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1. INTRODUCTION

Movements in economic and financial time series are closely watched by gov-
ernments, central banks and companies. Among these series are stocks, mar-
ket indexes, exchange rates, interest rates, survey data, and other aggregates
of macroeconomic activity. Each time series possibly contains information
about the current and the future unobserved states of the economy. Thus,
they influence market expectations of economic agents. The knowledge of
the current and future states affects interest rate decisions of central banks,
asset price movements, investment decisions, private savings, and so forth.
Moreover, as more and more time series are easily available electronically,
the expectations and estimations of the current state of the economy are

constantly updated.

One of the most important and comprehensive indicators, which is acknowl-
edged to represent the unobserved state of the economy, is the Gross Domes-
tic Product (GDP) which is recorded at quarterly intervals. Therefore it is
of great interest to economic agents to estimate and forecast GDP. However,
many other economic time series are sampled at a higher frequency. Sur-
vey data from the EU Commission, OECD or the Ifo Institute are sampled
monthly. The same is true for other macroeconomic variables like inflation,
unemployment and industrial production. Moreover, numerous economic
variables , like stocks, the oil price, interest rates, and exchange rate are also
available on a daily basis. Some evolve almost in real-time (on a minute
basis). But such data are inherently 'noisy’. Furthermore, a chief difficulty
with using multiple possible indicators is that they can, and usually do, pro-
vide conflicting signals; and there is no agreed-upon way for aggregating the

statistics to give a single-valued answer.
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The estimation of the current state and forecasting of the future state of
macroeconomic variables, such as GDP, with multivariate time series models
faces the general problem that the observations tend to be recorded and pub-
lished at different frequencies. Therefore, virtually any attempt to estimate a
multivariate economic time series model confronts the problem of efficiently

using mixed-frequency data.

The literature and methodology so far have assumed that all processes are
sampled at the same frequency. To ensure the same frequency, either the
higher-frequency data are aggregated to the lowest frequency, or the lower-
frequency data are interpolated to the highest frequency. In most empirical
applications, the higher frequency is aggregated to the lower frequency by
averaging, summing up, or by taking a representative corresponding value
(for example, the third month of the quarter). Neither of these options is
generally satisfactory. First, temporal aggregation destroys sample informa-
tion. Aggregated processes entail less information, and such an information
loss typically results in poorer predictability. Much is known about the ad-
verse effect of temporal aggregation on prediction, see for example Liitkepohl
(1987). Second, commonly used interpolation methods generally do not fully

exploit the available sample information.

In addition to the frequency sampling problem, many economic time series
are published with a delay and are subject to revision. For instance, the first
estimate of GDP in Germany is released six weeks after the end of the quarter.
The lack of a timely, comprehensive economic picture may mean that policy
needs may be recognized only many months after a significant slowdown or
an acceleration in the economy. This problem is especially important around
business cycle peaks or troughs, where there may be only weak evidence that
the economy is changing direction. The lack of timely information concerning
macroeconomic aggregates is also important for understanding private sec-
tor behaviour, and in particular the behaviour of asset prices. When agents
make trading decisions based on their own estimates of current macroeco-
nomic conditions, they transmit information to their trading partners. This

trading activity leads to the aggregation of dispersed information, and in the
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process affects the behaviour of asset prices. But many macroeconomic time
series provide timely information about the current state of the economy.
Some of them (like surveys) are not subject to revision, but are sampled
at a higher frequency (for example monthly) compared to a target variable
like GDP. So there is a potential need for models that combine data from
different frequencies. This area of research evolved recently and is virtually

unexplored.

Early examples of attempts to combine data from different frequencies were
linkage models and bridge equations. In the former approach, forecasts are
generated at different frequencies. The forecasts are combined to improve
the forecasting accuracy of the lower-frequency time series. In contrast,
bridge equations are essentially single-frequency time series models. The
high-frequency data are forecasted up to the desired forecast horizon in a
separate time series model. Finally, these forecasts are aggregated to the
lower frequency and plugged into a lower-frequency time series model (as
contemporaneous values). Bridge equations are especially useful for now-
casting: the forecast of the current period. These early attempts proved to
be successful as they increase forecast accuracy in the short-run. But what
about time series models, which are able to handle mixed-frequency time
series models without any data transformations and forecast combinations?

Is there something to gain in forecast accuracy?

From a theoretical point of view, Ghysels and Valkanov (2006) and Hyung
and Granger (2008) showed that there are gains in terms of forecasting accu-
racy from considering mixtures of different frequencies without transforma-
tion of the data. Ghysels and Valkanov (2006) derive circumstances under
which mixed-data sampling achieves the same forecasting efficiency as the
hypothetical situation where all series are available at the highest frequency.
However, the conditions behind this result cannot be verified empirically. In
a Monte Carlo study, Ghysels and Valkanov (2006) demonstrate that the in-
sample forecasting mean squared errors of mixed-frequency models are lower

than temporally aggregated single-frequency time series models.

Currently there are two competing approaches in the literature to deal with
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mixed-frequency time series. The first one was proposed by Zadrozny (1988)
for directly estimating a multivariate, continuous, autoregressive, moving
average (VARMA) model with mixed-frequency time series. Zadrozny (1990,
2008) extended this idea to discrete time. The approach of the method is
to assume that the model operates at the highest frequency in the data.
All variables are assumed to be generated, but not necessarily observed, at
this highest frequency, and thus can be used to produce forecasts of any
variable at this frequency. Variables which are observed at a lower frequency
are viewed as being periodically missing. For example, with quarterly and
monthly data, the model is assumed to generate all variables at monthly
intervals and each quarterly observation is assigned to the last month of a
quarter, so that observations for the remaining months in the quarter are

viewed as missing.

The second approach to handle time series sampled at different frequencies,
which they term MIDAS (MIxed DAta Sampling), was proposed by Ghysels,
Santa-Clara, and Valkanov (2004). MIDAS models specify conditional expec-
tations as a distributed lag of regressors at some higher sampling frequencies.
In practice the lowest frequency is regressed on the higher frequency. To avoid

parameter proliferation, a weighting function is employed.

Practical applications of these two approaches are rather rare. Zadrozny
(2008) shows that the forecasting performance for US Gross National Prod-
uct (GNP) can be improved with the state-space VARMA model over an
autoregressive benchmark model. Mittnik and Zadrozny (2005) find simi-
lar promising results for German GDP forecasts using the Business Climate
Index of the Ifo Institute in Munich. Ghysels, Santa-Clara, and Valkanov
(2006) predict volatility (5-minute frequency data) with various specifications
of regressors. They show that MIDAS models outperform single-frequency
benchmark models. Ghysels and Wright (2008) come to a similar conclusion
when using daily financial data to make monthly and quarterly macroeco-
nomic forecasts. Clements and Galvao (2008) obtain better forecasts for US
output and inflation using the MIDAS approach compared to benchmark
models (for example bridge models). Marcellino and Schumacher (2007)
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demonstrate how factor models, in combination with the MIDAS approach,

can be used to improve short-run forecasts of German GDP.

Given these promising results it is interesting to ask whether these results
hold in general, that is for any frequency mixture and time series length.
More importantly, these two approaches have not been directly compared to
date. Until now, there seems to be a peaceful coexistence’ between both

approaches. Articles dealing with one approach do not cite the other.

However, these two approaches are possible candidates to account for the
problems stated before. The data need not be transformed and are able
to account for any kind of high-frequency data. Are these models able to
improve the forecasting accuracy of lower-frequency variables, like GDP, by

using high-frequency data? We want to answer these questions in this thesis.

This dissertation contributes to the literature in several ways. First we out-
line all theoretical aspects concerning mixed-frequency data modelling. We
are the first to present the different approaches in one review. So far the
different approaches are presented quite disconnected in the literature. In
a second step we review the literature that has dealt with forecasting with
mixed-frequency data. This review presents empirical strategies and the suc-
cess of mixed-frequency modelling approaches. Such a review is the first to

attempt this.

In the main part of the thesis we compare the forecasting success of the two
new mixed-frequency time series models: the mixed-frequency VAR and the
MIDAS approach. Before the calculation of forecasts, a time series model
needs to be specified. Current articles on mixed-frequency time series models
neglect the model specification aspect. We are the first to investigate some

specification issues for both model classes relevant for forecasting purposes.

As the mixed-frequency VAR operates at the highest frequency of the data, it
is important to know how many lags should be included. Is there a problem
of parameter proliferation or are models with few lags sufficient to obtain an
improvement in forecasting accuracy? The lag selection problem also intrudes

into the MIDAS model specification, but in a different way. Inclusion of
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further lags does not increase the number of estimated parameters. Due to
large (high-frequency) data sets in financial econometrics, it is possible to
include many lags. In contrast, in macroeconomics the trade-off of including
more lags and shortening the estimating sample is more severe. Closely
related to the lag selection problem is the question of whether the weighting
function should be restricted (for example, ensuring declining weights) or
not. Restrictions may be useful to ensure that more recent observations are
given bigger weights than others are. In the literature, we find examples
with restrictions and some without restrictions. But there is no theoretical

or economic reasoning behind these choices.

Having demonstrated how to specify the model we want to systematically
compare the forecasting performance of the two approaches in an extensive
Monte Carlo study, since the two approaches have not been compared be-
fore. We will consider four data-generating processes to cover reasonable
data structures. We allow both for homoscedastic and heteroscedastic errors
in the data-generating process. The latter one especially is motivated by the
fact that many economic time series show the existence of volatility clus-
tering ((G)ARCH - generalized autoregressive conditional heteroscedasticity
effects). Financial time series exhibit inherently volatility clustering. We
investigate whether heteroscedastic data do influence the forecasting perfor-
mance significantly compared with homoscedastic errors. We will focus on
three mixtures that are predominant in macroeconomic forecasting: monthly-
quarterly, weekly-quarterly, and quarterly-yearly. In addition to comparing
the mixed-frequency approaches to each other, we investigate whether they
have an advantage over single-frequency models. The final question in the
Monte Carlo study is that we want know how the forecasting performance

changes when larger time series are under investigation.

Eventually, we compare the two approaches in a case study using real data.
We forecast German GDP growth with different indicators and different mod-
els. We focus especially on the nowcasting aspect. Does intra-quarterly in-
formation help to improve forecasting accuracy in the short and long run?

Factor analysis, as a method to condense large information sets, will play a
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prominent role in our analysis. The second part of the empirical application
is a nowcasting experiment. We investigate whether it is possible to track
the German economy on a daily basis. In contrast to approaches that esti-
mate a latent variable as the current state of the economy we are the first
to track the economy almost in real-time by forecasting GDP growth on a
daily basis. With this experiment we demonstrate how useful daily data are
for forecasting GDP. We consider this as a starting point for future research

in this area.

The thesis is structured as follows. Chapter 2 outlines the theoretical aspects
of mixed-frequency data modelling, both data transformation and mixed-
frequency time series models. Chapter 3 contains the literature review. In
chapter 4 we introduce all aspects of the Monte Carlo study. In chapter
5 we demonstrate how to specify a mixed-frequency model for forecasting
purposes. Chapter 6 contains the Monte Carlo forecasting study. In chapter
7 we use both approaches to forecast German GDP. We show how these
models can help to increase forecasting accuracy with monthly and daily
leading indicators. The latter is viewed as a nowcasting experiment. Finally

we summarize and conclude.






2. MIXED-FREQUENCY DATA: THEORETICAL MODEL
AND TRANSFORMATION ISSUES

Generally, most time series models employed for forecasting assume the same
frequency for all data used. When time series are sampled at different fre-
quencies one needs to transform them. Either the lower frequencies are in-
terpolated to the highest frequency or the higher frequencies are aggregated
to the least frequency. Strictly speaking, forecasting using mixed-frequency
data is a two-step procedure. First, the data are transformed into a single
frequency and second, the transformed data are plugged into a structural
macroeconomic or time series model for forecasting. In this chapter we out-
line different transformation methods to obtain single-frequency data. Then
we present the early approaches to combine data sampled at different fre-
quencies, linkage models, and bridge equations. We keep the summary on
data transformation short, as we focus on time series models able to han-
dle mixed-frequency data and where no data transformation is necessary:
the mixed-frequency VARMA approach and the MIxed DAta Sampling (MI-
DAS) approach. We provide details of the approaches, and specification and
estimation issues. We also briefly compare these models in terms of practical
forecasting without empirical investigation. The chapter starts with some

details on notation and interpretation of mixed-frequency data.

2.1 Preliminaries

As we deal with mixed-frequency data throughout the thesis, first we want
to outline the notation in order to avoid confusion. The basic time unit is

denoted with ¢. With ¢ we label the time unit of the lower frequency time
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series which has the range t = 1,...,T. To relate the difference frequencies
to each other we will use the term frequency-mixture denoted as m. Between
t and t — 1 the higher-frequency variable is observed m times. To avoid
cumbersome notation we will also use a time unit for the higher-frequency
data, denoted as 7. The length of the higher frequency is then 7 = 1,...mT.

The basic frequency mixtures investigated in more detail in this thesis are:

e m = 3 = monthly-quarterly data, where 3 months constitute a quarter

e m = 4 = weekly-monthly or quarterly-annual data, where 4 weeks

(quarters) define a month (year)
e m = 12 = weekly-quarterly data, where 12 weeks constitute a quarter.
This choice is based on typical mixtures that confront a researcher in em-

pirical macroeconomics. Generally, m can take any value. Further possible

mixtures are

m = 2 = biannual-annual data (not considered so far in the literature)

m = 20 = week-daily-monthly data (20 trading days per month)
e m = 60 = week-daily-quarterly data (60 trading days per quarter)

e m = 250 = week-daily-yearly data (250 trading days per year)

which are mixtures that can be found in financial economics. In the liter-
ature review we will present the empirical choices of m. This list can be
extended by the practitioner to any (constant) mixture. The presence of two
different frequencies in one time series model is represented by the notation
Ty_i/m- Suppose, x; denotes the March value of some monthly time series.
Suppose that the target variable is sampled at quarterly intervals than m
equals three. The February monthly value is then donated by z;_1/3 (one

month of observations is missing in the current quarter), the January value
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by x93, the December by x,_3/3 = 7;_; and so forth. A simple regression

model is than given by

P
Y =+ Z BiTi—im + € (2.1)

i=1

This definition and notation of mixed-frequency data can be problematic
(especially for higher frequency mixtures) in empirical applications for several
reasons. First, it assumes that the data are equidistant over time. But this
may not be the case, especially for very high-frequency data. For example,
the three months constituting a quarter may not be of the same length.
Abstracting from a leap year, in the first quarter, the month of January has
31 days, February 28 days and March 31 days. Furthermore the number
of Mondays, Tuesdays etc. are not the same for each month. And there
are moving holidays, like Easter. Such differences can have an impact on
some macroeconomic variables such as retail sales or industrial production.
In practical applications one can account for this problem, by seasonally and
workday adjusting the data. But this is not done for every variable.! In

general this aspect is ignored in practical macroeconomic forecasting.

Even more severe is the problem when mixing daily and monthly data. In
financial applications a week is defined by five trading days. As months usu-
ally consist of 30 or 31 days it is likely that we have more than 20 trading
days per month. On the other hand it is possible not to have enough trading
days to define a week or a month. This occurs in months with many holidays
as in December. On the one hand, one has too much information and has to
discard some of it. On the other hand, there is too little information and one
needs to extrapolate or interpolate it. These problematic aspects have not
been investigated in the literature so far. We will abstract from the infor-

mation content problem in our Monte Carlo study by assuming equidistant

! Official seasonally adjusted time series account for the actual number of working
days. Many econometric packages provide seasonal adjustment, but to account for
the actual number of working days, the researcher needs to provide this information,
but this is rarely done. Thus seasonal adjustment is a technical process unless we
account for the distribution of frequencies used.
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observations. In the empirical example we will outline some strategies to

deal with this problem.

There are other possible notations for denoting mixed-frequency data in a
time series model, for instance a superscript for the corresponding frequency.
For instance, yi* denotes month ¢,> whereas y{ denotes quarter ¢. Equation

(2.1) can then be rewritten as

p
yi=a+) Bal +e. (2.2)

=1
2.2 'Transforming Mixed-frequency Data

2.2.1 Interpolation

Interpolation is rarely used in applied econometric forecasting.® Interpola-
tion assumes that the lower-frequency variable is interpreted on some higher
frequency which exhibits missing observations. Lanning (1986) points out
that economists facing missing data have basically two different ways to in-
terpolate. One approach is to estimate the missing data simultaneously with
the model parameters. A second way is a two-step procedure where in a
first step the missing data, which can be independent of the economist’s
model, are interpolated. In a second step, the new augmented series is used
to estimate the model. Based on simulations, Lanning (1986) suggests using
the two-step approach, as the model parameters have larger variances in the

simultaneous approach.

The simplest way to interpolate is to apply pure statistical interpolation
methods as linear, quadratic, or cubic interpolation. But these methods do

not account for possible intra-period variability of the higher frequency.*

2 The superscript m denotes in this case the month and not the frequency mixture.

3 Examples can be found in the next chapter. Interpolation is also sometimes termed
"disaggregation’.

4 A recent chronology of interpolation (Meijering (2002)) contains 358 (mostly modern)
citations.
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A simple approach to recovering disaggregated values is to compute par-
tial weighted averages of the aggregated series, see for example Lisman and
Sandee (1964). A different approach is that the disaggregated values are those
which minimize a specific loss function under a compatibility constraint with
aggregated data, see for example Boot, Feibes, and Lisman (1967), Cohen,
Miiller, and Padberg (1971), and Stram and Wei (1986). A further constraint
can be added. This involves the existence of a preliminary disaggregated se-
ries (related time series), so that the interpolation issue becomes how best
to revise the data for them to be compatible with the aggregated data, see
for example Friedman (1962), Denton (1971), Chow and Lin (1971) (later
extend by Chow and Lin (1976)), Fernandez (1981), Litterman (1983), and
Mitchell, Smith, Weale, Wright, and Salazar (2005).

Assuming the higher-frequency observations as missing, there is a huge lit-
erature on estimating such missing observations relying on state-space inter-
pretations and Kalman filtering, see for example Harvey and Pierse (1984),
Kohn and Ansley (1986), Nijman and Palm (1990), and Gomez and Maravall
(1994). The Kalman filter uses the underlying serial dependence of the data
in order to estimate conditional expectations of the missing observations.
More recent state-space approaches are provided by Bernanke, Gertler, and
Watson (1997), Liu and Hall (2001), Proietti (2006), Nieto (2007), and An-
gelini, Henry, and Marcellino (2006). In the latter article the usage of factor
models is proposed for interpolation. Angelini, Henry, and Marcellino (2006)
also conduct a Monte Carlo study to investigate the performance of different
interpolation approaches. Given a large information set of higher-frequency
variables, the factor approach performed best. Given only a few related time
series, the approach by Chow and Lin (1971) cannot be outperformed. These
results still hold when applied to a real data set (GDP and inflation) where

some of the observations were dropped.

Cuche and Hess (2000) provide an overview of which interpolation approach
should be used depending on data availability and assumptions on the data-

generating process of the interpolated series.



2. Mixed-Frequency Data: Theoretical Model and Transformation Issues 14

2.2.2 Aggregation

In general, aggregation generates an information loss. The analysis of tem-
poral aggregation starts with the seminal paper of Amemiya and Wu (1972).
They demonstrate that if the original variable is generated by an AR model
of order p, the aggregate variable follows an AR model of order p with MA
residuals structure. Tiao (1972) and Amemiya and Wu (1972) study the issue
of information loss due to aggregation. In a general multivariate framework,
Liitkepohl (1987) contains a deep analysis of temporal (and contemporane-
ous) aggregation for VARMA models; it also examines the impact of temporal
aggregation of the efficiency of forecasts. For a recent survey on temporal

aggregation of single-frequency variables see Silvestrini and Veredas (2008).
A single time series

Temporal aggregation of the higher frequency variables to the lowest fre-
quency is by far more common in applied work. ’Aggregation’ can be inter-
preted in different ways depending on the definition of the variable in focus.
Assuming a stock variable, the latest available value of the higher frequency
can be used. Assuming monthly-quarterly data, one could use the first, sec-
ond or the last (’stock-end’) value to be representative of the whole quarter.
Considering the last value of the quarter one could argue that information
from the previous quarters is reflected in this value. Employing such an
"aggregation’ scheme for flow variables is more a matter of convenience than
being theoretically justified. It is more appropriate for 'small’ frequency mix-
tures such as monthly-quarterly than for larger ones such as daily-quarterly,

as not too much information is condensed in one value.

As already stated, aggregation in practice depends on the interpretation of
the data. The standard aggregation method is averaging over one lower-

frequency period
1 m
Ty = E '_E 1 Tit—i/m- (23)

This is even done for stock variables. The average defines the average infor-

mation content over the low-frequency period. For flow variables the higher-
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frequency values are simply added
Ty = th_i/m. (2.4)
i=1

Many time series

During the 1980s and 1990s more and more economic variables have become
available. The inclusion of too many variables increases estimation uncer-
tainty, which can lead to a deterioration in forecasting accuracy. Thus, the
principle of parsimony in econometrics prevents the inclusion of all possible
indicators in one time series model. One way to exploit the whole available
information set is to condense all time series into a few variables. One at-
tempt is the construction of composite indicators (CI). These Cls can be
constructed for several purposes, for example forecasting or, coincidentally,
for describing the current state of the economy. One popular attempt is the
Stock-Watson Experimental Coincident Index (XCI) developed by Stock and
Watson (1989). Stock and Watson (1991) construct a coincident index by
applying maximum likelihood factor analysis to four monthly coincident in-
dicators. So far, these methods assume the same data frequency for all time

series.

Mariano and Murasawa (2003) extend the model of Stock and Watson (1989)
to allow for mixed-frequency data, especially the inclusion of quarterly data.
The model is cast into state-space form and the likelihood is maximized
with the Kalman Filter.® The suggested filtering algorithm is only an ap-
proximation. Proietti and Moauro (2006) avoid the approximation at the
cost of moving to a non-linear model with a corresponding, rather tedious,
non-linear filtering algorithm. Mariano and Murasawa (2003) extract a new

coincident indicator using one quarterly and four monthly time series.

Another approach to condensing information is estimating factors from large

data sets. Factor analysis has become popular in applied forecasting (see

® The idea of using the Kalman filter to account for mixed-frequency data in this context
was also suggested by Nunes (2005) and Crone and Clayton-Matthews (2005).
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the literature review in chapter 3). We want to outline the aspect of factor
estimation with irregular and mixed-frequency data in more detail, as we will
apply these approaches in our empirical forecasting exercise. For illustration

purposes we start with the static factor model with single-frequency data.’

Let Y; be an (NN x 1) dimensional vector of stationary time series with obser-
vations for 7 = 1,...,mT, and we assume that the series have zero means.
The variables in a factor model are represented as the sum of two mutually
orthogonal components: the common and the idiosyncratic components. The
common component is driven by a small number of factors common to all
variables in the model. The idiosyncratic component is driven by variable-

specific shocks. The factor model can be written as
Y. =AF. + & (2.5)

where F, is a (r x 1) vector of factors and the (N x r) dimensional matrix
A contains the factor loadings. The idiosyncratic components comprise the
vector &.. The basic idea of factor models is that a small number of factors
can explain most of the variance of the data. The factors can be estimated
with the principal components approach. Let V' be the (N x r) matrix of
stacked eigenvectors V = (Vq,...,V,) corresponding to the r largest eigen-
values of the (N x N) sample covariance matrix ¥ = (mT)~' 3.V, Y”. The
principal components estimator of the factors and the loading matrix is given
by

— VY, (2.6)
1% (2.7)

9

—>
I

The asymptotic properties of the factor estimators are outlined in Breitung
and Eickmeier (2006) building on Stock and Watson (2002a) and Bai (2003).
Under mild assumptions on serial correlation, heteroscedasticity, and cross-
correlation among idiosyncratic components, the asymptotic normal distri-

bution of the factor estimates is established for N, mT — oc.

6 The following exposition draws on Schumacher and Breitung (2008).
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Stock and Watson (2002b) showed how the expectation maximization (EM)
algorithm can be employed in factor analysis when data irregularities such
as missing observations or mixed-frequencies are present. Before we present
the idea of the EM algorithm we need to introduce a transformation matrix.
Let Y,” a T~ x 1 vector of observations for the variable ¢, that may contain
missing values and the complete vector of realizations Y;, where T~ < mT.
It is assumed that the relationship between observable and complete data
are given by the linear relationship

Ym =5Y (2.8)
where S; is a known (7~ x mT) selection matrix that can tackle missing
values or mixed frequencies.” For example, if all observations are available,
the matrix S; is an identity matrix. Mixed-frequency data are interpreted as
missing values. Consider mixing monthly and quarterly data. For a stock
variable the first two months are not available, whereas the last monthly ob-
servation in a quarter is equal to the quarterly published value. The selection

matrix S; is adjusted by elimination of the respective rows.

Given these preliminaries, the basic idea of the EM algorithm with mixed-

frequency data proceeds as follows:

1. Create a data set sampled at the highest frequency in the data. Thus we
produce an initial (naive) higher-frequency estimate of lower-frequency
variables. Given the initial estimate, the factors and loadings at the
highest frequency are estimated as described above in the single-frequency

case.

2. Expectation-Step: For each iteration j, given an initial estimate of

the factors and loadings from the previous iteration j — 1, compute an

" The idea of the selection matrix originates from the work by Jones (1980). The au-
thor estimated ARMA models with missing observation within a state-space frame-
work with the Kalman filter. In the mixed-frequency modelling framework the idea
was picked up by Greene, Howrey, and Hymans (1986), Zadrozny (1990), Stock and
Watson (2002b), and Giannone, Reichlin, and Small (2008).
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update of the highest-frequency or missing observations by the expec-
tation of the 7" x 1 X; conditional on the observed data Y¥;” and the

previous iteration factors and loading for variable ¢ according to

Yi(j) — E(K’}Q*)F(jfl)’jigjfl))
— FU-DAG-D L SIS (Y — SiF(jfl)A(jfl))

3. Repeat step 2 for all series in the sample that contain missing values

or that have to be transformed from the higher to the lower frequency.

4. Maximization-Step: The estimated highest-frequency observations are
used to re-estimate the factors I:_’t(j ) and loadings AW by an eigen decom-
position of the covariance matrix 2@ = (mT)~1 3" VY97 according
to Equation (2.5). The estimates of the factors and loadings enter step

2 above again until some convergence criterion is fulfilled.

The steps of the above EM algorithm provide estimates of the lower-frequency
variables for the highest frequency in the data. Furthermore, estimates for
missing observations are established. Schumacher and Breitung (2008) con-
duct a Monte Carlo study to investigate how well the EM algorithm can
estimate monthly observations of GDP. The authors carry out two simula-
tions. The first simulation addresses the estimation of monthly observations
from quarterly and monthly data for different degrees of idiosyncratic noise
in the data. In a second approach, the estimation of missing observations
at the end of the sample is investigated. Considering the first point, Schu-
macher and Breitung (2008) find that the performance strongly depends on
how informative are the data. The less informative the time series are with
respect to the factors, the less precisely (in MSE terms) are the factors and
the monthly observations estimated. The same conclusions can be drawn for

the second part of the Monte Carlo study.

As we will see in later chapters, the presence of 'ragged-edge’ data is promi-

nent in extracting factors for nowcasting.® Besides the EM algorithm there

8 The term ’ragged-edge’ illustrates the imbalance at the end of a sample due to pub-
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are other estimation methods available to handle missing observations at the
end of the sample. A simple approach to solve the ragged-edge problem is
provided by Altissimo, Cristadoro, Forni, Lippi, and Veronese (2006). They
propose to realign each time series in the sample to obtain a balanced data
set. Given the balanced data set, the standard approach to extract factors
can be applied. A different approach is to build a parametric factor model
in state-space form. Kapetanios and Marcellino (2006) estimate the factors
using subspace algorithms, while Doz, Giannone, and Reichlin (2006) exploit
the Kalman filter.

2.3 Bridge Equations and Linkage Models

2.3.1 Linkage Models

In the 1950s, large marcroeconometric models in different countries were de-
veloped to describe and forecast parts of National Accounts. Therefore they
are based on quarterly frequencies. These models were designed primarily
for short- and long-run forecasting and policy simulations. Their equations
therefore generally have a solid theoretical base and exhibit desirable long-
run equilibrium properties, but place less emphasis on short-run forecasting
accuracy. Some of the variables are also available on a higher frequency (for
example monthly). As higher frequencies potentially provide valuable (and
timely) information regarding future economic development, it was sensible
to use this additional information. In practice this was often achieved by
adjusting the constant term of relevant equations (or by using a non-zero
error term) to make the model outcome agree with the new information.
Such a procedure to alter a model’s solution is often referred to as ’judge-
mental modification’ and is subject to criticism as being unscientific or ad

hoc.? To avoid this problem the idea of combining quarterly (interpreted as

lication lags.

9 Klein and Sojo (1989) provide a framework for adjusting these constant terms in a
more scientific way. Their article is more general and contains practical advice on how
to use high-frequency data (in bridge equations) in a large macroeconometric model.



2. Mixed-Frequency Data: Theoretical Model and Transformation Issues 20

long-run relationships) and monthly (short-run relationships) forecasts was

introduced.

The basic idea is to model the higher frequency variables in separate (time
series) models. The higher-frequency forecasts are combined with lower-
frequency forecasts of the corresponding variables. The combined forecasts

can be used to update the macroeconometric model.

The first approach to link quarterly and monthly information was proposed
by Greene, Howrey, and Hymans (1986).1° To illustrate the idea consider

the reduced form of the lower-frequency (quarterly) variable
Y, =PY, 1+ QX +V; (2.9)

where Y; denotes the endogenous variables and X; the exogenous variables
of the system and V; ~ N(0, Xy ) is the error term. The one-quarter-ahead

forecast of Y; is given by:

Yig1 = PY, + QX141 (2.10)
so that
Yip1 = }A/;url + Vi1 (2.11)

Let Y1 be the collection of H quarterly forecasts derived from the monthly
model, where H denotes the number of common variables (which are available
both at the higher and lower frequency). Because only some of the variables
are available monthly, a 'selection’ matrix denoted by 6 picks out the elements

of Y; corresponding to Y 4
0Yt+1 == Y/H—l + Wt+1 (212)

where Wy, is a H x 1 vector of disturbances with mean zero and covariance

matrix Xyw. The difference between the quarterly and the monthly forecast

10 As large macroeconometric models were predominant at this time, they used the term
‘outside information’ for monthly information.
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models is given by
Ziy1 = f/t+1 - 6)}A/t-s—l = 0Vie1 — Wi (2-13)

The optimal combined forecast of quarterly and monthly data is given by

Y= yt-}—l + KZi1 (2.14)
where
K = Yu%,, (2.15)
ZZZ = 92\/{/0/ + EWW - QZVW - ZW\/@, (216)
EZV = QEVV - EW\/. (217)

Generally, this approach can be extended to any mixtures of frequencies.

Howrey, Hymans, and Donihue (1991) criticize the approach by Greene,
Howrey, and Hymans (1986) in one important aspect. The forecasts are
linked with quarterly aggregates of the monthly forecasts and therefore the
approach could not take advantage of the information within the quarter.
We want to sketch the alternative pooling approach of Howrey, Hymans, and

Donihue (1991), which utilizes within-quarter information.

Let Vi = [Ytﬂ|gjt+1|gjt+1_1/3|g]t+1_2/3] the vector containing the forecasts
from the quarterly (Y;41) and the monthly (41, /3) models. For combining
the forecasts from both frequencies, the estimate of the covariance matrix ® of
the forecast errors corresponding to this forecast vector is necessary.'! As not
all common variables satisfy the aggregation condition'?, it is assumed that
the vector of actual and quarterly and monthly values, Y;,1, is drawn from a
(normal) distribution with mean }A/Hl and covariance matrix ®. Additionally

an aggregation condition between quarterly and monthly data is necessary

1 We refer to the appendix of Howrey, Hymans, and Donihue (1991) for the derivation
of this covariance matrix.
12 As, for example not all information is available for the current quarter.
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such that
QY11 =0 (2.18)

where () is the aggregation matrix. From standard formulae for the multi-
variate normal distribution one can obtain the conditional mean Y, ; and

the conditional covariance matrix, ¥, of Y;; given QY;11 =0

Vi =Y — 2Q'(Q2Q) ' QY (2.19)
U =0 - Q' (QPQ) QP (2.20)

The corresponding diagonal elements of ¥ and ¢ indicate the expected im-

provement in forecast accuracy resulting from this pooling procedure.

Fuhrer and Haltmaier (1988) derive formulae for obtaining minimum variance
for pooled forecasts at the disaggregated level. They prove that pooling at the
disaggregated level produces the same aggregated pooled forecasts as pooling
the two forecasts at the aggregate level. This result holds only in-sample and

can deviate out-of-sample.

The paper by Rathjens and Robins (1993) provides a different interpretation
of how to link monthly and quarterly information in one model. The previous
approaches combined forecasts from different frequencies, whereas Rathjens
and Robins (1993) point out the usefulness of within-quarter information and
want to utilize it for producing quarterly information. Consider a time series
y- which is sampled at a monthly frequency but forecasts are generated with
aggregated quarterly data. In a univariate approach this variable is forecasted
with an AR or an ARIMA model. Rathjens and Robins (1993) suggest the

introduction of a new variable x; which is defined as

3
1
Ty =Yt — g E Yt—1—i/3
i=1

that is, the difference between the third month of the quarter and the simple
average of the quarter. The quarterly forecasts are then generated with

an autoregressive model with exogenous variables (ARX) or an integrated
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autoregressive moving average model with exogenous variables (ARIMAX)
A(L)y; = B(L)e, + C(L)xy, (2.21)

where A(L), B(L) and C(L) are lag polynomials of finite order. Indeed it
makes no sense to apply this idea to univariate models which are sampled at
the higher frequency and are aggregated to the lower frequency. Therefore it
is better to employ the new variable x; in multivariate lower frequency time
series models. This approach cannot be used for nowcasting in a strict sense,
that is using information of the current quarter. As the approach can use

information only up to t — 1.

2.3.2 Bridge Equations

Klein and Sojo (1989) describe a regression-based current quarter GDP fore-
casting system in which GDP components of the National Accounts are mod-
elled individually. In general, Bridge Models (BM) can be seen as tools to
‘translate’ the information content of short-term indicators into the more
coherent and complete 'language’ of the National Accounts. BM are lin-
ear dynamic equations where the aggregate GDP or, alternatively, GDP
components are explained by suitable short-term indicators. In fact, BM
can be specified either as different equations for the main GDP compo-
nents (namely, private consumption, government purchases of goods and ser-
vices, fixed investment, inventory investment, exports, and imports), or as
a single equation for the aggregate GDP. In the first case, the model is la-
belled 'demand-side’ BM (where GDP is predicted by the National Accounts
income-expenditure identity); in the second case it is labelled ’supply-side’

BM (where GDP is forecast by a single bridge equation).

In contrast to large structural macroeconomic models, BM are not concerned
with behavioural relations. The choice of the BM explanatory variables is
based on the researchers’ experience and several statistical testing proce-

dures, rather than on causal (that is structural) relationships.



2. Mixed-Frequency Data: Theoretical Model and Transformation Issues 24

In general auxiliary equations forecast the higher-frequency variable up to
the end of the lower-frequency period under consideration. For instance, if
we are in January and we want to forecast the first quarter, we forecast the
independent indicators up to March. Then the ’filled’ period of the higher-
frequency variable can be temporal-aggregated to the lower frequency. These
values are then plugged into the lower-frequency bridge equation time series
model. The indicators can be forecasted with any preferred model. In many
cases an AR, ARIMA, vector autoregressive model (VAR) or Bayesian vector
autoregressive model (BVAR) are used. In contrast, to use a specific forecast
model one can also encounter a no-change forecast, where the latest available

information is used to represent the information content of the current period.

Before building a bridge model, the selection of indicators is a crucial step.
First, monthly indicators must be updated in a timely manner (published
before the BM dependent variable is released). Second, indicators must be
reliable; that is they should not be revised substantially after they are first
published. Alternatively, real-time data could be used, that is only informa-
tion available at the forecast horizon (first estimates or final data) is used to
calculate the forecast. Finally, indicators must be related to the dependent
variable of the BM.

Bridge equations are rather useful for short-term forecasting (nowcasting).
Forecasting the indicators over a longer horizon would transmit larger fore-
casting errors into the primary forecasting model due to iterative forecasting

uncertainty of the higher-frequency variable.

2.4 State-space Approaches

The first two subsection deal with different state-space representations of
a mixed-frequency VAR(MA) model, where all variables are endogenous.
The state-space approach by Evans (2005) estimates an unobserved state
interpreted as growth rates. There is no modelling of dynamic relationships

between the variables. Finally we outline the combination of factor models
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with state-space approaches, where the lower-frequency target variable is

forecast at a higher frequency.

2.4.1 A Mixed-frequency VARMA Model

Zadrozny (1988) proposed a general approach to handle different frequencies
in a continuous time series model. Zadrozny (1990, 2008) extended this idea
to discrete time. We sketch this approach and give some modelling examples;
for details we refer to the original literature. We consider the general sampled

at the highest frequency, ARMA(p, q) model with n time series for a, as
A(L)a, = B(L)e, (2.22)

for7=1,...,mT, where A(L) = Ay—>_1_, AxL*, B(L) = >"}_, BiL*, L is
the lag operator, and e, is an m7T x 1 unobserved, normally distributed, white
noise disturbance vector with zero mean and constant covariance matrix, that
is e, ~ N(0,%.), where X, = E(e,e!). We can partition the number of time

series into stocks (ny) and flows (ny), where n = ny + ns.

We assume that the data are adjusted for mean values and other possible
fixed (regression) effects. We have to assume some restrictions to identify the
model. First, we must assume that the model is complete, that is Ay is non-
singular. Second, we assume that there are no identities in the data, which
implies a non-singular probability distribution of the data. To ensure this
we impose the restriction ByX. B > 0. Third, there is redundancy among
Ay, By and ¥.. We adopt the normalization Ay = I,,, By = lower triangular,

and XY, = [, where [,, denotes the n x n identity matrix.

The model is cast in state-space form. A state-space system consists of a
state and observation equation. The law of motion for the unobserved state
x is given by

Ty = Fa._1 + Ge,, (2.23)

where the matrices F' and G contain the corresponding AR and MA coef-

ficients. The state vector x,. is constructed for stocks and flows with r - n*



2. Mixed-Frequency Data: Theoretical Model and Transformation Issues 26

elements, where r = max(p,q + 1,v) and n* = ny + 2ny. The parameter
v denotes the maximum lag in any flow aggregation.!> We define a m x 1
vector w, of potential observations of a,. By "potential” we define that the

vector w, is not yet adjusted for the actual observed values in period 7.

The observation equation is constructed in two steps. Let (, be an unob-
served vector of observation errors which has the same dimension as w,. That

is we observe w, as w, = r11, + (- and , or, equivalently as
Wy = AxT + CT (224)

where

A:[In 00 0].

We assume that ¢; ~ N(0,3), where 3 > 0, and E(¢,e}) = 0 and E((;2}) =
0 for all 7. As before it is convenient to re-parameterize 3, to R, where R is
a lower triangular matrix and satisfies RR’ = 3. Furthermore, let y, denote
the m, x 1 vector of values of w in period 7 which are actually observed,
where m, < m. Therefore we have y, = A w,, where A, is the m, x mT
selection matrix which picks out the observed elements of w,. Combining

(2.24) and y, = A,w, we finally get the observation equation
Yr = DT'xT + Ur, (225)

where D, = A, A and v, = A.(,;. The disturbance vector v, obeys the same
properties as (;: v, ~ N(0,%,,), where 3, = A XA and E(v.e.) =0, for

all 7.

Having outlined the theoretical model we want to illustrate some parts with
examples to enhance the understanding. Consider a bivariate VARMA(1,1)
model with monthly and quarterly data where one variable is a stock (for

example the indicator) and the other a flow (for example GDP growth). The

13 For example, in case of monthly-quarterly data the parameter v takes the value 2.
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matrices F' and G from equation (2.23) are then given by

app ap 001 00 Bu 0

agr g 00 1 0 Bo1 Ba2

[ 0 1 0001 and & — 0 0
0 0 0000 O31 P32

0 0 0 00O Bar Baz

i 0 0 00O 0_ i 0 0 |

where o;; denote the AR and [y, denote the MA coefficients. If both variables

are observed than
10
A=
01

and thus the D, matrix in equation (2.24) is given by
100 00O0
D, =
[O 1100 O]
If only one variable is observed than
A=[10] andD,=[1 0000 0]

In a second example consider three variables, sampled at weekly, monthly,
and quarterly intervals all observed as stocks. The matrices F' and G are

then given by

aj;p ap a3 100 P 0 0
1 g g3 0 1 0 Bar Baz 0
F— az1 azp azgz 0 0 1 and G = P31 B2 33
000 Ba1 Paz a3
000 Bs1 Bs2 Pss
L 000 i _661 Be2 563_

Note the subtle difference to the previous example. The dimension of the

matrix F' is the same but due to the flow variable in the previous sample a
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1 is put under each flow variable. If all variables are observed variables then

1 00 100000
Ar=10 1 0 and D= 10 1 0 0 0 0
001 001000

If only two variables (weekly and monthly) are observed then

1 1
A (1)] anth:[ 00000]

0 010000

If only one variable (weekly) is observed then
A=t 0] andD,=[1 0000 0

The Kalman filter (KF) provides a very powerful tool for maximizing likeli-
hood functions. The KF has many possible implementations, see for example
Anderson and Moore (1979) or Hamilton (1994). We use the Kalman Fil-
ter to compute the likelihood function with the innovation of a time series.
Given the model, its parameters, and the data, the KF computes L, by it-
erating over the sampling times 7 = 1,...,mT. At the start of iteration 7,
Trjr—1, Vs, and L._; are given from the previous iteration. Given the values

of these quantities, L,_; is updated with

M, =%, +D,V,D. (2.26)
£’r =Yr — DT‘/ET|T—1 (227)
L.=L.,+In ’ M|+ €M, (2.28)
where | - | denotes the determinant; z,,_; and V; are updated with
K.=FV,D.M* (2.29)
Trytjr = Fl‘TlT*l + KTgT (230)

&, =F - K,D, (2.31)
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Vi1 = GG + FV. @, (2.32)

Equations (2.26) to (2.32) are written in the order in which computations
proceed. K is called the Kalman gain matrix. Zadrozny (2008) discusses

the conditions for numerical stability of this implementation of the KF.

To start the iterations, z;o and V; must be specified, and, of course, Ly = 0.
As we deal with stationary data, the exact likelihood function is obtained
when w19 = p,, the unconditional mean of x, and V; = X, the uncondi-
tional covariance of . When the data have been adjusted for means and
fixed effects, pu, = 0 and 3, solves the (discrete-time, algebraic) Lyapunov
equation

Y, - Y, F' =GG (2.33)

When F is a stable matrix, (2.33) yields a unique, symmetric, positive semi-
definite value of ¥,. In sum, in the stationary case, the exact likelihood
function is obtained when 1y = 0 and V; = ¥, where X, solves Equation
(2.33). For further approaches to the initialization problem see Ansley and
Kohn (1985) or Durbin and Koopman (2001).

Given the estimated parameters we now outline how forecasts are generated
by the mixed-frequency VARMA model. The state representation of a mul-
tivariate ARMA model for mixed-frequency data in Equations (2.23) and

(2.25), and the white noise assumptions on their disturbance imply that

LTrak+1 — F.T7+k|7 (234)

Yriklr = DT+k‘rT+k|T (235>

for k = 1,..., K, where .1, = E(Trqxyv,) and yriir = E(Yriry,). Let
7 =1,...,mT] the estimation period and let 7 = mT}+1, ..., mT5 denote the
forecasting period. Set 6 = 6, Y¢ as prescribed, z10 = 0, and V; with (2.33).
Given these values, iterate with the Kalman filter overt = 1,... , mT} — K, to
obtain @, _ki1jmn -k Given T, _gi1pmr -k, iterate with (2.34) and (2.35),
for £ = 1,... K. Using (2.30), update @ _kr1jmri—k 1O Tr —Kio)mr—K+1-
Given o, g iomn —Kk+1, iterate with (2.34) and (2.35), for k = 1,... K. Con-
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tinue in this fashion for, t = m7T; — K +2,...,m15 — 1 to obtain the desired

forecasts.

Although the model is quite general in handling missing data, temporal ag-
gregation, measurement errors, reporting delays, and revisions, Mittnik and
Zadrozny (2005) and Chen and Zadrozny (1998) note that the model per-
forms poorly or not at all on large models with many parameters. As an alter-
native Chen and Zadrozny (1998) propose an extended Yule-Walker equation
method to estimate VARs with mixed frequencies. The authors proposed an
optimal three-step linear instrumental variable method using GMM estima-
tion techniques. The proposed approach can handle larger models compared
to Kalman filter implementations. The illustration of the method is out-
side the scope of this thesis and therefore we omit it. Chen and Zadrozny
(1998) conduct a small Monte Carlo study comparing the Kalman filter ap-
proach with the Yule-Walker implementation. Using simulated data, based
on coefficients obtained from the data set employed in Zadrozny (1990), av-
erage coefficients, biases of the estimates, standard deviations of coefficients
estimates and the root mean-squared errors of the coefficient estimates are
compared. In general, the Yule-Walker approach yields similar results to the
maximum-likelihood Kalman filter estimation. The results are based on a
simulated mixed-frequency VAR(2). Higher-order models to investigate the
outlined advantage of the Yule-Walker approach are not estimated. However,
this approach has not been applied since the paper by Chen and Zadrozny
(1998).

So far we have assumed that the data are stationary. Seong, Ahn, and
Zadrozny (2007) extend the mixed-frequency VARMA approach to allow for
cointegration relationships between variables, thus also for non-stationary
variables. The model uses the same framework as outlined here. This ap-

proach is outside the scope of this thesis.
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2.4.2 Another Representation of a Mixed-frequency VAR Model

The Zadrozny (1990) representation of a mixed-frequency VARMA is quite
general and can handle all possible aspects of mixed-frequency data (re-
visions, publication lags etc.). Hyung and Granger (2008) present a dif-
ferent VAR representation to handle mixed-frequency data which they call
the linked ARMA model. There are two important aspects to note. First,
Hyung and Granger (2008) do not cite any paper of Zadrozny. And second,
the authors speak always of ARMA models, but the whole analysis is based
on a VAR representation. The model is not suitable for estimating general
VARMA models, as the important identification aspect is not considered. We
outline the basic model set-up and compare it to the approach by Zadrozny
(1990).

Both approaches have in common that they assume that the model operates
at the highest frequency. Furthermore both models are cast into a state-
space system and are estimated with the Kalman filter. Suppose the data
generating process for two stock variables follows a VAR(1) process. The
state equation of the MF-VAR model by Hyung and Granger (2008) is given
by

T, =Fa._ | +e; (2.36)
air  G12 . . .
where [’ = , which contains the parameters to be estimated, and
A21  A22
Q forT=t 011 O
E(ee) = ,where Q = | " T,
0 otherwise 021 022

The corresponding observation equation is given by
yr = H.x,, (2.37)

where H, = I, if both variables are observed and H, = [1 O] if only the

higher-frequency variable is observed.

Let us now assume that the lower frequency variable is observed as a flow
which is difference stationary (like GDP growth). Since the difference of the
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temporally aggregated flow variable is

1
77‘ = - s ’_ 7_ - - 7_ 7_ 7_
Axy 3($27+$2T 1+ Zor-2) (Tor—a+ Tor5+ Tar—g)

3
1
= g(ASL’z,T +2Ax9 ;1 + 3Axg ;5 + 2A70 ;_3ATo,_y4)

the corresponding state-equation is given by

Az, | [an a 00 000 0 0 0] [Az,a]|  [es]
AV as ax 0 0 0 0 0 0 0 O |Azre,r— €27
Axy ;g 1 0 000O0O0O0O0 0| |[Azyr2 0
Axg -y 0 1 0000000 0f [Azgr_s 0
Azi;2 [0 0 100 00 00 0 |Az1,3 N 0
Axg 9 0 0 0100000 0| [Aryr_3 0
Az -3 0 0 0010000 0| [Azy,_a 0
Axg 3 0O 0 0001000 0Of |[Azgry 0
Axy 4 0O 0 00O0O0T1O0O0 0] [Ary,—5 0
| Az (00 0000010 0f |[Argrs | 0
(2.38)
and the corresponding observation equation
Ay, = H Az, (2.39)

where

g |10 0 0 000 0 00
" lo1/3 023010 23 1/30

if both variables are observed and

HT:[looooooooo]

if only the higher frequency variable is observed. The estimation is done
with the Kalman filter and builds upon the idea of Zadrozny (1990). For the
formulae we refer to Hyung and Granger (2008).

Compared to Zadrozny (1990), the approach of Hyung and Granger (2008)
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is more restrictive, for example it assumes that both variables have to be
modelled as difference stationary processes, when one variable is observed as
a flow. Furthermore the model assumes a strict relationship m to estimate

the model and seems not to be able to handle any data patterns.

2.4.3 A Completely Different State-space Approach

Evans (2005) provides an extensive state-space model to estimate the current
(unobserved) state of the economy. Essentially, the model claims to be able
to handle reporting lags, temporal aggregation and mixed-frequency as in
Zadrozny (1990). The main difference is, that the dynamic property of the
model is not represented as a VAR system where all variables are endogenous.
In contrast, the dynamics of the model centre on the behaviour of two partial
sums, which define daily contributions to GDP growth in a specific quarter.

Thus, the current estimate is updated as new information comes in.

The paper is in the spirit of the missing-observations approach of Harvey and
Pierse (1984) for estimating missing observations in economic time series but
it is far more general. The model of Evans (2005) is too extensive to lay out

in this thesis. Furthermore the used notation is very cumbersome.

2.4.4 Factor Models and Mixed-frequency State-space Models

We have already outlined the importance of factor models in current macroe-
conomic forecasting. In addition to the static factor model outlined in section
2.2 we present now the dynamic factor model proposed by Doz, Giannone,
and Reichlin (2006) and how the extracted factors can be used within a
mixed-frequency state-space framework inspired by Mariano and Murasawa
(2003). The following exposition follows closely Banbura and Runstler (2007)
but is extended to a general mixed-frequency mixture m. We denote the

higher-frequency time index 7 and the lower-frequency index by ¢.

Consider a vector of n stationary high-frequency variables x, = (21, ...,2n ),

7=1,...,mT, which have been standardized to mean zero and variance one.
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The dynamic factor model is given by the equations

r, = Ar+& & ~ N(Ov E§)7 (240)

fro= Y Aifrit G (2.41)
i=1

(. = Bn. nr ~ N(0,1,). (2.42)

The second equation describes the law of motion for the latent factors f;,
which are driven by a g-dimensional standardized white noise 7., where B is
a r X ¢ matrix, where ¢ < r. Hence (; ~ N(0, BB’). We assume that the

stochastic process for f, is stationary.

For the purpose of forecasting the lower frequency variable 1;, we introduce
a latent interpretation of y;, 1, which is related to the common factors by

the static equation
Jr = B'fr. (2.43)

In the m!" period the forecast for the lower frequency variable ¢, is evaluated,

as the average of the higher-frequency series

1
= Ur 2.44
Yt m Zy ( )

and defines the forecast error ¢, = y; — ;. We assume that ¢, is distributed
with €, ~ N(0,0?). The innovations &, (,, and ¢ are assumed to be mutually

independent at all leads and lags.

Equations (2.40) to (2.44) are cast in a state-space form. As proposed by
Zadrozny (1990) the higher-frequency variables observed within the current

period are assumed to be missing. The state and observation equations are
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given by (for p = 1)

2] A 01 f ¢
= Ur| + (2.45)
Yt 0 01 . €t
. ) Yt
Ir 0 0 fT+1— —Al 0 0 fT gT-i—l
0 —=X 1| |G 10 0 =i [0 0

The aggregation rule (2.44) is implemented in a recursive way in equation
(2.46), as from ¢, = Z,4;1 + %@T, where =, = 0 for 7 corresponding to
the first high-frequency period of the lower frequency (for example the first
month of a quarter) and =, = 1 otherwise. As a result, expression (2.44)
holds for every m!" period of each lower-frequency period. The estimation
of the model parameters § = (A, Ay, ... Ay, 3, 3¢, B,0?) is discussed in Doz,
Giannone, and Reichlin (2006).

Aruoba, Diebold, and Scotti (2008) claim to move the state-space dynamic
factor framework close to its high-frequency limit, and hence to move statistically-
rigorous conditions analysis to its high-frequency limit. The approaches so
far in the literature were modelled at monthly intervals as the highest fre-
quency.'* The basic idea is essentially the same as outlined before. Aruoba,
Diebold, and Scotti (2008) describe a dynamic one-factor model evolving on

a daily basis. The following model is considered

K N

k=1 n=1

where 3! is the i — th daily economic or financial variable at day ¢, which de-

pends linearly on the unobserved economic state x; (which follows an AR(p)

14 Although the models are generally suitable to generate higher-frequency latent vari-
ables, Aruoba, Diebold, and Scotti (2008) were the first to demonstrate this within
the state-space dynamic factor framework on a daily basis. Evans (2005) is the no-
table exception but the author does not estimate an unobserved economic state but
the actual long-run US GDP growth on a daily basis.
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process) and possibly on various exogenous variables w;. The parameter D;
is a number that links the frequency to the observed y;. Aruoba, Diebold,
and Scotti (2008) demonstrate how stock and flow variables and a trend can
be modelled within the given framework. The model is cast into a state-
space framework and estimated with the Kalman filter. Aruoba, Diebold,
and Scotti (2008) also outline the general problem with the approach oper-
ating at a daily basis. In their example four variables at different frequencies
are used to extract the unobserved state of the economy on a daily basis.
Due to the flow nature of some variables the authors have 94 state variables
and more than 16,000 daily observations. One evaluation of the likelihood
takes about 20 seconds. Therefore, the model becomes intractable for many

variables and many factors.

2.5 Distributed Lag Models

In general distributed lag models are given by
yr = Po + B(L)x, + €,

where B(L) is some finite or infinite lag polynomial operator, usually pa-
rameterized by a small set of hyperparameters.!® In general, distributed lags
models assume the same frequency. The following models are not distributed
lag models in a strict sense, but they regress the lower frequency on the higher

frequency variables.

First we outline the quite confusing approach of Abeysinghe (1998) of how
to use mixed-frequency data in one model. Abeysinghe (1998) considers the

following model
Yr = Bo + Brxe + AY—1/m + (2.48)

where ¢t = 1,...7T. Given this notation there is no real mixed-frequency, as x

and y are sampled at the same frequency ¢. Instead, an artificial unobserved

15 See for example the survey by Dhrymes (1971) or the textbook by Judge, Griffith,
Hill, Litkepohl, and Lee (1985), among others.
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higher-frequency part of the dependent variable y is introduced (1_1/m). The
author states that ’if y is observed annually and x is observed quarterly then
m = 4’, suggesting that the variable z is observed at a higher frequency.!®
Abeysinghe (1998) proposes to reformulate (2.48) to get rid of the (artificial)
fractional lags'”

Y =+ Bz + ANy + oy (2.49)

where
m—1 m—1 m—1
l l l
= E A Ti—l/m> U = g A Ut—1/m, O = Bo g A
1=0 1=0 =0

So z; is the weighted sum of the higher-sampled observations during one basic
time unit ¢. Note that (2.49) captures only m lags of the higher-frequency
variable, but it can be extended to more lags with some extra modelling
effort. Model (2.49) is more meaningful when the dependent variable is a
stock variable. When it is applied to flow variables autocorrelation is intro-
duced. Abeysinghe (2000) outlines that this autocorrelation is rather small
and modifies (2.49) to account for that issue. The derivation of Abeysinghe
(1998) resulting in equation (2.49) is just a different transformation of the
higher-frequency variable to the lower frequency. Only the weighting is differ-
ent to standard aggregation approaches. With the proposed transformation
one cannot handle more than two frequencies. The model is non-linear in

the parameters and can be estimated via non-linear least squares.

Koenig, Dolmas, and Piger (2003) suggest a very simple approach to utilize
monthly data in quarterly regressions. They propose to regress the quarterly

values on unrestricted monthly values. A general model is given by

k n
Y = ap + Z Z BijTjt—ijm + € (2.50)

=0 =0

where k denotes the number of included higher-frequency (for example monthly)

16 Abeysinghe (1998) uses a different notation for m. We have adjusted the quote to
preserve the notation throughout the thesis.

17 Lagging the whole equation by I/m, multiply it by A! and sum up over the range of
m.
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indicators and n the number of included lags. By choosing separate sum for-
mulae, any frequencies can be included in the model. Koenig, Dolmas, and
Piger (2003) choose n equal to 4 for quarterly-monthly data based on theoreti-
cal reasoning. Let y; denote the logarithm of a quarterly variable and suppose
that x, is a monthly coincident indicator such that y, = (z¢+2—1/3+T¢—2/3)/3
for all t. Then

Yo — 1 = (2 — xt—l/?;) + 2(513'1t—1/3 - ll?t—z/s) + 3($t—2/3 - lL“t—4/3)
+2(2—5/3 — Tr—1) + (T4—ay3 — T4—5/3) }

Thus, the quarterly growth rate is a weighted average of five monthly growth
rates in the coincident indicator. It is possible to restrict the regression (2.50)

to the theoretical weights, but this should be based on a statistical test.

2.6 MIxed Data SAmpling (MIDAS)

2.6.1 The Basic Model Set-up

The MIxed DAta Sampling (MIDAS) model of Ghysels, Santa-Clara, and
Valkanov (2004) is closely related to distributed lag models. The approach
regresses the dependent (lower-frequency) variable y on a distributed lag of
x which is sampled at a higher frequency. The basic MIDAS model for a

single explanatory variable, and one-step ahead forecasting, is given by
v = fo+ BB (L™ 0) 2™ + ™ (2.51)

where B (Ll/m;(?) = Z?ZOB(/C; 0)L*/™ denotes a weighting function, and

L = iy,

the basic time unit, and m is the frequency mixture. The multi-step analogue

represents a fractional lag operator. Again, ¢ indexes

is given by
ye = Bo+ BB (LY™;0) ™) + ™. (2.52)
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To given an example, consider the basic MIDAS regression with m = 3 and
K=6
v = Bo + 5B (L1/3; 9) Jii?i)l + €§3) (2.53)

where B (L'/3;0) = S B(k;0)LF3 and Lk/?’x@l = $§?i)17k/3, so that:
vy = Bo+P <B(o- 0)z® + B(1;0)2®, .+ B(2:0)2® . . (2.54)
t 0+ 1 )Ty V)T 113 V)L _1_g/3 (&

+B(3;0)z, ... B(6; e)x§i>3> + e,

Consider y; as the first quarter GDP growth for 2007, x;_; is then the De-

cember 2006, x;_;_1/3 the November and so forth.

There are several possible finite and infinite polynomials B(k;#). The first

one is

o + 01k + O2k* ... 0, kP
S (B0 + Ok + 05k .0, kP)
which is related to an "Almon Lag’ polynomial, where the order @ is typically
small. Ghysels, Santa-Clara, and Valkanov (2004) parameterize B(k;0) as:

B(k; 0) = (2.55)

exp(f1k + O2k2 . .. 0,kP)

Y ey €Xp(O1k + O02k2 .. 0,kP)

(2.56)

which is called exponential Almon lag weighting function. The rationale of
using an exponential transformation is that it guarantees positivity of the
weights and it has the desirable feature of "zero approximation errors” (see
Ghysels and Valkanov (2006)). A last specification is the Beta function which

has only two parameters

f(%?gl;eQ)
B ]{?, 61,62 = 2.57
( ) s S b3 6) (250
where
B 22711 — 2)" 1T (a + b) I
f(z,a,b) = T ()T () F(a)—/o e "z dx. (2.58)
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Both specifications ensure positive weights and they sum up to unity. The
first fact is important for financial (volatility) forecasting and the second one
for identification of the parameter 3; in (2.51). Almon Lag specification is
theoretically more flexible than the Beta lag, since it depends on more param-
eters, but its specification (2.56) is able to generate rich weighting schemes
similar to the Beta function, see Ghysels, Sinko, and Valkanov (2007). Figure
2.1 displays some examples of the exponential Almon lag weighting function

demonstrating the variety of weighting schemes.

Ghysels, Santa-Clara, and Valkanov (2004) suggest that MIDAS models can
be estimated under general conditions via non-linear least squares (NLS),
(quasi-)maximum-likelihood (MLE) or general method of moments (GMM).
Ghysels, Santa-Clara, and Valkanov (2004) employ a spectral estimation
method, proposed by Hannan (1963a) and Hannan (1963b). But this esti-
mator is rather complicated for applied work.'® The GMM estimator applies

the continuum general method of moments estimator proposed by Carrasco
and Florens (2000).

Ghysels and Valkanov (2006) prove that non-linear least squares is a con-
sistent estimator for the model in (2.51). The dimension of the numerical
optimization procedure to obtain the parameters 3 and # can be reduced by
concentrating the least squares objective function with respect to 3. For a

given @, # can be obtained by the least squares formula:

B = (Z xth(ﬁ)xth(ﬁ)/> (Z xth@)%) (2.59)

/
where 2;_»(6) = [I,B(Ll/m;é')xﬁ,ﬂ and 3 = (B1, B2)'. Andreou, Ghysels,
and Kourtellos (2007) compare the aspect of unbiasedness and efficiency of
NLS and least-squares (LS) estimators where the latter one involves temporal

aggregation. They show that the LS estimator is always less efficient than

18 The estimator is also used in Ghysels and Valkanov (2006) but not in any other
applied work.
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Fig. 2.1: Examples of exponential Almon lag weighting functions
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is the NLS estimator. In the current literature the NLS estimator is the

preferred choice.

Ghysels, Santa-Clara, and Valkanov (2004) furthermore show that MIDAS
regressions will always lead to more efficient estimation than the typical ap-
proach of aggregating all series to the least-frequent sampling. Furthermore
the aggregation bias vanishes when some regressors are sampled more fre-

quently.

2.6.2 Extensions of the MIDAS Approach

A natural extension of the MIDAS approach is to include autoregressive
elements. Ghysels, Santa-Clara, and Valkanov (2004) show that efficiency
losses can occur due to the introduction of lagged dependent variables. A
naive extension by an AR term would result in a ’seasonal’ polynomial, which
can only be used if there are seasonal patterns in the explanatory variable.
Clements and Galvao (2005) illustrate a solution to include and to consis-
tently estimate the model with a simple autoregressive-distributive lag term.

Adding a lower frequency of y;, y;—1 to (2.51), results in:
Yo = Bo+ M1 + BB (LY™0) ™) + ™ (2.60)

Clements and Galvao (2005) suggest the introduction of autoregressive dy-

namics as a common factor
v = Bo+ M1 + BB (L™ 0) (1 — AL)2\™) 4 €™, (2.61)
The multi-step analogue is given by
Y = Bo + Min + BB (L™ 0) (1 — ALM)2™) + ™). (2.62)

For estimation of the autoregressive MIDAS model (2.62), one takes the
residuals (é;) of the standard MIDAS equation, and estimates an initial value

for \, say Ao, from \g = (Z éf_h)fl > €€ Then construct yf = yt—jxoyt_h



2. Mixed-Frequency Data: Theoretical Model and Transformation Issues 43

and zy_, = x4_p — S\Oxt,%, and the estimator of él is obtained by applying

non-linear least squares to:

yi = Bo+ BiB(LY™0)x}_), + € (2.63)

A further variation of the MIDAS framework is to introduce a step function

as in Forsberg and Ghysels (2007), which can be seen as a generalization of

the heterogeneous autoregressive model introduced by Corsi (2003). Let us
K

define X;(K,m) = > ., xir_nj) Jm @S regressors, which are partial sums of the

high-frequency (™. The MIDAS regression with M steps is

M
v =05+ Y BiX(Ki,m)+e (2.64)
=1

The distributed lag pattern is approximated by a number of discrete steps.
The more steps that are included, the less parsimonious is the model, which

is one of the striking advantages of MIDAS regressions.

Ghysels, Santa-Clara, and Valkanov (2005) introduce the asymmetric MIDAS
model given by

v = o+ B (0B (L") 17 ja™) + (2= ) B (LY7:07) 17,2(™) + ™

(2.65)
where 1¢_, (i = {+,—}) denotes the indicator function, which takes the
value 1 if z;_1 > 0 or x;_1 < 0, respectively. This formulation allows for a
differential impact of positive and negative values of the explanatory variable
x. The parameter ¢ is in the interval [0,2]. This ensures that the sum of
weights is 1 because the indicator functions are mutually exclusive of each
of the positive and negative weight functions add up to 1. The coefficient ¢
controls the total weight between positive and negative impacts. A value of
¢ equal to one places equal weight on positive and negative impacts. Note
that the parameters in the weighting function characterize the time profile

of the weights from positive and negative shocks respectively.

A general univariate MIDAS regression involving more than two high-frequency
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variables is given by

K L
Yir1 = o + Z Z Bij(Ll/mi; Q)ZEEmi) + & (2.66)

i=1 j=1

The case of L > 1 and K = 1 with m; > 1 corresponds to the case of
having two or more polynomials for several time series sampled at the same
frequency. In this case a mixture of polynomials is possible. This allows us

to capture seasonal patterns or rich non-monotonic decay structures.

It is possible to extend the MIDAS regressions to semi- and non-parametric
settings. Chen and Ghysels (2008) introduced semi-parametric MIDAS re-
gressions that build upon the work of Linton and Mammen (2005) who pro-
pose the semi-parametric ARCH(co) model.

K L
Yir1 = ﬁ() + Z Z BZ](Ll/ml,Gm(xgmL))) + & (267)

i=1 j=1

where m(-) is an unknown function. Chen and Ghysels (2008) provide details
on estimating such models. Furthermore it is shown that there is an efficiency

gain compared to the single frequency case.

2.7 Comparison Between MIDAS and Mixed-frequency VAR

In this section we want to juxtapose the MIDAS model and the mixed-
frequency VAR model (MF-VAR) without any empirical investigation. The
approach to handle mixed-frequency data is completely different. On the
one hand, the mixed-frequency VAR assumes that the model operates at
the highest frequency; the corresponding values in the lower frequency are
assumed to be periodically missing. On the other hand, the MIDAS approach
regresses the lower frequency variable on the higher frequency variable. To
avoid parameter proliferation a weighting function (in the sense of distributed
lag models) is parameterized, where the weights add up to 1 to identify the

parameters.
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The MIDAS approach is very parsimonious in its basic specification where
only four parameters have to be estimated independently of the number of
included higher-frequency lags (for two variables). Nevertheless rich dynamic
structures can be estimated due to the very flexible weighting functions. In
contrast, for a bivariate VAR(p) 4p + 3 parameters in the Zadrozny (1990)
framework and 4p parameters in the Hyung and Granger (2008) framework
have to be estimated. Thus, parameter proliferation can be a serious issue
for higher-order VAR or by inclusion of more variables. Additionally a too-
large frequency mixture (daily and yearly data) generates too many missing
observations, which decreases the speed of the estimation dramatically. In

contrast, the estimation of MIDAS models via NLS proceeds very fast.

Unlike the MIDAS approach, the mixed-frequency VAR can model feedback
between the variables as all variables are endogenous. Furthermore it can
interpolate the missing observations, that is estimated higher-frequency ob-

servations of the lower frequency variable.

One of the basic assumptions of the MIDAS model is, that the data are
sampled equidistantly, that is the frequency-mixture m is fixed.! This as-
sumption can be severe for larger frequency mixtures. Thus, publication lags,
measurement errors, and aggregation issues are difficult to implement within
the MIDAS framework. In contrast, the mixed-frequency VAR can handle
any data pattern. The selection matrix in the Kalman filter can be flexible

adjusted for the actual observed values at each time point.

A further difference between the approaches is the calculation of forecasts.
Forecasts can be generated in two different ways: iterated (indirect or ”plug-
in”) and directly. The iterated forecasts entail estimating an autoregression
and then iterating upon that autoregression to obtain the multi-period fore-
cast. The direct forecast entails regressing a multi-period-ahead value of
the dependent variable on current and past values of the variable. The MI-

DAS approach generates a direct forecast, whereas the MF-VAR calculates

19 Ghysels, Sinko, and Valkanov (2007) state that MIDAS models can handle unequally
spaced data. They propose instead of using the lag operator L'/ to use an operator
L7, where 7 is real-valued instead of a rational number. But this approach has not
been applied to real data sets so far.
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iterative forecasts. To give an example, to forecast the first quarter of a
year in December, the MIDAS approach calculates the first quarter forecast
directly. The MF-VAR generates first the forecast for January and than
iterates up to the March forecast. Choosing between iterated and direct
forecasts involves a trade-off between bias and estimation variance. The it-
erated method produces more efficient parameter estimates than the direct
method, but is prone to bias if the one-step-ahead model is wrongly specified.
See Marcellino, Stock, and Watson (2006) for further details and references.
The difference can become crucial when the frequency mixture is large. Fore-
casting quarterly time series with daily data, even only one-step ahead, can
involve generating forecasts 60 to 90 steps ahead. For stationary transforma-
tions of variables, there exists a maximum horizon beyond which forecasts
can provide no more information about the variable than is present in the
unconditional mean. This point, called the 'content horizon” by Galbraith

(2003), varies substantially across data series.

Finally, both approaches are able to augment the information set to account
for intra-period information for lower frequency variable, that is information
that becomes available in the m periods between ¢ and ¢ + 1. For example,
both models are able to include the February value of a specific indicator to
forecast the first quarter of GDP.

The treatment of non-stationary data within the MIDAS framework remains
unclear. We do not have found an statement concerning this issue. Within
the state-space framework, Seong, Ahn, and Zadrozny (2007) offer a solution

to deal with non-stationary data.



3. MIXED-FREQUENCY DATA AND MODELS:
EMPIRICAL EVIDENCE

In this chapter we relate the approaches of data transformation and mixed-
frequency time series modelling to the empirical evidence in the literature.
We focus on those articles where an explicit comparison between single-
frequency data or models and the mixed-frequency counterpart is made (al-
though there are some exceptions); we omit structural investigations. We
describe many articles in detail to outline the empirical strategy, and to see
whether there is any advantage in using mixed-frequency data. We proceed
in topical and chronological order, except for articles which are closely re-
lated. Each section starts with a short overview as a guideline through the

review.

3.1 Transforming Mixed-frequency Data

In this section we leave out any temporal aggregation articles, as they are
standard in applied forecasting. Concerning the interpolation aspect, we
review early attempts to estimate structural macroeconomic models on a
monthly basis. Recent attempts to elicit the unobserved state of the economy
on a higher-frequency interval employ state-space models. We review these

articles in the state-space section below.

Liu (1969) presents an early approach to combine data from different fre-
quencies in one large structural macroeconomic model. With a related time
series approach (estimated with OLS), the author uses monthly figures from
a quarterly series of the US National Accounts for 1948-1964. The obtained
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monthly figures are used in a structural model for the US economy. The
intention is to demonstrate the feasibility of a monthly model. The author
investigates whether the higher monthly frequency may lead to more erratic
estimations or misleading interpretations. He concludes that the model is fea-
sible in any respect. However, forecasts are not generated from the model.
A first forecast comparison of the structural monthly model by Liu (1969)
to other (quarterly) structural models was conducted by Fromm and Klein
(1973). They compare 11 structural econometric models of the United States
in place at that time; two of them operate at annual and one at monthly inter-
vals. There are difficulties in comparing the results from all the models (for
example different simulation intervals). The model by Liu (1969) provides
for the real GNP growth rate and the implicit price deflator a considerably
lower RMSE compared with the other models. Liu and Hwa (1974) extend
the monthly model in Liu (1969) and employ the related time series ap-
proach proposed by Chow and Lin (1971) to interpolate quarterly time series
on a monthly interval. The monthly structural model of the United States
(1954-1971) yields higher forecasting accuracy compared with two structural

macroeconomic quarterly models in RMSE terms.!

Schumacher and Breitung (2008) apply the EM algorithm to obtain monthly
factors from monthly and quarterly data to forecast German GDP.? The
monthly factors are plugged in into a monthly VAR(p) (direct and indirect
approach). The monthly GDP forecasts are then aggregated to quarterly
values. The authors use both a real-time data set as well as final data. The
data set consists of 41 monthly and 13 quarterly time series (1998-2005). In
an out-of-sample forecasting exercise (one and two quarters ahead), the EM
factor approach performs better on average than the AR(p) and the naive
prediction no-change benchmark. Furthermore, there is almost no difference
between real and final data vintages. This result is in contrast to the findings
of Koenig, Dolmas, and Piger (2003) that the real-time aspect matters for
US data.

! The Wharton Quarterly Mark II and the Quarterly model of the Bureau of Economic
Analysis at that time.
2 Another application of the EM algorithm can be found in Bernanke and Boivin (2003).
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3.2 Nowcasting and Short-term Forecasts: Bridge Equations
and Linkage Models

3.2.1 Linkage Models

Almost all articles reviewed in this section combine the forecasts from a large
structural model of the US economy and from monthly forecasts. Shen (1996)
and Liou and Shen (1996) are notable exceptions forecasting economic time
series for Taiwan. Some results should be interpreted with care, as they are
based on very few generated forecasts such as Fuhrer and Haltmaier (1988),
and Howrey, Hymans, and Donihue (1991). Greene, Howrey, and Hymans
(1986), Donihue and Howrey (1992), and Miller and Chin (1996) provide
evidence to update the forecast of the current quarter as new information
becomes available, whereas the others, Corrado and Greene (1988), Shen
(1996), Liou and Shen (1996), and Rathjens and Robins (1993), generate
forecasts when the quarter has elapsed. The updating of forecasts is in the
spirit of the bridge equations, but the forecasts are generated via combina-

tion.

We outlined in the previous chapter the theoretical framework of how to
combine forecasts from different frequencies by Greene, Howrey, and Hy-
mans (1986). The authors also presented some empirical evidence from their
modelling. Employing a small-scale version of the Michigan Quarterly Econo-
metric Model consisting of 13 macroeconomic variables and corresponding
equations, Greene, Howrey, and Hymans (1986) were the first to show em-
pirically that ex post a gain in forecasting accuracy through combination is
feasible. Four out of 13 variables (quarterly) are used as ’outside informa-
tion’, as these variables are also available monthly. They do not forecast
the monthly variables in a separate model. Instead, as a new value (inter-
preted as information) becomes available, this is regarded as an updated
forecast. As expected a priori, the authors show that as new information be-
comes available in a quarter, forecasting accuracy increases. Greene, Howrey,

and Hymans (1986) were also the first to investigate the value of timely in-
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formation for longer-horizon forecasts. They demonstrate that in-quarter

information contain information even for a eight-quarter ahead forecast.

A further empirical example of linking monthly and quarterly forecasts was
provided by Corrado and Greene (1988). Forecasts are generated for both a
monthly and quarterly model for different target variables established at the
Federal Reserve Board. The monthly forecasts are pooled, with the quarterly
forecasts as 'add-factors’. The quarterly model’s forecast errors are adjusted,
conditional on the monthly information set. In the empirical application, the
results are outlined for the linkage system in place at the Federal Reserve
Board at that time. Several quarterly macroeconomic variables are forecast
from 1972-1982. The authors show that the inclusion of monthly information
reduces the RMSE compared with the pure quarterly model. The difference
compared with Greene, Howrey, and Hymans (1986) is that forecasts are

only generated after the whole quarter has elapsed.

Fuhrer and Haltmaier (1988) compare forecasts from a macroeconometric
quarterly and monthly model from the Federal Reserve Board, as did Cor-
rado and Greene (1988). Forecasts for eight US macroeconomic variables are
only produced for the last quarter 1986 (the range of the data is 1972-1986).
Therefore the results are not comparable to Corrado and Greene (1988).
The authors distinguish three cases with different information structures (no
information, one month, and two months of observations available for the cur-
rent quarter). Fuhrer and Haltmaier (1988) do not compare their forecasts to
realized values, but focus on the comparison of quarterly and monthly pooled
forecasts. They show on a theoretical basis that these forecasts are as good
in-sample as theoretically predicted.?> Nevertheless, producing only one quar-
ter forecast makes it difficult to interpret the results on a more general basis;
it is natural to question the results based on such thin statistical evidence.
In a second example, they forecast M1 for the United States at monthly
and quarterly frequencies and calculate the RMSE (1983-1986). They find
that pooling does not always provide lower RMSE compared with unpooled

forecasts.

3 See the previous chapter.
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Howrey, Hymans, and Donihue (1991) combine monthly forecasts with fore-
casts from the Michigan Quarterly Econometric Model (MQEM) of the US
economy (12 variables, 1954-1985). They provide both ez post as well as ex
ante evidence from pooling forecasts from quarterly and monthly frequen-
cies. The within-sample evidence demonstrates that the RMSEs of quar-
terly figures are reduced by linking them to monthly models, even when no
monthly observations are available for the current quarter. The monthly
forecasts are generated by a VAR(2) process. The out-of-sample data fore-
casting performances of the quarterly MQEM, the adjusted MQEM, and the
combined quarterly-monthly model are compared. In the adjusted MQEM
the constants are adjusted due to new monthly information. The results are
ambiguous. First, as more information becomes available within a quarter,
the lower is the corresponding RMSE. As two months of information are
known in the quarter, the adjusted MQEM provides the lowest RMSE for
six variables, the standard MQEM for two variables, and the pooled forecast
for four variables. Thus, the inclusion of monthly information does not nec-
essarily lead to lower RMSEs. We note that the results are based on only
eight one-step-ahead forecasts. Therefore the results should be interpreted

carefully.

Donihue and Howrey (1992) also combine monthly forecasts with forecasts
from the Michigan Quarterly Econometric Model of the US economy. As with
Howrey, Hymans, and Donihue (1991), the monthly forecasts are generated
with a VAR model. The authors focus on inventory investment and show
how the RMSE can be reduced by combining forecasts obtained at different
frequencies. The forecast errors of other variables, only available quarterly,
are also reduced. These results rely on 16 out-of-sample quarterly forecasts
made between 1986 and 1990. They also provide evidence for improving

forecast accuracy as more information becomes available during a quarter.

Shen (1996) employs the linkage approach to forecast 88 variables of the
National Accounts for Taiwan. Basically these variables are forecast with
a quarterly macro model serving as a benchmark. Thirteen variables are

available on a monthly basis. These are forecast with either an ARIMA,
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VAR, or BVAR on a monthly basis. Shen (1996) shows that the combination
of monthly and quarterly forecasts yields improved forecasts (in RMSE or
MAE terms) compared with quarterly forecasts. This result holds even for
the majority of variables available only on a quarterly basis. The author finds
evidence that more ’outside’ information does not necessarily improve fore-
casting accuracy. Liou and Shen (1996) provide essentially the same results
as Shen (1996). The articles are in many ways similar. One difference is the
evaluation sample which differs slightly. Another difference is the investiga-
tion of whether intra-quarterly information improves the accuracy of forecasts
two quarters ahead. The answer is that there is a slight improvement. The
authors also test for significant differences in forecasting performance. The
employed test was proposed by Ashley, Granger, and Schmalensee (1980) but
this tests for causality and not for equality of RMSEs.

In the previous chapter we outlined the idea by Rathjens and Robins (1993)
of utilizing monthly data for generating quarterly forecasts. In the univariate
framework they provide evidence that the inclusion of a variable reflecting
within-quarter variance improves forecasting accuracy. They forecast 15 US
time series which are available monthly at the quarterly frequency. How-
ever, the authors do not provide a comparison of the forecasts generated at
the monthly level. The authors state that this approach is only useful for
short-term forecasting. In a multivariate example the authors compare their
approach to the macro model from Fair and Shiller (1990). Rathjens and
Robins (1993) demonstrate that the within-quarter variance of the variable

does contain information for forecasting the quarterly variable (US GNP).

Miller and Chin (1996) were first to combine monthly and quarterly forecasts
from pure time series models. The authors estimate both for quarterly and
monthly data vector autoregressions to obtain forecasts. The combination
of the forecasts is just a pure linear combination of both forecasts. They
forecast five quarterly economic time series (GDP, consumption of durable
goods, federal government purchases, the civilian unemployment rate and the
consumer price index). They provide evidence for the expected results, as the

forecasting accuracy increases as new information within the quarter arrives.
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Compared with a quarterly benchmark, the RMSEs are always lower.? In
a second step Miller and Chin (1996) show how monthly information in the
current quarter is useful for the forecast of the next quarter. They provide
a conditional forecast, based on the current quarterly forecast. Monthly
information provides useful data for the next quarter. In contrast, forecasting
the monthly values up to the next quarter and then again combining monthly
and quarterly forecasts does not help to decrease the RMSE. In a final section,
they compare their results to the Blue Chip forecasts.> The within-quarterly
forecasts are only marginally better than their Blue Chip competitor. This
finding is similar to Trehan (1992).

3.2.2 Bridge Models

Summary

The knowledge of the current state of the economy (‘mnowcast’) is especially
important for central banks to conduct monetary policy. Therefore almost
all articles in this section are written by authors affiliated either at the US
federal system or the European Central Bank. Thus, the majority of articles
forecasts US or Euro Area GDP. There are few applications to other single

countries.

The basic goal is to improve the forecasting accuracy of the current quarter,
as new higher-frequency information becomes available within the quarter.
It is demonstrated that this exploitation of intra-period information reduces
the forecasting error measures in almost all cases. The majority of applica-
tions are ’supply-side’ bridge equations, where GDP is forecast by a single
bridge equation. The articles by Parigi and co-authors (Parigi and Schlitzer
(1995), Golinelli and Parigi (2007), Baffigi, Golinelli, and Parigi (2004)) em-
ploy "demand-side’ bridge equations where GDP is predicted by the National

4 Miller and Chin (1996) test for significant improvements of the RMSE based on an
approach proposed by Christiano (1989). As the limiting distribution of this test is
not known, it has not been applied very often in empirical forecasting.

® The Blue Chip Survey is based on a panel of forecasts and is contained in a newsletter
entitled, Blue Chip Economic Indicators published by Aspen Publishers.
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Accounts income-expenditure identity. The choice of auxiliary equations,

which forecast the higher-frequency variables, differs across applications.
US Data

Trehan (1989) is the first application of the bridge approach, to the best

of our knowledge.®

The author employs a two-step procedure. First, he
selects predictors out of 16 variables, by minimizing an out-of-sample cri-
terion. Eventually, the author employs monthly data for non-farm payroll
employment, industrial production, and retail sales. The monthly variables
are forecast with an AR and BVAR model. The quarterly forecasts are gen-
erated with an ARX model which includes the contemporaneous values of
the predictors (no lagged values). The first target variable is annualized real
GNP. As more information becomes available within a quarter, the RMSE
decreases. Trehan (1989) compares the forecast to the Blue Chip forecast
which is also released on a monthly basis. The model forecasts are slightly
better than the Blue Chip forecasts in RMSE terms. Trehan (1989) also
provides an early attempt at real-time forecasting by using preliminary data.
Thus, in a second step, the target variable is the Advance GNP estimate.
Here similar conclusions can be drawn, but now the model forecast is much
better than the Blue Chip forecast.” In a last step, Trehan (1989) combines
information from the model forecast and the advance real GNP to forecast
final GNP. Some improvement can be seen. This does not hold for combina-

tions with the Blue Chip forecast, where no improvement is found.

Trehan (1992) extends his previous study slightly. The evaluation period
is different and the target variable is now GDP not GNP. The predictor
variables as well as the basic results stay essentially the same. The only
real extension is the investigation of whether the monthly indicators contain
information beyond the current quarter. They do, but the improvement

decreases with an increasing forecast horizon.

Trehan and Ingenito (1996) is a further extension of the article by Trehan

6 But the author does not use this term.
7 We note that the assessment is based only on four forecasts due to data availability
restrictions.
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(1989). They select the indicators out of 34 variables, based on various
statistical measures. Finally, they employ non-farm payroll employment and
real consumption data for forecasting GDP growth. In a recursive forecasting
exercise they demonstrate that as new information becomes available, the
RMSE declines for the current quarter. The monthly indicators are forecast
within the AR, VAR and BVAR framework, where the last one works best.
However, Trehan and Ingenito (1996) do not provide a comparison with other

single-frequency data models.

Kitchen and Monaco (2003) extend the idea of Trehan and Ingenito (1996)
to select monthly variables to relate them to forecasting quarterly GDP. But
in contrast, they use monthly indicators in a separate model and combine the
forecasts. Furthermore they do not forecast the independent variables. The
actual, observed value within a quarter is assumed representative of the whole
quarter. For data ranging from 1982 to 2003 they find the standard result

that the RMSE declines with increasing information within the quarter.

Fitzgerald and Miller (1989) employ a simple bridge model to forecast US
advance GNP. As monthly predictors, the authors use three measures of
hours worked: the index of aggregate weekly hours of production or non-
supervisory workers on private non-farm payrolls; the component of that
series for goods-producing industries; and the component for service indus-
tries. These indicators are forecast with an ARX model. They conclude,
that their simple approach performs better than the Bayesian vector autore-

gression employed by the Minneapolis Fed.

Braun (1990) is an example which departs from the pure time series approach
and employs a theory-based model. He uses monthly preliminary labour
market data to estimate the current quarter GNP. In a first approach the
author employs an hour-to-output procedure with autoregressive components
to obtain information for the whole quarter. In a second approach Braun
(1990) estimated the unemployment rate with the help of Okun’s Law. The
unemployment rate is then used to nowcast current GNP growth. The author
also distinguishes between preliminary and final data. Both models, and a
combination of them, do help to reduce the RMSE with each additional
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month within a quarter.

The paper by Klein and Park (1993) is written more in an anecdotal style.
The authors outline their experience with the Pennsylvania system for fore-
casting national income and production accounts for the United States. The
Pennsylvania model consists of a structural as well as a time series part.
In the case of the latter, higher-frequency variables are forecast with an
ARIMA model and aggregated (averaged) to a quarterly frequency. The
aggregated variables are employed in a bridge equation to forecast national
accounts variables. Furthermore Klein and Park (1993) demonstrate how
to update current forecasts as new (high-frequency) information becomes
available. They demonstrate their approach for the US national income and
production accounts for only four quarters (1990:1V-1991:I1I). There is no

comparison with realized values or with competitive models.
European Data

Bodo, Cividini, and Signorini (1991) use daily electricity data to nowcast Ital-
ian industrial production but they do not estimate daily production. They
aim to forecast the current month before the actual release (40-55 days de-
lay). The electricity data are aggregated and adjusted for actual trading days
in a month. In the basic set-up the model fails to improve when compared
with single benchmark models such as ARIMA and Holt-Winters algorithm.
Thus, electricity data do not provide useful information in a single model to
nowcast Italian industrial production. Nevertheless, in combining the bench-
mark models with the electricity data model they are able to yield the lowest
RMSE when compared with all other models employed.

Parigi and Schlitzer (1995) employ the demand-side approach to forecast Ital-
ian GDP. They bridge ten different quarterly variables of the National Ac-
counts ((non-)durable consumption, total consumption, investment in con-
struction and equipment, inventory investment, total investment, exports,
imports, and GDP) with different (leading) monthly indicators (survey data,
financial indicators). These bridge variables are used to forecast Italian GDP

in a rolling exercise; they do outperform quarterly ARX models. The authors
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employ the test proposed by Fair and Shiller (1990) to compare forecasting
ability.

Riinster and Sédillot (2003) is an example of an extensive investigation of
bridge models. Furthermore they are an example of attempting to account
for the timely prediction of the target variable, that is accounting for the
publishing date of the indicators. Their focus variable is the Euro area GDP
(quarterly growth rate). As indicators of quantitative real activity indicators
(such as industrial production), surveys, and composite indicators (as Euro-
Coin). After investigating the predictive power at the single frequency using
ARX models, Riinster and Sédillot (2003) compare the fit of the different
indicators in the bridge equations.® The authors are the first who outline
in detail how to forecast the indicators. The other papers in this chapter
do not provide details about the fit and forecasting power of the auxiliary
models. Riinster and Sédillot (2003) employ the following approaches: naive
(no-change), ARIMA, a univariate and multivariate structural time series
model and a VAR. There is no general advice on which approach is the best,
it depends on the specific indicator. The main finding of the paper is that
the bridge equations continue (compared with a full information set-up) to
outperform naive and ARIMA forecasts when based on a limited number of
monthly observations. Furthermore current quarter information also contains

information for forecasts of the next quarter.

Baffigi, Golinelli, and Parigi (2004) employ both supply-side and demand-
side bridge models to forecast GDP for the euro area GDP and the three
main countries of the euro area (Germany, Italy, and France). The paper
shows that national bridge models are better than the benchmark models.
In addition, euro area GDP and its components are more precisely predicted

by aggregating national forecasts.

Golinelli and Parigi (2007) is essentially an extension of Baffigi, Golinelli, and
Parigi (2004). In addition to forecasting the Euro area, the countries of the
G7 and the EU area are forecast with bridge equations. The authors employ

a rolling procedure, where both the model specification and the dimension of

8 The ARX model is interpreted as the bridge equation.



3. Mixed-frequency Data and Models: Empirical Evidence 58

the estimation sample is kept fixed. The authors select a rather large set of
indicators (between five and eight) for each country in an ARX model. The
auxiliary models for indicators are an AR(12), an ARIMA model with an
automatic model selection procedure (general-to-specific) and a VAR model.
To test for differences in the RMSE, the test proposed by Giacomini and
White (2006) is used. Independently of the countries and auxiliary models,
if two months of the quarter are known, the bridge models yield statistically
lower RMSE than the AR(5) benchmark model (except for France). Given
that one month is known, the differences are only significant for Germany

and Italy.

Diron (2006) analyses the predictive power of real-time vintage data and
pseudo real-time data.® The target variable is the Euro area GDP growth,
but the real-time data set is only available from 2001 to 2004. Thus, Diron
(2006) notes that the results should be interpreted with caution. Seven indic-
tors are employed (industrial production, retail sales, new car registrations,
construction production, value added in services, EuroCoin and OECD sur-
vey data). The monthly indicators are forecast with an AR(6).!° The struc-
ture of the eight bridge equations is kept constant and only the coefficients
are re-estimated on a rolling basis. Diron (2006) states, that given the size
of the revisions of the indicators, the assessment of reliability of short-term
forecasts on revised series could potentially give a misleading picture. Nev-
ertheless, by averaging across all bridge equations, forecasts of individual
quarters tend to be similar whether they are based on preliminary or revised
data. Finally, Diron (2006) investigates the sources of forecasting errors. The
main sources are from the extrapolation of the monthly indicators. Mean-
while, revisions to the monthly variable and GDP growth account only for a

small share of the overall forecasting errors.

9 Pseudo real-time experiments are 'real-time’ in the sense that they mimic the actual
real-time situation faced by the forecasters in terms of the schedule of data releases
and thereby of monthly indicators. However, pseudo real-time experiments do not
reflect the genuine real-time situation, to the extent that they use current estimates
of GDP and the monthly indicators that are a post-revision of the series.

19 Diron (2006) also experimented with VARs and BVARs but failed to improve the
forecast results. This stands in contrast to the findings in Riinster and Sédillot (2003).
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The most recent application of bridge models is provided by Golinelli and
Parigi (2008). The authors forecast Italian GDP growth in real-time by es-
tablishing a complete new real-time data set for the Italian economy. In
contrast to most other papers employing the bridge approach, Golinelli and
Parigi (2008) employ many versions of the general-to-specific modelling ap-
proach, depending on whether lagged depended variables are included, vari-
ables are differenced or in levels, inclusion of simultaneous and (or) lagged
explanatory indicators and many more. The indicators are forecast with an
AR(5) model to fill out the quarter. The quarterly forecasts are calculated
using monthly data within a regression approach . The results are presented
for one and four quarters ahead and are not based on available monthly vin-
tages as in other bridge model applications. Compared with random walk
with drift and ARIMA, not all general-to-specific approaches outperform the
benchmark models. The difference between RMSEs is assessed by the sta-
tistical test of Giacomini and White (2006). Only bridge models with both
lagged and simultaneous explanatory indicators, where the one-step-ahead
predictions are obtained assuming that all of the simultaneous regressors are
known (nowcast), produce significantly lower RMSE s when compared with
the random walk model. However, the relevance of indicators tends to vanish
at longer forecasting horizons (four quarters). Finally, the authors test the
rationality of the first GDP release with the test by Fair and Shiller (1990).
For the Italian economy, the first GDP data releases appear to be rational

forecasts of the final outcome, but not of the latest available data.
Special Application

Perez (2007) is a an exception in the application of bridge models. All other
articles in this review forecast GDP or other parts of the National Accounts.
Perez (2007) forecasts general government fiscal deficits in the overall euro
area and for most of its members. The target variable is sampled at annual
intervals, whereas the indicators (different between countries) are sampled
at quarterly intervals. The auxiliary quarterly forecast model is chosen to
maximize the forecast performance (a choice can be made between random

walk, ARIMA and unobserved components). The forecasting model is a
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vector error correction model. As a benchmark it serves the official forecast
of the EU and a random walk forecast. In addition to the single forecasts, the
official forecast and the indicator forecasts are combined via the regression
approach. In the out-of-sample forecasting exercise the results differ across
countries. This approach provides the lowest RMSE. At least all of them are
better than the random walk forecast. Perez (2007) concludes that existing
intra-annual fiscal information should be used and included in the preparation

of official estimates of government deficits.

3.3 State-space Approaches

The first subsection deals with applications that extract an unobserved state
of the economy, as in Mariano and Murasawa (2003), Nunes (2005), Evans
(2005), and Aruoba, Diebold, and Scotti (2008). These articles demonstrate
the use of mixed-frequency data to estimate the current (unobserved) state
of the economy. They are not designed a priori for forecasting purposes, but
to detect (ex post and ex ante) turning points. The approaches by Giannone,
Reichlin, and Small (2008) and Banbura and Runstler (2007) estimate GDP
on a monthly basis within a state-space framework. These approaches are
designed for forecasting and they account for the actual release date of the

indicators.

In the third subsection we present the VAR approaches which estimate dy-
namic relationships between target and indicator variables. In contrast to
the other approaches they do not account for actual release dates and do not

employ higher frequencies than monthly intervals.

3.3.1 Extracting an Unobserved State of the Economy

Mariano and Murasawa (2003) extract a new coincident indicator out of
one quarterly (Real GDP) and four monthly time series (employees on non-
agricultural payrolls, personal income less transfer payments, index of indus-

trial production, and manufacturing and trade sales). These are the same
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variables, except for GDP, used by Stock and Watson (1989). Therefore
the extracted coincident index exhibits a strong correlation with the Stock-
Watson experimental index. Mariano and Murasawa (2003) compare the
turning point (NBER references) detection performance of their own and
the Stock-Watson index. They investigate the possibility of turning point
detection comparing it with the official NBER dates. The results are not
convincing at all. One trough is detected earlier and some peaks later than
the Stock-Watson index.

Nunes (2005) applies the same approach as Mariano and Murasawa (2003)
for nowcasting the Portuguese economy. The author demonstrates how the
CI (constructed out of five quarterly and six monthly indicators) with an
estimated ARX model can significantly reduce the RMSE compared with
an AR(1) benchmark model. Crone and Clayton-Matthews (2005) use three
monthly and two quarterly series to extract economic indexes for the 50 US

states. But there is no forecasting comparison.!!

Evans (2005) was the first to track the status of an economy on a daily
basis. He estimates log GDP and GDP growth of the United States based
on three quarterly GDP series (advanced, preliminary, and final) and 18
monthly series from 1993 and 1999. The contribution of each variable to
the daily GDP estimate is based on the actual release date. In addition,
Evans (2005) also uses the expected values of GDP growth.'? The state-space
model is estimated with the Kalman filter and contains 63 parameters. Evans
(2005) claims that despite the short sample the parameters are estimated
with high precision. The real-time estimate of US GDP growth displays a
good deal of high-frequency volatility. Furthermore, the gaps between the
real-time estimates and ez post GDP data are on occasion both persistent and

significant. The real-time estimates are on average lower than are the ex post

' Note that Nunes (2005) and Crone and Clayton-Matthews (2005) do not cite the
article by Mariano and Murasawa (2003).

12 The market expectations and the release data are obtained from International Money
Market Service (MMS). MMS asked about forty money managers on the Friday of the
week before the release day. Many earlier studies have used MMS data to construct
proxies for the news contained in data releases (see for example Andersen, Bollerslev,
Diebold, and Vega (2003)).
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final GDP data. Evans (2005) suggests that the ex post data should not be
viewed as a close approximation to what was known at the time. Finally, the
model estimates reveal that the monthly data releases contain information
that is useful for forecasting the future path of GDP. Nevertheless, Evans
(2005) does not provide a standard forecasting exercise, where forecast and
realized values are compared. Instead, the contributions of each economic

variable to the real-time estimate variance are provided.

Aruoba, Diebold, and Scotti (2008) employ a one factor dynamic model to ex-
tract the unobserved state of the US economy. They claim that they provide
a ”call to action” to demonstrate the feasibility of measuring macroeconomic
activity in real-time by inclusion of real high-frequency data. The article is
an extension of Mariano and Murasawa (2003) but avoids approximations.
Aruoba, Diebold, and Scotti (2008) use four variables: the yield curve (daily,
stock), initial claims for unemployment insurance (weekly, flow), employees
on non-agricultural payrolls (monthly, stock) and real GDP (quarterly, flow).
The unobserved variables and the indicators follow an AR(1) process at their
observational frequencies. As stated in the previous chapter the model, even
with only four variables, is computationally very intensive. The extracted
factor broadly coheres to the NBER business cycle dating chronology. The
inclusion of high-frequency daily data does not really change the picture com-
pared with monthly indicators, but it is available sooner. Aruoba, Diebold,
and Scotti (2008) do not provide a quantitative assessment of forecasting per-
formance for turning points or for point forecasts. But the elicited indicator

is a coincident index and not a leading indicator.

3.3.2 Factor Models and State-space Forecasts

Giannone, Reichlin, and Small (2008) were the first to obtain factors and
plug-them into the state-space frame work to generate forecasts of monthly
GDP . The authors nowcast US GDP. They extract monthly static and dy-

namic factors from a real-time data set consisting of more than 200 time
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series.’® As the ragged-edge data problem is strongly present in the data set,
the authors apply the state-space approach of Doz, Giannone, and Reichlin
(2006). The factors obtained are used within a state-space framework to fore-
cast monthly GDP. The novelty of Giannone, Reichlin, and Small (2008) is
that they demonstrate that as new information becomes available inside the
quarter, the forecast uncertainty falls. The authors define a stylized calendar
where in each month the releases are ordered to 15 release blocks. As the new
block of information is released the factors are estimated and the nowcast of
the current quarter is updated. The novelty is using exact calendar dates to
track the forecast performance, whereas early approaches implicitly assumed
that information arrives at end of each corresponding month. After the first
month in a quarter the out-of-sample forecast is better than the random walk
benchmark model, and furthermore they outperform the Survey of Profes-
sional Forecasters. The authors assess the impact of different releases on the

forecast accuracy.'

Banbura and Runstler (2007) employ the same framework as Giannone, Re-
ichlin, and Small (2008) but the focus is set on publication lags and not
on real-time data issues. Furthermore, the target variable is the euro area
GDP growth. Instead of assessing the contribution of single variables to
the forecast performance, Banbura and Runstler (2007) investigate how the
weights contributed to the recursive forecasts. The authors confirm the stan-
dard finding of using within-quarter information and show that the results
obtained from monthly factor models are better than the autoregressive quar-

terly benchmark.

3.3.3 Mixed-frequency VAR

Zadrozny (1990) forecasts quarterly US GDP with monthly employment as

13 This data set also contains quarterly time series, but in contrast to Schumacher and
Breitung (2008) the authors linearly interpolate the quarterly figures to a monthly
interval. The data set also contains daily data but these are averaged to monthly
figures.

14 The working paper version (Giannone, Reichlin, and Small (2006)) conducts the same
analysis for US inflation with similar results.
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a predictor. The data range from 1954 to December 1988 (with 1979 to
1988 as the evaluation period). The author estimates an MF-VARMA(1,1)
to calculate forecasts.'® Compared with a no-change and AR(1) benchmark
for both variables, the RMSE is lower. Zadrozny (1990) also compares his
forecasts with those ones generated by Roberds (1988) (only slightly better)
and McNees (1986) (only better for the first quarter). Concerning the now-
casting aspect, Zadrozny (1990) compares his results to Trehan (1989) where
the MF-VAR is only better for one month ahead.

Mittnik and Zadrozny (2005) apply the mixed-frequency VAR to forecast
German real GDP (1970-2003).'® They investigate the properties of the
approach in more detail. They state that forecasts are feasible if variables
are in compatible cyclical form and not too many parameters have to be
estimated. Real industrial production, Ifo Business Climate and Ifo Business
expectations for the next six months are used as indicators. Mittnik and
Zadrozny (2005) focus on a VAR(2) model with two to four parameters (GDP
and industrial production are always included). In general they find that
monthly models produce better short-term GDP forecasts, whereas quarterly
models produce better long-term forecasts. The Ifo variables improve the

quarterly short-term GDP significantly.”

Seong, Ahn, and Zadrozny (2007) conduct only a small forecasting exer-
cise. Using trending data of US GDP and the consumer price index the
authors estimate a monthly cointegrated VAR system and calculate 12 out-
of-sample forecasts. Compared with single-frequency forecasts, the high-
frequency model performs better for both variables. But this judgement is

based on only four quarterly comparisons.

Hyung and Granger (2008) apply their linked-ARMA model to forecast US
GNP. The only indicator is industrial production. The authors compare

their approach with a standard AR model and the approach of Rathjens

15 Zadrozny (1990) starts with an MF-VARMA(3,1) and reduces this model to an MF-
VARMA(1,1) based on a corrected AIC and tests for white noise in the residuals.

16 The data are filtered to account for the structural break due to the reunification of
Germany.

17 All model combinations are at least better than the no-change benchmark.
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and Robins (1993) using a within-quarter information variable. The data
sample ranges from 1947 to 2004 and the evaluation sample starts in 1990.
Forecasting up to four quarters ahead, the results of the linked-ARMA mod-
els are rather poor. There are only very small improvements in the RMSE
compared with the two benchmark models. An improvement in forecasting
accuracy can only be gained by forecasting within the quarter (nowcasting).
Assuming that one or two months of information of the quarter being forecast
are known the RMSE of the linked-ARMA model is statistically significantly
(Diebold-Mariano-Test) lower than the two benchmark models. The results
by Hyung and Granger (2008) demonstrate that contemporaneous indica-
tors (like industrial production) combined with a mixed-frequency model
can improve the nowcast. As they do not use leading indicators, they cannot

demonstrate whether their approach is useful for longer-horizon forecasts.

3.4 Distributed lag models

Abeysinghe (1998) applies his transformation approach given in equation
(2.49) and forecasts the GDP of Singapore based on monthly external trade
data. Compared with an AR(1) and a quarterly-frequency benchmark model,
the RMSE can be reduced. We have to note that the article suggests that
a fixed-estimates model is used to produce the forecasts. Thus the model is

not updated with every recursion.

Koenig, Dolmas, and Piger (2003) apply the unrestricted distributed lag
model to forecast current-quarter real GDP using monthly measures of eco-
nomic activity. They follow Trehan (1992) and use annualized percentage
changes in non-farm employment, industrial production, and real retail sales
as indicators. The focus of the paper is more on the real-time aspect of the
data, rather than on the mixed-frequency structure of the data. They com-
pare three strategies for employing real-time data. Compared with a naive
forecast, an autoregression and the Blue Chip consensus forecast, the use of
real-time data vintages perform best in RMSE terms. Whereas for pseudo-

real-time data and final data, the Blue Chip forecast is not outperformed.
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3.5 MlIxed DAta Sampling (MIDAS)

Most empirical applications of the MIDAS model focus on financial data.
Furthermore there is often no explicit comparison between single- and mixed-
frequency models but only on the exploration of the extension to the use
of mixed-frequency data. As this approach is rather new we include those
studies in our review. To guide the reader, we summarize the most important
facts concerning model specification in a table. Table 3.1 summarizes for
each application the employed weighting functions, whether the weighting
function is restricted or not, the number of included lags, and the mixed-
frequency data used. In general we can say that no article states whether
an explicit model selection procedure is employed or not. From a personal
perspective, it appears that the specification used is chosen ad hoc or is based

on experience.

3.5.1 Financial Applications

Ghysels, Santa-Clara, and Valkanov (2005) investigate the inter-temporal
relation between the conditional mean and the conditional variance of the
aggregate stock market returns. They find a significant positive relationship
suggested by the intertemporal capital asset pricing model of Merton (1973).
This result stands in contrast to the previous works on this issue which find
insignificant positive relationships or even a significant negative one. Ghy-
sels, Santa-Clara, and Valkanov (2005) use monthly and daily market return
data from 1928 to 2000. The MIDAS model is employed to estimate the
conditional variance of monthly returns based on prior daily squared return
data. The weighting function is parameterized as the exponential Almon
lag with two parameters. They restrict these parameters to ensure declining
weights. They allow for a maximum lag of 252 trading days (approximating a
year).!® The model is estimated via quasi-maximum likelihood. The authors
compare their results with the rolling moving window approach of French,

Schwert, and Stambaugh (1987) and GARCH-in-mean models. In the first

18 The authors state that their results are not sensitive to the chosen lag length.
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approach, the weights are constant and inversely proportional to the window
length. French, Schwert, and Stambaugh (1987) fail to find a positive sig-
nificant relationship. Furthermore their model is sensitive to the choice of
the window lengths. The GARCH-in-mean model uses monthly instead of
daily squared returns. Again, only a positive but insignificant relationship
is identified. Then all three models forecast realized volatility. In general
the MIDAS model forecasts, on average, more accurately and without bias.
The GARCH approach exhibits a small upward bias. Finally the rolling win-
dow approach produces far more dispersed forecasts. Ghysels, Santa-Clara,
and Valkanov (2005) conduct several robustness checks (for example asym-
metric shocks) but in general a positive significant relationship between the
conditional mean and the conditional variance is detected with the MIDAS

approach.

Ghysels, Sinko, and Valkanov (2007) build upon the previous study. They
use a different and shorter data set (Dow Jones Index, April 1993 to October
2003) but obtain their returns from a 5-minute price series. The authors
investigate whether the results of Ghysels, Santa-Clara, and Valkanov (2005)
still hold using different horizons (h = {5, 10, 15,22} days), different measures
of volatility (additionally to squared returns, absolute returns, daily ranges,
realized volatility, and realized power)! and employing the Beta weighting
function.?® For the weighting function they allow for only 30 lags of the
higher frequency compared with 252 in Ghysels, Santa-Clara, and Valkanov
(2005).2! In general the results are similar to those found in Ghysels, Santa-
Clara, and Valkanov (2005). Comparing the two different weighting functions
the authors conclude that the Beta polynomial could be a better choice

for higher frequency models, whereas the exponential Almon lag polynomial

19 These extension build on results by Ghysels, Santa-Clara, and Valkanov (2006).

20 We note that the authors are unclear about how the model was estimated. In the
text they state that the MIDAS regressions are estimated using NLS (p. 73), whereas
in Tables 1 and 2 (p. 74 and 75) they state that they employed quasi-maximum
likelihood. As shown in chapter 2 both estimation approaches can be used to estimate
MIDAS regressions.

21 We presume this decision is due to the trade-off between included lags and observa-
tions available for estimation (see chapter 5). The authors do not go into detail on
this issue.
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could be a better choice for the lower frequency. There is no comparison with

single-frequency models.

Leén, Nave, and Rubio (2007) extend the previous analysis on Mertons theo-
retical predictions to European equity markets. Starting with GARCH-type
models the authors fail to find evidence of a positive significant relationship
for the stock market indices in France, Germany, Spain, the United King-
dom and the stock index Eurostoxx50. Applying the MIDAS model, the
results favour the positive risk-return relationship, except for the UK data.
In a second step they apply the asymmetric MIDAS model and the results
stay the same. Finally they find some evidence in favour of the two-factor

inter-temporal capital asset pricing model using a bivariate MIDAS model.

Kong, Liu, and Wang (2008) investigate the risk-return trade-off for Chinese
stock markets. The authors also compare the MIDAS with the GARCH
and rolling windows approaches. The authors do not use mixed-frequency
data but focus only on daily data. The MIDAS model is used to specify a
parsimonious model. They fail to find any evidence in favour of the risk-
return trade-off for the whole sample (1993-2005). The existence is found
with a sub-sample (2001-2005). In forecasting the conditional variance, the
GARCH forecasts seem to outperform the MIDAS approach but the authors

do not provide forecast accuracy measures.

Ghysels, Santa-Clara, and Valkanov (2006) forecast future volatility with
different regressors. Here, volatility is defined as quadratic variation. The
following regressors are used: lagged quadratic variation, lagged returns,
lagged absolute returns, daily ranges and realized power.?? Volatility is mea-
sured at daily, weekly, bi-weekly, tri-weekly, and monthly frequency, whereas
the forecasting variables are available at daily and higher frequencies. As a
benchmark model they employ an ARFI(5,d) model (autoregressive frac-
tional integrated) proposed by Andersen, Bollerslev, Diebold, and Labys
(2003) (labelled ABDL). The ABDL model forecasts daily volatility and adds

up these forecasts to obtain weekly volatility forecasts. In a strict sense it is

22 Ghysels, Santa-Clara, and Valkanov (2006) also consider the log-version of all vari-
ables.
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a single-frequency model. The main focus is forecasting the volatility of the
Dow Jones and some individual stocks (1993-2003). As a weighting scheme
the Beta function is employed and the number of included lags is restricted
to K = 50.2% The results can be summarized as follows: on average MIDAS
performs better than the single-frequency benchmark model. This result
holds both in-sample and out-of-sample. Longer-horizon forecasts do not
necessarily produce worse out-of-sample performances (at least up to four
weeks). The inclusion of high-frequency data (5-minute returns) does not

necessarily lead to better volatility forecasts.

Ghysels, Sinko, and Valkanov (2007) extend the previous study. The authors
adjust the realized volatility for 5 and 30 minutes frequency regressors for
microstructure noise with formulae suggested by Hansen and Lunde (2006).
Using the same data set they predict realized volatility at weekly, two-week,
three-week, and monthly horizons. For two individual stocks they find that
the noise-corrected volatility measures perform, on average, worse than the
unadjusted volatility measure. As a possible explanation, Ghysels, Sinko, and
Valkanov (2007) speculate that the noise for the 5-minute data is negligible
compared to the signal. Or, it could be that the MIDAS regressions are more
efficient in extracting the signal from the unadjusted, daily, realized volatility

measures compared with the noise-corrected schemes.

Forsberg and Ghysels (2007) extend this strand of literature and investigate
why absolute return forecasts volatility (measured as quadratic variation)
so well. Employing tick-by-tick data for the S&P 500 index from 1985 and
2003 they compare different regressors using MIDAS and HAC regressions.
They extend the basic models by allowing for jumps in the volatility process.
Forsberg and Ghysels (2007) use daily regressors (calculated using 5-minute
returns) to forecast one-day, and one to four weeks ahead. For the MIDAS
regression they allow for a maximum lag of K = 50 days.?* As the weighting
function they use the Beta function with declining weights. In an in- and

out-of-sample comparison between the two models and different regressors,

23 The authors set §; = 1 to ensure a decaying weighting function.
24 The authors claim that the results are not sensitive to varying the included lags.
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the MIDAS model is on average better (in adjusted R* and MSE terms)
compared with the HAR model. For both models realized absolute returns

has the highest predictive power.

Chen and Ghysels (2008) apply the semi-parametric MIDAS model to inves-
tigate whether finer data sampling schemes change the shape of the news-
impact curve introduced by Engle and Ng (1993) based on daily data. For the
parametric part, two Beta polynomial specifications are used to accommo-
date intra-daily and daily memory decay. The data set consists of five-minute
returns of (respectively) Dow Jones and S&P 500 cash and futures markets
from 1993(96) to 2003. In a out-of-sample exercise they show that accounting

for asymmetry improves forecasting accuracy.

3.5.2 Macroeconomic Applications

Clements and Galvao (2005) are the first to apply MIDAS regressions to
macroeconomic data. Furthermore they are the first to forecast MIDAS with
an autoregressive term. In their final published paper, Clements and Gal-
vao (2008) focus only on the MIDAS-AR model. They forecast quarterly US
output growth with three monthly indicators (industrial production (IP), em-
ployment and capacity utilization (CU)).?> The authors use real-time data
which range from 1959-2005. They employ exponential Almon lag weight-
ing functions with two parameters, restricted to ensure declining weights.
In the paper it is not stated how many lags are included in the model.?6
They estimate the model with NLS. In a recursive forecasting exercise they
compare the MIDAS-AR model with a quarterly AR(1), bridge equation and
the mixed-frequency distributed lag model by Koenig, Dolmas, and Piger
(2003). Furthermore Clements and Galvao (2008) implement within-quarter
forecasts. They find that the use of monthly indicators (IP and CU) in the
MIDAS regression, especially for short horizons (within-quarter), results in

sizeable reductions in RMSE compared with single-frequency models. Com-

25 In the working paper version Clements and Galvao (2005) also forecast US inflation.
26 Tn personal correspondence, Michael Clements told me that they included 24 months
(8 quarters).



3. Mixed-frequency Data and Models: Empirical Evidence 71

paring MIDAS-AR with mixed-frequency distributed lag models and bridge

equations there is little to choose.

Ghysels and Wright (2008) replicate the forecasts of others employing both
the MIDAS and the Kalman filter approaches. As survey forecasts are in-
frequently published and often found to be stale, it would be interesting for
policy makers to predict the upcoming survey releases at a higher frequency.
Using survey data from the Survey of Professional Forecasters (SPF) and
the Consensus Forecast (CF), the forecasts are generated via daily data (ex-
cess returns and the yield curve among others) for real GDP growth, CPI
inflation, T-Bill and the unemployment rate. Using MIDAS (Beta weigh-
ing function either estimated, unrestricted, or assuming equal weights) the
upcoming release is forecast, whereas in the state-space approach the fore-
cast for a specific horizon at a specific day is interpolated by applying the
Kalman filter, viewing these as missing data. In an in- and out-of-sample
forecasting exercise, on average both approaches beat the simple random

walk benchmark forecasts.

Marcellino and Schumacher (2007) were the first to combine factor mod-
els with the MIDAS approach. They apply the standard two-step proce-
dure: first estimate the factors and then plug these into a specific time series
model. A second focus of the paper is the ragged-edge data problem, that
observations are not available for all time series at the end of the sample.
The authors compare the realignment approach of Altissimo, Cristadoro,
Forni, Lippi, and Veronese (2006), the EM algorithm outlined in chapter 2,
and a parametric state-space factor estimator of Doz, Giannone, and Reich-
lin (2006). In addition to the standard MIDAS model?” they employ the
‘smoothed” MIDAS model and an unrestricted version of the MIDAS ap-
proach. Irrespective of the factor estimation approach and the employed
MIDAS model, factors do provide valuable information for short-term fore-
casting (nowcasting). The results are interpreted relative to GDP variance.

For longer forecasting horizons, the results are more ambiguous. These find-

2T The authors use the following restrictions for the exponential Almon lag weighting
function: 6; < 2/5 and 03 < 0, which generates either declining weights or a hump-
shaped weighting function.
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ings even hold when compared with quarterly single-frequency factor models,
an AR(p), and a no-change benchmark. Including an autoregressive lag in the
MIDAS approach does not improve the results. In general the unrestricted

MIDAS model performed best in many cases.

Hogrefe (2008) compares single-frequency, mixed-frequency and interpolation
approaches to forecast data revisions for US GNP. Building upon a real-time
data set consisting of 13 quarterly and 30 monthly series, the author em-
ploys the quarterly-only single-frequency model, quarterly plus aggregated
monthly data, the approach by Chow and Lin (1971), and the MIDAS ap-
proach. First, Hogrefe (2008) confirms a strong rejection of the hypotheses
of data rationality found in similar single-frequency studies.?® with the latter
two approaches. Both models perform better in an out-of-sample forecast-
ing exercise (first, second and last revision), where the MIDAS is the best
one. The authors include 12 months as lags and the exponential Almon lag

function is restricted to ensure decaying weights.?

Ghysels and Valkanov (2006) systematically investigate the forecasting per-
formance of the MIDAS model compared with single-frequency approaches.
The authors simulate a bivariate infeasible high-frequency VAR(1) with dif-
ferent persistence and leading properties. The mixed-frequency sample is
obtained by skipping the corresponding observations. They conduct an in-
sample forecasting comparison of the MIDAS model (both with Almon and
Beta weighting function), the infeasible high-frequency VAR (HF-VAR), and
a low-frequency VAR. By definition, the infeasible HF-VAR is not outper-
formed by any model, but the MIDAS model performs relatively well. The
RMSEs are only between 2 and 9 percent larger than the high-frequency
VAR. Compared with the low-frequency VAR, the RMSE of the MIDAS
model are on average between 17 and 40 per cent better. Ghysels and Valka-
nov (2006) find only small differences between the exponential Almon lag
and the Beta weighting function. But the Almon lag performs constantly

better across all models. The results hold for a variety of frequency mixtures

28 This term was introduced by Mankiw and Shapiro (1986). Data rationality implies
that there is no possibility for the prediction of data revisions.
29 But this is not stated in the paper.
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(m = {5, 10,20, 60, 120, 250}). However, the authors do not state how many

lags are included and whether or not the weighting functions are restricted.

Ghysels and Valkanov (2006) also augment the information set by including
information that becomes available in the m periods between ¢t and ¢t + 1.
As a further benchmark the low-frequency VAR is adjusted by "filling in”
observations that might not be available between ¢ and ¢t + 1. The authors
employ the Kalman filter to estimate the missing observations. The approach
builds upon the idea by Harvey and Pierse (1984). As a priori expected, the
RMSEs decline further after adjusting the information set. The Kalman
Filter approach works considerably good but is not able to outperform the
MIDAS models.
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3.6 Summary and Discussion

In this chapter we reviewed the literature on forecasting with mixed-frequency
data. Currently, the standard approach is still to apply a two-step procedure.
First, ensure that all data are sampled at the same frequency and then ap-
ply the time series models. Temporal aggregation plays the dominant role
compared with the interpolation method. More recently state-space factor
approaches where forecasts are generated at the higher-frequency have been

applied more often.

In general we can state: mixed-frequency data matter, that is transformation
of data leads, on average, to less accurate forecasts. Improvements were

found, especially in the short-run.

The first approach to deal with mixed-frequency data was the linkage ap-
proach, where forecasts from different frequencies are combined in a formal
way. The majority of applications generate forecasts from quarterly struc-
tural models which are combined with monthly time series forecasts. The
combination also improved forecasts for variables that are only available at
the lower frequency. Although the results were promising it seems that cur-
rently there is no more research in this area.® This is rather surprising, as
currently forecasting combinations in general play a prominent role in the
forecasting literature (see Timmermann (2006) for a recent survey). A pos-
sible reason is that large structural models play a less central role in the

current forecasting literature.

By contrast, bridge equations are still widely used, especially at central
banks. The survey demonstrated that bridge equations are a useful tool
for forecasting, especially in the short run (nowcasting). As more informa-
tion becomes available, the more accurate are the forecasts of the current
quarter. Most of our reviewed articles found decreasing RMSEs within the
quarter. As more information becomes available, the more accurate are the
forecasts for the target variable. There is no predominant view on how to

forecast the higher-frequency variables. Due to low computational cost, re-

30 The last article on this topic we found was the one by Shen (1996).
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cently more than one time series model is used (mostly AR, VAR, or BVAR).
One central problem is that errors from the auxiliary model transmit to the

bridge equation.

Pure mixed-frequency time series models have come into focus in recent years.
There are two completely different approaches to handle mixed-frequency
data. First we have state-space approaches, both in connection with dy-
namic factors as well as a pure VAR. State-space approaches are quite gen-
eral and can handle any kind of data issues (mixed-frequency, reporting lags,
measurement error, data revisions). This generality comes at a cost: with
more data and higher-frequency mixtures the computational complexity rises
dramatically. Therefore, only small-scale models with few variables are es-
timated. This is one reason why factor models are currently so dominant
in the forecasting literature. Nevertheless the forecasting accuracy is better

when compared with single-frequency models.

The second mixed-frequency approach is distributed lag models, most promi-
nently the MIDAS approach which is advocated and promoted by Eric Ghy-
sels and co-authors.® MIDAS models are parsimonious but can handle only
equidistant data. MIDAS models can easily be estimated via NLS. Which
weighting function should be employed remains undecided. Both are used
and seem to produce similar results. Additionally, the weighting function is
often restricted to ensure declining weights. But these restrictions are not
based on theoretical reasoning. There are no comparisons between an unre-
stricted and a restricted version so far. Most applications of MIDAS can be
found in the finance literature with very promising forecasting results. The
three macroeconomic applications state that MIDAS is useful for short-term

forecasting.

31 The basic MATLAB code can be downloaded at www.unc.edu/ sinko/midas.zip (as-
sessed August 2008).



4. EVALUATION CONSIDERATIONS

4.1 Preliminaries

In the following chapters we want to compare the mixed-frequency VAR
model and the MIDAS approach in more detail. We have already noted, that
these approaches have not been compared so far. We start by investigating
model specification issues. Then we compare the forecast performance of the
two techniques in a Monte Carlo study. In chapter 7 we extend the analysis
to real data. In this chapter we outline the data generating processes (DGP)

that will be used in the next chapters for the model comparisons.

To draw general conclusions from Monte Carlo studies the data generation
process should cover as many data structures as possible. Different data
structures are defined by different autocorrelation structures of the lower-
frequency variable. As the mixed-frequency time series models are quite
different in their approach to handling mixed-frequency data, it is not obvi-
ous from the theoretical point of view which model yields a more accurate

forecasting performance, given a specific data pattern and (or) loss function.

In macroeconomic forecasting GDP is one of the variables forecast most often,
as it considered as the most general representation of an economy. Figure
4.1 displays the autocorrelation structure of US (1954-2006) and German
GDP (1991-2006) growth (quarterly and yearly). For the yearly growth rates
one can see an oscillating autocorrelation structure for both countries. The
oscillating pattern, with significant lags, can also be detected for US quarterly
GDP growth. For German quarterly GDP growth we find no significant
autocorrelations at any lag. We want to replicate these kinds of patterns

and want to add further structures in our Monte Carlo study.
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We define four different processes (labelled as Process I, II, IIT and IV re-
spectively). With each process we generate mixed-frequency data. Within
the different processes we can vary the relationship between the time series
and the structure of the target (low-frequency) variable. All simulated pro-
cesses are stationary.! As we focus on forecasting we will always assume
that the higher-frequency variable can be regarded as an indicator for the

lower-frequency variable. This is also the standard case in the literature.

In addition to the autocorrelation patterns of the lower-frequency variable
we also define different ’strengths’ of leading characteristics. We distinguish
between cases with absolutely no relationships and cases with medium and

strong predictive power between higher- and lower-frequency variables.

Processes I and II are generated from a bivariate VAR model and Process
IV from a trivariate high-frequency VAR model. In Process IV we generate
two predictors sampled at different frequencies. These processes assume that
all variables are generated at the highest frequency. The mixed-frequency
VAR model also assumes that all variables of the model are generated at the
highest frequency. In later chapters we will see whether this is an advantage
in comparison to the MIDAS model. In contrast, in Process III the data will
be generated with a MIDAS model.

The higher frequency variable is sampled m-times higher than the lower
frequency. In the generated high-frequency sample we observe for the lower
frequency only every m-th observation; the other ones are skipped. To give
an example, given 7' = 100 (length of the lower- frequency time series) and
m = 3 (for instance monthly-quarterly data) we generate a bivariate data
set with length mT = 300. The principle of skip-sampling is illustrated for
monthly-quarterly (m = 3) in Table 4.1 . We simulate two time series (z;
and z5) with a VAR model, where x5 is the lower frequency. We keep every

third observation and the others are skipped.

As outlined in chapter 2, we focus on plausible macroeconomic mixtures, ad-

I This assumption is necessary as, first, the state-space framework of Zadrozny assumes
stationary data. And second, the use of non-stationary data within the MIDAS
framework is an unsolved issue.
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ditionally to m = 3 we employ quarterly-yearly (or weekly-monthly) data
(m = 4) and weekly-quarterly data (m = 12). This is in contrast to
Ghysels and Valkanov (2006) who consider the following mixtures: m =
{5, 10, 20, 60, 120, 250}.

For ease of computation all generated data are standardized.

Tab. 4.1: Example of skip-sampling for m = 3

simulated data skip-sampled data

T ) T )
0.320 0.424 | 0.320
0.056  0.164 | 0.056
0.604 0.684 | 0.604 0.684
0.209 0.411 | 0.209
0915 0.672 | 0.915
0.392  0.749 | 0.392 0.749

OO W N~ o+
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Fig. 4.1: Autocorrelations for US and German GDP growth rates
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4.2 Process I

For the first process we follow Ghysels and Valkanov (2006). Use of this
process allows us to compare our results with those of Ghysels and Valkanov
(2006). We generate high-frequency data via a bivariate VAR(p) with p = 1.

X, =TX, 1 +ur (4.1)

The matrix I' is specified as:

I'=px [1 61

op 1
such that a single parameter p determines the persistence of both series,
whereas ¢; and ¢, capture the dependence between the two series. Gen-
erally, we will set §; = 0. The bivariate random vector u; is drawn from
N(0,1), where 0 is a bivariate zero-vector, and I is the identity matrix
of dimension two. The data are generated for p = {0.10,0.50,0.90,0.95}
and 0, = {0,—0.5,—1.5,—-3.5}. The parameter p determines the persis-
tence of time series and J;, determines the ’predictive power’ of the higher-

frequency time series. The series are simulated for m x T" observations, where
m = {3,4,12}.

Tab. 4.2: Eigenvalues for Process |

¥ A2
p=0.1 Sp =i 0.10 0.10
p=05 Sp =i 0.50 0.50
p=10.9 Sp = i 0.90 0.90
p=095 & =i 0.95 0.95

Notes: Table reports the eigenvalues of the coefficient matrix I" in Equation (4.1). The
parameter J;, takes the values: §, = {0,—0.5,—1.5, —3.5}.

In Table 4.2 we tabulate the eigenvalues of the coefficient matrix I' for the
simulated high-frequency process. All eigenvalues are smaller than 1 indicat-

ing stationary processes.
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Figures 4.3 to 4.5 in the appendix to this chapter display the different au-
tocorrelation structures (up to 24 lags) for m = {3,4, 12} and the different
values of p and §,. The time series length is 7" = 100. Each graph in each
figure plots the autocorrelation of the lower frequency variable. The dashed
lines in the plots of the autocorrelations are the approximate two standard
error bounds computed as +2/ \/ZT) If the autocorrelation is within these
bounds, it is not significantly different from zero at (approximately) the 5%
significance level. Each row corresponds to a value of p with the correspond-
ing values of d;,. Note that the autocorrelation structure for a specific simu-
lated high-frequency data set is almost the same as for the different frequency
mixtures.? The different structures are due to the skipping of the unobserved
high-frequency observations to obtain the low-frequency data. Therefore the

resulting processes exhibit different dynamics between the variables.

First, we can report that at the first lag the correlation is positive for al-
most all examples. Furthermore, for low persistent time series (p = 0.1 and
p = 0.5) there are almost no significant autocorrelations at any lags (inde-
pendently of the parameter values of dj,). The picture is different for highly
persistent time series (lower two rows in each graph). One can see slow or
fast decay and oscillating autocorrelation patterns. Comparing three graphs
one can see that the autocorrelations at each lag 'die out’ the higher the fre-
quency mixture is, that is the structure is shifted from higher to lower lags.?
For instance, take the last picture in each graph (p = 0.95 and §;, = —3.5).
The number of positive significant figures gets lower as more observations are

skipped, the higher is m.

4.3 Process II

The second process is an extension of the first process. We add an additional

lag to the system. We consider the following VAR(2) data generating process

2 However, the errors and length of the time series are different.
3 This can be confirmed by looking at autocorrelations at even higher lags up to 72.
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X’r = FlXT—l + FQXT_Q + U, (42)

The matrix I'; is specified as:

1 0
Fl =p X
o 1
where p = {0.10,0.50,0.90} and ¢, = {0,—0.5,—1.5}. The matrix 'y is

specified as:
—-0.1 0.1
Iy, =
—-0.15 —0.2

In Table 4.3 we present the absolute eigenvalues from Equation (4.2).> Again,
we generate stationary time series as all eigenvalues are less than 1. Figures
4.6 to 4.8 in the appendix plot the corresponding sample autocorrelation
functions. Compared with Process I, we have some similarities and differ-
ences. For low persistent time series we find again almost no significant
autocorrelation at any lag. In contrast to Process I, the first lag is in some
cases negative. For highly persistent series we can detect an oscillating pat-
tern but there is often a change between positive and negative values after
two consecutive lags. The figures demonstrate that Process II generates a

completely different data structure in comparison to Process I.

4.4 Error Structure With GARCH Components

In addition to the homoscedastic errors used in Equation (4.1) and (4.2) we
want to allow for heteroscedastic errors in the higher-frequency variable in
Process I and II. It is well known in applied econometrics that both high-
and low-frequency data display volatility clustering (see Bera and Higgins

(1993)). The higher the frequency, the more likely is the aspect of time-

4 We do not consider the values p = 0.95 and §;, = —3.5, as the process would not be
stable.
5 All eigenvalues are complex in this example.
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Tab. 4.3: Eigenvalues for Process 11
)\1 )\2 )\3 )\4
p=0.1 op =0 0.417 0.417 0.448 0.448
o, =—0.5 0459 0.459 0.406 0.406
o0, = —1.5 0.481 0.481 0.388 0.388
p=0.5 0, =0 0.349 0.349 0.535 0.535
0, =—0.5 0.598 0.598 0.312 0.312
o, =—15 0.688 0.688 0.271 0.271
p=20.9 op =0 0.770 0.770 0.242 0.242
o, =—0.5 0.860 0.860 0.217 0.217
0, =—15 0971 0971 0.192 0.192

Notes: Table reports the absolute eigenvalues of the coefficient matrices I'y and I'y

from equation (4.2).

varying volatility. Consider again the data generation process for Process
I
X, =TX, 1 +u,

and Process 11
X =11 Xr 1 + T X 5 +usr

Let uy, be the higher-frequency variable distributed as uy, |2, ~ N(0,0% ),
where €2, denotes the history of the process. We use the standard GARCH(1,1)

model to simulate the error variance
2 _ 2 2
Oy = Qo + Qquzy + ﬁlalT—l' (43)

For m = 3 and m = 4 we set og = 0.01, oy = 0.13, and 3; = 0.82.° This set-
up displays moderate shocks that persist over time. In contrast, for m = 12
(weekly-quarterly data) we set a; = 0.4 and 3; = 0.5 to model larger shocks

which are less persistent.

5 Our choice is inspired by Bollerslev (1986). These parameters were estimated for
quarterly UK inflation.
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4.5 Process II1

The first two processes are generated with a bivariate VAR. It is expected
that on average the mixed-frequency VAR performs better than the MIDAS
approach (though, not theoretically derived), as the former is modelled at the
same frequency as the data generating process. Therefore we generate the
data for the third process with a MIDAS model. The data-generating process
was suggested by Andreou, Ghysels, and Kourtellos (2007). We consider the

following data generation process
v = Bo+ BB (L5 60) ") + €™, (44)

where the constant and the slope coeflicients are given by: Gy, = 0 and
1 ={0.6,3,6}. The error term is normally distributed with expected mean
zero and variance 0.125. The different values of 3; yield models of small,
medium and large Signal to Noise Ratios (SNR), respectively. The dependent
variable is measured at low frequency whereas the covariates are defined at
high sampling frequency m, based on a K-dimensional vector of weights.
The weighting function we parameterize as the exponential Almon lag with
the unknown coefficients 6 = (61, 65) given by (2.56). We want to generate
two different weighting schemes. We choose 6 that yield both fast and slow
decay of the weights. Thus we have § = (7 x 107*,—5 x 107%) and 6 =
(7 x 107, —6 x 1073) for the fast and slow decay of weights respectively.
Figure 4.2 plots the two weighting functions with K = 40 lags.

For the data generation process (4.4) we assume for the high-frequency co-

variates mim)

xim =co+ clxiﬂ/m + Ut fy.- (4.5)

For the parameters we assume ¢y = 0, ¢; = 0.9 and uy/, ~ N(0,1). Figures
4.9 to 4.11 plot the corresponding sample autocorrelation patterns for Process
III. The dominant structure is the oscillating pattern that we also observe
in real data examples, as plotted in Figure 4.1. For m = 3 and m = 4,

at the first three lags, all autocorrelations are positive and significant. For
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m = 12 only the first and some higher lags are significant. Furthermore the

oscillating pattern is less well pronounced.

Fig. 4.2: Shape of the weighting functions for Process 111
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4.6 Process IV: Three Different Frequencies in One Model

The simulated processes so far were bivariate processes. The two time series
approaches in focus are able to handle any number of variables sampled at
any frequency. In empirical applications it is a natural step to consider indi-
cators sampled at different frequencies, that is to include weekly indicators
in addition to monthly ones. This aspect has not been investigated in the
literature so far. Therefore, we extend our Monte Carlo study to three vari-
ables all sampled at different frequencies. Process IV can be considered as a
starting point for future research on how many different frequencies can be

handled in practice in one model.

We consider again the VAR(1) process

X, =TX, 1 +ur (4.6)
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The coefficient matrix I" is now specified as

1 0 0
F'=px |-02 1 02
—0.1 -0.15 1

The parameter p = {0.10,0.50,0.90,0.95} again determines the persistence
of the time series. The target variable is sampled at quarterly intervals simu-
lated with homoscedastic errors. The second variable is sampled at monthly
intervals with GARCH errors a; = 0.13 and ; = 0.82 in Equation (4.3).
Finally, the third variable is sampled weekly with GARCH error specifica-
tion a; = 0.4 and ; = 0.5 in Equation (4.3). In Table 4.6 the absolute
eigenvalues are reported, which are again less than 1. The simulated time
series are stationary as required for the mixed-frequency time series models.
Figure 4.12 plots the autocorrelation function. Strong significant lags can
only be detected for p = 0.95.

Tab. 4.4: Eigenvalues for Process IV

A A2 A3
p=0.1 0.101 0.101 0.100
p=0.5 0.507 0.507 0.500
p=0.9 0.913 0.913 0.900
p=10.95 0.964 0.964 0.950

Notes: Table reports the absolute eigenvalues of the coefficient matrices I' from Equa-
tion (4.6).

4.7 Appendix: Additional Figures
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Fig. 4.3: Autocorrelations for Process I for m = 3
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Fig. 4.4: Autocorrelations for Process I for m = 4
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Fig. 4.5: Autocorrelations for Process I for m = 12
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Fig. 4.6: Autocorrelations for Process I1 for m = 3
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Fig. 4.7: Autocorrelations for Process II for m = 4
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Fig. 4.8: Autocorrelations for Process I1 for m = 12
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Fig. 4.9: Autocorrelations for Process I11 for m = 3
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Fig. 4.10: Autocorrelations for Process III for m = 4
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Fig. 4.12: Autocorrelations for Process IV for m = 12 and m = 3
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5. SPECIFICATION ISSUES

As we outlined in chapters 2 and 3, the model specification aspect has been
neglected so far in the literature. In the empirical applications the model
was chosen rather on an ad hoc basis and not on standard model selection
criteria. Furthermore the weighting function in the MIDAS approaches is in
some applications restricted, some not restricted, but without any explicit
explanation given. In this chapter we want to take a closer look at model
specification pertaining to forecasting economic time series. In particular we
focus on lag selection in both approaches and whether or not the weighting
function should be restricted . We will show that standard selection criteria
can be computationally intensive and time consuming. Thus, results of the

analysis can be interpreted as a first point of reference for applied forecasting.

5.1 Model Specification in Mixed-Frequency VAR Models

In the basic specification of the mixed-frequency VARMA with two variables,
the MF-VAR(1), seven parameters have to be estimated.! The inclusion of
more time series and higher-order lags leads to a large number of parameters
to be estimated (4p+ 3 parameters in a bivariate VAR(p)). As the likelihood
is calculated recursively, the computation time increases significantly with
the number of parameters. Mittnik and Zadrozny (2005) state that forecasts
are only feasible if variables are in compatible, cyclical form and not too

many parameters have to be estimated.

We want to answer the following two questions. First, as the model operates

1 We focus on model selection for the mixed-frequency VAR model based on the frame-
work by Zadrozny (2008). The analysis can easily be applied to the framework by
Hyung and Granger (2008).
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at the highest frequency in the data, which lag length does describe the
data well? Second, does the frequency mixture influence the lag selection?
The importance of the second question can be illustrated with the following
example: Suppose we find an AR(4) process (by some selection criterion)
for a quarterly time series (for example GDP). Now we include a weekly
time series and build a mixed-frequency VAR model operating at the weekly
frequency. Allowing for the same past information set as in the univariate
case, do we have to estimate an MF-VAR(48) model (4m = 12 -4 = 48, 48
weeks constitute 4 quarters)? The estimation of a model with 48 lags seems

infeasible and contradicts the view of parsimony in econometrics.

To investigate these issues we conduct a small Monte Carlo study for Pro-
cesses I and II illustrated in the previous chapter. We focus on these two
processes, as the DGP is a (high-frequency) VAR process and the MF-VAR
operates at the highest frequency. Thus we can draw clear cut conclusions
about the order of the model. From the theoretical point of view we cannot
decide which specific model to choose. Consider Process I which generates
data from a VAR(1). As we skip m — 1 observations to generate the mixed-
frequency data set (every m — th observation of the lower-frequency variable
is observable), it is possible that the generated missing observations intro-
duce new dynamics into the system. The figures in the appendices of the
previous chapters demonstrate, that the autocorrelations patterns differ be-
tween the frequency mixtures m, although the data are generated with the

same high-frequency VAR process.

We fit a mixed-frequency VAR(p) to each times series. We choose the optimal
lag length via a corrected AIC criterion proposed by Hurvich and Tsay (1989)
and used by Zadrozny (2008)

2M

_ M+1
1 mT

CAIC =L+ (5.1)
where L is -2 times the log-likelihood, M denotes the number of estimated
parameters, and m7' is the number of observations (higher frequency). We

allow for a maximum of 2m lags for m = 3 and m = 4 and m lags for
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m = 12. The time series length is 7" = 100. We simulate each process 100
times. This number is motivated by exponentially increasing computation

time for estimating higher- order mixed-frequency VAR(p).?

Tables 5.1 and 5.2 report the average chosen lag lengths for each parameter
combination and frequency mixture. For instance, consider Process I (Table
5.1). For p = 0.1, 6 = 0 and m = 3, on average one lag (1.000) was chosen
by the corrected AIC criterion. For p = 0.95, 6 = —3.5, and m = 12 the
majority of selected models were an VAR(1), as the average lag selection is
1.2. In general we can note, that the corrected AIC chooses low dimensional
processes independently of the frequency mixture. For Process I there is a
tendency for one lag, and for Process II (Table 5.2) for two lags for persistent
series (p > 0.5). These results correspond to the fact that the true data-
generating process is a VAR(1) and VAR(2), respectively. These findings
suggest that there is no danger of parameter proliferation (at least in the
bivariate case). Furthermore, it is demonstrated that small scale MF-VAR
can capture rich data patterns, as graphed in the autocorrelation figures in

the appendix to chapter 4.

2 The estimation of all models up to a VAR(12) takes about 12h on a PC with an Intel
Core 2 Quad processor.
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Tab. 5.1: Lag selection in mixed-frequency VAR(p) models: Process I

p=0.1
p=0.5
p=0.9
p=10.95

0=0

0=-0.5
0=-15
0=-35
0=0

0=-0.5
0=-1.5
0=-35
0=0

0=-0.5
0=-15
0=-35
0=0

0=-0.5
0=-15
0=-35

m=3
1.000
1.000
1.000
1.000
1.000
1.000
1.060
1.040
1.400
1.200
1.060
1.060
1.400
1.140
1.060
1.160

m=4
1.000
1.000
1.000
1.000
1.000
1.000
1.180
1.180
1.040
1.220
1.180
1.020
1.040
1.200
1.120
1.040

m = 12
1.000
1.000
1.000
1.000
1.000
1.000
1.140
1.120
1.160
1.320
1.280
1.220
1.000
1.280
1.220
1.200

Notes: Data are simulated from a high-frequency VAR as given in equation (4.1) with

homoscedastic errors. For each parameter combination we estimate a mixed-frequency

VAR(p) with pmaz = 2m (Pmaz = m for m = 12). The table reports the average chosen

lag length due to the corrected AIC criterion (5.1).
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Tab. 5.2: Lag selection in mixed-frequency VAR(p) models: Process II

m=3 m =4 m =12

p=0.1 60=0 1.010 1.000 1.000
6=-0.5 1.000 1.000 1.000

0=-—1.5 1.000 1.010 1.000

p=10.5 0=0 1.040 1.000 1.000
6=-0.5 1.360 1.220 1.000

6=-15 2.140 1.920 1.170

p=0.9 0=0 1.850 1.690 1.730
0=-0.5 2.450 2.780 2.890

0=-—1.5 1.320 1.270 2.720

Notes: Data are simulated from a high-frequency VAR as given in equation (4.2) with
homoscedastic errors. For each parameter combination we estimate a mixed-frequency
VAR(p) with ppae = 2m (Pmaz = m for m = 12). The table reports the average chosen
lag length due to the corrected AIC criterion (5.1).

5.2 MIDAS: Weighting Functions, Restrictions, and Lag
Lengths

There are three important aspects in specifying a MIDAS model. First, one
has to choose the weighting function itself. Second, should any restriction
be imposed on the chosen weighting function? And third, how many lags
should be included in the estimation? The first issue will be investigated in
the Monte Carlo forecasting exercise in the next chapter. As we are interested
in forecasting, the judgement will be based on forecast accuracy measures.
Concerning the second and third issue, Ghysels, Sinko, and Valkanov (2007)
suggest that, while estimating the weighting parameters, the lag selection is
purely data driven. This implies that including another lag in the estimation
which does not improve the estimation fit would be assigned a weight of zero.
Furthermore it implies that no restrictions are imposed on the weighting

function.

Loosely speaking, one should include as many lags as possible and let the data
speak for themselves. This approach can possibly be recommended for finan-

cial applications where data are often sampled at 5-minute or daily frequency
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but not for macroeconomic data, which are often sampled at monthly and
quarterly frequencies. The reason is that including more higher-frequency
lags reduces the estimation sample in general, as less observations of the
lower-frequency variable 7, can be used for estimation. In chapter 3 we
reviewed the existing literature on MIDAS applications. In almost all (fi-
nancial) applications the weighting function is restricted to obtain declining
weights. This stands in contrast to the statement of Ghysels, Sinko, and
Valkanov (2007) to let the data speak for themselves. We investigate the
restriction and the issue of the number of lags subsequently, as we cannot

rule these out as interrelated.

5.2.1 Restriction of the Weighting Function

We start with the issue of whether the weighting function should be restricted
or not. We employ the three processes from the previous chapters for our
analysis. To keep estimation issues simple, we allow only for two parameters
in the exponential Almon lag specification (2.56).> We start at the point
where we allow the data to speak for themselves as suggest by Ghysels,
Sinko, and Valkanov (2007). Thus for the exponential Almon lag we have
—100 < 6,60, < 100 and 0 < 6;,0, < 300 in our Beta weighting function.
We include 3m number of lags of the higher-frequency variable. For each
simulated process set we estimate the two weighting parameters for each

weighting function. We conduct 500 replications.

3 All empirical applications so far used only two parameters in the weighting function.

4 We are aware of the fact that these are restrictions, but we have to use them to avoid
numbers which cannot be handled by the computer as they become too large (due to
the exponential function).
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In Table 5.3 we display the average two parameters (6; and 6,) for both the
Almon and the Beta weighting functions for Process 1. Each row represents
a combination of p (persistence) and § ('lead’). On average, relatively large
values are chosen from the given data. Let us first consider the exponential
Almon lag weighting function. For moderate persistent simulated time series
(p < 0.5), a positive 0; and a negative 0 is estimated. This corresponds
to the sharp, peaked weights where the peak is located between the second
and fourth observation of the higher-frequency variable. Independently of
the included lags, up to five positive weights (> 0.05) are assigned. For
higher simulated persistent times series (p > 0.9) both weighting parameters
are negative. This corresponds to a sharp declining weighting function with
assigning a weight of almost 1 to the first lag of the higher- frequency variable.
These results hold across different frequency mixtures. We plot the two
typical shapes of the weighting function in Figure 5.1. The results obtained
for the Beta weighting function can be interpreted in exactly the same way.
The estimated parameters produce the same shape for the weighting function
as the exponential Almon lag weighting function. This points to the fact that

both weighting functions interpret the data in the same way.

Fig. 5.1: Examples of estimated weighting functions for Process |

0.8 ‘ ‘ ‘ 1 ‘ ‘ ‘
61:10.45, 62:—1.74 Gl:—19.40, 62:—15.93
0.8
0.6
) £ 0.6
) )
5 04 S
2 2 04
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0 2 4 6 8 10 0 2 4 6 8 10
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We find similar results for Process II. The average weighting parameters are

reported in Table 5.4. In general we find either a sharp peak around lag 5 or
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Tab. 5.5: Average Parameter values of the exponential Almon and Beta weighting
function: Process I11

WF' 1

WF 2

WF 1

WF 2

WF 1

WFE 2

G =0.6
B =3
B =6
G =0.6
B =3
B =6
61 =0.6
pr=3
B =6
ﬁ1206
B =3
B =6
G =0.6
B =3
B =6
61 =0.6
B =3
B =6

m=3
Almon Beta
91 02 91 62
-1.394 0.066 0.966 4.348
-1.357 0.054 0.965 4.275
-1.388 0.066 0.961 4.335
-0.376  0.009 0.975 1.628
-0.367 0.008 0.976 1.643
-0.370 0.008 0.976 1.638
m=4
-0.988 -0.531 0.955 11.986
-0.961 -0.538 0.948 11.865
-0.399 -0.784 0.863 12.493
-0.435 0.014 0.968 1.957
-0.429 0.013 0.968 1.979
-0.430 0.013 0.968 1.979
m =12
-2.169 -5.028 0.643 16.770
-0.528 -4.869 0.609 15.414
-1.712 -4.685 0.449 11.008
-0.727 -1.667 0.907 15.783
-0.545 -1.375 0.820 13.421
-0.282 -1.370 0.563 11.463

Notes: Data are simulated from a MIDAS regression as in equation (4.4). Each process

is simulated 500 times.

WF'1 corresponds to an exponential Almon lag function with
0 = (7x 1074, =5 x 1072) and WF2 with parameters § = (7 x 107%,—6 x 1073). This

table reports the average parameters within the exponential Almon lag (2.56) and Beta

(2.57). The parameters are not restricted. The number of included lags is fixed to 3m.
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a concentration of weights on the first two lags. The shape is in general the

same as plotted in Figure 5.1.

For Process IIT we have tabulated the results in Table 5.5. For this process
the a priori parameters are known from the data generation process. First we
can conclude that for this process, the average parameters do not converge
to their true values. Nevertheless, the obtained values for both weighting
functions generate declining weights. But this decline is rather sharp in all

cases, that is the second weighting function (WF 2) cannot be reproduced.

The results for Processes I and II may not be intuitive for the forecasting
process. Why should the value of the leading indicator obtained three or four
periods before be more important than the most recent one. Furthermore,
why should only the most recent one be used in forecasting, while discard-
ing the other lags? A declining weight function is more intuitive for the
forecaster. Does the forecast accuracy improve as we restrict the weighting
function to ensure declining weights, in comparison to unrestricted weighting
functions? As we outlined in the literature section, in most applications the
weighting function is restricted. Again, we employ our Monte Carlo study
to answer this question. In the case of the exponential Almon lag both 6,
and 0, have to be negative to ensure declining weights.> As |;| increases
the more concentrated are the weights on the first lags. The Beta weighting
function is declining if §; = 1 and 65 > 1. As 6, increases, the more rapidly

the weights decline.

For each simulated time series we conduct a one-step-ahead forecast of the
lower-frequency variable. We compare the squared error obtained with the
unrestricted weighting functions and the restricted weighting functions. For
the exponential Almon lag we impose the restriction —1 < ¢; < 0 and
—0.1 < 03 < 0 which ensures declining weights. The higher the absolute
values of #;, the more weight is assigned to the more recent observations of

the leading time series. For the Beta weighting function we impose ¢, = 1

® Ghysels, Sinko, and Valkanov (2007) state that 6, < 0 guarantees declining weights
(p.57). This is wrong. For some positive values of 8; the weighting function can be
hump shaped or increasing in weights. Ghysels, Sinko, and Valkanov (2007) even
show this in a graph in their paper (p. 58).
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and 1 < 0y < 15. We restrict the sharpness of decline in both cases, as from
the previous results we know that there is a tendency to assign the whole

weight to the first lag.

Table 5.6 displays the results for Process 1. Each entry represents the ratio
of the mean-squared error (MSE) of a one-step-ahead forecast of the MIDAS
model of unrestricted and restricted weighting functions. A ratio smaller than
1 indicates that the unrestricted weighting function produces smaller MSEs.
We find that there is no difference between the restricted and unrestricted
cases. Only for the case p = 0.95 and J;, < 0 is there a marginal advantage
of the unrestricted weighting function. Given the results there is no need to

put any restrictions on the weighting function.

Similar results can be reported for Process II tabulated in Table 5.7. In
case of p = 0.9 and § = —1.5 the restricted weighting function results in
higher forecasting errors. For other parameter combinations there seems to
be no difference in forecasting accuracy between restricted and unrestricted

weighting functions.

Conducting the same exercise for Process III seems not to make any sense.
This is first, because the data-generating process assumes declining weights.
And second, we confirmed that for this data structure, decreasing weights are
estimated. Table 5.8 reports the ratio of the unrestricted and the restricted
weighting functions. The results provide an interesting interpretation. In
most cases the restricted weighting function results in higher MSEs; in some
cases, (for example WF 1: 3; = 6 and m = 4), the restriction yields lower
MSEs. Thus, we have found another situation where restriction makes sense.
This points to the fact that there can be an ’optimal restriction” for the

weighting function. But could be difficult to find in applied work.

This section demonstrates that there is no clear answer to whether the weight-
ing function should be restricted or not. At least there seems to be no disad-
vantage if we prefer one of the options. There some exceptions. In some cases
(highly persistent time series) there is a tendency to restrict the weighting

function which leads to lower forecasting errors.
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In general we cannot determine whether our results hold in general, as the
number of included lags was fixed. Furthermore our imposed restrictions are
only an example out of many possible other restrictions. There may be room
for improvement in forecasting accuracy with restricted weighting functions
when the number of lags is increased or decreased. We will investigate this

issue in the next subsection.

Tab. 5.6: MSE ratios of restricted and unrestricted weighting functions: Process I

m =3 m =4 m =12
Almon Beta Almon DBeta Almon Beta
p=0.1 0=0 1.017 1.005 1.011 1.009 1.002 1.008

0=-05 1.016 1.006 1.009 1.008 1.012 1.011
0=-15 1.018 1.003 1.003 1.003 1.018 1.011
0=-35 1.012 1.012 1.018 1.003 1.012 1.016
p=0.5 0=20 1.016 1.005 1.013 0.999 1.009 1.006
0=-05 1.010 1.004 1.009 1.004 0.998 1.001
0=-15 1.011 1.007 1.003 1.004 1.015 1.019
0=-3.5 1.001 1.002 1.007 1.005 1.010 1.014
p=0.9 =20 1.002 1.001 1.006 1.002 1.004 1.004
0=-05 0983 0991 0.98 0986 0.996 0.990
0=-15 0983 0990 0.987 0.987 1.004 0.991
0=-35 0984 0991 0.98 0.985 0.996 0.990
p=10.95 0=20 1.000 1.000 1.007 1.006 1.006 1.000
0=-05 098 0993 098 0986 0.996 0.977
d=-15 0984 0992 098 0985 0.996 0.977
0=-35 098 0992 0.987 0.987 0.997 0.982

Notes: Data are simulated from a high-frequency VAR as in equation (4.1) as in the
previous table. We estimate a MIDAS model with restricted and unrestricted weighting
functions and calculate one-step ahead forecasts of the lower frequency. We used the
following restrictions: exponential Almon lag weighting function (2.56): —1 < 6; < 0 and
—0.1 < 65 < 0, Beta weighting function (2.57): 6; = 1 and 1 < 6 < 15. This table
displays the ratio between MSE from MIDAS regressions with restricted and unrestricted

weighting functions. The number of included lags is fixed to 3m.
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Tab. 5.7: MSE ratios of restricted and unrestricted weighting functions: Process

11
m =3 m =4 m =12
Almon Beta Almon Beta Almon Beta
p=0.1 0=0 1.012 0980 1.011 1.020 1.000 1.017

0=-05 0987 1.000 0995 1.004 1.021 1.002
0=-1.5 1.017 1.023 1.018 1.000 1.019 1.024
p=0.5 0=0 1.024 0984 1.003 1.018 1.036 1.020
0=-0.5 1.005 1.029 1.003 0.995 1.001 0.988
0=-15 0999 1.046 1.013 1.012 1.025 1.004
p=209 0=0 1.007 1.003 1.006 0.995 1.006 1.002
0=-05 0992 1.009 0095 0954 1.000 0.982
0=-—1.5 0638 0.831 0.425 0.812 0.858 0.745

Notes: Data are simulated from a high-frequency VAR as in equation (4.2) as in the
previous table. Each process is simulated 500 times. We estimate a MIDAS model with
restricted and unrestricted weighting functions and calculate one-step ahead forecasts of
the lower frequency. We used the following restrictions: exponential Almon lag weighting
function (2.56): —1 < #; < 0 and —0.1 < 65 < 0, Beta weighting function (2.57): 6, = 1
and 1 < 0 < 15. This table displays the ratio between MSE from MIDAS regressions
with restricted and unrestricted weighting functions. The number of included lags is fixed

to 3m.
5.2.2 Choosing the Number of Lags

Finally, we want to investigate how many lags one should include in the
estimation of MIDAS models. Surprisingly the current literature is relatively
uninformative on how many lags are included and on which criterion the
number of lags is chosen. There are no formal selection criteria and the

lengths seem to be chosen rather ad hoc.

In the simplest bivariate case, in MIDAS regressions, only four parameters
have to be estimated independently of the number of included lags. So there
is no threat of proliferation of parameters and (or) overparametrization as in
standard linear models by inclusion of more lags. Loosely speaking, we may
include as many lags as possible, and positive weight assignments determine

the lag lengths implicitly. In practice this approach is limited. The more lags
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Tab. 5.8: MSE ratios of restricted and unrestricted weighting functions: Process
I

Almon Beta Almon Beta Almon Beta
WF1 (=06 1.281 0.934 1.551 0.790 1.004 0.668

b1 = 1.299 0816 1.771 0.796 0.974 0.662
B = 1.415 0962 2.079 0918 1.008 0.704
WF2 (=06 0.995 0.841 0.960 0.767 1.168 0.520
B = 0984 0.812 0.952 0.794 1.055 0.477
b1 =6 0975 0.826 0946 0.777 1.146 0.538

Notes: Data are simulated from a MIDAS regression as in equation (4.4). Each process
is simulated 500 times. WZF1 corresponds to an exponential Almon lag function with
0 = (7Tx107* —5x1072) and WF2 with parameters § = (7x107%, —6x1073). We estimate
a MIDAS model with restricted and unrestricted weighting functions and calculate one-
step ahead forecasts of the lower frequency. We used the following restrictions: exponential
Almon lag weighting function (2.56): —1 < 61 < 0 and —0.1 < 03 < 0, Beta weighting
function (2.57): #; =1 and 1 < 65 < 15. This table displays the ratio between MSE from
MIDAS regressions with restricted and unrestricted weighting functions. The number of

included lags is fixed to 3m.

that are included, the smaller the estimation sample. In financial applications
with minute and daily data available, the forecaster can be more generous
with the number of included lags. But in macroeconomic forecasting this
problem can be severe.5 Ghysels, Santa-Clara, and Valkanov (2004) state
that standard selection procedures such as the Akaike or Schwarz criterion
(which are often used for model selection in forecasting) can be applied in the
MIDAS context.” But no article has applied such a criterion. We consider one

of the standard selection criteria, the Bayesian Information criterion (BIC)

M
BIC = In(6%) + - InT

6 To give an example: for the purpose of forecasting German GDP growth the data set
often starts in 1991 to avoid structural breaks due to reunification. Using a monthly
indicator with 12 included lags reduces the estimation sample by one year. The
inclusion of 24 lags reduces the sample by two years, and so forth.

7 The authors do not investigate this issue in their paper.
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2 is the estimated variance of the error term and M is the number

where o
of estimated parameters. The classical model selection criteria impose a
penalty on additional estimated parameters. This does not apply in the
MIDAS context, as the number of estimated parameters is constant. The fit
of the regression is only determined by the error variance and the time series
length T" (included in the estimation). The BIC is decreasing with increasing
T. This demonstrates a trade-off between included lags and the number of

observations (and information) included for estimation.

In our Monte Carlo experiment we use two criteria to assess how many lags
should be included for the estimation and forecasting process. For each sim-
ulated time series model we allow for m up to 8m lags. On the one hand, we
choose the optimal lag due to the BIC criterion (in-sample criterion). On the
other hand, we assess the optimality due to forecast accuracy by forecast-
ing the lower frequency time series (OSC criterion) one-step-ahead. Granger
(1993) pointed out that in-sample selection measures (as BIC) frequently fail
to provide strong implications for the out-of-sample performance. We em-
ploy both the restricted and unrestricted weighting functions to disentangle
the possible existing relationship between forecast performance, lag length

and weighting function restrictions.

Tables 5.9 tabulates the results for the Almon weighting function for Process
I. The third and fourth columns report the average chosen lag length due
to the BIC criterion (restricted versus unrestricted weighting function). The
fiftth and seventh columns report the corresponding lags chosen due to the
OSC criterion. Columns six and eight exhibit the average RMSE at the
chosen lag due to the OSC criterion.

First we can note that on the one hand there are some differences in the
number of lags between the BIC and the OSC. For m = 3 and m = 4 there
is a tendency of the OSC to choose a fewer lags in comparison to the BIC
criterion. For m = 12 both criteria deliver similar results. On the other hand
restricted and unrestricted weighting functions deliver the same results. One

notable exception is for m = 12 where in the restricted BIC case and p = 0.95

8 We employ the same restriction as in the previous subsection.
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the number of chosen lags are considerably higher. For lower persistent time
series the average number of lags is about 4m or 5m. For higher persistent
series there is a tendency of the BIC criterion to include the maximum of
allowed lags (24 for m = 3 and 32 for m = 4).

Comparing the RMSEs for OSC criterion we find interesting results. In
contrast to the previous results (Table 5.6) there is a difference in forecasting
performance between restricted and unrestricted weighting functions. In case
of persistent time series (p > 0.9) the RMSE is lower (comparing the fourth
and sixth columns) for restricted weighting functions. The opposite is true

for p < 0.5 where the RMSE is higher for restricted weighting functions.

The interpretations for the exponential Almon lag function can also be drawn

for the Beta weighting function. The results are displayed in Table 5.10.

For Process Il we find similar results concerning the lag length. The lag
lengths to be chosen are around 4m independently of the selection criteria.
The results are reported in Tables 5.11 and 5.12. There is one notable excep-
tion to Process I. Restrictions on the weighting function do not improve the
forecasting accuracy. The RMSE of restricted weighting functions are in any
case higher than the unrestricted counterpart. Again, the interpretations for
the Beta weighting functions are the same as for the exponential Almon lag

weighting function.

Taking these results and the results from the previous subsection, we can
conclude that forecast performance, the number of included lags and weight-
ing function restrictions are interrelated. Our results stand in contrast to the
statement of Ghysels, Sinko, and Valkanov (2007) to let the data speak for
themselves when forecasting is concerned. Lag length selection and the re-
striction of the weighting function should explicitly investigated to optimise

forecasting results.
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Tab. 5.9: Exponential Almon lag weighting function: Lag length selection for Pro-

cess I
BIC Out-of-sample
unrestricted restricted

m=3
unrestricted  restricted lag RMSE lag RMSE
p=0.1 6=0 12 11 12 0.768 11 0.861
§d=-0.5 13 12 12 0.841 11 0.945
6=-1.5 13 11 12 0.867 12 0.944
6=-35 12 11 12 0.909 12 0.994
p=0.5 6=0 13 12 12 0.884 12 0.949
6=-0.5 12 11 13 1.204 13 1.259
6=-1.5 11 10 13 1.852 12 1.769
6=-35 10 10 13 1.927 12 1.852
p=0.9 0= 15 13 12 0.773 12 0.843
6=-0.5 21 23 15 0.292 15 0.243
6=-1.5 23 24 17 0.266 16 0.194
6=-35 23 24 16 0.186 15 0.135
p=0.95 6=0 16 15 13 0.883 12 0.960
6=-0.5 24 24 16 0.147 17 0.118
6=-1.5 24 24 17 0.143 17 0.113
§d=-35 24 24 17 0.136 18 0.111

m =4
unrestricted  restricted lag RMSE lag RMSE
p=0.1 6=0 16 15 17 0.897 15 1.000
6=-0.5 16 15 16 0.841 15 0.941
6=-1.5 17 16 17 0.783 15 0.871
6=-35 16 14 16 0.815 16 0.898
p=05 6=0 16 15 16 0.839 15 0.929
6=-0.5 16 15 17 0.940 17 1.001
6=-1.5 14 13 18 1.207 15 1.197
§d=-35 14 13 18 1.522 16 1.492
p=09 6=0 19 18 16 0.893 17 0.959
6=-0.5 23 28 21 0.339 18 0.307
6=-1.5 23 29 22 0.348 19 0.291
0=-35 23 30 22 0.273 20 0.227
p=0.95 6=0 20 19 17 1.096 17 1.153
6=-0.5 32 32 23 0.152 23 0.123
6=-1.5 32 32 22 0.102 22 0.077
6=-35 32 32 24 0.093 22 0.073

m =12
unrestricted  restricted lag RMSE lag RMSE
p=0.1 6=0 40 43 49 0.884 46 0.962
6=-0.5 41 43 51 0.943 47 1.026
6=-1.5 42 42 49 0.827 48 0.919
6=-35 44 44 46 0.849 44 0.919
p=0.5 6=0 40 40 49 0.825 47 0.897
6=-0.5 45 44 47 0.877 48 0.940
6=-1.5 42 44 47 0.817 43 0.889
6=-35 41 42 48 0.893 48 0.976
p=0.9 6=0 48 48 48 0.874 48 0.946
6=-0.5 37 43 50 1.236 51 1.282
6=-1.5 36 44 55 1.243 54 1.269
6=-35 32 41 55 1.286 52 1.304
p=0.95 6=0 51 51 49 1.066 48 1.105
6=-05 37 64 59 0.252 49 0.287
6=-1.5 36 64 59 0.272 47 0.285
6=-35 36 64 61 0.271 46 0.289

Notes: Data are simulated from a high-frequency VAR as in equation (4.1). Each process is simulated

500 times. The maximum lag length is 8m. This tables reports the average lag length due to the BIC

criterion and the out-of-sample criterion both for restricted and unrestricted weighting functions for the

exponential Almon lag weighting function. For the OSC criterion the average RMSE is reported for the

chosen lag.
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Tab. 5.10: Beta lag weighting function: Lag length selection for Process I

BIC Out-of-sample
unrestricted restricted
m =3
unrestricted  restricted lag RMSE lag RMSE
p=0.1 6= 12 11 13 0.848 12 0.876
6=-0.5 13 11 12 0.913 12 0.969
6=-1.5 12 11 13 0.900 12 0.955
6=-35 12 11 12 0.986 12 1.028
p=0.5 6=0 13 11 12 0.929 12 0.961
§d=-0.5 12 10 12 1.173 15 1.251
6=-1.5 11 8 10 1.571 17 1.545
6=-35 11 8 8 1.561 18 1.525
p=0.9 6=0 14 13 12 0.807 12 0.834
6=-0.5 23 24 12 0.402 14 0.230
6=-1.5 24 24 12 0.414 15 0.182
6=-35 24 24 12 0.259 14 0.130
p=0.95 6=0 15 15 12 0.886 12 0.943
6=-0.5 23 24 15 0.219 17 0.113
6=-1.5 23 24 15 0.286 17 0.107
6=-35 23 24 15 0.239 17 0.108
m =4
p=0.1 =0 16 14 18 0.944 16 1.002
6=-0.5 16 14 17 0.924 15 0.953
6=-1.5 16 14 17 0.844 16 0.886
6=-35 15 14 17 0.847 16 0.901
p=05 6=0 16 14 17 0.880 15 0.934
6=-0.5 15 13 16 0.954 19 0.999
6=-1.5 13 11 16 1.073 22 1.108
§d=-35 13 10 15 1.271 24 1.296
p=09 6=0 18 18 17 0.908 16 0.951
6=-0.5 28 31 13 0.462 17 0.306
6=-1.5 31 32 13 0.570 18 0.282
6=-35 31 32 13 0.401 19 0.222
p=0.95 6=0 19 19 17 1.078 16 1.117
6=-0.5 32 32 18 0.314 22 0.120
6=-1.5 32 32 17 0.196 21 0.078
6=-35 32 32 17 0.215 22 0.075
m =12
p=0.1 6=0 43 41 52 0.885 45 0.940
6=-0.5 46 41 55 0.913 46 1.000
6=-1.5 43 41 49 0.808 47 0.894
6=-35 44 42 49 0.853 44 0.911
p=05 6=0 41 40 50 0.809 48 0.876
6=-0.5 44 42 51 0.865 49 0.915
6=-1.5 45 42 50 0.802 44 0.864
6=-35 44 40 52 0.887 48 0.953
p=09 6=0 50 47 51 0.851 48 0.911
6=-0.5 41 27 48 1.631 65 0.709
6=-1.5 42 26 43 1.693 66 0.649
6=-35 39 26 45 1.731 64 0.674
p=0.95 6=0 52 50 47 1.041 47 1.094
6=-0.5 65 7 47 0.973 54 0.288
6=-1.5 66 7 44 1.244 50 0.278
6=-35 67 80 43 1.149 51 0.282

Notes: Data are simulated from a high-frequency VAR as in equation (4.1). Each process is simulated

500 times. The maximum lag length is 8m. This tables reports the average lag length due to the BIC

criterion and the out-of-sample criterion both for restricted and unrestricted weighting functions for the

Beta weighting function. For the OSC criterion the average RMSE is reported for the chosen lag.
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Tab. 5.11: Exponential Almon lag weighting function: Lag length selection for

Process 11
BIC Out-of-sample

unrestricted restricted unrestricted — restricted

m=3
lag lag lag RMSE lag RMSE
p=01 06=0 13 11 13 0875 11 0.974
0=-0.5 12 10 13 0.672 12 0.764
0=-15 13 12 12 0.677 11 0.742
p=05 0=0 12 10 14 0955 12 1.033
0=-0.5 10 9 14 1.044 13 1.043
0=-15 10 10 13 0982 12 1.007
p=09 06=0 12 11 12 1.127 11  1.175
0=-0.5 11 10 14 1.135 12 1.841
0=-—1.5 10 7 13 2.003 14 2.462

m=4
p=01 06=0 16 15 15  0.695 15 0.783
0=-0.5 17 16 17 0.672 15 0.765
0=-15 16 15 15  0.780 15 0.874
p=05 06=0 17 15 16 0908 16 0.975
0=-0.5 16 15 17 0817 15 0.919
0=-—1.5 15 14 17 0.683 14 0.697
p=09 06=0 15 15 18 1.218 17 1.227
0=-0.5 14 13 18 2191 17 2.104
0=-15 16 17 17 0.207 16 0.422

m = 12
p=01 06=0 43 44 49 0935 48 1.014
0=-0.5 44 44 48  0.889 46  0.968
0=-—1.5 43 44 50  0.788 46  0.863
p=05 0=0 43 45 49 0933 47  0.993
0=-0.5 43 44 48  0.753 46  0.829
0=-15 43 42 50  0.830 47  0.927
p=0.9 =0 42 44 49  0.882 48  0.956
0=-0.5 44 44 50 0.571 50 0.634
0=-15 40 39 46 0.593 39 0.931

Notes: Data are simulated from a high-frequency VAR as in equation (4.1). Each

process is simulated 500

times. The maximum lag length is 8m. This tables reports

the average lag length due to the BIC criterion and the out-of-sample criterion both for

restricted and unrestricted weighting functions for the exponential Almon lag weighting

function. For the OSC criterion the average RMSE is reported for the chosen lag.
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Tab. 5.12: Beta lag weighting function: Lag length selection for Process 11

BIC Out-of-sample

unrestricted restricted unrestricted  restricted

m=3
lag lag lag RMSE lag RMSE
p=0.1 0= 12 11 13 0.960 1 1.070
0=-0.5 12 10 13 0.769 1 0.901
0=-1.5 12 11 13 0.754 1 0.871
p=05 06=0 12 10 12 0.968 1 0.829
0=-0.5 11 8 14 0.940 1 0.942
0=-1.5 9 6 12 0754 1  0.783
p=09 0= 11 11 9 0973 1 0.810
0=-0.5 12 6 7 1.652 1 1.505
0=-—1.5 10 3 12 1442 2 1.528

m=4
lag lag lag RMSE lag RMSE
p=0.1 0= 15 14 17 0.727 14  0.779
0=-0.5 16 16 17 0.729 15 0.760
0=-—1.5 15 15 16 0861 14 0.867
p=05 0=0 16 14 17 0929 18 0.977
0=-0.5 17 14 17 0.882 17 0.936
0=-1.5 14 13 17 0.788 15 0.707
p=20.9 =0 15 12 13 1.097 22 1.063
0=-0.5 13 5 19 1400 26 1.315
0=-—1.5 22 4 19 0396 23 0493

m =12
p=01 06=0 44 42 51 0.928 47  0.999
0=-0.5 46 43 51 0.859 47  0.936
0=-1.5 45 41 53 0.779 47  0.839
p=05 06=0 45 42 52 0.891 47 0.974
0=-0.5 45 44 51 0.730 45  0.798
0=-—1.5 45 41 51  0.862 48 0.913
p=09 06=0 46 43 49 0.877 50 0.936
0=-0.5 45 31 53  0.525 33  0.621
0=-1.5 39 16 44 0.521 35  0.878

Notes: Data are simulated from a high-frequency VAR as in equation (4.1). Each
process is simulated 500 times. The maximum lag length is 8m. This tables reports
the average lag length due to the BIC criterion and the out-of-sample criterion both for
restricted and unrestricted weighting functions for the Beta weighting function. For the

OSC criterion the average RMSE is reported for the chosen lag.
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5.3 Suggestions for Applied Forecasting

Given our specification results we want to draw some conclusions and to give
the following recommendations for specifying a mixed-frequency time series

model:

1. Consider only small orders (up to 4) of mixed-frequency VAR mod-
els, independently of the frequency mixture and the data structure.
Low scale MF-VAR can handle many data structures even for high-
frequency mixtures. Larger models would increase the computational

costs.

2. Forecast performance, lag length selection and restricting the weighting

functions in the MIDAS framework are interrelated.

3. The number of included lags in MIDAS models is approximately 4m or

5m.

4. Within the MIDAS framework the BIC criterion delivers often the same
results concerning lag selection as an out-of-sample criterion across dif-
ferent data structures. For persistent time series the BIC suggests to

include too many lags for estimation.

5. Whether the weighting functions should be restricted or not depends
on the data structure. In the case of strongly persistent time series
the weighting function can lead to greater forecasting accuracy. On
the other side there are data structure where the restricted weighting

functions deliver higher forecasting errors.

6. There is no difference in specification between the exponential Almon

lag and the Beta weighting function.
We suggest the following procedure for MIDAS model specification :

1. The number of included lags should be chosen via the BIC criterion.

Start with 4m and vary the number of included lags by £2m.
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2. Check the autocorrelation function of your target variable. For strongly

persistent series restrict your weighting function otherwise not.

3. In case of a pseudo-real-time out-of-sample forecasting exercise try both

the restricted and the unrestricted scheme.






6. MONTE CARLO FORECASTING STUDY

In this chapter we systematically compare the forecasting performance of
the two mixed-frequency time series models. We do not compare them only
against each other, but also with single-frequency time series models. We
analyze whether there is a systematic improvement in forecasting accuracy
by employing more advanced mixed-frequency models. We focus on short-
run forecasting: one-step ahead and intra-period forecasts. Given our rich
data structure from the four processes outlined in chapter 4, we expect to
draw clear-cut conclusions. Before we study each process separately we out-
line some theoretical results concerning the use of mixed-frequency data for

forecasting.

6.1 Forecasting with Mixed-frequency Data: Some

Theoretical Reasoning

Ghysels and Valkanov (2006) are the first to investigate theoretically the gains
in forecasting from using mixed-data sampling. These authors consider three
different information sets. If all data are available at the high frequency, the
largest information set is denoted by Z;. This is the best but in practice
often infeasible. The second-best solution is to use mixed high- and low-
frequency variables (ZM). The third information set (Z/) is obtained from
temporal aggregation, where all data are aggregated to the least frequency.

To appraise the forecasting performance, we define the mean squared error
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of three linear predictors:

P[yt+h|It] : MSE(h,It) = F (yt+h — P[yt+h |It]) (61)
P[yt+h|ItM] : MSE(thM) =k (Z/t+h - P[yt+h|ItM])
PlyenlZi] . MSE(Z) = E (Ysen — Plyernl )

for h € N. In general we expect the following ranking
MSE(h,T;) < MSE(h,IM) < MSE(h,Z{*) Vh e N. (6.2)

Ghysels and Valkanov (2006) prove within a VAR framework that under

certain conditions the following ranking holds
MSE(h,T,) = MSE(h,TM) < MSE(h,Z;*) Vh € N. (6.3)

In other words, there are circumstances where mixed-data sampling achieves
the same predictive accuracy as we would get if we had all the disaggregated
information available; we would be better off using aggregate data for com-
parison. The proof is based on Granger causality properties in a framework
provided by Dufour and Renault (1998). However, these conditions cannot
be tested empirically, as they are built upon the availability of the entire

high-frequency process.

Hyung and Granger (2008) prove that a mixed-frequency VAR model pro-
duces the lowest MSE when compared with temporally aggregated single-
frequency models and models which use a within-quarter variable (as in
Rathjens and Robins (1993)). This result holds only when all parameters
are known and does not necessarily carry over to estimated processes. The

proof relies on state-space representations.

The theorems in Ghysels and Valkanov (2006) and Hyung and Granger (2008)
provide a theoretical basis for the empirical findings, that using data sampled
at different frequencies improves forecasting accuracy in comparison with

temporally aggregated data.
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6.2 'The General Set-up

Our Monte Carlo study extends and modifies that of Ghysels and Valkanov
(2006) (GV henceforth) in several ways. First, GV consider only one data-
generating process (Process I in this thesis) for bivariate time series. We
investigate the forecasting performance for four processes, where one of them
is a trivariate process. GV generate only in-sample forecasts, whereas we
focus on the out-of-sample performance. GV include an autoregressive lag
in the MIDAS regressions. We focus on the basic specification. In addition
to the (infeasible) high-frequency VAR, the low-frequency VAR and MIDAS
regressions, we include the mixed-frequency VAR in the forecast comparisons.
GV employ as time series lengths for lower frequency 7" = 500 and 7" = 1000.
We use T'= 100 and 7" = 500. The first choice represents typical time series
lengths in applied forecasting. For instance, T" = 100 represents 100 quarters
(25 years). The longer time series length (7" = 500) is chosen to investigate by
how far the forecast performance improves. GV simulate only homoscedastic
errors, whereas we also allow for GARCH effects in the errors. GV consider
the following frequency mixtures: m = {5, 10, 20, 60, 120, 250}. For reasons
of brevity we only consider m = {3,4, 12}. The focus of this thesis is also on
typical macroeconomic mixtures with yearly, quarterly, and monthly data.
Furthermore feasible estimates for higher-frequency mixtures (such as daily-
quarterly) are difficult to obtain for the mixed-frequency VAR. In line with
GV, we simulate each process 1,000 times. Furthermore we also augment the

information set to allow for intra-period information.

In sum, we compare the forecasting performance of five time series models.
The infeasible high-frequency VAR (HF-VAR), the low-frequency VAR (LF-
VAR), the MIDAS model with both exponential Almon and Beta weighting
function, and the mixed-frequency VAR (MF-VAR) within the framework
provided by Zadrozny (1990). For process III we substitute the LF-VAR
with an AR benchmark model. We forecast the lower-frequency variable
one-step-ahead. Thus we focus on short-term forecasting. In our Monte

Carlo study it is the final observation 7. We use all information available up
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to T'—1 to generate the forecast, that is mT —m high-frequency observations.
This notation is valid for the MIDAS models and the LF-VAR where no aux-
iliary forecasts are necessary to obtain the desired forecast (direct forecasting
approach). For the HF-VAR and the MF-VAR the final forecast value is de-
noted by mT and we use information up to m7T — m, but the forecasting
horizon is different. For MIDAS and LF-VAR the horizon is h = 1; for the
HF-VAR and MF-VAR the horizon is h = m, as we have to iterate up to the
desired forecast (iterated forecasting approach). To avoid confusion, all fore-
casts use the same information set. As the forecasting evaluation criterion,
we employ the Root Mean Squared Error (RMSE)

1
RMSEZT = m \/ (yT - ng)Q (64)
1 =
RMSE;r = 1000 Z V (Yr — Jm1)?, (6.5)

where 7 denotes the model. The first definition is the notation for LF-VAR
and the MIDAS approach, whereas the second is the RMSE notation for the

other models.

We note that in the case of the HF-VAR and MF-VAR our notation deviates
from the standard definition of the RMSE. To obtain the desired forecast for
the actual value in T" we have to iterate the forecast up to m7T starting in
mI — m. Thus, in the case of monthly and quarterly data, we generate two
auxiliary forecasts to get the desired forecast. The standard RMSE in this
case is the average of the forecasting errors up to the forecast horizon. Apply-
ing the standard RMSE criterion would introduce bias into our comparisons
for two reasons. First, the number of generated forecasts is different; second,
the longer the forecasting horizon, the higher is the average forecasting error.

This should be borne in mind for interpretation of the forthcoming results.

In a second step we augment the information set to allow for intra-period
information. Thus the high-frequency information set contains observations
up to m1 — 1. A priori this should improve the forecasting accuracy, as
shown by Ghysels and Valkanov (2006). We also outlined in chapter 3 many

examples where accounting for intra-period information reduces forecasting
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errors. The augmentation of the information set also mimics real-time situ-
ations, where actual information is processed to update the current estimate
of GDP (nowcasting). This situation is often found at central banks where
monetary policy is conducted in real time. But as we have outlined in chapter

3, bridge equations are still the dominant approach for nowcasting at central
banks.

6.3 Process I

Given our findings in chapter 5 we can specify how to estimate the mixed-
frequency time series models. In the MIDAS framework we select the number
of included lags with the BIC. The range of tested lags is 4m=+2m. We restrict
the weighting function only for p > 0.9, as given in chapter 4. In the case
of the mixed-frequency VAR, we allow for a maximum of three lags. For lag
selection we use the corrected AIC criterion as stated in equation (5.1). In
the case of the HF-VAR we generate the forecasts with a VAR(1) process,
as the true data generating process is a VAR(1).! For the LF-VAR we allow

for a maximum of 2m lags. We take the BIC to choose the optimal lag.?

The results for Process I are tabulated in ten tables which are all contained
in an appendix to this chapter. We will focus on cases where p > 0.5 as these
exhibit significant autocorrelations as outlined in chapter 4. We start with
the comparison to the infeasible high-frequency VAR benchmark in Table 6.1.
A ratio smaller than 1 indicates that the HF-VAR exibits a higher RMSE
compared to its competitor. In general, for m = 3 and m = 4 no model
outperforms the benchmark. For p = 0.95 and m = {3,4} the HF-VAR
clearly dominates its competitors. This result is in line with Ghysels and
Valkanov (2006) who also find ratios larger than 1 although for in-sample
comparisons. The superiority of the HF-VAR holds for the LF-VAR and the
MF-VAR for m = 12 but not for the MIDAS models. For larger persistent

1 'We experimented with lag selection criteria but in almost all cases the VAR(1) was
chosen.
2 The results indicate that in most cases a VAR(1) is selected.
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series (p > 0.9) both MIDAS models outperform the HF-VAR by 10 to 20
%. This finding is due to the calculation of forecasts. For m = 12 the HF-
VAR generates 11 auxiliary forecasts to obtain the desired forecasts, which
increases the forecast uncertainty. In contrast, in case of MIDAS the forecast

is calculated directly. Therefore the accumulated forecast error of the HF-
VAR is higher than the direct forecast error of the MIDAS models.

The more interesting part is the comparison of the feasible models in reality.
Therefore we report the ratios of the mixed-frequency models relative to the
low-frequency VAR. The results are depicted in Table 6.2. Note, that in
this table the same results are used as in Table 6.1. A ratio below 1 indi-
cates that model 7 obtains on average lower RMSEs than the LF-VAR. The
results are heterogenous. For m = 3 only the MIDAS models outperform
the benchmark, but not for strongly persistent series (p = 0.95), whereas
the MF-VAR exhibits larger RMSEs in each case for this frequency mixture.
In this scenario, the temporal-aggregated data seems to entail enough infor-
mation for forecasting. This argument does not hold for m = 4 where the
MIDAS models outperform the LF-VAR also for p = 0.95 (by 5 to 15%) but
not as clearly as for p = 0.9 (up to 55 %). The MF-VAR is only better for
p = 0.9. The most striking results we find for the largest frequency mixture
m = 12. All mixed-frequency models outperform the LF-VAR up to 40%.
Thus, the use of untransformed mixed-frequency data clearly increases fore-
casting accuracy. Comparing MIDAS and MF-VAR the former one is better
choice. Concerning the two weighting function, the exponential Almon lag
provides constantly lower RMSEs but on a small scale level (between 1 and

5 percentage points).

It is well known that increasing the estimation sample reduces estimation
uncertainty and therefore fosters forecasting accuracy. We increase the lower-
frequency time series length from 100 to 500. Table 6.3 displays the ratio
of the RMSEs obtained from 7" = 500 relative to T" = 100 for each model
separately. A ratio below 1 indicates that the forecast errors are reduced by
an increased sample size. As expected a priori, we find that in almost all

cases forecasts improve. For higher frequency mixtures the highest gain in
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forecasting accuracy is detected for the LF-VAR. The MF-VAR reduces the
average RMSE relatively more than the MIDAS competitors.

Now we go a step further and model GARCH errors in the high-frequency
DGP. Table 6.4 reports the ratio relative to the HF-VAR. In contrast to the
homoscedastic case, the HF-VAR is almost never outperformed by the mixed-
frequency models. Comparing the ratios relative to the LF-VAR (Table 6.5),
for p = 0.9, the benchmark is always outperformed. For m = 12 we find
similar results as in Table 6.1. Both mixed-frequency approaches outperform
the LF-VAR for p > 0.9. Again we find that the exponential Almon lag
performs better than the Beta weighting function. Increasing the sample
size to 500 does not always improve the forecasting accuracy in any case as
reported in Table 6.6. For m = 12 we find almost no improvement for the
mixed-frequency models. In general we can summarize that there seems to

be a sensitivity to heteroscedastic data which may reduce forecast accuracy.

In a final step we augment the information set and include information up to
mT — 1.3 Table 6.7 reports the ratio relative to the LF-VAR, which includes
information up to mT — m. The results are striking. The average forecast
errors are reduced up to 90% compared to the LF-VAR. For m = 3 and
m = 4 the MF-VAR clearly outperforms the MIDAS models. This is due
to the true DGP. Our MIDAS approach does not contain an autoregressive
lag which seems to be the striking advantage for this data structure. This
may also explain the puzzling results for m = 3 and p = 0.95 where even the
LF-VAR outperforms the MIDAS models.

Increasing the sample size reduces again the forecast errors. All ratios are
lower than 1 in Table 6.8.

We also augment the information set for the GARCH case. The results are
essentially the same as for the homoscedastic case. Again, with the MF-VAR
we obtained the lowest RMSEs as reported in Table 6.9. And, for p = 0.95
and lower frequency mixtures the MIDAS models do not outperform the LF-

VAR benchmark. Increasing the sample size increases again the forecasting

3 To give an example, mT — 1 corresponds to the February value to forecast the March
value of the quarterly target variable.
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accuracy but not as much as in the homoscedastic case. Table 6.10 reports

the corresponding results.

6.4 Process 11

For Process II we apply the same model selection criteria as for Process I with
two exceptions. First, we do not restrict the weighting functions in any case.
Second, the forecasts for the HF-VAR are generated with a VAR(2) process.
The tables can be found in the appendix to this chapter. We proceed in the

same way as for Process I.

We start by comparing the different approaches relative to the infeasible HF-
VAR. Table 6.11 reports the results. The high-frequency benchmark model
is not outperformed considerably in any case . This stands in contrast to
our findings for Process I (Table 6.1), where for m = 12 the MIDAS models
obtained lower RMSEs in comparison to the HF-VAR.

Similar results are found in Table 6.12, where we report the ratios relative
to the LF-VAR benchmark. Only for m = 12 and p > 0.5 the mixed-
frequency approaches outperform the single-frequency benchmark. In Table
6.12 the Beta weighting function exhibits lower RMSEs in comparison to the

exponential Almon lag.

In Table 6.13 we increase the sample size of the lower frequency from 7" = 100
to T' = 500. Compared to Process I we find only small improvements up to

10%. In some cases there is a slight deterioration of the forecasting accuracy.

As in case of Process I we simulate GARCH in the errors of the DGP. Table
6.14 displays the corresponding ratios relative to the infeasible HF-VAR. As
expected, the benchmark is not outperformed, but the ratios are relative close
to 1. Using the LF-VAR as the benchmark (Table 6.15) the mixed-frequency
approaches are only better for m = 12. As in the homoscedastic case, the

increase of the sample size leads to small improvements of the forecasting
accuracy (Table 6.16).
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Finally we augment the information set. Table 6.17 reports the results for
homoscedastic errors. Generally we can state, that the higher m and the
higher p the lower is the average RMSE of the mixed-frequency models. In
contrast to Process I the autoregressive part does not drive the results as
we find some cases where the MIDAS is better than the MF-VAR. Similar
conclusions can be drawn by allowing for GARCH errors. In this case the
Beta weighting function delivers no ratios smaller than 1 for m = 3,4 but is
better than the exponential Almon lag for m = 12. The results are reported
in Table 6.19.

Increasing the sample size reduces the forecasting errors in both cases with
a lower extend in the GARCH case. The results are depicted in Tables 6.18
and 6.20, respectively.

6.5 Process 111

For Process I1I we cannot estimate a VAR(p) benchmark model, as the data
generating process is a MIDAS model. In this case we estimate an AR(p)
for the lower-frequency time series as the benchmark model. The number of
included lags is 3m + 2m and we do not restrict the weighting functions. In

case of the MV-VAR model we allow again for a maximum of three lags.

Table 6.21 (Panel A) reports the ratio of the mixed-frequency models com-
pared to the AR benchmark. A ratio below one indicates that the AR model
exhibits a higher RMSE than its competitor. We obtain clear cut results. All
mixed-frequency models outperform the AR benchmark clearly. For larger
mixtures the AR gets better but the RMSE a still higher by at least 20%
compared to the mixed-frequency models. For lower-frequency mixtures both
weighting functions exhibit similar average RMSEs, but for m = 12 the Beta
weighting function clearly outperforms the exponential Almon lag. Compar-
ing MIDAS and MF-VAR we find that MIDAS is on average better than
the MF-VAR. This result is not surprising as the DGP is a MIDAS model.
Panel B reports the results for an increase of the estimation sample. We find

rather small improvements (up to 12%). This result is important for applied
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forecasting. It states that we obtain clear cut forecasting results with stan-
dard time series lengths. Or to put it differently, increasing the sample size
would not result in significant improvements. This conclusion draws on the
similarity of the autocorrelation structures of US and German GDP (Figure
4.1) and Process III (Figure 4.9).

The augmentation of the information set improves the forecasting accuracy
markedly. In case of the MIDAS models we find a reduction of the RMSE
in comparison to the AR benchmark up to 95% (Table 6.22, Panel A). The
Beta weighting function constantly outperforms the exponential Almon lag.
The reductions for the MF-VAR are rather moderate. Panel B in Table
6.22 reports that the increase of the sample size leads to comparably better

reduction in the RMSEs than the standard information set.

6.6 Process IV: Two Indicators at Different Frequencies

For Process IV with two leading indicators we did not conduct a specification
investigation as we did for the other processes in chapter 5. Given the results
for Processes I and II, we allow for a maximum of 4m 4+ 2m lags; we do
not restrict the weighting function, as the autocorrelation function shows a
low persistent pattern. In case of the MV-VAR model, we now allow for a
maximum lag of five. The HF-VAR forecasts are generated with an VAR(1)

model.

For Process IV we find clear-cut results. The HF-VAR remains infeasible
(Table 6.23, Panel A), but compared with the LF-VAR, the mixed-frequency
approaches are better than the LF-VAR (Panel B). In contrast to a priori
expectations the increase of the estimation sample lowers the forecasting
accuracy for the mixed-frequency approaches (Panel C). Augmenting the
information set, the RMSEs decrease substantially. The MIDAS models are
up to 70% and the MF-VAR up to 35% better than the LF-VAR (Panel D).

There are no improvement by increasing the estimation sample (Panel E).
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6.7 Summary

We summarize the results of our Monte Carlo study in the following key

points:

e Mixed-frequency time series models are at least as good as single-

frequency time series models.

e In case of data with significant autocorrelation structures, one of the
two mixed-frequency approaches outperforms the temporal aggregated

benchmark model (in some cases up to 50%).

e For time series with a strong autoregressive component, the MF-VAR
outperforms MIDAS.

e For strong persistent time series and low-frequency mixtures, temporal-

aggregation is an option for forecasting.

e Augmenting the information set by allowing for intra-period informa-
tion increases forecasting accuracy in almost all cases. The improve-
ment in comparison to temporal-aggregated and single-frequency mod-

els is substantial. A reduction of forecast errors up to 95% is feasible.

e The choice for the exponential Almon lag or Beta weighting function
remains undecided. In many cases both deliver the same results; thus
they can be used interchangeably for forecasting purposes. For short-
term forecasting (allowing for intra-period information) the Beta func-

tions obtains on average lower forecasting errors.

e For persistent series and low-frequency mixtures the augmentation of
the information set does not necessarily improve forecasting accuracy
in the MIDAS case.

e Using more than two different frequencies for forecasting the mixed-
frequency time series models is feasible and demonstrates remarkable
forecasting improvements in comparison with temporal aggregated bench-

mark models.
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e Increasing the sample size reduces the average forecast errors in many
cases. But we have also find structures where no or only small improve-

ments occur.

e Our results indicate that for standard macroeconomic time series the
generated forecasts would not be more accurate, on average, than very

long macroeconomic time series.

e GARCH effects in macroeconomic time series do affect the forecasting
performance of the mixed-frequency approaches. The relative gain is
smaller in comparison to the homoscedastic case. Nevertheless, there
may be room for improvement by adjusting the models for GARCH

dynamics.

6.8 Appendix: Tables
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Tab. 6.23: RMSE Ratios: Process IV

p=0.1
p=0.5
p=209
p=10.95
p=0.1
p=0.5
p=209
p=10.95
p=0.1
p=0.5
p=209
p=10.95
p=0.1
p=0.5
p=0.9
p=0.95
p=20.1
p=0.5
p=0.9
p=10.95

Panel A: Ratio vs. HF-VAR

Standard information set

LF-VAR Almon Beta MF-VAR
1.019 1.043 1.031 1.194
1.056 1.034 1.060 1.008
1.160 1.030 1.044 1.020
1.351 1.039 1.032 1.010

Panel B: Ratio vs. LF-VAR
Standard information set

Almon Beta MF-VAR
1.023  1.012 1.171
0.979 1.003 0.954
0.888  0.900 0.879
0.769 0.764 0.747

Panel C: Ratio T'= 500 vs. T'= 100
Standard information set

0.889 0.978  0.988 1.022
0.903 1.017  0.991 1.139
0.867 1.181 1.133 1.041
0.729 1.055 1.034 1.014

Panel D: Ratio vs. LF-VAR

Augmented information set

1.031 1.011 1.288
0.883  0.866 0.828
0.405 0.413 0.721
0.281 0.284 0.632

Panel E: Ratio 7" = 500 vs. T"= 100

Augmented information set

0.889 0.964 0.983 0.989
0.903 1.078 1.104 0.988
0.867 0.929  0.922 0.993
0.729 1.067  1.066 0.996

Notes: Data are simulated from a high-frequency VAR as given in equation (4.6). Panel
A reports the ratio RMSE(1,ZM)/RMSE(1,Z;) where the HF-VAR serves as a bench-
mark. In Panel B the LF-VAR is the benchmark model (RMSE(1,ZM)/RMSE(1,Z{).
Panel C reports the ratio RMSFE(;(500)/ RM SEy;;(100) for each model i. In Panel D
the information set is augmented and includes information up to m7' — 1. The LF-VAR
is the benchmark model. Panel E reports the ratio RM.SFE{;;(500)/ RM SE¢;;(100) when

the information set is augmented.






7. EMPIRICAL EXAMPLES

7.1 Introduction

In this chapter we apply the mixed-frequency time series models to a real-
data example. From the Monte Carlo study we know that is worth using
mixed-frequency time series models to improve forecasting accuracy. We
also showed there that intra-period information does help to estimate the
current period value of the variable under investigation. This phenomenon
is labelled 'mnowcasting’ in the literature (see Giannone, Reichlin, and Small
(2008)). Nowcasting is especially important for monetary policy decisions in
real time. Assessments of current and future economic conditions are often
based on incomplete data. Most data monitored by central banks are released
with a lag and are subsequently revised. In principle, any data release may
potentially affect current-quarter estimation of GDP and the precision of the

results. A priori, there is no reason to discard any information.

We analyze the forecasting performance of the MIDAS and the mixed-frequency
VAR models with two target variables: German GDP and Industrial Pro-
duction (IP). We extend two previous studies in several ways. First, Mittnik
and Zadrozny (2005) only employed the Ifo indicators within the mixed-
frequency VAR framework to forecast German GDP growth. There are no
comparisons with other models and indicators. Similarly, Marcellino and
Schumacher (2007) use factors as leading indicators and employ different
versions of the MIDAS model to nowcast German GDP growth. Again, the
authors do not compare their results with other single indicators and models.
In this chapter we conduct a case study with both monthly and daily data.

First we forecast German quarterly and yearly GDP growth with two Promi-
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nent, monthly, single indicators for the German economy: the Ifo Business
Climate Index and the ZEW Index of Economic Sentiment. Both indicators
are available early and are not subject to revision. Furthermore, they proved

to be successful for forecasting in many empirical applications.

Additionally to the two survey indicators, we extract static and dynamic
factors from a large data set exhibiting publication lags. In recent years,
large-dimensional, dynamic, factor models have become popular in empirical
macroeconomics. Factor models are able to handle many variables without
violating the objective of parsimony and the degrees of freedom problem
often faced in regression-based analysis. The use of many variables reflects
the practice of central banks of looking at everything, as pointed out for
example by Bernanke and Boivin (2003). By using factor models one can
circumvent the problem of which variables to include in a structural model.
See Breitung and Eickmeier (2006) and Eickmeier and Ziegler (2008) for an

exposition and a literature review.

In sum we compare three indicators. First we want answer the question of
how the mixed-frequency models perform with real data. Can the results
from the Monte Carlo study be confirmed? Second, how does intra-quarterly
information contribute to short- (nowcasting) and longer-horizon forecasts?
Finally, we want to investigate whether it is worthwhile gathering many time
series when single indicators are available earlier? If the single indicator pro-
vides comparable forecasting results, why should we care about adjusting
for publication lags and revisions? Dreger and Schumacher (2004) demon-
strate that factor models yield more accurate forecasting results but these
are not statistical significant compared with forecasts generated with single

indicators.

In a second step we conduct a nowcasting experiment. If the monthly infor-
mation is informative and predictive for German GDP, what about weekly
and daily data? We gather many daily time series (interest rates, stock re-
turns, exchange rates) and extract daily factors from dynamic factor models.

Factors are extracted for every day of the year, that is also on weekends and

! See the literature section and Robinzonov and Wohlrabe (2008) for further details.
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holidays. We intended to use the EM algorithm which can handle missing
observations as outlined in chapter 2, but this was computationally infeasible
as the time series is too long. Therefore we interpolated the missing obser-
vations. We plug the obtained daily factors into the MIDAS model which
generates the forecasts. We end up with a model which updates the estimate

of the target variable as new daily information arrives.

Our approach is closely related to some other papers that investigate higher-
frequency estimates of GDP. Evans (2005) constructs a model for updating
the nowcast of long-run GDP as new information becomes available. How-
ever, his approach can handle only a limited number of series. This argu-
ment also applies to Aruoba, Diebold, and Scotti (2008), who rely on factor
analysis but their study is limited to very few variables. The inclusion of
more variables would raise the same problem as in the MF-VAR approach:
the model estimation becomes infeasible. In general these approaches esti-
mate an unobserved variable and do not produce forecasts in a strict sense.
Giannone, Reichlin, and Small (2008) also rely on factor estimation and fore-
cast GDP with a bridge equation approach, but their model operates on a
monthly basis. Nevertheless, the authors demonstrate that as new informa-
tion becomes available at a specific day within a quarter, the bridge model

can be re-estimated and thus the current estimate of GDP can be updated.

All three papers focus on US data. We are the first to use daily data without
temporal aggregation. Furthermore we are the first to apply high-frequency
forecasting to German data. We update the forecast of GDP each day in a

quarter.

This chapter is organized as follows: we start with representing some related
single-frequency literature on forecasting German GDP. Then we provide
details about the monthly data set. After the outline of details of the case
study we present the results for the monthly data. Finally we nowcast the

German economy on a daily basis for both GDP and IP.
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7.2 Related Literature

In addition to the mixed-frequency approaches of Mittnik and Zadrozny
(2005) and Marcellino and Schumacher (2007) we want to sketch some empir-
ical applications of forecasting German GDP. Compared with the forecasts
of US GDP, the literature for Germany is rather well arranged. Due to the
unification of Germany 1991 there is a structural break in every macroeco-
nomic time series at this date. Therefore more recently there are papers on
forecasting German GDP, as the time series is now considered to be long

enough to conduct comparative studies.

Camba-Mendez, Kapetanios, Smith, and Weale (2001) propose an automatic
leading indicator approach (ALI) based on dynamic factor models. In a two-
step approach, they show for Germany and other European countries that
the on average ALI forecasts better than traditional VAR and BVAR models
with traditional leading indicators. Kirschgéssner and Savioz (2001) employ
an ARX(4,4) model with a rolling forecasting scheme and find that the daily
interest rate is the best financial predictor for four quarters ahead for the time
period 1980:1-1989:1V. For the period 1992:111-1999:1V the money aggregate
M1 proved to be the best predictor. Similar papers are Davis and Henry
(1994), Krémer and Langfeld (1993), and Hagen and Kirchgéssner (1996).

In a huge comparative study, Stock and Watson (2003) investigate the pre-
dictive power of asset prices for forecasting output and inflation for different
OECD countries. The target variable is the approximate yearly growth rate
from 1971 to 1999. With an direct ARX model they find that many asset

prices do not prove to be better than univariate benchmark models.

Dreger and Schumacher (2004) compare the forecast performance of the Ifo
Business Climate Index to static and dynamic factor models. The forecast
variable depends on the forecast horizon. They forecast the growth in the
GDP series between ¢ and the period ¢ + h.2 In the direct ARX approach,
GDP enters on the right-hand side of the equation as the approximate quar-
terly growth rate. They show that, based on the RMSE criterion, the dy-

2 Yorn = 1og(Yern/yr)
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namic factor performs better than the Ifo indicator over all eight forecast
horizons. But these advantages are not systematic, as shown in the insignif-

icant results obtained with the Diebold-Mariano test.

Kholodilin and Siliverstovs (2006) proceed in a similar way. They com-
pare the most common indicators for Germany with different diffusion in-
dices (as well as their first differences). Their sample ranges from 1991:1
to 2004:1V. The authors employ annualized quarterly and biannual and ap-
proximate yearly growth rates. For each horizon, with a direct ARX model,
they generate 28 out-of-sample forecasts within both a rolling and a recursive
forecasting scheme. For model selection they use both the BIC criterion as
well as the automatic econometric model selection program PcGets. They
find a relatively poor performance for the indicators compared with the naive
benchmark (random walk). In general the first differences of the indicator
are better than the levels. The authors detect a structural break in the
GDP series around 2001 and claim that no indicator was able to predict and

accommodate the structural break.

Robinzonov and Wohlrabe (2008) provide an excellent survey of the literature

that deals with forecasting German industrial production.

7.3 A Case Study Based on Monthly Data

7.3.1 The Monthly Data Set

The time series to be forecast is the real GDP (calendar and seasonal ad-
justed) in Germany from 1991:1 to 2006:1V. We do not consider data before
1991 to circumvent the problem of structural change, or level shifts in the
data due to German unification. In contrast to Clements and Galvao (2008)
we use final, not real-time data. This is a contradiction with the opinion
of Pesaran and Timmermann (2005) that any real-time econometric model
should make use of real-time data in all stages, so as not to overstate the
degree of predictability, as shown by Diebold and Rudebusch (1991). The

effects of data vintages on model specification and forecast evaluation have
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been addressed in a number of papers (see among others Croushore and Stark
(2003) and Koenig, Dolmas, and Piger (2003)). We use final data for two
reasons. First, we want to focus on the model competition between MIDAS,
mixed-frequency VAR and single frequency models. Second, Schumacher
and Breitung (2008) showed that for Germany, data revisions do not greatly
affect forecasts. We calculate both quarterly and yearly growth rates (log

differences).

We focus on two popular leading indicators for the German economy: the Ifo
Business Climate Index and the ZEW Index of Economic Sentiment. The Ifo
Business Climate Index is based on about 7,000 monthly survey responses
from firms in manufacturing, construction, and wholesale and retail trade.
The firms are asked to give their assessments of the current business situa-
tion and their expectations for the next six months. The balance value of
the current business situation is the difference between the percentages of the
responses “good” and ”poor”; the balance value of expectations is the differ-
ence between the percentages of the responses "more favourable” and ”"more
unfavourable”. The replies are weighted in proportion to the importance of
the industry and then aggregated. The business climate is a transformed
mean of the balances of the business situation and expectations. For further
information see Goldrian (2007). The ZEW Indicator of Economic Sentiment
is published monthly. Up to 350 financial experts take part in the survey.
The indicator reflects the difference between the share of analysts that are
optimistic and the share of analysts that are pessimistic about the expected
economic development in Germany in the next six months (see Hiifner and
Schroder (2002)).

In addition to the two leading indicators, we want to include factors extracted
from dynamic factor models. We use an extended data set by Marcellino and
Schumacher (2007). We employ 151 monthly indicators from 1992:01 until
2006:12. The data set is final data for several reasons. First, a real-time data
set for as many time series is not available for Germany. Second, Schumacher

and Breitung (2008) show that the forecast performance changes little when
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real-time data are used instead of final data.?

To consider the availability of time series at the end of the sample period due
to different publication lags (ragged-edge), we follow Banbura and Runstler
(2007) and replicate the jarred-edge structure from the final vintage of data
that are available.* The data used in this study, were downloaded on 21 June
2008.5 Starting from the original data D,,r, we reconstruct the data sets,
which were available earlier 7 < mT', by shifting the pattern of publication
lags embodied in D,,; recursively back in time. That is, observation z; ._
is eliminated in D,,r, if and only if observation x; ,,7_j is missing in D,,p.
Thus, the unbalanced data set uses the original pattern of publication lags
as from 30 June 2008.

As in Zadrozny (2008) and Clements and Galvao (2008) the series are nor-

malized (demeaned and divided by the standard deviation).b

7.3.2 Design of the Case Study

We conduct a recursive forecasting exercise so that the model is specified
and re-estimated on an ever-increasing sample size using the vintage of data
available at the time the of the forecast. For each time period, we estimate the
factors with the EM algorithm outlined in chapter 2. The basic vintage ranges
from 1991:1 to 1999:1V. We report the forecasting performance for one to
four quarters ahead (h =1,...,4). Furthermore we outline the performance
of the models with information that becomes available inside the quarter
(nowcasting). Suppose that we are in December 1999 and we want to forecast
GDP growth in the first quarter of 2000 (data are available in March). We
use all available information in December to calculate the projection (h = 1).

Moving to January, new values for the indicators and the factors become

3 The finding of Schumacher and Breitung (2008) is in contrast to Koenig, Dolmas, and
Piger (2003) who find that real-time data matter for the United States.

4 The different publication lags can be considered as a real-time aspect of the data.

But we use only final data, that is the data used are not subject to revision.

www.bundesbank.de

6 As already noted, standardization speeds up computation considerably, whereas struc-
tural relationships are not affected by standardization.

5
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available. The projection for the current quarter is updated. We denote this
forecast horizon with h = 2/3, as two months of observations are missing in

the current quarter. For h = 1/3, only one month of observations is missing.

To specify the number of factors, we follow Marcellino and Schumacher (2007)
and consider two approaches. First, we determine the number of static and
dynamic factors, r and ¢ respectively, using information criteria from Bai
and Ng (2002) and Bai and Ng (2007).” Second, we compute all possible
combinations of r and ¢ and evaluate them in the forecasting exercise. In
our application, we consider a maximum of » = 6 and all combinations of r
and g with ¢ < r. For reasons of brevity we show only the results for the best
combination. In line with the literature in Banerjee and Marcellino (2006)
and Stock and Watson (2002b), only a few factors proved to be useful for

forecasting.

To investigate the forecasting performance of the mixed-frequency VAR and
the MIDAS model, we estimate some benchmark models. In the univariate
(quarterly-frequency) case we fit an AR(p) model where the lag length is
determined by the Schwarz criterion (BIC). In the multivariate case we es-
timate a bivariate VAR(p). Furthermore we estimate bridge models. Bridge
equations build a bridge over the gap between monthly and quarterly fre-
quencies. As new in-sample information becomes available, the remaining
missing values are forecast within a separate time series model (mostly an
AR(p) model). Numerous bridge models have been used in applied work.®
We model a standard ARX(p,r) model as the bridge equation, where the
indicator enters the equation with a contemporaneous value. The missing
observations within a quarter are forecast via an AR(p) model. The AR,
ARX, VAR and MF-VAR models produce iterated (or plug-in) forecasts,
whereas MIDAS produces direct forecasts. The estimation of the benchmark
models are also useful to see how much cross-variable feedback contributes

to the forecasts.

The mixed-frequency VAR models are estimated in MATLAB via maximum

7 See also Marcellino and Schumacher (2007) for details.
8 See chapter 3 for details.
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likelihood. For model selection we use the corrected Akaike Information
criterion reported in Hurvich and Tsay (1989) and used in our Monte Carlo
study. We selected the model which minimized the criterion over a range
of Prmae = 4 when the residuals showed no significant serial correlation. For
the MIDAS model we allow for a maximum of 5m = 15 months of lags.
In the Monte Carlo study we demonstrated that the exponential Almon lag
and the Beta weighting functions produce in some cases different forecasting
results. Furthermore, in chapter 4 we outlined that restrictions may be an
option. Therefore we restrict the exponential Almon lag weighting function
to ensure declining weights, whereas the Beta weighting function is estimated

unrestricted.

For each model class and horizon we report the RMSE as defined in the
Monte Carlo study. The tabulation of RMSE for all models and forecasting
combinations does not allow us to conclude whether the better RMSE results
from a model i compared with model j (or indicator) are statistically signif-
icant, that is systematic. In the literature the Diebold-Mariano test (DM)
(Diebold and Mariano (1995)) is widely used to test for systematic differences
in the forecasting errors. It should be noted, that the standard asymptotic
theory for the Diebold-Mariano test statistics is invalid whenever two mod-
els involved are nested (among others see Clark and McCracken (2001)). A
model 1 is nested in model 2 if model 2 reduces to model 1 when some pa-
rameters in model 2 are set to zero. We employ the test statistic proposed
by Clark and West (2007) which accounts for nested models and employs a
non-standard limiting distribution. The authors state that this test can also

be used for non-nested models.

Assume that model 1 is the parsimonious model. Model 2 is the larger model
that nests model 1. Clark and West (2007) suggest running the following

regression:

ft+h = (yt+h - @1t,t+h)2 - [(yt—f—h - @2t,t+h)2 - @1t,t+h - Q2t,t+h)2]. (7.1)

This tests for equal mean-squared prediction errors by regressing th on a
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constant and using the resulting t-statistic for a zero coefficient. We reject if
this statistic is greater than +1.282 (for a one-sided 0.10 test) or +1.645 (for
a one-sided 0.05 test). For the one-step-ahead forecasting errors, the usual
least squares error can be used. For autocorrelated forecasting errors, we
use the Newey-West heteroscedasticity-autocorrelation consistent standard

CITors.

7.3.3 Results

We start by comparing integer forecast horizons (h = 1,...,4) for each in-
dicator within each model class. Table 7.1 reports the RMSEs for each inte-
ger forecast horizon for both quarterly and yearly growth rates. The lowest
RMSE for each horizon is highlighted in bold face. The results are interesting
in several ways. The expected strict increase of the RMSE with an increasing
forecast horizon cannot be detected for the mixed-frequency models. In some
cases the RMSE decreases going from one horizon to the other. For example
the RMSE for the MF-VAR model with the ZEW indicator decreases from
0.619 for h = 3 to 0.587 for h = 4. We have no plausible explanation for
these results. Apparently, the forecasts for different horizons exhibit different

dynamics, which are captured by the mixed-frequency approaches.

Comparing the AR and VAR model we can state that the chosen indicators
have predictive power, as the obtained RMSE from the VAR model are lower
than the from the AR model at all horizons and for both target variables. If
we compare the different approaches with one indicator, we can state that
the mixed-frequency models always produce lower RMSE than AR and VAR.
This statement is only valid for the quarterly growth rates. In case of yearly
growth rates only the Ifo indicator in combination with mixed-frequency
models outperforms the AR and VAR benchmark, whereas the ZEW and
the factor obtain higher RMSEs. Given the overall assessment, the MF-
VAR model performs best. The comparison of Almon and Beta weighting
functions remains inconclusive. There are cases where Almon is better than

Beta (using the same indicator) and vice versa. The Ifo exhibits very good



7. Empirical Examples 169

predictive power in combination with the MF-VAR. Five out of the eight
lowest RMSEs over different horizons and target variables are obtained by
MF-VAR (Ifo). Comparing the factor results with the Ifo and ZEW indicators
we can conclude that there are only some cases where the factor approach is

better than the other two indicators.

Tables 7.3 to 7.6 in the appendix to this chapter report the Clark and West
(2007) test statistics for each model/indicator combination. The tables are
read as follows: a t-statistic greater than +1.282 (for a one-sided 0.10 test) or
+1.645 (for a one-sided 0.05 test) indicates that Model 2 (rows) has a signif-
icantly smaller RMSE than Model 1 (columns) and vice versa. For example,
consider quarterly growth rates and compare the AR model (Model 1) with
the MF-VAR model with Ifo as an indicator (Model 2). If we look in the first
column and the 11th row we can read a test statistic of 3.071 indicating that
the RMSE of MF-VAR are statistically smaller than the AR model. The
tables demonstrate that the mixed-frequency models are usually statistically
significantly better than their single-frequency benchmarks. Moreover, the
MF-VAR outperforms the MIDAS models statistically significantly in many

cases.

Now we go a step further and allow for intra-quarterly information. Table
7.2 provides the corresponding results. Instead of the VAR model we now
provide the RMSE of the bridge equation approach. A forecast horizon of
h = 1/3 means that only one observation of the quarter is missing, h = 2/3
that two months of information are missing and so forth. We want to focus
on the nowcasting aspect, that is h = 1/3 and h = 2/3. Again, there is no
strict increase in the RMSEs with an increasing forecast horizon. First we
can confirm the a priori expected result that the more information that is
available the more accurate will be the forecasts. For the quarterly growth
rates, the MIDAS model provides the lowest RMSEs for intra-quarterly fore-
casts. For yearly growth rates, we find a different result. In this case the
bridge equation approach (with the ZEW indicator) provides the greatest
forecasting accuracy. But this difference is not always statistically signifi-
cant. The corresponding Clark and West (2007) test statistics for h = 1/3
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and h = 2/3 can be found in the Tables 7.7 and 7.8. Our results differ to
the conclusions of Clements and Galvao (2008) who find that in the short
run there is little to choose between the bridge and MIDAS approaches. We
find that in the short run the mixed-frequency approaches do not necessarily

outperform the popular bridge approach.

The forecasting results from the factor approach are ambiguous. For short-
term forecasting the survey indicators provide lower forecast errors indepen-
dently of the model class used. Our results are in line with Dreger and
Schumacher (2004) who find that factor models do not lead to statistically
lower RMSE’s when compared with single survey indicators. Given these
results, we can answer our question in the introduction to this chapter: it
is not worthwhile collecting many time series for forecasting when timely

indicators are available, at least according to this example.
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7.4 'Tracking the German Economy on a Daily Basis: A
NOWecasting Experiment

The results from the previous sections are quite promising, as in-quarterly
information improves the estimate for the current quarter. It is natural
to ask: why not use even higher-frequency data, such as weekly and daily
data? In this section we want to investigate, whether daily data are useful to
nowcast the current state of the economy. Additionally we ask whether the
daily data help us to obtain more accurate forecasts for longer horizons, that
is do daily data contain any long-run information? One possible advantage
of daily data is that they are not subject to revision and are available early
(there are no publication lags). A possible disadvantage is, that daily data
are more erratic and exhibit volatile clustering. It is well known that financial
data exhibit a strong (G)ARCH behaviour (see Bera and Higgins (1993)).

In contrast to monthly data, there are no daily indicators constructed to
lead or interpreted to contemporaneously describe a specific low-frequency
time series representing the state of the economy (GDP or industrial produc-
tion). Thus, it is rather unlikely that one specific daily time series leads to
more accurate forecasts than forecasts generated with monthly indicators.”
Therefore, as in the previous section, we extract static and dynamic daily
factors and plug them into the mixed-frequency time series models. Here
another advantage of factor models becomes evident. The factor approach
can possibly eliminate movements which are likely to include measurement
errors and local shocks. This yields a more reliable signal for policy makers

and prevents them from reacting to idiosyncratic movements.

In this section we focus on the MIDAS approach with exponential Almon
and Beta weighting functions and leave out the mixed-frequency VAR model
for several reasons. First, the MIDAS approach is far more parsimonious in
handling such large frequency mixtures. As the true data generating pro-

cess is unknown, the approach is likely to estimate many parameters within

9 We experiment with some daily time series from our data set and find indeed, that
this is the case.
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the mixed-frequency VAR approach. Second, and even more important, as
the mixed-frequency VAR assumes that the process operates at the highest
frequency (daily), we would have to forecast up to a maximum of 359 days
ahead.!® For stationary transformations of variables, there exists a maximum
horizon beyond which forecasts can provide no more information about the
variable than is present in the unconditional mean. This point, called the
‘content horizon’ by Galbraith (2003), varies substantially across data series.
Therefore we would expect to forecast only the conditional mean beyond
some forecast horizon. And third, from the experience with the model, the
larger the frequency-mixture the higher the computational burden. Thus, a

recursive forecasting exercise would not be feasible in a reasonable time.

In this section we want to forecast German GDP growth as well as Industrial
Production (IP), sampled monthly. TP has often been the target variable

1 In almost all cases the leading indicators were

in forecasting exercises.!
also sampled monthly. Using mixed-frequency time series models we can
investigate whether daily data can help to improve the forecasting accuracy

of monthly IP.

7.4.1 The Daily Data Set

The prerequisite for the application of the MIDAS model is to have equidis-
tant data. Therefore we have to adjust the data set as the quarters are
defined by different numbers of days.'?> We define that a year consists of 360
days such that each quarter is defined by 90 days (m = 90). For forecasting
the monthly IP we define a month consisting of 30 days (m = 30). Abstract-
ing for a moment from a leap year, 365 days constitute a year. The first

quarter contains exactly 90 days. For the second quarter we have 91 days.

10 Assuming we are in the first days of the year and we want to forecast four quarters
ahead.

11 See Robinzonov and Wohlrabe (2008) for a literature review for German IP.

12 Ghysels, Sinko, and Valkanov (2007) state that MIDAS models can handle unequally
space data. They propose that instead of using the lag operator L'/ to use an
operator L7, where 7 is real-valued instead of a rational number. But this approach
has not been applied to real data so far.
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And the third and fourth quarters consist of 92 days. To obtain 90 days per
quarter we (arbitrarily) delete the following days: 1 May, 31 July, 31 August,
25 and 26 December. In the case of a leap year (1992, 1996, 2000, 2004) we
also delete 1 January. For the monthly case where the months have 31 days,
we delete the last day. The missing values for February are forecast with
an AR(p) process. We are aware of the fact that this is rather ad hoc and
that we destroy sample information, but we do not think is will significantly

influence our results.

Our daily data were obtained from the Deutsche Bundesbank and the IMF
database, downloaded on the 12 August 2008. Finally we can use 61 daily
series, among them interest rates, exchange rates and the equity price index
(see the appendix to this chapter for details). We match the daily series on
a grid of 360 days per year. We have many gaps in the different series due
to weekends, holidays and so forth. Finally, we end up with 360 x 15 = 5400

(possible) observations.

Originally we downloaded 268 daily time series from both data bases. Our
intention was to apply the EM algorithm to extract factors from a large data
set with missing observations. Unfortunately, due to the time series length
of 5400 matrix inversion with the EM algorithm became infeasible due to
the large time series length.'> Thus we linearly interpolated the missing
observations for the 61 daily time series.!* The remaining 201 daily time
series either ended before December 2006 or started later than January 1992.
Therefore we had to discard them, as linear interpolation was not applicable

in these cases.

7.4.2  The Forecasting Set-up

The forecasting set-up is basically the same as in the monthly case. The
first forecast is based on data from 1999:360 (the last day of the year). Then

we recursively enlarge the information set on a daily basis. On each day we

13 Even on a PC with Intel Core 2 Quad and 4GB RAM.
14 Giannone, Reichlin, and Small (2008) linearly interpolated quarterly GDP on a
monthly basis within the factor approach and claim that it works quite well.
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forecast the next four available GDP values. For instance suppose we have
a day in February, then we forecast the four quarters of the year. Being
in June we forecast the remaining three quarters of the current year and
the first quarter of the next year. Factors are extracted as outlined for the
monthly case. For the MIDAS estimation we allowed for 4 x 90 = 360
daily lags. We restricted the Almon weighting function to ensure declining
weights, whereas the Beta weighting remains unrestricted. The reason is
as we demonstrate in the previous chapters: both weighting functions often
deliver similar results. Furthermore we experimented with an unrestricted
Almon weighting function, but we obtained in some cases infinite forecasts

due to the numbers being too large in the weighting function.

7.4.3 Results

In contrast with the monthly case we only present the results graphically.
Figures 7.1 and 7.2 graph the results for quarterly and yearly growth rates
respectively. The graphs can be read as follows: the blue and red lines cor-
respond to the average RMSE of the exponential Almon and Beta weighting
function for each daily forecast horizon. The forecast horizon (x-axis) ranges
from one day to 360 days. The thick vertical line marks 90 days, which is
the current quarter. The two horizontal lines denote the RMSE of the best
model/indicator combination for h = 1/3 (best available monthly short-term
forecast) and h = 4 (best long-term forecast) from the monthly forecasting

exercise in the previous section.

In the ideal stylized case one would expect a decreasing RMSE for a decreas-
ing forecast horizon. This implies a declining line from the upper-right to the
lower-left corner of the figures. If daily data provide lower RMSEs than the
their monthly counterparts, the lines should be below the horizontal lines.
For short-term forecasting all RMSEs left of the vertical line should be below
the lower horizontal line. For long-term forecasting the blue and red lines for

h > 270 should be below the upper horizontal line.

The results for the quarterly growth rates are depicted in Figure 7.1. They
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demonstrate that the ideal expectation cannot be met. First, we can state
the RMSE are erratic. Sometimes the RMSE jumps more than one standard
deviation up or down from one day to another. Although there is no typical
clustering, as in many high-frequency time series, the erratic behaviour seems
to transmit to the RMSEs. Despite the erratic figures there is a decreasing
linear trend for the short-term forecast horizon. Nevertheless, the monthly
forecast are not outperformed. Both the exponential Almon lag and the Beta
weighting function exhibit RMSEs which are about 0.1 higher than the best
monthly short-term forecast (MIDAS model with the Ifo Indicator).

Similar results are found for yearly growth rates, as shown in Figure 7.2. The
short- and long-term monthly forecasts are not outperformed by the daily
forecasts. There is one notable difference to the quarterly growth rates. The
RMSE produced by the Beta weighting function exhibits a clear downward
trend and is less erratic than its Almon counterpart. This could be due to
the restriction imposed on the exponential Almon lag weighting function,

whereas the Beta counterpart is estimated unrestricted.

Figures 7.3 and 7.4 plot the corresponding results for German Industrial
Production. The vertical line denotes now 30 days. The competitive monthly
forecasts are generated with a VAR(p) with the three described monthly
indicators. Generally the results are similar to the GDP results: standard

monthly models are not outperformed in the short run.

Figure 7.3 plots the RMSE for monthly IP growth rates. In contrast to
GDP there is no downward trend of the RMSE. They fluctuate around a
mean. This is the main difference to the GDP results. For longer forecast
horizons the RMSE of the daily forecasts are lower than the best monthly
forecast (VAR with Factors). It seems that the daily data in this case contain

long-run information.

A similar result can be stated for the yearly growth rates plotted in Figure
7.4. In this case we find a counter-intuitive result. The RMSE of both
weighting functions decrease with an increasing forecast horizon. So far we

do not have an explanation for this result.
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Fig. 7.1: Tracking the German economy on a daily basis: Daily forecasts of quar-
terly GDP growth rates
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Fig. 7.2: Tracking the German economy on a daily basis: Daily forecasts of yearly
GDP growth rates
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Fig. 7.3: Tracking the German economy on a daily basis: Daily forecasts of
monthly IP growth rates
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Fig. 7.4: Tracking the German economy on a daily basis: Daily forecasts of yearly
IP growth rates
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7.5 Summary and Discussion

In this chapter we compared the forecasting performances of the mixed-
frequency time series models using real economic data. We started with fore-
casting quarterly German GDP growth with monthly indicators. We found
for that for quarterly growth rate independently of the indicators, mixed-
frequency models outperform single-frequency models (AR and VAR). This
statement even holds for longer forecast horizons and is confirmed by statis-
tical tests. Therefore we confirm that temporal aggregation destroys sample
information and leads to the deterioration of forecasting accuracy. On aver-

age, the mixed-frequency VAR performs better than its MIDAS competitor.

Moving from monthly to daily predictors does not lead more accurate fore-
casts. We are the first to forecast GDP and IP growth on a daily basis. We
extracted static and dynamic factors from a daily data set which is matched
to an artificial year consisting of 360 days. The missing observations were
interpolated. The extracted factors are plugged into the MIDAS model to
generate forecasts. The obtained RMSEs exhibit erratic behaviour but with
a decreasing tendency for lower forecasting horizons. We think that the er-
ratic behaviour is transmitted from the (noisy) daily data via the extracted

factors.

In the short run the daily forecasts do not outperform monthly generated
forecasts. In case of GDP, the daily update was not better than the monthly
counterpart at any forecasting horizon. In the case of industrial production,
the daily data seem to contain long-run information, as the RMSE was lower

than the one obtained from monthly mixed-frequency models.

The results are disappointing, but we think that this can be a starting point
for fruitful future research. We feel confident that the factor approach for
condensing a large information set is the best way to proceed, as we do not
believe that one daily time series can be made operable to forecast time series
such as IP and GDP. Daily updated forecasts may be better than monthly

ones when the following issues can be resolved:
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e A larger data base should be used. Many (important) daily time se-

ries had to be discarded as they were shorter than the estimation pe-
riod. Linear interpolation was not applicable in these cases. To ex-
tract factors from time series with an arbitrary structure, one needs a
computable algorithm able to handle long time series and many miss-
ing observations. Furthermore the computation should be done in a
reasonable time.!> The EM algorithm was not applicable as matrix

inversion was not feasible.

The factor extraction approach should account for the ARCH dynamics
inherently founded in many daily time series. The erratic behaviour

seems to transmit to the calculated accuracy measures.

We employed the MIDAS approach to calculate the forecasts. It is easy
to implement and the estimation with NLS proceeds very fast, but the
MIDAS approach should be revised to allow for non-equidistant data.
State-space approaches are more flexible but they are too computa-
tionally intensive at the moment. Moreover, calculations of long-run
forecasts (more than 100 days ahead) with state-space models are not

feasible at the moment.6

Suppose that we can resolve these issues, it nevertheless may be that lower-

frequency (monthly) forecasts are not outperformed by higher-frequency fore-

casts. For example, daily data remain erratic even after some transformation,

and thus the daily forecast update is also erratic. If and how central banks

(for example) can account for this information should be discussed in fu-

ture research. It will be interesting also to discuss the issue of how far we

can go by using disaggregated data for forecasting lower-frequency variables.
Aruoba, Diebold, and Scotti (2008) claim to push the factor approach to
its high-frequency limit (daily basis). But maybe there is a frequency limit

where we cannot improve forecasting accuracy for lower-frequency variables.

15 The importance of this issue was also noted by Aruoba, Diebold, and Scotti (2008).

16

In this case only the conditional mean would be forecast.
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7.6 Appendix

This appendix states the additional tables and describes the daily and monthly
time series for the German economy used in the forecasting and nowcasting

exercise.

7.6.1 Additional Tables
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7.6.2 'The Monthly Data Set

We employ and extended the same data set as used in Marcellino and Schu-
macher (2007). The monthly data set for Germany contains 111 time series
over the sample period 1992:01 until 2006:12. The source of the time series
is the Bundesbank database. The download date is 21 June 2008. In this

data set there are missing values at the end of the sample.

Natural logarithms were taken for all time series except interest rates. Sta-
tionarity was enforced by appropriately differencing the time series. Most of
the downloaded time series are already seasonally adjusted. Remaining time
series with seasonal fluctuations were adjusted using Census-X12 prior to the
forecasting exercise. We also corrected for outliers. Large outliers are defined
as observations that differ from the sample median by more than six fold the
sample inter-quartile range (see Watson (2003)). The identified observation

is set equal to the respective outside boundary of the inter-quartile.
Included monthly time series

Money market rates Overnight money Monthly average
Money market rates One-month funds Monthly average
Money market rates Three-month funds Monthly average
Money market rates Six-month funds Monthly average

Money market rates Twelve-month funds Monthly average
Money market rates Fibor one-month funds Monthly average
Money market rates Fibor three-month funds Monthly average
Money market rates Fibor six-month funds Monthly average
Money market rates Fibor nine-month funds Monthly average
Money market rates Fibor twelve-month funds Monthly average
Money stock M3 3-month moving average (centred)

Money Stock M1

Money Stock M2

Money Stock M3

Turnover Intermediate goods

Turnover Capital goods
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Turnover Durable goods

Turnover Non-durable goods

Turnover Industry

Turnover Consumer goods

Orders received Value

Orders received Value Intermediate goods
Orders received Value Capital goods
Orders received Value Consumer goods
Employment

Orders received Volume

Orders received Volume Intermediate goods
Orders received Volume Capital goods
Orders received Volume Consumer goods
Unemployment

Unemployment rate (unemployment as a percentage of the civilian labour
force)

Job vacancies

Orders received Construction sector

Orders received Structural engineering
Orders received Housing construction
Orders received Industrial construction
Orders received Public sector construction
Orders received Civil engineering

Orders received Industrial clients

Orders received Public sector clients
Consumer price index

Consumer price index

Producer price index of farm products
Production Production sector including construction
Production Production sector excluding construction
Production Construction sector Total
Production Structural engineering

Production Civil engineering
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Production Energy

Production Industry

Producer prices for industrial products (domestic sales)

Producer price index of industrial products / Total

Imports Price index

Exports Price index

Terms of trade

Retail turnover Value

Retail turnover Value Including retail of motor vehicles and including petrol
stations

Retail turnover Volume

Retail turnover Volume Including retail of motor vehicles and including petrol
stations

Yields on debt securities outstanding issued by residents Public debt securi-
ties

Yields on debt securities outstanding issued by residents Total

Yields on debt securities outstanding issued by residents Mortgage

Yields on debt securities outstanding issued by residents Public

CDAX price index / End 1987 = 100 End of month

Yields on debt securities outstanding issued by residents Debt securities is-
sued by special purpose credit institutions / Monthly average

Yields on debt securities outstanding issued by residents Other bank debt
securities / Monthly average

Yields on debt securities outstanding issued by residents Corporate bonds /
Monthly average

Yield on foreign DM /EURO bonds outstanding issued by a German-managed
syndicates / Monthly average

Yields on debt securities outstanding issued by residents / Listed Federal
securities / Monthly average

CDAX performance index End 1987 = 100 End of month

REX price index End of month

REX performance index End 1987 = 100 End of month

Yields on debt securities outstanding issued by residents Mean residual ma-
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turity of more than 1 and up to 2 years

Yields on debt securities outstanding issued by residents Mean residual ma-
turity of more than 2 and up to 3 years

Yields on debt securities outstanding issued by residents Mean residual ma-
turity of more than 3 and up to 4 years

Yields on debt securities outstanding issued by residents Mean residual ma-
turity of more than 5 and up to 6 years

Yields on debt securities outstanding issued by residents Mean residual ma-
turity of more than 6 and up to 7 years

Yields on debt securities outstanding issued by residents Mean residual ma-
turity of more than 7 years /Monthly average

Yields on debt securities outstanding issued by residents Bank debt securities
Mean residual maturity of more than 1 and up to 2 years

Yields on debt securities outstanding issued by residents Bank debt securities
Mean residual maturity of more than 2 and up to 3 years

Yields on debt securities outstanding issued by residents Bank debt securities
Mean residual maturity of more than 3 and up to 4 years

Yields on debt securities outstanding issued by residents Bank debt securities
Mean residual maturity of more than 4 and up to 5 years

Yields on debt securities outstanding issued by residents Bank debt securities
Mean residual maturity of more than 5 and up to 6 years

Yields on debt securities outstanding issued by residents Bank debt securities
Mean residual maturity of more than 6 and up to 7 years

Yields on debt securities outstanding issued by residents Bank debt securities
Mean residual maturity of more than 7 years

Yields on debt securities outstanding issued by residents Public debt securi-
ties Mean residual maturity of more than 1 and up to 2 years

Yields on debt securities outstanding issued by residents Public debt securi-
ties Mean residual maturity of more than 2 and up to 3 years

Yields on debt securities outstanding issued by residents Public debt securi-
ties Mean residual maturity of more than 3 and up to 4 years

Yields on debt securities outstanding issued by residents Public debt securi-

ties Mean residual maturity of more than 4 and up to 5 years
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Yields on debt securities outstanding issued by residents Public debt securi-
ties Mean residual maturity of more than 5 and up to 6 years

Yields on debt securities outstanding issued by residents Public debt securi-
ties Mean residual maturity of more than 6 and up to 7 years

Yields on debt securities outstanding issued by residents Public debt securi-
ties Mean residual maturity of more than 7 years

Yields on debt securities outstanding issued by residents Bank debt securities
DAX price index End 1987 = 1000 End of month

DAX performance index End 1987 = 1000 End of month

Yields on debt securities outstanding issued by residents Listed Federal se-
curities Residual maturity of more than 15 and up to 30 years

Price of gold in London / morning fixing 1 ounce of fine gold = USD ...
Yields on debt securities outstanding issued by residents Mean residual ma-
turity of more than 7 and up to 8 years

Yields on debt securities outstanding issued by residents Mean residual ma-
turity of more than 8 and up to 9 years

Yields on debt securities outstanding issued by residents Mean residual ma-
turity of more than 9 and up to 10 years

Yields on debt securities outstanding issued by residents Public debt securi-
ties Mean residual maturity of more than 7 and up to 8 years

Yields on debt securities outstanding issued by residents Public debt securi-
ties Mean residual maturity of more than 8 and up to 9 years

Yields on debt securities outstanding issued by residents Public debt securi-
ties Mean residual maturity of more than 9 and up to 10 years

Yields on debt securities outstanding issued by residents Bank debt securities
Mean residual maturity of more than 7 and up to 8 years

Yields on debt securities outstanding issued by residents Bank debt securities
Mean residual maturity of more than 8 and up to 9 years

Yields on debt securities outstanding issued by residents Bank debt securities
Mean residual maturity of more than 9 and up to 10 years

Yields on listed Federal securities (only bonds eligible as underlying instru-
ments for future contracts are included

Yields on debt securities outstanding issued by residents Mortgage Pfand-
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briefe Mean residual maturity of more than 1 and up to 2 years

Yields on debt securities outstanding issued by residents Mortgage Pfand-
briefe Mean residual maturity of more than 2 and up to 3 years

Yields on debt securities outstanding issued by residents Mortgage Pfand-
briefe Mean residual maturity of more than 3 and up to 4 years

Yields on debt securities outstanding issued by residents Mortgage Pfand-
briefe Mean residual maturity of more than 4 and up to 5 years

Yields on debt securities outstanding issued by residents Mortgage Pfand-
briefe Mean residual maturity of more than 5 and up to 6 years

Yields on debt securities outstanding issued by residents Mortgage Pfand-
briefe Mean residual maturity of more than 6 and up to 7 years

Yields on debt securities outstanding issued by residents Mortgage Pfand-
briefe Mean residual maturity of more than 7 years / Monthly average
Yields on debt securities outstanding issued by residents Mortgage Pfand-
briefe Mean residual maturity of more than 7 and up to 8 years

Yields on debt securities outstanding issued by residents Mortgage Pfand-
briefe Mean residual maturity of more than 8 and up to 9 years

Yields on debt securities outstanding issued by residents Mortgage Pfand-
briefe Mean residual maturity of more than 9 and up to 10 years

Yields on debt securities outstanding issued by residents Public Pfandbriefe
Mean residual maturity of more than 1 and up to 2 years

Yields on debt securities outstanding issued by residents Public Pfandbriefe
Mean residual maturity of more than 2 and up to 3 years

Yields on debt securities outstanding issued by residents Public Pfandbriefe
Mean residual maturity of more than 3 and up to 4 years

Yields on debt securities outstanding issued by residents Public Pfandbriefe
Mean residual maturity of more than 4 and up to 5 years

Yields on debt securities outstanding issued by residents Public Pfandbriefe
Mean residual maturity of more than 5 and up to 6 years

Yields on debt securities outstanding issued by residents Public Pfandbriefe
Mean residual maturity of more than 6 and up to 7 years

Yields on debt securities outstanding issued by residents Public Pfandbriefe

Mean residual maturity of more than 7 years
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Yields on debt securities outstanding issued by residents Public Pfandbriefe
Mean residual maturity of more than 7 and up to 8 years

Yields on debt securities outstanding issued by residents Public Pfandbriefe
Mean residual maturity of more than 8 and up to 9 years

Yields on debt securities outstanding issued by residents Public Pfandbriefe
Mean residual maturity of more than 9 and up to 10 years

Price of gold in London afternoon fixing 1 ounce of fine gold = USD ...
Term structure of interest rates on listed Federal securities (method by Svens-
son) residual maturity of 1 years

Term structure of interest rates on listed Federal securities (method by Svens-
son) residual maturity of 2 years

Term structure of interest rates on listed Federal securities (method by Svens-
son) residual maturity of 3 years

Term structure of interest rates on listed Federal securities (method by Svens-
son) residual maturity of 4 years

Term structure of interest rates on listed Federal securities (method by Svens-
son) residual maturity of 5 years

Term structure of interest rates on listed Federal securities (method by Svens-
son) residual maturity of 6 years

Term structure of interest rates on listed Federal securities (method by Svens-
son) residual maturity of 7 years

Term structure of interest rates on listed Federal securities (method by Svens-
son) residual maturity of 8 years

Term structure of interest rates on listed Federal securities (method by Svens-
son) residual maturity of 9 years

Term structure of interest rates on listed Federal securities (method by Svens-

son) residual maturity of 10 years

Ifo business situation capital goods producers
Ifo business situation producers durable goods
Ifo business situation producers non-durable goods

Ifo business situation retail trade
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Ifo business situation wholesale trade

Ifo business expectations next six months capital goods producers

Ifo business expectations next six months producers durable goods

Ifo business expectations next six months producers non-durable goods
Ifo business expectations next six months retail trade

Ifo business expectations next six months wholesale trade

Ifo stocks of finished goods capital goods producers

Ifo stocks of finished goods producers durable goods

Ifo stocks of finished goods producers non-durable goods

7.6.3 The Daily Data Set

The daily data were downloaded on the 12 August 2008 from the Deutsche
Bundesbank and the IMF data base. In contrast to the monthly data, we
did not seasonally adjust the data. Natural logarithms were taken for all
time series except interest rates. Stationarity was enforced by appropriately
differencing the time series. We also corrected for outliers as in the monthly

case.
Included daily time series

Money market rates reported by Frankfurt banks / Overnight money
Yields on debt securities outstanding issued by residents / Public debt secu-
rities

Yields on debt securities outstanding issued by residents

Yields on debt securities outstanding issued by residents / Mortgage Pfand-
briefe

Yields on debt securities outstanding issued by residents / Public Pfandbriefe
Yields on debt securities outstanding issued by residents / Corporate bonds
Yield on foreign DM/EURO bonds outstanding issued by a German man-
aged syndicate

Yields on debt securities outstanding issued by residents / Listed Federal

securities
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Yields on listed Federal securities (only bonds eligible as underlying instru-
ments for future contracts are included)

Yields on debt securities outstanding issued by residents / Bank debt secu-
rities

Price of gold in London / morning fixing / 1 ounce of fine gold = USD ..
Price of gold in London / afternoon fixing / 1 ounce of fine gold = USD ...
Yields on debt securities outstanding issued by residents / Listed Federal
securities / Residual maturity of more than 3 and up to 5 years

Yields on debt securities outstanding issued by residents / Listed Federal
securities / Residual maturity of more than 5 and up to 8 years

Yields on debt securities outstanding issued by residents / Listed Federal
securities / Residual maturity of more than 8 and up to 15 years

Yields on outstanding debt securities issued by residents / Listed Federal
securities / Residual maturity of more than 15 and up to 30 years

DAX

Government Benchmarks, Bid, 10 Year, Yield, Close, EUR

Government Benchmarks, Bid, 2 Year, Yield, Close, EUR

Government Benchmarks, Bid, 3 Year, Yield, Close, EUR

Government Benchmarks, Bid, 7 Year, Yield, Close, EUR

Interest Rate Swaps, Ask, 1 Year, Close, EUR

Interest Rate Swaps, Ask, 10 Year, Close, EUR

Interest Rate Swaps, Ask, 2 Year, Close, EUR

Interest Rate Swaps, Ask, 3 Year, Close, EUR

Interest Rate Swaps, Ask, 30 Year, Close, EUR

Interest Rate Swaps, Ask, 4 Year, Close, EUR

Interest Rate Swaps, Ask, 5 Year, Close, EUR

Interest Rate Swaps, Ask, 6 Year, Close, EUR

Interest Rate Swaps, Ask, 7 Year, Close, EUR

Interest Rate Swaps, Ask, 8 Year, Close, EUR

Interest Rate Swaps, Ask, 9 Year, Close, EUR

Spot Rates, USD/DEM, Close, DEM

Deposit Rates, 1 Month, Close, EUR

Deposit Rates, 1 Week, Close, EUR
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Deposit Rates, 12 Month, Close, EUR

Deposit Rates, 2 Month, Close, EUR

Deposit Rates, 3 Month, Close, EUR

Deposit Rates, 6 Month, Close, EUR

Deposit Rates, 9 Month, Close, EUR

Deposit Rates, T/N, Close, EUR

Interbank Rates, BBA LIBOR, 1 Month, Fixing, EUR
Interbank Rates, BBA LIBOR, 1 Week, Fixing, EUR
Interbank Rates, BBA LIBOR, 10 Month, Fixing, EUR
Interbank Rates, BBA LIBOR, 11 Month, Fixing, EUR
Interbank Rates, BBA LIBOR, 12 Month, Fixing, EUR
Interbank Rates, BBA LIBOR, 2 Month, Fixing, EUR
Interbank Rates, BBA LIBOR, 3 Month, Fixing, EUR
Interbank Rates, BBA LIBOR, 4 Month, Fixing, EUR
Interbank Rates, BBA LIBOR, 5 Month, Fixing, EUR
Interbank Rates, BBA LIBOR, 6 Month, Fixing, EUR
Interbank Rates, BBA LIBOR, 7 Month, Fixing, EUR
Interbank Rates, BBA LIBOR, 8 Month, Fixing, EUR
Interbank Rates, BBA LIBOR, 9 Month, Fixing, EUR
Interbank Rates, EONIA, O/N, Fixing, EUR
Interbank Rates, EURIBOR, 12 Month, Fixing, EUR
Interbank Rates, EURIBOR, 3 Month, Fixing, EUR
Policy Rates, ECB Lombard Rate (Ceiling), EUR



8. SUMMARY AND CONCLUSIONS

The continuous inflow of information concerning economic variables is closely
monitored by central banks, governments and companies. Knowledge of the
current and future states of the economy is essential as a basis for public
and private decisions. However, there is no ’official’ definition of the state
of economy, nor is there a representative economic time series. Nevertheless,
GDP is widely acknowledged as the most comprehensive indicator for the
economic performance of countries. Therefore, possession of accurate esti-
mates of current and future values of GDP is essential for economic agents.
But there are considerable challenges: GDP is only sampled at quarterly

intervals, published with delay, and then subject to several revisions.

Therefore, there is a requirement for methods which are able to estimate
and forecast (final) GDP and other low-frequency variables by using higher-
frequency information. The existing solutions in the literature are barely
connected, not described, compared, and tested comprehensively against each

other. In this thesis, we provide new research to fill this gap.

In a first step we outline the techniques capable of handling mixed-frequency
data. The predominant approach in applied forecasting is to transform the
data into a single frequency. Early approaches to combine different frequen-
cies were linkage models and bridge equations. Linkage models pool forecasts
from different frequencies to improve the forecasting accuracy of the lower
frequency. They have often been used in the late 1980s and early 1990s. In
contrast, bridge equations are still quite popular in applied work, especially
at central banks. Bridge equations allow to update the current estimate of
an economic variable as soon as new information becomes available. Yet it

is essentially still a single-frequency approach.
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Recently, two pure mixed-frequency models were developed: the state-space
VARMA and the MIDAS (MIxed DAta Sampling) approach. We review

these two techniques extensively and compare them against each other.

In an extensive literature review we link these approaches to the existing em-
pirical applications. In general, we can conclude that mixed-frequency data
matter for forecasting. Many articles demonstrate that accounting for timely
information improves the forecasting accuracy of lower-frequency variables,
notably the GDP. Recently, factor models have played a dominant role in fore-
casting. The extraction of factors allows forecasters to condense a large data
set into a few factors and therefore to account for the aspect of parsimony in
econometrics. Recent factor models also account for mixed-frequency data.

Nevertheless, the focus is still on monthly data.

Currently, there are only few practical applications of the two mixed-frequency
time series approaches. But they clearly demonstrate their advantage in fore-
casting over single-frequency approaches. In this thesis we confirm and gen-
eralize these early findings in a systematic way. Mixed-frequency approaches
are feasible, provide more accurate forecasts, and are able to accommodate

any given data structure.

As model selection is essential for any forecasting calculation, we investigate
how to best specify mixed-frequency models. Although standard model se-
lection criteria can in principle be applied, this aspect has been neglected
in the literature to date. The estimation of mixed-frequency VAR models is
computationally intensive, especially for models with many variables. Nev-
ertheless, we find that small models selected on the basis of the BIC criterion

are sufficiently accurate for forecasting purposes.

In the MIDAS context we elicit whether the weighting function should be re-
stricted (for example to ensure declining weights) and how many lags should
be included for estimation. We find that the number of included lags, the
restriction aspect, and the forecast performance are interrelated. In some
cases restrictions cause a deterioration in the forecasting performance. For

strongly persistent target variables the restrictions may indeed improve fore-
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casting accuracy. Applying the BIC criterion can determine the optimal
number of lags included. Since the additional inclusion of lags does not in-
crease the number of estimated parameters, there is a risk of including too
many lags and thereby reducing the estimation sample. As a rule of thumb,
we suggest using four or five times the frequency mixture as a starting point
for lag selection. These results apply to both the exponential Almon lag and
the Beta weighting function.

The evaluation of the appropriate model specification prepares the ground for
a systematic forecasting comparison in our Monte Carlo study. Employing
four data-generation processes displaying realistic economic data structures,
we find that mixed-frequency time series models are at least as good as
their single-frequency counterparts. In many cases the use of untransformed
mixed-frequency data clearly outperforms the temporal aggregated data re-
sults. However, none of of the mixed-frequency approaches clearly domi-
nates. For processes with strongly autoregressive components the MF-VAR
model has an advantage over the MIDAS technique. Given the structure
and length of standard macroeconomic time series, forecasts generated by
both approaches are robust, and improvements in forecasting accuracy by
increased sample size are rather small. Given the heteroscedastic nature of
many economic and financial series, the relative gain in forecasting accuracy
relative to single-frequency models is smaller compared to the homoscedastic
case. The biggest advantage of mixed-frequency models is achieved by adjust-
ing the information set. Allowing for intra-period information is only feasible
for mixed-frequency models (except for bridge equations), and clearly im-

proves forecasting accuracy. Relative gains up to 80 percent can be reached.

Therefore, the mixed-frequency VAR, and the MIDAS approach provide use-
ful tools for updating current estimates of macroeconomic variables, even

these are published with delay and are subject to revisions.

We verify the finding from the Monte Carlo study in a real-data example
using German GDP. Thus, we are the first to compare both approaches with
real data. The Ifo Business Climate Index, the ZEW Index of Economic Sen-

timent, and factors extracted from a large database were used as indicators.
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Independently of the indicators, the mixed-frequency VAR and the MIDAS
model outperformed single-frequency benchmark models both in the short

and long run.

Eventually we went a step further by replacing monthly with daily indica-
tors. Static and dynamic factors are extracted from a daily database and
used within the MIDAS framework as indicators. Although our approach
does not outperform short-run monthly generated forecasts, we consider this
experiment as a useful starting point for future research where daily or even
higher-frequency data can help to nowcast the economy in almost real-time.
We propose three steps for future research. First, one should account for non-
equidistantly sampled time series. Second, the computational burden must
be reduced considerably, since state-space models are able to handle any data
patterns but they quickly become infeasible with large data sets. Third, one
needs to account for heteroscedastic and erratic data. In our investigation
we find that these patterns transmit to the forecast evaluation measures.
Therefore they are not reliable in assessing the forecasting performance in

almost real time.

This thesis can trigger the discussion of how far we can push the usage
of high-frequency data for the purpose of forecasting. Maybe there is a
frequency-mixture limit, where it is inadvisable to use still high-frequency
data to generate forecasts. To phrase it differently: Are temporally aggre-

gated forecasts are superior beyond a certain level of aggregation?

A further issue for future research is, whether the advantage of mixed-
frequency models over single-frequency models still holds when the forecast
horizon is increased. Our empirical example provides evidence in the affir-

mative.



BIBLIOGRAPHY

ABEYSINGHE, T. (1998): “Forecasting Singapore’s quarterly GDP with

monthly external trade,” International Journal of Forecasting, 14(4), 505—
513.

(2000): “Modeling variables of different frequencies,” International
Journal of Forecasting, 16(1), 117-119.

ArtissiMo, F., R. CRISTADORO, M. FORNI, M. LiPPi, AND G. VERONESE
(2006): “New Eurocoin: Tracking economic growth in real time,” CEPR
Discussion Paper No. 5633.

AMEMIYA, T.,; AND R. WU (1972): “The effect of aggregation on prediction

in the autoregressive model,” Journal of the American Statistical Associ-
ation, 67(339), 628-632.

ANDERSEN, T., T. BOLLERSLEV, F. DIEBOLD, anxp P. LABYS (2003):

“Modeling and forecasting realized volatility,” FEconometrica, 71(2), 579—
625.

ANDERSEN, T., T. BOLLERSLEV, F. DIEBOLD, anxD C. VEGA (2003): “Mi-
cro effects of macro announcements: Real-time price discovery in foreign

exchange,” American Economic Review, 93(1), 38-62.

ANDERSON, B., anp J. MOORE (1979): Optimal filtering. Englewood Cliffs,
NJ: Prentice Hall.

ANDREOU, E., E. GHYSELS, AND A. KOURTELLOS (2007): “Regression

models with mixed sampling frequencies,” mimeo, Chapel Hill, N.C.



Bibliography 206

ANGELINT, E.; J. HENRY, AND M. MARCELLINO (2006): “Interpolation and

backdating with a large information set,” Journal of Economic Dynamics
and Control, 30(12), 2693-2724.

ANSLEY, C., AND R. KOHN (1985): “Estimation, filtering, and smoothing in

state space models with incompletely specified initial conditions,” Annals
of Statistics, 13(4), 1286-1316.

AruoBa, S., F. DieBoLD, anp C. ScoTTI (2008): “Real-Time mea-
surement of business conditions, Second version,” PIER Working Paper
Archive No. 11, Penn Institute for Economic Research, Department of

Economics, University of Pennsylvania.

AsHLEY, R., C. GRANGER, AND R. SCHMALENSEE (1980): “Advertis-

ing and aggregate consumption: An analysis of causality,” Econometrica,
48(5), 1149-1168.

BaFrrici, A., R. GOLINELLI, AND G. PARIGI (2004): “Bridge models to

forecast the Euro area GDP,” International Journal of Forecasting, 20(3),
447-460.

Bar, J. (2003): “Inferential theory for factor models of large dimensions,”
Econometrica, 71(1), 135-171.

Bar, J., anp S. NG (2002): “Determining the number of factors in approx-
imate factor models,” Econometrica, 70(1), 191-221.

(2007): “Determining the number of primitive shocks in factor
models,” Journal of Business and Economic Statistics, 25(1), 52-60.

BANBURA, M., aND G. RUNSTLER (2007): “A Look into the factor model

black box: Publication lags and the role of hard and soft data in forecasting
GDP,” ECB Working Paper No. 751.

BANERJEE, A.; AND M. MARCELLINO (2006): “Are there any reliable lead-

ing indicators for US inflation and GDP growth?,” International Journal
of Forecasting, 22(1), 137-151.



Bibliography 207

BERA, A., axp M. Hicains (1993): “ARCH Models: Properties, estimation
and testing,” Journal of Economic Surveys, 7(4), 305-366.

BERNANKE, B., axp J. BoOIviN (2003): “Monetary policy in a data-rich

environment,” Journal of Monetary Economics, 50(3), 525-546.

BERNANKE, B., M. GERTLER, AND M. WATSON (1997): “Systematic mon-

etary policy and the effects of oil price shocks,” Brookings Papers on Eco-
nomic Actiwvity, 1997(1), 91-142.

Bopo, G., A. CIvIDINI, AND L. SIGNORINI (1991): “Forecasting the Italian
industrial production index in real time,” Journal of Forecasting, 10(3),
285-99.

BOLLERSLEV, T. (1986): “Generalized autoregressive conditional het-
eroskedasticity,” Journal of Econometrics, 31(3), 307-327.

Boor, J., W. FEIBES, AND J. LISMAN (1967): “Further methods of deriva-

tion of quarterly figures from annual data,” Applied Statistics, 16(1), 65—
75.

BRAUN, S. (1990): “Estimation of current-quarter Gross National Prod-
uct by pooling preliminary labor market data,” Journal of Business and
Economic Statistics, 8(3), 293-304.

BREITUNG, J., AND S. EICKMEIER (2006): “Dynamic factor models,” Jour-
nal of the German Statistical Society, 90(1), 27-40.

CamMBA-MENDEZ, G., G. KAPETANIOS, R. SMITH, aAND M. WEALE
(2001): “An automatic leading indicator of economic activity: forecasting

GDP growth for European countries,” The Econometrics Journal, 4(1),
56-90.

CARRASCO, M., anD J. FLORENS (2000): “Generalization of GMM to a

continuum of moment conditions,” Econometric Theory, 16(6), 797-834.

CHEN, B., anp P. A. ZADROZNY (1998): “An extended Yule-Walker

method for estimating vector autoregressive models with mixed-frequency



Bibliography 208

data,” in Advances in econometrics: Messay data, missing observations,
outliers, and mized-frequency data, ed. by T. Fomby, and R. Hill, pp. 47-73.
Greenwich, CT: JAI Press.

CHEN, X., AND E. GHYSELS (2008): “News - good or bad - and its impact

on volatility predictions over multiple horizons,” mimeo, Chapel Hill, N.C.

CHOW, G., aND A. LIN (1971): “Best linear unbiased interpolation, distri-
bution, and extrapolation of time series by related series,” The Review of
Economics and Statistics, 53(4), 372-375.

CHow, G., aND A. LIN (1976): “Best linear unbiased estimation of missing
observations in an economic time series,” Journal of the American Statis-
tical Association, 71(355), 719-721.

CHRISTIANO, L. (1989): “P*: Not the inflation forecaster’s holy grail,”
Federal Reserve Bank of Minneapolis Quarterly Review, 13(4), 3—18.

CLARK, T., AND M. MCCRACKEN (2001): “Tests of equal forecast accuracy
and encompassing for nested models,” Journal of Econometrics, 105(11),
85-110.

CLARK, T., anp K. WEST (2007): “Approximetely normal tests for equal
predictive accuracy in nested models,” Journal of Econometrics, 138(1),
291-311.

CLEMENTS, M. P.; anp A. B. GALvVAO (2005): “Macroeconomic fore-
casting with mixed-frequency data: Forecasting US output growth and

inflation,” Warwick working paper.

(2008): “Macroeconomic forecasting with mixed-frequency data:

Forecasting US output growth,” Journal of Business and Economic Statis-

tics, forthcoming.

CoHEN, K., W. MULLER, AND M. PADBERG (1971): “Autoregressive ap-
proaches to disaggregation of time series data,” Applied Statistics, 20(2),
119-129.



Bibliography 209

CORRADO, C., aAND M. GREENE (1988): “Reducing uncertainty in short-
term projections: Linkages of monthly and quarterly data,” Journal of
Forecasting, 7(2), 77-102.

Corsi, F. (2003): “A simple long memory model of realized volatility,”

Unpublished manuscript, University of Southern Switzerland.

CrONE, T., aND A. CLAYTON-MATTHEWS (2005): “Consistent economic
indexes for the 50 States,” Review of Economics and Statistics, 87(4),
593-603.

CROUSHORE, D., axnD T. STARK (2003): “A real-time data set for macroe-
conomists: Does the data vintage matter?,” Review of FEconomics and
Statistics, 85(3), 605-617.

CucHE, N.; axnp M. HEess (2000): “Estimating monthly GDP in a gen-
eral Kalman filter framework: Evidence from Switzerland,” Economic &
Financial Modelling, 7, 153—194.

Davis, E., anD S. HENRY (1994): “The use of financial spreads as indicator
varialbes: Evidence for the United Kingdom and Germany,” IMF Staff
Papers, 41(3), 517-525.

DENTON, F. (1971): “Adjustment of monthly or quarterly series to annual
totals: An approach based on quadratic minimization,” Journal of the
American Statistical Association, 66(333), 99-102.

DHRYMES, P. (1971): Distributed lags; problems of estimation and formula-
tion. Holden-Day.

DieBOLD, F., aAND G. RUDEBUSCH (1991): “Forecasting output with the

composite leading index: A real-time analysis,” Journal of the American
Statistical Association, 86(415), 603-610.

DieBoLD, F. X., anp R. S. MARIANO (1995): “Comparing predictive
accuracy,” Journal of Business € Economic Studies, 13(3), 253-263.



Bibliography 210

DIRON, M. (2006): “Short-term forecasts of Euro area real GDP growth
- An Assessment of real-time performance based on vintage data,” ECB
Working Paper No. 622.

DonNiHUE, M., axnp E. HOWREY (1992): “Using mixed frequency data to

improve macroeconomic forecasts of inventory investment,” International
Journal of Production Economics, 26(1-3), 33-41.

Doz, C., D. GIANNONE, AND L. REICHLIN (2006): “A quasi maximum

likelihood approach for large approximate dynamic factor models,” ECB
Working Paper No. 674.

DREGER, C., AND C. SCHUMACHER (2004): “Estimating large-scale factor

models for economic activity in Germany: Do they outperform simpler
models?,” Jahrbucher fur Nationalokonomie und Statistik, 224(6), 731
750.

DUFOUR, J., axnp E. RENAULT (1998): “Short-run and long-run causality
in time series: Theory,” Econometrica, 66(5), 1099-1125.

DURBIN, J., AND S. KOOPMAN (2001): Time series analyses by state space
methods. Oxford University Press, New York.

EICKMEIER, S., aAND C. ZIEGLER (2008): “How successful are dynamic

factor models at forecasting output and inflation? A meta-analytic ap-
proach,” Journal of Forecasting, 27(1), 237-265.

ENGLE, R., anD V. NG (1993): “Measuring and testing the impact of news
on volatility,” Journal of Finance, 48(5), 1749-1778.

Evans, M. (2005): “Where are we now? Real-time estimates of the macroe-

conomy,” International Journal of Central Banking, 1(2), 127-175.

FAIR, R., axnD R. SHILLER (1990): “Comparing information in forecasts

from econometric models,” The American Economic Review, 80(3), 375
389.



Bibliography 211

FERNANDEZ, R. B. (1981): “A methodological note on the estimation of
time series,” Review of Economics and Statistics, 63(3), 471-476.

F1T2GERALD, T., anp P. MILLER (1989): “A simple way to estimate

current-quarter GNP, Federal Reserve Bank of Minneapolis Quartely Re-
view, 13(Fall), 27-31.

FORSBERG, L., AND E. GHYSELS (2007): “Why do absolute returns predict

volatility so well?)” Journal of Financial Econometrics, 5(1), 31-67.

FRENCH, K., W. SCHWERT, AND R. STAMBAUGH (1987): “Expected re-

turns and volatility,” Journal of Financial Economics, 19(1), 3-29.

FRIEDMAN, M. (1962): “The interpolation of time series by related series,”
Journal of the American Statistical Association, 57(300), 729-757.

FroMM, G., anp L. KLEIN (1973): “A comparison of eleven econometric
models of the United States,” American Economic Review, 63(2), 385-93.

FUHRER, J., anD J. HALTMAIER (1988): “Minimum variance pooling of

forecasts at different levels of aggregation.,” Journal of Forecasting, 7(1),
63-73.

GALBRAITH, J. (2003): “Content horizons for univariate time-series fore-
casts,” International Journal of Forecasting, 19(1), 43-55.

GHYSELS, E., P. SANTA-CLARA, AND R. VALKANOV (2004): “The MIDAS
touch: MlIxed DAta Sampling regression models,” mimeo, Chapel Hill,
N.C.

——— (2005): “There is a risk-return trade-off after all,” Journal of Fi-
nancial Economics, 76(3), 509-548.

(2006): “Predicting volatility: Getting the most out of return data
sampled at different frequencies,” Journal of Econometrics, 131(1-2), 59—
95.



Bibliography 212

GHYSELS, E., A. SINKO, AND R. VALKANOV (2007): “MIDAS regressions:

Further results and new directions,” FEconometric Reviews, 26(1), 53-90.

GHYSELS, E., AND R. VALKANOV (2006): “Linear time series processes with

mixed data sSampling and MIDAS regressions models,” mimeo, Chapel

Hill, N.C.

GHYSELS, E., anp J. WRIGHT (2008): “Forecasting professional forecast-

ers,” Journal of Business and Economic Statistics, forthcoming.

GI1ACOMINI, R., anp H. WHITE (2006): “Tests of conditional predictive
ability,” Econometrica, 74(6), 1545-1578.

GIANNONE, D., L. REICHLIN, anD D. SMALL (2006): “Nowcasting GDP
and inflation: The real-time informational content of macroeconomic data
releases,” ECB Working paper No. 633.

———  (2008): “Nowcasting: The real-time informational content of

macroeconomic data,” Journal of Monetary Economics, 55(4), 665-676.

GOLDRIAN, G. (2007): Handbook of survey-based business cycle analysis.
Edward Elgar.

GoLINELLI, R., axDp G. PARIGI (2007): “The use of monthly indicators
to forecast quarterly GDP in the short-run: An application to the G7

countries,” Journal of Forecasting, 26, 77-94.

(2008): “Realtime squared: A real-time data set for real-time GDP
forecasting,” International Journal of Forecasting, 24(3), 368-385.

GOMEZ, V., AND A. MARAVALL (1994): “Estimation, prediction, and inter-
polation for nonstationary series with the Kalman filter,” Journal of the
American Statistical Association, 89(426), 611-624.

GRANGER, C. (1993): “On the limitations of comparing mean squared fore-
cast errors: Comment,” Journal of Forecasting, 12(8), 651-652.



Bibliography 213

GREENE, M., E. HOWREY, anD S. HymMANs (1986): “The use of out-

side information in econometric forecasting,” in Model Reliability, ed. by
D. Belsely, and E. Kuh, pp. 90-116. MIT Press.

HAGEN, H., aND G. KIRCHGASSNER (1996): “Interest based forecasts for
german economic growth,” Weltwirtschaftliches Archiv, 132(4), 763-773.

HaMILTON, J. D. (1994): Time series analysis. Princeton University Press,

Princeton, New Jersey.

HANNAN, E. (1963a): “Regression for time series,” in Proceedings of a sym-
posium on time series analysis, ed. by M. Rosenblatt, pp. 17-37. Wiley.

(1963b): “Regression for time series with errors of measurement,”
Biometrika, 50(3-4), 293-302.

HANSEN, P., axD A. LUNDE (2006): “Realized variance and market mi-

crostructure noise,” Journal of Business and Economic Statistics, 24(2),
127-161.

HARVEY, A., anD R. PIERSE (1984): “Estimating missing observations in
economic time series,” Journal of the American Statistical Association,

79(385), 125-131.

HOGREFE, J. (2008): “Forecasting data revisions of GDP: A mixed fre-
quency approach,” Advances in Statistical Analysis, 92(3), 271-296.

Howrey, E., S. HyMANS, anpD M. DONIHUE (1991): “Merging monthly

and quarterly forecasts: Experience with MQEM,” Journal of Forecasting,
10(3), 255-268.

HurvicH, C., anp C. TsAy (1989): “Regression and time series model
selection in small samples,” Biometrika, 76(2), 297-307.

Hyuna, N., anp C. GRANGER (2008): “Linking series generated at different
frequencies,” Journal of Forecasting, 27(2), 95-108.



Bibliography 214

JONEs, R. (1980): “Maximum likelihood fitting of ARMA models to time

series with missing observations,” Technometrics, 22(3), 389-395.

JUDGE, G., W. GRrIFFITH, C. HiLL, H. LUTKEPOHL, AND T. LEE (1985):
The theory and practice of econometrics. Wiley: New York.

KAPETANIOS, G., AND M. MARCELLINO (2006): “A Parametric Estima-
tion Method for Dynamic Factor Models of Large Dimensions,” CEPR
Discussion Paper No. 5620.

KHOLODILIN, K., AND B. SILIVERSTOVS (2006): “On the forecasting prop-
erties of the alternative leading indicators for the German GDP: Recent
evidence,” Jahrbicher fir Nationalokonomie und Statistik, 226(3), 234—
259.

KIRSCHGASSNER, G., AND M. SAvioz (2001): “Monetary policy and fore-
casts for real GDP growth: An empirical investigation for the Federal

Republic of Germany,” German Economic Review, 2(4), 339-365.

KiTcHEN, J., axND R. MONACO (2003): “Real-time forecasting in practice:
The US Treasury Staft’s real-time GDP forecast system,” Business Eco-
nomaics, pp. 10-19.

KLEIN, L., anD J. PARK (1993): “Economic forecasting at high-frequency
intervals,” Journal of Forecasting, 12(3-4), 301-319.

KLEIN, L., anp E. S0J0O (1989): “Combinations of high and low frequency
data in macroeconometric models,” in Fconomuics in theory and practice:
An eclectic approach, ed. by L. Klein, and J. Marquez, pp. 3-16. Kluwer

Academic Publishers.

KoEnNIG, E., S. DoLMAS, AND J. PIGER (2003): “The use and abuse of real-

time data in economic forecasting,” Review of Fconomics and Statistics,
85(3), 618-628.

KonN, R., axnp C. ANSLEY (1986): “Estimation, prediction, and interpo-
lation for ARIMA models with missing data,” Journal of the American
Statistical Association, 81(395), 751-761.



Bibliography 215

Kong, D., H. Liu, axnp L. WANG (2008): “Is there a risk-return trade-off?
Evidences from Chinese stock markets,” Frontiers of Economics in China,
3(1), 1-23.

KRAMER, J., anxp E. LANGFELD (1993): “Die Zinsdifferenz als
Friithindikator fiir die westdeutsche Konjunktur,” Die Weltwirtschaft, 1,
34-43.

LANNING, S. (1986): “Missing observations: A simultaneous approach ver-
sues interpolation by related series,” Journal of Economic and Social Mea-
surement, 14(1), 155-163.

LEON, A., J. NAVE, axp G. RUBIO (2007): “The relationship between risk
and expected return in Europe,” Journal of Banking and Finance, 31(2),

495-512.

LinTON, O., axp E. MAMMEN (2005): “Estimating semiparametric
ARCH(o00) models by kernel smoothing methods,” Econometrica, 73(3),
771-836.

Liou, R., anp C. SHEN (1996): “The use of high frequency data to improve

macroeconometric forecast,” International Economic Journal, 10(2), 65—
83.

LisMAN, J., AND J. SANDEE (1964): “Derivation of quarterly figures from
annual data,” Applied Statistics, 13(2), 87-90.

LITTERMAN, R. (1983): “A random walk, Markov model for the distribution
of time series,” Journal of Business and Economic Statistics, 1(2), 169
173.

Liu, H., anp S. HALL (2001): “Creating high-frequency national accounts

with state-space modelling: A Monte Carlo experiment,” Journal of Fore-
casting, 20(6), 441-449.

Liu, T. (1969): “A monthly recursive econometric model of United States:
A test of feasibility,” Review of Economics and Statistics, 51(1), 1-13.



Bibliography 216

Liu, T., anp E. Hwa (1974): “A monthly econometric model of the US

economy,” International Economic Review, 15(2), 328-365.

LUTKEPOHL, H. (1987): Forecasting aggregated vector ARMA processes.
Springer.

MANKIW, N., AND M. SHAPIRO (1986): “News or noise? An analysis of
GNP revisions,” NBER Working Paper No. 1939.

MARCELLINO, M., aAND C. SCHUMACHER (2007): “Factor nowcasting of
German GDP with ragged-edge data. A model comparison using MIDAS

projections,” Bundesbank Discussion Paper, Series 1 No. 34.

MARCELLINO, M., J. STOCK, AND M. WATSON (2006): “A comparison of
direct and iterated multistep AR methods for forecasting macroeconomic
zime series,” Journal of Econometrics, 135(1-2), 499-526.

MARIANO, R., aND Y. MURASAWA (2003): “A new coincident index of

business cycles based on monthly and quarterly series,” Journal of Applied
Econometrics, 18(4), 427-443.

McNEES, S. (1986): “Forecasting accuracy of alternative techniques: A

comparison of US macroeconomic forecasts,” Journal of Business and Eco-
nomic Statistics, 4(1), 5-15.

MELJERING, E. (2002): “A chronology of interpolation: from ancient as-

tronomy to modernsignal and image processing,” Proceedings of the IEEE,
90(3), 319-342.

MERTON, R. (1973): “An intertemporal capital asset pricing model,” Econo-
metrica, 41(5), 867-887.

MILLER, P., anp D. CHIN (1996): “Using monthly data to improve quar-

7

terly model forecasts,
Review, 20(2), 16-33.

Federal Reserve Bank of Minneapolis Quarterly



Bibliography 217

MiTcHELL, J., R. SMiTH, M. WEALE, S. WRIGHT, AND E. SALAZAR
(2005): “An indicator of monthly GDP and an early estimate of quarterly
GDP growth,” The Economic Journal, 115(501), 108-129.

MITTNIK, S., AND P. A. ZADROZNY (2005): “Forecasting quarterly German
GDP at monthly intervals using monthly Ifo business conditions data,” in
Ifo survey data in business cycle and monetary policy analysis, ed. by J.-E.

Sturm, and T. Wollmershauser, pp. 19-48. Heidelberg: Physica-Verlag.

NieTO, F. (2007): “Ex post and ex ante prediction of unobserved multivari-
ate time series: a structural-model based approach,” Journal of Forecast-
ing, 26(1), 53.

NuMAN, T., anp F. PALM (1990): “Parameter identification in ARMA
processes in the presence of regular but incomplete sampling,” Journal of
Time Series Analysis, 11(3), 239-248.

NuNEs, L. (2005): “Nowcasting quarterly GDP growth in a monthly coin-
cident indicator model,” Journal of Forecasting, 24(8), 575.

PAric1, G., aAND G. SCHLITZER (1995): “Quarterly forecasts of the italian

business cycle by means of monthly indicators,” Journal of Forecasting,
14(2), 117-141.

PEREZ, J. (2007): “Leading indicators for euro area government deficits,”
International Journal of Forecasting, 23(2), 259-275.

PESARAN, H., anpD A. TIMMERMANN (2005): “Real-time econometrics,”
Econometric Theory, 21(1), 212-231.

ProierTI, T. (2006): “Temporal disaggregation by state space methods:
Dynamic regression methods revisited,” Econometrics Journal, 9(3), 357
372.

ProIeTTI, T., AND F. MOAURO (2006): “Dynamic factor analysis with non-
linear temporal aggregation constraints,” Journal of the Royal Statistical
Society Series C, 55(2), 281-300.



Bibliography 218

RATHJENS, P.; aND R. ROBINS (1993): “Forecasting quarterly data using
monthly information,” Journal of Forecasting, 12(3-4), 321-330.

ROBERDS, W. (1988): “A quarterly Bayesian VAR model of the US econ-
omy,” Working Paper No. 88-2, Federal Reserve Bank of Atlanta.

RoBiNzONOV, N., anp K. WOHLRABE (2008): “Freedom of choice in
macroeconomic forecasting: An illustration with German industrial pro-

duction and linear models,” ifo working paper No. 57, Munich.

RUNSTER, G., aAND F. SEDILLOT (2003): “Short-term estimate of Euro area
real GDP growth by means of monthly indicators,” European Central Bank
Working Paper No. 276.

SCHUMACHER, C., AND J. BREITUNG (2008): “Real-time forecasting of
German GDP based on a large factor model with monthly and quarterly
data,” International Journal of Forecasting, 24(3), 386-398.

SEONG, B., S. K. AuN, anp P. A. ZADROZNY (2007): “Cointegration

analysis with mixed-frequency data,” CESifo Working Paper No. 1939,
CESifo GmbH.

SHEN, C. (1996): “Forecasting macroeconomic variables using data of dif-

ferent periodicities,” International Journal of Forecasting, 12(2), 269-282.

SILVESTRINI, A., AND D. VEREDAS (2008): “Temporal aggregation of unive-

riate and multivariate time series models: A survey,” Journal of Economic
Surveys, 22(3), 458-497.

STOCK, J., AND M. WATSON (1989): “New indexes of coincident and leading
indicators,” NBER Macroeconomics Annual, 4, 351-394.

(1991): “A probability model of the coincident economic indica-
tors,” in Leading economic indicators: New approaches and forecasting
records, ed. by K. Lahiri, and G. Moore, pp. 63-85. Cambridge University

Press.



Bibliography 219

(2002a): “Forecasting using principal components from a large

2

number of predictors,
97(460), 1167-1179.

Journal of the American Statistical Association,

(2002b): “Macroeconomic forecasting using diffusion indexes,”
Journal of Business and Economic Statistics, 20(2), 147-62.

(2003): “Forecasting output and inflation: The role of asset prices,”
Journal of Economic Literature, 41(3), 788-829.

STRAM, D., anD W. WEI (1986): “A methodological note on the disag-
gregation of time series totals,” Journal of Time Series Analysis, 7(4),
293-302.

T1a0, G. (1972): “Asymptotic behaviour of temporal aggregates of time
series,” Biometrika, 59(3), 525-531.

TIMMERMANN, A. (2006): “Forecast combinations,” in Handbook of Eco-
nomic Forecasting, ed. by C. Granger, G. Elliot, and A. Timmermann, pp.
135-196. Amsterdam, North Holland.

TREHAN, B. (1989): “Forecasting growth in current quarter real GNP,”
Federal Reserve Bank of San Franciso Economic Review, (Winter), 39-51.

(1992): “Predicting contemporaneous output,” Federal Reserve

Bank of San Franciso Economic Review, (2), 3-11.

TREHAN, B.; axp R. INGENITO (1996): “Using monthly data to predict

quarterly output,” Federal Reserve Bank of San Franciso Economic Re-
view, (3), 3-11.

WATSON, M. (2003): “Macroeconomic forecasting using many predictors,”
in Advances in economics and econometrics, theory and applications, Eight
World Congress of the Econometric Society, ed. by H. L. Dewatripont, M.,
and S. Turnovsky, pp. 87-115. Cambridge University Press.



Bibliography 220

ZADROZNY, P. A. (1988): “Gaussian-Likelihood of countinuous-time AR-
MAX models when data are strocks and flows at different frequencies,”
Econometric Theory, 4(1), 108-124.

(1990): “Estimating a multivariate ARMA model with mixed-
frequency data: An application to forecating U.S. GNP an monthly in-
tervals,” Federal Reserve Bank of Atlanta Working Paper Series No. 90-6.

(2008): “Estimating a multivariate ARMA model with mixed-
frequency data: An application to forecating U.S. GNP at monthly in-
tervals,” CESifo Working Paper, (forthcoming).



FEidesstattliche Versicherung

Ich versichere hiermit eidesstattlich, dass ich die vorliegende Arbeit
selbstandig und ohne fremde Hilfe verfasst habe. Die aus fremden Quellen di-
rekt oder indirekt tibernommenen Gedanken sowie mir gegebene Anregungen
sind als solche kenntlich gemacht. Die Arbeit wurde bisher keiner anderen

Priifungsbehorde vorgelegt und auch noch nicht veroffentlicht.

Miinchen, 23. September 2008

Klaus Wohlrabe



11

Curriculum Vitae

06,2004 — 09,/2008

09/1998 — 05/2004

07/1997

17.12.1977

Ph.D. Student at the University of Munich,
Junior Researcher at the Ifo Institute for
Economic Research

Diploma in Economics,
University of Dresden

Abitur, Wirtschaftsgymnasium Dresden

Born in Quedlinburg, Germany



