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1 Summary

Combining a phylogenetic evolutionary approach with functional genetic analyses, this
dissertation reveals breakthrough insights into the evolution of intracellular plant root symbioses
with fungi or bacteria. Arbuscular Mycorrhiza (AM) with fungi is widespread among land
plants today, and believed to date back to their earliest representatives. However, plant genes
required for this symbiosis were confirmed only in legumes at the time this project started. The
thesis provides evidence for a functional conservation of the legume symbiosis genes CYCLOPS
and SYMRK in AM across dicot and monocot angiosperm lineages, and thus for the existence of
a conserved genetic basis of AM in angiosperms. Rice cyclops mutants proved unable to form
AM, and rice CYCLOPS, as well as SYMRK versions from rice and different dicot angiosperms
were found to restore AM when transgenically introduced into legume mutants in which the

orthologous genes are defective.

In legumes, at least seven “common symbiosis” genes—including SYMRK and CYCLOPS—are
required not only for AM, but also for the more recently evolved root nodule symbiosis (RNS)
with nitrogen-fixing rhizobia. RNS occurs in two major forms, legume-rhizobium symbiosis
and Actinorhiza. RNS types differ in bacterial partner, intracellular infection pattern, and
morphogenesis. This work identifies the receptor-like kinase gene SYMRK as the first plant gene
known to be required for actinorhiza. SYMRK is shown to be necessary for Actinorhiza of the
cucurbit Datisca glomerata and the Fagales tree Casuarina glauca with actinobacteria of the
genus Frankia, providing the first functional evidence that all three types of plant root

endosymbiosis, AM and both forms of RNS, are genetically and hence evolutionarily linked.

The overlap of AM and RNS genetic programs suggests a recruitment of symbiosis genes from
AM during RNS evolution, but the molecular basis for this event is not clear. This work reveals
that SYMRK exists in at least three distinct structural versions, of which the shorter forms from
rice and tomato are sufficient for AM, but not for functional endosymbiosis with bacteria in the
legume Lotus japonicus. Only the longest version, which is present in all RNS forming groups,
can fully support RNS. All other common symbiosis genes are structurally conserved between
monocot and dicot angiosperms, and rice CYCLOPS proved competent to support both AM and
RNS in Lotus japonicus. The combined data support the idea that SYMRK sequence evolution
was involved in the recruitment of a pre-existing signalling network from AM, paving the way

for the evolution of intracellular root symbioses with nitrogen-fixing bacteria.

The key results of the study are discussed and interpreted in the light of a broader scientific

context in the second chapter, which has been submitted as a review article.



2 Introduction and scientific context

Evolution of root endosymbiosis with bacteria:

how novel are nodules?

The content of this chapter has been published as a review article. The manuscript and

figures were prepared by the author of the thesis.

Markmann, K. and Parniske, M. (2009).
Evolution of root endosymbiosis with bacteria: how novel are nodules?
Trends in Plant Science: 14, 77-86.
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2.1 Abstract

Plants form diverse symbioses with nitrogen-fixing bacteria to gain access to
ammonium, a product of the prokaryote-exclusive enzyme nitrogenase. Improving the
symbiotic effectiveness of crop plants like maize, wheat or rice is a highly topical
challenge and could help reduce the need for energy-intense nitrogen fertilizer in staple
food production. Root nodule symbiosis (RNS) constitutes one of the most productive
nitrogen-fixing systems, but it is restricted to a small group of related angiosperms.
Here, we review the genetic regulation of RNS and its interconnections with other plant
symbiosis or plant developmental programs. Since RNS uses genetic programs that are
widely conserved in land plants, we evaluate the prospects for a transfer to plants that

are currently non-nodulating.

2.2 Root nodulation symbiosis:

a rare but efficient source of nitrogen for plants

Limitation of water or nutrients such as nitrogen, potassium and phosphate restricts
plant growth and development in many terrestrial ecosystems. Mutualistic symbioses of
roots with fungi or bacteria help plants to cope with these constraints. Associative
nitrogen fixation is found in plants as diverse as ferns (e.g. 4zolla), gymnosperms (e.g.
coralloid roots of cycads) and monocots, which can host endophytic diazotrophs such as
Azoarcus or Azospirillum. Among the most sophisticated associations are intracellular
(endo-) symbioses, where the microbial partner is accommodated within a living host
cell [1]. This inter-organismic intimacy is based on complex molecular crosstalk
between the partners and, except in parasitic associations where bacterial nitrogen
fixation remains inefficient, allows efficient nutrient exchange to the benefit of both [1].
Root nodule symbiosis (RNS) effectively renders plants independent of other nitrogen
supplies [2] but is restricted to only four related orders within the Eurosid clade of
angiosperms [3]. RNS is characterized by two major evolutionary inventions: the
intracellular uptake of bacteria and the formation of specialized organs, the root nodules

[4,5]. The latter provide a suitable microenvironment for nitrogenase activity and allow



for a protected, controlled development of high bacterial population densities. Nodules
thus resemble ‘micro-fermenters’ within the host plant that are optimized for symbiosis

maintenance.

There are two main types of RNS that differ in bacterial partners, infection mechanisms
and nodule organogenesis and morphology [4,5]. Legumes, including important
agricultural crops such as soybean (Glycine max), common bean (Phaseolus vulgaris)
and pea (Pisum sativum), interact with phylogenetically diverse nitrogen-fixing bacteria
known as rhizobia [2,4]. Actinorhiza, a symbiosis with nitrogen-fixing actinobacteria of
the genus Frankia [6], is formed by members of three rosid orders: the Fagales,
Cucurbitales and Rosales [7]. Examples are alder (A/nus spp.), sea buckthorn

(Hippophae rhamnoides) and the subtropical tree genus Casuarina [8].

Within the four orders where RNS occurs, its distribution is scattered [7,9]. It is an
ongoing challenge to decipher the combination of molecular adaptations characterizing
RNS-forming plants (i) relative to related species outside of the nodulating clade and
(11) relative to non-nodulating representatives within. The close kinship of taxa forming
RNS prompted the proposition that a common ancestor could have acquired a genetic
predisposition to evolve nodulation [3]. This predisposition, consisting of one or more
genetic advances, consequently became a basis for the evolution of all types of RNS.
This hypothesis predicts that the existing forms of RNS have overlapping genetic
programs. However, experimental evidence for a genetic program shared between both
types of RNS was obtained only recently [10,11]: post-transcriptional gene silencing
demonstrated that the SYMBIOSIS RECEPTOR-LIKE KINASE (SYMRK) gene (also
known as DOES NOT MAKE INFECTIONS 2 [DMI2] in Medicago truncatula [barrel
medic] and NODULATION RECEPTOR KINASE [NORK] in Medicago sativa [alfalfa])
[12,13], which is necessary for the interaction of legumes with rhizobia [12,13], is also
required for actinorhiza with Frankia in the Fagales tree Casuarina glauca [10] and the
cucurbit Datisca glomerata [11]. The common requirement of SYMRK is probably
representative for other genes shared between RNS in legumes and actinorhiza (Figures
I, 2 and 3) and provides important support for the hypothesis that actinorhiza and

legume RNS share a common genetic ancestry.
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In this review, we discuss the genetic features that distinguish ‘nodulators’ from non-
nodulating plants — and form the molecular prerequisite for the complex evolutionary

achievement of nitrogen-fixing RNS.

2.3 What are the key genetic inventions of the nodulating
clade?

Among the prime candidates for adaptations specific to RNS-forming plants are genes
involved in the perception of rhizobial signaling molecules, namely lipochito-
oligosaccharide nodulation (Nod) factors. These receptors are required for the earliest
host responses to symbiotic rhizobia and are involved in determining host-symbiont
specificity [14—17]. They are likely to represent relatively recent achievements during
the evolution of legume RNS. In the Japanese legume Lotus japonicus, a close relative
of the Eurasian birdsfoot trefoil, perception of Nod factors depends on the receptor-like
kinases (RLKs) NOD FACTOR RECEPTOR 1 (NFR1) and NFRS5 and is highly
specific in that Nod factors produced by different bacterial strains can be distinguished
if they show minor alterations of their chemical structure [15-17]. NFR-predicted
proteins contain lysine motif (LysM) domains in their predicted extracellular part, and
these domains are involved in Nod factor recognition in L. japonicus [17]. Closely
related genes mediate Nod-factor signaling in other legumes such as M. truncatula
[14,18]. In an approach to induce a compatible interaction of rhizobial bacteria with an
incompatible legume, M. truncatula was equipped with L. japonicus Nod factor
receptor genes (NFR1 and NFR5). Transgenic roots formed bacteria-containing nodules
with the specific partner of L. japonicus, Mesorhizobium loti [17]. Although these
nodules were not fully functional [17], the observations demonstrate that Nod factor
receptors have a central role in defining host ranges in rhizobium-legume interactions.
The Nod factor receptors are closely related to two receptors identified in the non-
nodulating angiosperms Arabidopsis thaliana (thale cress) and rice (Oryza sativa),
which are required for the defense-related perception of chitin oligomers, a chemical

signature of fungi [19,20].

The high level of specificity of Nod-factor recognition and the necessity to evoke
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symbiosis-related rather than defense-related downstream responses call for artificial
transfer of compatible receptors to potential new hosts. Alternatively, infection systems
that are likely to be independent of Nod-factor signaling, such as those employed by
certain photosynthetic bradyrhizobia that induce nodules on aerial plant parts [21] or
actinorhiza with Frankia [22], represent an interesting resource for further exploitation
towards developing artificial host systems. Because these bacteria lack common nod
genes required for Nod-factor synthesis in rhizobia [21,22], they must rely on
alternative strategies to induce nodule organogenesis and infection. A key question is
whether the Nod-factor receptors are specific to the legume branch of the nodulating
clade or whether actinorhiza plants employ the same type of receptor for detection of
Frankia symbionts. Key genes required for Nod-factor synthesis have not been detected
in the fully sequenced Frankia genomes ([22]; Box 1). However, the exceptional genus
Parasponia belongs to the Rosales that are normally nodulated by Frankia but is
nodulated by rhizobia. Parasponia nodulation requires the rhizobial common nod
genes, which suggests that LysM RLKs could be involved in RNS in this plant [23].
Although Parasponia might be an exception, it is possible that the adaption of LysM
receptors for the recognition of symbiotic bacteria goes back to the ‘predisposition
event’, but their involvement in actinorhizal symbiosis with Frankia is presently

unclear.
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Figure 1. Common endosymbiosis genes exhibit divergent patterns of structural and functional
evolution. SYMRK, which might form the entry point to the common AM and RNS program for
endosymbiosis with fungi or bacteria, has at least three distinct structural versions. All of these
support AM symbiosis with fungi, but only the longest version is sufficient for functional RNS
[11]. This longest SYMRK version has been found only in rosids and seems to be presentin all
species that form RNS, as well as in their relatives, such as poplar or Tropaeolum, that do not
form RNS but form only AM symbioses [11]. This pattern suggests an involvement of SYMRK in
a genetic adaptation that might have provided a molecular basis for the evolution of RNS within
the rosid lineage. A common ancestor of the rosid clade (dark purple) possibly acquired a
specific adaptation of SYMRK, allowing plant-bacterial interactions to access the conserved AM
genetic program for endosymbiosis, which encompasses at least six further genes (CASTOR
[34]; POLLUX [31,34]; NUP85 [35]; NUP133[36]; CCaMK [32,37]; CYCLOPS [33,38]). In
contrast to SYMRK, these are structurally conserved across dicot and monocot angiosperms
(Figure 2). Potentially, the monomorphic components of the common symbiosis program can
support RNS [26,28,38,39,47]. The small pictograms refer to the root endosymbiosis types
supported by the respective structural version of SYMRK. Angiosperm orders shaded dark gray
include members forming AM and actinorhizal RNS with Frankia (AR), those shaded light purple
form AM and another form of RNS, rhizobium—legume symbiosis (RLS). Members of orders
shaded light blue form AM but no RNS. The plant names (same color code as for orders) refer
to species containing the respective structural versions of SYMRK. Asterisks (*) indicate the
availability of data on the functional capabilities of the respective SYMRK genes [10,11].
Abbreviations: AM, arbuscular mycorrhiza; AR, actinorhiza; RLS, rhizobium-legume symbiosis;
RNS, root nodulation symbiosis. Key to plant names: alder, Alnus glutinosa; Casuarina,

C. glauca; Datisca, D. glomerata; Lotus, L. japonicus; maize, Zea mays; Medicago,

M. truncatula and M. sativa; poplar, P. trichocarpa; poppy, Papaver rhoeas; Tropaeolum,

T. majus; rice, Oryza sativa. Predicted protein regions

are abbreviated as: CEC, conserved extracellular domain; LRR, leucine-rich repeat; NEC, N-
terminal region of unknown function; PK, protein kinase domain; TM,

transmembrane domain. Nomenclature of angiosperm phylogeny is based on Ref. [81].
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Figure 2. The variation in gene structure and domain composition between SYMRK versions
from different angiosperm lineages is exceptional among genes that are required for both AM
and RNS symbioses (common symbiosis genes). The longest known version of SYMRK (a)
contains three LRR motifs, all encoded by individual exons. Two shorter versions exist in other
plant lineages, which form AM, but no RNS. SYMRK from the asterid tomato represents an
intermediate version that only has two LRR encoding exons. The shortest known versions of
SYMRK were isolated from monocots, such as rice [11]. In those regions of the gene that are
present in all versions, intron positions and phases are conserved. Other common symbiosis
genes (b—g) required for intracellular infection are structurally conserved between dicot and
monocot angiosperms, such as Lotus and rice. Minor variations in exon lengths exist, but intron
positions and phases are conserved in all cases. In Lotus CYCLOPS (g), two NLS motifs are
predicted in silico, as compared to one in rice, but only one of the NLS from the Lotus ortholog
was functional in a heterologous localization experiment [38]. Only this one, which corresponds
to the one conserved in rice CYCLOPS, is depicted here. Key to plant names: Lotus,

L. japonicus; tomato, Lycopersicon esculentum; rice, Oryza sativa. Filled boxes represent
exons, or those regions of exons that are part of the coding sequence. Introns are not depicted,
and dotted lines indicate the positions of exon—intron borders. Arrowheads indicate exon—intron
borders that cannot be correlated between predicted orthologs with certainty. Predicted protein
regions are abbreviated as: Al; CaM, autoinhibitory domain overlapping with calmodulin binding
site; EF, calcium-binding EF hand; CC, coiled-coil region; CEC, conserved extracellular region;
LRR, leucine-rich repeat motif; NEC, N-terminal extracellular region of unknown function; NLS,
nuclear localization signal; PK, protein kinase domain; TM, transmembrane domain; SP, signal
peptide. The annotations follow in silico predictions or published annotation of the depicted or
homologous sequences where appropriate [11,13,37,38]. The genomic and coding sequences
used for prediction of exon—intron structures were: (a) SYMRK (DMI2; NORK) [11-13],
AP004579 and AF492655 (Lotus), AY940041 and AY935266 (tomato); AP003866 and
AK099778 (rice); (b) CASTOR [34], AB162016 and AB162157 (Lotus), NC_008396 and
AK068216 (rice); (c) POLLUX (DMI1) [31,34], AB162017 and AB162158 (Lotus), NC_008394
and AK072312 (rice); (d) NUP85 [35], AP009253 and AB284835 (Lotus), NC_008394 and
AK072636 (rice); (e) NUP133[36], AJ890252 and AJ890251 (Lotus), NC_008396 and
AKO073981 (rice); (f) CCaMK (DMI3) [32,37], AM230792 and AM230793 (Lotus), AC097175 and
AKO070533 (rice); (g) CYCLOPS [38], AP009158 and EF569221 (Lotus), AP008212 and
EF569223 (rice). Coding sequences used for exon—intron structure determination are derived
from cDNA, not from in silico predictions. Parts of the figure are modified from Ref. [11].
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2.4 Bacterial uptake evolved by arbuscular mycorrhiza gene
recruitment

RNS is genetically embedded in an ancient program for endosymbiosis that is widely
conserved in plants today.The majority of land plants form arbuscular mycorrhiza
(AM), a symbiosis with fungal symbionts of the phylum Glomeromycota [24]. AM
hosts benefit from the extensive access of the fungal mycelia to soil compartments by
exchanging photosynthates for water and nutrients such as phosphate [25]. AM-
forming angiosperms have been shown to possess conserved genes required for
intracellular accommodation of microbial symbionts [11,26-29]. Although originally
evolved for symbiosis with fungi, components of this program are functional in RNS
with bacteria and could potentially support RNS also in lineages that do not currently
contain nodulating species. The ‘common symbiosis program’ is defined by genes that
are required for both intracellular root symbioses with bacteria (RNS) and fungi (AM)
[1]. In the model legume L. japonicus, seven common symbiosis genes have been
identified [30], and for four of these, orthologs were isolated from other legumes such as
M. truncatula, M. sativa and garden pea [12,31-33]. The RLK SYMRK (DMI2;
NORK) functions among the earliest components of the common symbiosis program,
near the point where rhizobium-legume signaling merges with the AM genetic program
[12,13,16]. Further common symbiosis proteins include the two predicted cation
channels CASTOR and POLLUX (M. truncatula DMI1) [31,34], two nuclear pore
proteins (NUP85 [35] and NUP133 [36]), the calcium and calmodulin dependent

kinase CCaMK (M. truncatula DMI3) [32,37] and the nuclear protein CYCLOPS [38§]
(M. truncatula INTERACTING PROTEIN OF DMI3 [IPD3]) [33].

The requirement of legume genes for both bacterial and fungal symbioses inspired the
hypothesis that pre-existing AM genes were recruited during the evolution of RNS [1].
Indeed, predicted common symbiosis gene orthologs from non-legume dicots and from
monocots were shown to be essential for AM in these lineages or supported AM if
introduced in legume mutants deficient in the respective genes. Rice lines mutated in

CASTOR, POLLUX, CCaMK (DMI3) or CYCLOPS (IPD3) were unable to establish
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symbiosis with AM fungi [26,28,29,38,39], and transgenic introduction of CASTOR,
CCaMK and CYCLOPS into corresponding legume mutants restored AM formation
[26,28,38,39]. SYMRK genes from different dicot angiosperms and the monocot rice
complemented the loss of AM in an L. japonicus symrk mutant [11]. This provides

evidence for a conserved genetic framework of AM in angiosperms (Figure 1).

In contrast to RNS, plant organogenetic programs are not induced during AM [40].
However, in both symbioses the host plant accommodates the respective microbial
symbiont inside living plant cells. Prior to AM fungal infection of host epidermal and
cortical cells, characteristic nuclear movements and rearrangements of cytoskeleton and
organelles occur [41,42]. Formation of the resulting cellular ‘pre-penetration apparatus’
was found to depend on the common symbiosis genes DMI2 (SYMRK) and DMI3
(CCaMK) in M. truncatula [42], indicating their involvement in preparing host cells for
the intracellular invasion by fungal symbionts. Strikingly similar phenomena were
observed in both rhizobium-legume [43,44] and actinorhizal [45] interactions, where
cytoplasmic bridges, termed ‘pre-infection threads’, form in host cells before bacterial
invasion. In both AM and RNS, these cytological structures dictate the path of
microbial progression through infected host cells [41-45]. Consistent with this, mutant
phenotypes of legumes impaired in common symbiosis genes involve either a total block
or early arrest of intracellular microbial infection [30]. Together, these data strengthen
the hypothesis [1] that AM gene recruitment during RNS evolution laid the basis for
intracellular accommodation of bacteria. The recruitment event could have enabled the
integration of receptor-mediated perception of bacterial partners into the pre-existing
AM genetic program, which was a decisive step in the evolution of RNS. The genetic
basis for this novel link might be identical to the enigmatic predisposition event at the

root of the nodulating clade.

2.5 SYMRK is a likely determinant of the genetic

predisposition for nodulation

Genetic adaptations conferring the predisposition to nodulate [3] have been acquired by
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the ancestor of the monophyletic nodulating clade. Therefore, the corresponding features
should be present in nodulating and non-nodulating members of this clade. At the same
time, such adaptations should be absent in other angiosperm lineages. A corresponding
pattern has so far only been detected for SYMRK, making this gene a prime candidate for
carrying decisive sequence and functional alterations acquired by the ancestor of the
nodulating clade. Among common symbiosis genes required for endosymbiotic infection
in AM and RNS, contrasting evolutionary patterns are apparent (Figures 1 and 2).
Unique structural and functional divergence was found between SYMRK genes isolated
from different angiosperm lineages (Figures 1 and 2). At least three distinct versions of
SYMRK exist, which differ in the domain configuration of the predicted products and in
their potential to confer symbiotic ability [11]. Only the longest version, which is
present in rosids including legumes, actinorhizal hosts and also non-nodulating species,
fully supports both AM and RNS [11]. Both shorter SYMRK versions fully support
AM but not RNS when transgenically introduced into a legume symrk mutant
background [11]. The precise molecular features that are responsible for these
differences remain to be determined. Interestingly, only the monocot version can
support basic RNS related responses, including organogenesis induction and rare,
aberrant infection events [11]. The precise extent to which non-rosid SYMRK versions
can function in root interactions with bacteria remains to be determined. But the
apparent correlation between the occurrence of the full-length SYMRK version in a
monophyletic group including all RNS-forming lineages and the potential of this version,
as opposed to the shorter ones, to support functional endosymbiosis with bacteria
suggests that SYMRK is involved in the predisposition for nodulation. By contributing
to the general ability of rosid lineages to evolve RNS, the longest SYMRK version is
likely to represent one of the genetic advances that paved the way for RNS evolution in

an ancestor of the nodulating clade [11].

In contrast to SYMRK, other common symbiosis genes exhibit a conserved exon-intron
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structure within the coding sequence and similar predicted protein domains in hosts
from dicot and monocot angiosperm lineages [27,32,34-36,38] (Figure 2). Examples are
CASTOR, CCaMK and CYCLOPS, where this structural conservation coincides with
conserved functionality in root endosymbioses. CCaMK from the monocots rice [46]
and Lilium longiflorum [47] restored RNS when introduced into ccamk mutants of the
legume M. truncatula, although later stages of symbiosis establishment were
compromised when rice CCaMK was used for complementation [46]. In castor, ccamk
and cyclops loss-of-function mutants from L. japonicus, rice versions of the respective

genes fully restored both AM and RNS [28,38].

Potentially, with the exception of SYMRK [11], common symbiosis proteins from non-
nodulating lineages can thus support RNS without major modification. The observed
sequence adaptations of SYMRK might have been sufficient for the recruitment of the

common symbiosis program in an ancestor of all nodulators.

2.6 Combining infection and organogenesis: what makes a

‘predisposed rosid’ a ‘nodulator’?

Despite the scattered occurrence of nodulation within the rosid lineage, plant-bacterial
endosymbioses have only been detected in association with nodule organogenesis. A
known exception is Gleditsia triacanthos (honey locust), in which infection-thread
formation and symbiotic nitrogen fixation do not involve the development of nodules
[48]. In addition, organogenesis can be uncoupled from intracellular infection in
nodulating legume species [47,49—-52]. Mutants of Sinorhizobium meliloti exist that fail
to induce root-hair reactions or intracellular infection in their host, M. sativa, but are
able to induce nodule organogenesis [49]. By contrast, particular lines of M. sativa,
M. truncatula and L. japonicus develop spontaneous nodules in the complete absence of
rhizobia [47,49-52]. These data indicate that intracellular infection and nodule
organogenesis are genetically separable processes in RNS. Consequently, genes

involved in spatially coordinating and synchronizing nodule organogenesis with
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bacterial infection are essential for an efficient RNS. Mutants in three independent loci
were identified in L. japonicus that exhibit root nodule organogenesis in the absence of
rhizobia. Two of the respective genes have been isolated [37,52]. Versions of CCaMK
that are mutated in or lack the autoregulatory domain of the protein can induce the
development of bacteria-free nodules with normal tissue organization in legumes
forming either determinate [37] or indeterminate nodules [47]. CCaMK is presumed to
be involved in deciphering nucleus-associated ‘calcium spiking’ [32,53], periodic
fluctuations of calcium concentration that occur in response to rhizobia or isolated Nod
factors [54]. Similar calcium-fluctuations of a distinct pattern occur in response to AM
fungi [55], suggesting that calcium spiking might be involved in inducing different
downstream responses in bacterial and fungal symbioses [55]. However, the observation
that monocot orthologs can restore nodulation in ccamk loss-of-function mutants
[28,46,47] rules out the possibility that legume-specific adaptations of CCaMK are

essential for nodule organogenesis in this lineage.

In the L. japonicus intracellular infection program, CCaMK functions upstream of the
common symbiosis gene CYCLOPS [38], which is required for intracellular infection
but not for induction of nodule organogenesis. However, nodule organogenesis aborts at
a primordial stage in cyclops mutants [38]. This developmental arrest can be
circumvented by autoactive CCaMK, indicating that the initiation of organogenesis is
partially parallel to the common symbiosis program for intracellular infection [38].
Importantly, these observations also suggest that in the wild-type situation, the
progression of intracellular bacterial infection is a prerequisite for completion of nodule

development [38].

RNS-related responses induced by an autoactive CCaMK version require several
putative transcriptional regulators [37,47,56], which, in contrast to CCaMK itself, are
not required for AM [56-59]. These include the GRAS type transcription factors
NODULATION SIGNALING PATHWAY 1 (NSP1) [60,61] and NSP2 [61,62], the
ETHYLENE RESPONSE FACTOR (ERF)-type AP2 protein ERF REQUIRED FOR
NODULATION 1 (ERN1) [56] and NODULE INCEPTION (NIN) [59,63]. These all

belong to families that contain close homologs in other angiosperms, including the
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nonsymbiotic A. thaliana and the monocot rice [56,60,61,64]. It is possible that specific
adaptations of the respective legume genes are required for their function in RNS
because NbDNSPI from Nicotiana benthamiana (tobacco) only partially complemented
RNS in M. truncatula nspl mutants [61]. Interestingly, these genes are required for both
nodule organogenesis and infection-thread initiation (NSP1 [57,60]; NSP2 [58,62]; NIN
[59]) or infection-thread development (ERN1 [56]). Their precise role during symbiosis
establishment is unclear but potentially involves the regulation of distinct response
patterns in root epidermal and cortical layers [65]. Several lines of evidence, most
notably the discovery that a cytokinin receptor (L. JAPONICUS HISTIDINE KINASE 1
[LHK1] [52,66], M. truncatula CYTOKININ RESPONSE 1 [CRE1] [67]) has an
important role in initiation of nodulation, indicate that cytokinin is a key trigger for
nodule organogenesis, as discussed in two recent reviews [68,69]. In a possible
scenario, Nod-factor signaling via the common symbiosis program initiates cytokinin
production, which in turn induces transcriptional regulation of genes controlling

progression of nodule organogenesis [68] in a cell-type-specific manner [69].

2.7 Cytokinin is a trigger for nodule organogenesis

Consistent with an essential role of cytokinin in initiating nodule organogenesis, an
autoactive version of the cytokinin receptor LHKI induces spontaneous nodule
organogenesis in the absence of rhizobia [52]. By contrast, an /hkl loss-of-function
allele (hitl-1) supports intracellular bacterial infection but strongly impairs the
formation of nodules [66]. Experimental downregulation of the M. truncatula predicted
ortholog of this gene, CRE, led to loss of nodule organogenesis [67], indicating a role

of cytokinin in the formation of both determinate and indeterminate nodules.

Both rhizobial and Frankia strains have been reported to secrete cytokinin [70,71], and
Nod-factor-deficient, non-nodulating strains of Sinorhizobium meliloti regain the
potential to induce nodule-like organs when manipulated to secrete trans-zeatin, a
naturally occurring cytokinin [72]. These observations suggest a possible role of
cytokinin secreted by bacterial symbionts during symbiosis establishment in the

induction of nodule organogenesis in RNS.
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Photosynthetic Bradyrhizobium strains were identified that lack the nod4BC operon
required for Nod-factor synthesis and were proposed to induce nodulation in a
Nodfactor-independent manner by using purine derivatives, which could be related or
identical to phytoactive cytokinins [21]. Together, these data suggest that bacterial
symbionts might contribute to nodule organogenesis induction, or even circumvent the
Nod-factor signaling pathway, by releasing cytokinin and activating the LHKI-

mediated organogenesis program.

Presumed LHKI or CREI orthologs are conserved in angiosperms, including
Arabidopsis and rice [73,74]. Testing the potential of deregulated versions to autoinduce
similar organogenetic responses in non-nodulating plants could reveal whether
nodulating groups evolved a partially specific, LHK1-mediated cytokinin response [65]

or whether they fully rely on pre-existing programs for organogenesis.

The direct involvement of cytokinin signaling in the regulation of nodule organogenesis
relates RNS to fundamental developmental processes, such as lateral-root generation
[67,73,75], regulation of root length [52,66,67,73] and vascular morphogenesis [52,76]
(Figure 3). The evolution of nodule organogenesis might thus have involved the
adaptation of pre-existing root developmental programs such that they respond to
hormonal re-balancing of the root cortex induced by signals associated with
endosymbiotic bacterial infection [68,77,78]. Consistent with this is the occurrence of
nodules and nodule-like structures in diverse landplant lineages, indicating that the
genetic tools for their formation are not limited to RNS-competent rosids. For example,
nodules that are likely to have evolved as modified lateral roots similar to actinorhizal
nodules occur naturally in some gymnosperms such as Podocarpus spp., where they are
colonized by AM fungi and potentially provide a setting for bacterial nitrogen fixation
[79]. Artificial induction of nodule-like structures was reported in rice after partially
macerated root tissue was exposed to rhizobial bacteria [80]. Finally, nitrogen-fixing
nodules differ greatly in their morphological and developmental characteristics between
RNS-forming groups [4,5], giving further indication that a broad range of host genetic

backgrounds can potentially support nodule formation.
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Figure 3. Root nodulation symbiosis (RNS) with nitrogen-fixing bacteria is embedded in
conserved genetic programs. Genes required for intracellular infection with (a) arbuscular
mycorrhiza (AM) are shared with both main types of RNS, (b) rhizobium-legume symbiosis
(RLS) and (c) actinorhiza (AR) with Frankia. Nodule organogenesis might be closely related to
(d) lateral root formation. Three modules (i—iii) are apparent that define genetically separable
response patterns in RNS. (i) Plant genes required for host-symbiont recognition in the different
symbiosis types are likely to carry specific adaptations. Candidates are known only for RLS,
where LysM kinases (LjNFRs in Lotus japonicus, and M{LYKs as well as MINFP in Medicago
truncatula) are required for the specific perception of rhizobial chito-oligosaccharide Nod factors
(b) [14-18]. AM and AR are likely to employ other genes for recognition of fungal and Frankia
signals, the chemical nature of which is not yet resolved ((a) and (c), respectively). (ii) The core
module for intracellular infection is defined by at least seven genes that are required for
endosymbiosis with both bacteria and fungi in legumes [30], and is likely to be conserved
across AM-forming angiosperms [11,26,28,29,38,39,47]. SYMRK is likely to be active at the
entry point of this program. The longest, probably rosid-specific version of the gene might carry
an adaptation that specifically links receptor-mediated bacterial recognition to the common
symbiosis program for endosymbiotic uptake. SYMRK is also required for AR, suggesting that
the two forms of RNS rely on similar genetic programs [10,11]. Epidermal responses leading to
intracellular infection involve distinct patterns of calcium oscillation in RLS and AM [54,55].
These calcium signals (referred to as ‘calcium spiking’) potentially represent a key trigger of
AM- or RNS specific downstream gene activation. In RLS, activation of the common symbiosis
program is assumed to induce the synthesis of cytokinin, which is assumed to act as a signal
regulating organogenetic response in the root cortex [52,68,69]. The cytokinin receptor LHK1
(CRE1 in M. truncatula) has a central role in nodule organogenesis induction [52,66,67]. (iii) In
the legume L. japonicus, continuous signaling from progressing intracellular infection, possibly
via cytokinin, is necessary for maintenance and completion of nodule organogenesis [38] (b).
Cytokinin balancing also has a central role in the induction of lateral roots (LRs), which
structurally resemble actinorhizal nodules [5]. Response patterns are distinct in that a relative
increase in cortical cytokinin levels induces nodulation but represses lateral-root formation
[67,75]. Three histidine kinases (AtLHK1, A(LHK2 and A{LHK3), including a putative ortholog of
LjLHK1 (MtCRE1), are involved in regulating LR formation in the nonsymbiotic Arabidopsis
thaliana [73] (d). It is possible that cytokinin induction of nodule organogenesis involves specific
spatial induction patterns of cytokinin biosynthesis, molecular adaptations of LjLHK1 (M{CRE1)
or downstream targets that are exclusive to RNS-forming species.
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Box 1. Model systems for RNS transfer

Basal but efficient forms of RNS promise to involve a minimal set of
host and bacterial genetic adaptations required for engineering
artificial host systems. Developmental features of symbiosis establishment,
such as infection mode, intracellular accommodation of
the microbial symbiont or nodule organogenesis, depend on the
host genotype [4,5], rendering the plant the prime target for such
engineering efforts. Actinorhizal hosts [82] and legumes of the
family Caesalpiniaceae, as well as some Fabaceae [4], retain their
bacterial symbionts in tubular infection-thread-like structures lined
with plant cell wall material. These have been referred to as ‘fixation
threads’ [4] because they are the sites of bacterial nitrogen fixation
in the respective lineages, and they might represent an ancient form
of bacterial accommodation [4]. This is in contrast to many legumes
of the families Mimosaceae and Fabaceae, including most fabacean
crop legumes, where rhizobia are hosted within specialized
membrane-bound compartments termed symbiosomes [83]. Because
symbiosome  formation poses stringent  demands on the
genetic compatibility of the symbiotic partners and plant control of
the symbiosis, fixation thread symbioses like actinorhizas might be
more suited as model systems for RNS transfer.
Bacterial candidates for engineering artificial RNS systems should
be compatible with a wide range of host genetic backgrounds.
Promising examples include broad-host-range  symbionts like
Rhizobium sp. strain NGR234 [84] or Frankia bacteria [22], of which
many strains can efficiently infect phylogenetically diverse hosts
after either intra- or intercellular infection modes [85]. Most
actinorhiza-forming Frankia bacteria [86], as well as certain rhizobia,
such as Azorhizobium caulinodans [87] and symbiotic Burkholderia
strains [88], have the capacity to subsist and fix nitrogen under both
symbiotic and nonsymbiotic conditions. Although other factors can
restrict nitrogen fixation within plant roots [89], such strains could
provide a basis for artificially generating beneficial associations on a
nonspecific or partially specific basis [90].

Box 2. Superficial details

In addition to Nod factors, other rhizobial molecules, such as exopolysaccha-
rides and secreted effector proteins [49,91,92], can contribute to establishing
fully compatible interactions with legumes. This equally applies to symbioses
involving narrow- [49] and broad-host-range rhizobial strains like Rhizobium
sp. strain NGR234 [91]. The possible existence of additional checkpoints for
mutual compatibility in rhizobium—-legume systems, potentially involving as
yet unknown molecular components [17,91,92], might challenge a success-
ful biotechnological transfer of fully compatible RNS. Deciphering the precise
roles of bacterial surface molecules and secreted proteins in both legume
and actinorhizal RNS represents an intriguing field for future research
efforts.
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2.8 Concluding remarks

The emergence of RNS seems to be based on the evolutionary concept of recruitment,
in that many RNS-related processes rely on conserved genetic programs that also
support pre-existing plant developmental processes and that later acquired additional
roles in RNS. Its restricted occurrence in a few rosid plant orders, all part of a
monophyletic clade, indicates that more than one specific molecular adaptation was
necessary to make RNS evolution possible (Figure 3). These respective genetic changes
probably served to link, or add to, pre-existing genetic programs, creating a novel trait
of high ecological and economic value. The plant genes involved in these adaptations
represent vantage points for efforts to transfer RNS to new hosts. Respective candidate
proteins are involved (i) in direct host-microbiont crosstalk (for example, LysM
receptor kinases such as L. japonicus NFRs or M. truncatula LYKs and NFP) and (ii) in
mediating the molecular integration of plant-bacterial signaling into the host genetic
background, thereby ‘tapping’ pre-existing plant programs for additional use in RNS. A
possible example of such a ‘recruiter protein’ is the RLK SYMRK (DMI2; NORK),
which probably contributed to the potential of AM hosts to form endosymbioses with
bacteria [1], a capacity that later became associated with nodule organogenesis on
independent evolutionary occasions [1,3], perhaps through the cytokinin receptor LHK1

(CREI).

Efforts towards engineering novel host systems should focus on identifying the crucial
specificities of RNS and aim to bring these together within target hosts. To achieve
artificial forms of RNS efficient in symbiotic nitrogen fixation, more insights will
further be required into the fine-tuning of host—bacterial recognition and compatibility
determination (Box 2). In the past, genetic dissection of RNS has predominantly
focused on legume model systems where the plant genetic programs involved are likely
to be strongly derived. Less specialized forms of RNS, including actinorhizal
associations with Frankia bacteria, combine features that render them more promising
models for potential RNS transfer to new hosts (Box 1). Deciphering genetic

determinants for the existing diversity of RNS within and beyond the legume lincage
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will thus be an important step towards identifying a basic set of RNS genetic

requirements and, ultimately, combining them in potential new systems.
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3.1 Introduction

Nitrogen limits plant growth in many terrestrial ecosystems. Evolutionary adaptations to
this constraint include symbiotic associations with bacteria that are capable of
converting atmospheric nitrogen into ammonium. Extracellular associations of plants
with diverse groups of nitrogen-fixing bacteria are phylogenetically widespread, but
only a small group evolved the ability to accommodate bacteria endosymbiotically
inside cell wall boundaries. Bacterial symbionts are confined within tubular structures
called infection threads, which are surrounded by a host-derived membrane that is
continuous with the plasma membrane, and bound by plant cell wall-like material [1,
2]. The bulk of host plants including all actinorhizal species retain the bacterial
symbionts within these structures during the nitrogen-fixing stage of the symbiosis [1,
3]. In the most advanced forms found exclusively among legumes (Fabales) and
Gunnera [4], symbiotic bacteria are delimited from the host cell cytoplasm only by a
plant-derived membrane in the mature stage of the symbioses. In the respective
legumes, they develop into bacteroids contained in organelle-like symbiosomes, where
nitrogen fixation takes place (for a review, see [5]). Bacterial endosymbioses in both
legumes and actinorhizal plants are typically associated with the formation of novel,

root-derived plant organs, so-called nodules [6].

Nitrogen-fixing root nodule symbiosis (RNS) occurs in two major forms. Actinorhiza
hosts belong to three eurosid orders (Figure 6) and nodulate with Gram-positive
actinobacteria of the genus Frankia [7]. Legumes, on the contrary, enter specific
interactions with members of a diverse group of Gram-negative bacteria, termed
rhizobia. For almost a century, the extreme diversity in organ structure, infection
mechanisms, and bacterial symbionts among nodulating plants obscured the fact that the
nodulating clade is monophyletic, which was revealed by molecular phylogeny
relatively recently [8]. The restriction of endosymbiotic root nodulation to a
monophyletic group of four angiosperm orders (Figure 6) is coincident with a patchy

occurrence within this clade. These observations led to the hypothesis that a genetic
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change acquired by a common ancestor may predispose members of this lineage to

evolve nodulation endosymbiosis with bacteria [8].

The molecular adaptations underlying the evolution of plant-bacterial endosymbioses
are still a mystery, despite a substantial biotechnological interest in understanding the
genetic differences between nodulating and non-nodulating plants. While the molecular
communication between legumes and rhizobia has been studied in some detail,
important clues are expected from the genetic analysis of the yet underexplored

Actinorhiza.

Bacterial signalling molecules and corresponding plant receptors involved in RNS are
known only for the legume—rhizobium interaction. Frankia signals may be
biochemically distinct from rhizobial chito-oligosaccharide nodulation factors [9, 10],
which would suggest an independent mechanism of host-symbiont recognition in

Actinorhiza [11].

Phenotypic analysis of legume mutants has revealed a genetic link between RNS and
Arbuscular Mycorrhiza (AM), which is a phosphate-scavenging association between
plant roots and fungi belonging to the phylum Glomeromycota [12]. Fungi generally
enter host root epidermal cells by forming swollen hyphal structures termed appressoria
on the root surface, and penetrating directly into epidermal or outer cortical cells [13].
Hyphal entry may be eased by what is thought to be a host response involving the
separation of epidermal cells at their antiklinal borders (“epidermal opening®) [14].
After intracellularly traversing the epidermal and outer cortical cell layers, hyphae re-
enter the apoplast to proceed towards the inner cortex of the root. The key features of
AM symbiosis, and sites of most pronounced plant-fungal intimacy during symbiosis
development, are finely branched hyphal stuctures termed arbuscules [13]. Arbuscules
are formed within inner cortical cells surrounding the central root vasculature, and are

the presumed centres of exchange for nutrients between fungus and host[13, 15].

AM is widespread among land plants, where forms of AM are found in representatives
of all major lineages [16]. Fossil evidence for ancient AM-like associations [17]

suggests a role of this symbiosis in the colonization of land about 450 million years ago.
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Whether the widesprad occurrence of this symbiosis is based on a common, conserved
AM genetic program has long been unclear, as genes required for AM were known

exclusively from legumes until recently [13, 18, 19]

The link of plant—fungal and plant-bacterial endosymbioses in legumes, which involves
at least seven genes [20-24] termed “common symbiosis genes” [25], inspired the idea
that during the evolution of bacterial endosymbiosis, genes were recruited from the pre-
existing AM genetic program [26]. The molecular steps involved in the recruitment

event are not clear, and key prerequisites for this scenario have not been verified.

3.2 Results

Structural and functional conservation of the common symbiosis gene

CYCLOPS reveals a conserved AM genetic program

To gain insight into the evolution of root endosymbioses, we analyzed common
symbiosis genes across angiosperm lineages with different symbiotic abilities. Many,
including the calcium/calmodulin kinase gene CCaMK [22, 27], the gene CYCLOPS
encoding a nuclear protein [19], or genes encoding the predicted cation channels
CASTOR and POLLUX [20, 28, 29], are conserved in overall domain structure
(Figure 2).

To test the functional stability of a structurally conserved representative, we analyzed
CYCLOPS, which shows identical exon-intron structures in Lotus and rice [19] (Figure
4 A) and a 45% overall identity of the predicted proteins. The precise role of the
CYCLOPS protein in symbiosis is still unknown. It co-localizes with and is
phosphorylated by CCaMK [30], and CYCLOPS has thus been placed downstream of
CCaMK in the common symbiosis genetic network leading to AM and RNS

establishment [19].

Upon infection with the bacterial symbiont M. loti, Lotus cyclops mutants develop

primordial swellings devoid of bacteria, with infection being arrested at the stage of
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early infection thread elongation [19]. Although hyphae occasionally enterd the root
cortex, infection with the AM fungus G. intraradices is frequently aborted within the
epidermal and outer cortical layers. Aberrant hyphal structures similar to “balloorrlike
swellings® [31] associated with abortion of infection in legume mutants impaired in
other common symbiosis genes like SYMRK, CASTOR and POLLUX [31, 32]
accompanied the fungal growth arrest (Figure 5 A-B), suggesting defects in plant

coordination of the intracellular infection process.

To determine whether the function of CYCLOPS in AM is conserved in the monocot
lineage, we analyzed the AM phenotype of four independent rice cyclops mutant lines,
each carrying a retrotransposon 7os/7 insertion within exon six of rice CYCLOPS
(OsCYCLOPS) (Figure 4 A). Upon co-cultivation with G. intraradices, no arbuscules
were seen in any of the mutant root systems tested (Figure 4 B). The fungus did,
however, enter the root cortex, and abundant intraradical mycelium was observed
(Figure 4 B). This indicates that CYCLOPS is required for arbuscule- and hence AM
development in rice. The AM phenotype of these rice mutants resembles that apparent
in Lotus japonicus (Lotus) cyclops mutants, where arbuscules rarely develop [31].
Aborted infection sites were present, but were also occasionally found in arbusculated
control roots carrying wild type OsCYCLOPS alleles, and thus were not indicative for
the mutant phenotype in this species. Despite the absence of arbuscules, likely the
centres of nutrient exchange between host plant and fungus, few vesicles or intraradical
spores were present in rice cyclops mutant roots. Such structures are formed by some
AM fungi inter- or intracellularly within host roots, and are assumed to serve as storage
organs and propagative modules [33]. A possible explanation for their presence in
arbuscule-free cyclops roots is allocation of carbohydrate resources from chive nurse
plants to parts of the same mycelium infecting rice roots. Alternatively, intraradical
hyphae may mediate residual nutrient exchange in these cases. Vesicle numbers
remained at a low basal level in homozygous mutant plants. In contrast, arbuscule and
vesicle numbers were increased after three as compared to two weeks of co-cultivation

with G. intraradices in plants carrying wild type alleles of OsCYCLOPS (Figure 4 B),
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indicating continuous transfer of nutrients from the host plant to the fungus during

progression of symbiotic infection.

The loss of AM in rice cyclops mutant lines reveals the functional conservation of a
legume AM gene in the monocot rice, suggesting that the widespread occurrence of AM

symbiosis may be based on a common, conserved genetic program.

Rice CYCLOPS can function in both AM and RNS in a legume

We tested whether CYCLOPS from rice is sufficient to function in root endosymbioses

in a legume. Using 4. rhizogenes-infection, we generated Lotus line EMS126 (cyclops

-3) [19] roots carrying the OsCYCLOPS coding sequence under control of the Lotus
CYCLOPS (LjCYCLOPS) promoter region. In these roots, both AM formation and RNS
were restored (Table 2, Figure 5), indicating that the CYCLOPS gene of the non-
nodulating monocot rice can interact with the Lotus symbiosis signalling context to

support not only AM fungal, but also bacterial endosymbiosis.

The symbiosis receptor-like kinase gene SYMRK is structurally

diverged in angiosperms

Contrasting to the conserved structure of CYCLOPS and other common symbiosis
genes, we discovered exceptional diversification among genes encoding the symbiosis
receptor kinase SYMRK in different plant species (Figure 6). While putative SYMRK
kinase domains are conserved and contain characteristic sequence motifs discriminating
them from related kinases (Figure 7), the predicted extracellular portion of SYMRK
occurs in at least three versions of domain composition (Figure 6 and Table 1). The
longest SYMRK version is present in all tested rosids, including nodulating and non-

nodulating lineages. Comprising 15 exons, it encodes three leucine-rich repeat (LRR)
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Figure 4. CYCLOPS is conserved in structure and AM function between between the rosid dicot
L. japonicus (Lotus) and the monocot O. sativa (rice).

(A) Exon structures of Lotus and rice CYCLOPS genes are conserved. Exons are labelled 1-11. Only
regions covering the coding sequences are represented. Dotted lines indicate intron positions, black bars
represent predicted nuclear localization signals (NLSs) and grey bars coiled-coil regions in the conceptual
amino acid sequences. Only one out of two predicted NLSs of Lotus CYCLOPS is depicted, as only this one
proved functional in heterologous localization tests in tobacco [19]. Flags mark positions of Tos17 insertions
in four rice cyclops lines analyzed. (B) Quantitative AM analysis in rice cyclops Tos17 insertion lines. For
each of the lines, roots of twelve WT and twelve mutant plants were tested. An equal number of plants for
each line was phenotyped after two and three WOC. Values are derived from 100 intersects randomly
scored in four roots per plant. Intersects were scored as containing arbuscules, vesicles, or hyphae only.
Standard errors are indicated. Hom., homozygous mutant plants; WOC, weeks of co-cultivation; WT, wild-
type.
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fluorescence of eGFP encoded on the
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CYCLOPS promoter region. (A-F) Roots
co-cultivated with G. intraradices for three
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(A-B) Fungal infection attempts aborted
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showing dense fungal colonization (C and
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cortical tissue (D and F). (G-P) Root
systems inoculated with a DSRED expres-
sing strain of M. /oti, and incubated for four
weeks. (G-H) Transgenic control root
without mature nodules. Small primordial
swellings (arrow in G) do not contain
bacteria (not shown). Such swellings are
typically formed in Lotus cyclops mutant
roots upon M. loti inoculation [19].

(I-P)  cyclops-3 roots carrying the
Lotus CYCLOPS (I-L) and rice CYCLOPS
(M—P) coding sequences, showing mature
nodules. Nodules exhibit pink coloration in
white light (K and O) and red fluorescence
of the inner nodule tissue (L and P) indica-
ting the presence of symbiosis-specific
leghemoglobins and of DsRED expressing
bacteria, respectively.

ai; aborted infection; ap, fungal appressori-
um; ar, arbus-cule; eh, extraradical hypha;
h, intercellular hypha; Is, infection site; vt,
root vasculature. Scale bars: (A, C and E)
0.1 mm; (B, D and F) 0.02 mm; (G-J) and
(M-N), 2 mm; (K-L) and (O-P), 0.5 mm.
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Figure 6. SYMRK exon-intron structure and root endosymbiotic abilities of angiosperm lineages.

All putative SYMRK genes encode an N-terminal signal peptide, an extracellular region with two or
three LRR motifs and one imperfect LRR, a transmembrane domain, and an intracellular
serine/threonine protein kinase. SYMRK regions encoding putative kinase domains exhibit conserved
intron positions and phases. Bars illustrate the exon-intron and predicted protein domain structure of
representative SYMRK candidates. Positions of introns are indicated by black arrowheads. Predicted
protein domains are SP, signal peptide; NEC, N-terminal extracellular region; CEC, conserved extracel
lular region preceeding LRRs; LR(R), leucine-rich repeats; TM, transmembrane domain; and PK,
protein kinase domain. Names refer to species sampled and are shaded according to their root endo-
symbiotic capabilities: black, endosymbiosis with Frankia bacteria (Actinorhiza) and AM formation;
gray, endosymbiosis with rhizobia and AM formation; white, AM formation only. Pictograms symbolize
AR, Actinorhiza; RLS, Rhizobium-Legume Symbiosis; AM, Arbuscular Mycorrhiza. Dashed frames
have no phylogenetic implications. The cladogram depicts relationships of angiosperm orders as
deduced by molecular markers [34,35]. The four orders containing nodulating taxa are shaded light
gray. Squares at the tips of branches indicate the presence of taxa with particular root endosymbiotic
phenotypes (colour code is as for sampled plants). Filled and white wedges indicate branches where
taxa on order and family level have been omitted, respectively. Popular species designations refer to
Alder, Alnus glutinosa; Poplar, P. trichocarpa; Tomato, L. esculentum; Poppy, P. rhoeas; Rice, O. sativa;
Maize, Z. mays.
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motifs and an extended N-terminal domain of unknown function (NEC-domain,
Figure 6 and Table 1). Outside of the eurosid clade, which encompasses all nodulating

groups, one or more exons are absent from SYMRK coding sequences (Figure 6 and

Table 1).

Table 1. SYMRK homologs, conceptual SYMRK proteins and the closest A. thaliana
(Arabidopsis) sequences

mRNA % AA identity/similarity
Species accession AAs Exons LRRs Overall EC IC
L. japonicus AF492655 [24] 923 15 3 100/100 100/100 100/100
M. sativa AJ491998 [24] 925 15 3 82/87 74/83 92/95
L. albus AY935267 [36] 923 15° 3 79/86 72/83 89/92
A. glutinosa AY935263 [36] 941 15° 3 61/75 51/69 78/88
C. glauca EU273286 [37] 942 15 3 60/73 48/63 79/87
D. glomerata AM271000 [36] 934 15 3 61/73 54/67 71/80
P. trichocarpa ~ AM851092° 933 15° 3 59/71 49/66 75/81
T. majus AY935265 [36] 945 15° 3 59/72 50/65 74/84
L. esculentum  AY935266 [36] 903 14 2 54/68 45/65 72/81
P. rhoeas AM270999 [36] 902 14° 2 54/69 43/59 75/86
Z. mays DQ403195 [38] 579 12 2 55/69 30/49 74/86
O. sativa XM_478749 [39] 576 12 2 55/69 33/51 72/84
A. thaliana NM_105440 [40] 929 15 3 34/51 29/43 50/68
A. thaliana NM_129261 [40] 933 15 3 33/50 27142 50/69

Percentages of AA identity/similarity are relative to the Lotus japonicus SYMRK sequence and
were obtained via BLASTX analysis using the NCBI Basic Local Alignment Search Tool
(http://www.ncbi.nlm.nih.gov/BLAST/). AAs, amino acids; LRRs, predicted leucine-rich repeat
domains; EC, extracellular region and PK, protein kinase domain of the conceptual proteins.

® The genomic sequence is available at http://genome.jgi-psf.org/Poptr1/Poptr1. home.html, the
gene location is Poptr1/LG_VI11:12333164-12338867.

b Only cDNA sequence information was obtained. The exon-intron structure was predicted
based on splice site prediction and conserved intron position in other SYMRK genes.

° Only genomic sequence information was obtained. The exon-intron structure was predicted
based on splice site prediction and conserved intron position in other SYMRK genes.

Genetic evidence indicates that SYMRK acts near a point of molecular convergence of
AM and legume-rhizobium signalling [24, 41]. The presumed ability of its diverged
extracellular domain to perceive symbiosis-related signals [24] renders it a prime target

for investigating the molecular adaptations underlying the evolution of RNS.
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The homogenous occurrence of “full-length” SYMRK genes among legumes,
actinorhizal plants, and non-nodulating rosids raises the intriguing possibility that
SYMRK is involved in a proposed genetic predisposition [8] of this clade to evolve
RNS. An important prediction following from this hypothesis is the common
requirement of a full-length SYMRK version for all types of RNS. Furthermore, non-
nodulating members of this monophyletic clade would be expected to hold the same
predisposition, and thus equally carry RNS-competent versions of SYMRK provided that
such competence was not secondarily lost. To test this concept, we analyzed the

functional capabilities of “full-length” SYMRK genes from symbiotically diverse rosids.

SYMRK is required for actinorhiza, suggesting a common

genetic program for RNS

D. glomerata (Datisca; Cucurbitales) is a member of the only herbaceous acinorhizal
genus [42], exhibiting faster growth and smaller statue than other actinorhizal model
plants such as the Fagales tree species Casuarina glauca (Casuarina) or Allocasuarina
verticillata [11]. It is thus well suited for laboratory work, but transgenic plants or roots
for genetic analysis and symbiosis phenotyping have not been generated previously in
this species. To investigate SYMRK function in Actinorhiza, we therefore established a
hairy root transformation system for Datisca. We reduced root mRNA levels of Datisca
SYMRK (DgSYMRK) via RNA-interference (RNAi). Quantitative PCR following
reverse transcription showed a 36%—-99% reduction of DgSYMRK transcript levels in
knockdown roots (n = 16) compared with vector control roots (n = 16). Eight weeks
after inoculation with Frankia bacteria, no nodules were detected on DgSYMRK RNAi
roots (Figure 8 A-B). Instead, only small, primordial swellings formed on 16% of
independent transformed roots (9/55). Nonsilenced control roots of the same plants and
roots transformed with a binary vector lacking the silencing cassette (transgenic control
roots) showed wild type—like nodules with lobed structure typical for Datisca (Figure 8
A-B). This result demonstrates that SYMRK is essential for Actinorhiza development in

Datisca.
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In a similar approach, in cooperation with the group of D.Bogusz (Institut de
Recherche pour le Développement, Montpellier, France) we downregulated SYMRK in
roots of the actinorhizal tree Casuarina using RNAi [37]. Similar to Datisca, nodulation
with Frankia was strongly impaired in Casuarina [37]. In conjunction with the well-
documented role of legume SYMRK in the interaction with rhizobia [24, 43], SYMRK
thus represents a common genetic requirement for the two types of bacterial root

endosymbiosis.

SYMRK function in AM is conserved across rosid lineages

In legumes, SYMRK is required for the infection and AM symbiosis establishment with
glomeromycotan fungi [24, 32, 43]. To test whether DgSYMRK and CgSYMRK are also
required for AM, we inspected Datisca and Casuarina SYMRK RNAIi roots for AM
formation with the fungus G. intraradices. Datisca wild-type roots of the same plants
used for hairy root induction and independent transgenic control roots formed AM, with
dense arbuscular colonization of inner cortical cells (Figure8 C-D and E-F,
respectively). In contrast, symbiotic development in DgSYMRK RNAi roots was
strongly impaired. In 82% of independent transformed roots, no fungal infection was
observed, despite the presence of extensive extraradical mycelium (Figure 8 G), with
those roots exhibiting strong reduction levels of DgSYMRK being nonsymbiotic
concerning both nodulation and AM formation. Occasional infection attempts occurred
but typically were aborted in the outer cell layers (Figure 8 H). Similar results were
obtained for Casuarina [37]. We conclude that SYMRK is involved in both bacterial and
fungal endosymbioses not only in legumes, but also in the actinorhizal plants Datisca

and Casuarina, all belonging to independent orders of rosid angiosperms.
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Lotus SYMRK is sufficient for both RNS and AM in another legume,

Medicago truncatula

The legume herbs Medicago truncatula (Medicago) and Lotus japonicus (Lotus) fall
into two distinct cross-inoculation groups, meaning that they exhibit compatibility with
different rhizobial strains [44]. They also display distinct types of nodule organogenesis,
with Medicago forming zoned, indeterminate nodules with persistent tip meristem [45]
and Lotus forming round, determinate nodules where the developmental stage of the

infected tissue is uniform [46].

To determine whether SYMRK plays a role in regulating these differential parameters,
we tested whether Lotus SYMRK (LjSYMRK) can mediate RNS in Medicago. The
specific symbiont of Lotus is Mesorhizobium loti, whereas Medicago interacts with
Sinorhizobium meliloti. Medicago dmi2 5P mutants exhibit a deletion in exon three of
the SYMRK ortholog DMI2, leading to a frameshift and premature stop codon. Dmi2 5P
plants form no infection threads or nodules upon inoculation with either rhizobial strain.
Transgenic roots of these plants, and of wild-type control plants carrying LjSYMRK,
formed infection threads and indeterminate, pink nodules typical for Medicago [45]
with S. meliloti (Figure 9 A-J and Table 2). LiSYMRK can therefore fully restore RNS of
Medicago with S. meliloti. This indicates that SYMRK is not directly involved in
determining legume—rhizobium specificity, nor in mediating specific developmental

processes during nodule organogenesis.

Medicago dmi2 5P mutants are also impaired in AM. No arbuscules were observed
within two weeks of co-cultivation, with fungal infection being aborted at the root
surface or after entry into epidermal cells (Figure 9 K-L and Table 2) LjSYMRK
restored the AM defect in transgenic roots of this line (Figure 9 O—P and Table 2),
demonstrating that SYMRK is sufficiently similar to DMI2 to support both fungal and

bacterial endosymbioses in Medicago.
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Figure 8. RNS and AM are impaired in D. glomerata (Datisca) SYMRK (DgSYMRK) knockdown roots.
Co-transformed roots express DsRED1 as a visible marker.

(A-B) Nodulated wild-type root (left), control root transformed with pRedRoot lacking the silencing cassette
(middle), and non-nodulated DgRNAIi knockdown root (right) (A) under white light and (B) with transgenic
roots showing DsRED1 fluorescence.

(C—H) AM phenotype of D. glomerata (Datisca) wild type, transgenic control, and DgSYMRK knockdown
roots. (C-D) Wild-type and (E—F) transgenic control roots are well colonized and show arbuscules in inner
cortical cells. (G—H) Typical DgSYMRK knockdown root with no AM formation but extraradical hyphae (eh)
and aborted fungal infection (ai). Such features were not seen in Datisca wild-type or transgenic control roots
and are reminiscent of those observed on L. japonicus symrk mutant roots (Figure 10). Roots were inocu-
lated simultaneously with Frankia bacteria and G. intraradices (eight weeks). Transgenic and regenerated
nontransgenic roots of 27 (control) and 23 (DgSYMRK RNAI construct) plants from three independent experi-
ments were tested. Independent transformed roots examined were n = 42 (control) and n = 55 (DgSYMRK
RNAI).

ar, arbuscule; eh, extraradical hyphae; ai, aborted infection; is, wild-type infection site; vt, root vasculature.
Scale bars: (A-B) 2 mm; (C, E, and G) 0.1 mm; (D, F, and H) 0.02 mm.
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Figure 9. Lotus japonicus (Lotus)
SYMRK (LjSYMRK) restores RNS
and AM in M. truncatula (Medicago)
dmi2 5P mutants.

Tranasgenic roots were A. rhizo-
genes-induced and selected via
fluorescence of eGFP encoded on
the transfer-DNA. (A-B and K-L)
Medicago dmi2 5P roots transformed
with the respective control vector
lacking an LjSYMRK expression
cassette. (C—F and M-N) Medicago
wild-type and (G-J and O-P) dmi2
5P roots transformed with the
LiSYMRK coding sequence
controlled by the LiSYMRK promoter.
(A-J) Roots at five weeks post inocu-
lation with S. meliloti expressing
DsRED. (A-B) Transgenic dmi2 5P
roots carrying the control vector,
showing no nodules. (C-D) Nodules
on transgenic and nontransgenic
roots of a wild-type plant transformed
with LiSYMRK and (E—F) individual
nodule containing DSRED expres-
sing S. meliloti bacteria. (G—H) dmi2
5P root system with nodule formation
confined to roots transformed with
LiSYMRK. (I-J) Nodule on an
LiSYMRK containing dmi2 5P root
showing bacterial DSRED expressi-
on.

(K-P) Roots co-cultivated with
G. intraradices for two weeks. (K-L)
Transgenic dmi2 5P control roots
lacking hyphal proliferation and
arbuscule (ar) formation in the inner
root cortex. Hyphal swellings in the
root periphery (L) indicate abortion of
fungal infections. Longer co-culti-
vation for three weeks or more
allowed successful fungal infections
of mutant roots, which was similarly
reported for other dmi2 mutant lines
[47]. (M-N) Wild-type and (O-P)
dmi2 5P roots transformed with
LiSYMRK showing dense fungal
colonization and arbuscule formation
in the root inner cortex.

ai, aborted infection; ap, fungal
appressorium; ar, arbuscule; eh,
extraradical hypha; h, intercellular
hypha; vt, root vasculature. Scale
bars: (A-D and G-H) 2 mm; (E-F
and |1-J) 0.5 mm; (K, M, and O) 0.1
mm; (L, N, and P) 0.02 mm.
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Table 2. Restoration of root symbioses in dmi2 and symrk mutants upon transformation with
different SYMRK versions

Nodules/
Plant nodulated
genotype Transgene AM+ IT Nod+ plant
dmi2 5P marker only* 0/21 = 0/17 0
dmi2 5P LiSYMRK® 20/23 + 16/25 45
symrk-10 marker only* 3/285 - 0/96 0
symrk-10 LiSYMRK® 40/45 + 32/39 49
symrk-10  ANEC-LjSYRMK® 16/31 4 0/22 0
symrk-10 MtSYMRK® 20/25 + 18/31 4.2
symrk-10 CgSYMRK® 27/48 + 11/63 4.1
symrk-10 DgSYMRK® 20/40 + 6/18 5.8
symrk-10 TmSYMRK® 20/28 + 14/21 26
symrk-10 LeSYMRK® 24/34 - 0/31 0
symrk-10 OsSYMRK® 38/40 + 6743 15
cyclops-3 marker only* 0/12 - 0/11 0
cyclops-3 LiCYCLOPS® 19/24 4 14/21 3,1
cyclops-3 OsCYCLOPS’ 18/25 + 15/24 3,0

Numbers refer to Agrobacterium rhizogenes-transformed root systems. ¢ For negative controls,
mutant plants were transformed with the respective binary vector lacking a SYMRK or
CYCLOPS expression cassette. Constructs were under control of the LjSYMRK (§) or
LjCYCLOPS (*) promoter regions. Numbers are compiled results of one (Medicago truncatula)
or two to three (Lotus japonicus) independent experiments. Wild type roots transformed with the
same constructs formed wild type-like AM, ITs and nodules. IT, infection thread formation;
Nod+, number of root systems showing nodules containing bacteria. “Infection threads were
seen very rarely in these roots. “*Nodule-like structures were small and showed, with one
exception, no pinkish coloration under white light.

“Full-length” SYMRK versions from symbiotically distinct rosids
can support both AM and RNS in Lotus

To analyze the symbiotic capabilities of “full-length” eurosid SYMRK genes from a
legume (MtDM]12), two actinorhizal plants (CgSYMRK and DgSYMRK), and the non-
nodulating, AM-forming Tropaeolum majus (Tropaeolum; Brassicales) (TmSYMRK),
we tested their potential to function in the Lotus symbiosis signalling context. We
introduced these genes, under the control of the Lotus SYMRK promoter region, into
roots of Lotus line SL1951-6 (symrk-10), which carries a symrk mutant allele encoding

a kinase-dead SYMRK version [48, 49]. Upon inoculation with G. intraradices, symrk-
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10 roots form no AM, and fungal infections are typically associated with aberrant
hyphal swellings and are aborted after entry into epidermal cells (Figure 10 A—B and
Table 2). Interaction with M. loti is blocked at an early stage, and no infection threads or
nodules form (Figure 10 C-D and Table 2). In symrk-10 roots transformed with
MtDMI2, CgSYMRK, DgSYMRK or TmSYMRK both AM and nodulation were restored,
the latter involving the formation of infection threads and pink, bacteria-containing
nodules (Figure 10 K-AB, Figure 11 and Table 2) that were indistinguishable from
wild-type nodules. Although complemented AM roots often contained aborted fungal
infection sites and poorly colonized regions, possibly reflecting varying levels of
transgene expression or, in the case of heterologous SYMRK genes, suboptimal
compatibility with the Lotus symbiosis signalling context, the decisive symbiotic
structures such as wild type-like infection sites and arbuscules were present in these
roots. In conclusion, consistent with a role of SYMRK in the predisposition to evolve
RNS, we could not detect a functional diversification of the rosid SYMRK version
linked to features differentiating actinorhizal and legume nodulation, or to the specific

recognition of bacterial symbionts.

Figure 10: D. glomerata (Datisca), M. truncatula (Medicago), and T. majus (Tropaeolum)
SYMRK restore fungal and bacterial endosymbioses in L. japonicus (Lotus) symrk-10 mutants.
Transgenic roots were induced by A. rhizogenes infection and identified via fluorescence of
eGFP encoded on the transfer-DNA.

(A-D) Lotus symrk-10 roots transformed with the respective control vector lacking a SYMRK
expression cassette.

(E—AB) Lotus symrk-10 roots transformed with Lotus (E-J), Medicago (K-P), Datisca (Q-V) and
Tropaeolum (W-AB) SYMRK under control of the LjSYMRK promoter region.

(A, B, E, F, K L, Q, R, W, and X) Roots co-cultivated with G. infraradices for three weeks. (A-B)
Transgenic control roots devoid of intraradical hyphae or arbuscules, with aborted fungal
infection structures within epidermal cells.

Roots carrying Lotus (E-F), Medicago (K-L), Datisca (Q-R), and Tropaeolum (W-X) SYMRK
with dense fungal colonization of the inner root cortex (E, K, Q, and W) and arbuscule formation
in inner cortical cells (F, L, R, and X).

(C, D, G-J, M-P, S-V, and Y-AB) Root systems inoculated with M. loti expressing DSRED at
four weeks post inoculation. (C-D) Transgenic control roots showing no nodules. symrk-10 root
systems transformed with Lotfus (G—J), Medicago (M—P), Datisca (S-V), and Tropaeolum (W-
AB) SYMRK develop nodules on transgenic roots. Nodules exhibit pink coloration in white light,
indicating the presence of symbiosis-specific leghemoglobins (I, O, U, and AA) and DsRED
fluorescence in inner nodule tissue indicating the presence of M. loti (J, P, V, and AB).

ai, aborted infection; ap, fungal appressorium; ar, arbuscule; eh, extraradical hypha; is, infection
site; vt, root vasculature. Scale bars: (A, E, K, Q, and W) 0.1 mm; (B, F, L, R, and X) 0.02 mm;
(C,D,G,H,M,N, S, T,Y,and Z) 2 mm; (I, J, O, P, U, V, AA, and AB) 0.5 mm.
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symrk-10 + wild type + symrk-10 + Figure 11. SYMRK of the
control vector Cgs'l/__l\/lﬂ{ CgSYMRK actinorhizal plant C. glauca
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i ! ; (Casuarina) (CgSYMRK) restores
' fungal and bacterial endosymbiosis
in L. japonicus symrk-10 mutants.
Transformation assay and selection
were as in Figure 10. (A-B) and
(G-H) symrk-10 roots transformed
with a control vector lacking a
SYMRK expression cassette. (C-D)
and (I-K) Wild-type roots and (E-F)
and (L-N) symrk-10 roots trans-
formed with CgSYMRK under
control of the LiSYMRK promoter
region, respectively.
(A-F) Plants were co-cultivated with
G. intraradices for three weeks.
(A-B) Transgenic control mutant
roots with no fungal colonization,
and no arbuscule formation in the
root cortex. Fungal infections are
aborted in the epidermis or outer
cortical cells. (C-D) Wild-type and
(E-F) symrk-10 roots with dense
fungal colonization of the inner
cortex (C and E), and arbuscule
formation in inner cortical cells.
(G-N) Roots four weeks after inocu-
lation with M. Joti expressing
DsSRED. (G-H) Transgenic and
non-transgenic symrk-10 control
roots without nodules. (I-K) Wild
type and (L-N) symrk-10 roots with
nodules that show a pinkish color-
ation under (I and L) and DsSRED
fluorescence (K and N), indicating
the presence of symbiotic leghemo-
globins and M. loti bacteria, respec-
tively.
ai, aborted infection; ap, fungal
appressorium; ar, arbuscule; eh,
extraradical hyphae; vt, root vascu-
lature. Scale bars: (A, C and E)
0.1 mm; (B, D and F) 0.02 mm;
(G-H) 1 mm; (I-N) 0.5 mm.
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SYMRK versions of reduced length restore AM but not RNS in Lotus

SYMRK from the AM forming, but non-nodulating eudicots Papaver rhoeas (poppy)
and Lycopersicon esculentum (tomato) represent intermediate length and domain
composition with two LRR encoding exons only, but a full-length N-terminal domain
(Figure 6 and Table 1). To explore the symbiotic capabilities of this version, we
introduced the two-LRR encoding tomato SYMRK (LeSYMRK) genomic sequence fused
to the LiSYMRK promoter into Lotus symrk-10 transgenic roots. LeSYMRK restored AM
symbiosis, but neither infection threads nor nodules developed upon inoculation with

M. loti (Table 2 and Figure 12 E-L).

In hairy roots, which represent transgenic tissue generated on a non-transgenic
background plant, morphological reactions of root hairs to symbiosis-related stimuli are
difficult to monitor, as they may differ from wild-type roots. Similarly, expression level
changes of symbiosis-regulated genes may be abnormal in transgenic roots on chimaeric
plants. To further investigate to what extent the two-LRR LeSYMRK candidate can
mediate symbiotic development in legumes, we therefore stably introduced its genomic
sequence, including promoter region, into two Lotus symrk mutant lines, EMS61
(symrk-7) encoding a truncated SYMRK protein [24, 49] and symrk-10. Consistent with
the observations on transgenic roots carrying the LeSYMRK genomic sequence fused to
the Lotus SYMRK promoter, the LeSYMRK gene and promoter region restored AM
symbiosis in these plants. In contrast, neither infection threads nor nodules developed
upon infection with M. loti (Figure 13 and Table 3). The phenotypic rescue of AM co-
segregated with LeSYMRK in mutant populations segregating the transgene
(Figure 13 A).
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Table 3. Summary of AM and RNS phenotyping results of Lotus symrk-7 and -10 mutant lines
segregating the tomato SYMRK genomic region under control of the fomato SYMRK promoter.

Nodules/
Plant nodulated
genotype Transgene AM+ IT Nod+ plant
wild type - 78/80 + 10/10 2.8
symrk-7 - 0/48 - 0/26 0
symrk-7 LeSYMRK 21/23 - 0/11 0
symrk-10 - 2/75 - 0/27 0
symrk-10 LeSYMRK 64/75 - 0/35 0

Plants were co-cultivated with G. intraradices for three weeks to test for AM formation, or with
M. loti expressing LacZ for two weeks to analyze the interaction with rhizobial symbionts. AM-:
no arbuscules present; AM+: both arbuscules and vesicles present; IT, infection thread
formation. Four independent transgenic lines were tested, two in symrk-7 and two in symrk-10
background, and similar results were obtained in two (AM) or one (IT formation, nodulation)
independent experiments.

Figure 12. L. esculentum (tomato) and O. sativa (rice) SYMRK restore AM symbiosis in Lotus
symrk-10 mutants, but cannot or only partially complement bacterial endosymbiosis formation.
Transformation assay and selection were as in Figure 2.7. (A-D) Lotus symrk-10 roots
transformed with the respective control vector lacking a SYMRK expression cassette. (E-L)
Lotus wild-type (E—H) and symrk-10 (I-L) roots transformed with LeSYMRK. (M-Z) Lotus wild-
type (M-R) and symrk-10 (S-Z) roots transformed with OsSYMRK.

(A,B,E,F, I,J, M, N, S, and T) Roots co-cultivated with G. intraradices for three weeks. (A and
B) Transgenic symrk-10 control root with extraradical mycelium but no intraradical fungal
colonization or arbuscule formation. Swollen hyphal structures indicative of aborted fungal
infections can be observed within epidermal cells (B and arrow in A). (E and F) Wild-type and (I
and J) symrk-10 roots transformed with LeSYMRK, showing fungal colonization of the inner root
cortex (E, I) and arbuscule formation in inner cortical cells (F, J). (M and N) Wild-type and (S
and T) symrk-10 mutant roots transformed with OsSYMRK, similarly showing cortical AM
colonization (M, S) and arbuscule formation (N, T).

(C, D, G, H, K, L, O-R, and U-Z) Root systems inoculated with M. loti expressing DSRED at
four weeks post inoculation. (C and D) symrk-10 root system with transgenic control roots,
showing no nodules. (G and H) and (O-R) Wild-type root systems with M. Joti—containing pink
nodules on nontransgenic and on transgenic roots carrying LeSYMRK or OsSYMRK,
respectively, indicating that these transgenes do not impair nodulation in transgenic wild-type
roots. (K and L) symrk-10 root system transformed with LeSYMRK, showing no nodules. In a
single case, one nodule primordium was observed. (U-Z) symrk-10 root system transformed
with OsSYMRK, showing no fully developed nodules, but nodule primordia which are mostly
noncolonized by bacteria, the latter proliferating on the primordial surface (W and X). In rare
cases, small nodules were observed that contained bacteria, but, with one exception, showed
no pinkish coloration in white light (Y and Z).

ai, aborted infection; ap, fungal appressorium; ar, arbuscule; eh, extraradical hypha; is, infection
site; vt, root vasculature. Scale bars: (A, E, I, M, and S) 0.1 mm; (B, F, J, N, and T) 0.02 mm;
(C,D,G,H,K,L,0,P,U,V)2mm; (Q, R, and W-Z) 0.5 mm.
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Figure 13. AM formation, but not RNS and IT formation are restored in L. japonicus (Lotus) symrk-7 and -10
mutant lines segregating the L. esculentum (tomato) SYMRK genomic region under control of the tomato
SYMRK (LeSYMRK) promoter.

(A) Compilation of genotyping and AM phenotyping results for one representative line each in symrk-7 and
in symrk-10 background. Plants were co-cultivated with G. intraradices for three weeks.

(B-G) Plants were cultivated on plates containing nitrogen-free medium for five days and mock-inoculated
(B, D and F) or inoculated with M. loti MAFF expressing DSRED (C, E and G) to examine root hair reactions
(3—6 days post inoculation). (B—C) Wild type plants, (D-E) symrk-7 mutants, and (F-G) symrk-7 mutants
stably transformed with the LeSYMRK genomic region. (B, D and F) No root hair curling or strong deforma-
tions were observed in mock-inoculated roots of either line. (C) In wild type plants inoculated with M. loti, root
hairs showed normal curling and IT formation, the majority of root hairs remained non-deformed. (E-G), The
maijority of root hairs displayed extensive branching and tip bulging in roots of control mutant and transgenic
plants alike, and no entrapment of bacteria in curling root hairs was observed. Similar results were obtained
in four independent experiments. A similar root hair response to inoculation with M. loti is characteristic for
Lotus symrk mutants [24].

AM-: no arbuscules present; AM+: both arbuscules and vesicles present. Scale bars: 50 uM.
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Figure 14. NIN and SbtM4 expression are not induced in M. loti R7A induced L. japonicus (Lotus) symrk-7
roots carrying tomato SYMRK (LeSYMRK).

Transgenic plants (symrk-7 + LeSYMRK) are homozygous for the LeSYMRK genomic region under control
of the LeSYMRK promoter. Wild type and symrk-7 control plants are non-transgenic. Wild type plants show
a strong induction of both NIN (A) and SbtM4 (B), which are known to be induced upon inoculation with
M. loti in Lotus, while no significant induction could be detected in symrk-7 controls or symrk-7 plants trans-
formed with LeSYMRK. Values are relative to mock-inoculated controls. Five days old seedlings were inocu-
lated with M. loti R7A (ODe00 = 0,01) and harvested at four days post inoculation (dpi) for RNA extraction and
gPCR analysis. Values are averaged from three technical replicates of two independent biological replicates,
derived from 6-8 bulked roots each. Error bars indicate standard errors of the mean.
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Figure 15. Structure of the L. japonicus (Lotus) SYMRK ANEC version (ANEC-LjSYMRK) compared to
full-length LiISYMRK and O. sativa SYMRK (OsSYMRK).

The ANEC-LJSYMRK deletion construct lacks those parts of the NEC region that are absent in rice
(OsSYMRK), but retains the three LRR-encoding exons. Bars illustrate the coding sequence of the
respective SYMRK versions. Prediced protein domains and motifs are indicated. SP, signal peptide;
NEC, N-terminal extracellular region; CEC, conserved extracellular region preceeding LRRs; LR(R),
leucine-rich repeats; TM, transmembrane domain; and PK, protein kinase domain.
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Figure 16. An L. japonicus (Lotus) SYMRK (LjSYMRK) deletion construct lacking the NEC region is sufficient
for AM formation, but not for RNS in Lotus. Assay and selection were as in Figure 10.

(A-B and 1-J) Lotus symrk-10 roots transformed with a control vector lacking a SYMRK expression cassette.
(C-D and K-L), Lotus symrk-10 roots carrying the full length LjSYMRK cDNA under control of the LiSYMRK
promoter region. (E-F and M-N) Lotus wild type and (G-H and O—P) Lotus symrk-10 roots transformed with
an LiSYMRK deletion construct lacking the NEC region (ANEC-LjSYMRK) (Figure 15).

(A—H) Transgenic roots co-cultivated with G. intraradices. (A—B) Transgenic control root with extraradical
mycelium but no intraradical fungal colonization or arbuscule formation. Fungal infection attempts are
aborted within the epidermal or outer cortical tissue. (C—H) symrk-10 roots carrying the full LiSYMRK cDNA
(C-D) and Lotus wild type (E-F) and symrk-10 (G—H) roots carrying the ANEC-LjSYMRK version, with
G. intraradices colonization and arbuscule formation in the inner cortical cells.

(I-P) Root systems inoculated with M. loti. (I-J) symrk-10 root system with transgenic roots carrying a control
vector, showing no nodules. (K—-L) symrk-10 root system with nodules on a root carrying the full LiSYMRK
coding sequence. (M—N) Lotus wild type root system with nodules on transgenic roots carrying the reduced
LiSYMRK version (fluorescent). Nodules are also apparent on a non-fluorescent root, not carrying the trans-
gene. (O—P) symrk-10 root system with roots carrying the reduced LjSYMRK version, forming no nodules.
ai; aborted infection; ap, fungal appressorium; ar, arbuscule; eh, extraradical hypha; is, infection site; vt, root
vasculature. Scale bars: (A, C, E and G) 0,1 mm; (B, D, F and H) 0,02 mm; (I-P) 2 mm.
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To test the responsiveness of Lotus symrk mutant plants carrying LeSYMRK at a more
refined morphological and regulatory level, we isolated a symrk-7 line homozygous for
LeSYMRK. Upon inoculation with Mesorhizobium loti, root hairs of Lotus symrk mutant
plants bulge and branch extensively, showing no infection pocket or infection thread
formation [24]. Likewise, infection with a DsRED expressing strain of M. loti revealed
no infection pockets or -threads in roots of symrk-7 plants homozygous for LeSYMRK,
and root hairs showed excessive branching and tip bulging similar to nontransgenic
mutant controls (Figure 13 B—G). Root hairs of wild type plants displayed normal
curling and infection thread formation, the majority of hairs remaining non-deformed

(Figure 13).

Consistent with a complete block of responsiveness to rhizobial symbionts, induction of
the RNS-responsive genes NIN [50] and ShtM4 [51] in roots of symrk-7 plants
homozygous for LeSYMRK was at a similar minimal level as in nontransgenic mutant
controls when co-cultivated with M. loti for four days (Figure 14). In contrast, both

genes were strongly upregulated in roots of wild type control plants.

To test whether the LRR motif that is present in the rosid SYMRK version, but absent in
SYMRK candidates from toamto, poppy and monocots is required for root
endosymbioses in Lotus, we constructed deletion versions of LjSYMRK. Because the
LRR located towards the N-terminus of the predicted protein (LRR1) shows high
sequence similarity and is thus likely to be phylogenetically conserved between the
versions, we generated deletion constructs lacking either one of the LRR2 or LRR3
encoding exons. Neither of these constructs was potent to restore AM or RNS in Lotus
symrk-10 mutants (not shown). These results indicate that no proteins capable of
fulfilling normal functions in symbiosis were produced. To further analyze these
regions, additional constructs could be generated and tested that rely on point mutations

in the LRRs in question to reduce the risk of misfolding of the mutated proteins.

The AM-forming, non-nodulating monocots Oryza sativa (rice) and Zea mays (maize)
harbour a “minimal* SYMRK version encoding two LRRs only and a short N-terminal

region, mainly covered by a single exon aligning with exon four of LjSYMRK (Figure 6
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and Figure 7). To determine the role of SYMRK regions absent in monocot versions of
the gene we generated an LjSYMRK version that structurally mimics rice SYMRK
(OsSYMRK) in lacking sequence stretches which encode the N-terminal extracellular
(NEC) region of the protein (ANEC-LjSYMRK, Figure 15). We tested whether this
construct is sufficient for endosymbiosis establishment in Lotus symrk-10 mutants.
Although at lower rates than full-length LjSYMRK (Table 2), ANEC-LjSYMRK restored
AM upon inoculation with G. intraradices, and wild type-like infection sites and

arbuscules were formed in transgenic roots (Table 2 and Figure 16 A-B and E-H).

Hence, ANEC-LjSYMRK is sufficient for AM formation.

In contrast, no infection threads or nodules were observed four weeks after inoculation
with M. loti (Table 2 and Figure 16 I-J and M—P), whereas the introduction of the full-
length LjSYMRK coding sequence restored both AM with fungi and RNS with bacteria
(Table 2 and Figure 16 C-D and K-L). The NEC extension of LjSYMRK thus proved
indispensable for bacterial endosymbiosis in Lofus. Similar to LeSYMRK, the reduced
version of LjSYMRK thus selectively supports fungal, but not bacterial endosymbiosis in

Lotus.

To determine whether the short SYMRK version of rice is sufficient for endosymbiosis
formation in an RNS host, we introduced the OsSYMRK genomic sequence controlled
by the LjSYMRK promoter into Lotus symrk-10 roots. AM was fully restored in these
roots, whereas nodulation with M. loti was impaired (Table 2 and Figure 12 M-Z7).
Symrk-10 roots containing OsSYMRK exhibited primordial swellings generally devoid
of bacteria after inoculation with M. loti (Figure 12 U-X). In rare cases, infection
threads and small round nodules were observed, which contained bacterial colonies

(Figure 12 Y-Z). Hence, similar to LeSYMRK and ANEC-LjSYMRK, OsSYMRK is

compromised in supporting bacterial endosymbiosis in Lotus.

Successful complementation of symrk-10 mutants with different SYMRK variants
depended on the introduction of genomic sequence stretches. Although Lofus and
Tropaeolum SYMRK coding sequence attached to the native Lotus SYMRK promoter

region restored both AM and RNS in Lotus symrk mutant lines, no complementation
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was observed using coding sequences of Medicago or rice. Also, complementation rates
were lower and complementation was less reliable when using tomato SYMRK coding
sequence as compared to genomic sequence (not shown). In the case of Medicago
DM]I2, retainment of the first intron was sufficient to achieve full complementation in
Lotus for both AM and RNS. Where complementation of symbioses with fungi and
bacteria was selective, namely in the intermediate tomato and minimal rice versions, we
therefore generated constructs containing full genomic sequences for complementation
assays to avoid that results were influenced by insufficient levels of correctly spliced
SYMRK transcripts. However, for the ANEC-LjSYMRK deletion construct, only coding
sequence was used. The results obtained with this construct should thus be interpreted

with caution.
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3.3 Discussion

An ancient genetic program for AM among angiosperms

The requirement of CYCLOPS for arbuscule formation, and thus for the establishment
of functional AM in the monocot rice suggests a conserved role of this gene in monocot
and dicot angiosperms. Rice CYCLOPS, and different versions of SYMRK from both
dicot and monocot lineages were found competent to restore AM in Lotus symrk
mutants, indicating that the role of SYMRK in AM is conserved despite the structural
divergence evidenced by this gene. These data suggest a homologous nature of the AM
genetic program in angiosperms. The recent finding that loss-of-function mutations in
the rice version of CCaMK result in loss of AM symbiosis [18, 52], further supports the
idea of widespread AM gene conservation. Interestingly, we found that the
nonmycorrhizal legume Lupinus albus contains a full-length SYMRK version showing
no apparent difference to other rosid SYMRK genes (Figure 7). To clarify whether the
absence of AM in this species is in any way associated with the SYMRK gene,

additional analyzes of the functional capabilities of this ortholog are required.

Syntenic and BLAST analyzes of the Arabidopsis thaliana (Arabidopsis) genome
indicate that the lack of root symbiotic capability in this species is accompanied by a
deletion of several symbiosis genes, including SYMRK, CCaMK and CYCLOPS [19, 29,
53]. Their conservation in AM forming species but absence in the asymbiotic
Arabidopsis is consistent with an ancient and specific role in symbiosis. The analysis of
plant progam components for AM and AM-like associations in non-angiosperm land
plants, such as gymnosperms, bryophytes and pteridophytes (ferns) will be a future

challenge.

A molecular link between the two types of RNS

In legumes, SYMRK is indispensable for root endosymbiosis with rhizobia and AM

fungi [24, 43]. We show here that this endosymbiosis gene is also required for RNS in
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the actinorhizal cucurbit Datisca glomerata, and the tree species Casuarina glauca
(Fagales) [37]. SYMRK represents the first plant gene known to be necessary for
Actinorhiza. Its common requirement for legume interaction with rhizobia and for

Actinorhiza indicates a shared genetic basis of the two different types of RNS.

Interestingly, the modes of bacterial infection likely differ between these two
actinorhizal species. Frankia infecting Casuarina and other actinorhizal Fagales, such
as Alnus [54], enter the host root via intracellular root hair infection [55], an entry mode
requiring SYMRK in legumes infected intracellularly by rhizobia [24, 43]. Among
actinorhizal hosts, this infection mode is limited to Fagales species [7]. In the cucurbit
genus Datisca, Frankia are assumed to penetrate intercellularly between epidermal and
cortical cells of young roots [7]. The requirement of SYMRK for Actinorhiza may thus
encompass actinorhizal hosts infected by both intra- and intercellular bacterial invasion.
Further studies are required to determine the degree of overlap between the genetic
systems of legume-rhizobium interaction and Actinorhiza, and define where the
differences in symbiosis development, and determination of interaction partners find
their genetic basis. It will be intriguing to determine how the fine-tuning of regulatory
and response patterns differs between RNS forming groups, generating the present

diversity of nodulation types with respect to organogenesis, ontogeny and cytology.

SYMRK is not involved in determining host-microbiont specificity

Ligands of the SYMRK extracellular domain have not been described to date, and the
precise functions of SYMRK in AM and RNS are still unclear. In theory, the full-
length, rosid version of SYMRK could exhibit features necessary for the specific
recognition of bacterial symbionts. These features may not be required for AM
formation, and may thus be missing in SYMRK versions of AM forming species
outside the rosids where RNS with bacteria is absent, accounting for the inability of

SYMRK versions from other non-eurosid lineages to support RNS in legumes.
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We found that SYMRK genes from legumes of different cross-inoculation groups, and
from other rosid lineages that form Actinorhiza with Frankia bacteria or are even
unable to form RNS can support the specific interaction of a legume with its rhizobial
symbiont. Thus, a combination of other factors, including nod factor receptor kinases
[41, 44, 56], lectins [57] and perhaps yet-unknown additional components, is
accountable for the fine-tuning of recognition specificity in plant-bacterial

endosymbioses within the rosids.

A role of SYMRK in the predisposition to evolve RNS

Our survey of SYMRK sequences across angiosperms revealed at least three structurally
distinct versions, and we could show that this polymorphism is functionally related to
the root symbiotic capabilities of host plants. The variation in SYMRK domain
composition is unique among the known common symbiosis genes (Figure2). The
congruence between the phylogenetic distribution of the “full-length” SYMRK version
with the nodulating clade strongly suggests a link between SYMRK sequence evolution
and the acquisition of endosymbiotic root nodulation with bacteria. The full-length
version of SYMRK, which is required for RNS, is present in a monophyletic clade
encompassing both nodulating and non-nodulating lineages. These facts make it a good
candidate to be involved in a molecular predisposition for RNS proposed by Soltis et al.
[8].

An attractive hypothesis is that SYMRK sequence divergence was a critical step in
mediating the recruitment of the otherwise conserved common symbiosis pathway from
the pre-existing AM genetic program. Recruitment was proposed to account for the
genetic link of AM and nodulation in legumes [25, 26] and would make root—bacterial
endosymbiosis as a whole a fascinating example for novel traits evolving on the basis of
pre-existing genetic patterns. Further genetic adaptations would have been required for

RNS involving nodule organogenesis to occur.
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The decisive novelty that the molecular predisposition for RNS, by mediating the
recruitment of AM genes, brought about may be the ability accomodate bacteria
intracellularly. The common symbiosis genes defining the overlap of AM and RNS
genetic programs play an apparent role in the intracellular infection process of fungi in
AM, and of rhizobia in rhizobium-legume interactions. Supporting this hypothesis, a
feature associated with endosymbiotic bacterial infection in both actinorhizal [58] and
legume hosts [59], the formation of intracellular pre-infection threads (PITs) in host
cells. These cytoplasmic structures resemble the pre-penetration apparatus (PPA)
preceding fungal infection during AM formation [60, 61]. Forming in anticipation of
bacterial symbionts, PITs are thought to coordinate the uptake of bacteria and determine
the spatial progression of infection through the host cell [58, 59]. A similar role in
guiding fungal transition through host cells in AM has been demonstrated for PPAs [60,
61]. These developmental similarities in AM, Actinorhiza, and legume-rhizobium
infection may reflect a common genetic program for endosymbiosis establishment and
symbiont uptake in all three types of interactions. In AM, PPAs are not formed in
mutants that are defective in certain common symbiosis genes including SYMRK [60,
61]. It is therefore possible that a recruitment of AM symbiosis genes during the
evolution of RNS facilitated the induction of intracellular accommodation structures in

response to bacteria.

SYMRK domain function and evolution

Repetitive LRR modules have been implicated in the determination and evolution of
novel recognition specificities of receptor proteins [62-64]. Interestingly, adaptive
changes reflecting positive selective constraints can be traced in LRR- and NEC-
encoding regions of SYMRK genes from different Medicago species [65]. Our
functional comparison of eurosid SYMRK versions indicates that SYMRK is not involved
in determining recognition specificity in nodulation. However, an extended SYMRK
version containing a set of three LRR motifs, as present in eurosid SYMRK genes, is

required for fully supporting RNS of Lotus with M. loti. Shorter SYMRK versions from
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tomato or rice only suffice for AM. These functional differences may be caused by
individual amino acid sequence polymorphisms, or alternatively, exons that are
specifically required for bacterial endosymbiosis may be lacking in rice and tomato
SYMRK versions. The ANEC-L;SYMRK version of Lotus SYMRK, lacking the NEC
region but exhibiting all three LRR motifs, was equally unable to restore RNS, while
supporting AM in Lotus symrk mutants. These combined data indicate that both the
NEC region and the LRRs are necessary for RNS establishment. At an overall structural
level, exon acquisition from other genes encoding LRR or NEC-like domains [43, 66]
or, alternatively, retainment of exons in eurosid SYMRK genes, may have been an

integral genetic factor in the evolution of bacterial endosymbiosis in angiosperms.

The observation of small nodule-like structures on Lotus symrk mutant roots
transformed with the OsSYMRK construct is counterintuitive, considering that the

LeSYMRK and ANEC-LjSYMRK versions, which resemble legume SYMRK genes more

closely, do not support such developmental responses.

A possible explanation for the different capabilities of tomato and rice SYMRK to
support RNS in the complementation assays be that the nonmatching NEC region of
LeSYMRK negatively interferes with RNS establishment, but not AM signalling in

Lotus.

The Lotus symrk mutant line used for complementation assays, symrk-10, encodes a
kinase-dead SYMRK protein [49]. This line was selected for the experiments due to its
strong mutant phenotype, high rates of seed set and germination, and good growth and
developmental properties as well as ease of transformability. It cannot be excluded that
in symrk-10 transgenic roots expressing rice SYMRK, Lotus mutant protein is produced
which forms heterodimers with the shorter rice SYMRK version. These heterodimers
would contain intact Lofus SYMRK extracellular domains, and rice SYMRK kinase
domains, possibly leading to a complex of residual functionality in response to bacterial
symbionts. Intermolecular phosphorylation has been demonstrated for SYMRK, and it
is possible that SYMRK proteins form dimers or oligomers [49]. Similar effects may be

blocked in the case of roots transformed with tomato SYMRK due to the presence of an



69

extracellular extension interfering with the extracellular domain of the Lotus symrk
mutant protein. To obtain clarity about this possibility, and to confirm the degree of
functionality of OsSYMRK in Lotus root endosymbiosis, the complementation assays
performed in this study should be supplemented with similar assays using a different
symrk mutant background, where the presence of mutant protein potentially exhibiting
residual functionality can be excluded. Candidate mutant lines include such where the
SYMRK coding sequence encodes a stop codon, like Lotus symrk-19 [Perry et al.,
manuscript in preparation] or is interrupted by deletion (Medicago dmi2 5P) or insertion
(Lotus symrk-1 [24] or symrk-3 [24]) of mutations close to the translation start site, or in
regions of the gene encoding predicted extracellular sections of the protein, precluding

proper membrane localization.

Like tomato SYMRK, the ANEC-LjSYMRK version of Lotus SYMRK restored AM only,
with no evidence for organogenesis induction after inoculation of transgenic roots with
M. loti. This is despite the higher similarity of its sequence to the native Lotus SYMRK
at the sequence level as compared to rice SYMRK, and despite the presence of all three
LRR motifs. The differences in competence of rice SYMRK and ANEC-LjSYMRK to
support responsiveness to bacterial symbionts in Lotus are difficult to explain, but it
should be pointed out that ANEC-LjSYMRK was generated using coding sequence only.
The results obtained with ANEC-LjSYMRK should thus be interpreted with care,
considering the importance of intronic sequences for efficient complementation with
other SYMRK versions. Rice SYMRK supported the initiation of nodule orgaogenesis
only when genomic sequence was used, while OsSYMRK coding sequence attached to
the LjSYMRK promoter restored neither AM nor RNS in Lotus symrk roots. It is
therefore possible that due to a lack of intronic regulatory sequences ANEC-LjSYMRK
expression levels were too low to allow for responsiveness to rhizobia in transgenic
roots. Lower levels of SYMRK may suffice for AM restoration, resulting in a certain
degree of AM complemented roots. The experiment should thus be repeated using

genomic sequence for construct generation.

It is not clear whether for the different SYMRK genes used in this study intronic

sequences are directly involved in regulation of expression levels or transcript nuclear
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export, or some SYMRK versions are processed by the Lotus splicing machinery in the

absense of introns, thereby generating misspliced transcripts.

It is possible that regulatory sequences are also present in introns of Lotus SYMRK. In
the case of LjSYMRK, which perfectly matches with the Lotus signalling context,
reduced levels of native protein may suffice to support endosymbiosis establishment.
On the contrary, reduced expression levels in combination with imperfect compatibility
of heterologous or artificial SYMRK genes may result in an inability of these versions to

restore endosymbioses.

The NEC domain encoded by Lofus SYMRK exons two and three, upstream of the
conserved LRR flanking region (CEC), is present across eudicot plants (Figure6). Its
function outside the nodulating group is unknown. The proposed involvement of
SYMRK in processes such as reduction of the touch sensitivity of root hairs [67] may
rely on this domain thereby imposing selective constraints. The NEC domain shows
possible overall relatedness but only a low level of similarity to sequences present in the
rice genome, and to sequences other than SYMRK candidates in genomes of dicots like
Arabidopsis [43]. The apparent divergence observed among these potentially
homologous sequences of yet unknown function is consistent with a hypothetical role as

a receptor domain.

It will be a future challenge to determine the contribution of individual SYMRK LRR
units as well as of the NEC domain and to resolve at the amino acid level the features of

SYMRK proteins involved in conferring endosymbiotic nodulation capacity.

Additional components required for nodulation

The diversity and scattered occurrence of nodulation symbioses within the eurosid
lineage suggest multiple independent origins [68]. Only a subset of the plant species
carrying the “full-length” version of SYMRK develop root nodules, yet SYMRK of the
non-nodulating Tropaeolum proved competent to support RNS in Lotus. Hence, there
must be additional genetic features distinguishing the nodulators. Candidate genes

include those that express the legume LysM receptor kinases NFR1 and NFRS5 [41, 56,
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69], which are required for responsiveness to rhizobial lipo-chito-oligosaccharide
nodulation factors, but not for AM formation. A potential relevance of LysM receptors
in Actinorhiza, or the identity of alternative receptors perceiving yet unknown Frankia

signals, remains to be determined.

3.4 Conclusions

Our findings indicate a monophyletic nature of the genetic program for AM in
angiosperms, and suggest that AM-forming, non-nodulating representatives — including
cereals like rice — share a basal set of endosymbiosis determinants. In legumes, certain
AM genetic components are also necessary for the interaction with rhizobia [19-24],
and we show here that this common endosymbiosis program encompasses actinorhizal
nodulation. Together, these findings provide first functional evidence for the long-
standing hypotheses that plant nodulation symbioses are of common ancestry [70], and
that some of their signalling components were recruited from ancient AM functions [25,

26].

Endosymbiosis genes identified to date reflect differential evolutionary forces. Genes
like CYCLOPS and CCaMK [30, 71] are highly conserved and can potentially function
in plant-bacterial signalling also in non-nodulating lineages, as suggested by their
ability to restore nodulation in respective legume mutants. In contrast, structurally and
functionally distinct SYMRK versions exist in extant angiosperms with different root
symbiotic abilities. The differential potential of tomato and rice SYRMK, and of the
ANEC version of Lotus SYMRK to complement plant-fungal but not plant-bacterial
interactions in Lotus suggests that SYMRK is directly involved in the evolution of

bacterial endosymbioses and ultimately RNS.
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3.5 Materials and methods

Isolation of SYMRK homologues

We used a PCR strategy employing degenerate primers to obtain SYMRK sequence
information from diverse angiosperms, for which no genome or root-derived expressed
sequence tag sequences were available. Degenerate primers for the isolation of SYMRK
genes were positioned in regions of the coding sequence conserved among SYMRK
candidates, but not in other similar O. sativa (rice) and A. thaliana (Arabidopsis)

sequences. For primer sequences, see Table 4.

A Zap cDNA libraries were available for isolation of L. esculentum (tomato) and Alnus
glutinosa (alder) SYMRK. A cosmid clone carrying the LeSYMRK genomic region was
isolated from a pooled tomato Cf2/9 library (kind gift of J.D.G. Jones, The Sainsbury

Laboratory, United Kingdom) and shotgun sequenced.

For rapid amplification of complementary DNA ends (RACE) reactions, total RNA was
extracted from roots of uninoculated seedlings or young plants using the Nucleospin
RNA Plant kit (Macherey-Nagel) and DNasel treated. Reverse transcription and
5'/3'RACE reactions were done using the SMART RACE kit (Clontech), following
nested degenerate PCR reactions ([10 s 94 °C, 10 s 52 °C, 30 s 72 °C] x 35, 5 min 72

°C) to obtain initial sequence information.

Construct generation for mutant complementation and
SYMRK RNAI experiments

For hairy root complementation assays, SYMRK cDNAs were amplified from
complementary DNA (cDNA) preparations (Superscript II, Invitrogen) of uninoculated
roots of the respective species. Binary transformation vectors were pCAMBIA 1302 or
pK7WG2D,1 [72] derivatives. D. glomerata (Datisca), L. japonicus (Lotus),
Me. truncatula (Medicago), and T. majus (Tropaeolum) SYMRK coding sequences were
amplified from cDNA using primers DgSYMRK EC f with DgSYMRK PK r,
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LjSYMRK EC f with LjSYMRK PK r, MtSYMRK EC f with MtSYMRK PK r,
and TmSYMRK EC fwith TmSYMRK PK r (Table 4), respectively.

The LjSYMRK delta NEC deletion construct (ANEC-LjSYMRK) was amplified as two
fragments  using  primers LjSymRK EC f with LjSYMRK EC r and

LjSYMRK exon4 f with LjSymRK PK r (Table4), which were then combined by
overlapping PCR.

An MtSYMRK genomic segment containing intron one was amplified from total DNA
using primers MtSYMRK EC f with MtSYMRK 01 r (Table4) and ligated to the 3’
fragment of the MtSYMRK cDNA following BstB1 digestion of both. The genomic
sequences of tomato and rice SYMRK were amplified from total DNA using primers
LeSYMRK EC f with LeSYMRK PK r and OsSYMRK EC f  with
OsSYMRK PK r (Table 4), respectively. A 285-bp fragment amplified with primers
polyA NOS f and polyA NOS r (Table4) from plJawohl8 RNAi (kind gift of
P. Schulze-Lefert, Max Planck Institute for Plant Breeding Research, Cologne,
Germany) was used as terminater in all constructs. SYMRK genes or coding sequences
were under control of 4,970bp of genomic sequence preceding the LjSYMRK
translation start site. For pPK7WG2D constructs, the cauliflower mosaic virus (CaMV)
35S promoter driving the Gateway-cassette was deleted Sall(10124)-Sall(38).
C. glauca (Casuarina) cDNA was amplified and cloned as described [37].

CYCLOPS coding sequences were amplified from cDNA preparations (Superscript I1,
Invitrogen) obtained from root material of uninoculated rice (O. sativa subspecies
Jjaponica, cultivar Nipponbare) or L. japonicus ecotype Gifu roots and cloned into a
pCAMBIA 1301 derived vector. Lotus and rice CYCLOPS coding sequences were
amplified using primers LjCYCL ATG f with LjCYCL TAA r and OsCYCL ATG f
with OsCYCL_TAA r (Table4), respectively. The same 285bp NOS (nopaline
synthase) terminater fragment was used as for SYMRK constructs. CYCLOPS constructs
were under control of 2271 bp genomic sequence preceding the LjCYCLOPS translation

start site.
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For Datisca RNAi experiments, a pRedRoot- [73] based binary vector encoding
DsREDI for visible selection was equipped with a pPKANNIBAL [74] CaMV 35S
promoter-driven hairpin construct containing 367-bp of 3’ coding and untranslated
sequence of DgSYMRK in forward and reverse orientation, amplified with primers
DgSYMRK RNAi f and DgSYMRK RNAi r (Table4). For Casuarina RNAi

experiments, construct generation was as described [37].
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Table 4. Oligonucleotide primer sequences

Primer Name

Sequence 5" to 3°

A ALIEN_r
EAM_r
EWA_f
GREP_f

gaatccatagatctcatatattcagaagcrttritytc
aaagcaacttcaacaactctccacadngcytc
ccaagacatgaatggtctctggtngartgggc
ttctgctggaaattgttactggamgngarccnyt

B Dg3RACE_f
Dg5RACEInn_r
Dg5RACEout_r
Le3RACE_f
Le5SRACEiInn_r
Le5SRACEInn_r
Pr3RACE_f
Pr5RACEinn_r
Pr5RACEout_r
Tm3RACE_f
Tm5RACEInn_r
Tm5RACEout_r

ggcagtggcgtgtatcgaaccc
ggactcacaagccaggccatcccagg
gttgggaggaagctcattgccatcgec
tgcatggcgggacattgtaagaga
ccatgataccctcccttgatagt
cactctccacagcgcctca
agaagcaatgtggagggtggtt
ccacattgcttctgcattataccctgctt
caacttcaaccaccctccacattgctt
catgcatggctgacattgttcgtg
gtaacccccttttatggtcggat
gctacttctaccactcgccacatt

C LjSYMRK EC f
LiSYMRK_EC_r
LiSYMRK_exon4_f
LiSYMRK_PK_r
MtSYMRK_EC _f
MtSYMRK_01_r
MtSYMRK_PK_r
DgSYMRK_EC_f
DgSYMRK_PK r

TmSYMRK_EC _f
TmSYMRK_PK _r
LeSYMRK_EC f
LeSYMRK_PK r
OsSYMRK_EC _f
OsSYMRK_PK r
LiICYCL_ATG_f
LiICYCL_TAA r
OsCYCL_ATG_f
OsCYCL_TAA_r
polyA NOS f
polyA NOS r

TTATTTATCGATGatggagttaccagc
ctctcatcttctgaatcactcccactatgctctcaaacccttcagttge
gcaactgaagggtttgagagcatagtgggagtgattcagaagatgagag
ATTAAACCTAGGTAATAAGTCGACc tatctcggetgtgggtgag
TTATTTATCGatgatggagttacaagttattaggatatttag
cagaaatctatgtagtctttggtggc
ATTAAACCTAGGTAATAAGTCGACc tatctcggttgagggtgtgac
TTATTTATCGatgatgatggaaggattgcataattg
ATTAAACCTAGGTAATAAGTCGACt
catctgggttcaggaggagccaag
TTATTTATCGatgatgatggaaagactcgac
ATTAAACCTAGGTAATAAGTCGACc tatcttggticaggaggagtc
TTATTTATCGatggaagtagataattgctggaac
ATTAAACCTAGGTAATAAGTCGACcagcatttaccttggttgtggag
TTATTTATCGatggccgceccgcttcg
AAATAACCTAGGctaccccggaagcgaaggca
AATTAACCTAGGATCCatggaagggagggggttttctgg
AATAATCCCGGGttacattttticagtttctgatag
AATTAACCTAGGATCCatggagggcaggggtctgtctgag
AATAATCCCGGGttatgtgttggtatcagagacg
AATAAACCTAGGatcagcttgcatgccggtcg
AAATAAGTCGACctagagtcaagcagatcgttcaaac

D DgSYMRK_RNAi_f
DgSYMRK_RNAI_r

GGATCGATGGTACCatgcagaggcaatgtgga
GCTCTAGACTCGAGtcactctttcataatttcccaaaaggt
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E DgqPCR_Ubi_f atgcagatytttgtgaagac
DggPCR_Ubi_r accaccacgragacggag
DggPCR_SYMRK_f tgtgtgctaaggtggcagactttgg
DggPCR_SYMRK_r aactatggctcgtgtagtactcgggatc

LjgPCR_Ubi_f atgcagatcttcgtcaagaccttg
LigPCR_Ubi_r acctcccctcagacgaag
LigPCR_NIN_f tggatcagctagcatggaat
LigPCR_NIN_r tctgcttctgetgttgtcac
LjgPCR_SbtM4_f atgtaagctatgctgctggaatagag
LjigPCR_SbtM4 r atgcaacagcaggggctag

F OsSYMRK_Ex4_f ctcaggtcgtggcgecgacggtgaccegtge
OsSYMRK_Ex5 _r ccacgctgatagataggccatgagg
OsCYCL_In3_f aggcattttcatcacccatc
OsCYCL_Ex6_f cacccagtcagactccaaca
OsCYCL_Ex6_r atgctgtaccaagccaaacc
Tos17_fir attgttaggttgcaagttagttaaga

(A) Degenerate oligonucleotide primers used for identification of SYMRK candidates. (B)
Nondegenerate primers used in 3° and 5 RACE reactions to isolate full-length cDNA
sequences of SYMRK homologs. (C) Nondegenerate primers used to generate SYMRK
constructs for hairy root complementation experiments. Upper case characters in the
sequences indicate restriction enzyme sites or artificial sequence framing these. (D)
Nondegenerate primers used for the preparation of the DgSYMRK RNAi construct. (E)
Degenerate and nondegenerate primers used for expression level analysis of the indicated
genes via gPCR in Datisca (Dg) and Lotus (Lj). Primer orientation is indicated by _r,
complementary and _f, forward. (F) Nondegenerate primers used for genotyping of O. sativa
Tos17 insertion lines. Primer orientation is indicated by _r, complementary and _f, forward.

Biological material and phenotyping assays

AM and RLS phenotyping of L. japonicus whole plant transformormants

L. japonicus wild type ecotype B-129 Gifu and derived mutant lines symrk-10 [48] and
symrk-7 [24, 75] as well as four independent transgenic lines carrying the LeSYMRK
genomic region were tested, two in symrk-7 and two in symrk-10 background. For
nodulation tests, plants were inoculated with M. loti R7A or, to visualize infection
threads and confirm the presence of bacteria within nodules, M. loti R7A carrying
pXLGD4 [76] as described [51]. For root hair response assays and gene expression
analyzes, a symrk-7 line homozygous for LeSYMRK was isolated. Root hair response

assays were performed on plates containing 'z strength nitrogen-free B&D medium [77]
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supplemented with 1% agar-agar and 0.1 uM aminoethoxyvinylglycine (AVG). Roots
of three-days old seedlings were inoculated with M. loti MAFF 303099 expressing
DsRED (kind gift of M. Hayashi), suspended in 2 strength liquid B&D medium to a
final optical density at 600 nm (ODggo) of 0.01. Control plants were mock-inoculated
with sterile medium. Plants were kept vertically and roots protected from light. Root
hair responses were assayed at 3-6 days post inoculation. Growth conditions were 24°C

constant at 16 h light/8 h dark cycles.

AM and RLS phenotyping of hairy roots in L. japonicus and M. sativa

L. japonicus wild-type ecotype B-129 Gifu and derived mutant lines symrk-10 [48] and
cyclops-3 {Szczyglowski, 1998 #41; Yano, 2008 #344} were inoculated with M. loti
R7A as described [24]. Growth conditions were 24°C constant at 16-h-light/8-h-dark
cycles. For infection of Agrobacterium rhizogenes—induced transgenic roots in Lotus,
M. loti MAFF 303099 expressing DsRED was applied at OD600 of 0.02 in translucent
plastic boxes containing 300 ml Seramis (Mars) and 150 ml liquid Fahraeus Plant (FP)
medium [78]. A4. rhizogenes-transformed M. truncatula A17 wild type and dmi2 5P
(kind gift of G. Oldroyd, John Innes Centre, United Kingdom) plants were inoculated
with S. meliloti 1021 carrying pBHR-mRFP [79] (OD600 of 0.02) in planting pots
containing Seramis, and fertilized with FP medium supplemented with 50 uM KNO3
two times per week. For nodulation assays and simultaneous observation of infection
thread (IT) formation in L. japonicus and M. truncatula, plants were harvested four and
five weeks post inoculation, respectively. In L. japonicus plants transformed with
CgSYMRK, nodulation was scored at four, five or 15 weeks post inoculation. Prior to
inoculation, roots showing no eGFP fluorescence were removed in all cases. For AM
phenotyping of L. japonicus and M. truncatula, plants were co-cultivated with
G. intraradices BEG195 and harvested after three or two weeks of co-cultivation,
respectively. Root systems were stained with acidic ink as described [32]. Prior to
staining of A. rhizogenes—induced root systems, roots showing no eGFP fluorescence
were removed. Roots were scored AM-positive (AM+) if symbiotic structures

(arbuscules and vesicles) were present, as AM-negative (AM-) if no arbuscules were
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present. Occasional L. japonicus symrk mutant roots showing vesicles not accompanied
by arbuscules were scored AM—. Where complemented L. japonicus symrk mutant roots
exhibited aborted infection sites in co-occurrence with successful infection and

colonization events involving arbuscule and vesicle formation, roots were scored AM+.

AM and actinorhiza phenotyping of D. glomerata SYMRK knockdown roots

D. glomerata seeds and Frankia inoculum were a kind gift from K. Pawlowski
(Department of Botany, Stockholm University, Sweden). D. glomerata was inoculated
with compatible Frankia by potting in substrate with ~1 g/l crushed nodules and with
G. intraradices BEG195 by adding substrate extracted from pots of inoculated Allium
schoenoprasum plants. Growth conditions were 16 h light/8 h dark at 22°C and 60%
relative humidity. Seeds of 7. majus and P. rhoeas were purchased at Notcutts Garden
Centres (UK). The ability to develop AM with G. intraradices was confirmed for all

species involved in the study.

AM and actinorhiza phenotyping of C. glauca SYMRK knockdown roots

C. glauca hairy root phenotyping was done as described [38].

Genotyping and AM phenotyping of Oscyclops lines

All O. sativa plants were subspecies japonica, cultivar Nipponbare and grown as
recommended at http://tos.nias.affrc.go.jp/~miyao/pub/tos17/. Oscyclops lines ND5032,
NC2713, NC2415 and NG0782 were identified by screening a library of 42.700 rice
mutant lines induced by retrotransposon Tos/7 [80]. For genotyping, primer Tosl7 was
used with gene specific primers (Table 4). The presence and location of the insertions
were confirmed by PCR and sequence analysis in all lines. For AM phenotyping, plants
were co-cultivated with G. intraradices BEG195 and Allium schoenoprasum nurse
plants for either two or three weeks. Quantification of AM colonization in rice roots

followed the Magnified Line Intersect Method ([81], modified).
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Plant transformation

L. japonicus hairy root and whole plant transformation

Transgenic roots on Lotus symrk-10 and cyclops-3 mutants were induced using
A. rhizogenes strains AR1193 [82] and LBA1334 [83] as described by Diaz et al. [84]
(modified). L. japonicus symrk-7 and symrk-10 lines carrying the LeSYMRK genomic
region were obtained by A. tumefaciens Agll mediated transformation [85], using a

pRK290 [86] based cosmid as binary vector.

M. truncatula hairy root transformation

Medicago seedlings were transformed as described at http://www.isv.cnrs-

gif.fr/embo01/manuels/index.html (modified), using strain A. rhizogenes AR1193 [82].

D. glomerata hairy root transformation

Twelve-week-old Datisca plants were inoculated with A. rhizogenes strain LBA1334
[83] carrying the silencing construct by stem injection, and roots emerging at infection
sites were covered with substrate. Three-week post inoculation roots were inspected for
DsREDI1 fluorescence. Nonfluorescent roots were removed, and plants were repotted
and grown for eight weeks. After determination of the nodulation phenotype, individual
fluorescent roots were divided into two halves. One half was stained for mycorrhiza

visualization, the second used for total RNA extraction (RNeasy Plant Kit, Qiagen).

C. glauca hairy root transformation

C. glauca hairy roots were induced as described [87].

Quantitative PCR of reverse transcribed cDNA (qRT-PCR)

RNA was extracted from root tissues for expression level analyzes using the Nucleospin
RNA Plant kit (Macherey-Nagel). Quantitative RT-PCR was performed with
GeneAmp5700 (Applied Biosystems) using the SuperScript III Platinum Two-Step
qRT-PCR-Kit (Invitrogen).
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For determination of SYMRK expression levels in Datisca symrk knowckdown roots, a
123-bp DgSYMRK fragment was amplified using primers DgqPCR _SYMRK f with
DgqPCR_SYMRK r (Table 4). As control, polyubiquitin cDNA was amplified using
primers DgqPCR_Ubi_f with DggPCR_Ubi _r (Table 4).

For expression level analysis of NIN [50] and ShtM4 [51] in Lotus symrk-7 roots
carrying LeSYMRK, five days old seedlings of transgenic plants (symrk-7 + LeSYMRK)
homozygous for the LeSYMRK genomic region under control of the LeSYMRK promoter
were mock-inoculated (controls) or inoculated with M. loti R7A (ODgoo = 0.01). Roots
were harvested at four days post inoculation for RNA extraction and qPCR analysis.
RNA was extracted from 6-8 bulked roots per sample. Primers for fragment
amplification were LjqgPCR _Ubi_f with LjgPCR Ubi_r for determining polyubiquitin
levels as control, LjgPCR_NIN f with LjgPCR NIN r and LjqPCR_SbtM4 f with
LjqPCR_SbtM4 r for test genes NIN and SbtM4, respectively (Table 4).

Representative fragments were sequenced for identity confirmation.

Computational analysis

Databases used for BLAST sequence search and analysis included
http://www.ncbi.nlm.nih.gov/BLASTY/, http://www.arabidopsis.org/Blast/,
http://www.gramene.org/Multi/blastview, and http://genome.jgi-
psf.org/Poptrl/Poptrl.home.html. Sequence analysis and alignments were done using
The Staden Package [88] v1.5.3 and Vector NTI v9.0. Protein domains and motifs were
predicted using PROSITE [89], SIGNALP [90], TMHMM [91], and PredictNLS [92].

Accession Numbers

Sequences of SYMRK homologs were deposited at the EMBL Nucleotide Sequence
Database  (http://www.ebi.ac.uk/embl/) under accession numbers AY935263
(4. glutinosa); AM271000, AM931079 (D. glomerata coding and genomic sequence,
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respectively); AY935267 (Lupinus albus); AY935265 (T. majus); AY935266,
AY940041 (L. esculentum coding and genomic sequence, respectively); AM270999
(P. rhoeas); AM851092 (P. trichocarpa). The accession number for pPCAMBIA 1302 at
GenBank (http://www.ncbi.nlm.nih.gov/Genbank/index.html) is AF234298.

The genomic/coding sequences used for prediction of exon-intron structures in

Figures 6, 14 and 15 were:

SYMRK/DMI2/NORK [24, 36, 43]: AP004579/AF492655 (L. japonicus), AY940041/
AY935266 (L. esculentum), AP003866/AK099778 (O. sativa); CYCLOPS [19]:
APO09158/EF569221 (L. japonicus), AP008212/EF569223 (O. sativa).
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5 Appendix

5.1 List of publications and author contributions

For unpublished data that are not yet contained in manuscripts, aspects not prepared by

the author of this thesis are as follows:

Gabor Giczey (The Sainsbury Laboratory, United Kingdom; present affiliation:
Quintiles, Hungary) isolated a cosmid carrying tomato SYMRK for transgenic
complementation of Lotus symrk mutants, and Matthew Smoker (The Sainsbury

Laboratory, United Kingdom) performed whole plant transformations.

For published data or unpublished manuscripts, the author of this thesis contributed as
follows:

Markmann, K., Giczey, G. and Parniske, M. (2008).
Functional adaptation of a plant receptor kinase gene paved the way for the

evolution of intracellular root symbioses with bacteria. PLoS Biology 6(3): e€68.

The experiments presented in this publication have been performed, and the data
acquired and analyzed by the author of the thesis, except for the identification of
SYMRK genes from Lupinus albus, Tropaeolum majus and Lycopersicon esculentum,
which were isolated by Gabor Giczey (The Sainsbury Laboratory, United Kingdom;
present affiliation: Quintiles, Hungary) or by him and the thesis’ author in cooperation.
The supervisor of this thesis, Martin Parniske (The Sainsbury Laboratory, United
Kingdom; present affiliation: University of Munich (LMU), Germany) identified the
rice SYMRK candidate. Manuscript and figures were prepared by the thesis’ author in

cooperation with Martin Parniske.

Gherbi, H.*, Markmann, K.*, Svistonoof, S., Estevan, J., Autran, D., Giczey, G.,
Auguy, F., Péret, B., Laplaze, L., Franche, C., Parniske, M. and Bogusz, D. (2008).
SymRK defines a common basis for plant root endosymbioses with AM fungi,
rhizobia and Frankia bacteria. Proceedings of the National Academy of
Sciences, USA 105(12): 4928-4932.
*These authors contributed equally to the work.
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The author of the thesis designed, performed and analyzed the AM and RNS
complementation experiments of Lotus japonicus symrk mutants with Casuarina glauca
SYMRK. Hassen Gherbi (Institut de Recherche pour le Développement, France) and the
thesis’ author prepared the constructs used in this experiment in cooperation. The
respective manuscript sections and figures were prepared by the author of the thesis,
and the remainder of the manuscript was written by Hassen Gherbi and the thesis’

author in cooperation.

Markmann, K. and Parniske, M. (2009).
Evolution of root endosymbiosis with bacteria: how novel are nodules?
Trends in Plant Science: 14, 77-86.

The author of the thesis prepared all text and figures of the review, with Martin Parniske

providing advice and discussion.

Yano, K., Yoshida, S., Miiller, J., Singh, S., Banba, M., Vickers, K., Markmann, K.,

White, C., Schuller, B., Sato, S., Asamizu, E., Tabata, S., Murooka, Y., Perry, J., Wang,

T., Kawaguchi, M., Imaizumi-Anraku, H., Hayashi, M., Parniske, M. (2008).
CYCLOPS, a mediator of symbiotic intracellular accomodation. Proceedings of
the National Academy of Sciences, USA: 105, 20540-20545.

All data, figures and text sections concerning the phenotyping of rice CYCLOPS
insertion lines, and the complementation of Lotus cyclops mutants with rice and Lotus
CYCLOPS genes were contributed by the author of this thesis. Rice CYCLOPS was
originally isolated by Kate Vickers (The Sainsbury Laboratory, United Kingdom), who
also retrieved the rice cyclops insertion mutant lines from the Tos/7 Mutant Panel
Database (Rice Genome Resource Centre, Japan). Judith Miiller isolated the

homozygous mutant lines used in this study.

Perry, J., Welham, T., Brachmann, A., Charpentier, M., Markmann, K., Wang, T. and
Parniske, M.
Mining the symbiotic component of the Lotus japonicus genome using classical

genetics and thematic TILLING. Manuscript in preparation.

For this manuscript, AM and RNS phenotyping data of several Lotus japonicus symrk
mutant alles were collected and analyzed by the author of the thesis.
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5.2 Publications and manuscripts

The publications containing data stemming from the thesis presented here are attached

below in the following order:

Markmann, K. and Parniske, M. (2009).
Evolution of root endosymbiosis with bacteria: how novel are nodules?
Trends in Plant Science: 14, 77-86.

Markmann, K., Giczey, G. and Parniske, M. (2008).
Functional adaptation of a plant receptor kinase gene paved the way for the

evolution of intracellular root symbioses with bacteria. PLoS Biology 6(3): €68.

Gherbi, H.*, Markmann, K.*, Svistonoof, S., Estevan, J., Autran, D., Giczey, G.,
Auguy, F., Péret, B., Laplaze, L., Franche, C., Parniske, M. and Bogusz, D. (2008).
SymRK defines a common basis for plant root endosymbioses with AM fungi,

rhizobia and Frankia bacteria. Proceedings of the National Academy of
Sciences, USA 105(12): 4928-4932.

Yano, K., Yoshida, S., Miiller, J., Singh, S., Banba, M., Vickers, K., Markmann, K.,

White, C., Schuller, B., Sato, S., Asamizu, E., Tabata, S., Murooka, Y., Perry, J., Wang,

T., Kawaguchi, M., Imaizumi-Anraku, H., Hayashi, M., Parniske, M. (2008).
CYCLOPS, a mediator of symbiotic intracellular accomodation. Proceedings of
the National Academy of Sciences, USA: 105, 20540-20545.

The following manuscript is in preparation and is therefore not attached:

Perry, J., Welham, T., Brachmann, A., Charpentier, M., Markmann, K., Wang, T. and
Parniske, M.
Mining the symbiotic component of the Lotus japonicus genome using classical

genetics and thematic TILLING. Manuscript in preparation.
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Plants form diverse symbioses with nitrogen-fixing bac-
teria to gain access to ammonium, a product of the
prokaryote-exclusive enzyme nitrogenase. Improving
the symbiotic effectiveness of crop plants like maize,
wheat or rice is a highly topical challenge and could help
reduce the need for energy-intense nitrogen fertilizer in
staple food production. Root nodule symbiosis (RNS)
constitutes one of the most productive nitrogen-fixing
systems, but it is restricted to a small group of related
angiosperms. Here, we review the genetic regulation of
RNS and its interconnections with other plant symbiosis
or plant developmental programs. Since RNS uses
genetic programs that are widely conserved in land
plants, we evaluate the prospects for a transfer to plants
that are currently non-nodulating.

Root nodule symbiosis: a rare but efficient source of
nitrogen for plants

Limitation of water or nutrients such as nitrogen, potass-
ium and phosphate restricts plant growth and develop-
ment in many terrestrial ecosystems. Mutualistic
symbioses of roots with fungi or bacteria help plants to
cope with these constraints. Associative nitrogen fixation is
found in plants as diverse as ferns (e.g. Azolla), gymnos-
perms (e.g. coralloid roots of cycads) and monocots, which
can host endophytic diazotrophs such as Azoarcus or Azos-
pirtllum. Among the most sophisticated associations are
intracellular (endo-) symbioses, where the microbial part-
ner is accommodated within a living host cell [1]. This
inter-organismic intimacy is based on complex molecular
crosstalk between the partners and, except in parasitic
associations where bacterial nitrogen fixation remains
inefficient, allows efficient nutrient exchange to the benefit
of both [1]. Root nodule symbiosis (RNS) effectively renders
plants independent of other nitrogen supplies [2] but is
restricted to only four related orders within the Eurosid
clade of angiosperms [3]. RNS is characterized by two
major evolutionary inventions: the intracellular uptake
of bacteria and the formation of specialized organs, the
root nodules [4,5]. The latter provide a suitable microen-
vironment for nitrogenase activity and allow for a pro-
tected, controlled development of high bacterial population
densities. Nodules thus resemble ‘micro-fermenters’
within the host plant that are optimized for symbiosis
maintenance.

Corresponding authors: Markmann, K. (kama@mb.au.dk);
Parniske, M. (parniske@lmu.de).

There are two main types of RNS that differ in bacterial
partners, infection mechanisms and nodule organogenesis
and morphology [4,5]. Legumes, including important
agricultural crops such as soybean (Glycine max), common
bean (Phaseolus vulgaris) and pea (Pisum sativum), inter-
act with phylogenetically diverse nitrogen-fixing bacteria
known as rhizobia [2,4]. Actinorhiza, a symbiosis with
nitrogen-fixing actinobacteria of the genus Frankia [6],
is formed by members of three rosid orders: the Fagales,
Cucurbitales and Rosales [7]. Examples are alder (Alnus
spp.), sea buckthorn (Hippophae rhamnoides) and the
subtropical tree genus Casuarina [8].

Within the four orders where RNS occurs, its distri-
bution is scattered [7,9]. It is an ongoing challenge to
decipher the combination of molecular adaptations char-
acterizing RNS-forming plants (i) relative to related
species outside of the nodulating clade and (ii) relative
to non-nodulating representatives within. The close kin-
ship of taxa forming RNS prompted the proposition that a

Glossary

Actinorhiza (AR): mutualistic association of plant roots with nitrogen-fixing
bacteria of the genus Frankia (Actinobacteria). Actinorhiza is a form of RNS,
involving the development of nodules on host roots, where high densities of
symbiotic bacteria reside within plant cells. The term Actinorhiza also refers to
infected nodule organs representing the physical manifestation of the
symbiosis. Host plants include members of the angiosperm orders Fagales,
Cucurbitales and Rosales.

Arbuscular mycorrhiza (AM): a phylogenetically widespread mutualistic
symbiosis of plant roots with fungi of the phylum Glomeromycota. AM fungi
form finely branched hyphal structures (arbuscules) within host cells and
deliver phosphates and other nutrients to the plant in exchange for
carbohydrates.

Determinate nodules: root nodules forming in response to symbiotic bacteria
where cells of the tip meristem fully differentiate once the nodule has reached
its full size. The developmental stage of the inner nodule tissue is therefore
uniform. Determinate nodules are formed by different legume lineages, and
examples of determinate-nodule-forming plants include Lotus japonicus and
Glycine max (soybean).

Indeterminate nodules: symbiotic root nodules that retain their tip meristem
and continuously develop new infected tissue. As a result, indeterminate
nodules display a zonal composition, with different stages of symbiosis
development contained in the same nodule. The nodule vasculature can be
peripheral (legumes) or centrally localized (actinorhizal plants and Parasponia),
leading to a stem-like or root-like tissue organization, respectively. Examples of
indeterminate-nodule-forming legumes include: Medicago truncatula (barrel
medic), Medicago sativa (alfalfa), Pisum sativum (garden pea) and Sesbania
rostrata.

Rhizobium-legume symbiosis (RLS): RNS formed by legumes (Fabales) in
association with diverse Gram-negative nitrogen-fixing bacteria termed
rhizobia.

Root nodulation symbiosis (RNS): root symbiosis of plants with nitrogen-fixing
bacteria, which are hosted inside specific root-derived organs (nodules). RNS
supplies the host plant with bacterial-fixed nitrogen in exchange for
carbohydrates. The two main forms of RNS are AR with Frankia bacteria and
RLS with rhizobia.
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mailto:kama@mb.au.dk
mailto:parniske@lmu.de
http://dx.doi.org/10.1016/j.tplants.2008.11.009

TRPLSC-648; No of Pages 10

common ancestor could have acquired a genetic predispo-
sition to evolve nodulation [3]. This predisposition, con-
sisting of one or more genetic advances, consequently
became a basis for the evolution of all types of RNS. This
hypothesis predicts that the existing forms of RNS have
overlapping genetic programs. However, experimental evi-
dence for a genetic program shared between both types of
RNS was obtained only recently [10,11]: post-transcrip-
tional gene silencing demonstrated that the SYMBIOSIS
RECEPTOR-LIKE KINASE (SYMRK) gene (also known as
DOES NOT MAKE INFECTIONS 2 [DMI2] in Medicago

Trends in Plant Science Vol.xxx No.x

truncatula [barrel medic] and NODULATION RECEP-
TOR KINASE [NORK] in Medicago sativa [alfalfa])
[12,13], which is necessary for the interaction of legumes
with rhizobia [12,13], is also required for actinorhiza with
Frankia in the Fagales tree Casuarina glauca [10] and the
cucurbit Datisca glomerata [11]. The common requirement
of SYMRK is probably representative for other genes
shared between RNS in legumes and actinorhiza (Figures
1, 2 and 3) and provides important support for the hypoth-
esis that actinorhiza and legume RNS share a common
genetic ancestry.

Common symbiosis program

Extant angiosperms

s Casuarina*, alder
R Daisca’)

{ e.g. Sesbania, pea, '
- Medicago*, Lotus*

Cucurbitales
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TRENDS in Plant Science

Figure 1. Common endosymbiosis genes exhibit divergent patterns of structural and functional evolution. SYMRK, which might form the entry point to the common AM
and RNS program for endosymbiosis with fungi or bacteria, has at least three distinct structural versions. All of these support AM symbiosis with fungi, but only the longest
version is sufficient for functional RNS [11]. This longest SYMRK version has been found only in rosids and seems to be present in all species that form RNS, as well as in
their relatives, such as poplar or Tropaeolum, that do not form RNS but form only AM symbioses [11]. This pattern suggests an involvement of SYMRK in a genetic
adaptation that might have provided a molecular basis for the evolution of RNS within the rosid lineage. A common ancestor of the rosid clade (dark purple) possibly
acquired a specific adaptation of SYMRK, allowing plant-bacterial interactions to access the conserved AM genetic program for endosymbiosis, which encompasses at
least six further genes (CASTOR [34]; POLLUX [31,34]; NUP85 [35]; NUP133 [36]; CCaMK [32,37]; CYCLOPS [33,38]). In contrast to SYMRK, these are structurally conserved
across dicot and monocot angiosperms (Figure 2). Potentially, the monomorphic components of the common symbiosis program can support RNS [26,28,38,39,47]. The
small pictograms refer to the root endosymbiosis types supported by the respective structural version of SYMRK. Angiosperm orders shaded dark gray include members
forming AM and actinorhizal RNS with Frankia (AR), those shaded light purple form AM and another form of RNS, rhizobium-legume symbiosis (RLS). Members of orders
shaded light blue form AM but no RNS. The plant names (same color code as for orders) refer to species containing the respective structural versions of SYMRK. Asterisks
(*) indicate the availability of data on the functional capabilities of the respective SYMRK genes [10,11]. Abbreviations: AM, arbuscular mycorrhiza; AR, actinorhiza; RLS,
rhizobium-legume symbiosis; RNS, root nodulation symbiosis. Key to plant names: alder, Alnus glutinosa; Casuarina, C. glauca; Datisca, D. glomerata; Lotus, L. japonicus;
maize, Zea mays; Medicago, M. truncatula and M. sativa; poplar, P. trichocarpa; poppy, Papaver rhoeas; Tropaeolum, T. majus; rice, Oryza sativa. Predicted protein regions
are abbreviated as: CEC, conserved extracellular domain; LRR, leucine-rich repeat; NEC, N-terminal region of unknown function; PK, protein kinase domain; TM,
transmembrane domain. Nomenclature of angiosperm phylogeny is based on Ref. [81].
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Review

In this review, we discuss the genetic features that
distinguish ‘nodulators’ from non-nodulating plants -
and form the molecular prerequisite for the complex evol-
utionary achievement of nitrogen-fixing RNS.

What are the key genetic inventions of the nodulating
clade?

Among the prime candidates for adaptations specific to
RNS-forming plants are genes involved in the perception of
rhizobial signaling molecules, namely lipochito-oligosac-
charide nodulation (Nod) factors. These receptors are
required for the earliest host responses to symbiotic rhi-
zobia and are involved in determining host-symbiont
specificity [14-17]. They are likely to represent relatively
recent achievements during the evolution of legume RNS.
In the Japanese legume Lotus japonicus, a close relative of
the Eurasian birdsfoot trefoil, perception of Nod factors
depends on the receptor-like kinases (RLKs) NOD FAC-
TOR RECEPTOR 1 (NFR1) and NFR5 and is highly
specific in that Nod factors produced by different bacterial
strains can be distinguished if they show minor alterations
of their chemical structure [15-17]. NFR-predicted
proteins contain lysine motif (LysM) domains in their
predicted extracellular part, and these domains are
involved in Nod factor recognition in L. japonicus [17].
Closely related genes mediate Nod-factor signaling in
other legumes such as M. truncatula [14,18]. In an
approach to induce a compatible interaction of rhizobial
bacteria with an incompatible legume, M. truncatula was
equipped with L. japonicus Nod factor receptor genes
(NFR1 and NFR5). Transgenic roots formed bacteria-con-
taining nodules with the specific partner of L. japonicus,
Mesorhizobium loti [17]. Although these nodules were not
fully functional [17], the observations demonstrate that
Nod factor receptors have a central role in defining host
ranges in rhizobium-legume interactions. The Nod factor
receptors are closely related to two receptors identified in
the non-nodulating angiosperms Arabidopsis thaliana
(thale cress) and rice (Oryza sativa), which are required
for the defense-related perception of chitin oligomers, a
chemical signature of fungi [19,20].

The high level of specificity of Nod-factor recognition
and the necessity to evoke symbiosis-related rather than
defense-related downstream responses call for artificial
transfer of compatible receptors to potential new hosts.
Alternatively, infection systems that are likely to be inde-
pendent of Nod-factor signaling, such as those employed by
certain photosynthetic bradyrhizobia that induce nodules
on aerial plant parts [21] or actinorhiza with Frankia [22],
represent an interesting resource for further exploitation
towards developing artificial host systems. Because these
bacteria lack common nod genes required for Nod-factor
synthesis in rhizobia [21,22], they must rely on alternative
strategies to induce nodule organogenesis and infection. A
key question is whether the Nod-factor receptors are
specific to the legume branch of the nodulating clade or
whether actinorhiza plants employ the same type of re-
ceptor for detection of Frankia symbionts. Key genes
required for Nod-factor synthesis have not been detected
in the fully sequenced Frankia genomes ([22]; Box 1).
However, the exceptional genus Parasponia belongs to
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Box 1. Model systems for RNS transfer

Basal but efficient forms of RNS promise to involve a minimal set of
host and bacterial genetic adaptations required for engineering
artificial host systems. Developmental features of symbiosis estab-
lishment, such as infection mode, intracellular accommodation of
the microbial symbiont or nodule organogenesis, depend on the
host genotype [4,5], rendering the plant the prime target for such
engineering efforts. Actinorhizal hosts [82] and legumes of the
family Caesalpiniaceae, as well as some Fabaceae [4], retain their
bacterial symbionts in tubular infection-thread-like structures lined
with plant cell wall material. These have been referred to as ‘fixation
threads’ [4] because they are the sites of bacterial nitrogen fixation
in the respective lineages, and they might represent an ancient form
of bacterial accommodation [4]. This is in contrast to many legumes
of the families Mimosaceae and Fabaceae, including most fabacean
crop legumes, where rhizobia are hosted within specialized
membrane-bound compartments termed symbiosomes [83]. Be-
cause symbiosome formation poses stringent demands on the
genetic compatibility of the symbiotic partners and plant control of
the symbiosis, fixation thread symbioses like actinorhizas might be
more suited as model systems for RNS transfer.

Bacterial candidates for engineering artificial RNS systems should
be compatible with a wide range of host genetic backgrounds.
Promising examples include broad-host-range symbionts like
Rhizobium sp. strain NGR234 [84] or Frankia bacteria [22], of which
many strains can efficiently infect phylogenetically diverse hosts
after either intra- or intercellular infection modes [85]. Most
actinorhiza-forming Frankia bacteria [86], as well as certain rhizobia,
such as Azorhizobium caulinodans [87] and symbiotic Burkholderia
strains [88], have the capacity to subsist and fix nitrogen under both
symbiotic and nonsymbiotic conditions. Although other factors can
restrict nitrogen fixation within plant roots [89], such strains could
provide a basis for artificially generating beneficial associations on a
nonspecific or partially specific basis [90].

the Rosales that are normally nodulated by Frankia but
is nodulated by rhizobia. Parasponia nodulation requires
the rhizobial common nod genes, which suggests that
LysM RLKSs could be involved in RNS in this plant [23].
Although Parasponia might be an exception, it is possible
that the adaption of LysM receptors for the recognition of
symbiotic bacteria goes back to the ‘predisposition event’,
but their involvement in actinorhizal symbiosis with Fran-
kia is presently unclear.

Bacterial uptake evolved by arbuscular mycorrhiza gene
recruitment

RNS is genetically embedded in an ancient program for
endosymbiosis that is widely conserved in plants today.
The majority of land plants form arbuscular mycorrhiza
(AM), a symbiosis with fungal symbionts of the phylum
Glomeromycota [24]. AM hosts benefit from the extensive
access of the fungal mycelia to soil compartments by
exchanging photosynthates for water and nutrients such
as phosphate [25]. AM-forming angiosperms have been
shown to possess conserved genes required for intracellu-
lar accommodation of microbial symbionts [11,26-29].
Although originally evolved for symbiosis with fungi, com-
ponents of this program are functional in RNS with bac-
teria and could potentially support RNS also in lineages
that do not currently contain nodulating species. The
‘common symbiosis program’ is defined by genes that are
required for both intracellular root symbioses with bac-
teria (RNS) and fungi (AM) [1]. In the model legume L.
Japonicus, seven common symbiosis genes have been ident-
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Figure 2. The variation in gene structure and domain composition between SYMRK versions from different angiosperm lineages is exceptional among genes that are
required for both AM and RNS symbioses (common symbiosis genes). The longest known version of SYMRK (a) contains three LRR motifs, all encoded by individual exons.
Two shorter versions exist in other plant lineages, which form AM, but no RNS. SYMRK from the asterid tomato represents an intermediate version that only has two LRR-
encoding exons. The shortest known versions of SYMRK were isolated from monocots, such as rice [11]. In those regions of the gene that are present in all versions, intron
positions and phases are conserved. Other common symbiosis genes (b-g) required for intracellular infection are structurally conserved between dicot and monocot
angiosperms, such as Lotus and rice. Minor variations in exon lengths exist, but intron positions and phases are conserved in all cases. In Lotus CYCLOPS (g), two NLS
motifs are predicted in silico, as compared to one in rice, but only one of the NLS from the Lotus ortholog was functional in a heterologous localization experiment [38].
Only this one, which corresponds to the one conserved in rice CYCLOPS, is depicted here. Key to plant names: Lotus, L. japonicus; tomato, Lycopersicon esculentum; rice,
Oryza sativa. Filled boxes represent exons, or those regions of exons that are part of the coding sequence. Introns are not depicted, and dotted lines indicate the positions of
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Figure 3. Root nodulation symbiosis (RNS) with nitrogen-fixing bacteria is embedded in conserved genetic programs. Genes required for intracellular infection with (a)
arbuscular mycorrhiza (AM) are shared with both main types of RNS, (b) rhizobium-legume symbiosis (RLS) and (c) actinorhiza (AR) with Frankia. Nodule organogenesis
might be closely related to (d) lateral root formation. Three modules (i-iii) are apparent that define genetically separable response patterns in RNS. (i) Plant genes required
for host-symbiont recognition in the different symbiosis types are likely to carry specific adaptations. Candidates are known only for RLS, where LysM kinases (LjNFRs in
Lotus japonicus, and MtLYKs as well as MtNFPin Medicago truncatula) are required for the specific perception of rhizobial chito-oligosaccharide Nod factors (b) [14-18]. AM
and AR are likely to employ other genes for recognition of fungal and Frankia signals, the chemical nature of which is not yet resolved ((a) and (c), respectively). (ii) The core
module for intracellular infection is defined by at least seven genes that are required for endosymbiosis with both bacteria and fungi in legumes [30], and is likely to be
conserved across AM-forming angiosperms [11,26,28,29,38,39,47]. SYMRK is likely to be active at the entry point of this program. The longest, probably rosid-specific
version of the gene might carry an adaptation that specifically links receptor-mediated bacterial recognition to the common symbiosis program for endosymbiotic uptake.
SYMRK is also required for AR, suggesting that the two forms of RNS rely on similar genetic programs [10,11]. Epidermal responses leading to intracellular infection involve
distinct patterns of calcium oscillation in RLS and AM [54,55]. These calcium signals (referred to as ‘calcium spiking’) potentially represent a key trigger of AM- or RNS-
specific downstream gene activation. In RLS, activation of the common symbiosis program is assumed to induce the synthesis of cytokinin, which is assumed to act as a
signal regulating organogenetic response in the root cortex [52,68,69]. The cytokinin receptor LHK1 (CRE1 in M. truncatula) has a central role in nodule organogenesis
induction [52,66,67]. (iii) In the legume L. Japonicus, continuous signaling from progressing intracellular infection, possibly via cytokinin, is necessary for maintenance and
completion of nodule organogenesis [38] (b). Cytokinin balancing also has a central role in the induction of lateral roots (LRs), which structurally resemble actinorhizal
nodules [5]. Response patterns are distinct in that a relative increase in cortical cytokinin levels induces nodulation but represses lateral-root formation [67,75]. Three
histidine kinases (AtLHK1, AtLHK2 and AtLHK3), including a putative ortholog of LjLHK1 (MtCRE1), are involved in regulating LR formation in the nonsymbiotic Arabidopsis
thaliana [73] (d). It is possible that cytokinin induction of nodule organogenesis involves specific spatial induction patterns of cytokinin biosynthesis, molecular adaptations
of LjLHK1 (MtCRE1) or downstream targets that are exclusive to RNS-forming species.

ified [30], and for four of these, orthologs were isolated from naling merges with the AM genetic program [12,13,16].
other legumes such as M. truncatula, M. sativa and garden =~ Further common symbiosis proteins include the two pre-
pea [12,31-33]. The RLK SYMRK (DMI2; NORK) functions dicted cation channels CASTOR and POLLUX (M. trunca-
among the earliest components of the common symbiosis tula DMI1) [31,34], two nuclear pore proteins (NUP85 [35]
program, near the point where rhizobium-legume sig- and NUP133 [36]), the calcium and calmodulin dependent

exon-intron borders. Arrowheads indicate exon-intron borders that cannot be correlated between predicted orthologs with certainty. Predicted protein regions are
abbreviated as: Al; CaM, autoinhibitory domain overlapping with calmodulin binding site; EF, calcium-binding EF hand; CC, coiled-coil region; CEC, conserved extracellular
region; LRR, leucine-rich repeat motif; NEC, N-terminal extracellular region of unknown function; NLS, nuclear localization signal; PK, protein kinase domain; TM,
transmembrane domain; SP, signal peptide. The annotations follow in silico predictions or published annotation of the depicted or homologous sequences where
appropriate [11,13,37,38]. The genomic and coding sequences used for prediction of exon-intron structures were: (a) SYMRK (DMI2; NORK) [11-13], AP004579 and
AF492655 (Lotus), AY940041 and AY935266 (tomato); AP003866 and AK099778 (rice); (b) CASTOR [34], AB162016 and AB162157 (Lotus), NC_008396 and AK068216 (rice); (c)
POLLUX (DMI1) [31,34], AB162017 and AB162158 (Lotus), NC_008394 and AK072312 (rice); (d) NUP85[35], AP009253 and AB284835 (Lotus), NC_008394 and AK072636 (rice);
(e) NUP133 [36], AJ890252 and AJ890251 (Lotus), NC_008396 and AK073981 (rice); (f) CCaMK (DMI3) [32,37], AM230792 and AM230793 (Lotus), AC097175 and AK070533
(rice); (g) CYCLOPS [38], AP009158 and EF569221 (Lotus), AP008212 and EF569223 (rice). Coding sequences used for exon-intron structure determination are derived from
cDNA, not from in silico predictions. Parts of the figure are modified from Ref. [11].
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kinase CCaMK (M. truncatula DMI3) [32,37] and the
nuclear protein CYCLOPS [38] (M. truncatula INTER-
ACTING PROTEIN OF DMI3 [IPD3]) [33].

The requirement of legume genes for both bacterial and
fungal symbioses inspired the hypothesis that pre-existing
AM genes were recruited during the evolution of RNS [1].
Indeed, predicted common symbiosis gene orthologs from
non-legume dicots and from monocots were shown to be
essential for AM in these lineages or supported AM if
introduced in legume mutants deficient in the respective
genes. Rice lines mutated in CASTOR, POLLUX, CCaMK
(DM13) or CYCLOPS (IPD3) were unable to establish
symbiosis with AM fungi [26,28,29,38,39], and transgenic
introduction of CASTOR, CCaMK and CYCLOPS into
corresponding legume mutants restored AM formation
[26,28,38,39]. SYMRK genes from different dicot angios-
perms and the monocot rice complemented the loss of AM
in an L. japonicus symrk mutant [11]. This provides evi-
dence for a conserved genetic framework of AM in angios-
perms (Figure 1).

In contrast to RNS, plant organogenetic programs are
not induced during AM [40]. However, in both symbioses
the host plant accommodates the respective microbial
symbiont inside living plant cells. Prior to AM fungal
infection of host epidermal and cortical cells, characteristic
nuclear movements and rearrangements of cytoskeleton
and organelles occur [41,42]. Formation of the resulting
cellular ‘pre-penetration apparatus’ was found to depend
on the common symbiosis genes DMI2 (SYMRK) and DM13
(CCaMK) in M. truncatula [42], indicating their involve-
ment in preparing host cells for the intracellular invasion
by fungal symbionts. Strikingly similar phenomena were
observed in both rhizobium-legume [43,44] and actinorhi-
zal [45] interactions, where cytoplasmic bridges, termed
‘pre-infection threads’, form in host cells before bacterial
invasion. In both AM and RNS, these cytological structures
dictate the path of microbial progression through infected
host cells [41-45]. Consistent with this, mutant pheno-
types of legumes impaired in common symbiosis genes
involve either a total block or early arrest of intracellular
microbial infection [30]. Together, these data strengthen
the hypothesis [1] that AM gene recruitment during RNS
evolution laid the basis for intracellular accommodation of
bacteria. The recruitment event could have enabled the
integration of receptor-mediated perception of bacterial
partners into the pre-existing AM genetic program, which
was a decisive step in the evolution of RNS. The genetic
basis for this novel link might be identical to the enigmatic
predisposition event at the root of the nodulating clade.

SYMRK is a likely determinant of the genetic
predisposition for nodulation

Genetic adaptations conferring the predisposition to nodu-
late [3] have been acquired by the ancestor of the mono-
phyletic nodulating clade. Therefore, the corresponding
features should be present in nodulating and non-nodulat-
ing members of this clade. At the same time, such adap-
tations should be absent in other angiosperm lineages. A
corresponding pattern has so far only been detected for
SYMRK, making this gene a prime candidate for carrying
decisive sequence and functional alterations acquired by
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the ancestor of the nodulating clade. Among common
symbiosis genes required for endosymbiotic infection in
AM and RNS, contrasting evolutionary patterns are appar-
ent (Figures 1 and 2). Unique structural and functional
divergence was found between SYMRK genes isolated from
different angiosperm lineages (Figures 1 and 2). At least
three distinct versions of SYMRK exist, which differ in the
domain configuration of the predicted products and in their
potential to confer symbiotic ability [11]. Only the longest
version, which is present in rosids including legumes,
actinorhizal hosts and also non-nodulating species, fully
supports both AM and RNS [11]. Both shorter SYMRK
versions fully support AM but not RNS when transgeni-
cally introduced into a legume symrk mutant background
[11]. The precise molecular features that are responsible
for these differences remain to be determined. Interest-
ingly, only the monocot version can support basic RNS-
related responses, including organogenesis induction and
rare, aberrant infection events [11]. The precise extent to
which non-rosid SYMRK versions can function in root
interactions with bacteria remains to be determined.
But the apparent correlation between the occurrence of
the full-length SYMRK version in a monophyletic group
including all RNS-forming lineages and the potential of
this version, as opposed to the shorter ones, to support
functional endosymbiosis with bacteria suggests that
SYMRK is involved in the predisposition for nodulation.
By contributing to the general ability of rosid lineages to
evolve RNS, the longest SYMRK version is likely to
represent one of the genetic advances that paved the
way for RNS evolution in an ancestor of the nodulating
clade [11].

In contrast to SYMRK, other common symbiosis genes
exhibit a conserved exon-intron structure within the cod-
ing sequence and similar predicted protein domains in
hosts from dicot and monocot angiosperm lineages
[27,32,34-36,38] (Figure 2). Examples are CASTOR,
CCaMK and CYCLOPS, where this structural conserva-
tion coincides with conserved functionality in root endo-
symbioses. CCaMK from the monocots rice [46] and Lilium
longiflorum [47] restored RNS when introduced into ccamk
mutants of the legume M. truncatula, although later stages
of symbiosis establishment were compromised when rice
CCaMK was used for complementation [46]. In castor,
ccamk and cyclops loss-of-function mutants from L. japo-
nicus, rice versions of the respective genes fully restored
both AM and RNS [28,38].

Potentially, with the exception of SYMRK [11], common
symbiosis proteins from non-nodulating lineages can thus
support RNS without major modification. The observed
sequence adaptations of SYMRK might have been suffi-
cient for the recruitment of the common symbiosis program
in an ancestor of all nodulators.

Combining infection and organogenesis: what makes a
‘predisposed rosid’ a ‘nodulator’?

Despite the scattered occurrence of nodulation within the
rosid lineage, plant-bacterial endosymbioses have only
been detected in association with nodule organogenesis.
A known exception is Gleditsia triacanthos (honey locust),
in which infection-thread formation and symbiotic nitro-
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gen fixation do not involve the development of nodules [48].
In addition, organogenesis can be uncoupled from intra-
cellular infection in nodulating legume species [47,49-52].
Mutants of Sinorhizobium meliloti exist that fail to induce
root-hair reactions or intracellular infection in their host,
M. sativa, but are able to induce nodule organogenesis [49].
By contrast, particular lines of M. sativa, M. truncatula
and L. japonicus develop spontaneous nodules in the com-
plete absence of rhizobia [47,49-52]. These data indicate
that intracellular infection and nodule organogenesis are
genetically separable processes in RNS. Consequently,
genes involved in spatially coordinating and synchronizing
nodule organogenesis with bacterial infection are essential
for an efficient RNS.

Mutants in three independent loci were identified in L.
Japonicus that exhibit root nodule organogenesis in the
absence of rhizobia. Two of the respective genes have been
isolated [37,52]. Versions of CCaMK that are mutated in or
lack the autoregulatory domain of the protein can induce
the development of bacteria-free nodules with normal
tissue organization in legumes forming either determinate
[37] or indeterminate nodules [47]. CCaMK is presumed to
be involved in deciphering nucleus-associated ‘calcium
spiking’ [32,53], periodic fluctuations of calcium concen-
tration that occur in response to rhizobia or isolated Nod
factors [54]. Similar calcium-fluctuations of a distinct pat-
tern occur in response to AM fungi [55], suggesting that
calcium spiking might be involved in inducing different
downstream responses in bacterial and fungal symbioses
[55]. However, the observation that monocot orthologs can
restore nodulation in ccamk loss-of-function mutants
[28,46,47] rules out the possibility that legume-specific
adaptations of CCaMK are essential for nodule organogen-
esis in this lineage.

In the L. japonicus intracellular infection program,
CCaMK functions upstream of the common symbiosis gene
CYCLOPS [38], which is required for intracellular infec-
tion but not for induction of nodule organogenesis. How-
ever, nodule organogenesis aborts at a primordial stage in
cyclops mutants [38]. This developmental arrest can be
circumvented by autoactive CCaMK, indicating that the
initiation of organogenesis is partially parallel to the com-
mon symbiosis program for intracellular infection [38].
Importantly, these observations also suggest that in the
wild-type situation, the progression of intracellular bac-
terial infection is a prerequisite for completion of nodule
development [38].

RNS-related responses induced by an autoactive
CCaMK version require several putative transcriptional
regulators [37,47,56], which, in contrast to CCaMK itself,
are not required for AM [56-59]. These include the GRAS-
type transcription factors NODULATION SIGNALING
PATHWAY 1 (NSP1) [60,61] and NSP2 [61,62], the
ETHYLENE RESPONSE FACTOR (ERF)-type AP2
protein ERF REQUIRED FOR NODULATION 1 (ERN1)
[56] and NODULE INCEPTION (NIN) [59,63]. These all
belong to families that contain close homologs in other
angiosperms, including the nonsymbiotic A. thaliana and
the monocot rice [56,60,61,64]. It is possible that specific
adaptations of the respective legume genes are required for
their function in RNS because NbNSPI from Nicotiana
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benthamiana (tobacco) only partially complemented RNS
in M. truncatula nspl mutants [61].

Interestingly, these genes are required for both nodule
organogenesis and infection-thread initiation (NSP1
[57,60]; NSP2 [58,62]; NIN [59]) or infection-thread de-
velopment (ERN1 [56]). Their precise role during symbio-
sis establishment is unclear but potentially involves the
regulation of distinct response patterns in root epidermal
and cortical layers [65].

Several lines of evidence, most notably the discovery
that a cytokinin receptor (L. JAPONICUS HISTIDINE
KINASE 1 [LHK1] [52,66], M. truncatula CYTOKININ
RESPONSE 1 [CRE1] [67]) has an important role in
initiation of nodulation, indicate that cytokinin is a key
trigger for nodule organogenesis, as discussed in two recent
reviews [68,69].

In a possible scenario, Nod-factor signaling via the
common symbiosis program initiates cytokinin production,
which in turn induces transcriptional regulation of genes
controlling progression of nodule organogenesis [68] in a
cell-type-specific manner [69].

Cytokinin is a trigger for nodule organogenesis
Consistent with an essential role of cytokinin in initiating
nodule organogenesis, an autoactive version of the cytoki-
nin receptor LHK1 induces spontaneous nodule organo-
genesis in the absence of rhizobia [52]. By contrast, an lhk1
loss-of-function allele (hit1-1) supports intracellular bac-
terial infection but strongly impairs the formation of
nodules [66]. Experimental downregulation of the M. trun-
catula predicted ortholog of this gene, CRE1, led to loss of
nodule organogenesis [67], indicating a role of cytokinin in
the formation of both determinate and indeterminate
nodules.

Both rhizobial and Frankia strains have been reported
to secrete cytokinin [70,71], and Nod-factor-deficient, non-
nodulating strains of Sinorhizobium meliloti regain the
potential to induce nodule-like organs when manipulated
to secrete trans-zeatin, a naturally occurring cytokinin
[72]. These observations suggest a possible role of cytoki-
nin secreted by bacterial symbionts during symbiosis
establishment in the induction of nodule organogenesis
in RNS.

Photosynthetic Bradyrhizobium strains were identified
that lack the nodABC operon required for Nod-factor syn-
thesis and were proposed to induce nodulation in a Nod-
factor-independent manner by using purine derivatives,
which could be related or identical to phytoactive cytoki-
nins [21]. Together, these data suggest that bacterial
symbionts might contribute to nodule organogenesis
induction, or even circumvent the Nod-factor signaling
pathway, by releasing cytokinin and activating the
LHK1-mediated organogenesis program.

Presumed LHKI or CRE1 orthologs are conserved in
angiosperms, including Arabidopsis and rice [73,74]. Test-
ing the potential of deregulated versions to autoinduce
similar organogenetic responses in non-nodulating plants
could reveal whether nodulating groups evolved a partially
specific, LHK1-mediated cytokinin response [65] or
whether they fully rely on pre-existing programs for orga-
nogenesis.
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The direct involvement of cytokinin signaling in the
regulation of nodule organogenesis relates RNS to funda-
mental developmental processes, such as lateral-root gener-
ation [67,73,75], regulation of root length [52,66,67,73] and
vascular morphogenesis [52,76] (Figure 3). The evolution of
nodule organogenesis might thus have involved the adap-
tation of pre-existing root developmental programs such
that they respond to hormonal re-balancing of the root
cortex induced by signals associated with endosymbiotic
bacterial infection [68,77,78]. Consistent with this is the
occurrence of nodules and nodule-like structures in diverse
land plant lineages, indicating that the genetic tools for their
formation are not limited to RNS-competent rosids. For
example, nodules that are likely to have evolved as modified
lateral roots similar to actinorhizal nodules occur naturally
in some gymnosperms such as Podocarpus spp., where they
are colonized by AM fungi and potentially provide a setting
for bacterial nitrogen fixation [79]. Artificial induction of
nodule-like structures was reported in rice after partially
macerated root tissue was exposed to rhizobial bacteria [80].
Finally, nitrogen-fixing nodules differ greatly in their
morphological and developmental characteristics between
RNS-forming groups [4,5], giving further indication that a
broad range of host genetic backgrounds can potentially
support nodule formation.

Concluding remarks
The emergence of RNS seems to be based on the evolution-
ary concept of recruitment, in that many RNS-related
processes rely on conserved genetic programs that also
support pre-existing plant developmental processes and
that later acquired additional roles in RNS. Its restricted
occurrence in a few rosid plant orders, all part of a mono-
phyletic clade, indicates that more than one specific mol-
ecular adaptation was necessary to make RNS evolution
possible (Figure 3). These respective genetic changes prob-
ably served to link, or add to, pre-existing genetic pro-
grams, creating a novel trait of high ecological and
economic value. The plant genes involved in these adap-
tations represent vantage points for efforts to transfer RNS
to new hosts. Respective candidate proteins are involved (i)
in direct host-microbiont crosstalk (for example, LysM
receptor kinases such as L. japonicus NFRs or M. trunca-
tula LYKs and NFP) and (ii) in mediating the molecular
integration of plant-bacterial signaling into the host
genetic background, thereby ‘tapping’ pre-existing plant
programs for additional use in RNS. A possible example of
such a ‘recruiter protein’ is the RLK SYMRK (DMI2;
NORK), which probably contributed to the potential of
AM hosts to form endosymbioses with bacteria [1], a
capacity that later became associated with nodule organo-
genesis on independent evolutionary occasions [1,3], per-
haps through the cytokinin receptor LHK1 (CRE1).
Efforts towards engineering novel host systems should
focus on identifying the crucial specificities of RNS and aim
to bring these together within target hosts. To achieve
artificial forms of RNS efficient in symbiotic nitrogen
fixation, more insights will further be required into the
fine-tuning of host-bacterial recognition and compatibility
determination (Box 2). In the past, genetic dissection of
RNS has predominantly focused on legume model systems
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Box 2. Superficial details

In addition to Nod factors, other rhizobial molecules, such as
exopolysaccharides and secreted effector proteins [49,91,92], can
contribute to establishing fully compatible interactions with le-
gumes. This equally applies to symbioses involving narrow- [49]
and broad-host-range rhizobial strains like Rhizobium sp. strain
NGR234 [91]. The possible existence of additional checkpoints for
mutual compatibility in rhizobium-legume systems, potentially
involving as yet unknown molecular components [17,91,92], might
challenge a successful biotechnological transfer of fully compatible
RNS. Deciphering the precise roles of bacterial surface molecules
and secreted proteins in both legume and actinorhizal RNS
represents an intriguing field for future research efforts.

where the plant genetic programs involved are likely to be
strongly derived. Less specialized forms of RNS, including
actinorhizal associations with Frankia bacteria, combine
features that render them more promising models for
potential RNS transfer to new hosts (Box 1). Deciphering
genetic determinants for the existing diversity of RNS
within and beyond the legume lineage will thus be an
important step towards identifying a basic set of RNS
genetic requirements and, ultimately, combining them in
potential new systems.
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Nitrogen-fixing root nodule symbioses (RNS) occur in two major forms—Actinorhiza and legume-rhizobium
symbiosis—which differ in bacterial partner, intracellular infection pattern, and morphogenesis. The phylogenetic
restriction of nodulation to eurosid angiosperms indicates a common and recent evolutionary invention, but the
molecular steps involved are still obscure. In legumes, at least seven genes—including the symbiosis receptor-kinase
gene SYMRK—are essential for the interaction with rhizobia bacteria and for the Arbuscular Mycorrhiza (AM) symbiosis
with phosphate-acquiring fungi, which is widespread in occurrence and believed to date back to the earliest land
plants. We show that SYMRK is also required for Actinorhiza symbiosis of the cucurbit Datisca glomerata with
actinobacteria of the genus Frankia, revealing a common genetic basis for both forms of RNS. We found that SYMRK
exists in at least three different structural versions, of which the shorter forms from rice and tomato are sufficient for
AM, but not for functional endosymbiosis with bacteria in the legume Lotus japonicus. Our data support the idea that
SYMRK sequence evolution was involved in the recruitment of a pre-existing signalling network from AM, paving the
way for the evolution of intracellular root symbioses with nitrogen-fixing bacteria.
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Introduction

Nitrogen limits plant growth in many terrestrial ecosys-
tems. Evolutionary adaptations to this constraint include
symbiotic associations with bacteria that are capable of
converting atmospheric nitrogen into ammonium. Extracel-
lular associations of plants with diverse groups of nitrogen-
fixing bacteria are phylogenetically widespread, but only a
small group evolved the ability to accommodate bacteria
endosymbiotically inside cell wall boundaries. Bacterial
symbionts are confined within tubular structures called
infection threads, which are surrounded by a host-derived
membrane that is continuous with the plasma membrane, and
bound by plant cell wall-like material [1,2]. The bulk of host
plants including all actinorhizal species retain the bacterial
symbionts within these structures during the nitrogen-fixing
stage of the symbiosis [1,3]. In the most advanced forms found
exclusively among legumes (Fabales) and Gunnera [4], sym-
biotic bacteria are delimited from the host cell cytoplasm
only by a plant-derived membrane in the mature stage of the
symbioses. In the respective legumes, they develop into
bacteroids contained in organelle-like symbiosomes, where
nitrogen fixation takes place (for a recent review, see [5]).
Bacterial endosymbioses in both legumes and actinorhizal
plants are typically associated with the formation of novel
plant organs, so-called nodules, which are root-derived in the
majority of cases [6]. Nitrogen-fixing root nodule symbiosis
(RNS) occurs in two major forms. Actinorhiza hosts belong to
three eurosid orders (Figure 1) and nodulate with Gram-
positive actinobacteria of the genus Frankia [7]. Legumes, on
the contrary, enter specific interactions with members of a
diverse group of Gram-negative bacteria, termed rhizobia.
For almost a century, the extreme diversity in organ
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structure, infection mechanisms, and bacterial symbionts
among nodulating plants obscured the fact that the nodulat-
ing clade is monophyletic, which was revealed by molecular
phylogeny relatively recently [8]. The restriction of endosym-
biotic root nodulation to a monophyletic group of four
angiosperm orders (Figure 1) is coincident with a patchy
occurrence within this clade. These observations led to the
hypothesis that a genetic change acquired by a common
ancestor may predispose members of this lineage to evolve
nodulation endosymbiosis [8].

The molecular adaptations underlying the evolution of
plant-bacterial endosymbioses are still a mystery, despite a
substantial biotechnological interest in understanding the
genetic differences between nodulating and non-nodulating
plants. While the molecular communication between legumes
and rhizobia has been studied in some detail, important clues
are expected from the genetic analysis of the yet underex-
plored Actinorhiza.

Bacterial signalling molecules and corresponding plant
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Author Summary

As an adaptation to nutrient limitations in terrestrial ecosystems,
most plants form Arbuscular Mycorrhiza (AM), which is a symbiotic
relationship between phosphate-delivering fungi and plant roots
that dates back to the earliest land plants. More recently, a small
group including the legumes and close relatives has evolved the
ability to accommodate nitrogen-fixing bacteria intracellularly. The
resulting symbiosis is manifested by the formation of specialized
root organs, the nodules, and comes in two forms: the interaction of
legumes with rhizobia, and the more widespread Actinorhiza
symbiosis of mostly woody plants with Frankia bacteria. The
symbiosis receptor kinase SYMRK acts in a signalling pathway that
legume plants require to trigger the development of nodules and
the uptake of fungi or bacteria into their root cells. Here we show
that the induction of Actinorhiza nodulation also relies on SYMRK,
consistent with the idea that both types of nodulation evolved by
recruiting common signalling genes from the pre-existing AM
program. We observed that SYMRK from different land plant
lineages differs significantly in exon composition, with a “full-
length” version in the nodulating clade and shorter SYMRK genes in
plants outside this lineage. Only the most complete SYMRK version
was fully functional in nodulation, suggesting this gene played a
central role in the recruitment event associated with the evolution
of intracellular root symbioses with bacteria.

receptors involved in RNS are known only for the legume-
rhizobium interaction. Frankia signals may be biochemically
distinct from rhizobial chito-oligosaccharide nodulation
factors [9], which would suggest an independent mechanism
of host-symbiont recognition in Actinorhiza.

Phenotypic analysis of legume mutants has revealed a
genetic link between RNS and Arbuscular Mycorrhiza (AM),
which is a phosphate-scavenging association between plant
roots and fungi belonging to the phylum Glomeromycota
[10]. AM is widespread among land plants, where forms of AM
are found in representatives of all major lineages. Fossil
evidence for ancient AM-like associations [11] suggests a role
of this symbiosis in the colonization of land about 450 million
years ago.

The link of plant-fungal and plant-bacterial endosymbioses
in legumes, which involves at least seven genes [12-16] termed
“common symbiosis genes” [17], inspired the idea that during
the evolution of bacterial endosymbiosis, genes were recruited
from the pre-existing AM genetic program [18]. However, the
molecular steps involved are not clear.

Results

To gain insight into the evolution of nitrogen-fixing root
nodulation, we analysed common symbiosis genes across
angiosperm lineages with different symbiotic abilities. Many,
including the calcium/calmodulin kinase gene CCaMK [14,19],
or genes encoding the predicted cation channels CASTOR
and POLLUX [12,20,21], are conserved in overall domain
structure. We discovered exceptional diversification among
genes encoding the symbiosis receptor kinase SYMRK in
different species (Figure 1). While putative SYMRK kinase
domains are conserved and contain characteristic sequence
motifs discriminating them from related kinases (Figure S1),
the predicted extracellular portion of SYMRK occurs in at
least three versions of domain composition (Figure 1 and
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Table 1). The longest SYMRK version is present in all tested
eurosids, including nodulating and non-nodulating lineages.
Comprising 15 exons, it encodes three leucine-rich repeat
(LRR) motifs and an extended N-terminal domain of
unknown function (NEC-domain, Figure 1 and Table 1).
Outside of the eurosid clade, which encompasses all nodulat-
ing groups, one or more exons are absent from SYMRK
coding sequences (Figure 1 and Table 1).

Genetic evidence indicates that SYMRK acts near a point of
molecular convergence of AM and legume-rhizobium signal-
ling [16,22]. The presumed ability of its diverged extracellular
domain to perceive symbiosis-related signals [16] renders it a
prime target for investigating the molecular adaptations
underlying the evolution of RNS.

The homogenous occurrence of “full-length” SYMRK
genes among legumes, actinorhizal plants, and non-nodulat-
ing eurosids raises the intriguing possibility that SYMRK is
involved in the proposed genetic predisposition [8] of this
clade to evolve nodulation. An important prediction follow-
ing from this hypothesis is the common requirement of a full-
length SYMRK version for all types of RNS. Furthermore, also
non-nodulating members of this monophyletic clade may
carry nodulation-competent versions of SYMRK. To test this
concept, we analysed the functional capabilities of “full-
length” SYMRK genes from symbiotically diverse eurosids.

SYMRK |s Required for Actinorhiza and AM in Datisca
glomerata

To investigate SYMRK function in Actinorhiza, we reduced
root mRNA levels of D. glomerata (Datisca) SYMRK (DgSYMRK)
via RNA-interference (RNAi). Quantitative PCR following
reverse transcription showed a 36%-99% reduction of
DgSYMRK transcript levels in knockdown roots (n = 16)
compared with vector control roots (n=16). Eight weeks after
inoculation with Frankia bacteria, no nodules were detected
on DgSYMRK RNAi roots (Figure 2A and 2B), except for
small, primordial swellings on 16% of independent trans-
formed roots (9/55). Nonsilenced control roots of the same
plants and roots transformed with a binary vector lacking the
silencing cassette (transgenic control roots) showed wild
type-like nodules with lobed structure typical for Datisca
(Figure 2A and 2B). This result demonstrates that SYMRK is
essential for Actinorhiza development in Datisca. In con-
junction with the well-documented role of legume SYMRK in
the interaction with rhizobia [16,23], SYMRK thus represents
a common genetic requirement for the two types of bacterial
root endosymbiosis.

To test whether DgSYMRK is also required for AM, we
inspected DgSYMRK RNAIi roots for AM formation with the
fungus Glomus intraradices (Glomus). Datisca wild-type roots of
the same plants used for hairy root induction and inde-
pendent transgenic control roots formed AM, with dense
arbuscular colonization of inner cortical cells (Figure 2C-2F).
In contrast, symbiotic development in DgSYMRK RNAI roots
was strongly impaired. In 82% of independent transformed
roots, no fungal infection was observed, despite the presence
of extensive extraradical mycelium (Figure 2G), with those
roots exhibiting strong reduction levels of DgSYMRK being
nonsymbiotic concerning both nodulation and AM forma-
tion. Occasional infection attempts occurred but typically
were aborted in the outer cell layers (Figure 2G and 2H). We
conclude that similar to the situation in legumes, SYMRK of
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Figure 1. SYMRK Exon-Intron Structure and Root Endosymbiotic Abilities of Angiosperm Lineages

All putative SYMRK genes encode an N-terminal signal peptide, an extracellular region with two or three LRR motifs and one imperfect LRR, a
transmembrane domain, and an intracellular serine/threonine protein kinase. SYMRK regions encoding putative kinase domains exhibit conserved
intron positions and phases. Bars illustrate the exon-intron and predicted protein domain structure of representative SYMRK candidates. Positions of
introns are indicated by black arrowheads. Predicted protein domains are SP, signal peptide; NEC, N-terminal extracellular region; CEC, conserved
extracellular region preceeding LRRs; LR(R), leucine-rich repeats; TM, transmembrane domain; and PK, protein kinase domain. Names refer to species
sampled and are shaded according to their root endosymbiotic capabilities: black, endosymbiosis with Frankia bacteria (Actinorhiza) and AM formation;
gray, endosymbiosis with rhizobia and AM formation; white, AM formation only. Pictograms symbolize AR, Actinorhiza; RLS, Rhizobium-Legume
Symbiosis; AM, Arbuscular Mycorrhiza. Dashed frames have no phylogenetic implications. The cladogram depicts relationships of angiosperm orders as
deduced by molecular markers [53,54]. The four orders containing nodulating taxa are shaded light gray. Squares at the tips of branches indicate the
presence of taxa with particular root endosymbiotic phenotypes (colour code is as for sampled plants). Filled and white wedges indicate branches
where taxa on order and family level have been omitted, respectively. Popular species designations refer to Alder, Alnus glutinosa; Poplar, Po.
trichocarpa; Tomato, Ly. esculentum; Poppy, P. rhoeas; Rice, O. sativa; Maize, Z. mays.

doi:10.1371/journal.pbio.0060068.g001

@ PLoS Biology | www.plosbiology.org 0499 March 2008 | Volume 6 | Issue 3 | e68



Evolution of Intracellular Root Symbiosis

Table 1. SYMRK Homologs, Conceptual SYMRK Proteins, and the Closest Arabidopsis Sequences

Species mRNA AAs Exons LRRs Percent AA Identity/Similarity
Accession Overall EC IC

L. japonicus AF492655 [16] 923 15 3 100/100 100/100 100/100
Me. truncatula AJ491998 [16] 925 15 3 82/87 74/83 92/95
Lu. albus AY935267° 923 15¢ 3 79/86 72/83 89/92
Al. glutinosa AY935263° 941 15¢ 3 61/75 51/69 78/88
D. glomerata AM271000? 934 15 3 61/73 54/67 71/80
Po. trichocarpa AM851092° 933 159 3 59/71 49/66 75/81
T. majus AY935265° 945 15¢ 3 59/72 50/65 74/84
Ly. esculentum AY935266" 903 14 2 54/68 45/65 72/81
P. rhoeas AM270999° 902 14¢ 2 54/69 43/59 75/86
Z. mays DQ403195 [55] 579 12 2 55/69 30/49 74/86
O. sativa XM_478749 [56] 576 12 2 55/69 33/51 72/84
A. thaliana NM_105440 [57] 929 15 3 34/51 29/43 50/68
A. thaliana NM_129261 [57] 933 15 3 33/50 27/42 50/69

Percentages of AA identity/similarity are relative to the L. japonicus SYMRK sequence and were obtained via BLASTX analysis using the NCBI Basic Local Alignment Search Tool (http://

www.ncbi.nlm.nih.gov/BLAST/).

AAs, amino acids; LRRs, predicted leucine-rich repeat domains; EC, predicted extracellular region and IC, predicted intracellular region of the conceptual proteins.

2 This publication.

° The genomic sequence is available at http://genome.jgi-psf.org/Poptr1/Poptri.home.html, the gene location is Poptr1/LG_VII:12333164-12338867.
€ Only cDNA sequence information was obtained. The exon-intron structure was predicted based on splice site prediction and conserved intron position on other SYMRK genes.
4 Only genomic sequence information was obtained. The exon-intron structure was predicted based on splice site prediction and conserved intron position on other SYMRK genes.

doi:10.1371/journal.pbio.0060068.t001

the actinorhizal plant Datisca is involved in both bacterial
and fungal endosymbioses.

SYMRK Does Not Mediate Specificity in Legume-
Rhizobium Recognition

To determine whether SYMRK plays a role in the specific
recognition of rhizobia by legume hosts, we tested whether L.
Japonicus (Lotus) SYMRK (LjSYMRK) can mediate nodulation
in another legume, which interacts with a different rhizobial
partner. The specific symbiont of Lotus is Mesorhizobium loti,
whereas Medicago truncatula (Medicago) interacts with Sinorhi-
zobium meliloti. Medicago dmi2 5P mutants exhibit a deletion in
exon three of the SYMRK ortholog DMI2, leading to a
frameshift and premature stop codon. Dmi2 5P plants form
no infection threads or nodules upon inoculation with either
rhizobial strain. Transgenic roots of these plants, and of wild-
type control plants carrying LjSYMRK, formed infection
threads and indeterminate, pink nodules typical for Medicago
[24] with S. meliloti (Figure S2 and Table 2). LjSYMRK can
therefore fully restore nodulation of Medicago with S. meliloti,
indicating that SYMRK is not directly involved in determin-
ing legume-rhizobium specificity.

Medicago dmi2 5P mutants are also impaired in AM. No
arbuscules were observed within 2 wk of co-cultivation, with
fungal infection being aborted at the root surface or after
entry into epidermal cells (Figure S2 and Table 2). LiSYMRK
restored the AM defect in transgenic roots of this line (Figure
S2 and Table 2), demonstrating that SYMRK is sufficiently
similar to DMI2 to support both fungal and bacterial
endosymbioses in Medicago.

“Full-Length” SYMRK Versions from Symbiotically Distinct
Eurosids Can Support Both AM and RNS in Lotus

To analyze the symbiotic capabilities of “full-length”
eurosid SYMRK genes from a legume (MtDMI2), an actino-
rhizal plant (DgSYMRK), and the non-nodulating, AM-form-
ing Tropaeolum majus (Tropaeolum; Brassicales) (TmSYMRK), we
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tested their potential to function in the Lotus symbiosis
signalling context. We introduced these genes, under the
control of the Lotus SYMRK promoter region, into roots of
Lotus line SL1951-6 (symrk-10), which carries a symrk mutant
allele encoding a kinase-dead SYMRK version [25,26]. Upon
inoculation with Glomus, symrk-10 roots form no AM, and
fungal infections are typically associated with aberrant
hyphal swellings and are aborted after entry into epidermal
cells (Figure 3A and 3B, and Table 2). Interaction with M. loti
is blocked at an early stage, and no infection threads or
nodules form (Figure 3C and 3D, and Table 2). In symrk-10
roots transformed with MtDMI2, DgSYMRK or TmSYMRK
both AM and nodulation were restored, the latter involving
the formation of infection threads and pink, bacteria-
containing nodules (Table 2 and Figure 3) that were
indistinguishable from wild-type nodules. In conclusion,
consistent with a role of SYMRK in the predisposition to
evolve RNS, we could not detect a functional diversification
of the eurosid SYMRK version linked to features differ-
entiating actinorhizal or legume nodulation, or to the specific
recognition of bacterial symbionts. Thus, other factors, such
as nod factor receptor kinases [22,27,28] or yet-unknown
additional components, are likely accountable for the fine-
tuning of recognition specificity in plant-bacterial endo-
symbioses within the eurosids.

SYMRK Versions of Reduced Length Restore AM but Not
RNS in Lotus

SYMRK from the non-nodulating eudicots Papaver rhoeas
(poppy) and Lycopersicon esculentum (tomato) represent inter-
mediate length and domain composition (Figure 1 and Table
1). To explore the symbiotic capabilities of this version, we
introduced the two-LRR encoding LeSYMRK genomic se-
quence fused to the LjSYMRK promoter into Lotus symrk-10
transgenic roots. LeSYMRK selectively restored AM symbiosis,
whereas neither infection threads nor nodules developed
upon inoculation with M. loti (Table 2 and Figure S3E-S3L).
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Figure 2. Nodulation and AM Formation Are Impaired in DgSYMRK
Knockdown Roots

Co-transformed roots express DsRED1 as visible marker.

(A and B) Nodulated wild-type root (left), control root transformed with
pRedRoot lacking the silencing cassette (middle), and non-nodulated
DgRNAi knockdown root (right) (A) under white light and (B) with
transgenic roots showing DsRED1 fluorescence.

(C-H) AM phenotype of D. glomerata (Datisca) wild type, transgenic
control, and DgSYMRK knockdown roots. (C and D) Wild-type and (E and
F) transgenic control roots are well colonized and show arbuscules in
inner cortical cells. (G and H) Typical DgSYMRK knockdown root with no
AM formation but extraradical mycelium and aborted fungal infections
(H and arrow in G). Such features were not seen in Datisca wild-type or
transgenic control roots and are reminiscent of those observed on L.
japonicus symrk mutant roots (Figure 3). Roots were inoculated
simultaneously with Frankia bacteria and G. intraradices (8 wk). Trans-
genic and regenerated nontransgenic roots of 27 (control) and 23
(DgSYMRK RNAi construct) plants from three independent experiments
were tested. Independent transformed roots examined were n = 42
(control) and n = 55 (DgSYMRK RNAi).

Scale bars: (A and B) 2 mm; (C, E, and G) 0.1 mm; (D, F, and H) 0.02 mm.
doi:10.1371/journal.pbio.0060068.g002

A reduced SYMRK version is present in the AM-forming,
non-nodulating monocots Oryza sativa (rice) and Zea maize
(maize), encoding two LRRs only and a short N-terminal
region, mainly covered by a single exon aligning with exon
four of LjSYMRK (Figure 1 and Figure SI). To determine
whether the short SYMRK version of rice, OsSYMRK, is
sufficient for endosymbiosis formation in Lotus, we intro-
duced the OsSYMRK genomic sequence controlled by the
LjSYMRK promoter into symrk-10 roots. AM formation was
fully restored in these roots, whereas nodulation with M. loti
was impaired (Table 2 and Figure S3M-S37). OsSYMRK-
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containing symrk-10 roots inoculated with M. loti exhibited
primordial swellings generally devoid of bacteria (Figure S3U-
S$3X). In rare cases, infection threads and small round nodules
were observed, which contained bacterial colonies (Figure S3Y
and S37). Hence, similar to LeSYMRK, OsSYMRK is compro-
mised in supporting bacterial endosymbiosis in Lotus.

Discussion
A Molecular Link between the Two Types of RNS

In legumes, SYMRK is indispensable for root endosymbiosis
with rhizobia and AM fungi [16,23]. We show here that this
endosymbiosis gene is also required for nodulation in the
actinorhizal plant Datisca. SYMRK, which is likewise essential
for Actinorhiza formation of the tree species Casuarina glauca
(Fagales) [29], represents the first known plant gene required
for Actinorhiza, indicating a shared genetic basis of the two
different types of RNS. A future task will be to determine
whether further endosymbiosis genes acting in concert with
SYMRK in legumes are also required for Actinorhiza.

An Ancient Genetic Program for AM among Angiosperms

The ability of different SYMRK versions from both dicot
and monocot lineages to restore AM in Lotus indicates a
homologous nature of the AM genetic program in angio-
sperms. This is consistent with the observation that loss-of-
function mutations in the rice version of the legume
symbiosis gene CCaMK results in loss of AM symbiosis [30].
In Arabidopsis, the absence of root symbiotic capability is
accompanied by a deletion of several symbiosis genes,
including SYMRK and CCaMK [21,31,32].

A Role of SYMRK in the Predisposition to Evolve RNS

Our survey of SYMRK sequences across angiosperms
revealed at least three structurally distinct versions, and we
could show that this polymorphism is functionally related to
the root symbiotic capabilities of host plants. The variation in
SYMRK domain composition is exceptional among the
known common symbiosis genes. The congruence between
the phylogenetic distribution of the “full-length” SYMRK
version with the nodulating clade strongly suggests a link
between SYMRK sequence evolution and the acquisition of
endosymbiotic root nodulation with bacteria. An attractive
hypothesis is that SYMRK sequence divergence was a critical
step in mediating the recruitment of the otherwise conserved
common symbiosis pathway from the pre-existing AM genetic
program. Recruitment was proposed to account for the
genetic link of AM and nodulation in legumes [17,18] and
would make root-bacterial endosymbiosis as a whole a
fascinating example for novel traits evolving on the basis of
pre-existing genetic patterns.

A common feature associated with endosymbiotic bacterial
infection in both actinorhizal [33] and legume hosts [34] is the
formation of intracellular pre-infection threads (PITs) in host
cells. These cytoplasmic structures resemble the pre-pene-
tration apparatus (PPA) preceding fungal infection during
AM formation [35]. Forming in anticipation of bacterial
symbionts, PITs are thought to coordinate the uptake of
bacteria and determine the spatial progression of infection
through the host cell [33,34]. A similar role in guiding fungal
transition through host cells in AM has been demonstrated
for PPAs [35]. These developmental similarities in AM,
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Table 2. Restoration of Root Symbioses in Medicago dmi2 and Lotus symrk Mutants Transformed with Different SYMRK Versions

Plant Genotype Transgene AM-+ IT Nod+ Nodules/Nodulated Plant
dmi2 5P marker only® 0/21 - 0/17 0

dmi2 5P LjSYMRK 20/23 + 16/25 45

symrk-10 marker only® 3/251 - 0/62 0

symrk-10 LiSYMRK 40/45 + 32/39 4.9

symrk-10 MtSYMRK 20/25 + 18/31 42

symrk-10 DgSYMRK 20/40 + 6/18 58

symrk-10 TmSYMRK 20/28 aF 14/21 2.6

symrk-10 LeSYMRK 24/34 - 0/31 0

symrk-10 OsSYMRK 38/40 +0 6/43 15

Numbers refer to Ag. rhizogenes-transformed root systems of Me. trunculata (Medicago) dmi2 5P or L. japonicus (Lotus) symrk-10 mutants.

Constructs were under control of the LiSYMRK promoter region. Numbers are compiled results of one (Medicago) or two to three (Lotus) independent experiments. Wild-type roots
transformed with the same constructs formed wild type-like AM, ITs, and nodules. IT, infection thread formation; Nod+, number of root systems showing nodules containing bacteria.
@ Plants were transformed with the respective binary vector lacking a SYMRK expression cassette.

b Infection threads were seen very rarely in these roots.

€ Nodule-like structures were small and showed, with one exception, no pinkish coloration under white light.

doi:10.1371/journal.pbio.0060068.t002

Actinorhiza, and legume-rhizobium infection may reflect a
common genetic program for endosymbiosis establishment
and symbiont uptake in all three types of interactions. In AM,
PPAs are not formed in mutants that are defective in certain
common symbiosis genes [35]. It is therefore possible that a
recruitment of AM symbiosis genes during the evolution of
RNS facilitated the induction of intracellular accommodation
structures in response to bacteria.

SYMRK Domain Function and Evolution

Repetitive LRR modules have been implicated in the
determination and evolution of novel recognition specific-
ities of receptor proteins [36-38]. Interestingly, adaptive
changes reflecting positive selective constraints can be traced
in LRR- and NEC-encoding regions of SYMRK genes from
different Medicago species, but these do not correlate with
shifts in rhizobial specificity [39]. Our functional comparison
of eurosid SYMRK versions indicates that SYMRK is not
involved in determining recognition specificity in nodulation.
However, an extended SYMRK version containing a set of
three LRR motifs, as present in eurosid SYMRK genes, is
required for fully supporting nodulation symbiosis of Lotus
with M. loti. Shorter SYMRK versions from tomato or rice
only suffice for AM. These functional differences may be
caused by individual amino acid sequence polymorphisms, or
alternatively, exons that are specifically required for bacterial
endosymbiosis may be lacking in rice and tomato SYMRK
versions.

At an overall structural level, exon acquisition from other
genes encoding LRR or NEC-like domains [23,40] or,
alternatively, retainment of exons in eurosid SYMRK genes,
may have been an integral genetic factor in the evolution of
bacterial endosymbiosis in angiosperms. The observation of
small nodule-like structures on Lotus symrk mutant roots
transformed with the OsSYMRK construct is counterintuitive,
considering that the LeSYMRK version, which resembles the
legume version more closely, does not support such devel-
opmental responses. One possible explanation may be that
the nonmatching NEC region of LeSYMRK negatively
interferes with nodulation, but not AM signalling in Lotus.

The NEC domain encoded by Lotus SYMRK exons two and
three, upstream of the conserved LRR flanking region (CEC),
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is present across eudicot plants (Figure 1). Its function
outside the nodulating group is unknown. The proposed
involvement of SYMRK in processes such as reduction of the
touch sensitivity of root hairs [41] may rely on this domain
thereby imposing selective constraints. The NEC domain
shows possible overall relatedness but only a low level of
similarity to sequences present in the rice genome, and to
sequences other than SYMRK candidates in genomes of dicots
like Arabidopsis [23]. The apparent divergence observed
among these potentially homologous sequences of yet
unknown function is consistent with a hypothetical role as a
receptor domain.

It will be a future challenge to determine the contribution
of individual SYMRK LRR units as well as of the NEC domain
and to resolve at the amino acid level the features of SYMRK
proteins involved in conferring endosymbiotic nodulation
capacity.

Additional Components Required for Nodulation

The diversity and scattered occurrence of nodulation
symbioses within the eurosid lineage suggest multiple
independent origins [42]. Only a subset of the plant species
carrying the “full-length” version of SYMRK develop root
nodules, yet SYMRK of the non-nodulating Tropaeolum proved
competent to support nodulation in Lotus. Hence, there must
be additional genetic features distinguishing the nodulators.
Candidate genes include those that express the legume LysM
receptor kinases NFR1 and NFR5 [22,27,43], which are
required for responsiveness to rhizobial lipo-chito-oligosac-
charide nodulation factors, but not for AM formation. A
potential relevance of LysM receptors in Actinorhiza, or the
identity of alternative receptors perceiving yet unknown
Frankia signals, remains to be determined.

Materials and Methods

Isolation of SYMRK homologues. We used a PCR strategy employ-
ing degenerate primers to obtain SYMRK sequence information from
diverse angiosperms, for which no genome or root-derived expressed
sequence tag sequences were available. Degenerate primers for the
isolation of SYMRK genes were positioned in regions of the coding
sequence conserved among SYMRK candidates, but not in other
similar O. sativa (rice) and A. thaliana (Arabidopsis) sequences. For
primer sequences, see Table S1.
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symrk-10+ symrk-10+ symrk-10+ symrk-10+ symrk-10+
control vector L _ MISYMRK IJESYMRK TmSYMRK

Q i ' O { ! r;_l .|

symrk-10+ LiSYMRK symrk-10 + TmSYMRK

Figure 3. Datisca, Medicago, and Tropaeolum SYMRK Restore Fungal and Bacterial Endosymbioses in Lotus symrk-10 Mutants

Transgenic roots were identified via fluorescence of eGFP encoded on the transfer-DNA.

(A-D) L. japonicus (Lotus) symrk-10 roots transformed with the respective control vector lacking a SYMRK expression cassette.

(E-AB) Lotus symrk-10 roots transformed with Lotus (E-J), Me. truncatula (Medicago) (K-P), D. glomerata (Datisca) (Q-V) and T. majus (Tropaeolum) (W-AB)
SYMRK under control of the LiSYMRK promoter region.

(A, B, E F, K L Q R W, and X) Roots co-cultivated with G. intraradices for 3 wk. (A and B) Transgenic control roots devoid of intraradical hyphae or
arbuscules, with aborted fungal infection structures within epidermal cells (B and arrow in A). Roots carrying Lotus (E and F), Medicago (K and L), Datisca
(Q and R), and Tropaeolum (W and X) SYMRK with dense fungal colonization of the inner root cortex (E, K, Q, and W) and arbuscule formation in inner
cortical cells (F, L, R, and X).

(C, D, G-J, M-P, S-V, and Y-AB) Root systems inoculated with M. loti expressing DsRED for 4 wk. (C and D) Transgenic control roots showing no nodules.
symrk-10 root systems transformed with Lotus (G-J), Medicago (M-P), Datisca (S-V), and Tropaeolum (W-AB) SYMRK develop nodules on transgenic roots.
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Nodules exhibit pink coloration in white light, indicating the presence of symbiosis-specific leghemoglobins (I, O, U, and AA) and DsRED fluorescence in

inner nodule tissue indicating the presence of M. loti (J, P, V, and AB).

Scale bars: (A, E, K, Q, and W) 0.1 mm; (B, F, L, R, and X) 0.02 mm; (C, D, G, H, M, N, S, T, Y, and Z) 2 mm; (I, J, O, P, U, V, AA, and AB) 0.5 mm.

doi:10.1371/journal.pbio.0060068.9003

A Zap cDNA libraries were available for isolation of Ly. esculentum
(tomato) and Alnus glutinosa (alder) SYMRK. A cosmid clone carrying
the LeSYMRK genomic region was isolated from a pooled tomato Cf2/
9 library (kind gift of ].D.G. Jones, The Sainsbury Laboratory, United
Kingdom) and shotgun sequenced.

For rapid amplification of cDNA ends (RACE) reactions, total RNA
was extracted from roots of uninoculated seedlings or young plants
and DNasel treated. RT and 5'/3'RACE reactions were done using the
SMART RACE kit (Clontech), following nested degenerate PCR
reactions ([10 s 94 °C, 10 s 52 °C, 30 s 72 °C] X 35, 5 min 72 °C) to
obtain initial sequence information.

Construct generation for mutant complementation and Datisca
SYMRK RNAIi experiments. For hairy root complementation assays,
SYMRK cDNAs were amplified from root cDNA preparations
(Superscript II, Invitrogen) of the respective species. Binary trans-
formation vectors were pCAMBIA 1302 or pK7WG2D,1 [44]
derivatives. L. japonicus (Lotus), Me. truncatula (Medicago), D. glomerata
(Datisca), and T. majus (Tropaeolum) SYMRK coding sequences were
amplified from complementary DNA wusing primers LjSYMR-
K_EC__f with LjSYMRK__PK__r, MtSYMRK__EC__f with
MtSYMRK__PK__r, DgSYMRK__EC__f with DgSYMRK__PK__r and
TmSYMRK__EC__f with TmSYMRK__PK__r (Table S1), respectively.
An MtSYMRK genomic segment containing intron one was amplified
from total DNA wusing primers MtSYMRK_EC_f with
MtSYMRK__01__r (Table S1) and ligated to the 3’ fragment of the
MtSYMRK cDNA following BstB1 digestion of both. The genomic
sequences of tomato and rice SYMRK were amplified from total DNA
using primers LeSYMRK__EC__f with LeSYMRK__PK__r and Os-
SYMRK__EC__f with OsSYMRK__PK__r (Table S1), respectively. A
285-bp fragment amplified with primers polyA__NOS__f and poly-
A_NOS__r (Table S1) from pJawohl8 RNAi (kind gift of P. Schulze-
Lefert, Max Planck Institute for Plant Breeding Research, Cologne,
Germany) was used as terminater in all constructs. SYMRK genes or
coding sequences were under control of 4,970 bp of genomic
sequence preceding the LjSYMRK translation start site. For
pK7WG2D constructs, the cauliflower mosaic virus (CaMV) 35S
promoter driving the Gateway-cassette was deleted Sall(10124)-
Sal1(38).

For Datisca RNAi experiments, a pRedRoot- [45] based binary
vector encoding DsRED1 for visible selection was equipped with a
pKANNIBAL [46] CaMV 35S promoter-driven hairpin construct
containing 367-bp of 3’ coding and untranslated sequence of
DgSYMRK in forward and reverse orientation, amplified with primers
DgSYMRK__RNAi__f and DgSYMRK__RNAi__r (Table S1).

Biological material and phenotyping assays. L. japonicus wild-type
ecotype B-129 Gifu and derived mutant line symrk-10 [25] were
inoculated with M. loti R7A as described [16]. Growth conditions were
24 °C constant at 16-h-light/8-h-dark cycles. For infection of
Agrobacterium rhizogenes—-induced transgenic roots in Lotus, M. loti
MAFF 303099 expressing DsRED was applied at a final optical density
at 600 nm (ODgg) of 0.02 in translucent plastic boxes containing 300
ml Seramis (Mars) and 150 ml liquid Fahraeus Plant (FP) medium [47].
Ag. rhizogenes-transformed Me. truncatula A17 wild type and dmi2 5P
(kind gift of G. Oldroyd, John Innes Centre, United Kingdom) plants
were inoculated with S. meliloti 1021 carrying pPBHR-mRFP [48] (ODg
of 0.02) in planting pots containing Seramis, and fertilized with FP
medium supplemented with 50 pM KNOs two times per week. For
nodulation assays and simultaneous observation of infection thread
(IT) formation in Lotus and Medicago, plants were harvested 4 and 5 wk
post inoculation, respectively. Prior to inoculation, roots showing no
eGFP fluorescence were removed. For AM phenotyping of Lotus and
Medicago, plants were co-cultivated with G. intraradices BEG195 and
harvested after 3 or 2 wk of co-cultivation, respectively. Root systems
were stained with acidic ink as described [49]. Prior to staining of Ag.
rhizogenes—induced root systems, roots showing no eGFP fluorescence
were removed. Roots were scored AM-positive (AM+) if symbiotic
structures (arbuscules and vesicles) were present, as AM-negative
(AM-) if no arbuscules were present. Occasional Lotus symrk mutant
roots showing vesicles not accompanied by arbuscules were scored
AM-. Where complemented Lotus symrk mutant roots exhibited
aborted infection sites in co-occurrence with successful infection and
colonization events involving arbuscule and vesicle formation, roots
were scored AM+. Datisca seeds and Frankia inoculum were a kind gift
from K. Pawlowski (Department of Botany, Stockholm University,
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Sweden). Datisca was inoculated with compatible Frankia by potting in
substrate with ~1 g/l crushed nodules and with G. intraradices BEG195
by adding substrate extracted from pots of inoculated Allium
schoenoprasum plants. Growth conditions were 16 h light/8 h dark at
22 °C and 60% relative humidity. Seeds of T. majus and P. rhoeas were
purchased at Notcutts Garden Centres (UK). The ability to develop
AM with G. intraradices was confirmed for all species involved in the
study.

LZtus transformation. Transgenic roots on Lotus symrk-10 mutants
were induced using Ag. rhizogenes strains AR1193 [50] and LBA1334
[61] as described by Diaz et al. [52] (modified).

Medicago transformation. Medicago seedlings were transformed as
described at http:/lwww.isv.cnrs-gif.frlembo0l/manuels/index.html
(modified), using strain Ag. rhizogenes AR1193 [50].

Datisca transformation. Twelve-wk-old Datisca plants were inocu-
lated with Ag. rhizogenes strain LBA1334 [51] carrying the silencing
construct by stem injection, and roots emerging at infection sites
were covered with substrate. Three-wk post inoculation roots were
inspected for DsREDI1 fluorescence. Nonfluorescent roots were
removed, and plants were repotted and grown for 8 wk. After
determination of the nodulation phenotype, individual fluorescent
roots were divided into two halves. One half was stained for
mycorrhiza visualization, the second used for total RNA extraction
(RNeasy Plant Kit, Qiagen). Quantitative RT-PCR was performed with
GeneAmpb5700 (Applied Biosystems) using the SuperScript III
Platinum Two-Step qRT-PCR-Kit (Invitrogen). A 123-bp DgSYMRK
fragment was amplified using primers DgqPCR_SYMRK__f with
DgqPCR_SYMRK__r (Table S1). As control, polyubiquitin cDNA was
amplified using primers DgqPCR_Ubi__f with DgqPCR__Ubi__r
(Table S1). Representative fragments were sequenced for identity
confirmation.

Computational analysis. Databases used for BLAST sequence
search and analysis included http://www.ncbi.nlm.nih.gov/BLAST]/,
http:/lwww.arabidopsis.org/Blast/, http://www.gramene.org/Multi/
blastview, and http://genome.jgi-psf.org/Poptrl/Poptrl.home.html.

Supporting Information

Figure S1. SYMRK Kinase Regions Share Several Defining Conserved
Amino Acid Motifs, Which Are Absent in Similar Sequences in
Arabidopsis and Rice

Black shading indicates amino acid residues identical in all sequences,
residues found in at least 50% of the sequences are shaded gray. Bars
delimit predicted SYMRK protein domains. Dark blue, conserved
extracellular region (CEC); black, LRRs; gray, imperfect LRR; white,
juxtamembrane regions; brown, transmembrane region; green,
protein kinase domain. Light blue bars with stars mark some of the
regions conserved among SYMRK candidates, but not in other
homologous sequences in rice and A. thaliana. Locus tags are
indicated for similar sequences not regarded as SYMRK candidates.
Sequences aligning with regions upstream of exon 4 of LjSYMRK are
not included.

Found at doi:10.1371/journal.pbio.0060068.sg001 (96 KB DOC).

Figure S2. LjSYMRK Restores Nodulation and AM Formation in
Medicago dmi2 5P Mutants

Transformation assay and selection were as in Figure 3. (A, B, K, and
L) Me. truncatula (Medicago) dmi2 5P roots transformed with the
respective control vector lacking an LjSYMRK expression cassette.
(C-F, M, and N) Medicago wild-type and (G-J, O and P) dmi2 5P roots
transformed with the LjSYMRK coding sequence controlled by the
LjSYMRK promoter.

(A-]) Roots inoculated with S. meliloti expressing DsRED for 5 wk. (A
and B) Transgenic dmi2 5P roots carrying the control vector, showing
no nodules. (C and D) Nodules on transgenic and nontransgenic roots
of a wild-type plant transformed with LjSYMRK and (E and F)
individual nodule containing DsRED expressing S. meliloti bacteria. (G
and H) dmi2 5P root system with nodule formation confined to roots
transformed with LjSYMRK. (I and ]) Nodule on an LjSYMRK
containing dmi2 5P root showing bacterial DsSRED expression.

(K-P) Roots co-cultivated with G. intraradices for 2 wk. (K and L)
Transgenic dmi2 5P control roots lacking hyphal proliferation and
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arbuscule formation in the inner root cortex. Hyphal swellings in the
root periphery (L and arrow in K) indicate abortion of fungal
infections. Longer co-cultivation for 3 wk or more allowed for
successful fungal infections of mutant roots, which was similarly
reported for other dmi2 mutant lines [58]. (M and N) Wild-type and
(O and P) dmi2 5P roots transformed with LjSYMRK showing dense
fungal colonization of the root inner cortex accompanied by
arbuscule formation.

Scale bars: (A-D and G-H) 2 mm; (E-F and I-]) 0.5 mm; (K, M, and O)
0.1 mm; (L, N, and P) 0.02 mm.

Found at doi:10.1371/journal.pbio.0060068.sg002 (1.8 MB PDF).

Figure S3. Tomato and Rice SYMRK Restore AM Symbiosis in Lotus
symrk-10 Mutants, but Cannot or Only Partially Complement
Bacterial Endosymbiosis Formation

Transformation assay and selection were as in Figure 3. (A-D) Lotus
symrk-10 roots transformed with the respective control vector lacking
a SYMRK expression cassette. (E-L) Lotus wild-type (E-H) and symrk-
10 (I-L) roots transformed with LeSYMRK. (M-Z) Lotus wild-type (M-
R) and symrk-10 (S-Z) roots transformed with OsSYMRK.

(A,B,E, F, 1], M, N, S, and T) Roots co-cultivated with G. intraradices
for three weeks. (A and B) Transgenic symrk-10 control root with
extraradical mycelium but no intraradical fungal colonization or
arbuscule formation. Swollen hyphal structures indicative of aborted
fungal infections can be observed within epidermal cells (B and arrow
in A). (E and F) Wild-type and (I and J) symrk-10 roots transformed
with LeSYMRK, showing fungal colonization of the inner root cortex
(E, I) and arbuscule formation in inner cortical cells (F, J). (M and N)
Wild-type and (S and T) symrk-10 mutant roots transformed with
OsSYMRK, similarly showing cortical AM colonization (M, S) and
arbuscule formation (N, T).

(G, D, G, H, K, L, O-R, and U-Z) Root systems inoculated with M. loti
expressing DsRED for 4 wk. (C and D) symrk-10 root system with
transgenic control roots, showing no nodules. (G and H) and (O-R)
Wild-type root systems with M. loti-containing pink nodules on
nontransgenic and on transgenic roots carrying LeSYMRK or
OsSYMRK, respectively, indicating that these transgenes do not
impair nodulation in transgenic wild-type roots. (K and L) symrk-10
root system transformed with LeSYMRK, showing no nodules. In a
single case, one nodule primordium was observed. (U-Z) symrk-10
root system transformed with OsSYMRK, showing no fully developed
nodules, but nodule primordia which are mostly noncolonized by
bacteria, the latter proliferating on the primordial surface (W and X).
In rare cases, small nodules were observed that contained bacteria,
but, with one exception, showed no pinkish coloration in white light
(Y and Z).
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Root endosymbioses vitally contribute to plant nutrition and fit-
ness worldwide. Nitrogen-fixing root nodulation, confined to four
plant orders, encompasses two distinct types of associations, the
interaction of legumes (Fabales) with rhizobia bacteria and acti-
norhizal symbioses, where the bacterial symbionts are actinomy-
cetes of the genus Frankia. Although several genetic components
of the host-symbiont interaction have been identified in legumes,
the genetic basis of actinorhiza formation is unknown. Here, we
show that the receptor-like kinase gene SymRK, which is required
for nodulation in legumes, is also necessary for actinorhiza forma-
tion in the tree Casuarina glauca. This indicates that both types of
nodulation symbiosis share genetic components. Like several other
legume genes involved in the interaction with rhizobia, SymRK is
also required for the interaction with arbuscular mycorrhiza (AM)
fungi. We show that SymRK is involved in AM formation in C.
glauca as well and can restore both nodulation and AM symbioses
in a Lotus japonicus symrk mutant. Taken together, our results
demonstrate that SymRK functions as a vital component of the
genetic basis for both plant-fungal and plant-bacterial endosym-
bioses and is conserved between legumes and actinorhiza-forming
Fagales.

actinorhizal symbioses | Casuarina glauca | mycorrhizae | signaling

oot endosymbioses are associations between plants and soil

microorganisms involving intracellular accommodation of
microbes within host cells. The most widespread of these asso-
ciations is arbuscular mycorrhiza (AM), which is formed by the
majority of land plants with fungi belonging to the phylum
Glomeromycota (1). In contrast, nitrogen-fixing nodulation
symbioses of plant roots and bacteria are restricted to four orders
of eurosid dicots (2). Actinorhiza, formed by members of the
Fagales, Rosales, and Cucurbitales with Gram-positive Frankia
bacteria, differs from the interaction of legumes with Gram-
negative rhizobia in several morphological and cytological as-
pects (3). Although these differences suggest independent reg-
ulatory mechanisms, the close relatedness of nodulating lineages
indicates a common evolutionary basis of root nodulation sym-
bioses (2). In the legume-rhizobia interaction, among the key
factors mediating recognition between the plant and the bacteria
are Nod factors (NFs). NFs are bacterial lipochitooligosaccha-
rides with an N-acetylglucosamine backbone (4). The perception
of NFs induces a series of responses in host roots, including ion
flux changes and membrane depolarization, rhythmic calcium
oscillations in and around the nucleus (calcium spiking), cy-
toskeletal modifications and root hair curling, and activation of
cortical cell divisions (5). Extensive mutant screenings per-
formed in legumes led to the identification of several loci
involved in this signaling cascade, and recently most of the
corresponding genes were identified by map-based approaches
(6). In Lotus japonicus, two genes, NFRI and NFR5 encoding
receptor-like serine/threonine kinases with LysM domains, are

www.pnas.org/cgi/doi/10.1073/pnas.0710618105

assumed to be involved in NF perception, because the corre-
sponding mutants are impaired in the earliest NF responses (7).
Several downstream components of the NF signaling cascade,
including the leucine-rich-repeat receptor kinase gene L. japoni-
cus SymRK (DMI2/NORK in Medicago truncatula and M. sativa,
respectively) (8, 9), are dually involved in AM and nodulation
symbiosis. SymRK is likely active near the junction of fungal and
rhizobial signaling cascades (8). This makes it a particularly
interesting candidate for studying a possible role of legume
symbiosis genes in Casuarina glauca, which similarly forms AM,
but in contrast to legumes interacts not with rhizobia but with
Frankia bacteria to form actinorhiza.

In actinorhizal symbioses, very little is known about signaling
mechanisms involved in plant-bacteria recognition. Analyses of
the genome of three Frankia strains (10), the biochemical
characterization of a Frankia root hair-deforming factor whose
chemical structure is unknown (11), and the failure of Frankia
DNA to complement rhizobial nod gene mutants (12) suggest
that Frankia symbiotic signals are structurally different from
rhizobial NFs. No plant genes involved in the perception and
transduction of Frankia symbiotic signals have been identified to
date, mostly due to the lack of genetic tools in actinorhiza-
forming plants. Here, we isolate CgSymRK, a predicted SymRK
gene from the actinorhizal tree C. glauca, and analyze its role in
root endosymbioses. Our results reveal that SymRK is required
for both AM and actinorhiza formation in C. glauca, indicating
shared genetic mechanisms between fungal and bacterial root
endosymbioses in C. glauca and legumes.

Results

Isolation of C. glauca SymRK. A C. glauca SymRK candidate,
CgSymRK, was isolated by using a degenerate priming approach
based on similarity with legume SymRK sequences. The gene is
7,280 bp long and contains 15 putative exons, encompassing a
2,829-bp coding sequence. Intron positions and phases are
identical to SymRK genes of L. japonicus and other legumes,
including Medicago truncatula, Pisum sativum, and Sesbania
rostrata. The predicted protein of 941 aa contains an N-terminal
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Fig. 1. C. glauca SymRK gene. (A) Genomic structure of CgSymRK with indi-
cated predicted protein domains. Exons are depicted as boxes, introns as a black
line. SP, predicted signal peptide; EC, extracellular domain; LRR leucine-rich
repeat motifs; TM, transmembrane domain; PK, protein kinase domain. Percent-
ages of similarity and identity between CgSYMRK and LjSYMRK are indicated
below each predicted protein domain. B) Distance tree of predicted SYMRK
protein sequences based on a CLUSTALW alignement. Numbers above the
branches represent the percentages of 1,000 bootstrap replications.

region of unknown function, three leucine-rich repeat motifs, a
transmembrane region, and a serine/threonine protein kinase
(Fig. 14). The SYMRK kinase domain is highly conserved
between legumes and actinorhizal plants. However, SYMRK
extracellular regions are conserved between the two actinorhizal
plants C. glauca and A. glutinosa but highly variable between
legumes and actinorhizal plants (data not shown). Both actino-
rhizal proteins cluster together in a phylogenetic distance tree in
the same subgroup as the legume SYMRK (Fig. 1B). Southern
blot experiments suggested that only one SymRK gene exists in
C. glauca (data not shown). In C. glauca roots infected with
Frankia, real-time expression analysis revealed very little change
in CgSymRK transcript abundance within 2 weeks after inocu-
lation [supporting information (SI) Fig. 54]. However, we cannot
rule out that localized changes in CgSymrk expression might
occur. CgSymRK expression was three times higher in 3-week-old
nodules than in uninoculated roots (SI Fig. 5B).

CgSymRK Is Necessary for Actinorhizal and AM Symbioses in C. glauca.

To investigate the role of SymRK in root endosymbioses in C.

glauca, we reduced CgSymRK expression levels in Agrobacterium-

induced hairy roots by using RNAI. In parallel, control plants
bearing nontransgenic and hairy roots transformed with a control
vector comprising the GFP reporter gene but lacking the RNAi
cassette were analyzed. A total of 78 RNAi composite plants and
48 transgenic control composite plants showing high GFP fluores-
cence in hairy roots were analyzed in two independent experiments.
At 3 weeks after inoculation, plants transformed with the control
vector began to develop nodules that were similar in size and shape
to those produced on nontransgenic roots (Fig. 24 and B). As
observed in ref. 13, nodulation of transgenic control hairy roots was
reduced compared with nontransgenic controls. In CgSymRK
RNAI roots, the frequency of nodulated root systems was 50% less
than in transgenic control root systems (SI Table 1). Nodulated
RNAI roots showed strong alterations in nodule development

20of5 | www.pnas.org/cgi/doi/10.1073/pnas.0710618105

Fig. 2. Knockdown phenotype of CgSymRK after Frankia inoculation. (A)
Nontransgenic nodule consisting of multiple lobes 10 weeks postinoculation
(wpi). A nodular root develops at the apex of each nodule lobe. (B) Nodule on
a hairy root transformed with a control vector at 10 wpi. Nodule morphology
is similar to wild-type nodules. (C) Nodule-like structure formed on CgSymRK
knockdown (RNAI) roots 10 wpi. Nodule lobes are small and do not branch to
form a multilobed structure. (D and E) Sections of wild-type and transgenic
control nodules. Each nodule lobe exhibits a central vascular bundle and
cortical parenchyma infected with Frankia. (F) Section of a nodule-like struc-
ture observed on an RNAi plant showing few small infected cellsand abnormal
accumulation of polyphenols in the endodermis. (G) Closeup of area in D,
showing both infected and uninfected cortical cells. Infected cells are hyper-
trophied and filled with Frankia. (H) Closeup of area in E. As in nontransgenic
nodules, hypertrophied cortical cells are filled with Frankia. (/) Closeup of area
in F. Infected cells are few and small compared with cells in nontransgenic and
transgenic control nodules. IC, infected cell with Frankia; RN, root nodule; NA,
nodule apex; VT, vascular tissue; P, polyphenol droplets; RH, root hair. [Scale
bars: 1 mm (A-C); 100 um (D—F); 25 um (G-).]

compared with control roots. We observed a gradient of pheno-
types ranging from aborted prenodules (Fig. 2C and F) to nodules
usually consisting of one thin lobe, whereas mature nodules in
transgenic and nontransgenic control roots were multilobed (Fig. 2
A and B and D and E). On CgSymRK RNAI root nodules, the
nodular roots, which are unbranched roots exhibiting negative
geotropism growing at the apex of each nodule lobe, often behaved
like adventitious roots exhibiting normal root growth and branching
(data not shown). These aberrant nodules and nodular roots were
never seen on transgenic or nontransgenic control roots. Histolog-
ical analysis of 10 aberrant symbiotic structures ofCgSymRK RNAi
roots revealed an accumulation of phenolic compounds (Fig. )
and the presence of small infected cells in the cortex (Fig. 2)
contrasting with the hypertrophied infected cells observed in non-
transgenic and transgenic control nodules (Fig. 2G and H). We
tested the ability of CgSymRK RNAI nodules to fix nitrogen via
acetylene reduction activity (ARA) assays. CgSymRK RNAI nod-
ules exhibited a quasinull ARA compared with transgenic control
nodules (SI Fig. 6). To test the efficacy of CgSymRK knockdown in
RNAI roots, CgSymRK expression was tested by quantitative RT-
PCR (qPCR) in subcultivates of five CgSymRK RNAIi roots. A
52-76% reduction of CgSymRK mRNA levels was observed in
RNAI roots compared with transgenic control roots SI Fig. 7).
Taken together, our results indicate that a reduction inCgSymRK
expression results in severe impairment in actinorhiza formation
and symbiotic nitrogen fixation.

In legumes, SymRK has been shown to play also a crucial role
in the establishment of AM symbiosis (14). To investigate
whether CgSymRK is also involved in AM formation in C. glauca,
RNAI hairy roots plants were generated and cultivated in pots

Gherbi et al.


http://www.pnas.org/cgi/content/full/0710618105/DC1
http://www.pnas.org/cgi/content/full/0710618105/DC1
http://www.pnas.org/cgi/content/full/0710618105/DC1
http://www.pnas.org/cgi/content/full/0710618105/DC1
http://www.pnas.org/cgi/content/full/0710618105/DC1

[

/

1\

=y

containing Glomus intraradices inoculum. Plants were harvested
after 4 or 8 weeks, and GFP fluorescence was checked in
transformed roots. Seventeen control and 21 RNAIi plants
showing GFP fluorescence and six nontransformed root systems
were subjected to AM analysis. In nontransgenic control plants,
fungal structures such as intraradical hyphae, vesicles, and
arbuscules (SI Figs. 8 and 9 4 and B) were observed at high
frequencies ranging from 22% to 52% total root length coloni-
zation. Similar structures were observed at relatively high fre-
quencies in roots of most transgenic control plants, 4 or 8 weeks
after inoculation (SI Figs. 8 and 9 C and D). The slight reduction
of colonization compared with nontransgenic control roots
might be linked to modifications of hormonal balance. In
contrast, most plants transformed with the CgSymRK RNAI
construct showed very weak levels of AM colonization, and four
composite plants showed a complete absence of intraradical
structures 4 weeks after inoculation (SI Fig. 8). The absence of
intracellular colonization was not due to an absence of inoculum,
because extraradical hyphae were very often observed. Some
RNAI roots showed extensive development of extraradical my-
celium, usually growing along the epidermal cells and forming
appressoria, which were frequently associated with abnormal,
swollen hyphal structures (SI Fig. 9 E and F). Most fungal
penetration attempts aborted, resulting in very low levels of
intraradical colonization (SI Fig. 8). However, on the rare
occasions where penetration succeeded, intraradical hyphae,
arbuscules, and vesicles morphologically similar to those found
in transgenic and nontransgenic control roots were observed (SI
Fig. 9 G and H). Compared with control roots, colonized patches
were generally smaller, spreading over few cells near the entry
point and never succeeding in colonizing the whole root. These
results indicate that CgSymRK knockdown strongly affects early
steps of the AM interaction, especially fungal penetration into
the root cortex, thereby revealing a conservation of SymRK
function in AM between legumes and C. glauca.

CgSymRK Can Restore Root Endosymbioses in a Legume symrk Mu-
tant. To test whether CgSymRK can function in root endosym-
bioses in a legume, we introduced its coding sequence linked to
the L. japonicus SymRK promoter region into Agrobacterium
rhizogenes-induced roots of L. japonicus symrk-10 (15) mutants.
Interaction with AM fungi is usually aborted in L. japonicus
symrk mutants at the epidermal level (14), with few hyphae
invading the root cortex and no arbuscules developing within 3-6
weeks of exposure to fungal inoculum.

Similarly, after 3 weeks of cocultivation with G. intraradices,
symrk-10 roots transformed with a vector lacking aSymRK expres-
sion cassette (control vector) formed no AM, and typical hyphal
swellings formed in epidermal cells indicating abortion of fungal
infections (SI Table 2; Fig. 3 4 and B). In contrast, wild-type (Fig.
3 C and D) and symrk-10 (Fig. 3 E and F) plants transformed with
CgSymRK developed AM (SI Table 2), involving the formation of
wild-type-like cortical arbuscules (Fig. ) and infection sites in the
complemented mutants. Similar results were obtained with wild-
type and symrk-10 mutant plants transformed with an LjSymRK
expression cassette controlled by the same promoter region (I
Table 2). These results demonstrate that CgSymRK can comple-
ment the mycorrhization defect of L. japonicus symrk mutants.

Wild-type L. japonicus plants respond to inoculation with their
rhizobial symbiont Mesorhizobium lotiby root hair curling, infection
thread formation, and nodule development. L. japonicus symrk
mutants, in contrast, show no normal curling reaction of root hairs,
and bacteria are unable to induce infection thread or nodule
formation (8). This was equally the case insymrk-10 roots trans-
formed with a control vector (SI Table 2; Fig. 4 4 and B), whereas
L. japonicus wild-type and symrk-10 roots carrying CgSymRK
formed wild-type-like infection threads and nodules (Table 2; Fig.
4 C-E and F-H, respectively). These exhibited bacteria-filled and
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Fig.3. AMformationinL.japonicussymrk-10 mutants complemented with the
CgSymRK coding sequence under control of theLjSymRK promoter, after 3 weeks
of cocultivation with G. intraradices. Cleared roots with fungal structures are
stained with acidic ink. (A and B) symrk-10 roots transformed with a control
vector. (A) Noncolonized root with extraradical mycelium and aborted infection
structure (arrow). (B) Fungal appressorium and entry point associated with
aborted infection structure within host epidermal cell. € and D) Wild-type and
(E and F) symrk-10 roots transformed with CgSymRK linked to the LjSymRK
promoter. Fungal hyphae grow through epidermis and exodermis and form
arbuscules and vesicles in the inner root cortex. A, arbuscule; IH, intraradical
hyphae; V, vesicle. [Scale bars: 100 um (A, C, and E); 20 um (B, D, and F).]

noninfected host cells (Fig. 41 and J). L. japonicus wild-type and
symrk-10 roots transformed with a L. japonicus SymRK expression
cassette equally formed infection threads and infected nodules 61
Table 2; Fig. 4 K and L, respectively). The observation thatSymRK
from the actinorhiza-forming plant C. glauca can restore not only
the interaction with AM fungi but also with M. loti bacteria in L.

Jjaponicus symrk mutants indicates that this gene is highly conserved
in its function in both AM and nodulation symbioses, whereas the
specificity of recognition of bacterial partners is SymRK-

independent.

Discussion

There are three major types of root endosymbioses in angiosperms.
These include the arbuscular mycorrhiza symbiosis with fungi and
nitrogen-fixing root nodulation of legumes and actinorhiza-forming
plants. In recent years, there has been a tremendous increase in
knowledge of the molecular mechanisms responsible for NF per-
ception and signal transduction in legumes (6). Genetic approaches
in model legumes led to the identification of several components
and the definition of a signaling cascade (5). Part of this signaling
cascade is also involved in transduction of the symbiotic signal in
AM symbioses (5). This gave rise to the hypothesis that the
evolutionarily recent legume-rhizobia symbiosis reuses some of the
molecular mechanisms of the more ancient AM symbiosis (16).
This common signaling pathway includes the receptor kinase
SymRK/DMI2. So far, nothing is known about the symbiotic signals
and their perception during actinorhizal symbioses. Available data
indicate only that the Frankia symbiotic signal is likely chemically
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Fig. 4. Nodulation in L. japonicus symrk-10 mutants complemented with the
CgSymRK coding sequence under control of theLjSymRK promoter, 8 weeks after

inoculation with M. loti MAFF expressing DsReD. Transgenic roots carried ansGFP

reporter gene. (A, C, and F) Roots and nodules under white light. 8, D, and G)

Transgenic roots and nodules showing GFP fluorescence. € and H) Red fluores-

cence of bacterial DsRED. (A and B) symrk-10 root transformed with the control

vector, showing no nodules. (C-E) Transgenic wild-type root carrying the Cg-

SymRK coding sequence. Nodules contain DsReD-expressing bacteria (E). (F-H)

symrk-10 mutant root transformed with theCgSymRK coding sequence, carrying

wild-type-like nodules. (-L) Semithin sections of nodules stained with toluidine
blue. (/ and J) Nodules on symrk-10 mutant and wild-type roots complemented
with the CgSymRK coding sequence, respectively. K and L) Nodules on symrk-10

mutant and wild-type roots complemented with theLjSymRK coding sequence,

respectively. Infection threads (IT) are contained within bacteria-infected cells
(1C). [Scale bars: 500 um (A-H); 25 um (/-L).]

different from NFs (10-12). Here, we report the isolation and
characterization of CgSymRK, a SymRK/DMI2 homolog from the
actinorhizal tree C. glauca. Our data demonstrate that CgSymRK is
functionally equivalent to LjSymRK in symbiosis formation in L.
Japonicus. In our experience, both AM and nodulation symbiosis
formation in hairy roots of L. japonicus can vary in efficiency,
particularly in complemented mutant tissue. Despite the differ-
ences in numbers of rescued root systems between the symbiosis
types (CgSymRK) and constructs, phenotypic analyses clearly sug-
gest that both symbiosis types can be fully supported byCgSymRK
in L. japonicus.

Moreover, we were able to show that CgSymRK is necessary for
functional symbiosis with Frankia. We therefore conclude that
CgSymRK is probably a component of the signaling pathway
involved in the perception and the transduction of yet-unknown
Frankia factors. As in legumes (17, 18) CgSymRK expression level
remained constant during root infection and increased in mature
nodules compared with noninoculated roots. The reduction in the
number of nodulated plants obtained by RNAI is less pronounced
than the one obtained in legumes (18, 19); however, it clearly
indicates that CgSymRK is involved during the early stages of
Frankia root hair infection. A second symbiotic defect was observed
downstream of this infection with striking differences in the nodule
morphology and tissue organization relative to the control. Cg-
SymRK RNAIi hairy roots mostly developed small nonfixing nodule-
like structures. Light microscopy revealed that the nodule apical
meristem was absent, and we did not observe the gradient of
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infection and differentiation in the cortex that is present in trans-
genic and nontransgenic control nodules. Cortical cells also seemed
to be less infected, and infected cells were smaller than those of
control nodules. In addition, we observed the formation of dense
deposits of polyphenols in CgSymRK RNAI nodules. These data
suggest that the loss of CgSymRK function also affects C. glauca—
Frankia symbiotic interaction after bacterial penetration. This is
consistent with qPCR results that indicate an enhancement of
CgSymRK expression in mature nodules.

We also analyzed the role of CgSymRK in the G. intraradices—C.
glauca interaction. Hairy roots of C. glauca carrying the CgSymRK
RNAI construct were able to form arbuscules and vesicles mor-
phologically similar to those found in control plants, suggesting that
CgSymRK is not involved in the formation of these late symbiotic
structures. However, most RNAIi plants showed a significant de-
crease in fungal colonization. At the root surface, hyphae devel-
oped abundant appressoria, but these colonization attempts rarely
succeeded, pointing to a role of CgSymRK during hyphal penetra-
tion. Similar results were shown forL. japonicus symrk (14) and M.
truncatula dmi2 mutants (20, 21). This work report a role of SymRK
in AM symbiosis formation in a nonlegume plant.

In summary, our data indicate that SymRK is involved in the
symbiotic signal transduction pathway leading to actinorhizal
symbioses. Our results demonstrate that, in C. glauca as in
legumes, SymRK is involved in the establishment of both
nitrogen-fixing nodule and AM symbioses, thus supporting the
hypothesis that signaling genes have been recruited from the
more ancient AM symbiosis during the evolution of nitrogen-
fixing symbioses. It will now be essential to compare signal
transduction pathways involved in endosymbiotic accommoda-
tion of AM fungi, rhizobia, and Frankia to develop strategies for
the transfer of nodulation to nonnodulated plants.

Materials and Methods

Plant, Bacterial, and Fungal Material. C. glauca seeds were provided by Carter
Seeds and grown as described in ref. 22.L. japonicus ecotype B-129 Gifu and L.

Japonicus symrk mutant symrk-10 from the same ecotype (15) were grown for
transformation as described in ref. 23. C. glauca and L. japonicus plants were

transformed with A. rhizogenes strains A4RS (24) and AR1193 (25). For nodula-
tion phenotyping of C. glauca, plants were inoculated with Frankia strain CcI3. C.

glauca mycorrhization experiments were performed in pots containing an auto-
claved mixture of quartz sand and soil (4:1). Plants were transferred fromin vitro

cultures and grown for 4-8 weeks in a growth chamber and watered with a
modified Hoagland solution (22) containing 10 uM phosphate. G. intraradices
inoculum was prepared by extracting spores fromin vitro cultures of G. intrara-
dices (26). One Petri dish showing extensive sporulation was kept at 4°C for at
least 3 weeks and used to inoculate 2 liters of sand:soil mixture. For nodulation
phenotyping of L. japonicus, composite plants were grown in plastic pots with
300 ml of Seramis substrate (Mars) and 150 m| of FP medium (27) and inoculated
with Mesorhizobium loti strain MAFF expressing DsReD (M. Hayashi, personal
communication). To test for AM formation, plants were cocultivated withG.

intraradices BEG195 in chive nurse pots as described (14) and harvested after 3
weeks. Transgenic roots were selected via GFP fluorescence and stained with
acidic ink as described (14) for visualization of fungal structures.

Identification and Cloning of CgSymRK Sequences and Phylogenetic Analysis.
Amplification of CgSymRK was conducted on a cDNA library prepared fromC.
glauca uninfected roots by using the degenerated primers SymRKdeg-5 (5'-
CCAAGACATGAATGGTCTCTGGTNGARTGGGC-3) and SymRKdeg-3 (5'-GAATC-
CATAGATCTCATATATTCAGAAGCRTTRTTYTC-3). The amplified fragment was
cloned into a pGEM-T easy vector (Promega) and sequenced. cDNA fragments
were obtained by RACE-PCR on a root cDNA library by using the Marathon cDNA
amplification kit (Clontech), and the CDS was amplified by using primers
CgSymRKATG (5'-ATGATGGAGGGATTGCATAAT-3) and CgSymRKSTOP (5'-
TCCTCCACAGCCAAGATAA -3). The CgSymRK genomic sequence was obtained
by using a Genome Walker kit (Clontech) and cloned in a pGEM-T easy vector. For
the phylogenetic analysis, sequences (with GenBank accession numbers in pa-
rentheses) from Alnus glutinosa (62946487), Sesbania rostrata (56412259), Me-
lilotus alba (21698802), Pisum sativum (21698794), Lathyrus sativus (89213719),
Vicia hirsuta (21698800), Medicago truncatula (21698783), Lotus japonicus
(21622628), Medicago sativa (21698781), Lupinus albus (62946493), Tropaeolum
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majus (62946489), Astragalus sinicus (61723807), and Lycopersicon esculentum
(62944413) were retrieved from GenBank via BLASTP search performed with the
L. japonicus-predicted SYMRK sequence. Sequences of SYMRK homologs in
Arabidopsis thaliana(—: At5948740; —2: At2g37050; —3 At1g67720) described in
ref. 28 were also included. A. thaliana (—: At3g25560), an NSP-interacting kinase
(29), was used to root the tree. The alignment was performed by using the
CLUSTALW and Neighbor-Joining algorithms in the CLC-Free Workbench 4 soft-
ware package (CLC bio).

Agrobacterium rhizogenes-Mediated Transformation, RNAi and Complementa-
tion. C. glauca and L. japonicus hairy root transformation was performed by
following standard procedures (13, 23). To produce the knockdown construct,
365 bp corresponding to the kinase domain of CgSymRK sequence were
amplified from genomic DNA by using CgRNAI-5 (5'-GGGAGCTGGAGGAT-
GCTTTGA-3’) and CgRNAI-3 (5'-TAAGTAGTAGTAGGTGGGGAGATTATTC-3')
primers containing 5’ Xhol or BamHlI restriction sites for CgRNAI-5 and Kpnl or
Clal for CgRNAI-3. Amplified fragments (Xhol-CgRNAi-Kpnl and BamHI-
CgRNAI-Clal) were then cloned into pKannibal (30) downstream of the CaMV
35S promoter, and the RNAI cassette was then cloned into the pHKN29 binary
vector (31). This vector also contains the GFP gene under the control of the
CaMV 35S promoter. For functional complementation, the CgSymRK coding
sequence was fused to LjSymRK promoter (2,415-bp) and terminator (315-bp)
regions and transferred into the pHKN29 binary vector. For complementation
of L. japonicus symrk mutants with LjSymRK, the binary vector pCAMBIA 1302
was equipped with 4,970 bp of the LjSymRK promoter region fused to the
LjSymRK coding sequence and a 285-bp NOS terminator fragment amplified
from pJawohl8 RNAI [kind gift of P. Schulze-Lefert (Max Planck Institute,
Cologne, Germany)] by using primers TNOS-5 5'-AATAAACCTAGGATCAGCT-
TGCATGCCGGTCG-3' and TNOS-3 5'-AAATAAGTCGACCTAGAGTCAAGCA-
GATCGTTCAAAC-3".

gPCR and Acetylene Reduction Assay. Total RNA was extracted by using the
RNeasy Plant Mini Kit (Qiagen). RNAs were quantified with Quant-iT Ri-
bogreen RNA Reagent (Invitrogen). One hundred nanograms of total RNA
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was reverse-transcribed by using SuperScriptlll H™ reverse transcriptase (In-
vitrogen) and oligo(dT)12-18. qPCR was performed by using the FullVelocity
SYBR Green QPCR Master Mix (Stratagene). The primers used were
qCgSymRKFor1 5'-GCAGGAGGTAGCAGTGAAGGTTC-3" and qCgSymRKRev2
5'-GCGATCTTGAAGCGAGCCATTAG-3'. The FullVelocity cycling PCR program
on an MX3005P (Stratagene) was as follows: 1 cycle at 95°C for 5 min, 40 cycles
at 95°C for 10 s and 60°C for 30 s, ended by 1 cycle at 95°C for 1 min, 60°C for
30 s, and 95°C for 30 s. Reactions were performed in triplicate, and the
comparative threshold-cycle method was used to quantify CgSymRK expres-
sion (32). The results were standardized with CgUbi expression levels (32). The
acetylene reduction assay was performed according to ref. 33.

Histochemical Analysis and Microscopy. C. glauca nodules were fixed as de-
scribed in ref. 34. L. japonicus nodules were fixed in a solution containing 50%
EtOH, 4% formaldehyde, and 5% acetic acid and dehydrated in 70% EtOH.
Samples were embedded in Technovit 7100 resin (Heraeus Kulzer), and thin
sections (6 um) were cut with a microtome (Microm HM355S), stained with
toluidine blue (0.01%), and mounted in Clearium Mountant (Surgipath). Visual-
ization of AM in L. japonicus was performed as described in ref. 14. To visualize
AM in C. glauca, roots were cleared for 1-2 days in 10% KOH at 90°C, rinsed, and
stained for at least 1 h with a 0.05% trypan blue/5% acetic acid solution at 60°C
and destained in water as described (35). Samples were viewed under a DMRB
microscope (Leica). Colonization was assessed with a microscope by using the
gridline intersect method (35) on at least 100 intersections per sample.
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Table 1. Reduced nodulation in CgSymRK RNAi composite plants

Root systems (genotype) Nodulated/total root % nodulated root
systems analyzed systems
Nontransgenic 59/63 94
Transgenic (GFP+) 24/48 50
CgSymRK RNAi (GFP+) 21/78 27

Nodulation was scored 12 weeks after inoculation with Frankia.

Table 2. Complementation of Nodulation and AM formation in Lotus symrk mutants carrying
CgSYMRK

Root systems (genotype) Nodulated/total root [ AM+/total root systems
systems analyzed analyzed

symrk-10 + control vector (GFP+) 0/34 0/34

wild type + CgSymRK (GFP+) 21/23 31/31

symrk-10 + CgSymRK (GFP+) 11/63 27/48

wild type + LjSymRK (GFP+) 11/11 16/17

symrk-10 + LjSymRK (GFP+) 8/20 7/22

Nodulation was scored 4, 8, or 15 weeks after inoculation with M. loti, and AM after 3 weeks of
cocultivation with G. intraradices. Results are compiled from two independent experiments.
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SI Fig. 5. CgSymRK mRNA levels in C. glauca roots and nodu-
les determined by quantitative RT-PCR. CgSymRK expression
levels in (A) inoculated roots and (B) mature nodules (grey bar)
are given relative to non-inoculated roots. CgUbi was used as
reference gene. ni, non inoculated roots. Error bars indicate
standard errors of the mean of three technical replicates.
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SI Fig. 6. Acetylene reduction activity (ARA) assays to
assess the effects of CgSymRK RNAIi on nitrogen fixation.
Values obtained with two nontransgenic control root
systems, two transgenic control root systems and five
CgSymRK RNAIi root systems are compared. NT: non-
transgenic control; TC: transgenic control; 1-5: CgSymRK
RNAI root systems with small unilobed nodules (1-3) and
nodules showing 2-3 lobes each (4-5). Error bars indicate
standard errors of the mean.
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SI Fig. 7. Quantification of CgSymRK mRNA levels in 5
independent CgSymRK RNAIi plants determined by real-

time qPCR. CgUbi was used as reference. The average of
two independent non-transgenic control roots and three
transgenic control roots is shown. Expression levels are
presented relative to transgenic control roots. All error bars
indicate standard errors of the mean of 3 technical replicates
on different samples. NT, non-transgenic control roots; TC,
transgenic control roots. RNA1, CgSymRK RNAI1 plants.
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SI Fig. 8. Intraradical colonization of C. glauca roots 4 or 8 weeks after inoculation with
G. intraradices. Presence of intraradical hyphae, arbuscules/coiled hyphae and vesicles
was assessed in roots from non-transgenic control (NT) and composite plants trans-
formed with the control vector (TC) or with a CgSymRK RNA1 vector (RNAi). Each bar
represents quantitative analysis of one root system.
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SI Fig. 9. Colonization of C. glauca roots by G. intraradices 8 weeks after inoculation. (A-B) Non-

transgenic control roots and (C-D) roots transformed with the control vector show high colonization
levels, arbuscules (Ar) vesicles (V) and intraradical hyphae (Ih) are present at high frequencies. (E-H)
CgSymRK knockdown (RNAI) roots. Overall colonization levels are very low, but extensive extraradical
hyphal growth can be observed on few roots (E). Hyphae tend to develop at the root surface following the
epidermal cells forming appressoria (Ap) and aberrant hyphal swellings. (G-H) Penetration succeeds
rarely, but can lead to the formation of vesicles (G) and arbuscules (H) morphologically similar to those
formed in control plants. Scale bars: A, C,E,G: 50 um ; B,D, F, H: 5 um.
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The initiation of intracellular infection of legume roots by symbi-
otic rhizobia bacteria and arbuscular mycorrhiza (AM) fungi is
preceded by the induction of calcium signatures in and around the
nucleus of root epidermal cells. Although a calcium and calmodu-
lin-dependent kinase (CCaMK) is a key mediator of symbiotic root
responses, the decoding of the calcium signal and the molecular
events downstream are only poorly understood. Here, we charac-
terize Lotus japonicus cyclops mutants on which microbial infection
was severely inhibited. In contrast, nodule organogenesis was
initiated in response to rhizobia, but arrested prematurely. This
arrest was overcome when a deregulated CCaMK mutant version
was introduced into cyclops mutants, conferring the development
of full-sized, spontaneous nodules. Because cyclops mutants block
symbiotic infection but are competent for nodule development,
they reveal a bifurcation of signal transduction downstream of
CCaMK. We identified CYCLOPS by positional cloning. CYCLOPS
carries a functional nuclear localization signal and a predicted
coiled-coil domain. We observed colocalization and physical inter-
action between CCaMK and CYCLOPS in plant and yeast cell nuclei
in the absence of symbiotic stimulation. Importantly, CYCLOPS is a
phosphorylation substrate of CCaMK in vitro. Cyclops mutants of
rice were impaired in AM, and rice CYCLOPS could restore symbi-
osis in Lotus cyclops mutants, indicating a functional conservation
across angiosperms. Our results suggest that CYCLOPS forms an
ancient, preassembled signal transduction complex with CCaMK
that is specifically required for infection, whereas organogenesis
likely requires additional yet-to-be identified CCaMK interactors or
substrates.

BiFC | map-based cloning | plant-microbe symbiosis |
protein phosphorylation | protein-protein interaction

Legume plants can establish endosymbiotic interactions with
nitrogen-fixing rhizobia and phosphate-delivering arbuscular
mycorrhiza (AM) fungi. Plant root hairs form a tight curl in
which rhizobia are entrapped. From this closed infection pocket,
the bacteria are guided by plant membrane-delimited infection
threads (ITs) into the root nodule, a specialized organ developed
by the plant to provide an optimized environment for nitrogen
fixation (1). AM fungal hyphae are guided through epidermal
and cortical cells toward the inner cortex (2), where arbuscules,
highly branched intracellular symbiotic structures, are formed
(3). Intracellular infection by rhizobia and AM fungi is preceded
by an exchange of specific signaling molecules. Rhizobia produce
lipochito-oligosaccharides (Nod factors) that activate host plant
responses including root hair deformation, and preinfection
thread formation, which are structures that determine the path
of IT growth through the root (4), and initiation of cortical cell
division (1). One of the earliest plant responses to stimulation by
Nod factors is Ca?*-spiking, which consists of perinuclear oscil-
lations of calcium concentration in root cells (5). In the legume
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Lotus japonicus, a shared genetic program defined by seven
“common symbiosis genes” (6), is required for the establishment
of both symbioses (7). An LRR-receptor kinase SYMRK (8, 9),
the ion channel-like proteins CASTOR and POLLUX (10, 11),
and the nucleoporins NUP85 and NUP133 (12, 13) are all
required for the generation of Ca?*-spiking, whereas a calcium
and calmodulin-dependent protein kinase (CCaMK) is not,
suggesting that CCaMK functions downstream of Ca?*-spiking
(14-16). CCaMK is composed of a kinase domain, a calmodu-
lin-binding site and 3 EF hand motifs (16). Its catalytic activity
is modulated by either free, or calmodulin (CaM)-bound Ca?*
ions (16, 17), suggesting that CCaMK converts the Ca?* oscil-
lation signal into a protein phosphorylation read-out. Deregu-
lation of CCaMK by either a point mutation in the autophos-
phorylation site, or the deletion of the C-terminal regulatory
domain, results in spontaneous nodule formation in the absence
of rhizobia, demonstrating that CCaMK is a central regulator of
the nodule organogenesis program (16, 17). CCaMK is also
required for root hair curling and IT formation upon rhizobial
infection and arbuscule formation during AM (7, 18, 19).
However, how CCaMK differentially activates infection- vs.
organogenesis-related pathways is still unclear.

CYCLOPS has been positioned downstream of CCaMK, be-
cause cyclops mutants exhibit impaired AM and rhizobial infec-
tion, but retain Ca?*-spiking and formation of nodule primordia
(7, 20-23). In this work, we describe the map-based cloning of
CYCLOPS, which we found to encode a nuclear-localized pro-
tein with a coiled-coil motif. CYCLOPS is an ortholog of
Medicago truncatula TPD3, which was recently identified as
Interacting Protein of DMI3 (the M. truncatula CCaMK or-
tholog) (24). We show that CYCLOPS specifically interacts with
kinase-active CCaMK in planta and is phosphorylated by
CCaMKin vitro, suggesting that CYCLOPS is a phosphorylation
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Fig. 1. Phenotypic characteristics of the cyclops-3 mutant. (A) Growth
phenotype in nitrogen-limiting conditions of ecotype Gifu WT (Left) and
cyclops-3 (Right). (B) WT nodule. (C) cyclops-3 nodule primordium. (D) Infec-
tion thread within WT root hair. (E) Aborted infection within curled root hair
of cyclops-3. (A-C) Plants were grown for 1 month after inoculation with M.
loti MAFF303099. (D and E) Plants were grown for 2 weeks after inoculation
with M. loti BNO2 expressing GFP. [Scale bars: (A) 1.0 cm; (Band C) 1.0 mm; (D
and E) 20 um.] (F and G) Quantitative RT-PCR analysis of NIN (F) and ENOD40-
1(G) expression in noninoculated (0 days) WT (white columns) and cyclops-3
(black columns) roots, and at 1, 2, 4, and 8 dpi with M. loti MAFF303099. Fold
increases in expression are shown relative to WT roots at 0 dpi (Fand G). Mean
values + SD are shown.

target of CCaMK. Our data position CYCLOPS on an infection-
specific branch of the signaling network downstream of CCaMK.

Results

cyclops Mutants Abort Infection by Rhizobia and AM Fungi. In for-
ward genetic screens, we previously identified an allelic series of
mutants impaired in the interaction with both rhizobia and AM
fungi [supporting information (SI) Table S1]. Phenotypic anal-
ysis revealed that in contrast to WT L. japonicus plants (Fig. 14),
which developed mature nodules upon inoculation with M. loti
under nitrogen-limiting conditions (Fig. 1B) on cyclops-3 mutant
roots, nodule development was prematurely arrested, and only
nodule primordia were observed (Fig. 1 4 and C; Table S1). In
WT plants, intracellular ITs developed and grew through the
root hair toward the nodule primordium (Fig. 1D). On cyclops-3
mutant roots, curled root hair tips were colonized by rhizobia,
however no ITs were observed (Fig. 1E). Because of this
characteristic mutant phenotype, the corresponding gene was
called CYCLOPS. In rare cases I'Ts were initiated, but elongation
was aborted within root hairs (22). On cyclops mutant roots, the
passage of AM fungal hyphae through the outer cell layers was
characterized by abnormal hyphal swellings forming within
epidermal or outer cortical cells, indicating an impairment of the
intracellular infection process (Fig. S1.4 and B). Where infection
events were successful, hyphal growth proceeded toward the
inner root cortex, and apoplastic growth along the root axis led
to longitudinal spread of the fungal infection. Despite fungal
colonization of the root cortex, arbuscules were almost com-
pletely absent from cyclops mutants (Fig. S1 4 and B, Table S2)
(7). These data indicate that CYCLOPS is required for fungal
infection of the outer cortical cell layers and for arbuscule
development.

Expression of NIN and ENOD40-1 Is Impaired in cyclops Mutants. In L.
japonicus, transcription of the NIN and ENOD40-1 genes is
induced within a few hours during the symbiotic interaction with
M. loti (25, 26). The transcript levels of these genes are useful
markers for the activity of symbiotic signal transduction pro-
cesses (26, 27). In the WT, biphasic induction kinetics were

Yano et al.

Fig. 2. Spontaneous nodule formation on cyclops-4 and WT L. japonicus
hairy roots transformed with 35S promoter-driven gain-of-function
CCaMKT2650, CCaMKT2650 was introduced into cyclops-4 or WT hairy roots.
(A-D) Spontaneous nodule development on cyclops-4 (A and B) and WT roots
(Cand D) induced by CCaMKT265D_ Transformed roots were visualized by GFP
fluorescence (B and D). Nodules were observed 8 weeks after transformation.
(Scale bar, 1 mm.)

observed for both genes upon inoculation with M. loti (Fig. 1 F
and G). The first phase occurred at, or before, 1 day after
inoculation (dpi), and the second between 4-8 dpi. This two-
phase induction most likely reflects epidermal and cortical
expression of NIN and ENOD40-1, as reported previously (28).
NIN induction was still detectable, but at 8 dpi was 17-fold
reduced in cyclops-3 compared to the WT (Fig. 1F). In contrast,
slight variations in ENOD40-1 transcript levels in cyclops-3
mutant roots were not statistically significant (Fig. 1G). These
data indicate that CYCLOPS is required for full transcriptional
activation of NIN and ENOD40-1.

CYCLOPS Is Dispensable for Nodule Organogenesis. In contrast to
previously identified common symbiosis mutants, cyclops mu-
tants retain the ability to initiate cortical cell division. However,
it is unclear whether CYCLOPS is necessary for the progression
of nodule organogenesis beyond the primordium stage. To
answer this question, we took advantage of a derivative of
CCaMK conferring spontaneous nodulation. CaMV 35S pro-
moter-driven expression of CCaMKT™2%P in which the predicted
autophosphorylation site Thr-265 was replaced by Asp, resulted
in spontaneous nodule formation in the absence of rhizobia in
the WT as well as the cyclops-4 background (Fig. 2 A-D and
Table S3). The size of spontaneous nodules formed on cyclops-4
roots did not differ significantly (P < 0.01) from those formed
on WT roots (Fig. 2.4 and C, Table S3). None of the negative
controls including WT and cyclops-4 plants transformed with
WT CCaMK developed spontaneous nodules (Table S3). These
results indicate that CYCLOPS is dispensable for nodule orga-
nogenesis and suggest that the developmental arrest observed in
cyclops mutants is an indirect consequence of the aborted
bacterial infection.

Map-Based Cloning of CYCLOPS. The CYCLOPS gene was isolated
from L. japonicus by using a map-based approach (Fig. S2 A-C).
Comparison with corresponding cDNA clones originating from
nodulated roots (29) revealed that CYCLOPS is composed of 11
exons encoding a protein of 518 aa (Figs. S2D and S34). Point
mutations or single nucleotide deletions result in frame shifts
and/or premature stop codons in cyclops-2, -3, -4, and -5 (Table
S1). Cyclops-1 carries a transposon insertion in intron 10, result-
ing in a sequence insertion between exons 10 and 11 of the cDNA
(Fig. S2D, Table S1). Hairy root transformation of cyclops-3 with
the genomic CYCLOPS sequence, including the native promoter,
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resulted in the development of WT-like nodules upon inocula-
tion with M. loti (Fig. S4). Similarly, the introduction of CY-
CLOPS cDNA fused to the native promoter into the same
mutant line restored WT-like nodulation, as well as AM forma-
tion (Fig. S1, Table S2). The identification of genetic lesions in
each of the 5 independent cyclops alleles together with the
transgenic complementation of the mutant phenotype is un-
equivocal evidence for the correct identification of the CY-
CLOPS gene.

Within the conceptual CYCLOPS gene product, a coiled-coil
motif in the C-terminal 67 aa residues and 2 nuclear localization
signals (NLSs) were predicted (Figs. S34 and S5). However, no
overall similarity to proteins of known function was identified by
interrogation of public databases. Genomic DNA gel blot anal-
ysis and searches in the complete genome sequence (30) indi-
cated that CYCLOPS is a single copy gene in L. japonicus and
that single copy CYCLOPS-related sequences occur in other
legume species including Medicago truncatula and Pisum sativum
(data not shown). A combination of database searches and PCR
amplification of cDNA from the respective species identified
putative CYCLOPS orthologs in M. truncatula (IPD3) (24), P.
sativum, and Oryza sativa (Fig. S5).

CYCLOPS Expression and Subcellular Localization. By quantitative
RT-PCR, CYCLOPS mRNA was detectable in uninfected roots
and increased in abundance between 4-8 dpi with M. loti (Fig.
S6A4), which is after the initiation of IT development and cortical
cell division. CYCLOPS mRNA accumulated in mature nodules,
whereas the mRNA level in roots harvested 3 weeks after
inoculation, nodules on which were removed, was comparable to
uninfected roots (Fig. S6B). In situ hybridization of mature
nodules indicated that CYCLOPS mRNA was present in cells of
the central tissue (Fig. S6 C and D). CYCLOPS promoter activity
during nodule development was monitored in L. japonicus hairy
roots transformed with fusions of the CYCLOPS promoter to the
beta-glucuronidase (GUS) reporter gene. Upon treatment with
M. loti, strong GUS activity was observed in dividing cortical
cells during early stages of nodule development (Fig. S6F). In
agreement with the in situ hybridization results, strong expres-
sion was detected in the central tissue of mature nodules at later
stages (Fig. S6F). CYCLOPS mRNA was not detectable in plant
shoots, regardless of whether the plants were inoculated with M.
loti or not (Fig. S6B).

To determine the subcellular localization of CYCLOPS, we
transiently expressed GFP-CYCLOPS fusion constructs driven
by the 35S promoter in Nicotiana benthamiana leaf epidermis
cells (Fig. S7). GFP-CYCLOPS and a C-terminal truncation
lacking the coiled-coil motif (GFP-CYCLOPS 1-449) were
exclusively detected in the cell nucleus (Fig. S7.4 and B), whereas
CYCLOPS deletion mutants lacking either the second or both
predicted NLS (GFP-CYCLOPS 1-421 and 1-366) were dis-
tributed randomly in the cytosol and nucleus, similar to the
pattern observed with GFP alone (Fig. S7 C-E), indicating that
at least the NLS proximal to the C terminus is functional.
Because CCaMK was also localized in the nucleus (31), we tested
for possible colocalization with CYCLOPS in L. japonicus root
cells. Fusion constructs of CCaMK-GFP and RFP-CYCLOPS,
both under the control of the CaMV 35S promoter, were
introduced into WT L. japonicus roots via A. rhizogenes trans-
formation. Transformed hairy roots exhibited GFP and RFP
fluorescence in the same nuclei (Fig. S8 A-D). Similar results
were obtained with protoplast cells derived from L. japonicus
root tissue (data not shown). The observed spatiotemporal
expression pattern of CYCLOPS and its nuclear colocalization
with CCaMK are consistent with the findings obtained for the M.
truncatula CYCLOPS ortholog IPD3 (24).
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CYCLOPS Interacts With CCaMK in the Nucleus. In yeast two-hybrid
(Y2H) analysis, full-length CYCLOPS fused to the GAL4 DNA
binding domain (BD) showed strong autoactivation in yeast (data
not shown). Consequently, a CYCLOPS deletion derivative BD-
fusion (residues 1-259) or full-length CYCLOPS fused to the
GALA4 activation domain (AD), both lacking autoactivation (data
not shown), were used for subsequent experiments. We detected a
strong interaction between CYCLOPS and CCaMK (Fig. 34 and

B). A CCaMK point-mutation in the autophosphorylation site
(T2651) that causes nodule development in the absence of rhizobia
(16) did not disrupt interactions with CYCLOPS (Fig. 34). How-

ever, 2 kinase-defective CCaMK mutants, G30E (as in theccamk-3

mutant) (16) and a point-mutant of a catalytic lysine residue
(K44A) (32), as well as the K44A/T2651 double mutant, did not
interact with CYCLOPS (Fig. 34), suggesting that kinase activity of
CCaMK is required for interaction with CYCLOPS. The analysis of
deletion constructs revealed that the 2 C-terminal EF-hand motifs
of CCaMK are not required for a strong interaction with CY-
CLOPS (Fig. 34). A CYCLOPS deletion series delimited the region
required for CCaMK interaction between CYCLOPS residues
81-366 (Fig. 3B). Using CYCLOPS 1-259 as bait revealed that
CYCLOPS forms homodimers, and that the region between resi-
dues 81-366 is necessary for self-interaction (Fig. B).

To confirm CYCLOPS protein interactions in planta, we
performed bimolecular fluorescence complementation (BiFC)
in transiently transformed N. benthamiana epidermis cells (33,
34). Strong fluorescence was observed in the nucleus when
CYCLOPS and CCaMK fused to the C- and N-terminal half of
YFP, respectively, were coexpressed (Fig. 3 C and E). Consistent
with the requirement of kinase-active CCaMK for interaction in
Y2H assays (Fig. 34), no fluorescence was observed in cells
cotransformed with constructs encoding CYCLOPS and
CCaMK kinase-dead mutants (K44A and G30E) (Fig. 3D and
data not shown). Self-interaction of full-length CYCLOPS was
also observed in planta (Fig. 3F).

CCaMK Phosphorylates CYCLOPS In Vitro. Their strong interaction in
plant and yeast cells prompted us to analyze whether CCaMK can
phosphorylate CYCLOPS in in vitro kinase assays. CYCLOPS,
CYCLOPS!=#4, and CYCLOPS3!1-3%  which interacted with
CCaMK in the Y2H assay, were all phosphorylated by CCaMK
(Fig. 3G, Left Image). The N-terminal truncation CY-
CLOPS*>7318 did not interact in the Y2H assay and was not
phosphorylated by CCaMK (Fig. 3G, Left Image). The relatively
stronger phosphorylation of CYCLOPS'~3% may indicate addi-
tional CCaMK phosphorylation sites that are inaccessible in the
full-length protein. C2* alone increased autophosphorylation of
CCaMK, whereas full-length CYCLOPS phosphorylation was stim-
ulated by Ca?*/CaM (Fig. 3G, Right Image). These results demon-
strate that CYCLOPS is a substrate of CCaMK in vitro.

Rice CYCLOPS Is Indispensable for AM and Restores Rhizobial and
Fungal Symbiosis in Lotus cyclops-3. Alignment of the nucleotide
and protein sequences of L. japonicus CYCLOPS and rice (Oryza
sativa) OsCYCLOPS revealed a 45% overall amino acid se-
quence identity, and a conserved exon-intron structure (Figs.
S34 and S5). To elucidate the function of CYCLOPS in rice, we
analyzed the AM phenotype of 4 independent Tos!7 lines (35),
which each carry an insertion within exon 6 of OsCYCLOPS (Fig.
S34). Upon cocultivation with G. intraradices, arbuscules were
not observed in any of the mutant root systems tested, despite the
presence of abundant intraradical mycelium (Fig. S3B), indicat-
ing that OsCYCLOPS is required for arbuscule and hence, AM
development in rice. Hyphal swellings within epidermal and
outer cortical cells, resembling aborted infection sites observed
in L. japonicus cyclops mutant roots, were also present in rice
cyclops mutant roots, but were not indicative of the mutant
phenotype in this species as they similarly occurred in rice
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Fig.3. CYCLOPS-CCaMK interactions and in vitro phosphorylation. (A and B) Detection of protein—protein interactions by Y2H analysis. Representative yeast
growth on the selection medium (-leu, -trp, -his, -ade) is shown, and interaction results are indicated on the right. (+, growth; —, no growth; =, very weak growth;
AD, fused to the activation domain of GAL4; BD, fused to the DNA binding domain of GAL4). (A) Schematic illustrations of CCaMK derivatives (gray box, kinase
domain; slashed box, calmodulin binding domain; black box, EF-hand; star, amino acid replacement) and their interaction with CYCLOPS. (B) Schematic
illustrations of CYCLOPS derivatives (black box, coiled-coil motif; white box, NLS) and interaction of CYCLOPS derivatives with CCaMK and CYCLOPS'~259, (C-F)
Detection of protein—protein interactions in N. benthamiana leaves by BiFC. YFP fluorescence of leaves cotransformed with CCaMK-YFPN (N-terminal half of YFP)
and YFPC (C-terminal half of YFP)-CYCLOPS (C) or CCaMK K44A-YFPN and YFPS-CYCLOPS (D). Lower Images in (C) and (D) show RFP fluorescence of the
corresponding area resulting from cotransformation with a 355/RFP construct as a positive control for successful transformation. [Scale bars, 100 um (C and D).]
YFP fluorescence of a leaf epidermis cell cotransformed with CCaMK-YFPN and YFPC-CYCLOPS (E) or CYCLOPS-YFPN and YFPS-CYCLOPS (F). Lower Images in (E)
and (F) show the cell architecture (differential interference contrast) of the same cell. [Scale bars, 50 um (E and F).] (G) In vitro phosphorylation of CYCLOPS by
CCaMK. (Left Images) Phosphorylation of full-length CYCLOPS and derivatives in the presence of calcium (Ca2*) and calmodulin (CaM). (Right Images)
Phosphorylation of full-length CYCLOPS in the presence (+) or absence (—) of Ca2* and CaM. Arrowheads indicate MBP-CCaMK and asterisks indicate

6 His-CYCLOPS or derivatives. (Upper Images) Autoradiographs of kinase assays (32P) and (Lower Images) Coomassie staining (CBB) of the same gels.

segregants of the same lines carrying wild-type alleles of OsCY-
CLOPS (data not shown). By using A. rhizogenes infection, we
generated L. japonicus cyclops-3 hairy roots carrying a fusion of
the OsCYCLOPS coding sequence to the Lotus CYCLOPS
promoter region. In these roots, both AM and nodulation by M.
loti were restored (Table S2, Fig. S1), demonstrating that the
OsCYCLOPS gene of nonnodulating rice can support not only
AM fungal, but also bacterial endosymbiosis.

Discussion

In this study, we identified CYCLOPS by map-based cloning.

CYCLOPS encodes a plant-specific protein with a short C-terminal
coiled-coil domain and a functional NLS.CCaMK and CYCLOPS

are both required for the intracellular accommodation of bacteria
and AM fungi. These phenotypes positionCCaMK and CYCLOPS

on a pathway required for the induction of plant infection struc-
tures. In contrast to other common symbiosis genes, both genes act
downstream of the generation of C&*-spiking (23). CCaMK has

previously been localized to the nucleus and the presence of
calcium-binding EF-hands and a calmodulin-binding domain made
it a prime candidate to be the direct receiver of the calcium signal
during spiking (14-16). We found that CYCLOPS and CCaMK
colocalize within the nucleus, and we could observe physical
interaction between the 2 proteins in yeast, as well as in plant cell
nuclei, as was described for the M. truncatula orthologs IPD3 and

DMI3 (24). Moreover, CYCLOPS was found to be a substrate for
the CCaMK kinase in vitro. It is likely that the molecular mecha-
nism by which CCaMK and CYCLOPS mediate the induction of
infection structures involves the activation of symbiosis-related
genes downstream (7). In a hypothetical signaling pathway, the

Yano et al.

perinuclear calcium spiking induced by rhizobial Nod factors or
signals from AM fungi (36) modulate CCaMK kinase activity and
hence the phosphorylation status of CYCLOPS (Fig. 4). Phosphor-
ylation of CYCLOPS may, in turn, influence the transcription of
infection-related plant genes. The identity of signaling components
that function directly downstream of CYCLOPS and CYCLOPS-
regulated genes remains to be identified.

Although the physical interaction of CCaMK and CYCLOPS
and their requirement for infection are clear cut, there are signif-
icant phenotypic differences between corresponding mutants. In
ccamk loss-of-function mutants, root-hair curling and cortical cell
division were abolished upon symbiotic interaction withM. loti
(14-16, 20, 21), whereas both responses were detected incyclops
mutants. Moreover, the introduction of gain-of-function CCaMK
into the cyclops mutant background complemented the lack of
organogenesis of full-sized (spontaneous) nodules, demonstrating
that CYCLOPS is not required for nodule organogenesis. The
interaction in Y2H and BiFC occurred in the absence of calcium
spiking, indicating that CYCLOPS and CCaMK form a preas-
sembled, stimulus-independent complex. This complex is likely to
contain additional signaling components required for nodule ini-
tiation. The loss of CYCLOPS may weaken other interactions
within the complex. Such reduced stability of the CCaMK complex
may explain the reduction of spontaneous nodule numbers in the
cyclops mutant background (Table S3).

Our data reveal a bifurcation of signal transduction at or below
CCaMK. One CYCLOPS-dependent pathway leads to IT for-
mation and AM infection, whereas a second CYCLOPS-
independent pathway mediates nodule organogenesis and root-
hair curling (Fig. 4). These 2 pathways may have additional
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Fig. 4. Model for the function of CYCLOPS and CCaMK. Upon C&*-spiking
generated in the nucleus, CCaMK is activated by binding of calcium (Ca) to the
C-terminal EF hands, leading to autophosphorylation (P) and/or binding of cal-
cium-activated calmodulin (CaM) to the CaM binding domain (CBD). Subse-
quently, signal transduction initiated by CCaMK proceeds via different routes. In
the root cortex, CCaMK induces and maintains nodule organogenesis which
requires a sustained, elevated concentration of cytokinin (CK). In cells subject to
microbial invasion, CCaMK signals via CYCLOPS to mediate infection. Infection
thread development and ramification appears to be required for nodule pro-
gression, providing a continuous supply of morphogeneticsignal, the Nod factor.
(NLS, nuclear localization signal; CC, coiled-coil domain.)

organogenesis
maintenance

tissue-specific components because a mutant version of CCaMXK,
snfl, encoding a deregulated kinase, spontaneously induces the
expression of NIN in the cortical but not the epidermal cell layer,
where nodule organogenesis or infection are respectively initi-
ated (16). The second and CYCLOPS-independent pathway
proceeds via hypothetical additional phosphorylation target(s)
of CCaMK and likely involves the activation of cytokinin syn-
thesis. Cytokinin is subsequently perceived in a cell nonautono-
mous fashion by the cytokinin receptor LHK1 (37), an event
leading to the induction of cell division in hormonally prede-
termined cells (38).

If CYCLOPS is not required for nodule organogenesis, why do
cyclops mutants not develop mature nodules upon rhizobial
infection? Nodule meristem progression mediated by CCaMK
may require the continuous and sufficient supply of bacterial
morphogenetic signals such as Nod factors being released by
rhizobia into the developing ITs that are not provided in cyclops
mutants. Thus, the continuation of nodule morphogenesis would
rely on continuous IT development that is itself dependent on
CYCLOPS. This hypothesis is consistent with the fact that the
expression domain of CYCLOPS is congruent with the antici-
pated developmental region explored by ITs in the developing
nodule, as shown in our CYCLOPS promoter-GUS expression
analysis (Fig. S6).

The nodule primordia phenotype of cyclops resembles M.
truncatula hcl mutants, which induce limited cortical cell divi-
sions in response to rhizobia, and in which spontaneous nodules
form on transformation of gain-of-function CCaMK (39). How-
ever, in contrast to cyclops mutants, loss-of-function ic/ mutants
show an aberrant root-hair response toward rhizobia, resulting
either in extensive root-hair deformation without curling, or
extensive curling and a lack of bacteria within curled root hairs
(40). HCL encodes the LysM-type receptor-like kinase LYK3,
which is a putative ortholog of the L. japonicus Nod factor
receptor NFR1 (27, 41).

20544 | www.pnas.org/cgi/doi/10.1073/pnas.0806858105

Infection and nodule organogenesis are spatially and temporally
coordinated, and the CCaMK-CYCLOPS complex may contribute
to this coordination. When CCaMK versions in which the C-
terminal regulatory domain was deleted were introduced into the
M. truncatula dmi3-1 (ccamk) mutant background, spontaneous
nodules formed in the absence of rhizobia. Importantly, when these
transgenic roots were inoculated with rhizobia, the developing
nodules were not infected (17). This specific restoration of the
organogenesis, but not the infection program, may be explained by
our observation that the site between the CaM-binding domain and
the second EF hand is required for the L. japonicus CCaMK~-
CYCLOPS interaction in yeast (Fig. 34), a domain that is lacking
in the M. truncatula DMI3 1-311 or 1-326 C-terminal deletions.

Interestingly, the allelic series of symbiosis-defective cyclops
mutants exclusively comprises frame shifts or premature stop
codons, suggesting that they represent loss-of-function alleles (a-
ble S1). No mutants with single amino acid substitutions leading to
missense mutations were recovered from forward screens for
nodulation defective mutants (42). This is an exceptional bias
suggesting that amino acid substitutions are either largely tolerated
without significantly impacting CYCLOPS function, or lethal.

Amino acid sequences with high overall similarity to CYCLOPS
were only found in legume plants. The C-terminal region of
CYCLOPS, comprising the second NLS and the coiled-coil motif,
is conserved in a wide range of plant species, including the moss
Physcomitrella patens, the primitive angiosperm Amborella
trichopoda, and higher plants like Vitis vinifera and Populus tricho-
carpa. No sequence with significant similarity to CYCLOPS was
identified in the genome of the asymbiotic plant Arabidopsis
thaliana, in which other common symbiosis genes like SYMRK or
CCaMK are also absent (43).

The symbiosis between plants and AM fungi dates back to the
earliest land plants (44). Our analysis of ricecyclops mutants has
demonstrated the importance of OsCYCLOPS for the establish-
ment of AM. The finding that CYCLOPS is conserved in AM-
forming angiosperms is consistent with an ancient and specific role
of CYCLOPS in symbiosis. The observed intraradical colonization,
but lack of intracellular arbuscules incyclops mutants, indicates a
function predominantly serving the intracellular accommodation of
the AM fungi in both L. japonicus and rice. The evolution of
plant-derived structures supporting bacterial infection (infection
threads) was a critical step during the evolution of root nodule
symbiosis (6). In L. japonicus cyclops mutants, arbuscule develop-
ment and the initiation or elongation of ITs, are aborted (7, 22, this
study). This is consistent with the idea that both symbioses share a
common genetic program and hence an evolutionary history.
Genetic and structural considerations strongly suggest that the IT
evolved from the pre-penetration apparatus observed in response
to AM fungi (2). The additional and perhaps later invention of
nodule organogenesis relies on yet unidentified CCaMK-
downstream components that act independently of CYCLOPS.

Materials and Methods

Plant Material, Inoculation, and Growth Conditions. L. japonicus ecotype Gifu
WT and cyclops mutants identified in geneticscreens and through TILLING (42)
(Table S1) were grown and inoculated with M. loti MAFF303099 or BNO2 as
described (45).

Expression Analysis. RNA was quantified by real-time PCR, or detected by in
situ hybridization of root sections with CYCLOPS antisense and sense probes
as described in (46) and S/ Materials and Methods.

Plasmid Construction. Detailed information is provided in S/ Materials and
Methods.

Transformation of CYCLOPS and CCaMK Constructs. T-DNA constructs (de-

scribed in SI Materials and Methods) were introduced by hairy root transfor-
mation as described (47), plants were cocultivated with rhizobia or G. intrara-

Yano et al.


http://www.pnas.org/cgi/data/0806858105/DCSupplemental/Supplemental_PDF#nameddest=SF6
http://www.pnas.org/cgi/data/0806858105/DCSupplemental/Supplemental_PDF#nameddest=ST1
http://www.pnas.org/cgi/data/0806858105/DCSupplemental/Supplemental_PDF#nameddest=ST1
http://www.pnas.org/cgi/data/0806858105/DCSupplemental/Supplemental_PDF#nameddest=ST1
http://www.pnas.org/cgi/data/0806858105/DCSupplemental/Supplemental_PDF#nameddest=STXT
http://www.pnas.org/cgi/data/0806858105/DCSupplemental/Supplemental_PDF#nameddest=STXT
http://www.pnas.org/cgi/data/0806858105/DCSupplemental/Supplemental_PDF#nameddest=STXT
http://www.pnas.org/cgi/data/0806858105/DCSupplemental/Supplemental_PDF#nameddest=STXT

el

/

1\

=y

dices BEG195, and nodulation or AM formation was scored as described in S/
Materials and Methods.

Subcellular Localization, BiFC Analysis, and Microscopy. T-DNA constructs (de-
scribed in S/ Materials and Methods) were introduced into N. benthamiana
leaf cells by A. tumefaciens-mediated transient transformation, and leaf cells
were analyzed with an epifluorescence microscope (for detailed description,
see S/ Materials and Methods). For colocalization analysis, 355/CCaMK-GFP
and 35S/RFP-CYCLOPS T-DNA constructs (described in S/ Materials and Meth-
ods) were introduced into L. japonicus WT plants by hairy root transformation,
and the localization of the corresponding proteins was assessed by confocal
laser scanning microscopy.

Yeast Two-Hybrid Analysis. Y2H analysis was carried out according to standard
procedures (Stratagene Product Manual #235702; pBD-GAL4 Cam Phagemid
Vector Kit) by using the yeast strain AH109 (Clontech). Synthetic drop-out
media (-trp, -leu, -his, 1 mM 3-amino-1,2,4-triazole and -trp, -leu, -his, -ade)
were used for selection of protein interactions.

In Vitro Kinase Assays. Protein purification and kinase assays were done as
described (16) with modifications (see S/ Materials and Methods).
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Genotyping and AM Phenotyping of Oscyclops Lines. O. sativa subspecies
Jjaponica, cv. Nipponbare, was grown as recommended at http:/tos.nias.af-
frc.go.jp/~miyao/pub/tos17/. The Oscyclops mutant lines ND5032, NC2713,
NC2415, and NG0782 were identified by interrogation of a rice-mutant se-
quence tag library induced by retrotransposon Tos77 (35). For genotyping,
primer Tos17 was used with gene-specific primers (Table S4). The presence and
location of the insertions were confirmed by PCR and sequence analysis. For
AM phenotyping, plants were cocultivated with G. intraradices BEG195 and
Allium schoenoprasum nurse plants for 2 or 3 weeks and AM colonization was
quantified as described in (48).
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Expression Analysis. Total RNA was extracted with the RNeasy
Plant Mini Kit (Qiagen), followed by DNase I treatment.
Quantitative RT-PCR was performed with the GeneAmp5700
(Applied Biosystems) by using the QuantiTect SYBR Green
RT-PCR Kit (Qiagen). The relative expression value was nor-
malized by using EF-1. Amplification efficiencies of each prod-
uct were 0.82 (CYCLOPS), 0.91 (NIN), 0.81 (ENOD40-1), and
0.91 (EF-I). Experiments were carried out 3 times with 3
independent samples. Primer sequences for the amplification of
CYCLOPS, NIN, ENOD40-1, and EF-1 are listed in Table S4.

In Situ Hybridization. A cDNA fragment of CYCLOPS (493 bp)
was amplified (see Table S4 for primer sequences) and cloned
into the pGEM-T Easy Vector (Promega). Plasmids digested
with Spel were used as templates for T7 RNA Polymerase
(antisense probe), or were digested with Ncol for transcription
via SP6 RNA Polymerase (sense probe). Hybridization of 10-um
root sections was performed as described (1). Signals were
detected with an Olympus BX-50 microscope.

Plasmid Construction. For promoter-GUS analysis (Fig. S6 E and
F) and complementation tests (Fig. S4), a Gateway compatible
destination vector, pPCY CLOPS-GW, was constructed as follows:
HPTII in pCAMBIA1300 was replaced with GFP and an Ascl
linker was introduced into the Smal site (2, 3). A genomic
sequence of the CYCLOPS promoter region (3,788 bp) was
amplified by PCR, digested with BamHI and Ascl, and ligated
with the vector. The transcript terminator (968 bp) was amplified
by PCR, followed by digestion with Ascl and Sacl and ligation
with the vector. The reading frame cassette A of the Gateway
vector conversion system (Invitrogen) was introduced into the
Ascl site of the vector. A GUS entry clone was constructed as
follows: The GUSPlus gene in pCAMBIA1305.1 was amplified
by 2 rounds of PCR and the fragment introduced into pPDONR/
Zeo (Invitrogen) via Gateway BP reaction (Invitrogen). An
entry clone carrying the CYCLOPS genomic coding sequence
was constructed by amplification of the coding region (4,054 bp)
by 2 rounds of PCR, followed by introduction of the PCR
product into pDONR/Zeo (Invitrogen) via the Gateway BP
reaction (Invitrogen). Each fragment was then transferred from
the entry vectors into pCYCLOPS-GW by Gateway LR reac-
tions (Invitrogen).

For the RFP-CYCLOPS and CCaMK-GFP fusion constructs,
CYCLOPS and CCaMK cDNA were amplified by PCR and
cloned into pENTR-D Topo or pENTR-SD-D Topo (Invitro-
gen). The CYCLOPS entry clone was transferred into
pK7WGR?2 (4) by Gateway LR reactions. The CCaMK entry
clone was transferred into pK7FWG2 (4) by Gateway LR
reactions.

Constructs used for GFP fusions (Fig. S7), Y2H analysis (Fig.
3 A4 and B), BiFC (Fig. 3 C-F), and protein purification (Fig. 3G)
were made by using Gateway technology (Invitrogen). Full-
length and truncated CYCLOPS or CCaMK cDNA fragments
were amplified by PCR and cloned into pENTR-D Topo or
pENTR-SD-D Topo (Invitrogen). Point mutations were intro-
duced by PCR as described previously (5). Resulting entry clones
were transferred to destination vectors by Gateway LR reactions.
The following destination vectors were used: For N-terminal
GFP fusions, a Gateway-compatible pAMPAT-MCS derivative
(GenBank accession AY436765); for Y2H, modified pBD-
GAL4 Cam (Stratagene) and pGAD424 (Clontech) vectors in
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which Gateway cassettes were introduced; for BiFC, pSPYNE
35S GW and pGWB735/1 vectors (unpublished, gift from Dr.
Thomas Lahaye, University of Halle, Halle, Germany); for
CYCLOPS protein purification from E. coli, pPDEST17 (Invitro-
gen).

For the complementation analysis of cyclops-4 with gain-of-
function CCaMKT2%D, the binary vector backbone encoding the
CaMV 35S promoter was constructed as follows: The PCR frag-
ment of multi cloning sites (Xbal-Stul-Spel-BamHI-KpnI-Ascl)
flanked by the 35S promoter and the Nos terminator, was
digested with HindIII and Sacl. The fragment was inserted into
the HindIII-Sacl site of pHKN29r (2, 3), which resulted in
p35S-GFP. The 35S promoter and the Nos terminator were
amplified with pBI121 (6) as a template. The primers for PCR
were: HindIII-358-f and 35S-MCS-r for 35S promoter, and
MCS-Nos-f and Nos-Sacl- r for Nos terminator amplification.
The gain-of-function mutation of CCaMK (CCaMKT265P) was
constructed as follows: The mutation was introduced by PCR
using 2 primer combinations, followed by PCR ligation of 2
fragments with the outermost primer combination. The primers
for PCR were: Xbal-CCaMK-f and CCaMK-TD-r for the 5’
region of CCaMK, and CCaMK-TD-f and CCaMK-AscI-r for the
3’ region of CCaMK. All primer sequences are shown in Table
S4. The final PCR product was digested with Xbal and Ascl, and
inserted in the Xbal-Ascl site of p35S/GFP.

For hairy root complementation of Ljcyclops-3 with rice
OsCYCLOPS, CYCLOPS coding sequences were amplified from
cDNA preparations (SuperScript II, Invitrogen) obtained from
uninoculated root material of O. sativa subspecies japonica,
cultivar Nipponbare, or L. japonicus ecotype Gifu roots and
cloned into a pCAMBIA 1301 derived vector. L. japonicus and
rice CYCLOPS coding sequences were amplified by using prim-
ers LiCYCL_ATG_f with LjCYCL_TAA_r and OsCYCL_
ATG_f with OsCYCL_TAA_r, respectively. A 285-bp fragment
amplified with primers polyA_NOS_f and polyA_NOS_r from
pJawohl8 RNAI (kind gift of P. Schulze-Lefert, MPI for Plant
Breeding Research, Cologne, Germany) was used as the termi-
nator in all constructs. CYCLOPS coding sequences were fused to
a 2,271 bp genomic sequence, preceding the LjCYCLOPS tran-
scription start site and containing the promoter. Primer sequences
are listed in Table S4.

Plant Transformation and Microscopy. The CYCLOPS promoter-
GUS construct, the LiCYCLOPS and OsCYCLOPS genome
sequence constructs, CCaMK-GFP, RFP-CYCLOPS, CCaMK
WT, and CCaMK™265P ¢cDNA constructs were introduced into L.
japonicus WT ecotype Gifu or cyclops mutant hairy roots by
Agrobacterium rhizogenes AR1193 (7) according to (8) with
minor modifications. L. japonicus cyclops mutants identified in
genetic screens and through TILLING (9) are listed in Table S1.
Plant growth conditions and inoculation with M. loti
MAFF303099 or BN02 were described previously (10). Signals
were detected with an Olympus SZX12 stereomicroscope (Figs.
S4 and S6 E and F), a Leica SP5 confocal laser scanning
microscope (Fig. S8), or a Leica MZFLIII stereomicroscope

(Fig. 2).

Transformation of cyclops-4 with Gain-of-Function CCaMK'™2650 and
Plant Cultivation Conditions. Seven-day-old L. japonicus Gifu WT
or cyclops-4 seedlings were uprooted and inoculated with
Agrobacterium rhizogenes strain LBA1334 (11) harboring a WT
CCaMK or a gain-of-function CCaMK™%P construct, both
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fused to the CaMYV 35S promoter. After 5 days of cocultivation,
plants were transferred to HRE medium, and after 6 more days,
they were transferred to vermiculite. After 8 weeks, hairy roots
were examined, and the number of spontaneous nodules was
analyzed.

Subcellular Localization, BiFC Analysis, and Microscopy. For transient
transformation of N. benthamiana leaves (12), Agrobacterium
tumefaciens strains GV3101 pMP90 (13) and AGL1 (14) were
used for GFP-fusions and BiFC experiments, respectively.
Agrobacterium strains carrying a plasmid encoding the P19
silencing suppressor (15) and CaMV 35S promoter-driven RFP
were cotransformed for enhancing expression and as a transfor-
mation control, respectively. Leaf cells were observed with a
Leica DMI4000B inverse fluorescence microscope with GFP
(excitation: BP 470/40, bichromatic mirror 500; emission: BP
525:50) and YFP (excitation: BP 500/20, dichromatic mirror 515;
emission: BP 535:30) filter sets (Figs. 3 C—F and S7). Images were
taken either with a Leica DFC300FX or DFC350FX R2 digital
camera.

In Vitro Kinase Assays. CYCLOPS and CYCLOPS derivatives
(1-449, 81-366 and 255-518) were expressed from pDEST17
(Invitrogen) as N-terminal 6xHis-tagged fusion proteins in E.
coli strain Rosetta pLacl (Novagen). Expression products were
affinity purified via nickel-agarose (Qiagen) under denaturing
conditions by using 8 M urea (CYCLOPS, CYCLOPS 1-449 and
81-366), or native conditions (CYCLOPS 255-518), respec-
tively. Denatured proteins were refolded by stepwise dialysis.
Dialysis was carried out against buffer A (20 mM Pipes, 200 mM
KCl, 250 mM arginine, 10% glycerol, 1 mM DTT, pH 7.9)
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containing 6 M, 4 M, 2 M, 1 M, and 0 M urea. Dialysed protein
samples were centrifuged (50,000 X g, 30 min, 4 °C) and the
supernatant was used for kinase assays. Protein elutions ob-
tained from native purification (CYCLOPS 255-518) were com-
bined and transferred into buffer A by PD-10 column (GE
Healthcare). Purification of maltose binding protein (MBP)
tagged CCaMK and in vitro kinase assays were described
previously (5). Each reaction was carried out by using 1-ug
MBP-CCaMK protein and 2-ug full-length 6xHis-CYCLOPS, or
derivatives, as substrate. Phosphorylation reactions were per-
formed at 25 °C for 30 min in the presence of either 4 mM EGTA
or 0.1 mM CaCl, with or without 0.5 uM bovine calmodulin
(Sigma).

Complementation Analysis With OsCYCLOPS. For analysis of root
nodule symbiosis complementation, A. rhizogenes-induced trans-
genicroots of L. japonicus WT Gifu and of the cyclops-3 mutant line
(Table S1) (transformed with the OsCYCLOPS, or LiCYCLOPS
coding sequence, respectively, each fused to the LjCYCLOPS
promoter) were inoculated with M. loti MAFF303099 expressing
DsRED. After 4 weeks of cocultivation (WOC), plants were
analyzed for the simultaneous presence of nodules and ITs. For
AM complementation analysis, transformed plants were cocul-
tivated with G. intraradices BEG195, and harvested after 3
WOOG; transformed roots were stained as described (16). Roots
were scored “AM+7, if symbiotic structures (arbuscules and
vesicles) were present, and as “AM~—", if no arbuscules and no
vesicles were observed. Roots were considered complemented
and scored AM+, when aborted infection sites in co-occurrence
with successful infection, and fungal colonization events, accom-
panied by arbuscule and vesicle formation, were observed.
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Fig. S1. OsCYCLOPS restores both fungal and bacterial endosymbioses in Lotus cyclops-3 mutants. Transgenic roots were A. rhizogenes induced and selected
via fluorescence of eGFP encoded on the transfer DNA. (4, B, G, and H) cyclops-3 roots transformed with a control vector lacking a CYCLOPS expression cassette.
(C, D, and I-L) cyclops-3 roots carrying the LjCYCLOPS coding sequence and (E, F, and M-P), the OsCYCLOPS coding sequence, both under control of the LjCYCLOPS
promoter region. (A-F) Roots cocultivated with G. intraradices for 3 weeks. (A and B) Transgenic control root with extraradical mycelium, but no intraradical
fungal colonization or arbuscule formation. (A and B) Fungal infection attempts aborted within the epidermal or outer cortical tissue. (C-F) cyclops-3 roots
carrying the LjCYCLOPS (C and D) and OsCYCLOPS (E and F) coding sequences, showing dense fungal colonization (C and E) and arbuscule formation in the inner
cortical tissue (D and F). (G-P) Root systems inoculated with a DsRED expressing strain of M. loti and incubated for 4 weeks. (G and H) Transgenic control root
without mature nodules. Small primordial swellings (arrow in G) do not contain bacteria (not shown). Such swellings are typically formed in Ljcyclops mutant
roots upon M. loti inoculation (17, 20). (/-P) cyclops-3 roots carrying the LjCYCLOPS (/-L) and OsCYCLOPS (M-P) coding sequences, showing mature nodules.
Nodules exhibit pink coloration in white light (K and O) and red fluorescence of the inner nodule tissue (L and P) indicating the presence of symbiosis-specific
leghemoglobins and of DsRED- expressing bacteria, respectively. (ai, aborted infection; ap, fungal appressorium; ar, arbuscule; eh, extraradical hypha; is,
infection site; vt, root vasculature.) [Scale bars: 0.1 mm (A, C, and E); 0.02 mm (B, D, and F); 2 mm (G-J and M-N); 0.5 mm (K-L and O-P).]
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Fig.S2. Positional cloning of CYCLOPS. (A) Genetic map of the CYCLOPS locus on linkage group 2. TM0020, TM0974, and TM1522 are SSR markers. (B) Physical
map of the CYCLOPS locus. LjB11B14 is a BAC clone, LjT12H02, LjT14NO05, LjT12C04, and LjT10G21 are TAC clones. Two F, populations from cyclops-3 X MG-20
(458 plants) and cyclops-4 X MG-20 (2,183 plants) were analyzed for mapping. (C) Candidate genes in the CYCLOPS locus delimited by recombination events.
(I, NBS-LRR type disease resistance protein; Il, hypothetical protein; Ill, CYCLOPS; IV, ATP-dependent Clp protease-like protein.) Positions of markers are indicated
together with the number of recombinant plants in the mapping population. (D) Gene structure of CYCLOPS. Black boxes indicate exons. Gray box indicates
alternative splicing (retention of intron 3) identified through sequence analysis of cDNA clones and RT-PCR across exon borders. The asterisk indicates the position
of a premature stop codon in the splice variant. Arrows indicate the positions of mutations in cyclops alleles.
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Fig. S3. Characterization of O. sativa cyclops Tos17 insertion lines. (A) Exon structures of L. japonicus (Lj) CYCLOPS and rice (Os) CYCLOPS genes are conserved.
Exons are labeled 1-11. Only regions covering the coding sequences are represented. Dotted lines indicate intron positions, black bars represent predicted nuclear
localization signals (NLSs) and gray bars are coiled-coil regions in the conceptual amino acid sequences. Only the functionally confirmed NLS (Fig. S7) of L.
Jjaponicus CYCLOPS is depicted. The positions of Tos77 insertions in the 4 rice cyclops lines are indicated. (B) AM quantification in rice cyclops insertion lines after
2 and 3 weeks of coculture (WOC) with G. intraradices. For each of the lines and at each time point, roots of 12 WT and 12 mutant plants were tested. Values
are derived from 100 intersects randomly scored in 4 roots per plant. Intersects were scored as containing arbuscules, vesicles, or intraradical hyphae only. Mean
values + SD are shown. (Hom., homozygous; WT, wild-type plants.)
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Fig. S4. Complementation of cyclops-3 with the CYCLOPS genomic sequence. Hairy roots were induced via A. rhizogenes-mediated transformation, and
inoculated with M. loti MAFF303099. (A and B) A vector containing the CYCLOPS genomic sequence including its own promoter was introduced into mutant
plants homozygous for the cyclops-3 allele. Nodule development was observed in 27 of 30 transformed plants, with an average number of 4.0 = 1.8 fully
developed, WT-like nodules per plant. (C and D) The cyclops-3 mutant was transformed with an empty vector. None of the 29 transformed plants developed
WT-like nodules. (B and D) GFP fluorescence indicating transformed hairy roots. (Scale bar, 2 mm.)
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Fig. S5. Alignment of the Lotus japonicus, Medicago truncatula, Pisum sativum (pea), and Oryza sativa (rice) CYCLOPS proteins. Accession numbers are as
follows: LjCYCLOPS, ABU63668; MtCYCLOPS, ABU63671; PsCYCLOPS, ABU63669; OsCYCLOPS, ABU63670. Alignment was done with CLUSTALW (http:/
align.genome.jp/). Residues that are identical among all 4 protein sequences (*), conserved substitutions (:), and semiconserved substitutions (.) are indicated.
Medicago, pea, and rice CYCLOPS comprise 513, 513, and 506 residues and have overall 78%, 79%, and 47% sequence identity with L. japonicus CYCLOPS,
respectively. Two predicted nuclear localization signals (NLSs) identified by PSORT (http://www.psort.org/) are highlighted in black. Note that the 1st NLS of pea
CYCLOPS is overlapped by 2 redundant sequences of 4 amino acid residues (RKRK and KRKR). Only 1 NLS was predicted in rice CYCLOPS. A predicted coiled-coil
motif at the Cterminus of the protein (http://www.ch.embnet.org/software/COILS_form.html) (21) is highlighted in gray (threshold value is 0.999 with 28 residues

scan).
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Fig.S6. Expression of CYCLOPS in response to M. loti MAFF303099. Quantitative RT-PCR analysis of (A) CYCLOPS expression in WT roots, noninoculated (0 days)
and at 1, 2, 4, and 8 days post inoculation (dpi). (B) CYCLOPS expression in uninoculated WT L. japonicus roots (UR) and shoots (US), and in inoculated shoots
(1S), infected roots without nodules (IR), and nodules (N) 3 weeks post inoculation (wpi). Fold increases in expression are shown relative to uninoculated roots
(A and B). Mean values * standard deviations are shown. (Cand D) In situ hybridization of nodules with CYCLOPS antisense probe (C) and sense probe (D). (Scale
bars, 100 um.) (E and F) Activity of the CYCLOPS promoter fused to the GUS reporter gene in WT roots. (E) Dividing cortical cells in the root inoculated with M.

loti. (F) Mature nodule. [Scale bars, 100 um (E) and 1.0 mm (F).]
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Fig. S7.  Subcellular localization of CYCLOPS. Fusions of GFP to the N terminus of either full-length or C-terminally truncated CYCLOPS derivatives were
transiently expressed in N. benthamiana leaves via A. tumefaciens transformation. (A) GFP-CYCLOPS (full-length). (B) GFP-CYCLOPS 1-449, lacking the coiled-coil
motif. (C) GFP-CYCLOPS 1-421 lacking the second NLS. (D) GFP-CYCLOPS 1-366 lacking both NLSs. (E) Expression of free GFP. Left Images show the cell architecture
(differential interference contrast); Right Images show GFP fluorescence of the same cell. (Scale bars, 50 um.)
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Fig.$8. Colocalization of CYCLOPS and CCaMK in L. japonicus root nuclei. L. japonicus WT seedlings were cotransformed with 2 Agrobacterium strains carrying
either a CCaMK-GFP or RFP-CYCLOPS T-DNA construct. Cotransformed hairy roots were selected by fluorescence of both fusion proteins. (A) Laser transmission
image. (B) CCaMK-GFP. (C) RFP-CYCLOPS. (D) Merged image of A-C. (Scale bar, 50 um.)
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Table S1. cyclops mutant alleles

Mutation Phenotype
Allele Line Previous allele Ref(s) cDNA Amino acid Nod* AMT
cyclops-1 10512.9 syme6-1 (17, 18) Insertion between exons 10 and 11 +15 residues after R478 np -
cyclops-2 1962-124 symé6-2 (18) Deletion A737 +17 residues after L245 np -
cyclops-3 EMS126 sym30, sym6-3 (17, 18, 19) G1112A W371 stop np -
cyclops-4 N-4 sym82 (20) C319T Q107 stop np -
cyclops-5 SL1347-2 9, % Deletion G1281 +29 residues after K427 np -
Complementation between cyclops-1 and cyclops-2 (18), or cyclops-3 (17) was previously described.
*"np' indicates nodule primordia with arrested infection within curled root hairs.
T indicates defects in AM symbiosis.
*The cyclops-5 allele was identified in this work through TILLING (9).
Yano et al. [zww.pnas.org/cgi/content/short/0806858105] 11 of 14
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Table S2. Restoration of root symbioses in the Lotus cyclops-3 mutant

Plant genotype Transgene AM+ IT Nod+ Nodules/ nodulated plant
cyclops-3 marker only* 0/12 - 0/11 0

WT LjCYCLOPS 12/12 + 30/32 5.0

cyclops-3 LjCYCLOPS 19/24 + 14/21 3.1

WT OsCYCLOPS 14114 + 16/16 7.3

cyclops-3 OsCYCLOPS 18/25 + 15/24 3.0

[

AM+, root systems containing arbuscules; IT, infection thread formation; Nod+, roots with fully developed nodules. Numbers refer to A. rhizogenes-transformed
root systems. Numbers are compiled results of 2 independent experiments. Constructs were equipped with the L. japonicus (Lj) or rice (Os) CYCLOPS coding
sequence and were under the control of the LjCYCLOPS promoter region.

*Plants were transformed with the respective binary vector lacking a CYCLOPS expression cassette.
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Table S3. Spontaneous nodule formation with gain-of-function CCaMK

Genotype Construct Inoculation Nod+/total* Nod/plant® Nod size, cm*
WT T265D - 27/28 7.19 = 4.58 0.690 + 0.159
cyclops-4 T265D - 10/66 1.80 = 1.03 0.699 + 0.180
WT T265T - 0/44 0 -
cyclops-4 T265T - 0/34 0 -

Spontaneous nodules (Nod) were developed without inoculation. Nod were scored 8 weeks after transplanting.
*Number of plants with spontaneous nodules per number of transformed plants.
fAverage = SD is shown.
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Table S4. Primer sequences

Target sequence

Primer sequence

Expression analysis:

CYCLOPS forward
reverse
NIN forward
reverse
ENOD40-1 forward
reverse
EF-1 forward

reverse
Plasmid construction:

CYCLOPS promoter forward
reverse
CYCLOPS transcript terminator forward
reverse
GUSPlus 1st PCR forward
reverse
GUSPlus 2nd PCR forward
reverse
CYCLOPS genomic sequence 1st PCR forward
reverse
CYCLOPS genomic sequence 2nd PCR forward

reverse
In situ hybridization:

CYCLOPS cDNA (493 bp) forward
reverse
Primer name
Complementation analysis of cyclops-4 with gain-of-function CCaMK:
HindIll-355-f forward
355-MCS-r reverse
MCS-Nos-f forward
Nos-Sacl-r reverse
Xbal-CCaMK-f forward
CCaMK-TD-r reverse
CCaMK-TD-f forward
CCaMK-Ascl-r reverse
Genotyping of O. sativa Tos17 insertion lines:
OsCYCL_In3_f forward
OsCYCL_Ex6_f forward
OsCYCL_Ex6_r reverse
Tos17_fIr for/rev
OsCYCLOPS cross-species complementation analysis*:
LjCYCL_ATG_f forward
LjiCYCL_TAA_r reverse
OsCYCL_ATG_f forward
OsCYCL_TAA_r reverse
polyA_NOS_f forward
polyA_NOS_r reverse

5'-GCTGGCAGATGAAAAAGAGC-3'
5'-GCGTGTTTGAGCACAACATT-3’
5'-TGGATCAGCTAGCATGGAAT-3'
5'-TCTGCTTCTGCTGTTGTCAC-3’
5'-TCACCATGGAGGTATGCTCA-3’
5'-TTTGGAACAGCACAAGTTGG-3'
5'-GCAGGTCTTTGTGTCAAGTCTT-3’
5'-CGATCCAGAACCCAGTTCT-3’

5'-ATGGATCCCCCAGAGATCCCTGATGATG-3'
5'-ATGGCGCGCCTTCCAATTGAAGCTGTTGTTTTC-3’
5'-ATGGCGCGCCTATGAGAATCAATGTTGTGCTCAAACACG-3'
5'-ATGAGCTCTGTTAATTTTGTTAGCTCAAGTGG-3’
5'-AAAAAGCAGGCTACCATGGTAGATCTGAGGGTAA-3’
5'-AGAAAGCTGGGTTCACACGTGATGGTGATGGT-3’
5'-GGGGACAAGTTTGTACAAAAAAGCAGGCT-3’
5'-GGGGACCACTTTGTACAAGAAAGCTGGGT-3'
5'-AAAAAGCAGGCTTGGAAATGGAAGGGAGGGG-3’
5'-AGAAAGCTGGGTTCATTACATTTTTTCAGTTTCTGATAGAATTC-3'
5'-GGGGACAAGTTTGTACAAAAAAGCAGGCT-3’
5'-GGGGACCACTTTGTACAAGAAAGCTGGGT-3'

5'-CTGCGAAAGCTCATGGAAAC-3'
5'-GCGTGTTTGAGCACAACATT-3’

Primer sequence

5'-TCCAGTAAGCTTTCCCCAGATTAGCCTTTTCA-3’

5'-CCTAGGTACCGGATCCACTAGTAGGCCTTCTAGAGTCCCCCGTGTTCT-3'
5'-AGTGGATCCGGTACCTAGGCGCGCGCCATCGATCGTTCAAACATTTGGC-3'

5'-AATCGGAGCTCGATCTAGTAACATAGATGACACCG-3’
5'-GCTCTAGAATGGGATATGATCAAACCAGAAAG-3'
5'-CCTTCCAATCCTTCTCATAGAAAC-3’
5'-TCAGTTTCTATGAGAAGGATTGGA-3’
5'-AGGCGCGCCCTATGATGGACGAAGAGAAGAGA-3’

5'-AGGCATTTTCATCACCCATC-3’
5'-CACCCAGTCAGACTCCAACA-3’
5'-ATGCTGTACCAAGCCAAACC-3’
5'-ATTGTTAGGTTGCAAGTTAGTTAAGA-3’

5'-aattaacctaggatccATGGAAGGGAGGGGGTTTTCTGG-3’
5'-aataatcccgggTTACATTTTTTCAGTTTCTGATAG-3'
5'-aattaacctaggatccATGGAGGGCAGGGGTCTGTCTGAG-3’
5'-aataatcccgggTTATGTGTTGGTATCAGAGACG-3’
5'-aataaacctaggATCAGCTTGCATGCCGGTCG-3'
5'-aaataagtcgacCTAGAGTCAAGCAGATCGTTCAAAC-3’

*Lower case characters indicate engineered sequences including restriction sites.
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