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Summary 
RNA synthesis in the eukaryote nucleus is carried out by the multisubunit RNA poly-

merases (Pol) I, II, and III, which comprise 14, 12, and 17 subunits, respectively. All 

the RNA polymerases share a common architecture, with ten subunits forming a 

structurally conserved core, and additional subunits located on the periphery of the 

enzyme. Rpb4/7 complex located on the periphery of RNA Pol II is involved in tran-

scription initiation recognizing of the promoter-bound transcription factors. C17/25 

has been suggested to be a functional counterpart of the Rpb4/7 subcomplex in Pol 

III system. This thesis focuses on structure-function analysis of C17/25 complex in 

RNA Polymerase III and genome-wide distribution of the Pol II Rpb4/7 subcomplex. 

The results presented here provide first structural information on Pol III, the largest 

nuclear RNA polymerase. We obtained an 11-subunit model of RNA polymerase 

(Pol) III by combining a homology model of the nine-subunit core enzyme with a new 

X-ray structure of the subcomplex C17/25. Compared to Pol II, Pol III shows a con-

served active center for RNA synthesis, but a structurally different upstream face for 

specific initiation complex assembly during promoter selection. The Pol III upstream 

face includes a HRDC domain in subunit C17 that is translated by 35 Å and rotated 

by 150° compared to its Pol II counterpart. The HRDC domain is essential in vivo, 

folds independently in vitro, and, unlike other HRDC domains, shows no indication of 

nucleic acid binding. Thus the HRDC domain is a functional module that could ac-

count for the role of C17 in Pol III promoter-specific initiation. During elongation, 

C17/25 may bind Pol III transcripts emerging from the adjacent exit pore, since the 

subcomplex binds to tRNA in vitro. These data provide structural insights into Pol III 

and reveal specific features of the enzyme that can account for functional differences 

between nuclear RNA polymerases. 

Yeast RNA polymerase (Pol) II consists of a ten-subunit core enzyme and the 

Rpb4/7 subcomplex, which is dispensable for catalytic activity and dissociates in 

vitro. To investigate whether Rpb4/7 is an integral part of DNA-associated Pol II in 

vivo, we used chromatin immunoprecipitation coupled to high-resolution tiling mi-

croarray analysis. We show that the genome-wide occupancy profiles for Rpb7 and 

the core subunit Rpb3 are essentially identical. Thus, the complete Pol II associates 

with DNA in vivo, consistent with functional roles of Rpb4/7 throughout the transcrip-

tion cycle. 
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Chapter I: General Introduction 1 

Chapter I: General Introduction 

1. The flow of genetic information 

Genetic information required by all cells to live is stored in DNA and organized in 

complex genomes. Key steps in retrieving this information involve rewriting of DNA 

into RNA in a process called transcription and further synthesis of polypeptide chains 

of protein based on RNA templates during translation events (Figure 1). This unidi-

rectional flow of genetic information was postulated as the central dogma of molecu-

lar biology in all organisms (Crick, 1970; Thieffry &  Sarkar, 1998). The exception or 

special case with an inverted flow of the genetic information was found in retrovi-

ruses. The RNA-dependent DNA polymerase transfers the information from a viral 

RNA-based genome to DNA in the process of reverse transcription (Baltimore, 1970; 

Temin &  Mizutani, 1970). 

 

 

Figure 1: The central dogma of molecular biology 

2. DNA-dependent RNA polymerases 

Transcription, the first step in decoding of the genetic information is carried out by the 

multisubunit protein complexes of DNA dependent RNA polymerases. In prokaryotic 

cells thousands of different genes are transcribed by a common multiprotein machin-

ery. Crystal structures of bacterial RNA polymerases from Thermus aquaticus and 

Thermus thermophilus (Vassylyev et al., 2002),(Zhang et al., 1999), as well as an 

archaeal RNA polymerase (Sulfolobus solfataricus) (Hirata et al., 2008) are known. 

The overall structure consists of a core enzyme including five subunits: β, β’, two α 

and ω. The additional σ subunit was shown to be essential for promoter DNA binding 

specificity of the polymerase. The two largest subunits β and β’ form a crab claw-like 

structure harbouring the DNA binding channel with the catalytic center containing two 

Mg2+ ions (one of them permanently bound). The two α-subunits are associated one 

with β and the other with β’-subunit. The small ω-subunit localizes around the C-

terminus of β’.  
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In the much more complex eukaryotic genome the task of transcribing genes is di-

vided among three highly related enzymes, RNA polymerase I, II and III. A fourth 

type of RNA polymarase was recently discovered in plants (Herr et al., 2005),(Kanno 

et al., 2005), where it is claimed to play a role in the silencing of repetitive DNA se-

quences  by RNA-directed DNA methylation (Till &  Ladurner, 2007). 

Each of the eukaryotic RNA polymerases is dedicated to transcription of a specific 

set of genes and is subject to specific regulation. Pol I is specialized in high-level 

transcription of rDNA. Thereby it creates a single precursor RNA transcript, which is 

processed into mature 28S, 5.8S and 18S rRNA. The Pol II transcriptome is much 

more complex, as it includes not only all different protein-coding mRNAs but also 

non-coding RNAs such as small nuclear (sn), small nucleolar (sno) or micro (mi) 

RNAs.  The most diverse group of all RNA polymerases transcripts are RNA Pol III 

products. A wide collection of genes transcribed by this enzyme encodes structural or  

Table 1: Subunit composition of multisubunit RNA polymerases 

RNA polymerase Pol I Pol II Pol III Archaea Bacteria 

Ten-subunit core A190 Rpb1 C160 A' + A'' β' 

 A135 Rpb2 C128 B (B' + B'') β 

 AC40 Rpb3 AC40 D α 

 AC19 Rpb11 AC19 L α 

 Rpb6 (ABC23) Rpb6 Rpb6 K ω 

 Rpb5 (ABC27) Rpb5 Rpb5 H - 

 Rpb8 (ABC14.5) Rpb8 Rpb8 - - 

 Rpb10 (ABC10β) Rpb10 Rpb10 N - 

 Rpb12 (ABC10α) Rpb12 Rpb12 P - 

 A12.2 Rpb9 C11 - - 

Rpb4/7 A14 Rpb4 C17 F - 

complexes A43 Rpb7 C25 E' - 

A49 (Tfg1/Rap74) C37 - - TFIIF-like 

subcomplex
a
 

A34.5 (Tfg2/Rap30) C53 - - 

- - C82 - - 

- - C34 - - 

Pol III-specific 

subcomplex 

- - C31 - - 

Number of 

subunits 

14 12 17 11 (12) 5 

Molecular weight 

in kDa (species) 

589 (S. cerevisiae) 514 (S. cerevisiae) 693 (S. cerevisiae) 380 (P. furiosus) 375 (T. aquaticus) 

a
The two subunits in Pol I and Pol III are predicted to form heterodimers that resemble part of the Pol II initiation/elongation 

factor TFIIF, which is composed of subunits Tfg1, Tfg2, and Tfg3 in Saccharomyces cerevisiae, and of subunits Rap74 and 
Rap30 in human. 
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catalytic RNAs, which are shorter than 400 base pairs. Pol III is dedicated to the 

synthesis of small RNAs, including transfer RNAs, 5S ribosomal RNA, U6 small nu-

clear RNA and many other RNAs of known and unknown functions.  

Pol I, II, and III comprise 14, 12, and 17 subunits, respectively, and have a total mo-

lecular weight of 589, 514, and 693 kDa, respectively. Ten subunits form a structur-

ally conserved core, and additional subunits are located on the periphery. The two 

largest subunits of the core are homologous to the β and β’ subunits of the bacterial 

RNA polymerases. Five subunits are identical in all three eukaryotic polymerases and 

two other are shared between Pol I and Pol III systems. All Pol II subunits have coun-

terparts in the other two RNA polymerases, which additionally contain some unique 

subcomplexes (Table 1). Structural studies have so far concentrated on Pol II. X-ray 

structures are known of the 10-subunit Pol II core, and of the complete 12-subunit 

Pol II and several functional complexes (most recently reviewed in (Cramer et al., 

2008)). Structural information on the other nuclear RNA polymerases is limited to 

electron microscopic investigations. 

The structural differences between eukaryotic polymerases most probably underlie 

early observed difference in sensitivity to α-amanitin (Weinmann &  Roeder, 1974).  

α-amanitin is a cyclic octapeptide that can inhibit transcription initiation and elonga-

tion by directly binding to the RNA polymerase. Pol II exhibits a high sensitivity to     

α-amanitin, whereas Pol I activity is not influenced even by high concentrations of the 

toxin. Pol III shows intermediate sensitivity, but the inhibition occurs at 1000-fold 

higher α-amanitin concentration than for Pol II. Pol III can be selectively inhibited by a 

bacterial phytotoxin called tagetitoxin (Steinberg et al., 1990). Detailed structures of 

core RNA Pol II bound with α-amanitin (Bushnell et al., 2002; Kaplan et al., 2008) 

and the Pol II elongation complex (Brueckner &  Cramer, 2008) unveil the mecha-

nism of α-amanitin inhibition. Polymerase-specific inhibitors are very useful in distin-

guishing between different polymerase transcripts. Especially facing a steadily 

growing number of known short non-coding RNAs, a tool allowing discriminating 

whether they originate form Pol II or other polymerases transcription proofs to be 

valuable (Nakaya et al., 2007).  
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3. Transcription mechanism 

Synthesis of RNA is one of the basic, evolutionary conserved enzymatic activities in 

living cells. RNA extension begins with binding of a nucleoside triphosphate (NTP) 

substrate to the transcription elongation complex (EC) that is formed by the poly-

merase, DNA, and RNA. Catalytic addition of the nucleotide to the growing RNA 3’ 

end then releases a pyrophosphate ion. Finally, translocation of DNA and RNA frees 

the substrate site for binding of the next NTP. The EC is characterized by an un-

wound DNA region, the transcription bubble. The bubble contains a short hybrid 

duplex formed between the DNA template strand and the RNA product emerging 

from the active site.  

Catalytic nucleotide incorporation apparently follows a two-metal ion mechanism 

suggested for all polymerases (Steitz, 1998). The Pol II active site contains a persis-

tently bound metal ion (metal A) and a second, mobile metal ion (metal B) (Cramer et 

al., 2001). Metal A is held by three invariant aspartate side chains and binds the RNA 

3' end (Cramer et al., 2001), whereas metal B binds the NTP triphosphate moiety 

(Westover et al., 2004). Recent studies of functional complexes of the bacterial RNA 

polymerase revealed the close conservation of the EC structure (Vassylyev et al., 

2007) and provided additional insights into nucleotide incorporation (Vassylyev et al., 

2007). 

Analysis of the known crystallographic structures of the EC of Pol II (Gnatt et al., 

2001; Kettenberger et al., 2003; Wang et al., 2006) and bacterial RNA (Vassylyev et 

al., 2007) polymerase and available biochemical data (Epshtein et al., 2002; Gong et 

al., 2004; Bar-Nahum et al., 2005) results in a complete model of the nucleotide addi-

tion cycle (NAC), reviewed most recently in (Brueckner et al., 2008). Nucleotides are 

postulated to be incorporated into the nascent RNA chain in a two step mechanism 

(Kettenberger et al., 2004; Vassylyev et al., 2007). The NTP would first bind to the 

post-translocation EC in the inactive state to an open active center conformation 

characterized by an open trigger loop conformation (Figure 2). Delivery of the NTP to 

the insertion site involves folding of the trigger loop (Wang et al., 2006; Vassylyev et 

al., 2007), a mobile part of the active center first observed in free bacterial RNA po-

lymerase (Vassylyev et al., 2002), and in the Pol II-TFIIS complex (Kettenberger et 

al., 2003). Complete folding of the trigger loop leads to closure of the active center, 

delivery of the NTP to the insertion site, and formation of the catalytically active po-

lymerase conformation. An alternative model for nucleotide delivery involves binding 

of the NTP to a putative entry site in the pore, in which the nucleotide base is ori-

ented away from the DNA template, and rotation of the NTP around metal ion B di-

rectly into the insertion site (Westover et al., 2004). Catalysis of nucleotide 

incorporation leads to pyrophosphate formation and its release. This enables the 

trigger loop to adopt the wedged position (Brueckner &  Cramer, 2008), presumably 
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stabilizing a shift in the bridge helix in the direction of translocation. This is belived to 

accompany and facilitate movement of the DNA-RNA hybrid from pre- to post-

translocation position (translocation step 1). During step 2 of translocation the next 

template base of the downstream DNA positioned in the pretemplating site is twisted 

by 90º and reaches its templating position in the active center. It can be accom-

plished by releasing of the wedged position of the trigger loop and relaxation of the 

bridge helix, which frees the templating site for the next incoming template base. The 

proposed mechanism probably preserves EC stability during translocation and de-

creases the energy barrier between pre- and post-translocation states. 

 

Figure 2. Model of nucleotide addition cycle (NAC). Adapted from (Brueckner et al., 2008).  

Schematic representation of the extended model for the NAC. The vertical dashed line indicates register +1. 

Violet spheres I and II represent metal A and B in the active center, respectively. 
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Apart from synthesis of the nascent RNA chain, transcription events in the living cell 

require additional functions of RNA polymerases. During active elongation poly-

merase has to be able to proofread the transcript recognizing the mismatched nu-

cleotides, as well as overcome the obstacles in DNA template strand. In both cases 

the enzyme needs to move backward, which results in extrusion of RNA 3’ end 

through the polymerase pore beneath the active site. Backtracking of the DNA-RNA 

hybrid, causes arrest of the transcription process, which can only be resumed after 

RNA cleavage and creating a new 3’ RNA end. This weak intrinsic endonuclease 

activity (Wang &  Hawley, 1993; Orlova et al., 1995) is stimulated by GreA and GreB 

proteins in bacterial polymerase (Borukhov et al., 1993) and transcription factor TFIIS 

in eukaryotic Pol II (Izban &  Luse, 1992; Reines, 1992; Kettenberger et al., 2003). In 

RNA Pol I and Pol III, specific subunits Rpa 12.2 and Rpc11, respectively, seem to 

take over the role of TFIIS (Chedin et al., 1998; Kuhn et al., 2007). 
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4. Outline of the thesis 

RNA synthesis in the eukaryote nucleus is carried out by the multisubunit RNA poly-

merases (Pol) I, II, and III, which comprise 14, 12, and 17 subunits, respectively. All 

the RNA polymerases share a common architecture, with ten subunits forming a 

structurally conserved core, and additional subunits located on the periphery of the 

enzyme. Rpb4/7 complex located on the periphery of RNA Pol II has its counterparts 

in other two RNA Polymerases. C17/25 has been suggested to be a functional coun-

terpart of the Rpb4/7 subcomplex in Pol III system. In all three eukaryotic RNA Poly-

merases the Rpb4/7-like complexes fulfil important role in transcription initiation 

recognizing the promoter-bound transcription factors. This thesis focuses on the 

biology of the Rpb4/7 complexes in the RNA Pol III and Pol II systems. The two 

separate chapters that correspond to the two papers present the structure-function 

analysis of C17/25 complex in RNA Polymerase III and genome-wide distribution 

analysis of the Pol II Rpb4/7 subcomplex, respectively. 

The results presented in Chapter II provide first structural information on Pol III, the 

largest nuclear RNA polymerase. We obtained an 11-subunit model of RNA 

polymerase (Pol) III by combining a homology model of the nine-subunit core 

enzyme with a new X-ray structure of the subcomplex C17/25. The functional 

analysis of the C17/25 complex reveals specific features that can account for 

functional differences between nuclear RNA polymerases. 

In Chapter III the function of Rpb4/7 as an integral part of DNA-associated Pol II in 

vivo is investigated. We show that the genome-wide occupancy profiles for Rpb7 and 

the core subunit Rpb3, obtained by using chromatin immunoprecipitation coupled to 

high-resolution tiling microarray analysis, are essentially identical. Thus, the complete 

Pol II associates with DNA in vivo, consistent with functional roles of Rpb4/7 

throughout the transcription cycle. 
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Chapter II: Structure and function of RNA polymerase III 
C17/25 subcomplex 

1. Introduction 

1.1. The function of RNA Polymerase III  

1.1.1. RNA Polymerase III transcriptome 

The central dogma of molecular biology based, on the studies of simple organisms 

like Eschericha coli, has been that RNA functions mainly as an intermediate between 

a DNA sequence and its encoded protein. The extensive sequences in higher 

Eukaryotes, which do not encode proteins were for a long time regarded as 

evolutionary debris accumulated during early assembly of the genes and due to 

insertions of mobile genetic elements. Evidence accumulating during the last decade 

of research influenced this view strongly, showing important functions of non-coding 

(nc) RNAs (Mattick &  Makunin, 2006).  However until recently the main focus of 

research on Pol III transcription was on its role in supplying RNAs involved in mRNA 

translation or small nuclear (sn) RNAs involved in splicing. Indeed, actively dividing 

cells dedicate about three-quarters of their transcription to produce RNA of the 

translation machinery. In case of Pol II, almost 50% of its transcription is absorbed by 

ribosome biosynthesis (Warner, 1999). But as RNA Pol II transcription is not 

exclusively devoted to ribosomal proteins, the Pol III transcriptome embraces a wide 

range of non-tRNA and non-rRNA transcripts of known and unknown functions.  

The list of genes underlying Pol III transcription was published in the 1990s (White, 

1998), (Willis, 1993) and reviewed later including more recent studies (Dieci et al., 

2007) (Table 1.1).  
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Table 1.1 Selected RNA Polymerase III transcripts. 

RNA Species Reference 

tRNA various species (Sprinzl et al., 1991) 

5S RNA various species (Specht et al., 1991) 

U6 snRNA various species (Willis, 1993) 

RNase P RNA various species (Willis, 1993) 

RNase MRP RNA H.sapiens, rodents (Willis, 1993) 

7SL RNA various species (Gupta &  Reddy, 1991) 

valut RNA various species (van Zon et al., 2003) 

Y RNA  H.sapiens (Wolin, 1985) 

7SK RNA H.sapiens (Blencowe, 2002) 

BC1 BC200 RNA H.sapiens, rodents (Martignetti &  Brosius, 1993; 

Martignetti &  Brosius, 1995) 

snaRNAs H.sapiens, chimpanzees (Parrott &  Mathews, 2007) 

Telomerase RNA  Tetrahymena (Romero &  Blackburn, 1981) 

G8 RNA Tetrahymena (Hallberg et al., 1992) 

Myc exon 1 H.sapiens (Sussman et al., 1991) 

VA RNA Adenovirus (Dieci et al., 2007) 

EBER RNA Epstein-Barr virus (Gupta &  Reddy, 1991) 

HVP RNA Herpesvirus (Gupta &  Reddy, 1991) 

stem-bulge (sb)RNA C.elegans (Deng et al., 2006) 

snoRNAs A.thaliana, D.melanogaster, C.elegans, 

S.cerevisiae 

(Dieci et al., 2007) 

miRNAs H.sapiens, Herpesvirus (Pfeffer et al., 2005; Borchert et al., 

2006) 

regulatory ncRNAs H.sapiens (Pagano et al., 2007) 

regulatory ncRNAs from TRF1/BRF 

associated loci 

D.melanogaster (Isogai et al., 2007) 

Epstein-Barr virus-induced ncRNA H.sapiens (Mrazek et al., 2007) 

SINE RNAs H.sapiens,  (Dieci et al., 2007) 

1.1.2. Role of Pol III transcription in the cell 

Increasing understanding of the regulatory processes provides a complex picture 

illustrating the role of the RNA Pol III transcripts in the cell (Figure 1.1) (Dieci et al., 

2007). Some Pol III products, like 7SK RNA in vertebrates, are able to regulate 

transcription by repressing the Pol II elongation, whereas others facilitate post-

transcriptional splicing like the U6 snRNA. Pol III transcribes also a multitude of 

“house-keeping RNAs” involved in the protein biosynthesis. To this group belong 

various tRNAs and 5S rRNA, which are part of a translating ribosome, but also 
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RNase P RNA, involved in maturation of pre-tRNAs by processing of its 5’ termini, or 

RMRP RNA and snoRNAs, which play a role in rRNA maturation. Further, BC1 and 

BC200 RNAs are postulated to be implicated in translation of dendric mRNAs in 

rodents and primates, respectively, and adenovirus VA-I and VA-II RNAs were 

shown to inhibit the protein kinase PKR, which is activated in response to viral 

infection, and allow the translation of the adenoviral mRNAs. The 7SL RNA provides 

a scaffold for the signal recognition particle and therefore takes part in the post-

translational events of protein biosynthesis. Other cytoplasmic RNAs are so-called 

valut (v)RNAs , which are a part of a large ribonucleoprotein complexes found in 

many eukaryotes. They were proposed to be involved in multidrugresistance of 

human tumors and in macromolecular assembly and transport. Pol III transcripts 

localize also in mitochondria. RNase MRP associated RNA plays a role in the RNA 

primer processing during mitochondrial DNA replication. A group possessing an 

enormous regulatory potential is represented by SINE encoded RNAs. Short 

interspersed repeated DNA elements (SINE) are nonautonomous retrosposons 

originating from Pol III-transcribed genes, like Alu and diverse micro (mi)RNAs. Their 

expression is normally low but can be simulated by cell stress, heat shock or viral 

infection. Mouse B2 RNA can inhibit transcription by direct binding to Pol II, and Alu 

RNAs can modulate protein translation and downregulate protein expression through 

an antisense effect. 

 

Figure 1.1 Cellular roles of RNA Polymerase III transcripts. Adapted from (Dieci et al., 2007) 
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1.1.3. Pol III-associated disorders 

An increasing number of ncRNAs have been associated with human disorders. Pol III 

transcripts are involved in diverse cellular processes (Chapter 1.1.2). Therefore 

alteration in levels or functions of Pol III-synthesised RNA plays a key role in many 

diseases.  

Growth-dependent Pol III transcription of structural RNAs like tRNA and 5S RNA is 

deregulated in cancer (White, 2004; White, 2005). Regulation of transcription in the 

cell helps to ensure that the output of Pol III is restricted under conditions that are 

inappropriate for growth. Transcription can be activated following mitogenic 

stimulation during entry of the cell cycle (late G(1) phase) (Scott et al., 2001). In the 

untransformed cells tumour suppressor proteins p53 and Rb directly bind to the 

TFIIIB, an essential Pol III initiation factor, which in result is unable to interact with 

TFIIIC or Pol III (White, 2004; White, 2005) (Figure 1.2). Compromised function of 

these proteins, is it through mutation, hyperphosphorylation or binding to viral 

oncoproteins, is shown for many human malignancies and is believed to be required 

for a cancer to develop (Hanahan &  Weinberg, 2000). The TFIIIB transcription factor 

is also a target for oncogenic proteins that stimulate its activity (Figure 1.2). The 

kinase CK2 and mitogen-activated protein kinase (MAPK) Erk phosphorylate TFIIIB 

subunits and enhance its ability to bind both Pol III and TFIIIC. In addition Erk kinase 

phosphorylates and stabilises the oncoprotein c-Myc, significantly increasing its 

concentration. c-Myc interacts with TFIIIB and has a potent  

 

Figure 1.2 Model of Pol III upregulation in the tumor cells. Adapted from (White, 2004). 

 



Chapter II: Structure and function of RNA polymerase III C17/25 subcomplex 12

stimulatory effect on transcription in mouse and human cells (Gomez-Roman et al., 

2003). The activation of Pol III transcription can also occur directly, through an 

increased production of the transcription factors. Transcription factor TFIIIC2 is found 

to be overexpressed constantly in ovarian carcinomas. Examined tumours displayed 

elevated TFIIIC2 activity and mRNA levels encoding five subunits of this factor were 

increased (Winter et al., 2000). 

In addition to important role in the initiation and progression of cancer, changes in 

diverse Pol III genes underlie several human genetic maladies. Mutations in RNase 

MRP RNA gene region are associated with Cartilage hair hypoplasia (CHH) 

(Ridanpaa et al., 2001), in which the patients are prone to T cell-associated 

malignancies, Omenn syndrome, a severe combined immunodeficiency (Roifman et 

al., 2006), or Schmid type metaphyseal chondrodysplasia (MCDS), a cartilage/bone-

related disorder (Ridanpaa et al., 2003). Specific primate small cytoplasmic BC200 

RNA and BC1, its functional counterpart in rodents, are postulated to be involved in 

the regulation of protein translation in well-defined brain regions, such as 

hippocampus and cortical neurons and associate with Fragile X mental retardation 

syndrome (Zalfa et al., 2003). Upregulation of BC200 expression seems to play a 

role in the increased production of amyloid β peptide in Alzheimer disease (Mus et 

al., 2007). 

Future studies of factors specifically regulating Pol III transcription of ncRNAs or their 

tissue-specific interaction partners as well as disease-related mutations in Pol III 

transcripts would be of great interest in unveiling the etiology of many human 

disorders. 

1.2. RNA Pol III transcription cycle 

1.2.1. Class III promoters 

For the diverse types of transcribed RNAs three main types of the RNA polymerase 

III-specific promoters have been identified (reviewed in (Geiduschek &  Kassavetis, 

2001; Schramm &  Hernandez, 2002; Dieci et al., 2007)). The promoters of most Pol 

III-transcribed genes include internal control regions (ICRs), which are discontinuous 

intragenic structures composed of essential sequence blocks separated by 

nonessential nucleotides. ICR sequences are highly conserved between different 

genes and different species. One of the first characterised Pol III promoters where 

those of the Xenopus laevis 5S rRNA genes (Bogenhagen et al., 1980; Sakonju et 

al., 1980). They are referred to as type-1 promoters and their ICR comprise three 

distinct elements: an A-block, an intermediate element (IE) and a C-block. Most class 

III genes, including tRNA, VA, Alu, EBER, 7SL, B1, and B2 genes, have type-2 
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promoters composed of an intragenic A- and B-block. The A-block is located much 

further from the start site in type I than it is in type II promoters and the spacing 

between the A- and B-boxes varies greatly, partially due to an intron accommodation. 

The strength of type I and II promoters can also be affected by extragenic 

sequences, which in contrast to ICR show frequently little or no conservation. In the 

type-3 promoters, such as those of the mammalian U6 and 7SK genes, transcription 

is independent of intragenic elements and is dictated solely by gene external 

promoters (Murphy et al., 1986; Das et al., 1988; Kunkel &  Pederson, 1988). They 

are located in the 5’-flanking region of the gene and consist of a proximal sequence 

element (PSE) and a downstream TATA box. The expression of the type-3 promoter 

genes is enhanced by a distal sequence element (DSE), which can contain several 

protein binding sites, like an SPH element or an octamer sequence. Additional to the 

three described types, promoters with both gene external and internal elements were 

found (Dieci et al., 2000; Ouyang et al., 2000; Yukawa et al., 2000; Giuliodori et al., 

2003). An example of such a hybrid promoter in S. cerevisiae is an U6 snRNA 

promoter. It consists of an A box, a B box located at an unusual position 120 bp 

downstream of the RNA coding region, and a TATA box located upstream of the 

transcription start site. All three of these promoter elements are required for efficient 

transcription in vivo (Brow &  Guthrie, 1990; Eschenlauer et al., 1993). A schematic 

illustration of all types of class III promoters is provided in Figure 1.3.  

 

Figure 1.3 RNA Polymerase III promoters. Adapted from (Schramm &  Hernandez, 2002). 

1.2.2. Initiation complex assembly 

In comparision to other eukaryotic polymerases that require numerous transcription 

factors to form a stable preinititiation complex, the RNA Pol III system is quite simple. 

The assembly pathway for initiation complex formation depends on the promoter type 

(Schramm &  Hernandez, 2002). In the type-1 promoters ICR is recognized by a zinc-
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finger-protein, referred to as TFIIIA (Engelke et al., 1980; Sakonju et al., 1981) 

(Figure 1.4 b). TFIIIA–DNA complex formation allows for the binding of TFIIIC 

(Lassar et al., 1983), and the subsequent recruitment of TFIIIB, a transcription factor 

composed of three subunits, the TATA-box-binding-protein (TBP), Brf1 and Bdp1 

(Bartholomew et al., 1991; Kassavetis et al., 1991). TFIIIB binding to the promoter in 

turn allows the recruitment of RNA polymerase III. In case of the type-2 promoters 

the A- and B-boxes are recognized directly by TFIIIC (Lassar et al., 1983) (Figure 1.4 

a). After the binding of TFIIIC, the pathway to recruitment of the polymerase is similar 

to that in type 1 promoters, with the subsequent recruitment of TFIIIB and RNA 

polymerase III. In type-3 promoters, the PSE is recognized by a multisubunit complex 

called the snRNA activating protein complex (SNAPc) (Figure 1.4 c). The TATA box 

is recognized by the TBP component of a specialized TFIIIB-like activity (Schramm et 

al., 2000; Teichmann et al., 2000). The binding of SNAPc and the TFIIIB-like activity 

then leads to recruitment of RNA polymerase III. Interestingly, a recruitment pathway 

in which TFIIIB is directly recruited to a TATA box can be observed in vitro with S. 

cerevisiae TFIIIB (Mitchell et al., 1992) (Figure 1.4 d). This reveals a profound aspect 

of RNA polymerase III transcription, namely, that TFIIIB is sufficient to recruit RNA 

polymerase and direct several rounds of transcription. Thus, TFIIIA, TFIIIC and 

SNAPc can be viewed as recruitment factors whose main function is to guide TFIIIB 

to different promoters, which then allows the recruitment of RNA polymerase III. 

 

Figure 1.4 Different pathways for recruitment of Pol III to the promoter. Adapted from (Schramm &  

Hernandez, 2002). 
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1.2.3. Transcription elongation, termination and reinitiation 

During the initial phase of RNA chain elongation, Pol III, just as other RNA 

polymerases,  abortively produces short transcripts (Bhargava &  Kassavetis, 1999). 

After successful incorporation of several ribonucleotides, promoter clearance occurs 

and Pol III severs its connection to TFIIIB (Kassavetis et al., 1992). Short length of 

Pol III-transcribed genes results in proximity of transcription start and termination 

sites. This fact and remarkable stability of TFIIIB-DNA complexes, even in the 

absence of TFIIIC, are made use of in facilitated transcription reinitiation (Dieci &  

Sentenac, 1996; Dieci &  Sentenac, 2003; Ferrari et al., 2004). RNA Pol III is able to 

reassemble with the TFIIIB-marked promoter of previously transcribed gene during 

several rounds of transcription without even releasing the gene after reaching the 

terminator. Bypassing of the TFIIIC and TFIIIB recruitment steps in preinitiation-

complex formation and accommodation of multiple polymerases per gene contributes 

to the known high transcription rate of RNA Pol III genes (French et al., 2008). RNA 

chain elongation proceeds unevenly, and Pol III seems to need particularly much 

time when three UMP residues in succession have to be added (Matsuzaki et al., 

1994). Such pausing seems to be crucial for termination, which is accompanied by 

generation of short oligonucleotides by hydrolytic cleavage at the RNA 3′ end 

(Bobkova &  Hall, 1997). In contrast to other eukaryotic polymerases RNA Pol III is 

capable of recognizing a termination signal, provided by a simple run of T residues, 

in a transcription factor-independent manner (Geiduschek &  Kassavetis, 2001; Dieci 

et al., 2007). Recent studies show the critical role of the C53 and C37, as well as 

C11 subunits of Pol III for transcription termination and reinitiation, recpectively 

(Landrieux et al., 2006). 

1.2.4. Pol III transcription regulation – role of the Maf1 pro-

tein 

In yeast, transcription activity is regulated according to the growth conditions by the 

nutrient-sensing signal transduction cascades RAS and TOR.  Regulation of the Pol 

III transcription machinery by diverse signalling pathways is mediated by the Maf1 

protein (Upadhya et al., 2002). Maf1 is a hydrophilic phosphoprotein conserved from 

yeast to human and is considered to be a general suppressor of Pol III transcription 

(Pluta et al., 2001; Willis &  Moir, 2007). In pull-down experiments S.cerevisiae Maf1 

binds the N-terminal domain of Rpc160 and the Brf1 subunit of TFIIIB, though weakly 

(Desai et al., 2005; Oficjalska-Pham et al., 2006). Similar results are obtained for the 

human homologue of this protein (Reina et al., 2006; Rollins et al., 2007). Genetic 

interactions suggested that Maf1 targets the C31 subunit of Pol III (Ciesla &  Boguta, 

2008). Based on this suggestion a model of Pol III repression, in which C31-bound 

Maf1 hampers Pol III interaction with TFIIIB, affecting transcription initiation, was 
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proposed. Only the dephosphorylated form of Maf1 is shown to bind to Pol III and 

inhibit transcription (Oficjalska-Pham et al., 2006; Reina et al., 2006; Roberts et al., 

2006). The intracellular localization of Maf1 seems to be correlated with its 

phosphorylation state. Dephosphorylated Maf1 is found in the nucleus, facilitating Pol 

III repression, whereas inactive, phosphorylated form localizes in the cytoplasm 

(Oficjalska-Pham et al., 2006; Roberts et al., 2006; Ciesla et al., 2007). Figure 1.5 

provides an overview of a current model of transcription regulation by Maf1 (Ciesla &  

Boguta, 2008). In actively growing cells Maf1 is phosphorylated and localized 

predominantly in the cytoplasm. Under repressing conditions Maf1 is targeted for 

dephosphorylation by PP2A phosphatase of the TOR signalling pathway and is 

imported into the nucleus, where repression of the Pol III activity occurs (Oficjalska-

Pham et al., 2006). Favourable growth conditions in the presence of glucose promote 

derepression of Pol III. Maf1 is phosphorylated by PKA kinase from the RAS pathway 

(Moir et al., 2006) or some other unknown kinase (Ciesla et al., 2007), dissociate 

from Pol III and is subsequently exported out of the nucleus by the Man5 carrier 

(Towpik et al., 2008). 

 

Figure 1.5 Model of Maf1 regulation. Adapted from (Ciesla &  Boguta, 2008). 

A. Repression of Pol III by Maf1. Maf1 is activeted by dephosphorylation and imported to the nucleus.                 

B. Derepression of Pol III. Phosphorylated Maf1 is exported out of the nucleus by the Msn5 carrier. 

1.3. RNA Polymerase structure 

1.3.1. Overall architecture and subunit composition 

Pol III is the most complex of all three eukaryotic RNA polymerases. It has a total 

molecular weight of 693 kDA and compromises 17 subunits. In contrast with the 

other two nuclear RNA polymerases, all of the Pol III subunits were shown to be 

essential for yeast viability. Compared with detailed structural studies of Pol II 

(Cramer et al., 2008) structural information on Pol III is very limited. At the time these 
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studies were initiated an protein-protein interaction map between Pol III subunits, 

derived by yeast two-hybrid analysis and copurification assays, as well as some 

functional analysis concerning single enzyme subunits were available (for reviews 

see (Chedin et al., 1998; Geiduschek &  Kassavetis, 2001; Schramm &  Hernandez, 

2002).  RNA Pol III subunits range from 10 to 160 kDa in size. 10 of them are unique 

to RNA polymerase III and are designated the C subunits, two, AC40 and AC19, are 

common to RNA polymerases I and III and therefore designated AC subunits, and 

five are common to the three RNA polymerases and are designated ABC subunits or 

referred to as Pol II subunits (Rpb5, Rpb6, Rpb8, Rpb10, and Rpb12). The RNA Pol 

III overall architecture is characterized by a structural core formed of ten subunits and 

pheripherical orientated subcomplexes (see Chapter I, Table 1). The subunit 

composition is conserved from yeast to human and originated on a very early stage 

of the evolution (Huang &  Maraia, 2001; Hu et al., 2002; Proshkina et al., 2006). The 

two largest subunits, C160 and C128, show substantial homology to the Pol II 

subunits Rpb1 and Rpb2, and E.coli RNA polymerase β and β’ subunits, respectively. 

AC40 and AC19 are homologous to the Pol II subunits Rpb3 and Rpb 11, and α2 of 

bacterial RNA Polymerase. ABC23 (Rpb6) is evolutionarily related with the ω core 

subunit of the bacterial enzyme. C11 shows limited homology to the Pol II subunit 

Rpb9 and, in a C-terminal segment, to the Pol II elongation factor TFIIS (Chedin et 

al., 1998; Kettenberger et al., 2003). It has been also shown to be implicated in 

nascent RNA hydrolysis coupled to polymerase backtracking along its DNA template 

(Landrieux et al., 2006). On the periphery of the core enzyme, Pol III contains seven 

additional subunits, which form three distinct subcomplexes. The subcomplex 

C82/34/31 (Werner et al., 1992; Wang &  Roeder, 1997) and the subcomplex C53/37 

(Hu et al., 2002; Landrieux et al., 2006) are Pol III-specific. The third subcomplex, 

C17/25 has been suggested to be the counterpart of subcomplexes Rpb4/7 in Pol II 

(Sadhale &  Woychik, 1994; Hu et al., 2002; Siaut et al., 2003), Rpa14/43 in Pol I 

(Shpakovski &  Shematorova, 1999; Peyroche et al., 2002; Meka et al., 2003), and 

RpoF/E in archaeal RNA polymerase (Todone et al., 2001), although the 

corresponding subunit sequences show only weak conservation in some regions. 

Recent mass spectrometry studies on S. cerevisiae Pol III support pheripherical 

location of these three subcomplexes (Lorenzen et al., 2007).  
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1.3.2. RNA Pol III subcomplexes and its role in transcription 

1.3.2.1.  C17/25 

C25 is a highly conserved subunit of RNA Pol III with homology to Rpa43 (Pol I), 

Rpb7 (Pol II) and RpoE (archeal RNA polymerase) (Sadhale &  Woychik, 1994; 

Shpakovski &  Shematorova, 1999). C17 was one of the last subunits to be identified 

as part of the Pol III multisubunit complex (Ferri et al., 2000). In contrast to C25, 

identification of C17 as an Rpb4 counterpart in the RNA Pol II system came much 

later (Siaut et al., 2003). Although C17 is well conserved between different species it 

shares very weak sequence conservation with its counterparts in other polymerases 

(Siaut et al., 2003). In RNA Pol I and the archeal RNA polymerase, C17 is a 

counterpart of Rpa14 and RpoF, respectively (Peyroche et al., 2002; Meka et al., 

2003). The Pol III subunits C25 and C17 form a heterodimeric subcomplex similar to 

the Pol II paralogs Rpb7 and Rpb4. A model of the three-dimensional structure of 

C17/25 was constructed based on the sequence alignments and using the RpoE/F X-

ray structure (Siaut et al., 2003). 

Like all Pol III subunits, both C17 and C25 are essential for viability in yeast (Sadhale 

&  Woychik, 1994; Ferri et al., 2000). Similar to Rpb4/7, the C17/25 subcomplex is 

involved in transcription initiation recognizing of the promoter-bound factors, but is 

not required for transcription `elongation or termination (Zaros &  Thuriaux, 2005). 

Yeast two-hybrid screen and coimmuno-precipitation experiments indicate that C17 

interacts with the N-terminal part of Brf1, a subunit of the transcription initiation factor 

TFIIIB. C17 interacts also with the RNA polymerase III C31 subunit (Ferri et al., 

2000), which is itself required for transcription initiation (Werner et al., 1992; Werner 

et al., 1993; Wang &  Roeder, 1997). 

1.3.2.2.  C31/34/82 

C82, C34 and C31 form a stable subcomplex in yeast and human (Werner et al., 

1992; Wang &  Roeder, 1997). The C31/34/82 subcomplex is detachable from the 

enzyme bearing mutation in the N-terminal zinc-binding domain of the largest subunit 

C160 (Werner et al., 1992). Recent mass spectrometry analysis of the RNA Pol III 

architecture revealed that the C31 subunit bridges between the C82/34 dimer, the 

Pol III core and the C17/25 subcomplex (Lorenzen et al., 2007). 

C31/34/82 seems to be involved in specific promoter recognition and therefore is 

required for a specific transcription initiation (Thuillier et al., 1995). C34 mapping 

revealed that its position is most upstream on the promoter of all the Pol III subunits 

(Bartholomew et al., 1993). It was proposed to have a dual role in Pol III recruitment 

and in open complex formation (Brun et al., 1997). Consistent with this observation, 
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the C34 subunit interacts directly with the Brf1 subunit of TFIIIB, the key transcription 

factor that recruits Pol III to specific promoters (Werner et al., 1993; Khoo et al., 

1994; Andrau et al., 1999). Similary, the human homolog of C34, hRPC39(RPC6), 

was found to physically interact with human TATA-binding protein and hBrf1, both 

subunits of human TFIIIB (Wang &  Roeder, 1997). C31 interacts with C17, another 

Pol III subunit that also binds to Brf1 (Ferri et al., 2000). This two fold strengthened 

interaction of Pol III subcomplexes with the Pol III-specific transcription factors could 

help loading the whole enzyme on its large pre-initiation complex (Geiduschek &  

Kassavetis, 2001).   

1.3.2.3.  C37/53 

Subunits C53 and C37 form a heterodimer stably associated with the Pol III core 

(Lorenzen et al., 2007), but are present in subtechiometric amounts. C37 and C53 

are homologues to the Pol I Rpa49 and Rpa34.5 subunits, respectively (Kuhn et al., 

2007; Cramer et al., 2008). Structural similarity prediction (HHpred) showed also a 

slight homology to TFIIF-α and TFIIF-β, respectively. Based on the observation that 

mutations in either C37 or C11 lead to the loss of C53, C37 and C11 after Pol III 

purification, the C53/37 subcomplex was proposed to form an autonomous structural 

module with C11 (Hu et al., 2002; Landrieux et al., 2006). The fact that the 

association of these three subunits in isolation was never demonstrated together with 

the mass spectrometry data studying the architecture of the RNA Pol III (Lorenzen et 

al., 2007) suggest that C11 belongs to the enzyme core, even though a trimeric 

subcomplex C53/37/11 cannot be completely ruled out.  

Experiments with an RNA polymerase III mutant, lacking subunits C53, C37 and C11 

(PolIII∆) enlightened their specific functions during transcription (Landrieux et al., 

2006). The C53 and C37 subunits are not required for the basal process of RNA 

synthesis but seem to be crucial for the efficient termination of the transcription. 

Moreover, the addition of the C53/C37 complex reduced the elongation rate of PolIII∆ 

to the rate observed with wildtype RNA polymerase III. It supports the suggestion that 

the natural pause at the terminator is important for termination (Gusarov &  Nudler, 

1999; Bar-Nahum et al., 2005). The same study showes that correct terminator 

recognition is not sufficient to allow Pol III transcription re-initiation. This important 

function is directed solely by the C11 subunit of Pol III (Landrieux et al., 2006). 
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1.4. Aim of this study 

High-resolution structural information on eukaryotic RNA polymerases is limited to 

Pol II. Being the largest of all three polymerases, RNA pol III poses a challenge for 

structural analysis. Until now no crystals of the whole enzyme could be obtained. As 

observed before by studying RNA Pol II, the Mediator complex or RNA Pol I, gaining 

insights into the architecture of macromolecular complexes proofs to be a time 

consuming and a complicated task. For those large complexes,  atomic structures of 

single subunits or subcomplexes were determined and combined with the lower 

resolution EM or crystallographic data of the whole multisubunit complex (Armache et 

al., 2005; Kuhn et al., 2007). The aim of this work was to gain first insights into the 

yeast RNA Polymerase III structure and provide a framework for comparative 

structural and functional analysis of eukaryotic polymerases. This task was achieved 

by crystallization of the Pol III C17/25 subcomplex combined with functional analysis 

in vivo and in vitro. C17/25 is a paralog of Rpb4/7 in the RNA Pol II system, even 

though it shows a relatively weak amino acid sequence identity. The functional 

information on this subcomplex was limited to its role in promoter-dependent 

transcription initiation. 
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2. Results 

2.1. Expression and purification of C17/25  

At the time this project was started only little information about the C17/25 subcom-

plex was available, based on biochemical and genetic experiments (Chapter II, Intro-

duction). Based on these data the Pol III subcomplex C17/25 has been suggested to 

be the counterpart of the subcomplex Rpb4/7 in Pol II (Sadhale &  Woychik, 1994; 

Hu et al., 2002; Siaut et al., 2003).  

Previous experimants in our laboratory showed that individually expressed recombi-

nant subunits of the bigger protein complexes are generally insoluble. In fact neither 

Rpb4 nor Rpb7 could be overexpressed alone in E.coli (Armache et al., 2005). Ob-

served insolubility most probably resulted from a loss of structural integrity of the 

single subunits, which were lacking their natural interaction partner during folding 

events. For Rpb4/7 this problem was overcome by construction of a double-

expression system (Sakurai et al., 1999), and the same strategy was applied for the 

C17/25 subcomplex. The genes encoding full-length C17 and C25 were amplified 

from the S.cerevisiae genomic DNA and cloned into the pET-21b vector (Figure 2.1). 

Both, the C17 and C25 coding frames were preceded by separate T7 promoters, the 

C25 coding frame was followed by a His-Tag and T7 terminator. In this way, both 

nascent peptide chains emerge in physical proximity upon translation from the ri-

bosomes enabling proper folding.  

 

 

Figure 2.1 Double expression system of C17/25. 
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The complex was expressed and purified as described in Chapter II, Experimental 

procedures. First, the E.coli lysate was loaded onto a Ni NTA column equilibrated 

with Lysis buffer containing 1M NaCl. The unspecific binding of the E.coli proteins to 

the chromatographic resin and possible nucleic acids binding to the purified complex 

could be decreased by the applied high salt concentration, enabeled by a surprising 

stability of C17/25. The purified complex showed high purity already after the affinity 

chromatography step and subsequent purification by anion exchange chromatogra-

phy on a MonoQ column removed remaining contaminants and an excess of the C25 

subunit. Gel filtration of the C17/25-containing fractions resulted in a single peak, 

indicating a stoichiometric protein complex. As a pure and homogeneous material is 

a prerequisite for crystallization the purity of the peak fractions was confirmed by 

SDS-PAGE analysis (Figure 2.2). Protein identities were confirmed by mass spec-

trometry. 

 

Figure 2.2 Purification of the C17/25 subcomplex. 

Chromatogram of the Superose 12 gel filtration. The absorbtion at 280 nm is measured to detect protein elution 

(blue). SDS-PAGE analysis of the peak fractions is shown next to the peak.  

2.2. Limited proteolysis and the protein stability tests 

Highly mobile protein regions are known to inhibit crystallization. In order to identify 

those regions limited proteolysis of the purified C17/25 heterodimer was performed. 

Proteolysis of the natively folded protein complexes occurs mainly at the highly flexi-

ble parts, like loops or solvent exposed partially unfolded domains, which are not 

involved in protein-protein interactions. Globular or tightly bound domains are rather 

rigid and therefore more resistant to proteolysis (Fontana et al., 1986; Fontana et al., 

2004). Stable fragments obtained as a result of the proteolysis experiment may indi-

cate compact folded regions of the protein complex and hence serve as good candi-

dates for crystallization. The C17/25 subcomplex was incubated with chymotrypsin 

and trypsin at 37 °C and the reaction was stopped after 10 sek, 1, 3, 10, 30 and 60 
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minutes and samples were analyzed by SDS-PAGE. Two stable cleavage products 

were observed (Figure 2.3 a, red boxes) and were analyzed by      EDMAN-

sequencing. Both products, starting with the sequences SKGKQ and NVVNY, 

proofed to be the C-terminal part of the C17. The trypsin cleavage sites were at the 

positions 41 and 60, respectively, in the amino acid sequence of C17 (Figure 2.7 a, 

marked with a black arrow).    

Stability tests of the C17/25 complex were carried out to test the behaviour of the 

proteins in the conditions similar to that of the crystallization experiment (solution and 

20 ºC). The freshly purified protein solution in gel filtration buffer was incubated at 

room temperature for more than 4 days. The solution stayed clear, without any traces 

of protein precipitation and the samples taken after 0, 24, 48 and 96 h show no pro-

teolitytic degradation (Figure 2.3 b).  

 

Figure 2.3 SDS-PAGE analysis of the trypsin cleavage (A) and protein stability tests (B) of C17/25. 

Incubation time in seconds (‘’) and minutes (‘) is indicated above the gels. The names of the proteins as well as 

molecular weight (kDa) of the marker are given. Red boxes indicate the limited proteolysis products analysed by 

EDMAN-sequencing. 

2.3. Crystalization of C17/25 

Parallel to the partial proteolysis experiments and protein stability tests purified 

samples of C17/25 were subjected to crystallization trials. Initial crystal setups with 

commercial screens were performed with the Hydra II semi-automatic protein 

crystallization robot (Matrix Technologies Apogent Discoveries) by sitting drop vapour 

diffusion methods using 96-well crystallization plates (Corning). Nextal Classic, MPD, 

Anions and Cations Suite (Nextal/Qiagen), as well as Hampton Index, Natrix and 

PEG/Ion Screens (Hampton Research) were tested. First screens, with a protein 

concentration of 4 mg/ml, yielded no crystals. Only repeated screening with a higher 

protein concetration (8.5 mg/ml) gave rise to microcrystals of the full-length C17/25 in 

two conditions of the Nextal Classic screen (Figure 2.4 a, b). Both conditions 
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contained 0.1M Hepes pH 7.5 and either 1.6M ammonium sulphate and 2% PEG 400 

or 2M ammonium sulphate and 0.1M NaCl. Further screens were carried out 

manually using a hanging drop method. Fine screening of the pH, ammonium 

sulphate concentration and PEG or NaCl concentration, respectively, resulted in 

obtaining small but well shaped crystals of the C17/25 subcomplex in both solutions. 

Crystals with the length of 170 µm and diameter 80 µm obtained in 2% PEG 400, 

1.4M ammonium sulphate and 0.1M Hepes pH 7.5 were tested at the Swiss Light 

Source and diffracted up to 4.5 Å (Figure 2.4 c and d). In the final optimization screen 

the improved conditions were combined resulting in a crystallization solution 

composed of 0.1M NaCl, 3% PEG 400, 1.6M ammonium sulphate and 0.1M Hepes 

pH 7.5. The presence of NaCl in the crystallization solution increased protein 

solubility and reduced a number of nucleization events, which resulted in fewer but 

larger crystals. Well-shaped protein crystals appeared usually 24 hours after setting 

up the crystallization experiments and reached their full size (350 µm x 140 µm 

diameter) during the next three days (Figure 2.4 e, f). Most of them were firmly 

attached to the cover slide of the crystallization plate well or to the skin covering the 

crystallization drop. Best crystals were very carefully detached from the plastic or the 

skin with the help of an acupuncture needle and harvested with the loop. Cryo-

cooling was achieved by a step-wise transfer of the crystal to the final cryo solution 

and by plunging into liquid nitrogen (for the details see Chapter II, 4.15). 

 

Figure 2.4 Crystallization of C17/25.  

A. B. Initial microcrystals obtained in the Nextal Classic Screen. C. Refined Crystals tested on the SLS.               

D. Diffraction pattern of the C17/25 crystals. E. F. Final optimized crystals of the C17/25 complex. 
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2.4. Purification and crystallization of SeMet-labeled C17/25 

The selenomethionine-labeled C17/25 complex was expressed in the methionine 

auxotroph E.coli strain B834 (DE3). Bacteria were grown in minimal medium supple-

mented with selenomethionine and antibiotics (Budisa et al., 1995), (Meinhart et al., 

2003) and an overnight expression of the protein was induced by the addition of 0.5 

mM IPTG to the culture (for the details see Chapter II, 4.7). SeMet-labelled proteins 

were purified like the native C17/25 subcomplex. SeMet-labelled C17/25 was very 

well expressed and the high purity of the complex after the size exclusion chromatog-

raphy step was confirmed by SDS-PAGE analysis (Figure 2.5 a). The peak fractions 

were concentrated to 8.9 mg/ml, flash-frozen in liquid Nitrogen and stored in -80ºC.  

 

Figure 2.5 SeMet-labeled C17/25. 

A. Chromatogram of the Mono Q. The absorbtion at 280 nm is measured to detect protein elution (blue). SDS-

PAGE analysis of the peak fractions is shown next to the peak. B. Crystals of SeMet C17/25 

 

Crystallization trials of SeMet-labeled C17/25 were performed manually in 24-well 

plates with the hanging-drop method. Apart from the crystallization in the native 

C17/25-optimized condition two additional fine screens was carried out. In fine 

screens, the concentration of Hepes pH 7.5 (0.1M) and PEG 400 (3%) was kept 

constant, while the concentration of NaCl (50 - 200mM) and ammonium sulphate (1.2 

- 1.7M) were varied. In the second screen, PEG 400 (0 - 3%) and ammonium sul-

phate (1.2 - 1.7M) concentration were varied by a stable concentration of NaCl 

(0.1M) and Hepes pH 7.5 (0.1M). Best crystals, with 200 µm length and 100 µm 

diameter, could be obtained in 150mM NaCl, 3% PEG 400, 1.6M ammonium sul-

phate and 0.1M Hepes pH 7.5 (Figure 2.5 b). Crystals were harvested and cryo-

cooled like the native C17/25 crystals (see Chapter II, 4.15).  
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2.5. X-ray analysis of the Pol III subcomplex C17/25 

All diffraction data were collected with an increment of 1 degree per image at the 

beamline X06SA at the Swiss Light Source, Villigen, Switzerland and processed with 

DENZO and SCALEPACK (Otwinowski &  Minor, 1996). Since molecular replace-

ment with the structures of Rpb4/7 (Armache et al., 2005) and the archaeal counter-

part RpoF/E (Todone et al., 2001) failed, the crystals were phased de novo with 

selenomethionine labeling and single-wavelength anomalous dispersion (Table 2.1). 

A total of 18 selenium peaks that stemmed from two C17/25 complexes in the asym-

metric unit were detected with programs SnB and SOLVE (Weeks &  Miller, 1999; 

Terwilliger, 2002). After SAD phasing with all sites in SOLVE, a model was automati-

cally built by program RESOLVE and manually corrected with the program O (Jones 

et al., 1991). The native structure was solved by molecular replacement with the 

obtained model. The structure was refined at 3.2 Å resolution to a free R-factor of 

30.7% and shows good stereochemistry (Table 2.1). In the refined structure, 99% of 

the residues fall in allowed and additionally allowed regions of the Ramachandran 

plot, and none of the residues are in disallowed regions. 

Tabele 2.1 C17/25 X-ray diffraction data and refinement statistics. 

Crystal SeMet C17/25 Native C17/25 

Data collection
1 

Space group P6122 P6122 

Wavelength (Å) 0.97932 0.97894 

Unit cell axis (Å) 137.5, 240.6 138.2, 247.1 

Resolution (Å) 50–3.5 (3.63–3.5)2 30–3.2 (3.31–3.2) 

Completeness (%) 100 88.6 (91.4) 

Unique reflections 17,684 (1,726) 21,061 (2,107) 

Redundancy 14.4 (14.7) 3.9 (3.9) 

Rsym (%) 10.3 (38.5) 9.1 (46.9) 

<I/σI> 10.6 (8.3) 17.6 (2.6) 

Refinement 

Amino acid residues 537 

RMSD bonds (Å) 0.007 

RMSD angles (°) 1.3 

Rcryst (%) 23.6 

Rfree (%) 

 

30.7 
1Diffraction data were collected at beamline X06SA at the Swiss Light Source, Villigen, Switzerland. 
2Numbers in parenthesis refer to the highest resolution shell. 
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2.6. Overall C17/25 structure 

The structure of C25 resembles that of its counterparts Rpb7 and RpoE (Figure 2.7). 

The N-terminal “tip” domain of C25 shows an RMS deviation in Cα atom positions of 

4.2 Å and 1.6 Å in Rpb7 and RpoE, respectively, whereas the C-terminal OB domain 

is quite divergent. The relative position of the two C25 domains differs slightly from 

that observed in Rpb7 (Figure 2.6 a). C25 differs from Rpb7 mainly by the absence of 

the short helical turn K* in the tip domain and the presence of a flexible, non-

conserved loop B4-B5 that is 34 residue longer than in Rpb7 (Figure 2.7).  

The structure of C17 reveals a compact N-terminal “tip-associated” domain, which 

packs mainly against the C25 tip domain, and not between the tip and OB domains 

as in Rpb4/7 and RpoF/E (Figure 2.7 b). The only contact between the C17 tip-

associated domain and the C25 OB domain is formed between C17 helix H2 and 

C25 loop B2-B3. Consistently, a mutation at the B2-B3 loop (S100P) impairs C17 

binding in vivo (Zaros &  Thuriaux, 2005). The C17 tip-associated domain connects 

via a flexible linker to a C-terminal HRDC domain, a fold that occurs in RecQ heli-

cases and ribonucleases (Morozov et al., 1997; Meka et al., 2003). The C17 HRDC 

fold resembles the corresponding domains in Rpb4 and RpoF (RMSD in Cα positions 

of 2.07 and 4.5 Å, respectively, Figure 2.6 b), although the sequence conservation is 

very weak or absent (Figure 2.7 a, Table 2.2). 

 

Figure 2.6 Comparison of domain folds in C17/25 and Rpb4/7. 

A. Comparison of C25 (blue) and Rpb7 (silver) based on superposition of their tip domains. B. Superposition of 

HRDC domains in C17 (pink) and Rpb4 (silver). 
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Figure 2.7 X-ray structure of the Pol III subcomplex C17/25. 

A. Primary and secondary structure. Structure-based alignments of amino acid sequences of S. cerevisiae C25 

(top) and C17 (bottom) with their counterparts in Pol II (S. cerevisiae Rpb7 and Rpb4, respectively) and archaeal 

RNA polymerase (M. jannaschii RpoE and RpoF, respectively). Secondary structure elements are shown above 

the sequences (cylinders, α-helices; arrows, β-strands; lines, loops; dashed lines, disordered). Conserved 

residues are highlighted according to decreasing conservation from green, through orange, to yellow. Cleavage 

sites revealed by limited proteolysis with trypsin are indicated with arrows. Three C25 residues involved in 

conserved interactions with the Rpb6 are indicated with a black square. Residues that contribute to the C25-C17 

HRDC interface are indicated with a red dot. B. Comparison of the structures of yeast C17/25 (this study, left) with 

that of yeast Rpb4/7 (Armache et al., 2005) (center) and archaeal RpoF/E (Todone et al., 2001) (right). 

C25/Rpb7/RpoE are in blue and C17/Rpb4/RpoF are in red, with the HRDC domain in light red. Disordered in the 

C17/25 structure are the C25 loop B4-B5 (residues K59-K90), the C17 loop H*-H2 (residues K38-N47), and the 

C17 linker between the tip-associated domain and the HRDC domain (residues N69-G94). 
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2.7. The C17 HRDC domain adopts a unique position 

Although the overall domain folds are conserved between C17/25 and Rpb4/7, the 

observed position of the C17 HRDC domain is very different from that in Rpb4 and 

RpoF (Figure 2.7 b). Compared to Rpb4 or RpoF, the HRDC domain of C17 is trans-

lated by about 35 Å and rotated by about 150°. The C17 HRDC domain packs 

against the C25 OB domain, between the C2-C3 loop and the C-terminus (Figure 2.7 

b, 2.8 a). The HRDC-OB interface is complementary in shape and electrostatics 

(Figure 2.8 a), and includes many hydrophobic residues, which are well conserved 

among several species (Figure 2.9), but are generally not conserved in the Pol I and 

Pol II counterparts (C25 residues F116, W130, M132, L138, and W211, and C17 

residues M107, L121, and V124) (Figure 2.8 b). Residues in the Rpb4 HRDC do-

main-Rpb7 interface are also conserved among S. cerevisiae, S. pombe, and human, 

but not in C17/25. Thus, the C17 HRDC-C25 interface is unique and Pol III-specific, 

suggesting that the observed position of the HRDC domain is a specific feature of Pol 

III. The same position of the C17 HRDC domain may in principle be adopted in other 

species. Although in the human and S. pombe sequences the C17 linker is appar-

ently only three residues long, the distance between the two C17 domains could just 

be spanned if the residues corresponding to C17 residues 95-100 adopt an extended 

conformation. 

 

Figure 2.8 Interface between C25 OB domain and the C17 HRDC domain. 

A. Electrostatic surfaces. In the center, a surface representation of C17/25 is shown colored according to the 

electrostatic surface potential (positive, blue; negative, red). The view is as in Figure 2.7 b. A book view of the 

interface was obtained by separating the C17 HRDC domain from the complex. The remainder of C17/25 and the 

C17 HRDC domain are depicted to the left and to the right, respectively. B. Detailed view of the interface. 

Residues are highlighted according to decreasing conservation among species from green, through orange, to 

yellow.  
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Figure 2.9 Alignment of C25 and C17 from different species. 

Conserved residues are highlighted according to decreasing conservation from green, through orange, to yellow. 

Residues that contribute to the C25-C17 HRDC interface are indicated with a red dot. 

2.8. Modular two-domain structure of C17 

Although the well-packed nature of the HRDC-OB interface suggests that the location 

of the HRDC domain is fixed, there is evidence that the domain can change its posi-

tion. First, the asymmetric unit of the crystals contains two C17/25 heterodimers, but 

only one HRDC domain is ordered (Figure 2.10 a), whereas the second one is not 

visible in the electron density, consistent with a low affinity of the HRDC-OB interface. 

Second, the linker between the C17 tip-associated domain and the HRDC domain is 

flexible and not conserved among species (Figure 2.9). To test if the C17 HRDC 

domain forms an independently folding module, the C-terminal part of C17 (amino 

acids 94 - 161) was cloned into an expression vector (Chapter II, 4.2). The isolated 

HRDC domain was very well expressed in E.coli and could be purified using a com-

bination of affinity, ion exchange and size exclusion chromatography (for details see 

Chapter II, 4.6 and 4.8.2) (Figure 2.10 b).  

Static light scattering revealed that the purified C17 HRDC domain forms a soluble 

momoneric module which does not tend to aggregate in solution (8.59/8.75 kDa 

observed/theoretical molecular weight). The extreme stability of the whole complex 

for several days at room temperature (Figure 2.3) proofs that the flexibility of the 

HRDC domain does not jeopardize the structural integrity of the C17/25 fold. To-

gether these results show that C17/25 is a modular subcomplex and that the C17 

HRDC domain is an autonomously folding module, which may adopt different posi-

tions. 
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Figure 2.10 Modular structure of C17 – HRDC domain.  

A. The asymmetric unit of the crystals with two C17/25 heterodimers, but only one ordered HRDC domain. The 

flexible linker between the C17 tip-associated domain and the HRDC domain is disordered in the crystal structure. 

The linkers connecting the HRDC domain in the two possible positions are modelled in green. The correct 

position of the HRDC domain was investigated by HRDC-OB interface analysis (Figure 2.8). C25 is indicated in 

blue, N-termini of C17 in red and HRDC domain in pink. B. SDS-PAGE of the purified HRDC domain. The 

molecular weight (kDa) of the marker is given. 

2.9. Both C17 domains are essential in vivo 

In contrast to Rpb4, C17 is essential for viability of S. cerevisiae. To investigate if the 

essential in vivo function requires both structural domains of C17, I generated plas-

mids under the control of the heterologous GAL1 promoter that carried the gene for 

full-length C17 (RPC17), a RPC17 mutant lacking the HRDC domain 

(RPC17∆HRDC), or the HRDC domain alone. Plasmids were introduced into a 

rpc17∆ yeast strain that was rescued by RPC17 on a centromeric URA3 plasmid. 

Loss of the URA3 plasmid due to complementation by any of the GAL1 promoter-

driven expression constructs would allow growth on media containing 5'-fluorotic acid 

(5'-FOA). In these experiments, complementation was allowed by full-length RPC17, 

but not by RPC17∆HRDC or by the HRDC domain alone (Figure 2.11). The same 

result was obtained at 30° C and 23° C. Thus both C17 domains are required for cell 

viability and the HRDC domain has an essential function in vivo that requires its prox-

imity to the C17/25 subcomplex.  

In an attempt to test if the essential in vivo function of the HRDC domain requires its 

positioning as observed in the crystal structure, I mutated the RPC17 plasmid such 

that the hydrophobic residues F103 and M107, both located in the interface between 

the C17 HRDC domain and the C25 OB domain, were changed to glutamates. The 

resulting C17 double mutant F103E/M107E is predicted to disrupt the domain inter-

face, but did still support cell growth at either 30° C or 23° C. This supports a possi-

ble mobility of the HRDC domain and suggests that the position of the domain in a 
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functional in vivo complex could differ from that observed in the C17/25 crystal struc-

ture. It remains however possible that the mutated HRDC domain is retained in the 

observed position in the context of the complete Pol III enzyme by interactions with 

additional Pol III subunits. 

 

 

Figure 2.11 The C17 HRDC domain is essential for cell viability. 

A yeast strain carrying a rpc17 deletion and RPC17 on a centromeric URA3 plasmid was transformed with 

centromeric LEU2 plasmids containing RPC17, an RPC17∆HRDC, or the isolated C17 HRDC domain under 

control of the heterologous GAL1 promoter. Left panel: serial dilutions of each strain grown on -leu plates. Right 

panel: serial dilutions of each strain grown on plates containing 5'-FOA. Only full-length GAL1-RPC17 can 

complement for the loss of the URA3 plasmid carrying wild-type RPC17 and thus allows growth on 5'-FOA. 

2.10. C17/25 binds nucleic acids in vitro 

To explore possible functions of C17/25, the purified recombinant subcomplex was 

subjected to nucleic acid-binding assays (Chapter II, 4.17). I performed non-

radioactive electrophoretic mobility shift assays (EMSAs), and revealed the nucleic 

acids by staining with SYBR-Gold. Similar to Rpb4/7 and Rpa14/43 (Orlicky et al., 

2001; Meka et al., 2003; Meka et al., 2005), C17/25 bound to single-stranded RNA 

(Figure 2.12 a). Comparative EMSA analysis showed that C17/25 bound much 

stronger to a tRNA sample, with an apparent affinity in the low µM range (Figure 2.12 

b). Binding to duplex DNA was also observed, but was weaker than for tRNA (Fig-

ure 2.12 c). Single-stranded DNA binding to C17/25 was very weak. All these nucleic 

acid probes were also bound by recombinant purified Rpb4/7, but generally less 

efficiently than by C17/25 (Figure 2.12). In particular, Rpb4/7 bound more weakly to 

tRNA, although it also shows a preference for tRNA relative to the 22 nt ssRNA (Fig-

ure 2.12 b). There was generally no indication of sequence specificity in nucleic acid 

binding. On the longer nucleic acid probes, multiple shifted bands are observed that 

could correspond to multiple complexes, complicating the interpretation of the results. 

To check whether the C17 HRDC domain is responsible for the nucleic acid-binding 

property of C17/25, the EMSA with the isolated HRDC domain were performed. The 

purified HRDC domain did not show detectable nucleic acid binding, even when a 

100-fold or greater excess of the protein over nucleic acids was used (Figure 2.12). 
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Indeed the HRDC domain surface contains only one small cluster of positively 

charged residues (lysines K114, K117, K120) that is involved in interaction with the 

C25 acidic loop C2-C3 (residues D133, E134, E135) (Figure 2.8). In conclusion, 

there is no evidence for a nucleic acid-binding function of the C17 HRDC domain, but 

these observations cannot exclude that nucleic acid interactions account for the es-

sential in vivo function of the domain. 

 

Figure 2.12 Nucleic acid-binding properties of C17/25, the C17 HRDC domain, and Rpb4/7. 

A. Comparison of the single-stranded RNA-binding activity of the subcomplexes Rpb4/7 and C17/25. Increasing 

amounts of the proteins were incubated with 25 pmol of a 22-mer single-stranded RNA and the resulting 

complexes separated from free RNA by electrophoresis. B. C17/25 binds tRNA. Increasing amounts of C17/25 

were incubated with 25 pmol of a commercial tRNA preparation from E.coli and the resulting complexes were 

separated from free tRNA by electrophoresis. The double-bands visible in free and bound tRNA samples may be 

due to conformational heterogeneity of the tRNA sample. C. C17/25 binds duplex DNA. Increasing amounts of 

C17/25 were incubated with 25 pmol of a 40-base pair duplex DNA and the resulting complexes were separated 

from free DNA by electrophoresis. 

2.11. RNA Pol III model 

Generation of the nine-subunit RNA Pol III model was done by Karim Armache and 

therefore is not directly a part of this thesis. However, the insights into the Pol III 

architecture gained from combining the Pol III model with the structural information 

on the C17/25 subcomplex will be presented and discussed here.  
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Figure 2.13 11-subunit Pol III model. 

A. Pol II structure-guided sequence alignments of core subunits homologous in Pol III. The domain organization 

of Pol II subunits Rpb1, Rpb2, Rpb3, and Rpb11 is shown as diagrams (Cramer et al., 2001). Above the 

diagrams, regions conserved in fold in the homologous subunits of Pol III are indicated with orange bars. Regions 

that apparently adopt a different structure are indicated with black brackets. Indicated are the numbers of residues 

apparently inserted or deleted in the Pol III subunits (depicted only for more than three residues inserted or 

deleted). The numbers correspond to the Pol II residue N-terminal (at the beginning) of the insertion/deletion in 

Pol III. B. Structure of the complete Pol II-TFIIS complex (Kettenberger et al., 2003; Kettenberger et al., 2004). 
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The Pol II subunits Rpb1-Rpb12 and TFIIS are colored according to the key. Eight zinc ions and the active site 

magnesium ion are depicted as cyan spheres and a pink sphere, respectively. C. Model of an 11-subunit form of 

Pol III. The model was obtained by combining the nine-subunit homology model of the Pol III core with the X-ray 

structure of the C17/25 complex. Regions in homologous subunits that are conserved in fold are in orange 

according to A. Black regions are not present or altered in Pol III. Deletions and insertions in Pol III amino acid 

sequences as compared with Pol II are shown as red and yellow spheres, respectively, if they exceed three 

amino acid residues in length A. The two Pol III subcomplexes C82/34/31 and C53/37/11, which lack from the 

model, are predicted to locate to the upstream and downstream face, respectively. 

 

2.11.1. Interaction of C17/25 with core Pol III 

In the Pol II structure, the Rpb4/7 subcomplex binds the Pol II core via two loops in 

its Rpb7 tip domain, the “tip loop” and the A1-K2 loop (Armache et al., 2003; Bushnell 

&  Kornberg, 2003; Armache et al., 2005). The two corresponding loops in C17/25 

are ordered in one copy of the asymmetric unit of our crystals, and adopt a similar 

conformation as in Pol II. We superimposed the two core-binding loops of C25 with 

those of Rpb7, to place the C17/25 structure onto the Pol III core model. The result-

ing C25 tip-core Pol III interface reveals that key contacts with the common core 

subunit Rpb6 are formed by C25 residues P15, F18, and G64, which are conserved 

in Rpb7 (Figure 2.7 a), indicating that the placement of C17/25 is correct. The speci-

ficity in the interaction between C17/25 and the Pol III core may arise at least partially 

from a salt bridge between glutamate E56 in C25 and lysine K1432 in C160, which 

corresponds to isoleucine I1445 in Rpb1. 

2.11.2. 11-subunit Pol III model 

The correct docking of the C17/25 X-ray structure onto the homology model of the 

Pol III core resulted in a model for the 11-subunit central part of Pol III, which lacks 

only the subcomplexes C82/34/31 and C53/37/11 (Figure 2.13). Due to the C17 

HRDC domain, which adopts a new position, and due to the slightly different relative 

orientation of the C25 tip and OB domains, the model shows an orientation of C17/25 

relative to the core Pol III that differs from that of Rpb4/7 in Pol II (Figure 2.13). Com-

pared to Rpb4/7, C17/25 protrudes from the Pol III core more towards the upstream 

face and RNA exit pore (Figure 2.13). The exact orientation of C17/25 however may 

differ in the complete Pol III, due to the presence of the two additional subcomplexes 

or due to some remodeling in the interface between the C25 tip and core Pol III.  
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3. Discussion  

3.1. Structural biology of Pol III 

In this thesis first structural information on Pol III was obtained. A homology model of 

the nine-subunit Pol III core could be combined with the C17/25 structure. Resulting 

11-subunit model for Pol III allows interpretation of biochemical and genetic data and 

the design of mechanistic studies of Pol III transcription. 

The X-ray structure of the Pol III subcomplex C17/25 and biochemical data revealed 

that the C17 HRDC domain forms an independently folded module that adopts an 

unexpected new position and may be mobile. Complementation analysis in yeast 

demonstrated an essential function of the C17 HRDC domain in vivo. EMSA analysis 

revealed that C17/25 binds various types of nucleic acids in vitro, including tRNA, but 

that this activity does not reside in the C17 HRDC domain.  

3.2. Conserved structure of the Rpb4/7 complexes 

Counterparts of Rpb4/7 in yeast RNA Polymerase I (Shpakovski &  Shematorova, 

1999; Peyroche et al., 2002; Meka et al., 2003) and III (Sadhale &  Woychik, 1994; 

Hu et al., 2002; Siaut et al., 2003) and in the archeal RNA Polymerase (Todone et 

al., 2001) were identified previously. C17 was identified as the last of the Rpb4 

homologues due to a very weak sequence homology between these two subunits 

(Siaut et al., 2003). Structural information on Rpb4/7 itself and the archeal RpoE/F 

complex was available (Todone et al., 2001; Armache et al., 2005) and the X-ray 

structure of the C17/25 heterodimer is part of this thesis (Jasiak et al., 2006). Re-

cently the crystals of the Rpb4/7 counterparts in Pol I could be obtained. Accessibility 

of the atomic-resolution model of the Rpa14/43 complex allows a comparative analy-

sis of the Rpb4/7-like complexes in all three eukaryotic RNA polymerases (Kuhn et 

al., 2007) (Figure 3.1). 

The overall structure of Rpa14/43 resembles its counterparts Rpb4/7 (Armache et al., 

2005), C17/25 (Jasiak et al., 2006), and the archaeal RpoF/E (Todone et al., 2001). 

Compared to Rpb7, the N-terminal tip domain of Rpa43 shows RMS deviations in Cα 

atom positions of 2.2-2.5 Å, whereas the C-terminal OB domain is more divergent. 

Rpa14 contains the ‘tip-associated domain’, formed by two helices H1 and H2 di-

vided by a flexible loop, packs on the Rpa43 tip domain (Kuhn et al., 2007). The most 

striking feature of the Rpa14 subunit is the lack of an HRDC domain present in all 

counterparts, instead having a long flexible C-terminal tail (Figure 3.1).  

The overall similar fold of Rpb4/7 counterparts in RNA Pol I, II and III provides new 

insight into the evolution of the eukaryotic RNA polymerases. The conserved struc-

ture speaks for a conserved role of Rpb4/7-like complexes in transcription. They are 
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all crucial for promoter-directed transcription initiation and are shown to interact with 

Rrn3, TFIIB and TFIIIB, transcription factors recruiting the polymerase to its promoter 

in the Pol I, II and III system, respectively. The diverse position of the HRDC domain 

in Rpb4 and C17 and its lack in Rpa14 are likely to be functionally relevant and may 

influence the differential initiation factor interactions and promoter-specificity of the 

three polymerases. 

 

Figure 3.1 Rpb4/7 subcomplexes structures: A14/43, Rpb4/7, C17/25 and RpoE/F. Figure adapted from 

(Kuhn et al., 2007). 

3.3. RNA binding of Rpb4/7-like subcomplexes 

The functional conservation of RNA polymerases may extend to binding of the exiting 

RNA to the Rpb4/7-like subcomplexes, which are located in proximity of the RNA exit 

pore. Indeed RNA emerging from a Pol II elongation complex can be crosslinked to 

Rpb7 (Ujvari &  Luse, 2006). Further, Rpb4/7, A14/43 and RpoE/F all bind single-

stranded nucleic acids (Orlicky et al., 2001; Meka et al., 2003; Meka et al., 2005). 

C17/25 binding of the single-stranded RNA was showed, suggesting that interaction 

with exiting RNA is a common property of all Rpb4/7-like complexes. C17/25 bound 

most strongly to tRNA, suggesting that it may preferentially interact with Pol III tran-

scripts that emerge from the RNA exit pore located in the vicinity of the subcomplex 

(shown for Pol II as a black arrow in Figure 2.13). Consistently, Rpb4/7 bound more 

weakly to tRNA, and the surfaces of the two subcomplexes are not conserved, in-
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cluding an RNA-binding patch of Rpb4/7 (Meka et al., 2005). It is thus possible that 

emerging Pol III transcripts fold cotranscriptionally on the C17/25 surface or that 

C17/25 plays a role in coupling Pol III transcription and RNA processing. However, 

more experiments must be conducted to rigorously address the possibility of prefer-

ential interaction of C17/25 with various Pol III transcripts. 

3.4.  Promoter-specific initiation  

Pol III selects its promoters with specific transcription initiation factors that assemble 

on the enzyme upstream face. The Pol III upstream face is structurally different from 

that of Pol II, and includes C17/25 with its differently positioned HRDC domain. The 

functional importance of C17/25 for initiation is established by a point mutation in C25 

that results in an initiation defect (Zaros &  Thuriaux, 2005). Indeed C17/25 contrib-

utes to initiation complex assembly, since C17 binds to the Pol III initiation factor 

TFIIIB (Ferri et al., 2000), and to the Pol III subcomplex C82/34/31 (Figure 2.13) 

(Geiduschek &  Kassavetis, 2001; Schramm &  Hernandez, 2002) and references 

therein). The C82/34/31 subcomplex also binds the Pol III core near a zinc site 

(Werner et al., 1992) (Zn8 in Figure 2.13 c), where the Pol III subunit C128 shows a 

specific seven-residue deletion (Figure 2.13, deletion 12). C82/34/31 bridges to the 

initiation factors TFIIIC (Hsieh et al., 1999) and TFIIIB (Geiduschek &  Kassavetis, 

2001; Schramm &  Hernandez, 2002) and references therein). Since C17 is part of 

an extensive protein interaction network, and since the C17 HRDC domain has an 

essential in vivo function but apparently lacks nucleic acid-binding activity, the HRDC 

domain is most likely involved in Pol III initiation complex assembly. C17/25 could 

however also contribute directly to promoter binding since it has an affinity for duplex 

DNA. In this respect it is interesting that Rpb4/7 can be crosslinked to promoter DNA 

in a Pol II initiation complex (Chen et al., 2004). 

3.5. Polymerase conservation and elongation  

Our 11-subunit RNA Pol III model reveals that at least 83.4 % of the Pol II fold is 

conserved in Pol III, although the overall sequence identity is only 39.4 % (Table 3.1). 

The only Pol II domain folds that are not present or strongly altered in Pol III are the 

Rpb1 jaw domain and the Rpb2 external domain 1 (Cramer et al., 2001) (Figure 

2.13). Other differences concern only insertions and deletions on the enzyme surface 

(Figure 2.13). Comparison with the Pol II elongation complex structures (Gnatt et al., 

2001; Kettenberger et al., 2004; Westover et al., 2004) shows that extended surfaces 

conserved between Pol III and Pol II are only found in the polymerase cleft, around 

the incoming DNA, in the active site, around the binding sites for the nucleoside 

triphosphate substrate and the DNA-RNA hybrid, and at the RNA exit tunnel (Figure 



Chapter II: Structure and function of RNA polymerase III C17/25 subcomplex 39

3.2), reflecting the conservation of the basic mechanisms of RNA elongation in the 

two polymerases. 

 

Figure 3.2 Surfaces on the Pol III model conserved in Pol II. 

Residues on the surface of the 11 subunit Pol III model that are identical or conserved in the four homologous 

subunits of S.cerevisiae Pol II are in green, others are in silver. The common subunits are in different colors. 

Extensive conservation is observed only in the active center cleft. 

Table 3.1 Conservation of the RNA polymerase III subunits. 

Polymerase part Pol III subunit Pol II subunit Subunit type Sequence 

identity (%) 

Conserved fold 

(%) 

C160 Rpb1 homolog 28.4 83.2 

C128 Rpb2 homolog 35.8 87.2 

AC40 Rpb3 homolog 25.8 60.2 

AC19 Rpb11 homolog 20.8 81.6 

Rpb5 Rpb5 common 100 100 

Rpb6 Rpb6 common 100 100 

Rpb8 Rpb8 common 100 100 

Rpb10 Rpb10 common 100 100 

Core 

Rpb12 Rpb12 common 100 100 

C17 Rpb4 homolog 7.2 50 Rpb4/7 

subcomplex 
C25 Rpb7 homolog 25.2 81.3 

Upstream 

subcomplex  

C82/34/31  specific - - 

Downstream 

subcomplex 

C53/37/11* Rpb9* unclear - - 

11-subunit Pol III 

model  

- - - 39.4 83.4 

*Subunit C11 shows homology to Rpb9 and TFIIS. Rpb9 was previously defined as a part of the Pol II core. 
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3.6. Evaluation of the RNA Pol III model 

Two recent publications inspecting RNA Polymerase III architecture using mass 

spectrometry (Lorenzen et al., 2007) and cryo-electron microscopy (Fernandez-

Tornero et al., 2007) could evaluate the structural Pol III model presented here. They 

are both consistent with our results, which proofs suitability of the structure-based 

modeling combined with the X-ray analysis method to analyze big multi-subunit pro-

tein complexes.  

DMSO treatment of purified Pol III coupled to tandem mass spectrometry measure-

ments allowed for dissociation and identification of the peripheral Pol III subcom-

plexes (Lorenzen et al., 2007). According to the obtained data, Pol III compromises a 

10 subunit core that resembles the structure of the Pol II core, and three het-

erodimeric subcomplexes C37/53, C17/25 and C34/82. C31 bridges between 

C82/34, C17/25 and the Pol III core. These observations support our results and 

expand the model of Pol III by identifying the C11 subunit, which could not be mod-

eled, as a part of the Pol III core. The EM structure of Pol III at 17 Å resolution     

revealed a hand-like shape typical of RNA polymerases (Fernandez-Tornero et al., 

2007). Difference map calculated after fitting of the RNA Pol II structure into the ob-

tained electron density revealed several additional and a few smaller missing density 

patches (Figure 3.3). The three largest additional densities were assigned to the 

C37/53 (AD2) and C31/34/82 (AD1 and AD3) complexes, other differential densities 

co-localize with the deletions and insertions in Pol III compared to Pol II, which were 

marked on our model (Figure 2.13).  
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Figure 3.3 Structurel differences between RNA Pol III and RNA Pol II. Figure adapted from (Fernandez-

Tornero et al., 2007). 

A. Final manual fitting of RNAPII crystal structure (Armache et al., 2005) into the reconstructed RNAPIII density. 

Domains of RNAPII that fall outside the EM density are labeled MD1–MD6. Mg2+ and Zn2+ ions appear as 

magenta- and yellow-colored dots, respectively. B. Difference map between the RNAPIII cryo-EM structure and 

the RNAPII crystal structure. Additional density features (green) in the RNAPIII reconstruction are labeled AD1–

AD7. The N-terminal domain of Rpb9, positioned according to the fitting in (A), is in yellow. The putative position 

of the active center is marked with a magenta dot. C. Schematic representation and color code of RNAPII 

subunits, with corresponding RNAPIII subunits in parenthesis. 
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3.7. Mobility of the HRDC domain 

The EM structure of the Pol III confirms that C17/25 adopts the same fold in the con-

text of the whole Pol III enzyme as it does, when crystallized alone (Fernandez-

Tornero et al., 2007). The observed additional density surrounding both subunits 

(Figure 3.4) could be attributed to a linker connecting the N- and C-terminal domains 

of C17 and a loop in the OB domain of C25, which are disordered in the crystal struc-

ture of the complex (this work). Moreover superposition of the C17/25 crystal struc-

ture onto Rpb4/7 in the Pol II structure fitted into the Pol III electron density resulted 

in the HRDC domain protruding almost entirely from out of the EM map (Figure 3.4 

a). In contrast, positioning the C17 HRDC domain as observed in Rpb4 perfectly fits 

the density (Figure 3.4 b). This and the notion that the largest difference between the 

native and negatively stained EM structures is observed in the C17/25 region and 

might reflect a different position of the C-terminus of C17 (Fernandez-Tornero et al., 

2007) support demonstrated in this thesis mobility of the HRDC domain.  

 

Figure 3.4 Close-up view of the C17/25 region in the RNA Pol III EM structure. Figure adapted from 

(Fernandez-Tornero et al., 2007). 

The RNA Pol II model fitted into the EM reconstruction A. Subunits Rpb4/Rpb7 were replaced by the RNAPIII 

C17/C25 subcomplex by superposing subunit C25 onto Rpb7. Squares indicate the position of two insertions in 

C17/C25 that are disordered in the crystal structure. B. Subunits Rpb4/Rpb7 in the Pol II model. Squares indicate 

the position of two insertions in the RNAPIII subunits C17/C25. 
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3.8. Conclusions and outlook 

Pol III is a key enzyme for the expression of the eukaryotic genome, which for a very 

long time resisted structural investigation. Here, a combination of X-ray crystallogra-

phy, molecular modeling, and functional in vitro and in vivo analysis, was used to 

establish an 11-subunit model of Pol III, and to provide molecular insights into simi-

larities and differences with Pol II. 

Whereas the similarity of the core fold and active center of Pol III and Pol II reflects a 

common basic transcription mechanism, structural differences in a region that directs 

initiation complex assembly partially account for promoter specificity. These data 

provide a framework for further structural and functional analysis of Pol III, and mark 

the beginning of a comparative molecular analysis of eukaryotic RNA polymerases. 

Further work on crystallization and functional analysis of the other Pol III subcom-

plexes is required to explain the additional densities in the EM map or to solve the X-

ray structure of the whole Pol III enzyme in the future. A search for the structural and 

functional similarities with Pol II transcription factors could enlighten the specific role 

played by the additional subunits in the relatively simple Pol III transcription machin-

ery. 
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4. Experimental procedures 

4.1. Molecular biology methods 

Standart molecular biology procedures like Standard molecular biology procedures 

such as isolation of DNA, restriction analysis, polymerase chain reaction (PCR), 

cloning of DNA, agarose gel electrophoresis etc. were carried out essentially as 

described bevore (Sambrook &  Russell, 2001). 

4.2. Cloning 

The genes for C17 and C25 were amplified from yeast genomic DNA by PCR and 

were cloned into vector pET21b (Novagen), using double-expression system 

previously described for rpb 4/7 (Sakurai et al., 1999), resulting in a C-terminal 

hexahistidine tag (His) on C25. For cloning of the HRDC domain, used for the nucleic 

acids binding experiments, the region of the gene corresponding to amino acid 

residues 94-161 of C17 was amplified by PCR from the C17/25 expression plasmid 

and cloned into pET21b (Novagene) with a C-terminal His tag. Table 4.1 summarises 

oligonucleotides used for PCR amplification.  

Table 4.2 lists all the vectors used in the experiments. 

Table 4.1 Oligonucleotides used for PCR 

name 5’→3’ sequence restriction site 

rpc25_for ATGCTAGCTAGCATGTTTATCCTTTCAAAAATCGC NheI 

rpc25_rev ATAGTTTAGCGGCCGCTTCCCACCAACTAACGAGTCCC NotI 

rpc17_for GGGAATTCCATATGAAAGTTCTTGAGGAAAGG NdeI 

rpc17_rev CGCGGATCCTCATGCGTACGCAGAGATGATC BamHI 

HRDC_for GGGAATTCCATATGGGTATAAGCAAAATGAGCG NdeI 

HRDC_rev CCGGGCGAGCTCTCAGTGGTGGTGGTGGTGGTGTGCGTA

CGCAGAGATGATC 

XhoI 
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Table 4.2 Plasmids 

name protein vector restriction site affinity Tag 

C17 NdeI/BamHI  - 
pET_C17/25_fl 

C25 
pET21b 

NheI/NotI  His6 

pET_HRDC HRDC domain of C17 pET21b NdeI/XhoI  His6 

4.3. Bacterial strains 

Bacterial strains used for cloning and expression of recombinant proteins are listed in  

Table 4.3 . 

Table 4.3 Bacterial strains 

strain description source 

XL-1 blue recA1 endA1 gyrA96 thi–1 hsdR17 supE44 relA1                

lac [F'proAB lacIqZ∆M15 Tn10 (Tetr)] 

 Stratagene 

BL21(DE3) RIL E. coli B F– ompT hsdS(rB
– mB

–) dcm+ Tetr gal λ (DE3) 

endA Hte [argU ileY leuW Camr] 

 Stratagene 

B834 (DE3) F– ompT hsdSB (rB – mB –) gal dcm met (DE3)  (Budisa et al., 

1995) 

4.4. Media and buffers 

The double-distilled water was used in all the recipies. All media and buffers were 

autoclaved or sterile filtered for storing and usage. 

Luria Bertani medium 

1 % tryptone 

0.5 % yeast extract 

0.5 % NaCl 

pH 7.0 

1.5–2 % (w/v) of Bacto-Agar was added to the medium to prepare LB-agar plates. 

Auto-inducing Medium: ZY medium  

10 g tryptone 
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5 g yeast extract 

925 ml H2O 

Auto-inducing Meduim: 20 x NPS buffer 

66 g (NH4) 2SO4 

136 g KH2PO4 

142 g Na2HPO4 

900 ml H2O 

Auto-inducing Meduim: 50 x 5052 solution 

250 g glycerol 

25 g glucose 

100 g α-lactose 

730 ml H2O 

Auto-inducing Meduim: MgSO4 solution 

1 M MgSO4 

Minimal Medium  

7.5 mM ammonium sulfate 

8.5 mM NaCl 

55 mM KH2PO4 

100 mM K2HPO4 

1mM MgSO4 

20mM glucose 

1 µg/l Trace elements (Cu2+, Mn2+, Zn2+, Mo4
2- ) 

10 mg/l Thiamine 

10 mg/l Biotine 

1 mg/l Ca2+ 

1 mg/l Fe2+ 

100 mg/l amino acids (A, C, D, E, F, G, H, I, K, L, N, P, Q, R, S, T, V, W, Y) 

100 mg/l selenomethionine 

 



Chapter II: Structure and function of RNA polymerase III C17/25 subcomplex 47

Supplements/Antibiotics 

100 mg/ml in H2O ampicillin 

50 mg/ml in ethanol chloramphenicol 

1 M in H2O IPTG 

100 X proteaseinhibitor mix/ethanol 

3 mg/l leupeptin 

14 mg/l pepstatin A 

1.7 g/l PMSF 

3.3 g/l benzamidine 

Edman buffer 

200 mM Tris·Cl pH 8.5 

2 % SDS 

4.5. Transformation 

A 50 µl aliquot of competent cells and plasmid DNA were thawed on ice. 1 µl of 

plasmid DNA was added to BL21(DE3) RIL or B834 (DE3) cells, which were 

incubated on ice for 15 minutes, followed by a 'heat shock' performed at 42 °C for 60 

seconds. After short cooling on ice and adding 1ml of LB medium, the cells were 

incubated at 37 °C for 45 minutes. The cells were finally plated on LB agar plates 

containing ampicillin (100 mg/ml) and chloramphenicol (50 mg/ml). The plates were 

incubated overnight at 37 °C. 

4.6. Expression of recombinant proteins in E.coli 

A fresh colony was picked within 24 h of transformation, and a starter culture was 

grown over-night in 50 ml LB medium containing ampicillin and chloramphenicol. LB 

medium (two liter per five liter flask) supplemented with antibiotics was inoculated 

and shaken (180 rpm) at 37 °C until the culture reached log phase (OD 0.7 - 0.8). 

After cooling the E. coli suspension on ice IPTG at a 1:2000 ratio was added and the 

cells were grown over night at 18 °C. Cells were collected by centrifugation (4000 

rpm, SLS6000 rotor) at 4 °C, subsequently suspended in Lysis Buffer, flash-frozen in 

liquid nitrogen and stored at -80 °C. 

For expression of HRDC so called Auto-inducing Medium (Studier, 2005) was used. 

A starter culture was grown over-night like in standard LB medium. For preparing 1 
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liter of Auto-indcing Medium about 925 ml of ZY medium was complemented with 50 

ml of 20 x NPS buffer, 20 ml 50 x 5052 solution and 1 ml 1M MgSO4. Auto-indcing 

Medium (two liter per five liter flask) supplemented with antibiotics was inoculated 

and shaken (180 rpm) at 30 °C for about 3 – 4 h, until the culture reached log phase 

(OD 0.7 - 0.8), then the temperature was shifted to 18 °C and the cells were grown 

over nigh. Cells were collected by centrifugation (4000 rpm, SLS6000 rotor) at 4 °C, 

subsequently suspended in HDRC Lysis Buffer, flash-frozen in liquid nitrogen and 

stored at -80 °C. 

4.7. Seleno-Methionine labelling 

For seleno-methionine labelling pET21b C17/25 vector was transformed into the 

methionine auxotroph E.coli strain B834 (DE3). Bacteria were grown in LB medium 

supplemented with the appropriate antibiotic at 37 °C to an OD 0.5. Cells were 

harvested and resuspended in the same amount of minimal medium supplemented 

with selenomethionine (100 mg/l) and antibiotics (Budisa et al., 1995), (Meinhart et 

al., 2003). Cells were grown until the OD increased by 0.2 at 37 °C to deplete the 

medium of any residual methionine. Cultures were cooled on ice for 30 min and 

protein expression was induced by the addition of 0.5 mM IPTG. Proteins were 

expressed over night at 18 °C. 

4.8. Protein purification 

4.8.1. Purification of C17/25 heterodimer 

4.8.1.1.  Buffers 

Lysis Buffer 

1 M NaCl 

50 mM Tris·Cl pH 8.0 

5 % Glycerol 

10 mM  β-Mercapto-ethanol 

A0 Buffer 

50 mM Tris·Cl pH 8.0 

1 mM EDTA 

5 mM  DTT 
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A1 Buffer 

150 mM NaCl 

50 mM Tris·Cl pH 8.0 

1 mM EDTA 

5 mM  DTT 

B1 Buffer 

1 M NaCl 

50 mM Tris·Cl pH 8.0 

1 mM EDTA 

5 mM  DTT 

Gel filtration Buffer 

40 mM (NH4) 2SO4 

5 mM HEPES pH 8.5 

10 mM  DTT 

4.8.1.2.  Purification procedures 

Cells were harvested by centrifugation, resuspended in Lysis buffer and lysed by 

sonication. After centrifugation the supernatant was loaded onto a Ni-NTA column 

(Qiagen) equilibrated with Lysis buffer. The column was washed stepwise with 10 mL 

of Lysis buffer and 5 mL of Lysis buffer containing 20 mM imidazole. Proteins were 

eluted with Lysis buffer containing 150 mM imidazole. Eluted fractions were diluted 

6.5-fold with Buffer A0 and further purified by anion exchange chromatography 

(MonoQ, Amersham). The column was equilibrated with Buffer A1 and proteins were 

eluted with a linear gradient of 10 column volumes from 150 mM to 1 M NaCl, 

created by addidtion of the B1 Buffer. After concentration the sample was applied to 

a Superose-12 HR gel filtration column (Amersham) equilibrated with the Gel filtration 

buffer. Pooled peak fractions were concentrated for crystallization to 8.5 mg/mL.  
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4.8.2. Purification of HDRC domain 

4.8.2.1.  Buffers 

HRDC Lysis Buffer 

150 mM NaCl 

50 mM Tris·Cl pH 7.5 

5 % Glycerol 

10 mM β-Mercapto-ethanol 

A1 Buffer 

150 mM NaCl 

50 mM Tris·Cl pH 7.5 

1 mM EDTA 

5 mM  DTT 

B1 Buffer 

1 M NaCl 

50 mM Tris·Cl pH 7.5 

1 mM EDTA 

5 mM  DTT 

Gel filtration Buffer 

40 mM (NH4) 2SO4 

5 mM HEPES pH 7.5 

10 mM  DTT 

 

HDRC domain of C17, used for nucleic acids binding experiments, was purified 

essentially as described for full length C17/25 complex, except lowering the salt 

concentration in the HRDC Lysis Buffer. The purified HRDC domain was 

concentrated to 10 mg/mL, flash-frozen in liquid nitrogen, and stored in -80° C.  



Chapter II: Structure and function of RNA polymerase III C17/25 subcomplex 51

4.9. Measurement of protein concentration  

For the determination of protein concentrations the Bradford protein assay was used 

(Bradfor, 1976). Dye reagent was purchased from Biorad and the assay was 

performed according to the manufacturer's instructions. For each new batch of dye 

reagent a calibration curve was generated using Bovine serum albumin (Fraktion V, 

Roth). 

4.10. Protein separation by SDS-PAGE 

Denaturing gel electrophoresis was adapted to separate complex protein mixtures 

into distinct bands on a gel. According to the discontinuous Laemmli system 

(Sambrook &  Russell, 2001), ten gels were cast at once. The percentage of the gels 

(15 % -17 %) was defined by the size of the monitored proteins. The proteins were 

totally unfolded by adding β-mercaptoethanol to the SDS loading dye. Gels were then 

stained with Coomassie (SIGMA) solution and if required subjected to blotting 

procedures. 

4.11. Limited proteolysis 

For chymotrypsin and trypsin treatment 1 µg of the protease was added to 20 µg to 

50 µg of purified protein. Digests were done in the buffers used for gel filtration and 

supplemented with CaCl2 to a final concentration of 4 µM. The mixture was incubated 

at 37 °C and aliquots were removed at 10 sek, 1, 3, 10, 30 and 60 minutes. The 

reactions were stopped by the addition of SDS sample buffer and were heated 

immediately to 95 °C for 5 min. All samples were analyzed by SDS-PAGE. Bands of 

interest were passively transfered to PVDF membrane and analyzed by Edman 

sequencing. 

4.12. Blotting and Edman Sequencing 

For N-terminal sequencing proteins were separated on SDS-PAGE and stained with 

Coomassie. After electrophoresis, the desired band of interest was excised and dried 

in a Speed Vac. Further the piece of gel was rehydrated in 50 µl of Edman buffer and 

100 µl of distilled water was added to set up a concentration gradient together with a 

small piece of pre wet (ethanol) PVDF membrane. Once the solution began to turn 

blue from dye, methanol was added to a final concentration of 10 %.  Protein transfer 

required two days incubation at room temperature, after which the solution became 

clear and the membrane piece blue, indicating completing of the procedure. The 
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membrane was washed 5 times with 10 % Methanol by vortexing 30 sec each time, 

dried and the strip was loaded into a PROCISE 491 sequencer (Applied Biosystems). 

4.13. Static light scattering experiments 

Static light scattering measurements were performed with a triple detector TDA 

(viscotek) connected to a Superose-12 HR gel filtration column (Amersham) 

equilibrated with gel filtration buffer. 100 µl of protein with a concentration of 10 

mg/ml was diluted to 500 µl with gel filtration buffer and injected onto the column. The 

concentration/volume was calculated from the UV absorption and extinction 

coefcient. With this information the refractive index/volume was calculated by means 

of the refractive index detector. Refractive index, UV and viscosity were followed 

during the measurement. The hydrodynamic radius and the molecular weight were 

calculated using the static light scattering software from viscotek with the calculated 

refractive index. 

4.14. Temperature stability tests 

To test the stability of the purified C17/25 complex 100 µl of newly purified protein 

solution in gel filtration buffer was incubated in room temperature for over 4 days. 

The samples were taken after 0, 24, 48 and 96 h, mixed with SDS sample buffer and 

heated to 95 °C for 5 min. All samples were analyzed by SDS-PAGE. 

4.15. Protein crystallization 

Initial crystal setups with commercial screens were performed with the Hydra II semi-

automatic protein crystallization robot (Matrix Technologies Apogent Discoveries) by 

sitting drop vapour diffusion methods using 96-well crystallization plates (Corning). 

0.5 µl protein and 0.5 µl crystallization solution drops with 50 µl reservoir solution 

were set. For manual refinement of the initial crystallization conditions 24 well plates 

EasyXtal Tools (Nextal/Qiagen) and hanging-drop method were applied. Drops were 

set using 500 µl reservoir solution and 1 µl protein + 1 µl reservoir drops. In all cases 

protein was added prior to adding reservoir solution, which always contained fresh 

reducing agent, 3 mM Tris(2-carboxyethyl)phosphine (TCEP). Crystals of native 

C17/25 subcomplex were grown at 20°C, using as reservoir solution 3% PEG400, 

0.1 M Hepes pH 7.5, 1.6 M ammonium sulphate, and 0.1 M NaCl. For SAD phasing, 

selenomethionine-containing C17/25 was crystallized as above, except that 0.15 M 

NaCl was used in the reservoir solution.  
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Crystals were harvested in reservoir solution containing additionally 5% glycerol. The 

glycerol concentration was increased to 30% in four steps, using an incubation time 

of 2 min per step. The crystals were flash-cooled by plunging into liquid nitrogen.  

4.16. X-ray structure analysis 

The SAD experiment on selenomethionine-labeled crystals and native crystal 

measurements were performed at the Swiss Light Source at X06SA beamline. Data 

were processed with DENZO and SCALEPACK (Otwinowski &  Minor, 1996). The 

program SnB (Weeks &  Miller, 1999) detected 12 selenium sites, which were used 

as seeds in program SOLVE (Terwilliger, 2002). This resulted in a total of 18 

selenium peaks that stemmed from two C17/25 complexes in the asymmetric unit. 

After SAD phasing with all sites in SOLVE, program RESOLVE was used for density 

modification and NCS averaging, and was able to auto-build an initial model, which 

was corrected and completed manually with program O (Jones et al., 1991). Since 

native crystals showed slightly different unit cell dimensions, the resulting model was 

used for molecular replacement with program PHASER (McCoy et al., 2005). The 

C17/25 model was subsequently refined against native data at 3.2 Å resolution to a 

free R-factor of 30.7%. In the refined structure, 99% of the residues fall in allowed 

and additionally allowed regions of the Ramachandran plot, and none of the residues 

are in disallowed regions. Figures were prepared with Pymol (DeLano, 2002). 

4.17. Nucleic acids binding assay 

4.17.1. Gels and Buffers 

Binding Buffer 1 x 

40 mM HEPES pH 7.2 

100 mM K Acetate 

10 % Glycerol 

TBE 0.5 x 

45 mM Tris - Borate 

1 mM EDTA 
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7.5 % polyacrylamide (PAA) gels (20 ml – 2 gels) 

2 ml 5 x TBE 

5 ml 30 % PAA 

0.4 ml Glycerol 

130 µl  10 % APS 

10 µl TEMED 

12.5 ml H2O 

4.17.2. Electrophoretic mobility shift assay 

Nucleic acids binding activities of C17/25 complex and HRDC domain of C17 in 

comparision with Rbp4/7 were analyzed using the electrophoretic mobility shift assay 

(EMSA). Complexes of protein and DNA migrate through a native polyacrylamide 

(PAA) gel more slowly than free oligonucleotides. C17/25 and HRDC domain 

purification was performed as described in Chapter II, 4.8, Rpb4/7 complex was 

prepared as described (Armache et al., 2003). 

Nucleic acid probes included single-stranded DNA and RNA 22-mers, a double-

stranded 40 base-pair DNA, and an E.coli tRNA preparation (Sigma). Double-

stranded DNA probes ware obtained by annealing complementary synthetic single 

strands. 25 pmol of tRNA, duplex DNA, or ssRNA, or 50 pmol of ssDNA, were 

incubated with different amounts of protein in 20 µl of binding buffer for 30 min on ice 

as described (Orlicky et al., 2001). Bound and free probes were resolved by 

electrophoresis in native 4-20% acrylamide TBE gradient gels (Invitrogen) or in 7.5% 

polyacrylamide 0.5 x TBE gels containing 2% glycerol, in case of single-stranded 

nucleic acids, at 100 V at 4° C for 2.5 hr or 40 min, recpectively. Gels were stained 

for 30 min with SYBR-Gold (Molecular Probes) and visualized on a Typhoon 9400 

phosphoimager (Amersham). Afterwards the gels were restained with Coommasie 

Brilliant Blue R (Roth) solution to localize the protein bands. This ensured co-

localization of nucleo-protein complexes. 
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Table 4.4 Oligonucleotides used for binding assay 

name 5’→3’ sequence 

ssDNA ATGAAAGTTCTTGAGGAAAGG 

ssRNA UAUAUGCAUAAAGACCAGGC 

dsDNA_for ACCGAAAGCTTTATATAGGCTATTGCCCAAAAATGTATCGCCAATCACCTA

ATTTGGAG 

dsDNA_rev CTCCAAATTAGGTGATTGGCGCATACATTTTTGGGCAATAGCCTATATAAA

GCTTTCGGT 

4.18. Yeast complementation studies 

4.18.1. Cloning 

PCR-amplified ORF of complete RPC17 or of complete RPC17, the N-terminal 80 

amino acids of RPC17 and its C-terminal 68-residue HRDC domain were cloned into 

p416-URA3-pGAL or p415-LEU2-pGAL1 vectors, respectively. Start and stop codons 

were introduced by PCR mutagenesis. Table 4.5 lists primers used for PCR 

amplification. 

Table 4.5 Oligonucleotides used for PCR 

name 5’→3’ sequence restriction site 

y_C17fl_for GGCCGCGGATCCATGAAAGTTCTTGAGGAAAGG BamHI 

y_C17fl_rev GCCGGCGAGCTCTCATGCGTACGCAGAGATGATC XhoI 

y_C17delHRDC_rev GCCGGCGAGCTCTCACTCGCCTTCATCTTCCTGG XhoI 

y_HRDC_for GGCCGCGGATCCATGGGTATAAGCAAAATGAGCG BamHI 

4.18.2. Mutagenesis 

The double mutation F103E/M107E of C17 was introduced into plasmid p415-LEU2- 

pGAL1-RPC17 with the use of the QuickChange kit (Stratagene) and following the 

manufacturer's instructions. Kit used a simplified method to perform point mutations, 

change amino acids or delete/insert amino acids using a thermal cycling technique in 

combination with Dpn I digestion. Procedure begined with gene of interest in a 

double strand vector, purified using a standard plasmid-prep kit (Qiagen). Two 

primers, both containing the desired mutation and covering the area where the 

mutation is to be made, were designed according to a detailed set of instructions 
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provided with the kit. After PCR step with a double strand vector used as an 

templete, the reaction was cooled below 37ºC and 1 ul of Dpn I restriction enzyme 

was added to each reaction and incubated at 37ºC for 1hr. Dpn I enzyme is specific 

to methylated and hemi-methylated DNA. As most E.coli strains produce methylated 

DNA and are not resistant to Dpn I digestion, it digests the parental DNA template 

but not the mutant-synthesized DNA. Undigested DNA was then used to transform 

competent cells.  Introduction of the point mutations was further proved by DNA 

sequencing. Sequences of primers used for mutagenesis are listed in Table 4.6 . 

Table 4.6 Oligonucleotides used for mutagenesis 

name 5’→3’ sequence 

C17Mut103FE107ME_for GAGCGATGAAAGCGAAGCTGAGTTGGAGACTAAACTGAATTC

C17Mut103FE107ME_rev GAATTCAGTTTAGTCTCCAACTCAGCTTCGCTTTCATCGCTC 

4.18.3. Vectors 

Plasmids used for complementation of the yeast strains are listed in Table 4.7 . 

Table 4.7 Plasmids used for yeast complemantation studies 

name gene vector restriction site 

RJP1207 RPC17 p416-URA3-pGAL1 BamHI/XhoI 

RJP1208 RPC17 p415-LEU2-pGAL1 BamHI/XhoI 

RJP1209 RPC17∆HRDC p415-LEU2-pGAL1 BamHI/XhoI 

RJP1210 HRDC p415-LEU2-pGAL1 BamHI/XhoI 

RJP1208a RPC17 Mut F103E/M107E p415-LEU2-pGAL1 BamHI/XhoI 

4.18.4. Yeast complementation 

Yeast complementation studies were performed by Birgit Märtens from Ralf-Peter 

Jansen Group, Gene Center Munich as a part of collaboration. 

Diploid S. cerevisiae strain Y26779 containing a heterozygous deletion of the C17 

gene RPC17 (Euroscarf, Frankfurt, Germany) was transformed with plasmid 

RJP1207 and sporulated. Haploid cells were selected carrying the RPC17∆::kanR 

deletion and the complementing plasmid. The resulting strain (RJY2771) was 

transformed with plasmids RJP1208, RJP1209, RJP1210 or RJP1208a. Transformed 

yeast strains were selected on -leu plates containing 2% galactose to induce 
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expression of the corresponding construct. Single clones were resuspendend and 

spotted in serial dilutions on plates containg 5'-FOA to test for loss of plasmid 

RJP1207 indicating complementation by the corresponding construct. 

4.19. Bioinformatic tools and software 

Alignments. Multiple homologues sequence alignments were initially constructed 

using CLUSTAL-W (www.ebi.ac.uk/clustalw). 

Homology searches. Homologoues sequences were found using the NCBI BLAST 

and PSI BLAST-Server (http://www.ncbi.nlm.nih.gov/BLAST/)  

Secondary structure prediction. Secondary structure prediction was done using 

the PredictProtein (http://cubic/bioc/columbia/edu/predictprotein.hmtl) secondary 

structure prediction surfer. 

Calculation of molecular weight, absorption coefficient and PI.  Calculation of 

properties of the proteins which are important for the design of the purification 

strategy as the PI were determined using ProtParam 

(www.expasy.org/tools/protparam.html). The absorption coefficients and molecular 

weights used for quantification were obtained form the same server. 
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Chapter III: Genome-wide distribution of RNA polymerase II 
and its Rpb4/7 subcomplex in S. cerevisiae 

1. Introduction 

1.1. RNA Polymerase II transcription cycle 

Generation of the mRNA by RNA Pol II involve multiple steps (reviewed in (Hahn, 

2004), (Cramer, 2007)). Transcription starts by positioning RNA Pol II on the 

promoter in an inactive form termed the preinitiation complex (PIC) (Bushnell et al., 

2004; Miller &  Hahn, 2006; Chen et al., 2007). Concomitant transition into the open 

complex and allow the synthesis of a first phosphodiester bond of RNA. It is 

characterized by conformational changes in the DNA structure, during which 11-15 

bp surrounding the transcription start side are melted and the template strand slips 

inside the cleft and binds in the Pol II active center. Recognition of the promoter 

sequences, as well as formation of the preinitiation and subsequently of an open 

complex is facilitated by several different Pol II specific transcription factors and 

coactivators (Table 1.1). Other factors are responsible for the chromatin modification 

in order to allow the polymerase to move along the transcribed gene (Armstrong, 

2007; Kulaeva et al., 2007; Li et al., 2007). Release of the promoter-assembled 

transcription factors and entering of the elongation phase occurs after synthesis of 

about 30 nucleotides (Figure 1.1). Transcription factors remain bound to the DNA as 

a scaffold complex marking the transcription start site for re-initiation events. The 

mRNA production by the elongating Pol II is controlled by several protein factors and 

coupled to the subsequent events of mRNA biogenesis, like cleavage, capping, 

polyadenylation and nuclear export. The C-terminal domain of Rpb1 (CTD), with its 

specific phosphorylation pattern, plays a key role in recruiting factors coordinating the 

transcription cycle (Hirose &  Manley, 2000; Buratowski, 2003; Meinhart et al., 2005). 

Finally, guided by DNA sequence at the end of the gene, Pol II terminates the 

transcription by dissociating from the template DNA and release of the synthesized 

mRNA (Gilmour &  Fan, 2008). With the concomitant polymerase recycling and 

binding to the scaffold complex in the reinitiation event, new round of the transcription 

cycle can occur. 
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Table 1.1 Saccharomyces cerevisiae Pol II general transcription factors and coactivators 

Factor 

 

 number of 

subunits 

Function (Hahn, 2004) 

TFIIA  2 Stabilizes TBP and TFIID-DNA binding. Blocks transcription inhibitors. Positive and 

negative gene regulation. 

TFIIB  1 Binds TBP, Pol II and promoter DNA. Helps fix transcription start site. 

TFIID TBP 1 Binds TATA element and deforms promoter DNA. Platform for assembly of TFIIB, 

TFIIA and TAFs. 

 TAFS 14 Binds INR and DPE promoter elements. Target of regulatory factors. 

Mediator  24 Binds cooperatively with Pol II. Kinase and acetyltransferase activity. Stimulates basal 

and activated transcription. Target of regulatory factors. 

TFIIF  3 Binds Pol II and is involved in Pol II recruitment to PIC and in open complex formation. 

TFIIE  2 Binds promoter near transcription start. May help open or stabilize the transcription 

bubble in the open complex. 

TFIIH  10 Functions in transcription and DNA repair. Kinase and two helicase activities. Essential 

for open complex formation. Mutations in IIH can cause human disease. 

 

 

 

 

 

Figure 1.1 The pathway of transcription initiation and reinitiation for Pol II. Adapted from (Hahn, 2004).  

See Table 1.1 for a description of each transcription factor and Mediator (Med).  
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1.2. The RNA Polymerase II structure  

Pol II consists of a 10-subunit core enzyme and a peripheral heterodimer of subunits 

Rpb4 and Rpb7 (Figure 1.2 a). The core enzyme comprises subunits Rpb1, Rpb2, 

Rpb3, and Rpb11, which contain regions of sequence and structural similarity in Pol 

I, Pol III, bacterial RNA polymerases (Zhang et al., 1999; Vassylyev et al., 2002), and 

the archaeal RNA polymerase (Hirata et al., 2008; Kusser et al., 2008). The Pol II 

core also comprises subunits Rpb5, Rpb6, Rpb8, Rpb10, and Rpb12, which are 

shared between Pol I, II, and III (common subunits, Chapter I, Table 1). Counterparts 

of these common subunits except Rpb8 exist in the archaeal polymerase, but only a 

counterpart of Rpb6 exists in the bacterial enzyme (Minakhin et al., 2001). Finally, 

homologues of the core subunit Rpb9 exist in Pol I and Pol III, but not in the archaeal 

or bacterial enzyme. Initial electron microscopic studies of Pol II revealed the overall 

shape of the enzyme (Darst et al., 1991). The core Pol II could subsequently be 

crystallized, leading to an electron density map at 6 Å resolution (Fu et al., 1999). 

Crystal improvement by controlled shrinkage and phasing at 3 Å resolution resulted 

in a backbone model of the Pol II core (Cramer et al., 2000). This revealed that Rpb1 

and Rpb2 form opposite sides of a positively charged active center cleft, whereas the 

smaller subunits are arrayed around the periphery. Refined atomic structures of the 

core Pol II at 3.1 and 2.8 Å resolution were obtained in two different conformations 

and revealed domain-like regions within the subunits, as well as surface elements 

predicted to have functional roles (Cramer et al., 2001). The active site and the 

bridge helix, which spans the cleft, line a pore in the floor of the cleft. The Rpb1 side 

of the cleft forms a mobile clamp, which was trapped in two different open states in 

the free core structures (Cramer et al., 2001) but was closed in the structure of a core 

complex that included DNA and RNA (Gnatt et al., 2001). The mobile clamp is 

connected to the body of the polymerase by five switch regions that show 

conformational variability. The Rpb2 side of the cleft consists of the lobe and 

protrusion domains. Rpb2 also forms a protein wall that blocks the end of the cleft. 

The Pol II core structures lacked subunits Rpb4 and Rpb7, which can dissociate from 

the yeast enzyme (Edwards et al., 1991). The approximate location of Rpb4/7 on the 

core polymerase was first determined by electron microscopy (EM) of two-

dimensional crystals (Jensen et al., 1998). Later, EM analysis of single particles 

revealed a closed clamp and showed that the Rpb4/7 subcomplex protrudes from 

outside the core enzyme below the clamp (Craighead et al., 2002). A different open-

closed transition that involved the polymerase jaws was observed by EM of two-

dimensional crystals (Asturias et al., 1997). Crystallographic backbone models of the 

complete 12-subunit Pol II at ≈4 Å resolution revealed the exact position and 

orientation of Rpb4/7 and showed that it formed a wedge between the clamp and the 

linker to the unique tail-like C-terminal repeat domain (CTD) of the polymerase 
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(Armache et al., 2003; Bushnell &  Kornberg, 2003). In all crystal structures of the 

complete Pol II the clamp was observed in a closed conformation. The crystal 

structure of free Rpb4/7 together with an improved resolution of the complete Pol II 

crystals finally enabled refinement of a complete atomic model of Pol II (Armache et 

al., 2005) (Figure 1.2 a). The CTD of Pol II is flexibly linked to the core enzyme and 

consists of heptapeptide repeats of the consensus sequence YSPTSPS. It is 

disordered in crystal structures of Pol II.  

 

Figure 1.2 Structure of the complete RNA Polymerase II and the Rpb4/7 subcomplex. Adapted from 

(Armache et al., 2005). 

A. Complete RNA polymerase II structure. Ribbon diagram. Two standard views (front and top) are shown. The 

12 subunits Rpb1-Rpb12 are colored according to the key below the views. Dashed lines represent disordered 

loops. Eight zinc ions and the active site magnesium ion are depicted as cyan spheres and a pink sphere, 

respectively. B. Structure of the Rpb4/7 complex. A comparison of the structures of yeast Rpb4/7 (left) (Armache 

et al., 2005) and archaeal RpoF/E  (right) (Todone et al., 2001). Rpb7/RpoE are in blue, and Rpb4/RpoF are in 

red. Dashed lines represent disordered loops. 
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1.3. The Rpb4/7 subcomplex 

1.3.1. Rpb4/7 structure 

The crystal structure of free Rpb4/7 from S.cerevisiae at 2.3 Å resolution was 

published unveiling the detailed architecture of this Pol II subcomplex (Armache et 

al., 2005). Rpb4/7 showed high similarity to the RpoE/F complex (Figure1.2 b), its 

counterpart in the archeal RNA polymerase (Todone et al., 2001). More recent X-ray 

structures of Rpa14/43 and C17/25 (see Chapter II, Figure 3.1), which are Rpb4/7 

counterparts in the RNA Pol I and III systems, respectively, confirmed an overall 

conserved fold of all Rpb4/7-like subunits (Jasiak et al., 2006; Kuhn et al., 2007). The 

observed structural variations between these subcomplexes may confer specificity to 

interaction with transcription factors in the different RNA polymerases.  

Rpb7 is composed of two domains: the N-terminal tip domain and a C-terminal 

domain that includes an oligosaccharide-binding (OB) fold and was therefore named 

the OB domain. The tip domain of Rpb7 harbors a highly conserved “tip loop” 

localized between an A3’ and A4 strand. Together with the helical turn K1, the tip 

loop contributes to the binding of the subcomplex to the Pol II core. The disordered 

structure of the loop observed in the free Rpb4/7 becomes ordered upon Pol II 

binding. Rpb4 binds between the Rpb7 domains and consist also of two domains. 

The tip associated domain is composed of a single β-strand and three α-helices and 

is closely connected with the C-terminal HRDC domain. The helicase and RNAse D 

C-terminal (HRDC) domain adapts very similar orientation in the archeal RpoE/F 

structure. After showing its different location and the ability to fold independently in 

vitro in C17, HRDC was acknowledged as a separate structural module (Jasiak et al., 

2006). Rpa43 lacks the HRDC domain (Kuhn et al., 2007). Compared with the 

archeal RpoE and C25 from RNA Pol III, Rpb7 lacks the C-terminal helix and has an 

additional helix K* inserted into strand A3. With these two features Rpb7 resembles 

the secondary structure composition of Rpa43, its counterpart in RNA Pol I (Geiger et 

al., 2008). Rpb4 additionally contains a non-conserved amino-terminal extension, a 

longer helix H1, and an insertion between helices H1 and H2 (H1-H2 insertion), 

which comprises a long disordered loop and an additional helix H*. The H* helix, 

which is not available in the RpoF, is present in C17 and replaced by an about 30 

amino acids loop in Rpa14.  
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1.3.2. The function of Rpb4/7 subcomplex  

The core RNA Pol II is sufficient for elongation and promoter-independent initiation of 

transcription (Ruet et al., 1980; Rosenheck &  Choder, 1998) but requires the Rpb4/7 

subcomplex for promoter-directed initiation in vitro (Edwards et al., 1991; Orlicky et 

al., 2001). The Rpb4 and Rpb7 were identified in S.cerevisiae as the 4th and 7th 

biggest subunits of the RNA Pol II complex, respectively (Woychik &  Young, 1989). 

The two subunits form a heterodimer, that can dissociate from the core enzyme 

(Edwards et al., 1991; Cramer et al., 2008). It is substoichiometric with respect to the 

Pol II core (Kolodziej et al., 1990). In S.cerevisiae, only 20 % of Pol II seems to 

contain Rpb4/7 in exponentially growing cells. In stationary phase and during stress 

conditions 12-subunit Pol II becomes the most abundant form of the enzyme (Choder 

&  Young, 1993). In contrast, S.pombe and human Rpb4/7 are stoichiometrically 

associated with Pol II during all growth phases (Sakurai &  Ishihama, 1997; Khazak 

et al., 1998). Whereas Rpb7 is essential for viability of the yeast Saccharomyces 

cerevisiae, Rpb4 is not, but it becomes essential at temperature extremes (Woychik 

&  Young, 1989). At the same time Rpb4 is not required for cell survival during 

oxidative or osmotic stress (Maillet et al., 1999) or nitrogen starvation (Pillai et al., 

2001). The temperature-sensitive phenotype of the ∆Rpb4 strain can be partially 

suppressed by Rpb7 overexpression (Maillet et al., 1999; Tan et al., 2000). Rpb4/7 

binds single-stranded nucleic acids and mediates a step during initiation subsequent 

to promoter DNA binding (Orlicky et al., 2001). These observations are consistent 

with the idea that Rpb4/7 is present during initiation at promoters but then dissociates 

from Pol II. However, evidence has accumulated for additional functional roles of 

Rpb4/7 during transcription (partially reviewed in (Choder, 2004)). Rpb7 remains 

associated with early elongation complexes (Cojocaru et al., 2008) and binds Nrd1, a 

protein involved in RNA 3’-end processing (Mitsuzawa et al., 2003). Rpb4/7 is 

observed to shuttle between the nucleus and cytoplasm (Selitrennik et al., 2006) and 

is proposed to play roles in P-body function and mRNA decay (Lotan et al., 2005). 

Recent data show that the Rpb4/7 subcomplex can be crosslinked to the transcribed 

region, and loss of Rpb4 decreases the association with 3‘-processing factors and 

alters usage of the polyadenylation site at a tested gene (Runner et al., 2008). This 

suggests that Rpb4/7 is an integral part of the Pol II enzyme and is required not only 

for initiation, but also for 3’-RNA processing at the end of transcription. 
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1.4. Aim of this study 

Pol II is the enzyme responsible for mRNA synthesis during transcription of protein-

coding genes in eukaryotic cells. The structure of the complete 12-subunit Pol II is 

known and consists of a ten-subunit core enzyme, which includes the active center, 

and the peripheral heterodimer of subunits Rpb4 and Rpb7 (Rpb4/7 subcomplex) 

(Cramer et al., 2001; Armache et al., 2003; Bushnell &  Kornberg, 2003; Armache et 

al., 2005). In vitro, yeast Rpb4/7 is required for transcription initiation, can dissociate 

from Pol II, and is dispensable for catalytic RNA elongation (Edwards et al., 1991). 

These observations are consistent with the idea that Rpb4/7 is present during 

initiation at promoters but then dissociates from Pol II. 

However, evidence has accumulated for additional functional roles of Rpb4/7 during 

transcription. Rpb7 remains associated with early elongation complexes (Cojocaru et 

al., 2008) and binds Nrd1, a protein involved in RNA 3’-end processing (Mitsuzawa et 

al., 2003). Rpb4/7 can be crosslinked to the transcribed region, and loss of Rpb4 

decreases the association with 3‘-processing factors and alters usage of the 

polyadenylation site at a tested gene (Runner et al., 2008). Thus, recent data 

suggest that Rpb4/7 is an integral part of the Pol II enzyme and is required not only 

for initiation, but also for 3’-RNA processing at the end of transcription. 

To investigate whether Rpb4/7 generally associates with Pol II in vivo, the chromatin 

immunoprecipitation experiments in yeast was carried out and coupled to tiling 

microarray analysis at a technical resolution of 32 base pairs (ChIP-chip).  The 

occupancy profiles of Rpb7 and the Pol II core subunit Rpb3 were obtained and 

compared to show whether complete Pol II, including Rpb4/7, associates with DNA 

genome-wide. 
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2. Results and discussion 

2.1. Temperature-sensitivity tests of the yeast strains 

All the ChIP experiments were performed on Saccharomyces cerevisiae W303 and 

S288C strains carrying a tandem affinity purification (TAP) tag sequence fused to the 

C-terminus of the essential genes encoding the Rpb3 or Rpb7 subunit of RNA Pol II 

(Chapter III, 3.1). The temperature-sensitivity tests were performed to investigate 

whether the introduced TAP-tag influences transcription and yeast viability by 

disturbing the integrity of the Pol II complex or its interactions with other proteins. 

Growth of each strain at three different temperatures (24ºC, 30ºC and 37ºC) was 

tested (Chapter III, 3.1.1) and compared to that of the W303 wild type strain. Both, 

the wild type and TAP-tagged strains showed similar growth therefore demonstrating 

no influence of the introduced tag on the functionality of the transcription machinery 

(Figure 2.1).  

 

Figure 2.1 Temperature-sensitivity test of the TAP-tagged W303 and S288C yeast strains. 

Serial dilutions of W303 wild type (wt), W303 Rpb3-TAP, S288C Rpb3-TAP and S288C Rpb7-TAP strain grown 

on YPD plates at 24ºC (left), 30ºC (center) and 37ºC (right).  

2.2. Monoclonal antibody selection 

2.2.1. Western blot analysis 

Monoclonal antibodies against Rpb4/7 were produced by Dr. Elisabeth Kremmer 

from Helmholtz Zentrum München, Institut für Molekulare Immunologie, 

Hämatologikum (Chapter III, 3.2). The specificity of the 14 different hybridoma 

supernatants containing antibodies against Rpb4/7 was tested (for details see 

Chapter III, 3.3). Only antibodies number 1, 2, 3, 4, 8, 9, 10, 13 and 14 could 

recognize yeast proteins from the W303 wt yeast strain extract and were further 

analyzed. Three antibodies, number 1, 2 and 9, showed high specificity in Western 

blot analysis. They recognized both, recombinant and yeast endogenous Rpb4/7 (Pol 
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II-TFIIF) and did not interact with the Rpb4/7 homologues in Pol I and Pol III (Figure 

2.2).  

 

Figure 2.2 Wester blot analysis of the monoclonal antibodies specifity. 

The specificity of the monoclonal antibodies against Rbp4/7 was investigated by testing their interaction with 

C17/25 (A) of RNA Pol III, RNA Pol I (B), recombinant Rpb4/7 (C) and a yeast endogenous Rpb4/7 from RNA Pol 

II – TFIIF preparation (D). The numbers of the antibodies are indicated above the gels. Lanes with the specific 

antibodies 1, 2 and 9 are indicated with the red boxes. 

2.2.2. Chromatin immunoprecipitation tests 

In contrast to immunoprecipitation, where an antibody binds the folded and cross-

linked protein complexes, proteins used for a Western blot analysis are unfolded 

during SDS-PAGE. To test if the specific antibodies recognize also folded Rpb4/7 

and whether the recognized epitope is accessible also in the context of the whole Pol 

II, chromatin immunoprecipitation (ChIP) experiments were performed (Chapter III, 

3.4). To ensure, that there is no unspecific binding of the chromatin to the beads, 

mock IP experiments were performed. Non-template IP showed that there are no 

unspecific DNA impurities coming from buffers and reagents. The DNA obtained in 

the ChIP experiments was analysed with a standard PCR (Chapter III, 3.4.8). DNA 
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was diluted in ready PCR sample to 1:250 for Input samples, two dilutions, 1:250 and 

1:500 were used for IP, mock and non-template IP samples. Two loci, the middle of 

Adh1 gene on chromosome XV and Reference region (Ref) on chromosome V were 

analysed. PCR analysis of the IP samples should give a signal only on the highly 

transcribed Adh1 gene, whereas both, Adh1 and non-transcribed Reference region 

should be present in the Input samples. 

Only antibody (Ab) 2 and 9 gave a positive signal with the Rpb4/7 complex and the 

Adh1 gene (Figure 2.3, lanes 2-5). No signal for the Ref region could be observed 

indicating a high specificity of the antibody binding. The lack of PCR products in the 

mock and non-template IP samples (Figure 2.3, Lanes 6-10) shows that there is no 

unspecific DNA bound to the beads or coming from the reagents used for the 

experiments.  

 

Figure 2.3 PCR analysis of the ChIP experiments with the monoclonal antibodies against Rpb4/7. 

PCR products were analysed by gel electrophoresis (Chapter III, 3.4.8). Sample names and dilutions are 

indicated above the lanes. Inp – Input sample; IP2 – IP sample of ChIP with Ab 2; IP9 - IP sample of ChIP with Ab 

9; M2 – Mock IP sample of ChIP with Ab 2; M9 – Mock IP sample of ChIP with Ab 2; NTC – non-template control. 
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2.3. Genome-wide ChIP of Pol II subunits  

To investigate whether the complete Pol II is the form of the enzyme that associates 

with the yeast genome, or whether the complete Pol II and the core Pol II associate 

with different regions of the genome, the ChIP coupled to occupancy profiling with 

high-resolution tiling microarrays (ChIP-chip) was used. Yeast strains used for the 

experiments contained TAP tags at the C-termini of the integral core subunit Rpb3 

and the essential Rpb7 subunit, which is part of the Rpb4/7 subcomplex. Both 

subunit C-termini are exposed in the Pol II structure (Armache et al., 2005), 

suggesting that the tag would not interfere with Pol II function in vivo. Additionally the 

growth of all the yeast strains was tested in the temperature-sensitivity test (Chapter 

III, 2.1). No negative influence of the introduced tag on the yeast viability could be 

observed.  

Obtained microarray data have been submitted in MIAME-compliant form to the 

Gene Expression Omnibus database (http://www.ncbi.nlm.nih.gov/projects/geo) 

under accession number GSE12060. 

2.4. Analysis and quality of ChIP-chip data  

To investigate the reproducibility of the ChIP-chip data, three biological replicate 

experiments with the S288C Rpb3-TAP strain were carried out. The reproducibility of 

the obtained data was very high, resulting in Pearson correlations between individual 

profiles of around 0.9 (Table 2.1). The Pearson coefficient is 1 for a perfect 

correlation and 0 for uncorrelated signals. Similarly, two biological replicates of 

S288C Rpb7-TAP profiles were obtained and show very good agreement (Pearson 

correlation 0.90, Table 2.1). Noise could be dramatically reduced using dual color 

microarray technology and replica measurements with interchanged dyes (Yang &  

Speed, 2002) (Figure 2.4 a-c; Table 2.1). 

Table 2.1 Pearson correlation coefficients between occupancy profiles 

Comparison Profile 1 (subunit, tag, 

strain) 

Profile 2 (subunit, tag, 

strain) 

Pearson correlation, 

unsmoothed 

Pearson correlation, 

smoothed 

Biological replicates1 Rpb3-TAP, S288C Rpb3 TAP, S288C 0.88 0.92 

Rpb3 vs. Rpb72 Rpb7-TAP, S288C Rpb3-TAP, S288C 0.91 0.93 

Different strains1 Rpb3-TAP, S288C Rpb3-TAP, W303 0.90 0.92 

TAP tag vs. antibody1 Rpb7-TAP, S288C Rpb4/7 AB, W303 0.72 0.79 
1 Profiles are single measurements with the ChIP DNA tagged with the Cy5 dye. 
2 Profiles for Rpb3 and Rpb7 are averaged over three and two measurements, respectively, one measurement in each case 
taken with interchanged fluorescent dyes. The averaging over replicas as well as the smoothing reduces noise and leads to 
higher correlation coefficients. 
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Figure 2.4 Genome-wide occupancy profiling of Pol II subunits. 

Profiles were obtained by chromatin immunoprecipitation coupled to high-resolution tiling microarray analysis. A 

representative 100 kbp sample on chromosome 4 (genomic positions 500,000-600,000) of the profile for the Rpb3 

and Rpb7 subunits is depicted. Each green dot represents the signal for a single oligonucleotide probe on the 

tiling array, which has one probe every 32 bps. (A) Raw data trace for the TAP-tagged Rpb3 core subunit of Pol 

II. The signal intensity is the logarithm (base 2) of the fluorescence signal of Cy5-labeled Rpb3-bound DNA 

divided by the signal for Cy3-labeled genomic background DNA. (B) Average over three biological replicate traces 

for Rpb3, one of which with interchanged fluorescent dyes. (C) Average over two biological replicate traces for 

Rpb7, one with interchanged dyes. (D) Pol II occupancy profile generated with a monoclonal antibody against 

Rpb4/7. (E) The difference signal between averaged Rpb3 and Rpb7 occupancy profiles (B, C) fluctuates around 

a near-zero baseline. (F) Annotation of genomic features according to the Saccharomyces Genome Database. 

Genes encoding the intron-containing ribosomal protein RPS13 (green), the snoRNA SNR47 (cyan) and the 

housekeeping gene triose phosphate isomerase TPI1 show high Rpb3 occupancy at our growth conditions. Other 

protein-coding genes (blue) show lower Pol II occupancy. Three different tRNA genes (magenta) are transcribed 

by Pol III and show no increased Pol II occupancy. 
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2.5. Occupancy profiles for Rpb3 and Rpb7 are essentially 
identical  

The replica-averaged, noise-reduced profiles for Rpb3 and Rpb7 were compared. 

Differences in the two profiles would indicate that part of the genome associates with 

the complete Pol II, and part of the genome associates with the core enzyme, and 

thus Rpb4/7 is dissociable in vivo. In contrast, a high similarity of the two profiles 

would indicate that Rpb4/7 is always part of the DNA-associated Pol II in vivo. 

Comparison of the average, noise-reduced occupancy profiles for Rpb3-TAP and 

Rpb7-TAP showed that they are highly correlated throughout the genome (Figure 2.4 

b,c). There are only small differences between the profiles (Figure 2.4 e, Figure 2.5). 

Weak systematic deviations from zero occur only for a small fraction of genomic 

locations with highest signal intensity (Figure 2.5, see discussion below). A Pearson 

correlation coefficient of 0.91 between the averaged Rpb3 and Rpb7 profiles 

compares favorably with the correlation obtained for biological replicates of the same 

profile (0.88, Table 2.1). Thus, statistically the agreement between the two average 

profiles of Rpb3 and Rpb7 was as good as the agreement between individual 

replicate profiles of the same strain. The near identity of the two profiles, within 

experimental errors, indicates that Rpb4/7 is present in DNA-associated Pol II 

genome-wide. 

 

Figure 2.5 Rpb3 and Rpb7 occupancies are highly correlated. 

The figure shows the Rpb3 versus Rpb7 signals (calculated as log base 2 of ChIP signal divided by genomic 

background signal). Each tiling array probe contributes a grey dot. Contour lines go from 0.8 to 0.1 of maximum 

density. Approximately 90% of probes are contained within the 0.1 contour. The correlation is very high (Pearson 

correlation coefficient 0.91), comparable to the correlation of Rpb7 signal between biological replicates and 

different strains.  The slope of the regression line is 1.06. This factor is used to scale up the Rpb7 signal when 

calculating the difference signal (Rpb3 – Rpb7) in Figures 2.4 e and 2.6 c. 
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2.6. The profiles are not systematically influenced by the type 
of yeast strain  

The obtained occupancy profiles were investigated whether thay change when a 

different strain of yeast is used. The Rpb3-TAP profile obtained with yeast strain 

S288C was compared to a profile obtained under identical conditions with a W303 

strain. The obtained profiles were highly similar, resulting in a Pearson correlation of 

0.90 (Table 2.1), showing that the type of yeast strain did not influence the results.  

2.7. The profiles are not influenced by the affinity tag  

It is possible that the cellular function of Rpb7 is perturbed by its fusion to the TAP 

tag. To investigate this, the recombinant stoichiometric Rpb4/7 subcomplex was 

purified as described (Armache et al., 2003) and used for raising of the monoclonal 

antibodies against the pure subcomplex (Chapter III, Experimental procedures). 

Obtained monoclonal antibody was used to measure an unbiased occupancy profile 

for Rpb4/7. The resulting occupancy profile contained more noise than the profiles 

obtained from TAP-tagged strains, but it did not show any systematic disagreement 

with the profile obtained from TAP-tagged strains (Figure 2.4 d) resulting in a 

Pearson correlation of 0.72 (0.79 for the smoothed traces, Table 2.1). Thus, the 

profiles obtained from TAP-tagged strains reflect those of unperturbed yeast cells, 

and were not considerably influenced by the presence of the TAP tag. 

2.8. Correlation of the Pol II occupancy profiles with genome 
features  

The ChIP-chip data contain a lot of information beyond the observation that Rpb4/7 is 

a component of DNA-associated Pol II in vivo. Analyses of Pol II occupancy profiles 

over a part of the yeast genome or at lower resolution were presented recently (Liu et 

al., 2005; Radonjic et al., 2005; Steinmetz et al., 2006), but a comparison of these 

published profiles with our data is hampered due to the use of different experimental 

conditions and technological platforms. 

To analyze which genomic features correlate with Rpb3 occupancy, all genomic 

regions were identified with a ChIP-chip signal above an occupancy threshold that 

was varied continuously (Figure 2.6 a). We added up the base pairs within these 

regions belonging to the genomic features annotated in the Saccharomyces Genome 

Database (version 11 March 2008). The colored areas in Figure 2.6 a indicate the 

fractions of the regions annotated by various genomic features at a chosen Pol II 

threshold. A threshold of zero corresponds to equal fluorescent signals from Rpb3 

and the genomic background. The solid line shows the proportion of the genome 
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above the threshold. Figure 2.6 b shows how much certain genomic features are 

overrepresented in regions with Pol II occupancy above a given threshold. 

 

 

Figure 2.6 Distribution of genomic regions above a Pol II (Rpb3-TAP) occupancy threshold. 

A. The thick black trace shows the fraction of the genome within regions above the Rpb3 occupancy threshold. 

For example, ~99% of the whole genome have occupancy signals above a threshold of -1.0, ~30% have signals 

above 0 (this threshold corresponds to equal fluorescent signals from Rpb3 and the genomic background). At 

each threshold, the height of the colored areas indicates the fraction of above-threshold regions annotated with 

the given genomic feature. Non-ribosomal protein genes (blue) make up almost 80% of the genome but they 

constitute only 25% in regions with a Rpb3 occupancy above 1.0. Ribosomal protein genes (green) occupy only a 

small fraction of the genome, yet make up 35% of regions with an Rpb3 occupancy above 1.0. The fraction of all 

genes (ribosomal and non-ribosomal) is approximately constant over a large range of thresholds, as is the fraction 

in promoter regions, defined as the 200 bps upstream of genes (red). The most overrepresented features in highly 

occupied regions are snoRNAs (cyan) and ribosomal genes (green). Repressed regions (magenta) summarize 

LTR retrotransposons, transposable elements and telomeres and are absent in regions above an occupancy 

threshold of 0. B. Overrepresentation ("enhancement factor") of selected genomic features in regions above the 

occupancy threshold. Colors are as in A except for the snRNAs (red). “Other regions” encompass intergenic 

regions of unknown function and more rarely occurring genomic features. C. Dependence of the difference signal 

(Rpb3 – Rpb7) on the average signal intensity A = (Rpb3+Rpb)/2. Colors are as in A and B, solid traces refer to 

the coding region, dashed traces to promoter regions (i.e. 200 bp upstream of coding regions), dotted traces to 

the last 100 bp of coding regions. Since the signals are calculated as logarithms (base 2) of the ChIP 

fluorescence divided by the genomic background fluorescence, a difference signal of 0.3 would correspond to a 

ratio of Rpb7 to Rpb3 occupancy of 2-0.30 = 0.81 
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2.9. Pol II distribution over the genome  

This analysis provides general insights into the global distribution of Pol II in growing 

yeast cells. First, most Pol II is bound to highly transcribed genes that encode 

snRNAs, snoRNAs, or ribosomal proteins (Figure 2.6).  Second, genomic repeat 

regions that are expected to be transcriptionally silenced show very low Pol II 

occupancy. Third, Pol III-transcribed genes that encode tRNAs do not show Pol II 

enrichment. Fourth, the fraction of all genes and promoter regions is approximately 

constant over a large range of Pol II occupancy thresholds (Figure 2.6 a). This 

supports previous reports, which have found no evidence for widespread 

accumulation of Pol II by pausing at promoters in yeast, in contrast to higher 

eukaryotes (Wade &  Struhl, 2008). However, our findings are also consistent with 

other ChIP-chip studies showing the preferential location of Pol II on promoter-

bearing intragenic regions in yeast cells in stationary phase (Radonjic et al., 2005) as 

our data were obtained from yeast cells harvested in their logarithmic growth phase. 

2.10. Persistent presence of Rpb4/7  

While the results of this study were submitted to the publishing, a study comparing 

the genome-wide distribution of core Pol II and Rpb4/7 subcomplex became 

available (Verma-Gaur et al., 2008). This study showed at lower resolution that Rpb3 

and Rpb4 profiles are similar and generally agrees with our findings. The authors 

also note that Rpb4 can be underrepresented with respect to Rpb3, an effect that is 

more pronounced for shorter genes. However, it could not be confirmed that this is a 

significant or systematic effect, as demonstrated below. 

The ratio of Rpb7 to Rpb3 does not fall below 0.78, and such deviations from 1 are 

limited to a very small fraction of the genome (Figure 2.6 c). These minor local 

deviations were investigated whether they show systematic features, and thus may 

be biologically significant. The Rpb7-Rpb3 difference signal was analyzed separately 

for several genomic categories, including ribosomal protein genes, nonribosomal 

protein genes, and snoRNA (Figure 2.6 c). This revealed that the difference signal 

increases with increasing occupancy on the x-axis. The higher occupancy of Rpb3 

versus Rpb7 for ribosomal proteins can be explained by the generally higher total Pol 

II occupancy on ribosomal protein genes. Rpb7 occupancy also did not depend on 

the position along the gene. The promoter regions and 5’ ends of genes show 

essentially the same difference signal as the coding regions. Thus the ratio of Rpb3 

to Rpb7 occupancy neither depends on the genomic feature type nor on the position 

along genes. Thus there is no evidence for a functional significance of the minor local 

deviations between Rpb3 and Rpb7 levels. 
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2.11. Functional roles of Rpb4/7  

The data presented in this work suggest that Rpb4/7 is generally required throughout 

the transcription cycle in vivo, and argue against models that propose the 

dissociation of Rpb4/7 during transcription. Obtained results are consistent with 

functional roles of Rpb4/7 during initiation (Edwards et al., 1991; Orlicky et al., 2001) 

as well as 3’-RNA processing (Runner et al., 2008). They are also consistent with 

microarray-based gene expression analysis of yeast strains lacking the gene for 

Rpb4, which suggested that Rpb4 is globally required for Pol II transcription (Miyao et 

al., 2001; Pillai et al., 2003). They are further consistent with the observation that 

Rpb4 is essential in the fission yeast S. pombe, and that Rpb4/7 is present in S. 

pombe Pol II in stoichiometric amounts during exponential cell growth (Sakurai et al., 

1999).  

Finally, the results presented here are not inconsistent with the recent observations 

that Rpb4/7 shuttles between the nucleus and cytoplasm (Selitrennik et al., 2006), 

and that Rpb4 and Rpb7 play roles in P-body function and mRNA decay (Lotan et al., 

2005), because it is possible that Rpb4/7 dissociates from core Pol II during 

transcription termination, and that there is a cellular pool of free Rpb4/7. It also 

remains possible that Rpb4/7 dissociates under certain growth conditions. 
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3. Experimental procedures 

3.1. Yeast strains 

Experiments were performed with Saccharomyces cerevisiae strains W303 wild type 

and W303 carrying a tandem affinity purification (TAP) tag sequence fused to the C-

terminus of the gene encoding Rpb3. In addition, S. cerevisiae S288C strains RPB3-

TAP and RPB7-TAP, carrying a TAP-tag sequence fused to the C-terminus of the 

genes encoding Rpb3 and Rpb7 respectively were used. Table 3.1 summarises 

detailed list of yeast strains and their genetic background. 

Table 3.1 Yeast strains 

strain description source 

W303 wt MATa, ura3-1, trp1-1, his3-11,15, leu2-3,112, ade2-1, 

can1-100, GAL+ 

Open Biosystems 

W303 Rpb3-TAP MATa, ura3-1, his3-11,15, leu2-3,112, ade2-1, 

can1-100, GAL+, RPB3-TAP::TRP1 

Open Biosystems 

S288C Rpb3-TAP ATCC 201388:MATa his3∆1 leu2∆0 met15∆0 ura3∆0  Open Biosystems 

S288C Rpb7-TAP ATCC 201388:MATa his3∆1 leu2∆0 met15∆0 ura3∆0  Open Biosystems 

3.1.1. Temperature-sensitivity tests 

Single colony of yeast strain was picked from a fresh plate and resuspended in      

500 µl sterile water by gentle pipetting. Seven sequential 1 to 10 dilutions of the 

resuspended colony in sterile water were prepared and 5 µl of each dilution was 

spotted in the row on three YPD plates. After drying under the hood for 5 minutes, 

plates were placed in 24ºC, 30ºC and 37ºC incubators, respectively, and were grown 

for next three days.  

3.2. Production of monoclonal antibodies against Rpb4/7 

Monoclonal antibodies against Rpb4/7 were produced by Dr. Elisabeth Kremmer 

form Helmholtz Zentrum München, Institut für Molekulare Immunologie, 

Hämatologikum as a part of service. 

Lou/C rats were immunized subcutaneously and intraperitoneally with a mixture of 50 

µg of purified recombinant Rpb4/7-His fusion protein (Armache et al., 2003), 5 nmol 

CpG oligonucleotide (ODN 2006, TIB Molbiol, Berlin, Germany), 500 µl PBS and 500 
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µl IFA. After a six-week interval a final boost without adjuvant was given three days 

before fusion of the rat spleen cells with the murine myeloma cell line P3X63-Ag8-

653. Hybridoma supernatants were tested in an ELISA using bacterial extracts from 

E. coli expressing either the Rpb4/7 fusion protein or a His-tagged fusion protein. 

3.3. Monoclonal antibody selection 

3.3.1. Yeast extract preparation 

A starter culture of W303 wt strain was grown from single colony in 50 ml YPD 

medium over-night in 30ºC. Fresh pre-warmed YPD medium was inoculated with a 

starter culture to OD 0.2 and shaken (180 rpm) at 30 °C until the culture reached OD 

1.5. 10 OD of cells were harvested by centrifugation 5 min, 4000 rpm, 4ºC. After 

washing the pellet with ice-cold water the cells were resuspended in 200 µl of hot 

(80ºC) SDS loading buffer by vortexing for 30 sek. Cell lysis was performed using 

100 µl of glass beads by several sequential vortexing (60 sek) and boiling (2 min in 

95ºC) steps, followed by centrifugation 5 min, 13 000 rpm, 4ºC in order to get rid of 

cell debris. 5 µl per well of cell lysate was used for the SDS-PAGE gels. 

3.3.2. Protein samples preparation 

Rpb4/7, 12 subunits RNA Polymerse II/TFIIF complex and RNA Polymerse I used for 

specificity tests of the antibodies were provided by Florian Brückner, Anass Jawhari 

and Claus-Dieter Kuhn, respectively, and were purified as described before in 

(Armache et al., 2003) and (Kuhn et al., 2007). Rpc17/25 subcomplex was purified 

according to the described protocol (see Chapter II, Experimental procedures). 

3.3.3. Protein separation by SDS-PAGE 

To separate distinct protein bands SDS-PAGE with 15% acrylamide gels (Laemmli, 

1970) was performed. Before loading onto the gel proteins were unfolded by adding 

β-mercaptoethanol to the SDS loading dye. After electrophoresis gels were further 

subjected to blotting procedures.  

3.3.4. Western blot analysis 

After electrophorsis protein gels were blotted onto ethanol pre wet PVDF membranes 

(Roth) for 1 h at 90 V in 4ºC, using a transfer chamber (BioRad Trans-Blot Cell). In 

order to indentify position of single lanes, blotted membrane was shortly stained with 

Ponceu S solution and cut to one lane broad stripes. After several washing steps with 

water resulting removing of the dye, the membrane was blocked with Blocking 
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Solution, three times for 20 min in room temperature, followed by over-night 

incubation with Primary Antibody Solution in 4ºC (each membrane stripe incubated 

separately with different antibody). Antibody coated membranes were washed three 

times 15 min in 1 x PBS solution and incubated for 2 h in room temperature with 

Secondary Antibody Solution followed by second PBS washing round (3 x 15 min). 

Detection was performed with the ECL Plus reagents (Amersham Pharmacia 

Biotech) following the manufacturers instructions. 

Transfer buffer 2l 

24 g Glycine 

8 g Tris HCl 

400 ml Ethanol 

~ 1600 ml H2O 

Blocking solution 

2 % (w/v) skimmed milk powder in 1 x PBS 

Primary Antibody Solution 

25 x diluted Hybridoma supernatant solution 

2 % (w/v) skimmed milk powder in 1 x PBS 

Secondary Antibody Solution 

4500 x diluted Goat anti Rat IgG - IgM coupled to 

HRP (horse-radish-peroxidase) 

2 % (w/v) skimmed milk powder in 1 x PBS 

Ponceu S  

0.1% (w/v) Ponceau S in 5% (v/v) acetic acid 

1 x PBS 1l 

8 g NaCl 

0.2 g KCl 

1.44 g Na2HPO4 

0.24 g KH2PO4 

pH 7.4 Adjusted with HCl 
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3.4. Chromatin immunoprecipiation experiments - ChIP 

3.4.1. Media and buffers 

All solutions were prepared using double-distilled water. All media and buffers were 

autoclaved or sterile filtered for storing and usage. 

 

YPD Medium 

1.5 % yeast extract 

2 % peptone 

2 % glucose 

FA lysis buffer with and without 2 mM PMSF or 0.5 M NaCl 

50 mM HEPES: adjust pH to 7.5 with KOH 

150 mM or 0.5M NaCl 

1 mM EDTA 

1% Triton X-100 

0.1% sodium deoxycholate 

0.1% SDS 

For FA lysis buffer with 2 mM PMSF add 100 mM phenylmethylsulfonyl fluoride 

(PMSF) in ethanol (store up to 1 year at −80ºC) to a final concentration of 2 mM just 

before use. For FA lysis buffer with 0.5 M NaCl, change the amount of NaCl added to 

0.5 M. 

ChIP wash buffer 

10 mM  Tris·Cl pH 8.0 

0.25 M LiCl 

1 mM EDTA 

0.5%  Nonidet P-40 

0.5% sodium deoxycholate 

ChIP elution buffer 

50 mM  Tris·Cl pH 7.5 

10 mM  EDTA 

1% SDS 
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TBS 10 x 

0.5 M  Tris·Cl pH 7.5 

1.5  NaCl 

TE buffer 

10 mM  Tris·Cl pH 7.5 

1 mM  EDTA 
 

3.4.2.  Yeast culture  

A fresh colony was picked from the plate, and a starter culture was grown over-night 

in 100 ml YPD medium in 30ºC. Fresh pre-warmed YPD medium was inoculated with 

a starter culture to OD 0.2 and shaken (180 rpm) at 30 °C until the culture reached 

log phase (OD 0.7 - 0.8). Protein cross-linking was performed by adding 37% 

formaldehyde directly into the culture to the final concentration of 1% and slowly 

shaking for 15 min in room temperature. After stopping the cross-linking by adding 

3M Glycine solution, in the final concentration of 2.5%, and incubating the culture for 

further 30 min in room temperature cells were harvested by centrifugation 5 min, 

4000rpm, 4°C and washed three times with ice-cold 1x TBS and once with FA lysis 

buffer with 2mM PMSF. Cell pellets were flash-frozen in liquid Nitrogen and stored in 

-80°C up to several months. 

3.4.3. Beads preparation 

For immunoprecipitation of TAP-tagged Rpb3 and Rpb7, IgG SepharoseTM 6 Fast 

Flow (GE Healthcare) was used. Before usage the beads were washed three times 

with ice-cold TBS buffer and one time with FA-lysis buffer.  

For precipitation of Rpb4 and Rpb7 from W303 wild type cells, a mixture of Protein A 

and Protein G Sepharose was incubated with rabbit-anti-rat IgG antibodies for 1 h at 

room temperature and then incubated with rat monoclonal antibodies against Rbp4/7 

for an additional 4-5 h at room temperature. Before adding the chromatin solution the 

beads were washed with FA lysis buffer. 

3.4.4. ChIP experiments 

ChIP was performed essentially as described (Aparicio et al., 2005). Briefly, 

chromatin was sheared with a BioruptorTM UCD-200 (Diagenode) using 25 x 30 sec 

cycles with 30 sec breaks at an output of 200 W. Before proceeding with 

immunoprecipitation experiments 20 µl of chromatin solution was put aside and 



Chapter III: Genome-wide distribution of RNA polymerase II and its Rpb4/7 subcomplex in S. cerevisiae 80

marked as an Input sample. For immunoprecipitation of TAP-tagged Rpb3 and Rpb7, 

IgG SepharoseTM 6 Fast Flow (GE Healthcare) was used.  Precipitation was 

performed for 3 h at room temperature. For precipitation of Rpb4 and Rpb7 from 

W303 wild type cells, antibody-coupled beads (see Chapter III, 3.4.3) were incubated 

overnight at 4°C with chromatin solution. After immunoprecipitation the beads were 

washed with FA lysis buffer, FA lysis buffer with 0.5 M NaCl, ChIP wash buffer and 

TE buffer followed by elution in ChIP elution buffer in 65ºC for 20 min. Eluted IP and 

Input samples were incubated with Pronase in 42ºC for 3 hours followed by 65ºC for 

9 hours for revershal of the crosslinking and protein digestion. Nucleic acids were 

purified using QIAquick PCR Purification Kit (Qiagen) complemented by PB buffer 

(Cat. No. 19066, Qiagen) replacing a standard DNA binding buffer with pH indicator 

provided with the kit. After RNA digestion with RNase A for 30 min in 37ºC DNA was 

once more purified and concentrated in a Speed Vac to the volume of 10 µl. 

3.4.5. Phenol-Chloroform extraction of nucleic acids 

In some cases phenol-chloroform extraction of the nucleic acids was applied as an 

alternative for the QIAquick PCR Purification Kit. Samples were transferred into 

Maxtract High Density 1.5 ml tubes (Qiagen) and after adding 1 volume of phenol-

chloroform solution (Roth) and intensive vortexing, were centrifuge 13 000 rpm/10 

min/RT. The upper, water phase was than transferred into a fresh tube with 1/10 of 

the sample volume of 3M Na Acetate and filled up with 5 volumes of ice cold Ethanol 

(100%). After mixing and 20 min incubation on the dry ice, precipitated DNA was 

pelleted by centrifugation 10 min/13 000 rpm/RT. DNA pellet was washed with 80% 

ice cold Ethanol and dried for 20 min under the hood. Dried DNA was resuspended in 

appropriate volume of water or TE buffer and stored in -20ºC upon usage. 

3.4.6. ChIP quality control experiments 

In order to test the specificity of the monoclonal antibody and check for any 

unspecific binding of the chromatin to the beads, mock IP experiments were 

performed. For W303 and S288C strains, a mixture of Protein A and Protein G 

Sepharose coated with rabbit-anti-rat IgG antibodies or a mixture of Protein A and 

Protein G Sepharose alone, respectively, was used. To ensure, that there are no 

unspecific DNA impurities coming from buffers and reagents used during 

experiments non-template IP experiments, during which the beads were incubated 

with the FA lysis buffer instead of the chromatin solution, were performed. All the 

control experiments were prepared parallel to the ChIP experiments, according to the 

protocol described above and were further analysed with standard or quantitive PCR. 

DNA from a single W303 wt mock IP experiment was amplified and analysed on a 

microarray according to the protocols used for IP samples and described below. 
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3.4.7. DNA amplification 

DNA samples were amplified and re-amplified with GenomePlex® Complete Whole 

Genome Amplification (WGA) Kit and GenomePlex® WGA Reamplification Kit 

(Sigma) using the Farnham Lab WGA Protocol for ChIP-chip 

(http://www.genomecenter.ucdavis.edu/farnham /pdf/8-18-06WGA.pdf). DNA quantity 

and quality control was performed with a ND-1000 Spectrophotometer (NanoDrop 

Technologies). For checking the DNA fragments size distribution 800 ng of 

reamplified sample was loaded onto 1% Agarose gel. After gel electrophoresis 

Ethidium Bromide stained-DNA was was observed under the UV light.  

3.4.8. Standard pcr analysis 

PCR Master Mix (1x) 

0.05 µl forward primer  

0.05 µl reverse primer 

1 µl 10 x Polymerase Buffer 

1 µl 10 mM MgCl2 

1 µl 2 mM dNTP mix 

0.15 µl Taq Polymerase 

1.75 µl H2O 

Table 3.2 Oligonucleotides used for PCR 

name 5’→3’ sequence 

Adh1-M_Forward CTTGATGGCCGGTCACTGGGTTGC 

Adh1-M_Reverse ATGAAGACTTCACCACCGATGGATC 

Ref1_Forward TGTACTCTCCCACCATTGGGTATTA 

Ref1_Reverse AGTGGTTTTTATTCGAAAGTTGTGGA 
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Table 3.3 PCR reaction detalis 

Cycle No. step temperature duration 

 1 94 15 min 

26 2 94 30 sek 

  55 30 sek 

  72 30 sek 

 3 72 10 min 

 4 4 Pouse  

 

PCR samples were prepared by mixing 5 µl of master mix with 5 µl of DNA sample in 

250 µl thin walled PCR tubes. The end dilution of DNA in ready PCR sample was 

1:250 or 1:250 and 1:500 for Input samples or IP, mock and non-template IP 

samples, respectively. To test the purity of the reagent solution non-template PCR 

control, with 5 µl of sterile water replacing DNA template, was performed. Each PCR 

sample was independently tested by two pair of primers listed in Table 3.2. After 

PCR amplification (for the details see Table 3.3) corresponding PCR samples of 

each primer pair were joined together and mixed with the 5 x DNA Loading Dye 

(Fermentas). 5 µl of each sample was loaded onto Novex® 4-20 % gradient 1 x TBE 

gels (Invitrogen). Gel electrophoresis was performed following the manufacturers 

instructions. Finaly the gel was stained for 20 minutes in 1 x SYBR® Gold (Invitrogen) 

in TBE solution and washed with water. Stained nucleic acids were visulised on a 

Typhoon 9400 phosphoimager (Amersham). 

3.4.9. Quantitative pcr analysis 

Primer Mix  

10 µl forward primer 100 pM 

10 µl reverse primer 100 pM 

320 µl H2O  

PCR Master Mix (1x) 

2.5 µl Primer Mix 

12.5 µl Power Sybr® Green PCR Master Mix 

5 µl H2O 
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Table 3.4 Oligonucleotides used for PCR 

name 5’→3’ sequence 

Adh1-M_RT_For AGCCGCTCACATTCCTCAAG 

Adh1-M_RT_Rev ACGGTGATACCAGCACACAAGA 

Ref_RT_For TGCGTACAAAAAGTGTCAAGAGATT 

Ref_RT_Rev ATGCGCAAGAAGGTGCCTAT 

Table 3.5 PCR program details 

Cycles No. Name Temp. Duration 

1  50 2 min 

1  95 10 min 

40  95 15 sec 

  60 15 sec 

 

For quantitative control of IP experiments as well as Whole Genome Amplification of 

DNA, a real-time PCR procedure was applied. All real-time PCR experiments were 

performed on ABI Prism 7000 Sequence Detection System using Power Sybr® 

Green PCR Master Mix (Applied Biosystems) with ROX as passive reference dye. All 

the samples were tested with two primer pairs listed in the Table 3.4. 

In every the experiment, a standardization curve was made for each primer pair by 

using four serial dilutions (1:10) of a Sacharomyces Serevisiae genomic DNA stock 

solution (25 ng/µl). Tested probes included Input DNA (0.4 ng/µl), IP, mock IP and 

control IP with empty beads incubated with chromatin solution diluted 1:5 and 1:25. 

WGA procedure was monitored for introducing of unspecific bias by preferential 

amplification of some DNA pieces by testing Input and IP DNA after Amplification and 

Re-amplification steps. WGA amplified samples were diluted to 1 ng/µl upon usage.  

A control non-template (NTC) PCR reaction using water replacing DNA template was 

performed during each experiment to check for non-specific signal arising from 

primer dimmers, template or reagents contamination. 5 µl of template dilution were 

mixed with 20 µl of Master Mix and pipeted into MicroAmpTM Optical 96-well Reaction 

Plates (Applied Biosystems). Duplicates and triplicates of each genomic DNA dilution 

and each test probes, respectively, were performed. In order to avoid potential cross 

contamination of reagents DNase/RNase-free sterile water and filter barrier pipette 



Chapter III: Genome-wide distribution of RNA polymerase II and its Rpb4/7 subcomplex in S. cerevisiae 84

tips were used for all procedures. Table 3.5 shows the details of the PCR 

amplification program. 

3.4.10. Microarray handling 

Labeling, hybridization, array scanning, data extraction, and a preliminary data 

analysis were performed by imaGenes GmbH, as part of the NimbleGen ChIP-chip 

service (http://www.imagenes-bio.de/services/nimblegen/chip). For all experiments 

the NimbleGen  S. cerevisiae ChIP Whole Genome Tiling Array (Cat.No. C4214-00-

01) was used.  ChIP-chip datasets were derived from three or two biological 

replicates of S288C Rpb7-TAP or Rpb3-TAP strains, respectively, and from single 

experiments on W303 wild type and W303 Rpb3-TAP strains. All microarray 

measurements were performed with two-colour technology using Cy3 and Cy5, i.e. 

the DNA bound to immunoprecipitated protein was labelled with one dye and 

genomic background DNA with another dye, for a standard application the Input 

sample was labelled with Cy3 whereas IP sample with Cy5 dye. In case of two 

measurements, of S288CC Rpb3-TAP and S288CC Rpb7-TAP, respectively, the dye 

swapping, with IP sample labelled with Cy3 and Input sample labelled with Cy5 was 

performed.  

3.5. Bioinformatic analysis 

Bioinformatic analysis was performed by Holger Hartmann and Johannes Söding, 

Gene Center Munich, as a part of collaboration. 

In all analyses, the logarithm of the fluorescent signal from the ChIP DNA divided by 

the signal from the genomic background was used. A standard background 

correction was performed on all such signals by subtracting their genome-wide 

average. The ChIP-chip measurements for TAP-tagged Rpb3 and Rpb7 were 

repeated with exchanged dyes Cy5 and Cy3 and averaged over measurements to 

subtract out the strong, systematic, dye-related technical noise. For Rpb3 two replica 

measurements with ChIP DNA labeled by Cy5, but only one with exchanged dyes 

was available. When averaging over the replicas, the Cy3-labeled signal was 

weighted doubly to cancel out systematic noise. To directly compare the Rpb3 and 

Rpb7 signals, their relative scales were adjusted, which can differ slightly from 1 due 

to technical effects (Do &  Choi, 2006). For this purpose, a linear regression on the 

Rpb7 vs. Rpb3 scatter plot was performed.  

The agreement between various pairs of genome-wide measurements of Rpb3 and 

Rpb7 occupancy was quantified by the Pearson correlation coefficient. Since the 

Pearson correlation coefficient is sensitive to the presence of noise, the coefficients 
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for the raw data and for smoothed traces were calculated. A local quadratic 

regression smoother with a Gaussian kernel (σ=2, Table 1) was used, corresponding 

to averaging over approximately nine data points, respectively. For analyzing 

correlations between occupancy signals and genomic features smoothed curves 

were used.  
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 Abbreviations 
ABC subunits common for of Pol I, Pol II and Pol III 

AC subunits common for of Pol I and Pol III 

C subunit of Pol III (=RNA polymerase C) 

C.elgans Caenorhabditis elegans 

ChIP chromatin immunoprecipitacion 

ChIP-chip chromatin immunoprecipitacion coupled with a microarray 

CTD C-terminal domain of Rpb1 of Pol II 

D.melanogaster Drosophila melanogaster 

DNA deoxyribonucleic acid 

dNTP deoxynucleotide triphosphate 

DSE Distal sequence element 

DTT dithiothreitol 

E.coli Escherichia coli 

EC elongation complex 

EDTA ethylene diamine tetraacetic acid 

EM electron microscopy 

EMSA electrophoretic mobility shift assay 

GTF general transcription factor 

Hepes 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

HRDC helicase and RNAse D C-terminal domain (in Rpb4 and C17) 

H.sapiens Homo sapiens 

ICR internal control region 

IP immunoprecipitated 

IPTG isopropyl β-D-1-thiogalactopyranoside 

miRNA micro RNA 

mRNA messenger RNA 

MWCO molecular weight cutoff 

NAC nucleotide addition cycle 

NTC non template control 

PCR polymerase chain reaction 

PDB protein data bank 

PEG polyethylene glycol (number indicates average molecular weight in Da) 

PIC preinitiation complex 



Abbreviations 87

PMSF phenylmethylsulfonyl fluoride 

Pol eukaryotic DNA-dependent RNA polymerase 

PSE proximal sequence element 

RMSD root mean square deviation 

RNA ribonucleic acid 

Rpa subunit of Pol I (=RNA polymerase A) 

Rpb subunit of Pol II (=RNA polymerase B) 

Rpo subunit of archeal RNA Polymerase 

rRNA ribosomal RNA 

rt-PCR real time pcr 

sbRNA stem-bulge RNA 

S.cerevisiae Saccharomyces cerevisiae 

SINE short interspersed repeated DNA elements 

SNAPc snRNA activating protein complex 

snRNA small nuclear RNA 

snoRNA Small nucleolar RNA 

S.pombe Schizosaccharomyces pombe 

snoRNA Small nucleolar RNA 

TAF TBP-associated factor 

TAP tag tandem affinity purification tag 

TBP TATA binding protein 

TCEP tris(2-carboxyethyl)phosphine 

TFII transcription factor of Pol II transcription 

TFIII transcription factor of Pol III transcription 

TOR Target of Rapamycin pathway 

Tris trishydroxymethylaminomethane 

tRNA transfer RNA 

Tth Thermus thermophilus 

UTP uridine triphosphate 

vRNA valut RNA 

WGA Whole genome amplification 
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