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1 Zusammenfassung 

Zentrosomen erfüllen zwei Funktionen: 1) Sie organisieren die Mikrotubuli (MT) und 2) 

sie stellen eine Vorlage für den Bau primärer Zilien (PZ) zu Verfügung. Zentrosomen be-

stehen aus zwei Zentriolen, der Mutter- und Tochterzentriole. Die Mutterzentriole ist durch 

subdistale und distale Anhängsel charakterisiert, die für die Erfüllung beider Funktionen 

benötigt werden. 

Die Verankerung der MT wird von dem subdistalen Anhängselprotein Ninein vermittelt. Es 

war jedoch unbekannt, ob Ninein alleine oder im Verbund mit anderen Proteinen zusam-

men wirkt. Hier konnten wir zeigen, dass Ninein mit Cep170 interagiert, und dass Cep170 

an MT bindet. Verminderung der Konzentration oder Fehllokalisation von Cep170 verur-

sachte Defekte bei der Verankerung der MT. Zusätzlich bündelte Cep170 die MT in der 

Zelle, wodurch sie stabiler als ungebündelte MT wurden. Daraus folgt, dass Cep170 ein 

Schlüsselprotein für die Verankerung der MT an den subdistalen Anhängsel der Mutterzen-

triole ist. Zusätzlich fanden wir heraus, dass die Lokalisation von Cep170 in der Mitose 

durch die Kinase Cdk1-Zyklin B reguliert wird. Die Phosphorylierung von Cep170 führt 

zu dessen Freisetzung von den subdistalen Anhängsel und ermöglicht vielleicht dadurch 

die Bildung der mitotischen Spindel, die durch wenig fest verankerte MT charakterisiert 

ist. 

Im zweiten Teil der Doktorarbeit, beschreiben wir die Entdeckung zweier neuer Interakto-

ren von Cep170, IFT81 und PRAX-1. IFT81 ist eine wichtige strukturelle Komponente der 

intraflagellaren Transportpartikel (IFT-Partikel). IFT ermöglicht sowohl den Aufbau, als 

auch den Abbau des PZ, indem IFT-Partikel Proteine innerhalb des PZ transportieren. Hier 

zeigten wir, dass IFT81 ein Anhänselprotein der Mutterzentriole ist, welches hierfür mit 

Cep170 interagiert. Verminderung der IFT81 Proteinkonzentration durch siRNA behinderte 

den Aufbau der PZ. Überraschenderweise inhibierte die Verminderung der Cep170 Kon-

zentration nur den Abbau des PZ. Dies lässt sich dadurch erklären, dass Cep170 IFT81 

während des PZ Abbaus zurück zu den Anhängsel bringt. Dadurch wird der IFT stark ver-

langsamt, wodurch das PZ destabilisiert wird. Deshalb ist Cep170 auch ein Schlüsselprote-

in bei der Regulation des Abbaus des PZ. 
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2 Summary 

Centrosomes have to main functions: 1) They organise the microtubules (MTs) and 2) they 

also provide a template for the formation of the primary cilium (PC). Centrosomes consist 

of two centrioles, the mother and the daughter centriole. The mother centriole is character-

ised by subdistal and distal appendages which are required for both functions of the centro-

some.   

Anchoring of MTs is mediated by the subdistal appendage protein Ninein. However, it was 

unknown whether Ninein acts alone or in association with other proteins. Here we demon-

strated that Ninein interacts with Cep170 and that Cep170 binds MTs. Depletion or mislo-

calisation of Cep170 caused MT anchoring defects. Conversely, Cep170 bundled MT 

within the cell which kept them more stable than unbundled MT. Thus, Cep170 is a key 

protein for the anchoring of MTs at the subdistal appendages of the mother centriole. 

Additionally we found that, localisation of Cep170 is regulated by the kinase Cdk1-cyclin 

B during mitosis. Phosphorylation of Cep170 lead to its release from the subdistal append-

ages and may allow the formation of the mitotic spindle, which is characterised by less 

strongly anchored MTs.   

In the second part of this thesis, we describe the discovery of two new interactors of 

Cep170, IFT81 and PRAX-1. IFT81 is an important structural component of the intraflag-

ellar transport (IFT) particles. IFT allows the formation and the diasassembly of the PC 

through transporting different precursors within the PC. Here we demonstrated that IFT81 

is an appendage protein of the mother centriole which therefore interacts with Cep170. 

Depletion of IFT81 by siRNA impaired PC formation. Somewhat surprisingly, depletion of 

Cep170 only supressed PZ disassembly and not the formation. We thus propose that 

Cep170 retargets IFT81 back to the appendages during PC disassembly, resulting in a 

slowdown of IFT which then destabilises the PC. So, Cep170 is also a key protein for the 

regulation of PC disassembly. 
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3 Introduction 

3.1 The centrosome  

Since the discovery of the centrosome by Boveri over a century ago, cell biologist are still 

fascinated by its structure and function. The centrosome is a tiny organelle in close prox-

imity to the nucleus. It organises the MTs and, when cells enter G0, the primary cilium 

(PC). Deregulation of centriole duplication can be found in several cancers (Carroll et al. 

1999; Nigg 2002) and defects in ciliogenesis cause kidney diseases, infertility and devel-

opmental disorders (Bisgrove and Yost 2006; Fliegauf et al. 2007; Marshall 2008).  

MT nucleation activity of the centrosome is relatively well understood (Zheng et al. 1991; 

Job et al. 2003). However, centrosomes further organise MT by anchoring and bundling 

them to allow the formation of a radial MT array (Dammermann et al. 2003). The mecha-

nisms underlying MT anchoring and bundling remain to be elucidated.  

The role of the centrosome in ciliogenesis has gained renewed interest, because recent 

findings highlightened the importance of this organelle in several diseases. The PC was 

long considered as rudimentary, in spite of its presence on almost every cell in the human 

body. However, recently it became more and more clear that cilia control signalling path-

ways that are critical in development (Singla and Reiter 2006; Ainsworth 2007). 

Below the structure and the function of centrosomes will be reviewed. I will focus on MT 

anchoring and bundling and the formation of the PC: The centrosome consists of a pair of 

centrioles and a surrounding protein matrix, the pericentriolar material (PCM). It is a non-

membranous organelle, approximately 1 µm3 in size, and often found in proximity to the 

nucleus (Doxsey 2001; Bettencourt-Dias and Glover 2007). Nine MT triplets are arranged 

like a barrel to form one centriole. Centrioles are characterised by their orthogonal orienta-

tion. As most polymers, the centriolar MTs are polar, with an unstable minus end and a 

more stable plus end. The plus end of the MTs forms the distal end of the centriole whereas 

the minus end forms the proximal end. The MTs of the centriole are stabilised by posttrans-

lational modifications such as polyglutamylation and acetylation (Piperno et al. 1987; Bo-

binnec et al. 1998; Bobinnec et al. 1998). The lumen of the centriole contains several pro-

teins, in particular δ-tubulin, centrin-2 and –3, hSas-6, CPAP, Cep135 and Plk4    
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(Salisbury et al. 2002; Kleylein-Sohn et al. 2007). These proteins regulate the duplication 

of the centriole during S phase of the cell cycle and are assembled in a sequential manner. 

(Habedanck et al. 2005; Kleylein-Sohn et al. 2007). In particular, Plk4 is a key regulator of 

centriole biogenesis and overexpression of Plk4 results in supernumerary centrioles 

(Habedanck et al. 2005; Kleylein-Sohn et al. 2007). Not surprisingly, the centrosome cycle 

and cell cycle are closely linked with each other and the uncoupling of these cycles can be 

found in many types of cancer.  

The two centrioles within each centrosome are not identical. The older centriole, known as 

the mother centriole, harbours appendages at its distal and subdistal end. Several lines of 

evidence support the idea that the subdistal appendages are the main site for MT anchoring 

(Luders and Stearns 2007). Injection of antibodies against subdistal appendage proteins 

like Ninein or Cep110 disrupts the ability of the centrosome to organise MTs (Ou et al. 

2002). Similar results can be seen in experiments using anti-Nlp or anti-ε−tubulin antibod-

ies (Casenghi et al. 2003; Chang et al. 2003). Typically, at the onset of mitosis the subdistal 

appendage proteins disappear from the mother centriole and reappear at the end of mitosis. 

This includes the retargeting of Cep170, Ninein, Nlp, ODF2 and ε−tubulin to the centriole 

(Lange and Gull 1995; Chang and Stearns 2000; Mogensen et al. 2000; Chang et al. 2003; 

Guarguaglini et al. 2005).  

The predominant function of the distal appendages is the coordination of PC formation 

(Graser et al. 2007). Cep164, the only known distal appendage protein, shows a severe cilia 

phenotype when depleted (Graser et al. 2007).  

The protein ODF2 seems to be a component of both appendages. Odf2-/- mouse cells lack 

distal and subdistal appendages and they can not assemble a PC (Nakagawa et al. 2001; 

Ishikawa et al. 2005). 
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Figure 1. Structure of the centrosome. Schematic diagram depicting the centrosome consisting of the cen-

trioles and the surrounding PCM. In each triplet, the most internal tubule is called the A-tubule; the one fol-

lowing it is the B-tubule; and this is followed by the most external one, the C-tubule. The mother centriole is 

characterised by distal and subdistal appendages. (Bettencourt-Dias and Glover, 2007). 

 

The PCM surrounds the centrioles and harbours the main sites for MT nucleation. The MT 

nucleation complex comprises γ-tubulin, γ-tubulin complex proteins 2-6 (GCP2-6) and 

GCP-WD (Luders and Stearns 2007; Raynaud-Messina and Merdes 2007). This complex is 

anchored in the PCM by interaction with AKAP450 and pericentrin/kendrin (Dictenberg et 

al. 1998; Takahashi et al. 2002). During the cell cycle the PCM undergoes structural altera-

tions and compositional changes (Doxsey 2001). It is built predominantly by coiled–coil 

proteins, which were identified in a proteomic screen (Andersen et al. 2003). In total, 

around 100 proteins build the PCM. Interestingly, the PCM is required for centriole dupli-

cation and depletion of the PCM component SPD-2 inhibits centriole duplication 

(Dammermann et al. 2004; Leidel and Gonczy 2005).  

3.2 The centrosome cycle 

The centrosome cycle can be divided into four steps. 1) centrosome duplication, 2) centro-

some maturation, 3) centrosome separation and 4) centriole disengagement (Tsou and 

Stearns 2006; Nigg 2007). 
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Figure 2. The centrosome duplication cycle. Centrioles (green), centriole appendages that mark the distal 

end of mature centrioles (red), and chromosomes (blue) are shown (adapted from Tsou and Stearns, 2006a). 

 

Duplication of the centrosome starts at the G1-S phase transition and finishes in G2. Dur-

ing centriole duplication one new procentriole buds adjacent to the proximal end of each 

centriole. Thus, the two parental centrioles bud two procentrioles, so that a G2 cell har-

bours two centrosomes each consisting of two attached “engaged” centrioles. Key regula-

tors are the protein kinases Cdk2-cyclin A/E and Plk4 (Meraldi et al. 1999; Bettencourt-

Dias et al. 2005; Habedanck et al. 2005). Overexpression or depletion/inhibition of one of 

these kinases promotes or inhibits centrosome duplication, respectively. At present, little is 

known about the target proteins which are phosphorylated by these kinases. Meraldi et al. 

suggested an involvement of the Rb/E2F pathway in the regulation of the centrosome du-

plication by Cdk2-cyclin A (Meraldi et al. 1999). New insights into the role of Plk4 came 

from studies using C. elegans, Drosophila, as well as from a human cell line overexpress-

ing Plk4 (Leidel and Gonczy 2003; Bettencourt-Dias et al. 2005; Leidel and Gonczy 2005; 

Pelletier et al. 2006; Kleylein-Sohn et al. 2007). 



Introduction 

 7

 

Figure 3. Model for the centriole assembly in human cells. Nascent procentriolar structures are depicted 

coding Plk4 in red; hSas-6 in green, CPAP, Cep135, and γ-tubulin in brown, α-tubulin in grey; and CP110 in 

yellow (adapted from Kleylein-Sohn 2007).  

 

Overexpression of Plk4 induced centrosome over duplication in human cells and contrib-

uted to cancer formation in Drosophila (Habedanck et al. 2005; Basto et al. 2008). Deple-

tion of Plk4 by siRNA blocked centriole biogenesis, suggesting that Plk4 is a key regulator 

of centriole duplication (Bettencourt-Dias et al. 2005; Habedanck et al. 2005). 

Plk4 localises to the centrosomes and recruits essential factors for centriole duplication. 

After activation of Plk4, the initiation factor hSas-6 is recruited to the proximal end of the 

centriole followed by the recruitment of CPAP, Cep135 and γ−tubulin (Figure 3) (Kleylein-

Sohn et al. 2007). These proteins form a seed for assembling the procentriole. CP110 caps 

the plus end of the centriolar MTs to restrict the size of the centriole. Tsang and colleagues 

showed that depletion of CP110 causes the formation of MT extensions (Tsang et al. 2008). 

Interestingly, CPAP could be a positive regulator of centriole elongation. Overexpression 

of CPAP in fact results in extended centrioles (LeClech M., personal communication). So a 

balance of CP110 and CPAP may control the size of the centrioles.  

Interestingly, CP110 is also relevant to PC assembly. During ciliogenesis the MTs of the 

mother centriole are extended in a process that involves intraflagellar transport (IFT). Se-
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lective removal of the CP110 cap from the mother centriole seems to be required for the 

formation of a PC (Tsang et al. 2008). 

At the onset of mitosis the centrosome turns into a spindle pole. At this time, the centro-

some acquires additional MT nucleation sites, allowing the rapid nucleation of new MTs 

during mitosis (Palazzo et al. 2000; Meraldi and Nigg 2002). Similar to centriole duplica-

tion, centrosome maturation is regulated by kinases (Meraldi and Nigg 2002). Plk1, which 

is recruited to the centrosome in late G2, is one key player (Barr et al. 2004). Injection of 

anti-Plk1 antibodies into humans cells results in small centrosomes with reduced amounts 

of γ−tubulin (Lane and Nigg 1996).  

Aurora A also plays a key role in centrosome maturation. Aurora A localises to the centro-

some and both activity and amount peaks during the G2-M transition (Meraldi and Nigg 

2002; Bahe et al. 2005). Depletion of the C. elegans homolog of Aurora A by siRNA in 

embryos disrupts the recruitment of γ-tubulin (Hannak et al. 2001) to the centrosome. 

These embryonic cells are not able to form mitotic spindles (Hannak et al. 2001). Terada 

and colleagues could show that Aurora A interacted with centrosomin and that this interac-

tion was required for γ−tubulin recruitment (Terada et al. 2003). Similar results suggest an 

interaction of Aurora A with TACC or TPX2 (Giet et al. 2002; Kufer et al. 2002).  

Centrosome maturation is followed by the separation of the duplicated centrosomes into 

two spindle poles. Centrosome separation starts with the disruption of cohesion between 

the two parental centrioles (Meraldi and Nigg 2002; Bahe et al. 2005). Some electron mi-

croscopic studies suggested a linker region between the parental centrioles (Bornens et al. 

1987). This linker region is thought to be formed by a fibrous structure which contains the 

proteins C-Nap1, rootletin and Cep68 (Bahe et al. 2005; Graser et al. 2007). Localisation 

of C-Nap1 is regulated by phosphorylation through the kinase Nek2 (Fry et al. 1998; 

Mayor et al. 2002). At the onset of mitosis, C-Nap1 is phosphorylated, which leads to the 

disassembly of the linker region. Injection of anti-C-Nap1 antibodies into cells results in 

centrosome splitting (Mayor et al. 2002), comparable to results seen in cells that were 

treated with siRNA depleting rootletin and Cep68 (Bahe et al. 2005). The two latter pro-

teins form fibrous fibres when transiently expressed and both localise to the linker region 

(Graser et al. 2007). These data support the idea that C-Nap1, rootletin and Cep68 build a 
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dynamic linker between the parental centrioles and that Nek2 regulates the disassembly of 

the linker during mitosis.  

Late in mitosis the two centrioles disengage, meaning that they lose their orthogonal orien-

tation (Tsou and Stearns 2006; Nigg 2007). Centriole disengagement is required for centri-

ole duplication. It is now thought to be regulated by separase, a protease known to control 

sister chromatid separation (Nagao and Yanagida 2002; Nasmyth 2002). Using Xenopus 

egg extract Tsou and colleagues showed that engaged S phase centrioles became disen-

gaged after addition to mitotic extract. Interestingly, disengagement could be blocked by 

the addition of a peptide inhibiting the ubiquitin ligase APC/C or by the addition of se-

curin, a inhibitor of separase (Tsou and Stearns 2006). These results suggest an involve-

ment of the ubiquitin ligase APC/C and of the protease separase in centriole disengage-

ment. Recently, Wang et al. suggested that Shugoshin 1 is the glue between the centrioles 

(Tsang and Dynlacht 2008; Wang et al. 2008). However it remains unclear whether these 

proteins act directly on the centrosome or indirectly by supporting progression through 

mitosis 

In late mitosis the spindle poles must become again G1 centrosomes. The centrosomes lose 

their additional nucleation sites, the linker between both centrioles is formed again and the 

subdistal appendages reassemble (Casenghi et al. 2003; Guarguaglini et al. 2005). The 

amount of γ−tubulin, pericentrin and other proteins required for the organisation of the 

mitotic spindle is reduced. The amount of γ−TuRCs within the PCM is diminished to nor-

mal contents and Aurora A and Plk1 are lost from the centrosome. In contrast, the linker 

structure between both centrioles reforms by the recruitment of C-Nap1, Cep68 and root-

letin (Bahe et al. 2005; Graser et al. 2007). It is thought that phosphatases like Cdc14 re-

move the phosphates from Cdk1 targets to revert the phosphorylation state of many pro-

teins (Torres-Rosell et al. 2005). 

3.3 Function of the centrosome 

The centrosome has two main functions: First it organises the MTs and second it forms a 

template for the formation of the cilium (Doxsey 2001; Bettencourt-Dias and Glover 

2007). 
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During cell cycle, the centrosome organises two different MT arrays: in interphase a stable 

MT network and in mitosis the highly dynamic spindle (Dammermann et al. 2003; Var-

mark 2004).   

The cilium is a projection of the cell surface required for chemo- and mechanosensation 

(Singla and Reiter 2006). During ciliogenesis, the A tubule and B tubule of the mother cen-

triole is extended to form an axoneme. Motile cilia in epithelial cells are needed for the 

transport processes in the respiratory tract or in the fallopian tube. Some cilia are found in 

sensory cells and are specialised for sensing light or odorant (Fliegauf et al. 2007). In con-

trast to motile or sensory cilia, the immotile PC can be found on almost every cell of the 

organism (Ainsworth 2007). Primary cilia are now thought to act as antennae to sense the 

environment (Singla and Reiter 2006). In tissue culture some cells form a PC in the ab-

sence of growth stimulation. Interestingly, there is a striking correlation between entry in 

G0 and formation of the PC (Quarmby and Parker 2005).  

3.4 Centrosomes, organisers of the MTs 

To allow the organisation of a MT array, MTs have to be nucleated, anchored and bundled 

at different structures at the centrosome.  

The PCM for instance, contains the nucleation sites for the MTs (Wiese and Zheng 2006). 

After nucleation the MTs are anchored at the subdistal appendages of the mother centriole 

(Mogensen et al. 2000; Luders and Stearns 2007).  

MTs are polar cylindrical polymers consisting of thirteen protofilaments of α− and 

β−tubulin dimers. The β-tubulin subunits point towards the plus end and the α-tubulin to-

wards the minus end of the MT. MTs attach with their minus (slow growing) end at the 

centrosomes and are oriented outward with their plus (fast growing) ends (Wiese and 

Zheng 2006). The minus end is capped by the γ−tubulin ring complexes (γ−TuRCs), allow-

ing the nucleation of the MTs. γ−tubulin forms a complex with the gamma complex pro-

teins 2-6 (GCP2-6) and with GCP-WD (Luders and Stearns 2007; Raynaud-Messina and 

Merdes 2007). Depletion experiments showed, that each GCP protein is required for the 

assembly of the γ−TuRC (Gunawardane et al. 2000; Verollet et al. 2006).  
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Several observations led to the notion that the γ−TuRC is the MT nucleator in vivo: (1)  

γ−TuRC could be seen in the PCM of purified centrosomes using electron tomography  

(Moritz et al. 1995; Moritz et al. 2000) (2) purified γ−TuRC nucleates more than 30 times 

more efficient than other complexes (Oegema et al. 1999) (3) purified γ−TuRC remains 

associated with the minus end of the MT (Gunawardane et al. 2000; Moritz et al. 2000) and 

(4) all subunits of the γ−TuRC are concentrated at the centrosome.  

Structural studies suggest that γ−tubulin forms a ring on top of a GCP complex, allowing 

the stabilisation of the minus end of a MT. The γ−TuRCs function as a template, mimick-

ing the MT end. This template model is supported by X-ray crystallography which shows 

adjacent subunits of γ−tubulin (Aldaz et al. 2005). 

After nucleation, MTs need to be anchored at the centrosome. Takashi and colleagues 

demonstrated that the amino-terminal regions of AKAP450 and kendrin interact with 

GCP2 and GCP3 (Takahashi et al. 2002). This allows the stable binding of γ−TuRC to the 

PCM. Addition of anti-kendrin- or anti AKAP450 antibodies blocks the nucleation activity 

of isolated centrosomes. Similar results could be observed in experiments evaluating the 

function of pericentrin B, CAP350 and FOP (Doxsey et al. 1994; Dictenberg et al. 1998; 

Yan et al. 2006).  

The subdistal appendages of the mother centriole appear to be the major sites for MT an-

choring (Mogensen et al. 2000; Luders and Stearns 2007). The mother centriole is located 

at the centre of the MT array, although both centrioles are associated with γ−tubulin. Addi-

tionally, the MTs are often seen to terminate on the subdistal appendages of the mother 

centriole (Gorgidze and Vorobjev 1995). Interestingly, both centrioles nucleate almost 

similar numbers of MT, but only the mother centriole is able to maintain a radial array after 

nocodazole treatment (Mogensen et al. 2000). 

The subdistal appendages consist of Ninein, centriolin, ε−tubulin, cenexin/ODF2, Cep170 

and Nlp (Lange and Gull 1995; Chang and Stearns 2000; Mogensen et al. 2000; Casenghi 

et al. 2003; Gromley et al. 2003; Guarguaglini et al. 2005). All of these proteins are impli-

cated in MT organisation. For instance, Nlp was shown to organise MTs by targeting 
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γ−TuRC to the appendages (Casenghi et al. 2003) and injection of anti-Cep110 antibodies 

abolishes MT organisation (Chang and Stearns 2000; Chang et al. 2003).   

Along the above proteins Ninein is the best studied appendage protein (Bouckson-Castaing 

et al. 1996; Mogensen et al. 2000; Abal et al. 2002; Delgehyr et al. 2005; Moss et al. 2007). 

Ninein is concentrated at both the minus end of the MT and at the subdistal appendages 

and is required for MT anchoring (Mogensen et al. 2000; Delgehyr et al. 2005). 

Delgehayr and colleagues transiently transfected cells with different Ninein constructs to 

show that Ninein anchors MTs at the subdistal appendages. They found that a fragment 

comprising the C-terminus (aa 1874-2113) of Ninein localised to centrioles and displaced 

endogenous Ninein and γ−tubulin. They also observed that transiently expression induced a 

delay in MT regrowth and prevented the anchoring of the MTs. They explained this fact by 

a reduction of centriolar Ninein and γ−tubulin because other proteins implicated in anchor-

ing, Nlp, pericentrin and AKAP450, were not influenced (Delgehyr et al. 2005). However, 

a fusion protein containing the N-terminus (aa 1-373) and the C-terminus of Ninein local-

ised to one centriole and displaced only endogenous Ninein and only affected MT anchor-

ing. The anchoring phenotype could also be confirmed in expression and depletion studies 

(Abal et al. 2002; Dammermann and Merdes 2002) 

3.5 Centrioles as templates for PC formation 

The PC is a projection of the plasma membrane and contains a barrel shaped MT network, 

the axoneme (Figure 4). The axoneme continues the Α and B MTs of the basal body and 

thus consists of nine doublets of MTs varying in length from 3-30 µm. It is surrounded by a 

membrane and can comprise an additional centrally located doublet of MT, forming the 

9+2 cilia. This type of cilium is motile, in contrast to the non-motile PC which has no addi-

tional doublet of MT within the axoneme (Eggenschwiler and Anderson 2007; Fliegauf et 

al. 2007). 

The zone between the basal body and the axoneme is called transition zone. It is character-

ised by a fibrous protein structure. This structure might form a selective barrier regulating 

the shuttling of ciliary proteins (Singla and Reiter 2006). 
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The cilium is built in a process called intraflagellar transport (IFT). A specialised machin-

ery moves proteins, precursor particles and vesicles bi-directionally along the axoneme. 

The anterograde transport is done by kinesin-II, the retrograde transport by cytoplasmic 

dyneins. Both motor proteins interact with adapter proteins of the IFT family to transport 

several different target proteins (Rosenbaum and Witman 2002; Scholey 2008). 

 

Figure 4. The PC. (A) Electron micrograph of the PC of a canary brain radial glia. (B) Schematic showing 

structure of the basal body and PC (adapted from Reiter, 2006).  

 

For a long time the PC was considered as a rudimentary organelle without any function. 

However, recently it became apparent that some severe diseases are linked to ciliary de-

fects (Fliegauf et al. 2007; Marshall 2008). Most prominent are diseases of the kidney. An 

autosomal recessive disease is caused by mutations of genes coding for the mechanosensi-

tive Ca2+-channels polycystin-1 and polycystin-2. Both proteins localise to the PC and al-

low the influx of Ca2+-ions into the cell when the cilium is bended (Praetorius and Spring 

2001; Praetorius et al. 2003). This signal seems to be required for proper development of 

the kidney and mutations in polycystin-1 and –2 are linked to polycystic kidney disease. 

Nowadays, many of additional ciliopathies are known, including Bardet-Biedl and Alm-

ström syndrome. Patients with these syndromes suffer from obesity, cystic kidneys and 

retinal degeneration. Similarly, Oral-facial-digital syndrome patients show polydactyly, 
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infertility and cystic kidneys. Recently, it was shown that the Jeune-syndrome can be 

caused by mutations in the genes encoding for ciliary IFT80 (Beales et al. 2007). Some of 

these phenotypes can be explained by defects in specialized cilia in the respiratory tract 

(bronchitis), in the fallopian tube or in the sperm (infertility), in the eye (retinal degenera-

tion) or in the pancreatic duct cilia (diabetes). Developmental disorders like polydactyly or 

small limbs can be explained by defects in the Hedgehog or Wnt signalling. Thus, the PC 

is now considered as a cell´s antenna, which senses mechano- or chemo signals and regu-

lates the development of embryos (Singla and Reiter 2006; Fliegauf et al. 2007). 

3.6 The life cycle of the PC 

The life cycle of the cilium comprises four steps: 

1) Transport of the centrosome to the plasma membrane  

2) Initiation of cilium assembly  

3) Elongation of the cilium 

4) Disassembly of the cilium 

The formation of a PC starts when cells enter G0 (Snell et al. 2004). First, the centrosome 

is brought to the plasma membrane to attach the mother centriole to the plasma membrane. 

Until now little is known about which proteins transport the centrosome to the plasma 

membrane, or how this program is regulated. However, there are some structural changes 

within the centrosome that characterise this process. The transition fibres are formed which 

connect the tip of the mother centriole to the plasma membrane to build a selective barrier. 

Most likely, the tips of the transition fibres fuse with some vesicles during the transport to 

the plasma membrane (Barr 2008). Therefore, a close proximity to the Golgi apparatus is 

needed (Poole et al. 1997). Interestingly, IFT20 is both a Golgi protein and a ciliary protein 

(Follit et al. 2006), and depletion of IFT20 inhibits cilium formation. Additionally, some 

proteins implicated in vesicular trafficking, membrane fusion and membrane cytoskeleton 

interaction were shown to be required for cilium formation (Nachury et al. 2007; Yoshi-

mura et al. 2007). Yoshimura and colleagues showed that the Rab proteins Rab8a, Rab17 

and Rab23 and their GTPase activating proteins (GAP) XM037557, TBC1D7 and 
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EVI5like are required for ciliogenesis. Overexpression of these GAPs efficiently sup-

pressed cilium formation (Yoshimura et al. 2007). Surprisingly, Rab8 interacts with the 

appendage protein ODF2 and localises to the PC when transiently expressed. This suggests 

that the appendage protein ODF2 might catalyse the first interaction of vesicles with the 

transition fibres. 

Interesting lessons could be learned on the transcriptional program controlling the cilia 

formation by using the algae Chlamydomonas. This organism starts a reassembly program 

when the flagella were removed (Stolc et al. 2005). Stolc and colleagues could identify a 

set of transcripts which are highly upregulated after 30 min of flagellum removal. Besides 

typical flagellar proteins, such as IFT proteins or dynein, tubulin folding factors, molecular 

chaperons and the two nuclear proteins reptin and pontin were highly upregulated (Stolc et 

al. 2005). 

After the attachment of the mother centriole to the plasma membrane the A tubule and B 

tubule of the centriole are extended. This requires the removal of proteins which normally 

restrict the extension of the centriolar MT. In some regards, the formation of the axoneme 

is comparable to the biogenesis of the centriole and it should thus not be surprising that 

some proteins are needed for both processes. Specifically, CP110 and Cep97 were identi-

fied as two proteins that limit MT assembly. Their removal, by siRNA, resulted in ex-

tended centrioles (Tsang et al. 2008). Interestingly, depletion of Cep290 suppressed the 

extended centrioles seen in CP110 depleted cells, suggesting that Cep290 counteract 

CP110 (Tsang et al. 2008). 

After removal of capping proteins from the plus end of centriolar MTs the axoneme is as-

sembled. The cilium is built by a process called intraflagellar transport (IFT) (Rosenbaum 

and Witman 2002; Scholey 2008). The IFT proteins form two complexes A and B (IFT-A, 

IFT-B) and act as adapters for the transport of precursor particles and vesicles. B subcom-

plex proteins mainly drive anterograde transport, whereas IFT-A is required for retrograde 

transport (Rosenbaum and Witman 2002). During IFT α-and β−tubulin dimers, tubulin 

chaperones, radial spoke arms, matrix and membrane proteins are transported to the grow-

ing tip of the PC (Qin et al. 2004). The IFT particles are assembled in the cell body and 

then accumulate in the transition zone of the basal body (Rosenbaum and Witman 2002). 
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Depletion of any component of the IFT complex B disrupts the formation of the cilium. 

This is also true for both motor proteins. The anterograde transport is done by the motor-

protein kinesin-II, a heterodimer of Kif3a and Kif2a and the accessory subunit KAP (kine-

sin associated protein) (Cole et al. 1998; Signor et al. 1999), whereas cytoplasmic dyneins 

transport proteins back from the tip to the base of the cilium (Pazour and Witman 2003). 

Thanks to this bi-directional transport machinery, the IFT particles function like constantly 

moving molecular trucks on a closed loop (Snell et al. 2004). The movement does not 

cease when the cilium reaches full length, implying that the length of the axoneme is kept 

by a steady state equilibrium, characterised by constant levels of addition and removal of 

tubulin subunits (Qin et al. 2004). When IFT particles reach the tip, kinesin II is inactivated 

and cytoplasmic dynein is activated. Studies in Chlamydomonas could identify some pro-

teins which control the length of the flagellum including a member of the MAP kinase 

family (Berman et al. 2003).  

Basically, the cilium is a MT cylinder surrounded by the plasma membrane. Not surpris-

ingly, ciliogenesis and maintenance requires the transport of membranes and the regulation 

of membrane MT contact (Follit et al. 2006; Barr 2008). Several proteins have been impli-

cated in this process. Some proteins which regulate membrane fusion are also targeted to 

the PC. IFT27, a Rab like GTPase, is required for ciliogenesis (Qin et al. 2007). Yoshimura 

et al. could identified several Rab proteins and their corresponding GTPase activating fac-

tors (GAP), all of them required for ciliogenesis (Yoshimura et al. 2007). Generally, 

GTPases of the Rab family facilitate vesicular trafficking by promoting the docking and 

fusion of transport vesicles to their target compartments. Rab8 was recently found to inter-

act with proteins of the BBS family (Nachury et al. 2007). Mutations in genes coding for 

the twelve BBS proteins cause the Bardet-Biedl syndrome, a pleiotropic disease character-

ised by obesity, retinal degeneration, kidney malfunctions and olfactory deficits (Badano et 

al. 2006). The underlying molecular mechanism remains poorly understood. Nachury and 

colleagues identified a core complex of BBS proteins co localizing with PCM-1 in the cen-

trosomal periphery. They could show that seven proteins of the BBS family form a core 

complex. This complex (termed Bbsome), consisting of BBS1,2,4,5.7,8,9, interacts with 

membranes or vesicles in the PC through BBS5. Interestingly, BBS1 interacts with Rabin, 

a GEF protein which stabilizes the GTP form of Rab8. Depletion or inhibition of Rabin 
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prevents the formation of the PC, suggesting that Rab8 GTP and Rabin8 are required for 

cilium biogenesis (Nachury et al. 2007). 

According to the current a model IFT20 transports vesicles from the Golgi apparatus to the 

periphery of the basal body. Here they associate with Rabin, Rab8GTP and the BBSome. 

Stabilized Rab8GTP allows the transport of vesicles from the basal body to the tip of the 

axoneme. The vesicles might pass the transition zone by the interaction of Rab8 with 

ODF2. This fact might explain why ODF2 depletion causes primary cilia defects (Ishikawa 

et al. 2005). After passing the transition zone the fusion of the vesicles with the ciliary 

membrane would then be controlled by the Rab8-GAP XM037557 (Nachury et al. 2007). 

These results demonstrate that not only the prolongation of the MTs is regulated, but the 

enlargement of the ciliary membrane is also tightly regulated by a balance of Rab8 activat-

ing proteins (GAPs) and inhibiting proteins (GEFs).  

At the end of its life cycle the cilium has to be absorbed. Usually, disassembly of the cil-

ium is linked to re-entry of the cell into S phase. Recently, the process was found to be 

regulated by Aurora kinases. This was shown first in Chlamydomonas and subsequently in 

human cells (Pan et al. 2004; Pugacheva et al. 2007). Pan et al. reported that the Aurora 

kinase family member CALK regulates flagellar disassembly in Chlamydomonas. Using 

siRNA these authors could show that CALK is essential for disassembly of the flagellum. 

Additionally, they showed that CALK is phosphorylated when the flagellum disassembles 

(Pan et al. 2004). These findings were extended by a report indicating that activated and 

phosphorylated Aurora A controls the disassembly of the PC in human cells (Pugacheva et 

al. 2007). According to their data, Aurora A interacts with HEF1 at the basal body to acti-

vate the tubulin deacetylase HDAC6. A few hours after serum addition the levels of HEF1 

increased, which activated Aurora A. This resulted in an accumulation of the phosphory-

lated and activated form of Aurora A at the basal body. Both depletion of Aurora A and 

inhibition of kinase activity blocked the disassembly of the cilium. Similarly, depletion of 

the tubulin deacetylase HDAC6 or HEF1 and inhibited the resorption of the cilium 

(Pugacheva et al. 2007). 
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There are still some open questions. For example, which kinase phosphorylates Aurora A 

and which proteins bind the phosphorylated Aurora A at the centrosome? A MAP kinase or 

a cyclin dependent kinase could be candidates for phosphorylating Aurora A. In Chlamy-

domonas a MAP kinase and a cyclin dependent kinase in fact control the length of the fla-

gellum and mutations of the corresponding genes cause extended flagella (Berman et al. 

2003; Tam et al. 2007). 

IFT proteins: 

IFT was first described by Kozminski and colleagues in 1993 in Chlamydomonas 

(Kozminski et al. 1993). Theses authors saw particles moving from the base to the tip of 

the flagellum and back again when they examined flagella. These particles moved rela-

tively fast, with an speed of about 2-4 µm/s (Kozminski et al. 1993). In total, at least 17 

proteins assemble the two subcomplexes. Complex A contains at least six subunits, 

whereas complex B contains at least eleven subunits (Cole et al. 1998; Piperno et al. 1998; 

Cole 2003). Mutation of either one of the kinesin 2 subunits or one of the B subunits abol-

ishes cilium formation (Cole et al. 1998; Pazour et al. 2000; Huangfu et al. 2003; Sun et al. 

2004). 

Subcomplex B consists of the core components IFT88, IFT81, IFT74/72, IFT52, IFT46 

and IFT27 (Figure 5, Figure 6). The core complex binds to the peripheral components 

IFT80, IFT172, IFT57 and IFT20 (Lucker et al. 2005). The two core proteins IFT81 and 

IFT74/IFT72 can assemble tetrameric complexes. Two IFT81 proteins interact with a het-

erodimer of IFT74/IFT72 to form a scaffold for the formation of the subcomplex B 

(Lucker et al. 2005). Deletion mutants of IFT88, IFT172, IFT52 in Chlamydomonas were 

completely unable to form a flagellum (Pazour et al. 2000; Brazelton et al. 2001; Cole 

2003). The more peripheral subcomplex B component IFT57 only caused stunted flagella 

when mutated, suggesting that it is involved in length control (Cole 2003). The other pe-

ripheral IFT B protein IFT172 interacts with EB1 at the tip of the flagellum and might be 

involved in  the switch from anterograde to retrograde movement (Pedersen et al. 2003; 

Pedersen et al. 2005).  
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Figure 5. Intraflagellar transport (IFT) particle composition in Chlamydomonas. Putative protein-protein 

binding motifs have been identified through sequence analysis. WD40: WD repeat; DR: degenerate repeats; 

TPR: tetratricopeptide repeats; COIL: coiled-coil (Cole, 2003). 

The subcomplex A contains the IFT proteins IFT144, IFT140, IFT139, IFT122A, IFT122B 

and possibly IFT43 (Lucker et al. 2005). IFT122A and B, IFT140 and IFT144 contain pu-

tative WD repeats and degenerated repeats (DR). WD repeats often serve as sites for tran-

sient protein-protein interactions. In contrast, coiled-coil domains form more permanent 

protein–protein interactions. Likely the permanent interaction between the coiled coil do-

mains of IFT81 and IFT74/IFT72 keeps the core complexes of subcomplex A and B tightly 

together (Lucker et al. 2005). 
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Figure 6. IFT complex B core model. The Chlamydomonas IFT complex B reveals a core complex con-

taining IFT88, IFT81, IFT74, IFT72, IFT52, IFT46 and IFT172. IFT81 forms an oligomer with IFT74 and 

IFT72 (Cole, 2005). 

 

A genetic screen in the zebrafish identified several IFT proteins to be involved in the de-

velopment of cystic kidneys (Sun et al. 2004). Mutagenesis of the IFT-B components IFT 

81, IFT57 and IFT172 caused kidney cyst in the developing embryo (Sun et al. 2004). An-

other interesting finding on the role of IFT proteins was the discovery that some mice car-

rying mutations in IFT proteins show a similar phenotype as mice mutated in Hedgehog 

(Hh). Murine embryos with mutations in the genes coding for IFT88 (polaris, Tg737) and 

IFT152 showed similar phenotypes as Hh mutants (Pazour et al. 2000). Below, we shall 

address the question how  this phenotype can be explained. 

3.7 PC in signalling 

Recently, it became apparent that some important signalling pathways are regulated by the 

PC, most prominently Hedgehog signalling, Wnt signalling, Ca2+ signalling and PDGF αα 

signalling. 

Hh signalling plays pivotal roles in development and tissue maintenance. In addition, Hh 

signalling is required for stem cell differentiation and is also relevant in cancer. Constitu-

tively active Smoothened (Smo), an important protein within the Hh pathway (see below), 

can act as a proto-oncogene and mutations can be frequently found in basal cell carcinomas 

(BCC) (Epstein 2008). 

As illustrated in Fig. 7, Hh signalling starts with the binding of Hh to the transmembrane 

protein Patched (PTCH). PTCH associates with Smo in the absence of Hh. The binding of 
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Hh to PTCH leads to the disassembly of the Smo PTCH complex. PTCH is a negative 

regulator of Smo. After disassembly the receptor Smo is active and antagonises “Suppres-

sor of Fused” (Sufu). This allows the processing of the transcription factors Gli1 and Gli2, 

whereas Gli3 is no longer processed. Gli1 and 2 are transcriptional activators of Hh target 

genes, whereas Gli3 acts as an repressor of these genes. So, binding of Hh to PTCH results 

in the activation of the transcription factors Gli1 and Gli2 and in the inhibition of the rep-

ressor Gli3. 

 

Figure 7. A basic schematic of the Hedgehog (HH) signalling pathway. The extracellular HH ligand binds  

to patched 1 (PTCH1) receptor. This relieves the inhibition of smoothened (SMO) by PTCHH1, and SMO 

sends signals by interacting with suppressor of fused (SUFU), resulting in activation of the downstream Gli 

family of transcription factors. (Epstein, 2008).  

 

First hints for an involvement of the PC in Hh signalling came from studies done in the 

beginning of 2000 (Andersen et al. 2003; Huangfu et al. 2003). Anderson and colleagues 

performed a genetic screen in mice to identify genes which, when mutated, cause similar 

phenotypes as Hh mutants. They were surprised to find mutations in genes coding for 

IFT88 and IFT172. Additionally, IFT52, Kif3a and the dyneins Dnchc2/Dnchc3 are neces-

sary for Shh signalling (Huangfu et al. 2003; Haycraft et al. 2005; Huangfu and Anderson 

2005; Liu et al. 2005). In the absence of these proteins, all modulations of target genes in 



Introduction 

 22

response to Hh are blocked and the targets of Gli are not activated in the ventral neural 

tube of these mice (Huangfu et al. 2003; Liu et al. 2005). The data could be confirmed by 

the finding that almost all important proteins of the Hh pathway are concentrated at the PC. 

The Smo receptor must localise to the cilium for normal signalling. Corbit and co-workers 

demonstrated that ciliary Smo localisation becomes amplified after Hh addition. An inac-

tive form of Smo can not localise to the cilium in the presence of Hh (Corbit et al. 2005). 

Additionally, the localisation of Smo after Hh addition can be inhibited by the Smo an-

tagonist cyclopamine. Thus, the activity of Smo is correlated with its presence in cilia. Pos-

sibly, PTCH might control the localisation of Smo in vertebrates, by inhibiting its transport 

to the cilium. Interestingly, PTCH localises to the shaft of the cilium and around the base 

of the cilium (Rohatgi et al. 2007). Addition of an inhibitor of Hh signalling results in an 

accumulation of PTCH at the cilium (Rohatgi et al. 2007). The idea that Smo localisation 

to the cilium is suppressed by PTCH is supported by the finding that Smo localised to the 

cilia in PTCH-/- cells in the absence of Shh. Reintroduction of PTCH into these cells pre-

vented Smo accumulation in primary cilia and suppressed Hh pathway activity. Recently, 

Kovacs and colleagues (2008) demonstrated that Smo is transported into the PC by β-

arrestin and Kif3a. Smo, β-arrestin and Kif3a form a complex and depletion of β-arrestin 

blocks Smo accumulation in the PC (Kovacs et al. 2008). In contrast, mutation of the gene 

coding for THM1 (tetratricopeptide repeat containing hedgehog modulator-1), leads to 

accumulation of Smo in the PC (Tran et al. 2008). This suggests that the THM1 protein is 

required for the retrograde transport of Smo. 

These new findings led to the current model of Hh signalling in vertebrate cells. After addi-

tion of Shh, PTCH moves out of the cilium, allowing Smo to enter. The transport of Smo to 

the cilium is done by the motor protein kinesin II, consisting of Kif3a and Kif2a and β-

arrestin. The close vicinity of Smo to the signalling proteins SuFu and Gli allows the acti-

vation of the Hh signalling pathway. The signalling can be regulated by the removal of 

Smo from the cilia. For this retrograde transport the THM1 protein is necessary. 

Wnt signalling regulates embryonic development and some key proteins are often mutated 

in cancer (Moon et al. 2004). There are two Wnt signalling pathways: The canonical Wnt 

pathway and the noncanonical Wnt-Planar cell polarity pathway (PCP) (Figure 8). The two 
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different Wnt signalling pathways have different functions: the canonical pathway medi-

ates cell fate and axis formation, whereas the noncanonical regulates gastrulation and dif-

ferentiation of the cells within the cell plane (Montcouquiol et al. 2006).The canonical 

pathway leads to the stabilization of β−catenin in response to binding of Wnt3/1 to Friz-

zled (Fz) and the coreceptor LRP5/6. Subsequently, Dishevelled (Dvl) is phosphorylated. 

Phosphorylated Dvl inhibits GSK3β. A complex of CK1α kinase, GSK, axin and APC 

regulates the stability of β−catenin. Active GSK phosphorylates β−catenin and targets it for 

degradation. After phosphorylation of Dvl, the protein interacts with axin, which destabi-

lizes the inhibitor complex and allows the accumulation of β−catenin. Inhibited GSK3β 

leads to the accumulation of β−catenin, which is transported into the nucleus and acts as a 

transcription factor together with TCF/LEF proteins  

PCP controls the polarisation of cells within the plane of epithelial cells and thus coordi-

nates the closure of the neural tube and the movement of the cells during gastrulation. The 

PCP pathway requires the binding of Wnt5a/11/4 to Fz. This leads to the recruitment of 

Dvl by Vangl to the receptor which then activates small GTPases. The activated GTPases 

transmit the signal to the JNK cascade (Montcouquiol et al. 2006). 

The central protein is Dvl. Both pathways compete on Dvl which suggests that activation 

of one pathway leads to inhibition of the other.  

Recent findings shed new light on how the PC favors the noncanonical Wnt pathway. Pre-

vious studies have shown that Invesin inhibits canonical Wnt signalling. Mutations of In-

vesin causes nephronophthisis characterised by renal cysts (Simons et al. 2005). Inv pro-

motes the degradation of free cytosolic Dvl, which favors the noncanonical signalling. 

However, Inv not only localises to the PC, making the interpretation of these data less 

straightforward.  
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Figure 8. Wnt signalling pathways. (A) The canonical Wnt signalling pathway (B) The Wnt-calcium path-

way (C) The Wnt-PCP pathway (adapted from Montcouquiol 2006). 

 

The inhibition of canonical Wnt signalling could be further clarified by recent experiments 

(Corbit et al. 2008). Corbit and colleagues demonstrated that elimination of the cilia en-

hances canonical Wnt signalling. SiRNA mediated depletion of Kif3a resulted in enhanced 

Wnt responsiveness. They also revealed a stronger expression of a β−catenin reporter in 

Kif3a-/- mice embryos. Similar results were found in cells lacking IFT88 or Odf1, however 

to a lower extent (Corbit et al. 2008). The exact mechanism however remains elusive. The 

basal body may inactivate the CK1 α protein kinase required for the activation of Dvl. 
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It is currently believed that the mechanosensation of the PC is mediated by two proteins, 

polycystin-1 (PC1) and polycystin-2 (PC2). Both proteins when mutated cause polycystic 

kidneys. The PC1 and PC2 genes code for a ciliary transmembrane protein and a ciliary 

Ca2+-channel. Praetorious and Spring demonstrated that bending of the cilium results in an 

increase of intracellular Ca2+ and that removal of the cilium disrupts the response. A 

bended cilium leads to the activation of the transmembrane protein PC1 (Praetorius and 

Spring 2001; Praetorius et al. 2003; Praetorius and Spring 2003). This in turn activates PC2 

by binding, which results in a Ca2+-influx (Nauli et al. 2003). The signal is further 

transmitted by the transcription factor Stat6 (Low et al. 2006) and the overall outcome is 

the regulation of cell proliferation. Faulty regulation is thought to induce cell proliferation 

and thus promote polycystic kidney disease. 

Normal signalling is often necessary for maintenance of differentiated tissues. In most 

cells, PC formation is closely linked to G0 and growth control (Wheatley 1971). Schneider 

and colleagues found that activation of cell proliferation is tightly coupled to PC resorp-

tion. Induction of cell proliferation by calcium ionophores or addition of PDGF correlate 

with the disassembly of the PC (Schneider et al. 2005). The receptor PDGFRα  is encoded 

by a growth arrest specific gene and the homodimer PDFGRαα is activated by PDGF-AA. 

Interestingly, this receptor is targeted to the cilium in G0 and can be activated by the addi-

tion of PDGF-AA. These findings could explain how the PC keeps fibroblasts in G0. 

3.8 Cep170 

Appendage proteins play a role in both in MT anchoring and PC formation (Mogensen et 

al. 2000; Ishikawa et al. 2005; Graser et al. 2007). Cep170 is a subdistal appendage protein 

that was originally found in a Yeast-two hybrid screen (Y2H) with the polo box domain 

(PBD) of Plk1. The C-terminus of Cep170 bound and bundled MT and was phosphorylated 

by Plk1. Cep170 is displaced from the mother centriole during mitosis, a typical feature of 

subdistal appendage proteins (Guarguaglini et al. 2005). Cep170 contains a putative FHA 

domain (aa 23-90) in the amino terminus and a predicted coiled-coil region (aa 1467-1495) 

in the carboxyl terminus. FHA domains specifically bind phosphorylated proteins and are 

often found in signalling pathways. Coiled-coil domains are present in structural proteins 

supporting the formation of permanent protein-protein interactions.   
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4 Aims of this Project 

Cep170 is a centrosomal protein which localises to the subdistal appendages of the mother 

centriole. Previously studies have uncovered a role of the subdistal appendages in MT an-

choring (Mogensen et al. 2000). Particularly, Ninein has been studied in detail. It was 

found that Ninein anchors the minus ends of the MTs at the subdistal appendages. How-

ever, less is known about whether Ninein acts alone or together with other proteins. The 

aim of this study was to examine the involvement of Cep170 in MT anchoring and its in-

terplay with Ninein. 

Recently, it was also discovered that the appendage proteins ODF2 and Cep164 function in 

ciliogenesis. Thus, the second part of this thesis focused on the question, of which role 

Cep170 might play in the ciliary life cycle and which proteins interact with the amino ter-

minus of Cep170. Two interactors, IFT81 and PRAX-1, were further characterised. In par-

ticular, the role of IFT81 during the assembly of the PC was addressed to explain the func-

tion of Cep170 during PC disassembly.  
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5 Results 

In a first series of experiments, we explored the role of Cep170 in MT anchoring and stud-

ied its interaction with Ninein. In the second part we examined the function of Cep170 

during PC disassembly and the functional relevance of its interaction with the intraflagellar 

transport protein IFT81.  

Cep170 can be divided into an N-terminal half (aa 1-754) and a C-terminal half (aa 755-

1460). Although the C-terminal fragment binds to MT and bundles them, it still localises to 

the subdistal appendages (Guarguaglini et al. 2005). Interestingly, this fragment is also 

phosphorylated by Plk1, whereas the N-terminal fragment is not phosphorylated 

(Guarguaglini et al. 2005). The phosphorylation could occur within a serine-rich domain 

(aa 968-1228). As described below, we could show that the C-terminal half of Cep170 in-

teracts with Ninein and stabilizes MT through binding. Additionally, the C-terminal frag-

ment controls the binding to the subdistal appendages and phosphorylation by Cdk1-cyclin 

B leads to release from the subdistal appendages. 

5.1 Cep170 or Ninein depletion affect MT anchoring 

It was known that Ninein is required for the anchoring of MTs at the centrosome 

(Mogensen et al. 2000; Delgehyr et al. 2005). Because both Ninein and Cep170 localise to 

the subdistal appendages of the mother centriole we considered it possible that Cep170 has 

a similar function. To check for defects in MT anchoring in cells lacking Cep170, MT re-

growth experiments were performed. COS7 cells (Figure 9) or alternatively A549 cells 

(Figure 10) were treated with siRNA duplexes specific for Cep170 or Ninein. After 72 h of 

siRNA treatment MT network was depolymerised by the incubation of cells on ice for 40 

min. Afterwards, MT, were polymerised by the addition of 37 °C warm medium to the 

cells. Cells were fixed after 0 min, 2 min, 4 min, 8 min and 16 min and stained for 

α−tubulin.  
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Figure 9. SiRNA mediated depletion of Cep170 and Ninein affects MT anchoring. COS7 cells were trans-

fected for 72 h with control (GL2), Cep170- or Ninein-specific siRNA duplexes. They were then subjected to 

MT regrowth assays and fixed at the time points indicated. Cep170, Ninein and α−tubulin were visualized 

with appropriate antibodies. Bars: 10 µm. (B) Depletion efficiency was checked using Western blot analysis.  
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Figure 10. SiRNA mediated depletion of Cep170 and Ninein affects MT anchoring. A549 cells were 

transfected for 72 h with control (GL2), Cep170- or Ninein-specific siRNA duplexes. They were then sub-

jected to MT regrowth assays and fixed at the time points indicated. Cep170, Ninein and α−tubulin were 

visualized with appropriate antibodies. Bars: 10 µm. (B) Depletion efficiency was checked using Western 

blot analysis. 

 

As shown in Figures 9 and 10, depletion of Cep170 or Ninein inhibited the formation of a 

MT network. Even after 4 min of re-polymerisation the MT array was not completely 
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formed. These data support the idea that both Ninein and Cep170 are required for MT an-

choring. However do they act together? 

5.2 The localisation of Cep170 is dependent on Ninein 

To find more evidence, for the hypothesis that Ninein anchors MT with the help of Cep170 

the following experiments were performed: 1) Colocalisation studies and interdependency 

experiments using siRNA mediated protein depletion, 2) coimmunoprecipitation experi-

ments of both endogenous proteins and tagged-proteins, 3) overexpression of different 

Ninein fragments to examine affect on Cep170 localisation and on MT anchoring.   

To directly show that Cep170 colocalises with Ninein, U2OS cells were fixed and both 

proteins detected with specific antibodies.  

 

Figure 11. Ninein and Cep170 co-localises on the subdistal appendages. U2OS cells were co-stained with 

anti-Cep170 antibodies and anti-Ninein antibodies. DNA was stained with DAPI. Bars: 10 µm. 

 

As shown in Figure 11, Cep170 co-localises with Ninein at the subdistal appendages of the 

mother centriole. 

Additionally, the interdependency of Ninein and Cep170 localisation was examined using 

siRNA mediated protein depletion. U2OS cells were treated with siRNA for 72 h and de-

pletion was confirmed by Western analysis (Figure 12). These interdependency experi-

ments demonstrated that binding of Cep170 to the appendages is dependent on the pres-

ence of Ninein (Figure 12A). The reverse was not true. In the absence of Cep170 Ninein 

remained associated with the subdistal appendages of the mother centriole (Figure 12A). 

Taken together these findings point to a direct interaction of Ninein with Cep170.  
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Figure 12. (A) Mutual dependency of Cep170 on Ninein. U2OS cells were transfected for 72 h with    

siRNA duplexes specific for Cep170, Ninein or with GL2 control siRNA duplexes and then co-stained with 

antibodies against Cep170 and Ninein (left columns), or Cep170 and γ−tubulin (centre columns) and or 

Ninein and γ−tubulin (right columns). Bars: 10 µm. (B) Depletion efficiency was monitored using Western 

blot analysis. 



Results 

 32

5.3 The C-terminal half of Cep170 interacts with Ninein 

To address the question of whether Ninein interacts with Cep170, coimmunoprecipitation 

experiments were performed. As shown on Figure 13A Ninein could be coimmunoprecipi-

tated Cep170 and vice versa, suggesting a direct interaction between both proteins. To 

characterise the interaction of Ninein with Cep170 GFP-Cep170 (1-750), GFP-Cep170 

(750-1459) and GFP-Cep170 (1-1459) constructs were transiently expressed in 293T cells. 

After 48 h, cells were lysed and GFP tagged proteins were immunoprecipitated with 1 µg 

anti-GFP antibody for 1 h at 4 °C. Subsequently, the endogenous Ninein was detected by 

Western analysis. GFP-tagged full length Cep170 (aa 1-1459) and the C-terminal half of 

Cep170 (aa 751-1459) precipitated endogenous Ninein (Figure 13B). Additionally GFP 

tagged fragments of Ninein were expressed in HEK293T cells. In total, three fragments 

covering full length Ninein were used: an N-terminal fragment (GFP-Ninein (1-719)), a 

fragment covering a middle part of Ninein (GFP-Ninein (720-1470)) and a C-terminal 

fragment (GFP-Ninein (1471-2114)). The experimental conditions were the same as de-

scribed above, except that endogenous Cep170 was detected by Western analysis (Figure 

13C). Interestingly, the middle part of Ninein and the C-terminal fragment immunoprecipi-

tated endogenous Cep170 (Figure 13C). 
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Figure 13. Cep170 interacts with Ninein. (A). Endogenous Cep170 and Ninein were immunoprecipitated 

from HEK293T cell lysate. Anti-myc antibody was used as control. Immunoprecipitated proteins were then 

analysed by Western blotting, using the indicated antibodies  (B) Ninein interacts with the C-terminal frag-

ment of Cep170 (GFP-Cep170 (751-1459)). Immunoprecipitation experiments were performed after transfec-

tion of the indicated plasmids, using anti-GFP antibodies coupled to beads. Immunoprecipitated proteins 

were then analysed by Western blotting, using anti-Ninein  and anti-GFP antibodies. (C) Cep170 interacts 

with GFP-Ninein (720-1470) and with GFP-Ninein (1471-2114). Immunoprecipitation experiments were 

performed after transfection of the indicated plasmids, using anti-GFP antibodies coupled to beads. Immuno-

precipitated proteins were then analysed by Western blotting, using anti-Cep170 and anti-GFP- antibodies. 
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To confirm these findings a directed Y2H assay was performed. An N-terminal fragment of 

Cep170 (Cep170 (1-785) and the C-terminal part (Cep170 (786-1459) were cloned into 

pFBT (gift from Dr. Francis Barr, Max-Planck Institute of Biochemistry). Different Ninein 

constructs encoding for an N-terminal, middle part and a C-terminal part of Ninein were 

already cloned into pAct2 vectors (gift from X. Yan, Max-Planck-Institute of Biochemis-

try). Because some Ninein constructs were self-activating, 5 mM 3-amino-1,2,4-triazole 

(3-AT) was added to the medium.  

 

Figure 14. Mapping the interaction region between Cep170 and Ninein. (A)Yeast two-hybrid analyses of 

the interaction between Cep170 (1-785) and different Ninein fragments. The control panels are on the left 

side, the selective conditions on the right side. (B) Yeast two-hybrid analyses of the interaction between 

Cep170 (786-1459) and the indicated Ninein fragments.  
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In contrast to Cep170 (786-1459), the Cep170 (1-785) fragment did not interact with any 

of the Ninein fragments. Under selective conditions (H-,W-,L-) the transformed yeast cells 

could not grow (Figure 14A). Yeast cells harbouring the middle part of Ninein (aa 720-

1470) and the C-terminal fragment (aa 1471-2114) were able to grow under selective con-

ditions (Figure 14B). Taken together these results show that the C-terminal half of Cep170 

(755-1460) directly interacts with the middle part of Ninein (720-1470) and with the C-

terminus of Ninein (1470-2114). All these findings support the idea that Ninein recruits 

Cep170 via binding to its C-terminal half. The presence of Ninein at the subdistal append-

ages is clearly required for the targeting of Cep170 to the subdistal appendages, but what is 

the functional relevance of this interaction?  

5.4 Expression of different Ninein fragments affect Cep170 

localisation and MT anchoring 

Ninein anchors MT at the centrosome and overexpression or depletion of Ninein causes 

MT anchoring defects (Mogensen et al. 2000; Delgehyr et al. 2005). Delgayr and collegues 

showed that the transient expression of a C-terminal fragment of Ninein (aa 1874-2113) 

inhibits the anchoring of the MTs and displaces endogenous Ninein and γ-tubulin. They 

concluded that the loss of endogenous Ninein caused defects in MT anchoring. Below we 

will present findings which suggest that Ninein requires Cep170 for the anchoring of the 

MTs. 

To test whether expression of different Ninein constructs displaces Cep170, COS7 cells 

were transiently transfected with GFP-Ninein (1-719), GFP-Ninein (720-1470) and GFP-

Ninein (1471-2114). 24 h after transfection, cells were fixed in methanol and subsequently 

the localisation of Cep170 was analysed using immunofluorescence microscopy. Addition-

ally, the localisation of γ-tubulin and pericentrin was assayed.  

Both transient expression of the middle part of Ninein (GFP-Ninein (720-1470)) and of the 

C-terminal fragment (GFP-Ninein (1471-2114)) displaced endogenous Cep170 (Figure 

15). In line with previous findings the transient expression of the C-terminus of Ninein also 

displaced γ-tubulin but not pericentrin (Delgehyr et al. 2005). Expression of GFP-Ninein 

(720-1470) had no effect on γ-tubulin or pericentrin (Figure 15). And finally, expression of 
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GFP or GFP-Ninein (1-719) had no influence on the localisation of Cep170, γ−tubulin or 

pericentrin (Figure 15). These results confirm the findings of the interaction studies accord-

ing to which GFP-Ninein (720-1470) and GFP-Ninein (1471-2114) interact with GFP-

Cep170 (750-1459).   

To test the contribution of correctly localised Cep170 on MT anchoring, MT regrowth ex-

periments were performed in cells transiently expressing GFP-Ninein (1-719), GFP-Ninein 

(720-1470) and GFP-Ninein (1471-2114). COS7 cells were transfected with the various 

Ninein constructs and 24 h later, MT were depolymerised as described previously, fol-

lowed by repolymerisation for 8 min. After fixation of the cells, the formation of the MT 

network was detected using specific antibodies for α-tubulin. Localisation of Cep170 was 

also detected by a specific antibody.  

Transient expression of GFP-Ninein (720-1470) or GFP-Ninein (1471-2114) caused MT 

anchoring defects in COS7 cells (Figure 16). No MT network was formed in cells express-

ing GFP-Ninein (720-1470) or GFP-Ninein (1471-2114), whereas expression of GFP or 

GFP-Ninein (1-719) had no effect on MT anchoring (Figure 16).  



Results 

 37

 

Figure 15. Loss of Cep170 after transient expression of GFP-Ninein (720-1470) and of GFP-Ninein 

(1471-2114) and loss of γ−tubulin after transient expression of GFP-Ninein (1471-2114). COS7 cells were 

transfected with the indicated Ninein constructs for 48 h. Cells were stained with antibodies against pericen-

trin (left column), γ−tubulin (centre column) and  Cep170 (right column). Bars: 10 µm. 
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Figure 16. Transient expression of different Ninein constructs affect MT anchoring. COS7 cells were 

transfected for 48 h with GFP (first row), GFP-Ninein (1-719) (second row), GFP-Ninein (720-1470) (third 

row) and GFP-Ninein (1471-2114) (bottom row). They were then subjected to MT regrowth assays (8 min 

incubation in 37 °C warm medium). Cep170 and α−tubulin were visualized with appropriate antibodies. 

Bars: 10 µm. 

 

To determine how tightly the displacement of Cep170 correlate with MT anchoring de-

fects, three independent experiments were performed and in total 1200 cells were counted.  

Four different cell population were distinguished: 

1. Cells with  Cep170 at the mother centriole / without MT regrowth defects 

2. Cells without Cep170 at the mother centriole / without  MT regrowth defect 

3.  Cells with  Cep170 at the mother centriole / with  MT regrowth defects  

4.  Cells without  Cep170 at the mother centriole / with  MT regrowth defects 
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Figure 17. Quantification of the effect of transient Ninein expression on Cep170 localisation and on MT 

anchoring. (A) COS7 cells were transfected for 48 h with GFP, GFP-Ninein (1-719), GFP-Ninein (720-1470) 

and GFP-Ninein (1471-2114). They were then subjected to MT regrowth assays (8 min incubation in 37 °C 

warm medium). Cep170 and α−tubulin were visualized with appropriate antibodies. (B) The following popu-

lations of cells were grouped together: Cells with Cep170 at the centriole and without MT anchoring defects 

plus cells without Cep170 at the centriole and with MT anchoring defect (left bar) or cells with Cep170 at the 

centriole and with MT anchoring defect plus cells without Cep170 at the centriole and without MT anchoring 

defects (right bar). 
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Cells expressing GFP or GFP-Ninein (1-719) showed almost the same distribution of dif-

ferent cell populations. Around 70 % of the cells had a normal MT network with bound 

Cep170 at the subdistal appendages of the centrioles and only 10 % - 20 % of the cells had 

no Cep170 at the appendages and defects in MT anchoring (Figure 17A). This distribution 

changed completely in cells expressing GFP-Ninein (720-1470) or GFP-Ninein (1471-

2114). In these cases, most of the cells, around 60 % -70% , showed no Cep170 at the ap-

pendages and defects in MT anchoring (Figure 17A). 

We thus conclude that expression of GFP-Ninein (720-1470) or GFP-Ninein (1471-2114) 

resulted in MT anchoring defects, which were associated with the displacement of Cep170 

from the appendages.  

According to another representation of these data we can distinguish, on the one hand, a 

population of cells which supports the idea that Cep170 is required for the anchoring of the 

MTs (Populations 1 and 4) and, on the other hand, a population which does not support this 

idea (Populations 2 and 3). Around 85 % of all cells belong to population 1 or 4, clearly 

supporting the conclusion that Cep170 is needed for MT anchoring (Figure 17B).  

In summary, the above data clearly demonstrated that Cep170 is required for the anchoring 

of the MT at the centrosome and that the MT anchoring defect observed in Ninein over-

expressing cells can mainly be explained by the displacement of Cep170 from the append-

ages. 

5.5  The C-terminus of Cep170 bundles MT in vivo and in    

vitro  

In the previous part we could demonstrate that Ninein targets Cep170 to the appendages of 

the centrosome and that this is required for the anchoring of MTs. So how could Cep170 

affect the formation of MT arrays? Of interest in this context, we demonstrated that the C-

terminal half of Cep170 was preferentially bound to MT and bundles them (Guarguaglini 

et al. 2005). Indeed, we could find that high levels of GFP-Cep170 (755-1459) or GFP-

Cep170 (755-1407) strongly bundled MT when transiently expressed in U2OS cells for 48 

h (Figure 18A). 
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Figure 18. Transient expression of GFP-Cep170 (755-1459) or GFP-Cep170 (755-1407) bundles MTs. 

U2OS cells were transiently transfected for 48 h with plasmids encoding  GFP-Cep170 (755-1459) (upper 

row) or GFP-Cep170 (755-107) (lower row) 48 h. α−tubulin were visualized with an appropriate antibody 

and DNA was stained with DAPI. Bars: 10 µm. 

 

 

Figure 19. His-Cep170 (755-1459) bundles MTs in vitro. Rhodamine labelled MTs were incubated for the 

indicated time with recombinant His-Cep170 (20-754) (left column) as a control and with His-Cep170 (755-

1459) (right column). Bars: 10 µm. The samples were subjected to Western analysis and proteins were de-

tected by anti-His  and anti-α tubulin antibodies. 
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To confirm that Cep170 is able to bundle MTs without a need for additional cofactors, a in 

vitro bundling assay was performed. His-tagged C-term Cep170 (aa 755-1459) and His-

tagged N-term Cep170 (aa 1-754) were purified after expression in E coli. For in vitro 

bundling assays, 20 µg of rhodamine labelled MTs were incubated at 25 °C with 400 ng 

human His-Cep170 (20-754) or with His-Cep170 (755-1459). Samples were taken after 0 

min, 10 min and 30 min and bundling activity was observed by microscopy. Bundling of 

MTs could only be observed in the sample containing His-Cep170 (755-1459 (Figure 19). 

After 10 min almost all MT were bundled, and after 30 min these bundles were further 

concentrated. His-Cep170 (20-754) did not bundle MT at all (Figure 19). These findings 

suggest that  Cep170 can bundle MT without requiring any additional proteins. 

5.6 The MT binding domain of Cep170  

Next we asked, which amino acids mediate the binding of Cep170 to the MTs. To address 

this issue, different truncated versions Cep170 were generated and expressed in COS7 cells 

for 48 h. Staining of samples with antibodies against α−tubulin allowed the determination 

of the Cep170 region required for bundling and binding of MTs. 

Expression of GFP-Cep170 (755-1429) or GFP-Cep170 (755-1407) strongly bundled MT 

(Figure 20).When the fragment was further shortened to aa 755-1175, the bundling activity 

was almost lost, though it was still bound to MTs (Figure 20). Finally, GFP-Cep170 (755-

1136) could not bind to MT anymore. Truncations of the N-terminal site decreased MT 

bundling activity, though the fragment was still bound to MT (GFP-Cep755-1459). Further 

truncations completely abolished MT (GFP-Cep170 1085-1459) binding (Figure 20). 

Taken together, these results show that Cep170 binds MTs through a domain comprising aa 

1013-1175. Prolongation of the C-terminus increased MT bundling activity (Figure 20). 

Interestingly, this minimal MT binding domain is rich in arginine and lysines, in contrast to 

the full length Cep170. Thus it can be speculated that interactions between  MT and this 

basic domain occurs through electrostatical interactions. 
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Figure 20. Mapping of the MT binding domain of Cep170. COS7 cells were transfected for 48 h with 

plasmids encoding different GFP-tagged Cep170 fragments. α−tubulin was visualized with appropriate anti-

body and DNA was stained with DAPI. Bars: 10 µm. 
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5.7 Cep170 depletion destabilises the MT network 

To test whether Cep170 can stabilise MTs in vivo two different experiments were per-

formed. First, the stability of Cep170 induced MT bundles was compared to that of unbun-

dled MTs and second, the stability of the MT network was tested after reduction of Cep170 

levels by siRNA mediated protein depletion.  

 

Figure 21. GFP-Cep170 (755-1459) MT bundles are less sensitive to low dose nocodazole treatment. 

COS7 cells were transfected with the indicated construct for 48 h before cells were treated with 0, 1 µM 

nocodazole for the indicated time. α−tubulin was visualized with appropriate antibody (left row). Bars: 10 

µm. 

 

COS7 cells transiently expressing GFP-Cep170 (755-1459) were treated with 0,1 µM no-

codazole for 0 min, 8 min and 16 min and then stained with anti-α-tubulin antibodies. MT-

Cep170 bundles were less sensitive to nocodazole treatment than unbundled MTs that 

could be seen in non-transfected cells (Figure 21). Already, 8 min after nocodazole addi-

tion almost all unbundled MT were depolymerised. In contrast, the bundled MT were unaf-

fected. This effect is even stronger after 16 min of nocodazole treatment. The unbundled 

MT were depolymerised, whereas MT-Cep170 bundles could still be observed (Figure 21). 
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In a second experiment Cep170 levels were reduced by siRNA-mediated depletion for 72 

h. Subsequently, MTs were destabilized by the addition of 0,1 µM nocodazole to the me-

dium for 0 min and 14 min and samples were further processed as described above. 

 

Figure 22. siRNA mediated depletion of Cep170 reduces the stability of MT arrays. COS7 cells were 

transfected for 72 h with control (GL2) and Cep170-specific siRNA duplexes. They were then treated with 

0,1 µM nocodazole for the times indicated. Cep170 and α−tubulin were visualized with appropriate antibod-

ies. Bars: 10 µm. 

 

Depletion of Cep170 reduced the stability of the MT network (Figure 22). MT were de-

polymerised in cells lacking Cep170, whereas MT in control cells still stable (Figure 22).  

In summary, we could show that Ninein requires Cep170 for the anchoring of MTs at the 

subdistal appendages. Loss of Ninein resulted in delocalisation of Cep170, causing MT 

anchoring defects. The C-term of Cep170 binds and bundles MTs which results in a stabili-

sation of MT. Thus we conclude that Cep170 stabilises the MT by bundling them. This in 

turn supports the formation of a stable interphase MT network. 
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5.8 Cdk1 regulates the localisation of Cep170 

Guarguaglini and coworkers previously showed that Cep170 is phosphorylated by Plk1, 

but, the functional relevance of this phosphorylation has not been elucidated (Guarguaglini 

et al. 2005). Besides Plk1, several other kinases control progression through mitosis. In 

particular, Cdk1-cyclin B is a key regulator of mitosis. 

To have a closer look at the possible role of phosphorylation of Cep170, we examined the 

localisation of Cep170 during nuclear envelope breakdown (NEB). After fixation, U2OS 

cells were stained with antibodies specific for Lamin A and Cep170.  

 

Figure 23. Cep170 is displaced from the centriole at late NEB. U2OS cells were fixed and Lamin A, 

Cep170 were detected with specific antibodies. DNA was stained with DAPI. Bars: 10 µm. 

 

We found that Cep170 remained associated with the centrosome until late G2 (Figure 23). 

In G2 cells, both centrioles were Cep170 positive. However, as soon as the nuclear enve-

lope started to break down, the Cep170 signal faded away (Figure 23). Thus, the displace-
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ment of Cep170 from the centrosome occurs concomitantly with NEB, a mitotic event 

which is regulated by Cdk1-cyclin B. This finding suggest that Cep170 might be phos-

phorylated by Cdk1.  

To further explore this possibility, mitotic cells were treated with a Cdk1-cyclin B inhibitor. 

If the localisation of Cep170 is indeed regulated by phosphorylation, the inhibition of 

phosphorylation should retarget Cep170 to the centriole. COS7 cells were arrested in 

metaphase wit 100 nM nocodazole and subsequently treated with 100 µM of the Cdk1 in-

hibitor roscovitine. In parallel, cells were also incubated with 1 µM of the Plk1 inhibitor 

TAL. Cep170 localisation was then examined by immunofluorescence microscopy.  

 

 

Figure 24. Roscovitine treatment retargets Cep170 to the centrioles. (A) COS7 cells were arrested in mi-

tosis by incubation for 12 h in medium containing 100 nM nocodazole. Then, cells were treated with rosco-

vitine or the Plk1 inhibitor TAL and fixed after 0 min, 15 min and 30 min. Cep170 and γ−tubulin were de-

tected with specific antibodies. DNA was stained with DAPI. Bars: 10 µm.  (B) COS7 lysates was analysed 

with Western analysis. Proteins were separated on a 4 % PAGE gel and transferred to a nitrocellulose mem-

brane. Cep170 was detected with a specific antibody. 
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Surprisingly, Cep170 was retargeted to the centrioles after 30 min of roscovitine treatment 

(Figure 24A), whereas Plk1 inhibition for 30 min had no influence on Cep170 localisation 

(Figure 24A). In parallel, cells were lysed and proteins were separated by gel electrophore-

sis. After separation in a 4 % polyacrylamid gel, proteins were transferred to a nitrocellu-

lose membrane and Cep170 was detected by antibody (Guarguaglini et al. 2005). In line 

with previous findings, roscovotine treatment induced a downshift of Cep170 already after 

15 min, and the effect was even more pronounced after 30 min. In contrast, inhibition of 

Plk1 did not change the electrophoretic running behaviour of Cep170. These results sug-

gest that Cdk1 phosphorylates Cep170 and thereby regulates its localisation. 

To test whether Cep170 is directly phosphorylated by Cdk1 and dephosphorylated by 

Cdc14a, an in vitro kinase- and phosphatase assay was performed.  

GFP-fusion proteins encoding N-term Cep170 (1-755) or C-term Cep170 (755-1460) were 

in vitro transcribed using T7-polymerase and then in vitro translated (Promega, in vitro 

translation assay). Afterwards, proteins were precipitated with 1 µg of anti-GFP antibody 

and washed with kinase buffer (BRB80). Proteins were phosphorylated with Cdk1-cyclin 

B for 30 min at 30 °C in the presence of 32P-γ-ATP. Reactions were stopped by washing 

with phosphatase buffer containing EDTA. One half of the reaction mixture was treated 

with Cdc14a-wt phosphatase and the other with a catalytically inactive Cdc14a mutant for 

30 min. Then, the samples were boiled and proteins were separated and transferred onto a 

nitrocellulose membrane. Phosphorylation was determined by autoradiadiography. Myc-

tagged PRC1 was used as a positive control. Fusion proteins were further detected by anti-

GFP antibody, anti-Cep170 antibody (specific for C-term Cep170) and by anti-myc anti-

body (9E10). 
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Figure 25. GFP-Cep170 (755-1459) is phosphorylated by Cdk1-cylin B and dephosphorylated by Cdc14a 

in vitro. Plasmids encoding GFP-Cep170 (1-754), GFP-Cep170 (755-1459) and myc-PRC1 as positive con-

trol were in vitro translated and immunoprecipitated with antibodies coupled to beads. Then, proteins were 

phosphorylated with Cdk1-cyclin B at 30 °C for 30 min and one aliquot was further treated with Cdc14a 

phosphatase at 30 °C for 30 min. Proteins were separated on a 10 % PAGE gel and transferred onto a nitro-

cellulose membrane. Phosphorylation was detected with an X-ray film. Protein amounts were checked with 

anti-GFP-antibody, anti-Cep170 antibody and anti-myc antibody. 

 

Only GFP-Cep170 (755-1459) was phosphorylated by Cdk1 (Figure 25). GFP-Cep170 (1-

754) was not phosphorylated. As expected, PRC1 was an excellence substrate for Cdk1-

cyclin B (Neef et al. 2007). Interestingly, addition of Cdc14a phosphatase could revert 

phosphorylation of Cep170 in vitro.  

These data suggest that Cdk1 directly phosphorylates Cep170 within its C-terminus (aa 

755- 1459) at least in vitro. The C-terminus of Cep170 interacts with Ninein and Cep170  

and Ninein interaction targets Cep170 to the subdistal  appendages of the mother centriole. 

Phosphorylation of Cep170 by Cdk1-cyclin B within this region might control localisation 

of Cep170 in mitosis. This phosphorylation could be counteracted by the phosphatase 

Cdc14a. 
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Figure 26. Cdc14a dephosphorylates Cep170, which was immunoprecipitated from mitotic extract. 

Cep170 was immunoprecipitated by an antibody coupled to beads which were incubated in mitotic HeLaS3 

extract. Precipitated Cep170 was incubated with Cdc14a PD (“phosphatase dead” mutant; right row) or with 

Cdc14a WT (third row from the left) at 30 °C for 30 min. Proteins were separated on a 4 % SDS-PAGE gel 

and transferred on a nitrocellulose membrane. Cep170 was detected with specific antibody.  

 

This model is further supported by the fact that Cdc14a could dephosphorylate endogenous 

Cep170 (Figure 26). Endogenous Cep170 was immunoprecipitated from mitotic extract. 

HeLaS3 cells were arrested in metaphase by 100 nM nocodazole and lysed with lysis 

buffer. Cep170 was immunoprecipitated using mouse monoclonal antibody (72-372) and 

treated with Cdc14a WT or PD for 30 min at 30 °C. Afterwards beads were washed and 

boiled in 2x SDS-gel sample buffer. Protein was separated on a 4 % gel. After transfer onto 

a nitrocellulose membrane, Cep170 was detected by rabbit-anti Cep170 antibody.  

In summary, the above data suggests the following: Cdk1 regulates the binding of Cep170 

to the appendages by phosphorylation of the C-term of Cep170. This occurs during NEB 

when activity of Cdk1-cyclin B rises sharply. Plk1 might phosphorylate Cep170 after Cdk1 

phosphorylation and both kinases might then control centriole binding or MT binding. The 

displacement of Cep170 at the beginning of NEB, then disassembles the subdistal append-

ages, which in turn may support the formation of a highly dynamic spindle. At the end of 

mitosis, Cdc14a dephosphorylates Cep170 and thus allows the re-formation of a stable 

interphase MT array. 
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5.9 Yeast two hybrid interactors of Cep170 

The N-terminus of Cep170 contains a putative FHA domain, a predicted NLS and two pu-

tative SH3-ligand domians (aa 545-551; aa 754-751). To find interacting proteins of the N-

term Cep170, a Y2H-screen was done. The N-term of Cep170 was cloned into pFBT as a 

bait (gift from Francis Barr, Max-Planck-Institute of Biochemistry). Plasmids were trans-

fected into yeast strain PJ69-4A and subsequently cotransfected with a cDNA-library from 

Clontech. The cDNA was derived from HEK293T cells and cloned into pAct2 vector. The 

transformants were plated onto medium lacking histidine, leucine , tryptohane and adenine. 

After two weeks at 30 °C, the DNA of the positive clones was isolated, tested for selfacti-

vation and finally sequenced. In total seventy-one positive clones were found on the selec-

tive medium and twenty of them were not self activating. Five clones contained a sequence 

coding for Kiaa0162 and five clones coded for IFT81. Kiaa0162 encodes a 200 kDa pro-

tein which was formerly found to interact with the benzodiazepine receptor and thus called 

peripheral-type benzodiazepine receptor-associated protein 1 or PRAX-1 (Galiegue et al. 

1999). IFT81 was identified as a component of the intraflagellar transport complex B. It is 

a coiled-coil protein which builds a structural core component of this subcomplex, interact-

ing with IFT72 and IFT74 (Lucker et al. 2005). Additionally, when IFT81 is mutated in 

zebrafish, polycystic kidneys develop (Sun et al. 2004).  

5.10 Bioinformatic characterisation of PRAX-1 and IFT81 

To analyse both proteins for putative domains, their amino acid sequences were examined 

using SMART and PFAM algorithms. PRAX-1 is a 200 kDa (aa 1-1857) protein with three 

predicted SH3 domains, three fibronectin-like domains, one coiled-coil domain and a pre-

dicted NLS (Figure 27). The first SH3 (SH3 (1)) locates at the N-terminus (aa 653-720), 

whereas SH3 (2) and SH3 (3) are at the very end of the C-terminus (aa 1625-1693 and aa 

1764-1831). The three fibronectin like domains form a cluster (aa 791-1066) and the NLS 

(aa 346-350) is located within the N-terminal half. The predicted coiled-coil region locates 

within the N-terminus (aa 120-520).  
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Figure 27. Schematic illustration of PRAX-1. PRAX-1 consists of a N-terminal coiled-coil region, three 

SH3 domains and a cluster of fibronectin like domains in the centre of the protein. 

 

SH3 domains are protein-protein interaction domains which recognizes proline-rich pep-

tides. They are often found in transient protein complexes and proteins within signalling 

pathways. In contrast, structural proteins often contain coiled-coil domains allowing per-

manent protein-protein interactions.  

IFT81 is a 80 kDa protein and a pure coil coiled protein (Figure 28). As mentioned before 

it forms a core component with IFT72/74 for the building of the subcomplex B. IFT81 is 

required for ciliogenesis and mutations cause polycystic kidneys (Sun et al. 2004; Lucker 

et al. 2005). 

 

Figure 28. Schematic illustration of IFT81. IFT81 consists of a central coiled-coil region almost covering 

the whole protein. 

 

5.11 PRAX-1 and IFT81 localise to the mother centriole 

To test whether PRAX-1 and IFT81 localise to the mother centriole, both proteins were 

cloned into a pEGFP vector and expressed for 48 h in U2OS cells. Both proteins (GFP-

IFT81 (1-676) / GFP-PRAX-1(1-1875)) localise to one centriole (Figure 29 and Figure 

30). To mark centrosomes, antibodies specifically detecting pericentrin or γ-tubulin were 

used. 



Results 

 53

 

Figure 29. GFP-IFT81 (1-676) localises preferentially to one centriole. U2OS cells were transfected for 

48 h with different plasmids encoding the indicated fragments. After fixation of the cells, centrosomes were 

detected with an antibody specific for pericentrin. Bars: 10 µm. 

 

To map the centrosome targeting domains in the two proteins different constructs were 

produced and transiently expressed in U2OS cells. Full-length IFT81 (GFP-IFT81(1-676)) 

only bound to one centriole. This was also true for an N-terminal fragment of IFT81 (GFP-

IFT81 (1-422)) (Figure 29). In contrast, GFP-IFT81 (254-676) localised to both centrioles. 

GFP-IFT81 (1-253) and GFP-IFT81 (423-676) formed insoluble aggregates (Figure 29). 

This latter phenomenon can often be observed when overexpressing coiled-coil proteins 

(Andersen et al. 2003). In conclusion, IFT81 needs the N-terminal half to localise to one 

centriole.  

Similar results were observed for the transient expression of full length PRAX-1 (GFP-

PRAX-1 (1-1857). Interestingly, FL-PRAX-1 not only bound to one centriole, but it actu-

ally formed a star like structure around their centriole. However, this could only be seen at 

low levels of expression. If FL-PRAX-11 was highly overexpressed, it assembled aggre-

gates and localised to the nucleus (Figure 30). 

 



Results 

 54

 

Figure 30. Localisation of GFP-PRAX-1 (1-1857) to the centriole or to the nucleus depends on the ex-

pression levels. GFP-PRAX-1 (1-1857) was transiently expressed in U2OS for 48 h. Centrosomes were de-

tected with an antibody specific for  γ−tubulin, DNA was stained with DAPI. GFP-PRAX-1-1 (1-1857) is 

bound to one centriole when present at low abundances; when abundant it localised to the nucleus. Bars: 10 

µm. 

To demonstrate the binding of PRAX-1 to the mother centriole, U2OS transiently express-

ing GFP-PRAX-1 (1-1857) were co-stained with an antibody specific for Ninein. The star-

like structure of overexpressed PRAX-1 co localised with Ninein, confirming that FL-

PRAX binds to the subdistal appendages of the mother centriole (Figure 31).  

 

Figure 31. GFP-PRAX-1 (1-1857) co-localises with Ninein. U20S cells were transfected for 48 h with a 

plasmid encoding for GFP-PRAX-1 (1-1857). After fixation Ninein was detected with specific antibody and 

DNA was stained with DAPI. Bars: 10 µm. 
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To further map the domain required to PRAX-1 binding to the mother centriole the follow-

ing GFP-tagged constructs were produced: fragment missing the last two SH3 domains  

(GFP-PRAX-1 (1-1459)); an N-terminal fragment comprising aa 1-655 (GFP- PRAX-1(1-

655)) and a C-terminal fragment spanning aa 656-1857 (GFP- PRAX-1(655-1857)). These 

constructs were transiently expressed in U2OS cells for 48 h. After fixation of the cells 

centrosomes were detected by a specific anti-γ-tubulin antibody (Figure 32). 

 

Figure 32. Localisation of GFP-PRAX-1-1 (1-1857) to the centriole or to the nucleus depends on the ex-

pression level. GFP-PRAX-1 (1-655) is nuclear and GFP-PRAX-1-1 (656-1857) is cytoplasmic. U2OS cells 

were transfected with the different constructs for 48 h and after fixation centrosomes were detected with an 

anti-γ-tubulin antibody. DNA was stained with DAPI. Bars: 10 µm. 

Curiously, neither GFP-PRAX-1(1-655) nor GFP-PRAX-1(655-1857) localised to the 

centrosome. Only GFP-PRAX-1(1-1459) formed star-like structure around one centriole or 

was localised to the nucleus, depending on protein levels (Figure 32). 



Results 

 56

To explain these findings it is important to know that the first SH3 domain was destroyed 

in both the GFP-PRAX-1(1-655) and the GFP-PRAX-1(656-1857) constructs. The 

boundaries of both fragments lies in the first half of SH3 (1) (aa 653-720), probably ex-

plaining why neither of these fragments was able to localise to the centrioles. GFP-PRAX-

1(1-655) was found in the nucleus, supporting the presence of an NLS.  

5.12 The C-terminus of IFT81 determines localisation to the 

mother centriole 

To map the regions in PRAX-1and IFT81 required for binding to Cep170 immunoprecipi-

tation experiments were performed. GFP-tagged IFT81 and PRAX-1 were expressed in 

HEK293T cells for 48 h. Cells were lysed and GFP-fusion proteins were immunoprecipi-

tated using of anti-GFP antibody. After separation on a 4-15 % gradient gel and transfer of 

the proteins to a nitrocellulose membrane, endogenous Cep170 was detected by a rabbit- 

antibody (Guarguaglini et al. 2005) 

 

Figure 33. GFP-IFT81 (1-676) interacts with endogenous Cep170. Immunoprecipitation experiments 

were performed after transfection of the indicated plasmids into HEK293T cells. Anti-GFP antibodies were 

coupled to beads. Immunoprecipitated proteins were then analysed by Western blotting, using anti-Cep170 

and anti-GFP antibodies. 
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Endogenous Cep170 could only be observed in the immunoprecipitate of FL-IFT81 (GFP-

IFT81 (1-676), Figure 33). No Cep170 was precipitated by GFP-IFT81 (1-253) or GFP-

IFT81 (254-676). These latter fragments also failed to localise to centrosomes (Figure 29). 

These results indicate that IFT81 might bind to the subdistal appendages through the inter-

action with Cep170.  

The immunoprecipitation experiments using different PRAX-1 fragments could also con-

firm previous findings. Neither N-term PRAX-1 (GFP-PRAX-1 (1-655))  nor C-term 

PRAX-1 (GFP-PRAX-1 (656-1857)) immunoprecipitated Cep170 (Figure 34). In contrast, 

both FL-PRAX- (GFP-PRAX-1 (1-1875)) and PRAX-1 lacking SH3(2) and SH3(3) (GFP-

PRAX-1 (1-1459)) were able to precipitate endogenous Cep170 (Figure 34). Both proteins 

formed a star-like structure around one centriole. These results indicate that both IFT81 

and PRAX-1 might be recruited to the appendages by Cep170. 

 

Figure 34. GFP-PRAX-1 (1-1857) and GFP-PRAX-1 (1-1459) interact with endogenous Cep170. Im-

munoprecipitation experiments were performed after transfection of the indicated plasmids into HEK293T 

cells. Anti-GFP antibodies coupled to beads were used for precipitation. Immunoprecipitated proteins were 

then analysed by Western blotting, using anti-Cep170 and anti-GFP antibodies. 
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5.13 SH3(1) of PRAX-1 determines localisation to the mother 

centriole 

To further address the function of the SH3 domains within PRAX-1 two experiments were 

performed: First, extended C-term PRAX-1 fragment was constructed to recover the 

SH3(1) domain and second, GST pull downs were performed. 

C-term PRAX-1 was chosen because of it is cytoplasmic localisation after transient expres-

sion. As expected, an extended GFP-PRAX-1 (492-1857) localised to one centriole (Figure 

35). However, the cytoplasmic levels also remained high. In contrast, a shortened N-term 

of GFP-PRAX-1 (1-491) localised to the nucleus (Figure 35). So it seems that the first SH3 

domain is needed for the binding of PRAX-1 to the mother centriole.  

 

Figure 35. GFP-PRAX-1 (492-1857) localises to one centriole, GFP-PRAX-1 (1-491) is nuclear.  U2OS 

cells were transfected with  different constructs for 48 h and, after fixation centrosomes were detected with 

an anti-pericentrin antibody. DNA was stained with DAPI. Bars: 10 µm. 

 

To address the question of whether SH3(1) might bind to Cep170 all SH3 domains were 

expressed as GST fusion proteins in E. coli. Proteins were purified under native conditions 
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using the following lysis buffer: 300 mM NaCl, 1 mM DTT, 50 mM Tris pH 7,5, 1 % Tri-

ton X-100, and further purified with gluthathione S sepharose. 

For the pull downs, 2 µg of GST-tagged protein was incubated in 400 µl cell lysate. This 

was lysed by lysing HEK293T cells in lysis buffer (150 mM NaCl, 0,7 % NP-40, 40 mM 

Tris pH7,4, protease and phosphatease inhibitor (Roche)). GST-SH3 fusion proteins were 

pulled down with gluthatione S sepharose, washed and boiled in Laemmli buffer. After 

separation of the proteins in a 4-15% gradient gel, endogenous Cep170 was detected with a 

rabbit antibody (Guarguaglini et al. 2005). 

 

Figure 36. GST-SH3(1) pulls down endogenous Cep170. HEK293T lysate was incubated with 2 µg of 

GST-SH3(1) / (2) or (3) or with GST as a control. GST-fusion proteins were precipitated with glutathione S 

sepharose. Proteins were separated by gel electrophoresis and after blotting endogenous Cep170 was detected 

with a specific antibody.  

 

Interestingly, the first SH3 domain pulled down most endogenous Cep170 (Figure 36). 

SH3(3) also pulled down some Cep170, however when correcting for the amount of used 

protein, clearly the SH3(1) had the highest affinity (Figure 36). This result falls in line with 

the previous findings suggesting that the first SH3 domain of PRAX-1 was required for 

binding to the mother centriole. Thus we propose that PRAX-1 binds to Cep170 through its 

SH3(1) domain and that this allows the recruitment to the mother centriole.  
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5.14 IFT81 in cell cycle 

Subdistal appendage proteins are displaced from the mother centriole during mitosis. To 

determine whether this is also true for IFT81 antibodies were produced by immunization of 

rats. Subsequently, antibody was affinity purified. Two rats were immunized six-times with 

100 µg of GST- IFT81 (1-676). Antibodies were purified on His-FL-IFT81 coupled to Affi-

Gel 10 beads (Bio-Rad) and eluted with elution buffer (200 mM glycine, pH 2,7, 150 mM 

NaCl). Purified antibody was used in a final concentration of 0,2 µg/ml for Western analy-

sis and immunofluorescence. Cell cycle dependency of the localisation of IFT81 was tested 

by immunofluorescence on hTERT-RPE1 (RPE1) cells. Cells were fixed and IFT81 was 

detected with the purified rat antibody. Anti-γ−tubulin antibody was used to detect the 

centrosomal marker γ−tubulin. 

IFT81 was present at one centriole in interphase and disappeared from the centrosome in 

prometaphase (Figure 37A). It remained cytoplasmic throughout mitosis (Figure 37 A). 
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Figure 37. (A) IFT81 is displaced from the mother centriole during mitosis. RPE-1 cells were fixed and 

stained for IFT81 with affinity purified antibody. Centrosomes were detected with anti-γ-tubulin antibody, the 

subdistal appendages with anti-Cep170 antibody and DNA was stained with DAPI. Bars: 10 µm. (B) IFT81 

levels are not reduced during mitosis. Mitotic HeLaS3 cells were released from nocodazole arrest. Cells were 

lysed at the indicated time points and proteins were subjected a Western analysis. Progression through mito-

sis was determined by changes in Cyclin B levels. IFT81, Cyclin B and α-tubulin were detected by antibod-

ies. 

  

We also asked whether the electrophoretic mobility of IFT81 changed during mitosis, due 

to posttranslational modifications. HeLaS3 cells were arrested in metaphase with 100 nM 

nocodazole. Then cells were released into PBS and lysed after 0 min, 20 min, 60 min, 100 

min, 140 min and 180 min. The progression through mitosis was monitored by the degra-

dation of cyclin B. IFT81 was not up shifted or degraded in mitosis (Figure 37B). Likely, 

IFT81 is not posttranslationally modified or degraded in mitosis. 

5.15 IFT81 is both an appendage protein and a ciliary protein 

To show that IFT81 is a appendage protein RPE1 cells were fixed and endogenous Cep170 

and IFT81 were detected by immunofluorescence microscopy using specific antibodies.  

To demonstrate that IFT81 is a protein in the PC, RPE1 cells were arrested in G0 by incu-

bation with serum-free medium. After 48 h the MT network was depolymerised by incuba-

tion on ice for 40 min and cells were fixed. The PC was detected by an antibody specific 

for acetylated tubulin (T7451). 

IFT81 only partially colocalised with Cep170 in normal dividing cells (Figure 38). Cep170 

formed a ring like structure around one centriole and IFT81 localised as a tiny dot at the tip 

of the centriole. Not surprisingly, IFT81 colocalised with the ciliary marker (Figure 38). 

Additionally, ciliar IFT81 did not colocalise with Cep170 and IFT81 was not equally dis-
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tributed within the cilium. It was concentrated at the base and at the tip of the cilium (Fig-

ure 38). These are the places in which proteins required for cilium formation are loaded 

onto or released from IFT particles.  

 

Figure 38. IFT81 co-localises with Cep170 at the centriole but not at the PC. Cycling RPE-1 cells or se-

rum starved (48 h) RPE1 cells were fixed and acetylated tubulin was co-stained with IFT81 (upper row) and 

Cep170 (lower row). Bars: 10 µm. 

 

To assess whether IFT81 might be more a distal appendage protein, RPE1 cells were also 

costained for Cep164 and IFT81 with specific antibodies. 

 

Figure 39. IFT81 co-localises with Cep164 at the base of the PC and at the tip of the centriole. IFT81 was 

co-stained with Cep164 in interphase RPE1 cells or in serum starved RPE1 cells. DNA was stained with 

DAPI. Bars: 10 µm. 
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As seen in Figure 39, IFT81 colocalised with Cep164, suggesting that IFT81 could be a 

linker of  distal and subdistal appendages.  

5.16 IFT81 localisation to the centriole is dependent on 

Cep170 

Next we asked whether the localisation of IFT81 depends on the presence of Cep170 or 

vice versa. To answer this question, U2OS cells were treated for 72 h with siRNA duplexes 

targeting either and stained for IFT81 and Cep170. For IFT81 depletion two different RNA 

duplexes and a combination of both duplexes were used. As shown in Figure 40, IFT81 

was not bound to the subdistal appendages after Cep170 depletion, depletion of IFT81 had 

no effect on the localisation of Cep170. These results support the idea that IFT81 is bound 

to the subdistal appendages of the mother centriole through an interaction with Cep170.  
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Figure 40. IFT81 binding to the appendages of the centriole is dependent on Cep170. U2OS cells were trans-

fected for 72 h with siRNA duplexes specific for Cep170, IFT81 or with GL2 control siRNA duplexes and 

then costained with antibodies against  γ−tubulin or IFT81 or with antibodies against γ−tubulin or Cep170, as 

indicated two different siRNA duplexes specific for IFT81 and the combination of both were used. Bars: 10 

µm. 

 

5.17 IFT81 depletion inhibits ciliogenesis  

To explore the function of IFT81, ciliogenesis was induced in RPE1 cells in the absence of 

IFT81, Cep170 or Cep164. Cells were treated with the corresponding siRNA duplexes for 

72 h to allow efficient depletion of the three proteins. IFT81 was depleted with two differ-

ent RNA duplexes and a combination of both duplexes was also used. As a negative con-



Results 

 66

trol, cells were treated with GL2 duplexes. After siRNA treatment, cells were serum 

starved to induce ciliogenesis for 48 h, and then processed as described above. Primary 

cilia were detected by an antibody specific for acetylated tubulin (Figure 41A). Reductions 

of protein levels were shown by Western blotting (Figure 41B).  

 

 

Figure 41. IFT81 is required for PC formation. RPE1 cells were transfected for 48 h with control (GL2) 

or IFT81, Cep164, Cep170 specific siRNA duplexes, followed by serum starvation to induce PC formation. 

Then, cells were analysed by immunofluorescence microscopy (A) using antibodies agains acetylated tubulin 

and pericentrin or by Westen analysis (B). Bars: 10 µm. 

 

Reduction of Cep170 levels had almost no effect on the formation of the PC (Figure 41A). 

Instead, depletion of IFT81 or Cep164 strongly reduced cilium formation. Since the com-

bination of both IFT81siRNA duplexes resulted in the highest reduction of IFT81 levels 

(Figure 41B), this combination of both duplexes were further used for subsequent analyses. 
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To quantify the effects on ciliogenesis, the ratio of cells forming a PC against cells not 

forming a PC was determined. As above, RPE1 cells were treated with siRNA duplexes for 

48 h and subsequently serum starved for 48 h. Three independent experiments were done. 

In total 900 cells were counted (three hundred cells in each experiment).  

 

 

Figure 42. Reduction of PC formation after treatment of RPE1 cells with IFT81 and Cep164 specific 

siRNA duplexes. RPE1 cells were treated for 48 h with siRNA duplexes, followed by serum starvation for 48 

h. For efficient IFT81 depletion, the combination of two duplexes was used. 

 

Results are represented in Figure 42. IFT81 depletion inhibited PC formation. Only 40 % 

of the IFT81-depleted cells have assembled a PC, compared to 80 % in the control cells 

(GL2, Figure 42). Only 25 % of the cells with reduced Cep164 levels could form a PC. 

Surprisingly, the reduction of Cep170 levels only slightly reduced the formation of cilia. 65 

% of the cells with reduced Cep170 levels still assembled a PC. 

These results show that IFT81 is required for PC formation. However surprisingly, the ab-

sence of Cep170, the recruiting factor of IFT81 to the appendages, had no effect on the 
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formation of PC. This suggests that IFT81 has two different functions, one at the subdistal 

appendages and another at the PC.  

5.18 Cep170 depletion inhibits cilium resorption 

In a final series of experiments we asked whether Cep170 might play a role in the life cy-

cle of the PC, or perhaps affecting a step related to maintenance or resorption of the cilium. 

The PC is disassembled when cells re-enter G1/ S phase (Pugacheva et al. 2007). Re-entry 

into S phase can be induced by  the addition of fetal calf serum.  

We further asked whether IFT81 or Cep170 might play any role in this process. To address 

this question, the levels of Cep170 and IFT81 in RPE1 cells were reduced by siRNA. To 

induce cilium formation, RPE1 cells were serum starved for 24 h. To disassemble the PC 

cells were incubated with 10 % serum containing medium for 7 h. After fixation of the 

cells PC was detected by an antibody specific for acetylated tubulin. Three independent 

experiments were performed, and in each experiment three hundred cells were counted 

(Figure 43). 

 

Figure 43. Delay of PC resorption after treatment of RPE1 cells with Cep170  specific siRNA. RPE1 cells 

were treated for 48 h with siRNA duplexes, followed by serum starvation for 24 h, followed by serum release 

for 7 h. For efficient IFT81 depletion, the combination of two duplexes were used. Cells were analysed by 

immunofluorescence microscopy using antibodies against acetylated tubulin as a marker for PC. 
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As shown on Figure 43, depletion of Cep170 inhibited the resorption of the cilium. 

Most cells with reduced Cep170 levels (almost 60 %) still had a primary cilia after 7 h of 

serum treatment. In contrast, in controls only 30 of the cells had a PC (Figure 43). To rep-

resent these data in another way, the ratio of cells with PC after 7 h versus 0 h was calcu-

lated. This determine the percentage of cells keeping the PC after 7 h of serum treatment. 

The data are presented in Figure 44. Whereas only 40 % of the cells treated with Cep164 

siRNA, IFT81 siRNA or GL2 siRNA their PC, more than 80 % of the cells depleted of 

Cep170 kept their PC. The data suggests that Cep170 mainly functions in PC disassembly, 

similar to Aurora A, HEF1 and HDAC6 (Pugacheva et al. 2007). 

 

Figure 44. 85 % of the cells with reduced Cep170 levels keep their PC after serum addition. The Figure 

shows the ratio of cells with PC at time point 0 h relative to cells with PC at time point 7 h. 
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6 Discussion 

The centrosome has two main functions; it organises the MTs and it forms a template for 

ciliogenesis. Here we could show that the subdistal appendage protein Cep170 plays an 

important role in both processes.  

At the subdistal appendages, Cep170 anchors and bundles MTs. In fact, Cep170 interacts 

with both Ninein and MT. This supports the formation of the interphase MT array. At the 

onset of mitosis Cep170 is phosphorylated by Cdk1, which leads to its release from the 

centrosome, concomitant with the disassembly of subdistal appendages. At the end of mi-

tosis Cdc14a dephosphorylates Cep170 and retargets it to the centrosome, concomitant 

with the reassembly of the subdistal appendages. 

The second important function of Cep170 is its requirement for cilium disassembly. We 

could show that Cep170 interact with IFT81 and targets it to the appendages. Additionally, 

we demonstrated that IFT81 colocalises with both Cep170 and Cep164, raising the possi-

bility that subdistal and distal appendages are linked to each other. IFT81 and Cep164 are 

needed for ciliogenesis and for maintenance of cilia, whereas Cep170 is required for the 

resorption of the cilium. Below, we discuss how the various proteins might act together.  

6.1 Cep170, Ninein and the MTs 

Centrosomes organises MT in interphase and during mitosis. Therefore, MTs have to be 

nucleated and anchored at the centrosome (Mogensen et al. 2000; Luders and Stearns 

2007). Centrosomes contain different structures for both functions. The PCM is the main 

site for MT nucleation, whereas the subdistal appendages of the mother centriole are the 

main site for permanent anchoring of MTs (Mogensen et al. 2000; Luders and Stearns 

2007). Mother centrioles are located in the focus of the MT network, although both centri-

oles contain similar amounts of MT nucleation sites (Mogensen et al. 2000; Delgehyr et al. 

2005). Several subdistal appendage proteins are implicated in MT anchoring. In particular, 

Ninein was characterised in detail. However it was not clear whether it acts alone or to-

gether with other subdistal appendage proteins (Bouckson-Castaing et al. 1996; Mogensen 

et al. 2000; Delgehyr et al. 2005) 
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Ninein depletion or overexpression affects anchoring of MTs (Abal et al. 2002; Dammer-

mann and Merdes 2002). Delgehayr and collegues demonstrated that overexpression of 

different fragments of Ninein caused defects in MT anchoring and MT nucleation 

(Delgehyr et al. 2005). Moreover, they showed that an overexpressed N-terminal fragment 

of Ninein (aa 1-373) was cytoplasmic, similar to a fragment comprising the coiled-coil 

domain (aa 373-1874) which formed aggregates in the cytoplasm. Interestingly, they also 

showed that transiently expressed C-term Ninein (aa 1874-2113) localised to the centro-

some, displaced endogenous Ninein and γ−tubulin and thus caused defects in MT anchor-

ing and MT nucleation. Localisation of other proteins (Pericentrin, AKAP450 and Nlp) 

implicated in MT organisation to the centrosome was not affected (Delgehyr et al. 2005). 

The authors suggested that C-term Ninein (aa 1874-2113) displaces endogenous Ninein, 

however they did not explain how the loss of endogenous Ninein causes defects in MT 

anchoring. 

On the basis of the results described in this thesis, we suggest that Ninein targets Cep170 to 

the subdistal appendages and that Cep170 is needed for MT anchoring (Figure 45). Cep170 

interacts with both Ninein and MT, suggesting that Cep170 is the MT anchor and organiser 

at the subdistal appendages. This view is supported by several findings:  

1) Depletion of Cep170 causes a MT anchoring defect as severe as Ninein depletion 

2) Cep170 localisation to the subdistal appendages is dependent on the presence of 

Ninein 

3) Cep170 interacts directly with GFP-Ninein (720-1470) and GFP-Ninein (1471-

2114). Overexpression of these Ninein fragments displaces Cep170 and causes MT 

anchoring defects. Overall, there is a strong correlation between Cep170 displace-

ment and MT anchoring defects. 

4) A C-terminal fragment of Cep170 can bind and bundle MTs in vivo and in vitro 

5) Bundled MTs are more resistance to nocodazole treatment than unbundled MTs 

6) And, finally, Cep170 depletion destabilises the MT network. 
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Figure 45. A model for Cep170 function in MT organisation. 

These data can explain how the loss of endogenous Ninein causes defects in MT anchor-

ing. Additionally, they can explain why MT were still organised by the mother centriole 

after low dose treatment with nocodazole and why MTs converge as bundles around the 

mother centriole. These functions are mediated by Cep170 (Figure 45). 

Centrosomes must organise two different MT networks during the cell cycle. A stable in-

terphase MT network and a highly dynamic mitotic spindle. Thus, it is not surprising that 

centrosomes undergo structural and compositional changes at the onset of mitosis. Addi-

tional nucleation sites are recruited and both centrosomes are separated. Interestingly, the 

subdistal appendages are disassembled, a process which is not well understood. 

Here, we can show that disassembly and reassembly is controlled by the action of Cdk1-

cyclin B and the phosphatase Cdc14a. This is supported by following findings: 

1) Loss of Cep170 occurs during NEB 

2) Inhibition of Cdk1-cyclin B retargets Cep170 to the centrosome and down shifts 

Cep170 in Western analysis. 

3) A C-terminal fragment of Cep170 is phosphorylated by Cdk1 and dephosphorylated 

by Cdc14a 

4) Endogenous, phosphorylated Cep170 can be dephosphorylated by Cdc14a 
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One tentative model would suggest that Cdk1 and Cdc14a control the assembly and disas-

sembly of the subdistal appendages by phosphorylation or dephosphorylation of the C-

terminus of Cep170. Interestingly, the C-terminal fragment of Cep170 (aa755-1459) is 

phosphorylated by Cdk1 and interacts with Ninein. This interaction is required for the lo-

calisation of Cep170 to the appendages. Thus, it is likely that Cdk1-cyclin B control the 

binding of Cep170 to Ninein. Cep170 is also phosphorylated by Plk1 and interacts with the 

polo-box domain of Plk1 (Guarguaglini et al. 2005). This phosphorylation might regulate 

the binding or bundling of MTs by Cep170. An important future line of research would be 

to map the Cdk1- and Plk1 phosphorylation sites and determine their functional relevance. 

Additionally, the function of the disassembly of subdistal appendages during mitosis could 

be explored by constructing a Cep170 mutant which is targeted to the centrosomes during 

mitosis. Either a mutant within the Cdk1 site might remain associated with the centrosome 

in mitosis or a fusion protein consisting of Cep170 with a centrosomal targeting region 

(PACT). The permanently targeted Cep170 should have an effect on the mitotic spindle.  

Because subdistal appendage disassembly goes hand in hand with formation of the mitotic 

spindle we speculate that subdistal appendage proteins organise the stable interphase MT 

network and disassembly of the subdistal appendages at the onset of mitosis allows the 

formation of the mitotic spindle. Disassembly is regulated by the phosphorylation of 

Cep170 through Cdk1 and reassembly by dephosphorylation through Cdc14a.   

6.2 Cep170, PRAX-1 and IFT81 

The PC was long considered as a “rudimentary” organelle, in spite of its presence on al-

most every cell in the human body. However this view has changed in the last few years, 

because several diseases were linked to the cilium (Eggenschwiler and Anderson 2007) So, 

primary cilia are now considered as “antennae” of the cell to sense the environment. The 

PC is involved in Hh-, Wnt and PDGR signalling (Singla and Reiter 2006). It is built in a 

process called intraflagellar transport (IFT). IFT requires two subcomplexes IFT-A and 

IFT-B. IFT subcomplex B proteins form a adapter for the anterograde transports of proteins 

and membrane components within the cilia (Cole 2003). IFT-B consists of at least eleven 

IFT proteins. A structural core of IFT proteins is absolutely required for IFT particles as-

sembly. This core is stabilised by  tetramers consisting of two copies of IFT81 and the het-
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erodimer IFT74/IFT72 (Lucker et al. 2005). Not surprisingly, mutation of IFT81 is linked 

to ciliary diseases. Additionally, mutations of IFT proteins are associated with changes in 

Wnt-, Hh- signalling (Badano et al. 2006). The axoneme of the PC consists of extended 

MTs from the mother centriole. Thus, several mother centriole proteins are required for 

ciliogenesis. For example, Graser et al. demonstrated that the distal appendage protein 

Cep164 is needed for cilium formation (Graser et al. 2007). Similarly, Ishikawa showed 

that Odf2-/- cells could not assemble cilia (Ishikawa et al. 2005). However, mechanistical 

links to IFT are missing. It is still unknown how proteins at the subdistal or distal append-

ages are involved in ciliogenesis.  

Here, we demonstrated that Cep170 targets IFT81 to appendages of the mother centriole 

Moreover, Cep170 directly interacts with IFT81. Depletion of Cep170 caused displace-

ment of IFT81 from the centriole and GFP-IFT81 pulled down endogenous Cep170.  

IFT81 is absolutely required for ciliogenesis and depletion of IFT81 strongly reduced the 

formation of the PC. This is not surprising because IFT81 is a structural component of the 

subcomplex B and depletion of IFT81 should disrupt IFT particle assembly. Interestingly, 

IFT81 colocalises with Cep164 at the tip of the centriole and at the base of the PC, raising 

the possibility that the distal appendages are needed for the assembly of the IFT81 parti-

cles. This view is supported by the finding that Cep164 is also required for ciliogenesis. 

We speculate that the distal appendages form a structure to allow the assembly of IFT81 

particles.  

It may appear surprising that a structural component of the IFT particles localises to the tip 

of the centriole. IFT81 could be needed for both maintenance and initiation of cilium as-

sembly. Its localisation to the tip of the centriole would favour a role for IFT81 in the ini-

tiation of the first steps of cilium assembly. However, it must be further investigated how 

this initiation is regulated.  

Not only the assembly and the maintenance of the PC must be tightly regulated but also its 

disassembly. When cells disassemble their PC a cascade of HEF1, Aurora A and HDAC6, a 

tubulin deacetylase, was reported to be activated (Pugacheva et al. 2007). According to 

their study, the accumulation of HEF1 after serum addition activates Aurora A. Activated 
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and phosphorylated Aurora A is then targeted to the basal body, allowing the activation of 

the tubulin deacetylase HDAC6. Depletion of any of these components delayed resorption 

of PC (Pugacheva et al. 2007). Yet, this study fails to explain how the disassembly of the 

PC is linked to transport mechanisms within the PC.  

Curiously, Cep170 is not needed for cilium formation. Cells without Cep170 can still as-

semble PC. This raises the question of the functional significance of the Cep170-IFT81 

interaction. Perhaps this interaction relates to the observations that depletion of Cep170 

inhibits cilium disassembly. Cells without Cep170 cannot disassemble PC.  

An attractive model proposes that Cep170 is required for the targeting of IFT81 back to the 

subdistal appendages during primary cilia disassembly (Figure 46). This would reduce the 

amount of cycling IFT particles in the PC, which would induce disassembly of the 

axoneme. It is known that the turnover rate of cargo does not significantly change during 

cilium assembly and cilium maintenance (Qin et al. 2004). The length of the cilium is kept 

by a steady state equilibrium, characterised by constant levels of addition and removal of 

tubulin subunits (Qin et al. 2004). Thus, reduction of this turnover rate by targeting the 

core component IFT81 back to the appendages would destabilise the axoneme. We specu-

late that the turnover rate of the cargo is reduced during cilium disassembly and that this is 

regulated by the retargeting of IFT81 to the appendages of the centriole. Thus, depletion of 

Cep170 might result in high turn over rates remaining high, which would stabilise the 

axoneme.  
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Figure 46. A model for the function of IFT81 and Cep170 in the control of the PC disassembly. Addition 

of fetal calf serum induces the resorption of the PC characterised by the targeting of IFT81 back to the 

mother centriole. Lenght (indicated by the arrow) is controlled by the turn-over rate of the IFT. 

In summary, our study raises several important questions for future work: How is the inter-

action IFT81 with Cep170 regulated? Phosphorylation could play a role. Cep170 harbours 

a FHA domain in its N-terminus, FHA domains bind phosphorylated proteins. Maybe 

Aurora A phosphorylates IFT81 during cilium resorption which would target IFT81 back to 

the appendages. 

Another open question is the role of IFT81 in the initiation of cilium assembly. Does it 

interfere with CP110 removal or CPAP transport? A balance of both proteins regulates the 

length of the centriole and removal of CP110 results in extended centrioles (Tsang et al. 

2008). When exactly does assemble IFT81 with IFT72/IFT74 to build the structural core of 

the subcomplex B? What is the role of IFT81 and Cep164 in cilium maintenance? Do the 

distal appendages provide a platform for the interchange of IFT particles at the base of the 

cilium? A closer examination of the role of IFT81 at the base of the cilium might contribute 

to answer these questions. 

The most enigmatic interactor of Cep170 is PRAX-1. PRAX-1is 200 kDa protein  contain-

ing three SH3 domains. SH3 domains bind to proline rich motifs and are required for tran-

sient protein-protein interactions (Galiegue et al. 1999). It is interesting, therefore, that 

Cep170 contains two putative SH3-ligands (aa 545-551; aa 754-751) in its N-terminus.  
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Here we could show that transiently expressed PRAX-1 formed star-like structures around 

the mother centriole. Additionally, PRAX-1 interacts with Cep170 through its first SH3-

domain. GST-SH3(1) pulled down endogenous Cep170 and fragments of PRAX-1 with 

disrupted SH3(1) domain did not localise to the mother centriole. Rescue of SH3(1) retar-

geted the fragment back to the mother centriole. Interestingly, FL-PRAX-1 and N-terminal 

fragments were also nuclear proteins. PRAX-1 contains a nuclear targeting sequence 

KKRKK (aa 346-350) in its N-terminus. Nuclear targeting depends on expression levels. If 

levels increases PRAX-1 is more and more targeted to the nucleus.   

On the physiological role of PRAX-1 we can only speculate. PPAX-1 might synchronise 

centrosomal processes with nuclear processes. One possibility is the linkage of DNA-

synthesis with centrosome duplication. Because of its localisation to the subdistal append-

ages PRAX-1 might also play a role in ciliary events notably in Hh-, Wnt- or Ca2+-

signalling or in the re-entry from G0 into S phase after serum addition. In particular, the 

occurrence of three SH3 domains required for transient protein-proteins interactions raises 

the possibility that PRAX-1 is involved in signalling processes. The data presented here 

provides a starting point for further work, to clarify the contribution of subdistal appendage 

proteins in cilium biogenesis and resorption, and in cilium dependent signalling. 
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7 Material and Methods  

7.1 Chemicals, materials and antibodies 

All chemicals were purchased from Sigma-Aldrich (Seelze, Germany) and Carl Roth 

(Karlsruhe, Germany). The following antibodies were used for immunofluorescence, West-

ern blot and immunoprecipitation: rabbit serum anti Cep170 N-term (1-755) 1:000 for im-

munofluorescence, C-term (756-1490) 1:1000 for Western blotting. Mouse monoclonal 

Antibody against the N-term Cep170 (1-755; (clone number 72-372)) for 

immunoprecipitation and mouse monoclonal antibody against Ninein (Clone number: (79-

160 (16)). Affinity purified anti rabbit Ninein antibody was used at 2 ng/ml. Sheep anti-

GFP, mouse monoclonal antibodies to α−tubulin (1:3000), γ−tubulin (1:1000) anti-acetyl 

tubulin antibody (1:500) were purchased from Sigma-Aldrich. Secondary antibodies: Cy3, 

Cy2, AMCA donkey anti mouse, anti rabbit (1:1000) were purchased from Dianova. DNA 

was stained with 4,6-diamidino-2-phenylindole (DAPI, 2 µg/ml). Nocodazole was 

purchased from Sigma-Aldrich and dissolved in dimethylsulfooxid (DMSO).  

   

7.2 Plasmid preparation  

All cloning procedures were performed according to Molecular Cloning, A Laboratory 

Manual, 2nd edition, Sambrook, J., Fitsch, E.F., Maniatis, T., Cold Spring Harbor Labora-

tory Press 1989 and Current Protocols in Molecular Biology, Wiley, 1999. Plasmids were 

cleaved with restriction enzymes as recommended by the suppliers (NEB). Cleaved 

dsDNA was dephosphorylated with alkali phosphatase (Roche) and ligated with the Fast 

Ligation Kit (Roche) following the supplier protocol. Plasmids were either extracted from 

agarose gels or purified from a 2 ml – 50 ml LB overnight culture according to the proto-

cols provided with the kits from QIAGEN. For PCR reactions, Pfu DNA polymerase was 

used as recommended (Promega) or, alternatively “King of DNA-polymerase” (KOD) 

were used in the presence of 2 % formamide. All reactions were carried out in a RoboCy-

cler Gradient 96 (Stratagen). PCR products were cloned into Topo vectors according to the 

manual (Invitrogen). DNA sequences were checked either by sequencing at  Medigenomix 

(Martinsried, Germany) or using the in-house sequencing facility (Martinsried, Germany). 
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Primers used for PCR reactions are listed in table 1. The PRAX-1 sequence was obtained 

from Kazusa institute (Japan, Kiaa0162 clone) in pBluescript II SK (-). PRAX-1 Fl was 

amplified using Expand High Fidelity PCR System (Roche, Penzberg, Germany) and 

cloned into plasmid pEGPF. Its sequence was confirmed by sequencing. 

For the determination of the MT binding sites of Cep170 different constructs were cloned 

into pEGFP plasmids. IFT81 was cloned into Topo vector and subsequently into pEGFP 

plasmids. 

7.3 Recombinant protein 

Recombinant protein was expressed in JEM109 or BL-21 bacteria for 12 hours at 14 °C. 

To this end a starter culture of transformed bacteria was grown overnight in selective me-

dium and diluted to 1:5 with LB supplemented with antibiotics. The culture was grown 

until an OD600 of 0,6 was reached. Then the expression of the recombinant protein was 

induced by the addition of IPTG to a final concentration of 1 mM for 12 h at 14 °C. Cells 

were pelleted by centrifugation, resuspended in chilled lysis buffer (1 % Triton X-100, 350 

mM NaCl, 50 mM Tris-HCl pH 8, EDTA free Protease Inhibitor (Roche, Penzberg, Ger-

many)) and lysed with an airpress. Subsequently, lysates were clarified by centrifugation 

and then incubated either with Ni-NTA-beads (Qiagen) or glutathione coated beads (Amer-

shan) for 1 h to allow binding of expressed proteins. After several washing steps with lysis 

buffer, protein was eluted with elution buffer (His-tagged protein: lysis buffer with 50 mM 

inidazole, GST-tagged protein: lysis buffer with 50 mM glutathione). Purified protein was 

frozen in aliquots at –20 °C. 

 IFT81 was cloned into pET28c and pGEX-4T to express a His-tagged or GST-tagged pro-

tein in BL21 E. coli for 12 h at 14 °C. Cells were lysed with lysis buffer and proteins, re-

spectively, were purified using big preparative 10 % gels. After running protein gels were 

incubated in KCl and β−mercaptoethanol on ice to precipitate the SDS-protein complex. 

The expected band at 80 kDa was cut out and gel pieces were crushed after freezing them 

in liquid nitrogen. Then crushed gel pieces were incubated with 50 ml of 0,5 x running 

buffer at 4 °C overnight to extract the protein. After centrifugation protein was concen-

trated using Amicon spinning tubes and dialyzed against PBS 0,5 % Triton X-100. Insolu-
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ble protein was further solubilized by the addition of Triton X-100 to a final concentration 

of 1 %. 

7.4 Antibody production  

For the production of monoclonal antibodies mice were immunized with either a Cep170 

fragment spanning aa 1-754 or 755-1490. Proteins were expressed as poly-histidine-tagged 

fusion proteins in E. coli and purified over a Ni2+-column. 100 µg of protein was injected 

subcutaneously together with Freund´s (Sigma-Aldrich) or Alu-Gel-8 (SERVA Electropho-

resis GmbH) adjuvant. Balb/c mice were immunized every four weeks, to a total of six 

injections (animal house, Max-Planck Institute for Biochemistry, Martinsried, Germany). 

After checking for an immune response by immunofluorescence microscopy, the mouse 

spleens were fused with mouse myeloma cells PAIB3Ag81 using polyethylglycol (PEG 

4000; Merck) as described by Kohler and Milstein (Kohler and Milstein, 1975). Fused 

cells were selected for two weeks in HAT-medium (hypoxanthine/aminopterin/thymidine-

medium), followed by selection in HT-medium for the cloning procedure. Supernatants of 

the fused cells were tested for specific antibodies by ELISA, using GST-tagged N-term 

Cep170 (aa 1-755) or C-term Cep170 (aa 756-1459). After subcloning of the hybridoma 

cells, supernatants were further checked for specifity using dot blot assays, immunofluo-

rescence microscopy. Following mouse monoclonal antibodies were produced: 71-413 and 

72-372 against C-term of Cep170, 77-416 against N-term Cep170  

For production of polyclonal antibodies a poly-histidine-tagged IFT81 protein was ex-

pressed in E. coli and purified as described above. 100 µg of purified antigen was injected 

subcutaneously together with Freund´s or Alu adjuvants into rats every four weeks, to a 

total of seven injections (animal house, Max Planck Institute for Biochemistry, Martins-

ried, Germany). Subsequently, antibodies were affinity purified using GST-tagged IFT81 

protein coupled to AffiGel 10. For immunofluorescence and Western blot 0,2 µg/ml of an-

tibody was used.   

7.5 Cell culture and transfection 

All cells were grown at 37 °C in a 5 % CO2 atmosphere. Osteosarcoma cells (U2OS), hu-

man embryonic kidney cells (293T) cells, monkey cells (COS7) and human adenocarci-
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noma cells (A549) were cultured in Dulbecco´s modified Eagle´s medium (DMEM), 

supplemented with 10 % heat inactivated fetal calf serum and penicillin-streptomycin (100 

i.u./ml and 100 µg, respectively, Gibco-BRL, Karlsruhe, Germany). hTERT-RPE1-cells 

were cultured in DMEM Nutrient Mixture F12 Ham (Sigma, Munich, Germany), supple-

mented with 10 % heat inactivated FCS, penicillin-streptomycin (as above), 1 % glutamine 

(Gibco-BRL, Karlsruhe, Germany) and 0,35 % sodium bicarbonate (Sigma, Munich, Ger-

many). Cells adherent on acid treated glass coverslips were transiently transfected using 

FuGene (Roche Diagnostics, Mannheim, Germany) or  according to the manufacturer´s 

protocol.  

7.6 SiRNA experiments 

SiRNA experiments were performed as described previously. The lyophilised and pre-

annealed siRNA duplexes were diluted to a stock solution of 20 µM and aliquots were 

stored at –80 °C. In brief, 0,8 x 105 cells were seeded in 2 ml medium containing three 

glass coverslips. The next day 21 nucleotide siRNA duplexes were transfected using Oligo-

fectamine (Invitrogen, Carlsbad, CA, USA). For a single well of a 6-well plate 3 µl Oligo-

fectamine and 6 µl of 20µM siRNA duplex was added to 80 µl OptiMEM medium (Invi-

trogen, Carlsbad, CA, USA) in an RNAse-free Eppendorf tube. The mixture was mixed 

gently and left for 20 min at room temperature. 72 h after addition of the siRNA duplexes 

cells were fixed with methanol for 10 min or lysed in RIPA-buffer. 

7.7 Immunofluorescence microscopy and immunoblotting 

Cells on glass coverslips were fixed in cold methanol (-20 °C) for 20 min and rehydrated in 

phosphate buffered saline. Usually cells were first incubated with 3 % BSA in PBS for 1 

hour. Then, the first antibody was diluted with 3 % BSA PBS and cells were incubated for 

1 h. After washing with PBS the first antibody was detected with an secondary antibody 

coupled to different fluorescent dyes. These antibodies were also diluted in 3 % BSA/PBS 

and incubated with the cells for 1 h at RT. After washing with PBS coverslips were 

mounted in Moviol. 

Immunofluorescens microscopy was performed with a Zeiss Axioplan II microscope 

equipped with 63x and 100x oil immersion objectives. Photographs were taken with a Mi-



Material and Methods 

 82

cromax 1300 x 1030 pixel CCD camera (Princton Instruments, Princton, NI) and with 

Metaview software. Images were processed using Adobe Photoshop software (Adobe sys-

tems, San Jose CA). 

For Western blotting cells were lysed in RIPA buffer in the presence of EDTA free Prote-

ase inhibitor for 20 min on ice. After determination of the protein concentration and addi-

tion of gel sample buffer 30 µg were added into the pockets of a polyacrylamide gel. The 

proteins were separated and transferred onto nitrocellulose using a Hoefer semidry transfer 

system (Amersham Biosciences, Little Chalfont, UK). For Western blot analysis, mem-

branes were incubated for one hour in blocking buffer (5 % low-fat dry milk in PBS, 0,1 % 

Tween-20). All antibody incubations were carried out in blocking buffer for 1 hour at room 

temperature. The protein antibody complexes were detected with a secondary antibody 

conjugated to HRP. Signals were detected using chemiluminescence and Kodak X-ray 

films. 

7.8 Immunoprecipitation and Pull down assays 

For immunoprecipitation experiments and pull down experiments approximately 5x107 

HEK 293T cells were lysed in lysis buffer (300 mM NaCl, 1 % Triton X-100, 50 mM 

TrisHCl pH 7,6, 40 mM NaF, EDTA free Protease inhibitor (Roche), Phosphatase inhibitor 

cocktail (Roche)). Protein concentration was adjusted to 5 mg/ml. Cep170 was immuno-

precipitated using monoclonal antibody 71-372, Ninein was immunoiprecipitated using a 

specific monoclonal antibody (79-160). GFP tagged protein was immunoprecipitated with 

1 µg of rabbit anti GFP (Abcam). The mixtures with the cell lysates were incubated for 1 

hour at 4 °C to allow the binding of the antigen to the antibody. After immunoprecipitation 

the beads were washed four times with lysis buffer and PBS and subsequently boiled in 2x 

gel sample buffer. 

 

7.9 MT regrowth assays and depolymerization assays 

MTs in COS7 or A549 cells were first depolymerized by cold treatment (45 min on ice). 

For repolymerization of MTs, cells were transferred to 37 °C warm DMEM and fixed after 
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different time points in methanol (-20 °C) for 20 min and further processed as described 

above.  

For depolymerization assays, COS7 cells were incubated with 0,1 µM nocodazole to de-

stabilize the MTs. Then cells were fixed in methanol (-20 °C) for 20 min and rehydrated 

with PBS for 1 hour. 

7.10 Yeast two hybrid experiments 

The coding sequence of N-term Cep170 (aa 1-785) and C-term Cep170 (aa786-1459) was 

cloned into the bait vector pFBT9 (a version of pGBT modified to encode kanamycin resis-

tance; Clontech Laboratories, Inc.; a kind gift from F. Barr, Max-Planck Institute for Bio-

chemistry, Martinsried, Germany). Ninein (1-719), Ninein (720-1470) and Ninein (1471-

2114) were cloned into pACT2 (Clontech Laboratories, Inc., a kind gift of Yan, Xiumin, 

Max-Planck Institute for Biochemistry, Martinsried, Germany). These plasmids were co-

transfected into yeast strain PJ69-4A to test for transactivation. Transformed yeast were 

plated on selective media lacking leucine, tryptophane and histidine. Medium was supple-

mented with 5 mM 3-AT and 2 % (wt/vol) glucose as a carbon source (TDO). All results 

were confirmed by streaking several colonies on selective plates. 

For the Yeast two hybrid screen a cDNA-library of Clontech was used. The cDNA wass 

derived from 293T cells and cloned into the pACT2-vector. As bait N-terminus (aa1-785) 

of Cep170 was used or ,alternatively, also the C-terminus of Cep170 (aa 786-1460). Trans-

formation conditions were optimized so that at least 105 yeast cells were transformed. The 

transformed yeast cells were plated onto selective medium lacking leucine, tryptophane, 

histidine and adenine with 2 % (wt/vol) glucose as a carbon source. The plasmids of the 

positive colonies were isolated and retransformed in yeast to test for selfactivation. After-

wards plasmids were sequenced. 

 

7.11 Cdk1 kinase assays 

The substrates for the Cdk1 kinase assay were in vitro transcribed and translated using the 

TNT T7 Quick coupled Transcription/Translation System (Promega, Madison, WI) and 

following the protocol of the manufactures. Afterwards the GFP-tagged proteins were im-

munoprecipitated with 1 µg of protein G coupled anti-GFP antibody (Abcam 290) or alter-
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natively with protein G anti-myc antibody (9E10). Samples were diluted with immunopre-

cipitation buffer (150 mM NaCl, 20 mM Tris pH8) and after addition of the antibodies the 

mixtures were incubated on a rotating wheel at 4 °C for 1 h. Afterwards the beads were 

washed with immunoprecipitation buffer and BRB80. For phosphorylation the beads were  

incubated with Cdk1 in BRB80 buffer (80 mM K-Pipes, 1 mM EGTA, 1 mM MgCl2, pH 

6,8) and 32P γ−ATP for 30 min and the reaction was stopped by washing with EDTA 

containing washing buffer 

7.12 Cdc14a phosphatase assay 

As a substrate either immunoprecipitated protein was used or in vitro translated and phos-

phorylated protein. Samples were washed with phosphatase buffer and Cdc14a was added 

in 50 mM Pipes pH 4,7. After 30 min of incubation, the activity of the phosphatase was 

assayed either by the downshift of the immunoprecipitated protein or by reduction of in-

corporated 32P γ−phosphate.  

7.13 MT bundling assays 

For MT bundling assays purified and rhodamine-labeled and unlabeled tubulin was used 

(kind gift from Thomas Mayer, Max Planck Institute for Biochemistry, Martinsried, Ger-

many). For MT polymerisation, 100 µM tubulin was incubated for 40 min at 37 °C with 20 

mM GTP in BRB80 buffer containing 50 % glycerol. Subsequently, 35 µM taxol was 

added to stabilize the polymerised MTs. After 40 min the mixture was centrifugated at 

6800 rpm for 30 min at 35 °C. Afterwards, the pellet was resuspended in BRB80 contain-

ing 5 µM taxol to a final concentration of 5 µg/µl MT and stored at RT. For in vitro bun-

dling assays 20 µg of MTs were incubated with 400 ng human N-term Cep170 or C-term 

Cep170 for 5 min at 25 °C. Bundling reactions were stopped by the addition of glutaralde-

hyd and bundling was assayed by microscopy.  

7.14 PC growth and resorption assays 

For PC outgrowth RPE1 cells were serum starved when confluency was 80 %. Starvation 

occurred in F12/DMEM  containing penicillin for 48 h. Before fixation with methanol for 

10 min MTs were depolymerised by cold treatment (40 min, 4 °C).  
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For resorption assays, serum starved RPE1 cells were seeded onto coverslips at a conflu-

ency of 40 %. After addition of medium containing 10 % FCS MTs were depolymerised 

using the procedure described above. Cells were fixed after 7 h of serum addition in metha-

nol (-20 °C). 
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Table 1. List of primers 

Primer name Sequence (5´-3´) Purpose 

M4387 TTGGATCCCGAGTGATCAAATTAAATTCATTATG IFT81 cloning 

M4388 AACTCGAGATCACATTATTAGCCGGTCC IFT81 cloning 

M4364 GGAATTCCCTAGCACTGGACTCTTC PRAX-1 cloning 

M4363 CCGCTGGAGCGGAGCAACTGACAACCC PRAX-1 cloning 

M4658 CATTAGATCTTCCTGCTCCCAGCTGC SH3(1) cloning 

M4659 TTCTCTCGAGCCTACTCTGGAGGGAGGGG SH3(1) cloning 

M4662 TCGAGGATCCCGGTCCCTGCGAGG AG SH3(2) cloning 

M4663 TTCTCTCGAGCCTACTGTCTCCCAGCAGG SH3(2) cloning 

M4664 TCGAGGATCCCGTGTCCAGGCCCCCC SH3(3) cloning 

M3880 TCCCCCGGGCAGCTTAACATCCTGG Cep170 cloning 
in pFBT 

M3881 CGTCGACGCTAATCCAAAGACTCACTTC Cep170 cloning 
in pFBT 

M3882 CGTCGACCTGATTCTAGTATGG Cep170 cloning 
in pFBT 

M3883 CTGCAGTCATTCTTGTACTGTAAC Cep170 cloning 
in pFBT 
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Table 2.List of plasmids 

Epitope tags are N-terminal unless otherwise stated. 

Name Gene Species Insert Vector Tag 

XY163 Ninein mouse aa 720-1470 pACT2 AD 

XY164 Ninein mouse aa 1470-2114 pACT2 AD 

MC59 Ninein mouse aa 1-719 pACT2 AD 

XY189 Ninein mouse aa 720-1470 pEGFP-C2 EGFP 

XY190 Ninein mouse aa 1470-2114 pEGFP-C2 EGFP 

MC35 Ninein mouse aa 1-719 pEGFP-C2 EGFP 

GG8 Cep170 human aa 20-755 pQE-30 His 

GG7 Cep170 human aa 755-1459 pQE-30 His 

GG2 Cep170 human aa 755-1459 pEGFP-C1 EGFP 

GG11 Cep170 human aa 755-1014 pEGFP-C1 EGFP 

GG12 Cep170 human aa 1015-1459 pEGFP-C1 EGFP 

STL1 Cep170 human aa 2-146; pGEX-4T GST 

STL2 Cep170 human aa 2-146; R27D pGEX-4T GST 

STL3 Cep170 human aa 2-146 pcDNA3.1 3x myc Myc 

STL4 Cep170 human aa 2-146; R27D pcDNA3.1 3x myc Myc 

STL5 Cep170 human aa 756-1460 pCR II Topo  

STL6 Cep170 human aa 1-755 pCR II Topo  

STL7 Cep170 human aa 756-1460 pMalp8His MBP-His 

STL8 Cep170 human aa 1-155 pMalp8His MBP-His 

STL9 Cep170 human aa 756-1460 pGEX-p8His GST-His 

STL10 Cep170 human aa 1-755 pGEX-p8His GST-His 

STL11 GST human aa 1-242 pCR II Topo  

STL12 Cep170 human aa 2-146 pCR II Topo  

STL13 Cep170 human aa 2-146, R27D pCR II Topo  

STL14 Cep170 human aa 2-146 pQE-60 His 

STL15 Cep170 human aa 2-146; R27D pQE-60 His 

STL16 Cep170 human aa 1227-1460 pCR II Topo  

STL17 Cep170 human aa 1227-1460 pEGFP-C1 EGFP 

STL18 Cep170 human aa 2-146 pCR II Topo  

STL19 Cep170 human aa 2-146;R27D pCR II Topo  

STL20 Cep170 human aa 1012-1226 pCR II Topo  

STL21 Cep170 human aa 1012-1226 pEGFP-C1 EGFP 

STL22 Cep170 human aa 1012-1055 pEGFP-C1 EGFP 
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STL23 Cep170 human aa 1-785 pCR II Topo  

STL24 Cep170 human aa 786-1460 pCR II Topo  

STL25 Cep170 human aa 786-1460 pFBT BD 

STL26 Cep170 human aa 1-785 pFBT BD 

STL27 Cep170 human aa 1-1460 pCR II Topo  

STL28 Cep170 human aa 1-1460 pCR II Topo  

STL29 Cep170 human aa 2-1460 pcDNA3.1NFlagTo Flag 

STL30 Cep170 human aa 2-1460 pCFlagTo Flag 

STL31 Cep170 human aa 2-146 pcDNA3.1 CFLAG 

 
FLAG 

STL32 Cep170 human aa 2-146; R27D pcDNA3.1CFLAG FLAG 

STL33 Cep170 human aa 2-247 pEGFP-C1 EGFP 

STL34 Cep170 human aa 248-754 pEGFP-C1 EGFP 

STL35 Cep170 human aa 1-755 pCR II Topo  

STL36 Cep170 human aa 756-1460 pCR II Topo  

STL37 Cep170 human aa 1-1460 pCR II Topo  

STL38 Cep170 human aa 756-1407 pEGFP-C1 EGFP 

STL39 Cep170 human aa 756-1175 pEGFP-C1 EGFP 

STL40 Cep170 human aa756-1136 pEGFP-C1 EGFP 

STL41 Cep170 human aa 756-1093 pEGFP-C1 EGFP 

STL42 IFT81 human aa 2.676 pEGFP-C2 EGFP 

STL43 IFT81 human aa 1-253 pEGFP-C2 EGFP  

STL44 IFT81 human aa 254-676 pEGFP-C1 EGFP 

STL45 IFT81 human aa 1-422 pEGFP-C2 EGFP 

STL46 IFT81 human aa 423-676 pEGFP-C2 EGFP 

STL47 IFT81 human aa 1-676 pGEX-5x-2 GST 

STL48 Ninein mouse aa 2-372 pEGFP-C1 EGFP 

STL49 Ninein mouse aa 1875-2114 pEGFP-C1 EGFP 

STL50 Ninein mouse aa 2-375/1875-2114 pEGFP-C1 EGFP 

STL51 Ninein mouse aa 2-375 pEGFP-C1 EGFP 

STL52 Ninein mouse aa 1918-2114 pEGFP-C1 EGFP 

STL53 Ninein mouse aa 1560-2114 pEGFP-C1 EGFP 

STL54 Ninein mouse aa 1660-2114 pEGFP-C1 EGFP 

STL55 Ninein mouse aa 1850-2114 pEGFP-C1 EGFP 

STL56 Cep170 human aa 1085-1459 pEGFP-C1 EGFP 

STL57 IFT81 human aa 1-676 pET28a+ His 

STL58 Cep170 human aa 1085-1460 pCR II Topo  

STL59 Cep170 human aa 1159-1459 pCR II Topo  
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STL60 Cep170 human aa 1118-1200 pCR II Topo  

STL61 Cep170 human aa 1160-1200 pCR II Topo  

STL62 Cep170 human aa 1085-1200 pEGFP-C1 EGFP 

STL63 Cep170 human aa 1159-1459 pEGFP-C1 EGFP 

STL64 Cep170 human aa 1160-1200 pEGFP-C1 EGFP 

STL65 PRAX-1 human aa 1-1857 pEGFP-C1 EGFP 

STL66 PRAX-1 human aa 1-655 pEGFP-C1 EGFP 

STL67 PRAX-1 human aa 656-1857 pEGFP-C1 EGFP 

STL68 PRAX-1 human aa 1-491 pEGFP-C1 EGFP 

STL69 PRAX-1 human aa 492-1857 pEGFP-C1 EGFP 

STL70 PRAX-1 human aa 641-731 pGEX-5x-2 GST 

STL71 PRAX-1 human aa 1611-1700 pGEX-5x-2 GST 

STL72 PRAX-1 human aa 1750-1857 pGEX-5x-2 GST 

STL73 PRAX-1 human aa 1-1459 pEGFP-C1 EGFP 
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Table 3. List of primary antibodies 

number antigen made in dilution comment distributor 

R154 Ninein Rabbit 1:1000 Affinity purified Yan, X 

79-160 Ninien Mouse 1:1000 Hybridoma tissue 

culture supernatant 

Kindly provided 

by M. LeClech 

R113 Cep170 rabbit 1:1000 Serum, immunofluo-

rescence 

Guarguaglini, 

2005 

R114 Cep170 rabbit 1:1000 Serum, Western ana-

lysis 

Guarguaglini, 

2005 

R172 Cep164 rabbit 1:1000 serum Graser, 2007 

71-372 Cep170 mouse undiluted Hybridoma tissue 

culture supernatant 

Lamla, S. 

72-413 Cep170 mouse undiluted Hybridoma tissue 

culture supernatant 

Lamla, S. 

77-311 Cep170 mouse undiluted Hybridoma tissue 

culture supernatant 

Lamla, S. 

77-416 Cep170 mouse undiluted Hybridoma tissue 

culture supernatant 

Lamla, S. 

77-419 Cep170 mouse undiluted Hybridoma tissue 

culture supernatant 

Lamla, S. 

Rat 13 IFT81 rat 0,2 µg 

/ml 

Affinity purified Lamla, S 

9E10 myc mouse 1:10 Hybridoma tissue 

culture supernatant 

Evan et al., 1985 

6-11B-1 Acetylated- 

tubulin 

mouse 1:500  Sigma 
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tubulin 

Ab4448 pericentrin rabbit 1 µg/ml  Abcam 

Ab290 GFP rabbit 1:1000  Abcam 

DM1A α-tubulin mouse 1:5000  Sigma 

GTU-88 γ−tubulin mouse 1:1000  Sigma 
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Table 4. List of siRNA oligonucleotide duplexes 

Gene Target sequence Remarks 

Ninein 5´-GCGGAGCTCTCTGAAGTTAAA-3  

Cep164 5´-CAGGTGACATTTACTATTTCA-3´ Graser et al., 

2007 

Cep170 5´-GAAGGAATCCTCCAAGTCA-3´ Guarguaglini et 

al., 2005 

IFT81 ´5´-GGATATCAGTGCAATGGAA-3´  

IFT81 ´5´-CAGCTCATTAAGAGAGTTGAA-3´  
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8 Abbreviations 

293T HEK293T 

AA amino acid(s) 

AD activation domain 

ATP adenosin 5´-triphosphat 

BD binding domain 

BSA bovine serum albumine 

Cep centrosomal protein 

DAPI 4´,6-diamidino-2-phenylindole 

DTT dithiothreitol 

ECL enhanced chemiluminescence 

EDTA ethylenediaminetetraacetic acid 

EGFP enhanced green fluorescent protein 

EM electrom microscopy 

FCS Fetal calf serum 

GFP green fluorescent protein 

IF immunofluorescence 

IFT intraflagellar transport 

IgG Immunglobulin G 

IP immunoprecipitation 

IPTG isopropyl-beta-D-thiogalactopyranoside 

mAb monoclonal antibody 
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MT MT 

Nlp Ninein-like protein 

ODF outer dense fiber 

PBS Phosphate buffered saline 

PC primary cilium 

PCM pericentriolar material 

PCR Polymerase chain reaction 

PD phophatase dead 

Pfam protein families database 

PKD polycystic kidney disease 

Plk1 Polo-kinase 1 

Plk4 Polo-kinase 4 

PMSF phenylmethylsulfonyl fluoride 

RNA Ribonucleic acid 

RP retinitis pigmentosa 

RPE1 HTERT-RPE1 

PRAX Peripheral-type benzodiazepine receptor-associated protein X 

RT room temperature 

SDS-PAGE Sodium dodecylsulfate polyacrylamid gelelectrophoresis 

siRNA small interfering RNA 

WT wild-type 
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