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1.    Introduction 
                       
1.1. The Prion 
 
Prions are unprecedented infectious pathogens that cause a group of invariably fatal 

neurodegenerative diseases mediated by an entirely novel mechanism. Prions are 

devoid of nucleic acid and seen to be composed exclusively of a modified isoform of 

PrP designated PrPSc. The normal, cellular PrP, denoted PrPC, is converted into 

PrPSc through a process whereby a portion of its α-helical and coil structure is 

refolded into ß-sheet. This structural transition is accompanied by profound change in 

the physicochemical properties of the PrP (1,3,4,20). The name Prion is derived from 

its definition as a proteinaceous infectious particle that lacks nucleic acid 

(1,4,25,26,27,28).   

The Prion was defined as an infectious pathogen that requires a protein for infectivity 

yet is highly resistant to procedures that modify or destroy nucleic acids. Prions differ 

from bacteria, viruses, and viroids by their new structure and properties. Experiments 

designed to uncover participation of a nucleic acid in prion structure or infectivity 

consistently were given negative results. These approaches include: 1) infectivity 

measurements after ultraviolet and ionizing radiation or chemical treatments that 

modify or destroy nucleic acids, 2) purification studies aimed at physical detection of 

prion nucleic acid, and 3) a variety of molecular cloning schemes (2).  

Human PrPC is a glycoprotein of 253 amino acids before cellular processing. There is 

an 85-90% homology to prion proteins of other mammalian species. PrPC is a 

membrane protein expressed mainly in neurons, but also in astrocytes and a number 

of other cells. It has an N-terminal signal sequence of 22 amino acids, which is 

cleaved off the translation product. Twenty-three terminal amino acids are removed 

when glycosylphosphatidylinositol (GPI) is attached to serine residue 230. Mature 

PrPC is attached to the cell surface by this GPI anchor and undergoes endocytosis 

and recycling. There are two N-glycosylation sites that are glycosylated differently in 

different human CJD variants. The N-terminal moiety of the protein contains an 

octapeptide repeat, (PHGGGW_GQ)x4, which has been suggested to function in 

copper binding. PrPC purified from hamster brain consisted of 42% α-helical and only 

3% ß-sheet structure, whereas PrP purified from scrapie-infected hamster brain is 

composed of 30% α-helix and 43% ß-sheet (6).   

Progressive enrichment of brain homogenates for infectivity resulted in the isolation 

of a protease-resistant sialoglycoprotein, designated the prion protein (PrP) (48). This 



protein was the major constituent of infective fractions and was found to accumulate 

in affected brains and sometimes to form amyloid deposits. The term Prion was 

proposed to distinguish the infectious pathogen from viruses or viroids (7). No 

differences in amino acid sequence between PrPSc and PrPC have been identified. 

PrPSc is known to be derived from PrPC by posttranslational process (7,25,28). 

Neither amino acid sequencing nor systematic studies of known covalent 

posttranslational modifications have shown any consistent differences between PrPC 

and PrPSc (157). 

The physiologic roles attributed to PrPC are rather disparate and include: a) function 

as a membrane receptor; b) regulator of apoptosis; c) carrier or binding protein for 

copper ions; d) effectors in signal transduction mechanisms; e) regulator of synaptic 

transmission; and f) transcription factor. This redundancy reflects a complex lack of 

understanding regarding two crucial aspects, the topological organization and the 

subcellular localization of PrP (8). The normal function of PrPC remains unknown, 

although its localization on the cell surface would be consistent with roles in cell 

adhesion and recognition, ligand uptake, or transmembrane signalling. Defining the 

physiological role of PrPC may be relevant to understanding the disease state, since 

the protein may fail to perform its normal function when it is converted to the PrPSc 

isoform (9,11). The normal prion protein is widely expressed and bound to the cell 

surface by a glycosylphosphatidylinositol anchor. PrP has an unstructured domain of 

around 100 amino acids, and a structured C-terminal domain of similar size, which 

includes a single disulphide bond and two glycosylation sites (13). 

The normal prion protein, PrPC, is encoded by the prion protein gene (PRNP) on 

human chromosome 20, with equivalent prion genes in animals. The function is not 

known but it may have roles in anti-oxidant systems and cellular copper metabolism. 

In prion diseases, the normal host gene produces the normal host PrPC but there is 

then an incompletely understood posttranslational conformational change to a 

disease-related form, PrPSc. PrPSc is relatively insoluble and relatively protease-

resistant and accumulates in tissues forming amyloid structures. The precise 

pathogenesis of the neurological illness is not known, but PrPSc deposition is 

associated with the neurological changes of neuronal loss, astrocytic gliosis, and 

spongiform changes. In the acquired prion diseases, material from an affected host 

infects another. The infective agent (termed the “prion”) has not been fully 

characterized, but PrPSc is associated with infectivity (15). 
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In a search for a posttranslational chemical modification that might explain the 

differences in the properties of these two PrP isoforms, PrPSc was analyzed by mass 

spectrometry (MS) and gas-phase sequencing (GPS). The amino acid sequence was 

the same as that deduced from the translated open reading frame (ORF) of the PrP 

gene, and no modifications that might differenciate PrPC from PrPSc were found. 

These findings forced consideration of the possibility that conformation distinguishes 

the two PrP isoforms (17). 

 

1.2. The Prion Diseases and Neurodegeneration 
 
Prion diseases may present as genetic, infectious, or sporadic disorders, all of which 

involve modification of the prion protein (PrP), a constituent of normal mammalian 

cells. CJD generally present as progressive dementia, whereas scrapie of sheep and 

bovine spongiform encephalopathy (BSE) are generally manifest as ataxic illness 

(1,4,15,20). Although the brains of patients appear grossly normal up on postmortem 

examination, they usually show spongiform degeneration and astrocytic gliosis under 

the microscope (1,4,62,63). The hallmark of all prion diseases whether sporadic, 

dominantly inherited, or acquired by infection is that they involve the abberant 

metabolism and resulting accumulation of the prion protein (1,3,4,80). 

A group of infectious pathogens called prions cause transmissible neurodegenerative 

diseases in both human and animals. In humans, these diseases are kuru, 

Creutzfeldt-Jakob Disease (CJD), and Gerstmann-Sträussler-Scheinker Syndrome 

(GSS), whereas animal prion diseases include scrapie, bovine spongiform 

encephalopathy (BSE), and transmissible mink encephalopathy (TME). Gerstmann-

Sträussler-Scheinker Syndrome (GSS) and familial CJD are unique in that they are 

inherited and transmissible, these diseases occur in families as an autosomal 

dominant trait with high penetrance, and extracts of brain tissue from the affected 

individual can transmit a scrapie-like disease to experimental animals (2,7,14,18). 

The inherited prion diseases include GSS, familial Creutzfeldt-Jakob Disease (fCJD), 

and Fatal Familial Insomnia (FFI). These patients present with characteristic clinical 

and neuropathological findings as early as their third or fourth decade of life and their 

family histories are compatible with an autosomal dominant pattern of inheritance. 

Molecular genetic studies argue that these diseases are caused by mutations in the 

prion protein (PrP) gene based on high LOD scores for 5 of the 20 known mutations 

(5,7,10). 
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Prion diseases are rapidly progressing, invariably fatal, neurodegenerative diseases 

associated with dementia and neurological deficits such as ataxia, visual 

disturbances, or myoclonus. Histologically, nerve cell loss, spongiform change, and 

various forms of prion protein deposits are found in the brain. They are a 

heterogenous group of diseases that can be acquired, hereditary, or idiopathic. All 

prion diseases are experimentally transmissible with a relatively long incubation time 

and a comparatively short clinical duration. The first possible person-to-person 

transmission of CJD was reported in a recipient of a corneal transplant from a donor 

with CJD in 1974. Other modes of accidental iatrogenic transmission were reported in 

the following years, including the use of contaminated EEG depth electrodes, 

neurosurgical instruments, cadaveric pituitary–derived gonadotrophins and human 

growth hormone (HGH), and dura matter grafts (6,10). 

An increasing number of animal prion diseases are being recognized, scrapie, a 

naturally occurring disease of sheep and goat, has been recognized in Europe for 

over 200 years. Transmissible mink encephalopathy (TME) and chronic wasting 

disease (CWD) of mule deer and elk were described in captive animals from the 

1940s. The appearance in UK cattle in 1986 of BSE, which rapidly evolved into a 

major epidemic, was widely attributed to transmission of sheep scrapie to cattle via 

contaminated feed prepared from rendered carcasses (7). Classical (sporadic) CJD 

is a rapidly progressive, multifocal dementia, usually with myoclonus. Onset usually 

occurs in the 45-to-75-years age group, manifested as fatigue, insomnia, depression, 

headaches, ill-defined pain sensation, mental deterioration and myoclonus. Kuru 

reached epidemic proportions among a defined population living in the Eastern 

Highlands of Papua New Guinea, onset of disease ranged from 5 to over 60 years 

(158). The central clinical feature is progressive ataxia; dementia is often absent 

(158). vCJD has a clinical presentation in which behavioural and psychiatric 

disturbances predominate, marked sensory phenomena (7,56,58). 

GSS is an autosomal dominant disorder that present classically as a chronic 

cerebellar ataxia with pyramidal features, with dementia occurring later. The 

histologically hallmark is the presence of multicentric PrP-amyloid plaques (135). 

Although first associated with the P102L PRNP mutation (57), GSS is now known as  

a pathological syndrome associated with several different PRNP mutations and forms 

a part of the phenotypic spectrum of inherited prion diseases (7,57).  
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Sheep scrapie is the protype of the growing group of TSEs. The typical symptoms of 

scrapie-sick sheep include hyperexcitability, pruritus, and myoclonus. The disease is 

characterized by rapid progression leading to tetraparesis and ultimately to the death 

of the affected animal. The clinical symptoms of BSE are insidious, and consist of 

behavioural changes (including aggressive behaviour, which is proverbially atypical in 

cows), and uncoordinated gait. A striking hallmark applying to all TSEs is that the 

brain is heavily affected in sharp contrast to the body that remains unharmed. The 

communal lesions are neuronal loss, spongiosis, and astrogliosis, accompanied by 

an accumulation microglia, and occasionally, the presence of amyloid plaques and 

various kinds of small deposits immunolabled with anti-PrP antibodies (11,64). 

Clinical findings vary in the different forms of acquired CJD. In kuru and in diseases 

caused by inoculation of contaminated growth hormone extracts, cerebellar ataxia is 

the primary sign. Dementia is less prominent and usually occurs late in the disease 

course. The incubation time is long ranging from 2 years to greater than 30 years. 

Interestingly, in diseases following corneal or dural transplants, or use of 

contaminated neurosurgical instruments (89), dementia is more prominent and the 

latency is shorter (1-2 years) (12). 

 

1.3. Conversion and Aggregation of Prion Protein 
    
The conversion of the PrPC into PrPSc involves a conformation change, whereby the 

α–helical content diminishes and the amount of ß-sheet increases. Understanding 

how PrPC unfolds and refolds into PrPSc will be of paramount importance in 

transferring advances in the prion diseases to studies of other degenerative illnesses. 

The mechanism by which PrPSc is formed must involve a templating process whereby 

existing PrPSc directs the refolding of PrPC into a nascent PrPSc with the same 

conformation (1,4,7).  

A variety of experimental evidence indicates that PrPSc is formed during a 

posttranslational event from PrPC or a precursor. The posttranslational conversion 

might involve a chemical modification, a stable conformational change, or tight 

binding to other cellular components. The nature of the difference between PrPC and 

PrPSc that allows PrPSc to become a prion component is in the conformation. The 

enhanced resistance of PrPSc to protease digestion is a cardinal feature that 

distinguishes it from PrPC, whereas PrPC is completely degraded up on incubation 

with protease K, PrPSc loses an NH2-terminal domain containing the octarepeats to 
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yield PrP27-30. Furthermore, PrPC is soluble in the presence of various detergents 

whereas PrPSc forms insoluble aggregates. PrP27-30 polymerizes into rod-shaped 

structures in the presence of detergent. The prion rods behave like amyloid; they 

show green birefringence under polarized light upon staining with congo red (2,4,20).  

PrPSc serves as a nucleus for the formation of amyloid by recruiting molecules of 

PrPC, and may be compared to amyloid-enhancing factors (AEF), which can  

dramatically accelerate the formation of AA type amyloid in mouse models (2). 

Models of PrPSc suggest that formation of the disease-causing isoform involves 

refolding of the region corresponding roughly to residues 108-144 into ß-sheets (3). 

PrPSc acts as a template for the conversion of PrPC into nascent PrPSc. Imparting the 

size of the protease-resistant fragment of PrPSc through conformational templating 

provides a mechanism for both the generation and propagation of prion strains (3). 

PrPC exists in equilibrium with the second state, PrP*, that is best viewed as a 

transient intermediate that participates in PrPSc formation either through an 

encounter with PrPSc or with another PrP* molecule. Under normal circumstances, 

PrPC dominates the conformational equilibrium. With infectious diseases, PrPSc 

specified here minimally as a PrPSc/PrPSc dimer is supplied exogenously. It can bind 

PrP* to create a heteromultimer that can be converted into a homomultimer of PrPSc. 

Genetic evidence points to the existence of an auxiliary factor (Protein X) in this 

conversion. Protein X preferentially binds PrPC and is liberated up on conversion of 

PrP* to PrPSc (5,96). However, this hypothesis has been disputed by many. 

In prion diseases, the normal protein undergoes a number of posttranslational 

modifications to accumulate within the neuropil of the central nervous system. This 

accumulation is accompanied by a change in the protein structure from a 

predominantly α–helix to a ß-sheet structure. The N-terminus of the protein is highly 

flexible and undergoes profound conformational change during the conversion to 

abnormal PrP (81). The exact mechanism of conversion is poorly understood and 

may occur by protein dimerization or nucleated seeding. Prusiner has suggested that 

another protein (Protein X) might be responsible for this conversion as molecular 

chaperone. The conversion of PrP into ß-pleated sheet will require high energy levels 

(82). Conversion of normal PrP to abnormal PrP can be achieved in vitro using a cell-

free assay system, but the reaction requires a considerable excess of the abnormal 

form of the protein and is relatively inefficient (10,25,26,27,28,29,30,31,83). 
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In order to explain the mechanism by which a misfolded form of PrP could induce the 

refolding of “native”, normal PrP molecules into the abnormal conformation, two 

distinct models have been postulated: i) the template assistance or “refolding” model 

and ii) the nucleation-polymerization or “seeding” model. In the first model, the 

conformational change is kinetically controlled; a high activation energy barrier 

prevents spontaneous conversion at detectable rates. Interaction with exogenously 

introduced PrPSc causes PrPC to undergo an induced conformational change to yield 

PrPSc. This reaction may involve extensive unfolding and refolding of the protein to 

explain the postulated high energy barrier and could be dependent on an enzyme or 

chaperone, provisionally designated as Protein X (66). In the second model, PrPC 

and PrPSc are in equilibrium that strongly favouring PrPC-PrPSc, is only stabilized 

when it adds on to a crystal-like aggregate of PrPSc acting as a seed in nucleation-

dependent polymerization process (67). Consistent with the latter model, cell-free 

conversion studies indicate that PrPSc aggregates are able to convert PrPC into a 

protease-resistant PrP isoform (11,68,69,70,71). 

In scrapie-infected cells, PrPC molecules destined to become PrPSc exit to the cell 

surface before conversion into PrPSc (25,28,46). Like other glycosylphosphatidyl- 

inositol (GPI)-anchored proteins, PrPC appears to re-enter the cell through a 

subcellular compartment bounded by cholesterol-rich, detergent-insoluble 

membranes, which might be caveolae or early endosomes (101). Within this 

cholesterol-rich, non-acidic compartment, GPI-anchored PrPC can be either 

converted into PrPSc or partially degraded (101). PrPSc is trimmed at the amino 

terminus in an acidic compartment in scrapie-infected cultured cells, to form PrP27-

30. By contrast, amino-terminal trimming of PrPSc is minimal in brain, where little 

PrP27-30 is found (17,47,27,46). 

 
1.4. Neuropathology of the Prion Protein 
  
In addition to incubation times, neuropathologic profiles of spongiform changes have 

been used to characterize prion strains. However, recent studies with PrP transgenes 

argue that such profiles are not an intrinsic feature of strains. The mechanism by 

which prion strains modify the pattern of spongiform degeneration was perplexing 

since earlier investigations had shown that PrPSc deposition precedes neuronal 

vacuolation and reactive gliosis (3,4). 
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Neuropathology of the FFI discloses selective atrophy of the thalamus, the 

mediodorsal and anterior ventral group being especially affected. The inferior olive is 

also affected and isolated foci of spongiosis are found in the cortex. The affected 

areas show neuronal loss and astrocytic proliferation, but deposits of immunoreactive 

PrP are not always found as in other prionic diseases. When described, 

immunoreactive PrP appears in discrete zones and in small amounts (20,100). 

 
1.5. Biochemical Analysis of the Prion Protein 
 
The two types of PrPSc are distinguished by their different physicochemical 

properties, particularly their appearance on western transfer after digestion with 

proteinase K. The unglycosylated forms of PrPSc are seen as proteins of 

approximately 21 (type 1) and 19 KDa (type 2) relative molecular mass. Proteinase K 

has two preferential, if not exclusive, cleavage sites at codon 97 and 82 of PrPSc, 

most likely related to two different conformations of PrPSc (6). 

Variant CJD is associated with PrPSc glycoform ratios that are distinct from those 

seen in classical CJD. Similar ratios are seen in BSE in cattle and BSE when 

transmitted to several other species (52). However, although such biochemical 

modifications of PrP are clearly candidates for the molecular substrate of prion strain 

diversity, it is necessary to be able to demonstrate that these properties fulfill the 

biological properties of strains, in particular that they are transmissible to the PrP in a 

host of both the same and different species. As PrP glycosylation occurs before 

conversion to PrPSc, the different glycoform ratios may represent selection of 

particular PrP glycoforms by PrPSc of different conformations. According to such a 

hypothesis, PrP conformation would be the primary determinant of strain type, with 

glycosylation being involved as a secondary process. However, because it is known 

that different cell types may glycosylate proteins differently, PrPSc glycosylation 

patterns provide a substrate for the neuropathological targeting that distinguishes 

different prion strains (7,24). 

All cases of variant CJD are associated with type 2B PrPSc. Type 2B PrPSc has a high 

proportion of the diglycosylated form of PrPSc and is distinct from the PrPSc types 

seen in classical CJD (Types 1-2A), with differing fragment sizes following proteinase 

K digestion. Also types 1-2A are associated with a high proportion of 

monoglycosylated PrPSc. The glycoform ratios of proteinase K-digested PrPSc in 

vCJD were closely similar, however, to those seen in BSE passaged in a number of 
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mammalian species. Furthermore, when prions isolated from either bovine brain or 

human brain are transmitted to experimental mice, PrPSc isolated from the infected 

hosts is indistinguishable, either by the site of proteinase K or by glycoform ratio. In 

addition, vCJD and BSE show closely similar transmission properties in both 

transgenic and conventional mice, with indistinguishable neuropathology in both 

transgenic and a variety of inbred strains of mice (24). 

The cellular prion protein PrPC contains two N-linked complex-type oligosaccharides 

at positions 181 and 197. Accordingly, western blot analysis of PrP reveals three 

major bands, reflecting PrP that has two, one, or no glycosylation signals occupied. 

Glycosylation is important as a signal for correct intracellular trafficking of PrPC and 

possibly also for selective targeting of PrPSc to specific brain regions (11,72).  

 

1.6. Mutations and Polymorphisms of the PrP-Gene 
 
More than 30 mutations of the PrP gene are now known to cause the inherited 

human prion diseases, and significant genetic linkage has been established for five 

of these mutations. The prion concept readily explains how a disease can be 

manifest as a heritable as well as infectious illness (1,4). The discovery that 

mutations of PRNP cause dominantly inherited prion diseases in humans linked the 

genetic and infectious forms of prion diseases (3,78). In fCJD, GSS, and FFI, 

mutations in PRNP located on the short arm of chromosome 20 are the cause of 

disease. Considerable evidence argues that the prion diseases are disorders of 

protein conformation (4,42,162).  

A large number of different point mutations and insertion mutations of the prion 

protein gene have been identified in familial prion diseases. Insertion mutations 

represent additional repeats of the N-terminal Cu2+-binding octapeptide (50). Familial 

CJD is most often associated with the E200K mutation and less often with D178N-

129 V, V180I, R208H, V210I, M232R, and insertion mutations, while GSS is found 

most often in families with the P102L mutation and less often with P105L, A117V, 

F198S, D202N, Q212P, Q217R and insertion mutations, FFI is caused by a D178N 

mutation of PRNP associated with methionine codon at position 129 of the same 

allele (6,42,161,162). Over 30 pathogenic mutations have been described in two 

groups: a) point mutations resulting in amino acid substitutions in PrP, or in one case 

production of a stop codon resulting in expression of a truncated PrP and b) 

insertions encoding additional integral copies of an octapeptide repeat present in a 
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tandem array of live copies in the normal protein (7). The identification of one of the 

pathogenic PRNP mutations in case with neurodegenerative disease allows 

diagnosis of an inherited prion disease and subclassification according to mutation 

(7,136). 

Known or suspected genetic factors of phenotypic variability of inherited prion 

disease include the polymorphic codon 129 genotype of the mutant and wild-type 

alleles, the haplotype background of the mutation and unlinked genetic susceptibility 

loci. At the protein level, mutated PrP appears to be able to fold into a number of 

different pathogenic conforms (159). This diversity may be partly constrained by PrP 

primary structure, known as the conformation selection hypothesis (160). Diversity of 

PrP conformation within a single pedigree may account for phenotypic variability if 

different pathological conforms have differing toxicity or neuropathological targeting 

(13,97,159). 

In humans with PrP point mutation, mutant PrPC molecules might spontaneously 

convert into mutant PrPSc. While the initial stochastic event may be inefficient, once it 

happens, the process becomes autocatalytic. Whether all GSS and familial CJD 

patients contain infectious prions is unknown. If the former is found, mutant PrPSc  

molecules combine with the heterodimer (mutant PrPSc/wild PrPC) and are 

subsequently transformed into heterodimer mutant PrPSc/wild PrPSc. This wild-type 

PrPSc produces the heterodimer (wild-type PrPSc/wild-type PrPC) in an exponential 

process. If the latter is found, presumably, mutant PrPSc molecules alone can lead to 

the central nervous system dysfunction (14). In 1989 codon 102 and codon 117 point 

mutations of human PrP were reported to be linked to GSS (57). The results in codon 

102 transgenic mice also strengthen the idea that this mutation is one of the essential 

events that cause GSS (59). Several polymorphisms and mutations were also 

reported in familial CJD and familial dementia (14,17,60,61,161,162).  

 
1.7. Effect of the Codon 129 Polymorphism on Human Susceptibility  
 
The common polymorphism at amino acid position 129 of the prion protein, where 

humans carry a methionin (M) or valine (V), clearly influences susceptibility to the 

sporadic and iatrogenic types of prion diseases and furthermore, determines in part 

the phenotype of the sporadic as well as of some inherited prion diseases. Several 

studies have revealed a marked over-representation of homozygotes (mainly for 

methionine) at this position in cases of sporadic CJD compared to the normal 
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population. CJD homozygotes at codon 129 also show a higher susceptibility to 

iatrogenic CJD and a shorter incubation times as well. There is also a strong 

correlation of codon 129 genotype and clinicopathological phenotype (6,7, 

12,86,88,99,104,105).  

Variant CJD demonstrate this effect most dramatically: all genetically tested cases 

have been homozygous for 129 M (56). A single codon 129 heterozygous patient, 

who had received blood from a donor subsequently diagnosed with vCJD, was found 

to have widespread prion protein deposition in the peripheral lymphoreticular system 

at autopsy, having died of an unrelated cause (13,98). 

At codon 129 of PRNP, an individual may encode for methionine (M) or valine (V) 

and therefore, all humans are MM or VV homozygotes or MV heterozygotes. In the 

normal UK population, the distributions are approximately: MM 40%, VV10%, MV 

50% (15). Two basic facts illustrate the potential importance of this polymorphism: 

approximately 80% of UK sporadic CJD cases and, to date, all cases of variant CJD 

are MM. Most notably, the D178N mutation gives rise to the clinical picture of genetic 

CJD when associated with 129 V on the mutant allele and yet results in FFI when 

associated with 129 M. In cases related to infection in or adjacent to the brain, for 

example, dura matter grafts-codon 129 MM is a risk factor, but with peripheral 

infection for example, pituitary hormone treatment (which was administered by 

infection). It is however, possible that cases within alternative codon 129 genotype 

may occur in the future as variations at this locus can influence incubation period. 

There is also the possibility that the clinical and pathological features in such cases 

might differ from variant CJD with an MM background (15). 

The FFI disease is associated with a point mutation in the 178 codon of the prion 

protein (PrP) gene (PRNP) with a substitution of aspargine for aspartic acid (PrP 178 

Asn) associated with methionine (Met) in the naturally polymorphic codon 129 of the 

mutated PRNP (163,164). Additionaly the polymorphic codon 129 in the non-mutated 

allele conditions the severity type: 129 Met. In cases of fatal familial insomnia (FFI) 

methionine on the non-mutated allele is associated with short term disease and more 

thalamic damage with fewer cortical alterations, whereas heterozigosity Met/Val in 

the codon 129 is associated with a more prolonged disease and widespread 

neuropathological damage with cortical spongiosis (16).  
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1.8. Species Barriers and Strain Diversity of Prions 
 
In contrast  to pathogens with a nucleic acid genome that encode strain-specific 

properties in genes, prions presumably encipher these properties in the tertiary 

structures of PrPSc. Studies on transgenic animals argue that PrPSc acts as a 

template upon which PrPC is refolded into a nascent PrPSc molecule through a 

process facilitated by another protein (1,94). 

The passage of prions between species is almost always characterized by prolonged 

incubation times during the first passage in the new host. This prolongation is often 

referred to as the “species barrier”. Prions synthesized de novo reflect the sequence 

of the host PrP gene and not of the PrPSc molecules in the inoculum derived from the 

donor. On subsequent passage in a homologous host, the incubation times shorten 

to that recorded for all subsequent passages. From studies with transgenic mice, 

three factors have been identified that contribute to the species barrier:  i)  the 

difference in PrP sequences between the prion donor and recipient,  ii) the strain of 

prion and iii) the species specificity of protein X, a factor defined by molecular genetic 

studies that bind to PrPC and facilitates PrPSc formation. No further evidence has 

been found now of this hypothesis. The prion donor is the last mammal in which the 

prion was passaged and its PrP sequence represents the species of the prion. The 

strain of prion seems to be enciphered in the conformation of PrPSc (1,20,43,44,73). 

The existence of prion strains raises the question of how heritable biological 

information can be enciphered in a molecule other than nucleic acid. Strains or 

varieties of prions have been defined by incubation times and the distribution of 

neuronal vacuolation. Subsequently, the patterns of PrPSc deposition were found to 

correlate with vacuolation profiles, and these patterns were also used to characterize 

strains of prions (1,3,20,35,38,39,40,74).  

Studies of the drowsy (DY) and hyper (HY) prion strains isolated from mink by 

passage in Syrian Hamster showed that two strains produced PrPSc molecules with 

protease-resistant cores (PrP27-30) of different molecular sizes as judged by gel 

electrophoresis (5,17,19,75,41). Following limited proteolysis, strain-specific 

migration patterns of PrPSc on polyacrylamide gels were seen that related to different 

N-terminal ends of HY and DY PrPSc following protease treatment and implying 

different conformations of HY and DY PrPSc (7,73). Multiple distinct strains of 

naturally occurring sheep scrapie were isolated in mice. Such strains are 

distinguished by their biological properties: They produce distinct incubation periods 
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and patterns of neuropathological targeting (so-called lesion profiles) 

(7,32,33,35,40,41). 

Transmission of prion diseases between different mammalian species is restricted by 

a “species barrier”. On primary passage of prions from species A to species B, 

usually not all inoculated animals of species B develop disease. Those that do have 

much longer and more variable incubation periods than those that are seen with 

transmission of prions within the same species, where typically all inoculated animals 

would succumb within a relatively short and markedly consistent incubation period. 

On second passage of infectivity to further animals of species B, transmission 

parameters resemble within-species transmissions, with most, if not all, animals 

developing the disease with short and consistent incubation periods. Species barriers 

can therefore, be quantitated by measuring the fall in mean incubation period on 

primary and secondary passage or perhaps more rigorously, by a comparative 

titration study (7,11). 

In the case of prion transmission from hamster to mice, this so-called species barrier 

was overcome by introducing hamster PRNP transgenes into recipient wild-type mice 

(45). Crucially, the properties of the prions produced were compatible with the prion 

species used for inoculation. Infection with hamster prions led to production of 

hamster prions, whereas infection with mouse prions gave rise to mouse prions. With 

respect to the protein-only hypothesis these findings can be interpreted as follows: 

hamster PrPC but not murine PrPC (the latter differing from the former by 10 amino 

acids) is an appropriate substrate for conversion to hamster PrPC by hamster prions 

and vice versa (11,33,34,45,75). 

Distinct isolates or strains of prions were first described in scrapie-diseased goats, 

where two dissimilar clinical manifestations (“scratching” and “drowsy”) were 

identified. These strains differ in their incubation times in various inbred mouse lines 

and by their lesion pattern in the brain. Strikingly, distinct strains of prions can be 

propagated in an inbred mouse strain that is homozygous with respect to PRNP 

(163). A perplexing finding with regard to the protein-only hypothesis meaning that an 

identical polypeptide chain is able to mediate different strain phenotypes. Both the 

“refolding” and the “seeding” model propose that each strain is associated with a 

distinct conformation of PrPSc and that each of these can convert PrPC of its host into 

a likeness of itself. In deed, PrPSc species associated with two hamster-adapted 

scrapie strains, namely hyper (HY) and drowsy (DY), proved to display characteristic 
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clinical and histopathological properties as well as distinct biochemical patterns with 

respect to proteinase K digestion (73) readily explainable by the presence of different 

conformations of PrPSc (11,73).  

In general, TSE diseases show a preference for transmission to the species of origin 

or a closely related species. Most noteworthy was the original demonstration of the 

transmissibility of CJD and kuru from human to chimpanzees (84,85). Transmission 

to a less closely related species is also possible and appears to involve a progressive 

adaptation during serial passage in the new host. For example, scrapie from sheep or 

goats and BSE from cattle have produced typical TSE disease in mice and mouse- 

and hamster-adapted agents from these and other sources have been used 

extensively for pathogenesis studies and characterization of the agent (12,35,36).  

It is hypothesized that a range of abnormal PrP conformations and glycosylation 

states provide the basis for multiple prion “strains” with consistent clinicopathological 

correlates (13,37,38,39,40,49).  

To test the hypothesis that differences in Prnp sequences might be responsible for 

the species barrier, transgenic mice synthesizing SHaPrP were constructed (75). The 

PrP genes of Syrian hamsters and mice encode proteins differing at 16 positions. 

Inoculation of Tg (SHaPrP) mice with SHa prions demonstrated abrogation of the 

species barrier, which resulted in abbreviated incubation times owing to a non-

stochastic process. The length of the incubation time after inoculation with SHa 

prions was inversely proportional to the level of SHaPrPC in the brains of the 

Tg(SHaPrP) mice (17,75). Bioassays of brain extracts from clinically ill Tg(SHaPrP) 

mice inoculated with mouse prions revealed that only mouse prions, but no SHa 

prions, were produced. Conversely, inoculation of Tg(SHaPrP) mice with SHa prions 

led to only the synthesis of SHa prions (17). 

   

1.9. Potential Abilities of Classical and Atypical Human TSE Strains to Propagate in  

       Transgenic Mice 

 
The species barrier between cattle BSE and human can not be directly measured, 

but it can be modeled in transgenic mice expressing human PrPC, which produce 

human PrPSc when challenged with human prions (51). When such mice, expressing 

both human PrP valine 129 (at high levels) and mouse PrP, are challenged with BSE, 

three possibilities could be envisaged: these mice could produce human prions, 

murine prions or both. In fact only mouse prion replication could be detected. 
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Although there are caveats with respect to this model, particularly that human prion 

propagation in mouse cells may be less efficient than that of mouse prions; this result 

would be consistent with the bovine-to-human barrier being higher than the bovine-

to-mouse barrier for this PRNP genotype. In the second phase of these experiments, 

mice expressing only human PrP were challenged with BSE. Although CJD isolates 

transmit efficiently to such mice at approximately 200 days, only infrequent 

transmissions over 500 days were seen with BSE, consistent with a substantial 

species barrier for this human PRNP genotype (7,55). 

Susceptibilty of mice to prions from other species is increased when the 

corresponding PrP transgene is introduced into a PrP knockout mouse, suggesting 

that the resident murine gene inhibits the propagation of the alien prions (11,65). In 

similar studies, transgenic mice expressing human PrP have been shown to have 

increased susceptibility to human TSE disease isolates (93,94). These results have 

broadened the possibilities for studying human isolates in less expensive and more 

rapid rodent models suitable for screening of possible therapeutic drugs. However, in 

spite of knowledge of PrPsen (proteinase k-sensitive form of PrP) sequences and 

structures from a variety of species, the extent of species-specific resistance to TSE 

diseases remains impossible to predict solely by analysis of PrP sequences and 

structures (93,150). This is of critical importance in the matter of human susceptibility 

to BSE (12). 

Transgenic mice overexpressing either the Leu102 PrP GSS mutant (59) or the extra 

amino acid octarepeat PrP mutant (95) develop a fatal neurological disease with 

neuropathology similar to TSE disease. However, in neither model is there 

generation of PrPres (proteinase k-resistant form of PrP) with the high degree of 

protease-resistance found in the human counterparts of these models. GSS disease 

associated with Leu 102 PrP is in fact transmissible to monkeys and mice expressing 

only Pro102 PrP. These the questionable transmissibility and the lack of PrPres 

suggests that this transgenic model may in fact be a diseased one due to 

overexpression of a mutant protein rather than a true TSE disease. These results 

suggest that mutant Leu102 PrP may alter susceptibility for TSE diseases rather than 

acting as a direct cause of GSS (12). 

Human and mouse genetics have made major contributions to prion disease 

research. Perhaps most prominent among these was the linkage to chromosome 20 

and mutation discovery in PRNP in families with dominantly inherited 
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neurodegenerative diseases (57). The fact that heterogenous diseases caused by 

mutations of PRNP were known to be transmissible to laboratory animals obviated 

the need to the search for a cryptic infectious organism (13). 

Because initial transgenetic studies had shown that the “species barrier” between 

mice and SHa for the transmission of prions can be abrogated by expression of 

SHaPrP transgene in mice, Tg mice synthesizing HuPrP were constructed. These Tg 

(HuPrP) FVB mice inoculated with the Hu prions failed to develop CNS dysfunction 

more frequently than non-Tg controls (91). Faced with apparent dichotomy, mice 

were constructed which expressing a chimeric Hu/Mo PrP transgene designated 

MHu2M (102). Hu PrP differs from mouse PrP at 28 of 254 positions while MHu2M 

differs at nine residues. It was found that mice expressing the MHu2M transgene are 

susceptible to human prions and exhibit abbreviated incubation times (91). When 

Tg(HuPrP) mice were crossed with PrP% mice, they were rendered susceptible to 

the Hu prions. These findings suggested that Tg(HuPrP) FVB mice were resistant to 

Hu prions, because Mo PrPC inhibited the conversion of Hu PrPC into PrPSc; once Mo 

PrPC was removed by gene ablation, then the inhibition was abolished (66). While 

earlier studies argued that PrPC forms a complex with PrPSc during the formation of 

nascent PrPSc (75), these findings suggested that PrPC also binds to another 

macromolecular (protein X) during the conversion process. As with the binding of 

PrPC to PrPSc, which is most efficient when the two isoforms have the same 

sequence (75), the binding of PrPC to protein X seems to exhibit the highst affinity 

when these two proteins are from the same species (17,20).  

 
1.10. Alteration   of   Atypical   TSE   biological   Properties   after   Transmission   to  

         Humanized Mice 

 
Recently, several human PrPSc types have been identified that are associated with 

different phenotypes of CJD (151). This has been demonstrated in studies with CJD 

isolates, with both PrPSc fragment-sizes and the ratios of the three PrP glycoforms 

(diglycosylated, monoglycosylated and unglycosylated PrP) maintained on passage 

in transgenic mice expressing human PrP (52). Furthermore, transmission of human 

prions and bovine prions to wild-type mice results in murine PrPSc with fragment 

sizes and glycoform ratios that correspond to the original inoculum (7,52,53). 
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1.11. Potential Similarities and Links between Atypical TSE Cases and other Known 

         Prion Protein 

 
The appearance of a novel human prion disease, variant CJD, and the clear 

experimental evidence that it is caused by exposure to BSE has highlighted the need 

to understand the molecular basis of prion propagation, pathogenesis and the 

barriers limiting the intermammalian transmission (7). The inherited prion diseases 

can be diagnosed by PRNP analysis, and the use of these definitive genetic 

diagnostic markers has allowed the recognition of a wider phenotypic spectrum of 

human prion diseases to include atypical dementias and fatal familial insomnia 

(7,54).  

The unusually young age range of vCJD patients and their distinctive pathology 

suggested that they represented a new clinical TSE disease and the initial occurence 

of these patients in the UK suggested an association with BSE in cattle. Subsequent 

laboratory experiments indicated a strong similarity between BSE and vCJD based 

on patterns of infectable mouse strains; lesion distribution in mouse brain; PrP gel 

banding patterns and neuropathology after transmission to cynomologous macaques 

(49,90). Based on these data, most observers agree that vCJD represents spread of 

BSE from cattle to humans (12). 

Macaque monkeys and marmosets both developed neurologic disease several years 

after inoculation with bovine prions, but only the macaques exhibit numerous PrP 

plaques similar to those found in vCJD (20,89).  

 
1.12. Aim of the Work 
 
In this work we studied the pathogenesis and evaluate the strain characteristics of 

prion diseases by using transgenic mice. This work consists of two main parts: 

 
In the first part, we studied the pathogenesis of prion diseases by using EGFP-PrP 

transgenic mice expressing EGFP-PrP protein (fluorescent protein). EGFP-PrP 

transgenic mice represent a unique system for examining the pathogenesis and 

progression of prion diseases in vivo and in vitro. It may be possible to visualize 

PrPSc deposition in the brains or other organs of these animals before and after 

infection with prion strains. Also, EGFP-PrP could help us to follow up the 

localization, colocalization, distribution and trafficking of PrPSc intra- and 

extracellularly to know the sites of formation, conversion and accumulation of PrPSc 
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inside the neurons. Moreover, EGFP-PrP is considered as a protein-marker and 

affinity reagent for the isolation of proteins involved in prion replication. Establishment 

of EGFP-PrP transgenic mice considered a useful model for studying several other 

aspects of prion biology. 

In the second part, we studied the transmission characterstics and biological 

properties of different human prion strains, also an assessment of the effect of 

codon-129 polymorphism of the PRNP on the human susceptibility. We used 

humanized mice expressing human PrP by direct replacement of the mouse PrP 

gene. Two inbred lines with an identical genetic background were produced to 

express human PrP with the codon-129 MM and VV genotypes. Mice were 

inoculated intracerebrally with brain homogenates from cases of human prion 

diseases such as sporadic CJD (MM1 and MM2) and vCJD strains and assessed for 

incubation times, biochemical features as well as clinical and pathological signs of 

the disease.  
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2. Material and Methods 

2.1. Materials 
 
All the chemical reagents, biological reagents, buffers, utensils (plastic & glass 

wares) are of high-quality analytical grade and were purchased from specialized and 

trusted sources. 

  
Table 1: Chemicals 
 

Chemicals Company 

 
-Acetic acid 100% 
 
-Acrylamide-bis 30% 
 
-Agarose gel 
 
-APS (Ammonium persulfate 10%) 
 
-Bromophenol Blue 
 
-CDP-Star (Chemiluminescence system) 
 
-EDTA (Ethelendiamine tetraacetic acid) 
 
-Eosin 
 
-Glycerine 
 
-Glycine 
 
-HCl 
 
-Haematoxyline 
 
-I-Block 
 
-K2HPO4 
 
-KH2PO4 
 
-Methanol 100% 
 
-MgCl2 
 
-Milk Powder (Blotting Grade) 
 
-NaCl 

 
-Sigma Aldrich (Steinheim, Germany)  
 
-Merck (Darmstadt, Germany) 
 
-Karl Roth, Karlsruhe, Germany 
 
-Sigma Aldrich (Steinheim, Germany)  
 
-Merck (Darmstadt, Germany) 
 
-Tropix (Bedford, USA) 
 
-Roth (Karlsruhe, Germany) 
 
-Merck (Darmstadt, Germany) 
 
-Merck (Darmstadt, Germany) 
 
-Sigma Aldrich (Steinheim, Germany) 
 
-Roth (Karlsruhe, Germany) 
 
-Merck (Darmstadt, Germany) 
 
-Tropix (Bedford, USA) 
 
-Merck (Darmstadt, Germany) 
 
-Merck (Darmstadt, Germany) 
 
-Merck (Darmstadt, Germany) 
 
-Merck (Darmstadt, Germany) 
 
-Roth (Karlsruhe, Germany) 
 
-Roth (Karlsruhe, Germany) 
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-Na2HPO4 
 
-NaH2PO4 
 
-NaOH 
 
-NBT (4-Nitroblue tetrazolium chloride) 
 
-Nonidet P40 
 
-PMSF (Phenylmethylsulphonylfluoride) 
 
-PFA (Paraformaldehyde 4%) 
 
-Sarkosyl (N-Lauryl-Sarkosin sodium 
 salt) 
 
-SDS (Sodiumdodecylsulfate) 
 
-TEMED  
 (N,N,N,N-Tetramethylethylenediamine) 
 
-Tris-base 
 
-Tris-HCl 
 
-Tween-20 
 
-ß-Mercaptoethanol 
 
-SOC (Sodium deoxycholate) 
 
-Developer & Fixer 
 

 
-Merck (Darmstadt, Germany) 
 
-Merck (Darmstadt, Germany) 
 
-Merck (Darmstadt, Germany) 
 
-Roche diagnostic (Mannheim, Germany)
 
-Roth (Karlsruhe, Germany) 
 
-Sigma Aldrich (Steinheim, Germany) 
 
-Merck (Darmstadt, Germany) 
 
-Merck (Darmstadt, Germany) 
 
 
-Roth (Karlsruhe, Germany) 
 
-Sigma Aldrich (Steinheim, Germany) 
 
 
-Sigma Aldrich (Steinheim, Germany) 
 
-Sigma Aldrich (Steinheim, Germany) 
 
-Roth (Karlsruhe, Germany) 
 
-Sigma Aldrich (Steinheim, Germany) 
 
-Sigma Aldrich (Steinheim, Germany) 
 
-Sigma Aldrich (Steinheim, Germany) 
 

 
Table 2: Biologicals 
 

Biologicals Company 

 
-Monoclonal Mouse Anti-Prion Protein 

 Ab,  clone 3F4 
 
-Monoclonal Mouse Anti-Prion Protein  

 Ab, clone 4H11 
 
-Monoclonal Anti-Prion Protein Ab, clone 

 L42 
 

 
-DakoCytomation, Glostrup, Denmark 

 
 
-Center for Neuropathology, Munich 

 
 
-Biopharm, Darmstadt, Germany 
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-Anti-prion protein Ab, CDC1 

 
-Monoclonal Anti-Prion Protein Ab, anti – 

 GFP 
 
-ECL Anti-mouse IgG, horseradish 

 peroxidase linked whole antibody (from  

 sheep) 
 
-Prestained Protein Marker (PeqGold) 

 

-Novus Biologicals 

 
-MoBiTec, Göttingen, Germany 

 
 
-GE Healthcare, UK 

   

   
 
-PeqLab,Biotechnology, Erlangen,  

 Germany 
 
 
Table 3: Buffers for Sample Preparation 
 

Buffer Composition 

 

-PBS Buffer 10X: (1Litre) 

 

 

 

-PBS Buffer 1X :(1Litre) 

 

 

-PBS-Tween 20:(1litre) 

 

-Lysis Buffer: (200ml) 

 

 

 

 

 

 

-Proteinase K: 

 (Roche diagnostic,Indianapolis,USA) 

 

-Na2HPO4    12.7 g 

 NaH2PO4      3.9 g 

 NaCl             85 g 

 

-100 ml 10X PBS + 900 ml d.water, 

  adjust PH 7.3 

 

-1Litre 1XPBS  1ml Tween 20 

 

-100     mM Tris                              2.42 g 

 100     mM NaCl                            1.17 g 

 10       mM EDTA                           0.76 g

  0.5%  Nonidet P40                           1 ml

  0.5%  Sodium deoxycholate (SOC ) 1 g 

  PH 6.9 at 37°C 

 

-33 mg/ml d.water  

 (2 µl PK/20 µl Homogenate) 
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Table 4: Buffers for SDS-PAGE and Western Blot analysis 
 

Buffer Composition 

 

-Läemmli Sample Buffer 2X:(10ml) 

 (Also, 4X LSB with double amounts) 

 

 

 

 

 

- I-Block: 

 

 

-PBS & PBS-Tween 20  

 

-Separating gel: 13% Acrylamide 

 

 

 

-Stacking gel: 5% Acrylamide 

 

 

 

-Running Buffer: (10X) 

 (Tris-glcine SDS-PAGE)  

 

 

 

 

-Blotting Buffer: 

 

 

 

-SDS: 10% 

 

-125    mM Tris                           0.15    g 

  4       mM EDTA                        0.015  g 

  20%  Glycerine                         2        ml 

  8%    ß-Mercaptoethanol          800     µl 

  6%    SDS                                 0.6      g 

  PH 6.8 

 

-2 g I-Block  1litre 1X PBS-Tween 20,  

 mix with heating at 60°C for 0.5-1 hour 

 

-As previous 

 

-13% Acrylamide + 0.375 MTris.HCl  

  PH 8.8 + 0.1% SDS + 0.05% APS + 

  0.035% TEMED 

  

-5% Acrylamide + 0.125 MTris.HCl,  

 PH 6.8 + 0.1% SDS,+ 0.05% APS + 

 0.035% TEMED 

 

-Tris base                     30,3 g 

 Glycine                        144  g 

 SDS                             10    g 

 ddH2O to                     1   litre 

 Total volume                1   litre 

 

-100ml 1XRunning buffer (Tris-glycine) 

 900ml  ddH2O 

 20%    100%Methanol 

 

-50 g SDS +400ml ddH2O, heat to 
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-Methanol: 70% 

 

-Water: 

 

-ECL Western blotting detection reagents

 (reagent 1 & 2) 

68°C,adjust PH to 7.2,adjust volume to 

500ml with ddH2O 

 

-70ml 100%Methanol + 30ml ddH2O 

 

-Sterile, bidistilled Millipore water 

 

-GE Healthcare, UK 

 
Table 5: Buffers for FACS analysis 
 

Buffer Composition 
 
- Flow Cytometry Staining Buffer 
 
 
- RBC Lysis Buffer 

 

-1x PBS, ≤ 5% FBS, 0.1% sodium azide, 

  4˚C (eBioscience, Cat. No. 00-4222)  

-155mM NH4Cl, 10mM KHCO3, 100mM 

  EDTA, 37˚C  

  (eBioscience, Cat. No.00-4333)  

 
 
Table 6: DNA Isolation Kits and PCR-Reagents 
 

Reagent Description 

 

-DNA Extraction Kits 

 

-Taq-Polymerase 

 (Hot-Star Taq-Mastermix) 

 

-Primers: 

 HuM_for: 5`-CTA CCC ACC TCA GGG  

                     CGG TGG TGG-3` 

HuM_rev: 5`-TGG TGG CTG TAC TCA  

                     TCC ATG-3` 

LL_for:     5`-ATG GCG AAC CTT GGC  

                     TAC TGG CTG-3` 

 

-DNeasy Blood & Tissue Kit, QIAGEN 

 

-Eppendorf, Hamburg,Germany  

 

 

-MVG Oligo Synthese, Ebersberg 
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LL_rev:    5`-TCA TCC CAC GAT CAG  

                    GAA GAT GAG-3` 

 

-Restriction Enzymes: NspI & DdeI 

 

-10X NEBuffer 2 

 

-10X NEBuffer 3 

 

-BSA (Bovine Serum Albumin) 

 

-SYBR Gold Nucleic Acid Gel Stain 

  (0.7µl /50ml agarose gel) 

 

-DNA-Ladder (PageRuler Prestained  

 Protein Ladder) (50 & 100 bp) 

 

-6X DNA Loading Dye 

 

-Running buffer: (TAE-buffer) 

  500ml TAE (50X) 

 

 

 

 

 

 

-New England BioLabs, Frankfurt 

 

- New England BioLabs, Frankfurt 

 

- New England BioLabs, Frankfurt, 

 

- New England BioLabs, Frankfurt, 

 

-Invitrogen, Molecular Probes 

 

 

- New England BioLabs, Frankfurt, 

  Germany 

 

-Fermentas 

 

-121    g    Tris-base 

  28.5  ml  Acetic acid 100% 

  9.31  g    Na-EDTA 

  500   ml   dd.water 

 
Table 7: Consumables 
 

Consumables Company 

 

-Microcentrifuge Tubes 0.2,1.5, 2 ml 

-Plastic Tubes 15,50 ml 

-Gel Blotting Paper GB005 

 

-Serological  pipet 5,10,25 ml 

-Micropipet Tips 

 

-Eppendorf, Hamburg, Germany 

-Sarstedt, Nümbrecht, Germany 

-VWR,Whatman,Schleicher&Schuel, 

  Dassel, Germany 

-VWR, Dassel, Germany 

-ART, Molecular Bioproduct 
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-Hyperfilm ECL (X-ray film) 

-Nitrocellulose membrane PVDF  

 pore size:0.45 µm 

-Transparent Sheet 

 

-Needls 

-Fluorescent Mounting Medium 

-Amersham Pharmacia, Piscataway,USA 

-Millipore, Eschborn, Germany 

 

-Soennecken, Prospekthüllen, Overath, 

  Germany 

-TerumoEurope, Leuven, Belgium 

-Biomeda, Foster City,CA 

 
Table 8: Equipments 
 

Equipment Company 

 

-Confocal Laser Scanning Microscope 

-Vibratome Microtome 

-Microcentrifuge 5415R 

-Thermocycler, Mastercycler personal 

-Vortex 

-Shaker 

-Thermomixer Comfort 

-Heater 

-Balance 

-Electrophoresis Power Supply 

-Hamilton Syringe 

-Gel-pouring apparatus 

-Gel electrophoresis apparatus 

-Semiphor Transphor Blot-machine 

 (Semi-dry transfer) 

-Gel combs, spacer,…etc 

-Microwave 

-Developing machine 

-Micropipette 10,20,200,1000 µl 

-Flow cytometer 

 

-Leica DM LFSA,TCS sp2 TMC 

-Vibratome company,St.Louis,MO 

-Eppendorf, Hamburg, Germany 

-Eppendorf, Hamburg, Germany 

-Vortex Gene 

-Rocky 

-Eppendorf, Hamburg, Germany 

-HLC 

-Sartorius Max.400 g, 0.000 g Sensitivity 

-Consort, 3000V—300mA  E833 

-Hamilton,Bonaduz, Germany 

-BioRad, München, Germany 

-VWR, Ismaning, Germany 

-Amersham Bioscience,Freiburg,    

 Germany 

-PeqLab, Erlangen, Germany 

-Moulinex, Samou, Radolfzell 

-Optimax TypTR,MS laborgerät,Wieslack 

-Eppendorf, Hamburg, Germany 

-BD Bioscience 
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2.2. Methods 
 
3.1.1. Construction of EGFP-PrP Transgene 
 
Fischer et al. (1996) developed a PrP-encoding vector based on the murine PrP gene 

from which the large intron had been deleted and that contained 6 kb of 5´ and 2.2 kb 

of 3´flanking sequence, named as „half-genomic construct“ or pPrPHG (Figure 

1)(21). This vector, which contains the wild-type PrP sequence, restored 

susceptibility to scrapie in a dose-dependent manner when introduced into PrP% 

mice. The transgenic construct was created to express EGFP-PrP under PrP 

regulatory elements (phgEGFP-PrP). The EGFP-PrP coding sequence was cloned 

into the murine half-genomic PrP locus (Figure 2). The appropriate constructs were 

injected into the pronuclei of PrP% zygotes and transgene-carrying animals were 

identified and bred to PrP% mice (These mice were a gift from Dr. Marko Maringer). 

 

phg-vector 
Fischer et al 1996 EMBO

EGFP-PrPE 2/3E 1 

 
 
 
 
Figure 1: The phgGFP-PrP Fusion Protein Transgene Construct 

New phgEGFP-PrP transgene construct showing inclusion of EGFP-transgene in the open reading 

frame (ORF) and deletion of the large intron with fusion of exon 2 and exon 3 
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Figure 2: EGFP-PrP L42 transgene construct 

The EGFP-PrP transgene showing the site of insertion of the transgene in the prion protein gene and 

also showing the site of insertion of the human prion protein epitope L42 which recognizes the EGFP-

PrP and not recognize mice PrP. 

 
 

Pronucleus-injection

 
Figure 3: Pronucleus injection of EGFP-PrP in nuclei of Oocytes  
 
 
2.2.2. Generation of Transgenic Mice 
 
EGFP-PrP transgenic mice: Five independent lines of transgenic mice expressing a 

chimeric EGFP-PrP fusion protein under regulatory elements of the half-genomic 

mouse PrP locus were produced by using pronuclear micro-injection of fertilized 

VSKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTLTYGVQCFSRYPDHMKQHDFFKSAMPEGYVQERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGIDFKEDGNILGHKLEYNYNSHNVYIMADKQKNGIKVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMVLLEFVTAAGITLGMDELG 

23 

EGFP

W145Y 

signal 

C´N´ 

 

L42
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mouse oocytes (Figure 3). By using these mice we were able to visualize the 

localization EGFP-PrP in brains and in various organs in histological sections (76).  

Humanized transgenic mice: Mice were produced to express human prion protein 

(PrP) by direct replacement of the mouse PrP gene. Since the human PrP gene has 

variation at codon 129, with MM, VV and MV genotypes, two inbred lines with an 

identical genetic background were produced to express human PrP with the codon-

129 MM and VV genotypes. Mice were inoculated with sCJD and vCJD and 

assessed for incubation times, biochemical analysis, clinical and pathological signs of 

the disease (23) (These mice were a gift from Prof. Jean Manson, University of 

Edinburg, UK). 

LL-mutant mice: Transgenic mice were generated with point mutation, which 

expressing mouse prion protein with proline 101 to leucine (P101L) exchange. With 

this mutation, these mice being susceptible to human Gestmann-Sträussler-

Scheinker Syndrome (GSS). We infect these mice with GSS strain of human case to 

study the transmission efficiency of the disease (144). 

 
2.2.3. Infection of Transgenic Mice 
 
EGFP-PrP transgenic mice: These mice were infected with scrapie strain RML 

intracerebrally under anaesthesia (isofluran). Inocula were prepared from brains of 

terminally ill mice. Twenty-five percent (25%) (w/v) brain homogenates were 

prepared in sterile PBS using a motorized tissue grinder. Homogenates were clarified 

by centrifugation for 5 minutes at 900xg. Brain homogenates were diluted to 1% 

using sterile PBS and 25 µl were injected intracerebrally into the right parietal lobe of 

4-6 weeks old recipient mice using a 25 gauge needle (77). 

Humanized transgenic mice: These mice were divided into six groups of HuM and 

another six groups of HuV, each group included eight animals. These groups were 

infected with different cases of sCJD and vCJD obtained from human cases that had 

died with prion diseases. The mice were infected intracerebrally according to the 

previous method (Table 9). 
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HuM-mice HuV-mice 
Group 1                         sCJD (129 MM1) 

Group 2                         sCJD (129 MM1) 

Group 3                         sCJD (129 MM2) 

Group 4                         sCJD (129 MM2) 

Group 5                         vCJD 

Group 6                          vCJD 

Group 1                         sCJD (129 MM1) 

Group 2                         sCJD (129 MM1) 

Group 3                         sCJD (129 MM2) 

Group 4                         sCJD (129 MM2) 

Group 5                         vCJD 

Group 6                          vCJD 

 

Table 9: Groups of human transgenic mice, HuMM and HuVV inoculated with different TSE 

strains of human prions 

 

LL-mutant mice: These mice consist of two groups with eight mice and infected 

intracerebrally with human GSS cases as previously discussed. 

 
2.2.4. Determination of Incubation Times 
 
The incubation time is defined as the time elapsed between infection of mice and 

appearance of clinical signs. Animals were monitored reguraly for the appearance of 

clinical symptoms, including ataxia, weight loss, kyphosis, hyperexcitability and hind 

limb paralysis. Ataxia was assessed by observing the mice walking on a metal grid 

apparatus. Mice were scored as ill if they exhibited two or more clinical symptoms 

(38,95).  

 
2.2.5. SDS-PAGE and Western Blot analysis of Infected Animals 
 
We followed the method described by “abcam” company (www.abcam.com/technical) 

and by others (154,155,156). 

 
Sample preparation:  
 
Brain tissue was weighed and 1:10 homogenate (w/v) was prepared by using Lysis 

buffer and Daunce homogenizer and needles of different sizes. Homogenates were 

collected, aliquoted in small tubes and stored at -80°C until use. 

 
Protease K digestion:  
 
To 10 µl brain homogenate, 1 µl PK was added (1:10 from 33mg/ml water) and was 

incubated at 37°C for 1 hour, then the reaction was stopped with 1.4 µl PMSF 80 

mM. 
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Preparation of samples for loading into gel: 
 
To 5 µl PK-digested sample, 15 µl Lysis buffer and 7 µl 4X LSB were added, mixed 

and boiled at 95-100°C for 10 minutes. Samples were spun down shortly to remove 

condensates from the tube wall. 

 

Preparation of SDS-PAGE gel: 

 
Separating acrylamide gels were prepared and poured in the size-required gel-

casting apparatus until two thirds height, then the surface was covered with a small 

amount of isopropanol and the gels were allowed to polymerize 30-60 minutes at 

room temperature or until interface appeared. The isopropanol was poured off and 

rinsed with ddH2O and then the stacking gel was poured on top of the separating gel. 

Comb was inserted into the stacking gel, taking care to avoid forming bubbles on the 

ends of the teeth, the gel was allowed to polymerize 30-60 minutes 

 

Electrophoresis: 
 
Gel was clamped onto electrophoresis tank, binding clips were removed carefully and 

the comb from gel. The gel was placed against electrophoresis tank with the cut out 

plate facing the tank and clamped into place. Upper and lower reservoir were filled 

with running buffer, wells were striatened out with Hamilton syringe, wells and bottom 

of gel were rinsed out with buffer using bent-needle syringe. 

 
Loading samples: 
 
Samples were prepared as described together with positive control, molecular weight 

marker and loading control, samples were loaded into wells using a Hamilton syringe. 

Electrodes were attached so that proteins migrated towards the anode and the gel 

was run at 100-200 V until dye front reached the bottom of the gel. Electrodes were 

disconnected and the gel sandwich was extracted for blotting. 

 
Western blotting: (Semi-dry conditions) 
 
The transfer box, blotting papers (wetted in blotting buffer) and PVDF membrane 

(activated in methanol 100% for 3 minutes and then in blotting buffer) were prepared. 

The paper was put, then the PVDF membrane, then the gel and again the paper and 

the box was covered (use 1kg weight), the electrodes were attached at suitable mA 
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(0.8 mA/cm2 surface area of gel) for 2 hours. After that the electrodes were 

disconnected and the membrane was taken for blocking (107,153).  

 

Blocking the membrane: 
 
The membrane was blocked with I.Block for 1 hour at 37°C with shaking to prevent 

non-specific background binding of the primary and/or secondary antibodies. 

 

Incubation with antibodies: 
 
The membrane was incubated with the primary antibody (e.g. 3F4, 4H11,..etc) at 4°C 

over night with shaking. Then washing with PBS-Tween four times, 10 minutes for 

each, then incubation of the membrane in secondary antibody (e.g. sheep anti-

mouse IgG, horseradish peroxidase) at 37°C for 1 hour and then washing again four 

times, 10 minutes each. 

 
Developing the membrane: 
 
The membrane was incubated in ECL chemiluminescence reagent for 1-2 minutes 

and then was put between two-layer transparent plastic sheets. The membrane then 

was exposed to x-ray film for different periods and the film then was developed in 

developing machine. The detection of protein bands on the film was carried out, 

imaging and analysis of pictures was then made by using digital camera or scanner 

and then the results were evaluated.  

 
2.2.6. Histology and Immunohistochemistry 
 
After fixation in 10% buffered formalin, brains were treated for 1.5 hour in 98% formic 

acid (to reduce the titre of infectivity for safety reasons), cut transversely into four 

sections and embedded in paraffin. Paraffin sections were made, stained with H&E 

for normal histological examination and stained also for immunohistochemistry for 

detection of disease-associated prion protein deposits (PrPSc) in the brain. Sections 

of immunohistochemistry were processed by using monoclonal anti-prion protein 

antibodies; 3F4 for HuM & HuV mice and 4H11 for LL mice (1:2000 dilution) and over 

night incubation of primary antibody. We used the Vectastain Elite ABC kit (Vector 

labs,UK). Identification of antibody binding was through deposition of 3,3`-

diaminobenzidine chromogen via a horseradish peroxidase reaction (23,24). 
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2.2.7. Determination of Lesion Profiles “Scoring” 
 
Scoring of the abundance and location of TSE-associated vacuolation, spongiosis, 

cell loss and astrogliosis in grey and white matter of the brain is routinely used for 

strain classification in transgenic mice (17,19) and was used to assess all the mice in 

this study (23).  PrP deposits were classified as 1) reticular or “synaptic”, 2) coarse or 

perivascular and 3) plaque-like or focal (22,24,30). 

 

2.2.8. FACS analysis of EGFP-PrP transgenic mice 
 
To analyze the distribution of EGFP-PrP in peripheral blood, thymus, bone marrow 

and spleen, we used FACS analysis to detect EGFP-PrP on single cell preparations 

from EGFP-PrP transgenic tissues. Immunofluorescent Staining of Cell Surface 

Antigens for Flow Cytometric Analysis (FACS Analysis) (www.eBioscience 

BestProtocols Immunofluorescent Staining of Cell Surface Antigens for Flow 

Cytometric Analysis (FACS Analysis).htm). 

Steps: 

1-Making a single cell suspension from peripheral blood, lymphoid tissues or cultured 

   cell lines 

2-Staining cells with antibodies (either as a directly fluorochrome-conjugated antibody 

   or in successive steps of unlabelled antibody and fluorochrome-conjugated 

   secondary reagents) 

3-Washing steps to remove all unbound reagents 

4-Running and analyzing on a flow cytometer  

Method: 

A-For Cell Suspensions of Mouse Lymphoid Tissue 

Cell Preparation: 

  

1-Tissue (spleen, lymph nodes, thymus) were harvested and teased it apart into  

   single cell suspension by pressing with plunger of a syringe or by mashing between 

   two frosted microscope slides using 10 ml of Staining Buffer.  

2-Tissues were Transfered into a 50ml conical tube and allowed the big clumps and 

   debris to settle to the bottom or run the suspension through nylon meshes (Falcon 

   Cat. No. 2350) to get single cell suspension.  

3-Cell suspensions were centrifuged 4-5 min (300-400xg) at 4°C, and discard  

   supernatant.  
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4-If using spleen, RBC lysis was performed; otherwise, go to the next step.  

5-The samples were resuspended in 50ml of Staining Buffer and a cell count was  

   performed and viability analysis (e.g. Trypan Blue).  

6-Cells were spun again, supernatant discarded, and cells resuspended in Staining  

   Buffer at 2x107/ml. If using labeled primary antibodies, pre-incubate the cells with 

   0.5-1µg of anti-CD16/CD32 per million cells for 5-10 minutes on ice prior to  

   staining.  

Antibody Preparation and Incubation:  

1-Diluted to previously-determined optimal concentration of primary antibody was  

   prepared in 50µl of Staining Buffer and dispensed to each test tube or well of a 

   microtiter plate. Dispense 50µl of Staining Buffer were dispensed into the unstained  

   or negative control tube. For titration studies, as a general rule, titrations in the 

   range of 2-0.03µg/million cells should be performed.  

2-50µl of cell suspension (equal to 106 cells) were added to each tube or well; mixed 

   gently.  

3-The mix was incubated for 20 minutes in the dark on an ice bath or in a refrigerator. 

   Note: Some antibodies may require longer incubation times. Determine these 

   conditions in your preliminary experiments.  

4-After the incubation period, add Staining Buffer (2ml for tubes or 200µl for microtiter 

   plates).  

5-Cells were centrifuged for 5 minutes (300-400xg) at 4°C. Aspirate supernatant.  

6-2 times for a total of 3 washes were repeated.  

7-Stained cell pellet were resuspended and analyzed samples on a flow cytometer.  

        a-If using fluorochrome-labeled antibodies, resuspend stained cell pellet in 

           500µl of Staining Buffer and run on a flow cytometer.  

        b-If using purified- or biotin-labeled antibodies, add the proper second step (a                    

           fluorochrome-conjugated secondary antibody or -Avidin) in 50-100µl of  

           Staining Buffer to each sample. Incubate in the dark for 15-30 minutes on an 

           ice bath or in a refrigerator. Wash 2 times as above (Steps 4 and 5). 

           Resuspend stained cell pellet in 500µl of Staining Buffer and run on a flow  

           cytometer.  

8-For discrimination of viable and dead cells, stained with a viability dye.  

Note: If performing multiple color staining, add fluorochrome-labeled antibodies 

simultaneously and follow incubations and washing steps as mentioned above. Keep 
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all steps in the cold and keep samples protected from light when working with 

fluorescent antibodies. 

 

B- For Cell Suspensions of Erythrocytes 

 

1-To previously-determined optimal concentration of purified or biotin- 

   conjugated antibody was diluted in 50µl of Staining Buffer and dispense to each  

   test tube. 50µl of Staining Buffer were dispensed into the unstained or negative 

   control tube. Fluorochrome-conjugated anti-human antibodies were pretitrated for 

   optimal performance and should be used at 20µl per sample. 

2-100µl of whole blood was added to each tube, mixed gently.  

3-It was incubated for 15-30 minutes at room temperature in the dark. Note: Some  

   Antibodies with low affinity binding may require longer incubation times. These  

   conditions were determined in preliminary experiments.  

4-2ml of 1X RBC Lysis Buffer (pre-warmed to room temperature) were added per 

   tube, mixed gently.  

5-Samples were incubated in the dark at room temperature for 10 minutes. Do not  

   exceed15 minutes of incubation with the RBC Lysis Buffer.  

6-Samples were spun (300-400xg) at room temperature, supernatant aspirated and 

   washed 1 time with 2ml of Staining Buffer.  

7-Stained cell pellet was resuspended and analyzed samples on a flow cytometer.  

 
2.2.9. In Vitro Conversion Assay of EGFP-PrP 
 
Analysis of EGFP-PrP localization pre- and post-infection of cell culture (RK13 cells), 

which expressing EGFP-PrP protein, was carried out by using scrapie strains 22L 

and ME7. Transfected cells were then examined for intracellular PrP aggregations 

and with western blot. 

 
2.2.10. Confocal Laser Scanning Microscopy Leica “LSM” 
 
Brains of EGFP-PrP mice were fixed in 4% paraformaldehyde for 48 hours at 4°C, 

transferred to 0.1M phosphate buffer, pH 7.2 and stored at 4°C. Sagital sections (50-

100 µm thickness) were cut using a Vibratome and placed in sterile PBS containing 

0.02% sodium azide. For visualization of intrinsic EGFP-PrP fluorescence, sections 

were mounted on glass slides using Fluorescent mounting medium, covered and 

sealed with silicon and sterilized in 2M NaOH for 30 minutes. Sections were viewed 
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with a Leica LSM Confocal laser scanning microscope with wet objective (10&40x). 

Processing of digital images was accomplished using Leica LSM software and Adope 

Photoshop (Adope system, San Jose, CA). 

 

2.2.11. Rescue Studies on transgenic F35 Mice 

 
F35-mice are mice with truncated prion protein gene, with deletion from codon 32 to 

135 (These mice were a gift from Prof. Charles Weissmann, Zurich). This deletion 

causes ataxia and specific degeneration of the granular layer of the cerebellum within 

3-4 months after birth. The defect was completely abrogated if one or more copies of 

a wild-type murine PrP gene were introduced into mice carrying multiple copies of the 

truncated gene (Figure 8) (22). In this experiment, we introduced EGFP-PrP allele 

into F35-mice to see if this PrP-construct can rescue the deleterious effect of the 

truncated gene or not. 

 
2.2.12. Genotyping of HuM, HuV and LL mice: 
 
Genotyping of HuM, HuV and LL mice was carried out before starting the experiment 

to be sure that all the genetic background of the mice was correct. At first DNA was 

isolated, then amplified through PCR, then restricted by restriction enzymes (Table 

10&11), lastly, separated on agarose gel electrophoresis and the gel was 

photographed by a digital camera on a U.V. lamp, the images were analyzed and 

evaluated (108,152). 

 

DNA Isolation: 
 
DNA was isolated from tails of tested mice by using DNeasy blood & Tissue Kit 

(Qiagene) according to the protocol of Qiagene Company. 

 
Analysis of HuM,HuV and HuMV mice : 
 
PCR-mix : (25µl)  9    µl ddH2O 

                             2.5 µl HuM_fwd 

                             2.5 µl HuM_rev 

                             10  µl Hot star Taq-mix  

                             1    µl genomic DNA 
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Table 10: PCR-programme for genotyping of HuM, HuV and HuMV mice  

 

Step Temperature Time  

1 95°C 15 minutes Hot Start 

2 95°C 1 minute  

3 64°C 30 seconds  

4 72°C 1 minute  

5         Go to Step 2  34X  

6 72°C 10 minutes  

7 4°C Hold  

 

-expected product size: 371 bp 

 

NspI-Restriction:(50µl)  34  µl  ddH2O 

                                       5   µl 10X NEBuffer 2 (1X) 

                                      0.5 µl 10mg/ml BSA(100 yg/ml) 

                                      0.5 µl  20U/µl NspI (10 U/µl) 

                                      10  µl  PCR-product  

 

The mix was incubated 2 hours at 37°C and then heated to inactivate NspI by 

incubating for 20 minutes at 65°C. 8.5 µl 6x loading dye was added and analyzed on 

2% agarose gel (use 50 bp Ladder as standard). Expected fragments are 244 + 127 

bp for HuM, 371 bp for HuV and 371 + 244 + 127 bp for HuMV. 

 

 
Analysis of LL mice: 
 
PCR-mix: (25 µl)    9  µl ddH2O 

                             2.5 µl LL_fwd 

                             2.5 µl LL_rev 

                             10  µl Hot star Taq-mix  

                             1    µl genomic DNA 
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Table 11: PCR-programme for genotyping of LL mice 

 

Step Temperature Time  

1 95°C 15 minutes Hot Start 

2 95°C 1 minute  

3 62°C  30 seconds  

4 72°C 1 minute  

5         Go to Step 2  34X  

6 72°C 10 minutes  

7 4°C Hold  

 

-expected product size: 764 bp 

 

DdeI-Restriction: (50µl)  34.5 µl ddH2O 

                                       5      µl 10X NEBuffer 3 (1X) 

                                       0.5   µl 20U/yl DdeI (10 U/µl) 

                                       10    µl PCR-product  

 

The mix was incubated 2 hour at 37°C and then heated to inactivate DdeI by 

incubating for 20 minutes at 65°C. 8.5 µl 6x loading dye was added and analyzed on 

1.8% agarose gel. Expected fragments are 464 + 151 + 149 bp for LL, 613 + 464 + 

151 + 149 bp for heterozygous and 613 +151 bp for wild-type mice. 
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3. Results 

3.1. Investigation of Pathogenic Mechanisms of Prion Diseases using Transgenic 
       Mice expressing EGFP-PrP 
 
3.1.1. Expression of EGFP-PrP in EGFP-PrP Transgenic Mice 
 
Five independent lines of transgenic mice carrying a chimeric EGFP-PrP fusion 

protein were generated and visualized for the localization of EGFP-PrP in various 

organs in histological sections. Analyses of these mice were carried out in vivo before 

infection. Histological sections from paraformaldehyde fixed tissues from EGFP-PrP 

transgenic mice were analyzed using confocal laser scanning microscopy. Images of 

whole-brain sections showed expression of EGFP-PrP in all of the five transgenic 

lines (Figure 4 for EGFP-PrP-6 as example). Three of the five transgenic lines 

showed similar expression patterns, only varying in intensity of EGFP fluorescence 

while two lines showed slightly different patterns of EGFP distribution in brain (figure 

4 right part for lines EGFP-PrP-13 and EGFP-PrP-17), probably due to integration 

effects of the transgene. These lines are analyzed in detail with respect to their 

expression patterns of EGFP-PrP and are subject to infection with the RML scrapie 

strain.   

 

Figure 4: Confocal laser scanning microscopy of EGFP-PrP transgenic mice showing different  
expression patterns of EGFP-PrP. 
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In histological sections from EGFP-PrP transgenic mice we were able to detect EGFP fluorescence in 

five independent lines. Left part: EGFP-PrP-6 brain (with enlargement of: a: cerebellum, b: 
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hippocampus). Right part: lines EGFP-PrP-13 and -17 show slightly different expression patterns of 

EGFP-PrP compared to EGFP-PrP-6 (for example, cerebellum and hippocampus). mol, molecular 

layer; pc, Purkinje cells; gr, granule cell layer.  

 
3.1.2. FACS analysis of EGFP-PrP Transgenic Mice 

 
To analyze the distribution of EGFP-PrP in peripheral blood, thymus, bone marrow 

and spleen, we used FACS analysis to detect EGFP on single cell preparations from 

EGFP-PrP transgenic tissues. Positive cells were detected in bone marrow and 

peripheral blood of transgenic mice (Figure 5 for bone marrow). Histograms show two 

gated regions of samples from EGFP-PrP positive transgenic mouse compared to 

non-transgenic littermate (both EGFP-PrP-24). 
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Figure 5: FACS analysis of EGFP-PrP-24 mice showing positive cells in transgenic samples 

Bone marrow was flushed from femur of transgenic and non-transgenic EGFP-PrP-24 mice. Dot plot 

on the left shows typical distribution of cell populations discriminated by forward (FSC) and side 

scatter (SSC). FACS analysis and gating of distinct populations showed EGFP (as seen in FL1-H) 

positive cells in transgenic sample (green line) while non-transgenic samples were negative (black 

line) in two gated regions (R1 and R2) from dot plot.  

 
3.1.3. In vitro Conversion Assay and Susceptibility of EGFP-PrP to Scrapie infection  
 
To analyze EGFP-PrP localization pre and post infection, RK13 cells were 

transfected with EGFP-PrP and suitable hygromycin resistance vector. Western blot 

analysis of EGFP-PrP cell extract digested with proteinase k (PK) showed no sign of 

PK resistant PrP four, eight and eleven passages after incubation with 22L scrapie 

 51



prions (Figure 6). To address the question whether chimeric EGFP-PrP is convertible 

to a PK resistant form we used an in vitro conversion assay where we incubated 35S 

labeled EGFP-PrP as well as wild-type mouse PrP with PrPSc from a mouse infected 

with scrapie strain ME7. No detectable PK resistant PrP derived from EGFP-PrP was 

found, while wild-type mouse PrP was effectively converted to a PK resistant form 

(Figure 7). The In vitro conversion assay using a mixture of labeled EGFP-PrP and 

unlabeled wild-type PrP did not result in conversion of EGFP-PrP. Our results show 

that EGFP-PrPC was not susceptible for Scrapie infection and not converted into 

EGFP-PrPSc form. 

P0 P4 P8
- 5    15    - 5   15    - 5     15PK (min)

20 KD

41 KD

27 KD

ba

 
Figure 6: Analysis of stable clones of RK13 cells transfected with phgEGFP-PrPL42 construct. 

a. Confocal laser scanning microscopy image of EGFP-PrP positive RK13 cells.  

b. Western blot analysis of RK13 EGFP-PrP before (P0) and at different time-points (four (P4) or eight 

(P8) passages) after incubation with 22L scrapie. Cell extracts were digested with proteinase k (PK) to 

analyze for PK resistant PrPSc.  
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Figure 7: In vitro conversion assay of EGFP-PrP. 

In an in vitro conversion assay PrPSc from ME7 infected mice was used to analyze conversion of 

EGFP-PrP and wt-PrP to PrPres. 

 

3.1.4. Rescue Studies using F35 Mice 
 
F35-mice are mice with truncated PrP gene, with deletion from codon 32 to 134 

(Figure 8) and this deletion causing ataxia and specific degeneration of the granular 

layer of the cerebellum within 3-4 months after birth (Figure 9). PrP in F35 was 

expressed in all layers of the cerebellum except for the Purkinje cells. The defect was 

completely abrogated if one or more copies of a wild-type murine PrP gene were 

introduced into mice carrying multiple copies of the truncated gene. Introduction of 

EGFP-PrP alleles into F35-mice cannot rescue the deleterious effect of the truncated 

gene. Massive pathological changes in the cerebellum: degeneration of the granular 

cell layer with dramatic reduction in the width, coarse vacuolation of the white matter. 

The Purkinje cells appeared normal and the molecular layer was only reduced in 

width. The remainder of the brain showed no obvious changes except for patchy 

astrocytosis and there were no PrP deposits (Figure 9). 
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Figure 8: Illustration showing structure of F35-PrP truncated gene with deletion of 32-234 
residues (Shmerling et al. 1998) 

 
 

Cerebellum                          F35+eGFP6+(PrP%)            H&E

4x 10x

Cerebellum                          F35+eGFP6- (PrP%)              H&E

10x4x  
 
 

Figure 9: Histopathological effects of F35-PrP truncated gene on mice 

Massive pathological changes in the cerebellum: degeneration of the granular cell layer with dramatic 

reduction in the width, coarse vacuolation of the white matter. The purkinje cells appeared normal and 

the molecular layer was only reduced in width. The remainder of the brain showed no obvious 
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changes except for patchy astrocytosis and there were no PrP deposits. There was no difference 

between F35-mice with and without EGFP-PrP allele. 

 

3.1.5. Incubation Times of Infected EGFP-PrP Mice  
 
Survival data revealed similar incubation periods of EGFP-mice and wt-mice, which 

about 150 days post infection with means; 148±8 d.p.i. (line 24) and 150±8 d.p.i. So 

that our results revealed that introduction of EGFP-PrP transgene into wild-type 

murine prion protein gene did not have any prolonging or shortening effect on 

incubation times of the disease in transgenic mice after intracerebral infection with 

RML scrapie prion (Figure 10). 
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Figure 10: Survival data of scrapie infected EGFP-PrP/wt-PrP-mice 
 
 
 
3.1.6. Biochemical Analysis of Infected EGFP-PrP Mice 
 
Western blot showed that EGFP-PrPC was not converted in vivo into EGFP-PrPSc 

after proteinase k digestion by using L42 antibody which specific for detection of 

EGFP-PrP only, but when we used 4H11 antibody, we found that wild-type PrP and 

EGFP-PrP appeared to be converted into resistant form of PrP which giving bands 

after proteinase k digestion (Figure 11).  
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Figure 11: Western Blot of scrapie infected EGFP-PrP/wt-PrP mice 
 
 
 
3.1.7. Histology and Immunohistochemistry of Infected Brain Tissue 
 
We cut brains of mice infected intracerebrally with RML scrapie and terminally killed 

for histological and immunocytochemical examination. Histological examination 

showed that all sections of infected brains exhibit all neuropathological features of 

prion diseases such as: spongiform changes, neuronal cell loss and neuronal 

degeneration. IHC with CDC1 and L42 showed the presence of PrP deposits of the 

two proteins; wild-type PrP and EGFP-PrP protein bound together (by using CDC1 

anti-prion protein antibody which recognizes the two types of prion protein; wild-type 

PrP and EGFP-PrP) and also PrP deposits of EGFP-PrP alone in the same locations 

of the wild-type PrP, but with low concentrations (by using L42 anti-prion protein 

which recognizes only the EGFP-PrP transgene and can not recognize the wild-type 

of murine PrP) which means that EGFP-PrPC binds physically to the protease-

resistant form EGFP-PrPSc in vivo and EGFP-PrP can not convert into the disease-

form EGFP-PrPSc by itself (Figures 12&13).  
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Figure 12: Histology by H&E and Immunohistochemistry by CDC1 & L42 

Cerebellum sections stained with H&E showing spongiosis and neuronal degeneration in all layers. 

Also, immunohistochemistry revealed the presence of strong immunopositivity for PrPSc deposits in the 

Molecular and granular cell layers only with CDC1 antibody and weak signal with L42 which detects 

only EGFP-PrP. 

Hippocampus      H&E                           CDC1             L42

4x 4x4x

10x10x10x  
 
 
Figure 13: Histology by H&E and Immunohistochemistry by CDC1 & L42 
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Hippocampus sections stained with H&E showing spongiosis and neuronal degeneration. Also, 

immunohistochemistry revealed the presence of strong immunopositivity for PrPSc deposits in 

hippocampus with CDC1 antibody and a weak signal with L42 which detect only EGFP-PrP. 

 

 

3.1.8. Confocal Laser Scanning Microscopy of Infected Brain Tissue 
 
In our experiment on EGFP-PrP transgenic mice, we cut brains of mice infected 

intracerebrally with RML scrapie and terminally killed with control mock mice; these 

samples were cut by vibratome dissection (100 µm thick). These samples were 

examined by Confocal Laser Scanning Microscopy for the presence or absence of 

pathological prion protein aggregates. Different parts of the CNS were examined 

including cerebral cortex, hippocampus, thalamus, basal ganglia, corpus callosum, 

cerebellum and medulla oblongata (Figures 14-16). The results revealed the 

presence of pathological PrP-aggregates distributed throughout the CNS and these 

aggregates were highly fluorescent. Also our results confirmed that localizations of 

the pathological EGFP-PrP aggregates are similar to the localization of wild-type PrP-

aggregates. 

 

Cerebellum              Uninfected                              Infected

40x
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Figure 14: Cerebellum of infected mice showing strongly fluorescent aggregates distributed 

throughout the molecular and granular cell layers in comparison with non-infected mice, which 

were negative for aggregates. 
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Figure 15: Hippocampus of infected mice showing strongly fluorescent aggregates in 

comparison with non-infected mice, which were negative for aggregates. 

 

 

 

Cerebral cortex             Uninfected                          Infected

40x 40x

Basal ganglia Uninfected                                        Infected

40x40x  
 
Figure 16: Cerebral cortex and basal ganglia of infected mice showing a lot of fluorescent 

aggregates distributed widely in nervous tissue in comparison with non-infected mice, which 

were negative for aggregates. 
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3.2. Evaluation of Prion Strain Properties using Transgenic Mice Expressing Human 

       PrP and LL-mice 

 
3.2.1. Susceptibility and Incubation Times of Humanized and LL Mice intracerebrally 

           infected with Human TSE Strains 

 
In general, all the humanized transgenic mice including HuMM and HuVV are 

susceptible to various TSE strains. Sporadic CJD and variant CJD strains from 

human cases were transmitted to all humanized transgenic mice either with HuMM or 

HuVV codon-129 polymorphism with different pathological characteristics for each 

genotype and a gradation of transmission efficiency from HuMM to HuVV mice. Two 

different materials of sCJD from two different human cases were used for infection, 

types of inoculated materials are 129-MM1 (a & b) and 129-MM2 (a & b), also, we 

used two different materials of vCJD obtained from two different human cases died 

from vCJD, designated vCJD (a & b). 

For the HuMM mice inoculated with sCJD 129-MM1-a and 129-MM1-b cases, our 

results showed that all the mice were susceptible (8/8 & 8/8) with different incubation 

times with means of 481.4±61.7 days and 484.3±37.6 days respectively. Also, all the 

HuMM mice inoculated with 129-MM2-a and 129-MM2-b cases were susceptible (7/7 

& 8/8) with incubation times with means of 514.3±79.1 days and 507.1±51.8 days 

respectively (Figures 18&19). All HuVV mice infected with 129-MM1-a and 129-MM1-

b cases were susceptible (8/8 & 8/8) with incubation times with means of 585.2±66.5 

days and 627.6±66.1 days respectively, while all HuVV mice infected with 129-MM2-

a and 129-MM2-b cases were susceptible (7/7 & 8/8) with incubation times with 

means of 677.5±54.3 days and 578.9±71.2 days respectively (Figures 18&19) 

(Tables 12&13). 

Our results reveal that all HuMM mice inoculated with vCJD-a and vCJD-b cases 

were susceptible (7/7 & 4/4) with incubation times with mean of 611.4±112.7 days 

and 551.8±204.3 days respectively. Also, all HuVV mice inoculated with vCJD-a and 

vCJD-b cases were susceptible to infection (7/7 & 7/7) with incubation times with 

means of 673.6±116 and 689.2±72.2 days respectively (Figures 18&19). 

We examined also the transmission properties of Gerstmann-Sträussler-Scheinker 

Syndrome (GSS) to transgenic mice with the 101LL mutation, designated LL-mice 

which equivalent to the P102L mutation in the human PRNP gene. We used two 

different GSS cases (a & b) and our results show that all LL-mice were susceptible to 
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infection with human GSS-a and GSS-b cases (8/8 & 8/8) with incubation times with 

means 279.9±18 days and 474.3±172.1 days respectively (Figure 21). 

 

  HuMM-mice 

Time sCJD sCJD sCJD sCJD vCJD-a vCJD-b 

range MM1-a MM1-b MM2-a MM2-b     

0-400 1 1 0 1 0 2 

401-500 4 5 3 2 2 0 

501-600 3 2 3 5 0 0 
>600 0 0 1 0 5 2 

  HuVV-mice 
Time sCJD sCJD sCJD sCJD vCJD-a vCJD-b 
range MM1-a MM1-b MM2-a MM2-b     
0-400 1 1 2 1 0 2 

401-500 1 0 0 0 2 0 
501-600 4 3 0 5 1 1 

>600 2 4 5 2 4 4 

 

  

Table 12: Time Scoring of Incubation Times of HuMM and HuVV mice after infection with sCJD 

MM1 (a&b), sCJD MM2 (a&b) and vCJD (a&b). 

 

 

  HuMM-mice HuVV-mice 
Strain Incubation Time Glycoform Type Incubation Time Glycoform Type 

  (Mean±SD)   (Mean±SD)   
sCJD MM1-a 481.4±61.7 1 585.2±66.5 1 
sCJD MM1-b 484.3±37 1 627.6±66.1 1 
sCJD MM2-a 514.3±79.1 2 677.5±54.3 1 
sCJD MM2-b 507.1±51.8 1 578.9±71.2 1 

vCJD-a 611.4±112.7 2 673.6±116 2 
vCJD-b 551.8±204 2 689.2±72.2 2 

 

Table 13: Incubation Times and Glycoform Types of HuMM and HuVV mice after infection with    

sCJD MM1 (a&b), sCJD MM2 (a&b) and vCJD (a&b). 
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Figure 17: Incubation Times of Humanized Mice infected with TSE Strains 

(A) HuMM mice infected with 129 MM1 (a & b) sCJD (B) HuVV mice infected with 129 MM1 (a & b) 

sCJD (C) HuMM mice infected with 129 MM2 (a & b) sCJD (D) HuVV mice infected with 129 MM2 (a & 

b) sCJD (E) HuMM mice infected with vCJD (a & b) (F) HuVV mice infected with vCJD (a & b). 
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Figure 18: Comparison of Incubation Times Between Different TSE Strains 

(A) Between 129 MM1 (a & b) sCJD and 129 MM2 (a & b) sCJD in HuMM mice (B) Between 129 MM1 

(a & b) sCJD and 129 MM2 (a & b) sCJD in HuVV mice (C) Between 129 MM1 (a & b) sCJD and 129 

MM2 (a & b) sCJD and vCJD (a & b) in HuMM mice (D) Between 129 MM1 (a & b) sCJD and 129 

MM2 (a & b) sCJD and vCJD (a & b) in HuVV mice. 
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Figure 19: Comparison of Incubation Times Between HuMM and HuVV Mice Infected With 

Different TSE Strains 

(A) HuMM and HuVV infected with 129 MM1 (a & b) sCJD (B) HuMM and HuVV infected with 129 

MM2 (a & b) sCJD (C) HuMM and HuVV infected with vCJD (a & b) (D) HuMM and HuVV infected with 

129 MM1 (a & b) sCJD, 129 MM2 (a & b) sCJD and vCJD (a & b). 
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Figure 20: Incubation Times of LL Mice Infected With Two Different GSS Strains (a & b) 
 
 
3.2.2. Neuropathology and Lesion Profiling 
 
Our results revealed the presence of CJD pathological signs of spongiosis, neuronal 

cell loss, astrogliosis and different patterns of PrP deposition, the severity and time of 

appearance of these lesions differs greatly according to the strain of the prion used 

for inoculation and to the genotype and codon-129 polymorphism of the transgenic 

mice. Lesions were more rapid and more aggressive in HuMM mice than in HuVV 

mice and by sCJD MM1 than with MM2. Some cases showed massive vacuolation 

and neuronal death, while others showed extensive PrP deposition with different 

patterns from synaptic until large kuru plaques (Figures 22-27). 
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Figure 21: Immunohistochemical pattern of PrP deposition (A-C) and astrogliosis (D) in the 
hippocampus of LL mice inoculated with GSS-b 729 days post inoculation 
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Figure 22: Immunohistochemical patterns of PrP deposition in LL mice 
A-C: LL mice inoculated with GSS-b, 729 days post inoculation, A: plaques in the cortex, corpus 
callosum, hippocampus and thalamus, B&C: cortex and thalamus showing large kuru plaques, D: LL 
mice inoculated with GSS-a, 260 days post inoculation showing synaptic distribution of PrP in the 
cortex, hippocampus and thalamus   
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Figure 23: Immunohistochemistry showing patterns of PrP deposition in transgenic mice 
express human PrP 
A: HuMM mice inoculated with sCJD MM1-b, 523 days post inoculation showing synaptic pattern of 
PrP deposition in different brain regions, B: HuVV mice inoculated with vCJD-a, 438 days post 
inoculation showing extensive synaptic pattern of PrP with spongiosis, C&D: HuMM mice inoculated 
with vCJD-a, 665 days post inoculation showing coarse deposition of PrP with presence of some large 
plaques in the cortex and hippocampus 
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Figure 24: Immunohistochemistry showing patterns of PrP deposition (A&C) and astrogliosis 
(B&D) in the hippocampus and thalamus of HuVV mice inoculated with sCJD MM1, 601 days 
post inoculation 
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Figure 25: Histological sections (H&E) showing extensive spongiosis in the medulla (A) and 
thalamus (B) in HuVV mice inoculated with sCJD MM1, 586 days post inoculation 
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Figure 26: Lesion Profiles for the different sCJD, vCJD and GSS Strains  
 
Groups were classified according to the codon 129 genotype and the protease-resistant prion protein 
(PrPSc) type. MM1 means MM genotype and type 1 PrPSc, MM2 means MM genotype and type 2 
PrPSc. VG1&MG1:HuVV&HuMM mice infected with case-a sCJD MM1, VG2&MG2: HuVV&HuMM 
mice infected with case-b sCJD MM1, VG3&MG3: infected with case-a sCJD MM2, VG4&MG4: 
infected with case-b sCJD MM2, VG5&MG5: infected with case-a vCJD, VG6: infected with case-b 
vCJD, LG1&LG2: infected with case-a &-b of GSS respectively. The following gray matter regions 
were assessed: frontal cortex (FC), parietal cortex (PC), corpus callosum (CC), basal ganglia (BG), 
hippocampus (HI), thalamus (TH), cerebellum (CE) and medulla oblongata (ME). Spongiosis was 
scored on a 0 to 4 scale (not detectable, mild, moderate, sever and status spongiosus), neuronal loss 
and astrogliosis on 0 to 3 scale (not detectable, mild, moderate and sever). Lesion profiles were 
obtained by averaging the three scores for each brain region examined. 
 
3.2.3. Biochemical Analysis of Infected Humanized Mice 
 
Brain extract 10% from all terminally-ill human transgenic mice, either HuMM or 

HuVV were analyzed biochemically by western blot analysis by using anti-prion 

protein antibodies as 3H4 for HuMM & HuVV mice and 4H11 for LL mice, using semi-
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dry blotting method to investigate the type of the PrP glycoform. The type 1 and 2 

PrP were used in every blot as a positive control (Table 13) (Figures 28-30). 
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Figure 27: Western Blot of HuVV Groups Infected with different TSE Strains 
 
VG1&VG2: HuVV mice infected with sCJD MM1 (a&b); VG3&VG4: HuVV mice infected with sCJD 

MM2 (a&b); VG5&VG6: HuVV mice infected with vCJD (a&b); Lane 1&2 in every blot refers to positive 

control type 1&2. 
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Figure 28: Western Blot of HuMM Groups Infected with different TSE Strains 
 
MG1&MG2: HuMM mice infected with sCJD MM1 (a&b); MG3&MG4: HuMM mice infected with sCJD MM2 (a&b); 

MG5&MG6: HuMM mice infected with vCJD (a&b); Lane 1&2 in every blot refers to positive control type 1&2. 
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Figure 29: Western Blot of LL Groups Infected with different GSS Cases 
 
Lane 1&2: positive control type 1&2; Lane3&5: LG1, mice infected with GSS-a case; Lane 4,6,7,8,9: 

LG2, mice infected with GSS-b case 
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4. Discussion 

4.1. Investigation of Pathogenic Mechanisms of Prion Diseases using Transgenic 
       Mice expressing EGFP-PrP 
 
In this experiment, Maringer and our group generate a five independent lines of 

transgenic mice that express a chimeric EGFP-PrP fusion protein under the 

regulatory elements of the half-genomic mouse PrP locus (Figure 2). Using these 

mice we were found that it is possible to visualize the localization of EGFP-PrP in 

various organs in histological sections. We find that EGFP-PrP behaves similarly to 

wild-type PrP in its posttranslational processing, cellular trafficking and anatomical 

localization in the brain (109,134). Histological sections from paraformaldehyde fixed 

tissues from EGFP-PrP transgenic mice were analyzed using confocal laser scanning 

microscopy. Images of all brain sections showed expression of EGFP-PrP in all 

transgenic lines. Three of the five transgenic lines showed similar expression 

patterns, only varying in intensity of EGFP-PrP fluorescence, while two lines showed 

slightly different patterns of EGFP-PrP distribution in the brain, probably due to 

integration effects of the transgene (Figure 4). 

The results reported here extend previous studies of EGFP-PrP fusion proteins 

expressed cell lines. When the same construct used here, in which EGFP-PrP is 

inserted in the open reading frame (ORF) of the PrP-coding gene, was expressed in 

transfected BHK and CHO cells, the fusion protein was found to be glycosylated, 

GPI-anchored and localized intracellularly and to the cell surface. These 

characteristics are similar to those of PrP without the EGFP-PrP moiety. In a similar 

construct, EGFP-PrP molecules carrying PrP mutations were partially retained in the 

ER of cultured cells and were present at reduced levels on the cell surface, 

analogous to their untagged PrP counterparts (118). Similar results have been 

reported by others using alternative EGFP-PrP fusion proteins (121,125,131). 

We are in general agreement with other studies that showed that EGFP-PrP 

expressed in neurons is also processed and trafficked along the secretory pathway in 

a normal fashion. The fusion protein is glycosylated, GPI-anchored and localized to 

the cell surface and the Golgi apparatus of neurons in brain tissues and in culture 

(76,130,138,140). At high expression levels of PrP, a fraction of PrP molecules is 

inefficiently translocated into the ER, and these unprocessed forms remain in the 

cytoplasm where they are normally degraded by the proteosome (141). 
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Our results revealed that EGFP-PrP fusion proteins were expressed in the all brain 

tissues and very clear in the hippocampus and cerebellum especially in molecular, 

granular and Purkinje cell layers (Figure 4). Several previous studies have utilized 

immunohistochemistry to study the localization and distribution of PrP in the normal 

brain at the light or electron microscopic levels. There is general agreement that PrP 

is concentrated in neuropil layers that are rich in synapses, such as the strata oriens, 

radiatum and lacunosum-moleculare of the hippocampus, the stratum moleculare of 

the dentate gyrus and the molecular layer of the cerebellum (76). However, there is 

disagreement on several specific points such as preferential localization of the PrP in 

synaptic vesicles and/or pre-synaptic plasma membrane (117), while others suggest 

that PrP is present on both presynaptic and postsynaptic membranes (119,129,132). 

Also others reported the presence of PrP on axonal fiber tracts (128,142) and distinct 

intracellular accumulation of PrP within a subset of neurons (128). It has been argued 

that cytoplasmic PrP arises by retrotranslocation of PrP from the lumen of the ER 

(122,123,124,133). Neurons that accumulate cytoplasmic PrP are those that 

overexpress the protein compared to their neighbours, or that have lower activities of 

translocation factors or the proteosome (76).   

Several technical problems implicate interpretations of these immunocytochemical 

studies and may account for some of the discrepancies in the results reported (76). 

These include different effects of processing steps used in immunohistochemistry for 

preparation of tissue sections such as antibody-induced redistribution of GPI-

anchored PrP in paraformaldehyde-fixed sections (127), fixation-induced changes in 

PrP antigenicity (143), extraction and relocation of membrane-bound PrP by the 

detergent used to improve antibody accessibility (126), differential reactivity of 

antibodies with different PrP glycoforms and cleavage products (120,137), and 

diffusion of enzymatic reaction product used to visualize antibody localization (139). 

The use of an EGFP-PrP fusion protein to visualize the localization of PrP in brain 

tissue avoids all difficulties faced with immunohistochemical techniques because it 

allows antibody-independent visualization of the protein through its fluorescence. 

Our results are in agreement with results of the previous immunohistochemical 

studies and EGFP-PrP studies on transgenic mice which demonstrate preferential 

localization of the PrP in synaptic regions of the neocortex, hippocampus, dentate 

gyrus and cerebellum. Although the signal was considerably weaker; we could also 

visualize fluorescence on surface of neuronal cell bodies, including pyramidal cells in 
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the hippocampus and granular cells in the dentate gyrus and in the cerebellum. Our 

results indicate that EGFP-PrP is localized primarily along myelinated and 

unmyelinated axons and in presynaptic terminals (76). 

We conducted FACS analysis of EGFP-PrP transgenic mice to analyze the 

distribution of EGFP-PrP in peripheral blood, thymus, bone marrow, spleen. We used 

FACS analysis to detect EGFP-PrP on single cell preparations from EGFP-PrP 

transgenic tissues. Positive cells were detected in bone marrow and peripheral blood 

of transgenic mice (Figure 5). Positive results of FACS analysis revealed that EGFP-

PrP was expressed in tissues other than nervous tissues and this finding confirmed 

that EGFP-PrP behave in similar manner like wild-type PrP, which expressed in 

tissues other than nervous tissues like blood cells, bone marrow, thymus and spleen, 

also confirmed correct transgenesis of EGFP-PrP fusion protein transgene in 

transgenic mice and expression pattern and distribution of EGFP-PrP similar to wild 

PrP (134). 

We found that introduction of EGFP-PrP transgene in F35-mice can not rescue them 

from neurodegeneration induced by expression of PrPΔ32-134. Expression of EGFP-

PrP in Tg (F35)/PrP% mice can not prevent the progression and severity of clinical 

symptoms and can not abrogate the pathological phenotype of F35-mice (Figure 9). 

This attachment of the EGFP-PrP moiety abolishes the physiological function of the 

PrP necessary for the rescue phenomenon. My results concerning rescue studies 

were in disagreement with other results using similar EGFP-PrP construct which 

revealed that introduction of EGFP-PrP transgene into the F35-mice can abrogate 

the pathological phenotype of F35-mice and stop the progression and severity of the 

adverse effects like ataxia and cerebellar degeneration after 3-5 months (76). It has 

been speculated that PrP supplies a trophic function by binding to a receptor whose 

activity is blocked by binding of PrPΔ32-134. Wild-type PrP is postulated to bind the 

receptor with a higher affinity than PrPΔ32-134 and thereby way titrate out the 

inhibitory effect of the defect protein (22). 

To analyze EGFP-PrP localization pre and post-infectional, we transfected RK13 

cells with EGFP-PrP and a suitable hygromycin resistance vector. Western blot 

analysis of EGFP-PrP cell extract digested with proteinase k (PK) showed no signs of 

PK-resistant PrP four, eight and eleven passages after incubation with 22L scrapie 

prions (Figure 6). To address the question of whether chimeric EGFP-PrP is 

convertible to PK-resistant form, we used an in vitro conversion assay where we 
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incubated 35S-labeled EGFP-PrP as well as wild-type mouse PrP with PrPSc from a 

mouse infected with scrapie strain ME7. No detectable PK-resistant PrP derived from 

EGFP-PrP was found, while wild-type mouse PrP was effectively converted to a PK-

resistant form (Figure 7). The in vitro conversion assay using a mixture of labeled 

EGFP-PrP and unlabeled wild-type PrP did not result in conversion of EGFP-PrP. 

In this study, we describe experiments in which EGFP-PrP transgenic mice were 

inoculated intracerebrally with RML scrapie prions. We found that although EGFP-

PrPC was not itself converted into EGFP-PrPSc, the fusion protein served as a highly 

specific marker that bound to PrPSc generated from endogenous PrPC (Figure 11). 

This feature allowed us to visualize the accumulation of PrPSc in situ by fluorescence 

microscopy without the need for immunohistochemical staining and the application of 

antigen retrieval techniques.  

Also, our results are in agreement with other results that revealed that EGFP-PrP can 

not be convert into EGFP-PrPSc by itself but binds to PrPSc of endogenous origin (77). 

We hypothesized that EGFP-PrP binds to PrPSc but that the presence of the bulky 

EGFP moiety prevents the subsequent conversion step that would generate EGFP-

PrPSc. Additionally, we propose that EGFP-PrP competes with endogenous PrPC for 

access to binding sites on PrPSc, thereby slowing prion propagation in mice 

expressing both proteins. Because of the specific affinity between EGFP-PrP and 

PrPSc, we envision that the fusion protein is incorporated into growing aggregates of 

PrPSc, thus marking the location of PrPSc and permitting its detection by fluorescence 

microscopy. Consistent with this proposal, we observed a striking and progressive 

accumulation of fluorescent aggregates in the brains of scrapie-inoculated Tg (EGFP-

PrP+/0)/PrP+/+ mice during the course of infection. EGFP-PrP aggregates were 

observed in many brain areas and took several forms, including granular and plaque-

like deposits in the neuropil as well as intracellular accumulations in neuronal somata 

and axon tracts. These aggregates were absent from uninoculated control mice 

(Figures 14-16). The redistribution of EGFP-PrP in infected animals preceded by ~50 

days the onset of clinical symptoms, the appearance of astrocytosis and the 

detection of PrPSc on western blots (77). 

Visualization of PrPSc in EGFP-PrP mice by fluorescence microscopy represents a 

significant advance over conventional immunohistochemical techniques because of 

the improved ability to detect natural in situ localization of the PrPSc extra- and 

intracellularly after scrapie infection without possible effects which can be generated 
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from processing steps of immunohistochemistry. Immunohistochemical studies on 

light microscopy typically describe several different patterns of PrPSc deposition in the 

brain, depending on the prion strain and host, including dense plaques, diffuse 

plaques, granular deposits within the neuropil (synaptic form) and perineuronal 

aggregates (110,111,113). Most of these deposits appear to be extracellular, a 

conclusion that is confirmed by electron microscopic studies that have identified both 

fibrillar and non-aggregated forms of PrPSc in spaces surrounding neurons and their 

processes (111,112). Published images showing intracellular accumulation of PrPSc 

in brain are rare (114,115,116). 

We do not believe that the novel features of PrPSc localization reported here are 

artifacts resulting from the expression of a foreign protein transgene. First, EGFP-

PrP+/0/PrP+/+ transgenic mice eventually show the same symptoms and 

neuropathological features as the non-transgenic ones and they accumulate similar 

levels of PrPSc. Second, after immunohistochemical staining of formic acid-treated 

sections, the distribution of PrPSc in the neuropil was very similar in EGFP-

PrP+/0/PrP+/+ and non-transgenic animals. This observation suggests that the 

expression of EGFP-PrP does not cause a major redistribution of PrPSc. However, 

visualization of PrPSc in EGFP-PrP+/0/PrP+/+ mice is indirect, because it relies on 

binding of EGFP-PrP to PrPSc. Thus, it is possible that some deposits of PrPSc may 

not be evident by fluorescence microscopy because of the dissociation of PrPSc and 

EGFP-PrP. Conversely, some EGFP-PrP aggregates could form independently of 

PrPSc (77). 

Concerning incubation times of EGFP-PrP transgenic mice intracerebrally infected 

with RML scrapie strain, we found that these are comparable and similar to 

incubation times of wild mice (Figure 10). Our interpretation that this similarity in 

incubation times between EGFP-PrP+/0/PrP+/+ and wild-type PrP is partly due to the 

presence of wild PrP allele in these transgenic mice which express normal PrP and 

partly due to EGFP-PrPC which is not converted into EGFP-PrPSc by itself, so that 

has no effect on the incubation times. 

EGFP-PrP transgenic mice represent a unique system for examining the 

pathogenesis and progression of prion disease in vivo. It may be possible to visualize 

PrPSc deposition in the brains or other organs of these animals while they are alive 

and to assess the effects of therapeutic agents. Also, EGFP-PrP can help us to follow 
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up the trafficking of PrPSc intracellularly to know the sites of formation, conversion 

and accumulation of PrPSc inside the neurons.  

 

4.2. Evaluation  of  Prion  Strains  Properties  using  Transgenic  Mice  Expressing  

       Human PrP and LL mice 
 
In these experiments, we investigated the different strain properties and transmission 

efficiencies of different human TSE strains including biological, genetic, pathological 

and biochemical features of these strains. We used for these studies transgenic mice 

producing human PrP and infected them with various TSE strains from brains of 

human cases died from prion diseases. Several properties were investigated 

including: susceptibility, incubation time, biochemistry, neuropathology and lesion 

profiles of transgenic mice infected with human prion strains. Also, the effect of the 

codon-129 polymorphism on human-to-human transmission of different TSE strains 

by using gene-targeted inbred mice developed by direct replacement of the murine 

PrP gene for the human gene was investigated. These mice produce human PrP 

under the control of the normal regulatory elements of murine PrP and these express 

physiological concentrations of PrP with the correct tissue distribution. Two inbred 

lines with an identical genetic background were used to express human PrP with the 

codon-129 MM and VV genotypes, named HuMM and HuVV respectively. Each line 

differs by only a single codon in PRNP and in all other respects the mice were 

genetically identical. 

In general, all the humanized transgenic mice including HuMM and HuVV are 

susceptible to various TSE strains. Sporadic CJD and variant CJD materials from 

human cases were transmitted to the humanized transgenic mice either with the MM 

or VV codon-129 polymorphism with different pathological characteristics for each 

genotype and a gradation of transmission efficiency from the HuMM to HuVV mice. 

Two different materials of sCJD from two different human cases were used for 

infection, types of inoculated materials are sCJD MM1 (a&b) and sCJD MM2 (a&b), 

also, we used two different materials of vCJD obtained from two different human 

cases died from vCJD, designated vCJD (a&b).  

Higher susceptibility of transgenic humanized mice to different human prion strains of 

sCJD and vCJD may be attributed to the presence of human PrP transgene in these 

mice which express human PrP (75,92). 
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Our results reveal that the incubation times of all HuVV mice are longer than that of 

HuMM mice infected with human TSE cases either sCJD MM1 or sCJD MM2 or 

vCJD. The mean incubation times of HuMM mice infected with sCJD MM1 (a&b) are 

481.4±61.7 (Mean±SD) and 484.3±37 days while the corresponding mean incubation 

times of HuVV mice infected with the same cases are 585.2±66.5 and 627.6±66.1 

days with difference of 103.8 and 143.3 days, respectively (Figures 20) (Tables 

12&13). 

Similarly, the mean incubation times of HuMM mice infected with sCJD MM2 (a&b) 

are 514.3±79.1 and 507.1±51.8 days while the corresponding mean incubation times 

of HuVV mice infected with the same cases are 677.5±54.3 and 578.9±71.2 days, 

with differences of 163.2 and 71.8 days, respectively. Also, the mean incubation 

times of HuMM mice infected with vCJD (a&b) are 611.4±112.7 and 551.8±204 days 

while the corresponding mean incubation times for HuVV mice infected with the same 

cases are 673.6±116 and 689.2±72.2 days with differences of 62.2 and 137.4 days, 

respectively (Figures 18-20). 

These higher incubation times of prion strains in HuVV mice than in HuMM mice 

could be attributed to the genetic effect of the codon-129 polymorphism of PrP gene, 

the genetic bachground with methionine homozygosity at codon-129 may support the 

infection to prion strains and conversion of PrPC into PrPSc, while the presence of 

genetic background with valine residue at codon-129 may not support or hinder the 

infection and conversion of PrPC into PrPSc, also, incubation times can vary for other 

reasons, such as the genotype of the recipient animal, whether or not the recipient is 

of the same species as that from which the agent come, the route of inoculation and 

the particular strain of the prion which is involved (106). 

Also, our results show that the general mean incubation times of sCJD MM2 are 

higher than that of sCJD MM1 either in the HuMM or HuVV mice, while these mean 

incubation times are 510.7±65.5 and 628.2±62.8 days for sCJD MM2 in HuMM and 

HuVV mice, the corresponding mean incubation times for sCJD MM1 are 482.9±49.4 

and 606.4±66.3 days in HuMM and HuVV, respectively (Figures 18&19). We found 

that the type of the glycoform pattern of PrP has a significant effect on the incubation 

times of prion diseases even between the TSE strains having the same genetic 

structure at codon-129 of prion protein gene and we found that type 2 of prion protein 

glycoform has a prolongation effect on the incubation time when infecting mice (host) 

either with similar genetic background and codon-129 residue such as HuMM mice or 
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with different genetic background and codon-129 residue such as HuVV mice. We 

can say that the prion protein with type 1 glycoform pattern may support the 

pathogenesis of prion infection and conversion of PrPC into PrPSc more than type 2 

glycoform (80,106). 

In similar manner, our results revealed that the general mean incubation times of 

vCJD are higher than that of sCJD MM1 and MM2 in either HuMM or HuVV mice, 

while these mean incubation times are 581.6±158.4 and 681.4±94.1 days for HuMM 

and HuVV mice infected with vCJD, the mean incubation times are 510.7±65.5, 

482.9±49.4 and 628.2±62.8, 606.4±66.3 days for HuMM and HuVV mice infected 

with sCJD MM2 and sCJD MM1, respectively (Figures 19). 

Our interpretation for these higher incubation times of vCJD than that of sCJD MM1 

and MM2 in HuMM and HuVV mice is due to relative species barriers which may be 

stored or still present in newly emerging prion disease vCJD which is thought to 

originate from bovine prion disease, BSE, and these barriers are completely not 

present in original human prion strains such as sCJD either MM1 or MM2. We argue 

that these species barriers are not absolute barriers but relative when we compare 

between vCJD and sCJD and this in turn could explain the low number of vCJD 

cases in human population in comparison with sCJD. Prion strain type may affect 

transmission barriers via an effect on PrPSc tertiary structure and state of aggregation 

(12,23,55). 

In cerebral cortex there were band-like deposits of synaptic pattern of PrP with 

presence of some plaque-like aggregates intermixed in layer 3 and more less in layer 

6 of neocortex, also, plaque-like deposits were present in linear distribution in the 

hippocampus especially in oriens, stratum radiatum, stratum lacunosum-molecular 

and sometimes in granular and polymorphic cell layers of dentate gyrus. Synaptic 

and coarse deposits were found in the lateral area of the thalamus in the shape 

triangle, synaptic pattern of PrP distribution were found in molecular and granular 

layer of cerebellum, scanty or no plaque-like deposits were found in the corpus 

callosum, basal ganglia and brain stem regions (Figures 24&25). These results are in 

agreement with other authers who reported the presence of spongiosis, cell death, 

astrogliosis and synaptic pattern of PrP deposition in the same regions of gray matter 

in transgenic mice and in human beings affected with the same TSE strains 

(23,24,146). 
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Lesion profiles in HuMM mice were more sever and more rapid than in HuVV mice 

infected with vCJD (a&b) especially with HuMM mice infected with vCJD-a strain 

(Figure 27). Vacuolation, cell loss and astrogliosis were present in all mice which 

were more extensive in corpus callosum, basal ganglia, thalamus and medulla and to 

less extend in cortex and hippocampus. Extensive distribution of synaptic pattern of 

PrP deposition in all layers of the neocortex, thalamus (in lateral triangle) and 

hippocampus (stratum oriens, stratum radiatum, stratum lacunosum-molecular), with 

little synaptic deposits in basal ganglia, corpus callosum and medulla (Fifures 24-26). 

HuMM mice infected with vCJD-a case showed more sever pathological lesions in 

the form of kuru plaques which were more extensive in the central raphe of the 

neocortex, corpus callosum, hippocampus, thalamus and little in basal ganglia and 

medulla and this distribution of PrP deposits may be because these regions are rich 

in synapses (76). These kuru plaques consist of pale centers and dark peripheries 

and are not surrounded by vacuoles (Figure 24). These results are in disagreement 

with results of others who reported that vCJD strains in HuMM mice result in florid 

plaques in the hippocampus with eosinophilic core with paler halo and is surrounded 

by a ring of vacuolation (23). 

Biochemical analysis of brain extracts of our mice revealed that PrP of HuMM and 

HuVV mice infected with sCJD MM1 (a&b) are type 1 glycoform pattern with 

predominance of diglycosylated form and equal monoglycosylated and 

unglycosylated forms (Figures 28&29) and these results are consistent with 

glycoform type of the infecting strain sCJD MM1 and in agreement with other results 

(6,24,52).  

Western blot of brain homogenates of HuMM and HuVV mice infected with sCJD 

MM2 (a&b) revealed that PrP of HuMM mice infected with sCJD MM2-a is type 2 

glycoform with predominance of diglycosylated and monoglycosylated form and weak 

unglycosylated form, while PrP of HuMM mice infected with sCJD MM2-b and PrP of 

HuVV mice infected with sCJD MM2 (a&b) are glycoform type 1 with predominance 

of diglycosylated and monoglycosylated form and weak unglycosylated form. Also, 

we observed that glycoform percentage of PrP in HuMM mice infected with sCJD 

MM2-b and PrP in HuVV mice infected with sCJD MM2 (a&b) are similar to glycoform 

percentage of type 2 PrP in HuMM mice infected with sCJD MM2-a and similar to 

type 1 in electrophoretic velocity of protein (Figures 28&29) and we can explain this 

change due to alteration of strain properties in TSE strains upon transmission and 

 81



passage from species to another as a type of adaptation or due to the effect of the 

host on certain new TSE strains (7,11, 52,53,73). 

Western blot results of PrP in HuMM and HuVV mice infected with vCJD (a&b) reveal 

that PrP were type 2 glycoform with predominance of diglycosylated form and equal 

monoglycosylated and unglycosylated forms in mice infected with vCJD-a case and 

predominance of diglycosylated and monoglycosylated forms more than 

unglycosylated form for PrP of mice infected with vCJD-b case and these differences 

are small and may be due to strain variability of vCJD (6,23,55,92,148,149). 

Our results reveal that vCJD can be transmitted to MM and VV individuals and these 

results are in disagreement with other published data suggesting that VV individuals 

can not propagate the vCJD biochemical phenotype (149). All PRNP codon-129 MM 

and VV genotypes are susceptible to vCJD infection: however, aggressive 

development of pathological lesions of vacuolation and PrP deposition were more 

rapid in the MM genotype mice. An explanation for this finding might be provided by 

in vitro conversion of recombinant human PrP by BSE and vCJD agents, which has 

shown that PrP with methionine at position 129 is more efficiently converted than PrP 

with valine, and that conversion by vCJD is significantly more efficient than by BSE 

(83). A long incubation time during which PrPSc is deposited predicts that in human 

beings infection could be present in all genotypes for a significant period before 

clinical onset. Incubation periods of more than 30 years have been reported in the 

human TSE disease kuru (147). 

A mutation equivalent to P102L in the human PrP gene, associated with Gerstmann-

Sträussler-Scheinker syndrome (GSS) (57), has been introduced into the murine PrP 

gene by gene targeting. Inbred mice homozygous for this mutation (101LL) were 

inoculated with brain homogenate from patients who died of Gerstmann-Sträussler-

Scheinker syndrome (GSS). All LL mice infected with LL GSS (a&b) cases were 

susceptible to the disease and developed clinical signs with different incubation times 

of GSS-a and GSS-b. The mean incubation times for LL mice infected with GSS-a 

case is 279.9±18 days and for GSS-b strain is 474.3±172 days; incubation times of 

GSS-b case are longer than that of GSS-a case (Figure 21). Similarly, 

histopathological examination of these mice reveal that the presence of vacuolation, 

cell loss and astrogliosis are more abundant in corpus callosum, basal ganglia, 

thalamus and medulla and less in the neocortex and hippocampus, with no lesions in 

the cerebellum. Extensive synaptic pattern of PrP deposition in layer 2, 3 and 5 of the 
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neocortex, basal ganglia, thalamus and medulla with presence of little plaque-like 

deposits in corpus callosum and medulla, all these lesions are present in LL mice 

infected with GSS-a case, while lesions in LL mice infected with GSS-b case were 

different which showed presence of large kuru plaques with pale center and dark 

periphery in the neocortex, along the entire length of the corpus callosum, basal 

ganglia, hippocampus and thalamus (Figures 22&23), with the exception of the 

cerebellum and medulla, spongiosis and astrogliosis are low in all regions (78,79). 

Biochemical analysis of PrP from brain extracts of LL mice infected with GSS (a&b) 

cases revealed that PrP are type 1 glycoform with predominance of diglycosylated 

form and very weak signal of unglycosylated form (Figure 30). 

Our findings are in agreement with others who reported higher susceptibility and 

pathological lesions of vacuolation in thalamus, corpus callosum and medulla, with 

diffuse PrP deposits in the thalamus, cortical layers and corpus callosum (144). 

Differences in incubation times and in pathology can be attributed to the different 

cases of the GSS (a&b) used for infection. The differences between prions may due 

to different conformations or sequences of PrPSc which is specified by the recipient to 

determine the tertiary structure of nascent PrP (1,43,44,73). 

The existence of prion strains raises the question of how heritable biological 

information can be enciphered in a molecule other than nucleic acid. Strains or 

varieties of prions have been defined by incubation times and the distribution of 

neuronal vacuolation. Subsequently, the pattern of PrPSc deposition were found to 

correlate with vacuolation profiles and these patterns were used also to characterize 

strains of prions (1,3,20,35,38,39,40). 

On the basis of a number of family studies, GSS, linked to the 102L mutation in 

human PrP, has been described as a genetic disease with an autosomal dominant 

mode of inheritance and high penetrance (57,145). Introduction of this mutation in 

situ into one or both of the endogenous murine PrP genes has not resulted in an 

inheritable spontaneous TSE in mice. Perhaps differences in other amino acids 

between the mouse and human PrP block the specific effects of the human 102L 

appearing as a disease in mice (144). 
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5. Summary 

 
Prions are unprecedented infectious pathogens that cause a group of invariably fatal 

neurodegenerative diseases mediated by an entirely novel mechanism. Prions are 

devoid of nucleic acids and seen to be composed exclusively of a modified isoform of 

PrP designated PrPSc. The normal, cellular PrP, denoted PrPC, is converted into 

PrPSc through a process whereby a portion of its α-helical and coil structure is 

refolded into ß-sheet. This structural transition is accompanied by profound changes 

in the physicochemical properties of the PrP and by appearance of pathological 

lesions. 

In the first part of this work, we studied the pathogenesis of prion diseases by using 

EGFP-PrP transgenic mice expressing a tagged prion protein, EGFP-PrP 

(Fluorescent protein). By using this fluorescent tagged protein, we could study the 

pathogenesis and progression of the different prion diseases in vivo and in vitro; it 

was possible to visualize the PrPSc deposition in the brains and other organs of these 

animals before and after infection with prion strains. Also, EGFP-PrP may help to 

follow up the localization, colocalization, distribution and trafficking of PrPSc intra-and 

extra cellular to know the sites of formation, conversion and accumulation of PrPSc 

inside the neurons. Different techniques were used in this study including inoculation 

of transgenic mice, cell culture, FACS analysis, western blot, histological, 

immunohistochemical analysis, vibratome microtomy and confocal laser scanning 

microscopy for imaging of fluorescent prion protein. 

Five independent lines of transgenic mice carrying a chimeric EGFP-PrP fusion 

protein were generated and visualized for the localization of EGFP-PrP in various 

organs in histological sections. Analysis of these mice was carried out in vivo before 

and after infection. The results showed that three of the five transgenic lines showed 

similar expression patterns, only varying in intensity of EGFP fluorescence while two 

lines showed slightly different patterns of EGFP distribution in the brain. 

In vitro conversion assay using a mixture of labeled EGFP-PrP and unlabeled wild-

type PrP did not result in conversion of EGFP-PrP and results showed that EGFP-

PrP was not susceptible to scrapie infection and not converted into EGFP-PrPSc form. 

Also, introduction of EGFP-PrP alleles into F-35 mice, could not rescue the 

deleterious effect of the truncated gene while this defect was completely abrogated 

with introduction of wild-type murine PrP gene. Analysis of EGFP-PrP mice  after 
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intracerebral infection with scrapie prion RML showed that these mice were 

susceptible for infection, survival data revealed similar incubation times of EGFP-PrP 

mice and wild-type mice, with about 150 days, so that the introduction of the EGFP-

PrP transgene into wild-type mice had no prolonging or shortening effect on 

incubation times. Western blot results confirmed that EGFP-PrP can not be 

converted into a resistant form EGFP-PrPSc, but it binds physically to the wild-type 

originated PrPSc. Histological examination of terminally killed EGFP-PrP mice showed 

all neuropathological features of prion diseases such as spongiform changes, 

neuronal loss and neurodegeneration. Immunohistochemistry showed the presence 

of PrP deposits of the two proteins; wild-type PrP and EGFP-PrP protein bound 

together and also PrP deposits of EGFP-PrP alone in the same locations of the wild-

type PrP, but with low concentrations. Confocal laser scanning microscopy revealed 

the presence of pathological PrP aggregates distributed throughout the CNS and 

these aggregates were highly fluorescent with similar localization as wild-type PrP 

aggregates. 

In the second part of this work we studied the strain properties and transmission 

efficiencies of different human prions such as sporadic CJD, variant CJD and GSS 

from human cases died from prion diseases, using transgenic mice expressing 

human PrP and mice with the 101LL mutation, also, we investigated the effect of the 

codon-129 polymorphism of the PrP gene on susceptibility. Two inbred humanized 

mouse lines with identical genetic background to express human PrP with the codon-

129 MM and VV genotype and one inbred line of LL mice were made. Mice were 

inoculated intracerebrally with human material of sporadic CJD (MM1&MM2), variant 

CJD and GSS (only LL mice) and examined for susceptibility, incubation times, 

western blot, clinical and pathological signs of the disease.  

Our results revealed that all mice were susceptible for infection by all human TSE 

strains with different pathological characterstics for each genotype and gradation of 

transmission efficiency from HuMM to HuVV mice, also, higher incubation times and 

extensive pathological lesions in HuVV mice than in HuMM and this may be due to 

the effect of codon-129 on the incubation times and pathogenesis. There are also 

alterations in the type of glycoform pattern of some strains. 
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6. Zusammenfassung 
 
Prionen sind neuartige Krankheitserreger, die zu einer Gruppe von stets tödlichen 

neurodegenerativen Krankheiten führen. Sie sind nach unserem derzeitigen Wissen 

frei von Nukleinsäuren und scheinen ausschließlich aus einer modifizierten Isoform 

des Prionproteins (PrP), PrPSc, zu bestehen. Die normale physiologische Form des 

PrP, allgemein als PrPC bezeichnet, wird durch einen Prozess, bei dem ein Teil der 

α-helikalen Struktur in ein ß-Faltblatt umgeformt wird, in PrPSc umgewandelt. Dieser 

strukturelle Übergang wird begleitet von tiefgreifenden Veränderungen in den 

physikalisch-chemischen Eigenschaften des PrP. 

 Der erste Teil dieser Arbeit beschäftigt sich mit der Pathogenese der 

Prionerkrankungen in transgenen Mäusen, die ein mit Enhanced Green Fluorescent 

Protein (EGFP) markiertes PrP exprimieren (EGFP-PrP). Es sollte damit möglich 

sein, die Progression der verschiedenen Prionablagerungen im Gehirn und anderen 

Organen darzustellen, ebenso wie die Kolokalisation mit anderen Proteinen zu 

verfolgen. Für diese Analyse wurden verschiedene Techniken wie die Inokulation von 

transgenen Mäusen, Zellkultur, FACS und Western Blot Analyse, histologische und 

immunhistochemische Gewebsanalyse, Vibratome Microtomy und konfokale 

Laserscanning-Mikroskopie verwendet.  

Fünf unabhängige transgene Linien mit chimärem EGFP-PrP Fusionsprotein wurden 

untersucht. Eine vor Infektion durchgeführte Analyse dieser Mäuse zeigte, dass drei 

der fünf Linien ein ähnliches Expressionsmuster aufwiesen und sich nur in der 

Intensität der EGFP Fluoreszenz unterschieden, während zwei Linien ein 

abweichendes Muster der EGFP Verteilung im Gehirn erkennen ließen.  

In vitro Umwandlungsversuche mit Hilfe einer Mischung von markiertem EGFP-PrP 

und unmarkiertem Wildtyp-PrP zeigten, dass EGFP-PrP nicht in die EGFP-PrPSc 

Form umfaltbar ist. Auch die Einführung eines EGFP-PrP Allels in F-35 Mäuse, die 

ein partiell deletiertes PrP exprimieren und nicht lange überlebensfähig sind, kann 

den klinischen Phänotyp nicht konvertieren, während dieser Mangel durch die 

transgene Einführung  eines Wildtyp-PrP-Gens aufgehoben wurde. Eine Analyse der 

EGFP-PrP Mäuse nach intrazerebraler Inokulation mit RML-Scrapie-Prionen zeigte, 

dass diese Mäuse in der Tat mit Scrapie infizierbar waren; Überlebens-Daten zeigten 

ähnliche Inkubationszeiten von EGFP-PrP Mäusen und Wildtyp-Mäusen von über 

150 Tagen. Western Blot Ergebnisse ergaben, dass das EGFP-PrP auch in vivo nicht 

in die postulierte resistente Form EGFP-PrPSc konvertiert werden kann; EGFP-PrP 
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scheint sich an Wildtyp-PrPSc lediglich anzulagern. Histologische Untersuchungen 

terminal getöter EGFP-PrP Mäuse zeigten alle neuropathologischen Merkmale von 

Prion-Erkrankungen wie spongiforme Veränderungen, Verlust von Neuronen und 

Neurodegeneration. Die immunhistochemische Untersuchung zeigte PrP-

Ablagerungen der beiden Proteine. Die Konfokale Laser Scanning Mikroskopie 

zeigte das Vorhandensein von pathologischen PrP-Aggregaten verteilt im gesamten 

ZNS; diese Aggregate waren hoch fluoreszierend mit ähnlicher Lokalisation wie 

Wildtyp PrPSc-Aggregate.  

 Im zweiten Teil dieser Arbeit untersuchten wir die Inkubationszeit und Pathogenese 

der Übertragung verschiedener Formen humaner Prionkrankheiten, nämlich der 

sporadischen CJD, der varianten CJD und GSS, bei der Übertragung auf transgene 

Mäusen, die humanes wildtyp-PrP bzw. humanes PrP mit einer 101LL Mutation 

exprimieren. Dabei wurde der Einfluss des Codon-129 Polymorphismus auf die 

Übertragbarkeit und das pathologische Ausprägungsmuster beschrieben. Mäuse 

wurden intrazerebral mit menschlichem Material von Fällen von sporadischer CJD 

(MM1&MM2), varianter CJD und GSS (nur LL Mäuse) inokuliert. 

 Unsere Ergebnisse bestätigen, dass alle transgenen Mäuse anfällig für Infektionen 

durch alle untersuchten menschlichen TSE-Stämme sind. Dabei zeigten sich 

unterschiedliche pathologische Charakteristika für jeden Codon 129-Genotyp und 

unterschiedliche Effizienz der Transmission auf HuMM bzw. HuVV Mäuse. Die hier 

mit Standardfällen herausgearbeiteten bzw. bestätigten Muster stellen jetzt die 

Grundlage für die Beurteilung atypischer humaner CJD oder GSS Fälle, die für die 

Beurteilung der schwierigen Frage, ob sich neue humane Prionstämme entwickeln 

oder entwickelt haben, von großer Bedeutung sein wird.   
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	-1x PBS, ≤ 5% FBS, 0.1% sodium azide,
	  4˚C (eBioscience, Cat. No. 00-4222) 
	-155mM NH4Cl, 10mM KHCO3, 100mM
	  EDTA, 37˚C 
	  (eBioscience, Cat. No.00-4333) 
	Method:
	A-For Cell Suspensions of Mouse Lymphoid Tissue
	Cell Preparation:
	1-Tissue (spleen, lymph nodes, thymus) were harvested and teased it apart into 
	   single cell suspension by pressing with plunger of a syringe or by mashing between
	   two frosted microscope slides using 10 ml of Staining Buffer. 
	2-Tissues were Transfered into a 50ml conical tube and allowed the big clumps and
	   debris to settle to the bottom or run the suspension through nylon meshes (Falcon
	   Cat. No. 2350) to get single cell suspension. 
	3-Cell suspensions were centrifuged 4-5 min (300-400xg) at 4°C, and discard 
	   supernatant. 
	4-If using spleen, RBC lysis was performed; otherwise, go to the next step. 
	5-The samples were resuspended in 50ml of Staining Buffer and a cell count was 
	   performed and viability analysis (e.g. Trypan Blue). 
	6-Cells were spun again, supernatant discarded, and cells resuspended in Staining 
	   Buffer at 2x107/ml. If using labeled primary antibodies, pre-incubate the cells with
	   0.5-1µg of anti-CD16/CD32 per million cells for 5-10 minutes on ice prior to 
	   staining. 
	Antibody Preparation and Incubation: 
	1-Diluted to previously-determined optimal concentration of primary antibody was 
	   prepared in 50µl of Staining Buffer and dispensed to each test tube or well of a
	   microtiter plate. Dispense 50µl of Staining Buffer were dispensed into the unstained 
	   or negative control tube. For titration studies, as a general rule, titrations in the
	   range of 2-0.03µg/million cells should be performed. 
	2-50µl of cell suspension (equal to 106 cells) were added to each tube or well; mixed
	   gently. 
	3-The mix was incubated for 20 minutes in the dark on an ice bath or in a refrigerator.
	   Note: Some antibodies may require longer incubation times. Determine these
	   conditions in your preliminary experiments. 
	4-After the incubation period, add Staining Buffer (2ml for tubes or 200µl for microtiter
	   plates). 
	5-Cells were centrifuged for 5 minutes (300-400xg) at 4°C. Aspirate supernatant. 
	6-2 times for a total of 3 washes were repeated. 
	7-Stained cell pellet were resuspended and analyzed samples on a flow cytometer. 
	        a-If using fluorochrome-labeled antibodies, resuspend stained cell pellet in
	           500µl of Staining Buffer and run on a flow cytometer. 
	        b-If using purified- or biotin-labeled antibodies, add the proper second step (a                   
	           fluorochrome-conjugated secondary antibody or -Avidin) in 50-100µl of 
	           Staining Buffer to each sample. Incubate in the dark for 15-30 minutes on an
	           ice bath or in a refrigerator. Wash 2 times as above (Steps 4 and 5).
	           Resuspend stained cell pellet in 500µl of Staining Buffer and run on a flow 
	           cytometer. 
	8-For discrimination of viable and dead cells, stained with a viability dye. 
	Note: If performing multiple color staining, add fluorochrome-labeled antibodies simultaneously and follow incubations and washing steps as mentioned above. Keep all steps in the cold and keep samples protected from light when working with fluorescent antibodies.

	B- For Cell Suspensions of Erythrocytes
	1-To previously-determined optimal concentration of purified or biotin-
	   conjugated antibody was diluted in 50µl of Staining Buffer and dispense to each 
	   test tube. 50µl of Staining Buffer were dispensed into the unstained or negative
	   control tube. Fluorochrome-conjugated anti-human antibodies were pretitrated for
	   optimal performance and should be used at 20µl per sample.
	2-100µl of whole blood was added to each tube, mixed gently. 
	3-It was incubated for 15-30 minutes at room temperature in the dark. Note: Some 
	   Antibodies with low affinity binding may require longer incubation times. These 
	   conditions were determined in preliminary experiments. 
	4-2ml of 1X RBC Lysis Buffer (pre-warmed to room temperature) were added per
	   tube, mixed gently. 
	5-Samples were incubated in the dark at room temperature for 10 minutes. Do not 
	   exceed15 minutes of incubation with the RBC Lysis Buffer. 
	6-Samples were spun (300-400xg) at room temperature, supernatant aspirated and
	   washed 1 time with 2ml of Staining Buffer. 
	7-Stained cell pellet was resuspended and analyzed samples on a flow cytometer. 


