CHEMISCHE UND SENSORISCHE UNTERSUCHUNGEN
ZUR HERSTELLUNGSDYNAMIK VON
GRILLHÄHNCHEN UNTER BERÜCKSICHTIGUNG VON
GEFLÜGELFLEISCH AUS VERSCHIEDENEN SCHLACHTBETRIEBEN

Inaugural-Dissertation
zur Erlangung
der tiermedizinischen Doktorwürde
der Tierärztlichen Fakultät
der Ludwig-Maximilians-Universität München

von
Christiane Ritter
aus
New Brunswick / USA

München 2003
Gedruckt mit Genehmigung der Tierärztlichen Fakultät der Ludwig-Maximilians-Universität München

Dekan: Univ.-Prof. Dr. R. Stolla
Referent: Univ.-Prof. Dr. A. Stolle
Korreferent: Prof. Dr. W. Rambeck

Tag der Promotion: 7. Februar 2003
Meinen Eltern
Inhaltsverzeichnis

1 Einleitung ... 11

2 Literatur .. 12
 2.1 Rechtliche Rahmenbedingungen .. 12
 2.1.1 Grundlagen des Lebensmittelrechts ... 12
 2.1.2 Lebensmittel- und Bedarfsgegenständegesetz .. 13
 2.1.3 Lebensmittelhygieneverordnung ... 14
 2.1.4 Infektionsschutzgesetz .. 17
 2.1.5 Geflügelfleischhygienerecht ... 20
 2.1.6 Produkthaftungsgesetz .. 25
 2.2 Überblick über die Broilermast ... 27
 2.2.1 Die Zucht von Mastgeflügel ... 30
 2.2.2 Die Haltung in der Junggeflügelmast ... 32
 2.2.3 Die Fütterung ... 35
 2.3 Lebensmittelhygienische Bedeutung der Geflügelschlachtung ... 37
 2.3.1 Allgemeines .. 37
 2.3.2 Schlachtprozeß .. 39
 2.4 Zubereitung von Geflügelfleischerzeugnissen .. 47
 2.5 Grillwagen ... 49
 2.5.1 Fahrzeugaufbau .. 49
 2.5.2 Funktionsweise .. 51
 2.5.3 Problematik bei dieser Art der Lebensmittel-Abgabe ... 52
 2.6 Grundlagen der Sensorik ... 53
 2.6.1 Sinneswahrnehmung ... 55
 2.6.1.1 Gesichtssinn .. 55
 2.6.1.2 Geruchssinn ... 55
 2.6.1.3 Geschmackssinn .. 56
 2.6.1.4 Tastsinn .. 57
INHALTSVERZEICHNIS

2.6.1.5 Hörsinn... 58

2.6.2 Sensorische Prüfverfahren ... 58

2.6.2.1 Unterschiedsprüfung... 59

2.6.2.2 Beschreibende Prüfung.. 60

2.6.2.3 Bewertende Prüfung... 61

2.6.2.4 Schwellenprüfung... 61

2.7 Chemisch-physikalische Parameter für Geflügelfleisch............ 62

2.7.1 Vollanalyse ... 62

2.7.1.1 Wasser... 63

2.7.1.2 Asche ... 64

2.7.1.3 Fett.. 64

2.7.1.4 Rohprotein und organische Nichtfette............................ 65

2.7.2 Bindegewebsweiß... 66

2.7.3 Fleischeiweiß, bindegewebsweißfreies Fleischeiweiß, bindegewebsweißfreies Fleischeiweiß im Fleischeiweiß 67

2.8 Verfahren zur Erfassung der Fleischqualität 68

2.8.1 Ermittlung des ungebundenen Gewebewassers 68

3 Eigene Untersuchungen .. 71

3.1 Material ... 71

3.1.1 Herkunftsbedrtebe... 71

3.1.2 Probenmaterial... 72

3.2 Methodik.. 73

3.2.1 Sensorische Untersuchung.. 73

3.2.2 Chemisch-Physikalische Untersuchung.................................. 76

3.2.2.1 Vollanalyse.. 77

3.2.2.1.1 Wasser.. 77

3.2.2.1.2 Asche.. 78

3.2.2.1.3 Fett... 78

3.2.2.1.4 Rohprotein... 79

3.2.2.2 Bindegewebsweiß.. 80
3.2.2.3 Ermittlung von FE, BEFFE und BEFFE/FE .. 81
3.2.3 Bestimmung der auspreßbaren Gewebeflüssigkeit 81
3.2.4 Bestimmung der Bruttoenergie .. 83
3.2.5 Statistische Auswertung .. 83

4 Ergebnisse .. 86
4.1 Sensorik .. 86
4.2 Chemisch-physikalische Untersuchungen .. 88
 4.2.1 Charge A ... 89
 4.2.2 Charge B ... 90
 4.2.3 Charge C ... 92
 4.2.4 Charge D ... 94
 4.2.5 Zusammenfassung der Durchschnittswerte .. 95
 4.2.6 Statistische Auswertung .. 97
4.3 Ermittlung des ungebundenen Gewebewassers ... 98
 4.3.1 Charge A ... 98
 4.3.2 Charge B ... 99
 4.3.3 Charge C ... 101
 4.3.4 Charge D ... 102
 4.3.5 Zusammenfassung der Durchschnittswerte 104
 4.3.6 Statistische Auswertung .. 105
4.4 Rechnerisch ermittelte Brennwerete ... 106
 4.4.1 Charge A ... 106
 4.4.2 Charge B ... 107
 4.4.3 Charge C ... 108
 4.4.4 Charge D ... 108
 4.4.5 Zusammenfassung der Durchschnittswerte 109
 4.4.6 Statistische Auswertung .. 110
4.5 Zusammenfassung der Durchschnittswerte aller Analysen 111

5 Diskussion ... 112
 5.1 Sensorik .. 112
5.2 Chemisch-physikalische Untersuchung .. 114
5.3 Ermittlung des ungebundenen Wassers ... 115
5.4 Brennorte .. 116
5.5 Zusammenfassende Beurteilung... 117

6 Schlußfolgerungen .. 120

7 Zusammenfassung .. 122

8 Summary .. 124

9 Literaturverzeichnis .. 126

Anhang

A Bewertungsbogen für die sensorische Prüfung von Hähnchen 146
B Beurteilungsbogen der sensorischen Untersuchung 149
C Auswertschablone ... 153
D Auswertabelle .. 155
Tabellenverzeichnis

2.1 Eckpunkte einer Gefahrenanalyse nach dem HACCP-Prinzip 15
2.2 Krankheiten und Erreger, die zu einem Beschäftigungsverbot führen........... 19
2.3 Produktion und Verzehr von Fleisch und Geflügelfleisch in Deutschland
 1938 und 1951 ... 28
2.4 Die Entwicklung der Versorgung mit Hähnchenfleisch in Deutschland von
 1975 bis 1998.. 29
2.5 Hauptinhaltsstoffe von Geflügelfleisch/-teilstücken .. 63

3.1 Garvorgang im Combi-Dämpfer ... 74
3.2 Bewertungsschlüssel der 5-Punkte Skala ... 75

4.1 Gewichte vor und nach dem Grillen sowie Bratverluste 87
4.2 Chemische Untersuchung der rohen Broiler (Charge A) 89
4.3 Chemische Untersuchung der rohen Broiler (Charge B)............................... 91
4.4 Chemische Untersuchung der rohen Broiler (Charge C)............................... 92
4.5 Chemische Untersuchung der rohen Broiler (Charge D)............................... 94
4.6 Durchschnittswerte der chemischen Vollanalyse aller Chargen.................... 96
4.7 Signifikante Unterschiede der chemischen Vollanalyse 97
4.8 Ungebundenes Gewebewasser der Muskelproben von Charge A................. 98
4.9 Ungebundenes Gewebewasser der Muskelproben von Charge B................. 100
4.10 Ungebundenes Gewebewasser der Muskelproben von Charge C................. 101
4.11 Ungebundenes Gewebewasser der Muskelproben von Charge D............... 103
4.12 Durchschnittswerte der Ermittlung des ungebundenen Gewebewassers.... 104
4.13 Signifikante Unterschiede beim ungebundenen Gewebewasser 105
4.14 Brennwert der Charge A ... 106
4.15 Brennwert der Charge B ... 107
4.16 Brennwert der Charge C ... 108
4.17 Brennwert der Charge D ... 109
4.18 Zusammenfassung der Brennwerte ... 109
4.19 Signifikante Unterschiede im Brennwert... 110
4.20 Zusammenfassung der Durchschnittswerte aller Untersuchungen 111
Abbildungsverzeichnis

2.1 Unterdrucklüftung .. 34
2.2 Überdrucklüftung .. 35
2.3 Schlachtprozeßstufen .. 41
2.4 Zubereitung durch Hitzeeinwirkung ... 47
2.5 Linke Seitenansicht Grillwagen .. 49
2.6 Rechte Seitenansicht Grillwagen .. 50
2.7 Ablaufschema der Prozeßstufen 1-6 .. 51
2.8 Zonen unterschiedlicher Empfindlichkeit für die vier Grundgeschmacksarten beim Menschen .. 57
4.1 Sensorische Gesamtbewertung der ungewürzten und gewürzten Grillhähnchen ... 86

Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Deutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>BE</td>
<td>Bindegewebeeiweiß</td>
</tr>
<tr>
<td>BEFFE</td>
<td>Bindegewebeeiweißfreies Fleischeiweiß</td>
</tr>
<tr>
<td>BGB</td>
<td>Bürgerliches Gesetzbuch</td>
</tr>
<tr>
<td>BgVV</td>
<td>Bundesinstitut für gesundheitlichen Verbraucherschutz und Veterinärmedizin</td>
</tr>
<tr>
<td>BMVEL</td>
<td>Bundesministerium für Verbraucherschutz, Ernährung und Landwirtschaft</td>
</tr>
<tr>
<td>BTS</td>
<td>besonders tierfreundliche Stallhaltung</td>
</tr>
<tr>
<td>bzw.</td>
<td>beziehungsweise</td>
</tr>
<tr>
<td>ca.</td>
<td>circa</td>
</tr>
<tr>
<td>CO₂</td>
<td>Kohlendioxid</td>
</tr>
<tr>
<td>DIN</td>
<td>Deutsche Industrienorm</td>
</tr>
<tr>
<td>DLG</td>
<td>Deutsche Landwirtschafts-Gesellschaft</td>
</tr>
<tr>
<td>EG</td>
<td>Europäische Gemeinschaft</td>
</tr>
<tr>
<td>EN</td>
<td>Europäische Norm</td>
</tr>
<tr>
<td>etc.</td>
<td>et cetera</td>
</tr>
<tr>
<td>EU</td>
<td>Europäische Union</td>
</tr>
<tr>
<td>EWG</td>
<td>Europäische Wirtschaftsgemeinschaft</td>
</tr>
<tr>
<td>f</td>
<td>Fleischfläche</td>
</tr>
<tr>
<td>F</td>
<td>Gesamtfläche</td>
</tr>
<tr>
<td>FE</td>
<td>Fleischeiweiß</td>
</tr>
<tr>
<td>FIHG</td>
<td>Fleischhygienegesetz</td>
</tr>
<tr>
<td>GE</td>
<td>Bruttoenergie (= gross energy)</td>
</tr>
<tr>
<td>GFIHG</td>
<td>Geflügelfleischhygienegesetz</td>
</tr>
<tr>
<td>GFIHV</td>
<td>Geflügelfleischhygieneverordnung</td>
</tr>
<tr>
<td>GLP</td>
<td>Gute Laborpraxis</td>
</tr>
<tr>
<td>GMP</td>
<td>good manufacturing practice</td>
</tr>
</tbody>
</table>
ABKÜRZUNGSVERZEICHNIS

HACCP Hazard Analysis Critical Control Point
IfSG Infektionsschutzgesetz
IMP Inosinmonophosphat
ISO International Organization for Standardization
LMBG Lebensmittel- und Bedarfsgegenständege-setz
LMHV Lebensmittelhygiene-Verordnung
ME umsetzbare Energie
NaCl Natriumchlorid
NaOH Natronlauge
NH₃ Ammoniak
NPN Nichtprotein-Stickstoff-Verbindungen
OECD Organisation für wirtschaftliche Zusammenarbeit und Entwicklung
ONF organisches Nichtfett
ProdHaftG Produkthaftungsgesetz
ProdSG Produktsicherheitsgesetz
Q Quotient
QM Qualitätsmanagement
RP Rohprotein
RZ Flüssigkeitsringzone
SeuchRNeuG Seuchenrechtsneuordnungsgesetz
TierSchG Tierschutzgesetz
TierSchIV Tierschutz-Schlachtverordnung
TierSchTrV Tierschutztransportverordnung
usw. und so weiter

% Prozent
°C Grad Celsius
cm Zentimeter
g Gramm
KbE Kolonienbildende Einheiten
kg Kilogramm
kJ Kilojoule
<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Deutscher Begriff</th>
</tr>
</thead>
<tbody>
<tr>
<td>kp</td>
<td>Kilopounds</td>
</tr>
<tr>
<td>m</td>
<td>Meter</td>
</tr>
<tr>
<td>mA</td>
<td>Milliampère</td>
</tr>
<tr>
<td>min</td>
<td>Minuten</td>
</tr>
<tr>
<td>MJ</td>
<td>Megajoule</td>
</tr>
<tr>
<td>ml</td>
<td>Milliliter</td>
</tr>
<tr>
<td>mm</td>
<td>Millimeter</td>
</tr>
<tr>
<td>nm</td>
<td>Nanometer</td>
</tr>
<tr>
<td>ppm</td>
<td>parts per million</td>
</tr>
<tr>
<td>sec</td>
<td>Sekunde</td>
</tr>
<tr>
<td>t</td>
<td>Tonne</td>
</tr>
</tbody>
</table>
Kapitel 1

Einleitung

Ausgangspunkt dieser Untersuchung war es daher, anhand der handwerklichen Verarbeitungstechnik einer Grillstelle zu analysieren in wie weit sich die Qualität des Ausgangsmaterials, in diesem Fall der von verschiedenen Schlachthöfen bezogenen Broiler, auf den Genußwert des Endproduktes auswirkt. Besonderes Augenmerk galt hierbei den Substratveränderungen von Lebensmittelinkohlenstoffen und deren Interaktionen und Veränderungen während der Zubereitung.

Trotz umfangreicher Spezialliteratur auf den Einzelgebieten der Fütterungs-, Haltungs- und Schlachteinflüsse einerseits und der Zubereitung andererseits gibt es noch keine übergreifende Literatur zu diesem Thema.
Kapitel 2

Literatur

2.1 Rechtliche Rahmenbedingungen

2.1.1 Grundlagen des Lebensmittelrechts

Die vorliegende Arbeit befaßt sich ausschließlich mit dem Lebensmittel „Geflügelfleisch“. Daher soll im Folgenden auf diejenigen Vorschriften näher eingegangen werden, die während der Produktionskette vom Mast- zum Brathähnchen von Bedeutung sind.
2.1.2 Lebensmittel- und Bedarfsgegenständegesetz

Das Herstellen, Behandeln und Inverkehrbringen von Lebensmitteln unterliegt im Wesentlichen dem Mißbrauchsprinzip. Das bedeutet, daß die Herstellung eines Produktes keiner behördlichen Genehmigung bedarf, sondern daß die Verantwortung für die Einhaltung der Lebensmittelrechtlichen Bestimmungen beim Herstellen eines Produktes ausschließlich der Gewerbetreibende selbst trägt. Er hat durch geeignete Maßnahmen dafür Sorge zu tragen, daß keine Produkte auf den Markt gelangen, die den Lebensmittelrechtlichen Vorschriften nicht gerecht werden, das heißt er muß den

2.1.3 Lebensmittelhygiene-Verordnung

Die LMHV gilt für alle Unternehmen, die gewerbsmäßig Lebensmittel herstellen, behandeln oder in den Verkehr bringen. Sie bezieht sich insbesondere auf Lebensmittelproduzenten, den Lebensmitteleinzel- und Großhandel und Einrichtungen zur Gemeinschaftsverpflegung, also alle Arten von stationären Einrichtungen. Ebenso aber müssen sich mobile gastronomische Einrichtungen, wie beispielsweise Grillwagen, an bestimmte Vorschriften der LMHV halten (§1 LMHV).

Die Lebensmittelhygieneverordnung legt hygienische Grundanforderungen unter anderem für die Mitarbeiter, die genutzten Räumlichkeiten und Einrichtungen, die Reinigung und Desinfektion, die Schädlingsbekämpfung sowie für die Abfallentsorgung fest. Von zentraler Bedeutung ist die in § 4 beschriebene Verpflichtung zur Durchführung betriebseigener Maßnahmen und Kontrollen sowie von Schulungen. Im Mittelpunkt dieser Bestimmungen steht die Durchführung eines Eigenkontrollkonzeptes, das sich an den Grundsätzen des „HACCP“-Konzeptes (HACCP = Hazard Analysis Critical Control Point) orientiert. Dieses ist ein Hilfsmittel,
um mögliche Gefahren für Lebensmittel seitens biologischer (Mikroorganismen, Parasiten, Schädlinge), chemischer (Rückstände, natürliche Gifte etc.) und physikalischer (Holz, Metall, Glas etc.) Natur zu identifizieren, zu bewerten und zu beherrschen. **Tabelle 2.1** zeigt am Beispiel „Geflügelfleisch garen“ die Eckpunkte für eine Gefahrenanalyse nach dem HACCP-Prinzip auf:

<table>
<thead>
<tr>
<th>Grundsätze</th>
<th>Beispiel: Geflügel garen</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Analyse der möglichen Gefahren (biologisch, chemisch, physikalisch)</td>
<td>biologisch: Skype im Geflügelfleisch</td>
</tr>
<tr>
<td>2. Identifizierung der Punkte, an denen die Gefahren auftreten können</td>
<td>Auftauen, Erhitzen</td>
</tr>
<tr>
<td>3. Entscheidung, welche Punkte kritisch sind. Ein Punkt kann nur "kritisch" sein, wenn bei einer auftretenden Gefahr durch entsprechende Handlung die Gefahr abgewendet werden kann</td>
<td>Erhitzung</td>
</tr>
<tr>
<td>4. Festlegung und Durchführung von Sicherungsmaßnahmen</td>
<td>Temperaturkontrolle, Gewährleistung ausreichender Erhitzung</td>
</tr>
<tr>
<td>5. Überprüfen des eingeführten Konzeptes</td>
<td>Gibt es weitere kritische Punkte? Greifen die festgelegten Maßnahmen?</td>
</tr>
</tbody>
</table>

Tabelle 2.1: Eckpunkte einer Gefahrenanalyse nach dem HACCP-Prinzip (BERTLING, 1997)

Abschließend wird überprüft, in wie weit die eingeführten Maßnahmen greifen und ob weitere Gefahrenpunkte bestehen, für die ebenfalls sinnvolle Sicherungsmaßnahmen ergriffen werden können. Eine Dokumentation der Abläufe wird eingerichtet und durchgeführt (PIERSON und CORLETT JR., 1997).

Die nicht ortsfesten Betriebsstätten müssen zunächst grundlegend geeignet und so gelegen sein, daß sie sauber und instand gehalten werden können, daß von ihnen keine nachteilige Beeinflussung der Lebensmittel ausgeht und einem hygienisch einwandfreien Umgang mit den Lebensmitteln nichts im Wege steht. Somit sind sie an die selben Vorgaben gebunden wie ortsfeste Betriebe: Oberflächen beispielsweise sollen glatt, leicht zu reinigen und zu desinfizieren sein, um die Anhaftung und das Wachstum von Bakterien und anderen Mikroorganismen zu verhindern. Für die Reinigung und Desinfektion von Arbeitsgeräten sind geeignete

Über die bisher genannten Anforderungen hinaus müssen in Betriebsstätten, in denen leicht verderbliche Lebensmittel, wie rohes Geflügelfleisch, umverpackt, behandelt, hergestellt oder in den Verkehr gebracht werden, geeignete Temperaturen für die genannten Prozesse herrschen, so daß die Lebensmittel keine nachteilige Beeinflussung wie Verderb erfahren. Als geeignete Temperatur sind ca. 12 °C anzusehen, was einen Kompromiß zwischen der Lebensmittelhygiene und dem Arbeitsschutz bildet (ZIPFEL und RATHKE, 2002).

2.1.4. Das Infektionschutzgesetz

Rahmen des „Gesetzes zur Neuordnung seuchenrechtlicher Vorschriften“ (Seuchenrechtsneuordnungsgesetz - SeuchRNeuG) vom 20. Juli 2000 hat der Bundestag in Artikel 1 das „Gesetz zur Verhütung und Bekämpfung von Infektionskrankheiten beim Menschen“ (Infektionsschutzgesetz - IfSG)

Entsprechend der föderalen Struktur der Bundesrepublik Deutschland obliegt der Vollzug dieser Rechtsnorm den Ländern. Die Gesundheitsämter sind somit für die Umsetzung der folgenden Aufgaben die zuständige Behörde. Für den Lebensmittelbereich sind insbesondere die §§ 42 und 43 IfSG von Interesse, welche die gesundheitlichen Anforderungen an das Personal beim Umgang mit Lebensmitteln regeln.

Mitarbeiter von Lebensmittelbetrieben, die gewerbsmäßig die in § 42 Absatz 2 IfSG genannten Lebensmittel, wie zum Beispiel Geflügelfleisch, herstellen, behandeln oder in den Verkehr bringen und dabei mit ihnen direkt oder indirekt in Berührung kommen, müssen vor erstmaliger Ausübung dieser Tätigkeit eine Bescheinigung
über eine **Belehrung** des Gesundheitsamtes oder eines vom Gesundheitsamt beauftragten Arztes gemäß § 43 Absatz 1 IfSG vorlegen. Die Bescheinigung ersetzt das bisherige Gesundheitszeugnis und darf maximal drei Monate vor Aufnahme der Tätigkeit ausgestellt worden sein. Die Belehrung beinhaltet eine sowohl mündliche als auch schriftliche Aufklärung über Tätigkeits- und Beschäftigungsverbote, sowie über Verpflichtungen der Angestellten. Aus dem Anwendungsbereich ergibt sich ein Tätigkeitsverbot für Erkrankte, der Erkrankung Verdächtige und Ausscheider der in **Tabelle 2.2** gelisteten Krankheiten bzw. Erreger:

<table>
<thead>
<tr>
<th>Krankheiten</th>
<th>Erreger</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thyphus abdominalis oder Paratyphus</td>
<td>Salmonellen, Shigellen</td>
</tr>
<tr>
<td>akute infektiöse Gastroenteritis</td>
<td>enterohämorrhagische Escherichia coli, Cholerabakterien, Staphylokokken,</td>
</tr>
<tr>
<td>infizierte Wunden oder Hauterkrankungen, bei denen die Möglichkeit besteht,</td>
<td>Campylobacter, Rotaviren oder andere</td>
</tr>
<tr>
<td>deren Krankheitserreger über Lebensmittel übertragen werden</td>
<td>Durchfallerreger</td>
</tr>
<tr>
<td>Virushepatitis A oder E</td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 2.2: Krankheiten und Erreger, die zu einem Beschäftigungsverbot führen (§ 42 IfSG)

Im Anschluß an die Belehrung am Gesundheitsamt muß die betreffende Person schriftlich erklären, daß Ihr keine Tatsachen für ein Tätigkeitsverbot bekannt sind. Des Weiteren hat jeder Arbeitgeber die Aufgabe, den Arbeitnehmer nach Aufnahme seiner Tätigkeit und im weiteren mindestens einmal jährlich über die Tätigkeitsverbote zu belehren und dies zu dokumentieren.

Das Bundesinstitut für gesundheitlichen Verbraucherschutz und Veterinärmedizin (BgVV) ist jederzeit ermächtigt, durch Rechtsverordnung mit Zustimmung des Bundesrates den Kreis der Erkrankungen und Erreger, welche ein Tätigkeitsverbot bewirken, einzuschränken oder zu erweitern, sofern epidemiologische Erkenntnisse dies zulassen, oder wenn dies zum Schutz der menschlichen Gesundheit vor einer Gefährdung durch Krankheitserreger erforderlich ist.
Treten beim Arbeitnehmer nach Aufnahme der Tätigkeit Hinderungsgründe nach § 42 Absatz 1 wie Durchfall, Übelkeit, Erbrechen, Hauterkrankungen, starke Erkältung oder Gelbsucht auf, so ist er dazu verpflchtet (IfSG § 43 Abs. 2 Satz 1), diese unverzüglich dem Arbeitgeber oder Dienstherrn mitzuteilen. Dieser muß dann dafür Sorge tragen, daß der Krankheitsverdächtige einen Arzt aufsucht und solange von der Arbeit befreit wird, bis kein gesundheitliches Risiko mehr von ihm ausgeht.

2.1.5 Das Geflügelfleischhygienerecht

Die mit den genannten Rechtsvorschriften umgesetzten gemeinschaftlichen Regelungen umfassen hygienische Anforderungen an das Gewinnen, die Behandlung, Zubereitung und das Inverkehrbringen von frischem Geflügelfleisch, Geflügelfleischzubereitungen und Geflügelfleischerzeugnissen, sowie hiermit in Zusammenhang stehende Verpflichtungen zur Durchführung betriebseigener Kontrollen und der amtlichen Lebensmittelüberwachung (MURMANN, 1999).

Außerdem sind die grundsätzlichen Anforderungen, die bei der Einfuhr von Geflügelfleisch aus Drittländern zu erfüllen sind, im GFlHG festgelegt (§ 11). Dieser
Abschnitt gewährleistet, daß bei der Einfuhr von Geflügelfleisch keine geringeren Anforderungen an das Geflügelfleisch gestellt werden als beim Inverkehrbringen im Binnenmarkt. Hierdurch soll eine Wettbewerbsverzerrung zwischen Mitgliedstaaten der Europäischen Union und Drittländern vermieden werden.

2.1.6 Das Produkthaftungsgesetz

2.2 Überblick über die Broilermast

SCHOLTYSSEK, 1968) über Produktion und Verzehr von Fleisch und Geflügelfleisch in den Jahren 1938 und 1951 in Deutschland lassen die damalige Relation erkennen:

Bei einem Gesamtfleischverzehr pro Person von 51 kg im Jahr 1938 und 38 kg im Jahr 1951 fielen nur 1,7 kg bzw. 1,2 kg davon dem Geflügelfleisch zu. Das entspricht einem Anteil von nur 3,3 % und 3,2 % Geflügelfleisch am Gesamtverzehr.

<table>
<thead>
<tr>
<th></th>
<th>1938</th>
<th>1951</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fleischproduktion</td>
<td>1 765 000 t</td>
<td>1 655 000 t</td>
</tr>
<tr>
<td>Verzehr pro Kopf und Jahr</td>
<td>51 kg</td>
<td>38 kg</td>
</tr>
<tr>
<td>Geflügelfleischproduktion</td>
<td>50 000 t</td>
<td>54 000 t</td>
</tr>
<tr>
<td>Geflügelfleischverzehr pro Kopf und Jahr</td>
<td>1,7 kg</td>
<td>1,2 kg</td>
</tr>
<tr>
<td>Anteil des Geflügelfleisches am Gesamtfleischverzehr</td>
<td>3,3%</td>
<td>3,2%</td>
</tr>
</tbody>
</table>

Tabelle 2.3: Produktion und Verzehr von Fleisch und Geflügelfleisch in Deutschland 1938 und 1951 (Lerche et al., 1957; Scholtyssek, 1968)

Entwicklung der Versorgung mit Hähnchenfleisch in Deutschland von 1975 bis 1998 bietet Tabelle 2.4:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bruttoeigenerzeugung</td>
<td>189 000</td>
<td>251 000</td>
<td>334 000</td>
<td>422 000</td>
<td>+32,0 %</td>
<td>+26,0 %</td>
</tr>
<tr>
<td>(in t)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gesamtverbrauch</td>
<td>376 000</td>
<td>388 000</td>
<td>555 000</td>
<td>641 000</td>
<td>+3,0 %</td>
<td>+15,5 %</td>
</tr>
<tr>
<td>(in t)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pro-Kopf-Verbrauch</td>
<td>6,1</td>
<td>6,3</td>
<td>7</td>
<td>7,8</td>
<td>+3,0 %</td>
<td>+11,0 %</td>
</tr>
<tr>
<td>(in kg)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Selbstversorgungsgrad</td>
<td>50,3</td>
<td>64,7</td>
<td>60,2</td>
<td>65,9</td>
<td>+28,3 %</td>
<td>+10,0 %</td>
</tr>
<tr>
<td>(in %)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 2.4: Die Entwicklung der Versorgung mit Hähnchenfleisch in Deutschland von 1975 bis 1998 (KÖNIG und FINK-KEßLER, 2001)

2.2.1 Die Zucht von Mastgeflügel

Mehrleistung wird als Heterosis bezeichnet und kann nach folgender Formel berechnet werden (SCHOLTYSSEK, 1987):

\[H = F_1 - \frac{1}{2}(\bar{A} + \bar{B}) \]

H: durchschnittliche Mehrleistung der Nachkommen gegenüber dem Elterntier
F₁: Mittelwert der Nachkommen
\(\bar{A} \): Mittelwert der Elternpopulation A
B: Mittelwert der Elternpopulation B

Die Mehrleistung der Nachkommen in Bezug auf die gewünschten Merkmale ergibt sich demnach aus dem Mittelwert der Nachkommen abzüglich der Hälfte der Summe der beiden Elternpopulationen.

Die Mastküken bilden das Endprodukt der Mastgeflügelzucht. Sie werden in speziellen Brütereien innerhalb von 21 Tagen ausgebürtet und bereits 72 Stunden nach dem Schlupf in großen Stückzahlen an die Mäster geliefert (MATHES, 1997). Da die weiblichen „Brathähnchen“ fast ebenso rasch wachsen wie die männlichen,
werden die Bruteier nur nach dem Gewicht und nicht nach dem Geschlecht sortiert (WEiß et al., 2000).

2.2.2 Die Haltung in der Junggeflügelmas

Zur Durchführung einer rentablen Junggeflügelmast müssen ein optimaler Lebensraum und eine ausreichende Versorgung aller Tiere mit Futter und Wasser gewährleistet sein. Gleichzeitig soll der Arbeitsaufwand auf ein Minimum reduziert werden, um die Produktionskosten niedrig zu halten (GROßKLAUS, 1979; FRIES et al., 2001). Bei der üblichen Besatzdichte von 20 bis 25 Tieren/m², was einem Lebendgewicht von ca. 35 kg/m² entspricht, bedarf es zur Erfüllung dieser Bedingungen besonderer technischer Stalleinrichtungen, die im Folgenden näher beschrieben werden (GROßKLAUS, 1979; SCHOLTYSSEK, 1987; WEIß et al., 2000):

Woche zurückgenommen, bis sie schließlich zum Mastende hin bei ca. +22 °C liegt (GROßKLAUS, 1979; WEIß et al., 2000; FRIES et al., 2001).

Die Bodenhaltung wird zumeist in fensterloser Intensivhaltung durchgeführt. Die **künstliche Beleuchtung** kann dabei nach Dauer und Stärke dosiert werden (Großlaus, 1979). Während der ersten 9 Masttage sollen 3 Watt/m², bis zum 15. Tag noch 1,5 Watt/m² und anschließend nicht unter 1 Watt/m², jeweils 20 Stunden/Tag ausgestrahlt werden (Weiß et al., 2000).

2.2.3 Die Fütterung

Das Futter wird den Tieren grundsätzlich ad libitum angeboten, was bedeutet, daß sie ständigen Zugang haben. Bei der Kurzmast wird von einem durchschnittlichen Futteraufwand von 1,7 kg pro kg Zuwachs beim Lebendtier ausgegangen (MEYER et al., 1993).

2.3 Lebensmittelhygienische Bedeutung der Geflügelschlachtung

2.3.1 Allgemeines

Europäische Geflügelschlachthöfe sind, wie alle anderen Betriebe, die Lebensmittel herstellen, behandeln und in den Verkehr bringen, nach § 14 GFlHV gesetzlich dazu verpflichtet, ein Eigenkontrollsystem einzurichten. Dieses soll gewährleisten, daß die

Die folgenden Darstellungen sollen einen Überblick über die einzelnen Abläufe der Geflügelfleischgewinnung vom Transport der Tiere bis zum Ende des Schlachtbandes geben.

2.3.2 Schlachtprozeß

Der **Transport** des Schlachtgeflügels vom Mastbetrieb zum Schlachthof stellt eine relativ große Belastung für die Tiere dar. Die rechtlichen Rahmenbedingungen in diesem Zusammenhang sind in den allgemeinen Bestimmungen des Tierschutzgesetzes (TierSchG) sowie in der Tierschutztransportverordnung (TierSchTrV) geregelt. Die wichtigsten Vorschriften sollen kurz erläutert werden.

Um Verluste durch Minderung der Fleischqualität, Verletzungen oder Verenden der Tiere zu vermeiden, müssen alle mit der Überführung zusammenhängenden Maßnahmen so schonend wie möglich durchgeführt werden. Verletzungen, wie zum Beispiel Knochenbrüche, Quetschungen oder Hautverletzungen, sowie Totalverluste durch Kreislaufversagen oder Ersticken, können durch geeignete Transportbehälter eingedämmt werden. Die Behältnisse bestehen im Allgemeinen aus Metall oder Plastik. Der Boden muß griffig sein, damit die Tiere sich festhalten können. Die Seiten- und Deckenflächen sollen aus Gitter sein oder über Öffnungen verfügen, die eine ausreichende Luftventilation erlauben, Verletzungsmöglichkeiten aber ausschließen. Ferner ist darauf zu achten, daß eine leichte Handhabung möglich ist. Dies gilt insbesondere für das Einsetzen und Entnehmen der Tiere, aber auch für die Durchführbarkeit der Reinigung und Desinfektion. Als Richtmaß für die Besatzdichte der Transportbehälter nach der TierSchTrV dient eine Fläche von 180 cm² pro Tier mit einem Lebendgewicht bis 1600 g, was etwa 16-18 Tieren pro Transportbehälter entspricht. Überbelegungen wirken sich durch erhöhten Streß und zunehmende gegenseitige Verschmutzung besonders nachteilig aus, bei einer Unterbelegung hingegen kann es durch den entstandenen Platz zu vermehrten Verletzungen kommen. Für die einwandfreie Durchführung des Schlachtgeflügeltransportes ist außerdem eine mehrstündige Nüchterung der Tiere vor dem Transport einzuhalten. So kann die Transportbelastung besser kompensiert werden, die gegenseitige Kotbeschmutzung wird eingeschränkt, die Verschmutzung der Transport- und Schlachteinrichtungen durch Kot wird vermindert und ein hygienegerechteres Ausweiden der Schlachtkörper ist möglich. Beim Transport im engeren Sinn ist auf schonendes Fahren, zeitliche Abstimmung zwischen Verladen und Schlachtzeitpunkt
und auf Berücksichtigung des Klimas zu achten (Prändl et al., 1988; Fehlhaber und Janetschke, 1992; Fries et al., 2001).

Der **Transport der Tierkörper im Schlachthof** erfolgt an endlosen, im Kreis geschlossenen Transportketten. Die Lebendtiere werden hierfür manuell an den Ständern in spezielle Aufhängbügel eingehängt, die für die jeweiligen Verfahrensschritte eigens konstruiert sind (Prändl et al., 1988).
Abbildung 2.3 zeigt eine Übersicht über die im Anschluß zu beschreibenden Stufen des Schlachtprozesses:

Abbildung 2.3: Schlachtprozeßstufen

Das **Brühen** dient als Vorbereitung für das Rupfen. Außerdem hat es durch Verminderung der Keimbelastung einen positiven Einfluß auf die Hygiensituation der Schlachtkörper. Gleichzeitig beeinflußt das Brühen auch die sensorischen Eigenschaften des Endproduktes im Hinblick auf die Verbrauchererwartung. Unterschieden werden zwei Verfahren: Hochbrühen (sub scald) bei +58 °C bis +60 °C während 60 bis 90 Sekunden und Niedrigbrühen (low scald) bei +48 °C bis +52 °C binnen 120 bis 180 Sekunden. Für Broiler hat sich das Hochbrühen bewährt. Hierbei wird die Integrität der Hautschichten zerstört, was dazu führt, daß die Follikelwälle mit den Federn weggerissen werden können. Durch das Niedrigbrühen
ist das Rupfen weniger leicht durchführbar, so daß meist manuell nachgerupft werden muß. Da jede Erhöhung der Brühtemperatur und Verlängerung der Brühzeit einen nachteiligen Effekt auf die Zartheit und die Haltbarkeit des Endproduktes hat, sollten als Frischware vorgesehene Tiere dennoch milder gebrüht werden (PRÄNDL et al., 1988; FEHLHABER und JANETSCHKE, 1992).

2.4 Zubereitung von Geflügelfleischerzeugnissen

Abbildung 2.4: Zubereitung durch Hitzeeinwirkung

Das Garen mit **Wasser** erfolgt entweder, wie beim Kochen, in einem großen Volumen siedender Flüssigkeit bei einer Temperatur von +100 °C oder, wie beim Dünsten, im eigenen Saft bzw. bei wasserarmen Nahrungsmitteln unter Zugabe von wenig Wasser. Eine weitere Möglichkeit bietet das Dämpfen, bei dem die Lebensmittel durch Wasserdampf über kochender Flüssigkeit in einem geschlossenen Topf bei Temperaturen um +98 bis +100 °C gegart werden. Diese Variante kann auch unter Druck eingesetzt werden, wie beispielsweise beim

gegart und gebräunt. Vom Backen spricht man bei Garung im geschlossenen Backofen in heißer, trockener Luft, wobei die heiße Luft auf die Oberfläche des Backgutes einwirkt (ZABERT, 1994).

2.5 Grillwagen

2.5.1 Fahrzeugaufbau

Der Aufbau einer modernen mobilen Grillstätte für Hähnchen wird im Folgenden am Beispiel der Grillwagen eines Einzelhandelsunternehmens aus dem nordbayerischen Raum beschrieben. Als Besonderheit sei erwähnt, daß sich bei diesen Verkaufsfahrzeugen der Verkaufsraum außerhalb des Wagens unter der unten beschriebenen Verkaufsklappe befindet. **Abbildung 2.5** zeigt die linke Seitenansicht eines solchen Wagens mit geöffneter Verkaufsklappe:

Abbildung 2.5: Linke Seitenansicht Grillwagen

Der Wagen verfügt über zwei getrennte Kühlfächer, die es ermöglichen, die rohen, bereits gewürzten Hähnchen getrennt von Getränken, Soßen etc. bei einer Temperatur von +4 °C aufzubewahren (siehe 1 und 2). Unterhalb der beiden
KAPITEL 2 LITERATUR 50

Flächengrills (3 und 4) befindet sich je eine Fettpfanne (5 und 6), die beim Grillen herabtropfendes Fett auffängt. Die darunter liegende Wanne dient zur Verwahrung leerer Spieße. Um die hygienischen Anforderungen (siehe 2.1.3 LMHV) einhalten zu können, steht ein Doppelwaschbecken mit warmem und kaltem Wasser (7) zur Verfügung. Hier befindet sich auch der Anschluß zur Befüllung der Wassertanks. An der Verkaufsfläche finden sich Halterungen (8), an denen ein Regendach befestigt werden kann, um den Verkaufsraum vor Witterungseinfüssen zu schützen. Es kann ferner zusätzlich an der rechten Seite ein Windschutz angebracht werden.

In Abbildung 2.6 ist die rechte Seitenansicht des Wagens dargestellt:

Auf der dem Verkaufsraum rückwärtigen Seite befindet sich die Tür zur Gasanlage (9), sowie ein Stauraum für die Brotkiste (10). Eine weitere Tür führt zum Inneren des Aufbaus (11). Im vorderen Bereich befindet sich die Stromversorgung mit der darüberliegenden Elektrokühlung (12).

Abbildung 2.6: Rechte Seitenansicht Grillwagen
2.5.2 Funktionsweise

Der Arbeitsablauf bei der Zubereitung von Grillhähnchen in einem Verkaufswagen gliedert sich im Wesentlichen in die sechs in Abbildung 2.7 aufgeführten Schritte:

1. Wareneingang
2. Lagerung
3. Vorbereitung
4. Zubereitung
5. Vorhaltung
6. Speisenausgabe

Abbildung 2.7: Ablaufschema der Prozeßschritte 1-6

Die auf eine Temperatur von +4 °C gekühlten, rohen, bereits gewürzten Grillhähnchen werden in geschlossenen Transportbehältnissen vom Lager abgeholt. Es handelt sich hierbei also um den Wareneingang. Im entsprechenden Abteil (siehe 2.5.1) des Verkaufswagens erfolgt die Lagerung der Transportbehälter weiterhin bei +4 °C. Die Vorbereitung der Grillware findet am „Vorbereitungsplatz“ (11) statt. Hierzu werden die jeweils benötigten Hühnchen mit Hilfe einer Fleischgabel aus den Transportkisten entnommen und auf die Grillspieße aufgesteckt. Die anschließende Zubereitung am Flächengrill benötigt ca. 60 Minuten. Der Gashahn wird dabei zu etwa drei viertel seiner maximalen Gaszufuhr geöffnet. In Abhängigkeit von der momentanen Nachfrage ist es möglich, die Zubereitungszeit durch vermehrtes Aufdrehen des Gashahnes zu verkürzen. Gleichermaßen können die Hähnchen am Grill durch Schließen der Gaszufuhr...

2.5.3 Problematik bei der Lebensmittel-Abgabe

Um mögliche Probleme bei dieser Art der Lebensmittel-Abgabe einzudämmen, ist es wichtig, anhand einer Gefahrenanalyse die Punkte ihres Auftretens zu identifizieren. Hierzu werden die einzelnen Schritte des Herstellungsprozesses (siehe Abbildung 2.7) im Hinblick auf mögliche Gefahrenpunkte beleuchtet:

Beim **Wareneingang** (1) muß bedacht werden, daß die rohen Broiler potentielle Träger von Salmonellen oder andere Mikroorganismen sein können, oder mit chemischen oder physikalischen Noxen kontaminiert sein könnten. Bei der **Lagerung** (2) ist die mögliche Kontamination und /oder Vermehrung pathogener Mikroorganismen und gegebenenfalls eine Toxinbildung zu berücksichtigen. Gleiches gilt bei der **Vorbereitung** (3) der Ware. Die Überlegung, inwiefern pathogene Mikroorganismen den Garprozeß überleben können, fließt in den Prozeß der **Zubereitung** (4) mit ein. Bei der **Vorhaltung** (5) könnte es zu einer Rekontamination der Ware mit Mikroorganismen durch rohe oder halbfertige Hähnchen kommen. Bei der **Speisenausgabe** (6) sind keine Gefahren zu erwarten, vorausgesetzt die Personalhygiene wird entsprechend den gesetzlichen Vorgaben (LMHV, IfSG) eingehalten (siehe 2.1.3 und 2.1.4).

Anhand der aufgestellten Gefahrenpunkte werden nun die zu überwachenden Punkte festgelegt (vergleiche 2.1.3). Wegen der späteren Durcherhitzung des Produktes und bei gründlicher grobsinnlicher Kontrolle der Ware und ihrer
Anlieferungstemperatur kann Punkt 1 als nicht kritisch bewertet werden. Da die Broiler in geschlossenen Behältnissen angeliefert und gekühlt gelagert, am Tag der Anlieferung oder am folgenden Tag verbraucht und später durcherhitzt werden, ist auch die Gefahr durch Punkt 2 und 3 als nicht kritisch anzusehen. Anders verhält es sich bei Punkt 4. Werden die Hähnchen nicht vollständig durcherhitzt, besteht ein hohes Risiko für das Überleben von Mikroorganismen, weshalb diese Phase des Herstellungsprozesses als kritisch anzusehen ist. Eine Rekontamination bei der Vorhaltung (5) der Ware stellt ein vernachlässigbar niedriges Risiko dar, da die Prozeßwege der rohen und gegarten Hähnchen kreuzungsfrei verlaufen und daher der Saft der rohen Hähnchen nicht auf die fertig gebratenen Produkte gelangen kann.

2.6 Grundlagen der Sensorik

2.6.1 Sinneswahrnehmung

Um die Möglichkeiten der objektiven sensorischen Analytik („Sensometrie“) erfassen zu können, ist es wichtig, sich einige Grundlagen der Sinnesphysiologie zu vergegenwärtigen.

2.6.1.1 Gesichtssinn

2.6.1.2 Geruchssinn

Die „riechenden Stoffe“ werden so zu einem gewissen Grad in Lösung gebracht, was für die Geruchswahrnehmung entscheidend ist (FRICKER, 1984).

2.6.1.3 Geschmackssinn

Abbildung 2.8: Zonen unterschiedlicher Empfindlichkeit für die vier Grundgeschmacksarten beim Menschen

2.6.1.4 Tastsinn

2.6.1.5 Hörsinn

Die akustischen oder auditiven (lateinisch audire = hören) Sinneswahrnehmungen spielen zwar nur eine untergeordnete Rolle, gehören aber auch zur sensorischen Untersuchung. Mit dem Ohr kann beispielsweise die „Knusprigkeit“ der Haut eines gegrillten Hähnchens geprüft werden (KRAUSSE UND POTTER, 1998)

2.6.2 Sensorische Prüfverfahren

Eine weitere Unterteilung der sensorischen Prüfverfahren wird in die vier nachstehenden Gruppen unternommen:

1. Unterschiedsprüfung
2. Beschreibende Prüfung
3. Bewertende Prüfung
4. Schwellenprüfung

Diese können sowohl als analytische als auch als hedonistische Prüfung durchgeführt werden (FRICKER, 1984). Im Folgenden soll im Einzelnen auf die Methoden näher eingegangen werden.
2.6.2.1 Unterschiedsprüfung

2.6.2.2 Beschreibende Prüfung

2.6.2.3 Bewertende Prüfung

2.6.2.4 Schwellenprüfung

Die Schwellenprüfung dient zur Bestimmung von Schwellenwerten bestimmter sensorischer Eindrücke einer Probe. Es kann sich dabei um Texturwerte oder Farbunterschiede handeln, zumeist aber werden Merkmalseigenschaften aus dem Bereich Geruch und Geschmack analysiert. Im Unterschied zu den bisher genannten Prüfverfahren wird bei dieser Art der Untersuchung nicht die Beschaffenheit von

2.7 Chemisch-physikalische Parameter für Geflügelfleisch

2.7.1 Vollanalyse

Die chemische Vollanalyse umfaßt die Bestimmung der Hauptbestandteile des Fleisches. In der Fleischtechnologie werden darunter die vier Komponenten Gesamteiweiß (Rohprotein), Fett, Wasser und Asche verstanden. Es wird jeweils der prozentuale Anteil des einzelnen Parameters ermittelt. Die Addition der Einzelergebnisse muß 100 % (± 0,5 %) ergeben (PRÄNDL et al., 1988).

Eine Zusammenstellung der durchschnittlich in Geflügelfleisch bzw. Geflügelfleischteilstücken enthaltenen Anteile der Hauptinhaltsstoffe gibt Tabelle 2.5 wieder.

Bezogen auf die Hauptinhaltsstoffe setzt sich ein Brathuhn laut SOUCI et al. (2000) durchschnittlich aus 69,4 % Wasser, 19,6 % Rohprotein, 9,6 % Fett und 1,15 % Asche zusammen. Das Bruststück mit der Haut enthält verglichen mit dem Schlegel mehr Wasser, mehr Rohprotein, weniger Fett und mehr Asche.
<table>
<thead>
<tr>
<th></th>
<th>Wasser (%)</th>
<th>Rohprotein (%)</th>
<th>Fett (%)</th>
<th>Asche (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brathuhn Durchschnitt</td>
<td>69,4</td>
<td>19,9</td>
<td>9,6</td>
<td>1,15</td>
</tr>
<tr>
<td>Brust mit Haut</td>
<td>70,4</td>
<td>22,2</td>
<td>6,2</td>
<td>1,25</td>
</tr>
<tr>
<td>Schlegel mit Haut ohne Knochen</td>
<td>69,5</td>
<td>18,2</td>
<td>11,2</td>
<td>1,14</td>
</tr>
</tbody>
</table>

Tabelle 2.5: Hauptinhaltsstoffe von Geflügelfleisch/-teilstücken (SOUČI et al., 2000)

2.7.1.1 Wasser

2.7.1.2 Asche

2.7.1.3 Fett

Im chemischen Sinne werden unter Fett die aus Pflanzen und Tieren gewonnenen Gemische von Estern des dreiwertigen Alkohols Glycerin mit höheren Fettsäuren (Neutralfette) verstanden (STRZYSCH und WEISS, 1998; OHLROGGE, 1999). In der Lebensmittel-Analytik wird der Extrakt, der durch Auszug mit Lösungsmitteln, wie beispielsweise Äther, Petroläther oder Benzol, erhalten wird, als Fett bezeichnet. Da bei dieser Methode außer den eigentlichen Fetten (Triglyceriden) auch

2.7.1.4 Rohprotein und organisches Nichtfett

2.7.2 Bindegewebeeiweiß

kann daher als Parameter zu deren analytischen Bestimmung herangezogen werden (OHLROGGE, 1999).

Die biologische Wertigkeit, d.h. der absolute Gehalt und das Verhältnis der essentiellen Aminosäuren, ist beim Bindegewebeeiweiß geringer als beim Muskeleiweiß. Verglichen mit anderen Fleischarten enthält das Geflügelfleisch allerdings einen geringen Bindegewebsanteil, was einen Qualitätsvorteil gegenüber Rind- oder Schweinefleisch begründet (FRIES et al., 2001).

2.7.3 Fleischeiweiß, bindegewebeeiweißfreies Fleischeiweiß, bindegewebs-eiweißfreies Fleischeiweiß im Fleischeiweiß

Als **Fleischeiweiß** (FE) werden alle im Fleisch enthaltenen Stickstoffverbindungen abzüglich der Summe aus Fremdeiweiß und NPN bezeichnet. Es setzt sich zusammen aus **bindegewebeeiweißfreiem Fleischeiweiß** (BEFFE) und BE. BEFFE wird folglich aus der Differenz aus FE und BE errechnet. Es dient als Maßstab für den Anteil an reinem Muskelfleisch, wobei gegebenenfalls Blut und Innereien mit eingeschlossen sind. Zur Differenzierung der Stickstoffverbindungen wird der Quotient aus BEFFE und FE herangezogen. Er gibt den Prozentsatz des in FE enthaltenen BEFFE an (bindegewebeeiweißfreies Fleischeiweiß im Fleischeiweiß) (HAUSER, 1999).

2.8 Verfahren zur Erfassung der Fleischqualität

2.8.1 Ermittlung des ungebundenen Gewebewassers

Unter dem Wasserbindungsvermögen wird die Fähigkeit des Fleisches verstanden, eigenes oder zugesetztes Wasser festzuhalten (HAMM, 1972; PRÄNDL et al., 1988).

Um das Wasserbindungsvermögen des Fleisches zu ermitteln, werden zahlreiche, verschiedene Methoden, wie beispielsweise die Kapillarvolumeter-Methode nach HOFMANN (1975), die Zentrifugiermethode oder die Filtrationsmethode beschrieben.

Beschreibung der Methode ist in Kapitel 3.2.3, Bestimmung des auspreßbaren Gewebewassers, zu finden.
Kapitel 3

Eigene Untersuchungen

3.1 Material

3.1.1 Herkunftsbetriebe

Alle Schlachtbetriebe bezogen ihre „lebenden Rohstoffe“ von vertraglich gebundenen Geflügelmästern. Die grundsätzlichen Rahmenbedingungen der Mast, wie Haltungsform und Fütterung, wurden für die Vertragsmäster der EU-zugelassenen
KAPITEL 3 EIGENE UNTERSUCHUNGEN

Schlachtbetriebe vereinheitlicht und entsprechen den Darstellungen in Kapitel 2.2. „Überblick über die Broilermast“. Dies sollte den Schlachtbetrieben eine möglichst gleich bleibende Qualität ihrer Rohstoffe gewährleisten. Der Schweizer Schlachtbetrieb bezog seine Broiler ausschließlich von Vertragsmästern, die über eine sogenannte BTS-Haltung (besonders tierfreundliche Stallhaltung) verfügten. Es handelte sich dabei um Bodenhaltung in Offenställen. Im Unterschied zur konventionellen Bodenhaltung (siehe 2.2.2) war den Tieren hier ab dem 21. Masttag jederzeit ein kontrollierter Auslauf in einem gedeckten Außenbereich möglich. Der Auslauf betrug mindestens ein Viertel der gesamten Stallfläche, was für einen natürlichen Tag-Nacht-Rhythmus sorgte. Innerhalb der Stallungen wurde den Tieren ein Ruhebereich mit Sitzgelegenheiten auf verschiedenen hohen Niveaus geboten.

3.1.2 Probenmaterial

dieser Anbieter mehr als 200 Grillwagen im gesamten Bundesgebiet sowie in der Schweiz. Es handelt sich also nicht um einen „Einzelanbieter“, sondern um ein repräsentatives Unternehmen.

Für die Zubereitung der Grillhähnchen vor der sensorischen Untersuchung wurde eine bereits vorgefertigte Gewürzmischung verwendet, die von oben genanntem Unternehmen zur Verfügung gestellt wurde. Sie setzte sich, in absteigender Reihenfolge ihres Gewichtsanteils, aus folgenden Zutaten zusammen:

- Salz
- Paprika
- Curry
- Pfeffer
- Knoblauch
- getrocknete Kräuter.

3.2 Methodik

3.2.1 Sensorische Untersuchung

Luftfeuchtigkeit. Die gesamte Garzeit betrug 35 Minuten. Den genauen Ablauf des Garprogrammes gibt Tabelle 3.1 wieder:

Begonnen wurde der Garvorgang bei einer Temperatur von +140 °C und einer Luftfeuchtigkeit von 90 % für eine Dauer von 5 Minuten. Die Temperatur wurde im Folgenden in drei Schritten à 5 Minuten jeweils um +20 °C erhöht, wobei die Luftfeuchtigkeit auf 90 % gehalten wurde. Die anschließend erreichte Temperatur von 220 °C wurde bei einer Luftfeuchtigkeit von 50 % für 7,5 Minuten beibehalten. Die letzten 7,5 Minuten des Grillvorgangs erfolgten bei einer Temperatur von +235 °C mit 0 % Luftfeuchtigkeit.

<table>
<thead>
<tr>
<th>Temperatur in °C</th>
<th>Luftfeuchtigkeit in %</th>
<th>Zeit in min</th>
</tr>
</thead>
<tbody>
<tr>
<td>+140</td>
<td>90</td>
<td>5</td>
</tr>
<tr>
<td>+160</td>
<td>90</td>
<td>5</td>
</tr>
<tr>
<td>+180</td>
<td>90</td>
<td>5</td>
</tr>
<tr>
<td>+200</td>
<td>90</td>
<td>5</td>
</tr>
<tr>
<td>+220</td>
<td>50</td>
<td>7,5</td>
</tr>
<tr>
<td>+235</td>
<td>0</td>
<td>7,5</td>
</tr>
</tbody>
</table>

Tabelle 3.1: Garvorgang im Combi-Dämpfer

und reproduzierbare Verteilung der Gewürzpartikel auf jedem Broiler zu gewährleisten.

Die sensorische Untersuchung erfolgte nach der Methode L 00.90-03: Bewertende Prüfung mit Skale (siehe 2.6.2.3). In Anlehnung an die Prüfschemata der DLG wurden die festgestellten Produkteigenschaften anhand einer 5-Punkte-Skala bewertet. Das Prüfschema beinhaltete eine getrennte Beurteilung der Haut, des Brustfleisches und des Fleisches der Schlegel. Es wurden jeweils folgende Merkmale geprüft: Aussehen, Konsistenz, Geruch und Geschmack. Die Ergebnisse wurden in einen entsprechenden Bewertungsbogen eingetragen, welcher im Anhang einzusehen ist. Tabelle 3.2 gibt den Bewertungsschlüssel für die jeweilige Punktzahl wieder:

<table>
<thead>
<tr>
<th>Punkte</th>
<th>Qualitätsbeschreibung</th>
<th>allgemeine Eigenschaften</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>sehr gut</td>
<td>volle Erfüllung der Qualitätserwartung</td>
</tr>
<tr>
<td>4</td>
<td>gut</td>
<td>geringfügige Abweichung</td>
</tr>
<tr>
<td>3</td>
<td>zufriedenstellend</td>
<td>merkliche Abweichung</td>
</tr>
<tr>
<td>2</td>
<td>weniger zufriedenstellend</td>
<td>deutlicher Fehler</td>
</tr>
<tr>
<td>1</td>
<td>nicht zufriedenstellend</td>
<td>starker Fehler</td>
</tr>
<tr>
<td>0</td>
<td>ungenügend</td>
<td>nicht bewertbar</td>
</tr>
</tbody>
</table>

Tabelle 3.2: Bewertungsschlüssel der 5-Punkte-Skala (DLG, 2001)

Die höchstmögliche erreichbare Punktzahl war 5, was einem „sehr gut“ entsprach. Sie wurde nur bei voller Erfüllung aller Qualitätserwartungen vergeben. Bei geringfügigen Abweichungen war ein Punkt abzuziehen und das Merkmal mit „gut“ zu beurteilen. Merkliche Abweichungen hinsichtlich der oben genannten festgelegten Merkmale führten zu einer Bewertung mit 3 Punkten, was als „zufriedenstellend“ galt. Ein weniger zufriedenstellendes Ergebnis wurde bei deutlichem Fehler mit 2 Punkten festgehalten. Nur ein Punkt bedeutete einen starken Fehler, der als nicht mehr zufriedenstellend zu beurteilen war. „Ungenügend“ (0 Punkte) hieß, die Qualität war

Es nahmen mindestens vier Prüfpersonen an jedem Durchgang teil. Zwei Prüfpersonen waren ausgebildete Prüfer mit einem DLG-Prüferpaß, die anderen Teilnehmer waren unterwiesene Laien. Die Untersuchung wurde als Gruppenprüfung durchgeführt, d.h. die Beurteilung der einzelnen Merkmale wurde gemeinsam erarbeitet. Da bei der Untersuchung nicht nur die Qualität sondern auch die Akzeptanz der verschiedenen Grillhähnchen durch den Verbraucher ermittelt werden sollte, wurden die Beurteilungen der DLG- und der Laien-Prüfer gleichberechtigt gewertet.

3.2.2 Chemisch-physikalische Untersuchung

die Auflistung aller verwendeten Geräte, Chemikalien und anderer Hilfsstoffe verzichtet werden. Diese sind im Handbuch aufgeführt und eindeutig beschrieben.

Da es nicht Bestandteil dieser Arbeit war, die einzelnen Verfahren genau zu erläutern und zu verfeinern, werden nachfolgend nur deren Grundprinzipien dargelegt. Für detailliertere Informationen ist unter der an entsprechender Stelle genannten Verfahrensnummer die „Amtliche Sammlung“ heranzuziehen. Es wurden insgesamt 40 Boiler, jeweils 10 aus jedem Schlachtbetrieb, untersucht.

3.2.2.1 Vollanalyse

Die jeweils linke Tierhälfte der rohen Broiler diente als Material für die chemisch-physikalische Vollanalyse. Sie wurde komplett, zuerst mit Hilfe eines Fleischwolfes und anschließend mehrfach mit einem Zerkleinerungsgerät (Moulinette) zu einer homogenen Masse verarbeitet. Die rechte Hälfte wurde zurückbehalten, um später zur Bestimmung der ungebundenen Gewebeflüssigkeit (siehe 3.2.3) herangezogen zu werden.

3.2.2.1.1 Wasser

Der Wassergehalt wurde indirekt über die Ermittlung der Trockenmasse nach dem Verfahren L 06.00-3 bestimmt. Die homogenisierte Probe wurde mit Hilfe eines Glässtabes mit Seesand in einer Abdampfschale verrieben und bei $+103 \, ^\circ C \pm 2 \, ^\circ C$ im Trockenschrank getrocknet. Anschließend wurde die Probe im Exsikkator abgekühlt und ausgewogen. Der Gehalt der Trockenmasse w in g/100 g ließ sich nach folgender Formel berechnen:

$$w = \frac{(m - a) \cdot 100}{m}$$

m = Probeneinwaage in g
a = Massenabnahme in g
3.2.2.1.2 Asche

Der Aschegehalt wurde nach der Methode L 06.00-4 bestimmt. Die homogenisierte Probe wurde in einem Quarztiegel zunächst im Trockenschrank bei 103 °C ± 2 °C vorgetrocknet und anschließend im Muffelofen bei +600 °C verascht. Mit Hilfe der Differenzwägung und Einsetzen der Ergebnisse in folgende Formel konnte der prozentuale Aschegehalt \(w \) ermittelt werden.

\[
w = \frac{(m_2 - m_1) \cdot 100}{m_0}
\]

\(m_1 \) = Masse des Quarztiegels in g
\(m_2 \) = Masse des Quarztiegels inklusive der Asche in g
\(m_0 \) = Einwaage in g

3.2.2.1.3 Fett

entfernen. Abschließend wurde der Kolben im Exsikkator abgekühlt. Ebenfalls durch Differenzwägung wurde der Gesamtfettgehalt w in g/100 g wie folgt berechnet:

$$w = \frac{(m_2 - m_1) \cdot 100}{m_0}$$

m_1 = Masse des leeren Kolbens inklusive der Siedesteinchen in g

m_2 = Masse des Kolbens mit Fett in g

m_0 = Einwaage in g

3.2.2.1.4 Rohprotein

$$w_N = \frac{a \cdot 0,0014007 \cdot 100}{m}$$

a = Verbrauch an Salzsäure in ml

m = Einwaage in g
Da Rohprotein durchschnittlich zu 16 % aus Stickstoff besteht, wurde der Gesamtstickstoffgehalt mit dem Faktor 6,25 multipliziert, um auf den Rohproteingehalt zurückzurechnen.

3.2.2.2 Bindegewebeeiweiß

Parallel zur Messung des Probenmaterials erfolgte die Messung einer standardisierten Verdünnungsreihe zur Erstellung einer Eichgeraden. Unter deren Verwendung konnte der Hydroxyprolingehalt \(w \) der Probe berechnet werden:

\[
 w = \frac{12,5 \times x}{mV}
\]

\(x \) = Hydroxyprolinkonzentration der Farblösung bestimmt aus der Eichgeraden
\(m \) = Einwaage in g
\(V \) = Volumen des Hydrolysates nach der zweiten Verdünnung

Da Bindegewebeeiweiß im Durchschnitt zu 12,4 % aus Hydroxyprolin besteht, erhielt man den Gehalt an Bindegewebeeiweiß durch Multiplikation von \(w \) mit dem Faktor 8.
3.2.2.3 Ermittlung von FE, BEFFE und BEFFE/FE

Mit Hilfe der oben ermittelten Parameter ließen sich die Werte von FE, BEFFE und BEFFE/FE rechnerisch bestimmen. Dazu wurden folgende Formeln verwendet:

\[
\begin{align*}
\text{ONF} &= 100 - (\text{Wasser} + \text{Asche} + \text{Fett}) \\
\text{GEW} &= \text{ONF} ; \text{RP} \; (\text{jeweils nur der kleinere Wert}) \\
\text{FE} &= \text{GEW} - (\text{FrE} + \text{NPN}) \\
\text{BEFFE} &= \text{GEW} - (\text{FrE} + \text{NPN} + \text{BE})
\end{align*}
\]

ONF = Organisches Nichtfett \\
GEW = Gesamteiweiß \\
RP = Rohprotein \\
FE = Fleischeiweiß \\
FrE = Fremdeiweiß \\
NPN = fremde Nichteiweiß-Stickstoff-Verbindungen \\
BEFFE = Bindegewebseiweißfreies Fleischeiweiß \\
BE = Bindegewebseiweiß

3.2.3 Bestimmung der auspreßbaren Gewebeflüssigkeit

Bei den zu untersuchenden rohen Boiler wurden, in Anlehnung an die für Rind und Schwein beschriebene amtliche Methode (AVV FIH Kap. IV Nr. 7), jeweils zwei Proben aus der Brustmuskulatur (\textit{M. pectoralis / M. supracoracoideus}) und zwei Proben aus der Muskulatur der Keule (\textit{M. fibularis longus / M. gastrocnemius}) entnommen. Die Muskelproben wogen mindestens 2 g und waren frei von Fett und Bindegewebe. Als Untersuchungsmaterial diente jeweils die rechte Hälfte der zur chemisch-physikalischen Untersuchung (siehe 3.2.2) herangezogenen Hühner.
KAPITEL 3 EIGENE UNTERSUCHUNGEN 82

Somit wurden 10 Broiler von jedem der 4 Schlachtbetriebe untersucht, insgesamt also 40 Broiler. Die Untersuchungen wurden unmittelbar im Anschluß an die Probennahme vorgenommen.

Die Gesamtpreßfläche \(F \), bestimmt durch den äußeren Rand der Feuchtigkeitszone, und die zentrale Fläche der Fleischzone \(f \) wurden den deckungsgleichen Kreisen einer Auswertschablone durch Verschieben der Schablone über der abgetrockneten Filterpapierscheibe zugeordnet. Über- und unterragende Randverläufe wurden durch Abschätzung ausgeglichen. Bei nicht klar zuzuordnenden Randverläufen wurden Zwischenstufen als Ergebnis gewertet. Der Quotient \(Q \) aus Fleischfläche \(f \) und Gesamtfläche \(F \) wurde anhand der entsprechenden, auf der Schablone angegebenen Flächen aus einer Auswerttabelle abgelesen. Er wurde nach folgender Formel berechnet:

\[
Q = \frac{f}{F}
\]
Die Auswerteschablone sowie die zur Auswertung herangezogene Tabelle sind im Anhang einzusehen.

3.2.4 Bestimmung der Bruttoenergie

Die Bruttoenergie (GE = "gross energy") der einzelnen Proben wurde anhand der Ergebnisse der chemisch-physikalischen Vollanalyse, aus den Energie liefernden Hauptinhaltsstoffen Fett und Rohprotein rechnerisch nach folgender Formel bestimmt.

\[\text{GE pro g} = \text{g Fett pro g Probe} \times 39,6 \text{ kJ} + \text{g Rohprotein pro g Probe} \times 24 \text{ kJ} \]

Da die von (SCHRAG, 1999) berechnete Bruttoenergie (GE) verschiedener tierischer Fette aus ihren Fettsäurebrennwertwerten eine gute Übereinstimmung mit den experimentell bestimmten Bruttoenergien aus der Literatur zeigt, wurde für die Bestimmung der Kilojoule aus Rohfett 39,6 kJ/g als Berechnungsgrundlage verwendet. Für Rohprotein wurde ein mittlerer Gehalt von 24 kJ/g gewählt (Meyer et al., 1993).

3.2.5 Statistische Auswertung

Vorgehen wird am Beispiel des Wassergehaltes der Broiler aus den Betrieben A und B erläutert.

Der ermittelte Wassergehalt der Broiler aus Betrieb A bzw. B wurde mit X_1, \ldots, X_{10} bzw. Y_1, \ldots, Y_{10} bezeichnet. Aufgrund dieser Zahlen sollte entschieden werden, ob die Nullhypothese oder die Gegenhypothese als richtig akzeptiert werden kann. Dazu wurden die 20 Zahlen in aufsteigender Reihenfolge angeordnet. Die so gewonnenen Zahlen wurden mit $Z_1 \leq Z_2 \leq \ldots \leq Z_{20}$ bezeichnet. Die Positionen eines X-Wertes in dieser Zahlenfolge wurde als sein Rang bezeichnet. W war die Summe der so definierten Ränge aller 10 X-Werte. W konnte jede ganze Zahl zwischen 55 und 155 sein. Wenn die Nullhypothese richtig war, wurde erwartet, daß W Werte annahm, die ungefähr in der Mitte zwischen 55 und 155 lagen. Werte von W, die nahe bei 55 oder 155 lagen, sprachen dafür, daß die Nullhypothese falsch war.

Es wurde ein Ablehnungsbereich für die Nullhypothese bestimmt, indem Zahlen S_1 und S_2 gewählt wurden mit $55 < S_1 < S_2 < 155$ und die Nullhypothese abgelehnt wurde, wenn
\[W \leq S_1 \quad \text{oder} \quad W \geq S_2 \quad \text{war.} \]

Es kam dabei vor, daß die Nullhypothese richtig war und trotzdem abgelehnt wurde. Dies wurde als Fehler 1. Art bezeichnet. Die Zahlen \(S_1 \) und \(S_2 \) wurden so bestimmt, daß der Fehler 1. Art nur mit einer vorgegebenen Wahrscheinlichkeit \(\alpha \) gemacht wurde. Übliche Werte für \(\alpha \) waren 1 \%, 5 \% und 10 \%. Für 10 X-Werte, 10 Y-Werte und \(\alpha = 5 \% \) erhielt man aus der Literatur (Tabelle 10 in Bosch 1992):

\[S_1 = 78, \quad S_2 = 132. \]
Kapitel 4

Ergebnisse

4.1 Sensorik

Die Ergebnisse der sensorischen Untersuchung sind in Abbildung 4.1 wiedergegeben. Die detaillierten Prüfungsbögen sind im Anhang einzusehen. Die höchstmögliche Anzahl an Wertungspunkten betrug 5 (siehe 3.2.1). Die Grillhähnchen der vier Schlachtbetriebe wurden zur Auswertung jeweils zu einer Charge zusammengefaßt und die Werte der gewürzten und ungewürzten Broiler jeder Charge wurden jeweils gemittelt.

Abbildung 4.1: Sensorische Gesamtbewertung der ungewürzten und gewürzten Grillhähnchen (jeweils Mittelwert der 3 Untersuchungsgänge)
KAPITEL 4 ERGEBNISSE

Die Hähnchen erreichten bei der sensorischen Beurteilung unter Berücksichtigung aller Prüfer (DLG- und Laien-Prüfer) Gesamtbewertungen zwischen 3,8 und 4,7 Punkten.

Bei den ungewürzten Hähnchen schnitten diejenigen der Charge A mit einer Gesamtbewertung von 4,5 Punkten am besten ab. Die zweite Position auf der Punkteskala erreichte Charge D mit einer Gesamtqualitätszahl von 4,1 Punkten. Die Grillhähnchen der Charge C erreichten die Punktzahl 4,0 und die Broiler der Charge B wurden insgesamt mit 3,8 Punkten bewertet.

Die durchschnittlichen Gewichte der sensorisch untersuchten Broiler vor und nach dem Grillen sowie der durchschnittliche prozentuale Gewichtsverlust, der beim Zubereiten auftrat, wurden in Tabelle 4.1 festgehalten:

| Charge | ungewürzt | gewürzt | durchschnittliches Gewicht in g (rohe Hähnchen) | durchschnittliches Gewicht in g (gegrillte Hähnchen) | Bratverlust [%] |
|--------|-----------|---------|---|--|----------------|---|
| Charge A | 1.340 | 1.297 | 1.000 | 1.000 | 25,4 |
| Charge B | 1.093 | 1.067 | 787 | 772 | 28,0 |
| Charge C | 1.010 | 1.005 | 725 | 713 | 28,0 |
| Charge D | 1.123 | 1.083 | 825 | 792 | 27,0 |

Tabelle 4.1: Gewichte vor und nach dem Grillen sowie Bratverluste
In rohem Zustand wogen die ungewürzten Broiler der Charge A durchschnittlich 1.340 g. Nach dem Grillen betrug das durchschnittliche Gewicht noch 1.000 g, woraus sich ein Bratverlust von 25,4 % ergab. Bei den Broilern mit Gewürz ergab sich ein Durchschnittsgewicht von 1.297 g roh und 1.000 g gegrillt. Der daraus ermittelte prozentuale Bratverlust lag bei 22,4 %.

Charge B zeigte roh durchschnittliche Gewichte von 1.093 g bei den ungewürzten Broilern und 1.067 g bei den gewürzten. Nach dem Grillen betrugen die Gewichte noch 787 g bzw. 772 g. Die durchschnittlichen Bratverluste lagen demnach bei 28,0 % und 27,6 %.

Die höchsten durchschnittlichen Bratverluste zeigten sich bei der Zubereitung der Broiler aus Charge C. Der Verlust der ungewürzten Broiler betrug im Schnitt 28,0 % und derjenige der gewürzten 29,0 %. Die Werte ergaben sich aus einem durchschnittlichen Gewicht der untersuchten Broiler von 1.010 g bzw. 1.005 g in rohem Zustand und 725 g bzw. 713 g nach dem Grillen.

Der prozentuale Bratverlust der Broiler aus Charge D betrug sowohl für die ungewürzten als auch für die gewürzten Proben 27,0 %. Die Broiler hatten dabei ein durchschnittliches Ausgangsgewicht von 1.123 g bei den ungewürzten und 1.083 g bei den gewürzten. Die Gewichte nach dem Grillen lagen bei 825 g bzw. 792 g.

4.2 Chemisch-physikalische Untersuchungen

Im Folgenden wird auf die Einzelergebnisse der physikalisch-chemischen Untersuchung, nach Chargen getrennt, näher eingegangen.
4.2.1 Charge A

Die Tabelle 4.2 gibt die Ergebnisse der chemisch-physikalischen Untersuchung von Charge A in Form der Einzelwerte und des ermittelten Mittelwertes wieder.

Der durchschnittliche Wasser gehalt der Charge A lag bei 64,3 %. A1, A2 und A10 wiesen mit 65,7 %, 65,4 % und 65,3 % die höchsten prozentualen Wassergehalte in dieser Gruppe auf, A6 und A8 mit jeweils 62,9 % die niedrigsten. Bei A9 lag der Gehalt bei 63,2 %, bei A3 und A5 bei 63,9 % und bei A4 und A7 bei 64,9 %.

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Wasser [%]</th>
<th>Asche [%]</th>
<th>Fett [%]</th>
<th>RP [%]</th>
<th>BE [%]</th>
<th>BEFFE [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>65,7</td>
<td>2,2</td>
<td>13,3</td>
<td>18,6</td>
<td>3,1</td>
<td>15,5</td>
</tr>
<tr>
<td>A2</td>
<td>65,4</td>
<td>3,1</td>
<td>14,0</td>
<td>18,3</td>
<td>3,2</td>
<td>15,1</td>
</tr>
<tr>
<td>A3</td>
<td>63,9</td>
<td>2,2</td>
<td>14,6</td>
<td>19,0</td>
<td>3,4</td>
<td>15,6</td>
</tr>
<tr>
<td>A4</td>
<td>64,9</td>
<td>3,1</td>
<td>13,0</td>
<td>18,9</td>
<td>3,1</td>
<td>15,8</td>
</tr>
<tr>
<td>A5</td>
<td>63,9</td>
<td>2,3</td>
<td>15,8</td>
<td>17,8</td>
<td>3,8</td>
<td>14,0</td>
</tr>
<tr>
<td>A6</td>
<td>62,9</td>
<td>3,0</td>
<td>15,7</td>
<td>18,2</td>
<td>3,7</td>
<td>14,5</td>
</tr>
<tr>
<td>A7</td>
<td>64,9</td>
<td>2,9</td>
<td>13,9</td>
<td>18,9</td>
<td>3,3</td>
<td>15,6</td>
</tr>
<tr>
<td>A8</td>
<td>62,9</td>
<td>2,8</td>
<td>17,8</td>
<td>17,1</td>
<td>3,0</td>
<td>14,1</td>
</tr>
<tr>
<td>A9</td>
<td>63,2</td>
<td>2,8</td>
<td>14,8</td>
<td>18,1</td>
<td>3,5</td>
<td>14,6</td>
</tr>
<tr>
<td>A10</td>
<td>65,3</td>
<td>2,9</td>
<td>12,2</td>
<td>18,8</td>
<td>3,3</td>
<td>15,5</td>
</tr>
<tr>
<td>ø</td>
<td>64,3</td>
<td>2,7</td>
<td>14,5</td>
<td>18,4</td>
<td>3,3</td>
<td>15,3</td>
</tr>
</tbody>
</table>

Tabelle 4.2: Chemische Untersuchung der rohen Broiler (Charge A)

Der durchschnittliche Asche gehalt der Hähnchen aus dem Betrieb A betrug 2,7 %. Niedriger Wert war 2,2 % bei den Proben A1 und A3, gefolgt von 2,3 % bei A5. Als höchster Gehalt wurden 3,1 % je bei A2 und A4 ermittelt. Die übrigen Werte lagen zwischen 2,8 % und 3,0 %.

Die Fett gehalte umfaßten eine Breite von 12,2 % bei A10 bis 17,8 % bei A8. Im Mittel lag er bei 14,5 %. Das Ergebnis der Probe A3 fand sich bei 14,6 %. Auch A5,
A6 und A9 lagen mit 15,8 %, 15,7 % und 14,8 % über dem Durchschnitt. A1, A2, A4 und A7 lagen mit Werten zwischen 13,0 % bis 14,0 % unter dem Durchschnitt.

Für den Parameter **Rohprotein** wurde ein Durchschnittsgehalt von 18,4 % ermittelt. Dabei lagen genau fünf der Proben über dem Mittelwert und fünf darunter, wobei den höchsten Wert A3 mit 19,0 % und den niedrigsten A8 mit 17,1 % lieferte. Die übrige Verteilung reichte von 17,8 % bei A5 bis 18,9 % bei A4.

Die Unterschiede im **Bindegewebe** waren am unauffälligsten. Zwischen dem höchsten Wert von A5 mit 3,8 % und dem niedrigsten von A8 mit 3,0 % lagen nur 0,8 %. Durchschnittlich betrug der prozentuale Anteil 3,3 %.

Das **bindegewebeiweißfreie Fleischeiweiß** variierte zwischen 14,0 % bei A5 und 15,8 % bei A4. Durchschnittlich betrug der Gehalt 15,3 %. A3 und A7 enthielten je 15,6 %, gefolgt von A1 und A10 mit je 15,5 %. Unter dem Durchschnitt lagen A2 mit 15,1 %, A9 mit 14,6 %, A6 mit 14,5 % und A8 mit 14,1 %.

4.2.2 Charge B

In **Tabelle 4.3** sind die Ergebnisse der chemischen Untersuchung der Broiler von Charge B gelistet sowie die jeweiligen Durchschnittswerte der Parameter dargestellt.

Die **Wasser**werte der Hühner der Charge B lagen zwischen 68,3 % bei B4 und 63,7 % bei B5, im Durchschnitt zeigten sie einen Gehalt von 65,5 %. B1, B3 und B8 lagen mit 67,1 %, 66,9 % und 65,6 % über dem Mittelwert, B7, B6, B2, B10 und B9 lagen mit Werten zwischen 65,0 % und 64,5 % darunter.

Die prozentualen **Asche**gehalte waren am höchsten bei B1 und B4 mit je 3,3 %, gefolgt von B3 mit 3,2 %. B2 und B8 lagen bei je 2,8 %, B5 und B10 bei je 2,7 %. Die niedrigsten Gehalte fanden sich bei B7 mit 2,6 % und bei B9 und B6 mit je 2,4 %. Durchschnittlich wurde ein Aschewert von 2,8 % erreicht.

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Wasser [%]</th>
<th>Asche [%]</th>
<th>Fett [%]</th>
<th>RP [%]</th>
<th>BE [%]</th>
<th>BEFFE [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>67,1</td>
<td>3,3</td>
<td>11,7</td>
<td>18,6</td>
<td>3,4</td>
<td>15,2</td>
</tr>
<tr>
<td>B2</td>
<td>64,7</td>
<td>2,8</td>
<td>15,4</td>
<td>18,3</td>
<td>3,4</td>
<td>14,9</td>
</tr>
<tr>
<td>B3</td>
<td>66,9</td>
<td>3,2</td>
<td>12,5</td>
<td>18,6</td>
<td>3,2</td>
<td>15,4</td>
</tr>
<tr>
<td>B4</td>
<td>68,3</td>
<td>3,3</td>
<td>11,1</td>
<td>19,0</td>
<td>4,0</td>
<td>15,0</td>
</tr>
<tr>
<td>B5</td>
<td>63,7</td>
<td>2,7</td>
<td>16,4</td>
<td>18,1</td>
<td>3,9</td>
<td>14,2</td>
</tr>
<tr>
<td>B6</td>
<td>64,9</td>
<td>2,4</td>
<td>13,9</td>
<td>18,7</td>
<td>4,2</td>
<td>14,5</td>
</tr>
<tr>
<td>B7</td>
<td>65,0</td>
<td>2,6</td>
<td>14,2</td>
<td>18,1</td>
<td>3,1</td>
<td>15,0</td>
</tr>
<tr>
<td>B8</td>
<td>65,6</td>
<td>2,8</td>
<td>14,2</td>
<td>17,6</td>
<td>4,0</td>
<td>13,6</td>
</tr>
<tr>
<td>B9</td>
<td>64,5</td>
<td>2,4</td>
<td>15,3</td>
<td>18,1</td>
<td>3,3</td>
<td>14,8</td>
</tr>
<tr>
<td>B10</td>
<td>64,6</td>
<td>2,7</td>
<td>14,0</td>
<td>18,8</td>
<td>3,1</td>
<td>15,7</td>
</tr>
<tr>
<td>ø</td>
<td>65,5</td>
<td>2,8</td>
<td>13,9</td>
<td>18,4</td>
<td>3,6</td>
<td>14,8</td>
</tr>
</tbody>
</table>

Tabelle 4.3: Chemische Untersuchung der rohen Broiler (Charge B)

Beim **Fett** bewegten sich die Werte zwischen 16,4 % bei B5 und 11,1 % bei B4. Durchschnittlich lag der Gehalt bei 13,9 %, was dem Ergebnis der Probe B6 entsprach. B3 und B1 lagen mit 12,5 % und 11,7 % unter dem Mittelwert der Charge. Die übrigen Proben bewegten sich zwischen 14,0 % und 15,4 %.

Die höchsten **Rohproteingehalte** fanden sich mit 19,0 % bei B4, gefolgt von B10 und B6 mit 18,8 % und 18,7 %. B3 und B1 hatten je 18,6 % Rohprotein. B2 lag bei 18,3 % und für B5, B7 und B9 wurden je 18,1 % ermittelt. Der niedrigste Wert betrug 17,6 % bei B8. Daraus ergab sich ein durchschnittlicher Gehalt von 18,4 % Rohprotein bei den Proben der Charge B.

Beim **Bindegewebe** wurden folgende Werte ermittelt: 4,2 % bei B6, je 4,0 % bei B4 und B8, 3,9 % bei B5, 3,4 % jeweils bei B1 und B2, 3,3 % bei B9, 3,2 % bei B3 und je 3,1 % sowohl bei B7 als auch bei B10. Durchschnittlich lag der Bindegewebegehalt bei 3,6 %.

Die Ermittlung des **bindegewebsseiweißfreien Fleischeiweißes** der Charge B erbrachte einen durchschnittlichen Gehalt von 14,8 %. Am höchsten war BEFFE bei
der Probe B10 mit 15,7 %. B3, B1, B4, B7, B2 und B9 lagen bei Werten zwischen 15,4 % und 14,8 %. B6 und B5 wiesen 14,5 % und 14,2 % auf. Den niedrigsten Anteil hatte B8 mit 13,6 %.

4.2.3 Charge C

Die Ergebnisse der einzelnen Parameter aus der chemisch-physikalischen Vollanalyse für Charge C sowie die Mittelwerte wurden in Tabelle 4.4 aufgeführt.

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Wasser [%]</th>
<th>Asche [%]</th>
<th>Fett [%]</th>
<th>RP [%]</th>
<th>BE [%]</th>
<th>BEFFE [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>66,8</td>
<td>2,9</td>
<td>11,0</td>
<td>19,0</td>
<td>3,7</td>
<td>15,3</td>
</tr>
<tr>
<td>C2</td>
<td>64,1</td>
<td>3,2</td>
<td>14,6</td>
<td>19,1</td>
<td>2,8</td>
<td>16,3</td>
</tr>
<tr>
<td>C3</td>
<td>66,7</td>
<td>2,7</td>
<td>11,2</td>
<td>19,4</td>
<td>3,3</td>
<td>16,1</td>
</tr>
<tr>
<td>C4</td>
<td>66,3</td>
<td>2,9</td>
<td>11,8</td>
<td>18,7</td>
<td>3,0</td>
<td>15,7</td>
</tr>
<tr>
<td>C5</td>
<td>67,3</td>
<td>3,1</td>
<td>11,7</td>
<td>18,9</td>
<td>2,4</td>
<td>16,5</td>
</tr>
<tr>
<td>C6</td>
<td>65,8</td>
<td>3,2</td>
<td>13,4</td>
<td>19,0</td>
<td>3,3</td>
<td>15,7</td>
</tr>
<tr>
<td>C7</td>
<td>64,5</td>
<td>3,1</td>
<td>14,5</td>
<td>18,4</td>
<td>3,7</td>
<td>14,7</td>
</tr>
<tr>
<td>C8</td>
<td>65,8</td>
<td>2,4</td>
<td>13,2</td>
<td>18,6</td>
<td>3,2</td>
<td>15,4</td>
</tr>
<tr>
<td>C9</td>
<td>67,2</td>
<td>2,6</td>
<td>10,8</td>
<td>19,1</td>
<td>3,1</td>
<td>16,0</td>
</tr>
<tr>
<td>C10</td>
<td>65,9</td>
<td>3,1</td>
<td>12,2</td>
<td>18,9</td>
<td>3,4</td>
<td>15,5</td>
</tr>
<tr>
<td>ø</td>
<td>66,0</td>
<td>2,9</td>
<td>12,4</td>
<td>18,9</td>
<td>3,2</td>
<td>15,7</td>
</tr>
</tbody>
</table>

Tabelle 4.4: Chemische Untersuchung der rohen Broiler (Charge C)

Bei Charge C betrugen die höchsten Wassergehalte 67,3 % bei C5 und 67,2 % bei C9. Die niedrigsten Gehalte dieser Gruppe wiesen C2 mit 64,1 % und C7 mit 64,5 % auf. Dazwischen lagen C1 mit 66,8 %, C3 mit 66,7 %, C4 mit 66,3 %, C10 mit 65,9 % sowie C6 und C8 mit je 65,8 %. Durchschnittlich ergab sich ein Wasseranteil von 66,0 %.

Für den Aschegehalt wurden Gehalte zwischen 3,2 % jeweils bei den Proben C2 bzw. C6 und 2,4 % bei C8 ermittelt. Durchschnittlich resultierte ein prozentualer
Aschewert von 2,9 %, was gleichzeitig auch dem Ergebnis von C1 und C4 entsprach.
Die Untersuchung der übrigen Hühner ergab folgende Gehalte: 3,1 % je für C5, C7 und C10, 2,7 % für C3 und 2,6 % für C9.

Beim Fett wurde durchschnittlich ein Prozentanteil von 12,4 % erreicht. C2 und C7 enthielten mit 14,6 % und 14,5 % die höchsten Fettgehalte. Gefolgt wurden sie von C6 mit 13,4 %, C8 mit 13,2 % und C10 mit 12,2 %. Die Ergebnisse von C4, C5, C3 und C1 lagen zwischen 11,8 % und 11,0 %. C9 wies mit 10,8 % das niedrigste Resultat auf.

Der höchste Rohproteingehalt wurde bei C3 mit 19,4 % festgestellt. Über dem durchschnittlichen Wert der Charge von 18,9 % lagen außerdem die Proben C2 und C9 mit jeweils 19,1 % und C1 bzw. C6 mit je 19,0 %. C5 und C10 entsprachen dem Mittelwert. Gehalte von 18,9 %, 18,6 % und 18,4 % fanden sich bei der Analyse von C5, C8 und C7.

Den geringsten Bindegewebsgehalt erbrachte die Untersuchung für die Proben C5 und C2 mit 2,4 % bzw. 2,8 %. Die höchsten Werte dieser Charge wurden bei C1 und C7 mit 3,7 %, C10 mit 3,4 % und C3 bzw. C6 mit jeweils 3,3 % bestimmt. Das Ergebnis der Probe C8 entsprach dem Durchschnittsgehalt von 3,2 %. Der prozentuale Anteil von C9 lag bei 3,1 % und derjenige von C4 bei 3,0 %.

Der Gehalt an bindegewebseißfreiem Fleischeiweiß schwankte zwischen 16,5 % bei C5 und 14,7 % bei C7. Über dem Chargendurchschnitt von 15,7 % siedelten sich die Werte von C2 mit 16,3 %, C3 mit 16,1 % und C9 mit 16,0 % an. C4 und C6 lagen mit 15,7 % genau im Mittel. Für die Proben C1 und C8 erbrachte die Analyse einen BEFFE-Wert von 15,3 % bzw. 15,4 %.
4.2.4 Charge D

Tabelle 4.5 gibt die Ergebnisse der chemischen Untersuchung der rohen Hähnchen der Charge D wieder.

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Wasser [%]</th>
<th>Asche [%]</th>
<th>Fett [%]</th>
<th>RP [%]</th>
<th>BE [%]</th>
<th>BEFFE [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>65,4</td>
<td>2,0</td>
<td>13,6</td>
<td>18,8</td>
<td>3,1</td>
<td>15,7</td>
</tr>
<tr>
<td>D2</td>
<td>64,8</td>
<td>2,6</td>
<td>13,7</td>
<td>18,2</td>
<td>2,7</td>
<td>15,5</td>
</tr>
<tr>
<td>D3</td>
<td>63,5</td>
<td>2,3</td>
<td>15,2</td>
<td>17,6</td>
<td>3,2</td>
<td>14,4</td>
</tr>
<tr>
<td>D4</td>
<td>65,1</td>
<td>1,9</td>
<td>12,5</td>
<td>19,4</td>
<td>3,3</td>
<td>16,1</td>
</tr>
<tr>
<td>D5</td>
<td>64,3</td>
<td>2,6</td>
<td>15,1</td>
<td>18,0</td>
<td>4,2</td>
<td>13,8</td>
</tr>
<tr>
<td>D6</td>
<td>66,7</td>
<td>2,7</td>
<td>12,6</td>
<td>18,5</td>
<td>3,5</td>
<td>15,0</td>
</tr>
<tr>
<td>D7</td>
<td>64,8</td>
<td>1,8</td>
<td>15,5</td>
<td>18,1</td>
<td>3,2</td>
<td>14,9</td>
</tr>
<tr>
<td>D8</td>
<td>62,4</td>
<td>2,2</td>
<td>15,4</td>
<td>18,4</td>
<td>3,9</td>
<td>14,5</td>
</tr>
<tr>
<td>D9</td>
<td>64,1</td>
<td>3,1</td>
<td>14,6</td>
<td>18,3</td>
<td>3,4</td>
<td>14,9</td>
</tr>
<tr>
<td>D10</td>
<td>64,2</td>
<td>2,4</td>
<td>16,3</td>
<td>17,8</td>
<td>2,4</td>
<td>15,4</td>
</tr>
<tr>
<td>ø</td>
<td>64,5</td>
<td>2,4</td>
<td>14,4</td>
<td>18,3</td>
<td>3,2</td>
<td>15,0</td>
</tr>
</tbody>
</table>

Tabelle 4.5: Chemische Untersuchung der rohen Broiler (Charge D)

Der durchschnittliche Wasseranteil der Charge D von 64,5 % setzte sich zusammen aus: D6 mit dem höchsten Wert von 66,7 %, D1 mit 65,4 %, D4 mit 65,1 %, D2 und D7 mit jeweils 64,8 %, D5 mit 64,3 %, D10 mit 64,2 %, D9 mit 64,1 % gefolgt von D3 und D8 mit 63,5 % bzw. 62,4 %.

Der größte prozentuale Gehalt an Asche fand sich bei der Probe D9 mit 3,1%, gefolgt von D6 mit 2,7 % und D2 bzw. D5 mit jeweils 2,6 %. D10 entsprach mit einem ermittelten Ascheanteil von 2,4 % dem Durchschnittsgehalt der Charge. D3, D8, D1 und D4 erbrachten Werte von 2,3 % bis 1,9 %. Für D7 wurde mit 1,8 % der niedrigste Wert verzeichnet.

Bei der Untersuchung des Fettgehaltes der Charge D wurde ein Durchschnittswert von 14,4 % festgestellt. Die Werte der einzelnen Proben schwankten zwischen
16,3 % bei D10 und 12,5 % bei D4 und stellten sich wie folgt dar: 15,5 % bei D7, 15,4 % bei D8, 15,2 % bei D3, 15,1 % bei D5, 14,6 % bei D9, 13,7 % bei D2, 13,6 % bei D1 und 12,6 % bei D6.

Der höchste prozentuale Rohprotein gehalt der Proben der Charge D fand sich bei D4 mit 19,4 %. Über dem durchschnittlichen Wert von 18,3 % lagen außerdem die Proben D1, D6 und D8 mit 18,8 %, 18,5 % und 18,4 %. D9 entsprach dem Durchschnitt, während D2 mit 18,2 %, D7 mit 18,1 %, D5 mit 18,0 %, D10 mit 17,8 % sowie D3 mit dem kleinsten Wert von 17,6 % darunter lagen.

Die Analyse zur Bestimmung des Bindegewebes erbrachte den höchsten Gehalt für die Probe D5 mit 4,2 % und den niedrigsten für D10 mit 2,4 %. D8, D6, D9 und D4 zeigten Werte von 3,9 %, 3,5 %, 3,4 % und 3,3 %. Unter dem Durchschnitt von 3,2 %, der dem Ergebnis von D3 und D7 entsprach, lagen D1 mit 3,1 % und D2 mit 2,7 %.

Bindegewebeeiweißfreies Fleischeiweiß war in den Proben der Charge D durchschnittlich zu 15,0 % enthalten, was dem Gehalt von D6 entsprach. Der größte Anteil zeigte sich bei D4 mit 16,1 %, gefolgt von D1 mit 15,7 %, D2 mit 15,5 % und D10 mit 15,4 %. Kleinere Werte als der Durchschnitt waren bei D7 bzw. D9 mit jeweils 14,9 %, D8 mit 14,5 %, D3 mit 14,4 % und D5 mit 13,8 % zu finden.

4.2.5 Zusammenfassung der Durchschnittswerte

Abschließend sind in Tabelle 4.6 die einzelnen Durchschnittsergebnisse der Chargen zusammengefaßt.
<table>
<thead>
<tr>
<th>Charge</th>
<th>Wasser</th>
<th>Asche</th>
<th>Fett</th>
<th>RP</th>
<th>BE</th>
<th>BEFFE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[%]</td>
<td>[%]</td>
<td>[%]</td>
<td>[%]</td>
<td>[%]</td>
<td>[%]</td>
</tr>
<tr>
<td>A</td>
<td>64,3</td>
<td>2,7</td>
<td>14,5</td>
<td>18,4</td>
<td>3,3</td>
<td>15,3</td>
</tr>
<tr>
<td>B</td>
<td>65,5</td>
<td>2,8</td>
<td>13,9</td>
<td>18,4</td>
<td>3,6</td>
<td>14,8</td>
</tr>
<tr>
<td>C</td>
<td>66,0</td>
<td>2,9</td>
<td>12,4</td>
<td>18,9</td>
<td>3,2</td>
<td>15,7</td>
</tr>
<tr>
<td>D</td>
<td>64,5</td>
<td>2,4</td>
<td>14,4</td>
<td>18,3</td>
<td>3,2</td>
<td>15,0</td>
</tr>
</tbody>
</table>

Tabelle 4.6: Durchschnittswerte der chemischen Vollanalyse aller Chargen

Den höchsten durchschnittlichen **Wasser**gehalt zeigte Charge C mit 66,0 %. Es folgten die Chargen B und D mit 65,5 % sowie 64,5 %. Am wenigsten Wasser war durchschnittlich bei Charge A mit 64,3 % gefunden worden. Die Durchschnittswerte für den **Asche**gehalt verhielten sich gleichermäß. Den größten Wert wies erneut Charge C mit 2,9 % Asche auf. Charge B mit 2,8 % und Charge A mit 2,7 % folgten. Charge D enthielt durchschnittlich am wenigsten Asche mit 2,4 %. Beim **Fett** fand sich der höchste durchschnittliche Gehalt von 14,5 % bei Charge A. Am geringsten war der Fettanteil bei Charge C mit 12,4 %. Dazwischen lagen Charge D mit 14,4 % und B mit 13,9 %. Die **Rohprotein**gehalte lagen zwischen 18,9 % bei C und 18,3 % bei D. Chargen A und B enthielten durchschnittlich je 18,4 %. Ähnlich einheitlich stellten sich die Werte für den **Bindegewebsanteil** dar. Charge B mit 3,6 % enthielt am meisten, gefolgt von A mit 3,3 %. Die Chargen C sowie D beinhalteten jeweils 3,2 % Bindegewebe. Für das **Bindegewebsweißfreie Fleischeiweiß** wurde der größte durchschnittliche Gehalt bei Charge C mit 15,7 % ermittelt. Charge A enthielt 15,3 % und D 15,0 % BEFFE. Den durchschnittlich geringsten Anteil wies Charge B mit 14,8 % auf.
4.2.6 Statistische Auswertung

<table>
<thead>
<tr>
<th>Wasser</th>
<th>Asche</th>
<th>Fett</th>
<th>RP</th>
<th>BE</th>
<th>BEFFE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A = B</td>
</tr>
<tr>
<td>A < C</td>
<td>A = C</td>
<td>A > C</td>
<td>A < C</td>
<td>A = C</td>
<td>A < C</td>
</tr>
<tr>
<td>A = D</td>
<td>A > D</td>
<td>A = D</td>
<td>A = D</td>
<td>A = D</td>
<td>A = D</td>
</tr>
<tr>
<td>B = C</td>
<td>B = C</td>
<td>B < C</td>
<td>B = C</td>
<td>B < C</td>
<td>B = D</td>
</tr>
<tr>
<td>B = D</td>
<td>B > D</td>
<td>B = D</td>
<td>B = D</td>
<td>B = D</td>
<td>B = D</td>
</tr>
<tr>
<td>C > D</td>
<td>C > D</td>
<td>C < D</td>
<td>C > D</td>
<td>C = D</td>
<td>C > D</td>
</tr>
</tbody>
</table>

Tabelle 4.7: Signifikante Unterschiede der chemischen Vollanalyse

4.3 Ermittlung des ungebundenen Gewebewassers

Die Ergebnisse aus der Ermittlung des ungebundenen Gewebewassers an jeweils vier verschiedenen Muskelproben sind für die jeweiligen Chargen in den Tabellen 4.8 bis 4.11 dargestellt.

4.3.1 Charge A

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>0,54</td>
<td>0,50</td>
<td>0,64</td>
<td>0,61</td>
<td></td>
</tr>
<tr>
<td>A2</td>
<td>0,43</td>
<td>0,66</td>
<td>0,62</td>
<td>0,66</td>
<td></td>
</tr>
<tr>
<td>A3</td>
<td>0,35</td>
<td>0,66</td>
<td>0,60</td>
<td>0,57</td>
<td></td>
</tr>
<tr>
<td>A4</td>
<td>0,48</td>
<td>0,68</td>
<td>0,78</td>
<td>0,81</td>
<td></td>
</tr>
<tr>
<td>A5</td>
<td>0,48</td>
<td>0,70</td>
<td>0,56</td>
<td>0,63</td>
<td></td>
</tr>
<tr>
<td>A6</td>
<td>0,75</td>
<td>0,77</td>
<td>0,85</td>
<td>0,66</td>
<td></td>
</tr>
<tr>
<td>A7</td>
<td>0,72</td>
<td>0,65</td>
<td>0,84</td>
<td>0,70</td>
<td></td>
</tr>
<tr>
<td>A8</td>
<td>0,69</td>
<td>0,70</td>
<td>0,81</td>
<td>0,75</td>
<td></td>
</tr>
<tr>
<td>A9</td>
<td>0,60</td>
<td>0,54</td>
<td>0,81</td>
<td>0,85</td>
<td></td>
</tr>
<tr>
<td>A10</td>
<td>0,63</td>
<td>0,64</td>
<td>0,84</td>
<td>0,87</td>
<td></td>
</tr>
<tr>
<td>ø</td>
<td>0,57</td>
<td>0,65</td>
<td>0,74</td>
<td>0,71</td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 4.8: Ungebundenes Gewebewasser der Muskelproben von Charge A

Bei den Muskelproben der Keule zeigten sich für die Charge A durchschnittliche Werte von 0,57 beim *M. fibularis longus* und 0,65 beim *M. gastrocnemius*. Der höchste Gehalt an auspressbarem Gewebewasser aus den Proben des *M. fibularis longus* zeigte sich bei A3 mit einem Quotienten von 0,35. Am wenigsten ungebundenes Wasser ergab die Probe A6 mit 0,75 als Quotient. Die übrigen Proben bewegten sich bei Werten zwischen 0,43 für A2 und 0,72 für A7. Die

Bei der Untersuchung der **Brust**muskulatur zeigte sich der höchste Gehalt bei den Proben des *M. pectoralis* für A5 mit einem Quotienten von 0,56. A3, A2 und A1 lagen bei 0,60, 0,62 und 0,64. Unter dem durchschnittlichen Gehalt an auspreßbarem Gewebewasser von 0,73 lagen die Probe A4 mit einem Quotienten von 0,78, die Proben A8 bzw. A9 mit je 0,81 und A7 bzw. A10 mit jeweils 0,84. Die geringste Menge an auspreßbarem Gewebewasser wurde bei A6 mit einem Quotienten von 0,85 ermittelt. Das durchschnittliche Verhältnis f/F der Charge A bei der Untersuchung des *M. supracoracoideus* lag bei 0,71. Der kleinste Quotient, also der höchste Gehalt an ungebundenem Gewebewasser wurde bei A3 mit 0,57 festgestellt. Es folgten A1 mit 0,61, A5 mit 0,63, A2 bzw. A6 mit jeweils 0,66 und A7 mit 0,70. Quotienten über dem Durchschnitt wurden für A8, A4, A9 und A10 mit 0,75, 0,81, 0,85 und 0,87 gefunden.

4.3.2 Charge B

Die Charge B zeigte bei der Untersuchung der Muskelproben der **Keule** folgende Ergebnisse. Bei den Proben aus dem *M. fibularis longus* wurde ein durchschnittlicher Quotient von 0,44 ermittelt. Die größten Gehalte an auspreßbarem Gewebewasser fanden sich bei B8 mit 0,32 sowie bei B4 mit 0,34. Überdurchschnittlich hoch waren außerdem die Gehalte von B3 und B10 mit Quotienten von 0,39 bzw. 0,41. B5 lag mit 0,45 knapp unter dem Durchschnitt, gefolgt von B1 mit 0,47. B7 enthielt 0,48 als Ergebnis und B2 sowie B9 lagen beide
bei 0,51. Am wenigsten auspresßbares Wasser fand sich bei B6 mit dem höchsten Quotienten von 0,55.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>0,47</td>
<td>0,39</td>
<td>0,62</td>
<td>0,62</td>
</tr>
<tr>
<td>B2</td>
<td>0,51</td>
<td>0,45</td>
<td>0,62</td>
<td>0,65</td>
</tr>
<tr>
<td>B3</td>
<td>0,39</td>
<td>0,46</td>
<td>0,71</td>
<td>0,83</td>
</tr>
<tr>
<td>B4</td>
<td>0,34</td>
<td>0,54</td>
<td>0,62</td>
<td>0,66</td>
</tr>
<tr>
<td>B5</td>
<td>0,45</td>
<td>0,41</td>
<td>0,58</td>
<td>0,76</td>
</tr>
<tr>
<td>B6</td>
<td>0,55</td>
<td>0,40</td>
<td>0,55</td>
<td>0,62</td>
</tr>
<tr>
<td>B7</td>
<td>0,48</td>
<td>0,47</td>
<td>0,58</td>
<td>0,63</td>
</tr>
<tr>
<td>B8</td>
<td>0,32</td>
<td>0,60</td>
<td>0,64</td>
<td>0,61</td>
</tr>
<tr>
<td>B9</td>
<td>0,51</td>
<td>0,80</td>
<td>0,87</td>
<td>0,68</td>
</tr>
<tr>
<td>B10</td>
<td>0,41</td>
<td>0,71</td>
<td>0,69</td>
<td>0,75</td>
</tr>
<tr>
<td>ø</td>
<td>0,44</td>
<td>0,52</td>
<td>0,65</td>
<td>0,68</td>
</tr>
</tbody>
</table>

Tabelle 4.9: Ungebundenes Gewebewasser der Muskelproben von Charge B

Für den M. gastrocnemius erbrachte die Charge einen Durchschnittsquotienten von 0,52. Am meisten Wasser ließ sich bei B1 aus diesem Muskel pressen, am wenigsten bei B9, die Quotienten betrugen 0,39 und 0,80. B6, B5 und B2 lagen bei 0,40, 0,41 und 0,45. Unter dem Mittelwert lagen außerdem B3 mit 0,46 und B7 mit 0,47. Hohe Gehalte wiesen B4, B8 und B10 mit 0,54 und 0,60 bzw. 0,71 auf.

Die untersuchte Brustmuskulatur dieser Charge erbrachte durchschnittliche Quotienten von 0,65 und 0,68. Beim M. pectoralis setzte sich dieser Wert wie folgt zusammen. Am meisten auspresßbares Gewebewasser enthielt B6 mit 0,55. Es schlossen sich B5 sowie B7 mit je 0,58 und B1, B2 sowie B4 mit jeweils 0,62 an. Gerade noch über dem Durchschnitt von 0,65 lag B8 mit 0,64. Bei B10 wurde ein Quotient von 0,69, bei B3 von 0,71 ermittelt. Am kleinsten war der Gehalt bei B9 mit 0,87. B8 enthielt am meisten ungebundenes Wasser bei der Untersuchung des M. supracoracoideus, was sich in einem Quotienten von 0,61 darstellte. Der
KAPITEL 4
E RGEBNISSE

kleinste Wert wurde für B3 mit 0,83 ermittelt. Über dem Mittelwert fanden sich B1 sowie B6 mit jeweils 0,62, B7 mit 0,63, B2 mit 0,65 sowie B4 mit 0,66. Der Quotient von B9 entsprach mit 0,68 genau dem durchschnittlichen Gehalt. Die übrigen Ergebnisse waren 0,75 bei B10 und 0,76 bei B5.

4.3.3 Charge C

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Keule</th>
<th>Brust</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M. fibularis longus</td>
<td>M. gastrocnemius</td>
</tr>
<tr>
<td></td>
<td>[Quotient f/F]</td>
<td>[Quotient f/F]</td>
</tr>
<tr>
<td>C1</td>
<td>0,50</td>
<td>0,49</td>
</tr>
<tr>
<td>C2</td>
<td>0,52</td>
<td>0,50</td>
</tr>
<tr>
<td>C3</td>
<td>0,44</td>
<td>0,53</td>
</tr>
<tr>
<td>C4</td>
<td>0,53</td>
<td>0,49</td>
</tr>
<tr>
<td>C5</td>
<td>0,45</td>
<td>0,49</td>
</tr>
<tr>
<td>C6</td>
<td>0,45</td>
<td>0,61</td>
</tr>
<tr>
<td>C7</td>
<td>0,48</td>
<td>0,49</td>
</tr>
<tr>
<td>C8</td>
<td>0,39</td>
<td>0,45</td>
</tr>
<tr>
<td>C9</td>
<td>0,46</td>
<td>0,61</td>
</tr>
<tr>
<td>C10</td>
<td>0,51</td>
<td>0,47</td>
</tr>
<tr>
<td>ø</td>
<td>0,47</td>
<td>0,51</td>
</tr>
</tbody>
</table>

Tabelle 4.10: Ungebundenes Gewebewasser der Muskelproben von Charge C

Die Untersuchung der Keulennuskulatur der Charge C erbrachte für den *M. fibularis longus* einen durchschnittlichen Quotienten von 0,47 für das auspreßbare Gewebewasser. Der größte Gehalt lag bei 0,39 für C8 und der kleinste bei 0,53 für die Probe C4. Die übrigen Proben verteilten sich folgendermaßen: Über dem Mittelwert lagen C3, C5, C6 und C9 mit Quotienten von 0,44, je 0,45 sowie 0,46. Weniger Gewebewasser konnte bei C7 mit 0,48, C1 mit 0,50, C10 mit 0,51 und C2 mit 0,52 ausgepreßt werden. Für den *M. gastrocnemius* zeigte C8 den höchsten Gehalt mit einem Quotienten von 0,45. Es folgten C10 mit 0,47 sowie C1, C4, C5 und C7 mit einheitlichen Werten von jeweils 0,49. C2 lag bei 0,50 und C3 bei 0,53.
Am wenigsten auspreßbares Gewebewasser fand sich bei den Proben C6 und C9 mit 0,61. Der Mittelwert aus allen Quotienten betrug 0,51.

Die Quotienten bei den Proben aus der Brustmuskulatur lagen auch bei dieser Charge höher als die der Keule. Aus der Analyse des *M. pectoralis* resultierte ein durchschnittlicher Quotient von 0,61. Am höchsten war der Gehalt bei den Proben C1 und C6 mit jeweils 0,54 als Ergebnis. Es schlossen sich C4, C5 sowie C9 mit 0,55, 0,56 und 0,59 an. C8 entsprach mit einem ermittelten Quotienten von 0,61 dem Durchschnittsgehalt der Charge. Darunter fanden sich die Werte von C3 und C7 mit je 0,66 sowie C2 und C10 mit dem geringsten Gehalt an auspreßbarem Wasser bei Quotienten von jeweils 0,68. Auch den Untersuchungen für den *M. supracoracoideus* wurde der größte Gehalt bei Probe C1 mit 0,51 und der kleinste bei C2 mit 0,69 ermittelt. Durchschnittlich betrug der Quotient 0,59. Überdurchschnittlich siedelten sich C6 mit 0,52, C3, C7, und C8 mit Quotienten von jeweils 0,54 sowie Probe C4 mit 0,57 an. Verhältnismäßig weniger Gewebewasser enthielten C5 und C9 mit je 0,64 wie auch C10 mit 0,67.

4.3.4 Charge D

Die Analyse der Keulmuskulatur bei Charge D zeigte bei der Beprobung des *M. fibularis longus* die kleinsten Quotienten von 0,27 bzw. 0,28, und damit den höchsten Gehalt an ungebundenem Gewebewasser, für die Proben D7 sowie D5. D8 und D6 folgten mit einem Verhältnis f/F von jeweils 0,37. Über dem durchschnittlichen Gehalt der Charge von 0,42 siedelten sich außerdem noch die Ergebnisse von D10 mit 0,38 und D9 mit 0,41 an. Niedrigere Gehalte fanden sich bei D2 sowie D4 mit einem Quotienten von je 0,53 und am wenigsten auspreßbares Gewebewasser fand sich mit einem Verhältnis von 0,54 für die Proben D1 als auch D3. Auch bei den Untersuchungen des *M. gastrocnemius* wurde bei D7 der größte Gehalt mit einem Ergebnis von 0,34 gefunden, wie auch bei D5. Am wenigsten Wasser ließ sich bei D4 auspressen, der Quotient betrug 0,58. Durchschnittlich lag das Verhältnis der Flächen bei 0,45. Die übrigen Zahlen stellten sich
Die Untersuchung des Fleisches der Brust von Charge D erbrachte für beide Muskeln durchschnittliche Quotienten von 0,65. Aus dem *M. pectoralis* konnte bei D5 am meisten Gewebewasser ausgepreßt werden, was sich in einem Verhältnis von 0,54 darstellte. D7 als auch D10 lagen jeweils bei 0,57 und D2 erbrachte 0,58. Noch über dem Durchschnitt lag außerdem D6 mit 0,60. Am wenigsten unbundenes Wasser konnte bei D9 gefunden werden, der Quotient für diese Probe lag bei 0,79. Die restlichen Werte bewegten sich zwischen 0,68 für D8 und 0,74 für D3. Bei der Analyse des *M. supracoracoideus* zeigten sich erneut die höchsten Gehalte bei den Proben D5 und D7 mit Quotienten von 0,40 bzw. 0,53. An dritter Stelle lag D6 mit 0,56 und an vierter D10 mit 0,62. Dem Mittelwert am nächsten kam D3 mit 0,64. Die Verhältnisse f/F der Proben D9, D1 sowie D8 und D4 fanden sich bei 0,69, je 0,72 und 0,74. Am kleinsten war der Gehalt von D2 mit einem Quotienten von 0,86.
4.3.5 Zusammenfassung der Durchschnittswerte

Tabelle 4.12 gibt die durchschnittlichen Werte jeder Charge jeweils für die Untersuchung der einzelnen Muskelproben wieder.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0,57</td>
<td>0,65</td>
<td>0,73</td>
<td>0,71</td>
</tr>
<tr>
<td>B</td>
<td>0,44</td>
<td>0,52</td>
<td>0,65</td>
<td>0,68</td>
</tr>
<tr>
<td>C</td>
<td>0,47</td>
<td>0,51</td>
<td>0,61</td>
<td>0,59</td>
</tr>
<tr>
<td>D</td>
<td>0,42</td>
<td>0,45</td>
<td>0,65</td>
<td>0,65</td>
</tr>
</tbody>
</table>

Tabelle 4.12: Durchschnittswerte der Ermittlung des ungebundenen Wassers

Der kleinste durchschnittliche Quotient aus den Proben des *M. fibularis longus* der Keule und damit der größte Gehalt an auspreßbarem Gewebewasser wurde bei Charge D mit 0,42 gefunden. Die Chargen B und C zeigten Durchschnittswerte von 0,44 sowie 0,47. Im Mittel am wenigsten Gewebewasser konnte bei Charge A mit einem Quotienten von 0,57 ausgepreßt werden. Die Ergebnisse für den *M. gastrocnemius* stellten sich folgendermaßen dar: Den höchsten Gehalt enthielt Charge D mit 0,45, C und B lagen mit 0,51 sowie 0,52 in der Mitte und Charge A enthielt auch hier am wenigsten ungebundenes Gewebewasser mit einem Quotienten von 0,65.

Bei der Brustmuskulatur enthielt bei der Beprobung des *M. pectoralis* Charge C durchschnittlich am meisten auspreßbares Wasser (*f/F* = 0,61). Es schlossen sich die Chargen B sowie D mit Quotienten von jeweils 0,65 an. Auch hier wurde für Charge A mit 0,73 der geringste Gehalt ermittelt. Ähnlich sah das Ergebnis beim *M. supracoracoideus* aus. Charge C zeigte wiederum den größten Gehalt mit 0,59. D und B folgten mit 0,65 bzw. 0,68. Charge A hatte mit 0,71 den größten Quotienten und damit den geringsten Gehalt an ungebundenem Gewebewasser.
4.3.6 Statistische Auswertung

In Tabelle 4.13 ist die statistische Auswertung der Ergebnisse aus der Ermittlung des ungebundenen Gewebewassers dargestellt.

<table>
<thead>
<tr>
<th>Keule</th>
<th>M. fibularis longus</th>
<th>M. gastrocnemius</th>
<th>M. pectoralis</th>
<th>M. supracoracoideus</th>
</tr>
</thead>
<tbody>
<tr>
<td>A > B</td>
<td>A > B</td>
<td>A = B</td>
<td>A = B</td>
<td>A > C</td>
</tr>
<tr>
<td>A = C</td>
<td>A > C</td>
<td>A = C</td>
<td>A = C</td>
<td>A > C</td>
</tr>
<tr>
<td>A > D</td>
<td>A > D</td>
<td>A = D</td>
<td>A = D</td>
<td>A > C</td>
</tr>
<tr>
<td>B = C</td>
<td>B = C</td>
<td>B = C</td>
<td>B = C</td>
<td>B > C</td>
</tr>
<tr>
<td>B = D</td>
</tr>
<tr>
<td>C = D</td>
</tr>
</tbody>
</table>

Tabelle 4.13: Signifikante Unterschiede beim ungebundenen Gewebewasser

Nach der statistischen Auswertung zeigte sich, daß die Broiler aus Betrieb A signifikant weniger ungebundenes Gewebewasser in den Proben des M. fibularis longus aufwiesen als diejenigen aus den Betrieben B und D. Im M. gastrocnemius fand sich signifikant weniger auspreßbares Gewebewasser bei den Hühnern des Betriebes A als bei denen aller anderen Betriebe. Charge A lag bei der Analyse des M. pectoralis bei einem niedrigeren Gehalt als Charge C. Die Ergebnisse für den M. supracoracoideus ergaben in der statistischen Auswertung, daß die Proben aus den Betrieben A und B signifikant weniger auspreßbare Gewebeflüssigkeit enthielten als diejenigen aus Betrieb C.
4.4 Rechnerisch ermittelte Brennwert

In den Tabellen 4.14 bis 4.17 sind die rechnerisch ermittelten Brennwert (GE) der einzelnen Grillhähnchen jeweils in kJ pro 100 Gramm, sowie die Berechnungsgrundlagen aufgeführt.

4.4.1 Charge A

<table>
<thead>
<tr>
<th>Probe</th>
<th>GE_{calc} (kJ/g) aus Fett</th>
<th>GE_{calc} (kJ/g) aus Rohprotein</th>
<th>GE_{calc} (kJ/100 g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>5,27</td>
<td>4,46</td>
<td>973</td>
</tr>
<tr>
<td>A2</td>
<td>5,54</td>
<td>4,39</td>
<td>993</td>
</tr>
<tr>
<td>A3</td>
<td>5,78</td>
<td>4,56</td>
<td>1034</td>
</tr>
<tr>
<td>A4</td>
<td>5,15</td>
<td>4,54</td>
<td>969</td>
</tr>
<tr>
<td>A5</td>
<td>6,26</td>
<td>4,27</td>
<td>1053</td>
</tr>
<tr>
<td>A6</td>
<td>6,22</td>
<td>4,37</td>
<td>1059</td>
</tr>
<tr>
<td>A7</td>
<td>5,50</td>
<td>4,54</td>
<td>1004</td>
</tr>
<tr>
<td>A8</td>
<td>7,05</td>
<td>4,10</td>
<td>1115</td>
</tr>
<tr>
<td>A9</td>
<td>5,86</td>
<td>4,34</td>
<td>1020</td>
</tr>
<tr>
<td>A10</td>
<td>4,83</td>
<td>4,51</td>
<td>934</td>
</tr>
<tr>
<td>ϕ</td>
<td>5,75</td>
<td>4,41</td>
<td>1016</td>
</tr>
</tbody>
</table>

Tabelle 4.14: Brennwert der Charge A

Durchschnittlich waren in 100 g Hähnchen aus **Charge A** 1016 kJ enthalten. 575 kJ stammten dabei aus dem Fett und 441 kJ aus dem enthaltenen Rohprotein. Der höchste Kilojoulegehalt fand sich bei A8 mit 1115 kJ/100 g. Am geringsten war der Gehalt bei Probe A10 mit 934 kJ/100g. Werte über dem durchschnittlichen Brennwert der Chargen wurden bei dem Untersuchungsmaterial von A5, A6, A9 und A3 mit 1053 kJ/100g, 1059 kJ/100 g, 1020 kJ/100 g und 1034 kJ/100 g gefunden. A7 mit
1004 kJ/100 g, A2 mit 993 kJ/100 g, A1 mit 973 kJ/100 g und A4 mit 969 kJ/100 g waren im unteren Bereich angesiedelt.

4.4.2 Charge B

<table>
<thead>
<tr>
<th>Probe</th>
<th>(\text{GE}_{\text{calc}}) (kJ/g) aus Fett</th>
<th>(\text{GE}_{\text{calc}}) (kJ/g) aus Rohprotein</th>
<th>(\text{GE}_{\text{calc}}) (kJ/100 g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>4,63</td>
<td>4,46</td>
<td>909</td>
</tr>
<tr>
<td>B2</td>
<td>6,10</td>
<td>4,39</td>
<td>1049</td>
</tr>
<tr>
<td>B3</td>
<td>4,95</td>
<td>4,46</td>
<td>941</td>
</tr>
<tr>
<td>B4</td>
<td>4,40</td>
<td>4,56</td>
<td>896</td>
</tr>
<tr>
<td>B5</td>
<td>6,49</td>
<td>4,34</td>
<td>1083</td>
</tr>
<tr>
<td>B6</td>
<td>5,50</td>
<td>4,49</td>
<td>999</td>
</tr>
<tr>
<td>B7</td>
<td>5,62</td>
<td>4,34</td>
<td>996</td>
</tr>
<tr>
<td>B8</td>
<td>5,62</td>
<td>4,22</td>
<td>984</td>
</tr>
<tr>
<td>B9</td>
<td>6,06</td>
<td>4,34</td>
<td>1040</td>
</tr>
<tr>
<td>B10</td>
<td>5,54</td>
<td>4,51</td>
<td>1005</td>
</tr>
<tr>
<td>(\phi)</td>
<td>5,49</td>
<td>4,41</td>
<td>990</td>
</tr>
</tbody>
</table>

Tabelle 4.15: Brennwerte der Charge B

Der höchste Gehalt an Energie wurde bei **Charge B** in der Probe B5 mit 1083 kJ/100 g gefunden. Es folgten B2 mit 1049 kJ/100 g und B9 mit 1040 kJ/100 g. Einen beinahe identischen Wert zeigten B7 und B6 mit 996 kJ/100 g und 999 kJ/100 g. B10 mit 1005 kJ/100 g siedelte sich noch über dem durchschnittlichen Brennwert der Charge von 990 kJ/100 g an. Werte unterhalb des mittleren Gehaltes wurden für B8 mit 984 kJ/100 g, B3 mit 941 kJ/100 g, B4 mit 896 kJ/100 g und B1 mit dem geringsten Gehalt von 909 kJ/100 g ermittelt.
4.4.3 Charge C

Die Brennwert der Charge C siedelten sich zwischen 1036 kJ/100 g bei C2 und 886 kJ/100 g bei C9 an. Durchschnittlich lag der Kilojoulegehalt der Charge bei 947 kJ/100 g. Die Proben C7, C6 und C8 enthielten mit 1016 kJ/100 g, 987 kJ/100 g und 969 kJ/100 g Werte im oberen Bereich. Die Berechnungen der übrigen Brennwert lieferten in absteigender Reihenfolge folgende Ergebnisse: C10 mit 937 kJ/100 g, C5 mit 917 kJ/100 g, C4 mit 916 kJ/100 g, C3 mit 910 kJ/100 g und C1 mit 892 kJ/100 g.

<table>
<thead>
<tr>
<th>Probe</th>
<th>(\text{GE}_{\text{calc}}) (kJ/g) aus Fett</th>
<th>(\text{GE}_{\text{calc}}) (kJ/g) aus Rohprotein</th>
<th>(\text{GE}_{\text{calc}}) (kJ/100 g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>4,36</td>
<td>4,56</td>
<td>892</td>
</tr>
<tr>
<td>C2</td>
<td>5,78</td>
<td>4,58</td>
<td>1036</td>
</tr>
<tr>
<td>C3</td>
<td>4,44</td>
<td>4,66</td>
<td>910</td>
</tr>
<tr>
<td>C4</td>
<td>4,67</td>
<td>4,49</td>
<td>916</td>
</tr>
<tr>
<td>C5</td>
<td>4,63</td>
<td>4,54</td>
<td>917</td>
</tr>
<tr>
<td>C6</td>
<td>5,31</td>
<td>4,56</td>
<td>987</td>
</tr>
<tr>
<td>C7</td>
<td>5,74</td>
<td>4,42</td>
<td>1016</td>
</tr>
<tr>
<td>C8</td>
<td>5,23</td>
<td>4,46</td>
<td>969</td>
</tr>
<tr>
<td>C9</td>
<td>4,28</td>
<td>4,58</td>
<td>886</td>
</tr>
<tr>
<td>C10</td>
<td>4,83</td>
<td>4,54</td>
<td>937</td>
</tr>
<tr>
<td>(\varnothing)</td>
<td>4,93</td>
<td>4,54</td>
<td>947</td>
</tr>
</tbody>
</table>

Tabelle 4.16: Brennwert der Charge C

4.4.4 Charge D

Durchschnittlich wurde bei Charge D ein Brennwert von 1012 kJ/100 g errechnet. Der größte Gehalt wurde dabei in Probe D10 mit 1073 kJ/100 g gefunden. Es schlossen sich D8 und D7 mit 1051 kJ/100 g bzw. 1048 kJ/100 g an. Über dem mittleren Wert befanden sich außerdem die Brennwert von D5 mit 1030 kJ/100 g,
D3 mit 1024 kJ/100 g und D9 mit 1017 kJ/100 g. Im unteren Bereich lagen D1 mit 990 kJ/100 g, D2 mit 979 kJ/100 g, D4 mit 961 kJ/100 g sowie D6 mit dem geringsten Gehalt von 943 kJ/100 g.

<table>
<thead>
<tr>
<th>Probe</th>
<th>GE_{calc} (kJ/g) aus Fett</th>
<th>GE_{calc} (kJ/g) aus Rohprotein</th>
<th>GE_{calc} (kJ/100 g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>5,39</td>
<td>4,51</td>
<td>990</td>
</tr>
<tr>
<td>D2</td>
<td>5,45</td>
<td>4,37</td>
<td>979</td>
</tr>
<tr>
<td>D3</td>
<td>6,02</td>
<td>4,22</td>
<td>1024</td>
</tr>
<tr>
<td>D4</td>
<td>4,95</td>
<td>4,66</td>
<td>961</td>
</tr>
<tr>
<td>D5</td>
<td>5,98</td>
<td>4,32</td>
<td>1030</td>
</tr>
<tr>
<td>D6</td>
<td>4,99</td>
<td>4,44</td>
<td>943</td>
</tr>
<tr>
<td>D7</td>
<td>6,14</td>
<td>4,34</td>
<td>1048</td>
</tr>
<tr>
<td>D8</td>
<td>6,10</td>
<td>4,42</td>
<td>1051</td>
</tr>
<tr>
<td>D9</td>
<td>5,78</td>
<td>4,39</td>
<td>1017</td>
</tr>
<tr>
<td>D10</td>
<td>6,45</td>
<td>4,27</td>
<td>1073</td>
</tr>
<tr>
<td>ø</td>
<td>5,73</td>
<td>4,39</td>
<td>1012</td>
</tr>
</tbody>
</table>

Tabelle 4.17: Brennwerthe der Charge D

4.4.5 Zusammenfassung Durchschnittswerte

Die durchschnittlichen Brennwerthe der einzelnen Chargen in kJ/100 g sind abschließend in **Tabelle 4.18** zusammengefaßt.

<table>
<thead>
<tr>
<th>Charge</th>
<th>GE_{calc} (kJ/g) aus Fett</th>
<th>GE_{calc} (kJ/g) aus Rohprotein</th>
<th>GE_{calc} (kJ/100 g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5,75</td>
<td>4,41</td>
<td>1016</td>
</tr>
<tr>
<td>B</td>
<td>5,49</td>
<td>4,41</td>
<td>990</td>
</tr>
<tr>
<td>C</td>
<td>4,93</td>
<td>4,54</td>
<td>947</td>
</tr>
<tr>
<td>D</td>
<td>5,73</td>
<td>4,39</td>
<td>1012</td>
</tr>
</tbody>
</table>

Tabelle 4.18: Zusammenfassung der Brennwerthe
Den höchsten Energiegehalt zeigte Charge A mit 1016 kJ/100 g. Der kleinste durchschnittliche Brennwert wurde bei Charge C mit 947 kJ/100 g ermittelt. Die Chargen B und D enthielten 990 kJ/100 g bzw. 1012 kJ/100 g.

4.4.6 Statistische Auswertung

In **Tabelle 4.19** ist die statistische Auswertung der Ergebnisse aus der Berechnung des Brennwertes dargestellt.

<table>
<thead>
<tr>
<th>GE<sub>calc</sub> aus Fett</th>
<th>GE<sub>calc</sub> aus Rohprotein</th>
<th>GE<sub>calc</sub> (kJ/100 g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A = B</td>
<td>A = B</td>
<td>A = B</td>
</tr>
<tr>
<td>A > C</td>
<td>A < C</td>
<td>A > C</td>
</tr>
<tr>
<td>A = D</td>
<td>A = D</td>
<td>A = D</td>
</tr>
<tr>
<td>B = C</td>
<td>B < C</td>
<td>B = C</td>
</tr>
<tr>
<td>B = D</td>
<td>B = D</td>
<td>B = D</td>
</tr>
<tr>
<td>C < D</td>
<td>C > D</td>
<td>C < D</td>
</tr>
</tbody>
</table>

Tabelle 4.19: Signifikante Unterschiede im Brennwert

Die statistische Auswertung zeigte, daß bei Charge C signifikant weniger Energie aus Fett stammt, als bei den Chargen A und D. Charge C enthält signifikant mehr Energie aus Rohprotein als die Vergleichschargen. Bei der Betrachtung der gesamten Energie war bei Charge C ein signifikant geringerer Gehalt als bei den Chargen A und D enthalten.
4.5 Zusammenfassung der Durchschnittswerte aller Analysen

Die durchschnittlichen Ergebnisse pro Charge für die einzelnen Untersuchungen sind zusammenfassend nochmals in *Tabelle 4.20* dargestellt.

<table>
<thead>
<tr>
<th>Sensorische Untersuchung [Punkte]</th>
<th>Charge A</th>
<th>Charge B</th>
<th>Charge C</th>
<th>Charge D</th>
</tr>
</thead>
<tbody>
<tr>
<td>ohne Gewürz</td>
<td>4,5</td>
<td>3,8</td>
<td>4,0</td>
<td>4,1</td>
</tr>
<tr>
<td>mit Gewürz</td>
<td>3,8</td>
<td>4,7</td>
<td>3,9</td>
<td>4,0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chemische Vollanalyse [%]</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Wasser</td>
<td>64,3</td>
<td>65,5</td>
<td>66,0</td>
<td>64,5</td>
</tr>
<tr>
<td>Asche</td>
<td>2,7</td>
<td>2,8</td>
<td>2,9</td>
<td>2,4</td>
</tr>
<tr>
<td>Fett</td>
<td>14,5</td>
<td>13,9</td>
<td>12,4</td>
<td>14,4</td>
</tr>
<tr>
<td>Rohprotein</td>
<td>18,4</td>
<td>18,4</td>
<td>18,9</td>
<td>18,3</td>
</tr>
<tr>
<td>Bindegewebe</td>
<td>3,3</td>
<td>3,6</td>
<td>3,2</td>
<td>3,2</td>
</tr>
<tr>
<td>BEFFE</td>
<td>15,3</td>
<td>14,8</td>
<td>15,7</td>
<td>15,0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ungebundenes Wasser [Quotient f/F]</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>M. fibularis longus</td>
<td>0,57</td>
<td>0,44</td>
<td>0,47</td>
<td>0,42</td>
</tr>
<tr>
<td>M. gastrocnemius</td>
<td>0,65</td>
<td>0,52</td>
<td>0,51</td>
<td>0,45</td>
</tr>
<tr>
<td>M. pectoralis</td>
<td>0,73</td>
<td>0,65</td>
<td>0,61</td>
<td>0,65</td>
</tr>
<tr>
<td>M. supracoracoideus</td>
<td>0,71</td>
<td>0,68</td>
<td>0,59</td>
<td>0,65</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Brennwertes [kJ/100 g]</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>GE<sub>calc</sub> aus Fett (kJ/g)</td>
<td>5,75</td>
<td>5,49</td>
<td>4,93</td>
<td>5,73</td>
</tr>
<tr>
<td>GE<sub>calc</sub> aus Rohpr. (kJ/g)</td>
<td>4,41</td>
<td>4,41</td>
<td>4,54</td>
<td>4,39</td>
</tr>
<tr>
<td>GE<sub>calc</sub> (kJ/100 g)</td>
<td>1016</td>
<td>990</td>
<td>947</td>
<td>1012</td>
</tr>
</tbody>
</table>

Tabelle 4.20: Zusammenfassung der Durchschnittswerte aller Untersuchungen
Kapitel 5

Diskussion

5.1 Sensorik

Prüfer denen der DLG-Prüfer gleichgestellt. Außerdem stellt das eingesetzte Prüfverfahren ein abgesichertes Prüfmodell dar (FLIEDNER und WILHELMI, 1993).

Die Ermittlung der bei der Zubereitung für die sensorische Untersuchung, aufgetretenen Bratverluste ergab im Mittel aller Chargen 26,8 %. Auffällig war dabei, daß bei den Chargen A und B die prozentualen Bratverluste bei den mit Gewürz zubereiteten Grillhähnchen geringer waren, als bei denen ohne Gewürz. Charge D zeigte einen einheitlichen Bratverlust für die gewürzten und ungewürzten Broiler. Eine Ausnahme bildete Charge C, indem bei den gewürzten Broilern der Bratverlust durchschnittlich um 1 % höher lag als bei den ungewürzten.

Bei der Betrachtung handelsüblicher Zubereitungsformen entspricht das hier angewandte Verfahren mit dem Combi-Dämpfer CCC 61 (Rational / Landsberg am Lech) dem derzeitigen Stand der Technik. Die Methode erlaubte eine exakte Standardisierung des Garprozesses bei idealer Abstimmung der Parameter Luftfeuchtigkeit und Temperatur. Wird also von einer optimalen Zubereitungstechnik

5.2 Chemisch-physikalische Untersuchung

(Hauser, 1999) standen weder für die rohen noch für die zubereiteten Hähnchen zur Verfügung. Da also keine allgemeine Verkehrsauffassung für Grillhähnchen beschrieben ist, war auch hier ein Vergleich mit den eigenen Ergebnissen nicht möglich.

5.3 Ermittlung des ungebundenen Gewebewassers

Insgesamt betrachtet war die Variabilität innerhalb der untersuchten Chargen bei der Muskulatur der Keule größer als bei derjenigen der Brust. Signifikante Unterschiede innerhalb der untersuchten Keulenmuskulatur ergaben sich jeweils bei der Gegenüberstellung einzelner Chargen mit der Charge A. Diese zeigten überwiegend einen geringeren Gehalt an auspreßbarem Gewebewasser der Charge A. Bei der Brustmuskulatur zeigten sich signifikant höhere Gehalte bei Charge C im Vergleich mit den Chargen A und B.

Wenn davon ausgegangen werden kann, daß ca. 5 % des im Muskelfleisch vorhandenen Wassers als an Rohprotein gebundenes Wasser vorliegen (Prändl, 1988), wäre zu erwarten gewesen, daß diejenige Charge mit signifikant höheren Gehalten an Rohprotein auch signifikant weniger auspreßbares Gewebewasser aufweisen würde. Diese Annahme deckt sich allerdings nicht mit den in dieser Untersuchung erzielten Ergebnissen.

5.4 Brennwert

Bei der experimentellen Bestimmung der Bruttoenergie (GE = gross energy) durch quantitative Verbrennung im Bombenkalorimeter nach Berthelot können eine Reihe von Fehlerquellen, wie beispielsweise unvollständige Verbrennung der Probe,
Schwankungen im Brennwert der Verbrennungshilfsmittel oder Inhomogenität der Probe (SCHRAG, 1999), auftreten. Da die in Nahrungsmitteln enthaltene Energie aufgrund ihres Rohnährstoffgehaltes und des Brennwertes der jeweiligen Rohnährstoffe berechnet werden kann (MEYER und ZENTEK, 1998), wurde bei der vorliegenden Arbeit die rechnerische Bestimmung der GE vorgezogen.

Entsprechend der Ergebnisse aus der chemischen Untersuchung enthielt Charge C verglichen mit den Chargen A und D im Verhältnis mehr Kilojoule aus Protein und weniger aus Fett. Da es sich bei diesen Parametern um signifikant höhere Werte für Rohprotein bzw. niedrigere Gehalte an Fett handelte, kann Charge C in Bezug auf die Zusammensetzung der in ihr enthaltenen Energien, aus ernährungsphysiologischer Sicht als höherwertig angesehen werden.

5.5 Zusammenfassende Beurteilung

<table>
<thead>
<tr>
<th>"idealer Broiler"</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wasser entsprechend den Chargen A und D</td>
</tr>
<tr>
<td>Fett entsprechend Charge B</td>
</tr>
<tr>
<td>Rohprotein entsprechend Charge C</td>
</tr>
</tbody>
</table>

Unter Zugrundelegung der Abwägung dieser Ergebnisse und der daraus resultierenden Gedankengänge kann gesagt werden, daß der gesetzliche Rahmen für Haltung, Fütterung und Verarbeitung bereits so reglementiert ist, daß das Endprodukt offenbar keiner besonderen Variabilität unterliegt. Befindet sich die Qualität des Rohproduktes also innerhalb der aufgezeigten Grenzen, so werden bei

Letztendlich spielen wohl die individuelle Erwartung und der individuelle Geschmack jedes einzelnen Verbrauchers die entscheidende Rolle, wenn es um die Wahl des Grillhähnchens geht, und dies wird ganz wesentlich die Kaufentscheidung beeinflussen. Im Hinblick auf die Eingangsprämisse, ob der am teuersten produzierte Boiler auch der "Beste" ist, kann folgendes gesagt werden. Die Produktentwicklung kann sich nicht nur an der Festschreibung prüfbaren Kriterien in Primärproduktion und Bearbeitung orientieren. Vielmehr gilt es, gleichwertig, möglichst frühzeitig die Verbrauchererwartung durch sensorische Untersuchungen geschulte Fachleute oder anhand von Beliebtheitsprüfungen ungeschulten „Laien“ (Konsumenten) mit einzubeziehen.
Kapitel 6

Schlußfolgerungen

2. Die Broiler aus der BTS-Haltung hatten eine besser ausgebildete Muskulatur was mit einem verringerten Fettansatzes einherging. Dies führte zu einem höheren Rohproteingehalt.

4. Die Variabilität der untersuchten Rohprodukte ist durch die vereinheitlichten Bedingungen ihrer Primärproduktion und Gewinnung so gering, daß bei gleicher Zubereitung keine entscheidenden Unterschiede im Endprodukt auftraten.

5. Bewegt sich die Qualität des Rohproduktes Broiler innerhalb gewisser Qualitätsgrenzen, so kommt einer unterschiedlichen Form der Zubereitung eine besondere Bedeutung zu. Durch sie wird der entscheidende Einfluß auf das fertige Grillhähnchen, in Bezug auf seinen Genußwert, ausgeübt.
Kapitel 7

Zusammenfassung

Angesichts der zunehmenden Nachfrage nach Geflügelfleisch von Seiten des Verbrauchers wurde die Fragestellung behandelt, ob sich Masthähnchen aus unterschiedlichen Mast-/ bzw. Schlachtbetrieben im Hinblick auf die Qualität des rohen und zubereiteten Produktes unterscheiden.

Aus den gewonnenen Ergebnissen läßt sich ableiten daß, sofern sich das Rohmaterial der Grillhähnchen innerhalb eines gewissen Qualitätsniveaus bewegt, bei gleicher Zubereitung keine bedeutenden Unterschiede in der Qualität des Endproduktes zu erwarten sind. Damit kommt den bromatologischen Aspekten wie Würzung, Zubereitung und Darreichungsform eine besondere Bedeutung zu.
In light of the growing demand for poultry meat on the part of consumers, this study was devoted to the question of whether differences in husbandry or slaughter practices can be linked to differences in the quality of either raw or prepared meat.

The subjects of examination were broiler hens taken from four slaughterhouses (A through D) each of which is under contract with particular producers. All slaughterhouses meet EU standards. All producers raise their hens in conventional ground husbandry. The hens from producer C enjoyed a “livestock friendly husbandry”, which affords the animals free access to a covered outdoor range.

The broilers were delivered directly from the slaughterhouse to a food service company in northern Bavaria, which in turn delivered fresh specimens for examination. The broilers (n=64) were analyzed with respect to sensory properties, select chemical parameters, their caloric content, and tissue water-content as measured through a compression technique. The sensory examinations were conducted on hens that were prepared with no added herbs or spices, as well as on subjects prepared with a particular seasoning mix. The cooked broilers were then evaluated according to a 5-point scale. The broilers were prepared in an oven with a special “grilled-hen” cooking program. The chemical analysis as well as the
measurement of the water-content was conducted with reference to the protocols in § 35 of the Lebensmittel- und Bedarfsgegenständegesetz (LMBG). The computation of caloric value followed individual parameters of the chemical-physical analysis.

Statistical evaluation of the data produced by the chemical-physical analysis, the establishment of the water-content of tissue samples and the caloric content according to the Wilcoxon rank sum test (Wicoxon'sche Rangsummentest), demonstrated that the broilers examined from producer C displayed significantly lower levels of fat, significantly higher levels of crude protein. The amount of water that could be extracted through tissue compression from the broiler hens of producer A was significantly lower than that of the remaining charges. The caloric value of all charges was widely congruent, although the kilojoules attributable to crude protein as compared to fat were significantly higher for those from producer C. The sensory examination demonstrated that all charges were of high quality. Those in the middle range with regard to fat content, however, attained the best sensory ratings of the broilers studied here.

The results of this research allow us to infer that there are no significant differences in the quality of poultry meat prepared in a like fashion that can be attributable to husbandry or slaughter practices, provided that a basic level of quality in both is maintained. Against this finding, the importance of preparation techniques and seasoning to the culinary value of the end product gains in significance.
Literaturverzeichnis

AUSWERTUNGS- UND INFORMATIONSDIENST FÜR ERNÄHRUNG, LANDWIRTSCHAFT UND FORSTEN (AID) (Hrsg.) (1994):
 Fette in der Ernährung
 Verbraucherdienst, Bonn

AUSWERTUNGS- UND INFORMATIONSDIENST FÜR ERNÄHRUNG, LANDWIRTSCHAFT UND FORSTEN (AID) (Hrsg.) (1998):
 Geflügelfleisch
 Verbraucherdienst, Bonn, 9. Auflage

BLEUTGE, P. (1990):
 Broschüre „Haftung für Produkte“
 Deutscher Industrie- und Handelstag

 Lehrbuch der Lebensmittelchemie
 Springer Verlag, Berlin, 4. Auflage

BERTLING, L. (1997):
 Erlaubt – verboten in Gastronomie und Gemeinschaftsverpflegung:
 lebensmittelrechtliche Bestimmungen praktisch angewandt
 Deutscher Fachverlag, Frankfurt am Main, 6. Auflage

 Laboratoriumsbuch für den Lebensmittelchemiker
 Liedl, München, 8. Auflage
BOSCH, K. (1992):
Statistik – Taschenbuch
Oldenbourg Verlag, München

BUNDESVERBAND DER LEBENSMITTELCHEMIKER/-INNEN IM ÖFFENTLICHEN DIENST E.V.
(BLC) (HRSG.) (1997):
Die neue Lebensmittelhygiene-Verordnung – Lebensmittelchemiker/-innen bestens qualifiziert
Pressedienst

Qualitätsmanagement nach ISO 9001:2000
Carl Hauser, München

DEUTSCHE LANDWIRTSCHAFTS-GESELLSCHAFT e.V. (DLG) (Hrsg.) (2001):
Prüfbestimmungen für die DLG-Qualitätswettbewerbe Fleischerzeugnisse, Fertiggerichte, Tiefkühlkost und Feinkost
Eigenverlag, Frankfurt am Main, 44. Auflage

DODGE, J.W., STADELMAN, W.J. (1960):
Relationship between pH, tenderness, and moisture levels during early post mortem aging of turkey meat
Food Technology 14, 43-46

DOLDE, F. (1987):
Behördliche Warnungen vor nicht verkehrsfähigen Lebensmitteln
Eigenverlag BLC, Bonn

DRAWER, K. (1966):
Praktische Erfahrungen mit Hilfsuntersuchungsmethoden zur Feststellung von Fleischmängeln bei Not- und Krankschlachtungen
Fleischwirtschaft 46, 790-792
ENGELHARDT, G. (2001):
Erläuterungen zur Lebensmittelhygieneverordnung und zum HACCP-Konzept
Bayerisches Staatsministerium für Gesundheit, Ernährung und Verbraucherschutz

FEHLHABER, K., JANETSCHKE, P. (1992):
Veterinärmedizinische Lebensmittelhygiene
Gustav Fischer Verlag, Jena

Grundlagen und Prüfverfahren der Lebensmittelsensorik
Behr’s, Hamburg, 2. Auflage

Fleischers Fachwörter-Buch
Hans Holzmann, Bad-Wörishofen

Lebensmittel – mit allen Sinnen Prüfen
Springer-Verlag, Berlin

FRIES, R., BERGMANN, V., FEHLHABER, K. (2001):
Praxis der Geflügelreifekontrolle
Schlütersche, Hannover

GRAU, R., HAMM, R. (1952):
Eine einfache Methode zur Bestimmung der Wasserbindung im Fleisch
Fleischwirtschaft 32, 295-297

GRAU, R., HAMM, R. (1954):
Brühwurstqualität und Bestimmung der Wasserbindung im Fleisch:
Fleischwirtschaft 34, 36-39
GRAU, R., HAMM, R. (1957):
Über das Wasserbindungsvermögen des Säugetiermuskels.
II. Mitteilung: Über die Bestimmung der Wasserbindung des Muskels
Zeitschrift für Lebensmitteluntersuchung und –forschung 105, 446-460

GROßKLAUS, D. (1979):
Geflügelfleischhygiene
Parey, Berlin

HÄUßERMANN, E. (1985):
Prüfung von Schnellmethoden zur Erkennung abweichender Fleischqualität beim Schwein bei der amtlichen tierärztlichen Fleischuntersuchung
Dissertation med. vet., Berlin, Seite 26-28

HAMM, R. (1972):
Kolloidchemie des Fleisches
Parey, Berlin

HANSON, J., HUXLEY, H.E. (1955):
The structural basis of contraction in strated muscle. Fibrous proteins and their biological significance.
Biology 9, 228

Deutsches Lebensmittelbuch: Leitsätze 2002
Bundesanzeiger Verlag, Köln, 5. Auflage

HILBRICH, P. (1978):
Krankheiten des Geflügels unter besonderer Berücksichtigung der Haltung und Fütterung
Hermann Kuhn, Villingen-Schwenningen
HILDEBRANDT, G. (1990):
Inhalt und Bedeutung der DLG-Qualitätsprüfungen
Die Fleischerei 41, 401-405

Die Bedeutung der Sensorik für die rechtliche Beurteilung von Lebensmitteln
Archiv für Lebensmittelhygiene, im Druck

Pschyrembel - Klinisches Wörterbuch
Walter de Gruyter, Berlin, 257. Auflage

HOFMANN, K. (1975):
Ein neues Gerät zur Bestimmung der Wasserbindung des Fleisches: Das „Kapillar-Volumeter“
Fleischwirtschaft 55, 25-30

HOFMANN, K. (1981):
Die Wasserbindung des Fleisches – Probleme und Methoden
Mitteilungsblatt der Bundesanstalt für Fleischforschung, Kulmbach 72, 4618-4621

JELLINEK, G. (1981):
Sensorische Lebensmittelprüfung – Lehrbuch für die Praxis
Siegfried, Pattensen

Ernährungsmedizin und Diätetik
Urban & Schwarzenberg, München

KIERMEIER, F., HAEVECKER, U. (1972):
Sensorische Untersuchung von Lebensmitteln
Bergmann, München
 Positive Entwicklung vorantreiben
 Fleischwirtschaft 81, 134-137

 Sensorische Untersuchung von Lebensmitteln
 Referat anläßlich des 10. Seminars „Tierernährung für Tierärzte“
 München

 Geflügelproduktion
 Parey, Berlin

LERCHE, M., RIEVEL, H., GOERTTLER, V. (1957):
 Lehrbuch der tierärztlichen Lebensmittelüberwachung
 M. & H. Schaper, Hannover

 Imbißbetriebe: Charakteristika und Betriebsabläufe – Eigenkontrollen
 Vortrag anläßlich des Seminars „Beurteilung von Lebensmittelbetrieben durch den
 Tierarzt“ (Vertiefungsseminar II)

 Geflügel: Warenkunde - Einkauf – Verkauf
 Deutscher Fachverlag GmbH, Frankfurt am Main

 Grundriß der Parasitenkunde
 Gustav Fischer, Stuttgart
Lebensmittelrecht
Wissenschaftlicher Verlag, Stuttgart

Supplemente zu Vorlesungen und Übungen in der Tierernährung
M. & H. Schaper, Alfeld, 8. Auflage

Ernährung des Hundes – Grundlagen, Fütterung, Diätetik
Blackwell Wissenschafts-Verlag, Berlin – Wien, 3. Auflage

Road transportation of broiler chickens: induction of physiological stress
World’s Poultry Science Journal 50, 57-59

In: Fleischhygienerecht (Text und Kommentar)
Stand 2001
Richard Moorberg, Stuttgart

Sensorische Lebensmitteluntersuchung
Fachbuchverlag, Leipzig, 2. Auflage

N.N. (2000)
Das gläserne Hühnchen
Fleischwirtschaft 80, 21-22

Ohlrogge, J. (1999):
Analytik bei Geflügelfleisch
Eigenverlag, Detmold, 4. Auflage
PAULUS, K. (1999):
Integration der Sensorik in das Qualitätsmanagement
3. Deutsches Sensorik-Symposium
Mainz, 9.-10. Juni 1999

PETERMANN, S., ROMING, L. (1994):
Tierschutzaspekte in der Broilerhaltung – Untersuchungen zur
Masthähnchenhaltung im Regierungsbezirk Weser-Ems.
Deutsche tierärztliche Wochenschrift 101, 113-117

PFANNEBERG, W., ZRENNER, K.M. (1993):
Hygiene - Leitlinien
Fachbuchverlag Dr. Pfanneberg & Co., Gießen - Leipzig

HACCP – Grundlagen der produkt- und prozesspezifischen Risikoanalyse
Behr’s, Hamburg, 3. Auflage

Fleisch: Technologie und Hygiene der Gewinnung und Verarbeitung
Ulmer, Stuttgart

Standardisierung der Preßprobentechnik mit dem „Braunschweiger Gerät“ und
Anwendung eines neuen Schablonenverfahrens zur schnellen Bestimmung des
ungebundenen Wassers im Fleisch
Proceeding „Scientific Meeting Biophysical PSE-Muscle Analysis“
Wien, Österreich, Seite 112-128

Luft-Sprüh-Kühlung - Einfluß auf den Schlachtkörperwert von Broilern
Fleischwirtschaft 72, 1140-1142
Literaturverzeichnis

ROBERT KOCH INSTITUT (RKI) (Hrsg.) (2001):
 Schub für die Infektionsprävention

RÖMMELE, O., SCHAPER, G., VAN DER WALL, G. (1961):
 Ein praktisches Gerät zur dokumentarischen Feststellung des pH-Wertes, der
 Durchsaftung und des Blutgehaltes von Fleisch und Fleischwaren
 Fleischwirtschaft 41, 208-209

SCHEPER, J. (1984):
 Problematic der objektiven Bestimmung des PSE-Fleisches
 Proceeding, „Scientific Meeting Biophysical PSE-Muscle Analysis“
 Wien, Österreich, Seite 9-22

SCHNEIDAWIND, H., HABIT, P. (1999):
 Fleischhygienerecht
 Jehle Rehm, München, 10. Auflage

SCHMIDT, L. (1970):
 Moderne Geflügelhaltung
 Ulmer, Stuttgart

SCHOLTYSSEK, S., KLOSE, A.A. (1967):
 Die Meßbarkeit einiger Geflügel-Eigenschaften
 Fleischwirtschaft 47, 41-43

SCHOLTYSSEK, S. (1968):
 Handbuch der Geflügelproduktion
 Ulmer, Stuttgart
SCHOLTYSSEK, S., TAWFIK, D.L.E.S. (1968):
Veränderungen der Schlachtkörperqualität bei Broilern in Abhängigkeit von Alter und Geschlecht
Fleischwirtschaft 48, 56-59

Geflügel
Ulmer, Stuttgart

SCHRAG, I. (1999)
Untersuchungen zur Bruttoenergiebestimmung an isolierten Einzelfuttermitteln sowie an kommerziellen Futtermitteln für Hund und Katze
Dissertation, med. vet., München

Feine Backwaren
Schriftenreihe: Grundlagen und Fortschritte der Lebensmitteluntersuchung und Technologie (Band 21)
Parey, Berlin

Einführung in die Lebensmittelhygiene
Parey, Berlin, 3. Auflage

SILBERNAGEL, S., DESPOPOULOS, A. (2001):
Taschenatlas der Physiologie
Thieme, Stuttgart, 5. Auflage

SOUCI, S. W., FACHMANN, W., KRAUT, H. (2000):
Die Zusammensetzung der Lebensmittel – Nährwerttabellen
medapharm Scientific Publishers, Stuttgart, 6. Auflage
Zur Praktikabilität der amtlichen Verfahren (VwVFlHG) für die Erfassung von
Fleischqualitätsabweichungen bei Schlachttierkörpern
Vortrag XXIV. Wissenschaftlicher Kongreß der DGE

STOLLE, A. (2000):
Zur hygienischen Unbedenklichkeit in der modernen Speisenzubereitung
Vortrag Überbetriebliche Unterweisung
Kempten, 08. Februar 2000

Möglichkeiten und Grenzen bei der Umsetzung des § 4 LMHV in Großküchen
Vortrag Überbetriebliche Unterweisung für den Landkreis Unterallgäu
Mindelheim, 13. März 2002

Sachverständigen Äußerung, „Verbraucherbeschwerde Gäubodenfest“
München, 16. August 2002

Das neue Infektionsschutzgesetz und flankierende Rechtsvorschriften
Vortrag VIII. Internationaler Kongreß „Pro Animali 2001“
Wroclaw, Polen, 16.- 18.11.2001

Meyers großes Taschenlexikon
Bibliographisches Institut & F.A. Brockhaus AG, Mannheim, 6. Auflage
Naturwissenschaftliche Grundlagen der Lebensmittelzubereitung
Behr’s, Hamburg, 2. Auflage

TORNES, W., QUINT, A.W. (1994):
Lebensmittelrecht für Lebensmitteltechnologen
Behr’s, Hamburg

TÜLLER, R., ALLMENDINGER, A. (1990):
Geflügelställe
Ulmer, Stuttgart

ULRICH, A. (1997):
Schlank werden und Schlank bleiben
Verlag für Nahrung, Gesundheit und Vitalität

WACHELAU, G. (1980):
Eignung sensorischer Prüfverfahren in der Fleischuntersuchung, dargestellt am Problem des Ebergeruchs
Dissertation med. vet., Berlin

Chemie für Mediziner
Walter de Gruyter, Berlin, 6. Auflage

WATHES, C. M. (1998):
Aerial emission from poultry production
World’s Poultry Science Journal 54, 242-250

WEISS, J., PABST, W., STRACK, K.E., GRANZ, S. (2000):
Tierproduktion
Parey, Berlin, 12. Auflage
ZABERT, A. (1994):
Kochen – Die neue große Schule
Weltbild, Augsburg

Kommentar zum Lebensmittelrecht
Band II C 100 (LMBG)
Beck, München

ZIPFEL, W., RATHKE, K. D. (2002):
Anmerkungen zur Überwachung
Band II C 100
Beck, München

Gesetze, Verordnungen, Normen und amtliche Methoden:

AMTLICHE SAMMLUNG VON UNTERSUCHUNGSVERFAHREN NACH §35 LMBG (1983)
Untersuchung von Lebensmitteln, Sensorische Prüfverfahren, Methode L 00.90-03
Bewertende Prüfung mit Skale
Beuth, Berlin

AMTLICHE SAMMLUNG VON UNTERSUCHUNGSVERFAHREN NACH §35 LMBG (1999)
Untersuchung von Lebensmitteln, Sensorische Prüfverfahren, Methode L 00.90-04
Rangordnungsprüfung
Beuth, Berlin
AMTLICHE SAMMLUNG VON UNTERSUCHUNGSVERFAHREN NACH §35 LMBG (1984)
 Untersuchung von Lebensmitteln, Sensorische Prüfverfahren, Methode L 00.90-05
 Bewertende Prüfung mit Skale
 Beuth, Berlin

AMTLICHE SAMMLUNG VON UNTERSUCHUNGSVERFAHREN NACH §35 LMBG (1997)
 Untersuchung von Lebensmitteln, Sensorische Prüfverfahren, Methode L 00.90-06
 Einfach beschreibende Prüfung
 Beuth, Berlin

AMTLICHE SAMMLUNG VON UNTERSUCHUNGSVERFAHREN NACH §35 LMBG (1996)
 Untersuchung von Lebensmitteln, Sensorische Prüfverfahren, Methode L 00.90-07
 Dreiecksprüfung
 Beuth, Berlin

AMTLICHE SAMMLUNG VON UNTERSUCHUNGSVERFAHREN NACH §35 LMBG (1999)
 Untersuchung von Lebensmitteln, Sensorische Prüfverfahren, Methode L 00.90-08
 Paarweise Unterschiedsprüfung
 Beuth, Berlin

AMTLICHE SAMMLUNG VON UNTERSUCHUNGSVERFAHREN NACH §35 LMBG (1980)
 Untersuchung von Lebensmitteln, Methode L 06.00-3
 Bestimmung der Trockenmasse in Fleisch und Fleischerzeugnissen
 Beuth, Berlin

AMTLICHE SAMMLUNG VON UNTERSUCHUNGSVERFAHREN NACH §35 LMBG (1980)
 Untersuchung von Lebensmitteln, Methode L 06.00-4
 Bestimmung der Asche in Fleisch und Fleischerzeugnissen
 Beuth, Berlin
AMTLICHE SAMMLUNG VON UNTERSUCHUNGSVERFAHREN NACH §35 LMBG (1980)
Untersuchung von Lebensmitteln, Methode L 06.00-6
Bestimmung des Gesamtfettgehaltes in Fleisch und Fleischerzeugnissen
Beuth, Berlin

AMTLICHE SAMMLUNG VON UNTERSUCHUNGSVERFAHREN NACH §35 LMBG (1989)
Untersuchung von Lebensmitteln, Methode L 06.00-7
Bestimmung des Rohproteingehaltes in Fleisch und Fleischerzeugnissen
Beuth, Berlin

AMTLICHE SAMMLUNG VON UNTERSUCHUNGSVERFAHREN NACH §35 LMBG (1980)
Untersuchung von Lebensmitteln, Methode L 06.00-8
Bestimmung des Hydroxyprolingehaltes in Fleisch und Fleischerzeugnissen
Beuth, Berlin

ALLGEMEINE VERWALTUNGSVORSCHRIFT FLEISCHHYGIENE (AVV FlH) (2002)
Vom 19. Februar 2002
Bundesanzeiger, Beilage Nr. 44 a

FLEISCHHYGIENEGESetz (FIHG)
i. d. F. vom 8. Juli 1993
Bundesgesetzblatt I Seite 1189
Bundesgesetzblatt I, Seite 1046

GEFLÜGELFLEISCHHYGIENEGESetz (GFIHG)
vom 17. Juli 1996
Bundesgesetzblatt I, Seite 991
Bundesgesetzblatt I, Seite 1046
LITERATURVERZEICHNIS

GEFLÜGELFLEISCHHYGIENE-VERORDNUNG (GFIHV)
 vom 3. Dezember 1997
 Bundesgesetzblatt I, Seite 4098
 Bundesgesetzblatt I, Seite 1081

GESETZ ÜBER DIE HAFTUNG FÜR FEHLERHAFTEN PRODUKTE
 (Produkthaftungsgesetz – ProdHaftG)
 vom 15. Dezember 1989
 Bundesgesetzblatt I, Seite 2198
 Bundesgesetzblatt I, Seite 1478

GESETZ ÜBER DEN VERKEHR MIT LEBENSMITTELN, TABAKERZEUGNISSEN, KOSMETISCHEN MITTELN UND SONSTIGEN BEDARFSGEGENSTÄNDEN
 (Lebensmittel- und Bedarfsgegenstände-Gesetz – LMGB)
 Bundesgesetzblatt I, Seite 2296
 zuletzt geändert durch Verordnung vom 29. Oktober 2001
 Bundesgesetzblatt I, Seite 2785

GESETZ ZUR NEUORDNUNG SEUCHENRECHTLICHER VORSCHRIFTEN
 (Seuchenrechtsneuordnungsgesetz – SeuchRNeuG)
 vom 20. Juli 2000
 Bundesgesetzblatt I, Seite 1033

GESETZ ZUR REGELUNG DER SICHERHEITSANFORDERUNGEN AN PRODUKTE UND ZUM SCHUTZ DER CE-KENNZEICHNUNG
 (Produktsicherheitsgesetz – ProdSG)
 vom 22. April 1997
 Bundesgesetzblatt I, Seite 934
LITERATURVERZEICHNIS

zuletzt geändert am 6. August 2002
Bundesgesetzblatt I, Seite 3101

GESETZ ZUR VERHÜTUNG UND BEKÄMPFUNG VON INFEKTIONSKRANKHEITEN BEIM MENSCHEN
(Infektionsschutzgesetz - IfSG)
vom 20. Juli 2000
Bundesgesetzblatt I, Seite 1045 im Gesetz zur Neuordnung seuchenrechtlicher Vorschriften (SeuchRNeuG)
Bundesgesetzblatt I, Seite 2960

GRUNDGESETZ FÜR DIE BUNDESREPUBLIK DEUTSCHLAND (GG)
vom 23. Mai 1949
Bundesgesetzblatt I, Seite 1
Bundesgesetzblatt I, Seite 1633

LEBENSMITTELHYGIENE- VERORDNUNG (LMHV)
vom 5. August 1997
Bundesgesetzblatt I, Seite 2008
Bundesgesetzblatt I, Seite 959

TIERSCHUTZGESETZ (TierSchG)
vom 25. Mai 1998
Bundesgesetzblatt I, Seite 1105

VERORDNUNG DES EVD ÜBER BESONDERS TIERFREUNDLICHEN STALLHALTUNGSSYSTEME (BTS-Verordnung)
vom 7. Dezember 1998
zuletzt geändert am 6. Februar 2001
Eidgenössisches Volkswirtschaftsdepartement

VERORDNUNG ÜBER DIE HYGIENISCHEN ANFORDERUNGEN UND AMTLICHEN
UNTERSUCHUNGEN BEIM VERKEHR MIT FLEISCH
(Fleischhygiene-Verordnung - FlHV)
i. d. F. der Bekanntmachung vom 29. Juni 2001
Bundesgesetzblatt I, Seite 1366
zuletzt geänd. durch Art. 2 u. 2a Dritte Fleischhygiene-ÄndVO vom 14. März 2002
Bundesgesetzblatt I, Seite 1081

VERORDNUNG (EWG) 1906/90 ÜBER VERMARKTUNGSNORMEN FÜR GEFLÜGELFLEISCH
Amtsblatt der EG Nr. L173 Seite 1 vom 26.06.1990

VERORDNUNG ZUM SCHUTZ VON TIEREN BEIM TRANSPORT
(Tierschutztransportverordnung – TierSchTrV)
i. d. F. der Bekanntmachung vom 11. Juni 1999
Bundesgesetzblatt I, Seite 1337
zuletzt geändert durch Artikel 377 der siebten Zuständigkeitsanpassungs-
Verordnung vom 29. Oktober 2001
Bundesgesetzblatt I, Seite 2785

VERORDNUNG ZUM SCHUTZ VON TIEREN IM ZUSAMMENHANG MIT DER SCHLACHTUNG ODER
TÖTUNG
(Tierschutz-Schlachtverordnung - TierSchlV)
vom 3. März 1997
Bundesgesetzblatt I, Seite 405

DIN 10506, 2000 - 04
Lebensmittelhygiene – Außer – Haus – Verpflegung – Betriebsstätten
Deutsches Institut für Normung
Beuth Verlag, Berlin
DIN 10952 - 1, 1978 - 10
Sensorische Prüfverfahren; Bewertende Prüfung mit Skale - Prüfverfahren
Deutsches Institut für Normung
Beuth Verlag, Berlin

DIN 10952 - 2, 1983 - 09
Sensorische Prüfverfahren; Bewertende Prüfung mit Skale – Erstellen von
Prüfskalen und Bewertungsschemata
Deutsches Institut für Normung
Beuth Verlag, Berlin

DIN 10954, 1997 - 10
Sensorische Prüfverfahren – Paarweise Vergleichsprüfung
Deutsches Institut für Normung
Beuth Verlag, Berlin

DIN 10963, 1997 - 11
Sensorische Prüfverfahren – Rangordnungsprüfung
Deutsches Institut für Normung
Beuth Verlag, Berlin

DIN 10964, 1996 - 02
Sensorische Prüfverfahren – Einfach beschreibende Prüfung
Deutsches Institut für Normung
Beuth Verlag, Berlin

DIN 10967 1 – 4, 1999 - 2001
Sensorische Prüfverfahren – Profilprüfung
Deutsches Institut für Normung
Beuth Verlag, Berlin
LITERATURVERZEICHNIS

DIN 18910, 1992 - 05
 Wärmeschutz geschlossener Ställe; Wärmedämmung und Lüftung; Planungs- und Berechnungsgrundlagen
 Deutsches Institut für Normung
 Beuth Verlag, Berlin

DIN ISO 4120, 2001 - 08
 Sensorische Analyse – Prüfverfahren – Dreiecksprüfung
 Deutsches Institut für Normung / International Standardisation Organisation
 Beuth Verlag, Berlin

ISO 6564, 1985 - 10
 Sensorische Analyse; Methodologie; Rangordnungsprüfung
 International Standardisation Organisation
 Beuth Verlag, Berlin

ISO 8587, 1988 – 12
 Sensorische Analyse; Methodologie; Rangordnungsprüfung
 International Standardisation Organisation
 Beuth Verlag, Berlin

ISO 9001, 2000 – 12
 Qualitätsmanagementsysteme – Anforderungen
 International Standardisation Organisation
 Beuth Verlag, Berlin
Bewertungsbogen für die sensorische Prüfung von Grillähnchen

Prüfschema für Hähnchen (Teilstücke: Brust / Schlegel)

<table>
<thead>
<tr>
<th>Bewertung</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>zu dunkel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>zu hell</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ungleichmäßig</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sonstiges*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Aussehen und Farbe

<table>
<thead>
<tr>
<th>Haut</th>
<th>Bewertung: 1 2 3 4 5</th>
<th>Fleisch (Brust)</th>
<th>Bewertung: 1 2 3 4 5</th>
<th>Fleisch (Schlegel)</th>
<th>Bewertung: 1 2 3 4 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>zu dunkel</td>
<td>1 2 3 4</td>
<td>zu dunkel</td>
<td>1 2 3 4</td>
<td>zu dunkel</td>
<td>1 2 3 4</td>
</tr>
<tr>
<td>zu hell</td>
<td>1 2 3 4</td>
<td>zu hell</td>
<td>1 2 3 4</td>
<td>zu hell</td>
<td>1 2 3 4</td>
</tr>
<tr>
<td>ungleichmäßig</td>
<td>1 2 3 4</td>
<td>ungleichmäßig</td>
<td>1 2 3 4</td>
<td>ungleichmäßig</td>
<td>1 2 3 4</td>
</tr>
<tr>
<td>sonstiges*</td>
<td>1 2 3 4</td>
<td>vergrauend</td>
<td>1 2 3 4</td>
<td>vergrauend</td>
<td>1 2 3 4</td>
</tr>
</tbody>
</table>

5-Punkte-Skala und Bewertungstabelle:

<table>
<thead>
<tr>
<th>Bewertung</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>volle Erfüllung der Qualitätserwartung</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>geringfügige Abweichung</td>
<td>4</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>merkliche Abweichung</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>deutlicher Fehler</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>starker Fehler</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>bitte erläutern</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*</td>
</tr>
</tbody>
</table>

*Bitte erläutern geeignetes Verhalten.
2. Konsistenz

<table>
<thead>
<tr>
<th>Haut</th>
<th>Fleisch (Brust)</th>
<th>Fleisch (Schlegel)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bewertung: 1 2 3 4 5</td>
<td>Bewertung: 1 2 3 4 5</td>
<td>Bewertung: 1 2 3 4 5</td>
</tr>
<tr>
<td>zu weich</td>
<td>1 2 3 4</td>
<td>zäh</td>
</tr>
<tr>
<td>zu hart</td>
<td>1 2 3 4</td>
<td>faserig</td>
</tr>
<tr>
<td>sonstiges*</td>
<td>1 2 3 4</td>
<td>gummiartig</td>
</tr>
<tr>
<td>zu fest</td>
<td>1 2 3 4</td>
<td>zu fest</td>
</tr>
<tr>
<td>zu trocken</td>
<td>1 2 3 4</td>
<td>zu trocken</td>
</tr>
<tr>
<td>zu weich</td>
<td>1 2 3 4</td>
<td>zu weich</td>
</tr>
<tr>
<td>wässrig</td>
<td>1 2 3 4</td>
<td>wässrig</td>
</tr>
<tr>
<td>sonstiges*</td>
<td>1 2 3 4</td>
<td>sonstiges*</td>
</tr>
</tbody>
</table>

3. Geruch

<table>
<thead>
<tr>
<th>Haut</th>
<th>Fleisch (Brust)</th>
<th>Fleisch (Schlegel)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bewertung: 1 2 3 4 5</td>
<td>Bewertung: 1 2 3 4 5</td>
<td>Bewertung: 1 2 3 4 5</td>
</tr>
<tr>
<td>sauer</td>
<td>1 2 3 4</td>
<td>sauer</td>
</tr>
<tr>
<td>süßlich</td>
<td>1 2 3 4</td>
<td>süßlich</td>
</tr>
<tr>
<td>bitter</td>
<td>1 2 3 4</td>
<td>bitter</td>
</tr>
<tr>
<td>alt / dumpf</td>
<td>1 2 3 4</td>
<td>alt / dumpf</td>
</tr>
<tr>
<td>fremdartig*</td>
<td>1 2 3 4</td>
<td>fremdartig*</td>
</tr>
<tr>
<td>ranzig</td>
<td>1 2 3 4</td>
<td>ranzig</td>
</tr>
<tr>
<td>brennerig</td>
<td>1 2 3 4</td>
<td>brennerig</td>
</tr>
</tbody>
</table>
4. Geschmack

<table>
<thead>
<tr>
<th>Haut</th>
<th>Fleisch (Brust)</th>
<th>Fleisch (Schlegel)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bewertung:</td>
<td>Bewertung:</td>
<td>Bewertung:</td>
</tr>
<tr>
<td>1 2 3 4 5</td>
<td>1 2 3 4</td>
<td>1 2 3 4</td>
</tr>
<tr>
<td>sauer</td>
<td>sauer</td>
<td>sauer</td>
</tr>
<tr>
<td>süßlich</td>
<td>süßlich</td>
<td>süßlich</td>
</tr>
<tr>
<td>bitter</td>
<td>bitter</td>
<td>bitter</td>
</tr>
<tr>
<td>alt / dumpf</td>
<td>alt / dumpf</td>
<td>alt / dumpf</td>
</tr>
<tr>
<td>fremdartig*</td>
<td>fremdartig*</td>
<td>fremdartig*</td>
</tr>
<tr>
<td>ranzig</td>
<td>ranzig</td>
<td>ranzig</td>
</tr>
<tr>
<td>brennerig</td>
<td>brennerig</td>
<td>brennerig</td>
</tr>
<tr>
<td>sonstiges*</td>
<td>sonstiges*</td>
<td>sonstiges*</td>
</tr>
</tbody>
</table>
Beurteilungsbogen der sensorischen Prüfung

<table>
<thead>
<tr>
<th>ohne Gewürz</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aussehen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4,7 3,7 4,7 4,3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Haut ungleichmäßig</td>
<td>4,7</td>
<td>4,7</td>
<td>4,7</td>
<td></td>
</tr>
<tr>
<td>Haut zu hell</td>
<td>4,7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fleisch (Brust) etwas hell</td>
<td>4,7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fleisch (Schlegel) zu hell</td>
<td>4,7</td>
<td>4,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Konsistenz</td>
<td>3,3</td>
<td>3</td>
<td>4,3</td>
<td>3,3</td>
</tr>
<tr>
<td>Haut zu weich</td>
<td>4,7</td>
<td>4,3</td>
<td>4,7</td>
<td></td>
</tr>
<tr>
<td>Haut pergamentartig</td>
<td></td>
<td>4,7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fleisch (Brust) gummiartig</td>
<td>4,7</td>
<td>4,7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fleisch (Brust) zu fest</td>
<td>4,7</td>
<td>4,7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fleisch (Brust) zu trocken</td>
<td>4,7</td>
<td>4</td>
<td>4,7</td>
<td>4,7</td>
</tr>
<tr>
<td>Fleisch (Brust) faserig</td>
<td>4,7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fleisch (Schlegel) zu trocken</td>
<td>4,3</td>
<td>4</td>
<td>4,3</td>
<td>4,3</td>
</tr>
<tr>
<td>Fleisch (Schlegel) zu fest</td>
<td>4,7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geruch</td>
<td>5</td>
<td>4,3</td>
<td>3,7</td>
<td>4,7</td>
</tr>
<tr>
<td>Haut brennerig</td>
<td>4,3</td>
<td>4,7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Haut rauchig</td>
<td></td>
<td>4,7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fleisch (Schlegel) rauchig</td>
<td></td>
<td>4,7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fleisch (Schlegel) leberartig</td>
<td></td>
<td></td>
<td>4,7</td>
<td></td>
</tr>
</tbody>
</table>
ANHANG B

BEURTEILUNGSBOGEN DER SENSORISCHEN PRÜFUNG

<table>
<thead>
<tr>
<th>Geschmack</th>
<th>5</th>
<th>4,3</th>
<th>3,3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haut brennerig</td>
<td></td>
<td>4,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Haut rauchig</td>
<td></td>
<td>4,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Haut bitter</td>
<td></td>
<td>4,3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Fleisch (Brust) leberartig</td>
<td></td>
<td></td>
<td>4,3</td>
<td></td>
</tr>
<tr>
<td>Fleisch (Brust) süßlich</td>
<td></td>
<td></td>
<td>4,7</td>
<td></td>
</tr>
<tr>
<td>Fleisch (Brust) rauchig</td>
<td></td>
<td></td>
<td>4,7</td>
<td></td>
</tr>
<tr>
<td>Fleisch (Schlegel) rauchig</td>
<td></td>
<td></td>
<td>4,7</td>
<td></td>
</tr>
<tr>
<td>Fleisch (Schlegel) leberartig</td>
<td></td>
<td>4,3</td>
<td></td>
<td>4,7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Aussehen</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>erzielte Qualitätszahl</td>
<td>4,5</td>
<td>3,8</td>
<td>4</td>
<td>4,1</td>
</tr>
</tbody>
</table>

mit Gewürz

<table>
<thead>
<tr>
<th>Aussehen</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Haut schlecht gerupft</td>
<td>4,3</td>
<td>4,7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Haut zu dunkel</td>
<td></td>
<td></td>
<td>4,7</td>
<td></td>
</tr>
<tr>
<td>Haut schlecht gerupft</td>
<td></td>
<td></td>
<td>4,7</td>
<td></td>
</tr>
<tr>
<td>Fleisch (Schlegel) zu hell</td>
<td>4,7</td>
<td></td>
<td>4,3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3,7</td>
<td>4</td>
<td>3,7</td>
<td>4,3</td>
</tr>
<tr>
<td>------------------</td>
<td>-----</td>
<td>----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>Konsistenz</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Haut zu weich</td>
<td>4,7</td>
<td></td>
<td>4,7</td>
<td></td>
</tr>
<tr>
<td>Fleisch (Brust) zu fest</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fleisch (Brust) zu weich</td>
<td>4,7</td>
<td>4,7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fleisch (Brust) zu trocken</td>
<td>4,7</td>
<td>4,3</td>
<td>4,7</td>
<td>4,3</td>
</tr>
<tr>
<td>Fleisch (Schlegel) zu trocken</td>
<td>4,7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fleisch (Schlegel) zu fest</td>
<td>4,7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geruch</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Haut angebrannt</td>
<td>4,7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Haut fad</td>
<td>4,7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fleisch (Brust) leberartig</td>
<td>4,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fleisch (Brust) zitronig</td>
<td>4,7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fleisch (Brust) alt</td>
<td>4,7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fleisch (Schlegel) süßlich</td>
<td>4,7</td>
<td>4,7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geschmack</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Haut angebrannt</td>
<td>4,7</td>
<td>4,7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Haut brennerig</td>
<td>4,7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fleisch (Brust) leberartig</td>
<td>3,7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fleisch (Brust) bitter</td>
<td>4,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fleisch (Brust) zitronig</td>
<td>4,7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fleisch (Brust) nach Hühnerfett</td>
<td>4,7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fleisch (Schlegel) süßlich</td>
<td>4,3</td>
<td>4,7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fleisch (Brust) nach Hühnerfett</td>
<td>4,7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fleisch (Schlegel) süßlich</td>
<td>4,3</td>
<td>4,7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fleisch (Schlegel) zitronig</td>
<td>4,7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fleisch (Schlegel) bitter</td>
<td>4,7</td>
<td>4,7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fleisch (Schlegel) zum Teil seifig</td>
<td>4,7</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>erzielte Qualitätszahl</td>
<td>3,8</td>
<td>4,7</td>
<td>3,9</td>
<td>4</td>
</tr>
</tbody>
</table>
Auswertschablone zur Bestimmung der Preßflächen
Übersicht über die Größe des Ringschablonensatzes

<table>
<thead>
<tr>
<th>Schablonen Nr.</th>
<th>Radius (mm)</th>
<th>Durchmesser (mm)</th>
<th>Fläche (cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>20</td>
<td>3,14</td>
</tr>
<tr>
<td>2</td>
<td>11</td>
<td>22</td>
<td>3,80</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
<td>24</td>
<td>4,52</td>
</tr>
<tr>
<td>4</td>
<td>13</td>
<td>26</td>
<td>5,30</td>
</tr>
<tr>
<td>5</td>
<td>14</td>
<td>28</td>
<td>6,16</td>
</tr>
<tr>
<td>6</td>
<td>15</td>
<td>30</td>
<td>7,06</td>
</tr>
<tr>
<td>7</td>
<td>16</td>
<td>32</td>
<td>8,03</td>
</tr>
<tr>
<td>8</td>
<td>17</td>
<td>34</td>
<td>9,07</td>
</tr>
<tr>
<td>9</td>
<td>18</td>
<td>36</td>
<td>10,17</td>
</tr>
<tr>
<td>10</td>
<td>19</td>
<td>38</td>
<td>11,33</td>
</tr>
<tr>
<td>11</td>
<td>20</td>
<td>40</td>
<td>12,56</td>
</tr>
<tr>
<td>12</td>
<td>21</td>
<td>42</td>
<td>13,85</td>
</tr>
<tr>
<td>13</td>
<td>22</td>
<td>44</td>
<td>15,21</td>
</tr>
<tr>
<td>14</td>
<td>23</td>
<td>46</td>
<td>16,62</td>
</tr>
<tr>
<td>15</td>
<td>24</td>
<td>48</td>
<td>18,10</td>
</tr>
</tbody>
</table>
Auswertetabelle zur Abschätzung der sichtbaren Flächenanteile und der daraus gebildeten Quotienten

\[Q = \frac{\text{Fleischfläche}}{\text{Gesamtfläche}} = \frac{f}{F} \]

<table>
<thead>
<tr>
<th>(f)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0,83</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0,70</td>
<td>0,84</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0,59</td>
<td>0,72</td>
<td>0,84</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0,51</td>
<td>0,62</td>
<td>0,73</td>
<td>0,86</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0,44</td>
<td>0,54</td>
<td>0,64</td>
<td>0,75</td>
<td>0,87</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0,39</td>
<td>0,46</td>
<td>0,56</td>
<td>0,66</td>
<td>0,77</td>
<td>0,87</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0,35</td>
<td>0,42</td>
<td>0,50</td>
<td>0,58</td>
<td>0,68</td>
<td>0,78</td>
<td>0,89</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0,31</td>
<td>0,37</td>
<td>0,44</td>
<td>0,52</td>
<td>0,60</td>
<td>0,69</td>
<td>0,79</td>
<td>0,89</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0,28</td>
<td>0,34</td>
<td>0,40</td>
<td>0,47</td>
<td>0,54</td>
<td>0,62</td>
<td>0,71</td>
<td>0,80</td>
<td>0,89</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>0,25</td>
<td>0,30</td>
<td>0,36</td>
<td>0,42</td>
<td>0,49</td>
<td>0,56</td>
<td>0,64</td>
<td>0,72</td>
<td>0,81</td>
<td>0,90</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0,23</td>
<td>0,27</td>
<td>0,33</td>
<td>0,38</td>
<td>0,44</td>
<td>0,51</td>
<td>0,58</td>
<td>0,65</td>
<td>0,73</td>
<td>0,82</td>
<td>0,91</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>0,21</td>
<td>0,25</td>
<td>0,30</td>
<td>0,35</td>
<td>0,40</td>
<td>0,46</td>
<td>0,53</td>
<td>0,60</td>
<td>0,67</td>
<td>0,74</td>
<td>0,83</td>
<td>0,91</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>0,19</td>
<td>0,22</td>
<td>0,27</td>
<td>0,32</td>
<td>0,37</td>
<td>0,42</td>
<td>0,48</td>
<td>0,55</td>
<td>0,61</td>
<td>0,68</td>
<td>0,76</td>
<td>0,83</td>
<td>0,92</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>0,17</td>
<td>0,21</td>
<td>0,25</td>
<td>0,29</td>
<td>0,34</td>
<td>0,39</td>
<td>0,44</td>
<td>0,50</td>
<td>0,56</td>
<td>0,63</td>
<td>0,69</td>
<td>0,77</td>
<td>0,84</td>
<td>0,92</td>
<td>1</td>
</tr>
</tbody>
</table>
Danksagung

Mein besonderer Dank gilt:

Meinen Eltern Klaus und Lieselotte Ritter sowie meiner Schwester Catharina für den familiären Rückhalt, auf den ich mich stets in jeglicher Hinsicht verlassen konnte;

Herrn Professor Stolle für die Übertragung dieses interessanten Themas, die Bereitstellung des Arbeitsplatzes und für die jederzeit gewährte freundliche Unterstützung;

Frau Dr. Ilona Babbel für die konstruktive Kritik und die engagierten Anregungen sowie Hilfestellungen in jeder Phase dieser Arbeit;

Frau Dr. Brigitte Sperner für die sorgfältige sprachliche und detaillierte inhaltliche Durchsicht;

den Mitarbeiterinnen und Mitarbeitern des Instituts für die Unterstützung bei der Beantwortung jeglicher Art von Fragen, insbesondere Frau Freitag und Herrn Ziemann für die gründliche Einarbeitung in das Gebiet der Lebensmittelchemie, sowie den unermüdlichen "Prüfern" bei der sensorischen Untersuchung;

der Firma Hertel für die großzügige Bereitstellung der Proben und die hervorragende, unkomplizierte Zusammenarbeit;

PD James W. Davis, Ph.D. für den akademischen und menschlichen Beistand;

meinem Freund Klaus Beuler der mich während der Erstellung dieser Arbeit stets unterstützt und begleitet hat.
Lebenslauf

Name: Christiane Stefanie Ritter
Geburtsdatum: 26.06.1973
Geburtsort: New Brunswick / New Jersey (USA)
Eltern: Dr. Klaus Ritter (*18.03.1936), Universitätsprofessor
Lieselotte Ritter geb. Eschenauer (*18.10.1939), Berufsschullehrerin
Geschwister: Catharina Ritter (*06.10.1971), Diplomanglistin

Sept. 1978 bis Juli 1979: Vorschule an der Leopold School, Madison / Wisconsin (USA)
Sept. 1979 bis Juli 1983: Grundschule, Calw-Wimberg
Sept. 1983 bis Juli 1984: Leopold Elementary School, Madison / Wisconsin (USA)
Sept. 1989 bis Mai 1992: Wirtschaftsgymnasium, Calw
Okt. 1992 bis Okt. 1993: Studium des Bauingenieurwesens, Technischen Universität Stuttgart-Vaihingen
Mai 1993 bis Okt. 1993: Praktikum, Schwarzwald Tierklinik Neubulach
Oktober 1993: Medizinertest
Okt. 1993 bis Okt. 1994: Lehre als Pferdewirtin (Schwerpunkt Reiten), Joxenhof Kirchzarten
seit 13. Oktober 2000: Doktorandin am Institut für Hygiene und Technologie der Lebensmittel tierischen Ursprungs der Tierärztlichen Fakultät der LMU München
23. März 2001: Approbation als Tierärztin
seit 01. November 2001: wissenschaftliche Mitarbeiterin am o. g. Institut