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All science is either physics or stamp
collecting.

ERNEST RUTHERFORD

Summary

THE emergence of classical states in quantum systems is of fundamental importance for the
foundations of quantum physics as well as for practical purposes in quantum engineering

and applications (e.g. quantum computation) therein. One of the paradigms of quantum theory
is the superposition principle, which says that a quantum system may be in two distinct states at
the same time. In the year 1935 SCHRÖDINGER proposed his famous gedankenexperiment [1]
questioning the validity of the superposition principle for “macroscopic” objects. In the original
article a rather obscure example of a cat being simultaneously in the state “dead” and “alive” was
chosen. Although this example is counterintuitive it doesn’t contradict the laws of quantum me-
chanics and the question whether it is possible to find superpositions of macroscopically distinct
states still deserves its experimental verification. However, recent experiments have been suc-
cessful in building “Schrödinger cats” superimposing macroscopically distinct states, like clock-
wise and counterclockwise circulating current states in superconducting flux qubits [2, 3, 4] or
C60-molecules being simultanously at two different positions in space [5].

In the first part of the present thesis, “How fat is Schrödinger’s cat?”, we adress the ques-
tion about the size of superpositions of macroscopically distinct quantum states. We propose
a measure for the “size” of a Schrödinger cat state, i.e. a quantum superposition of two many-
body states with (supposedly) macroscopically distinct properties, by counting how many single-
particle operations are needed to map one state onto the other. This definition gives reasonable
results for simple, analytically tractable cases and is consistent with a previous definition re-
stricted to GREENBERGER-HORNE-ZEILINGER (GHZ) like states. We apply our measure to the
experimentally relevant, nontrivial example of a superconducting three-junction flux qubit put
into a superposition of clockwise and counterclockwise circulating supercurrent states and find
this Schödinger cat to be surprisingly small.

In Chap. 1 we briefly describe the problem and introduce other measures for the size of
Schrödinger cat states. A precise definition of our measure is given in Chap. 2 with an application
to normal persistent current states and an analytically tractable example for generalized GHZ-
states. The application of the measure to the experimental relevant three-junction flux qubit is
presented in Chap. 3 with a discussion of our numerical results.

The crossover from quantum to classical states in quantum systems may be induced by their
environments. The unavoidable coupling of any quantum system to many environmental degrees

xiii



xiv SUMMARY

of freedom leads to an irreversible loss of information about an initially prepared superposition
of quantum states. This phenomenon, commonly referred to as decoherence or dephasing, is
the subject of the second part of the thesis with the title “Decoherence by quantum telegraph
noise”. We have studied the time evolution of the reduced density matrix of a two-level system
(qubit) subject to quantum telegraph noise which is the major source of decoherence in Josephson
charge qubits. A thorough understanding of decoherence is important not only for fundamental
reasons but it is also important for achieving the long dephasing times in applications of coherent
quantum dynamics. A general introduction into decoherence of two-level systems can be found
in Chap. 4.

The classical limit of quantum telegraph noise corresponds to a stochastic process where
the random variable jumps between two values, e.g. 0 and 1 at the switching rate γ . Quan-
tum telegraph noise is an example of non-Gaussian noise and cannot be modeled by any of the
paradigmatic models in this field, e.g. a bath of harmonic oscillators. However, we are able to de-
rive an exact expression for the time evolution of the reduced density matrix which is accessible
for numerical evaluation.

The model under consideration is introduced in Chap. 5 with a discussion of the relevant
parameters of the system. We consider a single impurity level which is tunnel coupled to a
fermionic reservoir. The fluctuating charge on the defect level induces fluctuations of the qubit’s
energy levels which causes decoherence. Since the interaction with the environment (fluctuator)
randomizes the relative phase of an initially prepared superposition of qubit states, models of this
kind are commonly referred to as “pure dephasing”.

A review of the classical limit of quantum telegraph noise can be found in Chap. 6. We derive
the coherence of a qubit subject to classical telegraph noise from an equation of motion approach
and discuss the time evolution of the visibility for different coupling strengths to the fluctuator.
As a result of our calculations we observe oscillations in the time evolution of the visibility with
complete loss of visibility and coherence revivals in-between. Moreover, we calculate the non-
Gaussian probability distribution of the random phase and discuss its crossover to a Gaussian
distribution at long times. Finally, we calculate the decoherence rate Γϕ(v) as a function of the
coupling v and compare it against the Gaussian approximation. In agreement with earlier results,
we find a non-analytic decoherence rate which has a cusp when the coupling strength is equal to
the switching rate. The cusp continue to exist even in the quantum limit at low temperature as
our numerical evaluation shows.

Chapter 7 includes a thorough discussion of quantum telegraph noise. We derive an exact
quantum mechanical expression for the coherence including all backaction and non-equilibrium
effects. Our calculation is based on a trace-formula, well known from the theory of full-counting
statistics, and is in principle applicable to other quantum baths of non-interacting fermions. The
full time evolution of the visibility is calculated numerically for the entire range of parameters.
We observe visibility oscillations to appear beyond a certain temperature dependent coupling
of the qubit to the heat-bath with complete loss of visibility and visibility revivals in-between.
These zeros in the time evolution of the visibility are a signature of non-Gaussian noise and their
appearance is used in order to characterize the strong coupling regime. We develop an algorithm
based on the iterative application of two combined bisection procedures in the v− T -plane in
order to find the critical coupling strength vq

c where the first zero-crossing in the time evolution of



SUMMARY xv

the visibility appears at temperature T . The result is a “phase-diagram” which shows the regimes
of strong and weak coupling. Above the critical coupling (strong coupling) one observes zeros
in the visibility whereas no zeros occur below (weak coupling).

In Chap. 8 we consider a qubit subject to quantum telegraph noise in a spin-echo experiment.
Spin-echo experiments are based on stroboscopic pulsing on the qubit by external fields in or-
der to average out the effect of the heat-bath. The results of spin-echo for classical noise are
briefly reviewed: We find that in the strong-coupling regime plateaux in the time evolution of the
spin-echo signal occur. We present an exact formula for the quantum spin-echo signal and eval-
uate its full time evolution numerically for different parameters. The extension of this approach
to an arbitrary sequence of pulses is shown and we compare the results for a sequence of 10
equally spaced pulses (CARR-PURCELL-MEIBOOM-GILL-cycle) against an optimized version
with varying duration between consecutive pulses recently proposed for an Gaussian heat-bath
with an Ohmic noise-spectrum.
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Part I

How fat is Schrödinger’s cat?

1





Quantum physics thus reveals a basic
oneness of the universe.

ERWIN SCHRÖDINGER

Chapter 1
The validity of Quantum Mechanics

1.1 Introduction

QUANTUM MECHANICS has been proven to be one of the most successful theories in physics,
in particular explaining the phenomena at the atomic scale like the photoelectric effect or

the spectrum of the hydrogen atom. Despite its great success, quantum theory has been confusing
generations of physicists (including the author) when confronted with some of its fundamental
aspects and consequences like the superposition principle or the wave-particle dualism, just to
mention two of them. Already at the early stage of quantum mechanics, one of its founding
fathers the austrian physicist SCHRÖDINGER proposed a gedankenexperiment, nowadays com-
monly known as “Schrödinger’s cat”, questioning the validity of the superposition principle for
“macroscopic” objects [1]. In his 1935 original article, a macroscopic object, (SCHRÖDINGER
chose the rather obscure example of a cat), is being prepared (by some quantum mechanical
mechanism) in a superposition of obviously macroscopically distinct states of “dead” and “alive”.
However, there is no a priori reason why the quantum mechanical superposition principle should
not be valid when it is extrapolated to “macroscopic” scales and the question whether macro-
scopic objects can be superimposed still deserves its experimental verification. Indeed, recent
experiments claim to produce “macroscopic” Schrödinger cat states. The range of experiments
detecting quantum superpositions of states involving a “macroscopic” number of particles widely
extends from Rydberg atoms in microwave cavities [6], superconducting circuits [2, 3, 4, 7, 8, 9],
optomechanical [10, 11] and nanomechanical [12] systems, molecule interferometer [5], mag-
netic biomolecules [13], to atom optical systems [14, 15]. The basic feature of those systems,
is that their quantum mechanical state can be expressed as a superposition of macroscopically
distinct states, i.e.

|ψ〉=
1√
K

(|ψA〉+ |ψB〉) , (1.1)

where |ψA〉 and |ψB〉 are two states which are in some sense “macroscopic” and K is a nor-
malization constant. Among these experiments the quest for quantum superpositions of macro-
scopically distinct states has been most advanced in superconducting devices containing one or
several Josephson junctions. In the case of superconducting circuits the states |ψA,B〉 represent

3



4 THE VALIDITY OF QUANTUM MECHANICS 1.1

clockwise or counterclockwise current states circulating in the superconducting ring involving
the collective motion of a macroscopic number of Cooper pairs.

The question which immediately arises is about the “size” of the superposition, commonly
referred to as “How fat is Schrödinger’s cat?”. Already in the year 1980 LEGGETT [16] raised
this question and proposed a measure for the size of Schrödinger cat states. He suggested two
quantities, termed as extensivity Λ and disconnectivity D for the size (or frequently also referred
to as “cattiness”) of Schrödinger cats. The extensivity Λ is the maximal expectation value of a
characteristic observable in the two branches (|ψA〉 or |ψA〉) of the superposition |ψ〉measured in
units of typical atomic quantities. In the case of a SQUID this might be the magnetic moment in
units of Bohr’s magneton µB. The very basic idea of disconnectivity D is to count the “effective”
number of quantum correlated particles participating in the superposition.

Since LEGGETT’S initial proposal for the search of Quantum Interference of Macroscopi-
cally distinct states (QIMDS) and successful experiments producing “large” Schrödinger cats,
this question has been attracting much interest and was attacked by several authors [16, 17, 18]
sometimes restricted to certain special states like generalizations of GREENBERGER-HORNE-
ZEILINGER (GHZ)- states.

It is reasonable to begin with a simple example, asking about the size of the generalized
many-body GHZ-state,

|ψ〉=
1√
K

(
|ψA〉⊗N + |ψB〉⊗N)

, (1.2)

where K = 2 + 〈ψA|ψB〉N + 〈ψB|ψA〉N is a normalization and the overlap between the two indi-
vidual constituents of the superposition |〈ψA|ψB〉|2 = 1− ε2 is assumed to be large, i.e. ε & 1.
The individual constituents may represent the clockwise or counterclockwise current states in a
SQUID or a Bose-Einstein condensate (BEC) inside a double-well potential.

One way of assigning an effective size to the Schrödinger cat state |ψ〉 has been proposed by
DÜR, CIRAC and SIMON (DCS) [17], by comparing it against an ideal GHZ-state of the form
|GHZ〉n = 1/

√
2(|0〉⊗n + |1〉⊗n) as a standard of comparison, where |0〉 and |1〉 are orthogonal

states, and ask for the effective particle number n such that the state |ψ〉 is in some sense equiv-
alent to |GHZ〉n. The result obtained by DCS for the effective size of the generalized GHZ-state
|ψ〉 is n = Nε2, which means that the superposition |ψ〉 involving N particles contains (by some
precisely defined distillation protocol) the same amount of information as the ideal GHZ-state
|GHZ〉n with n particles.

Another measure for the size of Schrödinger cat states, in particular for interacting BECs, has
been proposed recently by KORSBAKKEN et al. This measure is based on counting the number
of fundamental subsystems of the superposition that have to be measured in order to collapse the
entire state into a single branch corresponding either to |ψA〉 or |ψB〉.

The disadvantage of the measures introduced above is their restricted range of applicability
to superpositions of general many-body states. LEGGETT’S disconnectivity measure is quite
general but complicated to calculate for specific states. The measures by DÜR, CIRAC AND
SIMON or KORSBAKKEN et al. are only applicable to some special states.

In the present part of the thesis we present a measure for the size of many-body Schrödinger
cat states. This part is based on our publication “Measuring the size of a quantum superposition
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of many-body states” in [19]. This measure is in general applicable to a wide range of fermionic
as well as bosonic states. We give the general definition of the measure in Chap. 2 and apply it
to some simple examples including generalized GHZ-states. In Chap. 3 we apply our measure
to superpositions of clockwise and counterclockwise circulating persistens currents in SQUIDS
as they have been created experimentally recently. We present the results of the numerical im-
plementation of our measure for the full range of parameters characterizing the superconducting
circuit and we find an astonishing result for the size of the Schrödinger cat.



6 THE VALIDITY OF QUANTUM MECHANICS 1.1



In mathematics you don’t understand things,
you just get used to them.

JOHN VON NEUMANN

Chapter 2
Cattiness for many-body states

2.1 Introduction

WHEN one is dealing with quantum superpositions of macroscopic states the obvious question
which immediately emerges is about the “size” (cattiness) of the superposition, i.e. the

number of particles which is involved in the quantum superposition. So far this question has not
been answered in general and most discussions of this point related to existing experiments often
remained qualitative.

For the specfic case of the SQUID this means: “What is the number of Cooper pairs that have
to change their state in order to turn the clockwise into the counterclockwise current state?”.
A large number would suggest that we are indeed dealing with a large Schrödinger cat. In
the present chapter we propose a quantitative measure for the size of a Schrödinger cat. This
measure is in principle applicable to any superposition of two many-body states (with fixed
particle number). It is consistent with previous approaches by other authors, [17], that had been
restricted to generalizations of GHZ-states.

2.2 Definition of the measure for many-body states
Already in the year 1935 Schrödinger [1] predicted the existence of superpositions of macroscop-
ically distinct quantum states. Recent experiments have been successful producing many-body
Schrödinger cat states of the form

|ψ〉=
1√
K

(|ψA〉+ |ψB〉) , (2.1)

where |ψA〉 and |ψB〉 are (by some definition) macroscopically distinct and K is a normalization
constant. These states could be persistent current states of clockwise or counterclockwise circu-
lating current direction in a SQUID [2, 3, 4] or they represent the two constituents (passing the
left or right slit) of the wave-function of a C60 molecule in a double-slit experiment [5].

7
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Measuring the size of a Schrödinger cat state

Florian Marquardt, Benjamin Abel, and Jan von Delft
Physics Department, Arnold Sommerfeld Center for Theoretical Physics, and Center for NanoScience,

Ludwig-Maximilians Universität, Theresienstr. 37, 80333 Munich, Germany

We propose a measure for the ”size” of a Schrödinger cat state, i.e. a quantum superposition of
two many-body states with (supposedly) macroscopically distinct properties, by counting how many
single-particle operations are needed to map one state onto the other. This definition gives sensible
results for simple, analytically tractable cases and is consistent with a previous definition restricted
to Greenberger-Horne-Zeilinger-like states. We apply our measure to the experimentally relevant,
nontrivial example of a superconducting three-junction flux qubit put into a superposition of left-
and right-circulating supercurrent states and find this Schrödinger cat to be surprisingly small.

Introduction. - In his landmark 1935 paper [1],
Schrödinger introduced the notion of entanglement,
and immediately pointed out its implications for
measurement-like setups, where a microscopic quantum
superposition may be transferred into a superposition of
two “macroscopically distinct” states. His metaphor of a
cat being in a superposition of “dead” and “alive”, ini-
tially designed just to reveal the bizarre nature of quan-
tum mechanics, nowadays serves as a namesake and in-
spiration for a whole generation of experiments designed
to test the potential limits of quantum mechanics in the
direction of the transition to the “macroscopic” world,
as well as to display the experimentalists’ prowess in de-
veloping applications requiring the production of fragile
superpositions involving many particles. Recent experi-
ments or proposals of this kind include systems as diverse
as Rydberg atoms in microwave cavities [2], supercon-
ducting circuits [3, 4, 5, 6, 7, 8], optomechanical [9, 10]
and nanoelectromechanical [11] systems, molecule inter-
ferometers [12], magnetic biomolecules [13], and atom op-
tical systems [14] (for a review with more references, see
Ref. [15]).

The obvious question of just how many particles are in-
volved in such a superposition has not found any general
answer so far [15], and discussions of this point in relation
to existing experiments have often remained qualitative.
While the number of atoms participating in a macro-
scopic superposition of a C60 molecule being at either
one of two positions separated by more than its diameter
is obviously sixty, the mere presence of a large number of
particles in the system is not sufficient in itself. This is
demonstrated clearly by the example of a single electron
being shared by two atoms in a dimer, atop the back-
ground of a large number of “spectator electrons” in the
atoms’ core shells. Therefore, obtaining a general mea-
sure for the “size” of a superposition of two many-body
states is nontrivial, especially for systems such as su-
perconducting circuits, where the relevant superimposed
many-body states are not spatially separated.

Before proposing our solution to this challenge, we
state right away that certainly more than one reason-
able definition is conceivable, depending on which fea-
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. . . . . .
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Figure 1: (Color online) (a) Example of normal-state per-
sistent currents mentioned in the text, where D = 3 single-
particle operations are needed to turn state |A〉 into |B〉. (b)
Hilbert spaces Hd generated by repeated application of single-
particle operators. (c) Probability distribution Pθ(D = d)
for the distance D between two BEC states or between the
two components of a generalized GHZ state, as a function of
the angle between the corresponding single-particle states, for
N = 10 particles, see Eq. (4).

tures of the state are deemed important for the superpo-
sition to be called “macroscopic”. Previous approaches
can be roughly grouped into two classes: Measures of
the first kind involve considering some judiciously chosen
observable, evaluating the difference between its expecta-
tion values for the two superimposed states, and express-
ing the result in some appropriate “microscopic units”
[15, 16] or in units of the spread of the individual wave
packets [17]. Several recent experiments have produced
Schrödinger cats that, by those measures, are remarkably
”fat”. For example, for the experiments in Delft[4] and
SUNY[5], the clock- and counterclockwise circulating su-
percurrents, whose superposition was studied, were in the
micro-Ampere range, leading to a difference of 106µB or
even 1010µB in the magnetic moments, respectively.

Measures of the second kind, in contrast, try to infer
how many particles are effectively involved in those su-

|ψA〉 |ψB〉

k

εε

k

D = 3

Figure 2.1: Example of normal persistent current states, where D = 3 single-particle operations are nec-
essary to convert state |ψA〉 into |ψB〉.

Let us start the general definition of the measure for superpositions of many-body states with
a simple example. Consider a clean, ballistic, single channel ring capable of supporting persistent
currents of electrons. Suppose it is prepared in a superposition of two Slater determinants |ψA〉
and |ψB〉 which differ only in the number of clockwise and counterclockwise moving electrons.
The number of particles effectively participating in a coherent superposition is obviously the
number of prticles that have to be converted from right- to left-movers in order to turn one of
these many-body states into the other. The procedure is schematically depicted in Fig. 2.1: In
the present example one has to convert exactly three left-movers (left branch) into right-movers
(right branch). This is identical to the number D of single-particle operations that have to be
applied to realize this change. Let us assume we want to convert state |ψA〉 into the state |ψB〉;
the following transformation exactly does the job

|ψB〉 ∝
D

∏
j=1

ĉ†
k′j

ĉk j |ψA〉, (2.2)

where k j,k′j label the single-particle momentum states of the left and right branch, respectively.
The number of single-particle operations D would be a measure for the size of the quantum
superposition of many-body states or from a geometric point of view the “distance” between the
vectors |ψA〉 and |ψB〉 in the Hilbert-space H .

When turning this into a general definition, we have to realize that the “target” state |ψB〉
might be a superposition of components that can be created from |ψA〉 by applying a different
number d of single-particle operations. In that case one ends up with the probability distribution
P(D = d), defined as the weights of these components, for the distance D between |ψA〉 and
|ψB〉 to equal d. Furthermore, repeated pplication of single-particle operations may lead to a
state that could have been already created by a smaller number of these operations (e.g. |ψA〉 ∝
ĉ†

k ĉk′ ĉ
†
k′ ĉk|ψA〉, if nk = 1 and nk′ = 0). This has to be taken care of by projecting out the states

which have been reached already.
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The general definition of the distance between two many-body states works like this:
Start with a state |ψA〉,which spans a Hilbert-space H 0 of dimension 1, H 0 = span({|ψA〉}).

Then apply all possible single-particle transformations on state |ψA〉, which create another Hilbert-
space H ′

1. A vector |ṽ′1〉 ∈ H ′
1 differs from the initial state |ψA〉 in exactly one particle. Given a

Hilbert-space H d−1, apply all single-particle operators on its vectors. The resulting Hilbert-space
is denoted by H ′

d but it still may contain vectors that have already been produced with fewer than
d single-particle operations. To remedy this situation, we construct the subspace H d ⊆H ′

d which
is orthogonal to all previous H j, with j < d. Following this procedure, we ultimately construct
the whole Hilbert-space H as a direct sum of subspaces,

H = H 0⊕H 1⊕H 2⊕·· ·⊕H N . (2.3)

The Hilbert-space H is spanned by the set of vectors {|vd〉 |d = 0, . . . ,M}, where M is the di-
mension of the whole Hilbert-space, M = dimH and M = n0 +n1 + . . .+nN where ni = dimH i.
Finally, the target state |ψB〉 can be expanded in this basis,

|ψB〉=
M

∑
d=0

λd |vd〉 . (2.4)

where λd is the expansion coefficient of the normalized vector |vd〉 ∈ H d . The expansion coeffi-
cients define a probability distribution P(D = d) for the distance D,

P(D = d)≡ |λd|2 . (2.5)

One can express the distance between two man-body states D̄ψA,ψB as an expectation value,

D̄ψA,ψB =
M

∑
d=0

dP(D = d)

(2.6)

=
M

∑
d=0

d |λd|2 .

2.2.1 Application to generalized GHZ-states
Here we present an important example for the derivation of the distance D between two many-
body states. We consider a quantum superposition of two non-interacting pure Bose condensates,
|ψA〉 and |ψB〉, with a fixed number of particles N being simultanously in the single-particle states
|α〉 or |β 〉, respectively. The Schrödinger cat state is of the form Eq. (2.1) and the single-particle
states have a finite overlap, which can be parametrized by the angle θ , 〈α| β 〉= cosθ , θ ∈ [0,π].
We can express the two many-body states as

|ψA〉=
1√
N!

(ĉ†
1)
⊗N |vac〉 ,

(2.7)

|ψB〉=
1√
N!

(
cosθ ĉ†

1 + sinθ ĉ†
2

)⊗N
|vac〉 ,
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(a)

H 0 H 1 H N· · ·

(b)
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mĉi

ĉ†
nĉ j ĉ†
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i
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Figure 2.2: (a) Generation of states belonging to the Hilbert-spaces H 0,H 1, . . .H N as a result of the action
of repeated application of single-particle operators. (b) Schematic picture of the “shell” struc-
ture of the sequence of Hilbert-spaces H d generated by iterative application of single-particle
operations on the initial state. The Hilbert-space H 0 is spanned by the initial state |ψA〉.

with ĉ†
1 creating a particle in state |α〉 and ĉ†

2 creating a particle in the state which defines the
orthogonal direction in span{|α〉 , |β 〉}, (we have dropped an eventually present but irrelevant
global phase). Here |vac〉 is the quantum mechanical vacuum state.

The state |ψB〉 can be expanded into a series:

|ψB〉=
1√
N!

N

∑
d=0

(
N
d

)(
sinθ ĉ†

2

)⊗d (
cosθ ĉ†

1

)⊗(N−d)
|vac〉 . (2.8)

Then we can easily find the states |vd〉 which span the Hilbert-space H to be equal to

|vd〉=
1√

d!(N−d)!

(
ĉ†

2

)⊗d (
ĉ†

1

)⊗(N−d)
|vac〉 , (2.9)

which is a normalized state that can be reached from |ψA〉 in exactly d applications of the single-
particle operator ĉ†

2ĉ1, i.e. |vd〉 ∈ H d . Thus, we have found a representation of the target state
|ψB〉 in the following form

|ψB〉=
∞

∑
d=0

λd |vd〉 , (2.10)

with expansion coefficients λd ,

λd =

√(
N
d

)
sind θ cosN−d θ . (2.11)

As a result we obtain a binomial distribution Pθ (D = d) with probability p = sin2 θ = 1−
|〈ψA| ψB〉|2. Therefore the average distance betwenn the states |ψA〉 and |ψB〉 is

D̄ = N p, (2.12)
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Figure 2.3: (a) Distance for generalized GHZ-states as a function of the angle θ for different particle
numbers N. The figure shows the results of the numerical evaluation for the distance. (b)
Probability distribution Pθ (D = d) for the distance d between two generalized GHZ-states as
a function of the angle θ between the corresponding single-particle states for N = 10.).

with 0 ≤ p ≤ 1. The maximal value of the average distance D̄ = N is reached when the two
single-particle states |α〉 and |β 〉 become orthogonal to each other, i.e. at θ = π/2. Figure 2.3(a)
shows the numerical results for the average distance between two generalized GHZ-states as a
function of θ for different numbers of particle N.

One can draw a connection to generalized GHZ-states by considering the states

|ψA〉= |↑〉⊗N

(2.13)
|ψB〉= (cosθ |↑〉+ sinθ ↓〉)⊗N ,

where |↑〉 , |↓〉 are the eigenstates of the spin-1/2 operator Ŝz = (h̄/2)σ̂z, where σ̂z is the Pauli-
matrix 1. In this language the notion of the single-particle transformation ĉ†

2ĉ1 has to be replaced
by ∑N

j=1 σ̂ ( j)
x , which flips a spin at site j. Identifying the probability p with ε we obtain exactly

the same result as DCS.

2.3 General properties of the measure

2.3.1 Unitary changes of the basis
A straightforward requirement of our measure is that the Hilbert-space H d constructed by the
procedure decribed above is independent from the choice of the single-particle basis used to

1The Pauli matrices are

σ̂x =
(

0 1
1 0

)
, σ̂y =

(
0 −i
i 0

)
, σ̂z =

(
1 0
0 −1

)
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define the operators ĉ†
k ĉk′ . Thus no matter which single-particle basis we use to define the op-

erators {ĉ†
k ĉk′} we arrive at the same Hilbert-space H d . Let {ĉk |vac〉} and {ĉ′k |vac〉} be two

basis-systems of the same Hilbert-space, with

ĉ′i = ∑
j

Ui jĉ j, (2.14)

where Ui j is unitary. For an arbitrary vector |v〉 ∈ H the span of ĉ†
i ĉ j |v〉 should be the same

irrespective of the basis we have chosen, i.e. span(ĉ†
i ĉj |v〉) = span(ĉ′†i ĉ′j |v〉) (where i, j range

over the basis). In fact any vector |w〉 ∈ span(ĉ′†i ĉ′j |v〉) can be written as

|w〉= ∑
i′, j′,i, j

µi′ j′U∗
i′iUj′ jĉ

†
i ĉ j |v〉 , (2.15)

where the right-hand side of Eq. (2.15) is an element of span(ĉ†
i ĉj |v〉), and the left-hand side

is an element of span(ĉ′†i ĉ′j |v〉). Indeed, the vector |w〉 is contained in both spans and the same
applies to the vector |v〉. As a consequence noparticular basis (e.g. position) is singled out.

2.3.2 Symmetry
for an important class of states, namely those which are connected by time-reversal, such as
clockwise and counterclockwise current states considered in Chap. 3,one can prove that the dis-
tance is symmetric under interchange of |ψA〉 and |ψB〉, i.e.

DψA,ψB = DψB,ψA. (2.16)

With respect to a position basis with real valued wave-functions this means |ψA〉= |ψB〉∗. In that
case, since the single particle operators can be chosen real-valued, we have H A→B

d = (H B→A
d )∗,

making the weights PA→B(D = d) = PB→A(D = d) equal.
The example above can also be expressed in this way, by an appropriate change of basis,

with |ψA/B〉∝ [cos(θ/2)ĉ†
1± isin(θ/2)ĉ†

2]
⊗N |vac〉. For other, non-symmetric pairs of states ψA〉,

ψB〉, this is not true any longer, i.e. PA→B can become different from PB→A. An extreme example
example is provided by the states |ψA〉= (1/

√
2)(|N,0〉+ |0,N〉) and |ψA〉= (1/

√
2)(|N−1,1〉,

for N bosons on two islands, where |n1,n2〉 denoting the number of particles on each island.
Here, PA→B(D = 1) = 1, but PB→A(D = 1) < 1, with PA→B(D = N− 1) 1= 0. In the following
chapter, we will restrict our discussion to time-reversed pairs of states.

2.4 Summary
We proposed a measure for the size of quantum superpositions of many-body states which is
based on counting how many single-particle operations are needed to map one state into the
other. This measure is independent of the basis, and moreover symmetric for time-reversed pairs
of states. An analytical result for generalized GHZ-states coincides with previous results using a
different approach (DCS).



Physics is becoming too difficult for the
physicists.

DAVID HILBERT

Chapter 3
How fat is Schrödinger’s cat?

3.1 Introduction

QUANTUM superpositions of macroscopically distinct states are commonly referred to as
Schrödinger cats according to the famous gedankenexperiment by SCHRÖDINGER illustrat-

ing the counterintuitive nature of quantum mechanics. The term Schrödinger cat has nowadays
become a synonym for a whole generation of experiments designed to investigate the poten-
tial limits of quantum mechanics as well as the crossover from the quantum-mechanical to the
classical world.

In the present chapter we consider the experiment on the three-junction flux qubit performed
in the Delft group [3] and address the question about the size of the Schrödinger cat in the three-
junction flux qubit by a numerical implementation of the measure already introduced in Chap. 2
and we find the size calculated according to our measure to be unexpectedly small.

3.2 How fat is the cat in the ring?
When a small superconducting loop is subject to a magnetic field a small persistent supercurrent
is generated inside the loop even when the loop is intersected by one or several Josephson-
junctions. Depending on the externally applied magnetic flux Φ the current has clockwise or
counterclockwise direction thus reducing or enhancing the applied magnetic flux Φ to approach
integer multiples of the flux-quantum Φ0 = h/2e. The Josephson-junction comprises two su-
perconducting islands which are separated by a thin oxide layer which allows for tunneling of
Cooper-pairs. The junction is characterized by its charging energy EC, which accounts for the
electrostatic interaction of the Cooper-pairs, and the Josephson energy EJ , which accounts for
tunneling across the junction. A schematic picture of the three-junction flux qubit which has
been fabricated in Delft is shown in Fig. 3.1(a).

The current generated inside the loop corresponds to the collective motion of all Cooper-pairs
condensed in the superconducting phase described by a collective wave-function ψ = |∆|eiϕ ,
describing the center of mass motion of the condensate, where ∆ is the superconducting order

13
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|A〉 = |↑〉N and |B〉 = (cos θ |↑〉+sin θ |↓〉)N . In that case,
we have to adapt our approach by defining single-spin op-
erators as the single-particle operations, and replace ĉ†2ĉ1

by
∑N

j=1 σ̂(j)
− . Straightforward algebra shows the results

for P (D = d) and D̄ to be the same. Comparing to DSC
[18], where such generalized GHZ-states were analyzed,
we find that our result agrees precisely with theirs, for
this special class of states, to which the analysis of DSC
was restricted.

General features. - We can prove that the Hilbert
spaces Hd thus constructed do not depend on the choice
of the single-particle basis used to define the operators
ĉ†i ĉj. Consider an arbitrary unitary change of basis,
ĉ′i =

∑
j Uij ĉj . Starting from an arbitrary vector |v〉,

we want to show that span{ĉ′†i ĉ′j |v〉} = span{ĉ†i ĉj |v〉}
(where i, j range over the basis). Indeed, any vector |w〉
from the Hilbert space on the left-hand-side can be writ-
ten as |w〉 =

∑
i′,j′,i,j µi′,j′U∗

i′iUj′j ĉ
†
i ĉj |v〉, which is an

element of the right-hand-side (and vice versa). As a
result, no particular basis (e.g. position) is singled out.

We can prove as well that the distance is symmet-
ric under interchange of |A〉 and |B〉 for an important
class of states, namely those connected by time-reversal
(such as left- and right-going current states considered
below). With respect to a position basis of real-valued
wave functions, this means |A〉 = |B〉∗. In that case,
since the single-particle operators can be chosen real-
valued, we have HA→B

d = (HB→A
d )∗, making the weights

PA→B(D = d) and PB→A(D = d) equal. The example
treated above can also be expressed in this way, by an
appropriate change of basis, with |A/B〉 ∝ (cos(θ

2 )ĉ†1 ±
i sin(θ

2 )ĉ†2)N |Vac〉. For other, non-symmetric pairs of
states |A〉,|B〉, this is not true any longer, i.e PA→B

can become different from PB→A. An extreme exam-
ple is provided by the states |A〉 = 1√

2
(|N, 0〉 + |0, N〉)

and |B〉 = |N − 1, 1〉, for N bosons on two islands
(with |n1, n2〉 denoting the particle numbers). Here
PA→B(D = 1) = 1, but PB→A(D = 1) < 1, with
PB→A(D = N − 1) &= 0. In the following, we will re-
strict our discussion to time-reversed pairs of states.

Application to superconducting circuits. - A super-
conducting circuit such as a Cooper pair box or a flux
qubit device can be viewed as a collection of metallic
islands between which Cooper pairs are allowed to tun-
nel coherently through Josephson junctions. Adopting
a bosonic description, we would describe tunneling by
a term ĉ†i ĉj , where ĉj annihilates a Cooper pair on is-
land j. However, as the total “background” number
of Cooper pairs n̄ on any island is very large and ulti-
mately drops out of the calculation, the more convenient
(and standard) approach is to consider instead opera-
tors e−iϕ̂j =

∑
n |n− 1〉j 〈n|j that reduce the number of

Cooper pairs on island j by exactly one. Then, the tun-
neling term becomes n̄−1ĉ†i ĉj (→ ei(ϕ̂i−ϕ̂j), while the total
electrostatic energy may be expressed by the number op-
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Figure 2: (Color online) (a) Circuit diagram of the three-
junction flux qubit. (b) Equivalent representation in the
charge basis. (c) Energy-level diagram for EJ/EC = 20 and
α = 1, as a function of magnetic frustration. At f = 0.5, the
ground and first excited state are superpositions of left- and
right-going current states, |±I〉, the states between which we
calculate the “distance” D. The current distribution in the
ground state is displayed in the inset.

erators n̂j that count the number of excess Cooper pairs
on each island. These two types of operators define the
single-particle operators needed in our approach.

Let us now apply the measure defined above to a par-
ticular, experimentally relevant case, the three-junction
flux qubit that has been developed in Delft [3, 4, 19].
Three superconducting islands are connected by tunnel
junctions (Fig. 2), where the tunneling amplitude is
given by the Josephson coupling EJ , and the charging
energy EC = e2/2C is determined by the capacitance C
of the junctions. One of the junctions is smaller by a
factor of α, introducing an asymmetry that is important
for the operation of the device as a qubit. The tunneling
term in the Hamiltonian is given by

ĤJ = −EJ

2

(
ei(ϕ̂2−ϕ̂1) + ei(ϕ̂3−ϕ̂2) + αei(ϕ̂1−ϕ̂3+θ) + h.c.

)
,

(5)
where the externally applied magnetic flux Φ = fΦ0 is
expressed in units of the flux quantum Φ0 = h/(2|e|) to
define the frustration f that enters the extra tunneling
phase θ = 2πf . The charging Hamiltonian is

Ĥch =
1

2C

(
Q̂2

1 + Q̂2
3 −

(Q̂1 − Q̂3)2

2 + 1/α

)
, (6)

with Q̂j = 2en̂j and the restriction
∑3

j=1 Q̂j = 0. For
simplicity, we have neglected the small effects of the self-
inductance and external gate electrodes.

At f = 0.5, the classical left- and right-going current
states are degenerate in energy, and quantum tunnel-
ing (via the charging term) leads to an avoided crossing,
with the ground and first excited state becoming super-
positions of the two current states. We diagonalize the

E
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|A〉 = |↑〉N and |B〉 = (cos θ |↑〉+sin θ |↓〉)N . In that case,
we have to adapt our approach by defining single-spin op-
erators as the single-particle operations, and replace ĉ†2ĉ1

by
∑N

j=1 σ̂(j)
− . Straightforward algebra shows the results

for P (D = d) and D̄ to be the same. Comparing to DSC
[18], where such generalized GHZ-states were analyzed,
we find that our result agrees precisely with theirs, for
this special class of states, to which the analysis of DSC
was restricted.

General features. - We can prove that the Hilbert
spaces Hd thus constructed do not depend on the choice
of the single-particle basis used to define the operators
ĉ†i ĉj. Consider an arbitrary unitary change of basis,
ĉ′i =

∑
j Uij ĉj . Starting from an arbitrary vector |v〉,

we want to show that span{ĉ′†i ĉ′j |v〉} = span{ĉ†i ĉj |v〉}
(where i, j range over the basis). Indeed, any vector |w〉
from the Hilbert space on the left-hand-side can be writ-
ten as |w〉 =

∑
i′,j′,i,j µi′,j′U∗

i′iUj′j ĉ
†
i ĉj |v〉, which is an

element of the right-hand-side (and vice versa). As a
result, no particular basis (e.g. position) is singled out.

We can prove as well that the distance is symmet-
ric under interchange of |A〉 and |B〉 for an important
class of states, namely those connected by time-reversal
(such as left- and right-going current states considered
below). With respect to a position basis of real-valued
wave functions, this means |A〉 = |B〉∗. In that case,
since the single-particle operators can be chosen real-
valued, we have HA→B

d = (HB→A
d )∗, making the weights

PA→B(D = d) and PB→A(D = d) equal. The example
treated above can also be expressed in this way, by an
appropriate change of basis, with |A/B〉 ∝ (cos(θ

2 )ĉ†1 ±
i sin(θ

2 )ĉ†2)N |Vac〉. For other, non-symmetric pairs of
states |A〉,|B〉, this is not true any longer, i.e PA→B

can become different from PB→A. An extreme exam-
ple is provided by the states |A〉 = 1√

2
(|N, 0〉 + |0, N〉)

and |B〉 = |N − 1, 1〉, for N bosons on two islands
(with |n1, n2〉 denoting the particle numbers). Here
PA→B(D = 1) = 1, but PB→A(D = 1) < 1, with
PB→A(D = N − 1) &= 0. In the following, we will re-
strict our discussion to time-reversed pairs of states.

Application to superconducting circuits. - A super-
conducting circuit such as a Cooper pair box or a flux
qubit device can be viewed as a collection of metallic
islands between which Cooper pairs are allowed to tun-
nel coherently through Josephson junctions. Adopting
a bosonic description, we would describe tunneling by
a term ĉ†i ĉj , where ĉj annihilates a Cooper pair on is-
land j. However, as the total “background” number
of Cooper pairs n̄ on any island is very large and ulti-
mately drops out of the calculation, the more convenient
(and standard) approach is to consider instead opera-
tors e−iϕ̂j =

∑
n |n− 1〉j 〈n|j that reduce the number of

Cooper pairs on island j by exactly one. Then, the tun-
neling term becomes n̄−1ĉ†i ĉj (→ ei(ϕ̂i−ϕ̂j), while the total
electrostatic energy may be expressed by the number op-
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Figure 2: (Color online) (a) Circuit diagram of the three-
junction flux qubit. (b) Equivalent representation in the
charge basis. (c) Energy-level diagram for EJ/EC = 20 and
α = 1, as a function of magnetic frustration. At f = 0.5, the
ground and first excited state are superpositions of left- and
right-going current states, |±I〉, the states between which we
calculate the “distance” D. The current distribution in the
ground state is displayed in the inset.

erators n̂j that count the number of excess Cooper pairs
on each island. These two types of operators define the
single-particle operators needed in our approach.

Let us now apply the measure defined above to a par-
ticular, experimentally relevant case, the three-junction
flux qubit that has been developed in Delft [3, 4, 19].
Three superconducting islands are connected by tunnel
junctions (Fig. 2), where the tunneling amplitude is
given by the Josephson coupling EJ , and the charging
energy EC = e2/2C is determined by the capacitance C
of the junctions. One of the junctions is smaller by a
factor of α, introducing an asymmetry that is important
for the operation of the device as a qubit. The tunneling
term in the Hamiltonian is given by

ĤJ = −EJ

2

(
ei(ϕ̂2−ϕ̂1) + ei(ϕ̂3−ϕ̂2) + αei(ϕ̂1−ϕ̂3+θ) + h.c.

)
,

(5)
where the externally applied magnetic flux Φ = fΦ0 is
expressed in units of the flux quantum Φ0 = h/(2|e|) to
define the frustration f that enters the extra tunneling
phase θ = 2πf . The charging Hamiltonian is

Ĥch =
1

2C

(
Q̂2

1 + Q̂2
3 −

(Q̂1 − Q̂3)2

2 + 1/α

)
, (6)

with Q̂j = 2en̂j and the restriction
∑3

j=1 Q̂j = 0. For
simplicity, we have neglected the small effects of the self-
inductance and external gate electrodes.

At f = 0.5, the classical left- and right-going current
states are degenerate in energy, and quantum tunnel-
ing (via the charging term) leads to an avoided crossing,
with the ground and first excited state becoming super-
positions of the two current states. We diagonalize the
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|A〉 = |↑〉N and |B〉 = (cos θ |↑〉+sin θ |↓〉)N . In that case,
we have to adapt our approach by defining single-spin op-
erators as the single-particle operations, and replace ĉ†2ĉ1

by
∑N

j=1 σ̂(j)
− . Straightforward algebra shows the results

for P (D = d) and D̄ to be the same. Comparing to DSC
[18], where such generalized GHZ-states were analyzed,
we find that our result agrees precisely with theirs, for
this special class of states, to which the analysis of DSC
was restricted.

General features. - We can prove that the Hilbert
spaces Hd thus constructed do not depend on the choice
of the single-particle basis used to define the operators
ĉ†i ĉj. Consider an arbitrary unitary change of basis,
ĉ′i =

∑
j Uij ĉj . Starting from an arbitrary vector |v〉,

we want to show that span{ĉ′†i ĉ′j |v〉} = span{ĉ†i ĉj |v〉}
(where i, j range over the basis). Indeed, any vector |w〉
from the Hilbert space on the left-hand-side can be writ-
ten as |w〉 =

∑
i′,j′,i,j µi′,j′U∗

i′iUj′j ĉ
†
i ĉj |v〉, which is an

element of the right-hand-side (and vice versa). As a
result, no particular basis (e.g. position) is singled out.

We can prove as well that the distance is symmet-
ric under interchange of |A〉 and |B〉 for an important
class of states, namely those connected by time-reversal
(such as left- and right-going current states considered
below). With respect to a position basis of real-valued
wave functions, this means |A〉 = |B〉∗. In that case,
since the single-particle operators can be chosen real-
valued, we have HA→B

d = (HB→A
d )∗, making the weights

PA→B(D = d) and PB→A(D = d) equal. The example
treated above can also be expressed in this way, by an
appropriate change of basis, with |A/B〉 ∝ (cos(θ

2 )ĉ†1 ±
i sin(θ

2 )ĉ†2)N |Vac〉. For other, non-symmetric pairs of
states |A〉,|B〉, this is not true any longer, i.e PA→B

can become different from PB→A. An extreme exam-
ple is provided by the states |A〉 = 1√

2
(|N, 0〉 + |0, N〉)

and |B〉 = |N − 1, 1〉, for N bosons on two islands
(with |n1, n2〉 denoting the particle numbers). Here
PA→B(D = 1) = 1, but PB→A(D = 1) < 1, with
PB→A(D = N − 1) &= 0. In the following, we will re-
strict our discussion to time-reversed pairs of states.

Application to superconducting circuits. - A super-
conducting circuit such as a Cooper pair box or a flux
qubit device can be viewed as a collection of metallic
islands between which Cooper pairs are allowed to tun-
nel coherently through Josephson junctions. Adopting
a bosonic description, we would describe tunneling by
a term ĉ†i ĉj , where ĉj annihilates a Cooper pair on is-
land j. However, as the total “background” number
of Cooper pairs n̄ on any island is very large and ulti-
mately drops out of the calculation, the more convenient
(and standard) approach is to consider instead opera-
tors e−iϕ̂j =

∑
n |n− 1〉j 〈n|j that reduce the number of

Cooper pairs on island j by exactly one. Then, the tun-
neling term becomes n̄−1ĉ†i ĉj (→ ei(ϕ̂i−ϕ̂j), while the total
electrostatic energy may be expressed by the number op-
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Figure 2: (Color online) (a) Circuit diagram of the three-
junction flux qubit. (b) Equivalent representation in the
charge basis. (c) Energy-level diagram for EJ/EC = 20 and
α = 1, as a function of magnetic frustration. At f = 0.5, the
ground and first excited state are superpositions of left- and
right-going current states, |±I〉, the states between which we
calculate the “distance” D. The current distribution in the
ground state is displayed in the inset.

erators n̂j that count the number of excess Cooper pairs
on each island. These two types of operators define the
single-particle operators needed in our approach.

Let us now apply the measure defined above to a par-
ticular, experimentally relevant case, the three-junction
flux qubit that has been developed in Delft [3, 4, 19].
Three superconducting islands are connected by tunnel
junctions (Fig. 2), where the tunneling amplitude is
given by the Josephson coupling EJ , and the charging
energy EC = e2/2C is determined by the capacitance C
of the junctions. One of the junctions is smaller by a
factor of α, introducing an asymmetry that is important
for the operation of the device as a qubit. The tunneling
term in the Hamiltonian is given by

ĤJ = −EJ

2

(
ei(ϕ̂2−ϕ̂1) + ei(ϕ̂3−ϕ̂2) + αei(ϕ̂1−ϕ̂3+θ) + h.c.

)
,

(5)
where the externally applied magnetic flux Φ = fΦ0 is
expressed in units of the flux quantum Φ0 = h/(2|e|) to
define the frustration f that enters the extra tunneling
phase θ = 2πf . The charging Hamiltonian is

Ĥch =
1

2C

(
Q̂2

1 + Q̂2
3 −

(Q̂1 − Q̂3)2

2 + 1/α

)
, (6)

with Q̂j = 2en̂j and the restriction
∑3

j=1 Q̂j = 0. For
simplicity, we have neglected the small effects of the self-
inductance and external gate electrodes.

At f = 0.5, the classical left- and right-going current
states are degenerate in energy, and quantum tunnel-
ing (via the charging term) leads to an avoided crossing,
with the ground and first excited state becoming super-
positions of the two current states. We diagonalize the

(b) 1

2

3

Figure 3.1: Three-junction flux qubit: (a) Circuit-diagram of the three-junction flux qubit. The left and
right junctions have a capacitance C and Josephson coupling EJ. The top junction is by a
factor α smaller and has capacitance αC and Josephson coupling αEJ. (b) Equivalent picture
of the three-junction flux qubit. Three superconducting islands are connected by tunnel junc-
tions to each other. (c) Energies of the ground state and first excited state as a function of the
applied magnetic flux f = Φ/Φ0. Close to f = 0.5 the ground state and first excited state are
symmetric and anti-symmteric superpositions of clockwise or counterclockwise circulating cur-
rent states. The inset shows the current contribution of clockwise (blue) and counterclockwise
(red) circulating current states to the ground state.

parameter, and ϕ is the superconducting phase. At temperatures far below the superconducting
transition temperature T & Tc excitations of quasi-particles are exponentially suppressed due
to the large superconducting gap such that intrinsic dissipation associated with quasi-particle
tunneling can safely be disregarded.

We now apply our measure for the size of the Schrödinger cat to a particluar experimentally
relevant case, the three-junction flux qubit that has been developed in Delft [3]. Three supercon-
ducting islands are connected by tnnel-junctions [Fig. 3.1(b)] where the tunneling amplutude is
given by Josephson coupling EJ , and the charging energy is given by EC = e2/2C determined by
the capacitance of the junctions. Such a superconducting circuit can be regarded as a collection of
superconducting grains separated by an insulating layer which allows Cooper-pairs to tunnel co-
herently through the junctions. Adopting an effective bosonic description, tunneling is described
by a term b̂†

i b̂ j, where b̂†
i creates a Cooper-pairs on the island i. However, as the total “back-

ground” number of Cooper-pairs n̄ is very large and ultimately drops out of our calculation, the
more convenient (and standard) approach is to consider instead operators e−iϕ̂ j = ∑n |n−1〉 j〈n| j
that reduce the number of Cooper-pairs on island j by exactly one. Then, the tunneling becomes
n̄−1b̂†

i b̂ j → ei(ϕ̂i−ϕ̂ j), while the total electrostatic energy may be expressed by the number opera-
tors n̂ j that count the number of excess Cooper-pairs on each island. These two types of operators
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Figure 3: (Color online) (a) Average many-body distance D̄
between the left- and right-going current states forming the
ground state of a three-junction flux qubit at f = 0.5, plotted
as a function of EJ/EC , for various asymmetry parameters
α. (b) Corresponding probability distribution for α = 0.8.
(c) Magnitude I of the average current in the two current
states, and average charge fluctuation δN in the ground state
(symbols as in (a)).

current operator Î = −∂Ĥ/∂Φ in the two-dimensional
subspace of the ground- and first excited states, which
results in eigenvalues ±I belonging to the two counter-
propagating current states |±I〉. Whenever the excited
and the ground state are well removed from higher lying
levels (as should be the case in a flux qubit), an equiva-
lent way of finding |±I〉 is to write the ground state as a
superposition of current operator eigenstates in the full
Hilbert space, and keeping only the contributions with
positive or negative current eigenvalues, respectively (as
indicated in the inset of Fig. 2). The distance D between
the states |±I〉 then provides a measure of how “macro-
scopic” the ground (or excited) state superposition is, in
the sense of the approach outlined above.

Our calculations have been performed in the charge ba-
sis, by truncating the Hilbert space to (2∆n + 1)2 states
|n1, n2, n3〉 with n1,2 = −∆n . . . + ∆n (and n3 = −n1 −
n2). Exact numerical diagonalization of Ĥ = ĤJ + Ĥch

yields the ground state and the first excited state, and,
from them, the current states |±I〉, as explained above.
The approach is then implemented by applying itera-
tively all possible single-particle operators (represented
as matrices), starting from |A〉 = |+I〉. The target state
|B〉 = |−I〉 is represented as a superposition (1) in the
resulting Hilbert spaces Hd, which yields the weights
P (D = d).

Figure 3 shows the resulting average distance D̄ (calcu-
lated with ∆n = 6). The fact that D ≥ 1 is a consequence
of defining the two states |A〉 and |B〉 as the eigenstates
of the hermitean current operator, which makes them or-
thogonal by default, thus P (D = 0) = 0. At α = 1,
the monotonic rise of D̄ with EJ/EC is expected, as a

larger EJ/EC allows the charges on each island to fluc-
tuate more strongly, implying that more Cooper pairs
can effectively contribute to the current states. The non-
monotonic dependence on EJ/EC for α < 1 was unex-
pected, but is likely due to the fact that smaller values
of α tend to make the two counterpropagating current
states no longer a “good” basis (the ring is broken for
α = 0). In Fig. 3 (c), we have plotted both the ex-
pectation value of the current operator in one of the
two superimposed states, as well as the average parti-
cle number fluctuation δN in the ground state, where
δN2 ≡ 1

3

∑3
j=1

〈
(n̂j − 〈n̂j〉)2

〉
. Evidently, neither of

these quantities can be directly correlated to the aver-
age distance D̄, apart from the general trend for all of
them to usually increase with increasing EJ/EC .

What is initially surprising is the fact that the distance
remains small, although the examples discussed earlier
clearly show that much larger distances may be reached
in principle when applying our measure. In contrast, the
“disconnectivity” for the Delft setup was estimated [15]
to be on the order of 106, although a rigorous calculation
seems very hard to do. Two reasons underly our finding
for the flux qubit: First, it appears that the flux qubit
considered here is really not that far from the Cooper pair
box. In the Cooper pair box[20], only a single Cooper
pair tunnels between two superconducting islands, yield-
ing D = 1. In fact, allowing only for a small charge
fluctuation (e.g. ∆n = 4) on each island of the flux qubit
system is sufficient to reproduce the exact low-lying en-
ergy levels of this Hamiltonian to high accuracy for the
parameter range considered here, since the charge fluctu-
ations grow only slowly with EJ/EC , as observed in Fig.
3 (c) (δN ∼ (EJ/EC)1/4 at large EJ/EC). This means
from the outset that very large values for D may not be
expected. Second, when analyzing the structure of the
generated Hilbert spaces Hd, it becomes clear that the
dimensions of those spaces grow very fast with d, due to
the large number of combinations of different single par-
ticle operators that are applied. For that reason, it turns
out that the “target state” |B〉 = |−I〉 can accurately be
represented as a superposition of vectors lying within the
first few of those spaces, yielding a rather small distance
D̄.

Outlook. - Our measure for the “size” of Schrödinger
cat states can be applied, in principle, to any superposi-
tion of many-body states with constant particle number.
Future challenges include the extension to states without
a fixed particle number and the comparison to other mea-
sures, besides the DSC result [18]. In those cases where
different particles couple to independent environments
(as was assumed in DSC), our measure is expected to
be an indication of the decoherence rate with which the
corresponding superposition is destroyed, and it would
be interesting to verify this in specific cases. Finally, we
note that applications to many other physical systems
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Figure 3.2: Size of Schrödinger’s cat in the ring: (a) Numerical results for the average many-body distance
D̄ between the clockwise and counterclockwise current states forming the ground state of the
three-junction flux qubit at f = 0.5 plotted as a function of EJ/EC for various asymmetry
parameters α . (b) Corresponding probability distribution P(D = d) for α = 0.8 (c) Magnitude
I of the average current in the two current states, and average charge fluctuations δN in the
ground state.

define the single-particle operators needed in our approach. One of the junctions is smaller by a
factor of α , introducing an asymmetry that is important for the device to work as a qubit. The
tunneling Hamiltonian [see App. A] is given by

Ĥ T =−EJ

2

(
ei(ϕ̂2−ϕ̂1) + ei(ϕ̂3−ϕ̂2) +αei(ϕ̂1−ϕ̂3+2π f ) +h.c.

)
, (3.1)

where the externally applied magnetic flux Φ = f Φ0 is measured in units of the flux quantum to
define the frustration f . The charging Hamiltonian is equal to

ĤC =
1

2C

(
Q̂ 2

1 + Q̂ 2
2 +

Q̂ 2
1− Q̂ 2

3
2+1/α

)
, (3.2)

with Q̂ j = 2|e|n̂ j and the restriction ∑3
j=1 Q̂ j = 0 which imposes charge neutrality. For simplicity,

we have neglected the small effects of the self-inductance and gate electrodes.
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At f = 0.5 the classical left and right-going current states are degenerate in energy, and quan-
tum tunneling leads to an avoided crossing, with the ground- and first-excited state becoming a
symmetric and anti-symmetric, respectively, superposition of the two classical current states,i.e.

|ψ±〉=
1√
2

(|+ I〉±|− I〉) . (3.3)

Figure 3.1(c) shows the eigenenergies of the ground state and first excited state as a function of f .
The dots indicate the position where the energy levels of the classical states cross. However, the
crossing is lifted by the charging energy which results in an avoided crossing of the two lowest
lying enery levels.

We diagonalize the current operator Î = −∂ Ĥ /∂Φ in the two-dimensional subspace of
ground- and first-excited states, which results in eigenvalues belonging to the two counter-
propagating current states |± I〉. Whenever the excited and ground state are well separated from
higher lying levels (as it should be the case in a flux qubit), an equivalent way of finding |± I〉
is to write the ground state as a superposition of current operator eigenstates in the full Hilbert
space, and keeping only the contributions with positive or negative current eigenvalues, repec-
tively. A histogram displaying the current distribution in the ground state is shown in the inset
of Fig. 3.1(c). The distance D between |± I〉 then provides a measure of how “macroscopic” the
ground (or excited) state superposition is.

Our calculations have been performed in the charge basis, by truncating the Hilbert-space to
(2∆n + 1)2 states |n1,n2,n3〉 where n1,2 = −∆n, . . . ,∆n (and n3 = −n1− n2). Exact numerical
diagonalization of ĤC + Ĥ J yields the ground state and the first excited state, and, from them,
the current states | ± I〉, as explained above. Our approach is then implemented by applying
iteratively all possible single-particle opertors (represented as (2∆n+1)× (2∆n+1)-matrices in
the charge nasis), starting from |ψA〉 = |+ I〉. The target |ψB〉 = |− I〉 state is represented as a
superposition in the Hilbert-space H d , which yields the weights P(D = d) [see Fig. 3.2(b)].

3.3 Numerical results and discussion
The results of our numerical evaluation are shown in Fig. 3.2(a) for different values of the asym-
metry factor α . It shows the averge distance D̄ between the states |ψA〉= |+ I〉 and |ψB〉= |− I〉
for ∆n = 6. The fact that D ≥ 1 is a consequence of defining the states |ψA〉 and |ψB〉 as the
eigenstates of the hermitean current operator, which makes them orthogonal by default, thus
P(D = 0) = 0. At α = 1, the monotonic rise of D̄ with EJ/EC is expected, as a larger EJ/EC
allows the charges on the islands to fluctuate more strongly, implying that more Cooper-pairs
effectively contribute to the current states. The non-monotonic dependence on EJ/EC for α < 1
was unexpected, but is likely due to the fact that smaller values of α tend to make the counter-
propagating current states no longer a “good” basis (the ring is broken for α = 0).

In Fig. 3.2(c) we have plotted both the expectation value of the current operator in one of
the superimposed states, as well as the average particle number fluctuation δN in the ground
state, where δN2 = 1

3 ∑3
j=1〈(n̂ j−〈n̂ j〉)2〉. Evidently, neither of these quantities can be correlated
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to the average distance D̄, apart from the general trend for all of them to usually increase with
increasing EJ/EC.

What is initially surprising is that the distance remains small, although the examples dis-
cussed earlier clearly show that much larger distances may be reached in principle when applying
our measure. In contrast, the “disconnectivity” for the Delft setup was estimated [15] to be of
the order of 106, although a rigorous calculation is hard to do. Two reasons underly our findings
for the flux qubit: First, it appears that the flux qubit considered here is really not far from the
Cooper-pair box. In the Cooper-pair box [20], only a single Cooper-pair tunnels between two su-
perconducting islands, yielding a distance D = 1. In fact, allowing only small charge luctuations
(e.g. ∆n = 4) on each island of the flux qubit is sufficient to reproduce the exact low-lying energy
levels of this Hamiltonian to high accuracy for the parameter range considered here, since the
charge fluctuations only grow slowly with EJ/EC, as observed in Fig. 3.2(c) (δN ∼ (EJ/EC)1/4

at large EJ/EC). This means from the onset that very large values for D may not be expected.
Second, when analyzing the structure of the generated Hilbert-spaces H d , it becomes clear that
the dimensions of those spaces grow very fast with d, due to the large number of combinations
of single-particle operators that are applied. For that reason, it turns out that the target state
|ψB〉 = | − I〉 can accurately be represented as a superposition of vectors lying within the first
few of those spaces, yielding a rather small distance D̄.

3.4 Open questions
Future challenges include the extension to states without a fixed particle number and the compar-
ison to other measures of catiness besides the DSC result [17]. In those cases in which different
particles couple to independent environments (as was assumed in DCS), our measure is expected
to be an indication of the decoherence rate with which the corresponding superposition is de-
stroyed, and it would be interesting to verify this in specific cases.
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Chapter 4
Basics of dephasing

4.1 Introduction

THE destruction of quantum mechanical interference induced by an environment is called de-
coherence or dephasing. Decoherence is important not only for fundamental questions like

the quantum-classical crossover or the measurement problem but it is also of major relevance for
applications of coherent quantum devices. Moreover, it is the main obstacle for achieving the
long dephasing times necessary for building a quantum computer. The understanding of the un-
derlying decoherence mechanisms as well as the search for methods to keep decoherence under
control are of great importance in current research.

Let us see how the interfering particles are influenced by the environment in a double-slit
experiment [see Fig. 4.1]. Two wave-packets (representing one and the same particle) have been
separated and travel along different paths and combine later on a screen where the distribution of
particles over many repeated runs of the experiment becomes visible. We observe an interference
pattern in the probability density |ψ(x)|2 indicating the probability of the particle hitting the
screen. When the particle is influenced by some fluctuating force on its way to the screen the
interference pattern will be blurred.

The loss of interference “vsisibility” is due to the fluctuating force which results in an ad-
ditional relative phase-factor eiϕ between the two wave-packets ψ1 and ψ2. The interference
pattern |ψ(x)|2 is then

|ψ(x)|2 = |ψ1(x)+ eiϕψ2(x)|2
(4.1)

= |ψ1(x)|2 +2Re [ψ∗
1 (x)ψ2(x)eiϕ ]︸ ︷︷ ︸

interference term

+|ψ2(x)|2.

What will be seen on the screen is the average interference pattern over many repeated runs
of the same interferometer setup with a randomly fluctuating phase ϕ from run to run. As a
consequence the interference contrast will be reduced by the average |〈eiϕ〉|, which is a number
equal or less than one. The angular brackets denote an average over the probability distribution

21
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Figure 4.1: Double-slit experiment: Two wave-packets of one and the same particle travel along different
paths to recombine on the screen. The interference pattern will be blurred as a result of the
unavoidable influence of the environment.

of the phase ϕ and the decay of the interference pattern crucially depends on the distribution of
the fluctuating force.

4.2 Dephasing in mesoscopic physics
Many of the interesting phenomena in mesoscopic physics are due to the quantum mechanical
interference of electrons. In small electronic nanostructures these interference effects are most
prominent when the wave-length of the electrons∼ λF (Fermi wave-length) becomes comparable
to the typical size of the device.

The phenomena observed in mesoscopic devices include weak-localization corrections to
the conductivity in disordered metals, Aharonov-Bohm interference and universal conductance
fluctuations, to mention just a few of them.

An important realization of quantum interference manifests itself in disordered mesoscopic
conductors as a result of the constructive interference of time-reversed electron paths that have
been scatterd off by randomly distributed impurities inside the metal. Let us consider two tra-
jectories with amplitudes A1 and A2 of an electron and ask for its return probability when the
particle is diffusing inside the disordered metal

P = |A1 +A2|2
(4.2)

= |A1|2 +2|A1||A2|cos(ϕ1−ϕ2)︸ ︷︷ ︸
interference term

+|A2|2

where ϕ1,2 is the phase accumulated along the paths 1,2. After disorder averaging the interference-
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A1 A2

Figure 4.2: Quantum interference in mesoscopic physics. Constructive interference of pairs of time-
reversed electron trajectories in a disordered metal. The trajectories are diffusive (random
walk) rather than ballistic.

term in general vanishes. However, time-reversed pairs of trajectories, i.e. A1 = A∗2, will survive
and as a consequence the return probability is equal to

P = 4|A1|2. (4.3)

Thus the interference term doubles the classical contribution 2|A1|2. This phenomenon is called
weak localization and leads to a reduction of the conductivity (beyond its classical value). Fig-
ure 4.2 shows the constructive interference of a pair of time-reversed electron paths and only
those pairs of paths survive after taking the ensemble average over many disorder configurations.

4.3 Dephasing of qubits
We discuss the dephasing of qubits induced by an external environment. A qubit is a two-level
system which can have two states commonly denoted as |↑〉 and |↓〉 in order to emphasize the
correspondence to spin-1/2. The most prominent physical implementation of a qubit in the solid
state is the superconducting charge qubit which comprises two superconducting islands separated
by an insulating oxide layer. By adjusting an external gate voltage one can achieve that only the
two lowest lying energy states are relevant [20].

Studying dephasing of qubits has attained much interest because they serve as the quantum
analogue of a classical bit and may serve as a building block for a quantum computer.

4.3.1 Classical noise
The Hamiltonian of the two-level system is equal to (we put h̄,kB = 1 throughout this work)

Ĥ =
∆
2

σ̂z, (4.4)

where ∆ is the energy-splitting between the energy levels of the qubit. We denote the eigenstates
|↑〉 as the excited and |↓〉 as the ground state, σ̂z is the Pauli-matrix acting on the eigenstates of
the qubit.
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x̂ ŷ

ẑ

!S(t)

φ

!B0

θ

Figure 4.3: Representation of the density matrix by the vector !S(t) (yellow) on the Bloch sphere, !B0 (blue)
represents a an external magnetic field. The vector !S is parametrized by the angles φ and θ ,
i.e. !S = (sinθ cosφ ,cosθ cosφ ,cosθ)T .

One can map the above Hamiltonian to a fictitious spin-1/2 in an effective magnetic field !B
(measured in units of energy), i.e.

Ĥ =
Bz

2
σ̂z. (4.5)

The density matrix of the qubit is equal to

ρ̂(t) = ∑
i, j=↑,↓

|i〉ρi j(t)〈 j|, (4.6)

where ρi j(t) are the elements of the density matrix in the eigenbasis of the qubit. The unitary
time evolution of the qubit’s density matrix is determined by the von Neumann equation

∂ ρ̂(t)
∂ t

=−i[Ĥ , ρ̂(t)], (4.7)

and the solution can formally be expressed as ρ̂(t) = e−iĤ t ρ̂(0)eiĤ t . The unitary time evolution
of the density matrix can be visualized as a vector !S(t) on the Bloch-sphere, parametrized by the
two angles θ and φ . In this picture the qubit will precess around the ẑ-axis with a precession
frequency Bz provided that the magnetic field is directed along the ẑ-axis !B = (0,0,Bz)T . The
angles of the Bloch-sphere are related to the density matrix by

ρ̂(t) =
1
2

(
1+!S(t) ·!σ

)
, (4.8)

where !σ = (σx,σy,σz)T . The dynamics of the spin !S under the action of a time-dependent
magnetic field can also be cast in form of the Landau-Lifschitz equation

d
dt

!S =−!S×!B. (4.9)
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∆+δV (t)

δV (t)

t

Figure 4.4: The position of the fluctuating energy levels around their average value (dashed line) is deter-
mined by the classical stochastic process δV (t).

In a realistic physical situation the two-level system will be coupled to many degrees of
freedom of an external environment (heat-bath). Let’s suppose that the coupling to the qubit has
the specific form

V (t)
2

σ̂z, (4.10)

where V (t) = δV (t)+ 〈V 〉 describes the interaction of the qubit with the environment. Classi-
cally, V (t) may be described by some stochastic process (with mean 〈V 〉) which is indeed the high
temperature limit of the quantum mechanical model where the coupling is of the form V̂ σ̂z/2
and V̂ is an operator whose dynamics is determined by the Hamiltonian of the heat-bath. For
example, V̂ corresponds to the displacement of an atom in a crystal lattice or to the fluctuations
of the electromagnetic field. The environments mentioned above may be modeled by a collection
of harmonic oscillators and the quantum mechanical Hamiltonian (system + bath) represents an
example of the so-called spin-boson model [22].

The form of the coupling to the heat-bath is crucial for all of our subsequent discussion.
The coupling of the form V (t)σ̂z induces the energy levels ε±(t) = ±(∆ + δV (t))/2 fluctuating
around their average position (we assume 〈V 〉= 0). However, the coupling V (t)σ̂x would induce
transitions between first-excited |↑〉 and ground state |↓〉. The effect of the environment on the
qubit will be a loss of quantum mechanical phase coherence while no energy relaxation takes
place. In the language of spin-1/2 the longitudinal coupling to an external bath corresponds to
an additional fluctuating magnetic field δB(t). As consequence the spin !S will precess with a
randomly fluctuating frequency around the ẑ-axis and this destroys phase coherence. Due to the
diagonal coupling V σ̂z the diagonal elements of the density matrix are preserved whereas the
off-diagonal elements acquire a random phase factor, i.e.

ρ↑↓(t) = ρ↑↓(0)e−i∆teiϕ(t), ϕ(t) =−
∫ t

0
dt ′V (t ′). (4.11)

The diagonal model is commonly referred to as pure dephasing since the off-diagonal elements of
the density-matrix will acquire a random phase-factor eiϕ(t). In an experiment, measurements are
performed not only for a single realization of the fluctuating force V (t) but over many repeared
runs on the same qubit which requires averaging over many realizations of the fluctuating force.
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Assuming the fluctuations δV (t) to be Gaussian-distributed because they originate from a very
large number of enviromental degrees of freedom and the central-limit theorem 1 is applicable,
then we can use the following formula valid for Gaussian-distributed noise

〈
eiϕ〉

= ei〈ϕ(t)〉− 1
2〈δϕ2〉, δϕ(t) = ϕ(t)−〈ϕ(t)〉, (4.13)

where the angular brackets denote an average over the Gaussian-distributed fluctuations δϕ ,
〈. . .〉=

∫
dϕ(. . .)p(ϕ, t), with the probability distribution p(ϕ, t) = (2π〈δϕ2〉)−1/2e−δϕ2/(2〈δϕ2〉)

(we assume that 〈V 〉 = 0). This is the simplest assumption for the probability distribution of
δV and a quantum analogue of Eq. (4.13) exists when the environment is made of a collection
of harmonic oscillators. In the case of Gaussian-distributed noise |〈eiϕ〉| is determined by the
variance 〈δϕ2〉 of the phase ϕ .

The quantity D(t) = 〈eiϕ(t)〉 is called coherence and determines the interference contrast of
any observable sensitive to the phase. For example, the expectation value of σ̂x averaged over
fluctuations of δV is equal to

〈σ̂x(t)〉= cos(∆t)e−
1
2 〈δϕ2(t)〉. (4.14)

One will observe decaying oscillations in the time evolution of 〈σ̂x(t)〉 and the decay of these
oscillations is determined by the coherence 〈eiϕ(t)〉. In the case of Gaussian-distributed noise the
coherence is solely determined by the two-point correlation function 〈δV (t1)δV (t2)〉 of δV (t).
To see this, we apply Eq. (4.13) on Eq. (4.11) and we get

ρ↑↓(t) = ρ↑↓(0)e−i∆t exp
(
−1

2

∫ t

0
dt ′

∫ t

0
dt ′′

〈
δV (t ′)δV (t ′′)

〉)
. (4.15)

If the correlations decay sufficiently rapidly one may approximate the above integral as

ρ↑↓(t)≈ ρ↑↓(0)ei∆t exp
(
−t

∫ ∞

−∞
dt ′

〈
δV (t ′)δV (0)

〉)

(4.16)
= ρ↑↓(0)e−i∆te−Γϕ t ,

in the long time limit. At long times the off-diagonal matrix elements of the density matrix decay
exponentially with time at a decoherence rate Γϕ defined as

Γϕ =
∫ ∞

−∞
dt ′

〈
δV (t ′)δV (0)

〉

(4.17)
(4.18)

= 〈δV δV 〉ω=0,

1Let X1,X2, . . . ,XN be a set of N independent random variables and each have an arbitrary probability distribution
with mean µi and a finite variance σ2

i . Then the sum of random variables

X = ∑N
i=1 Xi−∑N

i=1 µi√
∑N

i=1 σ2
i

(4.12)

has a limiting cumulative distribution function which approaches a normal distribution.
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where we have defined the noise-power 〈δV δV 〉ω as the Fourier transform of the correlation
function

〈δV δV 〉ω =
∫ ∞

−∞
dteiωt〈δV (t)δV (0)〉. (4.19)

This concludes our discussion on dephasing of qubits due to classical Gaussian-distributed noise.

4.4 Quantum noise
At high temperatures the picture of classical noise as a stochastic process is a valid description
of the environment and dephasing is due to the fluctuating energy levels of the qubit. However
at low temperatures, the heat-bath cannot be described by a random external field but requires a
quantum mechanical description taking into account the backaction of the qubit on the quantum
bath. We now consider a qubit coupled to a quantum environment with an interaction of the form
V̂ σ̂z/2. The dynamics of V̂ is now determined by the Hamiltonian of the environment Ĥ B and
the full Hamiltonian is equal to

Ĥ =
∆
2

σ̂z +
V̂
2

σ̂z + Ĥ B. (4.20)

Let us imgine that the coupling between qubit and environment is switched on at t = 0 and has
been switched off before (i.e. V̂ = 0 for t < 0). The initial state of the system is a product state

|ψ(0)〉=
1√
2

(|↑〉+ |↓〉)⊗|χ0〉 , (4.21)

where |χ0〉 is the ground state of the heat-bath. When we are dealing with finite temperatures
one can proceed in a similar way including an average of all subsequent results over initial states
of the heat-bath |χ0〉 weighted by an appropiate Gibbs measure e−β (Ĥ B−µN̂ )/Z, where β = 1/T
is the inverse temperature, N̂ is the particle number operator and Z is a normalization constant.

The dynamics of the bath states for subsequent times will be determined by Ĥ B + V̂ /2 when
the qubit is in the excited state |↑〉 and by Ĥ B− V̂ /2 when the qubit is in its ground state |↓〉,
such that at time t the state of the system is equal to

|ψ(t)〉=
1√
2

(
e−i∆t/2 |↑〉⊗ |χ↑(t)〉+ ei∆t/2 |↓〉⊗ |χ↓(t)〉

)
, (4.22)

where |χ↑↓(t)〉 is the state of the bath which evolves under the action of Ĥ B ± V̂ /2,

|χ↑↓(t)〉= Û±,t |χ0〉, Û±,t = e−i(Ĥ B±V̂ /2)t , (4.23)

where Û±,t is the unitary time evolution operator corresponding to the conditional Hamiltonian
Ĥ ± = Ĥ B ± V̂ /2. The reduced density matrix of the qubit has the form

ρ̂ red(t) =
(

ρ↑↑(0) ρ↑↓(0)e−i∆tD(t)
ρ↓↑(0)ei∆tD∗(t) ρ↓↓(0)

)
, (4.24)
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Figure 4.5: Schematic picture of a bath consisting of harmonic oscillators. The blue particle is coupled by
springs (red) to the elongation of harmonic oscillator modes (green particles).

where the coherence can then be expressed as the overlap of the bath-states, i.e.

D(t) = 〈χ↓(t)|χ↑(t)〉
(4.25)

= 〈χ0|ei(Ĥ B−V̂ /2)te−i(Ĥ B+V̂ /2)t |χ0〉 .

In the non-zero temperature case the above average has to be replaced by a trace over thermal
bath states weighted by the Gibbs measure

D(t) =
1
Z

tr
(

e−β (Ĥ B−µN̂ )Û†
−,tÛ+,t

)
(4.26)

The average phase factor 〈eiϕ〉, which we have already considered in the case of classical noise,
is now replaced by the overlap between states of the heat-bath and averaging over fluctuations of
the classical noisy field corresponds to taking the trace over states of the heat-bath.

4.5 Harmonic oscillator bath
We will now discuss an environment consisting of a collection of harmonic oscillators. A
schematic picture of a particle coupled to the coordinates of a collection of harmonic oscilla-
tors is shown in Fig. 4.5. Many interesting physical phenomena arise from quantum systems
coupled to a bath of harmonic oscillators like the Caldeira-Leggett model of dissipative quantum
tunneling [21], the spin-boson model [22] and quantum Brownian motion [23]. In all of these
cases, the bath variable coupling to the quantum system displays Gaussian-distributed fluctua-
tions. This feature affords considerable technical simplifications, while at the same time these
models are faithful descriptions of real environments: The vacuum electromagnetic field or the
harmonic crystal lattice are indeed baths of harmonic oscillators. More importantly, in many
other cases (like electronic Nyquist noise in a bulk metal), these models represent very good ap-
proximations. This is essentially a consequence of the central limit theorem, applied to the sum
of contributions from many independent non-Gaussian noise sources. Moreover, a bath of har-
monic oscillators can be regarded as the quantum analogue of classical noise in the sense that in
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thermal equilibrium fluctuations are Gaussian-distributed (i.e. it would correspond to a random
process with a Gaussian-distribution in the classical limit) and a quantum analogue of Eq. (4.13)
is still valid.

For simplicity, we consider just a single oscillator with mass m and frequency ω , the exten-
sion to many oscillators will be straightforward and one has to include a summation over oscil-
lator modes when needed. We derive the coherence D(t) when the harmonic oscillator couples
longitudinally to the qubit vV̂ σ̂z/2 with

V̂ = vQ̂ , (4.27)

where v is a coupling constant. The Hamiltonian of the environment consisting of a single
harmonic oscillator is then equal to

Ĥ B =
P̂2

2m
+

mω2

2
Q̂ 2 (4.28)

It is convenient to write V̂ /2 in the form

V̂
2

=
vQ̂
2

=−mω2Q 0Q̂ , (4.29)

where Q 0 is the shift of the oscillator coordinate from its equilibrium position when the interac-
tion with the qubit is switched on.

We first consider the zero temperature case T = 0 when the harmonic oscillator is in its
ground state denoted by |χ0〉. The extension to finite temperature is straightforward resulting in
an average over all initial states weighted by the appropriate Gibbs factor.

The potential of the harmonic oscillator is shifted by Q 0 after switching on the interaction
with the qubit, i.e.

mω2

2
Q̂ 2 → mω2

2
Q̂ 2−mω2Q 0Q̂ =

mω2

2
(Q̂ −Q 0) 2− mω2

2
Q 2

0 . (4.30)

The ground state of the harmonic oscillator bath (represented by a Gaussian wave-packet) will
start to oscillate back and forth with a maximum displacement of 2Q 0. The state of the harmonic
oscillator can be written as a coherent state 2 with a complex amplitude, i.e.

|χ↑(t)〉= eiθ(t)|α(t)〉, (4.33)

2Here we list just a few properties about bosonic coherent states: The coherent state |α〉 is an eigenstate of the
annihilation operator with eigenvalue α , i.e. â|α〉= α|α〉 and can be represented as

|α〉= e−|α|2/2
∞

∑
n=0

αn
√

n!
|n〉. (4.31)

The overlap between two coherent states is equal to

〈α|α ′〉= e−(|α|2−2α∗α ′+|α ′|2)/2. (4.32)
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The solution for α is equal to

α =
√

mω
2

(
Q̄ + i

P̄
mω

)
. (4.34)

inserting Eq. (4.33) into the Schrödinger equation and applying 〈χ↑(t)| from the left provides us
with an equation for the dynamics of the complex phase θ(t)

d
dt

θ(t) =−
[

E(t)+
1
2

(
Q̄ (t)

d
dt

P̄(t)− P̄(t)
d
dt

Q̄ (t)
)]

. (4.35)

The first term in Eq. (4.35) corresponds to the dynamical phase, whereas the second term in
square brackets depends on the path in parameter-space (geometrical phase or Berry-phase).
The expectation values Q̄ , P̄ obey the classical equation of motion for a harmonic oscillator
and with the initial conditions Q̄ = 0, P̄ = 0 at t = 0 and we can immediately write down their
solutions

Q̄ (t) = Q 0(1− cosωt), P̄(t) = mωQ 0 sinωt. (4.36)

The solution for α(t) moves clockwise in the complex α-plane along a circle centered at α =
(mω/2)−1/2Q 0. The solution for θ(t) is equal to

θ(t) =
mωQ 2

0
2

(ωt− sinωt)− ωt
2

. (4.37)

The coherence D(t) = 〈χ↓(t)|χ↑(t)〉 is determined by the overlap of the bath states. The ampli-
tudes are α↑(t) = α(t) for the excited- and α↓(t) = −α(t) for the ground-state of the bath and
moreover, since the geometric phase θ(t) is the same, the coherence yields

D(t) = 〈α↓(t)|α↑(t)〉,
(4.38)

= e−2|α(t)|2,

where the exponent is determined by the distance to the origin in the complex α plane,

|α(t)|2 =
mω
2

(
Q̄ 2(t)+

P̄2(t)
m2ω2

)

(4.39)
= mωQ 2

0 (1− cos(ωt)) .

The coherence D(t) is ompletely restored for times t = (2π/ω)n, n = 0,2, . . . and approaches its
minimum value e−4n̄ at half period when the distance between the two coherent states becomes
largest. The average number of excitations of the coherent state is n̄ = mωQ 2

0 , measured with
respect to the new potential. The periodic revival of the coherence is a special feature of coupling
to a single oscillator.
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4.6 Spin-boson model with longitudinal coupling
The most paradigmatic model used to study dephasing of qubits is the spin-boson model where
the qubit is coupled to a bath of harmonic oscillators. Here we consider the simplest limiting
case of the spin-boson model, namely longitudinal coupling, i.e. the interaction is of the form
V̂ σ̂z/2. The Hamiltonian of the heat-bath is equal to

Ĥ B = ∑
j

ω jb̂†
j b̂ j, (4.40)

where ω j is the frequency of the j-th oscillator mode and b̂ j/b̂†
j are bosonic annihilation / creation

operators which obey the commutation relation [b̂i, b̂†
j ] = δi j. The the bath variable V̂ which

couples to the qubit is equal to
V̂ = ∑

j
v j

(
b̂ j + b̂†

j

)
, (4.41)

where v j is the coupling strength to the j-th oscillator. The coherence D(t) can be expressed in
terms of the correlation function of δ V̂ ,

D(t) = exp
[
−i〈V̂ 〉t− 1

2

∫ ∞

−∞

dω
2π
〈δ V̂ δ V̂ 〉ω

sin2(ωt/2)
(ω/2)2

]
, (4.42)

where δ V̂ = V̂ −〈V̂ 〉 and the symmetric correlation function is related to the spectral density of
the heat-bath as 〈[δ V̂ ,δ V̂ ]+〉ω = 2J(ω)coth(ω/2T ), where J(ω) is the spectral density of the
bath J(ω) = π ∑i v2

i δ (ω−ωi).

4.6.1 Quantum noise correlator
We derive some general properties of the correlator 〈δ V̂ (t)δ V̂ (0)〉 valid for arbitrary quantum
operators V̂ (t), where δ V̂ (t) = V̂ (t)−〈V̂ 〉. The correlation function can be written as

〈δ V̂ (t)δ V̂ (0)〉= ∑
α

Pα〈α|δ V̂ (t)δ V̂ (0)|α〉, (4.43)

where |α〉 is an eigenstate of the system with energy εα and probability Pα . Using 〈α|δ V̂ (t)|β 〉=
ei(εα−εβ )t〈α|δ V̂ |β 〉 and taking the Fourier transform, we obtain for the noise-power

〈δ V̂ δ V̂ 〉ω = 2π ∑
α,β

Pα |δVβα |2δ [ω− (εβ − εα)]. (4.44)

For a system in equilibrium at finite temperture T and Pα/Pβ = e−β (εα−εβ ) and when the system
is symmetric under time-inversion we obtain the well known relation

〈δ V̂ δ V̂ 〉ω = 〈δ V̂ δ V̂ 〉−ωe−βω . (4.45)

In the classical limit T 6 ω the noise-power is approximately symmetric, which implies that
emission or absorption of a bath mode (e.g. in the case of the crystal lattice the emission or
absorption of a phonon) are equally likely. On the other hand, in the quantum limit T = 0 the
noise-power vanishes for ω < 0 which means that emission is not possible when the bath is in
the ground state.
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4.7 Summary
We have reviewed the basics of dephasing of qubits for classical as well as for quantum noise.
Classical noise can be regarded as the high temperature limit of quantum noise and corresponds
to a stochastic process. The spin-boson model is the most paradicmatic model to study dephasing
of qubits. Specifically, in this model the environment is modelled by a collection of harmonic os-
cillators and the coherence of the qubit is determined by the two-point correlation function of the
bath-variable. We have discussed the simple, yet relevant limiting case of coupling longitudinally
to the qubit (pure dephasing).
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Chapter 5
Charge qubit subject to non-Gaussian noise

5.1 Introduction

THE unavoidable coupling of any quantum system to a noisy environment leads to decoher-
ence. Understanding the mechanisms of decoherence is not only interesting for fundamental

reasons (the quantum-classical crossover, the measurement problem etc.), but it is also essential
for achieving the long dephasing times neccessary for building a quantum computer and other
applications of coherent quantum dynamics.

Various sources of noise have been described by baths of harmonic oscillators [see. Sec. 4.5
for examples], which afford great technical simplification while at the same time these environ-
ments are faithful descriptions of real environments. The approximation finally breaks down
when one couples strongly to a few noise sources. This situation is becoming more prevalent
nowadays, as one studies the coherent dynamics of smaller and smaller nanostructures. In fact,
the decoherence times of solid state qubits are often mainly determined by a few fluctuators
[24, 25, 26].

This challenge has given rise to a number of theoretical studies of qubits subject to fluctuators
producing telegraph noise [27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39], some of them
with surprising discoveries. The most straightforward but realistic fully quantum-mechanical
model for an electronic fluctuator consists of a single resonant level that is tunnel-coupled to an
electron reservoir, thereby producing non-Gaussian charge fluctuations. Models of this type may
be reasonably termed “ quantum telegraph noise” since they correspond to stochastic processes
of the telegraph noise type of Poissonian-distributed random jumps between two possible charge
states with Q ∈ {0,1} in the classical limit [see Chap. 6].

GRISHIN, YURKEVICH and LERNER recently studied this model in the long-time limit and
derived the dephasing rate for a qubit coupled longitudinally to a single fluctuator [31, 32]. They
found a striking non-analytic dependence of the dephasing rate Γϕ on the coupling strength and
temperature (we briefly discuss the dephasing rate in Sec. 7.5). However, in the present work
the focus is on analyzing the non-Gaussian features of quantum telegraph noise and we evaluate
the full time evolution of the reduced density matrix. Our analysis covers arbitrary coupling
strengths and temperatures, and predicts a non-trivial temporal evolution of the coherence.
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Figure 5.1: (a) Schematic picture of the model discussed in the text: The qubit interacts via a random
dipole field produced by the fluctuating charge on the defect levels distributed on the substrate.
When an electron tunnels from the gate electrode to a localized level it leaves a positive image
charge on the gate which produces an electric dipole field with a nearby negative charge on the
impurity level. Defect levels are denoted by light dots and the image charge produced inside
the gate electrode when an electron tunnels onto the defect level by black dots. The connection
between image charge and localized level is denoted by!a. (b) A qubit is longitudinally coupled
to the fluctuating population on a single localized impurity. Electrons can hop from the impurity
level onto the reservoir at a rate γ and the coupling strength between qubit and fluctuator is v.
(c) time evolution of the charge Q(t) in the classical limit (high temperature). In this regime the
charge on the impurity level may be described by a classical stochastic process which jumps
randomly between 0 and 1 at the classical switching rate γ cl .

Please note: This and the following chapters are partly based on our publication on “Deco-
herence by quantum telegraph noise: A numerical evaluation” in [40].

5.2 The model: Fluctuating background charges
We study decoherence in a Josephson charge qubit which interacts with an environment consist-
ing of an ensemble of electronic fluctuators. A 2D metallic gate grown on a substrate is sur-
rounded by nearby localized impurities such that electrons can tunnel from the gate-electrode on
an impurity level thereby leaving a positive image charge on the gate-electrode [see Fig. 5.1(a)].
This gives rise to a randomly fluctuating electric dipole field which interacts with the qubit. The
qubit itself can be considered as an electric dipole since one superconducting island has an ex-
cess number of Cooper pairs whereas the other superconducting island exactly lacks the same
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number of Cooper pairs and therefore the qubit and the fluctuating background charges interact
via dipole-dipole interaction. The interaction strength depends on the distance r between qubit
and fluctuator, i.e. v = e2(!a ·!r)/r3 ∝ 1/r2, where a is the tunneling distance. In a realistic sample
the impurities are widely dispersed on the substrate and the distribution of coupling strengths
depends on the distance between the charge qubit and the fluctuator, i.e. P(v) ∝ 1/v2. This is
exactly the same distribution of coupling constants as observed in glasses where an ensemble of
two-level systems interact via dipole-dipole interaction, [41].

Loss of coherence is due to the fluctuating charge on the defect level which gives rise to
a randomly fluctuating electric dipole field affecting the qubit. A static dipole-field caused by
static image charges would only result in a renormalization of the qubit’s interlevel distance but
not to a loss of quantum mechanical phase coherence.

The effect from many randomly distributed impurities gives rise to 1/ω-noise, [34, 39],
which is a result of averaging over randomly distributed couplings v with the probability distribu-
tion P(v) ∝ 1/v2. However, in nanostructures only a few individual fluctuators play an important
role and decoherence will be produced by fluctuators with non-Gaussian noise statistics. In our
analysis we are primarily interested in decoherence produced by a single fluctuator.

The two lowest lying states of the qubit are discriminated by their excess number of Cooper
pairs and therefore feel a different interaction depending on the charge state, thus enforcing the
longitudinal coupling V̂ σ̂z/2 between qubit and fluctuator. This type of interaction leads to pure
dephasing only and not to energy relaxation (the populations of the qubit levels are conserved).
The Hamiltonian of the model is equal to

Ĥ =
∆
2

σ̂z +
V̂
2

σ̂z + Ĥ B, (5.1)

where ∆ is the energy splitting of the eigenenergies of the qubit and Ĥ B is the Hamiltonian of the
heat-bath. The heat-bath consists of N defect levels inside the metal which are tunnel-coupled
to the metallic gate. The hopping of electrons between the defect levels and the lead results in a
randomly fluctuating “charge”

V̂ =
N

∑
i=1

vid̂†
i d̂i, (5.2)

where vi is the coupling strength to the i-th impurity level. Due to the Pauli-principle, a single
defect level is either empty or singly occupied which results in a discretely fluctuating charge on
the impurity level. The ensemble of N fluctuators is described by

Ĥ B =
N

∑
i=1

ε0
i d̂†

i d̂i +
N

∑
i=1

∑
k

(
Tkiĉ†

kd̂i +h.c.
)

+∑
k

εkĉ†
kĉk, (5.3)

here ε0
i is the bare energy of the i-th impurity level, Tki is the tunneling amplitude for hopping of

an electron from impurity i to a state with momentum k inside the lead electrode. The operators
d̂†

i /d̂i create / annihilate an electron with energy ε0
i on the defect level and ĉ†

k/ĉk create / annihi-
late an electron with momentum k inside the electronic reservoir. We assume the reservoir to be
a normal metal since this is the usual case in semiconductor quantum dots.
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The width of each impurity level ε0
i is broadened due to hybridization with the Fermi sea,

such that the density of states near ε0
i has a Lorentzian shape. The width of the Lorentzian is set

by the tunneling rate γ for flips between the two possible states of the impurity level which can
be either occupied or unoccuppied.

There are four parameters with dimension of energy: coupling strength vi, energy of the
impurity level ε0

i , the impurity level broadening γi = 2π ∑k |Tk|2δ (ω − εk) and temperature T .
For many fluctuators with a broad distribution of parameters some of them may be considered
as “high-energy” (ε0

i > T ) and some of them as “low-energy” (ε0
i < T ) when compared against

temperature. As shown in [32] the low energy impurities are effectively absent and the contribu-
tion of high energy impurities is suppressed due to the Lorentzian tail of the density of states but
still not negligible. Thus, the main contribution to decoherence comes mainly from high energy
impurities ε0

i 6 T which imposes the low temperature regime and therefore requires a quantum
mechanical treatment. The full quantum mechanical analysis of the model is subject of Chap. 7.

In the high temperature limit, one can neglect the backaction of the qubit onto the heat-bath
and treat the charge on the impurity as a classical stochastic process. Such a stochastic process is
described by a random variable which flips randomly between 0 and 1 at the classical switching
rate γ cl . The classical limit is studied in Chap. 6.

5.3 Summary
We have discussed the major source of decoherence in Josephson charge qubits caused by the
fluctuating harge on intrinsic impurity levels. The resulting noise produced by these defect levels
is non-Gaussian and its high-temperature limit corresponds to classical telegraph noise, therefore
we term models of the type quantum telegraph noise. In small nanostructures the effect of deco-
herence will be strongest when the qubit couples only to a few fluctuators. Besides temperature
T , the relevant parameters are v the coupling strength of the qubit to the fluctuator, and γ , the is
the tunneling rate.



Science may be described as the art of
systematic over-simplification.

KARL POPPER

Chapter 6
Decoherence by classical telegraph noise

6.1 Introduction

IT is useful to begin by reviewing the classical limit for the heat-bath, where the charge Q(t) is
a stochastic process of the “telegraph noise” type, which flips randomly between 0 and 1 at a

rate γ cl . We will see further below that this corresponds precisely to the high-temperature limit
of the quantum model which we will discuss thoroughly in Chap. 7.

Telegraph noise is an example of non-Gaussian noise and cannot be described by any Gaus-
sian theory, e.g. a harmonic oscillator bath. This makes telegraph noise interesting because the
simple Gaussian approximation is no longer reliable and more sophisticated methods are required
for the calculation of the time evolution of the coherence D(t).

In the present chapter we will derive the full time evolution of the coherence for a charge qubit
subject to classical telegraph noise. Furthermore, we investigate the non-Gaussian probability
distribution p(ϕ, t) for the relative phase ϕ accumulated by the qubit’s eigenstates and finally we
calculate the decoherence rate Γϕ as a function of the coupling v of the qubit to the fluctuator.

6.2 Classical telegraph noise
Classical telegraph noise describes a discrete stochastic process denoted by Q(t), t ∈ [0,∞], where
the random variable Q can only have two possible values, Q(t ′) = 0/1, at some certain time
t ′. Jumps between the two possible states of Q occur at a switching rate γ cl such that in a
time-interval [0, t] the average number of flips is equal to γ clt. Figure. 6.2 (left panel) shows
a realization of the time evolution of Q(t) for increasing switching rate γ cl (from top to bot-
tom). Surprisingly, the regime where the fluctuator rarely flips in a given time-interval is most
interesting and shows many unexpected features as compared to Gaussian noise.

Telegraph noise has the Markoff-property, i.e. in a given time-interval the probability for a
flip to occur is independent of the history of preceding jumps. Furthermore, telegraph noise is
an example of non-Gaussian noise. In contrast to the case of Gaussian-distributed noise where
the two-point correlation function 〈Q(t)Q(0)〉 of the random variable Q(t) determines all higher
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〈δQδQ〉ω

Figure 6.1: Two types of stochastic processes with the same noise-power: Shown are the time evolution for
two types of stochastic processes δQ(t) which have the same noise-spectrum 〈δQδQ〉ω . (a)
The upper panel displays Gaussian Lorentzian noise and in comparison with (b) non-Gaussian
telegraph noise (lower panel). (c) Lorentzian noise-power 〈δQδQ〉ω for the stochastic pro-
cesse displayed in (a), (b).

correlation functions, for non-Gaussian noise the knowledge of all higher correlation functions
is necessary 1.

It is instructive to calculate the probability for the fluctuator Q(t) to switch n times between
the two possible states during the time-interval [0, t]. Let us divide the interval [0, t] into N pieces
of equal length δ t such that t = Nδ t. The probability for the fluctuator to flip n times in N trials
is given by a binomial distribution

Pn(N) =
N!

n!(N−n)!
pn(1− p)N−n, (6.2)

where p is the probability for the fluctuator to flip during the time-interval δ t. The expected
number of flips is ν = N p, taking the limit N → ∞ while keeping ν constant we obtain the
expected Poisson distribution for the fluctuator to switch n times after the elapsed time t

Pn(t) =
(γ clt)n

n!
e−γ clt , (6.3)

where γ cl = p/δ t is the switching rate of the fluctuator. The average number of flip-flops is then
µn(t) = γ clt and the variance σ2

n (t) = γ clt. Correlations between jumps fall off exponentially in
time and the two-point correlation function is equal to

〈δQ(t1)δQ(t2)〉=
1
4

e−2γ cl |t1−t2|, (6.4)

1This means for a Gaussian process X(t) with zero mean 〈X(t)〉Gauss = 0 and the two-point correlation function
C(t1, t2) = 〈X(t1)X(t2)〉Gauss:

〈X(t1)X(t2)X(t3)X(t4)〉Gauss = C(t1, t2)C(t2, t3)+C(t1, t4)C(t2, t3)+C(t1, t3)C(t2, t4). (6.1)
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where δQ(t) = Q(t)−〈Q〉 and 〈Q〉= 1/2. The time-scale on which these correlations decay is
set by the inverse of the switching rate τc = 1/γ cl . The power-spectrum defined as the Fourier
transform of the correlation function, 〈δQδQ〉ω =

∫
dteiωt 〈δQ(t)δQ(0)〉 of the charge fluctua-

tions has a Lorentzian shape

〈δQδQ〉ω =
γ cl

ω2 +(2γ cl)2 . (6.5)

Figure 6.1 displays possible realizations of the stochastic process δQ(t) for Gaussian (a) and
non-Gaussian noise (b) which both have the same noise-spectrum 〈δQδQ〉ω 2.

Let us start with a semi-classical analysis of the quantum model of a two-level system coupled
to the charge fluctuations of a localized impurity level tunnel-coupled to a fermionic reservoir
[see Eq. (5.1)]. In contrast to the full quantum mechanical model we now assume the charge
on the impurity Q̂ to be a classical stochastic process of the “telegraph noise” type, which flips
randomly between 0/1 at a rate γ cl . Models of this type have been studied in [42, 43] discussing
spectral difussion in glasses and in [34, 35] considering dephasing of qubits.

The switching rate γ cl can be derived from the full quantum mechanical model by second
order perturbation theory in the tunneling amplitude Tk. In the full quantum mechanical model
the switching rate is connected to the classical rate by the relation γ cl = γ(1− fT (ε0)). In order to
compare the classical results with the full quantum mechanical model [see Chap 7], we perform
all calculations in this chapter at the rate γ cl = γ/2 for ε0 = 0.

The two-level system coupled longitudinally to the random variable Q(t) experiences ran-
domly fluctuating energy-levels ε±(t) = ±(∆+ vQ(t))/2. Averaging over these temporal fluctu-
ations results in the decay of an initially prepared coherent superposition of quantum states. For
simplicity we assume the heat-bath to act like a classical potential, thereby neglecting the back-
action of the qubit on the environment. The Hamiltonian in the semi-classical approximation
then reads

Ĥ =
∆
2

σ̂z +
v
2

Q(t)σ̂z, (6.7)

where Q(t) = 0/1, ∆ is the splitting between the qubit’s eigenenergies, v is the coupling of the
qubit to the fluctuator and σ̂z is the Pauli matrix acting on the qubit’s eigenstates. For a given
realization of the random potential Q(t) the solution of the time-dependent Schrödinger-equation
is a superposition of the qubit’s eigenstates {|↑〉 , |↓〉},

|ψ(t)〉=
1√
2

(
e−i∆t/2eiϕ(t)/2 |↑〉+ ei∆t/2e−iϕ(t)/2 |↓〉

)
, (6.8)

2The Gaussian stochastic process corresponds to an Ornstein-Uhlenbeck process {Xt : t ≥ 0} which is the solution
of the stochastic differential equation

dXt =−ρ(Xt −µ)dt +σdWt , (6.6)

where {Wt : t ≥ 0} is a Wiener-process of unit variance and ρ,µ,σ are constants. The mean 〈Xt〉= µ and variance
〈δXtδXs〉= (σ2/(2ρ)e−ρ|s−t|, where δXt = Xt −〈Xt〉. Figure 6.1(a) has been calculated using the Euler-Murayama
method for the parameters µ = 0, ρ = 2γ cl and σ =

√
γ cl .
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Figure 6.2: Time evolution of possible realizations of random trajectories of the fluctuating charge Q(t)
on the impurity level and the random phase ϕ(t) = −v

∫ t
0 dt ′Q(t ′) picked up during the time-

interval [0, t] (right panel). The switching rate γ increases from top to bottom. For large
switching rate γ the phase ϕ is a sum of many random contributions and performs almost a
random walk with a drift. The phase ϕ(t) is always negative and is drifting with a velocity
−v/2.

which acquire an additional phase-factor e∓iϕ(t)/2 to their oscillatory time evolution with the
random phase

ϕ(t) =−v
∫ t

0
dt ′Q(t ′). (6.9)

Equation (6.8) is the solution of the Schrödinger-equation for a given specific realization of
the random potential Q(t). However, in an experiment one is not interested in a single measure-
ment for a specific realization of the random phase ϕ(t) but in an average over many repeated
runs on the same qubit. Suppose that we wish to measure an observable Â . Then the expectation
value averaged over many realizations of the random phase is equal to

〈〈Â〉〉ϕ = tr
∫

dϕ p(ϕ, t)ρ̂(ϕ, t)Â, (6.10)
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where the double angle brackets 〈〈. . .〉〉ϕ on the left hand side of Eq. (6.10) denote a quantum
mechanical average and an average over realizations of the random phase ϕ , p(ϕ, t) is the distri-
bution function of the phase ϕ and ρ̂(ϕ, t) is the density matrix of the qubit. Since the operator Â
is independent of the phase one can perform the statistical average independently of the quantum
mechanical and as a consequence the expectation value of an observable Â can be written as the
trace of the reduced density-matrix multiplied with the observable Â

〈〈Â〉〉ϕ(t) = tr
[
ρ̂ red(t)Â

]
, (6.11)

where ρ̂ red(t) is called the reduced density matrix of the qubit and it is equal to

ρ̂ red(t) =
(

ρ↑↑(0) ρ↑↓(0)e−i∆tD(t)
ρ↓↑(0)ei∆tD∗(t) ρ↓↓(0)

)
. (6.12)

The diagonal elements of the reduced density-matrix ρ̂ red
ii (0) remain constant during the time

evolution of the qubit, thus there is no change of the population of the qubit’s levels. This is due
to the specific form of the coupling to the heat-bath: vQσ̂z/2 (pure dephasing). However, the
off-diagonal elements of the reduced density matrix pick-up an additional coherence-factor in
their oscillatory time evolution. The coherence is defined as the average of the phase-factor eiϕ(t)

D(t) =
〈

exp
[
−iv

∫ t

0
dt ′Q(t ′)

]〉
, (6.13)

where 〈. . .〉ϕ is an average over many random realizations of the fluctuating phase:

〈. . .〉ϕ =
∫

dϕ(. . .)p(ϕ, t), (6.14)

where p(ϕ, t) is the non-Gaussian probability distribution of the phase ϕ for classical telegraph
noise. The magnitude of the time-dependent coherence determines the decay of the off-diagonal
matrix elements of the density matrix which we will term visibility

v(t) = |D(t)|. (6.15)

The interference contrast of any observable sensitive to the relative phase between the qubit’s
levels is reduced by a factor v(t), e.g. 〈σ̂x(t)〉 = Reρ↑↓(t) [see Fig. 6.4]. The possible values
for the visibility are ranging from 0 to 1 corresponding to total loss of coherence and totally
constructive interference, respectively.

6.3 Gaussian approximation
As we will see in Sec. 6.4 the probability distribution has a pronounced non-Gaussian shape.
Nevertheless, it is insightful to calculate the coherence as if the probability distribution would be
Gaussian-distributed, according to

p(ϕ, t) =
1√

2π 〈δϕ2〉
exp

(
− δϕ2

2〈δϕ2〉

)
, (6.16)
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with mean 〈ϕ〉 and variance 〈δϕ2(t)〉 of the phase, δϕ(t) = ϕ(t)− 〈ϕ〉. Then the Gaussian
approximation for the coherence is equal to

DGauss(t) = exp
(

i〈ϕ〉− 1
2

〈
δϕ2(t)

〉)
. (6.17)

The mean of the phase is 〈ϕ(t)〉=−vt/2 and the variance are equal to

〈
δϕ2(t)

〉
= v2

∫ t

0
dt1

∫ t

0
dt2 〈δQ(t1)δQ(t2)〉 . (6.18)

Inserting Eq. (6.4) for the correlation function we obtain for the variance of the phase

〈
δϕ2(t)

〉
=

v2

2γ

[
t− 1

γ

(
1− e−γ|t|

)]
. (6.19)

Finally, the coherence for classical telegraph noise is equal to

DGauss(t) = exp
{
− ivt

2
− v2

4γ

[
t− 1

γ

(
1− e−γ|t|

)]}
. (6.20)

This is the Gaussian approximation for the coherence of a two-level system coupled to the charge
fluctuations on a localized impurity in the semi-classical model. The time evolution of the vis-
ibility vGauss(t) = |DGauss(t)| is shown in Fig. 6.4(b) (dashed line). The decay of the coherence
is monotonous and vGauss(t) doesn’t have any zeros on the real axis. In the weak-coupling limit
v/γ & 1, the Gaussian result is a good approximation for the exact result (solid line) whereas for
strong couping v/γ > 1 the Gaussian approximation fails even qualitatively. At long times γt 6 1
the visibility decays exponentially with time DGauss(t) ∝ e−Γϕ t at a decoherence rate Γϕ = v2/4γ
(for the Gaussian case).

6.4 Probability distribution
In this section we derive the probability distribution p(ϕ, t) of the phase ϕ for classical telegraph
noise which may be used to calculate the coherence D(t) (beyond the Gaussian approximation)
appearing in the reduced density matrix of the qubit, Eq. (6.12). It turns out that the probabil-
ity distribution cannot be described by a simple Gaussian distribution function. Nevertheless,
at times typically much larger than the correlation time t 6 γ−1, the probability distribution
approaches asymptotically a Gaussian distribution.

The probability distribution p(ϕ, t) is described by a set of two coupled Markoff master-
equations. Let us denote the probability of finding the random variable at Q(t) = +1 at a certain
phase and time by p+(ϕ, t) and the probability of finding the random variable at Q(t) = 0 by
p−(ϕ, t), respectively. Next we introduce a rate γ+ for an “up-jump” Q : 0→+1 and a rate γ−,
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Q : +1 → 0 for a “down-jump” 3. The phase is always negative and the minimal value which
can be acquired during the time-interval [0, t] is equal to ϕ =−vt which corresponds to Q(t) = 1
during the whole time-interval. On the other hand the maximal phase which can be acquired is
ϕ = 0 corresponding to Q(t) = 0. Since the mean of the phase 〈ϕ〉 is not vanishing the probability
distribution will be drifting with a velocity −v/2. This can be accounted for by shifting the
probability distribution p(ϕ, t) in ϕ by vt/2, i.e. ϕ(t)→ϕ(t)+vt/2 and p(ϕ, t)→ p(ϕ +vt/2, t),
which will be assumed in the following for simplicity. Then we can write down a set of master-
equations for p+(ϕ, t) and p−(ϕ, t):

d
dt

p+(ϕ, t) =
v
2

∂
ϕ

p+(ϕ, t)+ γ+p−(ϕ, t)− γ−p+(ϕ, t),

(6.22)
d
dt

p−(ϕ, t) =−v
2

∂
ϕ

p−(ϕ, t)+ γ−p+(ϕ, t)− γ+p−(ϕ, t).

The deterministic evolution of the probability-distribution is described by the drift-term on the
right-hand side of Eq. (6.22). If there is no switching it takes into account the phase evolu-
tion according to ϕ̇(t) = −vQ. The second term is responsible for random jumps between
the two states (0/1) at a rate γ±. For simplicity we assume that both rates γ+ and γ− are
equal to each other, γ± = γ/2. Moreover, at the initial time t = 0 both probabilities are equal,
p+(ϕ,0) = p−(ϕ,0) = δ (ϕ)/2, where δ (ϕ) is the Dirac δ -function. Without any switching
of the fluctuator (γ = 0) the probability distribution is just a superposition of two δ -functions:
p(ϕ, t) = (1/2)(δ (ϕ− vt/2)+δ (ϕ + vt/2)).

We define the sum and the difference of the probabilities, p(ϕ, t) = p+(ϕ, t)+ p−(ϕ, t) and
δ (ϕ, t) = p+(ϕ, t)− p−(ϕ, t). Then Eq. (6.22) is equal to

d
dt

p(ϕ, t) =
v
2

∂ϕδ (ϕ, t) (6.23)
(6.24)

d
dt

δ (ϕ, t) =
v
2

∂ϕ p(ϕ, t)− γδ (ϕ, t).

Differentiating the upper one of Eq. (6.23), and inserting the lower one results in 4

∂ 2

∂ t2 p(ϕ, t)−
(v

2

)2 ∂ 2

∂ϕ2 p(ϕ, t) =−γ ∂
∂ t

p(ϕ, t). (6.26)

3In order to make contact with the quantum mechanical model (see Chap. 5): The ratio of the rates is γ+/γ− =
exp(ε/T ), where ε is the energy of the impurity counted from the Fermi-level µ and T is the temperature of the
bath of fluctuators. It follows that

∆γ
γ

= 1−2 fT (ε), (6.21)

where fT (ε) is the Fermi-Dirac distribution.
4This is a special case of the telegraph equation:

∂ 2

∂ t2 w(x, t)−a2 ∂ 2

∂x2 w(x, t) =−b
∂
∂ t

w(x, t)+ cw(x, t), (6.25)

with b > 0 and c≤ 0. For a = v/2, b = γ and c = 0 we recover Eq. (6.23).
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The substitution p(ϕ, t) = e−γt/2u(ϕ, t) leads to the well-known Klein-Gordon equation with an
imaginary mass

∂ 2

∂ t2 u(ϕ, t)−
(v

2

)2 ∂ 2

∂ϕ2 u(ϕ, t) =
(γ

2

)2
u(ϕ, t), (6.27)

with the initial conditions u(ϕ,0) = δ (ϕ) and d
dt u(ϕ,0) = (γ/2)δ (ϕ). We make the following

ansatz u(ϕ, t) = ei(κϕ−ωt) from which the dispersion relation follows:

ω±(κ) = ±1
2

√
v2κ2− γ2, (6.28)

thus a general solution of u(ϕ, t) can be written as

u(ϕ, t) =
∫ dκ

2π
[
aκe−iω+t +bκe−iω−t]eiκϕ . (6.29)

The coefficients {aκ ,bκ} then follow from the initial conditions:

u(ϕ,0) = δ (ϕ) :
∫ dκ

2π
[aκ +bκ ]eiκϕ = 1

(6.30)
⇒ aκ +bκ = 1,

and

d
dt

u(ϕ,0) =
γ
2

δ (ϕ) :−i
∫ dκ

2π
[ω+aκ +ω−bκ ]eiκϕ =

γ
2

δ (ϕ)
(6.31)

⇒ ω+aκ +ω−bκ =
iγ
2

.

From which aκ = (1/2)(1+ iγ/2ω+(κ)) and ,bκ = (1/2)(1+ iγ/2ω−(κ)) follow. Inserting
the coefficients {aκ ,bκ} into Eq. (6.29) and reshifting the phase ϕ , we finally obtain for the
distribution function [35],

p(ϕ, t) =
(6.32)

e−γt/2



δ (ϕ)+δ (ϕ + vt)
2

+
γ
v
·

I1

(
γt/2

√
1− (2/vt)2(ϕ + vt/2)2

)

√
1− (2/vt)2(ϕ + vt/2)2



(θ (ϕ + vt)−θ (ϕ)) ,

where I1(z) is the modified Bessel-function of the first kind and θ(ϕ) is the Heaviside-function.
Figure 6.3 shows the probability distribution p(ϕ, t) as a function of the phase ϕ for different
times γt. For short times the probability distribution consists of a large central part which is cut
by δ -functions at vt/2. At times larger than the typical correlation time of the fluctuator γt 6 1
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Figure 6.3: Probability distribution function p(ϕ, t) as a function of the phase ϕ plotted in a coordinate-
system moving with a velocity −v/2 for weak-coupling v/γ = 0.5. The dashed line shows
the asymtotic Gaussian distribution and the arrows indicate the δ -function which cuts the
probability distribution at ϕ = vt/2.

the central part of the distribution-function approaches a Gaussian-distribution. Indeed, this can
be seen from the asymptotic behaviour of the modified Bessel-function 5

e−γt/2 γ
v
·

I1

(
γt/2

√
1− (2/vt)2(ϕ + vt/2)2

)

√
1− (2/vt)2(ϕ + vt/2)2

∼
√

γ
πv2t

exp
(
−γ(ϕ + vt/2)2

v2t

)
. (6.34)

Thus in the long-time limit γt 6 1 we obtain exactly the distribution of the phase that we have
expected from a Gaussian distribution with

〈
ϕ2(t)

〉
= v2t/(2γ) which coincide with Eq. (6.19)

at long times. Note that the drift-term in the probability-distribution is absolutely necessary
for the coherence to have the correct phase-factor. This can already be seen in the Gaussian
approximation of the coherence Eq. (6.20) and in Eq. (6.35) [see below].

The coherence D(t) =
∫

dϕ p(ϕ, t)eiϕ can be easily obtained from the probability distribution

5For |z| large the asymptotic form of the modified Bessel function is

I1(z)∼
ez

√
2πz

. (6.33)
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in Fourier-space (Eq. 6.29). It is just the κ =−1 component of p(κ, t)

D(t) =
∫ dκ

2π
[
aκe−iω+t +bκeiω+t]eiκvt/2δ (κ +1). (6.35)

Then the coherence is equal to

D(t) =
1
2

e−i(v−iγ)t/2
[(

1+
γ

2δ

)
eδ t +

(
1− γ

2δ

)
e−δ t

]
, (6.36)

where δ = 1
2

√
γ2− v2. We will present another way based on an equation of motion approach to

derive the coherence in Sec. 6.5.

6.5 Time evolution of the visibility for classical telegraph noise
In the present section we derive the coherence D(t) from an equation of motion approach. The
advantage of this approach in comparison to the derivation of the probability distribution first and
then compute all averages by means of the probability distribution as we have done in Sec. 6.4
is that in the current derivation of the visibility it is not neccessary to know the probability dis-
tribution explicitly. We will deduce a system of coupled differential equations for the coherence
of a stochastic process with ξ (t) = ±1, thus we will derive D(t) = 〈eiϕξ (t)〉, with the phase
ϕξ (t) = −v

∫ t
0 dt ′ξ (t ′). The bonus of this auxiliary quantity is that all of the calculations below

considerably simplify due to ξ 2(t ′) = 1,∀t ′ ∈ [0, t]. At the end of the derivation one can get
the coherence D(t) corresponding to the stochastic process Q(t ′) = 0/1, t ′ ∈ [0, t] simply by the
replacement 6

D(t;v) = e−ivt/2〈eiϕξ (t)〉|v/2, (6.37)
where the left-hand side corresponds to the coherence D(t) of the stochastic process Q = 0/1.
We start with the time-derivative of 〈eiϕξ (t)〉

d
dt
〈eiϕξ (t)〉= i〈ϕ̇ξ (t)eiϕξ (t)〉

(6.38)
=−iv〈ξ (t)eiϕξ (t)〉,

where we have used that ϕ̇ξ (t)=−vξ (t). A similar derivation for the right-hand side of Eq. (6.38)
shows that

d
dt
〈ξ (t)eiϕξ (t)〉=−iv〈ξ (t)ξ (t)eiϕξ (t)〉+ 〈ξ̇ (t)eiϕξ (t)〉, (6.39)

One can “considerably” simplify Eq. (6.39) by taking into account that ξ 2(t ′) = 1. The time-
derivative of ξ (t) can be rendered using a stochastic process η±(t) such that

ξ̇ (t) =
1+ξ (t)

2︸ ︷︷ ︸
=1 for ξ=1

(2 ·η−(t))+
1−ξ (t)

2︸ ︷︷ ︸
=1 for ξ=−1

(2 ·η+(t)), (6.40)

6The stochastic process Q(t ′), t ′ ∈ [0, t] can be rendered by the auxiliary stochastic process ξ (t ′) = ±1, t ′ ∈ [0, t]
with the same switching rate. The coherence phase ϕ(t) is then related to the auxiliary phase ϕξ (t) by a shift of
−vt/2, i.e. ϕ(t) = ϕξ /2− vt/2.
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where η±(t) = ±∑ j δ (t− t j) is a sum of Poisson-distributed δ peaks. A factor of 2 is explicitly
written in order to indicate the size of the jumps. Inserting Eq. (6.40) into 〈ξ̇ (t)eiϕξ (t)〉, we obtain

〈ξ̇ (t)eiϕξ (t)〉= ∆γ〈eiϕξ 〉− γ〈ξ (t)eiϕξ 〉, (6.41)

where we have used that 〈η±(t)〉= γ±. Finally, we obtain a system of coupled equations deter-
mining 〈eiϕξ (t)〉,

d
dt
〈eiϕξ (t)〉=−iv〈ξ (t)eiϕξ (t)〉

(6.42)
d
dt
〈ξ (t)eiϕξ (t)〉=−γ〈ξ (t)eiϕξ (t)〉+(∆γ− iv)〈eiϕξ (t)〉.

If we assume that the probabilities for an “up-jump” and a “down-jump” are equal (∆γ = 0) 7 it is
easy to verify that these equations describe a damped harmonic oscillator with frequency ω = v
and friction coefficient γ . We just present the solution for the coherence D(t) and leave details of
the derivation to App. B. The result for the coherence D(t) is equal to,

D(t) =
1
2

e−i(vt/2−iγt/2)
[(

1+
γ

2δ

)
eδ t +

(
1− γ

2δ

)
e−δ t

]
, (6.43)

where δ = 1
2

√
γ2− v2. Figure 6.4(b) shows the time evolution of the visibility |D(t)| for various

coupling strengths v of a two-level system subject to pure dephasing by telegraph noise. When
δ becomes imaginary (v > γ), damped oscillations in the time evolution of the coherence appear
with a magnitude not greater than one, i.e. |〈eiϕ(t)〉| ≤ 1, and the coherence gets always negative
D < 0 when oscillations are present . Such a behaviour is qualitatively different from the be-
haviour predicted by the Gaussian approximation for telegraph noise [see Eq. (6.20)] where the
coherence is a monotonous function with always positive values. Indeed, telegraph noise cannot
be mimicked by any Gaussian process e.g. a random walk.

Figure 6.5 shows the time evolution of the visibility and the corresponding time evolution of
the phase α(t) [i,e, the complex argument of D(t)] for different detunings ∆γ/γ . In the weak-
coupling limit v/γ = 0.5 at ∆γ = 0 (equal probabilities of the up / down switching rates γ±),
Fig. 6.5(a) shows an exponential decay of the visibility and a linear time evolution of the phase
with slope −v/2, as expected from Eq. (6.43). In the strong-coupling limit [Fig. 6.5 right panel]
the visibility shows sharp zero crossings for ∆γ = 0 and phase jumps of size π whenever the
visibility vanishes. If the detuning ∆γ grows the sharp zero crossings are vanishing and turn into
local minima whereas the the sharp jumps of corresponding phase are smeared out.

Assuming v > γ , such that δ is imaginary, the position of the k-th zero-crossing is given by

t∗k =
1
δ

[
kπ− atanh

(
2δ
γ

)]
. (6.44)

7This corresponds to ε = 0 in the full quantum mechanical model.



48 DECOHERENCE BY CLASSICAL TELEGRAPH NOISE 6.5

0 2.0 4.0 6.0 8.0 10.0
0

0.2

0.4

0.6

0.8

1.0

 

 

!" #$!" %$!" &$!" '$!" (!$!
!($!

!!$)

!

!!$)

($!

(b)

V
is

ib
ili

ty
|D

(t
)|

(a) v/γ = 0.2
v/γ = 0.6
v/γ = 1.0
v/γ = 1.4
v/γ = 1.8
v/γ = 2.2
v/γ = 2.6
v/γ = 3.0〈 σ̂

x(
t)
〉

visibility v(t)

Time γt Time γt

Figure 6.4: (a) Time evolution of the observable 〈σ̂x(t)〉 (blue) and the envelope (red) of the oscillations,
v = |D(t)| for v/γ = 5.0. (b) Time evolution of the visibility |D(t)| of a qubit subject to classical
telegraph noise for increasing couplings v/γ (solid line from top to bottom). The dashed line
shows the Gaussian approximation |DGauss(t)|.

The zero-crossings appear regularly with a period of π/δ . Zero-crossings of the visibility first
appear at vt∗ = ∞ beyond the threshold v = γ and saturate at a finite value vt∗ = π . Below this
threshold no zeros show up in the time evolution of the visibility.

The Gaussian process Eq. (6.20) is expected to become a good approximation to the telegraph
process when the switching rate is large, v/γ → 0. Then one can imagine that the phase is a
sum of small independent random contributions (from the time-interval of order γ−1). As a
consequence of the central-limit theorem the phase should become a Gaussian random variable
performing an almost continuous random walk. Expanding Eq. (6.43) to the leading order in v/γ
while keeping v2t/γ = const results in

〈eiϕ(t)〉 ≈ e−ivt/2
(

1+
v2

4γ2

)
exp

(
−v2t

4γ

)
, (6.45)

an expansion of Eq. (6.20) in the same limit gives the same result. For very small switching
rate γ → ∞ the fluctuator is almost at rest and the two possible values of the phase ϕ = −vt or
ϕ = 0 occur with equal probabilities 1/2 in the coherence. Then the coherence is just 〈eiϕ(t)〉=
1
2(e−ivt +1) = e−ivt/2 cos(vt/2).

For the calculation of the two-point correlation function 〈δQ(t)δQ(0)〉 it is easier to make
use of the symmetric fluctuator with ξ = ±1 and make the replacement to Q(t) = (ξ (t)+ 1)/2
at the end of the derivation. The two-point correlation function Eq. (6.4) then reads in terms of
ξ (t) as

〈δQ(t)δQ(0)〉= 〈Q(t)Q(0)〉−〈Q(t)〉〈Q(0)〉
(6.46)

=
1
4

[〈ξ (t)ξ (0)〉−〈ξ (t)〉〈ξ (0)〉] .
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Figure 6.5: Effect of the detuning ∆γ on the time evolution of the visibility (a) |D(t)| and the corresponding
phase α(t) (i.e. the complex argument of D(t)) for different ∆γ/γ . left panel (1) v/γ = 0.5,
right panel (2) v/γ = 5.0.

The two-point correlation function is the sum of the conditional probabilities Pα|β (t) weighted
by the initial probability, thus

〈ξ (t)ξ (0)〉=
1
2

(
P+|+(t)−P+|−(t)−P−|+(t)+P−|−(t)

)
, (6.47)

where Pα|β (t),α,β ∈ {±}, is the conditional probability to find the fluctuator in state α when it
had previously been in the state β at t = 0. For example P−|+(t) is the conditional probability
to find the fluctuator in a “down”-state (−1) when it had previously been in an “up”-state (+1)
at t = 0. The factor of 1/2 in Eq. (6.47) describes the initial probability to find the fluctuator
either in an “up”-state or “down”-state. The probabilities can be found by solving the Markoff
rate equation,

d
dt

p+(t) =
γ
2
(p−(t)− p+(t))

(6.48)
d
dt

p−(t) =−γ
2
(p−(t)− p+(t)),

with initial conditions p+(0) = 0 and p−(0) = 1 for obtaining P+|−(t). The solution is equal to
P+|−(t) = 1

2 (1− e−γt). The other probabilities can be obtained in a similar way, finally summing
up to 〈ξ (t)ξ (0)〉 = e−γ|t|. Using the relation Eq. (6.46) we obtain the two-point correlation
function for the fluctuator Q = 0/1 to be equal to Eq. (6.4). The time evolution of 〈ξ (t)〉 =
(p+(t)− p−(t)) is

〈ξ (t)〉= ±e−γ|t|, (6.49)

where the sign depends on the initial conditions of the fluctuator ξ at t = 0. After averaging over
the initial state of the fluctuator we obtain 〈ξ (t)〉 = 0. Finally, one gets the result for the two-
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Figure 6.6: Decoherence rate of a qubit subject to classical telegraph noise as a function of the coupling
strength v/γ . The solid line shows the exact result and the dashed line shows result of the
Gaussian approximation. The exact result has a kink at v/γ = 1 and saturates at γ/2 for v > γ .

point correlation function Eq. 6.4. The result for t < 0 follows from 〈ξ (−t)ξ (0)〉= 〈ξ (t)ξ (0)〉
that holds for any classical stationary stochastic process.

6.6 Decoherence rate for classical telegraph noise
The rate Γϕ at which the coherence decays can be inferred from the long-time behaviour of D(t).
The decoherence rate Γϕ is defined by

Γϕ =− lim
t→∞

1
t

ln |D(t)| . (6.50)

In the Gaussian approximation, the coherence Eq. (6.20) decays exponentially in time at the
decoherence rate ΓGauss

ϕ (v) = v2/4γ . In contrast to the Gaussian approximation, the exact deco-
herence rate for classical telegraph noise shows a pronounced non-Gaussian behaviour,

Γϕ(v) =

{
1
2

(
γ−

√
γ2− v2

)
, v ! γ

γ
2 , v > γ.

(6.51)

For small coupling strengths v/γ & 1 the Gaussian approximation coincides with the exact result
which is again a manifestation of the central limit theorem. Indeed, this can be understood from
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the point of view of the probability distribution. At large times γt 6 1 the central part of the
distribution approaches a Gaussian which results in a decoherence rate ΓGauss

ϕ . However, the
distribution is cut by δ -functions at the end which only decay at a rate γ/2. The coherence
decay will be controlled by ΓGauss

ϕ as long as ΓGauss
ϕ < γ and the Gaussian approximation is

valid. However, if ΓGauss
ϕ becomes larger than γ/2 then the effect arising from the δ -functions is

dominant and the decoherence rate will be set by γ/2, i.e. the decay rate of the δ -functions.

6.7 Summary
We have reviewed the semi-classical model of a two-level system coupled longitudinally to a
non-Gaussian bath of the “telegraph noise” type, [34, 35, 39, 43]. This model corresponds to
the high-temperature limit of the background fluctuator model already introduced in Chap. 5.
We have calculated the visibility of the qubit which displays an oscillatory time evolution with
regions of complete loss of visibility and visibility revivals in-between. The exponential decay
of the visibility oscillations at the rate Γϕ show an unusual dependence on the coupling strength
to the fluctuator. We also calculated the probability distribution of the phase which has a non-
Gaussian shape. However, at times much larger than the typical correlation time the probability
distribution approaches asymptotically a Gaussian distribution. The Gaussian aymptotic is a
consequence of the central-limit theorem.
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This isn’t right. This isn’t even wrong.
WOLFGANG PAULI

Chapter 7
Decoherence by quantum telegraph noise

7.1 Introduction

IN this chapter we analyze the full time evolution of the reduced density matrix for a qubit
subject to the fluctuating charge on a single impurity level tunnel-coupled to an electronic

reservoir. We are able to fully include quantum fluctuations as well as non-equilibrium effects.
Our analysis is based on a numerical evaluation of the exact solution for the reduced density
matrix for arbitrary temperatures and for the full range of parameters. Our findings show that
in the strong-coupling regime (beyond a certain threshold) the rather simple sub-threshold decay
of the qubit’s coherence D(t) turns into temporal oscillations, with complete loss of coherence
interspersed between coherence revivals. These qualitative features persist when going to lower
temperatures, but the threshold increases and we characterize this effect in detail. The result is a
“phase diagram” which displays the temperature-dependence of the strong-coupling threshold.

7.2 Calculation of the coherence
We present an exact formalism to study systems coupled to non-equilibrium environments ex-
hibiting non-Gaussian fluctuations. In particular we analyze the dynamics of the coherence of a
qubit coupled to the fluctuations of intrinsic background charges already introduced in Chap. 5.
The effects of non-Gaussian fluctuations of the environment are pronounced when the system
strongly couples to only a small number of environmental degrees of freedom which is of major
importance in nanostructures at low temperatures.

We primarily focus on understanding the non-Gaussian properties of the model and therefore
we neglect relaxation effects which would contribute as an additional source of decoherence.
The interaction between qubit and environment is of the general form: (v/2)Q̂ σ̂z, where Q̂ is the
charge on the localized impurity, the Pauli matrix σ̂z acts on the eigenstates of the qubit and v is
a coupling constant. The reservoir consists of a single localized impurity level tunnel-coupled to
an electronic reservoir. The electrons on the impurity level can hop onto the gate-electrode which
gives rise to a fluctuating charge with Q̂ = 0/1 as the possible charge states of the impurity level.

53
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The Hamiltonian of the heat-bath for a single fluctuator is equal to

Ĥ B = ε0d̂†d̂ +∑
k

(
Tkĉ†

kd̂ +h.c.
)

+∑
k

εkĉ†
kĉk, (7.1)

where ε0 is the bare energy of the impurity level, Tk is the tunneling amplitude for hopping of an
electron from the impurity level to a state with momentum k inside the reservoir. The operators
d̂†/d̂ create / annihilate an electron with energy ε0 on the impurity and ĉ†

k/ĉk create / annihilate
an electron with momentum k inside the lead. The full Hamiltonian of the system is equal to

Ĥ =
∆
2

σ̂z +
v
2

Q̂ σ̂z + Ĥ B, (7.2)

where ∆ is the energy splitting of the eigenenergies of the qubit, and Q̂ = d̂†d̂ is the fluctuating
charge on the localized level.

We start with an initial quantum superposition at t = 0: |ψ(0)〉 = (1/
√

2)(|↑〉+ |↓〉)⊗ |χ〉,
where |χ〉 is a thermal state of the heat-bath and then switch on the interaction of the qubit with
the environment. The state of the system is described at time t by

|ψ(t)〉=
1√
2

(
e−i∆t/2 |↑〉⊗ |χ↑〉+ ei∆t/2 |↓〉⊗ |χ↓〉

)
. (7.3)

Due to the specific qubit-bath interaction the diagonal components ρii of the reduced density
matrix are conserved during the time evolution but the off-diagonal components ρi j(t) with i, j ∈
{↑,↓} acquire an additional coherence factor D(t) in their oscillatory time evolution which can
be expressed as an overlap D(t) = 〈χ↓(t)|χ↑(t)〉 of the bath states |χ↑(t)〉, |χ↓(t)〉 that evolve
under the influence of the conditional Hamiltonian Ĥ ± = Ĥ B ± (v/2)Q̂ .

The reduced density matrix has the same form as in Eq. (4.24) and the coherence factor D(t)
describing the decay of the off-diagonal elements of the reduced density-matrix is equal to [see
Sec. 4.4]

D(t) =
〈

ei(Ĥ B−vQ̂ /2)te−i(Ĥ B+vQ̂ /2)t
〉

. (7.4)

The average 〈. . .〉= tr (e−β (Ĥ B−µN̂ ) . . .)/Z is a trace over thermal states of the heat-bath weighted
by a Gibbs factor, β = 1/T is the inverse temperature, N̂ is the particle number operator and Z
is a normalization such that Z = 1 for v = 0.

7.2.1 Time evolution of the visibility: General exact solution
Several methods have been developed to calculate averages of products of exponentials like
Eq. (7.4), e.g. linked-cluster expansions [see App. D.1.2] or non-equilibrium Keldysh path-
integral techniques [31, 44]. In App. D we give an introduction to the Keldysh path-integral
technique and show a detailed calculation of the coherence.

Here we implement a variant of a formula well-known from the theory of full-counting statis-
tics [45, 46, 47, 48], which can be evaluated numerically efficiently. Our derivation is based on a
trace formula which relates certain traces in Fock-space to single particle determinants. We will
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first derive the underlying trace formula for fermions and then apply it to the definition of the
coherence D(t), Eq. (7.4).

We first define the second quantized version of a single-particle operator Â (i.e.acting on the
single-particle Hilbert space) to be the Fock space operator Â ,

Â = ∑
αβ
〈α| Â |β 〉︸ ︷︷ ︸

=Âαβ

â†
α âβ , (7.5)

where {|α〉} is an arbitrary single-particle basis of the Hilbert-space, Âαβ are the matrix-elements
of the operator Â in the single-particle basis, and â†

α/âβ are fermionic creation / annihiliation op-
erators which obey the anti-commutation relation [âα , â†

β ]+ = δαβ .
The central formula for the calculation of the coherence D(t) is the following trace formula

tr
(

eÂ
)

= det
(

1+ eÂ
)

, (7.6)

where the left-hand side of Eq. (7.6) is a trace over the many-body Hilbert-space and the right-
hand side is a determinant in the single-particle basis.

Essentially, this formula is known from calculating the partition sum for non-interacting
fermions. However, here we will briefly show how it arises. We start to prove Eq. (7.6) by
noting that any matrix Â can be brought into the diagonal form Â = diag(λ1,λ2, . . . ,λN), where
λi is an eigenvalue of the matrix Â and N is the dimension of the Hilbert-space 1. Then the trace
in Eq. (7.6) can be written as

tr
(

eÂ
)

= tr
(

e∑α λα â†
α âα

)

(7.7)
= ∑

(n1=0/1,n2=0/1,...,nN=0/1)
e∑α λα nα .

The sum in the equation above is over all occupations of the level α , i.e. nα = 0/1 for fermions,

∑
(n1=0/1,n2=0/1,...,nN=0/1)

e∑α λα nα = ∏
α

(1+ eλα )

(7.8)
= det

(
1+ eÂ

)
.

This completes the proof of the trace formula for fermionic systems. For completeness we note
that in the bosonic case the analog of the trace formula can be written as

tr
(

eÂ
)

= det
(

1− eÂ
)−1

, (7.9)

1We assume a finite dimensional Hilbert-space.
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where Â = ∑αβ 〈α| Â |β 〉 b̂†
α b̂β . The operators b̂†

α/b̂α create / annihilate a boson in state α and
they fulfill the commutation relation [b̂α , b̂†

β ] = δαβ . The proof of Eq. (7.9) basically follows the
same lines as in the fermionic case but the occupations nα are now positive integers.

Equation (7.6) is valid for a single fermionic operator Â but can be easily extended to an
arbitrary number of exponentials; just put eD̂ = eÂeB̂eĈ and apply the rule above

tr
(

eÂeB̂eĈ
)

= det
(

1+ eÂeB̂eĈ
)

. (7.10)

Now, we are able to apply the formula above to the definition of the coherence D(t). We re-
cover the right-hand side of Eq. (7.4) if we replace Â, B̂ by ±i(Ĥ B∓ (v/2)Q̂ )t in Eq. (7.10) and
identify eĈ with the many-body density matrix of the heat-bath ρ̂B for an uncorrelated state with
independently fluctuating occupations. The full many-body density matrix can be written in an
exponential form which is applicable to Eq. (7.10)

ρ̂B = ∏
α

[
nα ĉ†

α ĉα +(1−nα)(1− ĉ†
α ĉα)

]

(7.11)
= ∏

α
(1−nα)e∑α ĉ†

α ĉα ln[nα/(1−nα )],

where 0 ≤ nα ≤ 1 is the probability of the level α to be occupied. Inserting Eq. (7.11) into
Eq. (7.6) we obtain for the coherence,

D(t) =
[
∏
α

(1− n̂α)
]

det
[

1+ ei(ĤB−vQ̂/2)te−i(ĤB+vQ̂/2)t n̂
1− n̂

]

(7.12)
= det

[
1− n̂+ ei(ĤB−vQ̂/2)te−i(ĤB+vQ̂/2)t n̂

]
,

where the determinant is taken with respect to some single-particle basis, the operator ĤB =
∑α εα ĉ†

α ĉα is the Hamiltonian of the bath which is diagonal in the single-particle basis {|α〉}
and n̂ is the single-particle density matrix n̂αβ = 〈ĉ†

α ĉβ 〉 which is just equal to the occupation
probability of level α when diagonalized. We are assuming everywhere that the many-body
state, with respect to which all expectation values are calculated, is an uncorrelated state. Then
there exists some single-particle basis where the ocupations of the levels fluctuate independently,
and the state is thus fully described by the average occupations, i.e. the eigenvalues of n̂αβ . This
might be the thermal state with

n̂αβ = fT (εα)δαβ , (7.13)

in the eigenbasis of the single-particle Hamiltonian, fT (ε) the Fermi-Dirac distribution function
and εα the eigenenergies of Ĥ B when diagonalized.

What is left to do, is to calculate the matrix-elements of the charge operator Q̂αβ in the basis
{|α〉}. The charge operator Q̂ can be written as the projector onto the defect level |d〉〈d|, where
|d〉 is the state of the defect level. Therefore the matrix elements of Q̂ in the single-particle basis
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Figure 7.1: Schematic representation of the interaction between qubit and heat-bath. In the diagonal basis
the qubit interacts with a fluctuating Q̂αβ which is due to transitions between all exact states of
the heat-bath. The strength of the interaction is determined by the Lorentzian DoS ν(ω). At low
temperature the strength of the interaction of remote lying (measured from the Fermi energy
εF) impurity-levels will be controlled by the tail of the Lorentzian rather than the Fermi-Dirac
distribution.

are equal to Q̂αβ = 〈α|d 〉〈d|β 〉. The matrix elements may be expressed by the retarded Green’s
function of the impurity level. Using the definition of GR(t, t ′),

GR(t, t ′) =−iθ(t− t ′)〈[ψ̂(t), ψ̂†(t ′)]+〉, (7.14)

where θ(t) is the Heavidide function. One may expand the quantum field operators ψ̂(t), ψ̂†(t)
in terms of the basis α such that ψ̂(t) = ∑α d̂αϕαe−iεα t and ψ̂†(t) = ∑α d̂†

αϕ∗αeiεα t , where ϕα =
〈α|d〉. The retarded Green’s function is then

GR(t, t ′) =−iθ(t− t ′) ∑
α,α ′

〈α|d〉〈d|α ′〉〈[d̂α , d̂†
α ′]+〉e

−i(εα t−εα ′ t
′). (7.15)

Using the anti-commutation relation [d̂α , d̂†
β ]+ = δαβ and representing the equation above in

Fourier-space we obtain

GR(ω) = ∑
α

|〈α|d〉|2

ω− εα + iδ
, (7.16)

and thus
ImGR(ω) =−π ∑

α
|〈α|d〉|2 δ (ω− εα). (7.17)

Assuming (w.o. loss of gen.) the matrix-elements to be real valued, we obtain for the matrix-
elements of the charge operator Q̂αβ

Q̂αβ =
1

πν0

√
ImGR(ω = εα)ImGR(ω = εβ ), (7.18)
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where ν0 is the density of states (DoS) of the electron states in the conduction band and GR(ω)
is the retarded Green’s function of the broadened impurity level

GR(ω) =
1

ω− ε + iγ/2
, (7.19)

where ε is the energy of the impurity level potentially renormalized due to hybridization with
the Fermi sea and γ is the broadening of the impurity level. The matrix elements of the charge
operator Q̂ may be related to the Lorentzian density of states of the broadened impurity level by

Q̂ = ∑
α,β

Q̂αβ ĉ†
α ĉβ , (7.20)

where |Q̂αα |2 = ν(ω = εα)δ , where δ = 1/ν0, where ν(ω) = (1/π)ImGR(ω) and

ν(ω) =
1
π

γ/2
(ω− ε)2 + γ2/4

. (7.21)

Equation (7.12) together with Eq. (7.18) and Eq. (7.19) provide an exact formula for the coher-
ence D(t) for a qubit subject to non-Gaussian quantum telegraph noise.

Figure 7.1 displays the interaction between qubit and heat-bath. A fluctuating charge is due to
transitions between all exact states of the heat-bath. At low temperatures, transitions close to the
Fermi energy εF are the dominant process. However the strength of the interaction is controlled
by the tail of the Lorentzian DoS ν(ω) rather than the Fermi-Dirac distribution. As a conse-
quence the influence of a remote impurity level with energy ε will be power-law suppressed.

7.3 Gaussian approximation
Before we present the results of our numerical simulations of the visibility v(t) = |D(t)|, it is
advisable to derive the Gaussian approximation. The key assumption here is that Q̂ is a linear
superposition of harmonic oscillator coordinates, which are in thermal equilibrium, and fluctu-
ations are Gaussian distributed (i.e. it would correspond to a random process with a Gaussian
distribution in the classical limit). The Gaussian approximation for the coherence is equal to

DGauss(t) = exp
[
−iv〈Q̂ 〉t− v2

2

∫ t

0
dt1

∫ t

0
dt2

〈
δ Q̂ (t1)δ Q̂ (t2)

〉]
, (7.22)

where δ Q̂ (t) = Q̂ (t)− 〈Q̂ 〉. If one is interested in the time evolution of the visibility v(t) =
|DGauss(t)| then

vGauss(t) = exp
[
−v2

2

∫ t

0
dt1

∫ t

0
dt2

1
2

〈[
δ Q̂ (t1),δ Q̂ (t2)

]
+

〉]
, (7.23)

where the visibility only depends on the symmetrized version of the quantum correlator. Defining
the quantum noise-spectrum

〈
δ Q̂ δ Q̂

〉
ω =

∫ +∞

−∞
dteiωt 〈δ Q̂ (t)δ Q̂ (0)

〉
, (7.24)
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Figure 7.2: (a) Power-Spectrum 〈δ Q̂ δ Q̂ 〉ω of the charge fluctuations for decreasing temperatures, (from
top to bottom) T/γ = 1.0, 0.9, 0.8, . . . ,0.5, 0.45, 0.4, . . . ,0. At non-zero temperature the visi-
bility decays exponentially in time with a decoherence rate Γϕ that is controlled by the value of
〈δ Q̂ δ Q̂ 〉ω at ω = 0. At low temperatures T & γ the nose-power is asymmetric and vanishes
for zero temperature T = 0 (blue line). The high-temperature limit represents the classical
symmetric noise-power (red line). (b) Power-Spectum for different switching-rates γ , (from top
to bottom) γ = 1.0, 0.9, . . . , 0.1 at zero-temperature T = 0. The slope of the noise-power at
ω = 0 determines the exponent K of the power-law decay of the visibility. The inset shows the
noise-power in the vincinity of ω = 0 for decreasing temperature (from top to bottom).

we find the general expression for the visibility which is valid for an arbitrary noise-spectrum

vGauss(t) = exp
[
−v2

2

∫ dω
2π

〈
δ Q̂ δ Q̂

〉
ω

sin2(ωt/2)
(ω/2)2

]
. (7.25)

Inserting the relation between the charge operator Q̂ and the density fluctuations, Eq. (7.20) we
obtain 〈

δ Q̂ δ Q̂
〉

ω = 2π ∑
αβ

|Q̂βα |2nα(1−nβ )δ [ω− (εβ − εα)]. (7.26)

Equation (7.25) together with the noise-power Eq. (7.26) define the Gaussian approximation
of the visibility vGauss(t). The noise-power of the charge fluctuations on a single impurity level
〈δ Q̂ δ Q̂ 〉ω is shown in Fig. 7.2 for various temperatures (a) and for various switching rates γ as
displayed in (b).

7.3.1 Results for the visibility according to the Gaussian approximation
We now discuss the results of the Gaussian approximation for certain special cases. At zero-
temperature T = 0 the linear slope of the noise-power

〈
δ Q̂ δ Q̂

〉
ω at ω = 0 gives rise to a power-

law decay of the visibility with an exponent depending on the coupling strength v/γ .
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The integral in Eq. (7.25) considerably simplifies for times t which are much larger than the
typical correlation-time ω−1

c of the bath, i.e. ωct 6 1. As a consequence the rapidly oscillating
function sin2(ωt/2) may be replaced by its mean (equal to 1/2) and

∫
dω →

∫ ωc
1/t dω . The long-

time limit of the visibility in the Gaussian approximation at T = 0 is equal to

vT=0
Gauss(t) = constant · t−K, K =

4
π2

(
v
γ

)2
, (7.27)

where the exponent K is determined by the slope of the noise-power 〈δ Q̂ δ Q̂ 〉ω at ω = 0. This re-
sult is well known from the physics of the orthogonality catastrophe, which underlies the physics
of many important phenomena like the X-ray edge singularity or the Kondo-effect [49, 50, 51].
After turning on the interaction between the two-level system and the fermionic bath, the two
bath states

∣∣χ↑(t)
〉

and
∣∣χ↓(t)

〉
evolve in time such that their overlap decays in time according to

a power-law. The vanishing overlap 〈χ↓|χ↑〉 at long times is due the fact that the states |χ↑↓〉 of the
fermionic bath which evolve under the action of the conditional Hamiltonian Ĥ ± = Ĥ B ± vQ̂ /2
are orthogonal.

Figure 7.3(a) displays the time evolution of the visibility at T = 0 which has been obtained
by direct numerical evaluation of Eq. (7.25) and the inset shows a log− log plot of the visibility
compared against the power-law decay indicating the exponent K (dashed lines).

At finite temperatures T > 0 the noise-power 〈Q̂ δ Q̂ 〉ω is finite at ω = 0 and we may make
the following replacement inside Eq. (7.25) to obtain the long-time asymptotics for the visibility:
sin2(ωt/2)/(ω/2)2 → 2πtδ (ω). Then we obtain

vGauss(t)∼ exp
(
−v2t

2
〈δ Q̂ δ Q̂ 〉ω=0

)
. (7.28)

At high temperatures T
llγ the zero-frequency noise-power is equal to

〈
δ Q̂ δ Q̂

〉
ω=0 = 2π

∫ ∞

−∞
dω ′ν2(ω ′) fT (ω ′)(1− fT (ω ′))

(7.29)

=
1
2γ

.

In this “classical”, high-temperature limit (T 6 γ), we find the visibility to decay exponentially
in the long-time limit,

vGauss(t)∼ e−Γϕ t , Γϕ =
v2

4γ
, (7.30)

with a decoherence rate Γϕ , which is compatible with the classical result in the Gaussian approx-
imation.

7.4 Exact numerical results and discussion
We now present the exact time evolution of the visibility v(t) = |D(t)| for a qubit subject to
quantum telegraph noise. These results have been obtained by direct numerical evaluation of
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Figure 7.3: Time evolution of the visibility |D(t)| for a qubit coupled to the charge fluctuations on a single
impurity level at zero temperature T = 0 (ε = 0). (a) Visibility according to the Gaussian ap-
proximation [see Eq. (7.25)] for increasing coupling strength v/γ = 0.1,0.2,0.3,0.4,0.5 (from
top to bottom), displaying the power-law decay at long times as expected from the physics
of the orthogonality catastrophe. The inset shows a log− log-plot, where the dashed lines
indicate the exponent K = (4/π2)(v/γ)2. (b) Exact time evolution of the visibility for increas-
ing coupling strength (from top to bottom) v/γ = 0.2, 0.6, 1.0, 1.4, 1.8, 2.2, 2.6, 3.0. These
curves have been obtained by direct numerical evaluation of Eq. (7.12). Beyond a certain tem-
perature dependent threshold the visibility has zeros in the time evolution with complete loss
of visibility and coherence revivals in-between. This phenomenon is a manisfestation of the
non-Gaussian nature of quantum telegraph noise. The dashed lines show the corresponding
Gaussian-approximation.

the determinant in Eq. (7.12). We have discretized the determinant using a spectrum of equally
spaced energy levels εn = nδ in a band εn ∈ [−W,W ], where δ = 1/ν0. The width of the band
W 6 γ is chosen such that a good resolution of the Lorentzian density of states is achieved.
The determinant of the resulting N×N-matrix, N = 2W/δ , already converges for W = 20 and
N = 400.

In Fig. 7.3(b) we show the time evolution of the visibility v(t) at zero temperature T = 0 for
different coupling strengths (solid lines) compared against the Gaussian approximation (dashed
lines). For weak-coupling v/γ & 1 the Gaussian result is a good approximation of the visibility.
However for increasing coupling strength the Gaussian approximation fails even qualitatively
indicating the non-Gaussian nature of quantum telegraph noise.

In the case of classical telegraph noise, [Fig. 6.4], the important feature had been the occur-
rence of visibility oscillations beyond a critical coupling strength, vcl

c . This threshold is set by the
inverse of the correlation time of the fluctuating charge, vcl

c = γ . The visibility vanishes at certain
times and shows coherence revivals in-between these zeros. These features continue to exist for
quantum telegraph noise where we first observe a transition to a non-monotonous behaviour as a
precursor to the visibility oscillations in contrast to the classical limit discussed above. Moreover,



62 DECOHERENCE BY QUANTUM TELEGRAPH NOISE 7.5

0 2.0 4.0 6.0 8.0 10.0
0  

0.2

0.4

0.6

0.8

1.0  

0 2.0 4.0 6.0 8.0 10.0
0 

0.2

0.4

0.6

0.8

1.0

Time γt

(b)

Time γt

V
is

ib
ili

ty
|D

(t
)|

V
is

ib
ili

ty
|D

(t
)|

(a) ε/γ = 0
ε/γ = 0.1
ε/γ = 0.2
ε/γ = 0.3
ε/γ = 0.4
ε/γ = 0.5

T/γ = 0
T/γ = 0.1
T/γ = 0.2
T/γ = 0.3
T/γ = 0.4
T/γ = 0.5

Figure 7.4: (a) Time evolution of the visibility v(t) for increasing temperature T (from top to bottom) and
v/γ = 2.0. At zero-temperature the visibility has no zero in the time evolution but when the
temperature is increased zeros appear beyond a certain temperature. (b) These curves display
the effect of shifting the impurity level ε away from the Fermi energy εF for increasing energy
ε (from top to bottom), v/γ = 3.0 and T = 0. The first zero-crossing is lifted but visibility
oscillations are still present.

zeros in the visibility develop only at much larger (temperature dependent) coupling strengths vq
c .

We will study the appearance of zeros in the time evolution of the visibility in more detail, [see
Sec. 7.6]. Zeros in the time evolution of the visibility may be used to characterize the fluctuator
since their appearance is due to the non-Gaussian statistics of quantum telegraph noise. Another
notable feature is the non-monotonous evolution of peak heights for strong coupling which is not
seen in the classical analogue, where the height of the peaks decays exponentially with time.

Figure 7.4(a) displays the transition for a fluctuator in a state without any zero in the time evo-
lution of v(t) to a state where at least one zero appears as temperature is increased. The first zero
appears at approximately at T/γ ≈ 0.3. This is a strong indication of a temperature dependent
critical coupling strength vq

c(T ) beyond which zeros in the time evolution of the visibility occur.
The precise form of the critical coupling vq

c(T ) as a function of temperature T will be analyzed
in Sec. 7.6. Finally, the effect of shifting the energy of the impurity level ε away from the Fermi
level εF is shown in Fig. 7.4(b). The zero crossings in the time evolution of the visibility are
lifted even for small ε but visibility oscillations still appear. This is due to the fact that far away
from the Femi energy εF the strength of the qubit-fluctuator interaction is power-law suppressed
due to the Lorentzian DoS [see Fig. 7.1].
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Figure 7.5: Decoherence rate Γϕ of a qubit coupled to the charge fluctuations on a single impurity level
hybridized with a Fermi sea. (a) and (b) Decoherence rate Γϕ for different temperatures (from
top to bottom) T/γ = 100, 5, 1, 0.2 as a function of the coupling strength v/γ . The energy of
the impurity level is (a) ε/γ = 0 and (b) ε/γ = 3.0 measured from the Fermi energy εF . The
solid line corresponds to the analytical result of [31, 32] and the solid circles corresponds to
the direct numerical evaluation of Eq. (7.12). (c) and (d) log− log-plot of the analytical results
for the decoherence rate as a function of temperature. Some spurious deviations are entirely
due to the numerical method used for obtaining the decoherence rate.

7.5 Decoherence rate
In the long-time limit t → ∞ the visibility decays exponentially in time, |D(t)| ∝ e−Γϕ t at a
decoherence rate Γϕ which is defined as

Γϕ =− lim
t→∞

1
t

log |D(t)|. (7.31)

Figure 7.5 shows the decoherence rate Γϕ as a function of the coupling strength v/γ for different
temperatures. The solid line corresponds to the analytical results obtained in [31, 32] and the
dots corresponds to the numerical evaluation of the slope of the visibility using Eq. (7.12). In
Figs. 7.5(a) and (b) the decoherence rate Γϕ displays a non-analytic behavior as a function of
the coupling strength and has a cusp whenever v/γ =

√
(2ε/γ)2 +1 for the whole range of

temperatures. However, there is an additional temperature-induced rounding as a precursor of
the cusp for ε 1= 0. The high-temperature limit corresponds to the classical limit of telegraph
noise discussed in Chap. 6.

The reason for the deviations of our numerical results from the analytical one is due to the fact
that log |D(t)| is a linearly decaying function with a slope equal to −Γϕ with rapid oscillations
on top of it, which makes it difficult to extrapolate the linear slope numerically.

Figures 7.5(c) and (d) display the decoherence rate Γϕ as a function of temperature in a
log− log-plot for small (blue) and very large coupling (red). The low-temperature regime T & γ
is characterized by a linear dependence Γϕ ∝ T . That behaviour could already be inferred from a
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in Chap. ??.

The reason for the deviations of our numerical results from the analytical one is shown is due
to the fact that log |D(t)| is a linearly decaying function with a slope equal to −Γϕ with rapid
oscillations on top of it, which makes it difficult to extrapolate the linear slope numerically.

Figures ??(c) and (d) display the decoherence rate Γϕ as a function of temperature in a
log− log-plot for small (blue) and very large coupling (red). The low-temperature regime T # γ
is characterized by a linear dependence Γϕ ∝ T . That behaviour could already be inferred from a
spin-boson model with an Ohmic noise-spectrum [see Sec. ??]. In contrast, the high temperature
decoherence rate is always stronger for a strongly coupled fluctuator. In the weak-coupling limit
v # γ at finite temperature T the quadratic increase of decoherence rate Γϕ ∼ v2 can be inferred
from the long-time behaviour of the Gaussian approximation for the coherence Eq. (??. In the
strong-coupling limit the energy of the impurity level ε̃↑↓d = (ε0±v/2) is either pushed far above
or far below the bare impurity energy ε0 depending on the state of the qubit. Figure ?? shows a
qualitative picture of the shifted DoS of the impurity level. In thermal equillibrium the average
occupation of impurity 〈Q̂ 〉= 〈d̂†d̂〉 is 〈Q̂ 〉= 1 if the qubit is in its excited state |↑〉 and 〈Q̂ 〉= 0
if the qubit is in its ground state |↓〉. In both cases the charge on the qubit is frozen which results
in a decreasing decoherence rate Γϕ despite of a large coupling strength v.

7.6 Phase diagram
We propose a scheme to identify the regime of strong fluctuator-qubit coupling characterized by
the specifically non-Gaussian dynamics of the density matrix, i.e. the occurrence of zeros in the
time evolution of the visibility.

As already mentioned in Chap. ?? a qubit influenced by the charge fluctuations of one parti-
tioned arm of the Mach-Zehnder-Interferomenter [see Fig. ??(a)] displays non-Gaussian visibil-
ity oscillations in its temporal evolution. Zeros in the visibility appear for couplings larger than
g = π as shown in ?.
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tioned arm of the Mach-Zehnder-Interferomenter [see Fig. ??(a)] displays non-Gaussian visibil-
ity oscillations in its temporal evolution. Zeros in the visibility appear for couplings larger than
g = π as shown in ?.

Figure 7.6: Schematic picture of the shifted energy level ε̃d of the impurity level depending on the state of
the qubit. When the qubit is in its ground state the energy is shifted far below ε and when the
qubit is in its excited state ε̃d is shifted far above ε . The average occupation on the impurity
level is either 〈Q̂ 〉= 0 when σ̂z = |↑〉 or 〈Q̂ 〉= 1 when σ̂z = |↓〉.

spin-boson model with an Ohmic noise-spectrum [see Sec. 4.6]. In contrast, the high temperature
decoherence rate is always stronger for a strongly coupled fluctuator. In the weak-coupling limit
v& γ at finite temperature T the quadratic increase of decoherence rate Γϕ ∼ v2 can be inferred
from the long-time behaviour of the Gaussian approximation for the coherence Eq. (7.28). In the
strong-coupling limit the energy of the impurity level ε̃↑↓d = (ε ± v/2) is either pushed far above
or far below the bare impurity energy ε0 depending on the state of the qubit. Figure 7.6 shows
a qualitative picture of the shifted DoS of the impurity level. In thermal equilibrium the average
occupation of impurity 〈Q̂ 〉= 〈d̂†d̂〉 is 〈Q̂ 〉= 0 if the qubit is in its excited state |↑〉 and 〈Q̂ 〉= 1
if the qubit is in its ground state |↓〉. In both cases the charge fluctuations on the impurity are
frozen which results in a decreasing decoherence rate Γϕ despite of a large coupling strength v.

7.6 Phase diagram

We propose a scheme to identify the regime of strong fluctuator-qubit coupling characterized by
the specifically non-Gaussian dynamics of the density matrix, i.e. the occurrence of zeros in the
time evolution of the visibility. aAnother approach for the characterization of the dynamics of
the reduced density matrix for a non-Gaussian environments identified the time-scale separating
Gaussian and non-Gaussian dynamical regimes [52] for a non-Gaussian spin-bath.

The appearance of zeros is a genuine effect of non-Gaussian noise and cannot be mimicked
by any Gaussian theory, e.g. by a bath of harmonic oscillators. For Gaussian-distributed noise
|〈eiϕ〉| = |e−〈ϕ2〉/2| > 0, irrespective of the power-spectrum which fully determines all properties
of the harmonic oscillator heat-bath. A peculiar feature of telegraph noise is the occurence of
zeros in the time evolution of the visibility. We characterize the onset of the strong-coupling
regime by the temperature dependent coupling strength vq

c(T ), beyond which the zeros in the
time evolution of v(t) appear. The result is a "phase diagram“ which shows the critical coupling
strength vq

c as a function of temperature.
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Figure 7.7: Time evolution of the coherence D(t) (densityplot) as a function of the coupling v/γ (vertical)
and time γt (horizontal axis) for for decreasing temperatures, (a)-(d) T/γ = 1.0, 0.3, 0.2, 0.01
(with ε = 0). The bold green lines indicate the contours of vanishing coherence, D(t;v,T ) = 0.
The dashed black line indicates the critical coupling strength for the appearance of the first
zero-crossing in D(t). Zeros in the time evolution of the visibility start beyond the threshold
(from (a)-(d)) v/γ ≈ 1.0, 1.9, 2.2, 2.7.

7.6.1 Temperature-dependence of the strong-coupling threshold
In order to illustrate both the dependence on coupling strength v and temperature T we have
plotted the time evolution of the coherence D(t) as a function of the coupling-strength v for
various temperatures, omitting the trivial phase-factor e−ivt/2, [see Fig. 7.7]. Then the coherence
is a real-valued function. It displays oscillations between positive (D > 0, light shading) and
negative (D < 0, dark shading) values. Bold green contour-lines indicate the location of zeros in
the v−T -plane, i.e. where D(t;v,T ) = 0.

At high temperatures T 6 γ [Fig. 7.7(a)] visibility oscillations set in beyond a certain thresh-
old vq

c/γ ≈ 1. The visibility vanishes at certain times and shows coherence revivals in-between.
This was expected from the semi-classical model studied in Chap. 6 where zeros appear as soon
as v = γ . However, for decreasing temperatures [Fig. 7.7(b-d)], the first zero-crossing appears
beyond a larger coupling strength v > γ . In particular, in the low-temperature limit [Fig. 7.7(d)]
the first zero-crossing appears approximately at the critical coupling vq

c/γ ≈ 2.7.
One can characterize the onset of the specifically non-Gaussian strong coupling regime by

the temperature-dependent critical coupling strength vq
c(T ) beyond which the zeros in the time
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Figure 7.8: “Phase diagram”: Critical coupling strength vq
c(T ) as a function of temperature. The dashed

line indicate the parameters (v,T ) where zeros in the coherence first appear. Above the dashed
line one observes always zeros in the coherence. At high temperatures vq

c → 1 according to the
classical limit.

evolution of the coherence appear. At a fixed temperature T the critical coupling-strength vq
c and

the corresponding zero in D(t) at time t∗ are found by a bisection procedure [see Sec. 7.6.2].
The result is a phase diagram showing the critical coupling-strength vq

c as a function of the tem-
perature T , [Fig. 7.8]. The critical threshold vq

c(T ) separates the v−T -plane into two regions:
At high temperatures T 6 γ the critical coupling vq

c converges to its classical value vq
c → 1 (the

slight offset in Fig. 7.8 is due to limited numerical accuracy). For low temperatures the critical
coupling strength increases and saturates at a finite value, as D(t;v,T ) is continuous in the limit
T → 0 and D(t;v,T = 0) still displays oscillations beyond some treshold. This means the equi-
librium quantum Nyquist noise of the fluctuator is enough to observe visibility oscillations, in
contrast to the strong coupling regime studied in [53, 54], where only the nonequilibrium shot
noise of discrete electrons could yield these effects.

7.6.2 Algorithm
A schematic picture of the way to find the first zero t∗1 and the corresponding critical coupling vq

c
is shown in Fig. 7.9. We begin with zero temperature T = 0 and determine the location of the
first zero crossing and the corresponding critical coupling.

We are starting with an arbitrary initial coupling, i.e. v1 which is sufficiently large enough
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Figure 7.9: Schematic picture of the algorithm used to find the first zero-crossing of the coherence. The bold
black lines show the contour lines of the coherence for D(t;v,T ) = 0 for a specific temperature
T . Our goal is to find the first zero of the coherence (t∗1 ,vq

c) which is indicated by red dashed
lines. The initial value is v1. The combination of two bisection procedures in the t− v-plane
produces a sequence (tn,vn) which converges to the critical coupling vq

c and the corresponding
zero t∗1 .

such that the time evolution of D(t;v,T ) has at least one zero. Then we determine the positions
of the first two zero-crossings of D(t;v1), e.g. t ′1 and t ′′1 and take the middle of the interval
t1 = (t ′1 + t ′′1 )/2. The value of v2 where D(t1 : v,T ) is equal to zero is denoted by v1 and can be
found by a standard bisection-alogorithm to find zeros of an arbitrary function. The procedure
explained above is iterated until the sequence t2, t3, . . . , tN converges to t∗ and the corresponding
coupling strengs v2,v3, . . . ,vN converge to vq

c . The trajectory of (tn,vn) is indicated by the orange
line in Fig. 7.9. The full phase diagram is obtained by increasing the temperature and using the
last critical coupling strength as an initial value for the coupling v at the increased temperature
T +δT .

7.7 Summary
We have studied the decoherence of a qubit subject to quantum telegraph noise. We derived an
exact fully quantum mechanical formula for the time evolution of the coherence and found the
strong-coupling regime with an oscillatory time-dependence that cannot be mimicked by any
Gaussian noise source. We have characterized this regime by the appearance of the first zero in
the time evolution of the coherence and summarized the result in a “phase diagram”.
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It should be possible to explain the laws of
physics to a barmaid.

ALBERT EINSTEIN

Chapter 8
Spin-Echo

8.1 Introduction

ONE of the typical problems where the current standard silicon-based computer technology
seems to be insufficient is the decomposition of large numbers into prime factors at a rea-

sonable speed, a technique which is frequently used in cryptography and security related appli-
cations. It is widely believed that the computational time for that problem grows exponentially
with the length of the number which makes it intractable for large numbers. In his breakthrough
article SHOR [55] proposed in the year 1994 an algorithm which would greatly improve the per-
formance of the encoding of large numbers. The basic ingredient of that algorithm was the use
of the quantum mechanical superposition principle which allows for parallel processing of many
classical registers (bits). This quantum-parallelism allows a reduction for the computational time
to polynomial order.

The quantum analogue of a classical bit (0/1) is a two-level system (qubit ↑↓〉). In order
to make use of quantum parallelism for computation the qubit needs to be protected from the
irreversible dynamics of the environment in order to maintain its quantum state not only with
respect to its two eigenstates |↑〉 and |↓〉 but also with respect to its relative phase. The inevitable
coupling of the qubit to the environment destroys any initially prepared superposition of quantum
states (decoherence).

Various methods have been proposed to fight decoherence and protect the qubit from dephas-
ing. For example error-correcting codes [56, 57], decoherence free subspace coding [58, 59],
noiseless subsystem coding [60], dynamical decoupling [61, 62, 63, 64], quantum feedback con-
trol [65, 66, 67] and quantum reservoir engineering [68]. Among these techniques we focus here
on dynamical decoupling schemes applied to a qubit subject to quantum telegraph noise.

The idea of dynamical decoupling is borrowed from spin-echo pulses first invented by HAHN
in nuclear magnetic resonance (NMR), where ensembles of spins are considered. Dynamical
decoupling schemes are based on stroboscopic pulsing of the qubit effectively averaging out the
environment by external control fields. Schemes of repeated pulse-sequences are applied on
the qubit in the hope to maintain phase coherence. For static but non-uniform coupling to the
environment a single π-pulse is sufficient to compensate perfectly the environment. The idea of

69
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t ′ = 0 t ′ = t/2 π−pulse t′ = t
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ŷ
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Figure 8.1: Time evolution of the qubit in a spin-echo experiment represented on the Bloch sphere. The
qubit evolves under the influence of a static but random magnetic field with direction along
the ẑ-axis. (a) The initial state of the qubit is a superposition |ψ(0)〉 = 1/

√
2(|↑〉+ |↓〉). (b)

During its time evolution the qubit accumulates the phase ϕ(t ′) = Bzt ′, t ′ ∈ [0, t/2] and the state
of the qubit is |ψ(t)〉 = 1/

√
2(eiϕ/2 |↑〉+ e−iϕ/2 |↓〉). (c) The application of a π-pulse rotates

the spin around the x̂-axis by an angle of 180◦ which effectively flips the phase ϕ →−ϕ such
that the contribution of the phase previously accumulated is eliminated and phase-coherence
is maintained.

spin-echo pulses is schematically shown in Fig. 8.1. For example, let us consider a single spin
subject to a stationary but random magnetic field !B =(0,0,Bz)T along the ẑ-direction of the Bloch
sphere. The spin will precess with a frequency Bz and dephasing is due to the random precession
angle ϕ(t) = Bzt. After the time t ′ = t/2 the random precession angle in the x̂ŷ-plane is equal
to ϕ(t/2) = Bzt/2. If it would be possible to flip the precession angle such that ϕ →−ϕ during
the following time-interval [t/2, t] then the subsequent precession would completely eliminate
the phase accumulated during the fist time-interval [0, t/2], regardless of the random magnetic
field Bz. At the end of the time-interval [0, t] both phase contributions cancel each other and
one ends up with the total phase ϕ(t) = 0. Thus we have achieved a decoupling from the noisy
environment and revived the qubit.

In the general case, for a randomly fluctuating magnetic field, only fluctuations with ωt & 1
will be eliminated by this procedure, because they can be regarded as quasi-static. A 180◦-
rotation of the spin around the x̂-axis has exactly the effect of flipping the precession angle ϕ .
This can be accomplished by applying a strong magnetic field in the x̂-direction for a short time.
Therefore, pulses of this kind are termed as π-pulses.

Various schemes of pulse-sequences have been proposed in order to fight decoherence. Re-
cently [64], an optimized π-pulse sequence extending the Carr-Purcell-Meiboon-Gill (CPMG)
cycle well known in the NMR community has been suggested. The central idea of this approach
was to optimize the duration between pulses in a sequence of π-pulses such that the decoher-
ence is minimized. In contrast to the CPMG-cycle, the duration between consecutive pulses is
no longer equal for all pulses but can vary depending on the number of preceding pulses. For a
qubit subject to an Ohmic bath it has been shown that the efficiency of the optimized sequence is
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A spin-echo-type technique is applied to an artificial two-level system that utilizes a charge degree of
freedom in a small superconducting electrode. Gate-voltage pulses are used to produce the necessary
pulse sequence in order to eliminate the inhomogeneity effect in the time-ensemble measurement and to
obtain refocused echo signals. Comparison of the decay time of the observed echo signal with an esti-
mated decoherence time suggests that low-frequency energy-level fluctuations due to the 1!f charge noise
dominate the dephasing in the system.
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In a small Josephson-junction circuit, we can construct
an artificial two-level system, which is expected to have a
long decoherence time and work as a qubit [1]. There are
two types of qubits, depending on whether charge or phase
is used as the degree of freedom in the two-level system.
The charge qubit, a Cooper-pair box, uses two charge states
in a small superconducting electrode connected to a reser-
voir via a Josephson junction [2], while the phase qubit
uses two phase states in a small superconducting loop in-
tersected by a Josephson junction(s) [3]. Superposition of
the two charge states [4,5] and that of two phase states
[6,7] has been observed recently, and coherent control of
the charge qubit has also been demonstrated [8]. Being
solid-state devices, these qubits are also expected to be
scalable to an integrated system for quantum information
processing [9]. However, the actual decoherence time and
the decoherence mechanism are not yet fully understood.
Accordingly, we performed an experiment on the decoher-
ence in a Cooper-pair box.

In this experiment, a Cooper-pair box is subjected to
a sequence of gate-voltage pulses, which give rise to
quantum-state control similar to that in the free-induction-
decay (FID) and spin-echo experiments in the field of
nuclear magnetic resonance [10]. Although our experi-
ment is on a single two-level system, such a technique
is useful for studying the effect of fluctuations, that is,
temporal inhomogeneities, in the time-ensemble measure-
ment. We observed rapid decay of the FID signal and
significant recovery of the coherence signal in the echo
experiment. These observations indicate that the effect
of low-frequency energy-level fluctuations is dominant
in the dephasing of the two-level system. Furthermore,
we compare the decay of the observed “charge-echo”
signal with estimated decoherence due to several possible
sources, and suggest a contribution of 1!f background
charge noise to the dephasing.

The Cooper-pair box device [8] consists of a small “box”
electrode coupled to a reservoir electrode via a Josephson
junction, two gate electrodes capacitively coupled to the
box, and an additional probe electrode connected to the

box via a highly resistive tunnel junction (Fig. 1). All
the electrodes are made of Al with a superconducting gap
energy D larger than the other important energy scales;
thus, quasiparticle excitation can be neglected (except for
the measurement process described below). Because of the
charging effect, it is a good approximation of the quantum
state of the device to take into account only two charge
states with the lowest energies —the ones closest to the
charge neutrality of the box —which differ by a single
Cooper pair. For example, if the total gate-induced charge
in the box, Qt " Q0 1 CpVp#t$ #Q0 " CgVg 1 CbVb$,
is close to one, the relevant charge states are jn ! 0% and
j1%, where n is the excess number of Cooper pairs in the
box and Ci #i ! p, g, b$ is the capacitance between the
box and each electrode voltage biased at Vi.

Using the basis of j"% " j0% and j#% " j1%, the ef-
fective Hamiltonian of the two-level system is H !
1
2 dE#Qt$sz 2

1
2 EJsx, where dE#Qt$ " 4EC#Qt!e 2 1$

is the energy difference between the two charge states,
EC " e2!#2CS$ is the single-electron charging energy
of the box, CS is the total capacitance of the box, EJ is
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FIG. 1. (a) Schematic of a Cooper-pair box with an additional
probe electrode. (b) Bloch sphere representations of schematic
quantum-state evolutions at Q0 ! 0.45e corresponding to
the two pulse heights DQp ! 0.55e (top) and DQp ! 0.53e
(bottom). The thin arrow in the xz plane indicates the direction
of the effective magnetic field.
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Figure 8.2: Schematic experimental setup of Nakamura’s charge-echo experiment [69]. A small supercon-
ducting island is coupled by a Josephson-junction (with capacity CJ and Josephson coupling
energy EJ) to a reservoir. Additional voltage biased gate-lelectrodes (with capacity Cg, bias
voltage Vg) allow for qubit manipulations by adjusting the voltage Vp of the pulse-gate (with
capacity Cp). A dc current is detected at the probe electrode (capacitance Cb, bias voltage Vb)
via a highly resistive tunnel-junction (Resistance Rb). (With courtesy of Y. Nakamura.)

by a factor of 40 better than the equidistant pulse-sequence for strong qubit-bath coupling and for
weak coupling the improvement is still about a factor of 4. Although the pulse-sequence has been
optimized for a Gaussian Ohmic bath we employ the same sequence for non-Gaussian quantum
telegraph noise in our numerical simulation and compare it against a sequence of equidistant
pulses [see Sec. 8.3.4].

Echo protocols are now standard in qubit experiments, particularly in the solid state. NAKA-
MURA et al. [69] have studied the charge echo in a Cooper pair box subject to a sequence of gate
voltage pulses [see Fig. 8.2]. The Cooper-pair box consists of a small superconducting island
(made of Al) coupled by a Josephson junction to a reservoir. The box is capacitively coupled
to two gate electrodes. Adjusting the dc-gate voltage Vg allows to transfer an excess number of
Cooper-pairs onto the island, while the modulation of the pulse-gate Vp allows for qubit manip-
ulation. The total induced charge on the box is Q(t) = Q0 +CpVp(t) and Q0 = CgVg +CbVb.
The Cooper-pair box operates as a qubit when the induced charge on the island is close to 1, i.e.
Q = 1. Then, due to the charging effect the Cooper-pair box is effectively described by its two
lowest lying eigenstates which differ by just a single Cooper pair.

The evolution of the qubit may be effectively mapped onto a ficticious spin-1/2 in a magnetic
field !B = (EJ,0,δE(Q))T and the effective Hamiltonian has the familiar form

Ĥ =
δE(Q)

2
σ̂z−

EJ

2
σ̂x, (8.1)

where δE(Q) = 4EC(Q/|e| − 1) and EC = e2/2CΣ is the single-particle charging energy, CΣ is
the total capacitance. Pulses are generated by modulating Q(t) which correspond to a rotation of
the magnetic field !B in the x̂ẑ-plane of the Bloch-sphere.
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the FID time scale is much shorter. Since d!DE"
dQ0

equals
zero at the degeneracy point but not at the present working
point and the inelastic relaxation rate of the two-level
system is estimated to be much longer (see below), the
short FID time can be attributed to the dephasing due to
charge fluctuations. Our measurement is an average over
a time ensemble of 20 ms, so even very low frequency
fluctuations can contribute, as inhomogeneities in the
ensemble, to the short decay time in the FID experiment.

To remove such an effect, the three pulses shown in
Fig. 2(b) are used for the echo experiment. The second
pulse flips the possibly dephased ensemble of spins after
the first delay time td , and during the second delay time,
provided that the correlation time of the fluctuations in
DE!Q0" is much longer than td , the spins respectively
precess the same amount as before and are refocused at
the end. The third pulse is again needed for the projection
of the phase information onto #sz$.

The observed echo signal is shown in Fig. 2(d). When
the position of the third pulse dt3 was swept, an oscillating
signal was observed only in the vicinity of dt3 ! 0 and
decayed as jdt3j increases within nearly the same time
scale as the FID signal.

Decay of the echo signal as a function of the delay
time td is shown in Fig. 2(f). The echo amplitude DI
was obtained by fitting the echo signal as a function of dt2

with a sinusoidal curve [Fig. 2(e)]. The period of the echo
signal is about half of those in Figs. 2(c) and 2(d), be-
cause here the difference between the first and second de-
lay times !td 1 dt2" 2 !td 2 dt2" ! 2dt2 matters in the
final phase. The slight phase offset at dt2 ! 0 is due to
an offset in the delay line. In Fig. 2(f), the decay time is
much longer than that of the FID signal. This implies that
dephasing in the FID is mainly due to the low-frequency
(,1%td) part of the fluctuations which is greatly canceled
out by the echo technique.

The above results lead to the question concerning the
origin of the decay of the echo signal. In order to com-
pare with theoretical estimations of a decoherence factor
#expiw$, the echo amplitude data [Fig. 2(f)] and the FID
data [Fig. 2(c)] are normalized by fitting with a Gaussian
curve and are plotted in Fig. 3 on a logarithmic scale.

The well-known 1%f-like background charge noise,
which is believed to be caused by charges randomly
fluctuating around the device [15,16], may contribute to
the decoherence. The 1%f noise measurement is usually
restricted to a very low frequency below about 1 kHz,
and the noise spectrum in the high-frequency range is
unknown. Nevertheless, here we assume that the 1%f
spectrum extends to the infinite frequency [17]. Generally,
the dephasing factor in the presence of an energy-level
fluctuation spectrum SDE!v", under the assumption of
Gaussian fluctuations, is given as

#expiw!t"$ ! exp
∑
2

1
2

øµ
1
h̄

Z t

0
dt gDE

∂2¿∏
! exp

∑
2

1
2h̄2

Z `

vm

dv SDE!v"
µ

sin!vt%2"
v%2

∂2∏
(1)

for the FID case. Here gDE is the deviation of DE from its
average and vm & 2p%tm is the low-frequency cutoff due
to the finite data-acquisition time tm (20 ms in this work).
Similarly, #expiw$ in the echo experiment becomes

exp
∑
2

1
2h̄2

Z `

vm

dv SDE!v"
µ

sin2!vt%4"
v%4

∂2∏
(2)

because of the cancellation of the dephasing be-
fore and after the p pulse. With a 1%f spectrum,
SDE!v" ' !4EC

e "2Se!v" & ! 4EC

e "2 a
v , both Eqs. (1) and (2)

give Gaussian-type decay [18]. For a ! !1.3 3 1023e"2,
which we determined by a standard noise measurement on
the present device used as a single-electron transistor, the
two curves are plotted in Fig. 3, as well as another curve
for echo experiment with a ! !0.3 3 1023e"2, which is
a typical number given in the literature. Considering the
uncertainty in the noise spectrum, it seems that the curves
reasonably reproduce the significant increase of the decay
time in the echo signal and the time scale of the Gaussian
decay qualitatively, suggesting that the 1%f noise is the
main dephasing source. It is worth mentioning that, if this
is true, the long decoherence time required for quantum
computing is possible only after a drastic reduction of the
1%f noise. Because of the long tail of the 1%f spectrum

to the high frequency, an echo technique is not a perfect
solution for suppressing the dephasing [19].

Dephasing due to the electromagnetic environment [1] is
also calculated by Eq. (1) with SDE!v" ! 4e2k2

i SVi!v",
where SVi!v" & h̄v

2p 2Renv coth! h̄v
2kBTenv

" is the voltage
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FIG. 3. Decay of the normalized amplitude of the echo sig-
nal (filled circles) and the FID signal (open circles) compared
with estimated decoherence factors #expiw$ due to the electro-
magnetic environment (dotted line), the readout process (dashed
line), and 1%f charge noise with a ! !1.3 3 1023e"2 (dash-
dotted line). The two solid lines are estimations for the echo
experiment in the presence of the same 1%f charge-noise spec-
trum (bottom) and that with a ! !3.0 3 1024e"2 (top).
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ŷ

ẑ
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Figure 8.3: Charge-echo experiment: (a) Sequence of qubit manipulations in Nakamura’s charge-echo
experiment. (b) Sequence of charge pulses. (c) Decay of the coherence in the charge echo
experiment (filled circles) in comparison with the free induction signal (open circles) when no
π-pulses have been applied on the qubit. Estimated coherence

〈
eiϕ〉

due to the electromagnetic
environment (dotted line), the readout-process (dashed line) and 1/ω-noise (dashed-dotted
line). (Figure (c) with courtesy of Y. Nakamura)

The sequence of pulse-operations applied on the qubit is shown in Fig. 8.3(a) and (b). The
first π/2-pulse initializes a superposition |ψ(0)〉 = 1/

√
2(| ↑〉+ | ↓〉) and the quantum state ac-

cumulates a phase ϕ = ∆E(Q0)td , where ∆E(Q0) = (δE(Q0)2 +E2
J )1/2 is the energy difference

of the qubit’s eigenstates. The second π-pulse flips the spin of the qubit, thereby “filtering out”
the efect of the low frequency fluctucations due to the coupling to the intrinsic background fluc-
tuators. The third pulse projects the qubit to the measurement basis. It is widely accepted that
decoherence is mainly caused by an ensemble of bistable fluctuators such that the noise-spectrum
is 〈δ Q̂ δ Q̂ 〉ω ∝ 1/ω . However if the qubit couples to only a few bistable fluctuators non-Gaussian
effects may become important [see Chap. 7].

Figure 8.3(c) shows the spin-echo signal (filled circles) after the elapsed time 2td in compar-
ison with the free-induction signal (open circles) and estimated coherence factors

〈
eiϕ〉

due to
different soures of noise for comparison.

In the preceding chapter we investigated the time evolution of the density matrix of the charge
qubit subject to quantum telegraph noise. We start with a brief review of spin-echo experiments
in the semi-classical model introduced in Chap. 6 which is indeed the high-temperature limit
of the full quantum mechanical model. An exact derivation of the spin-echo signal for the full
quantum mechanical model including all backaction and memory effects for a single π-pulse is
shown as well as an extension to arbitrary pulse sequences. The time evolution of the spin-echo
signal is calculated numerically for different regimes and parameters.
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8.2 Spin-echo for classical telegraph noise
Here we present the time evolution of the density matrix for a qubit subject to classical telegraph
noise in a spin-echo experiment. We neglect the backaction of the qubit on the heat-bath and as a
consequence the bath can be regarded as a stochastic process whose dynamics is governed by the
Markoff rate equations [see Eq. (6.22)]. We consider the effect of a single π-pulse applied on the
qubit at time t ′ = t/2 when the qubit is initially prepared in a superposition of its eigenstates at
t ′ = 0, |ψ(0)〉= 1/

√
2(|↑〉+ |↓〉), and then let the qubit further progress up to time t ′ = t. During

the first half of the time-interval the qubit evolves according to the Hamiltonian Ĥ = (∆/2)σ̂z +
(v/2)Q(t)σ̂z and accumulates a random phase ϕ(t ′) = −v

∫ t ′
0 dt ′′Q(t ′′) after ther elapsed time

t ′ ∈ [0, t/2]. The state of the qubit is equal to

∣∣ψ(t ′)
〉

=
1√
2

(
e−i∆t ′/2eiϕ(t ′)/2 |↑〉+ ei∆t ′/2e−iϕ(t ′)/2 |↓〉

)
. (8.2)

The application of the π-pulse Ŵ at the intermediate time t/2

Ŵ = exp
(

iπ
2

σ̂x

)
,

(8.3)
= iσ̂x,

interchanges the qubit’s eigenstates such that at t ′ = t/2 the interaction changes its sign, i.e.

(v/2)Qσ̂z →−(v/2)Qσ̂z, (8.4)

and the evolution of the qubit is subsequently determined by the Hamiltonian Ĥ = (∆/2)σ̂z−
(v/2)Q(t)σ̂z. Thus for t ′ > t/2 the qubit will acquire a random phase ϕ(t ′) = v

∫ t ′
t/2 dt ′′Q(t ′′),

with a reversed sign of the coupling strength v. The qubit’s state at time t is equal to

|ψ(t)〉=
i√
2

(
eiϕ̃(t)/2 |↑〉+ e−iϕ̃(t)/2 |↓〉

)
, (8.5)

where the acquired phase during the time-interval [0, t] is equal to

ϕ̃(t) =−v
∫ t/2

0
dt ′Q(t ′)+ v

∫ t

t/2
dt ′Q(t ′). (8.6)

Equation (8.6) can be written as a convolution over the kernel β (t ′) used to encode the π-pulse
or sequences of pulses

ϕ̃(t) =−v
∫ t

0
dt ′β (t− t ′)Q(t ′), (8.7)

with the kernel

β (t− t ′) =






0, for t ′ < 0
+1, for 0≤ t ′ < t/2
−1, for t ′ ≥ t/2

(8.8)
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As a result the density matrix of the qubit at time t after the application of a π-pulse at t ′ = t/2
can be written in a similar way as in Chap. 6,

ρ̂ red(t) =
(

ρ↑↑(0) ρ↑↓(0)DEcho(t)
ρ↓↑(0)D∗Echo(t) ρ↓↓(0)

)
, (8.9)

with the spin-echo signal DEcho(t) at time t which describes the decay of the off-diagonal ele-
ments of the density-matrix in a spin-echo experiment,

DEcho(t) =
〈

exp
[
−iv

∫ t

0
dt ′β (t− t ′)Q(t ′)

]〉
, (8.10)

where 〈. . .〉 =
∫

dϕ(. . .)p(ϕ, t) denotes an average over the phase distribution function p(ϕ, t)
for classical telegraph noise [see. Eq.(6.32)].

8.2.1 Time evolution of the echo according to the Gaussian approximation
As in the preceding chapters we begin with the Gaussian approximation of the spin-echo signal
DEcho(t) for the semi-classical model [see Chap. 6] which is indeed the weak-coupling limit
v/γ & 1 of the exact result. The Gaussian approximation is equal to

〈
eiϕ̃(t)

〉
= ei〈ϕ̃(t)〉− 1

2〈δ ϕ̃2(t)〉, (8.11)

but now with vanishing mean 〈ϕ̃(t)〉= 0 and variance
〈
δ ϕ̃2(t)

〉

〈
δ ϕ̃2(t)

〉
= v2

∫ t

0
dt ′

∫ t

0
dt ′′β (t− t ′)β (t− t ′′)

〈
δQ(t ′)δQ(t ′′)

〉
. (8.12)

Inserting the correlation function Eq. (6.4) into the expression above and carrying out the inte-
grals we obtain the Gaussian approximation for the spin-echo signal to be equal to

DGauss
Echo (t) = exp

[
−

(
v

2γ

)2 (
γt−3+4e−γt/2− e−γt

)]
. (8.13)

At long times γt 6 1 the spin-echo signal decays at a rate v2/4γ which coincides with the deco-
herence rate ΓGauss

ϕ without a π-pulse in the Gaussian approximation. The time evolution of the
spin-echo signal DGauss

Echo (t) compared against the exact result is shown in Fig. 8.4(a).

8.2.2 Time evolution of the spin-echo signal
We derive the exact time evolution of the spin-echo signal DEcho(t) [see Eq. (8.10)] employing
the equation of motion approach which permits the calculation of DEcho(t) without knowing the
probability distribution of the phase p(ϕ, t). Other methods to calculate the spin-echo signal for
classical telegraph noise make use of stochastic differential equations and get the same result
[39, 34].
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Figure 8.4: Time evolution of the spin-echo signal |DEcho(t)| for classical telegraph noise when a π-pulse is
applied at time t/2. (a) Spin-echo signal |DEcho(t)| (solid line) in comparison to the Gaussian
approximation (dashed line) for different coupling strengths v/γ = 0.5 and v/γ = 10.0. For
weak coupling v& γ the Gaussian result is a good approximation to the exact spin-echo signal
whereas for strong-coupling v 6 γ the Gaussian approximation strongly underestimates the
exact result. (b) Spin-echo signal in comparison with the visibility for (from top to bottom)
v/γ = 0.5, 10.0. In the strong-coupling regime the spin-echo signal DEcho(t) has plateaux at
every second top of the visibility. The occurence of plateaux in the time evolution of the echo
reflects again the non-Gaussian properties of telegraph noise.

The idea of this approach is to calculate the coherence D(t) right before the π-pulse at t ′ =
t/2− δ t with coupling v and right after the application of the pulse at t ′ = t/2 + δ t, with a
coupling whose sign is reversed v→−v. Then both solutions match at t ′ = t/2: D(t/2−δ t;v) =
D(t/2+δ t;−v), the solution which fulfills this condition gives the spin-echo signal DEcho(t) (δ t
is an infinitesimal time-interval). Details of the derivation can be found in App. C and we just
present the results here. The spin-echo signal of a qubit subject to classical telegraph noise is
equal to

DEcho(t) =
1
2

e−γt/2
( γ

2δ

)[(
1+

γ
2δ

)
eδ t −

(
1− γ

2δ

)
e−δ t − v2

γδ

]
, (8.14)

where δ = 1
2

√
γ2− v2. Figure 8.4(a) shows the spin-echo signal in comparison with the Gaus-

sian approximation. In the weak-coupling limit (v& γ) the Gaussian result is in good agreement
with the exact spin-echo signal. However, for increasing coupling strength the Gaussian approxi-
mation fails even qualitatively. The most prominent feature in the time evolution of the spin-echo
signal DEcho(t) due to non-Gaussian telegraph noise is the occurence of plateaux for v > γ . The
heights of these plateaux are decaying exponentially with their position. A similar feature was
observed in the charge echo experiments in qubits by NAKAMURA et al. in [69], [see Fig. 8.3(b)].
For v6 γ,

√
γ/t the spin-echo signal has the simple form

DEcho(t)≈ e−γt/2
(

1+
γ
v

sin
vt
2

)
. (8.15)



76 SPIN-ECHO 8.3

The plateaux arise when d
dt DEcho(t) = 0, i.e.

vcos
vt
2
− γ sin

vt
2

= 1. (8.16)

The positions of the plateaux are located at t∗ ≈ 4πk/v, k is an integer number and indicates the
position of the plateaux, and the heights of the plateaux decay exponentially with k like e−2πkγ/v.

The comparison of the spin-echo signal DEcho(t) and the visibility v(t) is presented in Fig. 8.4(b).
At strong coupling the spin-echo signal has a plateau at every second top in the time evolution of
the visibility. The short-time behaviour γt & 1 of DEcho(t) can be approximated as

DEcho(t)≈ 1− 1
48

v2γt3, (8.17)

irrespective of the ratio v/γ . The Gaussian approximation [see Eq. (8.12)] gives the same result.
However, the long-time limit depends on the ratio v/γ . For γt 6 1 we obtain

− logDEcho(t)≈
{

v2t/4γ, v& γ
γt/2, v > γ (8.18)

Comparing DEcho(t) with Eq. (8.13) one notices that the Gaussian result is the weak-coupling
limit (v & γ) of Eq. (8.14). Figure 8.4(a) shows that in the strong coupling case v ≥ γ the
Gaussian approximation strongly underestimates the exact result for the spin-echo signal for
t > 2π/v. The origin of this discrepancy in the strong coupling regime v 6 γ is similar to the
well-known motional narrowing of spectral lines, [70]. In that case the energy levels of the qubit
are splitted rather than broadened. The fluctuator dynamics can be considered as slow and the
qubit experiences rare hops between these levels. The splitting is of the order of v and the typical
switching rate is γ . However, in the weak-coupling limit v& γ the levels are broadened and the
typical decay rate of the echo signal is approximately v2/4γ .

Knowing the position and height of the first plateau of the spin-echo signal permits one to de-
termine both the coupling strength v and the switching rate γ from experimental data. In NAKA-
MURA’S charge echo experiment the first plateau arises at t∗ = 3.5 ns at a height of |DEcho| = 0.3
[see Fig. 8.3(c)]. This yields for the coupling-strength v ≈ 570 MHz and γ = 110 MHz for the
switching rate. If the fluctuator is a charge trap near the gate then the fluctuator interacts via a
fluctuating dipole field with the qubit with a coupling strength v = e2(!a ·!r)/r3. We estimate the
qubit-gate distance by r = 0.5 µm, and we get an estimate for the tunneling distance between the
charge trap and the gate of a≈ 80 Å, which seems to be resonable .

Finally, Fig. 8.5 displays the effect of the offset ∆γ/γ on the time evolution of the spin-echo
signal |DEcho(t)|. At strong coupling (b) the height of the plateaux are increased but the steps
in-between are lifted for increasing ∆γ/γ .

8.3 Quantum spin-echo
The dynamical decoupling of a qubit subject to non-Gaussian quantum noise due to intrinsic
background fluctuators is considered. We present an exact derivation of the spin-echo signal
based on a trace-formula for a single idealized instantaneous π-pulse as well as the generalization
for arbitrary pulse sequences.
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Figure 8.5: Time evolution of the spin-echo signal DEcho(t) for (a) v/γ = 0.5 and (b) v/γ = 5.0 for different
offsets ∆γ/γ = 0, 0.1, 0.2, 0.3, 0.4, 0.5.

8.3.1 Time evolution of the spin-echo signal: General exact solution
Let’s derive the spin-echo signal when a π-pulse is applied at t ′ = t/2 and the signal is observed
after the elapsed time t. We assume that the system is initially prepared in the product state
|ψ(0)〉 = 1/

√
2(|↑〉+ |↓〉)⊗|χ〉 and the interaction between qubit and environment is switched

on for t ′ > 0. The Hamiltonian of the system is equal to

Ĥ =
∆
2

σ̂z +
v
2

Q̂ σ̂z + Ĥ B. (8.19)

During its time evolution qubit and heat-bath get entangled and the state at t ′ < t/2 is described
by

∣∣ψ(t ′)
〉

=
1√
2

(
e−i∆t ′/2e−i(Ĥ B+vQ̂ /2)t ′ |↑〉⊗ |χ〉+ ei∆t ′/2ei(Ĥ B−vQ̂ /2)t ′ |↓〉⊗ |χ〉

)
, (8.20)

where |χ〉 is a thermal state of the heat-bath. The effect of the π-pulse eiπσ̂x/2 at t ′ = t/2 on the
qubit flips the eigenstates, i.e. |↑〉 → |↓〉 and |↓〉 → |↑〉. The heat-bath state |χ〉 will then evolve
according to the Hamiltonian Ĥ B∓ (v/2)Q̂ which effectively corresponds to a reversed sign of
the coupling v. For times t > t/2 the state of the system can be written as

∣∣ψ(t ′)
〉

=
(8.21)

i√
2

(
e−i(Ĥ B−vQ̂ /2) t

2 e−i(Ĥ B+vQ̂ /2) t
2 |↑〉⊗ |χ〉+ e−i(Ĥ B+vQ̂ /2) t

2 e−i(Ĥ B−vQ̂ /2) t
2 |↓〉⊗ |χ〉

)
,
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Figure 8.6: Time evolution of the spin-echo signal |DEcho(t)| for quantum telegraph noise when a π-pulse
is applied at t/2 and the echo is observed after the time t. (a) Spin-echo signal |DEcho(t)|
(solid line) in comparison to the Gaussian approximation (dashed line) for different coupling
strengths v/γ = 0.5 and v/γ = 10.0 at low temperature T/γ = 0.1. (b) Spin-echo signal in
comparison with the visibility for (from top to bottom) v/γ = 0.5, 10.0 at low temperature
T/γ = 0.1.

The reduced density matrix ρ̂ red(t) can then be written in the same way as in Eq. (8.9) but with
the spin-echo signal DEcho(t)

DEcho(t) =
〈

ei(Ĥ B−vQ̂ /2) t
2 ei(Ĥ B+vQ̂ /2) t

2 e−i(Ĥ B−vQ̂ /2) t
2 e−i(ĤB+vQ̂ /2) t

2

〉
. (8.22)

We have already encountered expectation values of the form above and we now apply the same
trace-formula which leads to a determinant for the coherence. Identifying the time evolution
operator Û±,t = e−i(Ĥ B±v ˆQ /2)t we can apply Eq. (7.10) to Eq. (8.22), and we recast the result for
DEcho(t) as a determinant

DEcho(t) = det
[
1− n̂+Û†

−, t
2
Û†

+, t
2
Û−, t

2
Û+, t

2
n̂
]
, (8.23)

where Û±,t = e−i(ĤB±vQ̂/2)t is the time evolution operator in the single particle basis and n̂αβ =
fT (εα)δαβ is the occupation numberoperator, fT (ε) is the Fermi-Dirac distribution. The Hamil-
tonian of the heat-bath is assumed to diagonal in this basis, i.e. ĤB,αβ = εαδαβ and the charge
operator is given by

Q̂αβ =
1

πν0

√
ImGR(ω = εα)ImGR(ω = εβ ), (8.24)

where ν0 is the density of states in the conduction band and GR(ω) = (ω− ε + iγ/2)−1 is the
retarded Green’s function of the fluctuator and γ is the switching rate.
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Figure 8.7: Time evolution of the spin-echo signal |DEcho(t)| and the corresponding visibility v(t) for dif-
ferent couplings v. From (a)-(d) v/γ = 0.5, , 2.0, 4.0, 10.0, T/γ = 0.1 and ε = 0. This figure
shows the transition from weak- to strong-coupling [from (a)-(d)] for the visibility and the
corresponding echo according to the phase diagram of the fluctuator.

8.3.2 Time evolution of the echo according to the Gaussian approximation
We derive the expression for the spin-echo signal in the Gaussian approximation. As in Sec. 7.3
we assume Q̂ to be a linear superposition of harmonic oscillator coordinates which are in thermal
equilibrium. Then the Gaussian approximation of the spin-echo signal is equal to

DEcho
Gauss(t) = exp

[
−v2

2

∫ t

0
dt1

∫ t

0
dt2β (t− t ′)β (t− t ′′)

〈
T̂ δ Q̂ (t ′)δ Q̂ (t ′′)

〉]
, (8.25)

and the modulus of the spin-echo signal |DGauss(t)| may be expressed as

|DEcho
Gauss(t)| = exp

[
−v2

2

∫ t

0
dt1

∫ t

0
dt2β (t− t ′)β (t− t ′′)

1
2

〈
[δ Q̂ (t ′),δ Q̂ (t ′′)]+

〉]
. (8.26)

The Gaussian approximation for the spin-echo signal is equal to

|DEcho
Gauss(t)| = exp

[
−v2

2

∫ dω
2π

〈
δ Q̂ δ Q̂

〉
ω

sin4(ωt/4)
(ω/4)2

]
, (8.27)

and the noise-power 〈δ Q̂ δ Q̂ 〉ω is given by Eq. (7.26). Figure 8.6(a) shows the time evolution of
the exact spin-echo signal |DEcho(t)| compared against the Gaussian approximation DGauss

Echo (t) in
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Figure 8.8: Time evolution of the spin-echo signal |DEcho(t)| for different temperatures T , and coupling
strengths (a) v/γ = 4.0, (b) v/γ = 10.0, (Other parameters ε = 0).

the strong- and weak-coupling regime. For weak-coupling the Gaussian result is a good approx-
imation to the exact spin-echo signal whereas for strong-coupling the Gaussian approximation
strongly underestimates the exact result.

8.3.3 Exact numerical results and discussion
Here we discuss the time evolution of the spin-echo signal DEcho(t) which has been obtained by
direct numerical evaluation of the determinant in Eq. (8.23) that yield the exact time evolution of
the spin-echo signal of a qubit subject to charge fluctuations of intrinsic background fluctuators.
We employ a discretization of N equally spaced energy levels εn = nδ within an energy band
of width 2W , εn ∈ [−W,W ] such that the density of states in the conduction band is constant
ν0 = N/2W . Convergence has been already achieved for W = 20 and N = 400.

Figure 8.7 shows the time evolution of the spin-echo signal compared against the visibility
in the low-temperature regime T & γ for increasing coupling strength v. This figure shows the
transition from the weak-coupling to the strong-coupling regime according to the phase diagram
[see Fig. 7.8]. For weak-coupling the spin-echo signal is always larger than the corresponding
visibility at least in the observed time-interval. However, for increasing coupling-strength one
encounters regions of larger visibility, which means that spin-echo pulses become insufficient to
maintain phase-coherence. Beyond a certain threshold one observes zeros in the time evolution
of the spin-echo signal with complete loss of echo and revivals in-between. At strong-coupling
[see Fig. 8.7(d)] plateaux occur in the time evolution of |DEcho(t)|.

Finally, Fig. 8.8 displays the time evolution of the spin-echo signal |DEcho(t)| in the strong
coupling regime for different temperatures. At high temperature the spin-echo signal corre-
sponds to the classical result and its time evolution shows a steplike behaviour. If temperature
is decreased the height of the first plateau is lowered and the height of the second plateau is in-
creased [see Fig. 8.8(a)] until |DEcho(t)| reaches the time-axis and zeros in the time evolution of
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Figure 8.9: Time evolution of the spin-echo signal for a sequence of 10 instantaneous π-pulses. The dashed
line shows the spin-echo signal for a sequence of 10 instantaneous equidistant pulses. Com-
parison with the ”optimized“ sequence (solid line) in the low-temperature regime T/γ = 0.1
for different coupling strengths v/γ = 0.5, ,2.0, 4.0, 10.0, ε = 0.

the spin-echo signal occur. In Fig. 8.8(b) the height of the first plateau is lowered when tempera-
ture is decreased but does not reach the horizontal axis. Subsequent plateaux show the opposite
behavior in an alternating pattern.

8.3.4 Arbitrary pulse-sequences

It is possible to maintain phase coherence of the qubit even more efficiently than for a single
π-pulse by applying sequences of repeated π-pulses on the qubit. Several pulse-sequences have
been proposed e.g. a sequence of equidistant π-pulses CPMG-cycle, Bang-Bang protocols [71]
or optimized versions of the CPMG-cycle where the duration between consecutive pulses may
vary in order to optimize the phase coherence of the qubit [64].

We show the generalization of the approach introduced in Sec. 8.3 to sequences of N π-pulses
at arbitrary times of arbitrary duration between consecutive pulses. Let us split the time-interval
[0, t] into N subintervals δit: 0→ δ1 → δ2 → . . .→ δN < 1 such that at each instance of time δit
a π-pulse is applied on the qubit. The spin-echo signal can then be written as

DEcho(t) =
〈

Û†
−,δ1tÛ

†
+,(δ2−δ1)t

· · ·Û†
∓,(δN−δN−1)t

Û±,(δN−δN−1)t · · ·Û−,(δ2−δ1)tÛ+,δ1t

〉
, (8.28)
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where Û±,(δi−δ j)t = e−i(Ĥ B±vQ̂ /2)(δi−δ j)t is the time evolution operator during the time-interval
(δi−δ j)t. Using Eq. (8.23) we can express the above expectation value as

DEcho(t) =
(8.29)

det
[
1− n̂+Û†

−,δ1tÛ
†
+,(δ2−δ1)t

· · ·Û†
∓,(δN−δN−1)t

· · ·Û±,(δN−δN−1)t · · ·Û−,(δ2−δ1)tÛ+,δ1t n̂
]
,

where Û±,(δi−δ j)t is the time evolution ioperator during the time-interval (δi−δ j)t written in the
single-particle basis. Although the optimized sequence of N π-pulse was found for a spin-boson
model with an Ohmic noise-power, we employ here the same sequence and check whether it
is more efficient than the CPMG-cycle for the same number of pulses in the case of quantum
telegraph noise. The instance of time δ jt at which the j-th π-pulse is applied is equal to

δ j = sin2
(

π j
2N +2

)
. (8.30)

In Fig. 8.9 we display the spin-echo signal for the optimized sequence of N = 10 instantaneous π-
pulses compared against the CPMG-cycle for equidistant pulses for different coupling strengths
at low temperature. Only for short times and at large coupling [see [Fig. 8.9(d)] a significant
enhancement of the “optimized” pulse sequence is observed.

8.4 Summary
In this chapter we discussed spin-echo experiments of a qubit subject to non-Gaussian quantum
telegraph noise. We analyzed the high-temperature limit (classical) and showed that plateaux
arise in the time evolution of |DEcho(t)| in the strong-coupling regime. Furthermore, we have
shown an exact quantum mechanical solution of the spin-echo signal for single instantaneous
π-pulse as well as for generalizations to arbitrary sequences of pulses. A numerical simulation
of DEcho(t) was performed for various regimes and parameters.



An expert is a man who has made all the
mistakes which can be made in a very
narrow field.
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Chapter 9
Open questions

THE extension of the model of a single localized impurity level to many background fluctua-
tors coupled to a charge qubit is straightforward and is of great interest in current research.

In that case the fluctuating charge Q̂ = ∑N
i=1 vid̂†

i d̂i contains the contributions from many defect
levels inside the metal, where vi is the coupling to the i-th impurity. One may introduce a distri-
bution such as P(v) ∝ 1/v2. As a consequence all results need to be averaged over the distribution
of couplings. However, the time evolution of the density matrix of the full quantum mechanical
model has not been achieved so far and calculations for the dynamics of the coherence remained
in the classical limit [39, 36].

Another interesting system is a disordered metallic quantum dot which is tunnel-coupled to
some electron reservoir [see Fig. 9.1]. A qubit placed nearby the quantum dot experiences the
charge fluctuations δ Q̂ inside the dot. Charge-correlations inside disordered quantum dots are
usually described by Random Matrix Theory (or supersymmetric non-linear σ -models), which
assumes a random hermitean Hamiltonian for the dot with Gaussian-distributed entries. As a
result the energy-levels of the system are correlated with mean density according to WIGNER’S
semi-circle and the level-spacing follows a WIGNER-DYSON distribution. We expect the charge
fluctuations inside the dot to be non-Gaussian and it is challenging to calculate the coherence.

charge qubit

| ↑〉| ↓〉 quantum dot

impurities

reservoir

tunneling barrier

vQ̂σ̂z

Figure 9.1: Open disordered quantum dot coupled to an electronic reservoir. A qubit longitudinally cou-
pled to the charge fluctuations inside the QD will experience non-Gaussian fluctuations.
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Appendix A
Hamiltonian of the three-junction flux qubit

A.1 Calculation of the Hamiltonian

IN this appendix we calculate the Hamiltonian of the three-junction flux qubit [see Fig. A.1].
Three superconducting islands are connected by tunnel junctions with capacitance C and

Josephson coupling EJ , the top junction is by a factor α smaller and has capacitance αC and
Josephson coupling αEJ . We derive the classical equation of motion for the phase-difference
∆ϕi across the junction. The current along the left (L), right (R) and top (T) edges of the circuit
are given by,

IL = I0 sin(∆ϕ1)+CV̇ = I0 sin(∆ϕ1)+C
φ0

2π
∆ϕ̈1, (A.1)

IR = I0 sin(∆ϕ3)+C
φ0

2π
∆ϕ̈3, (A.2)

IT = αI0 sin(∆ϕ1−∆ϕ3 +2π f )+αC
φ0

2π
(∆ϕ̈1−∆ϕ̈3), (A.3)

where I0 = IcΦ0/(2π) and Ic is the critical current that the junction can carry without dissipation.
We have defined the phase differences across the junctions as ∆ϕ1 = ϕ1−ϕ2 and ∆ϕ3 = ϕ3−ϕ2.
Current conservation imposes the following condition on the currents

IL =−IR = IT . (A.4)

The Lagrangian L({∆ϕi,∆ϕ̇i}) is equal to

L({∆ϕi,∆ϕ̇i}) =
C
2

(
φ0

2π

)2
∆ϕ̇2

1 +
C
2

(
φ0

2π

)2
∆ϕ̇2

2 +
αC
2

(
φ0

2π

)2
(∆ϕ̇1−∆ϕ̇3)2

(A.5)
+EJ cos(∆ϕ1)+EJ cos(∆ϕ2)+αEJ cos(∆ϕ1−∆ϕ3 +2π f ).
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3

|A〉 = |↑〉N and |B〉 = (cos θ |↑〉+sin θ |↓〉)N . In that case,
we have to adapt our approach by defining single-spin op-
erators as the single-particle operations, and replace ĉ†2ĉ1

by
∑N

j=1 σ̂(j)
− . Straightforward algebra shows the results

for P (D = d) and D̄ to be the same. Comparing to DSC
[18], where such generalized GHZ-states were analyzed,
we find that our result agrees precisely with theirs, for
this special class of states, to which the analysis of DSC
was restricted.

General features. - We can prove that the Hilbert
spaces Hd thus constructed do not depend on the choice
of the single-particle basis used to define the operators
ĉ†i ĉj. Consider an arbitrary unitary change of basis,
ĉ′i =

∑
j Uij ĉj . Starting from an arbitrary vector |v〉,

we want to show that span{ĉ′†i ĉ′j |v〉} = span{ĉ†i ĉj |v〉}
(where i, j range over the basis). Indeed, any vector |w〉
from the Hilbert space on the left-hand-side can be writ-
ten as |w〉 =

∑
i′,j′,i,j µi′,j′U∗

i′iUj′j ĉ
†
i ĉj |v〉, which is an

element of the right-hand-side (and vice versa). As a
result, no particular basis (e.g. position) is singled out.

We can prove as well that the distance is symmet-
ric under interchange of |A〉 and |B〉 for an important
class of states, namely those connected by time-reversal
(such as left- and right-going current states considered
below). With respect to a position basis of real-valued
wave functions, this means |A〉 = |B〉∗. In that case,
since the single-particle operators can be chosen real-
valued, we have HA→B

d = (HB→A
d )∗, making the weights

PA→B(D = d) and PB→A(D = d) equal. The example
treated above can also be expressed in this way, by an
appropriate change of basis, with |A/B〉 ∝ (cos(θ

2 )ĉ†1 ±
i sin(θ

2 )ĉ†2)N |Vac〉. For other, non-symmetric pairs of
states |A〉,|B〉, this is not true any longer, i.e PA→B

can become different from PB→A. An extreme exam-
ple is provided by the states |A〉 = 1√

2
(|N, 0〉 + |0, N〉)

and |B〉 = |N − 1, 1〉, for N bosons on two islands
(with |n1, n2〉 denoting the particle numbers). Here
PA→B(D = 1) = 1, but PB→A(D = 1) < 1, with
PB→A(D = N − 1) &= 0. In the following, we will re-
strict our discussion to time-reversed pairs of states.

Application to superconducting circuits. - A super-
conducting circuit such as a Cooper pair box or a flux
qubit device can be viewed as a collection of metallic
islands between which Cooper pairs are allowed to tun-
nel coherently through Josephson junctions. Adopting
a bosonic description, we would describe tunneling by
a term ĉ†i ĉj , where ĉj annihilates a Cooper pair on is-
land j. However, as the total “background” number
of Cooper pairs n̄ on any island is very large and ulti-
mately drops out of the calculation, the more convenient
(and standard) approach is to consider instead opera-
tors e−iϕ̂j =

∑
n |n− 1〉j 〈n|j that reduce the number of

Cooper pairs on island j by exactly one. Then, the tun-
neling term becomes n̄−1ĉ†i ĉj (→ ei(ϕ̂i−ϕ̂j), while the total
electrostatic energy may be expressed by the number op-
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Figure 2: (Color online) (a) Circuit diagram of the three-
junction flux qubit. (b) Equivalent representation in the
charge basis. (c) Energy-level diagram for EJ/EC = 20 and
α = 1, as a function of magnetic frustration. At f = 0.5, the
ground and first excited state are superpositions of left- and
right-going current states, |±I〉, the states between which we
calculate the “distance” D. The current distribution in the
ground state is displayed in the inset.

erators n̂j that count the number of excess Cooper pairs
on each island. These two types of operators define the
single-particle operators needed in our approach.

Let us now apply the measure defined above to a par-
ticular, experimentally relevant case, the three-junction
flux qubit that has been developed in Delft [3, 4, 19].
Three superconducting islands are connected by tunnel
junctions (Fig. 2), where the tunneling amplitude is
given by the Josephson coupling EJ , and the charging
energy EC = e2/2C is determined by the capacitance C
of the junctions. One of the junctions is smaller by a
factor of α, introducing an asymmetry that is important
for the operation of the device as a qubit. The tunneling
term in the Hamiltonian is given by

ĤJ = −EJ

2

(
ei(ϕ̂2−ϕ̂1) + ei(ϕ̂3−ϕ̂2) + αei(ϕ̂1−ϕ̂3+θ) + h.c.

)
,

(5)
where the externally applied magnetic flux Φ = fΦ0 is
expressed in units of the flux quantum Φ0 = h/(2|e|) to
define the frustration f that enters the extra tunneling
phase θ = 2πf . The charging Hamiltonian is

Ĥch =
1

2C

(
Q̂2

1 + Q̂2
3 −

(Q̂1 − Q̂3)2

2 + 1/α

)
, (6)

with Q̂j = 2en̂j and the restriction
∑3

j=1 Q̂j = 0. For
simplicity, we have neglected the small effects of the self-
inductance and external gate electrodes.

At f = 0.5, the classical left- and right-going current
states are degenerate in energy, and quantum tunnel-
ing (via the charging term) leads to an avoided crossing,
with the ground and first excited state becoming super-
positions of the two current states. We diagonalize the

1 3

2

Φ = f Φ0
EJ ,CEJ ,C

αEJ ,αC

∆ϕ1 ∆ϕ3

ϕ1−ϕ3 +2π f

ϕ1

ϕ2

ϕ3

Figure A.1: Circuit diagram of the three junction flux qubit. Three superconducting islands are connected
by Josephson junctions. Left and right junctions have capacitance C and Josephson coupling
energy EJ, the top junction has capacitance αC and Josephson coupling αEJ. The three
junction flux qubit encloses a magnetic flux Φ = f Φ0.

The canonical conjugated variables qi = ∂L
∂∆ϕ̇i

are given by

q1 = C
(

φ0

2π

)2
∆ϕ̇1 +αC

(
φ0

2π

)2
∆ϕ̇3,

(A.6)

q3 = C
(

φ0

2π

)2
∆ϕ̇3−αC

(
φ0

2π

)2
(∆ϕ̇1−∆ϕ̇3).

From the equations above the expression for ∆ϕ̇i follows as

∆ϕ̇1 =
1

C(φ0/2π)2
1+α
1+2α

q1 +
1

C(φ0/2π)2
1

1+2α
q3,

(A.7)

∆ϕ̇3 =
1

C(φ0/2π)2
α

1+2α
q1 +

1
C(φ0/2π)2

1
1+2α

q3.

The Legendre-transformation delivers the Hamiltonian H({qi,∆ϕi})= ∑2
i=1 qi∆ϕ̇i−L({∆ϕi,∆ϕ̇i})

which is equal to

H =
4e2/(2C)

(2e(φ0/2π))2

(
1+α

1+2α
q2

1 +
2α

1+2α
q1q3 +

1+α
1+2α

q2
3

)

(A.8)
−EJ cos(∆ϕ1)−EJ cos(∆ϕ3)−αEJ cos(∆ϕ1−∆ϕ3 +2π f ).

From the Hamiltonian equations ∆ϕ̇i = ∂H/∂qi and q̇i = −∂H/∂∆ϕi one obtains the classical
equations of motion. We now write down the Hamiltonian H({qi,ϕi}) in the charge basis, using
qi = (φ0/2π)Qi, where Qi is the excess charge on each island, we can rewrite the Hamiltonian in
the form H = HC +HT ,

HC =
1

2C

(
Q2

1 +Q2
3−

(Q1−Q3)2

2+1/α

)
, (A.9)
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for the charging part and

HT =−EJ

2

(
ei(ϕ2−ϕ1) + ei(ϕ3−ϕ2) +αei(ϕ1−ϕ3+2π f ) +h.c.

)
, (A.10)

for the tunneling part of the Hamiltonian. Quantum mechanically, Qi and ∆ϕi become canoni-
cally conjugated operators and one imposes the commutation relation [Q̂ i,∆ϕ̂ j] = 2i|e|δi j.



88 APPENDIX A



Appendix B
Coherence for classical telegraph noise

THE coherence D(t) = 〈eiϕ(t)〉 can be derived as an average over the phase ϕ(t) which requires
the explicit knowledge of the distribution function for the random phase p(ϕ, t). However,

it is easier to use an equation of motion approach which circumvents the use of the probability
distribution. The system of coupled differential equations for the time evolution of 〈eiϕξ (t)〉,
derived in Sec. 6.5, is equal to

d
dt
〈eiϕξ (t)〉=−iv〈ξ (t)eiϕξ (t)〉,

(B.1)
d
dt
〈ξ (t)eiϕξ (t)〉=−γ〈ξ (t)eiϕξ (t)〉+(∆γ− iv)〈eiϕξ (t)〉,

where ϕξ (t) = −v
∫ t

0 dt ′ξ (t ′), v is the coupling of the qubit to the fluctuator which switches be-
tween ξ =±1 at the rate γ and ∆γ = γ+−γ−. The coherence for classical telegraph noise (i.e. for
a fluctuator with Q = 0/1) and the solution of Eq. (B.1) are related by D(t) = e−ivt/2〈eiϕξ (t)〉|v/2.
We will first show the solution for 〈eiϕξ (t)〉 and then relate that result to the coherence D(t) for
classical telegraph noise.

We make the following ansatz for the solution (spezializing to ∆γ = 0):
(

〈eiϕξ (t)〉
〈ξ (t)eiϕξ (t)〉

)
=!aeλ t . (B.2)

Inserting the ansatz into Eq. (B.1) reduces the system of differential equations to a system of
linear equations, (

λ iv
iv λ + γ

)
!aeλ t = 0. (B.3)

The system of linear equations has only a solution for certain eigenfrequencies λ and eigenvec-
tors !a if the determinant of the matrix of coefficients vanishes, i.e.

det
(

λ iv
iv λ + γ

)
= 0. (B.4)

89



90 APPENDIX B

• Eigenfrequencies: We obtain the eigenfrequencies λ1,2 as the solution of the characteristic
equation λ 2 +λγ + v2 = 0 to be equal to

λ1,2 =−γ
2
±

√(γ
2

)2
− v2 (B.5)

• Eigenvectors

!aλ1 =
1
iv

(
−γ/2−δ

iv

)
, (B.6)

!aλ2 =
1
iv

(
−γ/2+δ

iv

)
(B.7)

(B.8)

• Solution: An arbitrary solution of Eq. (B.1) can be written as:
(

〈eiϕξ (t)〉
〈ξ (t)eiϕξ (t)〉

)
=

C1

iv

(
−γ/2−δ

iv

)
e(−γ/2+δ )t +

C2

iv

(
−γ/2+δ

iv

)
e(−γ/2−δ )t ,

(B.9)
where we have defined δ =

√
(γ/2)2− v2), and λ1,2 =−γ/2±δ .

• Initial conditions: The constants C1,2 follow from the initial conditions at t = 0
(

〈eiϕξ (t)〉
〈ξ (t)eiϕξ (t)〉

)∣∣∣∣∣
t=0

=
(

1
0

)
(B.10)

The coefficients C1,2 are equal to

C1 = − iv
2δ

, (B.11)

C2 = −C1 =
iv
2δ

. (B.12)

Finally, the solution for the coherence D(t) = e−ivt/2〈eiϕξ (t)〉|v/2 of a qubit subject to classical
telegraph noise is equal to

D(t) =
1
2

e−i(v−iγ)t/2
[(

1+
γ

2δ

)
eδ t +

(
1− γ

2δ

)
e−δ t

]
, (B.13)

where δ = 1
2

√
γ2− v2, when “up”- and “down”-jumps are equally likely. The calculation for

∆γ 1= 0 follows the same steps which lead to Eq. (B.13) but now with λ1,2 = −γ/2± δ , where
δ =

√
(γ/2)2− iv(∆γ− iv). An arbitrary solution is then given by

(
〈eiϕξ (t)〉

〈ξ (t)eiϕξ (t)〉

)
=

C1

∆γ− iv

(
γ/2+δ
∆γ− iv

)
e(−γ/2+δ )t +

C2

∆γ− iv

(
γ/2−δ
∆γ− iv

)
e(−γ/2−δ )t ,

(B.14)
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and the coefficients C1,2 follow from the initial conditions 1 at t = 0:
(

〈eiϕξ (t)〉
〈ξ (t)eiϕξ (t)〉

)∣∣∣∣∣
t=0

=
(

1
∆γ/γ

)
, (B.15)

We obtain for the coefficients C1,2

C1 =
1

2δ

[
∆γ− iv− ∆γ

γ
(γ/2−δ )

]
, (B.16)

C2 =
1

2δ

[
−(∆γ− iv)+

∆γ
γ

(γ/2+δ )
]
. (B.17)

The final solution for the coherence D(t) is then equal to

D(t) =
1
2

e−i(v−iγ)t/2
[(

1+
γ− (iv/2)(∆γ/γ)

2δ

)
eδ t +

(
1− γ− (iv/2)(∆γ/γ)

2δ

)
e−δ t

]
, (B.18)

here δ =
√

(γ/2)2− (iv/2)[∆γ− (iv/2)].

1At t = 0, 〈ξ (t)eiϕξ (t)〉 = p+(0)− p−(0), where p± is the probability for the fluctuator to be ±1. With the
detailed balance condition, γ−p+− γ+ p− = 0 we obtain 〈ξ (t)eiϕξ (t)〉= ∆γ/γ .
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Appendix C
Spin-echo signal for classical telegraph noise

WE present the calculation of the spin-echo signal DEcho(t) = 〈eiϕ̃(t)〉 with the random phase
ϕ̃(t) =−v

∫ t
0 dt ′sign(t/2−t ′)Q(t ′), for classical telegraph noise when a π-pulse is applied

at t ′ = t/2 on the qubit and the echo is observed after the time-interval [0, t]. We will use the
equation of motion approach for the time evolution of 〈eiϕ̃ξ (t)〉 and relate its solution to the
spin-echo signal for classical telegraph noise by DEcho(t) = 〈eiϕ̃ξ (t)〉|v/2, with the random phase
ϕ̃ξ (t) =−v

∫ t
0 dt ′sign(t/2− t ′)ξ (t ′) for a fluctuator with ξ = ±1.

For times t ′< t/2 the system evolves “freely” and its time evolution is determined by Eq. (B.1)
and its solution is equal to,

〈eiϕξ (t)〉=
1
2

e−γt/2
[(

1+
γ

2δ

)
eδ t +

(
1− γ

2δ

)
e−δ t

]
, (C.1)

At the time t ′ = t/2 we perform a π-pulse on the qubit which results in a reversed sign of the
fluctuator, ξ (t ′)→−ξ (t ′), for t ′ ≥ t. This effectively switches the sign of the coupling and the
system will subsequently evolve under the influence of Eq. (B.1) but with a reversed sign of the
coupling v. Thus, for times t ′ > t/2 the system evolves according to

d
dt
〈eiϕξ (t)〉= iv〈ξ (t)eiϕξ (t)〉,

(C.2)
d
dt
〈ξ (t)eiϕξ (t)〉=−γ〈ξ (t)eiϕξ (t)〉+(∆γ + iv)〈eiϕξ (t)〉.

We are calculating 〈eiϕξ (t)〉 for t ′ < t/2 and for t ′ ≥ t/2 and match both solutions at t ′ = t. The
solution for t ′ < t/2 is already known from App. B. The solution of Eq. (C.2) follows the same
lines as in App. B and an arbitrary solution can be written as (spezializing to ∆γ = 0):

(
〈eiϕξ (t)〉

〈ξ (t)eiϕξ (t)〉

)
=

C1

iv

(
γ/2+δ

iv

)
e(−γ/2−δ )t +

C2

iv

(
γ/2−δ

iv

)
e−(γ/2+δ )t , (C.3)
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where δ =
√

(γ/2)2− v2. At the time t ′ = t/2 the solutions of Eq. (C.1) and Eq. (C.3) should
match and this condition determines the constants C1,2 at t ′ = t/2

(
γ/2+δ

iv eδ t/2 γ/2−δ
iv e−δ t/2

eδ t/2 e−δ t/2

)(
C1
C2

)
=




1
2

[(
1+ γ

2δ
)

eδ t/2 +
(
1− γ

2δ
)

e−δ t/2
]

− iv
2δ

(
eδ t/2− e−δ t/2

)



 . (C.4)

By multiplication of the inverse of the matrix on the right-hand side of Eq. (C.4) we obtain the
coefficients C1,2. As a result

C1 =
iv
2δ

[(
1− γ

2δ

)
e−δ t +

γ
2δ

]
, (C.5)

C2 = − iv
2δ

[(
1+

γ
2δ

)
eδ t − γ

2δ

]
. (C.6)

The solution for the time evolution of the spin-echo signal DEcho(t) for classical telegraph
noise is related to the result of Eq. (C.3) by DEcho(t) = 〈eiϕξ (t)〉|v/2 and is equal to

DEcho(t) =
1
2

e−γt/2
( γ

2δ

)[(
1+

γ
2δ

)
eδ t −

(
1− γ

2δ

)
e−δ t − v2

γδ

]
, (C.7)

here δ = 1
2

√
γ2− v2. The solution for ∆γ 1= 0 follows the same steps which leads to the result

Eq. (C.7) but now with the complex frequency λ1,2 =−γ/2±δ ′, where δ ′=
√

(γ/2)2 + iv(∆γ + iv)
for the solution of Eq. (C.2). Note that δ changes after applying the π-pulse, due to the sign
change of the coupling v, and the frequency after the π-pulse is related to δ by δ ′ = δ ∗. Then an
arbitrary solution after the π-pulse is given by

(
〈eiϕξ (t)〉

〈ξ (t)eiϕξ (t)〉

)
=

C1

∆γ + iv

(
γ/2+δ ∗
∆γ + iv

)
e(−γ/2+δ ∗)t +

C2

∆γ + iv

(
γ/2−δ ∗
∆γ + iv

)
e(−γ/2−δ ∗)t ,

(C.8)
and the coefficents C1,2 follow from the matching condition at t ′ = t/2. As a result we obtain for
the spin-echo

DEcho(t) =
1

2δ ∗
e−γt/2

{[
(γ/2+δ ∗)〈eiϕξ 〉 v

2
(t/2)e−δ ∗t/2 +(iv/2)〈ξ eiϕξ 〉 v

2
(t/2)e−δ ∗t/2

]
eδ t

(C.9)
−

[
(γ/2−δ ∗)〈eiϕξ 〉 v

2
(t/2)eδ ∗t/2− (iv/2)〈ξ eiϕξ 〉 v

2
(t/2)eδ ∗t/2

]
e−δ t

}
,

where 〈eiϕξ 〉 v
2

and 〈ξ eiϕξ 〉 v
2

are the solutions of Eq. (B.1) at t/2 for the coupling +v/2.



Appendix D
Quantum Telegraph Noise

IN this appendix we derive the Keldysh path-integral [72, 73, 74] for the coherence D(t) of a
qubit coupled to the charge fluctuations on a single localized impurity level tunnel coupled

to an electronic reservoir. The calculation has been used to calculate the decoherence rate Γϕ
analytically in [31, 32].

D.1 Coherence
The Hamiltonian of the heat-bath consisting of a single fluctuator is equal to

Ĥ B = ε0d̂†d̂ +∑
k

(
Tkĉ†

kd̂ +h.c.
)

+∑
k

εkĉ†
kĉk, (D.1)

where ε0 is the bare energy of the impurity level, Tk is the tunneling amplitude for hopping of an
electron from the impurity level to a state with momentum k inside the fermionic reservoir. The
operators d̂†/d̂ create / annihilate an electron with energy ε0 on the impurity and ĉ†

k/ĉk create /
annihilate an electron with momentum k inside the reservoir.

The coherence is equal to

D(t) =
1

trρ̂
tr

(
Û†
−,tÛ+,t ρ̂

)
, (D.2)

where Û±,t = e−i(Ĥ B±vQ̂ /2)t . We identify Û†
−,tÛ+,t with the time evolution operator ÛC along

the closed time-contour CK(t) which runs from 0 to t and comes ultimately back to its initial time
t ′ = 0, but with a time dependent coupling constant v(t ′), as depicted in Fig. D.1. The coherence
can be expressed as a coherent state path integral over anti-commuting Grassman variables ψ,χ

D(t) =
1
Z

∫
D[ψ,ψ]D[χ,χ]eiS[ψ,χ], (D.3)

here the normalization Z is chosen such that D(t) = 1 if the coupling constant vanishes, v = 0.
The action S[ψ,χ] is given by

S[ψ,χ] = S0[ψ,ψ]+Sint[ψ,ψ]+SB[ψ,χ], (D.4)
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CK(t)C+

C− −v
+v

t0

Figure D.1: Keldysh time-contour CK(t) of the time-integration. C+(t) and C−(t) denote the forward and
backward branch of the Keldysh contour. Shown is the time dependence of the potential v(t ′)
along the Keldysh-contour.

where S0[ψ,ψ] is the action of the non-interacting single impurity level, Sint[ψ,ψ] describes the
interaction between qubit and bath, and SB[ψ,χ] is the action of the heat-bath. In particular,

S0[ψ,ψ] =
∮

CK(t)
dt ′ψ(t ′)(i∂t ′ − ε0)ψ(t ′), (D.5)

Sint[ψ,ψ] =− i
2

∮

CK(t)
dt ′v(t ′)ψ(t ′)ψ(t ′), (D.6)

SB[ψ,χ] = ∑
k

∮

CK(t)
dt ′χk(t

′)(i∂t ′ − εk)χk(t ′), (D.7)

−∑
k

∮

CK(t)
dt ′

(
Tkχk(t

′)ψ(t ′)+T ∗k ψ(t ′)χk(t ′)
)
. (D.8)

It is important to note that due to the integration along the Keldysh contour CK(t) the coupling v
is no longer constant but it is time dependent along the contour of integration, i.e.

v(t ′) =
{

+v, if t ′ ∈C+
−v, if t ′ ∈C−

(D.9)

It is convenient to split the fields ψ,χ into two components which live on the forward and back-
ward branch of the Keldysh contour, respectively. The result of this splitting is that the time
integrals along the Keldysh contour become simple integrals over the interval [0, t]. Let us de-
note the component that resides on the forward branch by ψ+ and the component that resides
on the backward branch by ψ−, and the same for χ,χ correspondingly. As an example, the
non-interacting action of the impurity level is equal to

S0[ψ,ψ] =
[∫ t

0
dt ′ψ+(t ′)(i∂t ′ − ε0)ψ+(t ′)−

∫ t

0
dt ′ψ−(t ′)(i∂t ′ − ε0)ψ−(t ′)

]
. (D.10)

The action can be written in a compact form, by introducing the following spinor notation for
the fields,

ψ̂(t ′) =
(

ψ+(t ′)
ψ−(t ′)

)T
, ψ̂(t ′) =

(
ψ+(t ′)
ψ−(t ′)

)
, (D.11)

where the hat indicates the matrix-structure in the (+−)-space and τ̂z is the Pauli matrix acting
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onto the spinor. Finally, we get for the action S[ψ̂, χ̂]

S[ψ̂, χ̂] =
∫ t

0
dt ′ψ̂(t ′)

(
i∂t ′ − ε(0)

i

)
τ̂zψ̂(t ′)− i

2

∫ t

0
vψ̂(t ′)ψ̂(t ′)

+∑
k

∫ t

0
dt ′χ̂k (i∂t ′ − εk) τ̂zχ̂k(t ′) (D.12)

−∑
k

∫ t

0
dt ′

(
Tkχ̂k(t

′)τ̂zψ̂(t ′)+T ∗k ψ̂(t ′)τ̂zχ̂k(t ′)
)

.

The integration over the electronic degrees of freedom of the heat-bath can be easily performed
since the action is quadratic in χ̂, χ̂ . The result for the coherence D(t) is a Gaussian integral with
the effective action Seff[ψ̂, ψ̂]

D(t) =
1
Z

∫
D[ψ̂, ψ̂]eiSeff[ψ̂,ψ̂]

Seff[ψ̂, ψ̂] =
∫ t

0
dt ′ψ̂(t ′)

(
i∂t ′ − ε0 +

v
2

τ̂z

)
τ̂zψ̂(t ′) (D.13)

−
∫ t

0
dt ′

∫ t

0
dt ′′ψ̂(t ′)Σ̂(t ′ − t ′′)ψ̂(t ′′), (D.14)

where Σ̂(t ′ − t ′′) is the self-energy part due to the interaction with the heat-bath

Σ̂(t, t ′) = ∑
k

T ∗k Tkĝk(t, t ′), (D.15)

where ĝk(t, t ′) is the Green’s function of the conduction-band electrons and it obeys the equation
(i∂t ′ −εk)gk(t, t ′) = δ (t− t ′). Performing the Keldysh-rotation on the Grassman-fields ψ,ψ one
obtains the new fields denoted by ψ̌, ψ̌ ,

ψ̌(t) =
1√
2

(
1 −1
1 1

)(
ψ+
ψ−

)
, ψ̌(t) =

1√
2

(
1 1
1 −1

)(
ψ+
ψ−

)
. (D.16)

As a result the Green’s function then has the familiar structure in Keldysh-space and the effective
action can be written as

Seff[ψ̌, ψ̌] =
∫ t

0
dt ′ψ̌(t ′)

(
Ǧ−1− Σ̌+

v
2

τ̌x

)
ψ̌(t ′), (D.17)

where Ǧ is the Green’s function in Keldysh-space,

Ǧ(t, t ′) =
(

GR(t, t ′) GK(t, t ′)
0 GA(t, t ′)

)
, (D.18)

with the retarded / advanced Green’s functions in Fourier-space GR/A(ω) = (ω−ε0 ± iδ )−1 and
GK(ω) = [GR(ω)−GA(ω)](1−2 fT (ω)) for the Keldysh component in thermal equilibrium, and
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fT (ω) is the Fermi-Dirac distribution, T is the temperature of the heat-bath. The self-energy part
Σ̌ has the same matrix structure as the Green’s function Ǧ in Keldysh-space. The self-energy is
equal to

Σ̌(t, t ′) = ∑
k

T ∗k Tkǧk(t, t ′) (D.19)

and gR/A
k (ω) = (ω − εk ± iδ )−1 is the retarded / advanced Green’s function of the conduction

electrons in the reservoir.

D.1.1 Calculation of the self-energy part
The retarded / advanced components of the self-energy part are given in Fourier-space by

ΣR/A(ω) = ∑
k

T ∗kiTk j
1

ω− εk ± iδ
(D.20)

= ∑
k

T ∗k Tk

[
1

ω− εk
∓ iπδ (ω− εk)

]
.

It is reasonable to assume that the position of the impurity-level is well localized on the substrate,
then the tunneling amplitude can be written Tk = 1/

√
V Teikr, where r is the psotion of the

impurity-level. The above expression is easily calculated as,

ΣR/A(ω) =
1
V ∑

k
|T |2

[
1

ω− εk
∓ iπδ (ω− εk)

]
. (D.21)

The real part of the self-energy is a slowly varying function of the frequency ω and can be
absorbed into the the impurity energy ε0, ε0 → ε0 +Re ΣR/A, the imaginary part is

Im ΣR/A =∓π
2 ∑

k
|T |2δ (ω− εk),

(D.22)
=∓γ/2.

Inserting the self-energy part Σ̌ into Eq. D.17 and integrating over the anticommuting Grassman
variables {ψ̌, ψ̌} we finally obtain for the coherence D(t)

D(t) =
1
Z

∫
D[ψ̌, ψ̌]eiSeff[ψ̌,ψ̌]

(D.23)
D(t) = det

(
1+

v
2

τ̌xǦ
)

,

where Ǧ is the full “dressed” Green’s function with the the components

GR,A(ω) =
1

ω− ε ± iγ/2
, (D.24)

where ε is the renormalized energy of the fluctuator counted from the Fermi-level (we put εF = 0)
and γ is the tunneling rate, γ = 2π ∑k |T |2δ (ω− εk). Equation (D.23) together with Eq. (D.24)
give an exact expression for the coherence D(t).
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C3(t)C2(t)

Ǧ(t3− t1)v
2

τ̌x

Ǧ(0)

v
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τ̌x
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Ǧ(t1− t2)

Ǧ(t2− t1)

−1
2
×
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2
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Ǧ(t2− t3)

v
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τ̌x

v
2
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Ǧ(t1− t2)

+
1
3
× · · ·± 1

n
×

C1(t) Cn(t)

Figure D.2: Linked Cluster expansion: Each diagram represents a whole class of topologically equivalent
diagrams. The vertices vτ̌x/2 are denoted by black dots and each line represents the Green’s
function Ǧ in Keldysh-space. The trace is taken with respect to time and the matrix structure
in Keldysh-space. Taking into account the first two diagrams results in the Gaussian approxi-
mation of the coherence, i.e. DGauss(t) = eC1(t)+C2(t).

D.1.2 Linked Cluster Expansion
An expansion of the determinant in Eq.(D.23) in the coupling strength v results in the linked
cluster expansion,

D(t) = det
(

1̌+
v
2

τ̌xǦ
)

= exp
[
tr ln

(
1̌+

v
2

τ̌xǦ
)]

(D.25)

= exp

[
∞

∑
n=0

Cn(t)

]
,

where Cn represents all connected diagrams of order n in the coupling strength v. The linked clus-
ter series is shown in Fig. D.2 with a single cluster representing the set of all connected diagrams
which emerge from permutations of the vertices. At each vertex (black dot) one has to insert
a factor vτ̌x/2 and a straigth solid line represent the Green’s function Ǧ in Keldysh-space. The
trace is taken with respect to the Keldysh-space and time. The Gaussian approximation neglects
contributions Cn≥3 in the expansion of the determinant. The non-universal factor 1/n prevents
the diagramatic series from a simple resummation, however methods have been developed to find
an exact solution for the determinant for specific problems, like the X-ray edge singularity [75].
The n-th order contribution is equal to

Cn(t) =
(−1)n+1

n
trK

∫ t

0
dt1 . . .

∫ t

0
dtn

v
2

τ̌xǦ(t1− t2)
v
2

τ̌xǦ(t2− t3) · · ·
v
2

τ̌xǦ(tn− t1). (D.26)

• First order correction: C1(t)
C1(t) = tr

(v
2

τ̌xǦ
)

, (D.27)

where the trace is defined as tr(. . .) =
∫ t

0 dt ′trK(. . .). We insert the definition of Ǧ into
Eq. (D.27) and note that the time-ordered GT (0,0) and anti-time ordered Green’s function
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GT̃ (0,0) have to be replaced at coinciding times as following in order to respect causality,
i.e. GT (0,0)→ GT (−0,0) and GT̃ (0,0)→ GT̃ (0,0), respectively. As a result, we obtain

C1(t) =−iv
〈

Q̂
〉

t, (D.28)

as expected from the Gaussian approximation in Sec. 7.3.

• Second order contribution: C2(t)

C2(t) =−1
2

tr
(v

2
τ̌xǦ

)2
, (D.29)

C2(t) =−1
2

∫ t

0
dt ′

∫ t

0
dt ′′trK

[v
2

τ̌xǦ(t ′ − t ′′)
v
2

τ̌xǦ(t ′′ − t ′)
]
, (D.30)

in Fourier-space this reads as

C2(t) =−v2

2

∫ ∞

−∞

dω
2π
〈δ Q̂ δ Q̂ 〉ω

sin2 (ωt/2)
(ω/2)2 . (D.31)

Comparing Eq. (D.31) with Eq. (7.26) we identify the symmetrized part of the correlator
as

〈[δ Q̂ ,δ Q̂ ]+〉ω =
1
4

∫ ∞

−∞

dω ′

2π
trK

[
τ̌xǦ(ω +ω ′)τ̌xǦ(ω ′)

]
. (D.32)

Inserting the Green’s function Ǧ and taking the trace in Keldysh-space we obtain

〈[δ Q̂ ,δ Q̂ ]+〉ω =
(D.33)

1
4

∫ ∞

−∞

dω
2π

[
GA(ω +ω ′)GR(ω ′)+GR(ω +ω ′)GA(ω ′)+GK(ω +ω ′)GK(ω ′)

]
,

using GK(ω) = [GR(ω)−GA(ω)](1−2 fT (ω)) for the Keldysh component of the Green’s
function and rewriting the first two terms in Eq. (D.33) as [GR(ω ′)−GA(ω ′)] · [GR(ω +
ω ′)−GA(ω +ω ′)] since terms terms of the form GRGR and GAGA vanish upon integration
and we obtain

〈[δ Q̂ ,δ Q̂ ]+〉ω =

2π
∫ ∞

−∞
dω 1

2
[
ν(ω ′)ν(ω +ω ′) fT (ω ′)(1− fT (ω +ω ′)) (D.34)

+ν(ω ′)ν(ω ′ −ω) fT (ω ′)(1− fT (ω ′ −ω))
]
,

where ν(ω) = [GR(ω)−GA(ω)]/2πi is the Lorentzian DoS of the fluctuator.
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CK(t)
0 t/2 t

C+

C− −v +v
+v −v

Figure D.3: Time dependence of the coupling v(t ′) along the Keldysh-contour in a spin-echo experiment
when the π-pulse on the qubit is applied at t ′ = t/2 and the echo is detected at t ′ = t.

D.2 Spin-echo
The generalization of the Keldysh-technique to the spin-echo signal is straightforward. The spin-
echo signal is equal to

DEcho(t) =
1

trρ̂
tr

(
Û†
−, t

2
Û†

+, t
2
Û−, t

2
Û+, t

2
ρ̂
)

, (D.35)

where Û±,t = e−i(ĤB±vQ̂ /2)t . We identify Û†
−, t

2
Û†

+, t
2
Û−, t

2
Û+, t

2
with the time evolution operator

ÛC but with a time dependent coupling constant v(t ′) along the Keldysh-contour CK

v(t ′) =
{

+v sign(t/2− t ′), if t ′ ∈C+
−v sign(t/2− t ′), if t ′ ∈C−

(D.36)

Repeating the same steps which lead to the expression for the coherence [see Eq. D.23] we finally
obtain for DEcho(t),

DEcho(t) = det
(

1+
v
2
(τ̌x⊗ τ tt ′

z )Ǧt ′t ′′
)

, (D.37)

where Ǧtt ′ is the Green’s function discretized in time, τ̌x is the Pauli matrix in Keldysh-space
and v is the coupling strength. The matrix τ tt ′

z = diag(1, . . . ,1,−1, . . . ,−1) is a matrix in the
discretized time-interval [t0, t1, t2, . . . , tN = t] with tN = Nδ t. A summation over repeated indices
is implied. The genralization to arbitrary pulse-sequences is straightforward. Let’s assume that a
sequence of N π-pulses are applied at times t1, t2, . . . , tN onto the qubit and the spin-echo signal
is observed at time t = 2(t1 + t2 + . . .+ tN). Then the echo DEcho(t) can be written in the same
way as in Eq. (D.37) but now the matrix τ tt ′

z is equal to

t1 tN t
↓ ↓ ↓

τ tt ′
z = diag(+1, . . . ,+1, −1, . . . ,−1,+1, . . . ,+1, −1, . . . , −1)

(D.38)

D.2.1 Numerics
The determinant in Eq. (D.23) is taken with respect to continuous functions and in order to
evaluate the determinant numerically it has to be approximated by a discrete matrix. For an
arbitrary matrix W the determinant can be expanded into a series,

det(1+W ) = exp

[
−

∞

∑
n=1

(−1)n

n
tr W n

]
. (D.39)
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Figure D.4: Time evolution of the (a) visibility v(t) = |D(t)| and the (b) spin-echo signal |DEcho(t)| derived
by numerical evaluation of Eq. (D.23 and Eq. D.37) (dashed lines) compared to the results
obtained by using the trace-formula (solid lines). (Parameters: T/γ = 0.01, ε = 0, γ = 1).

Here the trace denotes a time-integration over all intermediate times from 0 to t, which can be
approximated by the Riemann sum,

tr W n =
∫ t

0
dt1 . . .

∫ t

0
dtnW (t1, t2)W (t2, t3) · · ·W (tn, t1)

(D.40)
= ∑

k1,k2,...,kn

δ t . . .δ tW (tk1, tk2)W (tk2, tk3) · · ·W (tkn, tk1),

where [tk1 , tk2, . . . , tkn] is a discretization of the time-interval [0, t] and δ t is the size between two
time-steps. One can now define a new matrix to satisfy

W̃ (tki, tk j) = δ tW (tki, tk j). (D.41)

As a result the discrete version of Eq. (D.39) can be easily written as

det(1+W ) = det(1+W̃ ). (D.42)

In particular we calculate the determinant of the discretized version of Eq. (D.23),

D(t) = det
(

1+
v
2

δ t τ̌xǦ tt ′
)

. (D.43)

Figure D.4 shows the time evolution of the visibility and the spin-echo signal obtained by direct
numerical evaluation of Eq. (D.23) and Eq. (D.37) compared against the results obtained in
Chaps. 7 and 8.



Appendix E
Calculation of the Keldysh Green’s function

E.1 Keldysh Green’s function

WE present the derivation of the Keldysh Green’s function GK(t, t ′) in real-time represen-
tation which appears in the derivation of the coherence, see Eq. D.23 in App. D. One

can assume that GK(t, t ′) depends only on the time difference t− t ′, in thermal equilibrium the
Keldysh Green’s function is equal to

GK(ω) =
[
GR(ω)−GA(ω)

]
(1−2 fT (ω)) , (E.1)

where GR/A(ω) is the retarded / advanced Green’s function of the fluctuator and fT (ω) is the
Fermi-Dirac distribution function, fT (ω) = (eβω +1)−1 and β = 1/T is the inverse temperature
of the heat-bath. Then the Keldysh Green’s function in real-time representation is given by

GK(t− t ′) =
∫ ∞

−∞

dω
2π

e−iω(t−t ′)
[
GR(ω)−GA(ω)

)
(1−2 fT (ω)] . (E.2)

We derive the integral in Eq. (E.2) over the real axis by deforming the contour of integration
from the real axis into a semicircle and let its radius grow to infinity thereby picking up all the
poles which are enclosed by the contour of integration as displayed in Fig. E.1(a).

The integrand in Eq. E.2 has poles at ε ∓ iγ/2 and at (2n + 1)πTi on the imaginary axis of
the complex plane. One can use the following series expansion for fT (ω) which generates poles
at the Matsubara frequencies ωn = (2n+1)πTi,

1
eβω +1

=
1
2

+
1
β

∞

∑
n=−∞

1
(2n+1)πTi−ω

. (E.3)

Then the Keldysh Green’s function is equal to

GK(t− t ′) =− 1
β

∞

∑
n=−∞

∮

C

dz
2π

1
(2n+1)πTi− z

[
1

z− ε + iγ/2
− 1

z− ε− iγ/2

]
. (E.4)
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Figure E.1: (a) Contour of integration for calculating the Keldysh Green’sfunction GK(t). For convergency
reasons the contour is closed in the lower half plane for t > t ′, integration along C+, and for t <
t ′ the integration is along C−. (b) Keldysh Green’s function GK(t) in real-time representation
for different temperatures (from top to bottom) T/γ = 0.1, 0.2, 0.3, 0.4, 0.5, (ε = 0).

In order to ensure convergency of the integral above we are integrating over the contour C+
for t > t ′ thereby picking up the poles which are lying in the lower complex plane at ω∗

n =
(2n+1)πTi with n =−∞, . . . ,−1 and at ω∗ = ε− iγ/2. Then we obtain

GK(t− t ′) =
γ
β

−1

∑
n=−∞

e−iωn(t−t ′)

(ωn− ε)2 +(γ/2)2 +
2i
β

∞

∑
n=−∞

e−i(ε−iγ/2)(t−t ′)

iωn− ε + iγ/2
. (E.5)

Note that there is an overall negative factor of −1 due to the reversed direction of integration
along the real axis. One can perform the sum over the Matsubara frequencies ωn using the
following relation

ψ(z) =
d logΓ(z)

dz
=−

∞

∑
n=0

1
n+ z

, (E.6)

where ψ(z) is the logarithmic derivative of the Γ-function and it is termed the diGamma-function.
Using the relation Eq.(E.6) we obtain for the Keldysh Green’s function GK(t− t ′) for t > t ′

GK(t− t ′) =
2γ
β

∞

∑
n=0

e−ωn(t−t ′)

(iωn + ε)2 +(γ/2)2

(E.7)

+
e−i(ε−iγ/2)(t−t ′)

π

{
ψ

[
1
2

+
1

2πTi

(
ε− iγ

2

)]
−ψ

[
1
2
− 1

2πTi

(
ε− iγ

2

)]}
.

A similar derivation shows that for t < t ′ we have to integrate over the contour C− thereby picking
up the poles at ω∗

n = (2n+1)πTi with n = 0, . . . ,∞ sitting on the imaginary axis of the complex
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Figure E.2: Time evolution of (a) Real- and (b) imaginary part of GK(t) for different ε/γ =

0.2, 0.4, 0.6, 0.8, 1.0 (from blue to red color) and T/γ = 0.1.

plane and at ω∗ = ε + iγ/2. The result is equal to

GK(t− t ′) =−2γ
β

∞

∑
n=0

e−ωn(t−t ′)

(iωn− ε)2 +(γ/2)2

(E.8)

+
e−i(ε+iγ/2)(t−t ′)

π

{
ψ

[
1
2

+
1

2πTi

(
ε +

iγ
2

)]
−ψ

[
1
2
− 1

2πTi

(
ε +

iγ
2

)]}
.

E.2 Properties of the Keldysh Green’s function
Figure E.1 shows GK(t) as a function of time for various temperatures. The Keldysh Green’s
function GK(t) decays exponentially in time on a scale set by min(γ−1,T−1). In the zero tem-
perature limit, T → 0, GK(t) is solely determined by the second term in Eq. (E.7) and is equal to

GK(t) = e−i(ε−iγ/2)(t−t ′) tan(πw), (E.9)

where we have used ψ(1/2+w)−ψ(1/2−w)= π tan(πw) and we have set w =(ε−iγ/2)/2πTi.
If ε 1= 0, GK(t) oscillates with frequency ε and decays exponentially on the scale min(γ−1,T−1)

as displayed in Fig. E.2. Finally, the limit γ → 0 is reproduced by

GK(t) =−ie−iε(t−t ′) tanh
( ε

2T

)

(E.10)
=−ie−iε(t−t ′)(1−2 fT (ε)).

.
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