function can be shown to give a dependence structure for multidimensional
stable distributed random vectors (see e.g. [2], [42] or [39]). In order to
significantly reduce complexity of the related optimization problem, we have
to guarantee convexity of CVaR.(z) as a function of portfolio composition
x. This can only be done by giving an overall dependence structure, as can
be seen by following the proofs in [52]. However, the adaptation of a general
dependence structure, as the search for an appropriate function on the n-
sphere, to arbitrary distributions seemed too inflexible and too expensive.

Our third approach was driven by the observation, that in general the VaR
as well as the CVaR can quite well be approximated by using the first mo-



ments of a distribution. Again using the result for stable distributed asset
returns, we tried to make usage of truncated stable distributions in order to
firstly approximate the original distributions via the first three moments. In
a second step we tried to use small truncation parameters A > 0 (see e.g. [35]
for the work with truncated distributions) of the truncated stable distribu-
tion to best approximate a corresponding VaR/CV aR-optimization problem
characterized by the parameter values (u(x),o(x), 5(z)) which again corre-
spond to the expected value, standard deviation and skewness, respectively.
However, this proceeding also has several disadvantages. On the one hand,
approximation by only the first three moments may not be enough to yield
appropriate results. Moreover, to match the stable distribution by the corre-
sponding truncated stable distribution would lead to the usage of very small
values A. This on the other hand leads to very small values o(x), 8(x) with
problems for the corresponding optimization problem. Besides these disad-
vantages, convexity of the resulting C'V aR-optimization problem cannot be
guaranteed.

We firstly develop the general notations used dealing with the VaR and
CVaR objective in Chapter 1. After introducing the main definitions and
properties of these two risk measures we next have a closer look on the
complexity of the general VaR optimization problem. Moreover, in this
introductory chapter, Section 2.5 gives a rough overview on the two major
families of distribution functions used in this thesis, stable distributions and
g-and-h distributions.

Chapter 2 starts with solving the CVaR optimization problem as transform-
ing it to a linear programming problem. In a second step Benders decom-
position is used to reduce the dimensionality of the resulting linear problem.
Having recognized the C'V a R optimization problem to be of polynomial com-
plexity, we analyse polynomial VaR optimization problems for special classes
of distribution functions in Section 3.2. In the subseeding sections we firstly
use g-and-h distributions to match arbitrary distribution functions in order
to find approximate statements for the euclidean distance between the VaR
optimum and the C'VaR optimum for some suitably chosen confidence level
Co € (0,1). The necessary conditions for this estimation are considered nu-
merically. In a next step, this approximate result can be shown to hold true
for almost any kind of distribution function. This is part of Section 3.3.

Within Chapter 3 we will develop the adaption of stochastic branch & bound
techniques to directly address the VaR optimization problem. The imple-
mentation of such an algorithm allows for the solution of moderately (i.e. up
to 10) dimensioned optimization problems efficiently. Chapter 4 summarizes



our results and gives some directions of further research.



Chapter 2

Problem Statement and
Conjecture

2.1 General Notations and Definitions

Throughout this thesis, random variables are denoted by capital letters Y, Z,
X, X4,... and are assumed to be defined on a common probability space
(Q, F,P). The distribution of the random variable X;,i = 1,...,n can be
interpreted as a loss distribution, giving the probability of losses for the
respective insecure investments. Clearly, using this setting, E(X;) is to be
interpreted as the mean value of the loss distribution, hence the negative of
the corresponding return distribution. We will denote by x = (z1, ..., z,)" €
R"™ the concrete portfolio compositions given as the percentage allocations to
the investment possibilities, i.e. z; denotes the percentage exposure to asset
class X;,7 = 1,...,n. The set of permissible portfolio allocations is denoted
by X C R™ and is restricted to be a subspace of R" given, for example, in
standard form
X={zeR"| Az =b,z >0}

with A € R™*" b € R™. Moreover, we will always require to be fully invested
without the possibility of going short, i.e. the minimum requirement on X

will be

X = {x = (21,00 ) ER": Y my=1,2; > 0,0 = 1, n} . (2.1)

i=1
We are now in the position to define the two main objectives of this paper,

8
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VaR and CVaR.

Definition 2.1.1 Forz € X, n € (0,1) the VaR,(x) is implicitly defined by

VaR,(z) :=inf{z e R: P{X(z) > 2z} <n}. (2.2)

Moreover, for x € X,( € (0,1), the expected shortfall CVaR:(z) is defined
by
CVaRe(z) =E[X(z) | X(z) > VaR:(x)]. (2.3)

Remark 2.1.1 [t is important to note that Definition 2.2 is suitable for con-
tinuous distribution functions as well as for discrete ones. However, in the
case of discrete distribution functions (as in any real world example charac-
terized by scenario representations) more subtle definitions are required for
rigorously defining expected shortfall, c.f. [53]. The same authors show that
by dealing with the discrete case one can define CVaR as'

CVaR:(z) := érelufx {a + TlgE (X (z) — a]+} , (2.4)

where [2]7 = max(z,0). It is shown that for smooth distribution functions both
definitions are equivalent (compare Theorem 10 in [53]). Since the expected
shortfall is nothing else than a conditional expectation, the aforementioned
definitions are not the only possible way of defining CVaR. If X(z) admits
a probability density function f,(t), this can be used to define CVaR as

oo

CVaR(x) t- fu(t)dt.

a 1 _C VaR¢(x)

If the distribution function F, under consideration is smooth, it is easy to
see that Definition 2.2 is equivalent to

VaR,(z) = F, Y (a).

T

Remark 2.1.2 Comparing the two definitions for VaR and CVaR, it be-
comes obuvious that while VaR is not handling the extend of the losses beyond

! For a motivation of this definition compare the proof to theorem 2.4.1.
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some threshold, taking the conditional mean in the definition of CVaR al-
lows for the recognition of the loss structure beyond this threshold. Whilst
only providing some lower bound for the losses in the tail, VaR is the more
optimistic risk measure if compared to the more conservative usage of CVaR.
Compare the discussion in ([53], p. 1444).

Definition 2.1.2 During the whole paper, we will mainly focus on the fol-
lowing two optimization problems

min VaR,(x) (2.5)
and
meiggl CVaR(z). (2.6)

for various confidence levels n,{ € (0,1). However, in order to show some
equivalence results of these two optimization problems we will also solve the

problem
min CVaRe, (), (2.7)

zeX

where we denote by
CVaRe, c(x) := co(x) - CVaRe (x) + p(x)

the CVaR objective with transformed scaling parameter co(x). CVaR¢ (x)
is thereby defined to be

CVaR,, (x) := CVaR, (%‘ﬁ) .

Remark 2.1.3 Without explicitly referring to it, the usage of a transformed
scaling parameter co(x) will always assume the existence of an appropriate
scaling parameter o(x).

As noted earlier, the set X can also account for different linear restrictions to
the optimization problem. In particular, restrictions on the minimum achiev-
able return of the optimal portfolio allocation, denoted by z}, respectively z7,
can be imposed. This gives us the possibility to generate efficient lines in an
environment, where risk is measured by VaR respectively C'VaR. However,
for the purpose of proving our main results we will always make usage of the
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Karush-Kuhn-Tucker conditions. To guarantee nondegeneratedness of these
necessary conditions for a local minimum z*, a number of regularity condi-
tions, such as the Linear Independence Constraint Qualification (LICQ) were
developed (see e.g. [37]). The LICQ states that the optimization problem is
regular in z* if the gradients of the active inequality constraints and the gra-
dients of the equality constraints are linearly independent at z*. X as defined
in equation 2.1 clearly satisfies LICQ since at least one of the constraints is
not active. The inclusion of additional constraints, however, must be in a
way such that we are dealing with x* being regular.

Besides the plain vanilla optimization problems as stated in (2.5) and (2.6)
and its extensions to the generation of efficient lines, there exist various
interesting generalizations that account for more complex settings. Among
all these possible extensions we would like to emphasize the incorporation of
liabilities in the present context rather than restricting oneself to the analysis
of an asset only portfolio. The optimal matching of stochastic liabilities that
cannot be directly influenced by changing some portfolio allocation is known
as Asset Liability Management (ALM) and attains increased significance
not only in the insurance industry but also within corporate companies and
investment banks. Considering stochastic liabilities as an additional input
parameter to the optimization problem can have a tremendous effect on the
optimal allocation x*. Denoting by £ some arbitrarily distributed random
variable, those liabilities £ could easily be incorporated by setting

T1
X = X(z):=(Xy,...,X,) | : +&,

Tn

where we used the same notation as before. Kuenzi-Bay and Mayer ([29]) in
their description of numerically minimizing C'VaR allow for such a setting
and show that the additional presence of liabilities do not disturb the nice
property of C'VaR being a coherent measure of risk. However, it is not en-
tirely clear how VaR behaves with additional liabilities changing the overall
loss distributions. In particular, it is not known in how far liabilities would
destroy the properties of the algorithm presented in the next chapter. Future
research on this topic may be worth to perform.
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2.2 Formulation of the Algorithm

To describe the fundamental algorithm of this thesis, we will firstly have to
introduce a set of striking portfolio compositions. Based on the optimization
problem (2.7) we therefore define

X* := {z € X |z solution of (2.7), ¢ € (0,1),c € R"}.

and denote by x7 . the respective elements of X*. Furthermore, by zf we
will shorthand refer to the portfolio z7 ;. We will then consider the following
optimization problem

min VaR,(z) (2.8)

reX*

and show that the resulting optimal portfolio is either equal to the solution
of the original problem (2.5) in the case of specially distributed asset returns.
For those cases, where we are not able to show exact matching of optimal
portfolios, we will state an upper bound for the euclidean distance of the two
portfolio compositions as given by the arguments of (2.5) and (2.8). Hence,
in searching for the global minimum of the original (maybe huge dimensional)
problem one gets reasonable results in restricting oneself to the set X* and
therefore reducing to a two dimensional search which generally is much more
efficient to solve. Moreover, some of the results of this thesis choose ¢ in the
definition of the set X* to be equal to one hence resulting in a one dimensional
search equivalent. It is interesting to note, that in those cases, where we allow
for an arbitrary positive value ¢, we found that the optimal value for ¢ in the
sense of (2.8) is also close to one.

Therefore, the main complexity in order to solve (2.8) lies in the determina-
tion of the set X* which itself heavily depends on the effective solution of the
affine C'VaR optimization problem for suitable confidence levels ¢ € (0,1).
There we can use Rockafellar’s and Uryasev’s result on efficiently optimizing
CV aR for some fixed confidence level (. In practice, for a suitable choice ¢, ¢,
we will take some sufficiently close meshed grid on (0, 1) X [¢;, ¢,] and for every
element (¢, c) on this grid we solve the corresponding CVaR optimization
problem. That this procedure in fact will produce a helpful approximation
to the set X* is the result of the next lemma which states that optimization
(2.8) generally is well behaved.

Lemma 2.2.1 Let VaR,(x) be a continuous function of x and suppose that
for every confidence level ( € (0,1) there exists a unique solution to the
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CVaR optimization problem (2.6). Then for ¢ > 0 the function

h:(0,1) — R (2.9)
¢(+—VaR, (ZEZC)

18 continuous.

Proof: W.l.o.g. we can restrict to the case ¢ = 1. Other values of ¢ do
not change the qualitative statement. We prove continuity in an arbitrarily
chosen confidence level (, € (0,1).

Step 1: CVaR(x) is a continuous function of the confidence level (. This
result was proven for arbitrary distribution functions in ([53]).

Step 2: The mapping
(+— CVaRC(mZ)

is continuous. For each a € R consider the function of v € R, x € X defined
by
Oow(7) = a+7EB [(X(z) —a)'],

and let
0(y) = min_0,.(7). (2.10)

zeX,a€R

Hence by Theorem 10 and 14 of ([53])

CVaR¢(z¢) = minCVaR¢(v)

zeX
= 20 0aa(7)
= 0(y) for y=1/(1-¢), (2.11)

with the minimum in (2.10) being attained when a belongs to the interval
[VaR(xf), VaR{ (xf)].

According to (2.10),  is the pointwise minimum of the collection of functions
0,.. Those functions are affine, hence 6 is concave (c.f. [51], Theorem
5.5). A finite, concave function on R" is necessarily continuous (c.f. [51],
Theorem 10.1). The result follows through 2.11 by considering the function
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¢ — CVaR¢(x7) as the composition of § with ¢ +— 1/(1 — () and invoking
the chain rule.

Step 3: The mapping
(a7 (2.12)

is continuous. Using continuity of Step 1, for any € > 0 there exists a 61 > 0,
s.t.

* * 8
€= Gl < 81 = |CVaR(az,) - CVaRg,(at,)] < 5
Moreover, by Step 2 there exists 65 > 0, s.t.
€
€= Col < 62 = |CVaR () — CVaRe, (az,)] < 5

Defining 6 := min {81, 62} and for all confidence levels ( satisfying [ — (,| <
6 we can write

CVaRe(z}) — CVaRC(:czo)‘ < ‘CVaRC(:cZ) — CVaR,, (xgo)‘

+ ‘CV@RCO (xZ,) — CVaRC(xZO)‘
e €

< -4 -—=
5T5=¢

Hence by the convexity of C'VaR and the assumed uniqueness of its optimum
for any sufficiently small 6 > 0, € > 0 can be chosen, s.t.

Since VaR,(z) is a continuous function of the portfolio composition z, also
the composition with the continuous function as defined in (2.12) is contin-
uous which is the claim of the lemma. O

< 4.

* *

T — T,

2.3 Complexity of the VaR-Optimization Prob-
lem

The authors in [62] investigate the optimization problem 2.5 and show that
the problem of finding the optimal allocation z; is generally Non-deterministic
Polynomial (NP) -hard.
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Although being formally correct, in their proof to NP-hardness, the authors
are using some predefined distribution function of the individual asset classes.
Moreover, the number of used scenarios is not to be arbitrarily chosen and
the proof only allows for the confidence level n = % Hence, it is not entirely
clear if the optimization problem looses its property of being NP-hard when
we are allowing for an arbitrary number of scenarios and/or if we are only
interested in some confidence level close to one. Below, we are stating an
alternative (and in our sense more intuitive) proof of NP-hardness, thereby
accounting for the above mentioned remedies.

Theorem 2.3.1 The scenario-based VaR, optimization problem (2.5) is NP-
hard.

Proof: Suppose there exists some joint continuous density function p(y) for
the losses denoted by y. Before reducing the NP-hard ”Subset Sum” problem
to the current one, let us implicitly define VaR, using the joint density
function

/ p(y)dy = .

z-y>VaRy

The main complexity in solving for the optimal portfolio allocation in (2.5)
lies in the decision whether or not there exists a feasible solution which
accounts for some predefined value VaR, (c.f. [62]). To be more rigorous,
denoting by V' the minimum achievable value of the original problem,

V :=minVaR,(z),

zeX

for some given value V* problem (2.5) is in complexity equivalent to the
decision whether there exists x € X with

/“mw@=n. (2.13)

zy>Vt

Discretising Equation 2.13 yields?

mind > ply)l Y p(y) =0 (2.14)

xy; >V xy; >V

2 Compare the definition of VaR for discrete distributions.
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for loss values ;. Suppose now there exists a polynomial algorithm that
decides for any joint density function and any choice of loss values y;,7 =
1, ...,n whether there exists a corresponding z € X, s.t. (2.14) holds. Defining

Zziak =p(y;) Vi=1,...,nand

S1 oo o={a;|zy; >V}
Sy :{a,-|xy,-<Vt}

the problem is equivalent to the one of deciding whether there exists a subset
Sy of S:={ay,...,a,}, s.t.

Z a; = 1. (2.15)

a; €51

which by assumption would also be solvable within polynomial time. This
would be in contradiction to the well known fact that the so called Subset
Sum problem (2.15) is NP-hard (compare [56]). O

Note that the existence of a joint density does not generally imply the cor-
responding VaR problem to be hard to solve. For example, the case of
normally distributed asset returns with joint distribution function is known
to be easily treatable. Moreover, J. Danielsson et al. (c.f. [11]) give some
further examples where either the confidence level or the special structure of
the distribution functions are chosen in a way that the resulting optimization
problem is of polynomial type. All these examples correspond to some simple
structured Subset Sum problem as in the proof of the theorem. However, fol-
lowing the lines of the theorem, one attains any kind of Subset Sum problem
by a suitable choice of the joint density function.

Although we cannot give a rigorous proof, the experience of the calculations
to this thesis as well as the results given below teaches most of the undesired
behavior to be caused by discretising the originally assumed continuous or
even differentiable distribution functions. Discretising the random variables
to work with numerically seems to produce a large number of local extremas
that would not be observed solving the problem analytically. Using the
advantage of convex C'VaR optimization in the proposed algorithm for VaR
optimization surpasses the problem connected with the discretization of the
original distribution functions.
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2.4 Properties of VaR and CVaR

Within this section we want to present the major properties of the two risk
measures under consideration. It is not our intention to give a full review of
all the VaR and C'VaR inherent properties but to restrict to those proper-
ties that are directly used in our approach of minimizing VaR. In particular,
we will concentrate on the coherence of VaR and C'VaR as well as stating
some important relations between those two risk measures. The subaddi-
tivity property will be seen to be the crucial difference between the two risk
measures; its absence is the reason for the increased complexity in optimizing
VaR.

2.4.1 Coherent Measures of Risk

Artzner et al. [4] show that there exists a set of axioms that risk measures
should fulfill. The authors also show that these axioms are complete in the
sense that if a measure does not satisfy all the axioms, this may lead to
undesirable conclusions. Considering a set V' of real valued random variables
with p describing some arbitrary risk measure, these axioms can be stated as

(a) (translation invariance) Y € Vice R= p(Y +¢) =p(Y) + ¢
(b) (positive homogeneity) Y € V¢ > 0,cY € V = p(cY) = cp(Y)
(c) (sub-additivity) Y1,Y5,Y1 + Yz € V = p(Y; 4 Y3) < p(Y1) + p(Y2)
(d) (monotonicity) Y;,Y; € VY1 <Yy = p(Y:) < p(Ya)

where in (d) we used the relation YV} < Y3 iff E[¢(Y1)] < E[¢(Y2)] for all
integrable monotonic functions .

Without any further assumptions it can easily be seen (compare e.g. [47])
that both VaR and CVaR as defined above satisfy translation invariance,
positive homogeneity as well as monotonicity. The property of being sub-
additive is always fulfilled using p = C'VaR, hence by positive homogeneity
CVaR admits the property of being convex in the sense that for 0 < A <1

CVaR:(\Y1 + (1 = \)Ya) < ACVaR:(Y1) + (1 — \)CVaR:(Ya).
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We will have a closer look at this property in Subsection 2.4.3. Since VaR is
not always subadditive (i.e. the property depends strongly on the confidence
level and the set V' used) it does not inherit convexity in general. Apart from
the above described fact that VaR tends to be a too optimistic measure of
risk, the lack of being subadditive is one of the major drawbacks of using VaR
in risk management. Beyond accounting for nice mathematical properties,
in practice the usage of convex risk measures has the advantage that risk
measurement on a subsidiary level guarantees the overall risk not to exceed
the sum of the individual risks. Using VaR this conclusion might be false
and result in a wrong risk allocation. We will have a closer look on this topic
in Subsection 2.5.6.

2.4.2 Relations between VaR and CVaR

VaR is a quantile whereas C'VaR measures the conditional tail expectation.
Hence these two risk measures obviously coincide only if the tail is cut off
and the cut is in VaR,(z) itself. Nevertheless, within the next theorem we
will state two very important relations between VaR and CVaR.

Theorem 2.4.1 (i) Considering the same confidence level { for VaR and
CVaR, CVaR:(Y) always succeeds VaR:(Y),

VaR:(Y) < CVaR:(Y),

for any random variable Y .

(ii) Writing F, for the distribution function of some random variable suppose
¢ is in the range of F, i.e. F(F~(a)) = a, then

CVaR.(Y) = ﬁ /C VaR.(YV)ie. (2.16)

Proof: Using the definitions of VaR and CVaR (i) is an obvious result.
Under the assumptions of the theorem, equation (2.16) is again nothing else
than definition (2.3) and writing the conditional expectation in integral form.
Starting with the definition for CVaR as given in (2.4), the following relation
gives an interesting insight to the motivation of defining CVaR by (2.4). Let
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b be chosen such that F'(b) = (. Then P{Y > b} =1 —( and

B (Y]I{Y>b})

E(Y|Y >b) BV S by
B (- +[Y —8]")
P{Y > b}
= b+1T1CE([Y—b]+) :

This shows, that under the assumptions of the theorem equation (2.16) holds
also when using the alternative definition of C'VaR for discrete distribution
functions. O

2.4.3 Subadditivity of CVaR

The main purpose of this paper is to solve the Va R optimization problem by a
sequence of affine C'Va R optimization problems. It is therefore not surprising
that the aspect of efficiently finding the solution of the C'V aR objective is one
of our main focuses. Since in practice we are always confronted with a finite
set of scenarios representing some (theoretical) distribution function, we want
to show that the above mentioned subadditivity property is not only true for
sufficiently smooth distribution functions, but also holds for those cases where
the distribution function is a discrete step function. In financial applications
this is the only case of interest since any optimization has to be performed
on a finite set of scenarios. Moreover, it is the intention of this subsection
to formulate the corresponding C'VaR optimization problem in a way that
allows for a simple implementation. Hence this subsection can be interpreted
to provide the necessary background for further developments of efficient
CVaR solvers as described in Section 3.1. All the results of this section
can be found in the joint work of Rockafellar and Uryasev ([53]). Although
the authors are dealing in a more general context, we are concentrating on
the pure portfolio allocation problem hence stating their results in a more
specialized framework.

As the authors in [53] show, using discrete distribution functions instead of
continuous ones makes it necessary to distinguish between the definition of
VaR,(x) as given in (2.2) and

VaR} (z) = inf{z e R: P{X(z) > z} > n}.
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However, this distinction only becomes relevant for a small number of sce-
narios. If we are dealing with thousands of scenarios, the difference between
the definition of VaR}(x) and VaR,(x) will only be marginal. For a small
number of scenarios an appropriate definition of analogous values C' VaRZ“(m)
and C’VaRC_(x) to the existing definition of CVaR,(r) becomes necessary.
Since in this paper we are assuming to deal with a sufficiently large number
of scenarios and since we do not need this distinction in the further course
of this thesis, we will omit the corresponding definitions. For further details
consult the above mentioned paper by Rockafellar and Uryasev.

We are now in the position to state one of the main advantages of using
CVaR over VaR as a risk measure.

Theorem 2.4.2 Considering the definition of CVaR(x) as given in 2.4
define

with [t]" := max {0, ¢}.

(i) Since X(zx) is a linear function of x, G¢(z,a) is a jointly convex func-
tion in x and a. In particular, CVaR(x) is a convex function of the
portfolio composition x.

(ii) Minimizing CVaR:(x) as a function of v € X is equivalent to minimiz-
ing G¢(x,a) over all (z,a) € X x R in the sense that

inCVaR = i G .
minCVaR(e) = min  Gelz,0)

Moreover,

(z*,(%) € arg (queisrglxRGg(x,a) =

x* € argmingex CVaR¢(z),
(" € argmingeg Ge(z*, a)

Proof: For a full proof of the statements of the theorem see ([53]). O

The statement of the theorem can now be used to implement the correspond-
ing CVaR;(x) optimization problem in an efficient way. In fact, we will see
that the special structure of the objective function can be used to state the
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minimization problem as a linear one. Further simplifications using Benders
decomposition can be applied in order to increase efficiency. We will focus
on these developments in Section 3.1 below.

After having stated the subadditivity property of CVaR:(z), we want to
show that this property is stable under some minor change of the objective.
Below, we will show that the VaR, optimization problem is in some sense
and under several assumptions on the distribution functions equivalent to
the detection of the C'VaR, . minimizing portfolio for some given ((y,c) €
(0,1) x R*. Here, the objective function is given by

CVaR, c(x) :=c-o(x)CVaR (x) + p(z),

again using C'VaR to denote the CVaR of the standardized distribution.

The next lemma shows that this objective function is also a convex function
of the portfolio composition = € X.

Lemma 2.4.3 For all c € RY, {, € (0,1) and under the assumptions of
Theorem 2.4.2 CVaRy¢, .(x) is a convex function of x.

Proof: Theorem 2.4.2 gives us the convexity of CVaR, 1(x). Hence,
c-CVaR¢, 1(x) is a convex function and we can write

c-CVaRe 1(x) = c-o(x)CVaRe (x) +c- p(x)
= :CVaR, (),

Here C/'anﬁgmc(x) denotes the expected shortfall, where for all i = 1,...,n

the original asset classes X; are replaced by linearly transformed X, with
w(X;) = cu(X;). It is important to note, that by the linearity of the expected

value u(x), C%gmc(x) is convex iff CVaR,, .(x) is convex. O

2.4.4 Differentiability of VaR and CVaR

Our results on the equivalence of the ValR, and the CVaR; optimization
problem heavily rely on the differentiability of the respective objective func-
tion in the portfolio context, i.e. differentiation with respect to the portfolio
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composition z. First developments into this direction can be found in [24]
and [23]. Although these papers already provide readily interpretable for-
mulae for the case of linear combinations of random variables, the authors
did not yet attend the question under whichsoever general conditions their
formulae in fact hold true, hence addressing the question of differentiability.
Addressing both the VaR and the CVaR risk measure, Tasche in ([59], Sec.
5.2 and 5.3), develops some certain conditions under which differentiability
is fulfilled. There one also finds some helpful discussion on distribution func-
tions more frequently used in financial applications. For completeness, we
will state those conditions summarized in Assumption (S). Compare ([59], p.
16) for the original context.

Assumption (S) For fixed n € (0,1), we say that an R" valued random
vector (X7, ..., X,,) satisfies Assumption (S) if n > 2 and the conditional
distribution of X given (Xs, ..., X,,) has a density

®:RxR" —[0,00)
(t, 22, .oy ) — P(t, Y2, e, Yn)
which satisfies the following four conditions
(i) For fixed ys, ..., y, the function t — ®(t, ys, ..., y,) is continuous in t.
(ii) The mapping
R x R\{0} x R — [0, 00)

P (@1 (t — ijxj> . Xo, ...,Xn>]
j=2

is finite-valued and continuous.

(t,x) — &

(iii) For each z € R\{0} x R*!

d (ml_l (VaR,,(x) - iijj) , Xa, ...,Xn)] :

(iv) For each i = 2, ...,d the mapping

0<E

R x R\{0} x R*! — R

X;® <x11 (t — ijxj> . Xo, Xn>
j=2

is finite-valued and continuous.

(t,x) — E
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Under these assumptions, Tasche shows that VaR,(z) is a differentiable func-
tion of z. If the mean value of X (x) is finite, he also shows differentiability
of CVaR¢(z). Moreover, he again develops the formulae first published in
[24] and [23] expressing the partial derivatives of VaR, (z) and CVaR.(x) in
the following descriptive way

ai.VaRn(:v) =E{X;: X(z) =VaR,(z)},i=1,...,n. (2.17)

similarly, the partial derivative of C'VaR,(z) yields the expressive form

0
aZL‘Z’

() =E{X;: X(z) > VaR¢(x)},i=1,..,n. (2.18)

Scaillet in [55] derives similar formulas and discusses its application to the
normal distributed case. Formulas (2.17) and (2.18) show the main difference
between the two risk measures. Whereas under some assumptions on the dis-
tribution function VaR appears to be partially differentiable, its derivative
becomes in some sense unstable, indicating that generally only very restric-
tive assumptions on the distribution function will yield derivatives of higher
order. The aforementioned condition of being unstable becomes apparent
when numerically evaluating expression (2.17). Having vectors X; represent-
ing the random variable X;,i = 1,...,n, the corresponding partial derivative
can be approximated by taking the entry of X; which corresponds to the
entry of X'z which again represents VaR,(x). Obviously, such evaluations
can result in very different partial derivatives.

On the other hand, formula (2.18) can be used in a similar way by first sort-
ing the vector X with respect to the sorted entries of Xtz and taking the
mean over the (1 — () - 100% of the last entries. Taking the mean makes
the partial derivative much more stable. Expressions for the VaR and the
CVaR derivatives of arbitrary order are given in [50]. However, actual dif-
ferentiability conditions for higher order derivatives in an arbitrary context
are (to our best knowledge) not yet developed.

At some stage we are not only interested in the differentiability with respect
to the portfolio composition but also in the differentiability with respect to
the confidence level n. For distributions with continuous distribution func-
tion, the result for VaR immediately follows from

) o
%VaRn(I)—a—an (n)
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and the differentiability of the inverse function. Relation (2.16) gives the
equivalent result for C'VaR. For more general distribution functions the
result might not hold true for the VaR risk measure. Using CVaR as a risk
measure, Rockafellar and Uryasev show ([53], p. 1458) that even for discrete
distributions CVaR,(z) is a continuous function of ¢ which exhibits left and
right derivatives.

2.5 Some Comments on Stable / G-and-H
Distributed Asset Returns

Some of our results are heavily dependant on the usage of stable respec-
tively g-and-h distributions. Whereas stable distributions admit the favor-
able property of being closed under taking the sum, hence allowing for explicit
representations in terms of the defining parameters, g-and-h distributions ex-
hibit tremendous flexibility in matching arbitrary distributions. Moreover,
the VaR for g-and-h distributed asset returns appears to be given by an ex-
plicit formula. Because of the importance to our results, we will give a short
overview on the properties of these two classes of distribution functions.

2.5.1 Properties of Stable Distributed Asset Returns

Within this paragraph we want to consider the class of stable probability
distributions which can be interpreted as a generalization of the normal law
allowing for skewness and heavy tails. This class was originally introduced
by Paul Levy in the 1920s in his study of sums of i.i.d. terms. Since there is
empirical evidence for skewness and /or kurtosis within finance and economic
modelling this class of distributions is nowadays often used in the modelling
of financial data. For a list of research on this topic we refer to the citations
in [41]. Another reason for the usage of stable distributions is the Generalized
Central Limit Theorem which states that the only possible non-trivial limit of
normalized sums of i.i.d. distributed terms is again stable. Since it is argued
that e.g. the price of stocks is the sum of many small terms consequently a
stable model should be used to model this data.

Recently, there was a huge development in the area of making stable distri-
butions more accessible to practitioners. As an example, several methods of
estimating stable parameters, such as maximum likelihood, quantiles, em-
pirical characteristic functions and fractional moments were developed. Also
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a reason for the widespread distribution of this special kind of distribution
function is justified by the development of reliable and fast methods to com-
pute stable densities, distribution functions and quantiles. Moreover, as we
will see in the next paragraph there were developed fast methods to generate
stable random variables.

The class of stable probability distributions encloses some very nice theo-
retical properties. However it is not our intention to give a full reference
to all these properties. We will therefore restrict ourselves to those selected
properties that are directly related to portfolio allocation and to our desire
to find the optimal solution of the VaR optimization problem.

Every stable distributed random variable is uniquely defined by four para-
meters: an index of stability or characteristic exponent « € (0, 2], a skewness
parameter 3 € [—1,1], a scale parameter v > 0 and a location parameter
6 € R. Although there are several different representations used to describe
stable distributions we are concentrating on the two most common ones.
Moreover, within this thesis we will focus on the 1-parametrization (as in the
notation of Nolan in [41]) for the reason that using this representation the
location parameter § corresponds to the mean value (for a > 1). In order to
implement efficient VaR and C'VaR calculators we mainly use the representa-
tions of the distribution function as given in [38] where the 0-parametrization
is used. To compare the results with the 1-parametrization we will have to
adjust the values for ¢ accordingly. The respective transformation functions
are given below.

Definition 2.5.1 For0 < a <2, -1 < <1, v >0 and 6 € R a stable
random variable X in the 0-parametrization, X € S,(0,7,6;0), is given by
the characteristic function

Eexp(iuX) =
exp (=7 |ul® [1+ i (tan Z2) (sign u) (|’yu\17°‘ —1)] +idu) ifa#1
exp (— |u| [1 + 182 (sign w) log (v |u)] + i6u) if a=1.

Remark 2.5.1 Within this paper we will only consider distributions that al-
low for the existence of a mean value. For stable distributions this is only the
case for the index of stability being greater than one. However, for complete-
ness we will give the definitions in more general terms by allowing o to be an
element of the interval (0,2]. It is interesting to note that some well known
distribution functions can be seen to be stable. For example, it can be shown
that the case o = 2 corresponds to the normal distribution, o = 1 results in
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some Cauchy distribution whereas the choice o = % represents Levy stable
distributions.

We often handle standardized distributions, i.e. ¥ = 1 and 6 = 0. In this
case we will use S,(03;0) as an abbreviation of S,(3,1,0;0). Further on we
will also use the notation

VaR,(5(z))

to describe the VaR of a standardized random variable X « S, (3;0). Similar
notations are used for C'VaR as well as for the 1-parametrization as described
next.

Definition 2.5.2 For0 < a <2, -1 <3 <1,v>0 and 6 € R a stable
random variable X in the 1-parametrization, X € S,(5,7,6;1), is given by
the characteristic function

exp g—va lul™ [1 —if (tan Z2) (sign u)] +iéu) if a #1

Bexp(iuX) = { exp (— |ul [1 + 32 (sign u) log (|U|)} +idu) ifa=1.

If not explicitly mentioned the 1-parametrization will be used denoted by
Sa(B,7,6) and S,(0B) for arbitrary and standardized stable distributions,
respectively. Within the two parametrizations described above, «, § and the
scale v are always the same; the location parameter however admits different
values for the same stable distributed random variable X « S, (5,7, 6x; k)
for k = 0,1. Writing 6y and 6, for the location parameter of the respective
parametrization, one easily sees that

5 — 61+ Bytan T2, for v # 1 5 bo — By tan 5, for a # 1
7 61+ BEylogy, fora =1 P b0 — B2ylogy, for a =1,

Therefore it is quite easy to transform between the two parametrizations.
One of the most important properties of stable distributed returns is the fact
that any linear combination of a-stable distributed r.v. is again a-stable
distributed. Hence for some arbitrary portfolio composition x € X, the
resulting distribution function can be exactly described and analyzed by the
behavior of the four parameters. The next theorem gives us some first insight
to the behavior of these parameters as functions of the portfolio composition
x.
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Theorem 2.5.1 Let X; v« So(83;,7,.0i; k), k= 0,1, be independently distrib-
uted random variables and let x = (1, ...,x,)" € X describe some feasible
allocation. Then

Xi=x1- X1+ ... +x,- X, » Su(B(x),v(2),6(x); k).

Moreover, the parameters 3,y and 6 are explicitly given by

)= > |l
=1

Z?:l 6i(8igmi> |$i%’|a

B(z) = po- (2.19)
> Tidi + tan 7 (By — 3, Bixiv;) k=0 a#l
§(z) = > wibi + % (Bylogy = > . Bixiy;log|ziv;l) ifk=0,a=1
> i Tibi ifk=1,a#1
Zi L0 — % Zzﬁz%% log |z;| ifk=1,a=1

Proof: For a proof of this result we refer the interested reader to [54], [41].
g

In order to introduce some dependence structure among the different asset
allocations it is practical to consider multivariate stable distributions. If we
denote by

S:={ueR": |ju| =1} CR"

the unit sphere in R™, then Feldheim (in [19]) showed that any stable random
vector can be characterized by a spectral measure A (a finite measure on S)
and a shift vector 6 € R™. Any stable random vector X « S,(A,6) can
therefore be represented as

Eexp (i (u, X) )=

— i [[(u, 8)|* — i(sign (u, s)) tan 22 |(u, $)[*] -\ .
— [ [, )| — i(sign (u, 5)) tan 2 [(u, 8)|°] -\ ..
exp Js | A(df)—l—i(u,é) ] T

Alike in the univariate case of stable distributions an equivalent way of rep-
resenting any stable distributed random vector is given by using projections.
This uses the fact that for any vector x, the projection (z,X) is univariate
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a-stable with some skewness 3(x), some scale y(x) and some shift §(x).We
will write X «S,(5(.),7(.),6(.)) if X is stable with

(z,X) « Sa(B(2),7(2), 6(x))

for every x € R" (again implicitly using the 1-parametrization). Note that
the spectral measure determines the projection parameter functions by

o(x) = / (2, )| A(ds)

 Js Iz, 5)|" sign ((z, 5)) A(ds)
Ale) = Y@ (2.20)
(x,0) a1

b(z) = { (z,6) — 2 [ (z,s)log |(z,s)| A(ds) a=1

There exists no explicit formula for the density function nor the cumulative
distribution function of an a-stable random vector. However, it can be shown
that any nondegenerate (i.e. 4 # 0) stable distribution is a continuous dis-
tribution with an infinitely differentiable density function (compare [41]). In
the univariate as well as in the multivariate case the authors Abdul-Hamid
and Nolan ([1]) give integral representations of the density functions.

In the further proceeding we will implicitly use the differentiability of VaR
and C'VaR as a function of the portfolio allocation. That this is indeed
well-defined for stable distributions is the content of the next remark.

Remark 2.5.2 Suppose (X7, ...,Xn)t 18 a stable distributed random vector.
Then, by [1] there exists a multidimensional continuous density function

p:R" — [0, 00[.
In particular, p is a bounded function, such that for fixed x, ..., x, the func-
tion

R~ [0,00]

t— p(t,xy, ..., Ty)
is continuous and for every u € R\{0} x R"!

P <u1_1 . (VaRn(u) — ZUIXZ> , Xo, ...,Xn>] > 0.
=2

E
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Moreover, by restricting oneself to a-stable random vectors with o > 1, it 1s
well known, that fori= 1,...,n

E[X;|] < co.

Hence, Assumption S is satisfied for a -stable random vectors (a > 1) (cf.
[59], p.17 following the discussion on special situation where Assumption S is
satisfied) and thus (cf. chapter 2.4.4) VaR,(x) and CVaR:(z) are partially
differentiable functions of x.

2.5.2 Generation of Stable Distributed Random Vari-
ables

If we want to investigate either the VaR or the CVaR structure of stable
distributed portfolio allocations it is often helpful to generate a-stable distrib-
uted random variables. By generating a large set of corresponding scenarios
it is then relatively easy to get a rough idea of the VaR respectively the
CVaR behavior for different allocations. Although it does not seem obvious
how to generate stable distributed random variables, Chambers et al. give an
easy way of generating those r.v. based on a nonlinear transformation of two
independent uniform respectively exponential distributed random variables.

Theorem 2.5.2 Let © and W be independent with © uniformly distributed

on (—%,%) and W exponentially distributed with BE(W) =1 and let 0 < o < 2.

(a) The symmetric random variable

) (1-a)/c
sin a® cos(a—l)@
Z = (cos)'/ |: w :| @ ?é 1 (221)
tan © a=

has a S,(0;0) = S,(0; 1) distribution.
(b) In the nonsymmetric case, for any —1 < < 1, define

©p = arctan (ﬁ tan (%)) /o
when o # 1. Then

i (1—a)/a
sin a(6©0+0) cos(a@g+(1—a)O)
7 = (cos a© cos ©)/* [ W a 7& 1

(5% 90 o — g ()] amr )
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has a S,(06;1) distribution.

Proof: A proof of this result can be found in [8]. O

To simulate stable random variables X with arbitrary scale and location
parameters -y, 6 one has to apply the following transformations

B 7(Z—ﬁtan%)+5 a#1
X_{7Z+5 o (2.23)

in the O-parametrization, whereas in the 1-parametrization the necessary
transformations look like

vz +6 a#1

a { YZ + (6 + B2ylogy) a=1. (2:24)

2.5.3 VaR Computation in the a-stable Case

In principle, to perform the VaR calculation for an arbitrary confidence level,
it is possible to use equations (2.21), (2.22) to generate a set of random vari-
ables, sort the corresponding vector and take the entry that corresponds to
the a-quantile. However, if we are dealing with very heavy tailed distribu-
tions as in the case of « near 1, especially for higher confidence levels the
number of scenarios generated to yield an accurate value for the VaR esti-
mate will have to be very high. To compass these difficulties with modeling
the heavy tail directly, the so called technique of Importance Sampling was
developed (see [57], [7]). However, in our context it will be a more efficient
approach to calculate the corresponding distribution function and use this to
determine the VaR. Nolan in [38] gives formulas for the density and distri-
bution function of stable random variables that only involve the numerical
evaluation of one integral over a finite interval. Since in the present context
we are only interested in the formulas for the distribution function, we will
not state the corresponding formulas for the density functions. For a numeri-
cal implementation one should take into account the discussion on numerical
considerations in [38], page 766.

The below stated formulas only account for normalized distribution functions.
To transform the respective distribution function to the case of arbitrary
scale and location parameters equations (2.23) or (2.24) should be applied.
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Before we can state the exact formulas we will have to introduce some further
notations. Define

¢ = cap={ T mE 07
0, — 6’0(@,6):{ éarctan(ﬁtan%) 37:&1
2
7 (5-0) a<l
Cl(aaﬂ) = 0 a=1
1 a>1

1 os sy 0o+(a—1)0
(COS Ougo)ail (sini(@f—f—@)) e 205(00‘ & @ 7& 1

T @) e (G mme) amnaso

Theorem 2.5.3 Let X be stable distributed with characteristic function in
the 0- or the 1-parametrization with v =1, 6 = 0. The distribution function
of X 1is then given by:

(a) When oo # 1 and t > (,

w /% exp (— (t — O% V(‘9§O‘7ﬁ)> do.

0o

F(t;a,8) = ci(a, B) +

™

(b) When a # 1 and t = (,

F(GaB) == (5 —0).

(c) When a # 1 and t < (,

(d) When o =1,
%f_%% exp (—e’%v(e;lﬁ)) do B3>0
F(t;1,8) =  + Tarctant B =
1—F(t;a, =) g <0.

Proof: A proof of these formulas is given in [38]. O
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Remark 2.5.3 Using the explicit form for the distribution function of stable
distribution functions F(t;«, 3) in the theorem above, it is easy to see, that
F(t; o, B) is continuously differentiable with respect to t. By the well-known
formula for the derivative of the inverse function and the property

VaR, (o, 8) = F_ 5(n),

we also know about the continuous differentiability of the function VaR,(c, 3)
with respect to 1. Note, that this property also holds for CVaR(c, 3) and
all ¢ € (0,1). We will use this fact to analyse Assumption AST in Chapter
3.2.83 numerically.

2.5.4 CVaR Computation in the a-stable Case

In the last section we suggested to generate some large number of a-stable
random variables in order to estimate the corresponding VaR. Whereas this
proceeding only yields acceptable results for « sufficiently high or an appro-
priate number of random variables, one could try to do a similar calculation
to also estimate C'VaR. Putting all the generated random variables into one
vector, sorting and taking the mean over the (1 — ()% highest entries would
by the Law of Large Numbers directly result in CVaR;. However, due to
the heavy tailedness of a-stable distributed r.v. an accurate estimation of
the C'VaR would afford an even higher number of scenario generations than
compared to the VaR calculation. In fact, this phenomenon is one of the
drawbacks of using CVaR as a risk measure in finance. Since we are taking
the mean value over heavy tailed securities the modelling of the tails becomes
crucial in estimating the CVaR. One way out of this dilemma could be to
assume polynomially decreasing tails followed by estimating the parameters
of this polynomial. For example, in Extreme Value Theory (EVT), a gener-
alized Pareto model is used to match the tail. If we take this procedure to
be a sufficient one it is however not entirely clear how this tail dependence
moves with varying portfolio allocations.

Another way of getting around the above mentioned disadvantages of eval-
uating C'VaR accurately could be the usage of the following connection (or
similar ones involving the density function of stable distributions) between
VaR and CVaR

1
CVaR:(Y) = Tlc/c VaR.(Y)de.
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This again would imply the repeated numerical calculation of the VaR for
different confidence levels. All in all this would result in numerically eval-
uating a double integral, which is not very efficient. Stoyanov et al. in
[58] develop an integral representation that only involves one integral and
that can be used to efficiently evaluate the C'VaR, for high confidence levels
¢ € (0,1). The exact formula will be stated within the next theorem.

As in the proceeding cases, the following theorem only states its result for
standardized a-stable distributed r.v. Y in the 1-parametrization. To get the
respective expression for r.v. with arbitrary scale and location parameters v
and ¢ one simply uses

CVaR:(vY +6) =vCVaR(Y) + 6.

Theorem 2.5.4 LetY € S,(3,1,0) with a > 1.

(a) If VaR:(Y) # 0, then the expected shortfall of Y at confidence level ¢
admits the following integral representation

o |VaR(Y)| / .
CVaR:(Y) = T—a 7(1-0 Ja g(0) exp < [VaR:(Y)| 0(9)) do
where _
) = sin (v (6o + 0) — 26) B acos® 6
A sin o (50 + 0) sin® o (50 + 9) 7

0o == 0o(c, B), B := —sign(VaR:(Y))B and V (0; o, B) have the same meaning
as in the relay to theorem 2.5.3.

(b) If VaR:(Y) = 0, then

2T (O‘—_l) cos 0y

a

(m = 200) (cos aby)/*

CVCLRg (Y) =

Proof: A proof of this result and a discussion on some special cases can be
found in [58]. O
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2.5.5 Properties of the G-and-H Distribution

The g-, h- and g-and-h distributions are defined in terms of quantiles and were
first introduced by J. W. Tuckey in [60] (c.f. also [26] and [27]). Also a good
overview and several applications are given in [14] and [12]. Badrinath and
Chatterjee ([5], [6]) and Mills ([36]) used the g-and-h distribution to model
the return on an equity index as well as the return on equity in various
markets. Dutta and Babbel ([16], [17]) used the g-and-h distribution to
model interest rates and interest rate options. For a multivariate extension
of this flexible class of distributions compare [20].

Although already being described in 1960 and despite their practical attrac-
tiveness of simplicity and flexibility in handling skewness as well as kurtosis,
the various g-and-h distributions did not find their way through to financial
modelling. In fact, until recently, the g-and-h distributions received only lit-
tle interest in financial literature, which might in part stem out of the fact
that fat tailedness is not of such interest in traditional areas of finance as it
is in risk measurement.

We first give the formal definition of a g-and-h distribution.

Definition 2.5.3 Let Z ~ N(0,1) be a standard normal random variable.
A random variable X is said to be g-and-h distributed, denoted X € GH,
with parameters a,b, g, h € R, if X satisfies

X~a+b-Y, (2.25)

with

9Z _ 1
Y~ S k22 (2.26)
g

a,b are the location and scale parameters, respectively.

Within Definition 2.26, the case g = 0 is naturally interpreted as
Y ~ Z@hZ2/2

and called the h-distribution. In analogy, the case h = 0 will be referred to as
the g-distribution. Moreover, X following a g-distribution can be interpreted
to be a scaled lognormal random variable. Although there are generalizations
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of Definition 2.26 to the case, where both g and h are polynomials in Z (c.f.
[15]), we will firstly restrict ourselves to the case of constant parameter values
g and h. However, in order to perform the matching of both VaR and CVaR,
we will define g and h to be differentiable functions of the portfolio allocation
r e X

Definition 2.26 suggests the class of g-and-h distributions to be an extra-
ordinary flexible class in the sense of being a good match to other families
of distribution functions used in the financial industry. In fact, Martinez
and Iglewicz showed the g-and-h distribution to properly match such a wide
variety of distribution functions as the uniform, exponential or Student-t dis-
tributions, to mention only a few. This is mainly due to the fact that the
location and scale parameters in (2.25) can easily be used to match expected
value and standard deviation of some arbitrary distribution. Moreover, it is
easy to see, that parameters g and h can be used to account for skewness
and kurtosis, respectively. To be more precise, for g > 0, increased g results
in greater skewness to the right, whereas g < 0 results in skewness to the
left. Since, by definition the case g = h = 0 reduces to a normal distributed
random variable and successively incorporates heavier tails as A is increased
(for fixed g = 0), also the g-and-h distribution (for both g and A > 0) has
heavier tails than the normal.

Another appealing feature of a g-and-h distributed random variable X is
the fact, that the VaR can be given in explicit terms as a function of the
standard normal quantile. This property is stated in the next theorem.

Theorem 2.5.5 Suppose h >0, n € (0,1) and ® denotes the standard nor-
mal distribution function. Then

92 ') _q B
VaR,(Y) = = ch(@ /2, (2.27)
g

Proof: For h > 0, the function

k(z) = ﬁehwzﬂ
g

is strictly increasing. Therefore, the distribution function F'(z) of a g-and-h
random variable can be written as
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The result of the theorem follows immediately. O

Remark 2.5.4 There are mainly two reasons for restricting ourselves to the
parameter space h > 0. The first reason is driven by the desire to match
financial motivated distribution functions. In general, these can be seen to
inhere leptocurtic behavior and we have noted above that it is evactly h > 0,
that gives us the possibility to match heavy tailed distribution functions. On
the other hand, there is also a rigorous mathematical reason for choosing h
to be positive since otherwise the function k(x) defined in the proof to the
theorem can be shown not to be one to one but two to one. As a consequence,
VaR,(Y) cannot be stated in an analogous explicit way as in (2.27). More
subtle numerical methods will have to be applied (c.f. [60]).

In Chapter 3.2.4, we will use the location and scale parameters to match nor-
malized random variables. In order to do so, we first state the expressions of

the centralized moments of an arbitrary g-and-h distributed random variable
X.

Theorem 2.5.6 Suppose h < % The n-th central moment of a g-and-h

distributed random variable Y is then given by

n 1 Y i n (n=1)9)"|
E(Y™) = W;<_l) (2 >6XP [ﬁ]’ if g #0,

By — 0 forn odd 0 098
(¥ = QTL/Q—E%)I(l —nh)~ (D2 for n even if g =0. (2.28)
Proof: For a proof of this result see [60)]. O

Corollary 2.5.7 Using the result of the theorem, the expected value and the
vartance of a g-and-h distributed random wvariable can be seen to have the
exTpPressions

E(Y) = W [exp <2(19—ih)> - 11 Cforh<1,

1 2 2 2
for h < %
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Remark 2.5.5 In the notation of Definition 2.5.3, in what follows, we mostly
want the g-and-h distribution X to be normalized, i.e. BE(X) =0 and o(X) =
1 for various values g, h. This can be attained by using

, - _B(Y)
B <17(Y)
b= oY)

where Y denotes the above stated g-and-h distributed random variable.

To get a first impression of what the g-and-h density function for selected
parameter values g, h looks like, we plot in figure 2.1 the density functions of
the standardized normal distribution (solid line), the g-and-h density function
to the parameter values given in the title of the respective subplot (dashed
line) as well as the normalized g-and-h density function (dotted line) as de-
scribed above. Using these plots it is interesting to notice the influence of
the parameter g, which in both cases (the original g-and-h transformed den-
sity function as well as the normalized one) operates as skewness parameter.
Notice also the symmetry by changing the sign of the skewness parameter.
Higher values for h result in density functions with heavier tails. Normalizing
mean and standard deviation of the respective g-and-h distribution does not
change the values for skewness and kurtosis. Since higher values for h result
in higher standard deviations (with the limiting case 0 — oo as h — 0.5),
the normalized density functions exhibit much more peaked behavior as can
especially be seen in the lower subplots of Figure 2.1.

2.5.6 Subadditivity of VaR

Having stated the subadditivity property of C'VaR for continuous as well
as for discrete distribution functions in Section 2.4.3 we will have a closer
look on the subadditivity property of VaR for selected classes of distribution
functions. In the ongoing sections, we will see that the class of elliptical
distributions is subadditive for n > % which is mainly due to its symmetry
property. Moreover, for stable distributions with constant skewness parame-
ter § Garcia et al. (see [22], Corollary 3.2) find sufficient conditions on the
VaR confidence level such that the subadditivity property is fulfilled. We
will derive this result within an even simpler setting. Suppose the two inde-
pendently stable distributed r.v. X7, X5 admit the same skewness parameter
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Figure 2.1: Density functions of the standard normal distribution (solid line),
the g-and-h density function (dashed line) and the normalized g-and-h den-
sity function (dotted line) for several parameter values.

(. Then Theorem 2.5.1 shows that X; + X, is again stable distributed with
skewness  and the claimed subadditivity follows from
1
VaR)(X1+X3) = (i +p) + (07 +72)" - VaRy(f)
VaR,(X1) + VaRy(X2) = (g + pg) + (71 +72) - VaRy(B).

where we used p,, i, for the respective mean and ~,,7v, for the respective
scale parameter. Hence, by

Q=

(71 +72) > (07 +1%9)

for a > 1 we have

< VaR, (X)) + VaR,(Xs) if VaR,(3) >0
VaR, (X1 + X5) { =VaR,(X1) + VaR,(X,) if VaR,(8) =0
> VaR,(X1) + VaR,(Xs) if VaR,(8) <0

To get an impression of those confidence levels, for that VaR, is subadditive
we plot in Figure 2.2 the function

he:(0,1) — R
B = n(B),
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Figure 2.2: Confidence levels n, for which VaR, (/) is subadditiv. Considered
is the case of a-stable and independantly distributed random variables with
the same skewness parameter 3. Those confidence levels n, that lie above
the corresponding graph are guaranteeing VaR to be subadditive.

n(5) implicitly defined by the expression VaR, (3) = 0 and for several values
a € (1,2). There are several observations we can make. Firstly, as we
are increasing o towards a = 2 (corresponding to the normal distribution),
the graph 7(3) also flattens towards the constant function n(8) = 3, the
corresponding borderline for normal distributions. It is also interesting to
note, that by introducing of heavy tails via the stability parameter «, the
set of confidence levels, for that the subadditivity property holds is strongly
dependant on the skewness parameter § € (—1,1): for some fixed «, higher
skewness parameters also imply the set of ”subadditivity levels” to be cut.
Lower values of § result in a widening of the respective set of confidence
levels.

Clearly, all plots have the point (0, 3) in common. This is due to the fact,
that for § = 0 the resulting distribution is symmetric and has expected value
equal to zero, which implies VaR1(0) = 0.

If dealing with stable distributions in practice, we will usually not deal with
the case of constant skewness parameters. For Xi, X, admitting selected
skewness and scaling parameters, we give in Appendix B those confidence
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levels that are the solution of the equation

V1oV aR,(B15) — v1VaR,(B,) — v.VaR,(3;) = 0.

Here, v,, and 3,5, denote the scale respectively the skew of the r.v. X; + Xs.
Hence, for a suitable combination of parameters the table shows the lowest
confidence levels, s.t. for all higher levels the corresponding r.v. X; and X,
admit the desired subadditivity property.

As we are also interested in g-and-h distributed random variables one might
also ask the question of subadditivity in this special case. Degen et al. ([12])
address this problem and can show that also for g-and-h distributed r.v. the
subadditivity property for VaR holds true for sufficiently high confidence
levels. Again, those confidence levels strongly depend on the skewness and
kurtosis of the corresponding distributions. Moreover, the authors investigate
dependence on the dependance structure. For further details see [12].



Chapter 3

VaR and CVaR Optimization

3.1 CVaR Optimization

CVaR does not only have the desirable property of being a coherent measure
of risk but also has some nice behavior in its direct numerical implementation.
At a first step, using scenarios to represent the random variables involved, the
CVaR optimization problem can be easily restated as a linear one. Hence,
as we will see, in the present case the problem reduces to the finding of
the solution of a large scale linear optimization problem. There are many
developments in this direction and recently there are also implementations
available, that easily handle 100.000 variables or even more. For the large
scale optimization results of this thesis MOSEK, a very powerful optimization
toolbox for MATLAB, was used.

Although there are suitable solvers at hand to address the problem directly, in
the succeeding chapters we will discuss an application of stochastic program-
ming which allows for a reduction in dimensionality by successively solving
growing systems of linear equalities. We start with stating the C'VaR opti-
mization as a linear problem.

3.1.1 Linearity of CVaR Optimization

If the analytical form of the portfolio instruments’ losses is not available (and
in practical applications this is usually the case nor would it be of any help
for the implementation), the price of these instruments could be represented

41
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by historical price observations or by Monte Carlo simulations. Using the
definition of CVaR as in (2.4) we define

Fe(a,z) :==a+ —CE (X (z) —a]" (3.1)

which can be approximated by the expression

ﬁg(a,x) :za—i-ﬁzj: [)?j(x)—arry

X9(z) representing the j-th realization of the random variable X (z) which
itself represents the losses of portfolio z. As already discussed in the pro-
ceeding chapters, F¢(a, ) is a convex, nonsmooth function w.r.t. the vector
(a,x). Moreover, introducing auxiliary variables z;, the minimization over
the last expression in the notation of (2.6) can be written as

J
mina + 2
xT,a,z (1 —_ C)J; J
s.t. reX (3.2)
Zj Z 0

In fact, since X is a convex set, methods of linear programming can be used
to solve problem (3.2). It is clear that the dimension of the LP problem
increases with both, the number of instruments under consideration as well
as the number of scenarios used to match the instruments’ behavior. How-
ever, besides our own experiences with the implementation of (3.2) several
case studies (see e.g. [52], [3]) have this representation identified to be a
numerically stable technique on tackling the C'VaR optimization problem.

Albeit being a useful and easy to solve formulation, there exists an even more
efficient way by using stochastic programming methods. We will introduce
this very useful technique in the following chapter.

3.1.2 Reduction of Dimensionality using Benders De-
composition

The description of the following algorithm follows the lines of the original
work performed by Kuenzi-Bay and Mayer, where we restrict to the present
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setting. For more details on the mathematical background especially on
the embedding of the present problem into the more general class of two-
stage recourse problems, follow the discussion in ([29]) and the citations
therein. There, one also finds some more general setting also accounting for
the presence of liabilities.

At a first step, the authors in ([29]) show the equivalence of optimization
problem mingex 4er Fr(a, z) as defined in equation (3.1) with

mina + E[Q.(z, a)] (3.3)
st. zeX
with the recourse subproblem
1
Qc(r,a) ;= ——min gy
—( 'y
s.t. y>X(z)—a (3.4)
y=>0
and its LP dual
1
Qclz,a) = ¢ max (X (z) —a)u (3.5)
st. 0 <u <1,

which admits its optimal solution for either v = 0 or u = 1, depending on the
sign of X (z) — a. Hence the optimal objective value is 1%4 (X(z) —a)". In
what follows, we again restrict ourselves to the case where there are concrete
realizations X7,j = 1,...,J, each with the same probability of occurrence,
of the random variable X available. Applying the L-shaped method of sto-
chastic programming for the current two stage recourse problem, one makes
usage of the solutions w of the dual recourse sub-problems corresponding to
the realizations X7,j = 1, ..., J. Now the extremely simple structure of the
dual problem (3.5) (the solutions are either v/ = 0 or w/ = 1) can be used
to construct the aggregate cuts as appearing in the L-shaped method based
on the J-dimensional vector (u',...,u”)!. Here, this vector is a binary one,
which can be identified in a one-to-one manner with a subset of the index-
set J = {1,...,J}, where we are choosing those indices j as elements for
which v/ = 1 holds. Therefore, Kiinzi-Bay and Mayer obtain the following

representation of (3.3), which they call the full master problem
1

mina + ——w
T,a,w 1-— C



3.1. CVAR OPTIMIZATION 44

s.t. wz—Z)?k(m)—a,lCCJ (3.6)

1
e

r € X,

where the case K = () corresponds to w being nonnegative. It is clear that
already for a moderate number J of realizations entering the optimization
process, the full master problem comprises a huge number of constraints.
However, in general, many of these constraints are redundant since the con-
straint x € X forces not all J-dimensional binary vectors to be part of the
underlying duality consideration. Now, in the L-shaped method, this fact
is used in order to solve a sequence of affine optimization problems, which
starting from an almost unconstrained problem successively includes a grow-
ing number of constraints. Under a more general framework this approach is
known as the Benders Decomposition; the convergence of the corresponding
optimization problems within the current setting is shown in ([29]). The suc-
cessive optimization problems are called relaxed master problems and can be
stated as follows

G, : =mi ——
G, rgl’lana—I— 11— Cw
1 ~
s.tow > > Xk@)—ai=1,..,v (3.7)
|,C7J| kekc;
> 0
z € X

Here, v is the number of constraints generated so far, K; C J for all 7 and
IC; # K, for ¢ # 1. Based on our assumptions, problem (3.7) admits a solution
which is the basis for the next constraint added.

Now we are in the position to formulate the formal algorithm, which resolves
the original C'VaR optimization problem (2.6) in a finite number of steps.
This follows directly from the fact that the algorithm is nothing else than
the Benders decomposition method applied to (3.3).

0) Let Ky := J and set v = 1. The single inequality constraint in the
relaxed master problem will be w > 3%, -~ X*(z) — a.

1) Solve the current relaxed master problem (3.7). Let (z*,a*, w*) be an
optimal solution, and let

K= {k 11<k<J X*a*) —a* >0} and
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wy = |IC1*| Z ()/(:k(x*) - a*) .

kekC*

2) If w} < w*, then z* is an optimal solution of (2.6). Otherwise continue
with the next step.

3) Set v:=v+1,K, = K* and append the corresponding cut to the set
of constraints in the relaxed master problem (3.7). Continue with Step
1.

A discussion on the particularities of implementing this algorithm, in partic-
ular the usage of a refined stopping criterion at Step 2, can also be found in
the aforementioned citation. We implemented the algorithm using Matlab
and thereby making the experience that especially for a huge set of scenario
representations this proceeding generally gives much more efficient results
than using the linear representation of the last section. However, it is not
generally clear how many of the relaxed master problems will have to be
solved in order to get an optimal solution in the sense of the stopping cri-
terion in Step 2. Therefore, it is possible that the algorithm gets stuck in a
finitely but huge number of successively to solve optimization problems.

3.2 VaR Optimization for Certain Classes of
Asset Returns

Within this chapter we will focus on some selected classes of distribution
functions, explicitly showing the exact coincidence of the solution to (2.8)
and the "real” VaR, optimum of the original problem (2.5) to solve. We
start considering the case of normally distributed asset returns.

3.2.1 Spherical and Elliptical Distributions

One of the reasons for the widespread use of normally distributed asset re-
turns is its inherent simplicity in describing the complete behavior by two
parameter values, mean and standard deviation. Moreover, if we expect the
original asset classes to be normally distributed, every linear combination of
these normally distributed returns are normally distributed as well. Consid-
ering the VaR risk measure in the case of normally distributed asset returns
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another nice property of this class of distributions becomes obvious. By
standardizing the portfolio distribution in the sense that for every X (z) we

write %
o X(@) — pl)
o(z)
Y appears to be standard normal distributed with mean zero and standard
deviation ¢ = 1. Then by the linearity property of the VaR we can write

VaR,(X(z)) :=VaR,(z) = p(x) + o(x) - VaR,(Y).

Hence, the standardized VaR is no longer dependant on the portfolio com-
position. A similar approach gives us an equivalent result for the CVaR risk
measure

CVaR:(z) = p(z) + o(z) - CVaR (Y).

Thus using the CVaR confidence level for some fixed VaR confidence level
1 implicitly defined by

VaR,(Y) = CVaRc,(Y)

it is easy to see that the VaR,(z) and the CVaR¢ (x) optimization problems
yield the same optimal portfolio. However, this proceeding crucially depends
on the existence of (|, as described above. In the case of normally distributed
returns the existence of a corresponding (, is guaranteed for all confidence
levels 77 > 1. This is because VaR,(z) > 0 for n > 3 and

%inéCVaRC(Y) = 0

PH%OVGRCO/) = o0.

The existence of a suitable confidence level follows by the continuity of
CVaR:(Y) as a function of (.

Within this paragraph we will see that these nice properties can be main-
tained by expanding this class of distributions to the more general class of
elliptically distributed random variables. As an important consequence this
very general class of distributions will be seen to also inherit the property of
the VaR optimization reducing to some affine CVaR, optimization.

In order to define elliptically distributed random vectors we will firstly intro-
duce spherical distributions.
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Definition 3.2.1 A n-dimensional random vector'Y is said to have a spher-
ical distribution S, (¢) if its characteristic function 1y (s) satisfies

Yy (s) = d(s's)

for some scalar function ¢, (.) which is called the characteristic generator of
the spherical distribution Sy, (o).

Theorem 3.2.1 Let Y be spherically distributed with characteristic genera-
tor ¢,(.). Then'Y can be written as

Yy LR, U,

where the random variable R, > 0 is independent from the n-dimensional
random vector U™, which is uniformly distributed on the n-dimensional unit
sphere S"! = {z € R™: ||z]| = 1}.

A proof of this relationship can be found e.g. in [18]. We are now in the
position to define elliptically distributed random vectors.

Definition 3.2.2 A n-dimensional random vector Y is said to have an el-
liptical distribution with parameters ;i € R™' and ¥ € R™" if Y has the
same distribution as p + A'Y, where Y € S,(¢) and A € R*" is such that
A'A =X with rank(X) = k. The set of all n-dimensional elliptically distrib-
uted random vectors with parameters p and 3 and characteristic generator ¢
will be denoted by E, (3, ¢, 11).

As in the case of spherical distributions every random vector Y € E,, (X, ¢, u)
can be represented as

y < o+ Rk.AtUk,

where A'A = ¥ and the random variable R > 0 is independent from the
uniformly distributed k-dimensional r.v. U* on the unit sphere S*~1 C R*.
Using this representation of an elliptically distributed random vector it is
easy to see that the linear combination of elliptically distributed random
variables is again elliptically distributed.
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Theorem 3.2.2 Let X~ E, (X, ¢, u) withrank(X) = k and x € R™ represent
some vector of portfolio allocations. Then also

X'z« B, (2'Sx, ¢, p'z).

Remark 3.2.1 A direct consequence of the last theorem is that the VaR,(Y')
and the CVaR:(Y) for any random variable Y € E1(c?, ¢, 1) can be stan-
dardized as in the case of normally distributed random variables. Hence in
the notation of the theorem

VaR,(2'X) = 2'p+ 2'Sx - VaR,(Y),

CVaRi(2'X) = 2'u+ 2'Sx - CVaR:(Y)

where Y € Ei(1,¢,0). As in the case of normally distributed asset returns
we have forn > 1, VaR,(Y) > 0 wherefore there exists ¢, € (0,1), s.t.

VaR,(Y) = CVaR¢ (Y)
and the corresponding optimization problems are seen to be equivalent.

Remark 3.2.2 The family of elliptically distributed random variables are a
very rich extension of the family of normally distributed random variables.
It also accounts for the set of Student-t distributed random variables with m
degrees of freedom. Another important subclass of elliptical distributions is
the family of sub-gaussian distributions.

3.2.2 Stable Distributions with Constant Skewness Pa-
rameter

Having described the set of elliptically distributions in the foregoing para-
graph we will now partially leave the class of symmetrically distributed ran-
dom variables in order to investigate constantly skewed stable r.v. in the
sense that the main behavior of the r.v. is still given by location and scale
parameters whereas the skewness parameter is not necessarily restricted to be
zero. Apart of some interesting properties such as incorporating for heavy
tailed behavior, one of the crucial properties of stable distributions is the
fact that any linear combination of stable distributed r.v. again is stable
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distributed. We will firstly restrict ourselves to the case where the constant
skewness parameter is of the form g = 0, i.e. the case of symmetric a-stable
(SaS) distributions. In order to guarantee the closedness of this property
under taking the linear combinations of Sa.S distributed r.v., one has to im-
pose further restrictions on the dependence structure given by the spectral
measure A or by assuming independency of the r.v. under consideration (as
can easily be seen by theorem 2.19). If we can guarantee that all the allowed
linear portfolio combinations are again symmetric this enables us to write

VaR,(z) = p(x)+v(z)- VaRn(Y)~7 (3.8)
CVaRe(z) = p(z)+v(z) - CVaR(Y)

with Y € S,(1,0,0). Hence for > £ there exists some value ¢, € (0, 1) such
that the corresponding optimization problems are equivalent.

Remark 3.2.3 A very important subset of the family of SaS distributions
is the family of sub-Gaussian stable distributed random variables. These are
characterized as inheriting the property of being stable distributed as well as
being elliptically contoured. Thus a sub-Gaussian distributed random variable
Y s described by its characteristic function having the form

E(exp(i (z, X))) = exp(—(2!Xx)? + i (z, 6))

for some positive definite matriz X and shift vector 6 € R™. X describing an
arbitrary n-dimensional stable vector. The corresponding projection parame-
ter functions are then given by

v(z) = (@'Sa)3, B(x) =0, 6(z) = (z,06) .

A closer description of this family of distributions as well as a justification
of its name is e.g. given in [40].

Clearly, we can extend the foregoing result to the case where we are deal-
ing with portfolio compositions that impose a constant skewness parameter
 not necessarily being equal to zero. Thus the equivalent to equation 3.8
holds with an Y € S,(1,3,0) for a fixed § € (—1,1). However, the case of
nonzero but constant 5 € (0, 1) is quite unrealistic to hold for every portfolio
composition since even for independent distributed assets with equal skew-
ness parameter J the linear combination will generally result in a portfolio
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whose ( is unequal to the original stand alone skewness (compare theorem
2.5.1).

Although for nonzero skewness parameters the corresponding VaR, (x) op-

timization problem seems more complex to solve due to the term VaR, (Y)
not being constant in x, within the next paragraph we will develop suffi-
cient conditions that again allow the reduction to some convex C'VaR ()
optimization problem.

3.2.3 Stable Distributions

In [44] the authors investigate the problem of optimizing a portfolio with
stable distributed asset returns. However, the authors restrict themselves to
the two asset classes case, where the investor can only choose between the
allocation to a risk-free asset and a stable distributed one. Moreover, risk
measurement in this context is given by the expression

E(|W -EW)I")

for some positive real number r and W := AX,+ (1 — A) X1, A € [0,1]. Under
these assumptions, the authors find the best allocation A in a mean-risk
context and compare the results to the case of normally distributed asset
returns.

Within this chapter, we will also consider the optimal portfolio allocation
problem for the special case, where the X;,7 = 1,...,n are stable distributed.

A Polynomial Algorithm for Stable Distributed Asset Returns

We will see, that under the following assumption on the stable distributed as-
set returns the complexity of the VaR optimization problem can significantly
be reduced.

Assumption AT For n € (0,1) and 8* € (—1,1) the skewness parameter
of the optimal VaR, (z) solution, there exists (, € (0, 1), such that

VaR,(8) a5V aR(8")
CVaR,(8")  ZCVaR, (6

=:c (3.9)
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with g5VaR,(5%) # 0 # 55CVaR, (67).

Remark 3.2.4 (i) In Assumption AST above, we suppressed the subindex c
in CVaRe, (B"), since we implicitly set ¢ = 1, i.e. we are considering the
CVaR optimization problem with normalized u(xz) = 0 and o(x) = 1 for all
x e X.

(i) It must be secured that all the denominators appearing within 3.2.3 are
not zero. However, we will see that slight perturbations will force all denom-
inators to be nonzero.

Theorem 3.2.3 Suppose Assumption AT holds and all allocations v € X
with X as defined in (2.1) are supposed to be stable distributed. Let

*

T(ye = AIEIIN CVaRe, ()
x; = argmin VaR,(x
;= axgmin VaF, (1)

denote the optimal solutions of the corresponding CVaR¢ . and VaR, opti-
mization, then
m:; = I207C

for (Co,c) as given by Assumption AST.

Proof: Since r; denotes an optimal solution of the VaR, optimization prob-
lem, it follows by the differentiability of the VaR

VVaR,(z;) = VaR,(8")-Vo(z;)+o(x;)- VVaR,(8%) + Vu(z))
0

= VaR,(6)-Vo(xy)+o(xy) - Vﬂ(x;)a—ﬂVaRn(ﬁ*) + Vu(z;)
-1+ iﬁ%ei (3.10)
i=1

and
w-xr(i)=0vi=1,..,n (3.11)
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for A € R, p; > 0. On the other hand, for the CVaR we can write

VCVCLR<07C($;) = CVaR, (8 - c- VU(ZE;)
+c-o(xy) - VCVaR (8%) + Vu(z;)
= CVaR¢ (B")-c-Vo(z;)
+e-(a}) - V() CVaR,(3) + Vi(s;)
E%CVGRCO (ﬁ*)

%VaRn(ﬁ*)

= VaR,(0") -c-Vo(z))

CVCLRCO ( *) )
VaR,(57)

+c-o(ry)

d .
—i—V,u(:c;;)
= VaR,(8")-Vo(x,)+o(xy) -

n

a5V ol (57) - VB(xy)
+Vpu(zy)

= A1+ e, (3.12)
=1

and
- () =0Vi=1,...n

with the same parameters A, p,,% = 1,...,n as given in equations 3.10 and
3.11. We again suppressed the index ¢ in CVaR(f3), since here ¢ = 1 and
therefore the notation is redundant. Using convexity of CVaR, () (cf.
Lemma 2.4.3) according to the Karush-Kuhn-Tucker conditions, equality
(3.12) is sufficient for z; being the global minimum of CVaR (), as re-
quired. O

Numerical Evaluations of Assumption AS7

In what follows, we want to consider Assumption AT numerically. Lemma
3.2.4 is quite helpful in the numerical analysis on Assumption A7,

Lemma 3.2.4 Let VaR,(3) denote the Value-at-Risk of a normalized stable
random variable X, i.e. X € So(5,1,0). Then for fized 1 < a < 2

he: (=1,1) = R



3.2. VAR OPTIMIZATION FOR CERTAIN CLASSES OF ASSET
RETURNS 53

B— VaR, (8)

s continuously differentiable with respect to 3. Moreover, in the notation of
theorem 2.5.3 (1-parametrization), the derivative is given by

0 B %F(V@Rn(ﬁ);a,ﬁ)

a5’ ) = R B B)
_ G(VaR,(8); a, B)
= F(VaR,(B);a.f)’

and as before

lye’

o := Oo(c, B) := éarctan(ﬁ tan(T))

Proof: Using the explicit form of F(t;a,3) as stated in Theorem 2.5.3, we
see that the distribution function is continuously differentiable with respect
to t and 3. Moreover, we know that

F<VGR77<B)7Q76) =1
holds for all g € (—1,1). With

0
aF(t;a,ﬁ) = f(t;a, )

we are given the density function of a normalized, stable distributed random
variable. In particular, it holds

0

—F(t; vVt € R.
(10, 0) >0Vt €
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Hence, the assumptions of the implicit functions theorem are satisfied and
VaR,(B) is continuously differentiable with respect to § with derivative

9 2 F(VaR,(B); a, )

O Ty e R s
O

In order o analyse Equality 3.9, we firstly write it in the form
%ovafz% (8°) - VaRy(8) = %VaRn(ﬂ*) CVaR (89 (3.13)

This expression has the advantage that we do not have to care about denom-
inators becoming equal to zero. Using (3.13), we can easily find those values
for the VaR confidence levels 7, for which there exists an ¢, such that (3.13)
is fulfilled. Our results are summarized in Figure 3.1. For four selected values
of a, we plot the corresponding borderlines for which we know that for an
explicit value 8 € (—0.9,0.9)!, all the values n above this line yield a corre-
sponding value (, such that (3.13) holds. To be more precise, for numerical
reasons, we plot the borderline that represents the set of 1 that corresponds
to the values ¢ = 0.2 (in the analysis of @ = 1.3 and a = 1.5) respectively
¢ =0.1 (a«=1.7 and a = 1.9). Since there also exist values 1 corresponding
to ¢ < 0.2 respectively ¢ < 0.1, the given plots can be interpreted as an
upper bound for the set of all 7 fulfilling (3.13)2.

Equations 3.9 and 3.13 are not exactly the same, since Assumption AT im-
plicitly imposes the additional condition, that both a%VaR,,(ﬁ) and
%C’V@RCO (B) are not equal to zero. Although the condition of these two
expressions being equal to zero is not stable in the sense that a slight per-
turbation will drive the expressions unequal to zero, we depict in Figure 3.2
the set of values 7 for which there are no zeros of a%VaRn(ﬁ). The plots
are the results of finding the greatest zeros in (0, 1) of %V&Rn(ﬁ). Hence,

all values 7 lying above the respective graph for o = 1.3,1.5,1.7 and 1.9 are
guaranteed to result in a denominator which is unequal to zero.

1 We restrict ourselves to the interval (—0.9,0.9) for practical reasons. There is no difficulty
to perform an equivalent calculation for higher respectively lower values than given by
this interval.

2 By numerical observation we claim that for higher levels than 7 given in the boarderlines,
there also exist values ¢, such that Assumption AST holds. However, to be rigorous, this
will have to be considered analytically.
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Figure 3.1: 8 versus 7. The figure sketches those confidence levels, for which
Assumption AST is fulfilled. Above the line of the corresponding stability
parameter a, Equation 3.9 is satisfied for some suitable (.

Figure 3.2: (3 versus 1. There are no zeros of the function %VaRn(ﬁ) for
values 1 above the sketched lines for the respective stability parameter o and
depending on the skewness parameter (3.
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In Figure 3.3 we analyse the analogous result for the expression 8%0 VaR (B)
not getting equal to zero. It is intuitively clear that this results in much lower
(greatest) zeros in the interval (0,1). This is due to the fact
0 1 (1o
—CVaR; (0) = —VaR 0B)de.

Since a%VaRE (8) for sufficiently high levels ¢ admits the same sign, at least

for those levels ¢, %C’VGR (B) also admits the same sign. Figure 3.3 also
shows that guaranteeing 7 9 CVaRe,(B) # 0 in (3.9) gives us another restric-

tion within the analysis performed in Figure 3.1.

Regarding Figure 3.3 it is conspicuous that independently of the stability
parameter «, the corresponding lines have one point in common. Hence by
our numerical observation for any « € (1, 2] we have

0

Our numerical analysis also shows another observation. For a € [1.5,2] we
observe that by increasing the parameter «, the corresponding lines are also
successively increasing for negative skewness parameters. For positive skew-
ness parameters, the converse is true; the corresponding lines are decreasing
by increasing the values for a. It is now interesting to point out that for val-
ues o € (1,1.5] exactly the converse of the described behavior is true. As a
summarizing result, we can state that for all values o € (1,2] and 8 € (—1,1)
the resulting zeros of

foa 3¢ = G CVaR(H)

are included in the set

{¢:(¢isazeroof fisgforal ge(—1,1)},

which again using Figure 3.3 can be approximated to be a subset of (0.55,0.45).
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0.56

0.44

Figure 3.3: 3 versus (. There are no zeros of the function %CV@RC(@ for
values ( above the sketched lines for the respective stability parameter a and
depending on the skewness parameter (3.

3.2.4 First Estimations for G-and-H distributed asset
returns

Within this chapter we will suppose that every portfolio allocation can be

represented by a g-and-h distribution, i.e.

X(z) ~ X(p(x),0(x), g(x), h(z)) € GH

for all permissible allocations z. For the Value-at-Risk respectively the ex-
pected shortfall we write

VaRg’h(x) = o(x)VaRo, (g9(x), h(z)) + p(z)
CVaRMz) = o(z)CVaR:" (g(z), h(z)) + u(z)

p(z) and o(x) are shorthand for the expected value and the standard devi-
ation of the loss distribution, respectively®. In order to state the result of

3 For the equalities above to be well defined u(z), o(z) will have to be finite. Additional
restrictions on the parameter values g, h will have to be imposed.
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the theorem we introduce Assumption A9". This is done in analogy to the
above Assumption AT for stable distributions.

*

Assumption A" Let ¢g* = g(}) and h* = h(z}) denote the parameter
values for the VaR optimal allocation z; as given by the solution to (2.5)
and for g-and-h distributed asset returns. Then there exists (, € (0, 1),
s.t.

— —7h * *
VaR)"(g 1) _ VeRy (6 h) (3.19)
CVaRy, (g, k%) &CVaRy, (g%, h)

Moreover, define

Vaitow g Yaivows Lo *
5 CVaR( (g7, 1) HCOVaR, (9", 1) |
— — 2k
B%VaRTg] (g*, h*) %VaRTg] (g, h*)

Remark 3.2.5 (i) In Assumption A%" above we suppressed the subindex c
m CVaR“g(’)}fc(g*, h*), since we implicitly set ¢ =1, i.e. we are considering the
CVaR optimization problem with normalized u(xz) = 0 and o(x) = 1 for all
x e X.

(71) It must be secured that all the denominators appearing within Assumption
A9 are not zero. However, as in the case of stable distributed asset returns,
it is clear, that slight perturbations will force all denominators to be nonzero.

Theorem 3.2.5 Suppose all allocations x € X are g-and-h distributed, s.t.
Assumption A" holds true, the determining parameter functions (u(z), o(x),
g(x) and h(z)) are all differentiable with respect to x and CVaR‘g’h(g(x), h(z))
is a convex function of x for any confidence level ( € (0,1). Let

o g7h
Ty € ATgIIN CVaRy' (z)

¥ € arg min VaR9"(z
n gmGX n ( )

denote the optimal solutions of the corresponding C’VaRg’h and VaRg’h op-
. . . O
timization, then

* a—,h * * *
n) %VaRZ (g%, b)) - [IVA(z)Il - (3.15)

||x;“7 —xZOH <R*'lg|-c-o(x
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holds. We wrote R for the Rayleigh quotient of 62, the matriz G being defined
by

1
G = </ V2OV@RC0,C(IZO + 7(z) — :L‘ZO))dT) )
0

Proof: Since we are dealing with smoothly transformed normal distributions,
twice continuous differentiability of CVaR9" is fulfilled and the usage of
Rayleigh quotients is well defined. For convenience, we will suppress the
indices g, h in the notation of VaR?%" and CVaR9". x;, stands for the optimal
asset allocation of the VaR optimization problem. A necessary condition for
x, to be optimal is

VVaR,(z;) = VaR,(g" k") Vo(zy)+o(z;) - VVaR, (9", h") + V()
RV 5) * * * * 8 EV5) * * *
- VCLRW(Q ,h ) : VO’(IW) + U(mn) ’ _VCLRTI(g ah ) ' v.g(xn>

g
* a I7 - D * * * *
+o(zy) - %VaRn(g W) - Vh(zy) + Vu(zy)
= A 1+Z:uiei
i=1
and
prn(i) =0, Vi=1,..,n (3.16)

for A€ R, p; >0, Vi =1,...,n. In analogy, we can now write for CVaR ()
VCVaR, (v,) = CVaRe (g",h")V(co(z;)) + ca(:r:‘,)(%CVaRgo (9", h*)Vg(zy)

* a D * * * *
+ca(xn)%CVaRco(g W)Vh(zy) + V()
%CV&RCO (g*, h*)

(%VCLR,,](Q*, h*)
CVaRe (9", h")

* a— * * *
—{—ca(xn)a—gVaRn(g ,h") Valt (g ") Vg(z;)
n )

* a I/~ D * * CVGRCO (9*7 h*) *
+co(zy) 77 Valt, (9", h") ( Vaki, (5 ") —eVh(zy)

= VaR,(g",h")

oh
+Vu(zy)
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_ 0 —__
= VaR,(g",h")Vo(x)) + 0(903;)8—‘/@377(9*, h*)Vg(z;)

+o(z )aahVaR (9", h*)Vh(z;)
—e-c-o(x )aahVaR (9", h*)Vh(zy) + Vu(zy)

- A\ 1—1—2#2@ e-c-ox )aahvaR (9", h*)Vh(z}).  (3.17)

=1

On the other hand, using Taylor’s theorem we can write for the gradient of
a twice continuously differentiable function f(x) with a (local) extremum in

*

T

Vf(x) = Vf(z*) + Gz — 2*)

with 1
G = 21 r(x* — dr.

Since V f(2*) = 0 we can therefore write

IVf(@)|* = R*(z) - ||z — =*||? (3.18)
where .,
R(r) = L7 H)x—GxH(Qx )

describes the Rayleigh quotient of G in the direction of 2 — x*. If we set

f(x) =CVaRe, . )\sz Zulx, (3.19)

and using equations (3.17), (3.18) and (3.16), according to the Karush-Kuhn-
Tucker conditions for optimality we get

llay, — aZ [P < R*(a})

V(CVaRe, () — A Z T; — Z ;)

= R(z)” —2 (5 c-o(z})- %VaR( h*)) .th(xn) 2

since V f(z7 ) = 0. The above stated result follows. O
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Remark 3.2.6 (i) Denoting by Amin and Amax the smallest respectively the
highest eigenvalue of the matriz 52, it can easily be seen that

>\min S R S )\maxa

hence Amin can be used instead of R to achieve a similar estimation as 3.15.
However, numerical analysis suggests (compare section 3.5.3) that in general
the respective eigenvalue is very small.

(i) It can be shown that the following inequality between the minimal eigen-
values of Hermitian (n X n) matrices A, B € H, is true

Amin(A) + Amin(B) < Auin(A + B). (3.20)

If the functions g(z), h(x) can be chosen, s.t. C’VaRg’)h(g(m), h(x)) is a convex
function of x, the corresponding hessian matriz is hermitian and inequality
(3.20) gives us a lower bound for R :

1
R > / )\min(xzfo + 7'(1;;'; - xzo))dr, (3.21)
0

where we again denote by Apmin(z) the smallest (positive) eigenvalue of the
Hermitian matriz V2C’VaRg(’)h(x). The value of R is therefore mainly a func-

tion of the curvature of CVaRZ;)h(:U). Hence, for those portfolio optimization
problems where the standard deviation o(x) makes up a large portion of the
resulting C’VaRg(’)h(x) (as e.g. in the case of elliptically distributed asset re-
turns), or where the curvature of the portfolio standard deviation in the di-
rection W is "high”, the resulting values of R can be guaranteed not to
be too small. Moreover, it is worth mentioning the dependency of R from ¢,
respectively n. This enables us in the following to show that for sufficiently
high values n € (0, 1), the proposed C’VaRg(’)}"’c(a:)—optimization will give good
approzimations to the optimal allocation xy.

-
However, the approach of the theorem can easily be seen to also give a lower

bound on the difference of the two minimizing portfolio allocations

where Apmax denotes the maximum eigenvalue of the matrix 52. Moreover, a
similar inequality as the one in (3.21) can be found

(i1i)) We are mainly interested in finding an upper bound for ’

*
x Z¢o

> Nkl o) | SVar )

* *
mﬂ B x(o

VA,

1
R < / Amax (T¢, + T(2) — 2f,))dT
0
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Moreover, we are always working with a fized (, € (0,1) given by Assumption
A9t Hence it is not clear whether or not this choice is in fact the VaR9"
minimizing one among all possible 7 in the sense that

: N _ ok
(g,c)e%l,{l)xw VaR;C’I (:cgc) = VaRg ($<o)'

Hence, by searching the two dimensional space of solutions given by (2.7)
one might even find better approximations to x; than the one analyzed in the
theorem above.

3.3 Approximative Results for the VaR Op-
timum

In what follows, we want to consider a four parametric family of distributions
to approximate the original Value-at-Risk and Expected Shortfall, respec-
tively. More precisely, we will focus on a special class of distributions known
as the g-and-h distribution. The reason for choosing this distribution was
the major flexibility of this class in the sense, that a broad class of financially
relevant distributions can be replicated using the g-and-h distribution. For
example, the class of g-and-h distributions includes normal and log-normal
as well as heavy skewed distributions with possibly high kurtosis. Moreover,
the class of g-and-h distributions inherits the attracting feature to have an
explicitly known formula for the quantile, i.e. VaR~calculations appear to be
more or less simple.

Besides the enormous flexibility of the proposed approach, we will see that the
main results are referring to special restrictions. Using numerical evaluations,
we will focus on the restrictiveness of these additional conditions within this
chapter.

3.3.1 Using G-and-H Distributions to Match Real-World
Optimization Problems

As stated in Theorem 3.2.5, optimization problems with g-and-h distribu-
tions have quite nice properties when used as approximates for the actual
distributions. However, it is not at first glance clear how to define the func-
tions g(x), h(z) in a way that the resulting function C’VaRng(g(m), h(x)) is
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a convex function of x. Since only a convex C'VaR optimization will lead to
the desired reduction in complexity of the affine VaR optimization problem,
for practical and theoretical (uniqueness of the CVaR minimum) reasons
CVaRe, (g9(x), h(x)) will have to be chosen as a convex function. Moreover,
as stated in the remark to the theorem, for a convex choice of CVaR the
value R in the corresponding estimation (3.15) can be shown to give better
estimations.

In the following theorem we will use the implicit function theorem in or-
der to guarantee convexity of CVaR by choosing the functions g(z), h(z) in
an appropriate way. Moreover, we will see that under some additional (not
too restrictive) conditions, these functions can be chosen, s.t. the resulting
VaR$"(x) matches the VaR,(x) values of the original optimization prob-
lem. In order to guarantee convexity of the function CVaRg;h(x), we will
also match it with the original (convex) C'VaR¢ (x). All these allocations
satisfying the additional constraints are collected in the following definition

1. ——gn -
AX - = {x e X:3(g,h) € (—1,0) x (0, 5)7V‘IRZ (9,h) = VaR,(z)

CVaR."(g,h) = CVaR,, (g;)} .

Within this definition and within Theorem 3.3.1, we restrict ourselves to
h* € (0,3), since otherwise the corresponding standard deviation o(g, h*)
does not exist for any value g. Moreover, in order to guarantee the explicit
form of the VaR as given in equation 2.27 we restrict ourselves to the case
where h* is truly positive. Note that in the definition of AX, (, is defined by
the minimum value x; and Assumption A9 therefore independently of the

choice of g and h. This fact is used in our numerical considerations below.

Theorem 3.3.1 Suppose xy, x¢ are both elements of the same connected

component of AX. Moreover, suppose that VaR,(x) is once and CVaR¢ (x)
is twice continuously differentiable in x and Assumption A9" holds. Then
there exist continuously differentiable functions g(x),h(x), s.t.

|

As in the previous results, R denotes the Rayleigh quotient of the matrix e

*_

Ly

<R "o(x})-||c- VCVaRe, (z;) — VVaR,(x})

. (322

*
Lo

Proof: For any z* € AX, choose open sets U; C AX, Uy C (—1,0) and
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Us C (0, %) of z* with corresponding values g*, h* and define the function
F:UxUxU; — R?

( VaR!"(g,h) — VaR,(z) )

x,q,h ___ " 7
(@, 9,h) C’VaR‘g;h(g,h)—CVaRgo(x)

Hence, under the assumptions of the theorem we know

F(z*, g",h*) = 0.
If we set

AT DI x 1 AT pIN s« 1%
O < sV ak,) (9", ") zVaR, (g%, h") ) (3.23)

oI s s oI« s
%CV&R?O (g%, h*) %CV&R?O (g*, h*)

then numerical examinations (compare the numerical part below) suggest
that
det(C) ~0,

for all parameter values (g,h) € (—1,0) x (0,3). Applying the theorem of

implicit functions yields the existence of unique functions g(z), h(z) defined
on appropriate subsets of AX. Since the choice of x* € AX was arbitrary,
by uniqueness g(z), h(x) are well-defined on the whole of AX; the respective
gradients in the VaR optimal allocation z; are

Yoz . [ ZCVaRL' (g7, ) - VVaR, (a3)

glay) = ai(0) | —2VaR" (g, ) - VOV aRy, (x7)
. 1 2VaR)" (9", h*) - VOV aRy, (a)

Vi) = w0 _ ~2CVaRL (g%, 1) - VVaR,(z})

Now, by the construction of the functions g and A and the relation

C’VaRg;h(x) = p(z)+ J(x)CVaR‘g;h(x)
= p(z) +o(x)CVaRe (r) = CVaRe, ()
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C VaRg;h(x) is a convex function of x whenever CVaR, () is convex. Hence,
the assumptions of theorem 3.2.5 are fulfilled and we can write

* * — * a I~ D * * *
‘ vi—al| < Rlelcoo(a)- ‘%VaRn(g )| - IR
= R'. 0(90:;) . Hc . VC’VaRCO(x;;) — VVaR,,(x:;) | ,
which is the claim of the theorem. O

Remark 3.3.1 It is interesting to note that by the use of g-and-h-distributions
to fit either VaR or CVaR, equation (3.22) is independent of the matching
error as defined in Assumption A",

Numerical evaluations of the conditions for the approximate ap-
proach

Within the foregoing analysis we used several partly implicitly given assump-
tions in order to get inequality 3.22. It is the purpose of this chapter to shed
some light on the restrictiveness of these assumptions. We will firstly analyse
Assumption A%" with its inherent assumption of all the expressions being un-
equal to zero. After having a closer look on the determinant of matrix C' as
given in Equation 3.23, we will analyse the most restrictive assumption, x;
and z7 both being in the same connected component of the set AX. Al-
though it seems not possible to catch the complexity of Assumption A9%" in
full generality, we will give some hint on its fulfillment. Again, in all the
numerical analysis that follows, we restrict ourselves to the case of positive
parameters h < %, s.t. the corresponding distribution admits finite second
moments. Since for higher values h the corresponding distribution already
admits exorbitant high standard deviations, for practical reasons we restrict
to the case h < 0.4. Further research could avoid these numerical disadvan-
tages and extent the analysis to the case of higher values h.

Moreover, since most of the poor behavior (at least for confidence levels being
high enough) takes place for parameter values g > 0, one could restrict oneself
to the case g < 0. However, as we will see, the set AX strongly depends on
positive parameters g. Hence, we extend our analysis to the region of those
values g, h which imply a strictly positive determinant C'. Again caused by
numerical considerations we restrict the region of admissible values g to the
case |g| < 1, thereby always respecting all the other active constraints as
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mentioned above. Further research will enable to extend this region in order
to improve the set AX.

One advantage of the following analysis is the fact that both the VaR%" for
any confidence level as well as the respective partial derivatives with respect
to g and h are explicit functions of the quantiles of a standard normal distrib-
ution. Moreover, explicit expressions for the mean and the standard deviation
are known and can be used to give explicit forms of the VaR of a standard-
ized g-and-h distributed random variable. However, these calculations are
quite lengthy and are the best performed by using symbolic computation
systems such as Maple. This proceeding has the advantage that we can do
the numerical calculations without referring to finite approximations of the
derivatives. Analogous results hold for CVaR and its partial derivatives with
respect to g and h.

Assumption A9"

In order to properly analyse Assumption A9", we first write equation 3.14 in
the form
I7 -~ D 7h * * 8 N D 7h * * N - D 7h * * 8 I7 -~ D 7h * *
VaR," (9", h )a—gCVaRCO (¢*,h*) = CVaR( ' (g* h )a—QVaR,’; (g%, h)

to get rid of the denominators. These are further analyzed below. For several
values n € (0,1) we depict in Figure 3.4 the respective lines for which the
regions to the left impose values g, h, s.t. Assumption A9" is satisfied with
a (o larger than 0.1. Hence, for confidence levels n > 0.94 Assumption A9%"
is satisfied in the whole region under consideration. Moreover, extending the
analysis to values g < —1 seem not to impose additional restrictions.

In what follows, we want to consider the nonzeroness of the denominators
appearing in the definition of Assumption A%". Although there are points,
where the respective denominators vanish, a slight perturbation in g*, h* (or,
alternatively in 1 respectively (,) will result in nonzero denominators by not
influencing the overall result too much. This is due to the fact that the
requirement of nonzero denominators only has to be fulfilled in one point

(97, h").
Assumption %VaRZ’h(g*, h*) #0

For different confidence levels 7, Figure 3.5 shows the respective zeros of the
expression

0 ——g,h
a—gVaR,,] (g,h)
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0.4

0.351

0.3

0.251

0.2

0.15+

n=06
0.1

Figure 3.4: g versus h. For all pairs g, h in the region left to the respective
line for some 1 € (0,1) assumption A%" is fulfilled. Depicted are the lines
where there exists (, > 0.1, s.t. assumption A%" holds.

within the region (—1,1) x (0,0.4) (dotted lines). Moreover, we depict those
regions around the zeros where the absolute value of the expression under
consideration is less than 0.05. This calculation was performed in order to
get an impression of the sensitivity of these zeros. It can be observed that for
the analyzed confidence levels, all the zeros only appear for positive values
g. In addition, the higher we are choosing the confidence level 7, the greater
will be the region left to the respective line of zeros and the more sensitive
this zero moves away from zero by a slight perturbation in (g*, h*).

Assumption %CVaRg;h(g*, h*) #0

We could also do a similar analysis as performed in the preceding section.
However, by analyzing the expression

0 ———g.h
a—gCVaRCO (g,h)

for every value (g,h) € (—1,1) x (0,0.4) we would have to calculate the
corresponding value (, satisfying Assumption A%". In fact, this analysis
becomes as easy as just referring to the analysis of the preceding section. This
apparently becomes clear by realizing that for sufficiently high confidence
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Figure 3.5: g versus h. Zeros of the function %VaRn (g, h) (dotted lines) for
different values 7. In order to evaluate sensitivity of the zeroes, we include
the level sets to —0.05 respectively 0.05 (solid lines) for every confidence level

n.

levels n € (0,1) the corresponding value VaRf]’h(g, h) is strictly positive,

hence by the property C VaR‘g(’)h (g, h) > 0 for any choice of parameters g*, h*
we conclude

a —g,h * *\ a 7 D ah * *
a—gVaRn (g",h*) = c agCVaRCO (g%, 1)

for some positive value ¢ as a direct consequence of Assumption A9". We
would like to point out that the confidence levels in Figure 3.5 are sufficiently
high to guarantee mZ’h(g, h) > 0 for any combination (g, h) in the region
of interest. To summarize, the zeros of the expression exactly coincide with
the zeros given in Figure 3.5.

Assumption %VaRn(g*, h*) #0

As Figure 3.6 shows, depending on the confidence level 1) of the VaR, (x) op-
timization problem there are in fact lines representing zeros of the expression

0 ——q,h
%VCLRn (g, h)
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0.4~

0.35

0.3

0.25

0.2

0.15

0.1

0.05

Figure 3.6: g versus h. Zeros of the function %VaRg’h(g, h) (dotted lines) for
different values n. In order to evaluate sensitivity of these zeroes, we include
the level sets to —0.05 respectively 0.05 (solid lines) for every confidence level

n.

within the region of interest. As in the preceding analysis on (%VaRf;’h(g, h)
in addition to the actual zeros (dotted lines) we also plot the regions where
‘%VaRi’h(g, h)‘ < 0.05 holds. Again this is done in order to get an impres-

sion of the sensitivity to possible perturbations. As before, such a perturba-
tion could be performed either in the parameter values g, h as well as in the

confidence level 1 in order to achieve a nonzero value of %VaRZ’h(g, h) in
the optimal parameter value (g%, h*) as defined above.

To achieve the results shown in Figure 3.6, we just calculated the value of

%VaRf,’h(g, h) over a fine mesh of the region (—1,1) x (0,0.4). Shown are
the respective level sets of these evaluations.

Assumption of a nonzero determinant C
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Figure 3.7: g* versus h*.Zeros of the determinant of C(n, g, h) for the selected
values n € {.93,.95,.97,.98, .99, .995, .999}

The determinant of matrix C' as defined in the proof of theorem 3.3.1 is
strongly related to the defining equation of assumption A9". Therefore it is
not too surprising, that the set of parameters g, h, s.t.

det(C) =0

again coincides with the set of zeros given by figure 3.5. It is clear that this set

must be a subset of the set of parameter values g, h for that %VaRZ’h(g, h)
vanishes. This is due to the fact that

det(C) = %VaRi’h(g, h) - %CVaR‘g;h(g, h)

0

————g,h 0 ——gh
—a—gCVaR‘go (9,h) - =VaR," (g, h)

Oh

and

0 ——gh 0 ————=g.h
a—gVaR77 (9,h) =0« a—gCVaRCO (g,h) = 0.

In Figure 3.7, we did a full analysis of the zeros over the region of interest.
The picture shows, that for the choice of confidence levels there are in fact
no more zeros of determinant C' than given by the equality

0 ——q,h
a—gV(an (g, h) =0.
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Figure 3.8: CVaR, (x) versus VaR,(x). For fixed confidence levels (7, () we
sketch the boundaries given as the maximum and minimum value VaR,(z),
s.t. there exists a corresponding value (g, h) in a suitable subset of (—1,1) x
(0,0.4) that satisfies the condition given in the definition of AX. 1 and (,
are chosen s.t. they correspond to the pair satisfying Assumption A9" for
normal distributed random variables.

A characterization of the set AX

Whereas the foregoing assumptions can be seen to be satisfied for a wide
range of parameter values and can even be turned into the case of fully sat-
isfying all the assumptions by a slight perturbation, the following condition
will be the one that truly puts a quite restrictive requirement on our over-
all desire to match the original ValRR, optimization problem by a suitable
optimization of CVaR,.

In order to achieve the results depicted in Figure 3.8 we firstly calculated for
some fixed combination (7, () (which we chose in Figure 3.8 in such a way
that ¢, satisfies Assumption A%" for normal distributions) the corresponding
values CVaR, (g, h) for all parameter values (g,h) € (—1,1) x (0,0.4) that
satisfy the above analyzed assumptions. After calculating the corresponding
level sets we determined the respective reachable values VaR, (g, h) for every
level set. Figure 3.8 depicts for any level set with CVaR, € [1.5,3.5] the
corresponding maximum and minimum value of VaR,,.
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3
CVE;\IE’0

Figure 3.9: CVaR., vs. VaR,. For three combinations (7,(,) the corre-
sponding sets AX are shown. Several other assumptions are incorporated,
s.t. the result of Theorem 3.3.1 is fulfilled (compare text).

After determining the optimum value (, that corresponds to its equivalent
in the statement of Assumption A%" and the value of CVaR,, (z), Figure 3.8
can be used to determine the maximum allowed variation of VaR,(z), s.t.
the assumptions of theorem 3.3.1 are fulfilled. We see that with increasing
confidence levels 7 the allowed variations in VaR, (z) for fixed CVaR, ()
become larger. It is also interesting to note that all the regions are lying
below or on the bisecting line. However, this observation changes if we allow
the value ¢, to deviate from the optimum value ¢, of normal distributed
asset returns. Figure 3.9 shows that for C'VaR confidence levels ¢, lower
than the corresponding value for normal distributions in tendency lies above
the bisecting line. On the contrary values for (, that are larger than the
corresponding value for normal distributions result in regions that lie below
the bisecting line. Moreover, the overall size of the inclosing regions of al-
lowed variations depend heavily on the respective values (,. Starting with
a relatively large value (, near n the enclosed area of reachable variation
VaR, () is shrinking down as (, is decreased. After reaching some value ¢,
(approximately value (, = 0.96 within Figure 3.9) where the enclosed region
reaches its minimum, a further decrease in (, again results in larger possible
variations of VaR, (x) (compare solid line within Figure 3.9).
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3.3.2 VaR-optimization for general distributions

Within the next section we will derive a similar estimation of the distance
‘ Ty — xg, || as formulated in Theorem 3.3.1 using approximations by g-and-h

distributions. Those similar results will be derived for arbitrary (sufficiently
smooth) distributions and by setting ¢ = 1. This proceeding obviously has
the advantage of using the proposed algorithm for finding good approxi-
mations to the VaR optimum, thereby not needing to check the various
assumptions necessary in the foregoing analyses.. Moreover, Equation 3.24
is constructed to yield results for the case ¢ = 1, hence showing that the
main proposed algorithm of this thesis also yields appropriate results when
restricting the (original) two dimensional search as formulated in 2.2 to a one
dimensional one.

Estimations for arbitrary distributions

Theorem 3.3.2 Suppose VaR,(z;) > 0 and using the usual definition of X
as giwen in 2.1. Then in the notational conventions of theorem 3.3.1, the
following inequality holds

Proof: Since we are always dealing with continuous distribution functions it
is clear that the mapping

*

Ly

<R "o(z})- HVC’V(LRCO (z;) — VVaR,(x;)

E (3.24)

*
Z¢o

(0,1) — R
¢ — CVaR(x)

is continuous for any choice of x € X. Moreover,

%iII(l) CVaR¢(z) = p(z) =0

and
lim CVaR(x) = oo.

(—1

Since VaR,(x;) > 0, there exists a confidence level ¢, € (0,1), s.t.

CVaRe,(zy) = ValR,(z;). (3.25)
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Using the definition of {, we can therefore write

VCVaR¢ (x;) = Vu(ry)+Vo(zy)  CVale (vy) +o(xy) - VCOVaR (z)
= Vu(xy) +Vo(z;) - VaR,(z;) +o(z;) - VVaR,(z;)
+o(z;) - [VOVaRe (z;) — VVaR,(x;})]
= A1+ > pei+o(x}) - [VCOVaRe, (x}) — VVaR,(x})]

i=1

for A € R, pu; > 0 defined via the Karush-Kuhn-Tucker condition for opti-
mality

VVaR,(x) = X 1+ Y _ pe:.
=1

Following the lines of the proof of Theorem 3.3.1, one sees that the norm of
the gradient of the related Lagrange function can be estimated. This again
can be used to find an estimate of the distance ||z}, — 27 |l

|y, —2g |l < R (3.26)

V(CVaR (z) — A Z x; — Z ;)
i=1 i=1

= R ola;) [VOVaRe,(a;) - VVaR,(x; |

which is the result of Theorem 3.3.1 for ¢ = 1, but without referring to the
same restrictive assumptions. O

Remark 3.3.2 (i) Suppose the assumptions of Theorem 3.8.2 are fulfilled
for some ny. Then they are also fulfilled for any n > n,.

(ii) By the (, defining Equation 3.25 it is apparently clear that as n ap-
proaches 1, (, tends to 1 as well. Consequently, referring to the investigation
as giwen in 3.3.3 for increasing n sufficiently high, one expects R~ to de-
crease, therefore resulting in better estimates.

Error estimations using best linear and quadratic predictors

Let us briefly recall the notion of a best linear predictor. In chapter 2.4.4
under certain assumptions on the distribution function, we stated the partial
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derivatives of VaR, (x) as a function of . In this context it is important to
note, that the conditional expectation of X; given X (z) may be interpreted
as the best predictor of X; by elements of the space

M :={f(X(x)): f: R — R measurable}

(c.f. [59], S.19). Let us denote the minimizing element of M by

FEOX@) = g Valy(e) = B{X;: X () = VaRy(2)}.

Thereby, distance is measured by the expression

B{(X; - fi(X(2)?}.

It is easy to see (c.f. [45], Chapter 3.3) that for elliptically distributed random
vectors (X7, ..., X,) the best predictor can be chosen to be linear in the sense
that the best predictor is an element of the space {m - X(z):m € R}. In
this special case it can be shown that the minimizing value m* is given by
~ cov(Xy, X (7))

 war(X(2))

*

For more general than elliptically distributions the best linear predictor may
considerably differ from the best predictor over all measurable functions. In
the next lemma, we will therefore assume that the best quadratic predictor
will sufficiently approximate f;(x).

Lemma 3.3.3 Suppose f}(x) can sufficiently be approzimated by a quadratic
predictor

froX (@) =@ - [X(2)]* + b - [X(2)] + &

and B(X (xj;)‘*) exists. Under the assumptions of theorem 3.3.1 the error
estimation reduces to

1
c 2 o T2
ll — /co VaR_(z;)de — VaR,(z;) (3.27)

with a = (ay, ..., a,) and
_ E(X?)-cov(X; X?)—E(X?)cov(X; X)
~E(X?)E(X*) + (B(X?))"+(B(X?)*

Ty =l || < R -o(xp) - all -

7 -

where in the last equation we wrote X shorthand for X (xy).
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Remark 3.3.3 (i) For distributions with high kurtosis, for all i = 1,...,n
the value @; is mainly driven by the term B(X?). Hence ||al| will tend to
be small and consequently inequality (3.27) is (at least for sufficiently high
confidence levels n € (0,1)) quite strict. Moreover, in order to find better
approximations to the “real” best predictor, this will involve higher moments,
that on the one hand make the corresponding coefficients less important in
an analogous estimation as (3.27). On the other hand, from a practical
point of view, it seems not desirable to include moments of higher than the
fourths order. For an accurate evaluation, this would afford a huge number
of scenario evaluations, that for practical considerations cannot be provided.

(ii) A straight forward estimate for o(xy) in (3.27) could be
Tmax = INAX {o(X))},

since portfolio diversification will force oymax to be an upper bound for o(xy).

(iii) Using Equation 3.24 instead of 3.22 yields the same result for c =1 and
without referring to the very restrictive assumptions of Theorem 3.3.1.

(iv) Using equation 3.24 an analogous result with ¢ = 1 in 3.27 can be
achieved.

Proof: Using the assumptions of the lemma we can write for any ¢ € (0,1)

0 —+—= . . N\ D (o
P VaR.(z}) =B [X; : X(z) = VaR.(x})]

which itself can be approximated by
@ X+ X +¢ =0 (VaR.(a2))’ +b; - VaR.(a2) + &

The coefficients will have to be chosen in a way that @; - X2+ b, - X + G
represents the best quadratic predictor, i.e. minimizes the expression

B (X - X = X —7)°],

which by expansion, differentiation with respect to @;, b;, ¢; respectively and
by setting the resulting equations equal to zero can easily be shown to be
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minimized for the values

_ E(X?)-E(X:X?)-E(X°)E(X,X)

YT TEOO)EXY) - B(X2)H(B(X))

o _ “BOGX)B(XY - B(X?)) — B(X)E(XX?)
: ~E(X2)[E(X*) — B(X2)’]+(B(X3))”

o _ BEX?)BXX?) - BX)B(XX)]

~E(X2)[B(X?) - B(X2)*|+(B(X?))”

Here, we used E(X;) = E(X) =0 since without loss of generality all random
variables can be chosen to have zero mean. Now, using the connection of
VaR and C'VaR as described in section 2.4 we know

0 CVaR (z;) = B[X;:X(z}) > VaR (})]

8@ 1
1 Lo .
= 1= CO ; a—.I.ZVCLRa(l'n)dE
1 1
~ TTe / a; (VaRE(x;;))QerZ VaR.(z)) 4+ ¢ de
50 J¢

Inserting these results into Equation (3.22) will yield

0 VaR,(z;) =

9 ~ 5 ‘
CVaR ¢ (Tr) — P

c- o ;
ca; L ) 2 e -
= ¢ /(0 (VaRE(:cn)) de — @; (VaRn(xn))

+ cBiCVaRCO(:E;) —b;VaR,(x;) +¢ — ¢

-

b;VaR, (z3)

1

_ c —2, —2

= a [1—< / VaR_(z;)de — VaR, (z;)
0 CO

which is the statement of the lemma. O

3.3.3 An illustrative example

In the preceding sections we showed that for a-stable distributed asset re-
turns in principle and under some conditions on the confidence level, the
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optimization of VaR and CVaR are the same. This was mainly due to the
fact that standardizing the involved random variables resulted in expressions
that only depend on the one additional skewness parameter 5. We want to
use equation (3.26) to show that the equivalence of VaR and CVaR opti-
mization roughly holds true for the special case of independent h-distributed
asset returns.

Suppose the assets X;,7 = 1,...,n are h-distributed and independent. It is a
well known fact that the sum of two independent, symmetric and univariate
random variables is again symmetric and univariate. Although there are some
statements in the literature that the sum of h-distributed random variables
is again h-distributed, we will at first show that this will generally fail to
be true. Using equation (2.28), one easily sees that for any h-distributed

random variable Y « Z exp (hTZZ) ,
E(Y) =0 Skewness(Y) =0

2(y) — 1 : (1-2h)°
o*(Y) = T Kurtosis(Y) 3y

Given two h-distributed random variables Yy, Y; (for simplicity we take in
both cases the same value h), suppose the linear combination Yy := AY;+(1—
A)Yo, A € (0,1) is again h-distributed for some arbitrary value h. Considering
the case h = 0, one clearly derives the case of standard normal distributions,
hence admit the property of being closed under addition. Hence, in order to
disprove closedness under taking the sum, we do not only have to allow for
the parameters g, h but also the location parameter a and the scale parame-
ter b to vary with the portfolio allocation. In the current setting, a represents
some kind of mean value, which is equal to zero for all allocations A. b can be
chosen to match standard deviation (existing for i < 3), thus resulting in a
standardized random variable Y, which for the case h = 0 reduces to be truly
deterministic. Allowing for h # 0, skewness is equal to zero by construction
and the corresponding value h, can be constructed in order to match the
kurtosis of each allocation A given by the equations above. Assuming closed-
ness under addition, the value h, and portfolio’s standard deviation would
completely determine the 80% -quantile, hence giving the same results as di-
rectly evaluating VaRg(A) for every A € (0,1) via Monte-Carlo simulations.
Within Figure 3.10 we performed the necessary calculations and plotted the
resulting 80%-quantiles using the different approaches. Comparing the two
graphs, this obviously shows that the sum of h-distributed random variables
is in general not h-distributed.

Figure 3.10 depicts the situation where both ”corner” portfolios are h distrib-
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I I I I I I I I I ]
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 3.10: A versus VaRyg(A). The solid line represents the standardized
VaRys(A) for different allocations A using Monte-Carlo techniques with 3
million simulations. The dotted line firstly calculates h) of the standardized
allocation and uses the analytic expression to express VaRyg(A).

uted with A = 0.1. Although we were using a huge number of Monte-Carlo
simulations (3 million) to evaluate the 80% quantile, there is still a slight
error in the evaluation, as can be seen in the difference between the two
graphs at the endpoints A = 0 and A = 1. It is also interesting to see, that
the 80% confidence level results in riskier allocations as we are diversifying
the portfolio. This is due to the fact that we are considering standardized
random variables. Although diversification results in lower kurtosis, this will
only yield a lower VaR,, if the confidence level 7 is sufficiently high. In the
present situation for computational reasons, the confidence level was chosen
to be relatively low, hence resulting in the qualitative behavior of figure 3.10.

Retaining the current setting, we will now have a closer look on the behavior
of the respective Rayleigh quotient and its estimation via the smallest eigen-
value as used in the valuations above. Since the random variables Yy, Y; are
independent, it is clear that for diversificational reasons the corresponding
VaR, and CVaR; problems always yield z; = xf = (%, %)t for any confidence
levels n, ¢ € (0,1). Hence the two optimizational problems are trivially equiv-
alent. Evaluating the Rayleigh quotient as well as the smallest eigenvalues
of G as defined in the proof to theorem (3.2.5) in an interval around the

CVaR optimal portfolio composition z7 = (%, %) allows to get some hint on
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the general behavior of the Rayleigh quotient. Moreover, we can estimate
the overall error we make for only accounting for the smallest eigenvalues in
order to approximate the real Rayleigh quotient.

To perform the above described approach, it is necessary to accurately evalu-
ate second derivatives of the conditional value-at-risk. In order to do so, there
are mainly two procedures, each of them having its own disadvantage. The
first one takes the explicit form of the CVaR derivative as stated in equa-
tion (2.18) and numerically evaluates the second derivative based on finite
differences. Disregarding either the question of differentiability or the exis-
tence of a suitable density function, the second approach uses the following
representation
82OVGRC ((E) 1

T = g (0 (XX () = VaRe(w) - Fxeo (VaRe(a) , (3:25)

as developed in [49]. Although not developed in the setting of the cited
literature, this representation could probably be extended to account for
mixed derivatives as well. However, formulation (3.28) as in the case of
the first derivative of VaR admits the problem of evaluating the standard
deviation of the random variable X; conditioned on

X(z) =VaR(x).

Hence this approach has the numerical disadvantage of being unstable, since
two different evaluations can result in quite different values for the corre-
sponding standard deviation. Due to numerical stability, we used the ap-
proach of approximating the second derivative via finite differences. For
some value z; near xf, we integrated second derivatives as in the definition
of G. From the resulting matrix we easily derived the corresponding Rayleigh
quotient. The results are plotted in figure 3.11.

In Figure 3.11 we plot the Rayleigh coefficient as a function of the optimal
CVaR confidence level (j as used in the various estimations of this thesis. We
used some fixed optimal portfolio allocations as defined by x; = [0.45,0.55]
and x} = [0.5,0.5] as we made the experience that varying these values only
has a minor effect on the qualitative statement. We made the calculations
for different values h € {0,0.05,0.1,0.15}, using simulation sizes of 0.5 mil,
1 mil, 2 mil and 3 mil g-and-h distributed scenarios respectively. The rea-
son for the successively increased number of simulations lies in the increased
importance of tail modelling. Although using a huge number of simulations,
this inaccuracy in the tail modelling of the respective distributions can still
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Figure 3.11: ¢y versus the Rayleigh-Quotient as a function of ¢y in the case
of the linear combination of two i.i.d distributed r.v. Y7, Y5.

be observed in the nonsmooth behavior of the different graphs as depicted in
Figure 3.11. There are actually two very important observations regarding
the current investigation. Note, that in all the estimations above we were
using the inverse of the Rayleigh coefficient in order to estimate the accuracy
of our proposed algorithm. Hence, a larger value for the Rayleigh coefficient
also yields better estimating results. As a higher value 7 for the VaR confi-
dence level generally results in higher confidence levels of the affine CVaR:
problem (as e.g. can be seen by 3.25) we see that for increased values n we
also get better estimations. Moreover, one observes that enlarging kurtosis
of the VaR optimal portfolio generally results in better estimating results.
All in all, as for practical considerations confidence levels 1 near one are of
importance, our estimations will generally give quite good upper bounds.

We would like to stress again that the plots as given in Figure 3.11 are to
be considered only in a qualitative way. Although we were using a huge
number of simulations, a recalculation based on a different random vector of
same size might result in quite different evaluations. Moreover, using such a
number of scenarios, also the accuracy in evaluating the respective integrals
has to be lowered. Otherwise computation time appears unreasonable long.

As we have seen in the proceeding examples it is numerically quite expen-
sive to evaluate Rayleigh quotients since this involves the integration of sec-
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ond derivatives of C'VaR, hence for accurate evaluations a huge number of
Monte-Carlo simulations has to be generated. We will now restrict to the
case h = 0, since then we are dealing with normally distributed allocations
for which there are explicit expressions for the C'VaR gradient. Therefore,
the necessary calculations can be performed without reference to Monte-
Carlo simulations. The next theorem summarizes the main formulas for the
gradient expression of C'VaR.

Theorem 3.3.4 Under the usual notational conventions used in this paper
and denoting by p = B([X; ..., X,,]") and Q the mean vector respectively the
covariance matrix of normally distributed random variables X;,i = 1,...,n,
the following analytic representations of the C'VaR gradient hold true

Qr  o(2(9)

VCVaR:(x) = —pu +
C( ) /’L (x/Qx)1/2 1 _C

(3.29)

Qux
= —p+ = (CVaR(z) + p'x)
VaR¢(z)+ptz
Qx (x’Qz)1/2

(2'Qx)? (1-=¢)

Here, ¢ denotes the normal probability density function, whereas z(¢) de-
scribes the (-quantile of a standard normal distributed random variable.

Proof: The stated results can be found in ([55]). 0

We used equation (3.29) to evaluate the corresponding Rayleigh quotient in
the above outlined context, i.e. in the two asset spanning portfolio opti-
mization problem, where the two assets X;, Xy are i.i.d. standard normal
distributed. However, we also allowed for different covariance matrices in
depicting our results in Figure (3.12). More concrete, within Figure (3.12),
we depict the Rayleigh quotient as a function of the value (g, the optimal
CVaR confidence level satisfying some additional property. Within this

plot, the solid line represents covariance matrix €2y = (1) (1) ) . whereas
1 03 1 —0.3
h = 03 1 SURS 03 1 ) are represented by the dotted

respectively the dashed line. During our numerical analysis we found that
for any confidence level (; the corresponding Rayleigh coefficient approaches
0 as the off diagonal of 2 tends to 1. Another important feature is the
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Figure 3.12: (j versus the Rayleigh quotient R. The figure plots R as a
function of the optimal confidence level (; for the situation z; = (0.45,0.55)
and zf = (0.5,0.5) and for different covariance matrices.

strongly increasing Rayleigh coefficient for ( getting closer to one, resulting
in a successively decreasing value for R~!, hence a more and more restricting
inequality (3.24) as (j increases.

Although we know that under the present assumptions on the distribution
functions z; = z7 = [0.5,0.5] for explanatory reasons we will vary zy to
achieve the depicted results with z; = [0.45,0.55] and x7 = [0.5,0.5]. Fur-
ther variations only result in marginal differences which do not change the
qualitative behavior of the depicted calculations. Therefore, we passed on
sketching those results.

Earlier in this work, we used the smallest eigenvalue to approximate the
corresponding Rayleigh quotient. However, during the analysis of the present
setting of this section, the smallest eigenvalue appears to be a poor estimator
since it is either zero or close to zero. Taking the inverse results in an almost
unbounded RHS in equation (3.24).

Taking the knowledge about the Rayleigh coefficient in the normal distrib-
uted case as a projection of the behavior for arbitrary distributions in an
arbitrary sized setting, we conclude that for sufficiently high confidence lev-
els 7, R~ generally will attain values that give good upper bounds on the
distance ‘ z; — x7|| . Allowing for some kind of dependence structure among
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the different asset classes, negative correlation will generally result in bet-
ter approximations whereas highly correlated assets only allow for a slightly
worse approximation. However, an adequate choice of n will continue to hold
an favored value R



Chapter 4

Stochastic Branch & Bound

4.1 General Method

In contrast to the procedure of the last chapter we want to describe an
application of a truly stochastic algorithm specially adapted to the case of
optimizing VaR. Not only in the stochastic but also in the deterministic case,
effectively implementing a branch and bound algorithm depends crucially
on three problem related properties. These are the structure of the current
objective, the choice of partitioning the set of feasible solutions QQ into smaller
subsets Z and an effectively enumerable set of upper and lower bounds for
the removal of suboptimal subsets. In order to solve a stochastic optimization
problem, we will have to impose certain restrictions to achieve meaningful
results. In what follows, we are mainly referring to the work of Norkin et al.

([43])-

Considering the objective function within the stochastic branch and bound
algorithm, we demand it to be of the special form

min E[g(z, X(w))], (4.1)

zeQND

again writing X (w) for some n-dimensional random vector and Q defined
to be the unit cube [0,1]" C R". In contrast to the foregoing analysis we
allow further restrictions on the set of feasible solutions to be described by a
closed subset of R™ denoted by D. Hence, at least the requirement of being
fully invested will have to be incorporated using the set D. The function g :
Qx D — R is assumed to be continuous in the first argument and measurable

85
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in the second one and we want the expectation operator [ to be well defined.
Restricting to the form (4.1), one might expect this kind of objective function
only to address some minor problems. However, the authors in [43] give
some interesting applications to real world problems, including the stochastic
tackling of a multiperiodic portfolio allocation problem under the additional
treatment of transaction costs. Moreover, as we will see in the next section, it
is exactly this form that allows for the efficient (in the context of branch and
bound algorithms) solution of the VaR optimization problem as described
in Chapter 1.

The second very important characterization is the branching rule of succes-
sively dividing the original compact set Q into smaller subsets Z C QQ gen-
erating a partition P of Q, s.t. UzepZ = Q, hence resulting in subsequently
refined optimization problems (4.1), Q being replaced by the corresponding
compact set Z. A specialized branching method in the context of VaR opti-
mization will be considered within the next section. For more details on the
subdivision of the compact set Q consult any book on deterministic branch
and bound algorithms (compare e.g. [33]).

The third characterization of any branch & bound algorithm is where the
stochastic of the whole process comes in. In order to effectively exclude
designated sets Z in the bounding process the right choice of lower and
upper bounds becomes crucial. In the next section we will develop such
stochastic bounds based on the interchange relaxation, hence satisfying all
the assumptions on yielding meaningful upper and lower stochastic bounds
for any subset Z of the partition P. These bounds are supposed to be random
variables U(Z, X (w)) respectively L(Z, X (w)) defined on the collection of all
compact Z C Q with Z N D # () and such that

L(Z) © =E[L(Z Xw)
U(Z) : =E[0(ZXw)

are real-valued functions, again well-defined on the same domain as U, L.

4.1.1 The Algorithm

Depending on the use of different branching techniques, in the theory of deter-
ministic branch and bound optimization one distincts between different graph
search algorithms such as e.g. the Depth-First Search, the Breadth-First
Search or the Best-First Search (compare e.g. [10]). These approaches highly



4.1. GENERAL METHOD 87

differ in the successive partitioning process, hence resulting in quite different
numerical costs of finding the optimal solution. However, increased numeri-
cal efficiency unfortunately comes along with reduced significance about the
quality of the achieved solution. Moreover, besides the drawback of yielding
a possibly bad estimate to the true solution, the implementation of those
efficient search algorithms does not give any hint on the sensitivity of the
proposed solution. Although in [43] the authors already choose a very broad
way of branching the region, within the following algorithm we are describ-
ing the broadest possible way of branching any region of interest. At every
stage of the algorithm we are partitioning every active set, only disregarding
subsets if they either do not belong to the set of feasible solutions or the
corresponding lower bound increases the minimum upper bound taken over
all feasible subsets.

Initialization. Form an initial partition P; = {Q}. Observe independent
lower and upper bounds, L;(Q, X (w)) respectively U;(Q, X (w)). Set
k = 1. Before iteration k£ we have partition P, and bound estimates
Li(Z, X(w)), Up(Z, X(w)), Z € Py.

Partitioning. For every Z € Pj, construct a partition
Ue(Z2)={Y;, i=1,2,...}
such that Z = U,Y;. Define a new full partition
P, ={UW(Z): Z € P}
as well as approximate solutions zy € Y3,
Yy, € argmin {Uy(Z, X (w)) : Z € Pr} .
Deletion. For some positive value ¢ define
S = {Z € P, Tu(Z, X (w)) > Un(Ye, X (@) + c}
and clean partition 73,; of suboptimal and non-feasible subsets, defining

Peii=P{su{zer:znp=0}}.

Bound estimation. Forall Z € Py, observe random variables L1 (Z, X (w)),
independently observe Uy 1(Z, X (w)) and set k := k + 1.

Go to Partitioning.
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On some additional assumptions on the stochastic bounds (which can be
shown to hold true for the bounds presented in the next section), Norkin et
al. achieve not only on showing the convergence of the described algorithm
but also give an estimation of goodness as stated in the following lemma.

Lemma 4.1.1 Suppose a uniform bound o2 is known for the variances of all
random variables Li(Z, X (w)), Up(Z, X (w)), Z € UPx, k = 1,2, ... and let
x* be a solution to (4.1). Then

2
P{x* is lost in the final deletion} < 20—2.
¢

4.2 Application to VaR Optimization

Adoption of the Objective Function. As already formulated in the pre-
vious section, the proposed algorithm heavily depends on a special structure
of the objective function. To adapt the current algorithm to the case of VaR
optimization we firstly want to recall the definition of CVaR as given by the
authors Uryasev and Rockafellar. Not only restricting to the case

flz,X)=X"-2 = X(x)

(here f describes the loss function) but allowing for any function f(z, X)
that is continuous in the first and measurable in the second argument with
E[|f(z,X)|] < co. Allowing for such an arbitrary behavior of the loss func-
tion the C'VaR can be shown to be alternatively defined by some minimiza-
tion problem (compare Equation 2.4). Based on this result we want to define

CVaR('(x) := inf {a + 1T14E [min {X*z;m} — a]+} ,

aceR

and thus allowing the losses to be given by

fm(z, X (w)) := min {X*z;m} . (4.2)

Using this definition of losses, we are not interested in those losses exceeding
some level m; all the occurring loss distributions admit a cut at level m,
thereby not changing the original behavior for losses less or equal to m.
Figure 4.1 shows how this approach is acting on VaR,(x) as a function of
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Figure 4.1: « versus VaR,. Cutting VaR, in order to apply the stochastic
branch and bound algorithm as described in the text.

a. Since there are no losses exceeding level m, the corresponding cut results
in a VaR graph that always exhibits a constant part for sufficiently high
confidence levels.

In principle, m can be chosen to admit any real value. However, in what
follows, it is of practical interest to choose the value m to be close to the
optimal value of the solution to the corresponding VaR problem. In particu-
lar, m could be chosen to match the VaR value given by the output of some
foregoing heuristic algorithm. Using the notation of the previous chapters
we could therefore choose

m = Val,(z¢ ).

It is clear, that by the definition of m, this results in the following estimations
for CVaRy ()

OVaRT () { <m if VaR,(z) < VaR,](acéo)
¢

Based on some (heuristic) guess for the optimal VaR,, portfolio, the further
stochastic optimization of the CVaR}"(z) objective either results in an overall
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constant function always being equal to m (in the case, where the heuristic
already found an optimal allocation) or it identifies more promising regions
among the set of feasible solutions.

Defining

Ign QxR xR" — R

(x,a,X) — a+% [min { X*z;m} —ar,

our objective is to solve the minimization problem

min B g, (z,a, X (w))],

zeQND,aeR

which already has got the form treatable by the stochastic branch and bound
algorithm described in the last section.

Remark 4.2.1 Cutting every loss function according to the definition in
(4.2) allows to interpret CVaR™ as the weighted integral over the VaR as
a function of its confidence level. However, CVaR™ appears to loose the
converzity property of CVaR thereby resulting in a non-convex, hence gener-
ally not easy to solve optimization problem. In this sense, the complexity of
solving C'VaR™ lies between the one of VaR and CVaR. Using the expecta-
tion operator in the definition of the objective function gives some smoother
behavior compared to VaR but not enough to hold up convezity.

Stochastic Bounds. Let us now consider the question of using stochastic
upper and lower bounds such that the different assumptions as stated in [43]
are fulfilled. As an upper stochastic estimate of

FZND):= min Elgn(z,a,X(w))]

r€ZND,aeR

one can use Monte-Carlo estimates of the objective function at some feasible
point x € ZND.

The definition of lower stochastic bounds appears to be more sophisticated
but in general there could be used any deterministic bounding technique
from global optimization. However, in the context of the optimized branching
method of the next paragraph we will describe a very natural lower stochastic
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bound. Interchanging the minimization and the expectation operator in the
definition of F*(Z N D) yields

F(znD) = min  Blgn(z,a X))

> ] .
> E Lo Im(z,a, X (w))

Thus defining the deterministic lower bound

L(Z):=E min gpu(z,a,X(w))

€ZND,acR

and its stochastic analogon based on Monte-Carlo estimates Xi (w)
: X7
%X J erzrgglaeﬂ%{ (2,0, X7).

The next lemma shows that the minimization problems in the definition of
L are quite efficiently solvable.

Lemma 4.2.1 The joint minimization of

G (ZAD):= min gn(za X’

rzeZND,aeR

in (x,a) can be performed by firstly minimizing over x € Q, followed by
minimizing over a € R

‘ , 1 *
GuznD)= pin_ fa+ = [fm a} }
rc?elllg “ 1-— n xggwlD
_ i A

Proof: We first note that



4.2. APPLICATION TO VAR OPTIMIZATION 92

attains its minimum for y = a for any fixed y € R [h(a +¢) = a +
ﬁ[a—a—sﬁ > a = hy(a) and h,(a —¢€) = a+1T1n[a—a+5]+ >a =
he(a)]. Thus minimizing h,(a) in both y and a reduces to the finding of a
minimum feasible point y € R with the consequence that

. 1 . . 1 . *
minsa+-——[y—al” p =min<a+-—— |{miny, —a .
ay 1—-mn a 1—n y

Substituting y by some arbitrary function f(z, X (w)) with values in R yields
the claim of the lemma. The last equality follows from the C'VaR represen-
tation as given in ([53]). The only conditions on
- e
:rggrl‘llD fm($7 X )

are the continuity in x and the measurability in X (w), which are both trivially
satisfied. O

The corresponding minimization problem which we will have to solve (for
a possibly large number of scenarios) appears to be of linear type, hence
easy to solve. By the special choice of subsets Z C Q as described in the
next paragraph the numerical complexity of evaluating these minimization
problems can considerably be reduced.

A Special Branching Method. The most common optimization problem
in portfolio theory uses a setting where the most rudimentary set of feasible
allocations consists of the compact set X as defined in (2.1). This restriction,
together with more sophisticated restrictions such as the demand for some
minimum expected return are collected in the closed set D and do not have
to be of further analysis. In what follows, we are restricting to the branching
process of the very basic set given by Q.

In fact, the proposed branching method is nothing special at all. As can be
seen in Figure 4.2, the partition ¥ (Z) as in the description of the branch and
bound algorithm is determined by successively refined n-dimensional cubes
which result from successively dividing every edge into two pieces of equal
length, thus resulting in 2" new cubes for every partitioned cube. The great
advantage of this procedure stems out of the ease of handling the huge number
of linear optimization problems as described in the last section. Using some
available solver for linear optimization one firstly searches for the optimal
vertex within the original set Q = [0, 1]" by solving

min ()?j)t T (4.3)

zeQ
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0.5~

Figure 4.2: How to partition the search space Q.

for any representation X7 ,j=1,...,J of X(w) in order to yield

- XJ
min fn(z, X).

As the proposed branching method results in suitable scaled and/or trans-
formed cubes of the original set Q, the respective optimal vertex of

min f,(z, X?)

T€EZ

can easily be attained by evaluating the corresponding vertex as given by the
initializing optimization problem 4.3. By successively excluding all the non-
feasible sets, the algorithm can be efficiently implemented for a possibly high
number of scenarios. However, for a higher number of investment alterna-
tives (n greater than 10, largely depending on the computer power used), the
resulting algorithm also becomes inefficient due to the full evaluation of the
whole region as proposed in the algorithm above. By restricting the search
to the most promising regions of interest one might result in more efficient
algorithms, thereby allowing for an even higher number of asset classes to
solve for.
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4.3 An Analysis of the Algorithm’s Efficiency

Using a setting of normally and independently distributed asset classes it is
relatively easy to find the true VaR minimum with the help of quadratic
optimization techniques. On the other hand, applying the proposed algo-
rithm to this setting gives us the possibility to analyse the algorithm’s per-
formance in finding the (theoretically) true minimum. To be more precise,
in our analysis we are considering different n-dimensioned problem settings,
the respective means always given as a subset of the first n values out of
the set {0.1,0.15,0.2,0.25,0.3,0.35,0.4,0.45,0.5}. Moreover, the respective
standard deviations are chosen to be equal to the securities’ mean, therefore
accounting for the fact that a rise in expected returns generally comes along
with an increase in the asset’s inherent risk. The parameter setting was cho-
sen arbitrarily; its economic relevancy is of no interest for the results of the
analysis, which are given in the next table.

Dim Depth Time Active Set MaxDist MinVaR MaxVaR OptVaR
3 3 s 0.0566 0.4467 0.2635 0.3874 0.3597

4 2s 0.0164 0.3233 0.2991 0.3824 0.3597
5 7s 0.0048 0.2859 0.3177 0.3748 0.3597
6 8s 0.0016 0.2505 0.3243 0.3698 0.3597
7 14s 5.79 107 0.2240 0.3313 0.3650 0.3597
8 30s 2.45107*  0.2236 0.3321 0.3627 0.3597
4 3 10s 0.0244 0.4771 0.1929 0.3943 0.3001
4 12s 0.0047 0.3697 0.2444 0.3372 0.3001
5 23s 7.12107*  0.3288 0.2676 0.3211 0.3001
6 20s 1.18 107*  0.2378 0.2791 0.3128 0.3001
7 1285 2441075  0.2094 0.2872 0.3091 0.3001
5 3 12s 0.01 0.5266 0.1509 0.3914 0.2540
4 45s 0.0019 0.3971 0.1855 0.3129 0.2540
5 240s  2.79107%  0.3302 0.2110 0.2943 0.2540
6 934s  4.71 10  0.2956 0.2228 0.2891 0.2540
6 3 28s 0.0032 0.5159 0.1337 0.3914 0.2154
4 247s  6.29107%  0.4178 0.1461 0.3074 0.2154
5 2791s  9.12107°  0.3565 0.1651 0.2727 0.2154
7 3 80s 8.48 107%  0.5229 0.1103 0.3943 0.1811
4 1243s 1.27107*  0.4062 0.1139 0.3000 0.1811
8 3 241s  2.61107*  0.5367 0.0789 0.4128 0.1496
4 7618s 3.46 107°  0.4344 0.0751 0.3000 0.1496
9 3 882s  7.00 1075  0.5835 0.0789 0.4864 0.1199
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VaR calculations are based on the 99% quantile using a scenario represen-
tation of 2000 paths. The first column describes the dimensionality of the
corresponding Markowitz optimization problem, followed by the number of
consecutive decompositions of the original set of feasible solutions into smaller
subsets. Column three shows the elapsed time for searching the space by suc-
cessively dividing into smaller subsets. Clearly, the computational time for
doing so increases in both, the dimension of the original problem setting and
the search depth. The numbers as stated in columns four up to seven give
some hint on the accuracy of the search-space reduction and how far we are
lying off from the true VaR optimum as given in column eight.

The values given in the ” Active Set”-column are defined as the proportion
of the combined cube volume of those cubes not yet discarded within n-
dimensional space. It is intuitively clear that this number strongly decreases
for an increased number of asset classes.. Moreover, increasing the number
of subdivisions as given by column ”Depth” results in much more adequate
volume reductions.

By calculating the figures in columns five through seven we always calcu-
lated the respective figure at a predefined fixed corner of the corresponding
subcube thereby underestimating the true ”MinVaR” and overestimating ”-
MaxVaR”. This becomes especially apparent for those rows which correspond
to a relatively low degree of search depth.

Although we propose a very efficient way of solving the resulting subproblems,
table 4.3 shows that the use of the described algorithm for solving the VaR
optimization at hand is only practical for a moderate number of asset classes.
However, it seems reasonable to combine the foregoing approach with the
use of some meta heuristic optimization procedure in order to achieve faster
approximative results. Another way of increasing the number of realistically
solvable dimensions could be in the algorithm’s implementation on several
computers.

It is important to note another reason for the relatively high execution times.
In the implementation of the current algorithm a subset of a former active set
was rejected if and only if the corresponding lower bound equals the ” cutting
parameter” m := OptVaR. However, since we only used 2000 scenarios to
represent the current setting, the corresponding value of the VaR optimum
could significantly deviate from the true value OptVaR. Thus an increase
of the used scenarios to simulate the optimization problem could result in a
more efficient rejection policy. However, increasing the number of scenarios
also results in an increase of computational complexity.



Chapter 5

Conclusion and Further
Investigations

In the course of this thesis we tried to examine the approximation of the orig-
inal NP-hard VaR optimization problem via a relatively easy to solve affine
problem, namely of finding the optimal solution to the optimization problem
where the VaR objective is replaced by the C'VaR risk measure. We saw that
there are very general classes of distribution functions, where the described
procedure results in an exact identification of the VaR optimum. However,
for general loss distributions the quality of the approximation is highly de-
pendent on the interplay of the loss distributions’” moments. If the mean as
well as the standard deviation are the main drivers of the overall behavior,
i.e. if the behavior of the standardized VaR (as a function of portfolio com-
position) can be neglected, our proposed approach will automatically result
in good outcomes.

Another driver for the accurateness of the proposed proceeding seems to be
the problem’s inherent dependency structure. Generally speaking, a good
diversification between asset classes will also result in good approximations
to the VaR optimum through an equivalent C'VaR optimum. This mainly
stems out of the fact that for a setting with good diversification effects, the
Hermitian matrix of CVaR, () in the optimal portfolio allocation z7, admits
some non-negligible Rayleigh-Quotient.

However, besides proving the result for special classes of distribution func-
tions, we were also able to provide upper and lower bounds on the euclidean
distance of the preferred element of X* to the true VaR optimum z; in a
most general setting. Independent of the problem’s nature, this enables us
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to show that for sufficiently high confidence levels the approximation is also
quite good. In particular, when dealing with distribution functions that do
not heavily deviate from the normal distribution (as in the case of a well
diversified portfolio incorporating a large number of asset classes, where the
optimal portfolio composition is also expected to consist of a large number
of asset classes) our approach to the VaR optimization problem will yield
sufficient good results.

Besides the justification of approximating the VaR optimum by a sequence
of affine CVaR optimizations, in Chapter 3 we gave a short overview of a
specially tailored stochastic branch and bound algorithm. While also giving
good approximations to the VaR optimization problem, this approach is for
computational reasons restricted to a moderate number of asset classes.

Besides the results of this thesis, there are some important extensions for
further investigation. At first, it would be of general interest not to only look
at the stand alone portfolio allocation problem, but to also allow for liabilities
being part of the investor’s portfolio (compare [29]). Within the CVaR
objective setting, this problem was already successively solved. However, it
is not entirely clear if the additional consideration of liabilities disturbs the
nice approximation results of this thesis.

Another development of interest would be the extension of the original VaR
objective function to the one, where the investor is interested in optimizing
the linear combination of VaRs for different confidence levels. This would be
done to represent some kind of spectral risk and would also involve relatively
low confidence levels (in the sense of this thesis). Also a very interesting
extension of the present setting would be the application to multi periodic
optimization settings.

Besides these more general developments in extending the present problem
setting, further research on the results of this thesis are imaginable. Not to
mention all, it would be of some interest to investigate the exact relationship
between the set of € (0,1) for which Assumption AST/A9" is true and the
set of confidence levels, for that VaR, proves to be subadditive. Moreover,
further insights to the behavior of the proposed algorithm could be achieved
by a deeper understanding of the behavior of the two integrals I; and I in
(3.27).
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Appendix A

Abbreviations and Notations

x Vector of portfolio compositions as percentages of the whole portfolio
X Set of possible portfolio allocations

Q = [0, 1]™.

p(x) Expected value of the loss distribution of portfolio composition x
o(z) Standard deviation of the loss distribution of portfolio composition x
VaR,(z) Value-at-Risk of portfolio composition x for convidence level n

CVaRc(x)  Expected shortfall of portfolio composition « for convidence level ¢
VaR$"(z)  Value-at-Risk for g-and-h distributed losses

C’VaRg’h(x) Expected shortfall for g-and-h distributed losses

VaRy(z) =0 }(2)- (VaRy() — ulx)

CVaRc(z) =o0"Yz) - (CVaR(x)— p(z))

z; Globally optimal portfolio for the VaR, (x)-optimization

7, Globally optimal portfolio for the C'VaR, (z)-optimization
X(x) := X! . z, random number representing portfolio allocation x
X = (X1, ..., X;,)!, random vector

X; Random number, representing asset ¢

X j-th realization of random vector X

. N

X (x) = (XJ> -z, j-th realization of random vector X (z)

Sa(B,7,0) Set of a-stable distributed random variables with parameters (3,+, 6

fo(t; a, B) Density fct. of an a-stable r.v. with parameter § using the O-param.
Fy(t; a, B) Distribution fct. of an a-stable r.v. with parameter § using the 0-param.
fo(t; o, B) Density fct. of an a-stable r.v. with parameter § using the 1-param.
Fi(t;a, 5) Distribution fct. of an a-stable r.v. with parameter § using the 1-param.
R Set of positive reell numbers

€; Vector with the i-th entry equal to 1, otherwise zeros

GH Set of g-and-h distributions

[t]" := max {t; 0}



Appendix B

Subadditivity of VaR for Stable
Distributions
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a=15|v 0.1 0.3 0.5 0.7
Y 01 (03 (05 [07 |03 |05 |07 |05 |07 |0.7
b B
—0.8 —0.8 || .357 | .357 | .357 | .357 | .357 | .357 | .357 | .357 | .357 | .357
—0.6 || .371 | .365 | .363 | .361 | .371 | .368 | .366 | .371 | .369 | .371
—0.4 | .388 | .374 | .369 | .367 | .388 | .381 | .377 | .388 | .383 | .388
—0.2 | .408 | .385 | 377 | .373 | .408 | .396 | .389 | .408 | .400 | .408
0.2 450 | 408 | .394 | 387 | .450 | .429 | .416 | .450 | .436 | .450
0.4 A70 | 418 | 402 | .393 | 470 | 444 | 429 | .470 | .452 | .470
0.6 A86 | 428 | 409 | .399 | .486 | .457 | .439 | .486 | .467 | .486
0.8 500 | .435 | 414 | .403 | .500 | .467 | .448 | .500 | .478 | .500
—0.6 —0.6 || .385 | .385 | .385 | .385 | .385 | .385 | .385 | .385 | .385 | .385
—0.4 || .402 | .395 | .392 | .391 | .402 | .398 | .396 | .402 | .400 | .402
—0.2 || .422 | .405 | 400 | .397 | 422 | 413 | 408 | .422 | .416 | .422
0.2 464 | 428 | 417 | 411 | 464 | 446 | 435 | .464 | 452 | .464
0.4 A83 | 439 | 424 | 417 | 483 | 461 | 448 | 483 | .468 | .483
0.6 500 | 448 | 431 | 423 | .500 | .474 | .458 | .500 | .482 | .500
0.8 514 | 455 | 437 | 427 | 514 | 484 | 467 | .514 | 494 | 514
—0.4 —0.4 || 419 | 419 | 419 | 419 | 419 | 419 | 419 | 419 | .419 | 419
—0.2 || .[439 | 430 | 427 | 426 | 439 | 434 | 432 | 439 | .436 | .439
0.2 A81 | 453 | 444 | 439 | 481 | 467 | 458 | .481 | 471 | 481
0.4 500 | 463 | 452 | .446 | .500 | .481 | .471 | .500 | .488 | .500
0.6 D17 | 472 | 458 | 451 | .B17 | 494 | 481 | 517 | .502 | 517
0.8 530 | .480 | .464 | .456 | .530 | .505 | .490 | .530 | .513 | .530
—0.2 —0.2 || .458 | .458 | 458 | .458 | .458 | .458 | .458 | 458 | .458 | .458
0.2 000 | .481 | .475 | .472 | .500 | .490 | .485 | .500 | .494 | .500
0.4 519 | 492 | 483 | 478 | .519 | .505 | .497 | .519 | .510 | .519
0.6 536 | .001 | .489 | .484 | .536 | .518 | .508 | .536 | .524 | .536
0.8 550 | .508 | .495 | .488 | .550 | .529 | .516 | .550 | .536 | .550
0.2 0.2 542 | 542 | 542 | 542 | 542 | 542 | 542 | 542 | 542 | 542
0.4 561 | .552 | .550 | .548 | .561 | .557 | .554 | .561 | .558 | .561
0.6 D78 | .562 | .556 | .554 | .578 | .570 | .565 | .578 | .5T73 | .BT8
0.8 092 | .569 | .562 | .558 | .592 | .581 | .574 | .592 | .584 | .592
0.4 0.4 o081 | .581 | .581 | .581 | .581 | .581 | .581 | .581 | .581 | .581
0.6 098 | .590 | .588 | .586 | .598 | .594 | .591 | .598 | .595 | .598
0.8 612 | 598 | 593 | .591 | .612 | .605 | .600 | .612 | .607 | .612
0.6 0.6 615 | .615 | .615 | .615 | .615 | .615 | .615 | .615 | .615 | .615
0.8 629 | .622 | .620 | .619 | .629 | .626 | .624 | .629 | .627 | .629
0.8 0.8 643 | 643 | .643 | .643 | .643 | .643 | .643 | .643 | .643 | .643
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a=171v 01 0.3 0.5 0.7
v, |01 [03 [05 [07 [03 [05 [0.7 [05 [0.7 |07
B B
0.8 | —0.8 || 428 | 428 | 428 | 428 | 428 | 428 | .428 | .428 | .428 | .428
—0.6 || 436 | 432 | 430 | 430 | 436 | 434 | 432 | .436 | .434 | .436
—0.4 || 445 | 436 | 433 | 432 | 445 | 440 | 437 | .445 | 442 | 445
—0.2 || 454 | 440 | 436 | 434 | 454 | 447 | 443 | .454 | .450 | .44
0.2 || 474 | 449 | 442 | 439 | 474 | 461 | .454 | A74 | 465 | A74
0.4 || 483 | 453 | 445 | 441 | .483 | .468 | .459 | .483 | .473 | .483
0.6 || 492 | 458 | 448 | 443 | .492 | .474 | .464 | .492 | .480 | .492
0.8 | .500 | 461 | .450 | .445 | .500 | .480 | .469 | .500 | .486 | .500
0.6 | —0.6 || 444 | 444 | 444 | 444 | 444 | 444 | 444 | 444 | 444 | 444
—0.4 || 453 | 449 | 447 | 447 | 453 | 451 | 450 | .453 | .452 | .453
—0.2 || 463 | 453 | 450 | 449 | 463 | .458 | .455 | .463 | .459 | .463
0.2 || 482 | 462 | 456 | .453 | .482 | .472 | .466 | .482 | 475 | .482
0.4 || 491 | 466 | 459 | .456 | .491 | .478 | .471 | .491 | .483 | .491
0.6 | .500 | .470 | .462 | 458 | .500 | .485 | .476 | .500 | .490 | .500
0.8 | .508 | 474 | 464 | 460 | .508 | .491 | .481 | .508 | .496 | .508
—04 | —04 | 462 462 | 462 | 462 | 462 | 462 | 462 | 462 | 462 | .462
—0.2 || A72 | 467 | 465 | 465 | 472 | 460 | 468 | 472 | 470 | 472
0.2 || 491 | 476 | 471 | 469 | .491 | .483 | .478 | .491 | .485 | .491
0.4 || .500 | .480 | .474 | .471 | .500 | .490 | .484 | .500 | .493 | .500
0.6 | .509 | .484 | 477 | 474 | .509 | .496 | .489 | .509 | .500 | .509
08 || .517 | .488 | .480 | 476 | .517 | .502 | .493 | .517 | .507 | 517
02 | —0.2 | 481 | 481 | 481 | 481 | 481 | 481 | .481 | .481 | .481 | .481
0.2 || .500 | .490 | .487 | .486 | .500 | 495 | .492 | .500 | .496 | .500
04 | .509 | .494 | .490 | 488 | .509 | 501 | .497 | .509 | .504 | 509
0.6 || .518 | 498 | 493 | .490 | 518 | .508 | .502 | .518 | 511 | 518
0.8 || .526 | .502 | .495 | 492 | .526 | .514 | .507 | .526 | .518 | .526
0.2 0.2 || .519 | 519 | 519 | 519 | .519 | 519 | .519 | .519 | .519 | .519
0.4 || 528 | 523 | 522 | .521 | .528 | .526 | .524 | .528 | .527 | .528
0.6 || .537 | 528 | .525 | 523 | .537 | 532 | 529 | .537 | .534 | 537
0.8 || .546 | 531 | .527 | .525 | .546 | 538 | 534 | .546 | 541 | 546
0.4 0.4 | 538 538 | .538 | 538 | .538 | 538 | .538 | .533 | .538 | 538
0.6 || .547 | 542 | 540 | 540 | .547 | 544 | 543 | 547 | 545 | 54T
0.8 || .555 | 546 | 543 | 542 | .555 | .550 | .547 | .555 | .552 | 555
0.6 0.6 || .556 | 556 | .556 | .556 | .556 | .556 | 556 | .556 | .556 | 556
0.8 || .546 | 559 | .558 | .558 | .564 | 562 | .560 | .564 | 562 | 564
0.8 08 | 572 | 572 | 572 | 572 | 572 | 572 | 572 | 572 | 572 | 572




Appendix C

Karush-Kuhn-Tucker
Conditions

The Karush-Kuhn-Tucker conditions are necessary conditions of a feasible
solution yielding optimality in a quite arbitrary setting. By restricting the
objective as well as the constraint functions to be convex, respectively linear
functions, the necessary conditions on some feasible solution can even be
shown to be sufficient. To make these observations more rigorous, let us
consider the following minimization problem

mxin f(z) (C.1)

gi(x) <0
hi(z) =0

with objective f(z), nonequality constraints g;(x), ¢ = 1,...,m and equality
constraints h;(z), j =1, ..., L.

Theorem C.0.1 (i) Suppose that all the functions
f?gi7hj R" =R

occurring in the problem setting (C.1) are continuously differentiable at a
local minimum x*. Then there exist constants A > 0, p, > 0, (i = 1,...,m)
and v;, (7 =1,...,1), s.t.

l
A+Zm:ui+2\uj| >0
i=1 j=1
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l
AV f(z*) + Z wVgi(z*) + ) v Vh(a*) =0 (C.2)
j=1

wgi(x*) =0, i=1,...,m (C.3)
(ii) Let the objective function f and the constraint functions g; be convex
functions and h; affine functions with an arbitrary feasible point x*. If there

exist constants p1; > 0, (i = 1,...,m) and v;, (j = 1,...,1), satisfying condi-
tions (C.2) and (C.3) for some A # 0, then z* is a global minimum.

Proof: The proof of the theorem can be found in [32] O
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