Biochemische Charakterisierung
der Initiierung der DNA-Replikation in vitro

Von

Jens Baltin

München, November 2008
Dissertation eingereicht am: 04.11.2008
Erstgutachter: Prof. Dr. Dirk Eick
Zweitgutachter: Prof. Dr. Martin Parniske
Tag der mündlichen Prüfung: 11.02.2009

Prof. Dr. Dirk Eick danke ich für die Übernahme der offiziellen Betreuung, für sein stetes Interesse am Fortgang der Arbeit und die schnelle Korrektur.

Herrn Prof. Dr. Martin Parniske danke ich für seine Bereitschaft, als Gutachter diese Dissertation zu beurteilen.

Dr. Manfred Gossen und Vishal Agrawal am Max-Delbrück-Zentrum in Berlin danke ich für die Hilfe beim Baculovirus-Expressionssystem und die Bereitstellung einiger Viren.

Ich möchte auch meinen Freunden danken, die mich während meiner Promotion immer unterstützt haben und sich geduldig meine Probleme angehört haben. Das Gleiche gilt auch für meinen beiden Schwestern, Eva und Julia, denen ich an dieser Stelle herzlich danken möchte.

Publikationen:

Vorträge und Präsentationen auf Konferenzen:

• „Establishment and characterization of a cell free *in vitro* DNA replication system“. Vortrag auf der „Transregio Chromatin Summer School“ im September 2006 in Reimlingen, Deutschland.

Inhaltsverzeichnis

3.6 DNA-Bindungsstudie..43
3.6.1 Kopplung von biotinylierter DNA an Streptavidin-paramagnetische Beads........43
3.6.2 DNA-Bindungsreaktion und Analyse der gebundenen Proteine............................43
3.6.3 λ-PPase-Behandlung der DNA gebundenen Proteine...44
3.7 In vitro DNA Replikation...44
3.7.1 SV40 in vitro Replikationsansatz..44
3.7.2 In vitro Replikationsansatz mit HeLa-Kernextarkten..45
3.8 „Electro Mobility Shift Assay“ (EMSA)..45

4 Ergebnisse..46
4.1 Proteinextrakte aus humanen Zellen unterstützen die DNA-Replikation in vitro........46
4.1.1 SV40 T-Antigen abhängige in vitro DNA-Replikation ...47
4.1.2 Extrakte von Chromatin-gebundenen Protein en aus HeLa-Zellen ersetzen die Aufgaben des SV40 T-Ag in der in vitro DNA-Replikation ...50
4.1.3 Aphidicolin hemmt die in vitro DNA-Replikation ..53
4.1.4 Die in vitro DNA-Replikation findet nur bei niedrigen Salzkonzentrationen statt .55
4.1.5 Chromatin-verpackte DNA ist kein Substrat für die in vitro DNA-Replikation......57
4.2 Die Regulation der in vitro DNA-Replikation ..58
4.2.1 Extrakte aus G1-Phase synchronisierten Zellen unterstützen nicht die in vitro DNA-Replikation ..59
4.2.2 CyclinA ist essentiell für die in vitro DNA-Replikation in Extrakten aus G1/S-Phase synchronisierten HeLa-Zellen ...61
4.3 DNA-Bindungsstudien zur Charakterisierung des prä-Replikationskomplexes64
4.3.1 Bindung von Proteinen des prä-Replikationskomplexes an immobilisierte Plasmide ...65
4.3.2 ATP stimuliert die Bindung der MCM-Proteine an immobilisierte Plasmide67
4.3.3 DNA-gebundenes HsCdc6 wird ATP abhängig phosphoryliert.............................69
4.3.4 Die Phosphorylierung des DNA-gebundenen Cdc6-Proteins erfolgt an den fünf N-terminalen Phosphorylierungsstel len ...70
4.3.5 HsOrc6 stimuliert die Bindung von HsCdc6p an DNA ..73
4.4 Die DNA-Bindung von rekombinantem HsORC ...75
4.4.1 Die kleinste ORC-Untereinheit HsOrc6p bindet DNA...76
4.4.2 Expression und Aufreinigung des humanen Orc1-5-Komplexes mit dem Baculovirus-Expressionssystem ..78
4.4.3 Die DNA-Bindung des humanen Orc1-5-Komplexes ist Orc6 unabhängig80

5 Diskussion ..83
5.1 Das zellfreie in vitro Replikationssystem ..85
5.2 CyclinA ist essentiell für die in vitro DNA-Replikation ..90
5.3 HsCdc6 wird DNA-gebunden phosphoryliert..93
5.4 Die Rolle von Orc6 bei der pre-RC Ausbildung und der ORC-DNA-Bindung96

6 Zusammenfassung ...99

7 Abkürzungsverzeichnis ...100

8 Abbildungsverzeichnis ...101

9 Literaturverzeichnis ..102
10 Anhang

10.1 Aufreinigung Cdc6-wt und Cdc6-5xMut ... 116
10.2 Orc6-Sequenzvergleich und Vorhersage der Sekundärstruktur 117
10.3 Aufreinigung von HsOrc6-wt und HsOrc6-S72A-K76A .. 119
10.4 Lebenslauf .. 120
10.5 Erklärung .. 121
Einleitung

1 Einleitung

Im Folgenden werden die teilweise hochkonservierten Proteine, ihre Funktionen und Regulation bei der DNA-Replikation beschrieben. Am Ende dieses Abschnitts werden einige virale und nicht-virale in vitro Replikationssysteme vorgestellt, auf denen die hier vorliegende Arbeit basiert.
1.1 Die Regulation des eukaryotischen Zellzyklus

Der Zellzyklus eukaryotischer Zellen ist historisch in zwei Hauptphasen eingeteilt (Howard und Pelc, 1953). In der Interphase kommt es zu einer Vergrößerung der Zellmasse bevor das Erbmaterial vollständig und exakt kopiert wird. In der anschließenden Teilungsphase (M-Phase) kommt es dann zur Kernteilung und damit zur gleichmäßigen Verteilung der Schwesterchromatiden auf die Tochterzellen (Mitose) sowie zur Teilung des Cytoplasmas. Die Interphase ist wiederum in drei Phasen unterteilt. In der Synthesephase (S-Phase) wird die DNA im Zellkern genau einmal pro Zellzyklus vollständig repliziert. In der zwischen M-Phase und S-Phase liegenden G1-Phase (G, gap = Lücke) empfangen Zellen mitogene und wachstumsinhibierende Signale und entscheiden ob sie in die nächste Zellteilung eintreten, pausieren oder den Zellzyklus verlassen und in den Ruhezustand übergehen (G0-Phase). Als G2-Phase wird der Zeitraum zwischen S-Phase und M-Phase bezeichnet. Hier wird kontrolliert, ob die DNA korrekt repliziert wurde und die Zelle bereitet sich auf die folgende Teilung vor.

1.2 Die DNA-Replikation

als Bindestelle für den Transkriptionsfaktor Abf1, der die Initiation der DNA-Replikation stimuliert (Diffley und Stillman, 1988).

Der eukaryotische Initiator wurde als spezifisch an Origins bindender Proteinkomplex in der Hefe *S. cerevisiae* entdeckt. Der „Origin recognition complex“ (ORC) besteht aus sechs Untereinheiten (Bell und Stillman, 1992), wobei durch das Binden von ORC an DNA in der G1-Phase potentielle Replikationsstartstellen festgelegt werden. Dabei bilden die ORC-Proteine eine interaktive Plattform, die zur Assemblierung des prä-Replikationskomplexes (pre-RC) dient (Diffley et al., 1995). In Abbildung 1 sind die Abläufe der Ausbildung und Aktivierung des pre-RCs schematisch dargestellt.
Abb. 1 Schematische Darstellung der Ausbildung und Aktivierung des pre-RCs

Der pre-RC besteht neben den Orc1-Orc6 Proteinen aus Cdc6, Cdt1 und der putativen replikativen DNA-Helikase MCM2-7 (Coleman et al., 1996; Diffley et al., 1995; Donovan et al., 1997; Hua und Newport, 1998; Liang und Stillman, 1997; Maiorano et al., 2000a; Nishitani et al., 2000; Romanowski et al., 1996; Rowles et al., 1996; Tanaka et al., 1997). Die Aktivierung des pre-RCs am G1/S-Phase-Übergang wird durch die Proteinkinasen Cdk2 mit den regulatorischen Untereinheiten Cyclin E und Cyclin A, sowie der Dbf4-abhängigen Kinase (DDK) Cdc7 vermittelt (Bell und Dutta, 2002; Forsburg, 2004; Mendez und Stillman, 2003). Dabei wird nach der Assoziation von Mcm10 und dem Helikase-Kofaktor
Einleitung

Cdc45/GINS die Origin-DNA lokal entwunden (Pasero et al., 1999; Tanaka et al., 2007). Die dazu notwendige Helikase-Aktivität kommt durch eine Konformationsänderung des MCM-Komplexes zustande und wird durch die Cdc7/Dbf4-Kinase induziert (Tsuji et al., 2006). Einige aktuelle Arbeiten sprechen dafür, dass der Komplex aus Cdc45/MCM2-7/GINS die prozessive Helikase darstellt (Aparicio et al., 2006; Gambus et al., 2006; Moyer et al., 2006). Nach der Rekrutierung des DNA Polymerase α/Primase-Komplexes (Kukimoto et al., 1999; Lei und Tye, 2001) und dem Einzelstrang-bindenden Protein RPA an die entwundene DNA erfolgt die Initiation der DNA-Replikation.

1.3 Komponenten des prä-Replikationskomplexes
Nachdem im vorherigen Kapitel ein Überblick über die Ausbildung und Aktivierung des pre-RCs, bestehend aus Orc1-6, Cdc6, Cdt1 und MCM2-7, gegeben wurde, werden in diesem Kapitel nun die einzelnen Komponenten des pre-RCs genauer vorgestellt. Dabei werden die Strukturen sowie die Regulation der Proteine durch posttranslationale Modifikationen und die daraus resultierenden Funktionen bei der Initiation der DNA-Replikation in unterschiedlichen Organismen betrachtet.

1.3.1 Der „Origin recognition complex“ (ORC)
Auf der Suche nach dem eukaryotischen Initiator gelang es, einen Proteinkomplex aus der Bäckerhefe S. cerevisiae (S.c.) zu identifizieren, der spezifisch an ARS-Konsensus-Sequenzen in Hefe-Replikationsursprüngen bindet (Bell und Stillman, 1992; Diffley und Cocker, 1992). Dieser „Origin recognition complex“ (ORC) ist ein Multiproteinkomplex und besteht aus sechs Untereinheiten, ScOrc1-ScOrc6, mit Molekulargewichten zwischen 120 und 50kD. Es wurde gezeigt, dass ScORC ATP-abhängig doppelsträngige DNA bindet. Die Untereinheiten ScOrc1, ScOrc4 und ScOrc5 gehören zur AAA⁺-Familie der ATPasen (AAA = „ATPases associated with a variety of cellular activities“) und besitzen konservierte Walker A- und Walker B-Motive, die für die ATP-Bindung und Hydrolyse verantwortlich sind und bei vielen DNA-bindenden Proteinen identifiziert wurden (Neuwald et al., 1999). Jüngere Studien lassen vermuten, dass auch die Untereinheiten ScOrc2 und ScOrc3 entfernt zu dieser AAA⁺-Familie gehören (Speck et al., 2005). ScOrc6 gehört nicht zu dieser Proteinfamilie und wird in Hefe nicht für die DNA-Assoziation von ScOrc1-5 benötigt (Lee und Bell, 1997). Dennoch ist ScOrc6 für das Überleben der Zellen essentiell (Bell und Stillman, 1992; Lee und Bell, 1997; Li und Herskowitz, 1993). Die replikative Funktion von ScOrc6 in Hefe-Zellen besteht in der Stabilisierung des pre-RCs in der G1-Phase und wird für den Eintritt in die S-Phase benötigt (Semple et al., 2006).
Da die pre-RC-Proteine für das Überleben einer Zelle essentiell sind, ist eine der wichtigsten Methoden zur Untersuchung der Funktion dieser Proteine die rekombinante Expression. Im Gegensatz zur Expression in Bakterien erwies sich das Baculovirus-Expressionssystem mit Insektenzellen als besonders geeignet, da die exprimierten Proteine posttranslationale Modifikationen tragen, die in Bakterien nicht angefügt werden (Beljelarskaya, 2002). So zeigten in vitro Studien mit rekombinantem D. melanogaster ORC (DmORC), dass alle sechs DmORC-Untereinheiten für die DNA-Bindung und Replikation benötigt werden (Chesnokov et al., 2001). Zudem konnte in in vitro DNA-Bindungsstudien beobachtet werden, dass im Gegensatz zu S. cerevisiae, DmOrc6 für die Bindung von DmORC an Origin-DNA essentiell ist (Balasov et al., 2007). Die Rolle des humanen Orc6p (HsOrc6) bei der ORC-DNA-Bindung und der Replikation ist bis heute unklar. HsOrc6 wurde aufgrund der hohen Sequenzhomologie mit dem Drosophila Protein identifiziert (Dhar und Dutta, 2000). Dass HsOrc6 eine replikative Funktion besitzt wurde in Depletionsexperimenten durch RNA-Interferenz nachgewiesen (Prasanth et al., 2002). Des Weiteren wurde in vivo und in vitro gezeigt, dass HsOrc6 Bestandteil des HsORC ist (Siddiqui und Stillman, 2007; Thomae et al., 2008). Diese Eigenschaft von HsOrc6 war lange unklar, da nach der Reinigung von rekombinantem HsORC aus Insektenzellen lediglich ein stabiler HsOrc1-5-Komplex detektiert werden konnte, wobei die HsOrc6-Untereinheit kein Bestandteil dieses Komplexes war (Giordano-Coltart et al., 2005; Ranjan und Gossen, 2006; Vashee et al., 2003; Vashee et al., 2001).

Untersuchungen über das DNA-Bindeverhalten dieser rekombinannten Komplexe zeigten, dass HsORC sequenzunspezifisch an DNA bindet, jedoch eine Präferenz für A/T-reiche DNA-Sequenzen vorhanden ist (Vashee et al., 2003). Auch in vivo Experimente mit einem extrachromosomalen Replikon bestätigten, dass die Bindung der preRC-Komponenten HsOrC1, HsOrC2 und HsMcm3 und die Initiation der DNA-Replikation sequenzunspezifisch ist (Schaarschmidt et al., 2004). Aus den Studien mit rekombinannten HsORC und aus Experimenten in denen HsORC-Proteine aus HeLa-Zellen extrahiert werden geht hervor, dass die Untereinheiten Orc2, Orc3, Orc4 und Orc5 den zentralen ORC-Kernkomplex bilden (HsOrc2-5) (Dhar et al., 2001; Vashee et al., 2001). Dabei assoziiert die größte Untereinheit HsOrc1 (97kD), wenn vorhanden stabil, und die kleinste Untereinheit HsOrc6 (30kD) nur schwach mit dem Orc2-5-Komplex (Thomae et al., 2008). Präparationen von rekombinantem HsORC in An- und Abwesenheit von ATP aus Insektenzellen zeigten, dass die Anwesenheit von ATP eine entscheidende Rolle für die Ausbildung und Stabilität des humanen ORC hat (Ranjan und Gossen, 2006). Weitere in vitro Analysen zeigten, dass Mutationen der humanen
Einleitung

14

Orc1-, Orc4- und Orc5-Untereinheiten in der ATP-Bindestelle zur Inhibition der DNA-Replikation führt, obwohl diese Komplexe mit mutierten ORC-Proteinen weiterhin mit Chromatin assoziieren können (Giordano-Coltart et al., 2005). In DNA-Bindungsstudien mit humanem ORC (HsORC) hat die Zugabe von ATP einen stimulierenden Effekt auf die ORC-DNA-Bindung (Vashee et al., 2003).

Eine besondere Rolle bei der zellzyklusabhängigen Regulation der humanen ORC-Aktivität übernimmt das HsOrc1-Protein. Durch die Phosphorylierung von Chromatin-gebundenem HsOrc1 nach der Origin-Aktivierung wird das Protein in der S-Phase für den Ubiquitin-vermittelten Abbau durch das 26S-Proteasom markiert (Fujita et al., 2002; Li und DePamphilis, 2002) und ist nach der Initiation der DNA-Replikation nicht mehr an Origins nachzuweisen (Ohta et al., 2003; Tatsumi et al., 2003). Dieser Mechanismus verhindert eine Re-Assoziation von HsOrc1 an Chromatin während der S-Phase und somit eine Re-Replikation. Des Weiteren unterliegt die Expression von Orc1 in Säugerzellen einer vom Transkriptionsfaktor E2F abhängigen Expressionskontrolle (Ohtani et al., 1996). Verschiedene Arbeiten zeigten zusätzlich, dass der HsOrc2-5-Komplex während der Mitose nicht an Replikationsursprüngen nachzuweisen ist (Abdurashidova et al., 2003; Gerhardt et al., 2006), sodass in jedem Zellzyklus HsORC neu an die Replikationsursprüinge binden muss (Siddiqui und Stillman, 2007). Ob jedoch der gesamte HsORC-Komplex vollständig vom Chromatin nach der DNA-Replikation dissoziiert wird kontrovers diskutiert, da in einigen Arbeiten eine Chromatinassoziation von HsOrc2-5 auch in der G2/M-Phase beobachtet wurde (Mendez und Stillman, 2000; Ritzi et al., 1998).

1.3.2 Das Cdc6-Protein

Einleitung

In humanen Zellen führen Mutationen des Walker A-Motivs zur Inhibition der ATP-Bindung und Hydrolyse, wohingegen die Mutation des Walker B-Motivs nur die ATP-Hydrolyse behindert (Herbig et al., 1999). Die Injektion der beiden mutierten Proteine in HeLa-Zellen inhibiert die DNA-Replikation, was darauf schließen lässt, dass sowohl die ATP-Bindung als auch die ATP-Hydrolyse essentiell für die HsCdc6 Funktion sind.

Abb. 2 Schematische Darstellung des HsCdc6

Gezeigt sind sechs potentiellen CDK-Phosphorylierungsstellen (Serin: SP und Threonin: TP), das N-terminale Kernlokalisierungssignal (NLS), das Cyclin-Bindemotiv (Cy-motif), die für ATP-Bindung/-Hydrolyse verantwortlichen Walker A- und Walker B-Motive, eine Leucin-reiche Domäne in der die Kern-Export-Sequenz liegt und Peptide, die für die Bindung von HsOrc1, HsCdc6 und CyclinA verantwortlich sind (entnommen aus: Herbig et al., 2000).

Die hier beschriebenen Studien lassen den tatsächlichen Effekt der CyclinA-Cdk2 Phosphorylierung von Cdc6 in Vertebraten weitgehend ungeklärt. Im Gegensatz dazu verhindert die HsCdc6-Modifikation durch CyclinE-Cdk2 in Zellen, die aus der G0-Phase in den Zellzyklus eintreten, die Bindung von APC. Durch die so vermittelte Stabilisierung von HsCdc6 wird ein Zeitfenster geschaffen, in dem der pre-RC ausgebildet werden kann (Mailand und Diffley, 2005).
1.3.3 Das Cdt1-Protein

Ein weiteres wichtiges Protein für die Regulation der pre-RC-Ausbildung und dem Verhindern von Re-Replikation ist das Cdt1-Protein. Es wurde als erstes in der Hefe *S. pombe* entdeckt (Hofmann und Beach, 1994) und konnte später in *S. cerevisiae* sowie in allen höheren Eukaryotener als hochkonserviertes Protein identifiziert werden (Hefe: (Devault et al., 2002; Tanaka und Diffley, 2002); Frosch: (Maiorano et al., 2000b); Drosophila: (Whittaker et al., 2000); Mensch: (Wohlschlegel et al., 2000)). Cdt1 ist Bestandteil des pre-RCs und assoziiert ORC-abhängig an Chromatin (Maiorano et al., 2000b). Des Weiteren konnte eine direkte Interaktion mit Cdc6 (Cook et al., 2004; Nishitani et al., 2000) und dem MCM-Komplex (Tanaka und Diffley, 2002) nachgewiesen werden. Ob die Assoziation von Cdt1 an Chromatin Cdc6 abhängig ist, wird kontrovers diskutiert. So assoziiert beispielsweise in *X. laevis* (Maiorano et al., 2000b) und *S. pombe* (Nishitani et al., 2000) Cdt1 auch in Abwesenheit von Cdc6 an Chromatin. Für die Funktion von ScCdt1 bei der pre-RC-Ausbildung ist ScCdc6 jedoch essentiell (Randell et al., 2006). Die Beobachtung in *S. cerevisiae*, dass Cdt1 mit dem MCM-Komplex interagiert, zusammen mit Studien über die Assoziations-Kinetiken der pre-RC-Komponenten an Origin-DNA legen nahe, dass Cdt1 und MCM2-7 zusammen als Komplex an Origins rekrutiert wird (Randell et al., 2006). Die Funktion des Cdt1-Proteins wird auf zwei Weisen reguliert. Zum einen wird die Menge an Cdt1 über Degradation kontrolliert und zum anderen wird die Aktivität von Cdt1 über den spezifischen Inhibitor Geminin reguliert. Geminin ist ein Substrat des APCs und akkumuliert in Zellen während der S-Phase bis zur Mitose (McGarry und Kirschner, 1998; Tada et al., 2001; Wohlschlegel et al., 2000). In Studien in Säugetierzellen, die jedoch nicht die pre-RC-Ausbildung untersuchen, verhindert die Zugabe von Geminin die Interaktion zwischen Cdt1 und MCM sowie Cdc6 (Cook et al., 2004; Yanagi et al., 2002). Arbeiten in *Xenopus* zeigen, dass Geminin zu einer Stabilisierung von Cdt1, ORC und Cdc6 auf Chromatin führt und die MCM2-7 Ladung verhindert (Gillespie et al., 2001; Tada et al., 2001; Wohlschlegel et al., 2000). Zudem wird Geminin nach der pre-RC-Ausbildung in der späten G1-Phase in den Nukleus importiert (Hodgson et al., 2002; Yoshida et al., 2005).
Einleitung

1.3.4 Der MCM2-7-Komplex

Die MCM-Proteine wurden in der Hefe S. cerevisiae als Faktoren identifiziert, die den Erhalt von extrachromosomaler DNA, so genannte Minichromosomen gewährleisten (MCM, „minichromosome maintenance“) (Tye, 1999b). Sechs dieser MCM-Proteine zeigen vor allem in einer 200 Aminosäure langen zentralen Region Homologie auf, die Variationen von Walker A- und Walker B-Motiven beinhalten (Koonin, 1993; Neuwald et al., 1999). Die, aufgrund dieser Homologie zu der Familie der AAA⁺-ATPasen gehörenden MCM2-7-Proteine unterscheiden sich in der N- und C-terminalen Region voneinander, wobei jede einzelne Untereinheit in allen eukaryotischen Organismen hochkonserviert ist (Tye, 1999a). Die Untereinheiten MCM2-7 bilden einen Heterohexameren-Komplex (Adachi et al., 1997) und schließen durch die Bindung an ORC, Cdc6 und Cdt1 die Ausbildung des pre-RCs ab. Zahlreiche Studien in eukaryotischen Zellen deuten darauf hin, dass der MCM2-7-Komplex Teil der replikativen DNA-Helikase ist (Chong et al., 1995; Kubota et al., 1997; Labib et al., 2000; Pacek und Walter, 2004; Shechter et al., 2004; Takahashi et al., 2005; Tanaka et al., 1997; Yan et al., 1993). Unterstützt wird diese Theorie durch Experimente in Hefe und HeLa-Zellen, bei denen mit Hilfe von Chromatin-Imunopräzipitationen (ChIP) gezeigt wurde, dass MCM2-7-Komplexe am G1/S-Phase-Übergang an Origins assoziiert vorliegen, sich im Verlauf der S-Phase jedoch von ihnen entfernen (Abdurashidova et al., 2003; Aparicio et al., 1997; Schaarschmidt et al., 2002). Die Regulation der MCM2-7-Aktivität erfolgt über Phosphorylierung durch die Kinasen DDK und CDK, wodurch die S-Phase eingeleitet wird (Masai et al., 2005). In in vitro Studien zeigte ein gereinigter MCM2-7-Komplex jedoch keine DNA-Helikaseaktivität, was darauf hindeutet, dass zur Aktivierung der Helikase-Aktivität die Assoziation weiterer Faktoren notwendig ist (Kaplan et al., 2003; Kaplan und O'Donnell, 2004). Aktuelle Studien sprechen dafür, dass der Komplex aus Cdc45, MCM2-7 und GINS die aktive prozessive DNA-Helikase ist (Aparicio et al., 2006; Gambus et al., 2006; Moyer et al., 2006). Nach der erfolgten Replikation werden die MCM2-7-Komplexe vom Chromatin abgelöst (Bell und Dutta, 2002; Hyrien et al., 2003; Kelly und Brown, 2000; Ritzi und Knippers, 2000; Tye, 1999a) und eine Reassoziation der MCM2-7-Komplexe an Chromatin kann erst wieder nach erfolgter Mitose stattfinden (Lei und Tye, 2001).

Der Mechanismus, wie die DNA am Origin durch den MCM2-7-Komplex entwunden wird, ist jedoch immer noch unklar. Zum einen könnte einer der beiden DNA-Stränge vom MCM2-7-Komplex umschlossen werden und, durch Ausschluss des anderen Strangs, die DNA entwunden werden (Kaplan et al., 2003). Zum anderen könnte MCM2-7 den DNA-
Einleitung

Doppelstrang umschließen und beispielsweise durch die koordinierte Rotation mehrerer MCM2-7-Komplexe zu einer Entwindung durch topologischen Stress führen (Laskey und Madine, 2003).

1.4 In vitro DNA-Replikationssysteme

In den 90er Jahren wurden in vitro Replikationssysteme mit Extrakten aus verschiedenen eukaryotischen Zellen entwickelt. Dabei sollten die Extrakte die Funktion der viralen Proteine bei der Initiation der DNA-Replikation übernehmen. Einen Einblick in diese Vielzahl an verschiedenen Systemen gibt Abschnitt 1.4.2.

1.4.1 Das SV40 in vitro DNA-Replikationssystem

Einleitung

In diesem System stellt also der cytosolische Extrakt die Funktionen zur DNA-Strangsynthese während der Elongationsphase bereit, wobei das virale T-Ag als Initiatorprotein zur spezifischen Bindung an den SV40-Origin und zur lokalen Entwindung der DNA benötigt wird (Stillman, 1989).

1.4.2 Nicht-virale in vitro DNA-Replikationssysteme

Einleitung

Bedingungen nur 1-3% von der, die mit T-Ag und SV40-DNA beobachtet wird (Berberich et al., 1995; Pearson et al., 1991; Zannis-Hadjopoulos et al., 1994). Diese Beobachtung kann damit erklärt werden, dass der Initiator T-Ag in hohen Konzentrationen zugegeben wird und mehrere Aufgaben bei der Initiation übernimmt, wobei keine Koordination mit anderen Faktoren notwendig ist. Die zellulären Faktoren hingegen, welche die Aufgaben des T-Ag’s übernehmen, werden sehr verdünnt in die Reaktionen eingesetzt. Zudem bedarf es einer komplexen Koordination der mehr als ein Dutzend zellulären Initiatorfunktionen um an definierte Stellen des Plasmids zu binden und die DNA-Replikation einzuleiten.

1.5 Zielsetzung

2.1 Antikörper

Die in dieser Arbeit gezeigten Western Blot-Analysen sowie die Immunpräzipitationen wurden mit den in Tabelle 1 aufgeführten Antikörpern durchgeführt.

<table>
<thead>
<tr>
<th>Spezifität</th>
<th>Spezies, sonstiges</th>
<th>Bezugsquelle</th>
<th>Verdünnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyclin A</td>
<td>Maus, SG19, IP</td>
<td>S. Geley, Innsbruck *</td>
<td>1:200</td>
</tr>
<tr>
<td>IgG Ratte</td>
<td>Kaninchen, monoklonal, IP</td>
<td>Dianova</td>
<td></td>
</tr>
<tr>
<td>EBNA1</td>
<td>Ratte, 1H4, IP</td>
<td>E. Kremmer, GSF</td>
<td>1:200</td>
</tr>
<tr>
<td>Cyclin E</td>
<td>Maus, Ab-3 monoklonal, WB</td>
<td>Sigma</td>
<td>1:1000</td>
</tr>
<tr>
<td>Cyclin A</td>
<td>Maus, Ab-6, monoklonal, WB</td>
<td>Neomarkers</td>
<td>1:1000</td>
</tr>
<tr>
<td>CyclinB1</td>
<td>Maus, V152, WB</td>
<td>Cell Signaling Tech.</td>
<td>1:2000</td>
</tr>
<tr>
<td>Orc1</td>
<td>Ratte, 7A7, monoklonal, WB</td>
<td>E. Kremmer, GSF</td>
<td>1:20</td>
</tr>
<tr>
<td>Orc2</td>
<td>Kaninchen, WB</td>
<td>eigene</td>
<td>1:1000</td>
</tr>
<tr>
<td>Orc4</td>
<td>Maus, monoklonal, WB</td>
<td>BD Pharmingen</td>
<td>1:2000</td>
</tr>
<tr>
<td>Orc6</td>
<td>Ratte, 3A4, IP, WB</td>
<td>E. Kremmer, GSF</td>
<td>1:200</td>
</tr>
<tr>
<td>Cdc6</td>
<td>Maus, Ab3, WB</td>
<td>Calbiochem</td>
<td>1:1000</td>
</tr>
<tr>
<td>Mcm3</td>
<td>Kaninchen, polyklonal, WB</td>
<td>eigene</td>
<td>1:1000</td>
</tr>
<tr>
<td>Mcm7</td>
<td>Kaninchen, WB</td>
<td>eigene</td>
<td>1:1000</td>
</tr>
<tr>
<td>Cdt1</td>
<td>Ratte, WB</td>
<td>Labor R. Knippers</td>
<td>1:200</td>
</tr>
</tbody>
</table>

Tabelle 1 Antikörper

Für Western Blot-Analysen (WB) beziehungsweise Immunpräzipitation (IP) wurden die Antikörper in den angegebenen Verdünnungen eingesetzt. *Medizinische Universität Innsbruck

2.2 Enzyme

2.3 Genotyp der verwendeten Bakterienstämme

DH5α
F- lacI, recA1, endA1, hsdR17, \((\text{lacZYA-argF})\), U169, F\(80\text{dlac}\Delta M15\), supE44, thi-1, gyrA96, relA1 (Hanahan, 1985)

Rosetta(DE3)
F- ompT hsdSB(rB-mB-) gal dcm (DE3) pLysSRARE (argU+, argW+, cam+, ileX+, glyT+, leuW+, proL+) (Novagen)

DH10Bac™
F- mcr \(\Delta(mrr-hsdRMS-mcrBC)\) \(\varphi 80\text{lac}\Delta M15\) \(\Delta\text{lacX74 recA1 endA1 araD139} \Delta(\text{ara, leu})7697\) galU galK λ- rpsL nupG/bMON14272/pMON7124 (Invitrogen)

2.4 Größenstandard

Als DNA-Längenmarker wurde die GeneRuler™ 1kb DNA-Leiter von Fermentas verwendet.

Als Protein-Größenmarker wurde die BenchMark Protein-Leiter von Invitrogen verwendet.

2.5 Nukleinsäuren

Alle in dieser Arbeit verwendeten Oligonukleotide wurden von der Firma Sigma synthetisiert.

Die Sequenzen der PCR-Primer sind in Tabelle 2 angegeben.

<table>
<thead>
<tr>
<th>Name</th>
<th>Sequenz (5’-3’)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orc6-pET28a-for</td>
<td>TTTTCA(TAG)GGGTTA(CG)AGCTGATCG</td>
</tr>
<tr>
<td>Orc6-S72A-K76A-lower</td>
<td>GACAGCTCTGATATGTCTCC(CG)GTTCAAACCAGCAAGT</td>
</tr>
<tr>
<td>Orc6-pET21a-(NotI)-reverse</td>
<td>GAGTGCGGCGCCGCTCTGC</td>
</tr>
<tr>
<td>M13-forward (-40)</td>
<td>GTTTTCCAGTACCGAC</td>
</tr>
<tr>
<td>M13-reverse</td>
<td>CAGGAAACAGCTATGAC</td>
</tr>
</tbody>
</table>

Tabelle 2 Verwendete Oligonukleotidprimer

2.6 Reagenzienkits

QIAprep Spin Miniprep Kits (Qiagen)
CloneJET™ PCR Cloning Kit (Fermentas)
Bac-to-Bac Baculovirus Expressionssystem (Invitrogen)
NucleoSpin Extract II™ Extraktionskit (Macherey und Nagel)
Dynabeads® KilobaseBINDER™ Kit (Dynal)
2.7 Zelllinien

HeLa S3 Zervixplattenepithel-Karzinom-Zelllinie (Puck und Marcus, 1955) adaptiert für das Wachstum in Suspension
Sf9 immortalisierte Spodoptera frugiperda Ovarzellen
BTI-Tn-5Bl-4 Insektenzellen (High Five™, Invitrogen)

2.8 Chemikalien, Geräte und sonstiges

Applichem, Darmstadt
Grace’s-Insektenmedium, TNM-FH-Insektenmedium
Amersham Biosciences
Deoxyadenosine 5’-(alpha-32P)-triphosphate (3000 Ci/mmol)
Carl Roth GmbH und Co KG
Acrylamid, Natriumdodecylsulfat, Phenol, Roti-Block, Spectra/Por 6 Dialyse-Membran (MWCO 3500 kDa, Durchmesser 11,5 mm)
Difco Laboratories, Detroit, Michigan, USA
Bacto-Agar, Hefeextrakt, Trypton
Eppendorf Gerätebau, Hamburg
BioPhotometer, Reaktionsgefäße verschiedener Größe, Tischzentrifuge 5415
Fujifilm, Düsseldorf
Imaging Plate BAS-MS2040, Fuji Phosphoimager FLA-5100
General Electric Healthcare, München
ECL-Western Blotting Analyse System, HybondTM-ECL-Zellulosemembran, Protein A-Sepharose, Protein G-Sepharose
Hoefer Scientific Instruments, San Francisco, USA
Mighty Small II Gel Elektrophorese Einheit, SemiPhor, Semidry Blottingsystem, SLAB Gel Dryer; Model: GD2000
Invitrogen GmbH, Karlsruhe
fötales Kälberserum, HEPES, L-Glutamin, Natrium-Pyruvat, Penizillin, Streptomyzin, Trypsin-EDTA (1x), Trypton, Na-Bicarbonat, Yeastolat, Pluronic, Zellkulturnmedium DMEM, CellFECTIN Transfektionsreagenz,
Macherey-Nagel, Düren
NucleoSpin Extract II Kit
Material

MBI Fermentas, St. Leon-Rot
Restriktionsenzyme, DNA-Leiter-Mix

Merck-Eurolab GmbH
Ethylendiamintetraessigsäure (EDTA), Ammoniumperoxodisulfat (APS), Essigsäure, Ethidiumbromid, Ethanol, Glucose, Glycerol, Isopropanol, Kaliumacetat, Kaliumchlorid, Kaliumdihydrogenphosphat, Lithiumchlorid, Magnesium-chlorid, Magnesiumsulfat, Natriumacetat, Natriumchlorid, Natriumdihydrogenphosphat, Natriumdodecylsulfat (SDS), Salzsäure, Saccharose, Tetramethylendiamin (TEMED)

Millipore, Frankreich
Wasservollentsalzungsanlage Milli-RO 60 PLUS

Nunc GmbH, Wiesbaden
Plastikpetrischalen, Zellkulturflaschen, Zellkulturschalen, 6 Loch Platten

New England Biolabs, Schwalbach
Restriktionsenzyme, DNA modifizierende Enzyme

PAA Laboratories, Wien
G418-Sulfat (Neomyzin)

PE Biosystems, Weiterstadt
PCR-Reaktionsgefäße

Peqlab, Erlangen
Reaktionsgefäße, Elektrophorese-Kammern

Pierce, Rockford
BCA Protein Assay

Promega, Mannheim
Antikörper, GoTaq-Polymerase, Taq-Puffer, dNTP’s

Qiagen, Hilden
Nickel-NTA-Agarose

Roche Diagnostics GmbH, Mannheim
dNTPs, Tris-(hydroxymethyl)-aminomethan (TRIS), alkalische Phosphatase, RNase I, Klenow-Fragment, complete Protease Inhibitor EDTA free
Sigma Chemie, München
Ampicillin, Bromphenolblau, DMSO, Dithiothreitol (DTT), HEPES, Harnstoff, Natriumfluorid, Natriummolybdat, Natriumorthovanadat, Natriumpyrophosphat, Phenylmethylsulfonylfluorid (PMSF), Monolaurat (Tween-20), Rinderserumalbumin (BSA), Kreatinphosphat, Kreatinkinase
Schleicher & Schuell, Dassel
Filtreinheit 1,2 μm
Vector Laboratories,
PHOTOPROBE (S-S) Biotin
Methoden

3 Methoden

3.1 Standardmethoden

• Western-Blot-Analyse mit monospezifischen Antikörpern (Harlow und Lane, 1988) mittels Peroxidase-gekoppelten sekundären Antikörpern (ECL Western Blotting Protokoll, Amersham Life Science, 1994).
• Plasmidpräparation durch alkalische Lyse (Birnboim, 1983).
• Herstellung kompetenter *E. coli* und Transformation von *E. coli* nach Inoue (Sambrook und Russell, 2001).
• Fluorimetrische DNA-Konzentrationsbestimmung (Protokoll der Firma Höfer).
• Elektrophorese von DNA in Agarosegelen (Sambrook und Russell, 2001).
• Coomassie-Färbung von SDS-PAA-Gelen (Bramhall et al., 1969).
• Bestimmung der Proteininkonzentration (Bradford, 1976).
• Reinigung von DNA mittels Gleichgewichtszentrifugation in Anwesenheit von Cäsiumchlorid und Ethidiumbromid (Sambrook und Russell, 2001).
• Silberfärbung von SDS-PAA-Gelen (Blum et al., 1987).

3.2 Zellkultur

3.2.1 Kultivierung und Passagierung

HeLa-S3-Zellen

Die adhäsienten HeLa-S3-Zellen wurden als Monolayer in DMEM mit 10% FCS, 100μg/ml Streptomycin und 100Units/ml Penizillin bei 37°C, 5% CO₂-Gehalt und 95% Luftfeuchtigkeit kultiviert. Erreichten die Zellen eine 90%ige Konfluenz wurden die Zellen zweimal mit BPS gewaschen und in 2ml Trypsin inkubiert. Dabei lösten sich die Zellen von der beschichteten Zellkulturschale ab und wurden verdünnt auf Zellkulturschalen mit frischem Medium gegeben.
Sf9-Insektenzellen
Die Sf9-Insektenzellen wurden für die Amplifikation von Baculoviren verwendet. Sie wurden in Suspension in Grace’s-Insektenmedium (pH=6,3) (Applichem) mit 10% FCS, 350mg/ml Na-Bicarbonat, L-Glutamin, Yeastolat und Pluronic kultiviert. Erreichten die Zellen eine Dichte von 2x10^6 Zellen/ml wurden sie durch einfaches Verdünnen mit frischem Medium auf eine Dichte von 5x10^5 Zellen/ml eingestellt. Die Kultivierung erfolgte in Erlemeyerkolben mit Schraubverschluss (lose und fixiert) bei 26°C und 120rpm auf einem Orbitalschüttler. Durch aussähen auf eine beschichtete Zellkulturschale wachsen die Sf9 Zellen adhärent als Monolayer und eignen sich so für die Transfektion mit Baculovirus-DNA (s.u.).

Hi5-Insektenzellen
Die Hi5-Insektenzellen wurden adhärent als Monolayer in beschichteten Zellkulturschalen kultiviert. Sie wurden in TNM-FH-Insektenmedium (pH=6,3) (Applichem) mit 10% FCS, 350mg/ml Na-Bicarbonat, L-Glutamin und Yeastolat kultiviert. Zum Passagieren wurden die Zellen vom Boden abgeklopft und verdünnt in frischem Medium auf eine sterile Zellkulturschale gegeben. Die Hi5-Insektenzellen eignen sich hervorragend für die Expression von rekombinanten Proteinen. Für die Expression der Cdc6-Proteine wurden die Hi5-Zellen auch als Suspensionszellen unter den gleichen Bedingungen wie die Sf9-Zellen kultiviert.

3.2.2 Bestimmung der Zellzahl
3.2.3 Synchronisation von HeLa-S3-Zellen

Durch einen doppelten Thymidinblock lassen sich HeLa-S3-Zellen am G1/S-Phase-Übergang synchronisieren. Dabei unterbindet Thymidin die Synthese von dNTPs und stoppt so die DNA-Synthese, wodurch die Zellen am Beginn der S-Phase arretiert werden. 3,5x10⁶ Zellen wurden in frischem Medium auf eine 145mm Zellkulturplatte gegeben und 5,5h Stunden wachsen gelassen. Für den ersten Thymidinblock wurden 2,2mM Thymidin zugegeben. Nach 15,5h wurden die Zellen durch zweimaliges Waschen mit PBS und Zugabe von frischem Medium für 9h aus dem Block entlassen. Es erfolgte der zweite Thymidinblock durch Zugabe von 2,2mM Thymidin. Nach 15h in diesem zweiten Block befanden sich die Zellen am G1/S-Phase-Übergang. Nach dem Entlassen der Zellen aus diesem Block durchliefen die Zellen die folgende S-Phase, die Mitose und die G1-Phase relativ synchron. Auf diese Weise konnten Extrakte aus synchronisierten Zellen zu verschiedenen Zeitpunkten nach dem zweiten Block präpariert werden (G1/S-Phase am Ende des 2. Blocks; frühe bzw. späte S-Phase 5h- bzw. 7,5h nach dem Entlass; G1-Phase 15h nach dem Entlass).

3.2.4 FACS Analyse

Zur Kontrolle der Synchronisation wurden die HeLa-Zellen mit Propidiumiodid (PI) gefärbt und mittels Durchflusszytometrie analysiert (FACS-Analyse, „Fluorescence Activated Cell Sorter“). Der fluoreszierende Farbstoff PI interkaliert dabei in die DNA, wobei die im FACS gemessene Fluoreszenz proportional zum DNA Gehalt einer Zelle ist. Für diese Färbung wurden die Zellen fixiert und permeabel gemacht. Dazu wurden 2-3x10⁶ Zellen zweimal mit PBS gewaschen und in 80%Ethanol (in PBS) für mindestens eine Stunde bei 4°C fixiert. Anschließend wurden die Zellen zweimal mit PBS gewaschen und in 1ml PI-Färbe-Mix (PBS, 50µg/ml PI, 20U/ml RNaseA (Roche), 1mM EDTA) aufgenommen und im FACS analysiert.
3.3 DNA-Arbeitstechniken

3.3.1 Polymerase Kettenreaktion (PCR)

Ein 50μl PCR-Reaktionsansatz enthielt 25ng Template-DNA, je 25pmol Primer, je 25mM dNTPs, 1x DNA-Polymerasepuffer und 1,25-2,5 Units DNA-Polymerase. Nach einer initialen Denaturierung der DNA bei 94°C für 5min folgten 25-35 Zyklen aus Denaturierung (45s / 94°C), Hybridisierung (45s / 50-60°C) und Synthese (1-5min / 72°C). Für die finale Extension wurde der Ansatz für 5-7min bei 72°C inkubiert und anschließend bei 4°C gelagert. Dabei richteten sich die Zeiten und Temperaturen der einzelnen Schritte nach der verwendeten DNA Polymerase, der Länge der zu amplifizierenden Produkte und der Schmelztemperatur der verwendeten Primern.

Zur Mutagenese des HsOrc6-Gens wurden 2,5 Units PfuUltra® High-Fidelity DNA-Polymerase (Stratagene) verwendet. Die Amplifikation wurde in 35 Zyklen durchgeführt, wobei die Hybridisierungszeit 1min bei 52°C und die finale Extension 5min bei 72°C betrug. Bei der Herstellung von rekombinanten Baculoviren erfolgte die Kontrolle der Transposition in DH10Bac E. coli-Zellen mittels Kolonie-PCR. Statt gereinigter DNA wurden hier von einer LB-Agar-Selektionsplatte gepickte Bakterienkolonien verwendet. Aus den in 10μl Wasser aufgenommenen Bakterien wurden 2,5μl in einen PCR-Ansatz eingesetzt. Die Amplifikation erfolgte in 30 Zyklen mit 1,25 Units GoTaq™ DNA Polymerase (Promega) in Anwesenheit von je 50pmol Primer und einer Synthesephase von 5min bei 72°C. Die Hybridisierung erfolgte für 45s bei 55°C und die finale Extensionszeit betrug 7min bei 72°C.

3.3.3 Restriktionsverdau

Der Verdau von DNA mit Restiktionsendonukleasen erfolgte unter den vom Hersteller angegebenen Reaktionsbedingungen mit den empfohlenen 10x Reaktionspuffern. Die eingesetzte Menge an Enzym wurde aus der Menge an zu verdauender DNA berechnet.

3.3.4 Isolierung von DNA Fragmenten aus Agarose-Gelen

Die zu isolierende DNA wurde über ein 0,8%iges TAE-Agarose-Gel, das 1μg/ml Ethidiumbromid enthielt, aufgetrennt und die DNA Bande unter UV-Licht (254nm) mit einem sterilen Skalpell ausgeschnitten. Die Reinigung der DNA aus der Agarose erfolgte mit dem „NucleoSpin Extract II“ Extraktionskit (Macherey und Nagel) und wurde nach Herstellerangaben durchgeführt.
3.3.5 Dephosphorylierung von 5’DNA-Enden

Für die Abspaltung der 5’-Phosphatgruppe wurde in dieser Arbeit die Shrimps alkalische Phosphatase (SAP) (Fermentas) verwendet. Unter Verwendung des vom Hersteller mitgelieferten Buffers wurden bis zu 0,5pmol linearisierter DNA mit 2 Units SAP für 30min bei 37°C behandelt und die Phosphatase anschließend bei 65°C für 15min inaktiviert. Die DNA-Fragmente wurden direkt in die Ligation eingesetzt.

3.3.6 Ligation mit der T4-DNA-Ligase

Die Ligation wurde mit der T4-DNA-Ligase (Roche) unter Verwendung des vom Hersteller mitgelieferten Buffers durchgeführt. Das molare Verhältnis von Vektor- zu Insert-DNA betrug dabei 1:1 bis 1:5, wobei pro Ligation 100ng Vektor-DNA eingesetzt wurden.

3.3.7 Isolierung von Plasmiden aus Flüssigkulturen

3.3.8 HsOrc6 Mutagenese und Klonierung der Expressionsplasmide

Das PCR-Produkt (774bp) wurde in den pJET1.2/blunt-Vektor in einem 10μl Ansatz nach Herstellerangaben mit dem „CloneJET™ PCR Cloning Kit“ (Fermentas) kloniert. Der komplette Ligationsansatz wurde in DH5α-Zellen transformiert und die Bakterien anschließend auf LB-Agar-Selektionsplatten (100μg/ml Ampicillin) ausplattiert. Die
Plasmide aus sechs Klonen wurden mittels alkalischer Lyse präpariert und positive Klone durch einen BglII-Verdau identifiziert. Der pET21a-Orc6-wt-Vektor sowie der pJET1.2-Orc6-S72A-K76A-Vektor wurden dann mit den Restriktionsendonukleasen NdeI und NotI verdaut und in einem 0,8%igen TAE-Agarose-Gel analysiert. 400ng des linearisierten pET21a-Orc6-wt-Vektors wurden dephosphoryliert und 100ng nach Hitzeinaktivierung der SAP in einem 15,5µl Ligationsansatz mit dem Orc6-S72A-K76A-Insert eingesetzt. Nach der Transformation in DH5α-Zellen und der Selektion auf LB-Agar-Platten (100µg/ml Ampicillin) wurde ein Klone gepickt und die Plasmid-DNA aus einer 5ml LB (100µg/ml Ampicillin) Übernacht-Kultur aufgereinigt. Durch einen BglIII-Verdau wurde die Korrektheit des pET21a-Orc6-S72A-K76A Klons überprüft. Der pET21a-Orc6-wt und der pET21a-Orc6-S72A-K76A Vektor wurden anschließend für die bakterielle Expression der beiden Orc6-Proteine genutzt. Der pET21a-Vektor ist so konstruiert, dass sechs Histidine an das C-terminale Ende der Orc6-Proteine angehängt werden (His-Epitop).

3.3.9 Biotinylierung von Plasmid-DNA
Die Biotinylierung der pEPI-UPR-DNA mit PHOTOPROBE (S-S) Biotin (Vector Laboratories) erfolgte für 30min unter einer UV-Lampe (365nm), die sich in einem Abstand von 2cm über dem auf Eis stehenden, geöffneten 1,5ml Eppendorf-Reaktionsgefäβ befand. Ein 80µl Reaktionsansatz enthielt 0,13µM Plasmid-DNA und 2,34µM Biotin (Verhältnis DNA:Biotin = 1:18). Nach der Photokopplung wurde das freie Biotin durch eine 2-Butanol-Präzipitation entfernt. Zu dem Reaktionsansatz wurden 1Volumen 0,1M Tris (pH 9,5) und 2 Volumen 2-Butanol gegeben, anschließend gut gevortextet und für 1min bei V_max in der Eppendorf-Tischzentrifuge zentrifugiert. Die obere Phase (Butanol) wurde verworfen und zu der unteren wässrigen Phase 2 Volumen 2-Butanol gegeben. Wieder wurde der Ansatz stark gevortextet, nach der Zentrifugation die obere Butanol-Phase verworfen und die DNA in der wässrigen Phase durch eine Ethanol-Fällung präzipitiert. Das getrocknete DNA-Pellet wurde dann in TE aufgenommen.
3.4 Herstellung und Amplifikation rekombinanter Baculoviren

HsCdc6-Baculoviren

HsOrc1-HsOrc5-Baculoviren

3.5 Proteinbiochemische Methoden

3.5.1 Bakterielle Überexpression und Reinigung von HsOrc6

Für die bakterielle Expression von HsOrc6 wurden die Expressions-Plasmide pET21a-Orc6-wt und pET21a-Orc6-S72A-K76A in den *E. coli* Stamm Rosetta(DE3) pLysS RARE transformiert. Eine Übernacht-Kultur der Bakterienzellen wurde 1:100 in 400ml LB (100µg/ml Ampicillin, µg/ml Chloramphenicol) verdünnt und bis zu einer optischen Dichte (OD₆₀₀) von 0,35 wachsen gelassen. Die Induktion erfolgte dann mit 1mM IPTG (Endkonzentration). Nach 4h Inkubation bei 37°C wurden die Zellen für 5min bei 5000g abzentrifugiert, anschließend mit PBS gewaschen und in ein 50ml Falkon überführt. Nach einer weiteren Zentrifugation für 10min bei 1600g (4°C) wurde das Pellet in 8ml kaltem Puffer A (20mM Hepes, 5mM KCl, 0,5mM MgCl₂, 500mM NaCl, 10mM Imidazol) resuspendiert und in einen Glas-Sonikator überführt. Die Suspension wurde fünfmal für 30s auf Eis sonifiziert (25% Amplitude, 0,9s Puls an, 0,1s Puls aus). Die sonifizierte Probe wurde dann in 2ml Eppendorf-Reaktionsgefäße überführt und für 10min bei Vₑ₅₀₀ in einer auf 4°C vorgekühlten Eppendorf-Tischzentrifuge zentrifugiert. Die Überstände wurden gesammelt und auf eine mit Puffer A äquilibrierte Ni-NTA Agarose-Säule gegeben (Säulenvolumen (CV) = 400µl). Dafür wurden 800µl 50% Ni-NTA-Agarose (Qiagen) in eine 10ml Poly-Prep-Säule (Bio-Rad) pipettiert und mit Puffer A äquilibrriet. Die Säule wurde anschließend zweimal mit 5CV Wasch-Puffer (20mM Hepes, 5mM KCl, 0,5mM MgCl₂, 1M NaCl, 10mM Imidazol) gewaschen. Eine erste Elution erfolgte anschließend mit 6 x 1CV Elutions-Puffer 1 (20mM Hepes, 5mM KCl, 0,5mM MgCl₂, 80mM NaCl, 50mM Imidazol), wobei die Eluate gesammelt wurden. Die zweite Elution erfolgte mit 10 x 1CV Elutions-Puffer 2 (20mM Hepes, 5mM KCl, 0,5mM MgCl₂, 80mM NaCl, 250mM Imidazol). Der Input, der Durchlauf, die einzelnen Waschschffaktionen und die Eluate wurden anschließend auf einem 12,5%-igen PAA-Gel mittels Coomassiefärbung analysiert. Die Fraktionen mit der größten Menge an
gereinigten Proteinen wurden vereinigt und über Nacht gegen 2 l Dialysepuffer (20 mM Heps, 5 mM KCl, 0,5 mM MgCl2, 80 mM NaCl, 5% Glycerol, 1 mM DTT) dialysiert. Am nächsten Morgen wurde für eine Stunde der Dialysepuffer gewechselt, die Proben aliquotiert und in flüssigem Stickstoff shockgefroren. Die Lagerung erfolgte anschließend bei -80°C. Die Proteinkonzentration wurde nach der Bradford-Methode bestimmt.

3.5.2 HsCdc6 Expression in Hi5-Insektenzellen und Reinigung

Für die Expression von HsCdc6-wt und HsCdc6-5xMut wurden 50 ml frisch verdünnte Hi5-Insektenzellen (5x10⁵ Zellen/ml) mit 2 ml des entsprechenden V₁-Virusstock infiziert und anschließend das Zellwachstum alle 24 h durch Zählen der Zellen in einer Neubauer Zählkammer beobachtet. Wenn nötig, wurden die Zellen auf unter 1x10⁶ Zellen/ml verdünnt. 48 h nachdem die Zellen aufgehört haben zu wachsen wurden die Zellen abzentrifugiert (8 min bei 170 g) und zweimal in kaltem PBS gewaschen. Die Zellen wurden anschließend entweder direkt lysiert oder in Puffer 1 (PBS, 2 mM MgCl₂, 10% Glycerol) shockgefroren. Zur Lyse wurden die Zellen in 3 ml kaltem Lyse-Puffer (PBS, 2 mM MgCl₂, 0,1% Nonidet P-40, 10% Glycerol, 1 mM PMSF) aufgenommen und 10 min auf Eis inaktiviert. Zur Extraktion der Chromatin-gebundenen Proteine wurde das Volumen bestimmt und durch Zugabe von 5 M NaCl eine Konzentration von 500 mM NaCl eingestellt. Nach einständiger Inkubation auf Eis wurde die Suspension für 20 min bei 200000 g in einem TLA-100.2 Rotor (Beckman) zentrifugiert. Der Überstand wurde anschließend auf eine mit Puffer A (PBS, 2 mM MgCl₂, 0,1% Nonidet P-40, 10% Glycerol, 1 mM PMSF, 450 mM NaCl) äquilibrierte Glutathion-Sepharose 4 FAST Flow Säule (GE Healthcare) gegeben ((CV) = 400 µl). Die Säule wurde mit 5 CV Waschpuffer 1 (PBS, 2 mM MgCl₂, 0,1% Nonidet P-40, 10% Glycerol, 1 mM PMSF, 80 mM NaCl), dann mit 5 CV Waschpuffer 2 (PBS, 2 mM MgCl₂, 0,1% Nonidet P-40, 10% Glycerol, 1 mM PMSF, 1 M NaCl) und zuletzt mit 5 CV Waschpuffer 1 gewaschen. Die Elution der gebundenen Cdc6-GST-Fusionsproteine erfolgte mit 10 x 0,5 CV Elutionspuffer (PBS, 2 mM MgCl₂, 0,1% Nonidet P-40, 10% Glycerol, 1 mM PMSF, 80 mM NaCl, 100 mM Glutathion). Der Input, der Durchlauf, die einzelnen Waschfraktionen und die Eluate wurden anschließend auf einem 10%igen PAA-Gel mittels Coomassiefärbung analysiert. Die Fraktionen mit der größten Menge an gereinigten Proteinen wurden vereinigt und über Nacht gegen 2 l Dialysepuffer (20 mM Heps, 5 mM KCl, 0,5 mM MgCl₂, 80 mM NaCl, 5% Glycerol, 1 mM DTT) dialysiert. Am nächsten Morgen wurde für eine Stunde der Dialysepuffer (2 l) gewechselt. Die Probe wurde anschließend durch Zentrifugation in einer Amicon® Ultra-4 Zentrifugen-Filter-Einheit (Millipore) nach Herstellerangaben auf 200 µl eingeengt. Nach dem

3.5.3 HsORC Expression in Insektenzellen und Reinigung

Hi5-Insektenzellen wurden mit einer Dichte von 3-5x10⁶ Zellen/Platte auf 145mm Zellkulturplatten ausgesät und für 30min stehen gelassen, damit sich die Zellen absetzten konnten. Danach wurden die amplifizierten Virusüberstände der fünf Baculoviren zugegeben: 2,5ml HsOrc1-Viren (C-terminales His-Epitop), je 1,5ml HsOrc2-, HsOrc3, HsOrc4-Viren und 1ml HsOrc5-Viren (Angaben für eine Platte). Die Zellen wurden für 60h inkubiert und anschließend mit dem vorhandenen Medium von den Platten abgespült. Die in 50ml Falcon-Röhrchen gesammelten Zellen wurden für 4min bei 174g abzentrifugiert. Alle folgenden Arbeitsschritte wurden auf Eis durchgeführt und alle verwendeten Puffer wurden vorher auf 4°C gekühlt. Die Zellen wurden zweimal mit PBS gewaschen und die restliche Flüssigkeit abgesaugt. Das Pellet wurde in 1ml Lysepuffer (PBS, 2mM MgCl₂, 0,1% Nonidet P-40, 10% Glycerol, 1mM PMSF, 1mM ATP, 1xComplete EDTA-frei (Roche)) pro infizierter Platte resuspendiert, in 15ml Falcon-Röhrchen überführt und für 10min im Kühlraum auf einen Überkopf-Schüttler inkubiert. Anschließend wurden die lysierten Zellen für 4min bei 790g abzentrifugiert. Vom Überstand (cytosolischer Extrakt) wurde ein Aliquot für die spätere Analyse aufbewahrt und der Rest verworfen. Die Zellen wurden in 50ml Falcon-Röhrchen ausgesät und für 60h inkubiert und anschließend mit dem vorhandenen Medium von den Platten abgespült. Die in 50ml Falcon-Röhrchen gesammelten Zellen wurden für 4min bei 174g abzentrifugiert. Alle folgenden Arbeitsschritte wurden auf Eis durchgeführt und alle verwendeten Puffer wurden vorher auf 4°C gekühlt. Die Zellen wurden zweimal mit PBS gewaschen und die restliche Flüssigkeit abgesaugt. Das Pellet wurde in 1ml Lysepuffer (PBS, 2mM MgCl₂, 0,1% Nonidet P-40, 10% Glycerol, 1mM PMSF, 1mM ATP, 1xComplete EDTA-frei (Roche)) pro infizierter Platte resuspendiert, in 15ml Falcon-Röhrchen überführt und für 10min im Kühlraum auf einen Überkopf-Schüttler inkubiert. Anschließend wurden die lysierten Zellen für 4min bei 790g abzentrifugiert. Vom Überstand (cytosolischer Extrakt) wurde ein Aliquot für die spätere Analyse aufbewahrt und der Rest verworfen. Das Pellet wurde einmal in 1ml Lysepuffer pro infizierter Platte gewaschen und anschließend in 0,75ml Kernextraktionspuffer (Lysepuffer mit 400mM KCl Endkonzentration) pro Platte aufgenommen. Die resuspendierten Kerne wurden auf Eppendorf-Reaktionsgefäße verteilt und für 1h im Kühlraum über Kopf geschüttelt. Nach einer Zentrifugation für 30min bei 14000rpm in der Eppendorf-Tischzentrifuge wurden die Überstände (Kernextrakte) in neue Eppendorf-Reaktionsgefäße überführt und ein Aliquot für die spätere Analyse aufbewahrt. Pro infizierter Platte wurden 100µl Ni-NTA-Agarosebeads (50%-Lösung) durch dreimaliges Waschen in Lysepuffer (mit 10mM Imidazol) äquilibrirt. Nach dem vollständigen Entfernen des Überstands wurde der Kernextrakt, der auf 10mM Imidazol (pH 7,2; 2M Imidazol-Stammlösung) eingestellt wurde, zu den Beads gegeben und für 1h im Kühlraum auf einem Überkopf-Schüttler inkubiert. Die Beads wurden im Anschluss für 2min bei 80g abzentrifugiert und der Überstand, der die nicht gebundenen Proteine enthält für die spätere Analyse aufbewahrt. Die Beads wurden dreimal mit 1ml Lysepuffer (mit 20mM Imidazol, pH 7,2) gewaschen, wobei jeweils eine Inkubation für 5-10min bei 4°C stattfand. Durch Zugabe von 50µl Elutionspuffer (PBS, 2mM MgCl₂, 0,1% Nonidet P-40, 10% Glycerol, 1mM PMSF, 1mM ATP, 1xComplete EDTA-frei
(Roche), 400mM Imidazol, pH 5,0) pro infizierter Platte erfolgte die Elution für 30min bei 4°C unter Rollen. Die Beads wurden danach für 3min bei 80g abzentrifugiert und das Eluat abgenommen. Für eine zweite Elution wurden die Beads anschließend in 100μl Elutionspuffer pro infizierter Platte resuspendiert und für 30min bei 4°C unter Rollen inkubiert. Der Überstand wurde nach einer Zentrifugation für 3min bei 80g abgenommen. Die beiden Eluate wurden aliquotiert und schockgefroren, wobei je ein Aliquot für die Analyse der Aufreinigung diente.

Für die Analyse der Aufreinigung wurden der cytosolische Extrakt (1/400), der Kernextrakt (1/300), die nicht an die Beads gebundenen Proteine (1/300), die Elution (1/40) und die in 1xLämmlipuffer aufgekochten Beads (Äquivalent zur Menge an Kernextrakt) mittels SDS-PAGE in einem 10%iges PAA-Gel aufgetrennt. Die Detektion erfolgte im Anschluss mittels Coomassie-Färbung. Um die Reinheit des Orc1-5 Komplexes zu überprüfen wurde von einem 10%igen PAA-Gel des Eluats eine Silberfärbung durchgeführt (Blum et al., 1987).

3.5.4 Präparation von HeLa-S3 Zellextrakten

Alle Arbeiten zur Extraktpräparation wurden im Kühlraum durchgeführt, die Proben immer auf Eis gelagert und die verwendeten Puffer vor Beginn der Arbeiten vorgekühlt. Die Präparation der Extrakte aus HeLa-S3-Zellen erfolgte von 6-10, 60% konfluenten, 145mm Zellkulturplatten. Die Zellen wurden auf Platte zweimal mit kaltem PBS gewaschen, anschließend mit einem Zellschaber gelöst und in ein 14ml Falcon-Röhrchen überführt. Nach einer Zentrifugation für 8min bei 164g wurden die Zellpellets in insgesamt 5ml hypotonen Puffer (20mM Hapes pH7,9 bei 4°C, 5mM KCl, 1,5mM MgCl2, 0,1mM DTT, 1mM ATP, 1xComplete EDTA-frei (Roche), 340mM Succrose) resuspendiert. Die Zellen wurden erneut 8min bei 164g zentrifugiert, der Überstand vorsichtig abgenommen und das Zellpellet in 10ml hypotonen Puffer (20mM Hapes pH7,9 bei 4°C, 5mM KCl, 1,5mM MgCl2, 0,1mM DTT, 1mM ATP, 1xComplete EDTA frei (Roche)) resuspendiert. Nach der Zentrifugation für 8min bei 164g wurde das Pellet mit einer abgeschnittenen 1ml-Pipettenspitze gelöst und das Volumen bestimmt. Die Zellen wurden für 10min auf Eis inkubiert. Nach 10-15x douncen in einem Dounce-Homogenisator (S-fit) wurden die löslichen Proteine für 30min auf Eis eluiert. Die Präparation der Zellkerne wurde dabei unter einem Mikroskop überprüft. Die Kerne wurden in 2ml Eppendorf-Reaktionsgefäße überführt und für 10min bei V max (Eppendorf-Tischzentrifuge) zentrifugiert. Der Überstand wurde nun zur Präparation des cytosolischen S100-Extrakts verwendet und aus dem Kernpellet wurde der S300-Kernextrakt präpariert.
cytosolischer S100-Extrakt:
Der Überstand, der die lösblichen Proteine enthält, wurde für 1h bei 43000rpm in einem TLA 100.3 Rotor (Beckman) bei 100000g zentrifugiert. Der daraus resultierende klare Überstand wurde in vorgekühlte Eppis aliquotiert und in flüssigem Stickstoff schockgefroren.

S300-Kernextrakt:
Das Kernpellet wurde zweimal in hypotonen Puffer gewaschen. Bei dem letzten Waschschritt wurde das Volumen des Pellets bestimmt und anschließend 1/3 Volumen Kernextraktions-Puffer (20mM Hepes pH7,9 bei 4°C, 1800mM NaCl, 5mM KCl, 0,5mM MgCl₂, 0,1mM DTT, 1mM ATP, 1xComplete (EDTA frei)) schrittweise zugegeben, so dass eine Endkonzentration von 450mM NaCl erreicht wurde. Die Elution der Chromatin-gebundenen Proteine erfolgte für 90min auf Eis, wobei das Eppendorf-Reaktionsgefäss gelegentlich gevortext wurde. Der Überstand nach 10min Zentrifugation bei Vmax (Eppendorf-Tischzentrifuge) wurde in SW60Ti Rörchen überführt und für 1h bei 48000rpm im SW60Ti Rotor (Beckman) zentrifugiert (300000g). Der Überstand, der die Chromatin-gebundenen Proteine enthält wurde in vorgekühlte Eppendorf-Reaktionsgefäße aliquotiert und in flüssigem Stickstoff schockgefroren.
Die Proteinkonzentration der Extrakte wurde mit der Bradford-Methode bestimmt. Die aliquotierten Extrakte wurden bei -80°C gelagert und kurz vor Gebrauch auf Eis aufgetaut.

3.5.5 Immunpräzipitation von Proteinen aus Kernextrakten

CyclinA-Depletion für den Einsatz der Extrakte in die in vitro DNA-Replikation:
Die Kernextrakte wurden zusammen mit einer austitrierten Menge an Antikörpern (CyclinA-SG19 Antikörper bzw. unspezifischer IgG-Antikörper; siehe Tabelle 1) in einem 40l Ansatz für 30min auf Eis inkubiert. Die eingesetzte Menge an Kernextrakt wurde so gewählt, dass in der in vitro Replikation (siehe 3.7.2) die korrekte Menge an Extrakt (16µg) in einem Volumen von 28µl eingesetzt werden konnte. Durch Zugabe von Kernextraktionspuffer (20mM Hepes pH7,9, 4°C, 450mM NaCl, 5mM KCl, 0,5mM MgCl₂, 0,1mM DTT, 1mM ATP, 1xComplete EDTA frei (Roche)) wurde die NaCl-Konzentration in einem finalen Volumen von 40µl auf 100mM eingestellt. Der Ansatz wurde zu 10µl (100% Beads), in Kernextraktionspuffer äquilibrierten ProteinA-Sepharose-Beads gegeben und für 30min im Kühlraum unter Rollen inkubiert. Nach kurzer Zentrifugation (max. 500g) wurde der Überstand (depletierter Kernextrakt) abgenommen und in der in vitro Replikation eingesetzt. Die Beads wurden dreimal mit Kernextraktionspuffer gewaschen und in 40µl 1xLämmplipuffer aufgenommen.
Die gebundenen Proteine wurden durch Inkubation für 30 min bei 60°C unter Schütteln von den Beads eluiert.

Zur Kontrolle der Immunpräzipitation wurde das Volumen der Ansätze verdoppelt, wobei die Menge an Extrakt und Antikörper angeglichen wurde. So konnte ein Teil (28 μl) des Überstands über ein 10%iges PAA-Gel aufgetrennt werden und die Depletion durch Western Blot-Analysen mit spezifischen Antikörpern kontrolliert werden. Ebenso wurden auf dieses Gel das Eluat der Beads (28 μl) und die Menge an eingesetzten Kernextrakt (16 μg) aufgetragen.

Orc6-Depletion für den Einsatz der Extrakte in den DNA-Bindungsstudien:
Die Depletion von Orc6 erfolgte mit α-Orc6-Antikörpern (3A4; Tabelle1) vorgekoppelten ProteinG-Sepharose-Beads. Zur Kontrolle wurden α-EBNA1-Antikörper (Tabelle 1) gekoppelte Beads verwendet. Die kovalente Kopplung der Antikörper an die Beads wurde nach dem Protokoll von Harlow und Lane durchgeführt (Harlow, Lane 1988 Andi). Pro Ansatz wurde zu 10 μl (100%) in RB-Puffer (20 mM Hepes pH 7,8 bei 4°C, 5 mM KCl, 1,5 mM MgCl₂, 0,1 mM DTT, 1x Complete EDTA frei (Roche), 0,003% NP-40) gewaschen Beads 64 μg Kernextrakt gegeben und das Volumen mit RB-Puffer auf 35 μl eingestellt. Der Ansatz wurde für 1 h im Kühlraum inkubiert (Überkopf-Schüttler). Nach kurzer Zentrifugation wurde der komplette Überstand in die DNA-Bindungsstudien eingesetzt.
3.6 DNA-Bindungsstudie

3.6.1 Kopplung von biotinylierter DNA an Streptavidin-paramagnetische Beads

Die Kopplung der biotinylierten Plasmid-DNA an Streptavidin-paramagnetische Beads erfolgte mit dem Dynabeads® KilobaseBINDER™ Kit (Dynal) nach Herstellerangaben mit leichten Variationen. Die Bindungs-Lösung (Dynal) sowie die Wasch-Lösung (Dynal) wurden zunächst 1:2 mit RB-Puffer (20mM Hepes pH7,8 bei 4°C, 5mM KCl, 1,5mM MgCl₂, 0,1mM DTT, 1xComplete EDTA frei (Roche), 0,003% NP-40) verdünnt. In ein beschichtetes Eppendorf-Reaktionsgefäß (1,5ml) wurde 200μl Bindungs-Lösung vorgelegt und 500μg der zuvor durch Schütteln resuspendierten Beads mit einer abgeschnittenen Pipettenspitze zugegeben. Durch einen Magneten werden die Beads an einer Seite des Gefäßes konzentriert und der Überstand wurde vorsichtig über die andere Seite abgenommen. Anschließend wurden die Beads in 200μl Bindungs-Lösung resuspendiert und 10μg biotinylierte DNA (in 200μl RB-Puffer) zugegeben. Die Kopplung erfolgte über Nacht bei Raumtemperatur unter horizontalem Rollen. Der Überstand wurde am Magneten abgenommen und die Beads zweimal in 400μl Wasch-Lösung gewaschen. Anschließend wurden die Beads in Waschlösung aufgenommen (finale Konzentration: 10mg/ml).

3.6.2 DNA-Bindungsreaktion und Analyse der gebundenen Proteine

Vor der eigentlichen DNA-Bindungsreaktion wurden die pEPI-UPR-gekoppelten bzw. DNA freien paramagnetischen Beads geblockt. Dazu wurde die entsprechende Menge Beads (Äquivalent zu 90ng DNA pro Ansatz) zunächst zweimal in RB-Puffer (20mM Hepes pH7,8 bei 4°C, 5mM KCl, 1,5mM MgCl₂, 0,1mM DTT, 1xComplete EDTA frei (Roche), 0,003% NP-40) in einem beschichteten, 1,5ml Eppendorf-Reaktionsgefäß gewaschen. Anschließend wurde zu den Beads 300μl Blockpuffer (RB-Puffer, 12,5mg/ml Rinderserumalbumin (BSA), 10mg/ml Polyvinylpyrrolidon (PVP), sterilfiltriert) gegeben und für 30min bei 23°C im Heizblock bei 1000rpm inkubiert. Die Beads wurden danach zweimal in RB-Puffer gewaschen und in 5μl RB-Puffer pro Ansatz aufgenommen. In einem frischen, beschichteten, 1,5ml Eppendorf-Reaktionsgefäß wurde nun die DNA-Bindungsreaktion zusammenpipettiert. Ein Ansatz enthielt 32μg Kernextrakt, 20mM Kreatinphosphhat, 6,3μg/ml Kreatinkinase und 2mM ATP. Das Volumen wurde durch Zugabe von RB-Puffer auf 35μl eingestellt. Die Salzkonzentration betrug durch die hier eingesetzte Menge an Kernextrakt 80mM NaCl. Pro Ansatz wurden nun 5μl (=90ng DNA) Beads mit einer abgeschnittenen Pipettenspitze zugegeben und durch auf- und abpipettieren gemischt. Nach der Bindungsreaktion für 30min bei 23°C im Heizblock bei 1000rpm wurden die Beads dreimal in RB-Puffer (mit 80mM
NaCl) gewaschen und in 15μl 1x Lämmlipuffer aufgenommen. Die Beads wurden für 5min bei 95°C aufgekocht und auf ein 10 bzw. 12,5%iges PAA-Gel aufgetragen. Die Analyse der DNA gebundenen Proteine erfolgte anschließend im Western Blot mit spezifischen Antikörpern.
Da pro Versuch immer zwei Gele benötigt wurden, wurde das Volumen der Ansätze, und somit auch die Menge an eingesetzten Beads und Kernextrakten, verdoppelt werden.

3.6.3 λ-PPase-Behandlung der DNA gebundenen Proteine
Zur Dephosphorylierung der an die DNA gebundenen Proteine wurden die Beads nach dem letzten Waschschritt in 1x λ-PPase Reaktionspuffer mit 2mM MnCl₂ und 400 Units λ-PPase (NEB) aufgenommen und 30min bei 30°C inkubiert. Anschließend wurde die entsprechende Menge 5xLämmlipuffer zugegeben, die Beads aufgekocht und auf die PAA-Gele geladen.

3.7 In vitro DNA Replikation
3.7.1 SV40 in vitro Replikationsansatz
Ein 50μl-Standardansatz enthielt 160ng pEPI-UPR-DNA, 230μg cytosolischem Extrak, 1,8μg T-Ag, 2mM ATP, 5μl 10xReplikationsmix (300mM Hepes pH7,8, 5mM DTT, 30mM MgCl₂, je 0,8mM CTP/UTP/GTP, je 1mM dCTP/dTTP/dGTP, 0,1mM dATP, 400mM Kreatinphosphat, 12μg Kreatinkinase) und 10μCi α[³²p]dATP. Das ATP regenerierende System aus Kreatinphosphat und Kreatinkinase wurde immer frisch zu den 10xReplikationsmix gegeben. Das im Baculovirus-Expressionssystem hergestellte SV40 T-Ag wurde von der Arbeitsgruppe von Prof. Dr. R. Knippers zur Verfügung gestellt.
Die Reaktionen wurden auf Eis pipettiert und für 1h bei 37°C inkubiert. Durch Zugabe von 30μl Stoppmix (60mM EDTA, 2% SDS) wurden die Reaktionen abgestoppt. Anschließend wurden die Ansätze für 1h bei 55°C mit 10μl ProteinaseK (2μg/ml) behandelt und die DNA durch eine Phenol-Chloroform-Extraktion gereinigt. 75μl der oberen Phase wurden danach mit Ethanol gefällt, wobei 0,5 Vol 7,5M NH₃Ac, 3 Vol 100% EtOH und 1μl Glycogen als Fällhilfe eingesetzt wurden. Das getrocknete DNA-Pellet wurde in 20μl TE aufgenommen und entweder direkt auf ein 0,8%iges Agarose-Gel (0,5xTBE-Puffer, 1μg/ml EtBr, Laufzeit 16h, 60V) aufgetragen, oder zuvor in einem 25μl Volumen mit der Restriktionsendonuklease DpnI verdaut. Das Agarose-Gel wurde auf einem UV-Tisch fotografiert und anschließend für 2h bei 60°C unter Vakuum getrocknet (SLAB Gel Dryer; Model: GD2000, Hoefer). Der radioaktive Einbau wurde über Nacht mit einer „Imaging Plate“ (BAS-MS2040, Fujifilm) detektiert und im Fuji Phosphoimager FLA-5100 ausgewertet.
3.7.2 In vitro Replikationsansatz mit HeLa-Kernextrakten

Für die in vitro Replikation mit Kernextrakten aus HeLa-Zellen wurde eine Vorinkubation in einem 35μl Volumen durchgeführt. 160ng pEPI-UPR-DNA, 5μl ATP (20mM) und 16μg S300-Kernextrakt wurden auf Eis pipettiert, wobei eine NaCl-Konzentration von 80mM durch Zugabe von Kernextraktionspuffer (450mM) eingestellt wurde. Der Ansatz wurde für 20min auf Eis vorinkubiert bevor die Replikation durch Zugabe von 45μg cytosolischen S100-Extrakts, 5μl 10xReplikationsmix (300mM Hepes pH7,8 , 5mM DTT, 30mM MgCl₂, je 0,8mM CTP/UTP/GTP, je 1mM dCTP/dTTP/dGTP, 0,1mM dATP, 400mM Kreatinphosphat, 12μg Kreatinkinase), 10μCi α[^32]p]dATP und 1,2μl KOAc (1M) gestartet wurde. Die Replikation erfolgt für 1h bei 37°C. Nach dem Abstoppen der Reaktion durch Zugabe von 30μl Stoppmix (60mM EDTA, 2% SDS) erfolgt die Aufreinigung der DNA exakt wie unter 3.7.1 beschrieben. Nach ProteinaseK-Behandlung, Phenol-Chloroform-Extraktion und EtOH-Fällung wird die deproteinisierte DNA in 20μl TE aufgenommen und entweder direkt auf ein 0,8%iges Agarose-Gel (0,5xTBE-Puffer, 1g/ml EtBr, Laufzeit 16h, 30V) aufgetragen, oder zuvor in einem 25μl Volumen mit der Restriktionsendonuklease DpnI, Sau3AI oder MboI verdaut. Die Detektion des radioaktiven Einbaus erfolgt wie unter 3.7.1 beschrieben. Im Verlauf der hier vorliegenden Arbeit wurde auf eine Vorinkubation verzichtet. In diesen Experimenten wurden alle Komponenten auf Eis pipettiert und die Ansätze anschließend für 1h bei 37°C inkubiert.

3.8 „Electro Mobility Shift Assay“ (EMSA)

Die in dieser Arbeit gezeigten Retardationsexperimente wurden in einem 20μl Ansatz durchgeführt. Als DNA-Probe diente eine 72bp langes Oligonukleotid (T₆₋₆₋₆), das an 5’-Ende mit dem fluoreszierenden Farbstoff Cy5 markiert war. Die im Ergebnisteil angegebenen Proteinmengen, 5μl 4xShiftpuffer (25mM Hepes, 100mM KCl, 5mM MgCl₂, 0,1mM EDTA, 0,5mM ATP, 0,15mg/ml BSA) und 100fmol DNA-Probe wurden zusammen pipettiert und für 20min lichtgeschützt auf Eis inkubiert. Wo angegeben wurde zusätzlich poly(dIdC) als Kompetitor zugegeben. Die 5 bzw. 8%igen nativen 0,25xTBE-PAA-Gele wurden vor dem Beladen der Proben im Kühlraum bei 130V für mindestens 30min laufen gelassen. Anschließend wurden die Proben beladen und für 2,5h bei 300V lichtgeschützt aufgetrennt. Nach dem Lauf wurde das Gel im Fuji Phosphoimager FLA-5100 analysiert.
4 Ergebnisse

4.1 Proteinextrakte aus humanen Zellen unterstützen die DNA-Replikation in vitro

Im ersten Teil der vorliegenden Arbeit wurde ein zellfreies, humanes DNA-Replikationssystem etabliert und weiterentwickelt, das auf eigenen Vorarbeiten in der Arbeitsgruppe von Prof. Dr. R. Knippers an der Universität Konstanz aufbaut (Baltin et al., 2006). Ausgehend von einem SV40 in vitro Replikationssystem (Gruss, 1999), dass auf cytosolischen Extrakten aus HeLa-Zellen und der Zugabe von rekombinantem T-Ag basiert, wurde ein vollständig lösliches, virusfreies System zur Replikation von Plasmid-DNA entwickelt. Die Aufgaben des viralen Initiators T-Ag werden dabei durch Hochsalz-Extrakte aus HeLa-Zellkernen, die die Chromatin-gebundenen Proteine enthalten, ersetzt. Diese, bei 450mM NaCl präparierten Kernextrakte enthalten die Proteine des eukaryotischen prä-Replikationskomplexes (Kreitz et al., 2001). Die unter hypotonischen Bedingungen präparierten cytosolischen Extrakten (S-100 Extrakte) enthalten alle löslichen Proteine der Zellen, die für die DNA-Synthese notwendig sind. Die biochemische Charakterisierung dieses Systems in den an der Universität Konstanz durchgeführten Vorarbeiten zeigt, dass sowohl die cytosolischen Extrakte als auch die Kernextrakte für die in vitro Replikation notwendig sind. Die Replikation in diesem System ist ORC-abhängig und von den replikativen DNA Polymerasen abhängig (Baltin et al., 2006). Bei der Analyse der Replikationsprodukte während der DNA-Replikation sind nach der Denaturierung in alkalischen Agarosegelen sowohl lange als auch kurze (200 - 1000bp) DNA-Stränge detektierbar (Vorwärts- und Rückwärtsstränge), die mit fortlauender Synthesedauer in DNA-Stränge einheitlicher Länge überführt werden (Baltin et al., 2006). Dieses Experiment zeigt, dass in dem vorgestellten in vitro Replikationssystem eine Prozessierung der Replikationsprodukte stattfindet. Des Weiteren hat die DNA-Sequenz der verwendeten Plasmide keinen Einfluss auf die Replikationskompetenz, die Topologie der Plasmide spielt jedoch eine entscheidende Rolle. So dient superhelikale Form I DNA als Substrat für die DNA-Replikation, nicht aber relaxierte Form II oder linearisierte Form III DNA (Odronitz, 2004). Die in diesem Kapitel vorgestellten Experimente dienen zur Etablierung und weiteren Charakterisierung des in vitro Replikationssystems. Ein solches vollständig lösliches, virusfreies in vitro Replikationssystem, das auf Extrakten aus menschlichen, somatischen Zellen basiert, stellt ein wertvolles, vielseitiges und biochemisch leicht manipulierbares experimentelles Werkzeug zur Charakterisierung der pre-RC-Ausbildung und der Initiation der chromosomalen DNA-Replikation dar.
4.1.1 SV40 T-Antigen abhängige \textit{in vitro} DNA-Replikation

Im ersten vorgestellten Experiment wurde zunächst das SV40 \textit{in vitro} Replikationssystem in diesem Labor etabliert. Ziel war es zu testen, ob der neu präparierte cytosolische Extrakt aus HeLa-Zellen kompetent ist, SV40 Origin-tragende Plasmid-DNA in Abhängigkeit von T-Ag zu replizieren. Dabei diente das von der Arbeitsgruppe von Prof. Dr. R. Knippers zur Verfügung gestellte rekombinante T-Ag als Initiator der DNA-Replikation (Gruss, 1999). Durch die Bindung des T-Ag an den SV40 Origin kommt es zu einer ATP-abhängigen Entwinding der DNA, so dass die im cytosolischen Extrakt enthaltenen Elongationsfaktoren rekrutiert werden können und die DNA-Synthese eingeleitet wird. Der Extrakt wurde unter hypotonischen Bedingungen aus asynchron wachsenden HeLa-Zellen präpariert (3.5.4) und die \textit{in vitro} Replikation nach einem Protokoll von Claudia Gruss (Gruss, 1999) durchgeführt (3.7.1). Ein Überblick des Ablaufes dieser SV40 Replikation ist in Abbildung 3 dargestellt.

\begin{table}[h]
\centering
\begin{tabular}{|c|c|}
\hline
\textbf{Replikation:} & cytosolischer S100-Extrakt \\
& 10xReplikationsmix \\
& SV40 T-Antigen \\
& DNA \\
& ATP \\
\hline
\hline
& 1h bei 37°C \\
\hline
abstoppen, ProtK-Behandlung, Phenol-Chloroform Extraktion, EtOH-Fällung, \textit{DpnI}-Verdau, Gelelektrophorese, Autoradiographie \\
\hline
\end{tabular}
\caption{Die Komponenten des klassischen SV40 \textit{in vitro} Replikationssystems}
\end{table}

Abb. 3 Die Komponenten des klassischen SV40 \textit{in vitro} Replikationssystems

Dargestellt ist der Ablauf des klassischen SV40 \textit{in vitro} Replikationssystems sowie die einzelnen Schritte der DNA-Aufbereitung. Für Details siehe Text.

Das Plasmid pEPI-UPR (160ng), welches einen SV40 Origin trägt, wurde in zwei Ansätzen zusammen mit SV40 T-Ag, cytosolischem Extrakt, ATP und einem Replikationsmix aus dNTPs, NTPs, α32P]-dATP sowie einem ATP regenerierendem System aus Kreatinphosphat und Kreatinkinase für 1h bei 37°C inkubiert. Zur Kontrolle der T-Ag abhängigen Replikation wurden parallel dazu zwei Ansätze ohne die Zugabe von T-Ag durchgeführt. Nach dem Abstoppen der Reaktionen wurde die Plasmid-DNA gereinigt und die Proteine entfernt. Dazu wurden die Ansätze mit ProteinaseK behandelt und eine Phenol-Chloroform Extraktion durchgeführt. Nach einer Ethanol-Fällung wurde die deproteinisierte DNA aus je einem Ansatz ohne und mit T-Ag unverdaut oder mit der Restriktionsendonuklease \textit{DpnI} (Sanchez...
Ergebnisse

et al., 1992) (s.u.) verdaut über eine neutrale Gelelektrophorese aufgetrennt. Zum Vergleich wurde zusätzlich die exakt gleiche Menge Plasmid-DNA (unverdaut), die im Assay eingesetzt wurde, aufgetragen (Abb. 4A; Spur 1). Die so erhaltenen Replikationsprodukte wurden anschließend in der Autoradiographie des getrockneten Agarosegels analysiert (Abb. 4B).

Die eingesetzte pEPI-UPR DNA war größtenteils in der superhelikalen Form I und zu einem kleinen Teil in der relaxierten Form II vorhanden (Abb. 4A; Spur 1: Input, I). Während des Experiments wurde die negativ superhelikale Form I DNA durch das schrittweise Einfügen von positiven Supercoils entwunden, was das Auftreten einer Topoisomerase zur Folge hat (Abb. 4A; Spuren 2 und 3). Die im Zellextakt vorhanden Topoisomerasen sind für diese Veränderung in der DNA Struktur verantwortlich.

Abb. 4 T-Ag abhängige SV40 in vitro Replikation
Die gleiche Menge ungeschnittene (Form I und II) Plasmid-DNA (Spur 1: Input, I) und deproteinisierte DNA aus den Replikationsansätzen ohne (Spur 2) und mit T-Ag (Spur 3) wurden durch neutrale Gelelektrophorese in einem 0,8%igen Agarosegel aufgetrennt. Die DNA aus je einem Ansatz ohne und mit T-Ag wurden nach dem Assay durch die Restriktionsendonuklease DpnI verdaut (Spur 4 und 5). Als Plasmid-DNA wurde pEPI-UPR eingesetzt. Spur M zeigt den DNA Längenmarker (1kb-Leiter). (A) Ethidiumbromid-gefärbtes Agarosegel (B) Autoradiographie des getrockneten Agarosegels. Radioaktiver Einbau ist nur in den Spuren mit T-Ag zu erkennen (Spur 3 und 5). Mit RI ist der Laufbereich der aufgetrennten Replikativen Intermediate bezeichnet. Form III ist das linearisierte Plasmid.

Zwischen den Ansätzen ohne und mit T-Ag lassen sich im EtBr-gefärbten Gel keine Unterschiede ausmachen. Bei der Betrachtung der Autoradiographie ist zu erkennen, dass nur in den Ansätzen mit T-Ag $\alpha^{[32P]}$-dATP eingebaut wurde (Abb. 4B; Spur 4 und 5). In dem unverdauten Ansatz mit T-Ag ist die Topoisomerleiter zu erkennen. Ein Großteil der Replikationsprodukte lag hier in Form von replikativen Intermediaten (RI) vor. Solche Strukturen können unvollständig replizierte Plasmid-DNA, Dimere, Konkatemere oder andere, weniger gut definierte, hochmolekulare Strukturen sein. Wurden die Replikationsprodukte vor der Gelelektrophorese mit \textit{DpnI} verdaut, ist keine Topoisomerleiter zu erkennen. Hier lag die replizierte DNA vorwiegend in der genickten Form II, der linearisierten Form III sowie als RI vor (Abb. 4B; Spur 5).

4.1.2 Extrakte von Chromatin-gebundenen Proteinen aus HeLa-Zellen ersetzen die Aufgaben des SV40 T-Ag in der in vitro DNA-Replikation

Ergebnisse

| **Vorinkubation:** | Kernextraktionspuffer
| | S300-Kernextrakt
| | DNA
| | ATP
| | 20min auf Eis
| **Replikation:** | cytosolischer S100-Extrakt
| | 10xReplikationssmix
| | Kaliumacetat
| | 1h bei 37°C
| | abstoppen, ProtK-Behandlung, Phenol-Chloroform Extraktion, EtOH-Fällung, DpnI-Verdau, Gelektrophorese, Autoradiographie |

Abb. 5 Komponenten des in vitro Replikationssystems mit menschlichen Kernextrakten

Ziel des in Abbildung 6 gezeigten Versuchs war es, das virusfreie, lösliche in vitro Replikationssystem in diesem Labor zu etablieren und die Replikationsprodukte durch einen enzymatischen Verdau mit *DpnI* bzw. *Sau3AI* zu charakterisieren. In drei parallel durchgeführten Ansätzen wurden je 160ng pEPI-UPR DNA analysiert. Die deproteinisierte und *DpnI* bzw. *Sau3AI* verdaute DNA aus zwei Ansätzen wurde über neutrale Gelektrophorese in einem 0,8%ige Agarosegel aufgetrennt. Die DNA aus einem Ansatz wurde unverdaut aufgetragen. Zum Vergleich der DNA aus den Ansätzen der in vitro Replikation wurden je gleiche Mengen unverdauter (Abb. 6; Spur 1) und durch einen *EcoRI*-Verdau linearisierter DNA (Abb. 6; Spur 2) aufgetragen. Im Input des EtBr-gefärbten Agarosegels sind die superhelikale Form I und die genickte Form II DNA zu sehen. Die linearisierte Form III DNA läuft im Gel mit der erwarteten Größe (Abb. 6A). Alle drei DNA Formen sind auch im Ansatz mit der unverdauten DNA aus der in vitro Replikation vertreten (Abb. 6; Spur 3). Wird die DNA mit *DpnI* bzw. *Sau3AI* verdaut sind in der EtBr-Färbung lediglich die Abbauprodukte zu erkennen (Abb. 6A; Spuren 4 bzw. 5). Das Auftauchen von weiteren Abbauprodukten nach dem *Sau3AI*-Verdau im Vergleich zum *DpnI*-Verdau ist mit einer unterschiedlichen Enzymaktivität zu erklären. Die Aktivität von *Sau3AI* kann im Gegensatz zu *DpnI* durch überlappende CpG-Methylierung inhibiert werden. Dies resultiert in einem unterschiedlichen Bandenmuster. Das Ergebnis der Autoradiographie verdeutlicht, dass...
es während des Versuchs zum Einbau von α[^32]P]-dATP gekommen ist (Abb. 6B). Der unverdaute Ansatz zeigt radioaktiven Einbau in allen drei DNA Formen sowie in DNA Strukturen, die nicht ins Gel einlaufen konnten (Abb. 6B; Spur 3). Der größte Teil des radioaktiven Einbaus ist in den DpnI sensiblen Fragmenten zu finden. DpnI resistente und somit replizierte DNA konnte in kleinen, jedoch signifikanten Mengen in der Form II und III DNA detektiert werden (Abb. 6B; Spur 4). Durch Sau3AI wurden auch diese DpnI resistenten Replikationsprodukte verdaut. Radioaktiver Einbau war nach dem Sau3AI-Verdau nur noch in den Abbauprodukten zu erkennen (Abb. 6B; Spur 5).

Abb. 6 Chromatin-gebundene Proteine aus HeLa-Zellen unterstützen die in vitro DNA-Replikation

In vitro DNA-Replikationsansätze wurden mit pEPI-UPR DNA durchgeführt. Unverdaute Form I und II DNA (Spur 1), durch einen EcoRI-Verdau linearisierte Form III DNA (Spur 2) und deproteinisierte DNA aus dem Assay (Spur 3) wurden durch neutrale Gelelektrophorese in einem 0,8%igen Agarosegel aufgetrennt. Die deproteinisierte DNA aus zwei Ansätzen wurde zusätzlich mit den Restriktionsendonukleasen DpnI bzw. Sau3AI verdaut (Spuren 4 und 5). (A) EtBr-gefärbtes Gel. Spur M zeigt den DNA Längenmarker (1kb-Leiter). (B) Autoradiographie des getrockneten Agarosegels. Der Bereich der erwarteten DpnI-Abbauprodukte ist markiert. Pfeile markieren die Replikationsprodukte der Form II und III DNA.
Die in diesem Abschnitt vorgestellten Ergebnisse zeigen, dass die Aufgaben des viralen Initiators T-Ag durch Hochsalz-Extrakte aus HeLa-Zellen, die die Chromatin-gebundenen Proteine enthalten, in einem vollständig löslichen, virusfreien in vitro Replikationssystem ersetzt werden können. Die enzymatische Charakterisierung der Replikationsprodukte zeigt, dass ein geringer Teil der vollständig methylierten Input DNA durch semikonservative Replikation in eine hemi- oder unmethylierte DNA Form umgewandelt und so gegen den Abbau durch DpnI resistent wird.

4.1.3 Aphidicolin hemmt die in vitro DNA-Replikation

In diesem Experiment wurden alle Komponenten ohne Vorinkubation direkt bei 37°C für 1h inkubiert (3.7.2). In zwei Ansätzen wurden verschiedene Aphidicolin Konzentrationen (15μM und 30μM) in jeweils gleichen Volumen zugegeben. Da Aphidicolin in DMSO gelöst ist, wurden zwei parallele Kontrollen durchgeführt. Um auszuschließen, dass DMSO einen Einfluss auf die in vitro DNA-Replikation hat, wurde einem Ansatz das gleiche Volumen DMSO zugegeben. Da die Ansätze durch die Zugabe von Aphidicolin bzw. DMSO leicht verdünnt wurden, enthielten zwei weitere Kontrollansätze das gleiche Volumen Wasser. Alle Ansätze wurden vor der Gelelektrophorese mit DpnI verdaut. Die deproteinisierte DNA aus einem der beiden Wasserkontrollen wurde zusätzlich mit MboI verdaut.
Ergebnisse

Abb. 7 Aphidicolin hemmt die in vitro DNA-Replikation

In vitro Replikationsansätze mit pEPI-UPR DNA wurden nach Zugabe von 1µl Wasser (Spuren 2 und 3), DMSO (Spur 4) oder Aphidicolinlösung unterschiedlicher Konzentrationen (Spuren 5 bzw. 6; Endkonzentrationen 15µM bzw. 30µM) durchgeführt. Die Ansätze wurden anschließend mit DpnI verdaut und über ein 0,8%iges Agarosegel aufgetrennt. Als zusätzliche Kontrolle der Replikationsprodukte wurde ein Ansatz mit DpnI und MboI verdaut (Spur 3). (A) Ethidiumbromid-gefärbtes Agarosegel. Spur M zeigt den DNA Längenmarker (1kb-Leiter). (B) Autoradiographie des getrockneten Agarosegels. Der Bereich der erwarteten DpnI-Abbauprodukte ist markiert. Pfeile markieren die Replikationsprodukte der Form II und III DNA.

Im EtBr-gefärbten Agarosegel sind keine Unterschiede in den einzelnen Ansätzen zu erkennen (Abb. 7A). Zum Vergleich wurde die gleiche Menge pEPI-UPR DNA aufgetragen, die in den Replikationsansätzen eingesetzt wurde (Abb. 7A; Spur 1). In der Autoradiographie (Abb. 7B) erkennt man in den drei Kontrollen die DpnI resistanten Replikationsprodukte, wobei DMSO keinen Effekt auf die Replikation hatte (Spur 4). Nach der Zugabe von 15µM bzw. 30µM Aphidicolin waren keine DpnI resistanten Replikationsprodukte detektierbar, was darauf hindeutet, dass hier die DNA-Replikation vollständig gehemmt wurde und von der DNA-Polymerase δ bzw. dem Pol α / Primase-Komplex abhängig ist (Spuren 5 und 6). Die Menge an DpnI sensitiven Produkten, sowie deren radioaktiver Einbau war jedoch in der
Ergebnisse

Die hier beschriebenen Ergebnisse zeigen, dass die in vitro DNA-Replikation in diesem System von der DNA-Polymerase δ bzw. dem Pol α / Primase-Komplex abhängig ist. Des Weiteren wird gezeigt, dass die DNA einmal repliziert wird, da keine MboI sensitiven und somit vollständig unmethylierten Replikationsprodukte detektiert werden konnten.

4.1.4 Die in vitro DNA-Replikation findet nur bei niedrigen Salzkonzentrationen statt

Für diese Untersuchungen wurden sowohl für die niedrige Standardsalzkonzentration (80mM) als auch für die hohe Salzkonzentration (160mM) Doppelansätze pipettiert. Die Salzkonzentrationen wurden durch Zugabe von Kaliumacetat (KOAc) in den verschiedenen Replikationsansätzen eingestellt. Die in vitro Replikation erfolgte im Anschluss unter Standardbedingungen (3.7.2). Alle parallel behandelten Ansätze wurden vor der Gelelektrophorese mit DpnI verdaut. Im EtBr-gefärbten Gel lassen sich keine Unterschiede zwischen den beiden Salzkonzentrationen feststellen. Zum Vergleich der Replikationsprodukte wurden je gleiche Mengen unverdaute und durch einen EcoRI-Verdau linearisierte pEPI-UPR DNA aufgetragen (Abb. 8A). Beim Vergleich der unterschiedlichen Replikationsbedingungen in der Autoradiographie ist zu erkennen, dass DpnI resistente Replikationsprodukte in der Form II und III DNA nur in den Ansätzen mit 80mM KOAc detektierbar waren (Abb. 8B; Spuren 3 und 4). Die erhöhte Salzkonzentration von 160mM KOAc führte zu einer Inhibition der in vitro Replikation (Spuren 5 und 6). Nach dem DpnI-Verdau waren hier in der Autoradiographie keine Replikationsprodukte zu erkennen und der

Dieses Ergebnis zeigt, dass bei einer zu hohen Salzkonzentration keine Replikation stattfindet und auch der nicht replikationsabhängige radioaktive Einbau stark abnimmt.

Abb. 8 In vitro DNA-Replikation mit unterschiedlichen Salzkonzentrationen

In vitro Replikationsansätze mit pEPI-UPR wurden bei zwei unterschiedlichen Salzkonzentrationen (80mM und 160mM KOAc) in jeweils Doppelansätzen durchgeführt. Je gleiche Mengen ungeschnittene DNA (Spur 1), durch einen *EcoRI*-Verdau linearisierte DNA (Spur 2) und deproteinisierte, DpnI verdaute DNA aus den unterschiedlichen Ansätzen (80mM: Spuren 3 und 4; 160mM: Spuren 5 und 6) wurden durch neutrale Gelelektrophorese in einem 0,8%-igen Agarosegel aufgetrennt. (A) Ethidiumbromid-gefärbtes Gel. Spur M zeigt den DNA Längenmarker. (B) Autoradiographie des getrockneten Agarosegels. Der Bereich der erwarteten DpnI-Abbauprodukte ist markiert. Pfeile markieren die Replikationsprodukte der Form II und III DNA.
4.1.5 Chromatin-verpackte DNA ist kein Substrat für die *in vitro* DNA-Replikation

In der Zelle liegt die DNA als Nukleosomen-verpacktes Chromatin vor. In dem hier vorgestellten Versuch wurde daher untersucht, ob Chromatin-verpackte Plasmide als Substrat für die *in vitro* DNA-Replikation geeignet sind. Für dieses Experiment wurden in der Arbeitsgruppe von Dr. P. Korber (Adolf-Butenandt-Institut, München) pEPI-UPR Plasmide mittels Salzdialyse in Nukleosomen verpackt (Hertel et al., 2005). Dabei wurden drei unterschiedliche DNA:Histomassenverhältnisse gewählt (1:0,8 / 1:1 / 1:1,2). Bei einem Verhältnis von 1:0,8 konnte nach einer MNase-Behandlung Protein-freie DNA detektiert werden. Eine vollständigere Chromatin-Verpackung der DNA wurde mit DNA:Histomassenverhältnissen von 1:1 und 1:1,2 erreicht (Hertel et al., 2005).

Bei der in diesem Abschnitt gezeigten *in vitro* DNA-Replikation (Abb.9) diente neben den verpackten pEPI-UPR Plasmiden in einem Parallelansatz auch unverpackte DNA als Substrat. Alle vier Ansätze wurden parallel, wie unter 3.7.2 beschrieben, behandelt und die deproteinisierte, *DpnI* verdaute DNA durch neutrale Gelelektrophorese aufgetrennt. In der Kontrollspur wurde die gleiche Menge DNA aufgetragen (160ng; Spur 1). In dem EtBr-gefärbten Gel lassen sich keine Unterschiede zwischen den unterschiedlichen Ansätzen erkennen (Abb. 9A). Betrachtet man dagegen die Autoradiographie in Abbildung 9B, fällt auf, dass nur in dem Ansatz mit unverpackter DNA *DpnI* resistentere Replikationsprodukte der Form II und III DNA detektierbar waren (Spur 2). Die Verwendung von Histon-rekonstituierter DNA als Substrat führte dagegen zu einer Inhibition der Replikation (Spuren 3 bis 5). In dem Ansatz mit verpackter DNA, die bei einem DNA:Histom Verhältnis von 1:0,8 rekonstituiert wurde, waren geringe Mengen an *DpnI* resistenten Replikationsprodukten der Form II und III DNA detektierbar (Spur 3). Dagegen wurde die Replikation in den Ansätzen mit verpackter DNA, die bei DNA:Histom Verhältnissen von 1:1 (Spur 4) und 1:1,2 (Spur 5) rekonstituiert wurden, vollständig inhibiert und es waren nur *DpnI* sensitive Produkte detektierbar.

Zusammenfassend lässt sich sagen, dass die Rekonstitution der Plasmide mit Histonen in dem hier vorgestellten *in vitro* Replikationssystem zu einem Rückgang der Replikationseffizienz führt.
4.2 Die Regulation der *in vitro* DNA-Replikation

Nach der erfolgreichen Etablierung des *in vitro* Replikationssystems wird im folgenden Kapitel die Regulation der *in vitro* DNA-Replikation näher untersucht. Die zelluläre DNA-Replikation ist zellzyklusabhängig reguliert, wobei die Ausbildung des pre-RCs ausschließlich in der G1-Phase und die Initiation ausschließlich in der S-Phase stattfindet (Stillman, 1996). In den folgenden Studien wird geprüft, ob die Effizienz der DNA-Replikation in dem hier vorgestellten *in vitro* System ebenfalls zellzyklusabhängig ist. Ein solches System würde nicht nur mechanistische Studien der an der DNA-Replikation...
beteiligten essentiellen Faktoren ermöglichen, sondern auch die Regulation der Abläufe untersuchbar machen. Durch Verwendung von Extrakten aus synchronisierten HeLa-Zellen wird der Frage nachgegangen, ob die Aktivität dieser Extrakte vom Zellzykluskontrollsystem abhängig ist.

4.2.1 Extrakte aus G1-Phase synchronisierten Zellen unterstützen nicht die *in vitro* DNA-Replikation

Zur Untersuchung, ob die Replikation der Plasmid-DNA in dem hier vorgestellten *in vitro* System zellzyklusabhängig stattfindet, wurden Extrakte aus synchronisierten HeLa-Zellen präpariert. Die Zellen wurden mit einem doppelten Thymidinblock am G1/S-Phase-Übergang synchronisiert und die Extrakte entweder direkt (G1/S) oder nach einem Entlass aus dem Block für 5 Stunden (5hS), 7,5 Stunden (7,5h) bzw. 15,5 Stunden (G1 15,5h) präpariert (3.2.3). Zur Kontrolle des synchronen Wachstums wurden die Zellen mit Propidiumiodid (PI) gefärbt und der DNA-Gehalt durch FACS-Analyse bestimmt (3.2.4). Asynchron wachsende HeLa-Zellen wurden zur Kontrolle ebenfalls mit PI gefärbt und analysiert (Abb. 10A). Die cytosolischen Extrakte und die Hochsalz-Kernextrakte, die die Chromatin-gebundenen Proteine enthalten, wurden zu den entsprechenden Zeiten der Synchronisation präpariert (3.5.4). Das Vorhandensein von zwei an der Ausbildung des pre-RCs beteiligten Proteinen (Orc2 und Mcm3) sowie der regulatorischen Cycline A, E und B in den Extrakten der Chromatin-gebundenen Proteine wurden im Western Blot mit Hilfe spezifischer Antikörper kontrolliert (Abb. 10B). Die zu den jeweiligen Zeiten der Synchronisation präparierten Extrakte wurden dann auf ihre Replikationskompetenz im *in vitro* Replikationssystem getestet (3.7.2). Die Ergebnisse der *in vitro* DNA-Replikation sind in Abbildung 10C und 10D gezeigt.

Die FACS-Analyse von asynchron wachsenden Kulturen (as) zeigt, dass sich der größte Teil der Zellen in der G1-Phase befand und einen doppelten Chromosomensatz (2n) besaß. Eine zweite Population von Zellen verfügte über einen 4-fachen Chromosomensatz (4n) und war in der G2/M-Phase. Die Zellen mit einem Chromosomensatz zwischen 2n und 4n befanden sich in der S-Phase. Die Analysen der synchronisierten Zellen zeigen, dass 15,5h nach dem Entlass aus dem doppelten Thymidinblock die meisten Zellen in der G1-Phase waren und einen doppelten Chromosomensatz hatten (G1 15,5h). Zellen im Block (G1/S) zeigen einen verbreiterten G1-Gipfel und befanden sich am G1/S-Phase Übergang. Entließ man die Zellen für 5h aus dem Block, waren die meisten Zellen in der S-Phase und nach 7,5h in der späten S-Phase (Abb. 10A).
Ergebnisse

Abb. 10 Die *in vitro* Replikation mit HeLa-Zellextrakten ist zellzyklusabhängig

In vitro Replikationsansätze mit pEPI-UPR DNA wurden in fünf parallelen Ansätzen durchgeführt. Hierbei wurden lösliche und Chromatin-gebundene Proteine aus asynchron wachsenden HeLa-Zellen (as), von Zellen in der G1-Phase (G1 15,5h), am G1/S-Phase-Übergang (G1/S) oder in der S-Phase (5h oder 7,5h nach dem Entlass aus dem Block am G1/S-Phase Übergang) eingesetzt. Je gleiche Mengen ungeschnittene Form I und II DNA (Spur 1), *DpnI* verdaute DNA (Spur 2) und deproteinisierte, *DpnI* verdaute DNA aus den unterschiedlichen Ansätzen (Spuren 3-7) wurden durch neutrale Gelelektrophorese in einem 0,8%igen Agarosegel aufgetrennt. (A) FACS-Analysen der synchronisierten HeLa-Zellen zu den jeweiligen Zeiten der Extraktpräparationen. (B) Chromatin-gebundene Proteinextrakte aus den unterschiedlichen Zellzyklusphasen wurden im Western Blot mit spezifischen Antikörpern auf das Vorhandensein von CyclinA, CyclinE, CyclinB, Orc2 und Mcm3 analysiert. (C) Ethidiumbromid-gefärbtes Agarosegel des *in vitro* Replikationsassays. Spur M zeigt den DNA Längenmarker (1kb-Leiter). (D) Autoradiographie des getrockneten Agarosegels. Der Bereich der erwarteten *DpnI*-Abbauprodukte ist markiert. Pfeile markieren die Replikationsprodukte der Form II und III DNA.
Bei der Betrachtung der Western Blot-Analysen in Abbildung 10B zeigt sich das erwartete Zellzyklusmuster der untersuchten Proteine. Der Gehalt der drei untersuchten Cycline war in den Extrakten der G1-Phase sehr gering (G1 15,5h). CyclinE war am Übergang von der G1 zur S-Phase (G1/S) am besten detektierbar und nahm mit voranschreitender S-Phase wieder ab. CyclinA hingegen war in den Extrakten während der gesamten S-Phase detektierbar (G1/S, 5hS, und 7,5hS). Ein leichter Anstieg des CyclinB-Gehalts in den hier untersuchten Extrakten konnte in der späten S-Phase beobachtet werden (7,5hS). Die pre-RC-Komponente Orc2 war wie erwartet über den gesamten Zellzyklus an Chromatin gebunden, wohingegen der Gehalt an Chromatin-gebundenem Mcm3 in Extrakten der G1/S-Phase am höchsten war und mit forschreitender S-Phase abnahm (Mendez und Stillman, 2000; Ritzi et al., 1998).

Betrachtet man die Ergebnisse der in vitro DNA-Replikation, zeigen sich im EtBr-gefärbten Agarosegel (Abb. 10C) keine Unterschiede zwischen den parallel durchgeführten Ansätzen. Zum Vergleich wurde die gleiche Menge pEPI-UPR DNA aufgetragen, die in den Replikationsansätzen eingesetzt wurde (Spur 1). Zur Kontrolle des vollständigen DpnI-Verdaus wurde die gleiche Menge der eingesetzten DNA mit DpnI verdaut und aufgetragen (Spur 2). In der Autoradiographie (Abb. 10D) wird deutlich, dass die Extrakte aus asynchron wachsenden und G1/S-Phase-arretierten HeLa-Zellen replikationskompetent waren und DpnI-resistente Replikationsprodukte der Form II und III DNA detektierbar waren (Spuren 3 bzw. 5). Etwas weniger DpnI-resistente DNA konnte in den Ansätzen der S-Phase-Extrakten detektiert werden (Spuren 6 bzw. 7). Dies deutet auf eine geringere Replicationseffizienz dieser Extrakten hin. In den Ansätzen mit G1-Phase-Extrakten hatte dagegen weniger radioaktiver Einbau stattgefunden und es konnten keine DpnI-resistenten Replikationsprodukte der Form II und III DNA detektiert werden (Spur 4).

4.2.2 CyclinA ist essentiell für die in vitro DNA-Replikation in Extrakten aus G1/S-Phase synchronisierten HeLa-Zellen

Aus den Ergebnissen in 4.2.1 geht hervor, dass die Extrakte aus HeLa-Zellen, die in der G1-Phase synchronisiert wurden nicht replikationskompetent sind. Wie in der Einleitung

Betrachtet man dagegen die Autoradiographie in Abbildung 11C wird deutlich, dass in den Ansätzen mit unbehandelten (Spur 2) und mit IgG-Antikörpern behandelten Extrakt (Spur 4) DpnI-resistente Replikationsprodukte detektierbar waren. Der CyclinA depletierte Ansatz hingegen zeigte keine solchen Replikationsprodukte (Spur 3). Der radioaktive Einbau in die DpnI-sensitive DNA ist jedoch in allen drei Ansätzen gleich stark.
Abb. 11 CyclinA ist essentiell für die *in vitro* Replikation in Extrakten aus G1/S-Phase synchronisierten HeLa-Zellen

Nach Depletion von CyclinA aus Chromatin-gebundenen Proteineextrakten aus in der G1/S-Phase synchronisierten HeLa-Zellen, wurden diese für die *in vitro* Replikation des pEPI-UPR Plasmids eingesetzt. (A) Western Blot-Analyse der CyclinA Depletion. Im Input (I) ist das im Extrakt enthaltene CyclinA zu erkennen, das nach der Bindung an Protein-A Sepharose-Beads im Überstand (ÜS) fehlte. Beim Einsatz des IgG-Kontrollantikörpers befand sich der größte Teil des CyclinA im Überstand (ÜS). (B) EtBr-gefärbtes Agarosegel der *in vitro* Replikationsansätze. Je gleiche Mengen ungeschnittene Form I und II DNA (Spur 1) und deproteinisierte, DpnI-verdaute DNA aus den Replikationsansätzen wurden über neutrale Gelelektrophorese in einem 0,8%igen Agarosegel aufgetrennt. Es wurde je ein Ansatz mit unbehandelten (Spur 2), CyclinA depletierten (Spur 3) und IgG-Kontrollantikörper behandelten (Spur 4) Extrakten durchgeführt. Spur M zeigt den DNA Längenmarker (1kb-Leiter). (C) Autoradiographie des getrockneten Agarosegels. Der Bereich der erwarteten DpnI-Abbauprodukte ist markiert. Pfeile markieren die Replikationsprodukte der Form II und III DNA.

4.3 DNA-Bindungsstudien zur Charakterisierung des prä-Replikationskomplexes

4.3.1 Bindung von Proteinen des prä-Replikationskomplexes an immobilisierte Plasmide

Zur Untersuchung des Bindevorhandens der pre-RC-Komponenten an Plasmid-DNA wurde zunächst pEPI-UPR DNA durch eine UV-Reaktion biotinyliert (3.3.9). Um die Anzahl der biotinylierten Plasmide zu maximieren, die Anzahl der Biotin-Gruppen pro Plasmid jedoch zu minimieren wurde ein Plasmid-Biotin-Massenverhältnis von 1:18 gewählt (J.F. Diffley, persönliche Mitteilung). Die biotinylierte, ringförmige DNA wurde dann an Streptavidin-paramagnetische Beads (Dynabeads M-280 Streptavidin) gekoppelt (3.6.1). Zur Kontrolle der Kopplungsseffizienz wurden 40\(\mu \)g Beads in 0,1% SDS aufgenommen und für 2min bei 95°C inkubiert. Die so von den Beads eluierte DNA wurde zusammen mit einer DNA-Verdünnungsreihe auf ein Agarosegel aufgetragen und die Konzentration der an die Beads gekoppelten DNA aus dem EtBr-gefärbten Gel bestimmt (Abb. 12A). Für jede Kopplungsreaktion wurde diese Kontrolle durchgeführt. Die Kopplungsseffizienz lag immer zwischen 20 - 25ng DNA/10\(\mu \)g Beads. Des Weiteren ist in Abbildung 12A zu erkennen, dass die gekoppelte pEPI-UPR DNA zum größten Teil in der superhelikalen Form I DNA und nur ein kleiner Anteil als genickte Form II DNA vorlag.

Für die Etablierung dieser Methode wurden 80\(\mu \)g pEPI-UPR-Beads (=180ng DNA) mit 32\(\mu \)g Extrakt der Chromatin-gebundenen Proteine aus asynchron wachsenden HeLa-Zellen inkubiert (3.6.2). Aus den Arbeiten mit X. laevis und S. cerevisiae geht hervor, dass bei einer Temperatur von 23°C die MCM-Ladung am effektivsten ist (Seki und Diffley, 2000; Waga und Zembutsu, 2006). Aus diesem Grund wurde in den hier gezeigten Experimenten eine Inkubation bei 23°C durchgeführt. Es wurden parallele Ansätze mit DNA-gekoppelten und, als Kontrolle, DNA-freien Beads (Abb. 12B Spuren 2 und 3) durchgeführt. Nach einer 30min Inkubation bei 23°C wurden die Eluate der gewaschenen Beads durch SDS-PAGE aufgetrennt und die Proteine des pre-RCs in Western Blots mit spezifischen Antikörpern analysiert. Da immer mehrere Proteine pro Experiment untersucht wurden, mussten zwei Gele parallel beladen werden (10% und 12,5% PAA Gele). Aus diesem Grund wurden die Reaktionsvolumina, und somit auch die Menge an eingesetzten Beads und Extrakten, verdoppelt. Zum Vergleich der Menge an detektierbaren Proteinen in den Eluaten wurde ein Viertel der eingesetzten Chromatin-gebundenen Proteine xtrakte (=8\(\mu \)g) aufgetragen (Spur 1). Die Western Blots in Abbildung 12B zeigen eine Bindung von allen untersuchten pre-RC-Komponenten an DNA-gekoppelte Beads (Spur 3), wobei die unspezifische Bindung an DNA-freie Beads (Spur 2) gering ist. Eine Ausnahme ist Orc6, das in dem hier vorgestellten System eine starke, unspezifische Bindung an DNA-freie Beads zeigt. Beim Vergleich der jeweiligen Proteinmenge im Input mit der Menge der spezifisch an DNA gebundenen
Proteine fällt auf, dass prozentual mehr Orc1 und Cdc6 an DNA gebunden ist, als dies bei den anderen untersuchten Proteinen der Fall ist. Des Weiteren lässt eine genauere Betrachtung des Cdc6-Blots darauf schließen, dass im Fall der DNA-Bindung Cdc6 eine geringere Mobilität hat als das Protein in der Input Spur (siehe 4.3.3). Neben der spezifischen Bindung der ORC-Proteine und Cdc6 an DNA konnte in diesem System auch eine schwache Mcm7-Bindung nachgewiesen werden (siehe 4.3.2).

Abb. 12 Proteine des pre-RCs binden an immobilisierte Plasmide

Biotinylierte pEPI-UPR DNA wurde an paramagnetische Streptavidin-Beads gekoppelt und die Bindung von Chromatin-gebundenen Proteinen aus HeLa-Zellen mittels Western Blot mit spezifischen Antikörpern analysiert. (A) Kontrolle der Kopplungseffizienz. 40 µg gekoppelte Dynabeads wurden mit 0,1% SDS aufgekocht und die so von den Beads eluierte DNA (Elution) zusammen mit einer DNA-Verdünnungsreihe (30 ng - 120 ng pEPI-UPR) in einem 0,8%igem Agarosegel aufgetrennt. Gezeigt ist das Ethidiumbromid gefärbte Gel, in dem die Form I und II DNA zu erkennen ist. Spur M zeigt den DNA Längenmarker (1kb-Leiter). (B) DNA-Bindungsstudie. Eluate von Ansätzen mit ungekoppelten (Spur 2) und gekoppelten (Spur 3) Beads wurden über SDS-PAGE (10% und 12,5% PAA Gel) aufgetrennt und die Proteine Orc1, Orc2, Orc4, Orc6, Cdc6 und Mcm3 im Western Blot mit spezifischen Antikörpern nachgewiesen. Zum Vergleich wurde 1/4 der eingesetzten Chromatingebundenen Proteine aufgetragen (Spur 1).

Zusammenfassend ist festzuhalten, dass die Bindung einzelner Proteine des pre-RCs an immobilisierte, superhelikale Plasmid-DNA in diesem neu etablierten System, dass auf Kernextrakten aus HeLa-Zellen basiert, nachgewiesen werden konnte. Die Assoziation von ORC-Proteinen und Cdc6 scheint relativ effizient zu sein, während nur geringe Mengen an
MCM-Proteinen gebunden werden. In den folgenden Kapiteln werden nun weitere DNA-Bindungsstudien gezeigt, die das Binderverhalten einzelner pre-RC-Komponenten näher untersuchen.

4.3.2 ATP stimuliert die Bindung der MCM-Proteine an immobilisierte Plasmide

Der Aufbau des pre-RCs aus mehreren ATP-bindenden Proteinen legt nahe, dass ATP bei der Ausbildung des pre-RCs eine entscheidende Rolle spielt. Frühere Studien von ORC und Cdc6 zeigten, dass die ATP-Bindung und die ATP-Hydrolyse unterschiedliche Aufgaben während der pre-RC Ausbildung haben. So hat ORC als Komplex ATP gebunden, wodurch die Integrität des Komplexes gewährleistet wird (Ranjan und Gossen, 2006). Des Weiteren stimuliert die ATP-Bindung die ORC-DNA-Interaktion und stabilisiert diese (Gillespie et al., 2001; Harvey und Newport, 2003b; Randell et al., 2006). Die ATP-Hydrolyse durch Cdc6 und ORC ist für das Laden des Mcm2-7-Komplexes notwendig (Bowers et al., 2004; Giordano-Coltart et al., 2005; Randell et al., 2006). Ausgehend von diesen Beobachtungen wird im folgenden Abschnitt der Einfluss von ATP auf die Bindung der Proteine des pre-RCs an immobilisierte Plasmide untersucht.

Die Western Blot-Analyse der ORC-Proteine Orc1, Orc2, Orc4 und Orc6 zeigen, dass diese Proteine auch ohne weitere ATP-Zugabe an DNA binden. Der Ansatz mit gekoppelten Beads (Spuren 2 und 3) zeigt im Western Blot ein deutlich stärkeres Signal als der mit DNA-freien Beads (Spur 1). Der Ansatz mit ATP weist bei den ORC-Proteinen keinen Anstieg der Bindung auf, wobei Orc1 ein leicht schwächeres Signal zeigt (Spuren 2 und 3). Ein anderes Bild ergibt sich bei der Betrachtung der Proteine Cdc6, Cdt1, Mcm3 und Mcm7. Bei diesen Proteinen ist die Signalstärke der DNA-gekoppelten Beads ohne ATP-Zugabe im Western Blot vergleichbar mit dem Hintergrundsignal der DNA-freien Beads (Spuren 1 und 2). Erst die Zugabe von ATP führte bei diesen Proteinen zu einem Anstieg in der Signalintensität, also zu einer DNA-Bindung (Spuren 2 und 3). Auch in diesem Experiment fällt wie in 4.3.1 im
Ergebnisse

Cdc6-Western Blot auf, dass es zwei Cdc6 Populationen mit unterschiedlicher Mobilität gibt (siehe 4.3.3).

Abbildung 13: ATP stimuliert die Bindung von Mcm3 und Mcm7 an immobilisierte Plasmide

DNA-Bindungsstudien mit pEPI-UPR-gekoppelten, paramagnetischen Beads und Chromatin-gebundenen Proteinextrakten aus asynchron wachsenden HeLa-Zellen wurden in drei parallel behandelten Ansätzen durchgeführt. Die Eluate der Ansätze mit un gekoppelten Beads ohne ATP (Spur 1), gekoppelten Beads ohne ATP (Spur 2) und gekoppelten Beads mit ATP (Spur 3) wurden über SDS-PAGE in einem 10% und 12,5%igen Gel aufgetrennt und die Proteine Orc1, Orc2, Orc4, Orc6, Cdc6, Cdt1, Mcm3 und Mcm7 im Western Blot mit spezifischen Antikörpern nachgewiesen.

Die in diesem Abschnitt vorgestellten Ergebnisse zeigen zum Einen, dass die untersuchten ORC-Proteine für die Bindung an immobilisierte Plasmide kein zusätzliches ATP benötigten und zum Anderen, dass durch Zugabe von ATP die Bindung von Cdc6, Cdt1 und den MCM-Proteinen an DNA stimuliert wird.
4.3.3 DNA-gebundenes HsCdc6 wird ATP abhängig phosphoryliert

Ergebnisse

Abb. 14 DNA-gebundenes Cdc6 wird ATP-abhängig phosphoryliert

DNA-Bindungsstudien mit pEPI-UPR-gekoppelten, paramagnetischen Beads und Chromatin-gebundenen Proteinextrakten aus asynchron wachsenden HeLa-Zellen. Die Proteine Orc1, Orc2, Orc4, Orc6 und Cdc6 wurden im Western Blot mit spezifischen Antikörpern nachgewiesen. (A) Drei parallel behandelte Ansätze wurden durchgeführt. Die Überstände und Eluate der Ansätze mit ungekoppelten Beads ohne ATP (Spuren 1 und 4), DNA-gekoppelten Beads ohne ATP (Spuren 2 und 5) und DNA-gekoppelten Beads mit ATP (Spuren 3 und 6) wurden über SDS-PAGE in einem 10% und 12,5%igen Gel aufgetrennt. (B) Die Eluate von drei parallel behandelten Ansätzen wurden über SDS-PAGE in einem 10% und 12,5%igen Gel aufgetrennt. Alle Ansätze erhielten ATP, wobei nur der Ansatz in Spur 9 nach dem finalen Waschschritt mit λ-PPase behandelt wurde. Gezeigt sind die Ansätze mit ungekoppelten Beads ohne λ-PPase-Behandlung (Spur 7), DNA-gekoppelten Beads ohne λ-PPase-Behandlung (Spur 8) und DNA-gekoppelte Beads mit λ-PPase-Behandlung (Spur 9).

Zusammenfassend wird aus diesen beiden Experimenten deutlich, dass Cdc6 nach der Bindung an DNA ATP-abhängig phosphoryliert wird. Das im Überstand befindliche freie sowie unspezifisch gebundenes Cdc6 unterliegt hingegen nicht dieser Modifikation.

4.3.4 Die Phosphorylierung des DNA-gebundenen Cdc6-Proteins erfolgt an den fünf N-terminalen Phosphorylierungsstellen

Studien über die Lokalisation von humanen Cdc6 (HsCdc6) während des Zellzyklus zeigten, dass Cdc6 in der G1-Phase ausschließlich im Nukleus vorliegt und nach der Initiation der DNA-Replikation am G1/S-Phase-Übergang im Cytoplasma lokalisiert ist. Diese Lokalisation wird durch die Phosphorylierung von HsCdc6 an den aminoterinalen Cdk-
Phosphorylierungsstellen durch CyclinA/Cdk2 reguliert (Herbig et al., 2000; Petersen et al., 1999). Weitere Studien zeigten andererseits, dass ein Teil der Cdc6-Proteine auch in der S- und G2-Phase im Zellkern Chromatin-gebunden vorliegen, während lösliches Cdc6 in einem CyclinA/Cdk2-abhängigen Prozess zerstört wird (Coverley et al., 2000; Fujita, 1999). Wie in der Einleitung beschrieben besitzt HsCdc6 im N-Terminus fünf potentielle Cdk-Konsensusmotive (Abb2). Um zu analysieren, ob diese Motive in vitro phosphoryliert werden, wurde Cdc6-Wildtyp (Cdc6-wt) und eine nicht phosphorylierbare Cdc6-Mutante (Cdc6-5xMut) mit Hilfe des eukaryotischen Baculovirus-Expressionssystem hergestellt. Die entsprechenden cDNAs wurden von der Arbeitsgruppe von Dr. E. Fanning (Vanderbilt University, Nashville, TN) zur Verfügung gestellt. Bei der Mutante wurden die fünf aminoterminalen Cdk-Phosphorylierungsstellen (4xSerin und 1xThreonin) durch Alanine ersetzt (Herbig et al., 2000). Nach der Umklonierung der cDNAs in einen pFastBac-Vektor und der Herstellung rekombinanter Baculoviren (3.4) wurden die Proteine in Insektenzellen exprimiert und über eine GST-Fusion aufgereinigt (3.5.2). (siehe Anhang 10.1)

Die so erhaltenen rekombinanten Proteine wurden anschließend in DNA-Bindungsstudien getestet. Die Ergebnisse dieses Versuchs sind in Abbildung 15 dargestellt. Sechs parallele Ansätze wurden durchgeführt, wobei pEPI-UPR DNA-gekoppelte Beads mit Chromatin-gebundenen Proteineextrakten aus asynchron wachsenden HeLa-Zellen inkubiert wurden (3.6.2). Ein Ansatz enthielt zur Kontrolle kein rekombinantes Cdc6 (Spur 1). Zu zwei der Ansätze wurden 100ng rekombinantes Cdc6-wt gegeben (Spuren 2 und 3), wobei einer der beiden Ansätze nach dem finalen Waschschritt mit λ-PPase behandelt wurde (Spur 2). Ein weiterer Ansatz einhielt 500ng Cdc6-wt, wurde aber nicht mit λ-PPase behandelt (Spur 4). Die zwei letzten Bindungsreaktionen enthielten 100ng Cdc6-5xMut (Spuren 5 und 6), wobei einer der beiden Ansätze vor der Elektrophorese zusätzlich mit λ-PPase behandelt wurde (Spur 5). Die Eluate aus allen sechs Reaktionen wurden mittels SDS-PAGE in einem 10 bzw. 12%-igen PAA-Gel aufgetrennt und im Western Blot mit spezifischen Antikörpern analysiert. Die Ergebnisse der Western Blots (Abb. 15) zeigen, dass im Kontrollansatz ohne rekombinantes Cdc6 (Spur 1) die untersuchten zellulären Proteine Orc1, Orc2, Orc4 und Cdc6 an die DNA-Beads binden. Die Zugabe von rekombinantem Cdc6 (wt bzw. 5xMut) bewirkte im Vergleich zu dem Kontrollansatz in Spur 1 eine tendenzielle Zunahme der ORC-Bindung (vergleiche Spur 1 mit Spuren 2-6), wobei in der Menge an gebundenen ORC-Proteinen Cdc6-unabhängige Schwankungen festzustellen sind. Bei der Betrachtung des Cdc6-Western Blots erkennt man zunächst in allen sechs Spuren das DNA-gebundene, endogene Cdc6.
Ergebnisse 72

Abb. 15 Cdc6 wird an den fünf N-terminalen Phosphorylierungsstellen phosphoryliert

Wieder ist in den mit \(\lambda\)-PPase behandelten Ansätzen die höhere Mobilität des dephosphorylierten Proteins zu erkennen (Spuren 2 und 5). Auch das zugegebene rekombinante Cdc6-wt Protein, das aufgrund der zur Aufreinigung benötigten GST-Fusion größer ist als das endogene Protein, bindet an die DNA-Beads. Der Vergleich der Spuren 2 und 3 zeigt, dass auch das rekombinante wt-Cdc6-Protein in einem phosphorylierten Zustand vorliegt, da die \(\lambda\)-PPase-Behandlung auch hier zu einer höheren Mobilität führt. Die nicht phosphorylierbare Cdc6-Mutante (Cdc6-5xMut) bindet ebenfalls an die DNA-Beads. Im Gegensatz zu dem rekombinanten Cdc6-wt lässt sich bei der Mutante jedoch keine Änderung in der Mobilität nach der \(\lambda\)-PPase Behandlung feststellen (Spuren 5 und 6). Zudem zeigt der
Ergebnisse

Cdc6-Western Blot, dass rekombinantes Cdc6 das Bindeverhalten vom endogenen Cdc6 nicht beeinflusst.

Der hier dargestellte Versuchsansatz zeigt, dass die Phosphorylierung des DNA-gebundenen Cdc6-Proteins zumindest teilweise an den fünf N-terminalen Phosphorylierungsstellen stattfindet, da das an diesen Stellen mutierte Protein nach λ-PPase-Behandlung keine Mobilitätsänderung im Gel zeigt.

4.3.5 HsOrc6 stimuliert die Bindung von HsCdc6p an DNA

Zur weiteren biochemischen Analyse des humanen pre-RCs wird in diesem Kapitel die Rolle von Orc6, der kleinsten und am wenigsten konservierten Untereinheit des ORC untersucht. Im Gegensatz zur Hefe, wo Orc6 eine pre-RC stabilisierende Funktion besitzt und für die Assoziation der MCM-Proteine und die Initiati on der DNA-Replikation essentiell ist (Semple et al., 2006), ist über die Funktion des humanen Orc6 bei der DNA-Replikation bis heute wenig bekannt. Studien mit Orc6-siRNA transfizierten HeLa-Zellen zeigten, dass HsOrc6 eine replikative Funktion besitzt und zusätzlich Funktionen bei der Chromosomensegregation und der Cytokinese hat (Prasanth et al., 2002). Der Aspekt, dass Orc6 Bestandteil des menschlichen ORC ist, blieb lange Zeit unklar. Erst jüngere Studien zeigten, dass Orc6 in vitro und in vivo mit anderen ORC-Proteinen interagiert (Siddiqui und Stillman, 2007; Thomae et al., 2008). Mit dem Ziel der biochemischen Charakterisierung von HsOrc6 werden in diesem Kapitel DNA-Bindungsstudien mit HsOrc6 depletierten Kernextrakten und rekombinantem HsOrc6 durchgeführt.

Dafür wurde zunächst Orc6 bakteriell exprimiert und über ein carboxyterminales His-Epitop aufgereinigt (3.5.1) (siehe Anhang 10.3). Das rekombinante Orc6-Protein wurde in DNA-Bindungsstudien mit Orc6-depletierten Chromatin-gebundenen Proteinnextrakten eingesetzt. Die Depletion von Orc6 aus Kernextrakten, die aus asynchron wachsenden HeLa-Zellen präpariert wurden, erfolgte mit einem Orc6-specifischen, monoklonalen Antikörper (3.5.5). Als Kontrollantikörper wurde ein α-EBNA1-Antikörper, der den gleichen Isotyp wie der α-Orc6-Antikörper besitzt, verwendet. Die Überstände sowie die Eluate aus den beiden Ansätzen wurden zur Kontrolle der Depletion über SDS-PAGE in einem PAA-Gel aufgetrennt und im Western Blot mit dem spezifischen Orc6-Antikörper analysiert (Abb. 16B). Man erkennt, dass Orc6 aus den Extrakten depletiert wurde (ÜS) und erst im Eluat der ProteinG-Sepharose-Beads wieder detektierbar war. Unter Verwendung des Kontroll-Antikörpers befand sich das gesamte Orc6 im Überstand.
Ergebnisse

Abb. 16 HsOrc6 stimuliert die Bindung von HsCdc6 an DNA

Um die Auswirkungen der Orc6-Depletion auf das Bindeverhalten der anderen pre-RC Proteine zu untersuchen wurden die deplierten Überstände in DNA-Bindungsreaktionen eingesetzt (3.6.2). Zwei Ansätze wurden mit den Orc6 immundepletierten Überständen durchgeführt (Abb. 16A Spuren 5 und 6), wobei einem Ansatz 120ng rekombinantes Orc6 zugegeben wurde (Abb. 16A Spur 6). In einem Kontrollansatz (Spur 4) wurden die pEPI-UPR DNA-gekoppelten Beads mit dem Überstand aus der α-EBNA1-Kontroll-Immundepletion inkubiert. Die Eluate aus allen drei parallelen Reaktionen wurden mittels SDS-PAGE in einem 10 bzw. 12%-igen PAA-Gel aufgetrennt und im Western Blot mit spezifischen Antikörpern analysiert. Die eingesetzten Proteinextrakte wurden in einer Verdünnungsreihe auf die Gele aufgetragen (Spuren 1-3). Bei der Betrachtung der Kontrolle (Spur 4) erkennt man die spezifische Bindung der untersuchten Proteine an die DNA-gekoppelten Beads. Die Depletion von Orc6 aus dem eingesetzten Extrakt (Spur 5) führte zu keiner Veränderung im Bindeverhalten der anderen untersuchten ORC-Untereinheiten Orc1, Orc2 und Orc4. Der Cdc6-Western Blot zeigt jedoch eine deutliche Reduktion der gebundenen Cdc6-Menge. Nach der Zugabe von einem Überschuss an rekombinantem Orc6 (120ng) zu dem depletierten Extrakt erkennt man, dass die Bindung von Cdc6 teilweise wiederhergestellt werden konnte (Spur 6).

Zusammenfassend lässt sich sagen, dass die Depletion von Orc6 aus dem Extrakt zu einer Reduktion der Menge an DNA-gebundenen Cdc6 führt und, dass die Cdc6-DNA-Bindung durch die Zugabe von rekombinantem Orc6 teilweise wiederhergestellt werden kann. Somit scheint die kleinste ORC-Untereinheit einen Einfluss auf die Rekrutierung und/oder Stabilität von Cdc6 an DNA zu haben. Die hier gezeigten Ergebnisse verdeutlichen, dass zur pre-RC Ausbildung ein intakter, hexamerer ORC zur Assoziation von Cdc6 benötigt wird und bestätigen die sequentielle Bildung des pre-RCs.

4.4 Die DNA-Bindung von rekombinantem HsORC

Im letzten Teil dieser Arbeit wurde das Bindeverhalten von rekombinanten HsORC-Proteinen an Oligo-DNA mittels „Elektro Mobility Shift Assays“ (EMSA) untersucht. Nach der Identifizierung des spezifisch an ARS1-DNA bindenden ORC in *S. cerevisiae* mittels DNase-Footprinting Experimenten (Bell und Stillman, 1992) führten in vitro DNA-Bindungsstudien mit, aus Extrakten gereinigten ORC-Proteinen und rekombinant hergestellten Proteinen zur Charakterisierung des sequenzspezifischen ScORC-Bindeverhaltens (Bolon und Bielinsky, 2006; Rao und Stillman, 1995). Mit Hilfe der EMSA-Methode wurde zudem gezeigt, dass ScOrc6 nicht für die Bindung von ScORC an DNA benötigt wird (Lee und Bell, 1997). In
D. melanogaster ist hingegen die kleinste ORC-Untereinheit essentiell für die DNA-Bindung von DmORC (Balasov et al., 2007). Die ATP-abhängige DmORC-DNA-Bindung findet dabei sequenzunabhängig statt (Remus et al., 2004). Eine ebenfalls von der Sequenz unabhängige DNA-Bindung zeigte der rekombinant hergestellte humane ORC in Nitrocellulose-Filter-Bindungs-Studien, wobei eine Präferenz für AT-reiche DNA festgestellt wurde (Baltin et al., 2006; Vashee et al., 2003). Welche HsORC-Untereinheiten für die DNA-Bindung essentiell sind ist jedoch bis heute unklar. In diesem Kapitel soll, aufgrund der großen Homologie zu Drosophila Orc6, die Rolle des HsOrc6-Proteins bei der ORC-DNA-Bindung untersucht werden. Die Etablierung des eukaryotischen Baculovirus-Expressionssystems zur Aufreinigung eines humanen Orc1-5-Komplexes war wesentlicher Bestandteil dieser Arbeit. Zudem wurde bakteriell exprimiertes Orc6 in den hier vorgestellten EMSA-Untersuchungen eingesetzt.

4.4.1 Die kleinste ORC-Untereinheit HsOrc6p bindet DNA

Die Beobachtung, dass der amino-terminale Bereich von Drosophila und humanen Orc6 ähnlich gefaltet sein könnte, wie der humane Transkriptionsfaktor TFIIB (Chesnokov et al., 2003), führte in einer nachfolgenden Arbeit über DmORC zur Identifizierung zweier Aminosäuren (S72 und K76) in einem Helix-Turn-Helix Motiv des aminoterminalen Bereichs von DmOrc6, die für die DNA-Bindung essentiell sind (Balasov et al., 2007). Aufgrund der hohen Homologie von Drosophila und humanen Orc6 in diesem Bereich wurde die Hypothese überprüft, ob nach der Mutation dieser beiden Aminosäuren auch das humane Orc6 seine Fähigkeit verliert, DNA zu binden.

Der Abgleich der Orc6-Aminosäuresequenzen in der von Balasov et al. 2007 beschriebenen und für die DNA-Bindung bei Drosophila essentiellen Region (AA 71-76) von Mensch, Maus, Frosch und Drosophila zeigt, dass die Proteine hoch-konserviert sind (Abb. 17A oben). Der Sequenzabgleich wurde mit dem „ClustalW“-Programm angefertigt (http://www.ebi.ac.uk/Tools/clustalw2/index.html) und graphisch mit dem Programm „Boxshade“ (http://www.ch.embnet.org/software/BOX_form.html) bearbeitet (vollständige Sequenzen im Anhang 10.2). In der vorhergesagten HsOrc6-Sekundärstruktur (PSIPRED Protein Structure Prediction Server; http://bioinf.cs.ucl.ac.uk/psipred/psiform.html) ist ersichtlich, dass in dieser Region ein Helix-Turn-Helix-Motiv zu finden ist, wobei die Aminosäuren Serin72 und Lysin76 am Rand der Helices in einem Loop liegen (Abb. 17A unten). Auch im humanen Orc6 könnte also dieses Motiv Einfluss auf die DNA-Bindung haben. Um diese Theorie zu überprüfen wurden die Aminosäuren S72 und K76 mittels PCR-
Ergebnisse

Mutagenese zu Alaninen mutiert (3.3.8). Die so erhaltene Orc6 Mutante (Orc6-S72A-K76A) wurde, wie das Wildtyp-Protein als 6xHis-Fusionsprotein bakteriell exprimiert und aufgereinigt (3.5.1). Die Proteinkonzentrationen der beiden Orc6-Aufreinigungen wurden mittels Bradford-Assay bestimmt und zur Kontrolle der Aufreinigungen wurden Verdünnungsreihen der beiden gereinigten Proteine mit einer BSA-Standardreihe über SDS-PAGE aufgetrennt und mit dem Farbstoff Coomassie Brilliant Blue gefärbt (siehe Anhang 10.3).

Abb. 17 Die Aminosäuren S72 und K76 vermitteln die DNA-Bindung bei HsOrc6
(A) oben: Der Vergleich der Orc6-Aminosäuresequenzen von Mensch, Maus, Frosch und Drosophila zeigt eine hoch-konservierte Sequenz zwischen Aminosäure 70 und 77 (rotes Rechteck). unten: Vorhersage der Sekundärstruktur (aa 62-80) von HsOrc6 mit einem Helix-Turn-Helix-Motiv. Das rote Rechteck markiert die hoch konservierte Sequenz zwischen den beiden Helices. Mit einem Stern sind die zu Alanin mutierten Aminosäuren S72 und K76 gekennzeichnet. (B) Die Bindung von humanem Orc6 an Cy5-markierte DNA wurde in EMSA-Studien untersucht. Je drei unterschiedliche Proteinkonzentrationen (60ng, 90ng, 120ng) von HsOrc6-wt (Spuren 2-4) und HsOrc6-S72A-K76A (Spuren 5-7) wurden in parallel behandelten Ansätzen mit 100fmol Oligonukleotid inkubiert und auf ein 8%iges natives 0,25xTBE-Gel aufgetragen. Ein Ansatz wurde ohne die Zugabe von Protein durchgeführt (Spur 1). Pfeile markieren die retardierten Protein-DNA-Komplexe.
Die beiden bakteriell exprimierten HsOrc6-Proteine (wt und S72A-K76A) wurden in dem in Abbildung 17B gezeigten EMSA auf ihre Fähigkeit hin getestet, DNA zu binden. Als DNA-Fragment diente ein 72bp großes Oligonukleotid, dass am 5'-Enden mit dem Farbstoff Cy5 markiert ist. Unterschiedliche Proteinmengen (60ng, 90ng, 120ng (= 2; 3 bzw. 4pmol)) an HsOrc6-wt und HsOrc6-S72A-K76A wurden zusammen mit 100fmol DNA in sechs parallel behandelter Ansätzen für 20min auf Eis inkubiert und anschließend in einem 8%igen nativen 0,25xTBE-Gel aufgetrennt (3.8). Das Gel wurde dann mit einem Phosphoimager (Fuji-Raytest) gescannt und so die Cy5 markierte DNA detektiert (Abb.17B). Zur Kontrolle des Laufverhaltens der Oligonukleotide enthielt ein Ansatz kein Protein (Spur 1). Die Zugabe von 60ng (2pmol) HsOrc6-wt führte zur Ausbildung von Protein-DNA-Komplexen und dadurch zu einer geringen Mobilität von einem Teil der DNA (Spur 2). Nach der Zugabe von größeren Mengen HsOrc6-wt bildeten sich durch das Binden mehrerer Proteine an ein Oligonukleotid größere Komplexe aus, was im Gel durch das Auftauchen von Banden geringerer Mobilität zu erkennen ist (Spuren 3 und 4). Im Gegensatz zu dem Wildtyp-Protein führte die Zugabe der gleichen Proteinmengen an HsOrc6-S72A-K76A zu keiner erkennbaren Retardation (Spuren 5-7).

Die hier gezeigten EMSA-Studien zeigen, dass das humane Orc6-Protein ohne die Beteiligung weiterer Faktoren an DNA binden kann. Des Weiteren deuten diese Ergebnisse darauf hin, dass auch beim HsOrc6 die DNA-Bindung von den oben beschriebenen Aminosäuren S72 und K76 vermittelt wird.

4.4.2 Expression und Aufreinigung des humanen Orc1-5-Komplexes mit dem Baculovirus-Expressionssystem

Einer der wesentlichen Bestandteile dieser Arbeit war die Expression des humanen Orc1-5-Komplexes mit Hilfe des Baculovirus-Expressionssystems in Hi5-Insektenzellen, der anschließend auf seine Fähigkeit zur DNA-Bindung in EMSA-Studien getestet werden sollte. Der Vorteil eines solchen eukaryotischen Sytems besteht darin, dass die exprimierten Proteine posttranslationale Modifikationen tragen, die in Bakterien nicht angefügt werden. Die Virusüberstände wurden von der Arbeitsgruppe von Dr. M. Gossen (Max-Delbrück-Zentrum, Berlin) zur Verfügung gestellt und wurden in Sf9-Insektenzellen amplifiziert (3.4). Zur Affinitätsaufreinigung des HsOrc1-5-Komplexes wurde eine Epitop-Kassette, bestehend aus einem Polyhistidin Teil, einem dreifach Hämagglutinin Motiv und einer TEV Protease-Stelle, an das carboxy-terminale Ende von HsOrc1 fusioniert (Ranjan und Gossen, 2006). In dieser Arbeit erfolgte die Aufreinigung jedoch nur über den Polyhistidin Teil mittels Ni-NTA
Ergebnisse

Agarose. Die Aufreinigung über die Orc1-Untereinheit ermöglicht die Herstellung eines stöchiometrischen Orc1-5-Komplexes. Frühere Arbeiten zeigten, dass Orc1 in einem substöchiometrischen Verhältnis in den rekombinanten ORC-Komplexen vertreten ist, wenn die Reinigung über andere ORC-Untereinheiten erfolgt (Vashee et al., 2003; Vashee et al., 2001). Die Expression wurde in Hi5-Insektenzellen durchgeführt. Dazu wurden die Insektenzellen gleichzeitig mit den fünf Virusüberständen (His-HsOrc1, HsOrc2, HsOrc3, HsOrc4 und HsOrc5) infiziert und nach 60 Stunden Kernextrakte präpariert. Diese Extrakte wurden anschließend mit Ni-NTA Agarose inkubiert und nach mehreren Waschschritten die, über His-HsOrc1 gebundenen Proteine von den Beads eluiert (3.5.3). Das Ergebnis einer exemplarischen Aufreinigung ist in Abbildung 18 gezeigt.

Abb. 18 Aufreinigung des HsOrc1-5-Komplexes aus Hi5-Insektenzellen

Die überexprimierten Proteine (His-HsOrc1, HsOrc2, HsOrc3, HsOrc4 und HsOrc5) wurden aus den Kernextrakten der mit Baculoviren infizierten Hi5-Zellen über Ni-NTA Agarosebeads aufgereinigt. (A) Coomassie-Gel zur Kontrolle der Aufreinigung. Cytosolischer Extrakt, Kernextrakt, ungebundenen Proteine aus den Ni-NTA Überständen, das Eluat der Beads und die final in Lämmipuffer aufgekochten Bead-Überstände wurden über SDS-PAGE in einem 10%igen PAA-Gel aufgetrennt. (B) Silberfärbung des PAA-Gels zur Kontrolle der Reinheit des Komplexes. Der aufgereinigte HsOrc1-5-Komplex wurde über SDS-PAGE in einem 10%igen PAA-Gel aufgetrennt. Als Marker wurde die BenchMark™ Protein Leiter (Invitrogen) verwendet.
Zur Kontrolle der Aufreinigung wurden der cytosolische Extrakt, der Kernextrakt, die ungebundenen Proteine aus den Ni-NTA Überständen sowie das Eluat der Beads über SDS-PAGE in einem 10%igen PAA-Gel aufgetrennt. Das Coomassie-gefärbte Gel (Abb. 18A) zeigt in den Kernextrakten die überexprimierten ORC-Proteine. Lediglich Orc3 ist hier nicht zu erkennen. In der nicht an die Beads gebundenen Fraktion ist zu erkennen, dass das komplette, im Kernextrakt enthaltene Orc1-Protein an die Beads gebunden hat und nicht mehr im Überstand detektierbar ist (vergleiche Spuren ungebunden mit Eluat). Orc2, 4 und 5 sind hingegen noch deutlich zu erkennen. Die Elution von den Ni-NTA Beads führt zu aufgereinigten Orc1-5-Komplexen, wobei die Proteine in einem stöchiometrischen Verhältnis vorliegen. Zur Kontrolle der Elutionsbedingungen wurden die Ni-NTA Beads nach der eigentlichen Elution in Lämmlipuffer aufgenommen und die Überstände nach dem Aufkochen ebenfalls auf das Gel geladen. In dieser Spur waren keine Proteine detektierbar, was auf eine vollständige Elution des Orc1-5-Komplexes von den Beads schließen lässt.

Ein zweites 10%iges PAA-Gel wurde zur Überprüfung der Reinheit des aufgereinigten HsOrc1-5-Komplexes angefertigt. Neben dem Marker wurde der von den Ni-NTA Beads eluierte Komplex aufgetragen und das Gel nach der Elektrophorese mit Silber gefärbt. Die Detektionsgrenze der Silberfärbung liegt um ein vielfaches unter der der Coomassiefärbung, sodass eventuelle Verunreinigungen durch unspezifische, an die Beads gebundene Proteine sichtbar werden sollten. Die Silberfärbung in Abbildung 18B zeigt jedoch, dass der HsOrc1-5 Komplex sauber aufgereinigt werden konnte da kaum Hintergrundbanden auftauchen.

Zusammenfassend ist festzuhalten, dass die Expression und Aufreinigung eines stöchiometrischen HsOrc1-5-Komplexes über das Baculovirus-Expressionssystem in Insektenzellen gut etabliert wurde.

4.4.3 Die DNA-Bindung des humanen Orc1-5-Komplexes ist Orc6 unabhängig

Wie unter 4.4 beschrieben zeigten Studien mit rekombinannten ScORC, dass ScORC unabhängig von der ScOrc6-Untereinheit DNA bindet (Lee und Bell, 1997). Für die Bindung von DmORC an DNA ist die DmOrc6-Untereinheit jedoch essentiell und wird über die unter 4.4.1 beschriebenen Aminosäuren vermittelt (Balasov et al., 2007). Aufgrund dieser Beobachtungen wurde in diesem Kapitel der aufgereinigte HsOrc1-5-Komplex auf seine Fähigkeit getestet, DNA zu binden. Mittels EMSA wurde untersucht, ob für diese HsOrc1-5-DNA-Bindung HsOrc6 benötigt wird. Gleichzeitig wurde durch die Zugabe eines Kompetitors (poly dI-dC) untersucht, ob die beobachtete Retardation der Oligonukleotide im TBE-Gel durch eine spezifische DNA-Bindung der jeweiligen Proteine verursacht wird.
HsOrc6-wt alleine, HsOrc1-5-Komplex und HsOrc6-wt zusammen mit dem HsOrc1-5-Komplex wurden mit DNA in parallelen Ansätzen inkubiert (3.8). Dabei wurden 150ng HsOrc6-wt (= 5pmol), 300ng HsOrc1-5 (= 1pmol) und 100fmol DNA eingesetzt. Alle Ansätze wurden dreifach angesetzt, wobei zu jeweils zwei Ansätzen poly-dI-dC als Kompetitor zugegeben wurde (50ng und 250ng). Zusätzlich wurde in einem Ansatz DNA ohne Protein mitgeführt. Die Ansätze wurden in einem 5%igen TBE-Gel aufgetrennt und die markierte DNA im PhosphoImager detektiert (Abb. 19).

Abb. 19 DNA-Bindungseigenschaften von HsOrc1-5 und HsOrc6
Die Bindung von HsOrc6 und HsOrc1-5 an Cy5-markierte DNA wurde in EMSA-Studien untersucht. HsOrc6 und HsOrc1-5 können dabei unabhängig voneinander an markierte Oligonukleotide binden, wobei die Zugabe von 50ng bzw. 250ng poly-dI-dC als Kompetitor-DNA die gebildeten Protein / DNA Komplexe auflöst (Spuren 2-4 und 8-10). Beim Einsatz von HsOrc1-5 zusammen mit HsOrc6 in einem Reaktionsansatz binden die Orc1-Orc6 Proteine an dieselben Oligonukleotide, wobei auch diese Bindung durch Zugabe von Kompetitor-DNA aufgelöst wird und nur noch die Bindung von Orc6 Multimeren an die markierte DNA als retardierte Banden im Gel zu erkennen ist (Spuren 5-7). Spur 1 zeigt die freie Proben-DNA. Die Ansätze mit Protein enthielten 150ng (= 5pmol) HsOrc6-wt bzw. 300ng (= 1pmol) HsOrc1-5. Es wurden 100fmol markierte DNA eingesetzt. Die Ansätze wurden über ein 5%iges TBE-Gel aufgetrennt und die markierte DNA im PhosphoImager detektiert. Pfeile markieren die Orc1-5 bzw. Orc1-5+Orc6 Protein-DNA-Komplexe.

Die Menge der eingesetzten DNA ist in Spur 1 zu erkennen. Nach Zugabe von Orc6-wt bilden sich Protein-DNA-Komplexe aus, die im Gel eine geringere Mobilität besitzen als die freie DNA (Spur 2; Vgl. mit Abb. 17). Das Auftauchen mehrere Banden lässt vermuten, dass...
mehrere Orc6-Moleküle an dasselbe Oligonukleotid binden. Durch die Zugabe von einem Überschuss an Kompetitor-DNA nimmt die Menge an DNA gebundenem Orc6 ab, was durch die Abnahme der retardierten Banden sowie der Zunahme an freier DNA zu erkennen ist (Spuren 3 und 4). Auch der Ansatz mit HsOrc1-5-Komplex zeigt eine Retardation der markierten DNA und lässt darauf schließen, das HsOrc1-5 ohne die Beteiligung weiterer Faktoren DNA binden kann (Spur 8). Durch die Zugabe von Kompetitor-DNA wird der Komplex von der markierten DNA abgelöst (Spur 9 und 10). Bei der Betrachtung der EMSA-Studien mit HsOrc1-5 + HsOrc6-wt fällt auf, dass die hier zu erkennende retardierte Bande des Protein-DNA-Komplexes etwas höher im Gel läuft als die in Spur 8 beobachtete (Spur 5). Dies lässt vermuten, dass Orc1-5 zusammen mit Orc6 an das gleiche DNA-Fragment gebunden haben. In diesem Experiment liegt Orc6 gegenüber Orc1-5 im Verhältnis von 5:1 vor. Durch die Zugabe des Kompetitors wird dieser Komplex von der markierten DNA abgelöst und es sind nur noch die Orc6-DNA-Komplexe im Gel zu erkennen (Spuren 6 und 7). Dies könnte zum Einen daran liegen, dass nur der Orc1-5-Komplex an die Kompetitor-DNA bindet und so Orc6-DNA-Komplexe zurückbleiben, zum Anderen könnte der gesamte Orc1-6-Komplex mit einer höheren Affinität an die Kompetitor-DNA binden und das im Überschuss zugegebene freie Orc6 an die markierte DNA binden.

Die in diesem Kapitel vorgestellten EMSA-Studien zeigen, dass HsOrc6 und auch der HsOrc1-5-Komplex unabhängig voneinander DNA binden können. Dabei zeigte der Einsatz von Kompetitor-DNA, dass es sich bei dieser Bindung um eine spezifische Bindung an DNA handelt. Durch den Einsatz aller sechs ORC-Proteine konnte des weiteren eine Bindung aller sechs ORC-Untereinheiten an dasselbe Oligonukleotid gezeigt werden.
5 Diskussion

Ziel der vorliegenden Arbeit ist es, die regulatorischen Mechanismen, die für die zellzyklusabhängige Initiation der DNA-Replikation essentiell sind, die einzelnen Schritte bei der sequentiellen Ausbildung des pre-RCs und die Rolle von HsOrc6 bei der Bindung des humanen „Origin recognition Complex“ (ORC) an DNA und der pre-RC Ausbildung biochemisch zu charakterisieren. Die präsentierten Ergebnisse erweitern das Verständnis der Ereignisse bei der sequentiellen Ausbildung des pre-RCs und der Initiation der DNA-Replikation. Im Laufe der Diskussion werden sie in Bezug auf das gängige Modell zur Initiation der DNA-Replikation diskutiert.

Die Bindung von ORC an DNA ist das initiale Ereignis bei der Ausbildung des pre-RCs. DNA-Bindungsstudien zeigen, dass HsOrc1-5 unabhängig von HsOrc6 an DNA bindet und somit die kleinste ORC-Untereinheit (HsOrc6) nicht für die Bindung von HsORC benötigt wird. HsOrc6 wiederum besitzt im N-terminalen Bereich eine DNA-Bindedomäne und kann selbstständig DNA binden. Eine mögliche Rolle von HsOrc6 bei der pre-RC Ausbildung scheint die Cdc6-Rekrutierung und/oder Erhaltung an DNA zu sein (Abb. 20 (A)).

Abgeschlossen wird die pre-RC Ausbildung durch die Rekrutierung der MCM2-7-Proteine, die zusammen mit Cdc45 und GINS die potentielle replikative Helikase darstellt. Für die reiterative Ladung der MCM2-7-Proteine wird die Hydrolyse von ATP durch Cdc6 und ORC benötigt (Abb. 20 (B)). Nach der Bindung von HsCdc6 an DNA wird dieses an den N-terminalen CDK-Phosphorylierungsstellen phosphoryliert, nicht jedoch die ungebundenen HsCdc6-Proteine. Die Ergebnisse dieser Arbeit deuten darauf hin, dass für diese posttranslationalen Modifikationen (PTM) CyclinA-Cdk2 verantwortlich ist, welches in HeLa-Zellen chromatinassoziert vorliegt und so einen möglichen Mechanismus der Origin-Selektion darstellt. Auf diese Weise wird eine lokale Regulation der DNA-Replikation erlaubt (Abb. 20 (C)). Die Ergebnisse der in vitro Replikationsversuche deuten auf eine essentielle Funktion von CyclinA bei der Initiation der DNA-Replikation hin. Diese Cyclin-Aktivität könnte in der CyclinA-Cdk2 vermittelten Phosphorylierung der Sld2- und Sld3-Proteine liegen, die daraufhin mit Dpb11 interagieren und so die Rekrutierung von Cdc45 an den pre-RC vermitteln. Homologe zu diesen, in S. cerevisiae identifizierten Proteinen sind teilweise auch für den Menschen beschrieben, so dass diese stimulierende Phosphorylierung einen konservierten Schritt bei der Initiation der DNA-Replikation darstellen könnte (Abb. 20 (D)).
Abb. 20 Modell zur sequentiellen Ausbildung und Aktivierung des pre-RCs

5.1 Das zellfreie in vitro Replikationssystem

Um die molekularen Mechanismen der Initiation der DNA-Replikation im Detail studieren zu können, wird letztendlich ein in vitro System aus rekombinanten Proteinen benötigt. Ein erster Schritt dahin ist die Entwicklung eines löslichen in vitro Systems aus cytosolischen und Kernextrakten. Im ersten Teil der vorliegenden Arbeit wird daher ein vollständig lösliches in vitro Replikationssystem entwickelt und charakterisiert, das auf löslichen Proteinen und Kernextrakten aus HeLa-Zellen basiert. Es wird gezeigt, dass in diesem System eine Runde der DNA-Replikation ablauft wobei die Replikation von dem replikativen DNA Polymerase α/Primase-Komplex abhängig ist. Des Weiteren wird gezeigt, dass Protein-freie DNA als Substrat für die in vitro Replikation dient, nicht aber Chromatin-verpackte DNA.

SV40 in vitro Replikation

Grundlage des hier beschriebenen Systems ist das SV40 in vitro Replikationssystem (Gruss, 1999), in dem cytosolische Extrakte aus HeLa-Zellen die Replikation in Abhängigkeit von dem viralen Initiator T-Antigen (T-Ag) unterstützen. Die Ergebnisse der Experimente ohne die Zugabe von T-Ag zeigen, dass für die DNA-Replikation ein Initiator benötigt wird (Abb. 4). In Anwesenheit des Initiators wird die SV40-Origin tragende DNA effizient repliziert. Dieses Experiment zeigt, dass im cytosolischen Extrat alle notwendigen Elongationsfaktoren für eine T-Ag abhängige Replikation enthalten sind, nicht aber die für die Initiation der DNA-Replikation notwendigen Faktoren. Das Auftreten einer Topoisomerleiter in diesen Experimenten zeigt, dass im cytosolischen Extrakt Topoisomeraseaktivität vorhanden ist (Halmer und Gruss, 1997). Dabei wird vor allem Topoisomerase I-Aktivität während der Elongation zum Auflösen der superhelikalen Spannungen, die durch die Helikaseaktivität entstehen, benötigt. Topoisomerase II-Aktivität ist für die Trennung der neu synthetisierten DNA-Moleküle notwendig (Yang et al., 1987).

In vitro Replikation mit Kernextrakten aus HeLa-Zellen

Die Aufgaben des SV40 T-Ag als Initiator werden, in dem hier vorgestellten in vitro Replikationssystem durch die Verwendung von Extrakten der Chromatin-gebundenen Proteine aus HeLa-Zellen übernommen. Die geringe aber signifikante Menge an Replikationsprodukten zeigt, dass der Kernextrakt alle Faktoren enthält, die für die Funktion als Initiator notwendig sind. Dabei handelt es sich um die Komponenten des pre-RCs (ORC, Cdc6, Cdt1, MCM2-7) und den, für die Umwandlung des pre-RCs in den prä-
Diskussion

Diskussion

Die Replikationsprodukte

Findet tatsächlich Replikation statt?

Durch den Einsatz von Aphidicolin (Braguglia et al., 1998), das spezifisch die DNA-abhängige DNA-Polymerase δ und den Pol α/Primase-Komplex inhibiert wird gezeigt, dass in diesem in vitro System tatsächlich Replikation stattfindet (Goscin und Byrnes, 1982;
Ikegami et al., 1978; Lee et al., 1981; Pedrali-Noy et al., 1982). Eine Konzentration von 15μM Aphidicolin führt zu einer kompletten Reduktion der DpnI-resistenter Replicationsprodukte, wobei die Menge an markierter DpnI-sensitiver DNA unverändert bleibt (Abb. 7). Dieses Ergebnis konnte durch Experimente mit Didesoxynukleotiden (ddNTPs), die in Konzentrationen unter 500μM die für die Reparatur verantwortliche DNA Polymerase β inhibiert, untermauert werden (Oドロンツ, 2004).

Bei der Betrachtung der DpnI-sensitiven Abbauprodukte ist zu diskutieren, ob hier nicht doch Initiationsereignisse stattgefunden haben. Das Auftreten von DNA-Fragmente, die größer als die zu erwartenden größten DpnI-Abbauprodukte (>1200bp) sind, lässt einen partiellen DpnI-Verdau vermuten. Die Ursache hierfür könnte darin liegen, dass die pre-RC Ausbildung und eine kurze Elongation stattfindet bevor die Replikation unterbrochen wird. Das Resultat wären replikative Intermediate mit einer partiell-hemimethylierten DNA, in denen einige DpnI-Schnittstellen resistent gegenüber DpnI sind und nicht geschnitten werden können.

Des Weiteren hat die Zugabe von α-Amanitin sowie die Behandlung mit RNase H keinen Einfluss auf die DNA-Replikation, was die Möglichkeit ausschließt, dass RNA Polymerase-abhängige RNA-Synthese oder im Extrakt befindliche RNA die Primer für die in vitro DNA-Synthese bereitstellen. Bei der Analyse der Replikationsprodukte während der DNA-Replikation werden nach der Denaturierung in alkalischen Agarosegelen sowohl lange als auch kurze (200 - 1000bp) DNA-Stränge detektiert (Vorwärts- und Rückwärtsstränge), die mit fortlaufender Synthesedauer in DNA-Stränge einheitlicher Länge überführt werden. Dieses Experiment zeigt, dass in dem vorgestellten in vitro Replikationssystem eine Prozessierung der Replikationsprodukte stattfindet. Zudem wird in Depletionsexperimenten gezeigt, dass die in vitro DNA-Replikation von den pre-RC-Proteinen Orc1, Orc2 und Mcm3 abhängig ist (Baltin et al., 2006; Odronitz, 2004).

Chromatin und die in vitro DNA-Replikation

Die Beobachtung, dass Chromatin-verpackte DNA nicht als Substrat für die in vitro Replikation dient (Abb. 9) ist damit zu erklären, dass die Zugänglichkeit der

5.2 CyclinA ist essentiell für die \textit{in vitro} DNA-Replikation

Im zweiten Teil dieser Arbeit wird durch die Verwendung von Extrakten aus synchronisierten HeLa-Zellen gezeigt, dass die \textit{in vitro} DNA-Replikation einer zellzyklusabhängigen Regulation unterliegt. Dabei wird durch Depletionsexperimente nachgewiesen, dass CyclinA für die \textit{in vitro} DNA-Replikation in G1/S-Phase-Extrakten essentiell ist. Die zellzyklusabhängige Regulation der Replikation ist für die fehlerfreie und kontrollierte Verdopplung des Genoms genau einmal pro Zellzyklus essentiell. Dabei ist die zeitliche Trennung von der Ausbildung replikationskompetenter Komplexe und der Initiation der
DNA-Replikation entscheidend. Die pre-RC Ausbildung wird in der G1-Phase abgeschlossen, bevor am Übergang zur S-Phase die Replikation initiiert wird. Eine stark reduzierte Cyclin-Aktivität in der G1-Phase ist dabei für die Ausbildung des pre-RCs essentiell (Nguyen et al., 2001). In den G1-Phase synchronisierten Extrakten ist dies auch nachgewiesen (Abb. 10B). Cyclin-Aktivität wird für den Eintritt in die S-Phase benötigt (Kelly und Brown, 2000). Die Ergebnisse aus den Synchronisations-Experimenten zeigen, dass in G1-Phase-Extrakten, ohne detektierbare Cyclin-Expression, im Gegensatz zu den Extrakten aus Zellen am G1/S-Phase-Übergang und in der S-Phase, keine \textit{in vitro} Replikation stattfindet (Abb. 10). Die Frage, welche Aktivitäten für die \textit{in vitro} DNA-Replikation benötigt werden, wird im Folgenden diskutiert. Ein Grund für die fehlende Replikationsaktivität der G1-Phase-Extrakte könnte mit der Anwesenheit von CDK-Inhibitoren wie p21 und p27 erklärt werden, die durch das Binden an die Cycline und die CDKs deren Funktion blockieren (De Clercq und Inze, 2006). Eine weitere mögliche Erklärung wäre das Fehlen von Faktoren, die G1/S-spezifisch transkribiert werden. So unterliegen viele der essentiellen Proteine für die DNA-Replikation, wie beispielsweise Orc1 (Ohtani et al., 1996), Cdt1 (Yoshida und Inoue, 2004), Cdc25 (Vigo et al., 1999), Cdc2 (Cdk1) (Dalton, 1992), Cdc6 (Ohtani et al., 1998), Pol αss, Cyclin E und Cyclin A, einer E2F-abhängigen Transkription (Leone et al., 1999; Nevins et al., 1997) und sind im verwendeten G1-Phase-Extrakt entweder gar nicht oder in nicht ausreichender Menge vorhanden. Die Western Blots der synchronisierten Extrakte lassen dies für die S-Phase einleitenden Cycline A und E und die pre-RC-Komponente Mcm3 vermuten (Abb. 10B). Weitere Western Blots zur Analyse der essentiellen Replikationsproteine und CDK-Inhibitoren sind jedoch nötig um diese Vermutungen zu untermauern.

Die Beobachtung, dass die Depletion von Cyclin A aus G1/S-Phase-Extrakten zur Inhibition der \textit{in vitro} DNA-Replikation führt (Abb. 11) unterstreicht die Bedeutung von Cyclin A-Cdk2 für die Initiation der DNA-Replikation. Da G1/S-Phase-Extrakte die \textit{in vitro} Replikation unterstützen ist davon auszugehen, dass alle benötigten Faktoren in ausreichender Menge im Extrakt vorhanden sind. Für den Eintritt in die S-Phase ist die Aktivierung des Cyclin A-Cdk2-Komplexes durch die Cdc25-Phosphatase vermittelte Dephosphorylierung der Cdk2 Untereinheit an Thr14 und Tyr15 und die SCF(Skp2)-vermittelte Degradation von p21 und p27 essentiell (Sherr und Roberts, 1999). Durch die Cyclin A-Cdk2 vermittelte Phosphorylierung von Rb wird dieses degradiert und der E2F-Transkriptionsfaktor kann die Transkription der oben beschriebenen Gene aktivieren, so dass die Proteinsynthese der Replikationsproteine am G1/S-Phase-Übergang bereits abgeschlossen ist. Die transkriptionellen Anforderungen sowie die Inaktivierung der inhibitorischen Faktoren sind
demnach in den G1/S-Phase-Extrakten zum Zeitpunkt der Präparation bereits abgeschlossen und es ist ein Milieu geschaffen, das eine funktionelle Ausbildung des pre-RCs und die Initiation der in vitro DNA-Replikation erlaubt. Diese beiden Anforderungen, die sich, wegen der oben beschriebenen zeitlichen Trennung der beiden Ereignisse, an sich ausschließen, könnten ein weiterer Grund für die ineffiziente Replikation in diesem in vitro System sein.

Zusätzlich zeigen diese Studien, dass ein zweiter zellzyklusregulierender Kinase-Komplex, der Dbf4/Cdc7-Komplex (DDK), für die Initiation der DNA-Replikation essentiell ist. DDK phosphoryliert den Mcm2-7-Komplex und induziert wahrscheinlich eine strukturelle Veränderung, die für die Helikase-Aktivität des Mcm2-7-Komplexes nach der Assoziation von Cdc45 und dem GINS-Komplex an den pre-RC notwendig ist (Hoang et al., 2007; Moyer et al., 2006; Sheu und Stillman, 2006). Neuere Studien deuten darauf hin, dass der Komplex aus Cdc45, Mcm2-7 und GINS die replikative DNA-Helikase darstellt (Moyer et al., 2006). Die Identifizierung von Dpb11-Homologen in höheren Eukaryoten und deren essentielle Funktion bei der Cdc45-Rekrutierung lässt einen ähnlichen Mechanismus für den Übergang von der G1- zur S-Phase vermuten (Xenopus:(Van Hatten et al., 2002); Human:(Schmidt et al., 2008); Drosophila:(Yamamoto et al., 2000)). Des Weiteren konnte in Xenopus ein Sld2-
Homolog identifiziert werden, dass für die DNA-Replikation essentiell ist (Matsuno et al., 2006; Sangrithi et al., 2005).

Die in diesem Teil der vorliegenden Arbeit gezeigten Ergebnisse führen zur Hypothese, dass die für die \textit{in vitro} Replikation in G1/S-Phase-Extrakten benötigte Funktion von CyclinA eventuell die in Hefe beschriebene Phosphorylierung der Sld2-/Sld3-Proteine ist (Abb. 20 (D)). Diese beiden Proteine sind die einzigen bis heute beschriebenen S-CDK-Substrate, die einer stimulierenden Phosphorylierung unterliegen, die für die Initiation der DNA-Replikation essentiell sind. Die Herstellung von Fusionsproteinen, die den pre-RC mit der Replikationsmaschinerie koppeln, sollte in zukünftigen Experimenten Aufschluss darüber geben, ob die CyclinA-Cdk2-Funktion tatsächlich in der Vermittlung der Cdc45-Rekrutierung liegt. Zudem ist zu klären, welchen Effekt CyclinE auf die Initiation der DNA-Replikation hat.

\subsection*{5.3 HsCdc6 wird DNA-gebunden phosphoryliert}

Im dritten Teil dieser Arbeit wird ein DNA-Bindungssystem etabliert, das die Analyse der pre-RC Ausbildung auf immobilisierten Plasmiden, basierend auf Kernextrakten aus HeLa-Zellen, erlaubt. Die Ergebnisse dieser Experimente werden im Folgenden erläutert und der Mechanismus der beobachteten Cdc6-Phosphorylierung anhand der teils widersprüchlichen Literatur diskutiert. Im Modell in Abbildung 20 sind die Ergebnisse aus diesem Teil der Arbeit schematisch dargestellt und mit B bzw. C gekennzeichnet.

\textbf{Das humane DNA-Bindungssystem}

Menge im Extrakt erklärt werden, andererseits deuten Studien über das Bindungsverhalten von pre-RC-Komponenten in CHO-Zellen darauf hin, dass wahrscheinlich 2 Moleküle Cdc6 und nur ein ORC pro 100kb an DNA binden (Cao et al., 2007).

Die Rolle von ATP

Die Beobachtung, dass die MCM2-7-Bindung ATP-abhängig ist entspricht den Ergebnissen früherer Studien, in denen gezeigt wird, dass die ATP-Bindung und die ATP-Hydrolyse durch Orc1 und Cdc6 für das reiterative Laden des MCM2-7-Komplexes notwendig ist (Bowers et al., 2004; Gillespie et al., 2001; Harvey und Newport, 2003a; Perkins und Diffley, 1998; Randell et al., 2006; Seki und Diffley, 2000). Obwohl die ORC-DNA-Bindung ebenfalls ATP-abhängig ist (Bell und Stillman, 1992; Makise et al., 2003), kann in den hier gezeigten Experimenten auch ohne die Zugabe von ATP eine ORC-Bindung beobachtet werden. Grund hierfür könnte das im Extrakt enthaltene ATP sein, das bei der Extraktpräparation eingesetzt wird und für die Integrität von ORC entscheidend ist (Ranjan und Gossen, 2006). Die Beobachtung, dass im *Xenopus*-System nach der MCM2-7-Ladung die ORC-Proteine von der DNA abgelöst werden (Waga und Zembutsu, 2006), kann in den hier vorgestellten Experimenten nicht beobachtet werden. Lediglich für Orc1 wird ein schwacher Rückgang detektiert (Abb. 13). Ursache hierfür könnte sein, dass die MCM-Proteine lediglich an die DNA assoziiert vorliegen, die Ladung des MCM-Komplexes aber noch nicht abgeschlossen ist. Die MCM2-7-Proteine bilden einen ringförmigen Komplex (Adachi et al., 1997; Fletcher et al., 2003; Sato et al., 2000), der durch die ATP-Hydrolyse von Orc1 und Cdc6 geladen wird.
Diskussion

Die Cdc6-Phosphorylierung

5.4 Die Rolle von Orc6 bei der pre-RC Ausbildung und der ORC-DNA-Bindung

Im letzten Teil dieser Arbeit wird das initiale Ereignis der DNA-Replikation, die Bindung des „Origin Recognition Complex“ an DNA und die Rolle des Orc6-Proteins bei der pre-RC Ausbildung untersucht. Die Ergebnisse zeigen eine Funktion von Orc6 bei der Cdc6-Rekrutierung und/oder Erhaltung an DNA. Experimente mit rekombinannten ORC-Proteinen ermöglichen die Identifizierung eines DNA-Bindemotivs in Orc6 und zeigen, dass die DNA-Bindung von Orc1-5 unabhängig von Orc6 ist (Abb. 20A).

Die hier vorgestellten EMSA-Studien mit rekombinannten Orc6-Proteinen belegen, dass HsOrc6, wie das DmOrc6, ein konserviertes DNA-Bindemotiv besitzt und beide Homologe unabhängig von anderen Faktoren DNA binden (Balasov et al., 2007). Im Unterschied zu DmOrc6 wird HsOrc6 jedoch nicht für die DNA-Bindung des Orc1-5-Komplexes benötigt (Chesnokov et al., 2001) (Abb. 17). Somit stellt sich die Frage, welche Funktion HsOrc6 bei der DNA-Replikation hat. Einen Anhaltspunkt liefern die hier gezeigten DNA-Bindungsstudien mit HeLa-Kernextrakten, in denen die Depletion von Orc6 zu einer reduzierten Cdc6-Bindung führt, die teilweise durch Zugabe von rekombinantem Orc6...
 Diskussion

wiederhergestellt werden kann (Abb. 16). Diese Experimente deuten demnach auf eine Funktion bei der Cdc6-Rekrutierung und/oder Erhaltung an DNA hin. Unterstützt wird diese Theorie durch die Beobachtung, dass in bimolekularen Fluoreszenz Komplementations-Experimenten (BiFC) eine Interaktion zwischen Orc6 und Cdc6 nachgewiesen ist (Thomae, 2007). Um diese Ergebnisse zu bestätigen wäre zu untersuchen, ob die Orc6-DNA-Bindungsmutante, entsprechend dem Drosophila-Homolog, in vivo einen dominant negativen Effekt besitzt und welchen Einfluss die Orc6-Mutante auf die Cdc6-Chromatinbindung und die DNA-Replikation hat.

Aufgrund der Untersuchungen des HsOrc1-5-Komplexes in DNA-Retardationsexperimenten ist die Expression und Aufreinigung eines rekombinanten Komplexes in Insektenzellen ein wichtiger Bestandteil dieser Arbeit. Durch die Aufreinigung des Orc1-5-Komplexes über die Orc1-Untereinheit ist es gelungen, einen stöchiometrischen Komplex zu reinigen. Die Ergebnisse der Aufreinigung zeigen, dass nur der Holokomplex (Orc1-5) aufgereinigt wird, nicht aber der Subkomplex bestehend aus Orc2-5 (Abb. 18). Somit wird in dieser Arbeit das Problem aus älteren Arbeiten, in denen Orc1 nach der Aufreinigung in einem substöchiometrischen Verhältnis vorliegt, gelöst (Vashee et al., 2003; Vashee et al., 2001).

Die in dieser Arbeit diskutierten Ergebnisse erweitern unser Verständnis der initialen Ereignisse der DNA-Replikation. Mit der Entwicklung eines vollständig löslichen in vitro Replikationssystems gelang es, die Bedeutung von CyclinA als ein, für die Initiation der Replikation essentielles Protein am G1/S-Phase-Übergang zu unterstreichen. Die gezeigte Chromatinassoziation von CyclinA in der G1/S- und S-Phase des Zellzyklus deutet auf eine Funktion von CyclinA bei der Origin-Selektion hin und stellt einen möglichen Mechanismus für eine lokale Regulation der DNA-Replikation dar. So konnte in DNA-Bindungsstudien gezeigt werden, dass HsCdc6 erst nach der Rekrutierung an ORC und DNA phosphoryliert wird. Diese Phosphorylierung findet an den N-terminalen CyclinA-Cdk2-
Phosphorylierungsstellen statt. Durch weitere DNA-Bindungsversuche konnte zudem eine Rolle der kleinsten ORC-Untereinheit (Orc6) bei der Rekrutierung und/oder Erhaltung von HsCdc6 an ORC/DNA nachgewiesen werden. Im Gegensatz zu DmOrc6 wird HsOrc6 jedoch nicht für die DNA-Bindung des HsOrc1-5-Komplexes benötigt.

Mit den in dieser Arbeit vorgestellten in vitro Methoden sollte in zukünftigen Studien eine detaillierte Aufklärung der regulatorischen und mechanistischen Ereignisse bei der pre-RC Ausbildung und der Initiation der DNA-Replikation ermöglicht werden.

7 Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>Anti, alpha</td>
</tr>
<tr>
<td>°C</td>
<td>Grad Celsius</td>
</tr>
<tr>
<td>ACE</td>
<td>ARS Konsensus Element</td>
</tr>
<tr>
<td>ARS</td>
<td>Autonom replizierende Sequenz</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosin-Triphosphat</td>
</tr>
<tr>
<td>bp</td>
<td>Basenpaar</td>
</tr>
<tr>
<td>CDC</td>
<td>Cell division cycle</td>
</tr>
<tr>
<td>CDK</td>
<td>Cyclin-paar</td>
</tr>
<tr>
<td>cDNA</td>
<td>Komplementär-DNA</td>
</tr>
<tr>
<td>ChIP</td>
<td>Chromatin-Immunpräzipitationsmethode</td>
</tr>
<tr>
<td>CHO</td>
<td>Chinese hamster ovary</td>
</tr>
<tr>
<td>Ci</td>
<td>Curie</td>
</tr>
<tr>
<td>CMV</td>
<td>Cytomegalie-Virus</td>
</tr>
<tr>
<td>CV</td>
<td>Säulenvolumen</td>
</tr>
<tr>
<td>Da</td>
<td>Dalton</td>
</tr>
<tr>
<td>Dm</td>
<td>Drosophila melanogaster</td>
</tr>
<tr>
<td>DMEM</td>
<td>Dulbecco’s Modified Eagle’s Medium</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethylsulfoxid</td>
</tr>
<tr>
<td>DNA</td>
<td>Desoxyribonukleinsäure</td>
</tr>
<tr>
<td>DNase</td>
<td>Desoxyribonuklease</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylen diamintetraessigsäure</td>
</tr>
<tr>
<td>FACS</td>
<td>Fluorescence Activated Cell Sorting</td>
</tr>
<tr>
<td>FCS</td>
<td>Fötales Kälberserum</td>
</tr>
<tr>
<td>g</td>
<td>Erdbeschleunigung</td>
</tr>
<tr>
<td>g</td>
<td>Gramm</td>
</tr>
<tr>
<td>h</td>
<td>Stunde</td>
</tr>
<tr>
<td>Hs</td>
<td>human, Homo sapiens</td>
</tr>
<tr>
<td>IgG</td>
<td>Immunglobulin G</td>
</tr>
<tr>
<td>IP</td>
<td>Immunpräzipitation</td>
</tr>
<tr>
<td>Kan</td>
<td>Kanamycin</td>
</tr>
<tr>
<td>l</td>
<td>Liter</td>
</tr>
<tr>
<td>LB</td>
<td>Luria Bertani</td>
</tr>
<tr>
<td>LMW</td>
<td>low-molecular weight</td>
</tr>
<tr>
<td>M</td>
<td>Molar</td>
</tr>
<tr>
<td>m</td>
<td>Meter</td>
</tr>
<tr>
<td>Mcm</td>
<td>Minichromosom</td>
</tr>
<tr>
<td>min</td>
<td>Minute</td>
</tr>
<tr>
<td>MNase</td>
<td>Micrococcus Nuklease</td>
</tr>
<tr>
<td>NP-40</td>
<td>Nonident P-40</td>
</tr>
<tr>
<td>NTP</td>
<td>Nukleotid-Triphosphat</td>
</tr>
<tr>
<td>OD</td>
<td>Optische Dichte</td>
</tr>
<tr>
<td>ORC</td>
<td>Origin Recognition Complex</td>
</tr>
<tr>
<td>PAA</td>
<td>Polyacrylamid</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate-buffered saline</td>
</tr>
<tr>
<td>PCNA</td>
<td>Proliferating cell nuclear antigen</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase-Kettenreaktion</td>
</tr>
<tr>
<td>PI</td>
<td>Propidiumiodid</td>
</tr>
<tr>
<td>PMSF</td>
<td>Phenylmethylsulfonylfluorid</td>
</tr>
<tr>
<td>preIC</td>
<td>prä-Initiationskomplex</td>
</tr>
<tr>
<td>preRC</td>
<td>prä-Replikationskomplex</td>
</tr>
<tr>
<td>PTM</td>
<td>postranslationale Modifikation</td>
</tr>
<tr>
<td>RI</td>
<td>Replikative Intermediate</td>
</tr>
<tr>
<td>rpm</td>
<td>Rounds per minute</td>
</tr>
<tr>
<td>RPA</td>
<td>Replikationsprotein A</td>
</tr>
<tr>
<td>RT</td>
<td>Raumtemperatur</td>
</tr>
<tr>
<td>Sc</td>
<td>Saccharomyces cerevisiae</td>
</tr>
<tr>
<td>SDS</td>
<td>Natriumdodecylsulfat</td>
</tr>
<tr>
<td>s</td>
<td>Sekunde</td>
</tr>
<tr>
<td>Sp</td>
<td>Saccharomyces pombe</td>
</tr>
<tr>
<td>SV40</td>
<td>Simian Virus 40</td>
</tr>
<tr>
<td>T-Ag</td>
<td>T-Antigen</td>
</tr>
<tr>
<td>TBE</td>
<td>Tris-Borat-EDTA</td>
</tr>
<tr>
<td>TE</td>
<td>Tris-EDTA</td>
</tr>
<tr>
<td>UPR</td>
<td>upstream promotor region</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolett</td>
</tr>
<tr>
<td>V</td>
<td>Volt</td>
</tr>
<tr>
<td>XI</td>
<td>Xenopus laevis</td>
</tr>
</tbody>
</table>
8 Abbildungsverzeichnis

Abb. 1 Schematische Darstellung der Ausbildung und Aktivierung des pre-RCs11
Abb. 2 Schematische Darstellung des HsCdc6 ...15
Abb. 3 Die Komponenten des klassischen SV40 in vitro Replikationssystems47
Abb. 4 T-Ag abhängige SV40 in vitro Replikation ...48
Abb. 5 Komponenten des in vitro Replikationssystems mit menschlichen Kernextrakten ..51
Abb. 6 Chromatin-gebundene Proteine aus HeLa-Zellen unterstützen die in vitro DNA-
 Replikation ..52
Abb. 7 Aphidicolin hemmt die in vitro DNA-Replikation ..54
Abb. 8 In vitro DNA-Replikation mit unterschiedlichen Salzkonzentrationen56
Abb. 9 Chromatin-verpackte DNA inhibiert die in vitro DNA-Replikation58
Abb. 10 Die in vitro Replikation mit HeLa-Zellextrakten ist zellzyklusabhängig60
Abb. 11 CyclinA ist essentiell für die in vitro Replikation in Extrakten aus G1/S-Phase
 synchronisierten HeLa-Zellen ...63
Abb. 12 Proteine des pre-RCs binden an immobilisierte Plasmide66
Abb. 13 ATP stimuliert die Bindung von Mcm3 und Mcm7 an immobilisierte Plasmide68
Abb. 14 DNA-gebundenes Cdc6 wird ATP-abhängig phosphoryliert70
Abb. 15 Cdc6 wird an den fünf N-terminalen Phosphorylierungsstellen phosphoryliert72
Abb. 16 HsOrc6 stimuliert die Bindung von HsCdc6 an DNA ..74
Abb. 17 Die Aminosäuren S72 und K76 vermitteln die DNA-Bindung bei HsOrc677
Abb. 18 Aufräumung des HsOrc1-5-Komplexes aus Hi5-Insektenzellen79
Abb. 19 DNA-Bindungseigenschaften von HsOrc1-5 und HsOrc681
Abb. 20 Modell zur sequentiellen Ausbildung und Aktivierung des pre-RCs84
Abb. 21 Aufräumung Cdc6-wt und Cdc6-5xMut ..116
Abb. 22 Abgleich der Orc6-Aminosäuresequenzen ...117
Abb. 23 HsOrc6-Sekundärstruktur Vorhersage ..118
Abb. 24 Aufräumung von HsOrc6-wt und HsOrc6-S72A-K76A119
9 Literaturverzeichnis

Maiorano, D., Cuvier, O., Danis, E. and Mechali, M. (2005) MCM8 is an MCM2-7-related protein that functions as a DNA helicase during replication elongation and not initiation. Cell, 120, 315-328.

Literaturverzeichnis

10 Anhang

10.1 Aufreinigung Cdc6-wt und Cdc6-5xMut

Cdc6-Wildtyp (Cdc6-wt) und eine nicht phosphorylierbare Cdc6-Mutante (Cdc6-5xMut) wurden mit Hilfe des eukaryotischen Baculovirus-Expressionssystem in Hi5-Inselenzellen hergestellt und über eine GST-Fusion aufgereinigt (3.5.2). Nach der Infektion mit rekombinanten Baculoviren wurden die Chromatin-gebundenen Proteine aus den Hi5-Zellen extrahiert und über eine Glutathion-Sepharose 4 FAST Flow Säule aufgereinigt. Der Input, der Durchlauf, die Waschfraktionen und die Eluate wurden auf einem 10%igen PAA-Gel mittels Coomassiefärbung analysiert (Abb. 21). Die Fraktionen E2-E10 wurden vereinigt, über Nacht dialysiert und auf ein Volumen von 200µl eingeengt.
10.2 Orc6-Sequenzvergleich und Vorhersage der Sekundärstruktur

Abb. 22 Abgleich der Orc6-Aminosäuresequenzen

Gezeigt sind die Orc6-Aminosäuresequenzen von Mensch (Hs), Maus (Mm), Frosch (Xl) und Drosophila (Dm). Identische Bereiche sind schwarz schattiert. Konservierte Substitutionen sind grau schattiert.

Abb. 23 HsOrc6-Sekundärstruktur Vorhersage

Dargestellt ist die Vorhersage des gesamten HsOrc6-Proteins. Pred.=Vorhersage; AA=Aminosäure; H=Helix.
10.3 Aufreinigung von HsOrc6-wt und HsOrc6-S72A-K76A

Das Orc6-wt Protein und die Orc6-Mutante (Orc6-S72A-K76A) wurden als 6xHis-Fusionsprotein bakteriell exprimiert und aufgereinigt (3.5.1). Die Proteinkonzentrationen der beiden Orc6-Aufreinigungen wurden mittels Bradford-Assay bestimmt und zur Kontrolle der Aufreinigungen wurden Verdünnungsreihen der beiden gereinigten Proteine mit einer BSA-Standardreihe über SDS-PAGE aufgetrennt und mit dem Farbstoff Coomassie Brilliant Blue gefärbt (Abb. 24).

![Abbildung 24 Aufreinigung von HsOrc6-wt und HsOrc6-S72A-K76A](image)

Abb. 24 Aufreinigung von HsOrc6-wt und HsOrc6-S72A-K76A

Zur Kontrolle der HsOrc6-Aufreinigungen wurden 840ng, 420ng, 300ng und 225ng der aufgereinigten HsOrc6-Proteine (Orc6-S72A-K76A und Orc6-wt) und BSA auf ein 12%iges PAA-Gel aufgetragen und mittels Coomassiefärbung analysiert.
10.4 Lebenslauf

Persönliche Daten

Name Jens Baltin
Geburtsdatum 08.05.1978
Geburtsort Idar-Oberstein
Familienstand ledig
Staatsangehörigkeit deutsch
E-mail Adresse jens_baltin@hotmail.com

Schulischer Werdegang

1983 – 1987 Grundschule Göttschied, Idar-Oberstein
1987 – 1997 Gymnasium an der Heinzenwies, Idar-Oberstein
Juni 1997 Abitur

Grundwehrdienst

Studium

Okt. 1998 – Okt. 2003 Studium der Biologie, Universität Konstanz
Feb. 2003 – Okt. 2003 Diplomarbeit bei Prof. Dr. R. Knippers am Lehrstuhl für molekulare Genetik, Universität Konstanz
Okt. 2003 – März 2004 Wiss. Mitarbeiter in der Arbeitsgruppe von Prof. Dr. R. Knippers am Lehrstuhl für molekulare Genetik, Universität Konstanz
Juni 2004 – Juli 2004 Wiss. Mitarbeiter in der Arbeitsgruppe von Prof. Dr. I. Adamska am Lehrstuhl für Biochemie und Physiologie der Pflanzen, Universität Konstanz
10.5 Erklärung

Hiermit erkläre ich, dass die vorliegende Arbeit mit dem Titel

„Biochemische Charakterisierung der Initiation der DNA-Replikation in vitro“

von mir selbstständig und ohne unerlaubte Hilfsmittel angefertigt wurde und ich mich dabei nur der ausdrücklich bezeichneten Quellen und Hilfsmittel bedient habe. Diese Arbeit wurde weder in der jetzigen noch in einer abgewandelten Form einem anderen Prüfungskomitee vorgelegt.

München, im Oktober 2008

Jens Baltin