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viel Unterstützung erfahren und möchte mich dafür bedanken. Ohne diese
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1. INTRODUCTION

Movements in economic and financial time series are closely watched by gov-

ernments, central banks and companies. Among these series are stocks, mar-

ket indexes, exchange rates, interest rates, survey data, and other aggregates

of macroeconomic activity. Each time series possibly contains information

about the current and the future unobserved states of the economy. Thus,

they influence market expectations of economic agents. The knowledge of

the current and future states affects interest rate decisions of central banks,

asset price movements, investment decisions, private savings, and so forth.

Moreover, as more and more time series are easily available electronically,

the expectations and estimations of the current state of the economy are

constantly updated.

One of the most important and comprehensive indicators, which is acknowl-

edged to represent the unobserved state of the economy, is the Gross Domes-

tic Product (GDP) which is recorded at quarterly intervals. Therefore it is

of great interest to economic agents to estimate and forecast GDP. However,

many other economic time series are sampled at a higher frequency. Sur-

vey data from the EU Commission, OECD or the Ifo Institute are sampled

monthly. The same is true for other macroeconomic variables like inflation,

unemployment and industrial production. Moreover, numerous economic

variables , like stocks, the oil price, interest rates, and exchange rate are also

available on a daily basis. Some evolve almost in real-time (on a minute

basis). But such data are inherently ’noisy’. Furthermore, a chief difficulty

with using multiple possible indicators is that they can, and usually do, pro-

vide conflicting signals; and there is no agreed-upon way for aggregating the

statistics to give a single-valued answer.
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The estimation of the current state and forecasting of the future state of

macroeconomic variables, such as GDP, with multivariate time series models

faces the general problem that the observations tend to be recorded and pub-

lished at different frequencies. Therefore, virtually any attempt to estimate a

multivariate economic time series model confronts the problem of efficiently

using mixed-frequency data.

The literature and methodology so far have assumed that all processes are

sampled at the same frequency. To ensure the same frequency, either the

higher-frequency data are aggregated to the lowest frequency, or the lower-

frequency data are interpolated to the highest frequency. In most empirical

applications, the higher frequency is aggregated to the lower frequency by

averaging, summing up, or by taking a representative corresponding value

(for example, the third month of the quarter). Neither of these options is

generally satisfactory. First, temporal aggregation destroys sample informa-

tion. Aggregated processes entail less information, and such an information

loss typically results in poorer predictability. Much is known about the ad-

verse effect of temporal aggregation on prediction, see for example Lütkepohl

(1987). Second, commonly used interpolation methods generally do not fully

exploit the available sample information.

In addition to the frequency sampling problem, many economic time series

are published with a delay and are subject to revision. For instance, the first

estimate of GDP in Germany is released six weeks after the end of the quarter.

The lack of a timely, comprehensive economic picture may mean that policy

needs may be recognized only many months after a significant slowdown or

an acceleration in the economy. This problem is especially important around

business cycle peaks or troughs, where there may be only weak evidence that

the economy is changing direction. The lack of timely information concerning

macroeconomic aggregates is also important for understanding private sec-

tor behaviour, and in particular the behaviour of asset prices. When agents

make trading decisions based on their own estimates of current macroeco-

nomic conditions, they transmit information to their trading partners. This

trading activity leads to the aggregation of dispersed information, and in the
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process affects the behaviour of asset prices. But many macroeconomic time

series provide timely information about the current state of the economy.

Some of them (like surveys) are not subject to revision, but are sampled

at a higher frequency (for example monthly) compared to a target variable

like GDP. So there is a potential need for models that combine data from

different frequencies. This area of research evolved recently and is virtually

unexplored.

Early examples of attempts to combine data from different frequencies were

linkage models and bridge equations. In the former approach, forecasts are

generated at different frequencies. The forecasts are combined to improve

the forecasting accuracy of the lower-frequency time series. In contrast,

bridge equations are essentially single-frequency time series models. The

high-frequency data are forecasted up to the desired forecast horizon in a

separate time series model. Finally, these forecasts are aggregated to the

lower frequency and plugged into a lower-frequency time series model (as

contemporaneous values). Bridge equations are especially useful for now-

casting: the forecast of the current period. These early attempts proved to

be successful as they increase forecast accuracy in the short-run. But what

about time series models, which are able to handle mixed-frequency time

series models without any data transformations and forecast combinations?

Is there something to gain in forecast accuracy?

From a theoretical point of view, Ghysels and Valkanov (2006) and Hyung

and Granger (2008) showed that there are gains in terms of forecasting accu-

racy from considering mixtures of different frequencies without transforma-

tion of the data. Ghysels and Valkanov (2006) derive circumstances under

which mixed-data sampling achieves the same forecasting efficiency as the

hypothetical situation where all series are available at the highest frequency.

However, the conditions behind this result cannot be verified empirically. In

a Monte Carlo study, Ghysels and Valkanov (2006) demonstrate that the in-

sample forecasting mean squared errors of mixed-frequency models are lower

than temporally aggregated single-frequency time series models.

Currently there are two competing approaches in the literature to deal with
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mixed-frequency time series. The first one was proposed by Zadrozny (1988)

for directly estimating a multivariate, continuous, autoregressive, moving

average (VARMA) model with mixed-frequency time series. Zadrozny (1990,

2008) extended this idea to discrete time. The approach of the method is

to assume that the model operates at the highest frequency in the data.

All variables are assumed to be generated, but not necessarily observed, at

this highest frequency, and thus can be used to produce forecasts of any

variable at this frequency. Variables which are observed at a lower frequency

are viewed as being periodically missing. For example, with quarterly and

monthly data, the model is assumed to generate all variables at monthly

intervals and each quarterly observation is assigned to the last month of a

quarter, so that observations for the remaining months in the quarter are

viewed as missing.

The second approach to handle time series sampled at different frequencies,

which they term MIDAS (MIxed DAta Sampling), was proposed by Ghysels,

Santa-Clara, and Valkanov (2004). MIDAS models specify conditional expec-

tations as a distributed lag of regressors at some higher sampling frequencies.

In practice the lowest frequency is regressed on the higher frequency. To avoid

parameter proliferation, a weighting function is employed.

Practical applications of these two approaches are rather rare. Zadrozny

(2008) shows that the forecasting performance for US Gross National Prod-

uct (GNP) can be improved with the state-space VARMA model over an

autoregressive benchmark model. Mittnik and Zadrozny (2005) find simi-

lar promising results for German GDP forecasts using the Business Climate

Index of the Ifo Institute in Munich. Ghysels, Santa-Clara, and Valkanov

(2006) predict volatility (5-minute frequency data) with various specifications

of regressors. They show that MIDAS models outperform single-frequency

benchmark models. Ghysels and Wright (2008) come to a similar conclusion

when using daily financial data to make monthly and quarterly macroeco-

nomic forecasts. Clements and Galvao (2008) obtain better forecasts for US

output and inflation using the MIDAS approach compared to benchmark

models (for example bridge models). Marcellino and Schumacher (2007)
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demonstrate how factor models, in combination with the MIDAS approach,

can be used to improve short-run forecasts of German GDP.

Given these promising results it is interesting to ask whether these results

hold in general, that is for any frequency mixture and time series length.

More importantly, these two approaches have not been directly compared to

date. Until now, there seems to be a ’peaceful coexistence’ between both

approaches. Articles dealing with one approach do not cite the other.

However, these two approaches are possible candidates to account for the

problems stated before. The data need not be transformed and are able

to account for any kind of high-frequency data. Are these models able to

improve the forecasting accuracy of lower-frequency variables, like GDP, by

using high-frequency data? We want to answer these questions in this thesis.

This dissertation contributes to the literature in several ways. First we out-

line all theoretical aspects concerning mixed-frequency data modelling. We

are the first to present the different approaches in one review. So far the

different approaches are presented quite disconnected in the literature. In

a second step we review the literature that has dealt with forecasting with

mixed-frequency data. This review presents empirical strategies and the suc-

cess of mixed-frequency modelling approaches. Such a review is the first to

attempt this.

In the main part of the thesis we compare the forecasting success of the two

new mixed-frequency time series models: the mixed-frequency VAR and the

MIDAS approach. Before the calculation of forecasts, a time series model

needs to be specified. Current articles on mixed-frequency time series models

neglect the model specification aspect. We are the first to investigate some

specification issues for both model classes relevant for forecasting purposes.

As the mixed-frequency VAR operates at the highest frequency of the data, it

is important to know how many lags should be included. Is there a problem

of parameter proliferation or are models with few lags sufficient to obtain an

improvement in forecasting accuracy? The lag selection problem also intrudes

into the MIDAS model specification, but in a different way. Inclusion of
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further lags does not increase the number of estimated parameters. Due to

large (high-frequency) data sets in financial econometrics, it is possible to

include many lags. In contrast, in macroeconomics the trade-off of including

more lags and shortening the estimating sample is more severe. Closely

related to the lag selection problem is the question of whether the weighting

function should be restricted (for example, ensuring declining weights) or

not. Restrictions may be useful to ensure that more recent observations are

given bigger weights than others are. In the literature, we find examples

with restrictions and some without restrictions. But there is no theoretical

or economic reasoning behind these choices.

Having demonstrated how to specify the model we want to systematically

compare the forecasting performance of the two approaches in an extensive

Monte Carlo study, since the two approaches have not been compared be-

fore. We will consider four data-generating processes to cover reasonable

data structures. We allow both for homoscedastic and heteroscedastic errors

in the data-generating process. The latter one especially is motivated by the

fact that many economic time series show the existence of volatility clus-

tering ((G)ARCH - generalized autoregressive conditional heteroscedasticity

effects). Financial time series exhibit inherently volatility clustering. We

investigate whether heteroscedastic data do influence the forecasting perfor-

mance significantly compared with homoscedastic errors. We will focus on

three mixtures that are predominant in macroeconomic forecasting: monthly-

quarterly, weekly-quarterly, and quarterly-yearly. In addition to comparing

the mixed-frequency approaches to each other, we investigate whether they

have an advantage over single-frequency models. The final question in the

Monte Carlo study is that we want know how the forecasting performance

changes when larger time series are under investigation.

Eventually, we compare the two approaches in a case study using real data.

We forecast German GDP growth with different indicators and different mod-

els. We focus especially on the nowcasting aspect. Does intra-quarterly in-

formation help to improve forecasting accuracy in the short and long run?

Factor analysis, as a method to condense large information sets, will play a
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prominent role in our analysis. The second part of the empirical application

is a nowcasting experiment. We investigate whether it is possible to track

the German economy on a daily basis. In contrast to approaches that esti-

mate a latent variable as the current state of the economy we are the first

to track the economy almost in real-time by forecasting GDP growth on a

daily basis. With this experiment we demonstrate how useful daily data are

for forecasting GDP. We consider this as a starting point for future research

in this area.

The thesis is structured as follows. Chapter 2 outlines the theoretical aspects

of mixed-frequency data modelling, both data transformation and mixed-

frequency time series models. Chapter 3 contains the literature review. In

chapter 4 we introduce all aspects of the Monte Carlo study. In chapter

5 we demonstrate how to specify a mixed-frequency model for forecasting

purposes. Chapter 6 contains the Monte Carlo forecasting study. In chapter

7 we use both approaches to forecast German GDP. We show how these

models can help to increase forecasting accuracy with monthly and daily

leading indicators. The latter is viewed as a nowcasting experiment. Finally

we summarize and conclude.





2. MIXED-FREQUENCY DATA: THEORETICAL MODEL

AND TRANSFORMATION ISSUES

Generally, most time series models employed for forecasting assume the same

frequency for all data used. When time series are sampled at different fre-

quencies one needs to transform them. Either the lower frequencies are in-

terpolated to the highest frequency or the higher frequencies are aggregated

to the least frequency. Strictly speaking, forecasting using mixed-frequency

data is a two-step procedure. First, the data are transformed into a single

frequency and second, the transformed data are plugged into a structural

macroeconomic or time series model for forecasting. In this chapter we out-

line different transformation methods to obtain single-frequency data. Then

we present the early approaches to combine data sampled at different fre-

quencies, linkage models, and bridge equations. We keep the summary on

data transformation short, as we focus on time series models able to han-

dle mixed-frequency data and where no data transformation is necessary:

the mixed-frequency VARMA approach and the MIxed DAta Sampling (MI-

DAS) approach. We provide details of the approaches, and specification and

estimation issues. We also briefly compare these models in terms of practical

forecasting without empirical investigation. The chapter starts with some

details on notation and interpretation of mixed-frequency data.

2.1 Preliminaries

As we deal with mixed-frequency data throughout the thesis, first we want

to outline the notation in order to avoid confusion. The basic time unit is

denoted with t. With t we label the time unit of the lower frequency time
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series which has the range t = 1, . . . , T . To relate the difference frequencies

to each other we will use the term frequency-mixture denoted as m. Between

t and t − 1 the higher-frequency variable is observed m times. To avoid

cumbersome notation we will also use a time unit for the higher-frequency

data, denoted as τ . The length of the higher frequency is then τ = 1, . . . mT .

The basic frequency mixtures investigated in more detail in this thesis are:

• m = 3 ⇒ monthly-quarterly data, where 3 months constitute a quarter

• m = 4 ⇒ weekly-monthly or quarterly-annual data, where 4 weeks

(quarters) define a month (year)

• m = 12 ⇒ weekly-quarterly data, where 12 weeks constitute a quarter.

This choice is based on typical mixtures that confront a researcher in em-

pirical macroeconomics. Generally, m can take any value. Further possible

mixtures are

• m = 2 ⇒ biannual-annual data (not considered so far in the literature)

• m = 20 ⇒ week-daily-monthly data (20 trading days per month)

• m = 60 ⇒ week-daily-quarterly data (60 trading days per quarter)

• m = 250 ⇒ week-daily-yearly data (250 trading days per year)

which are mixtures that can be found in financial economics. In the liter-

ature review we will present the empirical choices of m. This list can be

extended by the practitioner to any (constant) mixture. The presence of two

different frequencies in one time series model is represented by the notation

xt−i/m. Suppose, xt denotes the March value of some monthly time series.

Suppose that the target variable is sampled at quarterly intervals than m

equals three. The February monthly value is then donated by xt−1/3 (one

month of observations is missing in the current quarter), the January value
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by xt−2/3, the December by xt−3/3 = xt−1 and so forth. A simple regression

model is than given by

yt = α +

p∑
i=1

βixt−i/m + εt (2.1)

This definition and notation of mixed-frequency data can be problematic

(especially for higher frequency mixtures) in empirical applications for several

reasons. First, it assumes that the data are equidistant over time. But this

may not be the case, especially for very high-frequency data. For example,

the three months constituting a quarter may not be of the same length.

Abstracting from a leap year, in the first quarter, the month of January has

31 days, February 28 days and March 31 days. Furthermore the number

of Mondays, Tuesdays etc. are not the same for each month. And there

are moving holidays, like Easter. Such differences can have an impact on

some macroeconomic variables such as retail sales or industrial production.

In practical applications one can account for this problem, by seasonally and

workday adjusting the data. But this is not done for every variable.1 In

general this aspect is ignored in practical macroeconomic forecasting.

Even more severe is the problem when mixing daily and monthly data. In

financial applications a week is defined by five trading days. As months usu-

ally consist of 30 or 31 days it is likely that we have more than 20 trading

days per month. On the other hand it is possible not to have enough trading

days to define a week or a month. This occurs in months with many holidays

as in December. On the one hand, one has too much information and has to

discard some of it. On the other hand, there is too little information and one

needs to extrapolate or interpolate it. These problematic aspects have not

been investigated in the literature so far. We will abstract from the infor-

mation content problem in our Monte Carlo study by assuming equidistant

1 Official seasonally adjusted time series account for the actual number of working
days. Many econometric packages provide seasonal adjustment, but to account for
the actual number of working days, the researcher needs to provide this information,
but this is rarely done. Thus seasonal adjustment is a technical process unless we
account for the distribution of frequencies used.
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observations. In the empirical example we will outline some strategies to

deal with this problem.

There are other possible notations for denoting mixed-frequency data in a

time series model, for instance a superscript for the corresponding frequency.

For instance, ym
t denotes month t,2 whereas yq

t denotes quarter t. Equation

(2.1) can then be rewritten as

yq
t = α +

p∑
i=1

βix
m
t−i + εt. (2.2)

2.2 Transforming Mixed-frequency Data

2.2.1 Interpolation

Interpolation is rarely used in applied econometric forecasting.3 Interpola-

tion assumes that the lower-frequency variable is interpreted on some higher

frequency which exhibits missing observations. Lanning (1986) points out

that economists facing missing data have basically two different ways to in-

terpolate. One approach is to estimate the missing data simultaneously with

the model parameters. A second way is a two-step procedure where in a

first step the missing data, which can be independent of the economist’s

model, are interpolated. In a second step, the new augmented series is used

to estimate the model. Based on simulations, Lanning (1986) suggests using

the two-step approach, as the model parameters have larger variances in the

simultaneous approach.

The simplest way to interpolate is to apply pure statistical interpolation

methods as linear, quadratic, or cubic interpolation. But these methods do

not account for possible intra-period variability of the higher frequency.4

2 The superscript m denotes in this case the month and not the frequency mixture.
3 Examples can be found in the next chapter. Interpolation is also sometimes termed

’disaggregation’.
4 A recent chronology of interpolation (Meijering (2002)) contains 358 (mostly modern)

citations.
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A simple approach to recovering disaggregated values is to compute par-

tial weighted averages of the aggregated series, see for example Lisman and

Sandee (1964). A different approach is that the disaggregated values are those

which minimize a specific loss function under a compatibility constraint with

aggregated data, see for example Boot, Feibes, and Lisman (1967), Cohen,

Müller, and Padberg (1971), and Stram and Wei (1986). A further constraint

can be added. This involves the existence of a preliminary disaggregated se-

ries (related time series), so that the interpolation issue becomes how best

to revise the data for them to be compatible with the aggregated data, see

for example Friedman (1962), Denton (1971), Chow and Lin (1971) (later

extend by Chow and Lin (1976)), Fernandez (1981), Litterman (1983), and

Mitchell, Smith, Weale, Wright, and Salazar (2005).

Assuming the higher-frequency observations as missing, there is a huge lit-

erature on estimating such missing observations relying on state-space inter-

pretations and Kalman filtering, see for example Harvey and Pierse (1984),

Kohn and Ansley (1986), Nijman and Palm (1990), and Gomez and Maravall

(1994). The Kalman filter uses the underlying serial dependence of the data

in order to estimate conditional expectations of the missing observations.

More recent state-space approaches are provided by Bernanke, Gertler, and

Watson (1997), Liu and Hall (2001), Proietti (2006), Nieto (2007), and An-

gelini, Henry, and Marcellino (2006). In the latter article the usage of factor

models is proposed for interpolation. Angelini, Henry, and Marcellino (2006)

also conduct a Monte Carlo study to investigate the performance of different

interpolation approaches. Given a large information set of higher-frequency

variables, the factor approach performed best. Given only a few related time

series, the approach by Chow and Lin (1971) cannot be outperformed. These

results still hold when applied to a real data set (GDP and inflation) where

some of the observations were dropped.

Cuche and Hess (2000) provide an overview of which interpolation approach

should be used depending on data availability and assumptions on the data-

generating process of the interpolated series.
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2.2.2 Aggregation

In general, aggregation generates an information loss. The analysis of tem-

poral aggregation starts with the seminal paper of Amemiya and Wu (1972).

They demonstrate that if the original variable is generated by an AR model

of order p, the aggregate variable follows an AR model of order p with MA

residuals structure. Tiao (1972) and Amemiya and Wu (1972) study the issue

of information loss due to aggregation. In a general multivariate framework,

Lütkepohl (1987) contains a deep analysis of temporal (and contemporane-

ous) aggregation for VARMA models; it also examines the impact of temporal

aggregation of the efficiency of forecasts. For a recent survey on temporal

aggregation of single-frequency variables see Silvestrini and Veredas (2008).

A single time series

Temporal aggregation of the higher frequency variables to the lowest fre-

quency is by far more common in applied work. ’Aggregation’ can be inter-

preted in different ways depending on the definition of the variable in focus.

Assuming a stock variable, the latest available value of the higher frequency

can be used. Assuming monthly-quarterly data, one could use the first, sec-

ond or the last (’stock-end’) value to be representative of the whole quarter.

Considering the last value of the quarter one could argue that information

from the previous quarters is reflected in this value. Employing such an

’aggregation’ scheme for flow variables is more a matter of convenience than

being theoretically justified. It is more appropriate for ’small’ frequency mix-

tures such as monthly-quarterly than for larger ones such as daily-quarterly,

as not too much information is condensed in one value.

As already stated, aggregation in practice depends on the interpretation of

the data. The standard aggregation method is averaging over one lower-

frequency period

xt =
1

m

m∑
i=1

xt−i/m. (2.3)

This is even done for stock variables. The average defines the average infor-

mation content over the low-frequency period. For flow variables the higher-
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frequency values are simply added

xt =
m∑

i=1

xt−i/m. (2.4)

Many time series

During the 1980s and 1990s more and more economic variables have become

available. The inclusion of too many variables increases estimation uncer-

tainty, which can lead to a deterioration in forecasting accuracy. Thus, the

principle of parsimony in econometrics prevents the inclusion of all possible

indicators in one time series model. One way to exploit the whole available

information set is to condense all time series into a few variables. One at-

tempt is the construction of composite indicators (CI). These CIs can be

constructed for several purposes, for example forecasting or, coincidentally,

for describing the current state of the economy. One popular attempt is the

Stock-Watson Experimental Coincident Index (XCI) developed by Stock and

Watson (1989). Stock and Watson (1991) construct a coincident index by

applying maximum likelihood factor analysis to four monthly coincident in-

dicators. So far, these methods assume the same data frequency for all time

series.

Mariano and Murasawa (2003) extend the model of Stock and Watson (1989)

to allow for mixed-frequency data, especially the inclusion of quarterly data.

The model is cast into state-space form and the likelihood is maximized

with the Kalman Filter.5 The suggested filtering algorithm is only an ap-

proximation. Proietti and Moauro (2006) avoid the approximation at the

cost of moving to a non-linear model with a corresponding, rather tedious,

non-linear filtering algorithm. Mariano and Murasawa (2003) extract a new

coincident indicator using one quarterly and four monthly time series.

Another approach to condensing information is estimating factors from large

data sets. Factor analysis has become popular in applied forecasting (see

5 The idea of using the Kalman filter to account for mixed-frequency data in this context
was also suggested by Nunes (2005) and Crone and Clayton-Matthews (2005).
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the literature review in chapter 3). We want to outline the aspect of factor

estimation with irregular and mixed-frequency data in more detail, as we will

apply these approaches in our empirical forecasting exercise. For illustration

purposes we start with the static factor model with single-frequency data.6

Let Yτ be an (N ×1) dimensional vector of stationary time series with obser-

vations for τ = 1, . . . , mT , and we assume that the series have zero means.

The variables in a factor model are represented as the sum of two mutually

orthogonal components: the common and the idiosyncratic components. The

common component is driven by a small number of factors common to all

variables in the model. The idiosyncratic component is driven by variable-

specific shocks. The factor model can be written as

Yτ = ΛFτ + ξτ (2.5)

where Fτ is a (r × 1) vector of factors and the (N × r) dimensional matrix

Λ contains the factor loadings. The idiosyncratic components comprise the

vector ξτ . The basic idea of factor models is that a small number of factors

can explain most of the variance of the data. The factors can be estimated

with the principal components approach. Let V be the (N × r) matrix of

stacked eigenvectors V = (V1, . . . , Vr) corresponding to the r largest eigen-

values of the (N × N) sample covariance matrix Σ̂ = (mT )−1
∑

YτY
′
τ . The

principal components estimator of the factors and the loading matrix is given

by

F̂τ = V ′Yτ (2.6)

Λ̂ = V (2.7)

The asymptotic properties of the factor estimators are outlined in Breitung

and Eickmeier (2006) building on Stock and Watson (2002a) and Bai (2003).

Under mild assumptions on serial correlation, heteroscedasticity, and cross-

correlation among idiosyncratic components, the asymptotic normal distri-

bution of the factor estimates is established for N,mT →∞.

6 The following exposition draws on Schumacher and Breitung (2008).
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Stock and Watson (2002b) showed how the expectation maximization (EM)

algorithm can be employed in factor analysis when data irregularities such

as missing observations or mixed-frequencies are present. Before we present

the idea of the EM algorithm we need to introduce a transformation matrix.

Let Y −
i a T− × 1 vector of observations for the variable i, that may contain

missing values and the complete vector of realizations Yi, where T− ≤ mT .

It is assumed that the relationship between observable and complete data

are given by the linear relationship

Y −
i = SiYi (2.8)

where Si is a known (T− × mT ) selection matrix that can tackle missing

values or mixed frequencies.7 For example, if all observations are available,

the matrix Si is an identity matrix. Mixed-frequency data are interpreted as

missing values. Consider mixing monthly and quarterly data. For a stock

variable the first two months are not available, whereas the last monthly ob-

servation in a quarter is equal to the quarterly published value. The selection

matrix Si is adjusted by elimination of the respective rows.

Given these preliminaries, the basic idea of the EM algorithm with mixed-

frequency data proceeds as follows:

1. Create a data set sampled at the highest frequency in the data. Thus we

produce an initial (naive) higher-frequency estimate of lower-frequency

variables. Given the initial estimate, the factors and loadings at the

highest frequency are estimated as described above in the single-frequency

case.

2. Expectation-Step: For each iteration j, given an initial estimate of

the factors and loadings from the previous iteration j − 1, compute an

7 The idea of the selection matrix originates from the work by Jones (1980). The au-
thor estimated ARMA models with missing observation within a state-space frame-
work with the Kalman filter. In the mixed-frequency modelling framework the idea
was picked up by Greene, Howrey, and Hymans (1986), Zadrozny (1990), Stock and
Watson (2002b), and Giannone, Reichlin, and Small (2008).
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update of the highest-frequency or missing observations by the expec-

tation of the T × 1 Xi conditional on the observed data Y −
i and the

previous iteration factors and loading for variable i according to

Ŷ
(j)
i = E(Yi|Y −

i , F̂ (j−1), Λ̂
(j−1)
i )

= F̂ (j−1)Λ̂
(j−1)
i + S ′i(SiS

′
i)
−1(Y −

i − SiF̂
(j−1)Λ̂

(j−1)
i )

3. Repeat step 2 for all series in the sample that contain missing values

or that have to be transformed from the higher to the lower frequency.

4. Maximization-Step: The estimated highest-frequency observations are

used to re-estimate the factors F̂
(j)
t and loadings Λ̂(j) by an eigen decom-

position of the covariance matrix Σ̂(j) = (mT )−1
∑

Ŷ
(j)
τ Y

(j)
τ

′ according

to Equation (2.5). The estimates of the factors and loadings enter step

2 above again until some convergence criterion is fulfilled.

The steps of the above EM algorithm provide estimates of the lower-frequency

variables for the highest frequency in the data. Furthermore, estimates for

missing observations are established. Schumacher and Breitung (2008) con-

duct a Monte Carlo study to investigate how well the EM algorithm can

estimate monthly observations of GDP. The authors carry out two simula-

tions. The first simulation addresses the estimation of monthly observations

from quarterly and monthly data for different degrees of idiosyncratic noise

in the data. In a second approach, the estimation of missing observations

at the end of the sample is investigated. Considering the first point, Schu-

macher and Breitung (2008) find that the performance strongly depends on

how informative are the data. The less informative the time series are with

respect to the factors, the less precisely (in MSE terms) are the factors and

the monthly observations estimated. The same conclusions can be drawn for

the second part of the Monte Carlo study.

As we will see in later chapters, the presence of ’ragged-edge’ data is promi-

nent in extracting factors for nowcasting.8 Besides the EM algorithm there

8 The term ’ragged-edge’ illustrates the imbalance at the end of a sample due to pub-
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are other estimation methods available to handle missing observations at the

end of the sample. A simple approach to solve the ragged-edge problem is

provided by Altissimo, Cristadoro, Forni, Lippi, and Veronese (2006). They

propose to realign each time series in the sample to obtain a balanced data

set. Given the balanced data set, the standard approach to extract factors

can be applied. A different approach is to build a parametric factor model

in state-space form. Kapetanios and Marcellino (2006) estimate the factors

using subspace algorithms, while Doz, Giannone, and Reichlin (2006) exploit

the Kalman filter.

2.3 Bridge Equations and Linkage Models

2.3.1 Linkage Models

In the 1950s, large marcroeconometric models in different countries were de-

veloped to describe and forecast parts of National Accounts. Therefore they

are based on quarterly frequencies. These models were designed primarily

for short- and long-run forecasting and policy simulations. Their equations

therefore generally have a solid theoretical base and exhibit desirable long-

run equilibrium properties, but place less emphasis on short-run forecasting

accuracy. Some of the variables are also available on a higher frequency (for

example monthly). As higher frequencies potentially provide valuable (and

timely) information regarding future economic development, it was sensible

to use this additional information. In practice this was often achieved by

adjusting the constant term of relevant equations (or by using a non-zero

error term) to make the model outcome agree with the new information.

Such a procedure to alter a model’s solution is often referred to as ’judge-

mental modification’ and is subject to criticism as being unscientific or ad

hoc.9 To avoid this problem the idea of combining quarterly (interpreted as

lication lags.
9 Klein and Sojo (1989) provide a framework for adjusting these constant terms in a

more scientific way. Their article is more general and contains practical advice on how
to use high-frequency data (in bridge equations) in a large macroeconometric model.
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long-run relationships) and monthly (short-run relationships) forecasts was

introduced.

The basic idea is to model the higher frequency variables in separate (time

series) models. The higher-frequency forecasts are combined with lower-

frequency forecasts of the corresponding variables. The combined forecasts

can be used to update the macroeconometric model.

The first approach to link quarterly and monthly information was proposed

by Greene, Howrey, and Hymans (1986).10 To illustrate the idea consider

the reduced form of the lower-frequency (quarterly) variable

Yt = PYt−1 + QXt + Vt (2.9)

where Yt denotes the endogenous variables and Xt the exogenous variables

of the system and Vt ∼ N(0, ΣV V ) is the error term. The one-quarter-ahead

forecast of Yt is given by:

Ŷt+1 = PYt + QXt+1 (2.10)

so that

Yt+1 = Ŷt+1 + Vt+1. (2.11)

Let Ỹt+1 be the collection of H quarterly forecasts derived from the monthly

model, where H denotes the number of common variables (which are available

both at the higher and lower frequency). Because only some of the variables

are available monthly, a ’selection’ matrix denoted by θ picks out the elements

of Yt corresponding to Ỹt+1

θYt+1 = Ỹt+1 + Wt+1 (2.12)

where Wt+1 is a H × 1 vector of disturbances with mean zero and covariance

matrix ΣWW . The difference between the quarterly and the monthly forecast

10 As large macroeconometric models were predominant at this time, they used the term
’outside information’ for monthly information.
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models is given by

Zt+1 = Ỹt+1 − θŶt+1 = θVt+1 −Wt+1 (2.13)

The optimal combined forecast of quarterly and monthly data is given by

Y t+1 = Ŷt+1 + KZt+1 (2.14)

where

K = ΣZV Σ−1
ZZ (2.15)

ΣZZ = θΣV V θ′ + ΣWW − θΣV W − ΣWV θ′ (2.16)

ΣZV = θΣV V − ΣWV . (2.17)

Generally, this approach can be extended to any mixtures of frequencies.

Howrey, Hymans, and Donihue (1991) criticize the approach by Greene,

Howrey, and Hymans (1986) in one important aspect. The forecasts are

linked with quarterly aggregates of the monthly forecasts and therefore the

approach could not take advantage of the information within the quarter.

We want to sketch the alternative pooling approach of Howrey, Hymans, and

Donihue (1991), which utilizes within-quarter information.

Let Ŷt+1 = [Ŷt+1|ŷt+1|ŷt+1−1/3|ŷt+1−2/3] the vector containing the forecasts

from the quarterly (Ŷt+1) and the monthly (ŷt+1−i/3) models. For combining

the forecasts from both frequencies, the estimate of the covariance matrix Φ of

the forecast errors corresponding to this forecast vector is necessary.11 As not

all common variables satisfy the aggregation condition12, it is assumed that

the vector of actual and quarterly and monthly values, Yt+1, is drawn from a

(normal) distribution with mean Ŷt+1 and covariance matrix Φ. Additionally

an aggregation condition between quarterly and monthly data is necessary

11 We refer to the appendix of Howrey, Hymans, and Donihue (1991) for the derivation
of this covariance matrix.

12 As, for example not all information is available for the current quarter.
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such that

QYt+1 = 0 (2.18)

where Q is the aggregation matrix. From standard formulae for the multi-

variate normal distribution one can obtain the conditional mean Y t+1 and

the conditional covariance matrix, Ψ, of Yt+1 given QYt+1 = 0

Y t+1 = Ŷt+1 − ΦQ′(QΦQ′)−1QŶt+1 (2.19)

Ψ = Φ− ΦQ′(QΦQ′)−1QΦ (2.20)

The corresponding diagonal elements of Ψ and Φ indicate the expected im-

provement in forecast accuracy resulting from this pooling procedure.

Fuhrer and Haltmaier (1988) derive formulae for obtaining minimum variance

for pooled forecasts at the disaggregated level. They prove that pooling at the

disaggregated level produces the same aggregated pooled forecasts as pooling

the two forecasts at the aggregate level. This result holds only in-sample and

can deviate out-of-sample.

The paper by Rathjens and Robins (1993) provides a different interpretation

of how to link monthly and quarterly information in one model. The previous

approaches combined forecasts from different frequencies, whereas Rathjens

and Robins (1993) point out the usefulness of within-quarter information and

want to utilize it for producing quarterly information. Consider a time series

yτ which is sampled at a monthly frequency but forecasts are generated with

aggregated quarterly data. In a univariate approach this variable is forecasted

with an AR or an ARIMA model. Rathjens and Robins (1993) suggest the

introduction of a new variable xt which is defined as

xt = yt − 1

3

3∑
i=1

yt−1−i/3

that is, the difference between the third month of the quarter and the simple

average of the quarter. The quarterly forecasts are then generated with

an autoregressive model with exogenous variables (ARX) or an integrated
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autoregressive moving average model with exogenous variables (ARIMAX)

A(L)yt = B(L)εt + C(L)xt, (2.21)

where A(L), B(L) and C(L) are lag polynomials of finite order. Indeed it

makes no sense to apply this idea to univariate models which are sampled at

the higher frequency and are aggregated to the lower frequency. Therefore it

is better to employ the new variable xt in multivariate lower frequency time

series models. This approach cannot be used for nowcasting in a strict sense,

that is using information of the current quarter. As the approach can use

information only up to t− 1.

2.3.2 Bridge Equations

Klein and Sojo (1989) describe a regression-based current quarter GDP fore-

casting system in which GDP components of the National Accounts are mod-

elled individually. In general, Bridge Models (BM) can be seen as tools to

’translate’ the information content of short-term indicators into the more

coherent and complete ’language’ of the National Accounts. BM are lin-

ear dynamic equations where the aggregate GDP or, alternatively, GDP

components are explained by suitable short-term indicators. In fact, BM

can be specified either as different equations for the main GDP compo-

nents (namely, private consumption, government purchases of goods and ser-

vices, fixed investment, inventory investment, exports, and imports), or as

a single equation for the aggregate GDP. In the first case, the model is la-

belled ’demand-side’ BM (where GDP is predicted by the National Accounts

income-expenditure identity); in the second case it is labelled ’supply-side’

BM (where GDP is forecast by a single bridge equation).

In contrast to large structural macroeconomic models, BM are not concerned

with behavioural relations. The choice of the BM explanatory variables is

based on the researchers’ experience and several statistical testing proce-

dures, rather than on causal (that is structural) relationships.
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In general auxiliary equations forecast the higher-frequency variable up to

the end of the lower-frequency period under consideration. For instance, if

we are in January and we want to forecast the first quarter, we forecast the

independent indicators up to March. Then the ’filled’ period of the higher-

frequency variable can be temporal-aggregated to the lower frequency. These

values are then plugged into the lower-frequency bridge equation time series

model. The indicators can be forecasted with any preferred model. In many

cases an AR, ARIMA, vector autoregressive model (VAR) or Bayesian vector

autoregressive model (BVAR) are used. In contrast, to use a specific forecast

model one can also encounter a no-change forecast, where the latest available

information is used to represent the information content of the current period.

Before building a bridge model, the selection of indicators is a crucial step.

First, monthly indicators must be updated in a timely manner (published

before the BM dependent variable is released). Second, indicators must be

reliable; that is they should not be revised substantially after they are first

published. Alternatively, real-time data could be used, that is only informa-

tion available at the forecast horizon (first estimates or final data) is used to

calculate the forecast. Finally, indicators must be related to the dependent

variable of the BM.

Bridge equations are rather useful for short-term forecasting (nowcasting).

Forecasting the indicators over a longer horizon would transmit larger fore-

casting errors into the primary forecasting model due to iterative forecasting

uncertainty of the higher-frequency variable.

2.4 State-space Approaches

The first two subsection deal with different state-space representations of

a mixed-frequency VAR(MA) model, where all variables are endogenous.

The state-space approach by Evans (2005) estimates an unobserved state

interpreted as growth rates. There is no modelling of dynamic relationships

between the variables. Finally we outline the combination of factor models
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with state-space approaches, where the lower-frequency target variable is

forecast at a higher frequency.

2.4.1 A Mixed-frequency VARMA Model

Zadrozny (1988) proposed a general approach to handle different frequencies

in a continuous time series model. Zadrozny (1990, 2008) extended this idea

to discrete time. We sketch this approach and give some modelling examples;

for details we refer to the original literature. We consider the general sampled

at the highest frequency, ARMA(p, q) model with n time series for aτ as

A(L)aτ = B(L)eτ (2.22)

for τ = 1, . . . , mT , where A(L) = A0−
∑p

k=1 AkL
k, B(L) =

∑q
k=0 BkL

k, L is

the lag operator, and eτ is an mT×1 unobserved, normally distributed, white

noise disturbance vector with zero mean and constant covariance matrix, that

is eτ ∼ N(0, Σe), where Σe = E(eτe
′
τ ). We can partition the number of time

series into stocks (n1) and flows (n2), where n = n1 + n2.

We assume that the data are adjusted for mean values and other possible

fixed (regression) effects. We have to assume some restrictions to identify the

model. First, we must assume that the model is complete, that is A0 is non-

singular. Second, we assume that there are no identities in the data, which

implies a non-singular probability distribution of the data. To ensure this

we impose the restriction B0ΣeB
′
0 > 0. Third, there is redundancy among

A0, B0 and Σe. We adopt the normalization A0 = In, B0 = lower triangular,

and Σe = In, where In denotes the n× n identity matrix.

The model is cast in state-space form. A state-space system consists of a

state and observation equation. The law of motion for the unobserved state

x is given by

xτ = Fxτ−1 + Geτ , (2.23)

where the matrices F and G contain the corresponding AR and MA coef-

ficients. The state vector xτ is constructed for stocks and flows with r · n∗
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elements, where r = max(p, q + 1, ν) and n∗ = n1 + 2n2. The parameter

ν denotes the maximum lag in any flow aggregation.13 We define a m × 1

vector wτ of potential observations of aτ . By ”potential” we define that the

vector wτ is not yet adjusted for the actual observed values in period τ .

The observation equation is constructed in two steps. Let ζτ be an unob-

served vector of observation errors which has the same dimension as wτ . That

is we observe wτ as wτ = x11τ + ζτ and , or, equivalently as

wτ = ∆xτ + ζτ (2.24)

where

∆ =
[
In 0 0 0

]
.

We assume that ζτ ∼ N(0, Σζ), where Σζ > 0, and E(ζτe
′
τ ) = 0 and E(ζτx

′
1) =

0 for all τ . As before it is convenient to re-parameterize Σζ to R, where R is

a lower triangular matrix and satisfies RR′ = Σζ . Furthermore, let yτ denote

the mτ × 1 vector of values of w in period τ which are actually observed,

where mτ ≤ m. Therefore we have yτ = Λτwτ , where Λτ is the mτ × mT

selection matrix which picks out the observed elements of wτ . Combining

(2.24) and yτ = Λτwτ we finally get the observation equation

yτ = Dτxτ + vτ , (2.25)

where Dτ = Λτ∆ and vτ = Λτζτ . The disturbance vector vτ obeys the same

properties as ζτ : vτ ∼ N(0, Σvτ ), where Σvτ = ΛτΣζΛ
′
τ and E(vτe

′
τ ) = 0, for

all τ .

Having outlined the theoretical model we want to illustrate some parts with

examples to enhance the understanding. Consider a bivariate VARMA(1,1)

model with monthly and quarterly data where one variable is a stock (for

example the indicator) and the other a flow (for example GDP growth). The

13 For example, in case of monthly-quarterly data the parameter ν takes the value 2.
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matrices F and G from equation (2.23) are then given by

F =




α11 α12 0 1 0 0

α21 α22 0 0 1 0

0 1 0 0 0 1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0




and G =




β11 0

β21 β22

0 0

β31 β32

β41 β42

0 0




where αij denote the AR and βkl denote the MA coefficients. If both variables

are observed than

Λτ =

[
1 0

0 1

]

and thus the Dτ matrix in equation (2.24) is given by

Dτ =

[
1 0 0 0 0 0

0 1 1 0 0 0

]

If only one variable is observed than

Λτ =
[
1 0

]
and Dτ =

[
1 0 0 0 0 0.

]

In a second example consider three variables, sampled at weekly, monthly,

and quarterly intervals all observed as stocks. The matrices F and G are

then given by

F =




α11 α12 α13 1 0 0

α21 α22 α23 0 1 0

α31 α32 α33 0 0 1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0




and G =




β11 0 0

β21 β22 0

β31 β32 β33

β41 β42 β43

β51 β52 β53

β61 β62 β63




Note the subtle difference to the previous example. The dimension of the

matrix F is the same but due to the flow variable in the previous sample a
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1 is put under each flow variable. If all variables are observed variables then

Λτ =




1 0 0

0 1 0

0 0 1


 and Dτ =




1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0




If only two variables (weekly and monthly) are observed then

Λτ =

[
1 0

0 1

]
and Dt =

[
1 0 0 0 0 0

0 1 0 0 0 0

]

If only one variable (weekly) is observed then

Λτ =
[
1 0

]
and Dτ =

[
1 0 0 0 0 0

]

The Kalman filter (KF) provides a very powerful tool for maximizing likeli-

hood functions. The KF has many possible implementations, see for example

Anderson and Moore (1979) or Hamilton (1994). We use the Kalman Fil-

ter to compute the likelihood function with the innovation of a time series.

Given the model, its parameters, and the data, the KF computes Lτ by it-

erating over the sampling times τ = 1, . . . , mT . At the start of iteration τ ,

xτ |τ−1, Vτ , and Lτ−1 are given from the previous iteration. Given the values

of these quantities, Lτ−1 is updated with

Mτ = Σvτ + DτVτD
′
τ (2.26)

ξτ = yτ −Dτxτ |τ−1 (2.27)

Lτ = Lτ−1 + ln
∣∣∣Mτ

∣∣∣ + ξ′τM
−1
τ ξτ (2.28)

where | · | denotes the determinant; xτ |τ−1 and Vτ are updated with

Kτ = FVτD
′
τM

−1
τ (2.29)

xτ+1|τ = Fxτ |τ−1 + Kτξτ (2.30)

Φτ = F −KτDτ (2.31)
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Vτ+1 = GG′ + FVτΦ
′
τ . (2.32)

Equations (2.26) to (2.32) are written in the order in which computations

proceed. Kτ is called the Kalman gain matrix. Zadrozny (2008) discusses

the conditions for numerical stability of this implementation of the KF.

To start the iterations, x1|0 and V1 must be specified, and, of course, L0 = 0.

As we deal with stationary data, the exact likelihood function is obtained

when x1|0 = µx, the unconditional mean of x, and V1 = Σx, the uncondi-

tional covariance of x. When the data have been adjusted for means and

fixed effects, µx = 0 and Σx solves the (discrete-time, algebraic) Lyapunov

equation

Σx − FΣxF
′ = GG′ (2.33)

When F is a stable matrix, (2.33) yields a unique, symmetric, positive semi-

definite value of Σx. In sum, in the stationary case, the exact likelihood

function is obtained when x1|0 = 0 and V1 = Σx, where Σx solves Equation

(2.33). For further approaches to the initialization problem see Ansley and

Kohn (1985) or Durbin and Koopman (2001).

Given the estimated parameters we now outline how forecasts are generated

by the mixed-frequency VARMA model. The state representation of a mul-

tivariate ARMA model for mixed-frequency data in Equations (2.23) and

(2.25), and the white noise assumptions on their disturbance imply that

xτ+k+1 = Fxτ+k|τ (2.34)

yτ+k|τ = Dτ+kxτ+k|τ (2.35)

for k = 1, . . . , K, where xτ+k|τ = E(xτ+k|Yτ ) and yτ+k|τ = E(yτ+k|Yτ ). Let

τ = 1, . . . ,mT1 the estimation period and let τ = mT1+1, . . . , mT2 denote the

forecasting period. Set θ = θ̂, Σξ as prescribed, x1|0 = 0, and V1 with (2.33).

Given these values, iterate with the Kalman filter over t = 1, . . . , mT1−K, to

obtain xτ1−K+1|mT1−K . Given xτ1−K+1|mT1−K , iterate with (2.34) and (2.35),

for k = 1, . . . K. Using (2.30), update xτ1−k+1|mT1−k to xτ1−K+2|mT1−K+1.

Given xτ1−K+2|mT1−K+1, iterate with (2.34) and (2.35), for k = 1, . . . K. Con-
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tinue in this fashion for, t = mT1−K + 2, . . . , mT2− 1 to obtain the desired

forecasts.

Although the model is quite general in handling missing data, temporal ag-

gregation, measurement errors, reporting delays, and revisions, Mittnik and

Zadrozny (2005) and Chen and Zadrozny (1998) note that the model per-

forms poorly or not at all on large models with many parameters. As an alter-

native Chen and Zadrozny (1998) propose an extended Yule-Walker equation

method to estimate VARs with mixed frequencies. The authors proposed an

optimal three-step linear instrumental variable method using GMM estima-

tion techniques. The proposed approach can handle larger models compared

to Kalman filter implementations. The illustration of the method is out-

side the scope of this thesis and therefore we omit it. Chen and Zadrozny

(1998) conduct a small Monte Carlo study comparing the Kalman filter ap-

proach with the Yule-Walker implementation. Using simulated data, based

on coefficients obtained from the data set employed in Zadrozny (1990), av-

erage coefficients, biases of the estimates, standard deviations of coefficients

estimates and the root mean-squared errors of the coefficient estimates are

compared. In general, the Yule-Walker approach yields similar results to the

maximum-likelihood Kalman filter estimation. The results are based on a

simulated mixed-frequency VAR(2). Higher-order models to investigate the

outlined advantage of the Yule-Walker approach are not estimated. However,

this approach has not been applied since the paper by Chen and Zadrozny

(1998).

So far we have assumed that the data are stationary. Seong, Ahn, and

Zadrozny (2007) extend the mixed-frequency VARMA approach to allow for

cointegration relationships between variables, thus also for non-stationary

variables. The model uses the same framework as outlined here. This ap-

proach is outside the scope of this thesis.
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2.4.2 Another Representation of a Mixed-frequency VAR Model

The Zadrozny (1990) representation of a mixed-frequency VARMA is quite

general and can handle all possible aspects of mixed-frequency data (re-

visions, publication lags etc.). Hyung and Granger (2008) present a dif-

ferent VAR representation to handle mixed-frequency data which they call

the linked ARMA model. There are two important aspects to note. First,

Hyung and Granger (2008) do not cite any paper of Zadrozny. And second,

the authors speak always of ARMA models, but the whole analysis is based

on a VAR representation. The model is not suitable for estimating general

VARMA models, as the important identification aspect is not considered. We

outline the basic model set-up and compare it to the approach by Zadrozny

(1990).

Both approaches have in common that they assume that the model operates

at the highest frequency. Furthermore both models are cast into a state-

space system and are estimated with the Kalman filter. Suppose the data

generating process for two stock variables follows a VAR(1) process. The

state equation of the MF-VAR model by Hyung and Granger (2008) is given

by

xτ = Fxτ−1 + ετ (2.36)

where F =

[
a11 a12

a21 a22

]
, which contains the parameters to be estimated, and

E(ετε
′
τ ) =





Q for τ = t

0 otherwise
, where Q =

[
σ11 σ12

σ21 σ22

]
.

The corresponding observation equation is given by

yτ = Hτxτ , (2.37)

where Hτ = I2 if both variables are observed and Hτ =
[
1 0

]
if only the

higher-frequency variable is observed.

Let us now assume that the lower frequency variable is observed as a flow

which is difference stationary (like GDP growth). Since the difference of the
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temporally aggregated flow variable is

∆x2,τ =
1

3
(x2,τ + x2,τ−1 + x2,τ−2)− 1

3
(x2,τ−4 + x2,τ−5 + x2,τ−6)

=
1

3
(∆x2,τ + 2∆x2,τ−1 + 3∆x2,τ−2 + 2∆x2,τ−3∆x2,τ−4)

the corresponding state-equation is given by




∆x1,τ

∆x2,τ

∆x1,τ−1

∆x2,τ−1

∆x1,τ−2

∆x2,τ−2

∆x1,τ−3

∆x2,τ−3

∆x1,τ−4

∆x2,τ−4




=




a11 a12 0 0 0 0 0 0 0 0

a21 a22 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0







∆x1,τ−1

∆x2,τ−1

∆x1,τ−2

∆x2,τ−2

∆x1,τ−3

∆x2,τ−3

∆x1,τ−4

∆x2,τ−4

∆x1,τ−5

∆x2,τ−5




+




ε1,τ

ε2,τ

0

0

0

0

0

0

0

0




(2.38)

and the corresponding observation equation

∆yτ = Hτ∆xτ (2.39)

where

Hτ =

[
1 0 0 0 0 0 0 0 0 0

0 1/3 0 2/3 0 1 0 2/3 1/3 0

]

if both variables are observed and

Hτ =
[
1 0 0 0 0 0 0 0 0 0

]

if only the higher frequency variable is observed. The estimation is done

with the Kalman filter and builds upon the idea of Zadrozny (1990). For the

formulae we refer to Hyung and Granger (2008).

Compared to Zadrozny (1990), the approach of Hyung and Granger (2008)
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is more restrictive, for example it assumes that both variables have to be

modelled as difference stationary processes, when one variable is observed as

a flow. Furthermore the model assumes a strict relationship m to estimate

the model and seems not to be able to handle any data patterns.

2.4.3 A Completely Different State-space Approach

Evans (2005) provides an extensive state-space model to estimate the current

(unobserved) state of the economy. Essentially, the model claims to be able

to handle reporting lags, temporal aggregation and mixed-frequency as in

Zadrozny (1990). The main difference is, that the dynamic property of the

model is not represented as a VAR system where all variables are endogenous.

In contrast, the dynamics of the model centre on the behaviour of two partial

sums, which define daily contributions to GDP growth in a specific quarter.

Thus, the current estimate is updated as new information comes in.

The paper is in the spirit of the missing-observations approach of Harvey and

Pierse (1984) for estimating missing observations in economic time series but

it is far more general. The model of Evans (2005) is too extensive to lay out

in this thesis. Furthermore the used notation is very cumbersome.

2.4.4 Factor Models and Mixed-frequency State-space Models

We have already outlined the importance of factor models in current macroe-

conomic forecasting. In addition to the static factor model outlined in section

2.2 we present now the dynamic factor model proposed by Doz, Giannone,

and Reichlin (2006) and how the extracted factors can be used within a

mixed-frequency state-space framework inspired by Mariano and Murasawa

(2003). The following exposition follows closely Banbura and Runstler (2007)

but is extended to a general mixed-frequency mixture m. We denote the

higher-frequency time index τ and the lower-frequency index by t.

Consider a vector of n stationary high-frequency variables xτ = (x1,τ , . . . , xn,τ )
′,

τ = 1, . . . ,mT , which have been standardized to mean zero and variance one.
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The dynamic factor model is given by the equations

xτ = Λfτ + ξτ ξτ ∼ N(0, Σξ), (2.40)

fτ =

p∑
i=1

Aifτ−i + ζτ (2.41)

ζτ = Bητ ητ ∼ N(0, Iq). (2.42)

The second equation describes the law of motion for the latent factors fτ ,

which are driven by a q-dimensional standardized white noise ητ , where B is

a r × q matrix, where q ≤ r. Hence ζτ ∼ N(0, BB′). We assume that the

stochastic process for fτ is stationary.

For the purpose of forecasting the lower frequency variable yt, we introduce

a latent interpretation of yt, ŷτ , which is related to the common factors by

the static equation

ŷτ = β′fτ . (2.43)

In the mth period the forecast for the lower frequency variable ŷt is evaluated,

as the average of the higher-frequency series

ŷt =
1

m

m∑
i=1

ŷτ (2.44)

and defines the forecast error εt = yt − ŷt. We assume that εt is distributed

with εt ∼ N(0, σ2
ε ). The innovations ξτ , ζτ , and εt are assumed to be mutually

independent at all leads and lags.

Equations (2.40) to (2.44) are cast in a state-space form. As proposed by

Zadrozny (1990) the higher-frequency variables observed within the current

period are assumed to be missing. The state and observation equations are
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given by (for p = 1)

[
xτ

yt

]
=

[
Λ 0 1

0 0 1

] 


fτ

ŷτ

ŷt


 +

[
ξτ

εt

]
(2.45)




Ir 0 0

−β′ 1 0

0 − 1
m

1







fτ+1

ŷτ+1

ŷt+1


 =




A1 0 0

0 0 0

0 0 Ξτ+1







fτ

ŷτ

ŷt


 +




ζτ+1

0

0


 (2.46)

The aggregation rule (2.44) is implemented in a recursive way in equation

(2.46), as from ŷt = Ξτ ŷt−1 + 1
m

ŷτ , where Ξτ = 0 for τ corresponding to

the first high-frequency period of the lower frequency (for example the first

month of a quarter) and Ξτ = 1 otherwise. As a result, expression (2.44)

holds for every mth period of each lower-frequency period. The estimation

of the model parameters θ = (Λ, A1, . . . Ap, β, Σξ, B, σ2
ε ) is discussed in Doz,

Giannone, and Reichlin (2006).

Aruoba, Diebold, and Scotti (2008) claim to move the state-space dynamic

factor framework close to its high-frequency limit, and hence to move statistically-

rigorous conditions analysis to its high-frequency limit. The approaches so

far in the literature were modelled at monthly intervals as the highest fre-

quency.14 The basic idea is essentially the same as outlined before. Aruoba,

Diebold, and Scotti (2008) describe a dynamic one-factor model evolving on

a daily basis. The following model is considered

yi
t = ci + βixt +

K∑

k=1

δikw
k
t +

N∑
n=1

γiny
i
t−nDi

+ ui
t (2.47)

where yi
t is the i− th daily economic or financial variable at day t, which de-

pends linearly on the unobserved economic state xt (which follows an AR(p)

14 Although the models are generally suitable to generate higher-frequency latent vari-
ables, Aruoba, Diebold, and Scotti (2008) were the first to demonstrate this within
the state-space dynamic factor framework on a daily basis. Evans (2005) is the no-
table exception but the author does not estimate an unobserved economic state but
the actual long-run US GDP growth on a daily basis.
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process) and possibly on various exogenous variables wt. The parameter Di

is a number that links the frequency to the observed yi
t. Aruoba, Diebold,

and Scotti (2008) demonstrate how stock and flow variables and a trend can

be modelled within the given framework. The model is cast into a state-

space framework and estimated with the Kalman filter. Aruoba, Diebold,

and Scotti (2008) also outline the general problem with the approach oper-

ating at a daily basis. In their example four variables at different frequencies

are used to extract the unobserved state of the economy on a daily basis.

Due to the flow nature of some variables the authors have 94 state variables

and more than 16,000 daily observations. One evaluation of the likelihood

takes about 20 seconds. Therefore, the model becomes intractable for many

variables and many factors.

2.5 Distributed Lag Models

In general distributed lag models are given by

yt = β0 + B(L)xt + εt,

where B(L) is some finite or infinite lag polynomial operator, usually pa-

rameterized by a small set of hyperparameters.15 In general, distributed lags

models assume the same frequency. The following models are not distributed

lag models in a strict sense, but they regress the lower frequency on the higher

frequency variables.

First we outline the quite confusing approach of Abeysinghe (1998) of how

to use mixed-frequency data in one model. Abeysinghe (1998) considers the

following model

yt = β0 + β1xt + λyt−1/m + ut (2.48)

where t = 1, . . . T . Given this notation there is no real mixed-frequency, as x

and y are sampled at the same frequency t. Instead, an artificial unobserved

15 See for example the survey by Dhrymes (1971) or the textbook by Judge, Griffith,
Hill, Lütkepohl, and Lee (1985), among others.
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higher-frequency part of the dependent variable y is introduced (yt−1/m). The

author states that ’if y is observed annually and x is observed quarterly then

m = 4’, suggesting that the variable x is observed at a higher frequency.16

Abeysinghe (1998) proposes to reformulate (2.48) to get rid of the (artificial)

fractional lags17

yt = α + β1zt + λmyt−1 + υt (2.49)

where

zt =
m−1∑

l=0

λlxt−l/m, υt =
m−1∑

l=0

λlut−l/m, α = β0

m−1∑

l=0

λl.

So zt is the weighted sum of the higher-sampled observations during one basic

time unit t. Note that (2.49) captures only m lags of the higher-frequency

variable, but it can be extended to more lags with some extra modelling

effort. Model (2.49) is more meaningful when the dependent variable is a

stock variable. When it is applied to flow variables autocorrelation is intro-

duced. Abeysinghe (2000) outlines that this autocorrelation is rather small

and modifies (2.49) to account for that issue. The derivation of Abeysinghe

(1998) resulting in equation (2.49) is just a different transformation of the

higher-frequency variable to the lower frequency. Only the weighting is differ-

ent to standard aggregation approaches. With the proposed transformation

one cannot handle more than two frequencies. The model is non-linear in

the parameters and can be estimated via non-linear least squares.

Koenig, Dolmas, and Piger (2003) suggest a very simple approach to utilize

monthly data in quarterly regressions. They propose to regress the quarterly

values on unrestricted monthly values. A general model is given by

yt = α0 +
k∑

i=0

n∑
i=0

βijxjt−i/m + εt (2.50)

where k denotes the number of included higher-frequency (for example monthly)

16 Abeysinghe (1998) uses a different notation for m. We have adjusted the quote to
preserve the notation throughout the thesis.

17 Lagging the whole equation by l/m, multiply it by λl and sum up over the range of
m.
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indicators and n the number of included lags. By choosing separate sum for-

mulae, any frequencies can be included in the model. Koenig, Dolmas, and

Piger (2003) choose n equal to 4 for quarterly-monthly data based on theoreti-

cal reasoning. Let yt denote the logarithm of a quarterly variable and suppose

that xτ is a monthly coincident indicator such that yt = (xt+xt−1/3+xt−2/3)/3

for all t. Then

yt − yt−1 = {(xt − xt−1/3) + 2(xt−1/3 − xt−2/3) + 3(xt−2/3 − xt−4/3)

+2(xt−5/3 − xt−1) + (xt−4/3 − xt−5/3)}.

Thus, the quarterly growth rate is a weighted average of five monthly growth

rates in the coincident indicator. It is possible to restrict the regression (2.50)

to the theoretical weights, but this should be based on a statistical test.

2.6 MIxed Data SAmpling (MIDAS)

2.6.1 The Basic Model Set-up

The MIxed DAta Sampling (MIDAS) model of Ghysels, Santa-Clara, and

Valkanov (2004) is closely related to distributed lag models. The approach

regresses the dependent (lower-frequency) variable y on a distributed lag of

x which is sampled at a higher frequency. The basic MIDAS model for a

single explanatory variable, and one-step ahead forecasting, is given by

yt = β0 + β1B
(
L1/m; θ

)
x

(m)
t−1 + ε

(m)
t (2.51)

where B
(
L1/m; θ

)
=

∑K
k=0 B(k; θ)Lk/m denotes a weighting function, and

Lk/mx
(m)
t−1 = x

(m)
t−1−k/m represents a fractional lag operator. Again, t indexes

the basic time unit, and m is the frequency mixture. The multi-step analogue

is given by

yt = β0 + β1B
(
L1/m; θ

)
x

(m)
t−h + ε

(m)
t . (2.52)
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To given an example, consider the basic MIDAS regression with m = 3 and

K = 6

yt = β0 + β1B
(
L1/3; θ

)
x

(3)
t−1 + ε

(3)
t (2.53)

where B
(
L1/3; θ

)
=

∑6
k=0 B(k; θ)Lk/3, and Lk/3x

(3)
t−1 = x

(3)
t−1−k/3, so that:

yt = β0 + β1

(
B(0; θ)x

(3)
t−1 + B(1; θ)x

(3)
t−1−1/3 + B(2; θ)x

(3)
t−1−2/3 (2.54)

+B(3; θ)x
(3)
t−2 . . . B(6; θ)x

(3)
t−3

)
+ ε

(3)
t .

Consider yt as the first quarter GDP growth for 2007, xt−1 is then the De-

cember 2006, xt−1−1/3 the November and so forth.

There are several possible finite and infinite polynomials B(k; θ). The first

one is

B(k; θ) =
θ0 + θ1k + θ2k

2 . . . θpk
p

∑K
k=1(θ0 + θ1k + θ2k2 . . . θpkp)

(2.55)

which is related to an ’Almon Lag’ polynomial, where the order Q is typically

small. Ghysels, Santa-Clara, and Valkanov (2004) parameterize B(k; θ) as:

B(k; θ) =
exp(θ1k + θ2k

2 . . . θpk
p)∑K

k=1 exp(θ1k + θ2k2 . . . θpkp)
(2.56)

which is called exponential Almon lag weighting function. The rationale of

using an exponential transformation is that it guarantees positivity of the

weights and it has the desirable feature of ”zero approximation errors” (see

Ghysels and Valkanov (2006)). A last specification is the Beta function which

has only two parameters

B(k; θ1, θ2) =
f( k

K
, θ1; θ2)∑K

k=1 f( k
K

, θ1; θ2)
(2.57)

where

f(x, a, b) =
xa−1(1− x)b−1Γ(a + b)

Γ(a)Γ(b)
Γ(a) =

∫ ∞

0

e−xxa−1dx. (2.58)
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Both specifications ensure positive weights and they sum up to unity. The

first fact is important for financial (volatility) forecasting and the second one

for identification of the parameter β1 in (2.51). Almon Lag specification is

theoretically more flexible than the Beta lag, since it depends on more param-

eters, but its specification (2.56) is able to generate rich weighting schemes

similar to the Beta function, see Ghysels, Sinko, and Valkanov (2007). Figure

2.1 displays some examples of the exponential Almon lag weighting function

demonstrating the variety of weighting schemes.

Ghysels, Santa-Clara, and Valkanov (2004) suggest that MIDAS models can

be estimated under general conditions via non-linear least squares (NLS),

(quasi-)maximum-likelihood (MLE) or general method of moments (GMM).

Ghysels, Santa-Clara, and Valkanov (2004) employ a spectral estimation

method, proposed by Hannan (1963a) and Hannan (1963b). But this esti-

mator is rather complicated for applied work.18 The GMM estimator applies

the continuum general method of moments estimator proposed by Carrasco

and Florens (2000).

Ghysels and Valkanov (2006) prove that non-linear least squares is a con-

sistent estimator for the model in (2.51). The dimension of the numerical

optimization procedure to obtain the parameters β and θ can be reduced by

concentrating the least squares objective function with respect to β. For a

given θ, β can be obtained by the least squares formula:

β =

(
T∑

t=h

xt−h(θ)xt−h(θ)
′
)−1 (

T∑

t=h

xt−h(θ)yt

)
(2.59)

where xt−h(θ) =
[
1, B(L1/m; θ)x

(m)
t−h

]′
and β = (β1, β2)

′. Andreou, Ghysels,

and Kourtellos (2007) compare the aspect of unbiasedness and efficiency of

NLS and least-squares (LS) estimators where the latter one involves temporal

aggregation. They show that the LS estimator is always less efficient than

18 The estimator is also used in Ghysels and Valkanov (2006) but not in any other
applied work.
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Fig. 2.1: Examples of exponential Almon lag weighting functions
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is the NLS estimator. In the current literature the NLS estimator is the

preferred choice.

Ghysels, Santa-Clara, and Valkanov (2004) furthermore show that MIDAS

regressions will always lead to more efficient estimation than the typical ap-

proach of aggregating all series to the least-frequent sampling. Furthermore

the aggregation bias vanishes when some regressors are sampled more fre-

quently.

2.6.2 Extensions of the MIDAS Approach

A natural extension of the MIDAS approach is to include autoregressive

elements. Ghysels, Santa-Clara, and Valkanov (2004) show that efficiency

losses can occur due to the introduction of lagged dependent variables. A

naive extension by an AR term would result in a ’seasonal’ polynomial, which

can only be used if there are seasonal patterns in the explanatory variable.

Clements and Galvao (2005) illustrate a solution to include and to consis-

tently estimate the model with a simple autoregressive-distributive lag term.

Adding a lower frequency of yt, yt−1 to (2.51), results in:

yt = β0 + λyt−1 + β1B
(
L1/m; θ

)
x

(m)
t−1 + ε

(m)
t (2.60)

Clements and Galvao (2005) suggest the introduction of autoregressive dy-

namics as a common factor

yt = β0 + λyt−1 + β1B
(
L1/m; θ

)
(1− λL)x

(m)
t−1 + ε

(m)
t . (2.61)

The multi-step analogue is given by

yt = β0 + λyt−h + β1B
(
L1/m; θ

)
(1− λLh)x

(m)
t−h + ε

(m)
t . (2.62)

For estimation of the autoregressive MIDAS model (2.62), one takes the

residuals (ε̂t) of the standard MIDAS equation, and estimates an initial value

for λ, say λ̂0, from λ̂0 =
(∑

ε̂2
t−h

)−1 ∑
ε̂t ˆεt−h. Then construct y∗t = yt−λ̂0yt−h
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and x∗t−h = xt−h − λ̂0xt−2h, and the estimator of θ̂1 is obtained by applying

non-linear least squares to:

y∗t = β0 + β1B(L1/m; θ)x∗t−h + εt (2.63)

A further variation of the MIDAS framework is to introduce a step function

as in Forsberg and Ghysels (2007), which can be seen as a generalization of

the heterogeneous autoregressive model introduced by Corsi (2003). Let us

define Xt(K,m) =
∑K

j=1 x
(m)
t−j/m as regressors, which are partial sums of the

high-frequency x(m). The MIDAS regression with M steps is

yt = β0 +
M∑
i=1

βiXt(Ki,m) + εt (2.64)

The distributed lag pattern is approximated by a number of discrete steps.

The more steps that are included, the less parsimonious is the model, which

is one of the striking advantages of MIDAS regressions.

Ghysels, Santa-Clara, and Valkanov (2005) introduce the asymmetric MIDAS

model given by

yt = β0 + β1

(
φB

(
L1/m; θ+

)
1+

t−1x
(m)
t−1 + (2− φ)B

(
L1/m; θ−

)
1−t−1x

(m)
t−1

)
+ ε

(m)
t

(2.65)

where 1i
t−1 (i = {+,−}) denotes the indicator function, which takes the

value 1 if xt−1 > 0 or xt−1 < 0, respectively. This formulation allows for a

differential impact of positive and negative values of the explanatory variable

x. The parameter φ is in the interval [0, 2]. This ensures that the sum of

weights is 1 because the indicator functions are mutually exclusive of each

of the positive and negative weight functions add up to 1. The coefficient φ

controls the total weight between positive and negative impacts. A value of

φ equal to one places equal weight on positive and negative impacts. Note

that the parameters in the weighting function characterize the time profile

of the weights from positive and negative shocks respectively.

A general univariate MIDAS regression involving more than two high-frequency
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variables is given by

yt+1 = β0 +
K∑

i=1

L∑
j=1

Bij(L
1/mi ; θ)x

(mi)
t + εt (2.66)

The case of L > 1 and K = 1 with m1 > 1 corresponds to the case of

having two or more polynomials for several time series sampled at the same

frequency. In this case a mixture of polynomials is possible. This allows us

to capture seasonal patterns or rich non-monotonic decay structures.

It is possible to extend the MIDAS regressions to semi- and non-parametric

settings. Chen and Ghysels (2008) introduced semi-parametric MIDAS re-

gressions that build upon the work of Linton and Mammen (2005) who pro-

pose the semi-parametric ARCH(∞) model.

yt+1 = β0 +
K∑

i=1

L∑
j=1

Bij(L
1/mi,θm(x

(mi)
t )) + εt (2.67)

where m(·) is an unknown function. Chen and Ghysels (2008) provide details

on estimating such models. Furthermore it is shown that there is an efficiency

gain compared to the single frequency case.

2.7 Comparison Between MIDAS and Mixed-frequency VAR

In this section we want to juxtapose the MIDAS model and the mixed-

frequency VAR model (MF-VAR) without any empirical investigation. The

approach to handle mixed-frequency data is completely different. On the

one hand, the mixed-frequency VAR assumes that the model operates at

the highest frequency; the corresponding values in the lower frequency are

assumed to be periodically missing. On the other hand, the MIDAS approach

regresses the lower frequency variable on the higher frequency variable. To

avoid parameter proliferation a weighting function (in the sense of distributed

lag models) is parameterized, where the weights add up to 1 to identify the

parameters.
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The MIDAS approach is very parsimonious in its basic specification where

only four parameters have to be estimated independently of the number of

included higher-frequency lags (for two variables). Nevertheless rich dynamic

structures can be estimated due to the very flexible weighting functions. In

contrast, for a bivariate VAR(p) 4p + 3 parameters in the Zadrozny (1990)

framework and 4p parameters in the Hyung and Granger (2008) framework

have to be estimated. Thus, parameter proliferation can be a serious issue

for higher-order VAR or by inclusion of more variables. Additionally a too-

large frequency mixture (daily and yearly data) generates too many missing

observations, which decreases the speed of the estimation dramatically. In

contrast, the estimation of MIDAS models via NLS proceeds very fast.

Unlike the MIDAS approach, the mixed-frequency VAR can model feedback

between the variables as all variables are endogenous. Furthermore it can

interpolate the missing observations, that is estimated higher-frequency ob-

servations of the lower frequency variable.

One of the basic assumptions of the MIDAS model is, that the data are

sampled equidistantly, that is the frequency-mixture m is fixed.19 This as-

sumption can be severe for larger frequency mixtures. Thus, publication lags,

measurement errors, and aggregation issues are difficult to implement within

the MIDAS framework. In contrast, the mixed-frequency VAR can handle

any data pattern. The selection matrix in the Kalman filter can be flexible

adjusted for the actual observed values at each time point.

A further difference between the approaches is the calculation of forecasts.

Forecasts can be generated in two different ways: iterated (indirect or ”plug-

in”) and directly. The iterated forecasts entail estimating an autoregression

and then iterating upon that autoregression to obtain the multi-period fore-

cast. The direct forecast entails regressing a multi-period-ahead value of

the dependent variable on current and past values of the variable. The MI-

DAS approach generates a direct forecast, whereas the MF-VAR calculates

19 Ghysels, Sinko, and Valkanov (2007) state that MIDAS models can handle unequally
spaced data. They propose instead of using the lag operator L1/m to use an operator
Lτ , where τ is real-valued instead of a rational number. But this approach has not
been applied to real data sets so far.
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iterative forecasts. To give an example, to forecast the first quarter of a

year in December, the MIDAS approach calculates the first quarter forecast

directly. The MF-VAR generates first the forecast for January and than

iterates up to the March forecast. Choosing between iterated and direct

forecasts involves a trade-off between bias and estimation variance. The it-

erated method produces more efficient parameter estimates than the direct

method, but is prone to bias if the one-step-ahead model is wrongly specified.

See Marcellino, Stock, and Watson (2006) for further details and references.

The difference can become crucial when the frequency mixture is large. Fore-

casting quarterly time series with daily data, even only one-step ahead, can

involve generating forecasts 60 to 90 steps ahead. For stationary transforma-

tions of variables, there exists a maximum horizon beyond which forecasts

can provide no more information about the variable than is present in the

unconditional mean. This point, called the ’content horizon’ by Galbraith

(2003), varies substantially across data series.

Finally, both approaches are able to augment the information set to account

for intra-period information for lower frequency variable, that is information

that becomes available in the m periods between t and t + 1. For example,

both models are able to include the February value of a specific indicator to

forecast the first quarter of GDP.

The treatment of non-stationary data within the MIDAS framework remains

unclear. We do not have found an statement concerning this issue. Within

the state-space framework, Seong, Ahn, and Zadrozny (2007) offer a solution

to deal with non-stationary data.



3. MIXED-FREQUENCY DATA AND MODELS:

EMPIRICAL EVIDENCE

In this chapter we relate the approaches of data transformation and mixed-

frequency time series modelling to the empirical evidence in the literature.

We focus on those articles where an explicit comparison between single-

frequency data or models and the mixed-frequency counterpart is made (al-

though there are some exceptions); we omit structural investigations. We

describe many articles in detail to outline the empirical strategy, and to see

whether there is any advantage in using mixed-frequency data. We proceed

in topical and chronological order, except for articles which are closely re-

lated. Each section starts with a short overview as a guideline through the

review.

3.1 Transforming Mixed-frequency Data

In this section we leave out any temporal aggregation articles, as they are

standard in applied forecasting. Concerning the interpolation aspect, we

review early attempts to estimate structural macroeconomic models on a

monthly basis. Recent attempts to elicit the unobserved state of the economy

on a higher-frequency interval employ state-space models. We review these

articles in the state-space section below.

Liu (1969) presents an early approach to combine data from different fre-

quencies in one large structural macroeconomic model. With a related time

series approach (estimated with OLS), the author uses monthly figures from

a quarterly series of the US National Accounts for 1948-1964. The obtained
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monthly figures are used in a structural model for the US economy. The

intention is to demonstrate the feasibility of a monthly model. The author

investigates whether the higher monthly frequency may lead to more erratic

estimations or misleading interpretations. He concludes that the model is fea-

sible in any respect. However, forecasts are not generated from the model.

A first forecast comparison of the structural monthly model by Liu (1969)

to other (quarterly) structural models was conducted by Fromm and Klein

(1973). They compare 11 structural econometric models of the United States

in place at that time; two of them operate at annual and one at monthly inter-

vals. There are difficulties in comparing the results from all the models (for

example different simulation intervals). The model by Liu (1969) provides

for the real GNP growth rate and the implicit price deflator a considerably

lower RMSE compared with the other models. Liu and Hwa (1974) extend

the monthly model in Liu (1969) and employ the related time series ap-

proach proposed by Chow and Lin (1971) to interpolate quarterly time series

on a monthly interval. The monthly structural model of the United States

(1954-1971) yields higher forecasting accuracy compared with two structural

macroeconomic quarterly models in RMSE terms.1

Schumacher and Breitung (2008) apply the EM algorithm to obtain monthly

factors from monthly and quarterly data to forecast German GDP.2 The

monthly factors are plugged in into a monthly VAR(p) (direct and indirect

approach). The monthly GDP forecasts are then aggregated to quarterly

values. The authors use both a real-time data set as well as final data. The

data set consists of 41 monthly and 13 quarterly time series (1998-2005). In

an out-of-sample forecasting exercise (one and two quarters ahead), the EM

factor approach performs better on average than the AR(p) and the naive

prediction no-change benchmark. Furthermore, there is almost no difference

between real and final data vintages. This result is in contrast to the findings

of Koenig, Dolmas, and Piger (2003) that the real-time aspect matters for

US data.

1 The Wharton Quarterly Mark II and the Quarterly model of the Bureau of Economic
Analysis at that time.

2 Another application of the EM algorithm can be found in Bernanke and Boivin (2003).



3. Mixed-frequency Data and Models: Empirical Evidence 49

3.2 Nowcasting and Short-term Forecasts: Bridge Equations

and Linkage Models

3.2.1 Linkage Models

Almost all articles reviewed in this section combine the forecasts from a large

structural model of the US economy and from monthly forecasts. Shen (1996)

and Liou and Shen (1996) are notable exceptions forecasting economic time

series for Taiwan. Some results should be interpreted with care, as they are

based on very few generated forecasts such as Fuhrer and Haltmaier (1988),

and Howrey, Hymans, and Donihue (1991). Greene, Howrey, and Hymans

(1986), Donihue and Howrey (1992), and Miller and Chin (1996) provide

evidence to update the forecast of the current quarter as new information

becomes available, whereas the others, Corrado and Greene (1988), Shen

(1996), Liou and Shen (1996), and Rathjens and Robins (1993), generate

forecasts when the quarter has elapsed. The updating of forecasts is in the

spirit of the bridge equations, but the forecasts are generated via combina-

tion.

We outlined in the previous chapter the theoretical framework of how to

combine forecasts from different frequencies by Greene, Howrey, and Hy-

mans (1986). The authors also presented some empirical evidence from their

modelling. Employing a small-scale version of the Michigan Quarterly Econo-

metric Model consisting of 13 macroeconomic variables and corresponding

equations, Greene, Howrey, and Hymans (1986) were the first to show em-

pirically that ex post a gain in forecasting accuracy through combination is

feasible. Four out of 13 variables (quarterly) are used as ’outside informa-

tion’, as these variables are also available monthly. They do not forecast

the monthly variables in a separate model. Instead, as a new value (inter-

preted as information) becomes available, this is regarded as an updated

forecast. As expected a priori, the authors show that as new information be-

comes available in a quarter, forecasting accuracy increases. Greene, Howrey,

and Hymans (1986) were also the first to investigate the value of timely in-
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formation for longer-horizon forecasts. They demonstrate that in-quarter

information contain information even for a eight-quarter ahead forecast.

A further empirical example of linking monthly and quarterly forecasts was

provided by Corrado and Greene (1988). Forecasts are generated for both a

monthly and quarterly model for different target variables established at the

Federal Reserve Board. The monthly forecasts are pooled, with the quarterly

forecasts as ’add-factors’. The quarterly model’s forecast errors are adjusted,

conditional on the monthly information set. In the empirical application, the

results are outlined for the linkage system in place at the Federal Reserve

Board at that time. Several quarterly macroeconomic variables are forecast

from 1972-1982. The authors show that the inclusion of monthly information

reduces the RMSE compared with the pure quarterly model. The difference

compared with Greene, Howrey, and Hymans (1986) is that forecasts are

only generated after the whole quarter has elapsed.

Fuhrer and Haltmaier (1988) compare forecasts from a macroeconometric

quarterly and monthly model from the Federal Reserve Board, as did Cor-

rado and Greene (1988). Forecasts for eight US macroeconomic variables are

only produced for the last quarter 1986 (the range of the data is 1972-1986).

Therefore the results are not comparable to Corrado and Greene (1988).

The authors distinguish three cases with different information structures (no

information, one month, and two months of observations available for the cur-

rent quarter). Fuhrer and Haltmaier (1988) do not compare their forecasts to

realized values, but focus on the comparison of quarterly and monthly pooled

forecasts. They show on a theoretical basis that these forecasts are as good

in-sample as theoretically predicted.3 Nevertheless, producing only one quar-

ter forecast makes it difficult to interpret the results on a more general basis;

it is natural to question the results based on such thin statistical evidence.

In a second example, they forecast M1 for the United States at monthly

and quarterly frequencies and calculate the RMSE (1983-1986). They find

that pooling does not always provide lower RMSE compared with unpooled

forecasts.

3 See the previous chapter.
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Howrey, Hymans, and Donihue (1991) combine monthly forecasts with fore-

casts from the Michigan Quarterly Econometric Model (MQEM) of the US

economy (12 variables, 1954-1985). They provide both ex post as well as ex

ante evidence from pooling forecasts from quarterly and monthly frequen-

cies. The within-sample evidence demonstrates that the RMSEs of quar-

terly figures are reduced by linking them to monthly models, even when no

monthly observations are available for the current quarter. The monthly

forecasts are generated by a VAR(2) process. The out-of-sample data fore-

casting performances of the quarterly MQEM, the adjusted MQEM, and the

combined quarterly-monthly model are compared. In the adjusted MQEM

the constants are adjusted due to new monthly information. The results are

ambiguous. First, as more information becomes available within a quarter,

the lower is the corresponding RMSE. As two months of information are

known in the quarter, the adjusted MQEM provides the lowest RMSE for

six variables, the standard MQEM for two variables, and the pooled forecast

for four variables. Thus, the inclusion of monthly information does not nec-

essarily lead to lower RMSEs. We note that the results are based on only

eight one-step-ahead forecasts. Therefore the results should be interpreted

carefully.

Donihue and Howrey (1992) also combine monthly forecasts with forecasts

from the Michigan Quarterly Econometric Model of the US economy. As with

Howrey, Hymans, and Donihue (1991), the monthly forecasts are generated

with a VAR model. The authors focus on inventory investment and show

how the RMSE can be reduced by combining forecasts obtained at different

frequencies. The forecast errors of other variables, only available quarterly,

are also reduced. These results rely on 16 out-of-sample quarterly forecasts

made between 1986 and 1990. They also provide evidence for improving

forecast accuracy as more information becomes available during a quarter.

Shen (1996) employs the linkage approach to forecast 88 variables of the

National Accounts for Taiwan. Basically these variables are forecast with

a quarterly macro model serving as a benchmark. Thirteen variables are

available on a monthly basis. These are forecast with either an ARIMA,
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VAR, or BVAR on a monthly basis. Shen (1996) shows that the combination

of monthly and quarterly forecasts yields improved forecasts (in RMSE or

MAE terms) compared with quarterly forecasts. This result holds even for

the majority of variables available only on a quarterly basis. The author finds

evidence that more ’outside’ information does not necessarily improve fore-

casting accuracy. Liou and Shen (1996) provide essentially the same results

as Shen (1996). The articles are in many ways similar. One difference is the

evaluation sample which differs slightly. Another difference is the investiga-

tion of whether intra-quarterly information improves the accuracy of forecasts

two quarters ahead. The answer is that there is a slight improvement. The

authors also test for significant differences in forecasting performance. The

employed test was proposed by Ashley, Granger, and Schmalensee (1980) but

this tests for causality and not for equality of RMSEs.

In the previous chapter we outlined the idea by Rathjens and Robins (1993)

of utilizing monthly data for generating quarterly forecasts. In the univariate

framework they provide evidence that the inclusion of a variable reflecting

within-quarter variance improves forecasting accuracy. They forecast 15 US

time series which are available monthly at the quarterly frequency. How-

ever, the authors do not provide a comparison of the forecasts generated at

the monthly level. The authors state that this approach is only useful for

short-term forecasting. In a multivariate example the authors compare their

approach to the macro model from Fair and Shiller (1990). Rathjens and

Robins (1993) demonstrate that the within-quarter variance of the variable

does contain information for forecasting the quarterly variable (US GNP).

Miller and Chin (1996) were first to combine monthly and quarterly forecasts

from pure time series models. The authors estimate both for quarterly and

monthly data vector autoregressions to obtain forecasts. The combination

of the forecasts is just a pure linear combination of both forecasts. They

forecast five quarterly economic time series (GDP, consumption of durable

goods, federal government purchases, the civilian unemployment rate and the

consumer price index). They provide evidence for the expected results, as the

forecasting accuracy increases as new information within the quarter arrives.
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Compared with a quarterly benchmark, the RMSEs are always lower.4 In

a second step Miller and Chin (1996) show how monthly information in the

current quarter is useful for the forecast of the next quarter. They provide

a conditional forecast, based on the current quarterly forecast. Monthly

information provides useful data for the next quarter. In contrast, forecasting

the monthly values up to the next quarter and then again combining monthly

and quarterly forecasts does not help to decrease the RMSE. In a final section,

they compare their results to the Blue Chip forecasts.5 The within-quarterly

forecasts are only marginally better than their Blue Chip competitor. This

finding is similar to Trehan (1992).

3.2.2 Bridge Models

Summary

The knowledge of the current state of the economy (’nowcast’) is especially

important for central banks to conduct monetary policy. Therefore almost

all articles in this section are written by authors affiliated either at the US

federal system or the European Central Bank. Thus, the majority of articles

forecasts US or Euro Area GDP. There are few applications to other single

countries.

The basic goal is to improve the forecasting accuracy of the current quarter,

as new higher-frequency information becomes available within the quarter.

It is demonstrated that this exploitation of intra-period information reduces

the forecasting error measures in almost all cases. The majority of applica-

tions are ’supply-side’ bridge equations, where GDP is forecast by a single

bridge equation. The articles by Parigi and co-authors (Parigi and Schlitzer

(1995), Golinelli and Parigi (2007), Baffigi, Golinelli, and Parigi (2004)) em-

ploy ’demand-side’ bridge equations where GDP is predicted by the National

4 Miller and Chin (1996) test for significant improvements of the RMSE based on an
approach proposed by Christiano (1989). As the limiting distribution of this test is
not known, it has not been applied very often in empirical forecasting.

5 The Blue Chip Survey is based on a panel of forecasts and is contained in a newsletter
entitled, Blue Chip Economic Indicators published by Aspen Publishers.
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Accounts income-expenditure identity. The choice of auxiliary equations,

which forecast the higher-frequency variables, differs across applications.

US Data

Trehan (1989) is the first application of the bridge approach, to the best

of our knowledge.6 The author employs a two-step procedure. First, he

selects predictors out of 16 variables, by minimizing an out-of-sample cri-

terion. Eventually, the author employs monthly data for non-farm payroll

employment, industrial production, and retail sales. The monthly variables

are forecast with an AR and BVAR model. The quarterly forecasts are gen-

erated with an ARX model which includes the contemporaneous values of

the predictors (no lagged values). The first target variable is annualized real

GNP. As more information becomes available within a quarter, the RMSE

decreases. Trehan (1989) compares the forecast to the Blue Chip forecast

which is also released on a monthly basis. The model forecasts are slightly

better than the Blue Chip forecasts in RMSE terms. Trehan (1989) also

provides an early attempt at real-time forecasting by using preliminary data.

Thus, in a second step, the target variable is the Advance GNP estimate.

Here similar conclusions can be drawn, but now the model forecast is much

better than the Blue Chip forecast.7 In a last step, Trehan (1989) combines

information from the model forecast and the advance real GNP to forecast

final GNP. Some improvement can be seen. This does not hold for combina-

tions with the Blue Chip forecast, where no improvement is found.

Trehan (1992) extends his previous study slightly. The evaluation period

is different and the target variable is now GDP not GNP. The predictor

variables as well as the basic results stay essentially the same. The only

real extension is the investigation of whether the monthly indicators contain

information beyond the current quarter. They do, but the improvement

decreases with an increasing forecast horizon.

Trehan and Ingenito (1996) is a further extension of the article by Trehan

6 But the author does not use this term.
7 We note that the assessment is based only on four forecasts due to data availability

restrictions.
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(1989). They select the indicators out of 34 variables, based on various

statistical measures. Finally, they employ non-farm payroll employment and

real consumption data for forecasting GDP growth. In a recursive forecasting

exercise they demonstrate that as new information becomes available, the

RMSE declines for the current quarter. The monthly indicators are forecast

within the AR, VAR and BVAR framework, where the last one works best.

However, Trehan and Ingenito (1996) do not provide a comparison with other

single-frequency data models.

Kitchen and Monaco (2003) extend the idea of Trehan and Ingenito (1996)

to select monthly variables to relate them to forecasting quarterly GDP. But

in contrast, they use monthly indicators in a separate model and combine the

forecasts. Furthermore they do not forecast the independent variables. The

actual, observed value within a quarter is assumed representative of the whole

quarter. For data ranging from 1982 to 2003 they find the standard result

that the RMSE declines with increasing information within the quarter.

Fitzgerald and Miller (1989) employ a simple bridge model to forecast US

advance GNP. As monthly predictors, the authors use three measures of

hours worked: the index of aggregate weekly hours of production or non-

supervisory workers on private non-farm payrolls; the component of that

series for goods-producing industries; and the component for service indus-

tries. These indicators are forecast with an ARX model. They conclude,

that their simple approach performs better than the Bayesian vector autore-

gression employed by the Minneapolis Fed.

Braun (1990) is an example which departs from the pure time series approach

and employs a theory-based model. He uses monthly preliminary labour

market data to estimate the current quarter GNP. In a first approach the

author employs an hour-to-output procedure with autoregressive components

to obtain information for the whole quarter. In a second approach Braun

(1990) estimated the unemployment rate with the help of Okun´s Law. The

unemployment rate is then used to nowcast current GNP growth. The author

also distinguishes between preliminary and final data. Both models, and a

combination of them, do help to reduce the RMSE with each additional
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month within a quarter.

The paper by Klein and Park (1993) is written more in an anecdotal style.

The authors outline their experience with the Pennsylvania system for fore-

casting national income and production accounts for the United States. The

Pennsylvania model consists of a structural as well as a time series part.

In the case of the latter, higher-frequency variables are forecast with an

ARIMA model and aggregated (averaged) to a quarterly frequency. The

aggregated variables are employed in a bridge equation to forecast national

accounts variables. Furthermore Klein and Park (1993) demonstrate how

to update current forecasts as new (high-frequency) information becomes

available. They demonstrate their approach for the US national income and

production accounts for only four quarters (1990:IV-1991:III). There is no

comparison with realized values or with competitive models.

European Data

Bodo, Cividini, and Signorini (1991) use daily electricity data to nowcast Ital-

ian industrial production but they do not estimate daily production. They

aim to forecast the current month before the actual release (40-55 days de-

lay). The electricity data are aggregated and adjusted for actual trading days

in a month. In the basic set-up the model fails to improve when compared

with single benchmark models such as ARIMA and Holt-Winters algorithm.

Thus, electricity data do not provide useful information in a single model to

nowcast Italian industrial production. Nevertheless, in combining the bench-

mark models with the electricity data model they are able to yield the lowest

RMSE when compared with all other models employed.

Parigi and Schlitzer (1995) employ the demand-side approach to forecast Ital-

ian GDP. They bridge ten different quarterly variables of the National Ac-

counts ((non-)durable consumption, total consumption, investment in con-

struction and equipment, inventory investment, total investment, exports,

imports, and GDP) with different (leading) monthly indicators (survey data,

financial indicators). These bridge variables are used to forecast Italian GDP

in a rolling exercise; they do outperform quarterly ARX models. The authors
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employ the test proposed by Fair and Shiller (1990) to compare forecasting

ability.

Rünster and Sédillot (2003) is an example of an extensive investigation of

bridge models. Furthermore they are an example of attempting to account

for the timely prediction of the target variable, that is accounting for the

publishing date of the indicators. Their focus variable is the Euro area GDP

(quarterly growth rate). As indicators of quantitative real activity indicators

(such as industrial production), surveys, and composite indicators (as Euro-

Coin). After investigating the predictive power at the single frequency using

ARX models, Rünster and Sédillot (2003) compare the fit of the different

indicators in the bridge equations.8 The authors are the first who outline

in detail how to forecast the indicators. The other papers in this chapter

do not provide details about the fit and forecasting power of the auxiliary

models. Rünster and Sédillot (2003) employ the following approaches: naive

(no-change), ARIMA, a univariate and multivariate structural time series

model and a VAR. There is no general advice on which approach is the best,

it depends on the specific indicator. The main finding of the paper is that

the bridge equations continue (compared with a full information set-up) to

outperform naive and ARIMA forecasts when based on a limited number of

monthly observations. Furthermore current quarter information also contains

information for forecasts of the next quarter.

Baffigi, Golinelli, and Parigi (2004) employ both supply-side and demand-

side bridge models to forecast GDP for the euro area GDP and the three

main countries of the euro area (Germany, Italy, and France). The paper

shows that national bridge models are better than the benchmark models.

In addition, euro area GDP and its components are more precisely predicted

by aggregating national forecasts.

Golinelli and Parigi (2007) is essentially an extension of Baffigi, Golinelli, and

Parigi (2004). In addition to forecasting the Euro area, the countries of the

G7 and the EU area are forecast with bridge equations. The authors employ

a rolling procedure, where both the model specification and the dimension of

8 The ARX model is interpreted as the bridge equation.
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the estimation sample is kept fixed. The authors select a rather large set of

indicators (between five and eight) for each country in an ARX model. The

auxiliary models for indicators are an AR(12), an ARIMA model with an

automatic model selection procedure (general-to-specific) and a VAR model.

To test for differences in the RMSE, the test proposed by Giacomini and

White (2006) is used. Independently of the countries and auxiliary models,

if two months of the quarter are known, the bridge models yield statistically

lower RMSE than the AR(5) benchmark model (except for France). Given

that one month is known, the differences are only significant for Germany

and Italy.

Diron (2006) analyses the predictive power of real-time vintage data and

pseudo real-time data.9 The target variable is the Euro area GDP growth,

but the real-time data set is only available from 2001 to 2004. Thus, Diron

(2006) notes that the results should be interpreted with caution. Seven indic-

tors are employed (industrial production, retail sales, new car registrations,

construction production, value added in services, EuroCoin and OECD sur-

vey data). The monthly indicators are forecast with an AR(6).10 The struc-

ture of the eight bridge equations is kept constant and only the coefficients

are re-estimated on a rolling basis. Diron (2006) states, that given the size

of the revisions of the indicators, the assessment of reliability of short-term

forecasts on revised series could potentially give a misleading picture. Nev-

ertheless, by averaging across all bridge equations, forecasts of individual

quarters tend to be similar whether they are based on preliminary or revised

data. Finally, Diron (2006) investigates the sources of forecasting errors. The

main sources are from the extrapolation of the monthly indicators. Mean-

while, revisions to the monthly variable and GDP growth account only for a

small share of the overall forecasting errors.

9 Pseudo real-time experiments are ’real-time’ in the sense that they mimic the actual
real-time situation faced by the forecasters in terms of the schedule of data releases
and thereby of monthly indicators. However, pseudo real-time experiments do not
reflect the genuine real-time situation, to the extent that they use current estimates
of GDP and the monthly indicators that are a post-revision of the series.

10 Diron (2006) also experimented with VARs and BVARs but failed to improve the
forecast results. This stands in contrast to the findings in Rünster and Sédillot (2003).
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The most recent application of bridge models is provided by Golinelli and

Parigi (2008). The authors forecast Italian GDP growth in real-time by es-

tablishing a complete new real-time data set for the Italian economy. In

contrast to most other papers employing the bridge approach, Golinelli and

Parigi (2008) employ many versions of the general-to-specific modelling ap-

proach, depending on whether lagged depended variables are included, vari-

ables are differenced or in levels, inclusion of simultaneous and (or) lagged

explanatory indicators and many more. The indicators are forecast with an

AR(5) model to fill out the quarter. The quarterly forecasts are calculated

using monthly data within a regression approach . The results are presented

for one and four quarters ahead and are not based on available monthly vin-

tages as in other bridge model applications. Compared with random walk

with drift and ARIMA, not all general-to-specific approaches outperform the

benchmark models. The difference between RMSEs is assessed by the sta-

tistical test of Giacomini and White (2006). Only bridge models with both

lagged and simultaneous explanatory indicators, where the one-step-ahead

predictions are obtained assuming that all of the simultaneous regressors are

known (nowcast), produce significantly lower RMSE´s when compared with

the random walk model. However, the relevance of indicators tends to vanish

at longer forecasting horizons (four quarters). Finally, the authors test the

rationality of the first GDP release with the test by Fair and Shiller (1990).

For the Italian economy, the first GDP data releases appear to be rational

forecasts of the final outcome, but not of the latest available data.

Special Application

Perez (2007) is a an exception in the application of bridge models. All other

articles in this review forecast GDP or other parts of the National Accounts.

Perez (2007) forecasts general government fiscal deficits in the overall euro

area and for most of its members. The target variable is sampled at annual

intervals, whereas the indicators (different between countries) are sampled

at quarterly intervals. The auxiliary quarterly forecast model is chosen to

maximize the forecast performance (a choice can be made between random

walk, ARIMA and unobserved components). The forecasting model is a
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vector error correction model. As a benchmark it serves the official forecast

of the EU and a random walk forecast. In addition to the single forecasts, the

official forecast and the indicator forecasts are combined via the regression

approach. In the out-of-sample forecasting exercise the results differ across

countries. This approach provides the lowest RMSE. At least all of them are

better than the random walk forecast. Perez (2007) concludes that existing

intra-annual fiscal information should be used and included in the preparation

of official estimates of government deficits.

3.3 State-space Approaches

The first subsection deals with applications that extract an unobserved state

of the economy, as in Mariano and Murasawa (2003), Nunes (2005), Evans

(2005), and Aruoba, Diebold, and Scotti (2008). These articles demonstrate

the use of mixed-frequency data to estimate the current (unobserved) state

of the economy. They are not designed a priori for forecasting purposes, but

to detect (ex post and ex ante) turning points. The approaches by Giannone,

Reichlin, and Small (2008) and Banbura and Runstler (2007) estimate GDP

on a monthly basis within a state-space framework. These approaches are

designed for forecasting and they account for the actual release date of the

indicators.

In the third subsection we present the VAR approaches which estimate dy-

namic relationships between target and indicator variables. In contrast to

the other approaches they do not account for actual release dates and do not

employ higher frequencies than monthly intervals.

3.3.1 Extracting an Unobserved State of the Economy

Mariano and Murasawa (2003) extract a new coincident indicator out of

one quarterly (Real GDP) and four monthly time series (employees on non-

agricultural payrolls, personal income less transfer payments, index of indus-

trial production, and manufacturing and trade sales). These are the same
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variables, except for GDP, used by Stock and Watson (1989). Therefore

the extracted coincident index exhibits a strong correlation with the Stock-

Watson experimental index. Mariano and Murasawa (2003) compare the

turning point (NBER references) detection performance of their own and

the Stock-Watson index. They investigate the possibility of turning point

detection comparing it with the official NBER dates. The results are not

convincing at all. One trough is detected earlier and some peaks later than

the Stock-Watson index.

Nunes (2005) applies the same approach as Mariano and Murasawa (2003)

for nowcasting the Portuguese economy. The author demonstrates how the

CI (constructed out of five quarterly and six monthly indicators) with an

estimated ARX model can significantly reduce the RMSE compared with

an AR(1) benchmark model. Crone and Clayton-Matthews (2005) use three

monthly and two quarterly series to extract economic indexes for the 50 US

states. But there is no forecasting comparison.11

Evans (2005) was the first to track the status of an economy on a daily

basis. He estimates log GDP and GDP growth of the United States based

on three quarterly GDP series (advanced, preliminary, and final) and 18

monthly series from 1993 and 1999. The contribution of each variable to

the daily GDP estimate is based on the actual release date. In addition,

Evans (2005) also uses the expected values of GDP growth.12 The state-space

model is estimated with the Kalman filter and contains 63 parameters. Evans

(2005) claims that despite the short sample the parameters are estimated

with high precision. The real-time estimate of US GDP growth displays a

good deal of high-frequency volatility. Furthermore, the gaps between the

real-time estimates and ex post GDP data are on occasion both persistent and

significant. The real-time estimates are on average lower than are the ex post

11 Note that Nunes (2005) and Crone and Clayton-Matthews (2005) do not cite the
article by Mariano and Murasawa (2003).

12 The market expectations and the release data are obtained from International Money
Market Service (MMS). MMS asked about forty money managers on the Friday of the
week before the release day. Many earlier studies have used MMS data to construct
proxies for the news contained in data releases (see for example Andersen, Bollerslev,
Diebold, and Vega (2003)).
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final GDP data. Evans (2005) suggests that the ex post data should not be

viewed as a close approximation to what was known at the time. Finally, the

model estimates reveal that the monthly data releases contain information

that is useful for forecasting the future path of GDP. Nevertheless, Evans

(2005) does not provide a standard forecasting exercise, where forecast and

realized values are compared. Instead, the contributions of each economic

variable to the real-time estimate variance are provided.

Aruoba, Diebold, and Scotti (2008) employ a one factor dynamic model to ex-

tract the unobserved state of the US economy. They claim that they provide

a ”call to action” to demonstrate the feasibility of measuring macroeconomic

activity in real-time by inclusion of real high-frequency data. The article is

an extension of Mariano and Murasawa (2003) but avoids approximations.

Aruoba, Diebold, and Scotti (2008) use four variables: the yield curve (daily,

stock), initial claims for unemployment insurance (weekly, flow), employees

on non-agricultural payrolls (monthly, stock) and real GDP (quarterly, flow).

The unobserved variables and the indicators follow an AR(1) process at their

observational frequencies. As stated in the previous chapter the model, even

with only four variables, is computationally very intensive. The extracted

factor broadly coheres to the NBER business cycle dating chronology. The

inclusion of high-frequency daily data does not really change the picture com-

pared with monthly indicators, but it is available sooner. Aruoba, Diebold,

and Scotti (2008) do not provide a quantitative assessment of forecasting per-

formance for turning points or for point forecasts. But the elicited indicator

is a coincident index and not a leading indicator.

3.3.2 Factor Models and State-space Forecasts

Giannone, Reichlin, and Small (2008) were the first to obtain factors and

plug-them into the state-space frame work to generate forecasts of monthly

GDP . The authors nowcast US GDP. They extract monthly static and dy-

namic factors from a real-time data set consisting of more than 200 time
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series.13 As the ragged-edge data problem is strongly present in the data set,

the authors apply the state-space approach of Doz, Giannone, and Reichlin

(2006). The factors obtained are used within a state-space framework to fore-

cast monthly GDP. The novelty of Giannone, Reichlin, and Small (2008) is

that they demonstrate that as new information becomes available inside the

quarter, the forecast uncertainty falls. The authors define a stylized calendar

where in each month the releases are ordered to 15 release blocks. As the new

block of information is released the factors are estimated and the nowcast of

the current quarter is updated. The novelty is using exact calendar dates to

track the forecast performance, whereas early approaches implicitly assumed

that information arrives at end of each corresponding month. After the first

month in a quarter the out-of-sample forecast is better than the random walk

benchmark model, and furthermore they outperform the Survey of Profes-

sional Forecasters. The authors assess the impact of different releases on the

forecast accuracy.14

Banbura and Runstler (2007) employ the same framework as Giannone, Re-

ichlin, and Small (2008) but the focus is set on publication lags and not

on real-time data issues. Furthermore, the target variable is the euro area

GDP growth. Instead of assessing the contribution of single variables to

the forecast performance, Banbura and Runstler (2007) investigate how the

weights contributed to the recursive forecasts. The authors confirm the stan-

dard finding of using within-quarter information and show that the results

obtained from monthly factor models are better than the autoregressive quar-

terly benchmark.

3.3.3 Mixed-frequency VAR

Zadrozny (1990) forecasts quarterly US GDP with monthly employment as

13 This data set also contains quarterly time series, but in contrast to Schumacher and
Breitung (2008) the authors linearly interpolate the quarterly figures to a monthly
interval. The data set also contains daily data but these are averaged to monthly
figures.

14 The working paper version (Giannone, Reichlin, and Small (2006)) conducts the same
analysis for US inflation with similar results.
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a predictor. The data range from 1954 to December 1988 (with 1979 to

1988 as the evaluation period). The author estimates an MF-VARMA(1,1)

to calculate forecasts.15 Compared with a no-change and AR(1) benchmark

for both variables, the RMSE is lower. Zadrozny (1990) also compares his

forecasts with those ones generated by Roberds (1988) (only slightly better)

and McNees (1986) (only better for the first quarter). Concerning the now-

casting aspect, Zadrozny (1990) compares his results to Trehan (1989) where

the MF-VAR is only better for one month ahead.

Mittnik and Zadrozny (2005) apply the mixed-frequency VAR to forecast

German real GDP (1970-2003).16 They investigate the properties of the

approach in more detail. They state that forecasts are feasible if variables

are in compatible cyclical form and not too many parameters have to be

estimated. Real industrial production, Ifo Business Climate and Ifo Business

expectations for the next six months are used as indicators. Mittnik and

Zadrozny (2005) focus on a VAR(2) model with two to four parameters (GDP

and industrial production are always included). In general they find that

monthly models produce better short-term GDP forecasts, whereas quarterly

models produce better long-term forecasts. The Ifo variables improve the

quarterly short-term GDP significantly.17

Seong, Ahn, and Zadrozny (2007) conduct only a small forecasting exer-

cise. Using trending data of US GDP and the consumer price index the

authors estimate a monthly cointegrated VAR system and calculate 12 out-

of-sample forecasts. Compared with single-frequency forecasts, the high-

frequency model performs better for both variables. But this judgement is

based on only four quarterly comparisons.

Hyung and Granger (2008) apply their linked-ARMA model to forecast US

GNP. The only indicator is industrial production. The authors compare

their approach with a standard AR model and the approach of Rathjens

15 Zadrozny (1990) starts with an MF-VARMA(3,1) and reduces this model to an MF-
VARMA(1,1) based on a corrected AIC and tests for white noise in the residuals.

16 The data are filtered to account for the structural break due to the reunification of
Germany.

17 All model combinations are at least better than the no-change benchmark.
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and Robins (1993) using a within-quarter information variable. The data

sample ranges from 1947 to 2004 and the evaluation sample starts in 1990.

Forecasting up to four quarters ahead, the results of the linked-ARMA mod-

els are rather poor. There are only very small improvements in the RMSE

compared with the two benchmark models. An improvement in forecasting

accuracy can only be gained by forecasting within the quarter (nowcasting).

Assuming that one or two months of information of the quarter being forecast

are known the RMSE of the linked-ARMA model is statistically significantly

(Diebold-Mariano-Test) lower than the two benchmark models. The results

by Hyung and Granger (2008) demonstrate that contemporaneous indica-

tors (like industrial production) combined with a mixed-frequency model

can improve the nowcast. As they do not use leading indicators, they cannot

demonstrate whether their approach is useful for longer-horizon forecasts.

3.4 Distributed lag models

Abeysinghe (1998) applies his transformation approach given in equation

(2.49) and forecasts the GDP of Singapore based on monthly external trade

data. Compared with an AR(1) and a quarterly-frequency benchmark model,

the RMSE can be reduced. We have to note that the article suggests that

a fixed-estimates model is used to produce the forecasts. Thus the model is

not updated with every recursion.

Koenig, Dolmas, and Piger (2003) apply the unrestricted distributed lag

model to forecast current-quarter real GDP using monthly measures of eco-

nomic activity. They follow Trehan (1992) and use annualized percentage

changes in non-farm employment, industrial production, and real retail sales

as indicators. The focus of the paper is more on the real-time aspect of the

data, rather than on the mixed-frequency structure of the data. They com-

pare three strategies for employing real-time data. Compared with a naive

forecast, an autoregression and the Blue Chip consensus forecast, the use of

real-time data vintages perform best in RMSE terms. Whereas for pseudo-

real-time data and final data, the Blue Chip forecast is not outperformed.
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3.5 MIxed DAta Sampling (MIDAS)

Most empirical applications of the MIDAS model focus on financial data.

Furthermore there is often no explicit comparison between single- and mixed-

frequency models but only on the exploration of the extension to the use

of mixed-frequency data. As this approach is rather new we include those

studies in our review. To guide the reader, we summarize the most important

facts concerning model specification in a table. Table 3.1 summarizes for

each application the employed weighting functions, whether the weighting

function is restricted or not, the number of included lags, and the mixed-

frequency data used. In general we can say that no article states whether

an explicit model selection procedure is employed or not. From a personal

perspective, it appears that the specification used is chosen ad hoc or is based

on experience.

3.5.1 Financial Applications

Ghysels, Santa-Clara, and Valkanov (2005) investigate the inter-temporal

relation between the conditional mean and the conditional variance of the

aggregate stock market returns. They find a significant positive relationship

suggested by the intertemporal capital asset pricing model of Merton (1973).

This result stands in contrast to the previous works on this issue which find

insignificant positive relationships or even a significant negative one. Ghy-

sels, Santa-Clara, and Valkanov (2005) use monthly and daily market return

data from 1928 to 2000. The MIDAS model is employed to estimate the

conditional variance of monthly returns based on prior daily squared return

data. The weighting function is parameterized as the exponential Almon

lag with two parameters. They restrict these parameters to ensure declining

weights. They allow for a maximum lag of 252 trading days (approximating a

year).18 The model is estimated via quasi-maximum likelihood. The authors

compare their results with the rolling moving window approach of French,

Schwert, and Stambaugh (1987) and GARCH-in-mean models. In the first

18 The authors state that their results are not sensitive to the chosen lag length.
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approach, the weights are constant and inversely proportional to the window

length. French, Schwert, and Stambaugh (1987) fail to find a positive sig-

nificant relationship. Furthermore their model is sensitive to the choice of

the window lengths. The GARCH-in-mean model uses monthly instead of

daily squared returns. Again, only a positive but insignificant relationship

is identified. Then all three models forecast realized volatility. In general

the MIDAS model forecasts, on average, more accurately and without bias.

The GARCH approach exhibits a small upward bias. Finally the rolling win-

dow approach produces far more dispersed forecasts. Ghysels, Santa-Clara,

and Valkanov (2005) conduct several robustness checks (for example asym-

metric shocks) but in general a positive significant relationship between the

conditional mean and the conditional variance is detected with the MIDAS

approach.

Ghysels, Sinko, and Valkanov (2007) build upon the previous study. They

use a different and shorter data set (Dow Jones Index, April 1993 to October

2003) but obtain their returns from a 5-minute price series. The authors

investigate whether the results of Ghysels, Santa-Clara, and Valkanov (2005)

still hold using different horizons (h = {5, 10, 15, 22} days), different measures

of volatility (additionally to squared returns, absolute returns, daily ranges,

realized volatility, and realized power)19 and employing the Beta weighting

function.20 For the weighting function they allow for only 30 lags of the

higher frequency compared with 252 in Ghysels, Santa-Clara, and Valkanov

(2005).21 In general the results are similar to those found in Ghysels, Santa-

Clara, and Valkanov (2005). Comparing the two different weighting functions

the authors conclude that the Beta polynomial could be a better choice

for higher frequency models, whereas the exponential Almon lag polynomial

19 These extension build on results by Ghysels, Santa-Clara, and Valkanov (2006).
20 We note that the authors are unclear about how the model was estimated. In the

text they state that the MIDAS regressions are estimated using NLS (p. 73), whereas
in Tables 1 and 2 (p. 74 and 75) they state that they employed quasi-maximum
likelihood. As shown in chapter 2 both estimation approaches can be used to estimate
MIDAS regressions.

21 We presume this decision is due to the trade-off between included lags and observa-
tions available for estimation (see chapter 5). The authors do not go into detail on
this issue.
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could be a better choice for the lower frequency. There is no comparison with

single-frequency models.

León, Nave, and Rubio (2007) extend the previous analysis on Mertons theo-

retical predictions to European equity markets. Starting with GARCH-type

models the authors fail to find evidence of a positive significant relationship

for the stock market indices in France, Germany, Spain, the United King-

dom and the stock index Eurostoxx50. Applying the MIDAS model, the

results favour the positive risk-return relationship, except for the UK data.

In a second step they apply the asymmetric MIDAS model and the results

stay the same. Finally they find some evidence in favour of the two-factor

inter-temporal capital asset pricing model using a bivariate MIDAS model.

Kong, Liu, and Wang (2008) investigate the risk-return trade-off for Chinese

stock markets. The authors also compare the MIDAS with the GARCH

and rolling windows approaches. The authors do not use mixed-frequency

data but focus only on daily data. The MIDAS model is used to specify a

parsimonious model. They fail to find any evidence in favour of the risk-

return trade-off for the whole sample (1993-2005). The existence is found

with a sub-sample (2001-2005). In forecasting the conditional variance, the

GARCH forecasts seem to outperform the MIDAS approach but the authors

do not provide forecast accuracy measures.

Ghysels, Santa-Clara, and Valkanov (2006) forecast future volatility with

different regressors. Here, volatility is defined as quadratic variation. The

following regressors are used: lagged quadratic variation, lagged returns,

lagged absolute returns, daily ranges and realized power.22 Volatility is mea-

sured at daily, weekly, bi-weekly, tri-weekly, and monthly frequency, whereas

the forecasting variables are available at daily and higher frequencies. As a

benchmark model they employ an ARFI(5,d) model (autoregressive frac-

tional integrated) proposed by Andersen, Bollerslev, Diebold, and Labys

(2003) (labelled ABDL). The ABDL model forecasts daily volatility and adds

up these forecasts to obtain weekly volatility forecasts. In a strict sense it is

22 Ghysels, Santa-Clara, and Valkanov (2006) also consider the log-version of all vari-
ables.
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a single-frequency model. The main focus is forecasting the volatility of the

Dow Jones and some individual stocks (1993-2003). As a weighting scheme

the Beta function is employed and the number of included lags is restricted

to K = 50.23 The results can be summarized as follows: on average MIDAS

performs better than the single-frequency benchmark model. This result

holds both in-sample and out-of-sample. Longer-horizon forecasts do not

necessarily produce worse out-of-sample performances (at least up to four

weeks). The inclusion of high-frequency data (5-minute returns) does not

necessarily lead to better volatility forecasts.

Ghysels, Sinko, and Valkanov (2007) extend the previous study. The authors

adjust the realized volatility for 5 and 30 minutes frequency regressors for

microstructure noise with formulae suggested by Hansen and Lunde (2006).

Using the same data set they predict realized volatility at weekly, two-week,

three-week, and monthly horizons. For two individual stocks they find that

the noise-corrected volatility measures perform, on average, worse than the

unadjusted volatility measure. As a possible explanation, Ghysels, Sinko, and

Valkanov (2007) speculate that the noise for the 5-minute data is negligible

compared to the signal. Or, it could be that the MIDAS regressions are more

efficient in extracting the signal from the unadjusted, daily, realized volatility

measures compared with the noise-corrected schemes.

Forsberg and Ghysels (2007) extend this strand of literature and investigate

why absolute return forecasts volatility (measured as quadratic variation)

so well. Employing tick-by-tick data for the S&P 500 index from 1985 and

2003 they compare different regressors using MIDAS and HAC regressions.

They extend the basic models by allowing for jumps in the volatility process.

Forsberg and Ghysels (2007) use daily regressors (calculated using 5-minute

returns) to forecast one-day, and one to four weeks ahead. For the MIDAS

regression they allow for a maximum lag of K = 50 days.24 As the weighting

function they use the Beta function with declining weights. In an in- and

out-of-sample comparison between the two models and different regressors,

23 The authors set θ1 = 1 to ensure a decaying weighting function.
24 The authors claim that the results are not sensitive to varying the included lags.
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the MIDAS model is on average better (in adjusted R2 and MSE terms)

compared with the HAR model. For both models realized absolute returns

has the highest predictive power.

Chen and Ghysels (2008) apply the semi-parametric MIDAS model to inves-

tigate whether finer data sampling schemes change the shape of the news-

impact curve introduced by Engle and Ng (1993) based on daily data. For the

parametric part, two Beta polynomial specifications are used to accommo-

date intra-daily and daily memory decay. The data set consists of five-minute

returns of (respectively) Dow Jones and S&P 500 cash and futures markets

from 1993(96) to 2003. In a out-of-sample exercise they show that accounting

for asymmetry improves forecasting accuracy.

3.5.2 Macroeconomic Applications

Clements and Galvao (2005) are the first to apply MIDAS regressions to

macroeconomic data. Furthermore they are the first to forecast MIDAS with

an autoregressive term. In their final published paper, Clements and Gal-

vao (2008) focus only on the MIDAS-AR model. They forecast quarterly US

output growth with three monthly indicators (industrial production (IP), em-

ployment and capacity utilization (CU)).25 The authors use real-time data

which range from 1959-2005. They employ exponential Almon lag weight-

ing functions with two parameters, restricted to ensure declining weights.

In the paper it is not stated how many lags are included in the model.26

They estimate the model with NLS. In a recursive forecasting exercise they

compare the MIDAS-AR model with a quarterly AR(1), bridge equation and

the mixed-frequency distributed lag model by Koenig, Dolmas, and Piger

(2003). Furthermore Clements and Galvao (2008) implement within-quarter

forecasts. They find that the use of monthly indicators (IP and CU) in the

MIDAS regression, especially for short horizons (within-quarter), results in

sizeable reductions in RMSE compared with single-frequency models. Com-

25 In the working paper version Clements and Galvao (2005) also forecast US inflation.
26 In personal correspondence, Michael Clements told me that they included 24 months

(8 quarters).
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paring MIDAS-AR with mixed-frequency distributed lag models and bridge

equations there is little to choose.

Ghysels and Wright (2008) replicate the forecasts of others employing both

the MIDAS and the Kalman filter approaches. As survey forecasts are in-

frequently published and often found to be stale, it would be interesting for

policy makers to predict the upcoming survey releases at a higher frequency.

Using survey data from the Survey of Professional Forecasters (SPF) and

the Consensus Forecast (CF), the forecasts are generated via daily data (ex-

cess returns and the yield curve among others) for real GDP growth, CPI

inflation, T-Bill and the unemployment rate. Using MIDAS (Beta weigh-

ing function either estimated, unrestricted, or assuming equal weights) the

upcoming release is forecast, whereas in the state-space approach the fore-

cast for a specific horizon at a specific day is interpolated by applying the

Kalman filter, viewing these as missing data. In an in- and out-of-sample

forecasting exercise, on average both approaches beat the simple random

walk benchmark forecasts.

Marcellino and Schumacher (2007) were the first to combine factor mod-

els with the MIDAS approach. They apply the standard two-step proce-

dure: first estimate the factors and then plug these into a specific time series

model. A second focus of the paper is the ragged-edge data problem, that

observations are not available for all time series at the end of the sample.

The authors compare the realignment approach of Altissimo, Cristadoro,

Forni, Lippi, and Veronese (2006), the EM algorithm outlined in chapter 2,

and a parametric state-space factor estimator of Doz, Giannone, and Reich-

lin (2006). In addition to the standard MIDAS model27 they employ the

’smoothed’ MIDAS model and an unrestricted version of the MIDAS ap-

proach. Irrespective of the factor estimation approach and the employed

MIDAS model, factors do provide valuable information for short-term fore-

casting (nowcasting). The results are interpreted relative to GDP variance.

For longer forecasting horizons, the results are more ambiguous. These find-

27 The authors use the following restrictions for the exponential Almon lag weighting
function: θ1 < 2/5 and θ2 < 0, which generates either declining weights or a hump-
shaped weighting function.
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ings even hold when compared with quarterly single-frequency factor models,

an AR(p), and a no-change benchmark. Including an autoregressive lag in the

MIDAS approach does not improve the results. In general the unrestricted

MIDAS model performed best in many cases.

Hogrefe (2008) compares single-frequency, mixed-frequency and interpolation

approaches to forecast data revisions for US GNP. Building upon a real-time

data set consisting of 13 quarterly and 30 monthly series, the author em-

ploys the quarterly-only single-frequency model, quarterly plus aggregated

monthly data, the approach by Chow and Lin (1971), and the MIDAS ap-

proach. First, Hogrefe (2008) confirms a strong rejection of the hypotheses

of data rationality found in similar single-frequency studies.28 with the latter

two approaches. Both models perform better in an out-of-sample forecast-

ing exercise (first, second and last revision), where the MIDAS is the best

one. The authors include 12 months as lags and the exponential Almon lag

function is restricted to ensure decaying weights.29

Ghysels and Valkanov (2006) systematically investigate the forecasting per-

formance of the MIDAS model compared with single-frequency approaches.

The authors simulate a bivariate infeasible high-frequency VAR(1) with dif-

ferent persistence and leading properties. The mixed-frequency sample is

obtained by skipping the corresponding observations. They conduct an in-

sample forecasting comparison of the MIDAS model (both with Almon and

Beta weighting function), the infeasible high-frequency VAR (HF-VAR), and

a low-frequency VAR. By definition, the infeasible HF-VAR is not outper-

formed by any model, but the MIDAS model performs relatively well. The

RMSEs are only between 2 and 9 percent larger than the high-frequency

VAR. Compared with the low-frequency VAR, the RMSE of the MIDAS

model are on average between 17 and 40 per cent better. Ghysels and Valka-

nov (2006) find only small differences between the exponential Almon lag

and the Beta weighting function. But the Almon lag performs constantly

better across all models. The results hold for a variety of frequency mixtures

28 This term was introduced by Mankiw and Shapiro (1986). Data rationality implies
that there is no possibility for the prediction of data revisions.

29 But this is not stated in the paper.
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(m = {5, 10, 20, 60, 120, 250}). However, the authors do not state how many

lags are included and whether or not the weighting functions are restricted.

Ghysels and Valkanov (2006) also augment the information set by including

information that becomes available in the m periods between t and t + 1.

As a further benchmark the low-frequency VAR is adjusted by ”filling in”

observations that might not be available between t and t + 1. The authors

employ the Kalman filter to estimate the missing observations. The approach

builds upon the idea by Harvey and Pierse (1984). As a priori expected, the

RMSEs decline further after adjusting the information set. The Kalman

Filter approach works considerably good but is not able to outperform the

MIDAS models.
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3.6 Summary and Discussion

In this chapter we reviewed the literature on forecasting with mixed-frequency

data. Currently, the standard approach is still to apply a two-step procedure.

First, ensure that all data are sampled at the same frequency and then ap-

ply the time series models. Temporal aggregation plays the dominant role

compared with the interpolation method. More recently state-space factor

approaches where forecasts are generated at the higher-frequency have been

applied more often.

In general we can state: mixed-frequency data matter, that is transformation

of data leads, on average, to less accurate forecasts. Improvements were

found, especially in the short-run.

The first approach to deal with mixed-frequency data was the linkage ap-

proach, where forecasts from different frequencies are combined in a formal

way. The majority of applications generate forecasts from quarterly struc-

tural models which are combined with monthly time series forecasts. The

combination also improved forecasts for variables that are only available at

the lower frequency. Although the results were promising it seems that cur-

rently there is no more research in this area.30 This is rather surprising, as

currently forecasting combinations in general play a prominent role in the

forecasting literature (see Timmermann (2006) for a recent survey). A pos-

sible reason is that large structural models play a less central role in the

current forecasting literature.

By contrast, bridge equations are still widely used, especially at central

banks. The survey demonstrated that bridge equations are a useful tool

for forecasting, especially in the short run (nowcasting). As more informa-

tion becomes available, the more accurate are the forecasts of the current

quarter. Most of our reviewed articles found decreasing RMSEs within the

quarter. As more information becomes available, the more accurate are the

forecasts for the target variable. There is no predominant view on how to

forecast the higher-frequency variables. Due to low computational cost, re-

30 The last article on this topic we found was the one by Shen (1996).
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cently more than one time series model is used (mostly AR, VAR, or BVAR).

One central problem is that errors from the auxiliary model transmit to the

bridge equation.

Pure mixed-frequency time series models have come into focus in recent years.

There are two completely different approaches to handle mixed-frequency

data. First we have state-space approaches, both in connection with dy-

namic factors as well as a pure VAR. State-space approaches are quite gen-

eral and can handle any kind of data issues (mixed-frequency, reporting lags,

measurement error, data revisions). This generality comes at a cost: with

more data and higher-frequency mixtures the computational complexity rises

dramatically. Therefore, only small-scale models with few variables are es-

timated. This is one reason why factor models are currently so dominant

in the forecasting literature. Nevertheless the forecasting accuracy is better

when compared with single-frequency models.

The second mixed-frequency approach is distributed lag models, most promi-

nently the MIDAS approach which is advocated and promoted by Eric Ghy-

sels and co-authors.31 MIDAS models are parsimonious but can handle only

equidistant data. MIDAS models can easily be estimated via NLS. Which

weighting function should be employed remains undecided. Both are used

and seem to produce similar results. Additionally, the weighting function is

often restricted to ensure declining weights. But these restrictions are not

based on theoretical reasoning. There are no comparisons between an unre-

stricted and a restricted version so far. Most applications of MIDAS can be

found in the finance literature with very promising forecasting results. The

three macroeconomic applications state that MIDAS is useful for short-term

forecasting.

31 The basic MATLAB code can be downloaded at www.unc.edu/ sinko/midas.zip (as-
sessed August 2008).



4. EVALUATION CONSIDERATIONS

4.1 Preliminaries

In the following chapters we want to compare the mixed-frequency VAR

model and the MIDAS approach in more detail. We have already noted, that

these approaches have not been compared so far. We start by investigating

model specification issues. Then we compare the forecast performance of the

two techniques in a Monte Carlo study. In chapter 7 we extend the analysis

to real data. In this chapter we outline the data generating processes (DGP)

that will be used in the next chapters for the model comparisons.

To draw general conclusions from Monte Carlo studies the data generation

process should cover as many data structures as possible. Different data

structures are defined by different autocorrelation structures of the lower-

frequency variable. As the mixed-frequency time series models are quite

different in their approach to handling mixed-frequency data, it is not obvi-

ous from the theoretical point of view which model yields a more accurate

forecasting performance, given a specific data pattern and (or) loss function.

In macroeconomic forecasting GDP is one of the variables forecast most often,

as it considered as the most general representation of an economy. Figure

4.1 displays the autocorrelation structure of US (1954-2006) and German

GDP (1991-2006) growth (quarterly and yearly). For the yearly growth rates

one can see an oscillating autocorrelation structure for both countries. The

oscillating pattern, with significant lags, can also be detected for US quarterly

GDP growth. For German quarterly GDP growth we find no significant

autocorrelations at any lag. We want to replicate these kinds of patterns

and want to add further structures in our Monte Carlo study.
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We define four different processes (labelled as Process I, II, III and IV re-

spectively). With each process we generate mixed-frequency data. Within

the different processes we can vary the relationship between the time series

and the structure of the target (low-frequency) variable. All simulated pro-

cesses are stationary.1 As we focus on forecasting we will always assume

that the higher-frequency variable can be regarded as an indicator for the

lower-frequency variable. This is also the standard case in the literature.

In addition to the autocorrelation patterns of the lower-frequency variable

we also define different ’strengths’ of leading characteristics. We distinguish

between cases with absolutely no relationships and cases with medium and

strong predictive power between higher- and lower-frequency variables.

Processes I and II are generated from a bivariate VAR model and Process

IV from a trivariate high-frequency VAR model. In Process IV we generate

two predictors sampled at different frequencies. These processes assume that

all variables are generated at the highest frequency. The mixed-frequency

VAR model also assumes that all variables of the model are generated at the

highest frequency. In later chapters we will see whether this is an advantage

in comparison to the MIDAS model. In contrast, in Process III the data will

be generated with a MIDAS model.

The higher frequency variable is sampled m-times higher than the lower

frequency. In the generated high-frequency sample we observe for the lower

frequency only every m-th observation; the other ones are skipped. To give

an example, given T = 100 (length of the lower- frequency time series) and

m = 3 (for instance monthly-quarterly data) we generate a bivariate data

set with length mT = 300. The principle of skip-sampling is illustrated for

monthly-quarterly (m = 3) in Table 4.1 . We simulate two time series (x1

and x2) with a VAR model, where x2 is the lower frequency. We keep every

third observation and the others are skipped.

As outlined in chapter 2, we focus on plausible macroeconomic mixtures, ad-

1 This assumption is necessary as, first, the state-space framework of Zadrozny assumes
stationary data. And second, the use of non-stationary data within the MIDAS
framework is an unsolved issue.
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ditionally to m = 3 we employ quarterly-yearly (or weekly-monthly) data

(m = 4) and weekly-quarterly data (m = 12). This is in contrast to

Ghysels and Valkanov (2006) who consider the following mixtures: m =

{5, 10, 20, 60, 120, 250}.
For ease of computation all generated data are standardized.

Tab. 4.1: Example of skip-sampling for m = 3
simulated data skip-sampled data

t x1 x2 x1 x2

1 0.320 0.424 0.320
2 0.056 0.164 0.056
3 0.604 0.684 0.604 0.684
4 0.209 0.411 0.209
5 0.915 0.672 0.915
6 0.392 0.749 0.392 0.749
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Fig. 4.1: Autocorrelations for US and German GDP growth rates
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4.2 Process I

For the first process we follow Ghysels and Valkanov (2006). Use of this

process allows us to compare our results with those of Ghysels and Valkanov

(2006). We generate high-frequency data via a bivariate VAR(p) with p = 1.

Xτ = ΓXτ−1 + uτ (4.1)

The matrix Γ is specified as:

Γ = ρ×
[

1 δl

δh 1

]

such that a single parameter ρ determines the persistence of both series,

whereas δl and δh capture the dependence between the two series. Gen-

erally, we will set δl = 0. The bivariate random vector ut is drawn from

N(0, I), where 0 is a bivariate zero-vector, and I is the identity matrix

of dimension two. The data are generated for ρ = {0.10, 0.50, 0.90, 0.95}
and δh = {0,−0.5,−1.5,−3.5}. The parameter ρ determines the persis-

tence of time series and δh determines the ’predictive power’ of the higher-

frequency time series. The series are simulated for m×T observations, where

m = {3, 4, 12}.

Tab. 4.2: Eigenvalues for Process I
λ1 λ2

ρ = 0.1 δh = i 0.10 0.10
ρ = 0.5 δh = i 0.50 0.50
ρ = 0.9 δh = i 0.90 0.90
ρ = 0.95 δh = i 0.95 0.95

Notes: Table reports the eigenvalues of the coefficient matrix Γ in Equation (4.1). The
parameter δh takes the values: δh = {0,−0.5,−1.5,−3.5}.

In Table 4.2 we tabulate the eigenvalues of the coefficient matrix Γ for the

simulated high-frequency process. All eigenvalues are smaller than 1 indicat-

ing stationary processes.
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Figures 4.3 to 4.5 in the appendix to this chapter display the different au-

tocorrelation structures (up to 24 lags) for m = {3, 4, 12} and the different

values of ρ and δh. The time series length is T = 100. Each graph in each

figure plots the autocorrelation of the lower frequency variable. The dashed

lines in the plots of the autocorrelations are the approximate two standard

error bounds computed as ±2/
√

(T ). If the autocorrelation is within these

bounds, it is not significantly different from zero at (approximately) the 5%

significance level. Each row corresponds to a value of ρ with the correspond-

ing values of δh. Note that the autocorrelation structure for a specific simu-

lated high-frequency data set is almost the same as for the different frequency

mixtures.2 The different structures are due to the skipping of the unobserved

high-frequency observations to obtain the low-frequency data. Therefore the

resulting processes exhibit different dynamics between the variables.

First, we can report that at the first lag the correlation is positive for al-

most all examples. Furthermore, for low persistent time series (ρ = 0.1 and

ρ = 0.5) there are almost no significant autocorrelations at any lags (inde-

pendently of the parameter values of δh). The picture is different for highly

persistent time series (lower two rows in each graph). One can see slow or

fast decay and oscillating autocorrelation patterns. Comparing three graphs

one can see that the autocorrelations at each lag ’die out’ the higher the fre-

quency mixture is, that is the structure is shifted from higher to lower lags.3

For instance, take the last picture in each graph (ρ = 0.95 and δh = −3.5).

The number of positive significant figures gets lower as more observations are

skipped, the higher is m.

4.3 Process II

The second process is an extension of the first process. We add an additional

lag to the system. We consider the following VAR(2) data generating process

2 However, the errors and length of the time series are different.
3 This can be confirmed by looking at autocorrelations at even higher lags up to 72.
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Xτ = Γ1Xτ−1 + Γ2Xτ−2 + uτ (4.2)

The matrix Γ1 is specified as:

Γ1 = ρ×
[

1 0

δh 1

]

where ρ = {0.10, 0.50, 0.90} and δh = {0,−0.5,−1.5}.4 The matrix Γ2 is

specified as:

Γ2 =

[
−0.1 0.1

−0.15 −0.2

]

In Table 4.3 we present the absolute eigenvalues from Equation (4.2).5 Again,

we generate stationary time series as all eigenvalues are less than 1. Figures

4.6 to 4.8 in the appendix plot the corresponding sample autocorrelation

functions. Compared with Process I, we have some similarities and differ-

ences. For low persistent time series we find again almost no significant

autocorrelation at any lag. In contrast to Process I, the first lag is in some

cases negative. For highly persistent series we can detect an oscillating pat-

tern but there is often a change between positive and negative values after

two consecutive lags. The figures demonstrate that Process II generates a

completely different data structure in comparison to Process I.

4.4 Error Structure With GARCH Components

In addition to the homoscedastic errors used in Equation (4.1) and (4.2) we

want to allow for heteroscedastic errors in the higher-frequency variable in

Process I and II. It is well known in applied econometrics that both high-

and low-frequency data display volatility clustering (see Bera and Higgins

(1993)). The higher the frequency, the more likely is the aspect of time-

4 We do not consider the values ρ = 0.95 and δh = −3.5, as the process would not be
stable.

5 All eigenvalues are complex in this example.
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Tab. 4.3: Eigenvalues for Process II
λ1 λ2 λ3 λ4

ρ = 0.1 δh = 0 0.417 0.417 0.448 0.448
δh = −0.5 0.459 0.459 0.406 0.406
δh = −1.5 0.481 0.481 0.388 0.388

ρ = 0.5 δh = 0 0.349 0.349 0.535 0.535
δh = −0.5 0.598 0.598 0.312 0.312
δh = −1.5 0.688 0.688 0.271 0.271

ρ = 0.9 δh = 0 0.770 0.770 0.242 0.242
δh = −0.5 0.860 0.860 0.217 0.217
δh = −1.5 0.971 0.971 0.192 0.192

Notes: Table reports the absolute eigenvalues of the coefficient matrices Γ1 and Γ2

from equation (4.2).

varying volatility. Consider again the data generation process for Process

I

Xτ = ΓXτ−1 + uτ

and Process II

Xτ = Γ1Xτ−1 + Γ2Xτ−2 + uτ

Let u1τ be the higher-frequency variable distributed as u1τ |Ωτ−1 ∼ N(0, σ2
1τ ),

where Ωτ−1 denotes the history of the process. We use the standard GARCH(1,1)

model to simulate the error variance

σ2
1τ = α0 + α1u

2
τ1 + β1σ

2
1τ−1. (4.3)

For m = 3 and m = 4 we set α0 = 0.01, α1 = 0.13, and β1 = 0.82.6 This set-

up displays moderate shocks that persist over time. In contrast, for m = 12

(weekly-quarterly data) we set α1 = 0.4 and β1 = 0.5 to model larger shocks

which are less persistent.

6 Our choice is inspired by Bollerslev (1986). These parameters were estimated for
quarterly UK inflation.
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4.5 Process III

The first two processes are generated with a bivariate VAR. It is expected

that on average the mixed-frequency VAR performs better than the MIDAS

approach (though, not theoretically derived), as the former is modelled at the

same frequency as the data generating process. Therefore we generate the

data for the third process with a MIDAS model. The data-generating process

was suggested by Andreou, Ghysels, and Kourtellos (2007). We consider the

following data generation process

yt = β0 + β1B
(
L1/m; θ

)
x

(m)
t−1 + ε

(m)
t , (4.4)

where the constant and the slope coefficients are given by: β0 = 0 and

β1 = {0.6, 3, 6}. The error term is normally distributed with expected mean

zero and variance 0.125. The different values of β1 yield models of small,

medium and large Signal to Noise Ratios (SNR), respectively. The dependent

variable is measured at low frequency whereas the covariates are defined at

high sampling frequency m, based on a K-dimensional vector of weights.

The weighting function we parameterize as the exponential Almon lag with

the unknown coefficients θ = (θ1, θ2) given by (2.56). We want to generate

two different weighting schemes. We choose θ that yield both fast and slow

decay of the weights. Thus we have θ = (7 × 10−4,−5 × 10−2) and θ =

(7 × 10−4,−6 × 10−3) for the fast and slow decay of weights respectively.

Figure 4.2 plots the two weighting functions with K = 40 lags.

For the data generation process (4.4) we assume for the high-frequency co-

variates x
(m)
t

x
(m)
t/m = c0 + c1x

(m)
t−1/m + ut/m. (4.5)

For the parameters we assume c0 = 0, c1 = 0.9 and ut/m ∼ N(0, 1). Figures

4.9 to 4.11 plot the corresponding sample autocorrelation patterns for Process

III. The dominant structure is the oscillating pattern that we also observe

in real data examples, as plotted in Figure 4.1. For m = 3 and m = 4,

at the first three lags, all autocorrelations are positive and significant. For
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m = 12 only the first and some higher lags are significant. Furthermore the

oscillating pattern is less well pronounced.

Fig. 4.2: Shape of the weighting functions for Process III
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4.6 Process IV: Three Different Frequencies in One Model

The simulated processes so far were bivariate processes. The two time series

approaches in focus are able to handle any number of variables sampled at

any frequency. In empirical applications it is a natural step to consider indi-

cators sampled at different frequencies, that is to include weekly indicators

in addition to monthly ones. This aspect has not been investigated in the

literature so far. Therefore, we extend our Monte Carlo study to three vari-

ables all sampled at different frequencies. Process IV can be considered as a

starting point for future research on how many different frequencies can be

handled in practice in one model.

We consider again the VAR(1) process

Xτ = ΓXτ−1 + uτ (4.6)
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The coefficient matrix Γ is now specified as

Γ = ρ×




1 0 0

−0.2 1 0.2

−0.1 −0.15 1




The parameter ρ = {0.10, 0.50, 0.90, 0.95} again determines the persistence

of the time series. The target variable is sampled at quarterly intervals simu-

lated with homoscedastic errors. The second variable is sampled at monthly

intervals with GARCH errors α1 = 0.13 and β1 = 0.82 in Equation (4.3).

Finally, the third variable is sampled weekly with GARCH error specifica-

tion α1 = 0.4 and β1 = 0.5 in Equation (4.3). In Table 4.6 the absolute

eigenvalues are reported, which are again less than 1. The simulated time

series are stationary as required for the mixed-frequency time series models.

Figure 4.12 plots the autocorrelation function. Strong significant lags can

only be detected for ρ = 0.95.

Tab. 4.4: Eigenvalues for Process IV
λ1 λ2 λ3

ρ = 0.1 0.101 0.101 0.100
ρ = 0.5 0.507 0.507 0.500
ρ = 0.9 0.913 0.913 0.900
ρ = 0.95 0.964 0.964 0.950

Notes: Table reports the absolute eigenvalues of the coefficient matrices Γ from Equa-
tion (4.6).

4.7 Appendix: Additional Figures
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Fig. 4.3: Autocorrelations for Process I for m = 3
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Fig. 4.4: Autocorrelations for Process I for m = 4
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Fig. 4.5: Autocorrelations for Process I for m = 12
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Fig. 4.6: Autocorrelations for Process II for m = 3
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Fig. 4.7: Autocorrelations for Process II for m = 4
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Fig. 4.8: Autocorrelations for Process II for m = 12
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Fig. 4.9: Autocorrelations for Process III for m = 3
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Fig. 4.10: Autocorrelations for Process III for m = 4
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Fig. 4.11: Autocorrelations for Process III for m = 12
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Fig. 4.12: Autocorrelations for Process IV for m = 12 and m = 3
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5. SPECIFICATION ISSUES

As we outlined in chapters 2 and 3, the model specification aspect has been

neglected so far in the literature. In the empirical applications the model

was chosen rather on an ad hoc basis and not on standard model selection

criteria. Furthermore the weighting function in the MIDAS approaches is in

some applications restricted, some not restricted, but without any explicit

explanation given. In this chapter we want to take a closer look at model

specification pertaining to forecasting economic time series. In particular we

focus on lag selection in both approaches and whether or not the weighting

function should be restricted . We will show that standard selection criteria

can be computationally intensive and time consuming. Thus, results of the

analysis can be interpreted as a first point of reference for applied forecasting.

5.1 Model Specification in Mixed-Frequency VAR Models

In the basic specification of the mixed-frequency VARMA with two variables,

the MF-VAR(1), seven parameters have to be estimated.1 The inclusion of

more time series and higher-order lags leads to a large number of parameters

to be estimated (4p+3 parameters in a bivariate VAR(p)). As the likelihood

is calculated recursively, the computation time increases significantly with

the number of parameters. Mittnik and Zadrozny (2005) state that forecasts

are only feasible if variables are in compatible, cyclical form and not too

many parameters have to be estimated.

We want to answer the following two questions. First, as the model operates

1 We focus on model selection for the mixed-frequency VAR model based on the frame-
work by Zadrozny (2008). The analysis can easily be applied to the framework by
Hyung and Granger (2008).
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at the highest frequency in the data, which lag length does describe the

data well? Second, does the frequency mixture influence the lag selection?

The importance of the second question can be illustrated with the following

example: Suppose we find an AR(4) process (by some selection criterion)

for a quarterly time series (for example GDP). Now we include a weekly

time series and build a mixed-frequency VAR model operating at the weekly

frequency. Allowing for the same past information set as in the univariate

case, do we have to estimate an MF-VAR(48) model (4m = 12 · 4 = 48, 48

weeks constitute 4 quarters)? The estimation of a model with 48 lags seems

infeasible and contradicts the view of parsimony in econometrics.

To investigate these issues we conduct a small Monte Carlo study for Pro-

cesses I and II illustrated in the previous chapter. We focus on these two

processes, as the DGP is a (high-frequency) VAR process and the MF-VAR

operates at the highest frequency. Thus we can draw clear cut conclusions

about the order of the model. From the theoretical point of view we cannot

decide which specific model to choose. Consider Process I which generates

data from a VAR(1). As we skip m− 1 observations to generate the mixed-

frequency data set (every m− th observation of the lower-frequency variable

is observable), it is possible that the generated missing observations intro-

duce new dynamics into the system. The figures in the appendices of the

previous chapters demonstrate, that the autocorrelations patterns differ be-

tween the frequency mixtures m, although the data are generated with the

same high-frequency VAR process.

We fit a mixed-frequency VAR(p) to each times series. We choose the optimal

lag length via a corrected AIC criterion proposed by Hurvich and Tsay (1989)

and used by Zadrozny (2008)

CAIC = L +
2M

1− M+1
mT

(5.1)

where L is -2 times the log-likelihood, M denotes the number of estimated

parameters, and mT is the number of observations (higher frequency). We

allow for a maximum of 2m lags for m = 3 and m = 4 and m lags for
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m = 12. The time series length is T = 100. We simulate each process 100

times. This number is motivated by exponentially increasing computation

time for estimating higher- order mixed-frequency VAR(p).2

Tables 5.1 and 5.2 report the average chosen lag lengths for each parameter

combination and frequency mixture. For instance, consider Process I (Table

5.1). For ρ = 0.1, δ = 0 and m = 3, on average one lag (1.000) was chosen

by the corrected AIC criterion. For ρ = 0.95, δ = −3.5, and m = 12 the

majority of selected models were an VAR(1), as the average lag selection is

1.2. In general we can note, that the corrected AIC chooses low dimensional

processes independently of the frequency mixture. For Process I there is a

tendency for one lag, and for Process II (Table 5.2) for two lags for persistent

series (ρ > 0.5). These results correspond to the fact that the true data-

generating process is a VAR(1) and VAR(2), respectively. These findings

suggest that there is no danger of parameter proliferation (at least in the

bivariate case). Furthermore, it is demonstrated that small scale MF-VAR

can capture rich data patterns, as graphed in the autocorrelation figures in

the appendix to chapter 4.

2 The estimation of all models up to a VAR(12) takes about 12h on a PC with an Intel
Core 2 Quad processor.
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Tab. 5.1: Lag selection in mixed-frequency VAR(p) models: Process I
m = 3 m = 4 m = 12

ρ = 0.1 δ = 0 1.000 1.000 1.000
δ = −0.5 1.000 1.000 1.000
δ = −1.5 1.000 1.000 1.000
δ = −3.5 1.000 1.000 1.000

ρ = 0.5 δ = 0 1.000 1.000 1.000
δ = −0.5 1.000 1.000 1.000
δ = −1.5 1.060 1.180 1.140
δ = −3.5 1.040 1.180 1.120

ρ = 0.9 δ = 0 1.400 1.040 1.160
δ = −0.5 1.200 1.220 1.320
δ = −1.5 1.060 1.180 1.280
δ = −3.5 1.060 1.020 1.220

ρ = 0.95 δ = 0 1.400 1.040 1.000
δ = −0.5 1.140 1.200 1.280
δ = −1.5 1.060 1.120 1.220
δ = −3.5 1.160 1.040 1.200

Notes: Data are simulated from a high-frequency VAR as given in equation (4.1) with
homoscedastic errors. For each parameter combination we estimate a mixed-frequency
VAR(p) with pmax = 2m (pmax = m for m = 12). The table reports the average chosen
lag length due to the corrected AIC criterion (5.1).
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Tab. 5.2: Lag selection in mixed-frequency VAR(p) models: Process II
m = 3 m = 4 m = 12

ρ = 0.1 δ = 0 1.010 1.000 1.000
δ = −0.5 1.000 1.000 1.000
δ = −1.5 1.000 1.010 1.000

ρ = 0.5 δ = 0 1.040 1.000 1.000
δ = −0.5 1.360 1.220 1.000
δ = −1.5 2.140 1.920 1.170

ρ = 0.9 δ = 0 1.850 1.690 1.730
δ = −0.5 2.450 2.780 2.890
δ = −1.5 1.320 1.270 2.720

Notes: Data are simulated from a high-frequency VAR as given in equation (4.2) with
homoscedastic errors. For each parameter combination we estimate a mixed-frequency
VAR(p) with pmax = 2m (pmax = m for m = 12). The table reports the average chosen
lag length due to the corrected AIC criterion (5.1).

5.2 MIDAS: Weighting Functions, Restrictions, and Lag

Lengths

There are three important aspects in specifying a MIDAS model. First, one

has to choose the weighting function itself. Second, should any restriction

be imposed on the chosen weighting function? And third, how many lags

should be included in the estimation? The first issue will be investigated in

the Monte Carlo forecasting exercise in the next chapter. As we are interested

in forecasting, the judgement will be based on forecast accuracy measures.

Concerning the second and third issue, Ghysels, Sinko, and Valkanov (2007)

suggest that, while estimating the weighting parameters, the lag selection is

purely data driven. This implies that including another lag in the estimation

which does not improve the estimation fit would be assigned a weight of zero.

Furthermore it implies that no restrictions are imposed on the weighting

function.

Loosely speaking, one should include as many lags as possible and let the data

speak for themselves. This approach can possibly be recommended for finan-

cial applications where data are often sampled at 5-minute or daily frequency
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but not for macroeconomic data, which are often sampled at monthly and

quarterly frequencies. The reason is that including more higher-frequency

lags reduces the estimation sample in general, as less observations of the

lower-frequency variable yt can be used for estimation. In chapter 3 we

reviewed the existing literature on MIDAS applications. In almost all (fi-

nancial) applications the weighting function is restricted to obtain declining

weights. This stands in contrast to the statement of Ghysels, Sinko, and

Valkanov (2007) to let the data speak for themselves. We investigate the

restriction and the issue of the number of lags subsequently, as we cannot

rule these out as interrelated.

5.2.1 Restriction of the Weighting Function

We start with the issue of whether the weighting function should be restricted

or not. We employ the three processes from the previous chapters for our

analysis. To keep estimation issues simple, we allow only for two parameters

in the exponential Almon lag specification (2.56).3 We start at the point

where we allow the data to speak for themselves as suggest by Ghysels,

Sinko, and Valkanov (2007). Thus for the exponential Almon lag we have

−100 < θ1, θ2 < 100 and 0 < θ1, θ2 < 300 in our Beta weighting function.4

We include 3m number of lags of the higher-frequency variable. For each

simulated process set we estimate the two weighting parameters for each

weighting function. We conduct 500 replications.

3 All empirical applications so far used only two parameters in the weighting function.
4 We are aware of the fact that these are restrictions, but we have to use them to avoid

numbers which cannot be handled by the computer as they become too large (due to
the exponential function).
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In Table 5.3 we display the average two parameters (θ1 and θ2) for both the

Almon and the Beta weighting functions for Process I. Each row represents

a combination of ρ (persistence) and δ (’lead’). On average, relatively large

values are chosen from the given data. Let us first consider the exponential

Almon lag weighting function. For moderate persistent simulated time series

(ρ ≤ 0.5), a positive θ1 and a negative θ2 is estimated. This corresponds

to the sharp, peaked weights where the peak is located between the second

and fourth observation of the higher-frequency variable. Independently of

the included lags, up to five positive weights (> 0.05) are assigned. For

higher simulated persistent times series (ρ ≥ 0.9) both weighting parameters

are negative. This corresponds to a sharp declining weighting function with

assigning a weight of almost 1 to the first lag of the higher- frequency variable.

These results hold across different frequency mixtures. We plot the two

typical shapes of the weighting function in Figure 5.1. The results obtained

for the Beta weighting function can be interpreted in exactly the same way.

The estimated parameters produce the same shape for the weighting function

as the exponential Almon lag weighting function. This points to the fact that

both weighting functions interpret the data in the same way.

Fig. 5.1: Examples of estimated weighting functions for Process I
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We find similar results for Process II. The average weighting parameters are

reported in Table 5.4. In general we find either a sharp peak around lag 5 or
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Tab. 5.5: Average Parameter values of the exponential Almon and Beta weighting
function: Process III

m = 3
Almon Beta

θ1 θ2 θ1 θ2

WF 1 β1 = 0.6 -1.394 0.066 0.966 4.348
β1 = 3 -1.357 0.054 0.965 4.275
β1 = 6 -1.388 0.066 0.961 4.335

WF 2 β1 = 0.6 -0.376 0.009 0.975 1.628
β1 = 3 -0.367 0.008 0.976 1.643
β1 = 6 -0.370 0.008 0.976 1.638

m = 4
WF 1 β1 = 0.6 -0.988 -0.531 0.955 11.986

β1 = 3 -0.961 -0.538 0.948 11.865
β1 = 6 -0.399 -0.784 0.863 12.493

WF 2 β1 = 0.6 -0.435 0.014 0.968 1.957
β1 = 3 -0.429 0.013 0.968 1.979
β1 = 6 -0.430 0.013 0.968 1.979

m = 12
WF 1 β1 = 0.6 -2.169 -5.028 0.643 16.770

β1 = 3 -0.528 -4.869 0.609 15.414
β1 = 6 -1.712 -4.685 0.449 11.008

WF 2 β1 = 0.6 -0.727 -1.667 0.907 15.783
β1 = 3 -0.545 -1.375 0.820 13.421
β1 = 6 -0.282 -1.370 0.563 11.463

Notes: Data are simulated from a MIDAS regression as in equation (4.4). Each process
is simulated 500 times. WF1 corresponds to an exponential Almon lag function with
θ = (7 × 10−4,−5 × 10−2) and WF2 with parameters θ = (7 × 10−4,−6 × 10−3). This
table reports the average parameters within the exponential Almon lag (2.56) and Beta
(2.57). The parameters are not restricted. The number of included lags is fixed to 3m.
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a concentration of weights on the first two lags. The shape is in general the

same as plotted in Figure 5.1.

For Process III we have tabulated the results in Table 5.5. For this process

the a priori parameters are known from the data generation process. First we

can conclude that for this process, the average parameters do not converge

to their true values. Nevertheless, the obtained values for both weighting

functions generate declining weights. But this decline is rather sharp in all

cases, that is the second weighting function (WF 2) cannot be reproduced.

The results for Processes I and II may not be intuitive for the forecasting

process. Why should the value of the leading indicator obtained three or four

periods before be more important than the most recent one. Furthermore,

why should only the most recent one be used in forecasting, while discard-

ing the other lags? A declining weight function is more intuitive for the

forecaster. Does the forecast accuracy improve as we restrict the weighting

function to ensure declining weights, in comparison to unrestricted weighting

functions? As we outlined in the literature section, in most applications the

weighting function is restricted. Again, we employ our Monte Carlo study

to answer this question. In the case of the exponential Almon lag both θ1

and θ2 have to be negative to ensure declining weights.5 As |θi| increases

the more concentrated are the weights on the first lags. The Beta weighting

function is declining if θ1 = 1 and θ2 > 1. As θ2 increases, the more rapidly

the weights decline.

For each simulated time series we conduct a one-step-ahead forecast of the

lower-frequency variable. We compare the squared error obtained with the

unrestricted weighting functions and the restricted weighting functions. For

the exponential Almon lag we impose the restriction −1 < θ1 < 0 and

−0.1 < θ2 < 0 which ensures declining weights. The higher the absolute

values of θi, the more weight is assigned to the more recent observations of

the leading time series. For the Beta weighting function we impose θ1 = 1

5 Ghysels, Sinko, and Valkanov (2007) state that θ2 < 0 guarantees declining weights
(p.57). This is wrong. For some positive values of θ1 the weighting function can be
hump shaped or increasing in weights. Ghysels, Sinko, and Valkanov (2007) even
show this in a graph in their paper (p. 58).
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and 1 < θ2 < 15. We restrict the sharpness of decline in both cases, as from

the previous results we know that there is a tendency to assign the whole

weight to the first lag.

Table 5.6 displays the results for Process I. Each entry represents the ratio

of the mean-squared error (MSE) of a one-step-ahead forecast of the MIDAS

model of unrestricted and restricted weighting functions. A ratio smaller than

1 indicates that the unrestricted weighting function produces smaller MSEs.

We find that there is no difference between the restricted and unrestricted

cases. Only for the case ρ = 0.95 and δh < 0 is there a marginal advantage

of the unrestricted weighting function. Given the results there is no need to

put any restrictions on the weighting function.

Similar results can be reported for Process II tabulated in Table 5.7. In

case of ρ = 0.9 and δ = −1.5 the restricted weighting function results in

higher forecasting errors. For other parameter combinations there seems to

be no difference in forecasting accuracy between restricted and unrestricted

weighting functions.

Conducting the same exercise for Process III seems not to make any sense.

This is first, because the data-generating process assumes declining weights.

And second, we confirmed that for this data structure, decreasing weights are

estimated. Table 5.8 reports the ratio of the unrestricted and the restricted

weighting functions. The results provide an interesting interpretation. In

most cases the restricted weighting function results in higher MSEs; in some

cases, (for example WF 1: β1 = 6 and m = 4), the restriction yields lower

MSEs. Thus, we have found another situation where restriction makes sense.

This points to the fact that there can be an ’optimal restriction’ for the

weighting function. But could be difficult to find in applied work.

This section demonstrates that there is no clear answer to whether the weight-

ing function should be restricted or not. At least there seems to be no disad-

vantage if we prefer one of the options. There some exceptions. In some cases

(highly persistent time series) there is a tendency to restrict the weighting

function which leads to lower forecasting errors.
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In general we cannot determine whether our results hold in general, as the

number of included lags was fixed. Furthermore our imposed restrictions are

only an example out of many possible other restrictions. There may be room

for improvement in forecasting accuracy with restricted weighting functions

when the number of lags is increased or decreased. We will investigate this

issue in the next subsection.

Tab. 5.6: MSE ratios of restricted and unrestricted weighting functions: Process I

m = 3 m = 4 m = 12
Almon Beta Almon Beta Almon Beta

ρ = 0.1 δ = 0 1.017 1.005 1.011 1.009 1.002 1.008
δ = −0.5 1.016 1.006 1.009 1.008 1.012 1.011
δ = −1.5 1.018 1.003 1.003 1.003 1.018 1.011
δ = −3.5 1.012 1.012 1.018 1.003 1.012 1.016

ρ = 0.5 δ = 0 1.016 1.005 1.013 0.999 1.009 1.006
δ = −0.5 1.010 1.004 1.009 1.004 0.998 1.001
δ = −1.5 1.011 1.007 1.003 1.004 1.015 1.019
δ = −3.5 1.001 1.002 1.007 1.005 1.010 1.014

ρ = 0.9 δ = 0 1.002 1.001 1.006 1.002 1.004 1.004
δ = −0.5 0.983 0.991 0.986 0.986 0.996 0.990
δ = −1.5 0.983 0.990 0.987 0.987 1.004 0.991
δ = −3.5 0.984 0.991 0.985 0.985 0.996 0.990

ρ = 0.95 δ = 0 1.000 1.000 1.007 1.006 1.006 1.000
δ = −0.5 0.985 0.993 0.986 0.986 0.996 0.977
δ = −1.5 0.984 0.992 0.985 0.985 0.996 0.977
δ = −3.5 0.986 0.992 0.987 0.987 0.997 0.982

Notes: Data are simulated from a high-frequency VAR as in equation (4.1) as in the
previous table. We estimate a MIDAS model with restricted and unrestricted weighting
functions and calculate one-step ahead forecasts of the lower frequency. We used the
following restrictions: exponential Almon lag weighting function (2.56): −1 < θ1 < 0 and
−0.1 < θ2 < 0, Beta weighting function (2.57): θ1 = 1 and 1 < θ2 < 15. This table
displays the ratio between MSE from MIDAS regressions with restricted and unrestricted
weighting functions. The number of included lags is fixed to 3m.
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Tab. 5.7: MSE ratios of restricted and unrestricted weighting functions: Process
II

m = 3 m = 4 m = 12
Almon Beta Almon Beta Almon Beta

ρ = 0.1 δ = 0 1.012 0.980 1.011 1.020 1.000 1.017
δ = −0.5 0.987 1.000 0.995 1.004 1.021 1.002
δ = −1.5 1.017 1.023 1.018 1.000 1.019 1.024

ρ = 0.5 δ = 0 1.024 0.984 1.003 1.018 1.036 1.020
δ = −0.5 1.005 1.029 1.003 0.995 1.001 0.988
δ = −1.5 0.999 1.046 1.013 1.012 1.025 1.004

ρ = 0.9 δ = 0 1.007 1.003 1.006 0.995 1.006 1.002
δ = −0.5 0.992 1.009 0.956 0.954 1.000 0.982
δ = −1.5 0.638 0.831 0.425 0.812 0.858 0.745

Notes: Data are simulated from a high-frequency VAR as in equation (4.2) as in the
previous table. Each process is simulated 500 times. We estimate a MIDAS model with
restricted and unrestricted weighting functions and calculate one-step ahead forecasts of
the lower frequency. We used the following restrictions: exponential Almon lag weighting
function (2.56): −1 < θ1 < 0 and −0.1 < θ2 < 0, Beta weighting function (2.57): θ1 = 1
and 1 < θ2 < 15. This table displays the ratio between MSE from MIDAS regressions
with restricted and unrestricted weighting functions. The number of included lags is fixed
to 3m.

5.2.2 Choosing the Number of Lags

Finally, we want to investigate how many lags one should include in the

estimation of MIDAS models. Surprisingly the current literature is relatively

uninformative on how many lags are included and on which criterion the

number of lags is chosen. There are no formal selection criteria and the

lengths seem to be chosen rather ad hoc.

In the simplest bivariate case, in MIDAS regressions, only four parameters

have to be estimated independently of the number of included lags. So there

is no threat of proliferation of parameters and (or) overparametrization as in

standard linear models by inclusion of more lags. Loosely speaking, we may

include as many lags as possible, and positive weight assignments determine

the lag lengths implicitly. In practice this approach is limited. The more lags



5. Specification Issues 113

Tab. 5.8: MSE ratios of restricted and unrestricted weighting functions: Process
III

m = 3 m = 4 m = 12
Almon Beta Almon Beta Almon Beta

WF 1 β1 = 0.6 1.281 0.934 1.551 0.790 1.004 0.668
β1 = 3 1.299 0.816 1.771 0.796 0.974 0.662
β1 = 6 1.415 0.962 2.079 0.918 1.008 0.704

WF 2 β1 = 0.6 0.995 0.841 0.960 0.767 1.168 0.520
β1 = 3 0.984 0.812 0.952 0.794 1.055 0.477
β1 = 6 0.975 0.826 0.946 0.777 1.146 0.538

Notes: Data are simulated from a MIDAS regression as in equation (4.4). Each process
is simulated 500 times. WF1 corresponds to an exponential Almon lag function with
θ = (7×10−4,−5×10−2) and WF2 with parameters θ = (7×10−4,−6×10−3). We estimate
a MIDAS model with restricted and unrestricted weighting functions and calculate one-
step ahead forecasts of the lower frequency. We used the following restrictions: exponential
Almon lag weighting function (2.56): −1 < θ1 < 0 and −0.1 < θ2 < 0, Beta weighting
function (2.57): θ1 = 1 and 1 < θ2 < 15. This table displays the ratio between MSE from
MIDAS regressions with restricted and unrestricted weighting functions. The number of
included lags is fixed to 3m.

that are included, the smaller the estimation sample. In financial applications

with minute and daily data available, the forecaster can be more generous

with the number of included lags. But in macroeconomic forecasting this

problem can be severe.6 Ghysels, Santa-Clara, and Valkanov (2004) state

that standard selection procedures such as the Akaike or Schwarz criterion

(which are often used for model selection in forecasting) can be applied in the

MIDAS context.7 But no article has applied such a criterion. We consider one

of the standard selection criteria, the Bayesian Information criterion (BIC)

BIC = ln(σ̂2) +
M

T
ln T

6 To give an example: for the purpose of forecasting German GDP growth the data set
often starts in 1991 to avoid structural breaks due to reunification. Using a monthly
indicator with 12 included lags reduces the estimation sample by one year. The
inclusion of 24 lags reduces the sample by two years, and so forth.

7 The authors do not investigate this issue in their paper.
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where σ̂2 is the estimated variance of the error term and M is the number

of estimated parameters. The classical model selection criteria impose a

penalty on additional estimated parameters. This does not apply in the

MIDAS context, as the number of estimated parameters is constant. The fit

of the regression is only determined by the error variance and the time series

length T (included in the estimation). The BIC is decreasing with increasing

T . This demonstrates a trade-off between included lags and the number of

observations (and information) included for estimation.

In our Monte Carlo experiment we use two criteria to assess how many lags

should be included for the estimation and forecasting process. For each sim-

ulated time series model we allow for m up to 8m lags. On the one hand, we

choose the optimal lag due to the BIC criterion (in-sample criterion). On the

other hand, we assess the optimality due to forecast accuracy by forecast-

ing the lower frequency time series (OSC criterion) one-step-ahead. Granger

(1993) pointed out that in-sample selection measures (as BIC) frequently fail

to provide strong implications for the out-of-sample performance. We em-

ploy both the restricted and unrestricted weighting functions to disentangle

the possible existing relationship between forecast performance, lag length

and weighting function restrictions.8

Tables 5.9 tabulates the results for the Almon weighting function for Process

I. The third and fourth columns report the average chosen lag length due

to the BIC criterion (restricted versus unrestricted weighting function). The

fifth and seventh columns report the corresponding lags chosen due to the

OSC criterion. Columns six and eight exhibit the average RMSE at the

chosen lag due to the OSC criterion.

First we can note that on the one hand there are some differences in the

number of lags between the BIC and the OSC. For m = 3 and m = 4 there

is a tendency of the OSC to choose a fewer lags in comparison to the BIC

criterion. For m = 12 both criteria deliver similar results. On the other hand

restricted and unrestricted weighting functions deliver the same results. One

notable exception is for m = 12 where in the restricted BIC case and ρ = 0.95

8 We employ the same restriction as in the previous subsection.
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the number of chosen lags are considerably higher. For lower persistent time

series the average number of lags is about 4m or 5m. For higher persistent

series there is a tendency of the BIC criterion to include the maximum of

allowed lags (24 for m = 3 and 32 for m = 4).

Comparing the RMSEs for OSC criterion we find interesting results. In

contrast to the previous results (Table 5.6) there is a difference in forecasting

performance between restricted and unrestricted weighting functions. In case

of persistent time series (ρ ≥ 0.9) the RMSE is lower (comparing the fourth

and sixth columns) for restricted weighting functions. The opposite is true

for ρ ≤ 0.5 where the RMSE is higher for restricted weighting functions.

The interpretations for the exponential Almon lag function can also be drawn

for the Beta weighting function. The results are displayed in Table 5.10.

For Process II we find similar results concerning the lag length. The lag

lengths to be chosen are around 4m independently of the selection criteria.

The results are reported in Tables 5.11 and 5.12. There is one notable excep-

tion to Process I. Restrictions on the weighting function do not improve the

forecasting accuracy. The RMSE of restricted weighting functions are in any

case higher than the unrestricted counterpart. Again, the interpretations for

the Beta weighting functions are the same as for the exponential Almon lag

weighting function.

Taking these results and the results from the previous subsection, we can

conclude that forecast performance, the number of included lags and weight-

ing function restrictions are interrelated. Our results stand in contrast to the

statement of Ghysels, Sinko, and Valkanov (2007) to let the data speak for

themselves when forecasting is concerned. Lag length selection and the re-

striction of the weighting function should explicitly investigated to optimise

forecasting results.
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Tab. 5.9: Exponential Almon lag weighting function: Lag length selection for Pro-
cess I

BIC Out-of-sample
unrestricted restricted

m = 3
unrestricted restricted lag RMSE lag RMSE

ρ = 0.1 δ = 0 12 11 12 0.768 11 0.861
δ = −0.5 13 12 12 0.841 11 0.945
δ = −1.5 13 11 12 0.867 12 0.944
δ = −3.5 12 11 12 0.909 12 0.994

ρ = 0.5 δ = 0 13 12 12 0.884 12 0.949
δ = −0.5 12 11 13 1.204 13 1.259
δ = −1.5 11 10 13 1.852 12 1.769
δ = −3.5 10 10 13 1.927 12 1.852

ρ = 0.9 δ = 0 15 13 12 0.773 12 0.843
δ = −0.5 21 23 15 0.292 15 0.243
δ = −1.5 23 24 17 0.266 16 0.194
δ = −3.5 23 24 16 0.186 15 0.135

ρ = 0.95 δ = 0 16 15 13 0.883 12 0.960
δ = −0.5 24 24 16 0.147 17 0.118
δ = −1.5 24 24 17 0.143 17 0.113
δ = −3.5 24 24 17 0.136 18 0.111

m = 4
unrestricted restricted lag RMSE lag RMSE

ρ = 0.1 δ = 0 16 15 17 0.897 15 1.000
δ = −0.5 16 15 16 0.841 15 0.941
δ = −1.5 17 16 17 0.783 15 0.871
δ = −3.5 16 14 16 0.815 16 0.898

ρ = 0.5 δ = 0 16 15 16 0.839 15 0.929
δ = −0.5 16 15 17 0.940 17 1.001
δ = −1.5 14 13 18 1.207 15 1.197
δ = −3.5 14 13 18 1.522 16 1.492

ρ = 0.9 δ = 0 19 18 16 0.893 17 0.959
δ = −0.5 23 28 21 0.339 18 0.307
δ = −1.5 23 29 22 0.348 19 0.291
δ = −3.5 23 30 22 0.273 20 0.227

ρ = 0.95 δ = 0 20 19 17 1.096 17 1.153
δ = −0.5 32 32 23 0.152 23 0.123
δ = −1.5 32 32 22 0.102 22 0.077
δ = −3.5 32 32 24 0.093 22 0.073

m = 12
unrestricted restricted lag RMSE lag RMSE

ρ = 0.1 δ = 0 40 43 49 0.884 46 0.962
δ = −0.5 41 43 51 0.943 47 1.026
δ = −1.5 42 42 49 0.827 48 0.919
δ = −3.5 44 44 46 0.849 44 0.919

ρ = 0.5 δ = 0 40 40 49 0.825 47 0.897
δ = −0.5 45 44 47 0.877 48 0.940
δ = −1.5 42 44 47 0.817 43 0.889
δ = −3.5 41 42 48 0.893 48 0.976

ρ = 0.9 δ = 0 48 48 48 0.874 48 0.946
δ = −0.5 37 43 50 1.236 51 1.282
δ = −1.5 36 44 55 1.243 54 1.269
δ = −3.5 32 41 55 1.286 52 1.304

ρ = 0.95 δ = 0 51 51 49 1.066 48 1.105
δ = −0.5 37 64 59 0.252 49 0.287
δ = −1.5 36 64 59 0.272 47 0.285
δ = −3.5 36 64 61 0.271 46 0.289

Notes: Data are simulated from a high-frequency VAR as in equation (4.1). Each process is simulated

500 times. The maximum lag length is 8m. This tables reports the average lag length due to the BIC

criterion and the out-of-sample criterion both for restricted and unrestricted weighting functions for the

exponential Almon lag weighting function. For the OSC criterion the average RMSE is reported for the

chosen lag.
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Tab. 5.10: Beta lag weighting function: Lag length selection for Process I
BIC Out-of-sample

unrestricted restricted
m = 3

unrestricted restricted lag RMSE lag RMSE
ρ = 0.1 δ = 0 12 11 13 0.848 12 0.876

δ = −0.5 13 11 12 0.913 12 0.969
δ = −1.5 12 11 13 0.900 12 0.955
δ = −3.5 12 11 12 0.986 12 1.028

ρ = 0.5 δ = 0 13 11 12 0.929 12 0.961
δ = −0.5 12 10 12 1.173 15 1.251
δ = −1.5 11 8 10 1.571 17 1.545
δ = −3.5 11 8 8 1.561 18 1.525

ρ = 0.9 δ = 0 14 13 12 0.807 12 0.834
δ = −0.5 23 24 12 0.402 14 0.230
δ = −1.5 24 24 12 0.414 15 0.182
δ = −3.5 24 24 12 0.259 14 0.130

ρ = 0.95 δ = 0 15 15 12 0.886 12 0.943
δ = −0.5 23 24 15 0.219 17 0.113
δ = −1.5 23 24 15 0.286 17 0.107
δ = −3.5 23 24 15 0.239 17 0.108

m = 4
ρ = 0.1 δ = 0 16 14 18 0.944 16 1.002

δ = −0.5 16 14 17 0.924 15 0.953
δ = −1.5 16 14 17 0.844 16 0.886
δ = −3.5 15 14 17 0.847 16 0.901

ρ = 0.5 δ = 0 16 14 17 0.880 15 0.934
δ = −0.5 15 13 16 0.954 19 0.999
δ = −1.5 13 11 16 1.073 22 1.108
δ = −3.5 13 10 15 1.271 24 1.296

ρ = 0.9 δ = 0 18 18 17 0.908 16 0.951
δ = −0.5 28 31 13 0.462 17 0.306
δ = −1.5 31 32 13 0.570 18 0.282
δ = −3.5 31 32 13 0.401 19 0.222

ρ = 0.95 δ = 0 19 19 17 1.078 16 1.117
δ = −0.5 32 32 18 0.314 22 0.120
δ = −1.5 32 32 17 0.196 21 0.078
δ = −3.5 32 32 17 0.215 22 0.075

m = 12
ρ = 0.1 δ = 0 43 41 52 0.885 45 0.940

δ = −0.5 46 41 55 0.913 46 1.000
δ = −1.5 43 41 49 0.808 47 0.894
δ = −3.5 44 42 49 0.853 44 0.911

ρ = 0.5 δ = 0 41 40 50 0.809 48 0.876
δ = −0.5 44 42 51 0.865 49 0.915
δ = −1.5 45 42 50 0.802 44 0.864
δ = −3.5 44 40 52 0.887 48 0.953

ρ = 0.9 δ = 0 50 47 51 0.851 48 0.911
δ = −0.5 41 27 48 1.631 65 0.709
δ = −1.5 42 26 43 1.693 66 0.649
δ = −3.5 39 26 45 1.731 64 0.674

ρ = 0.95 δ = 0 52 50 47 1.041 47 1.094
δ = −0.5 65 77 47 0.973 54 0.288
δ = −1.5 66 77 44 1.244 50 0.278
δ = −3.5 67 80 43 1.149 51 0.282

Notes: Data are simulated from a high-frequency VAR as in equation (4.1). Each process is simulated

500 times. The maximum lag length is 8m. This tables reports the average lag length due to the BIC

criterion and the out-of-sample criterion both for restricted and unrestricted weighting functions for the

Beta weighting function. For the OSC criterion the average RMSE is reported for the chosen lag.
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Tab. 5.11: Exponential Almon lag weighting function: Lag length selection for
Process II

BIC Out-of-sample
unrestricted restricted unrestricted restricted

m = 3
lag lag lag RMSE lag RMSE

ρ = 0.1 δ = 0 13 11 13 0.875 11 0.974
δ = −0.5 12 10 13 0.672 12 0.764
δ = −1.5 13 12 12 0.677 11 0.742

ρ = 0.5 δ = 0 12 10 14 0.955 12 1.033
δ = −0.5 10 9 14 1.044 13 1.043
δ = −1.5 10 10 13 0.982 12 1.007

ρ = 0.9 δ = 0 12 11 12 1.127 11 1.175
δ = −0.5 11 10 14 1.135 12 1.841
δ = −1.5 10 7 13 2.003 14 2.462

m = 4
ρ = 0.1 δ = 0 16 15 15 0.695 15 0.783

δ = −0.5 17 16 17 0.672 15 0.765
δ = −1.5 16 15 15 0.780 15 0.874

ρ = 0.5 δ = 0 17 15 16 0.908 16 0.975
δ = −0.5 16 15 17 0.817 15 0.919
δ = −1.5 15 14 17 0.683 14 0.697

ρ = 0.9 δ = 0 15 15 18 1.218 17 1.227
δ = −0.5 14 13 18 2.191 17 2.104
δ = −1.5 16 17 17 0.207 16 0.422

m = 12
ρ = 0.1 δ = 0 43 44 49 0.935 48 1.014

δ = −0.5 44 44 48 0.889 46 0.968
δ = −1.5 43 44 50 0.788 46 0.863

ρ = 0.5 δ = 0 43 45 49 0.933 47 0.993
δ = −0.5 43 44 48 0.753 46 0.829
δ = −1.5 43 42 50 0.830 47 0.927

ρ = 0.9 δ = 0 42 44 49 0.882 48 0.956
δ = −0.5 44 44 50 0.571 50 0.634
δ = −1.5 40 39 46 0.593 39 0.931

Notes: Data are simulated from a high-frequency VAR as in equation (4.1). Each
process is simulated 500 times. The maximum lag length is 8m. This tables reports
the average lag length due to the BIC criterion and the out-of-sample criterion both for
restricted and unrestricted weighting functions for the exponential Almon lag weighting
function. For the OSC criterion the average RMSE is reported for the chosen lag.
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Tab. 5.12: Beta lag weighting function: Lag length selection for Process II
BIC Out-of-sample

unrestricted restricted unrestricted restricted
m = 3

lag lag lag RMSE lag RMSE
ρ = 0.1 δ = 0 12 11 13 0.960 1 1.070

δ = −0.5 12 10 13 0.769 1 0.901
δ = −1.5 12 11 13 0.754 1 0.871

ρ = 0.5 δ = 0 12 10 12 0.968 1 0.829
δ = −0.5 11 8 14 0.940 1 0.942
δ = −1.5 9 6 12 0.754 1 0.783

ρ = 0.9 δ = 0 11 11 9 0.973 1 0.810
δ = −0.5 12 6 7 1.652 1 1.505
δ = −1.5 10 3 12 1.442 2 1.528

m = 4
lag lag lag RMSE lag RMSE

ρ = 0.1 δ = 0 15 14 17 0.727 14 0.779
δ = −0.5 16 16 17 0.729 15 0.760
δ = −1.5 15 15 16 0.861 14 0.867

ρ = 0.5 δ = 0 16 14 17 0.929 18 0.977
δ = −0.5 17 14 17 0.882 17 0.936
δ = −1.5 14 13 17 0.788 15 0.707

ρ = 0.9 δ = 0 15 12 13 1.097 22 1.063
δ = −0.5 13 5 19 1.400 26 1.315
δ = −1.5 22 4 19 0.396 23 0.493

m = 12
ρ = 0.1 δ = 0 44 42 51 0.928 47 0.999

δ = −0.5 46 43 51 0.859 47 0.936
δ = −1.5 45 41 53 0.779 47 0.839

ρ = 0.5 δ = 0 45 42 52 0.891 47 0.974
δ = −0.5 45 44 51 0.730 45 0.798
δ = −1.5 45 41 51 0.862 48 0.913

ρ = 0.9 δ = 0 46 43 49 0.877 50 0.936
δ = −0.5 45 31 53 0.525 33 0.621
δ = −1.5 39 16 44 0.521 35 0.878

Notes: Data are simulated from a high-frequency VAR as in equation (4.1). Each
process is simulated 500 times. The maximum lag length is 8m. This tables reports
the average lag length due to the BIC criterion and the out-of-sample criterion both for
restricted and unrestricted weighting functions for the Beta weighting function. For the
OSC criterion the average RMSE is reported for the chosen lag.
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5.3 Suggestions for Applied Forecasting

Given our specification results we want to draw some conclusions and to give

the following recommendations for specifying a mixed-frequency time series

model:

1. Consider only small orders (up to 4) of mixed-frequency VAR mod-

els, independently of the frequency mixture and the data structure.

Low scale MF-VAR can handle many data structures even for high-

frequency mixtures. Larger models would increase the computational

costs.

2. Forecast performance, lag length selection and restricting the weighting

functions in the MIDAS framework are interrelated.

3. The number of included lags in MIDAS models is approximately 4m or

5m.

4. Within the MIDAS framework the BIC criterion delivers often the same

results concerning lag selection as an out-of-sample criterion across dif-

ferent data structures. For persistent time series the BIC suggests to

include too many lags for estimation.

5. Whether the weighting functions should be restricted or not depends

on the data structure. In the case of strongly persistent time series

the weighting function can lead to greater forecasting accuracy. On

the other side there are data structure where the restricted weighting

functions deliver higher forecasting errors.

6. There is no difference in specification between the exponential Almon

lag and the Beta weighting function.

We suggest the following procedure for MIDAS model specification :

1. The number of included lags should be chosen via the BIC criterion.

Start with 4m and vary the number of included lags by ±2m.
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2. Check the autocorrelation function of your target variable. For strongly

persistent series restrict your weighting function otherwise not.

3. In case of a pseudo-real-time out-of-sample forecasting exercise try both

the restricted and the unrestricted scheme.





6. MONTE CARLO FORECASTING STUDY

In this chapter we systematically compare the forecasting performance of

the two mixed-frequency time series models. We do not compare them only

against each other, but also with single-frequency time series models. We

analyze whether there is a systematic improvement in forecasting accuracy

by employing more advanced mixed-frequency models. We focus on short-

run forecasting: one-step ahead and intra-period forecasts. Given our rich

data structure from the four processes outlined in chapter 4, we expect to

draw clear-cut conclusions. Before we study each process separately we out-

line some theoretical results concerning the use of mixed-frequency data for

forecasting.

6.1 Forecasting with Mixed-frequency Data: Some

Theoretical Reasoning

Ghysels and Valkanov (2006) are the first to investigate theoretically the gains

in forecasting from using mixed-data sampling. These authors consider three

different information sets. If all data are available at the high frequency, the

largest information set is denoted by It. This is the best but in practice

often infeasible. The second-best solution is to use mixed high- and low-

frequency variables (IM
t ). The third information set (IA

t ) is obtained from

temporal aggregation, where all data are aggregated to the least frequency.

To appraise the forecasting performance, we define the mean squared error
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of three linear predictors:

P [yt+h|It] : MSE(h, It) ≡ E (yt+h − P [yt+h|It]) (6.1)

P [yt+h|IM
t ] : MSE(h, IM

t ) ≡ E
(
yt+h − P [yt+h|IM

t ]
)

P [yt+h|IA
t ] : MSE(h, IA

t ) ≡ E
(
yt+h − P [yt+h|IA

t ]
)

for h ∈ N . In general we expect the following ranking

MSE(h, It) ≤ MSE(h, IM
t ) ≤ MSE(h, IA

t ) ∀h ∈ N. (6.2)

Ghysels and Valkanov (2006) prove within a VAR framework that under

certain conditions the following ranking holds

MSE(h, It) = MSE(h, IM
t ) < MSE(h, IA

t ) ∀h ∈ N. (6.3)

In other words, there are circumstances where mixed-data sampling achieves

the same predictive accuracy as we would get if we had all the disaggregated

information available; we would be better off using aggregate data for com-

parison. The proof is based on Granger causality properties in a framework

provided by Dufour and Renault (1998). However, these conditions cannot

be tested empirically, as they are built upon the availability of the entire

high-frequency process.

Hyung and Granger (2008) prove that a mixed-frequency VAR model pro-

duces the lowest MSE when compared with temporally aggregated single-

frequency models and models which use a within-quarter variable (as in

Rathjens and Robins (1993)). This result holds only when all parameters

are known and does not necessarily carry over to estimated processes. The

proof relies on state-space representations.

The theorems in Ghysels and Valkanov (2006) and Hyung and Granger (2008)

provide a theoretical basis for the empirical findings, that using data sampled

at different frequencies improves forecasting accuracy in comparison with

temporally aggregated data.
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6.2 The General Set-up

Our Monte Carlo study extends and modifies that of Ghysels and Valkanov

(2006) (GV henceforth) in several ways. First, GV consider only one data-

generating process (Process I in this thesis) for bivariate time series. We

investigate the forecasting performance for four processes, where one of them

is a trivariate process. GV generate only in-sample forecasts, whereas we

focus on the out-of-sample performance. GV include an autoregressive lag

in the MIDAS regressions. We focus on the basic specification. In addition

to the (infeasible) high-frequency VAR, the low-frequency VAR and MIDAS

regressions, we include the mixed-frequency VAR in the forecast comparisons.

GV employ as time series lengths for lower frequency T = 500 and T = 1000.

We use T = 100 and T = 500. The first choice represents typical time series

lengths in applied forecasting. For instance, T = 100 represents 100 quarters

(25 years). The longer time series length (T = 500) is chosen to investigate by

how far the forecast performance improves. GV simulate only homoscedastic

errors, whereas we also allow for GARCH effects in the errors. GV consider

the following frequency mixtures: m = {5, 10, 20, 60, 120, 250}. For reasons

of brevity we only consider m = {3, 4, 12}. The focus of this thesis is also on

typical macroeconomic mixtures with yearly, quarterly, and monthly data.

Furthermore feasible estimates for higher-frequency mixtures (such as daily-

quarterly) are difficult to obtain for the mixed-frequency VAR. In line with

GV, we simulate each process 1,000 times. Furthermore we also augment the

information set to allow for intra-period information.

In sum, we compare the forecasting performance of five time series models.

The infeasible high-frequency VAR (HF-VAR), the low-frequency VAR (LF-

VAR), the MIDAS model with both exponential Almon and Beta weighting

function, and the mixed-frequency VAR (MF-VAR) within the framework

provided by Zadrozny (1990). For process III we substitute the LF-VAR

with an AR benchmark model. We forecast the lower-frequency variable

one-step-ahead. Thus we focus on short-term forecasting. In our Monte

Carlo study it is the final observation T . We use all information available up
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to T−1 to generate the forecast, that is mT−m high-frequency observations.

This notation is valid for the MIDAS models and the LF-VAR where no aux-

iliary forecasts are necessary to obtain the desired forecast (direct forecasting

approach). For the HF-VAR and the MF-VAR the final forecast value is de-

noted by mT and we use information up to mT − m, but the forecasting

horizon is different. For MIDAS and LF-VAR the horizon is h = 1; for the

HF-VAR and MF-VAR the horizon is h = m, as we have to iterate up to the

desired forecast (iterated forecasting approach). To avoid confusion, all fore-

casts use the same information set. As the forecasting evaluation criterion,

we employ the Root Mean Squared Error (RMSE)

RMSEiT =
1

1000

∑ √
(yT − ŷT )2 (6.4)

RMSEiT =
1

1000

∑ √
(yT − ŷmT )2, (6.5)

where i denotes the model. The first definition is the notation for LF-VAR

and the MIDAS approach, whereas the second is the RMSE notation for the

other models.

We note that in the case of the HF-VAR and MF-VAR our notation deviates

from the standard definition of the RMSE. To obtain the desired forecast for

the actual value in T we have to iterate the forecast up to mT starting in

mT −m. Thus, in the case of monthly and quarterly data, we generate two

auxiliary forecasts to get the desired forecast. The standard RMSE in this

case is the average of the forecasting errors up to the forecast horizon. Apply-

ing the standard RMSE criterion would introduce bias into our comparisons

for two reasons. First, the number of generated forecasts is different; second,

the longer the forecasting horizon, the higher is the average forecasting error.

This should be borne in mind for interpretation of the forthcoming results.

In a second step we augment the information set to allow for intra-period

information. Thus the high-frequency information set contains observations

up to mT − 1. A priori this should improve the forecasting accuracy, as

shown by Ghysels and Valkanov (2006). We also outlined in chapter 3 many

examples where accounting for intra-period information reduces forecasting
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errors. The augmentation of the information set also mimics real-time situ-

ations, where actual information is processed to update the current estimate

of GDP (nowcasting). This situation is often found at central banks where

monetary policy is conducted in real time. But as we have outlined in chapter

3, bridge equations are still the dominant approach for nowcasting at central

banks.

6.3 Process I

Given our findings in chapter 5 we can specify how to estimate the mixed-

frequency time series models. In the MIDAS framework we select the number

of included lags with the BIC. The range of tested lags is 4m±2m. We restrict

the weighting function only for ρ ≥ 0.9, as given in chapter 4. In the case

of the mixed-frequency VAR, we allow for a maximum of three lags. For lag

selection we use the corrected AIC criterion as stated in equation (5.1). In

the case of the HF-VAR we generate the forecasts with a VAR(1) process,

as the true data generating process is a VAR(1).1 For the LF-VAR we allow

for a maximum of 2m lags. We take the BIC to choose the optimal lag.2

The results for Process I are tabulated in ten tables which are all contained

in an appendix to this chapter. We will focus on cases where ρ > 0.5 as these

exhibit significant autocorrelations as outlined in chapter 4. We start with

the comparison to the infeasible high-frequency VAR benchmark in Table 6.1.

A ratio smaller than 1 indicates that the HF-VAR exibits a higher RMSE

compared to its competitor. In general, for m = 3 and m = 4 no model

outperforms the benchmark. For ρ = 0.95 and m = {3, 4} the HF-VAR

clearly dominates its competitors. This result is in line with Ghysels and

Valkanov (2006) who also find ratios larger than 1 although for in-sample

comparisons. The superiority of the HF-VAR holds for the LF-VAR and the

MF-VAR for m = 12 but not for the MIDAS models. For larger persistent

1 We experimented with lag selection criteria but in almost all cases the VAR(1) was
chosen.

2 The results indicate that in most cases a VAR(1) is selected.
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series (ρ ≥ 0.9) both MIDAS models outperform the HF-VAR by 10 to 20

%. This finding is due to the calculation of forecasts. For m = 12 the HF-

VAR generates 11 auxiliary forecasts to obtain the desired forecasts, which

increases the forecast uncertainty. In contrast, in case of MIDAS the forecast

is calculated directly. Therefore the accumulated forecast error of the HF-

VAR is higher than the direct forecast error of the MIDAS models.

The more interesting part is the comparison of the feasible models in reality.

Therefore we report the ratios of the mixed-frequency models relative to the

low-frequency VAR. The results are depicted in Table 6.2. Note, that in

this table the same results are used as in Table 6.1. A ratio below 1 indi-

cates that model i obtains on average lower RMSEs than the LF-VAR. The

results are heterogenous. For m = 3 only the MIDAS models outperform

the benchmark, but not for strongly persistent series (ρ = 0.95), whereas

the MF-VAR exhibits larger RMSEs in each case for this frequency mixture.

In this scenario, the temporal-aggregated data seems to entail enough infor-

mation for forecasting. This argument does not hold for m = 4 where the

MIDAS models outperform the LF-VAR also for ρ = 0.95 (by 5 to 15%) but

not as clearly as for ρ = 0.9 (up to 55 %). The MF-VAR is only better for

ρ = 0.9. The most striking results we find for the largest frequency mixture

m = 12. All mixed-frequency models outperform the LF-VAR up to 40%.

Thus, the use of untransformed mixed-frequency data clearly increases fore-

casting accuracy. Comparing MIDAS and MF-VAR the former one is better

choice. Concerning the two weighting function, the exponential Almon lag

provides constantly lower RMSEs but on a small scale level (between 1 and

5 percentage points).

It is well known that increasing the estimation sample reduces estimation

uncertainty and therefore fosters forecasting accuracy. We increase the lower-

frequency time series length from 100 to 500. Table 6.3 displays the ratio

of the RMSEs obtained from T = 500 relative to T = 100 for each model

separately. A ratio below 1 indicates that the forecast errors are reduced by

an increased sample size. As expected a priori, we find that in almost all

cases forecasts improve. For higher frequency mixtures the highest gain in
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forecasting accuracy is detected for the LF-VAR. The MF-VAR reduces the

average RMSE relatively more than the MIDAS competitors.

Now we go a step further and model GARCH errors in the high-frequency

DGP. Table 6.4 reports the ratio relative to the HF-VAR. In contrast to the

homoscedastic case, the HF-VAR is almost never outperformed by the mixed-

frequency models. Comparing the ratios relative to the LF-VAR (Table 6.5),

for ρ = 0.9, the benchmark is always outperformed. For m = 12 we find

similar results as in Table 6.1. Both mixed-frequency approaches outperform

the LF-VAR for ρ ≥ 0.9. Again we find that the exponential Almon lag

performs better than the Beta weighting function. Increasing the sample

size to 500 does not always improve the forecasting accuracy in any case as

reported in Table 6.6. For m = 12 we find almost no improvement for the

mixed-frequency models. In general we can summarize that there seems to

be a sensitivity to heteroscedastic data which may reduce forecast accuracy.

In a final step we augment the information set and include information up to

mT − 1.3 Table 6.7 reports the ratio relative to the LF-VAR, which includes

information up to mT −m. The results are striking. The average forecast

errors are reduced up to 90% compared to the LF-VAR. For m = 3 and

m = 4 the MF-VAR clearly outperforms the MIDAS models. This is due

to the true DGP. Our MIDAS approach does not contain an autoregressive

lag which seems to be the striking advantage for this data structure. This

may also explain the puzzling results for m = 3 and ρ = 0.95 where even the

LF-VAR outperforms the MIDAS models.

Increasing the sample size reduces again the forecast errors. All ratios are

lower than 1 in Table 6.8.

We also augment the information set for the GARCH case. The results are

essentially the same as for the homoscedastic case. Again, with the MF-VAR

we obtained the lowest RMSEs as reported in Table 6.9. And, for ρ = 0.95

and lower frequency mixtures the MIDAS models do not outperform the LF-

VAR benchmark. Increasing the sample size increases again the forecasting

3 To give an example, mT − 1 corresponds to the February value to forecast the March
value of the quarterly target variable.
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accuracy but not as much as in the homoscedastic case. Table 6.10 reports

the corresponding results.

6.4 Process II

For Process II we apply the same model selection criteria as for Process I with

two exceptions. First, we do not restrict the weighting functions in any case.

Second, the forecasts for the HF-VAR are generated with a VAR(2) process.

The tables can be found in the appendix to this chapter. We proceed in the

same way as for Process I.

We start by comparing the different approaches relative to the infeasible HF-

VAR. Table 6.11 reports the results. The high-frequency benchmark model

is not outperformed considerably in any case . This stands in contrast to

our findings for Process I (Table 6.1), where for m = 12 the MIDAS models

obtained lower RMSEs in comparison to the HF-VAR.

Similar results are found in Table 6.12, where we report the ratios relative

to the LF-VAR benchmark. Only for m = 12 and ρ ≥ 0.5 the mixed-

frequency approaches outperform the single-frequency benchmark. In Table

6.12 the Beta weighting function exhibits lower RMSEs in comparison to the

exponential Almon lag.

In Table 6.13 we increase the sample size of the lower frequency from T = 100

to T = 500. Compared to Process I we find only small improvements up to

10%. In some cases there is a slight deterioration of the forecasting accuracy.

As in case of Process I we simulate GARCH in the errors of the DGP. Table

6.14 displays the corresponding ratios relative to the infeasible HF-VAR. As

expected, the benchmark is not outperformed, but the ratios are relative close

to 1. Using the LF-VAR as the benchmark (Table 6.15) the mixed-frequency

approaches are only better for m = 12. As in the homoscedastic case, the

increase of the sample size leads to small improvements of the forecasting

accuracy (Table 6.16).



6. Monte Carlo Forecasting Study 131

Finally we augment the information set. Table 6.17 reports the results for

homoscedastic errors. Generally we can state, that the higher m and the

higher ρ the lower is the average RMSE of the mixed-frequency models. In

contrast to Process I the autoregressive part does not drive the results as

we find some cases where the MIDAS is better than the MF-VAR. Similar

conclusions can be drawn by allowing for GARCH errors. In this case the

Beta weighting function delivers no ratios smaller than 1 for m = 3, 4 but is

better than the exponential Almon lag for m = 12. The results are reported

in Table 6.19.

Increasing the sample size reduces the forecasting errors in both cases with

a lower extend in the GARCH case. The results are depicted in Tables 6.18

and 6.20, respectively.

6.5 Process III

For Process III we cannot estimate a VAR(p) benchmark model, as the data

generating process is a MIDAS model. In this case we estimate an AR(p)

for the lower-frequency time series as the benchmark model. The number of

included lags is 3m± 2m and we do not restrict the weighting functions. In

case of the MV-VAR model we allow again for a maximum of three lags.

Table 6.21 (Panel A) reports the ratio of the mixed-frequency models com-

pared to the AR benchmark. A ratio below one indicates that the AR model

exhibits a higher RMSE than its competitor. We obtain clear cut results. All

mixed-frequency models outperform the AR benchmark clearly. For larger

mixtures the AR gets better but the RMSE a still higher by at least 20%

compared to the mixed-frequency models. For lower-frequency mixtures both

weighting functions exhibit similar average RMSEs, but for m = 12 the Beta

weighting function clearly outperforms the exponential Almon lag. Compar-

ing MIDAS and MF-VAR we find that MIDAS is on average better than

the MF-VAR. This result is not surprising as the DGP is a MIDAS model.

Panel B reports the results for an increase of the estimation sample. We find

rather small improvements (up to 12%). This result is important for applied
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forecasting. It states that we obtain clear cut forecasting results with stan-

dard time series lengths. Or to put it differently, increasing the sample size

would not result in significant improvements. This conclusion draws on the

similarity of the autocorrelation structures of US and German GDP (Figure

4.1) and Process III (Figure 4.9).

The augmentation of the information set improves the forecasting accuracy

markedly. In case of the MIDAS models we find a reduction of the RMSE

in comparison to the AR benchmark up to 95% (Table 6.22, Panel A). The

Beta weighting function constantly outperforms the exponential Almon lag.

The reductions for the MF-VAR are rather moderate. Panel B in Table

6.22 reports that the increase of the sample size leads to comparably better

reduction in the RMSEs than the standard information set.

6.6 Process IV: Two Indicators at Different Frequencies

For Process IV with two leading indicators we did not conduct a specification

investigation as we did for the other processes in chapter 5. Given the results

for Processes I and II, we allow for a maximum of 4m ± 2m lags; we do

not restrict the weighting function, as the autocorrelation function shows a

low persistent pattern. In case of the MV-VAR model, we now allow for a

maximum lag of five. The HF-VAR forecasts are generated with an VAR(1)

model.

For Process IV we find clear-cut results. The HF-VAR remains infeasible

(Table 6.23, Panel A), but compared with the LF-VAR, the mixed-frequency

approaches are better than the LF-VAR (Panel B). In contrast to a priori

expectations the increase of the estimation sample lowers the forecasting

accuracy for the mixed-frequency approaches (Panel C). Augmenting the

information set, the RMSEs decrease substantially. The MIDAS models are

up to 70% and the MF-VAR up to 35% better than the LF-VAR (Panel D).

There are no improvement by increasing the estimation sample (Panel E).
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6.7 Summary

We summarize the results of our Monte Carlo study in the following key

points:

• Mixed-frequency time series models are at least as good as single-

frequency time series models.

• In case of data with significant autocorrelation structures, one of the

two mixed-frequency approaches outperforms the temporal aggregated

benchmark model (in some cases up to 50%).

• For time series with a strong autoregressive component, the MF-VAR

outperforms MIDAS.

• For strong persistent time series and low-frequency mixtures, temporal-

aggregation is an option for forecasting.

• Augmenting the information set by allowing for intra-period informa-

tion increases forecasting accuracy in almost all cases. The improve-

ment in comparison to temporal-aggregated and single-frequency mod-

els is substantial. A reduction of forecast errors up to 95% is feasible.

• The choice for the exponential Almon lag or Beta weighting function

remains undecided. In many cases both deliver the same results; thus

they can be used interchangeably for forecasting purposes. For short-

term forecasting (allowing for intra-period information) the Beta func-

tions obtains on average lower forecasting errors.

• For persistent series and low-frequency mixtures the augmentation of

the information set does not necessarily improve forecasting accuracy

in the MIDAS case.

• Using more than two different frequencies for forecasting the mixed-

frequency time series models is feasible and demonstrates remarkable

forecasting improvements in comparison with temporal aggregated bench-

mark models.
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• Increasing the sample size reduces the average forecast errors in many

cases. But we have also find structures where no or only small improve-

ments occur.

• Our results indicate that for standard macroeconomic time series the

generated forecasts would not be more accurate, on average, than very

long macroeconomic time series.

• GARCH effects in macroeconomic time series do affect the forecasting

performance of the mixed-frequency approaches. The relative gain is

smaller in comparison to the homoscedastic case. Nevertheless, there

may be room for improvement by adjusting the models for GARCH

dynamics.

6.8 Appendix: Tables
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Tab. 6.23: RMSE Ratios: Process IV
Panel A: Ratio vs. HF-VAR
Standard information set

LF-VAR Almon Beta MF-VAR
ρ = 0.1 1.019 1.043 1.031 1.194
ρ = 0.5 1.056 1.034 1.060 1.008
ρ = 0.9 1.160 1.030 1.044 1.020
ρ = 0.95 1.351 1.039 1.032 1.010

Panel B: Ratio vs. LF-VAR
Standard information set

Almon Beta MF-VAR
ρ = 0.1 1.023 1.012 1.171
ρ = 0.5 0.979 1.003 0.954
ρ = 0.9 0.888 0.900 0.879
ρ = 0.95 0.769 0.764 0.747

Panel C: Ratio T = 500 vs. T = 100
Standard information set

ρ = 0.1 0.889 0.978 0.988 1.022
ρ = 0.5 0.903 1.017 0.991 1.139
ρ = 0.9 0.867 1.181 1.133 1.041
ρ = 0.95 0.729 1.055 1.034 1.014

Panel D: Ratio vs. LF-VAR
Augmented information set

ρ = 0.1 1.031 1.011 1.288
ρ = 0.5 0.883 0.866 0.828
ρ = 0.9 0.405 0.413 0.721
ρ = 0.95 0.281 0.284 0.632

Panel E: Ratio T = 500 vs. T = 100
Augmented information set

ρ = 0.1 0.889 0.964 0.983 0.989
ρ = 0.5 0.903 1.078 1.104 0.988
ρ = 0.9 0.867 0.929 0.922 0.993
ρ = 0.95 0.729 1.067 1.066 0.996

Notes: Data are simulated from a high-frequency VAR as given in equation (4.6). Panel
A reports the ratio RMSE(1, IM

t )/RMSE(1, It) where the HF-VAR serves as a bench-
mark. In Panel B the LF-VAR is the benchmark model (RMSE(1, IM

t )/RMSE(1, IA
t ).

Panel C reports the ratio RMSE{i}(500)/RMSE{i}(100) for each model i. In Panel D
the information set is augmented and includes information up to mT − 1. The LF-VAR
is the benchmark model. Panel E reports the ratio RMSE{i}(500)/RMSE{i}(100) when
the information set is augmented.





7. EMPIRICAL EXAMPLES

7.1 Introduction

In this chapter we apply the mixed-frequency time series models to a real-

data example. From the Monte Carlo study we know that is worth using

mixed-frequency time series models to improve forecasting accuracy. We

also showed there that intra-period information does help to estimate the

current period value of the variable under investigation. This phenomenon

is labelled ’nowcasting’ in the literature (see Giannone, Reichlin, and Small

(2008)). Nowcasting is especially important for monetary policy decisions in

real time. Assessments of current and future economic conditions are often

based on incomplete data. Most data monitored by central banks are released

with a lag and are subsequently revised. In principle, any data release may

potentially affect current-quarter estimation of GDP and the precision of the

results. A priori, there is no reason to discard any information.

We analyze the forecasting performance of the MIDAS and the mixed-frequency

VAR models with two target variables: German GDP and Industrial Pro-

duction (IP). We extend two previous studies in several ways. First, Mittnik

and Zadrozny (2005) only employed the Ifo indicators within the mixed-

frequency VAR framework to forecast German GDP growth. There are no

comparisons with other models and indicators. Similarly, Marcellino and

Schumacher (2007) use factors as leading indicators and employ different

versions of the MIDAS model to nowcast German GDP growth. Again, the

authors do not compare their results with other single indicators and models.

In this chapter we conduct a case study with both monthly and daily data.

First we forecast German quarterly and yearly GDP growth with two Promi-
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nent, monthly, single indicators for the German economy: the Ifo Business

Climate Index and the ZEW Index of Economic Sentiment. Both indicators

are available early and are not subject to revision. Furthermore, they proved

to be successful for forecasting in many empirical applications.1

Additionally to the two survey indicators, we extract static and dynamic

factors from a large data set exhibiting publication lags. In recent years,

large-dimensional, dynamic, factor models have become popular in empirical

macroeconomics. Factor models are able to handle many variables without

violating the objective of parsimony and the degrees of freedom problem

often faced in regression-based analysis. The use of many variables reflects

the practice of central banks of looking at everything, as pointed out for

example by Bernanke and Boivin (2003). By using factor models one can

circumvent the problem of which variables to include in a structural model.

See Breitung and Eickmeier (2006) and Eickmeier and Ziegler (2008) for an

exposition and a literature review.

In sum we compare three indicators. First we want answer the question of

how the mixed-frequency models perform with real data. Can the results

from the Monte Carlo study be confirmed? Second, how does intra-quarterly

information contribute to short- (nowcasting) and longer-horizon forecasts?

Finally, we want to investigate whether it is worthwhile gathering many time

series when single indicators are available earlier? If the single indicator pro-

vides comparable forecasting results, why should we care about adjusting

for publication lags and revisions? Dreger and Schumacher (2004) demon-

strate that factor models yield more accurate forecasting results but these

are not statistical significant compared with forecasts generated with single

indicators.

In a second step we conduct a nowcasting experiment. If the monthly infor-

mation is informative and predictive for German GDP, what about weekly

and daily data? We gather many daily time series (interest rates, stock re-

turns, exchange rates) and extract daily factors from dynamic factor models.

Factors are extracted for every day of the year, that is also on weekends and

1 See the literature section and Robinzonov and Wohlrabe (2008) for further details.
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holidays. We intended to use the EM algorithm which can handle missing

observations as outlined in chapter 2, but this was computationally infeasible

as the time series is too long. Therefore we interpolated the missing obser-

vations. We plug the obtained daily factors into the MIDAS model which

generates the forecasts. We end up with a model which updates the estimate

of the target variable as new daily information arrives.

Our approach is closely related to some other papers that investigate higher-

frequency estimates of GDP. Evans (2005) constructs a model for updating

the nowcast of long-run GDP as new information becomes available. How-

ever, his approach can handle only a limited number of series. This argu-

ment also applies to Aruoba, Diebold, and Scotti (2008), who rely on factor

analysis but their study is limited to very few variables. The inclusion of

more variables would raise the same problem as in the MF-VAR approach:

the model estimation becomes infeasible. In general these approaches esti-

mate an unobserved variable and do not produce forecasts in a strict sense.

Giannone, Reichlin, and Small (2008) also rely on factor estimation and fore-

cast GDP with a bridge equation approach, but their model operates on a

monthly basis. Nevertheless, the authors demonstrate that as new informa-

tion becomes available at a specific day within a quarter, the bridge model

can be re-estimated and thus the current estimate of GDP can be updated.

All three papers focus on US data. We are the first to use daily data without

temporal aggregation. Furthermore we are the first to apply high-frequency

forecasting to German data. We update the forecast of GDP each day in a

quarter.

This chapter is organized as follows: we start with representing some related

single-frequency literature on forecasting German GDP. Then we provide

details about the monthly data set. After the outline of details of the case

study we present the results for the monthly data. Finally we nowcast the

German economy on a daily basis for both GDP and IP.
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7.2 Related Literature

In addition to the mixed-frequency approaches of Mittnik and Zadrozny

(2005) and Marcellino and Schumacher (2007) we want to sketch some empir-

ical applications of forecasting German GDP. Compared with the forecasts

of US GDP, the literature for Germany is rather well arranged. Due to the

unification of Germany 1991 there is a structural break in every macroeco-

nomic time series at this date. Therefore more recently there are papers on

forecasting German GDP, as the time series is now considered to be long

enough to conduct comparative studies.

Camba-Mendez, Kapetanios, Smith, and Weale (2001) propose an automatic

leading indicator approach (ALI) based on dynamic factor models. In a two-

step approach, they show for Germany and other European countries that

the on average ALI forecasts better than traditional VAR and BVAR models

with traditional leading indicators. Kirschgässner and Savioz (2001) employ

an ARX(4,4) model with a rolling forecasting scheme and find that the daily

interest rate is the best financial predictor for four quarters ahead for the time

period 1980:I-1989:IV. For the period 1992:III-1999:IV the money aggregate

M1 proved to be the best predictor. Similar papers are Davis and Henry

(1994), Krämer and Langfeld (1993), and Hagen and Kirchgässner (1996).

In a huge comparative study, Stock and Watson (2003) investigate the pre-

dictive power of asset prices for forecasting output and inflation for different

OECD countries. The target variable is the approximate yearly growth rate

from 1971 to 1999. With an direct ARX model they find that many asset

prices do not prove to be better than univariate benchmark models.

Dreger and Schumacher (2004) compare the forecast performance of the Ifo

Business Climate Index to static and dynamic factor models. The forecast

variable depends on the forecast horizon. They forecast the growth in the

GDP series between t and the period t + h.2 In the direct ARX approach,

GDP enters on the right-hand side of the equation as the approximate quar-

terly growth rate. They show that, based on the RMSE criterion, the dy-

2 yt+h = log(yt+h/yt)
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namic factor performs better than the Ifo indicator over all eight forecast

horizons. But these advantages are not systematic, as shown in the insignif-

icant results obtained with the Diebold-Mariano test.

Kholodilin and Siliverstovs (2006) proceed in a similar way. They com-

pare the most common indicators for Germany with different diffusion in-

dices (as well as their first differences). Their sample ranges from 1991:I

to 2004:IV. The authors employ annualized quarterly and biannual and ap-

proximate yearly growth rates. For each horizon, with a direct ARX model,

they generate 28 out-of-sample forecasts within both a rolling and a recursive

forecasting scheme. For model selection they use both the BIC criterion as

well as the automatic econometric model selection program PcGets. They

find a relatively poor performance for the indicators compared with the naive

benchmark (random walk). In general the first differences of the indicator

are better than the levels. The authors detect a structural break in the

GDP series around 2001 and claim that no indicator was able to predict and

accommodate the structural break.

Robinzonov and Wohlrabe (2008) provide an excellent survey of the literature

that deals with forecasting German industrial production.

7.3 A Case Study Based on Monthly Data

7.3.1 The Monthly Data Set

The time series to be forecast is the real GDP (calendar and seasonal ad-

justed) in Germany from 1991:I to 2006:IV. We do not consider data before

1991 to circumvent the problem of structural change, or level shifts in the

data due to German unification. In contrast to Clements and Galvao (2008)

we use final, not real-time data. This is a contradiction with the opinion

of Pesaran and Timmermann (2005) that any real-time econometric model

should make use of real-time data in all stages, so as not to overstate the

degree of predictability, as shown by Diebold and Rudebusch (1991). The

effects of data vintages on model specification and forecast evaluation have
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been addressed in a number of papers (see among others Croushore and Stark

(2003) and Koenig, Dolmas, and Piger (2003)). We use final data for two

reasons. First, we want to focus on the model competition between MIDAS,

mixed-frequency VAR and single frequency models. Second, Schumacher

and Breitung (2008) showed that for Germany, data revisions do not greatly

affect forecasts. We calculate both quarterly and yearly growth rates (log

differences).

We focus on two popular leading indicators for the German economy: the Ifo

Business Climate Index and the ZEW Index of Economic Sentiment. The Ifo

Business Climate Index is based on about 7,000 monthly survey responses

from firms in manufacturing, construction, and wholesale and retail trade.

The firms are asked to give their assessments of the current business situa-

tion and their expectations for the next six months. The balance value of

the current business situation is the difference between the percentages of the

responses ”good” and ”poor”; the balance value of expectations is the differ-

ence between the percentages of the responses ”more favourable” and ”more

unfavourable”. The replies are weighted in proportion to the importance of

the industry and then aggregated. The business climate is a transformed

mean of the balances of the business situation and expectations. For further

information see Goldrian (2007). The ZEW Indicator of Economic Sentiment

is published monthly. Up to 350 financial experts take part in the survey.

The indicator reflects the difference between the share of analysts that are

optimistic and the share of analysts that are pessimistic about the expected

economic development in Germany in the next six months (see Hüfner and

Schröder (2002)).

In addition to the two leading indicators, we want to include factors extracted

from dynamic factor models. We use an extended data set by Marcellino and

Schumacher (2007). We employ 151 monthly indicators from 1992:01 until

2006:12. The data set is final data for several reasons. First, a real-time data

set for as many time series is not available for Germany. Second, Schumacher

and Breitung (2008) show that the forecast performance changes little when
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real-time data are used instead of final data.3

To consider the availability of time series at the end of the sample period due

to different publication lags (ragged-edge), we follow Banbura and Runstler

(2007) and replicate the jarred-edge structure from the final vintage of data

that are available.4 The data used in this study, were downloaded on 21 June

2008.5 Starting from the original data DmT , we reconstruct the data sets,

which were available earlier τ < mT , by shifting the pattern of publication

lags embodied in Dmt recursively back in time. That is, observation xi,τ−h

is eliminated in DmT , if and only if observation xi,mT−h is missing in DmT .

Thus, the unbalanced data set uses the original pattern of publication lags

as from 30 June 2008.

As in Zadrozny (2008) and Clements and Galvao (2008) the series are nor-

malized (demeaned and divided by the standard deviation).6

7.3.2 Design of the Case Study

We conduct a recursive forecasting exercise so that the model is specified

and re-estimated on an ever-increasing sample size using the vintage of data

available at the time the of the forecast. For each time period, we estimate the

factors with the EM algorithm outlined in chapter 2. The basic vintage ranges

from 1991:I to 1999:IV. We report the forecasting performance for one to

four quarters ahead (h = 1, . . . , 4). Furthermore we outline the performance

of the models with information that becomes available inside the quarter

(nowcasting). Suppose that we are in December 1999 and we want to forecast

GDP growth in the first quarter of 2000 (data are available in March). We

use all available information in December to calculate the projection (h = 1).

Moving to January, new values for the indicators and the factors become

3 The finding of Schumacher and Breitung (2008) is in contrast to Koenig, Dolmas, and
Piger (2003) who find that real-time data matter for the United States.

4 The different publication lags can be considered as a real-time aspect of the data.
But we use only final data, that is the data used are not subject to revision.

5 www.bundesbank.de
6 As already noted, standardization speeds up computation considerably, whereas struc-

tural relationships are not affected by standardization.
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available. The projection for the current quarter is updated. We denote this

forecast horizon with h = 2/3, as two months of observations are missing in

the current quarter. For h = 1/3, only one month of observations is missing.

To specify the number of factors, we follow Marcellino and Schumacher (2007)

and consider two approaches. First, we determine the number of static and

dynamic factors, r and q respectively, using information criteria from Bai

and Ng (2002) and Bai and Ng (2007).7 Second, we compute all possible

combinations of r and q and evaluate them in the forecasting exercise. In

our application, we consider a maximum of r = 6 and all combinations of r

and q with q ≤ r. For reasons of brevity we show only the results for the best

combination. In line with the literature in Banerjee and Marcellino (2006)

and Stock and Watson (2002b), only a few factors proved to be useful for

forecasting.

To investigate the forecasting performance of the mixed-frequency VAR and

the MIDAS model, we estimate some benchmark models. In the univariate

(quarterly-frequency) case we fit an AR(p) model where the lag length is

determined by the Schwarz criterion (BIC). In the multivariate case we es-

timate a bivariate VAR(p). Furthermore we estimate bridge models. Bridge

equations build a bridge over the gap between monthly and quarterly fre-

quencies. As new in-sample information becomes available, the remaining

missing values are forecast within a separate time series model (mostly an

AR(p) model). Numerous bridge models have been used in applied work.8

We model a standard ARX(p, r) model as the bridge equation, where the

indicator enters the equation with a contemporaneous value. The missing

observations within a quarter are forecast via an AR(p) model. The AR,

ARX, VAR and MF-VAR models produce iterated (or plug-in) forecasts,

whereas MIDAS produces direct forecasts. The estimation of the benchmark

models are also useful to see how much cross-variable feedback contributes

to the forecasts.

The mixed-frequency VAR models are estimated in MATLAB via maximum

7 See also Marcellino and Schumacher (2007) for details.
8 See chapter 3 for details.
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likelihood. For model selection we use the corrected Akaike Information

criterion reported in Hurvich and Tsay (1989) and used in our Monte Carlo

study. We selected the model which minimized the criterion over a range

of pmax = 4 when the residuals showed no significant serial correlation. For

the MIDAS model we allow for a maximum of 5m = 15 months of lags.

In the Monte Carlo study we demonstrated that the exponential Almon lag

and the Beta weighting functions produce in some cases different forecasting

results. Furthermore, in chapter 4 we outlined that restrictions may be an

option. Therefore we restrict the exponential Almon lag weighting function

to ensure declining weights, whereas the Beta weighting function is estimated

unrestricted.

For each model class and horizon we report the RMSE as defined in the

Monte Carlo study. The tabulation of RMSE for all models and forecasting

combinations does not allow us to conclude whether the better RMSE results

from a model i compared with model j (or indicator) are statistically signif-

icant, that is systematic. In the literature the Diebold-Mariano test (DM)

(Diebold and Mariano (1995)) is widely used to test for systematic differences

in the forecasting errors. It should be noted, that the standard asymptotic

theory for the Diebold-Mariano test statistics is invalid whenever two mod-

els involved are nested (among others see Clark and McCracken (2001)). A

model 1 is nested in model 2 if model 2 reduces to model 1 when some pa-

rameters in model 2 are set to zero. We employ the test statistic proposed

by Clark and West (2007) which accounts for nested models and employs a

non-standard limiting distribution. The authors state that this test can also

be used for non-nested models.

Assume that model 1 is the parsimonious model. Model 2 is the larger model

that nests model 1. Clark and West (2007) suggest running the following

regression:

f̂t+h = (yt+h − ŷ1t,t+h)
2 − [(yt+h − ŷ2t,t+h)

2 − (ŷ1t,t+h − ŷ2t,t+h)
2]. (7.1)

This tests for equal mean-squared prediction errors by regressing f̂t+h on a
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constant and using the resulting t-statistic for a zero coefficient. We reject if

this statistic is greater than +1.282 (for a one-sided 0.10 test) or +1.645 (for

a one-sided 0.05 test). For the one-step-ahead forecasting errors, the usual

least squares error can be used. For autocorrelated forecasting errors, we

use the Newey-West heteroscedasticity-autocorrelation consistent standard

errors.

7.3.3 Results

We start by comparing integer forecast horizons (h = 1, . . . , 4) for each in-

dicator within each model class. Table 7.1 reports the RMSEs for each inte-

ger forecast horizon for both quarterly and yearly growth rates. The lowest

RMSE for each horizon is highlighted in bold face. The results are interesting

in several ways. The expected strict increase of the RMSE with an increasing

forecast horizon cannot be detected for the mixed-frequency models. In some

cases the RMSE decreases going from one horizon to the other. For example

the RMSE for the MF-VAR model with the ZEW indicator decreases from

0.619 for h = 3 to 0.587 for h = 4. We have no plausible explanation for

these results. Apparently, the forecasts for different horizons exhibit different

dynamics, which are captured by the mixed-frequency approaches.

Comparing the AR and VAR model we can state that the chosen indicators

have predictive power, as the obtained RMSE from the VAR model are lower

than the from the AR model at all horizons and for both target variables. If

we compare the different approaches with one indicator, we can state that

the mixed-frequency models always produce lower RMSE than AR and VAR.

This statement is only valid for the quarterly growth rates. In case of yearly

growth rates only the Ifo indicator in combination with mixed-frequency

models outperforms the AR and VAR benchmark, whereas the ZEW and

the factor obtain higher RMSEs. Given the overall assessment, the MF-

VAR model performs best. The comparison of Almon and Beta weighting

functions remains inconclusive. There are cases where Almon is better than

Beta (using the same indicator) and vice versa. The Ifo exhibits very good
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predictive power in combination with the MF-VAR. Five out of the eight

lowest RMSEs over different horizons and target variables are obtained by

MF-VAR(Ifo). Comparing the factor results with the Ifo and ZEW indicators

we can conclude that there are only some cases where the factor approach is

better than the other two indicators.

Tables 7.3 to 7.6 in the appendix to this chapter report the Clark and West

(2007) test statistics for each model/indicator combination. The tables are

read as follows: a t-statistic greater than +1.282 (for a one-sided 0.10 test) or

+1.645 (for a one-sided 0.05 test) indicates that Model 2 (rows) has a signif-

icantly smaller RMSE than Model 1 (columns) and vice versa. For example,

consider quarterly growth rates and compare the AR model (Model 1) with

the MF-VAR model with Ifo as an indicator (Model 2). If we look in the first

column and the 11th row we can read a test statistic of 3.071 indicating that

the RMSE of MF-VAR are statistically smaller than the AR model. The

tables demonstrate that the mixed-frequency models are usually statistically

significantly better than their single-frequency benchmarks. Moreover, the

MF-VAR outperforms the MIDAS models statistically significantly in many

cases.

Now we go a step further and allow for intra-quarterly information. Table

7.2 provides the corresponding results. Instead of the VAR model we now

provide the RMSE of the bridge equation approach. A forecast horizon of

h = 1/3 means that only one observation of the quarter is missing, h = 2/3

that two months of information are missing and so forth. We want to focus

on the nowcasting aspect, that is h = 1/3 and h = 2/3. Again, there is no

strict increase in the RMSEs with an increasing forecast horizon. First we

can confirm the a priori expected result that the more information that is

available the more accurate will be the forecasts. For the quarterly growth

rates, the MIDAS model provides the lowest RMSEs for intra-quarterly fore-

casts. For yearly growth rates, we find a different result. In this case the

bridge equation approach (with the ZEW indicator) provides the greatest

forecasting accuracy. But this difference is not always statistically signifi-

cant. The corresponding Clark and West (2007) test statistics for h = 1/3
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and h = 2/3 can be found in the Tables 7.7 and 7.8. Our results differ to

the conclusions of Clements and Galvao (2008) who find that in the short

run there is little to choose between the bridge and MIDAS approaches. We

find that in the short run the mixed-frequency approaches do not necessarily

outperform the popular bridge approach.

The forecasting results from the factor approach are ambiguous. For short-

term forecasting the survey indicators provide lower forecast errors indepen-

dently of the model class used. Our results are in line with Dreger and

Schumacher (2004) who find that factor models do not lead to statistically

lower RMSE’s when compared with single survey indicators. Given these

results, we can answer our question in the introduction to this chapter: it

is not worthwhile collecting many time series for forecasting when timely

indicators are available, at least according to this example.



7. Empirical Examples 171

T
ab

.
7.

1:
Fo

re
ca

st
in

g
co

m
pa

ri
so

ns
fo

r
G

er
m

an
G

D
P

gr
ow

th
Q

ua
rt

er
ly

G
ro

w
th

R
at

es
A

R
(p

)
L
F
-V

A
R

(p
)

M
ID

A
S

A
lm

on
M

ID
A

S
B

et
a

M
F
-V

A
R

(p
)

If
o

Z
E

W
Fa

ct
or

If
o

Z
E

W
Fa

ct
or

If
o

Z
E

W
Fa

ct
or

If
o

Z
E

W
Fa

ct
or

h
=

1
0.

70
5

0.
68

5
0.

65
7

0.
65

8
0.

55
7

0.
58

8
0.

61
6

0.
55

7
0.

59
1

0.
62

3
0.

51
4

0.
60

5
0.

60
4

h
=

2
0.

67
2

0.
65

0
0.

70
6

0.
64

4
0.

66
2

0.
61

0
0.

58
3

0.
64

5
0.

61
0

0.
66

8
0.

61
1

0.
60

2
0.

62
2

h
=

3
0.

69
1

0.
68

7
0.

66
4

0.
60

2
0.

66
3

0.
63

1
0.

66
1

0.
67

1
0.

63
4

0.
62

3
0.

61
9

0.
61

9
0.

60
0

h
=

4
0.

70
6

0.
71

1
0.

66
5

0.
64

4
0.

66
7

0.
64

4
0.

64
6

0.
65

7
0.

64
4

0.
63

8
0.

61
2

0.
58

7
0.

61
4

Y
ea

rl
y

G
ro

w
th

R
at

es
If

o
Z
E

W
Fa

ct
or

If
o

Z
E

W
Fa

ct
or

If
o

Z
E

W
Fa

ct
or

If
o

Z
E

W
Fa

ct
or

h
=

1
0.

65
6

0.
51

7
0.

55
1

0.
55

8
0.

51
4

0.
78

7
0.

82
4

0.
51

0
0.

78
9

0.
66

5
0.

52
1

0.
50

3
0.

80
6

h
=

2
0.

82
0

0.
63

5
0.

74
4

0.
75

2
0.

60
1

0.
77

7
0.

85
2

0.
60

1
0.

77
7

0.
73

7
0.

52
1

0.
70

6
0.

81
3

h
=

3
0.

92
9

0.
75

7
0.

85
6

0.
86

0
0.

77
9

0.
78

1
0.

81
1

0.
77

9
0.

78
1

0.
83

1
0.

54
6

0.
71

4
0.

77
2

h
=

4
0.

99
6

0.
93

8
0.

92
7

0.
89

0
0.

90
4

0.
84

5
0.

82
7

0.
87

4
0.

84
5

0.
84

0
0.

63
0

0.
72

4
0.

78
9

N
ot

es
:

T
hi

s
ta

bl
e

di
sp

la
ys

th
e

R
M

SE
fo

r
di

ffe
re

nt
in

di
ca

to
rs

an
d

m
od

el
s.

T
he

nu
m

be
rs

in
bo

ld
fa

ce
de

no
te

th
e

lo
w

es
t

R
M

SE
fo

r
ea

ch
ho

ri
zo

n.



7. Empirical Examples 172

T
ab

.
7.

2:
Fo

re
ca

st
in

g
co

m
pa

ri
so

ns
fo

r
G

er
m

an
G

D
P

gr
ow

th
:

A
cc

ou
nt

in
g

fo
r

in
tr

a-
qu

ar
te

rl
y

in
fo

rm
at

io
n

Q
ua

rt
er

ly
G

ro
w

th
R

at
es

B
ri

dg
e-

E
qu

at
io

n
M

ID
A

S
A

lm
on

M
ID

A
S

B
et

a
M

F
-V

A
R

(p
)

If
o

Z
E

W
Fa

ct
or

If
o

Z
E

W
Fa

ct
or

If
o

Z
E

W
Fa

ct
or

If
o

Z
E

W
Fa

ct
or

h
=

1/
3

0.
67

7
0.

64
3

0.
64

2
0.

50
0

0.
52

0
0.

64
1

0.
50

0
0.

54
2

0.
55

7
0.

52
2

0.
58

1
0.

56
7

h
=

2/
3

0.
65

2
0.

67
7

0.
64

2
0.

53
1

0.
55

2
0.

62
3

0.
53

1
0.

57
3

0.
62

1
0.

50
4

0.
60

7
0.

57
4

h
=

1
0.

69
9

0.
69

4
0.

63
5

0.
55

7
0.

58
8

0.
61

6
0.

55
7

0.
59

1
0.

62
3

0.
51

4
0.

60
5

0.
60

4
h

=
4/

3
-

-
-

0.
64

2
0.

61
7

0.
69

3
0.

62
3

0.
61

7
0.

67
0

0.
55

3
0.

59
2

0.
56

6
h

=
5/

3
-

-
-

0.
65

5
0.

61
4

0.
59

9
0.

61
5

0.
61

4
0.

57
5

0.
53

7
0.

62
4

0.
56

6
h

=
2

-
-

-
0.

66
2

0.
61

0
0.

58
3

0.
64

5
0.

61
0

0.
66

8
0.

61
1

0.
60

2
0.

62
2

h
=

7/
3

-
-

-
0.

67
1

0.
60

1
0.

66
3

0.
68

1
0.

60
1

0.
74

0
0.

57
9

0.
58

9
0.

57
1

h
=

8/
3

-
-

-
0.

68
6

0.
62

2
0.

71
4

0.
67

2
0.

62
2

0.
75

2
0.

60
6

0.
60

2
0.

57
1

h
=

3
-

-
-

0.
66

3
0.

63
1

0.
66

1
0.

67
1

0.
63

4
0.

62
3

0.
61

9
0.

61
9

0.
60

0
h

=
10

/
3

-
-

-
0.

66
6

0.
63

8
0.

65
6

0.
66

9
0.

64
4

0.
65

6
0.

59
3

0.
61

3
0.

57
4

h
=

11
/3

-
-

-
0.

66
9

0.
65

5
0.

68
8

0.
67

7
0.

64
4

0.
60

4
0.

57
3

0.
62

8
0.

57
4

h
=

4
-

-
-

0.
66

7
0.

64
4

0.
64

6
0.

65
7

0.
64

4
0.

63
8

0.
61

2
0.

58
7

0.
61

4
Y

ea
rl

y
G

ro
w

th
R

at
es

If
o

Z
E

W
Fa

ct
or

If
o

Z
E

W
Fa

ct
or

If
o

Z
E

W
Fa

ct
or

If
o

Z
E

W
Fa

ct
or

h
=

1/
3

0.
47

3
0.

41
3

0.
49

9
0.

52
7

0.
75

2
0.

72
5

0.
52

6
0.

78
0

0.
63

4
0.

42
6

0.
51

2
0.

69
6

h
=

2/
3

0.
46

1
0.

41
8

0.
49

1
0.

54
3

0.
79

2
0.

81
7

0.
53

4
0.

78
8

0.
70

0
0.

47
9

0.
54

5
0.

77
4

h
=

1
0.

42
9

0.
41

5
0.

48
1

0.
51

4
0.

78
7

0.
82

4
0.

51
0

0.
78

9
0.

66
5

0.
52

1
0.

50
3

0.
80

6
h

=
4/

3
-

-
-

0.
53

8
0.

76
6

0.
73

0
0.

53
8

0.
77

4
0.

69
4

0.
41

9
0.

62
9

0.
73

2
h

=
5/

3
-

-
-

0.
59

5
0.

77
9

0.
90

0
0.

59
5

0.
79

0
0.

74
5

0.
41

9
0.

67
1

0.
75

5
h

=
2

-
-

-
0.

60
1

0.
77

7
0.

85
2

0.
60

1
0.

77
7

0.
73

7
0.

52
1

0.
70

6
0.

81
3

h
=

7/
3

-
-

-
0.

73
1

0.
72

9
0.

83
6

0.
73

1
0.

72
9

0.
77

6
0.

46
3

0.
62

2
0.

70
8

h
=

8/
3

-
-

-
0.

76
5

0.
74

7
0.

86
8

0.
76

5
0.

74
7

0.
83

3
0.

43
5

0.
64

0
0.

71
3

h
=

3
-

-
-

0.
77

9
0.

78
1

0.
81

1
0.

77
9

0.
78

1
0.

83
1

0.
54

6
0.

71
4

0.
77

2
h

=
10

/3
-

-
-

0.
87

2
0.

82
1

0.
90

5
0.

82
9

0.
82

1
0.

90
4

0.
55

6
0.

67
3

0.
71

3
h

=
11

/3
-

-
-

0.
89

8
0.

82
9

0.
91

3
0.

82
5

0.
82

9
0.

87
4

0.
56

2
0.

64
7

0.
71

4
h

=
4

-
-

-
0.

90
4

0.
84

5
0.

82
7

0.
87

4
0.

84
5

0.
84

0
0.

63
0

0.
72

4
0.

78
9

N
ot

es
:

T
hi

s
ta

bl
e

di
sp

la
ys

th
e

R
M

SE
fo

r
di

ffe
re

nt
in

di
ca

to
rs

an
d

m
od

el
s.

T
he

fo
re

ca
st

ho
ri

zo
n

ra
ng

es
fr

om
h

=
1/

3
(o

ne
m

on
th

of
in

fo
rm

at
io

n
is

m
is

si
ng

to
fo

re
ca

st
cu

rr
en

t
G

D
P

gr
ow

th
)

to
h

=
4.

T
he

nu
m

be
rs

in
bo

ld
fa

ce
de

no
te

th
e

lo
w

es
t

R
M

SE
fo

r
ea

ch
ho

ri
zo

n.



7. Empirical Examples 173

7.4 Tracking the German Economy on a Daily Basis: A

NOWcasting Experiment

The results from the previous sections are quite promising, as in-quarterly

information improves the estimate for the current quarter. It is natural

to ask: why not use even higher-frequency data, such as weekly and daily

data? In this section we want to investigate, whether daily data are useful to

nowcast the current state of the economy. Additionally we ask whether the

daily data help us to obtain more accurate forecasts for longer horizons, that

is do daily data contain any long-run information? One possible advantage

of daily data is that they are not subject to revision and are available early

(there are no publication lags). A possible disadvantage is, that daily data

are more erratic and exhibit volatile clustering. It is well known that financial

data exhibit a strong (G)ARCH behaviour (see Bera and Higgins (1993)).

In contrast to monthly data, there are no daily indicators constructed to

lead or interpreted to contemporaneously describe a specific low-frequency

time series representing the state of the economy (GDP or industrial produc-

tion). Thus, it is rather unlikely that one specific daily time series leads to

more accurate forecasts than forecasts generated with monthly indicators.9

Therefore, as in the previous section, we extract static and dynamic daily

factors and plug them into the mixed-frequency time series models. Here

another advantage of factor models becomes evident. The factor approach

can possibly eliminate movements which are likely to include measurement

errors and local shocks. This yields a more reliable signal for policy makers

and prevents them from reacting to idiosyncratic movements.

In this section we focus on the MIDAS approach with exponential Almon

and Beta weighting functions and leave out the mixed-frequency VAR model

for several reasons. First, the MIDAS approach is far more parsimonious in

handling such large frequency mixtures. As the true data generating pro-

cess is unknown, the approach is likely to estimate many parameters within

9 We experiment with some daily time series from our data set and find indeed, that
this is the case.
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the mixed-frequency VAR approach. Second, and even more important, as

the mixed-frequency VAR assumes that the process operates at the highest

frequency (daily), we would have to forecast up to a maximum of 359 days

ahead.10 For stationary transformations of variables, there exists a maximum

horizon beyond which forecasts can provide no more information about the

variable than is present in the unconditional mean. This point, called the

’content horizon’ by Galbraith (2003), varies substantially across data series.

Therefore we would expect to forecast only the conditional mean beyond

some forecast horizon. And third, from the experience with the model, the

larger the frequency-mixture the higher the computational burden. Thus, a

recursive forecasting exercise would not be feasible in a reasonable time.

In this section we want to forecast German GDP growth as well as Industrial

Production (IP), sampled monthly. IP has often been the target variable

in forecasting exercises.11 In almost all cases the leading indicators were

also sampled monthly. Using mixed-frequency time series models we can

investigate whether daily data can help to improve the forecasting accuracy

of monthly IP.

7.4.1 The Daily Data Set

The prerequisite for the application of the MIDAS model is to have equidis-

tant data. Therefore we have to adjust the data set as the quarters are

defined by different numbers of days.12 We define that a year consists of 360

days such that each quarter is defined by 90 days (m = 90). For forecasting

the monthly IP we define a month consisting of 30 days (m = 30). Abstract-

ing for a moment from a leap year, 365 days constitute a year. The first

quarter contains exactly 90 days. For the second quarter we have 91 days.

10 Assuming we are in the first days of the year and we want to forecast four quarters
ahead.

11 See Robinzonov and Wohlrabe (2008) for a literature review for German IP.
12 Ghysels, Sinko, and Valkanov (2007) state that MIDAS models can handle unequally

space data. They propose that instead of using the lag operator L1/m to use an
operator Lτ , where τ is real-valued instead of a rational number. But this approach
has not been applied to real data so far.
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And the third and fourth quarters consist of 92 days. To obtain 90 days per

quarter we (arbitrarily) delete the following days: 1 May, 31 July, 31 August,

25 and 26 December. In the case of a leap year (1992, 1996, 2000, 2004) we

also delete 1 January. For the monthly case where the months have 31 days,

we delete the last day. The missing values for February are forecast with

an AR(p) process. We are aware of the fact that this is rather ad hoc and

that we destroy sample information, but we do not think is will significantly

influence our results.

Our daily data were obtained from the Deutsche Bundesbank and the IMF

database, downloaded on the 12 August 2008. Finally we can use 61 daily

series, among them interest rates, exchange rates and the equity price index

(see the appendix to this chapter for details). We match the daily series on

a grid of 360 days per year. We have many gaps in the different series due

to weekends, holidays and so forth. Finally, we end up with 360× 15 = 5400

(possible) observations.

Originally we downloaded 268 daily time series from both data bases. Our

intention was to apply the EM algorithm to extract factors from a large data

set with missing observations. Unfortunately, due to the time series length

of 5400 matrix inversion with the EM algorithm became infeasible due to

the large time series length.13 Thus we linearly interpolated the missing

observations for the 61 daily time series.14 The remaining 201 daily time

series either ended before December 2006 or started later than January 1992.

Therefore we had to discard them, as linear interpolation was not applicable

in these cases.

7.4.2 The Forecasting Set-up

The forecasting set-up is basically the same as in the monthly case. The

first forecast is based on data from 1999:360 (the last day of the year). Then

we recursively enlarge the information set on a daily basis. On each day we

13 Even on a PC with Intel Core 2 Quad and 4GB RAM.
14 Giannone, Reichlin, and Small (2008) linearly interpolated quarterly GDP on a

monthly basis within the factor approach and claim that it works quite well.
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forecast the next four available GDP values. For instance suppose we have

a day in February, then we forecast the four quarters of the year. Being

in June we forecast the remaining three quarters of the current year and

the first quarter of the next year. Factors are extracted as outlined for the

monthly case. For the MIDAS estimation we allowed for 4 × 90 = 360

daily lags. We restricted the Almon weighting function to ensure declining

weights, whereas the Beta weighting remains unrestricted. The reason is

as we demonstrate in the previous chapters: both weighting functions often

deliver similar results. Furthermore we experimented with an unrestricted

Almon weighting function, but we obtained in some cases infinite forecasts

due to the numbers being too large in the weighting function.

7.4.3 Results

In contrast with the monthly case we only present the results graphically.

Figures 7.1 and 7.2 graph the results for quarterly and yearly growth rates

respectively. The graphs can be read as follows: the blue and red lines cor-

respond to the average RMSE of the exponential Almon and Beta weighting

function for each daily forecast horizon. The forecast horizon (x-axis) ranges

from one day to 360 days. The thick vertical line marks 90 days, which is

the current quarter. The two horizontal lines denote the RMSE of the best

model/indicator combination for h = 1/3 (best available monthly short-term

forecast) and h = 4 (best long-term forecast) from the monthly forecasting

exercise in the previous section.

In the ideal stylized case one would expect a decreasing RMSE for a decreas-

ing forecast horizon. This implies a declining line from the upper-right to the

lower-left corner of the figures. If daily data provide lower RMSEs than the

their monthly counterparts, the lines should be below the horizontal lines.

For short-term forecasting all RMSEs left of the vertical line should be below

the lower horizontal line. For long-term forecasting the blue and red lines for

h > 270 should be below the upper horizontal line.

The results for the quarterly growth rates are depicted in Figure 7.1. They
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demonstrate that the ideal expectation cannot be met. First, we can state

the RMSE are erratic. Sometimes the RMSE jumps more than one standard

deviation up or down from one day to another. Although there is no typical

clustering, as in many high-frequency time series, the erratic behaviour seems

to transmit to the RMSEs. Despite the erratic figures there is a decreasing

linear trend for the short-term forecast horizon. Nevertheless, the monthly

forecast are not outperformed. Both the exponential Almon lag and the Beta

weighting function exhibit RMSEs which are about 0.1 higher than the best

monthly short-term forecast (MIDAS model with the Ifo Indicator).

Similar results are found for yearly growth rates, as shown in Figure 7.2. The

short- and long-term monthly forecasts are not outperformed by the daily

forecasts. There is one notable difference to the quarterly growth rates. The

RMSE produced by the Beta weighting function exhibits a clear downward

trend and is less erratic than its Almon counterpart. This could be due to

the restriction imposed on the exponential Almon lag weighting function,

whereas the Beta counterpart is estimated unrestricted.

Figures 7.3 and 7.4 plot the corresponding results for German Industrial

Production. The vertical line denotes now 30 days. The competitive monthly

forecasts are generated with a VAR(p) with the three described monthly

indicators. Generally the results are similar to the GDP results: standard

monthly models are not outperformed in the short run.

Figure 7.3 plots the RMSE for monthly IP growth rates. In contrast to

GDP there is no downward trend of the RMSE. They fluctuate around a

mean. This is the main difference to the GDP results. For longer forecast

horizons the RMSE of the daily forecasts are lower than the best monthly

forecast (VAR with Factors). It seems that the daily data in this case contain

long-run information.

A similar result can be stated for the yearly growth rates plotted in Figure

7.4. In this case we find a counter-intuitive result. The RMSE of both

weighting functions decrease with an increasing forecast horizon. So far we

do not have an explanation for this result.
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Fig. 7.1: Tracking the German economy on a daily basis: Daily forecasts of quar-
terly GDP growth rates
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Fig. 7.2: Tracking the German economy on a daily basis: Daily forecasts of yearly
GDP growth rates
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Fig. 7.3: Tracking the German economy on a daily basis: Daily forecasts of
monthly IP growth rates
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Fig. 7.4: Tracking the German economy on a daily basis: Daily forecasts of yearly
IP growth rates
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7.5 Summary and Discussion

In this chapter we compared the forecasting performances of the mixed-

frequency time series models using real economic data. We started with fore-

casting quarterly German GDP growth with monthly indicators. We found

for that for quarterly growth rate independently of the indicators, mixed-

frequency models outperform single-frequency models (AR and VAR). This

statement even holds for longer forecast horizons and is confirmed by statis-

tical tests. Therefore we confirm that temporal aggregation destroys sample

information and leads to the deterioration of forecasting accuracy. On aver-

age, the mixed-frequency VAR performs better than its MIDAS competitor.

Moving from monthly to daily predictors does not lead more accurate fore-

casts. We are the first to forecast GDP and IP growth on a daily basis. We

extracted static and dynamic factors from a daily data set which is matched

to an artificial year consisting of 360 days. The missing observations were

interpolated. The extracted factors are plugged into the MIDAS model to

generate forecasts. The obtained RMSEs exhibit erratic behaviour but with

a decreasing tendency for lower forecasting horizons. We think that the er-

ratic behaviour is transmitted from the (noisy) daily data via the extracted

factors.

In the short run the daily forecasts do not outperform monthly generated

forecasts. In case of GDP, the daily update was not better than the monthly

counterpart at any forecasting horizon. In the case of industrial production,

the daily data seem to contain long-run information, as the RMSE was lower

than the one obtained from monthly mixed-frequency models.

The results are disappointing, but we think that this can be a starting point

for fruitful future research. We feel confident that the factor approach for

condensing a large information set is the best way to proceed, as we do not

believe that one daily time series can be made operable to forecast time series

such as IP and GDP. Daily updated forecasts may be better than monthly

ones when the following issues can be resolved:
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• A larger data base should be used. Many (important) daily time se-

ries had to be discarded as they were shorter than the estimation pe-

riod. Linear interpolation was not applicable in these cases. To ex-

tract factors from time series with an arbitrary structure, one needs a

computable algorithm able to handle long time series and many miss-

ing observations. Furthermore the computation should be done in a

reasonable time.15 The EM algorithm was not applicable as matrix

inversion was not feasible.

• The factor extraction approach should account for the ARCH dynamics

inherently founded in many daily time series. The erratic behaviour

seems to transmit to the calculated accuracy measures.

• We employed the MIDAS approach to calculate the forecasts. It is easy

to implement and the estimation with NLS proceeds very fast, but the

MIDAS approach should be revised to allow for non-equidistant data.

State-space approaches are more flexible but they are too computa-

tionally intensive at the moment. Moreover, calculations of long-run

forecasts (more than 100 days ahead) with state-space models are not

feasible at the moment.16

Suppose that we can resolve these issues, it nevertheless may be that lower-

frequency (monthly) forecasts are not outperformed by higher-frequency fore-

casts. For example, daily data remain erratic even after some transformation,

and thus the daily forecast update is also erratic. If and how central banks

(for example) can account for this information should be discussed in fu-

ture research. It will be interesting also to discuss the issue of how far we

can go by using disaggregated data for forecasting lower-frequency variables.

Aruoba, Diebold, and Scotti (2008) claim to push the factor approach to

its high-frequency limit (daily basis). But maybe there is a frequency limit

where we cannot improve forecasting accuracy for lower-frequency variables.

15 The importance of this issue was also noted by Aruoba, Diebold, and Scotti (2008).
16 In this case only the conditional mean would be forecast.
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7.6 Appendix

This appendix states the additional tables and describes the daily and monthly

time series for the German economy used in the forecasting and nowcasting

exercise.

7.6.1 Additional Tables



7. Empirical Examples 185

T
ab

.
7.

3:
C

om
pa

ri
so

ns
of

R
M

SE
:
St

at
is

ti
ca

l
T
es

ts
fo

r
h

=
1

Q
u
a
r
te

r
ly

G
r
o
w

th
R

a
te

s
A

R
(p

)
L
F
-V

A
R

(p
)

M
ID

A
S

A
lm

o
n

M
ID

A
S

B
et

a
M

F
-V

A
R

(p
)

A
R

If
o

Z
E

W
F
a
ct

o
r

If
o

Z
E

W
F
a
ct

o
r

If
o

Z
E

W
F
a
ct

o
r

If
o

Z
E

W
F
a
ct

o
r

A
R

L
F
-V

A
R

(p
)

If
o

2
.1

7
7

Z
E

W
1
.6

6
2

1
.1

3
3

F
a
ct

o
r

2
.0

8
8

2
.7

4
6

1
.5

8
6

M
ID

A
S

A
lm

o
n

If
o

2
.6

6
5

3
.2

9
2

2
.0

6
9

3
.1

4
4

Z
E

W
2
.0

7
2

3
.0

9
2

1
.7

4
8

2
.8

6
3

-0
.2

0
7

F
a
ct

o
r

1
.8

4
4

2
.0

6
8

1
.5

4
8

2
.5

2
2

-1
.1

8
9

0
.3

9
5

M
ID

A
S

B
et

a
If
o

2
.6

6
5

3
.2

9
2

2
.0

6
9

3
.1

4
4

0
.4

9
3

2
.5

5
4

3
.3

2
8

Z
E

W
2
.0

5
2

3
.1

0
3

1
.7

3
7

2
.8

4
5

-0
.2

6
0

-1
.4

9
8

1
.7

8
0

-0
.2

6
0

F
a
ct

o
r

1
.9

5
4

2
.8

3
6

1
.9

5
9

2
.5

5
5

-0
.3

8
6

0
.5

8
0

1
.1

6
4

-0
.3

8
5

0
.6

5
8

M
F
-V

A
R

(p
)

If
o

3
.0

7
1

3
.2

1
4

2
.1

9
1

3
.7

6
7

1
.9

8
3

3
.2

6
8

3
.8

4
5

1
.9

8
3

3
.2

6
4

4
.0

9
4

Z
E

W
2
.6

7
2

2
.7

2
3

1
.8

0
8

2
.8

3
2

-0
.3

0
3

0
.2

6
8

1
.1

7
8

-0
.3

0
3

0
.3

2
2

2
.3

9
0

-1
.4

2
1

F
a
ct

o
r

2
.6

1
9

2
.4

5
8

1
.8

8
5

2
.4

0
5

-0
.8

8
9

0
.7

7
2

1
.0

0
6

-0
.8

8
9

0
.8

0
6

2
.7

4
3

-1
.7

8
0

1
.1

2
7

Y
e
a
r
ly

G
r
o
w

th
R

a
te

s
A

R
If
o

Z
E

W
F
a
ct

o
r

If
o

Z
E

W
F
a
ct

o
r

If
o

Z
E

W
F
a
ct

o
r

If
o

Z
E

W
F
a
ct

o
r

A
R

L
F
-V

A
R

(p
)

If
o

2
.8

9
2

Z
E

W
1
.8

6
0

1
.2

0
9

F
a
ct

o
r

1
.7

0
9

2
.0

2
3

1
.0

8
4

M
ID

A
S

A
lm

o
n

If
o

3
.4

2
8

1
.8

8
3

2
.8

3
5

3
.0

6
7

Z
E

W
1
.6

2
3

0
.3

5
8

0
.3

9
4

0
.5

5
5

0
.0

2
4

F
a
ct

o
r

0
.2

2
6

-0
.5

2
8

-0
.4

1
2

-0
.2

2
2

-0
.3

3
4

0
.1

9
8

M
ID

A
S

B
et

a
If
o

3
.4

1
3

1
.9

1
8

2
.8

7
6

3
.1

0
3

1
.4

1
6

2
.9

6
2

2
.6

8
3

Z
E

W
1
.5

2
4

-0
.0

0
4

0
.0

2
5

0
.3

8
7

-0
.1

0
6

0
.5

1
2

1
.2

0
9

-0
.2

0
5

F
a
ct

o
r

1
.5

9
2

0
.4

9
8

0
.5

0
0

0
.5

1
9

0
.6

5
9

2
.2

5
4

1
.4

8
5

0
.5

4
5

2
.8

2
2

M
F
-V

A
R

(p
)

If
o

4
.5

4
9

1
.6

0
8

2
.1

9
7

2
.4

0
0

-0
.0

5
1

2
.6

8
7

3
.0

2
1

-0
.1

4
6

2
.2

7
2

1
.9

4
5

Z
E

W
2
.9

7
1

1
.4

5
9

1
.3

4
5

1
.4

6
1

1
.7

7
9

2
.4

7
2

3
.0

2
0

1
.7

1
5

2
.3

2
5

1
.8

8
9

2
.5

8
5

F
a
ct

o
r

0
.6

0
5

-0
.3

9
4

-0
.1

7
7

0
.0

4
3

-0
.2

3
1

0
.5

2
7

1
.6

3
6

-0
.2

7
2

0
.5

9
5

0
.3

8
2

0
.4

0
0

-2
.1

5
4

N
o
te

s
:

T
h
is

ta
b
le

co
n
ta

in
s

th
e

re
su

lt
s

o
f

th
e

st
a
ti

st
ic

a
l
te

st
o
f

eq
u
a
l
R

M
S
E

o
f

tw
o

m
o
d
el

s
p
ro

p
o
se

d
b
y

C
la

rk
a
n
d

W
es

t
(2

0
0
7
).

A
t-

st
a
ti

st
ic

g
re

a
te

r
th

a
n

+
1
.2

8
2

(f
o
r

a
o
n
e

si
d
ed

0
.1

0
te

st
)

o
r

+
1
.6

4
5

(f
o
r

a
o
n
e

si
d
ed

0
.0

5
te

st
)

in
d
ic

a
te

s
th

a
t

M
o
d
el

2
(r

o
w

s)
h
a
s

a
si

g
n
ifi

ca
n
t

sm
a
ll
er

R
M

S
E

th
a
n

M
o
d
el

1
(c

o
lu

m
n
s)

a
n
d

v
ic

e
v
er

sa
.

H
et

er
o
sc

ed
a
st

ic
a
n
d

a
u
to

co
rr

el
a
ti

o
n

ro
b
u
st

st
a
n
d
a
rd

er
ro

rs
(N

ew
ey

-W
es

t)
a
re

co
m

p
u
te

d
.



7. Empirical Examples 186

T
ab

.
7.

4:
C

om
pa

ri
so

ns
of

R
M

SE
:
St

at
is

ti
ca

l
T
es

ts
fo

r
h

=
2

Q
u
a
r
te

r
ly

G
r
o
w

th
R

a
te

s
A

R
(p

)
L
F
-V

A
R

(p
)

M
ID

A
S

A
lm

o
n

M
ID

A
S

B
et

a
M

F
-V

A
R

(p
)

A
R

If
o

Z
E

W
F
a
ct

o
r

If
o

Z
E

W
F
a
ct

o
r

If
o

Z
E

W
F
a
ct

o
r

If
o

Z
E

W
F
a
ct

o
r

A
R

L
F
-V

A
R

(p
)

If
o

0
.4

1
1

Z
E

W
0
.6

0
6

1
.1

7
3

F
a
ct

o
r

1
.2

3
7

1
.4

7
0

1
.4

3
3

M
ID

A
S

A
lm

o
n

If
o

-0
.0

4
2

1
.0

1
6

1
.0

3
7

0
.1

4
5

Z
E

W
0
.5

9
5

1
.4

2
5

1
.1

7
4

0
.2

2
6

0
.6

0
2

F
a
ct

o
r

1
.3

3
7

1
.5

6
3

1
.7

4
5

0
.7

4
4

1
.6

6
9

1
.5

1
5

M
ID

A
S

B
et

a
If
o

0
.0

3
7

0
.7

2
5

0
.8

8
4

0
.3

5
4

0
.2

6
9

0
.3

7
8

-0
.0

4
6

Z
E

W
0
.6

0
1

1
.4

1
8

1
.2

1
7

0
.2

4
3

0
.6

0
9

0
.2

7
9

0
.0

9
4

0
.8

3
2

F
a
ct

o
r

-0
.5

3
5

0
.7

8
0

0
.0

8
8

-0
.0

8
5

-0
.9

4
1

-0
.6

2
2

-0
.6

6
9

0
.0

7
0

-0
.6

5
9

M
F
-V

A
R

(p
)

If
o

1
.6

7
1

1
.8

4
7

2
.5

1
3

2
.1

1
5

2
.1

0
8

1
.9

7
6

1
.7

4
6

1
.2

9
3

2
.0

0
1

3
.6

4
3

Z
E

W
1
.7

8
6

1
.9

8
2

3
.6

8
2

1
.5

6
7

1
.8

5
6

2
.9

4
0

1
.6

9
2

1
.5

6
8

2
.9

9
9

2
.6

2
9

0
.2

7
3

F
a
ct

o
r

1
.5

1
3

1
.6

5
9

2
.5

8
4

1
.3

0
5

2
.1

5
6

2
.0

2
4

1
.3

8
2

1
.1

7
3

2
.0

5
4

3
.9

4
0

-0
.6

2
3

-0
.2

0
0

Y
e
a
r
ly

G
r
o
w

th
R

a
te

s
A

R
If
o

Z
E

W
F
a
ct

o
r

If
o

Z
E

W
F
a
ct

o
r

If
o

Z
E

W
F
a
ct

o
r

If
o

Z
E

W
F
a
ct

o
r

A
R

L
F
-V

A
R

(p
)

If
o

3
.1

2
8

Z
E

W
1
.6

9
1

0
.4

6
2

F
a
ct

o
r

1
.5

7
8

1
.3

8
5

1
.0

9
0

M
ID

A
S

A
lm

o
n

If
o

2
.7

7
6

1
.1

5
9

1
.7

3
4

1
.9

0
4

Z
E

W
1
.4

1
3

-0
.6

8
2

-1
.0

8
0

0
.4

2
0

0
.2

2
2

F
a
ct

o
r

0
.9

7
1

0
.1

3
7

0
.1

5
9

-0
.5

8
7

-0
.0

9
6

0
.8

2
1

M
ID

A
S

B
et

a
If
o

2
.7

7
6

1
.1

5
9

1
.7

3
4

1
.9

0
4

-0
.7

1
0

1
.8

7
5

2
.3

2
5

Z
E

W
1
.3

6
7

-0
.6

6
2

-1
.1

8
1

0
.4

5
3

0
.2

0
0

0
.1

0
8

1
.6

9
3

0
.2

0
0

F
a
ct

o
r

1
.1

3
3

-0
.0

9
2

0
.2

4
4

-0
.5

3
7

-0
.2

7
8

0
.9

5
5

1
.4

3
0

-0
.2

7
8

0
.9

4
4

M
F
-V

A
R

(p
)

If
o

2
.8

5
2

1
.7

5
2

1
.7

3
2

2
.1

4
2

2
.2

6
2

1
.7

3
9

2
.6

0
5

2
.2

6
1

1
.7

6
5

2
.0

5
9

Z
E

W
3
.1

0
8

1
.2

7
0

1
.3

0
5

1
.5

6
1

0
.8

7
4

1
.7

6
8

2
.0

5
3

0
.8

7
4

1
.7

9
9

2
.1

4
7

1
.2

6
3

F
a
ct

o
r

1
.9

4
8

0
.2

6
7

0
.6

0
6

0
.5

2
5

-0
.1

4
2

1
.1

6
5

0
.9

3
3

-0
.1

4
2

1
.1

8
4

1
.4

9
9

-0
.0

2
6

-1
.2

1
6

N
o
te

s
:

T
h
is

ta
b
le

co
n
ta

in
s

th
e

re
su

lt
s

o
f

th
e

st
a
ti

st
ic

a
l
te

st
o
f

eq
u
a
l
R

M
S
E

o
f

tw
o

m
o
d
el

s
p
ro

p
o
se

d
b
y

C
la

rk
a
n
d

W
es

t
(2

0
0
7
).

A
t-

st
a
ti

st
ic

g
re

a
te

r
th

a
n

+
1
.2

8
2

(f
o
r

a
o
n
e

si
d
ed

0
.1

0
te

st
)

o
r

+
1
.6

4
5

(f
o
r

a
o
n
e

si
d
ed

0
.0

5
te

st
)

in
d
ic

a
te

s
th

a
t

M
o
d
el

2
(r

o
w

s)
h
a
s

a
si

g
n
ifi

ca
n
t

sm
a
ll
er

R
M

S
E

th
a
n

M
o
d
el

1
(c

o
lu

m
n
s)

a
n
d

v
ic

e
v
er

sa
.

H
et

er
o
sc

ed
a
st

ic
a
n
d

a
u
to

co
rr

el
a
ti

o
n

ro
b
u
st

st
a
n
d
a
rd

er
ro

rs
(N

ew
ey

-W
es

t)
a
re

co
m

p
u
te

d
.



7. Empirical Examples 187

T
ab

.
7.

5:
C

om
pa

ri
so

ns
of

R
M

SE
:
St

at
is

ti
ca

l
T
es

ts
fo

r
h

=
3

Q
u
a
r
te

r
ly

G
r
o
w

th
R

a
te

s
A

R
(p

)
L
F
-V

A
R

(p
)

M
ID

A
S

A
lm

o
n

M
ID

A
S

B
et

a
M

F
-V

A
R

(p
)

A
R

If
o

Z
E

W
F
a
ct

o
r

If
o

Z
E

W
F
a
ct

o
r

If
o

Z
E

W
F
a
ct

o
r

If
o

Z
E

W
F
a
ct

o
r

A
R

L
F
-V

A
R

(p
)

If
o

0
.1

6
7

Z
E

W
1
.7

4
3

1
.6

7
8

F
a
ct

o
r

2
.1

6
8

1
.9

1
5

2
.1

4
5

M
ID

A
S

A
lm

o
n

If
o

1
.1

8
9

3
.4

0
9

0
.6

4
1

-0
.5

4
6

Z
E

W
2
.3

0
2

2
.2

1
8

2
.6

3
2

-0
.8

4
1

1
.0

3
3

F
a
ct

o
r

1
.6

2
4

2
.3

0
0

0
.2

7
0

-1
.1

7
7

0
.1

8
8

-1
.5

7
9

M
ID

A
S

B
et

a
If
o

0
.2

2
0

1
.3

0
0

0
.0

2
6

-0
.6

7
5

-0
.9

6
6

-0
.7

8
2

0
.0

2
8

Z
E

W
2
.4

1
2

2
.1

2
3

2
.5

9
5

-0
.7

5
6

1
.0

8
4

0
.4

4
4

2
.0

3
5

1
.4

4
2

F
a
ct

o
r

1
.1

3
3

1
.9

2
0

0
.2

3
2

-0
.9

2
7

0
.4

8
4

-0
.7

4
9

0
.1

5
8

1
.0

3
5

-0
.6

7
2

M
F
-V

A
R

(p
)

If
o

2
.3

8
0

2
.2

9
0

3
.5

7
5

0
.3

4
2

1
.4

1
2

1
.5

1
6

2
.0

9
3

1
.6

2
1

1
.3

3
7

2
.7

2
6

Z
E

W
2
.8

9
0

2
.8

9
4

3
.5

5
9

0
.5

3
5

2
.3

5
3

1
.5

8
3

2
.2

7
8

2
.2

2
9

1
.6

0
7

2
.2

0
7

0
.8

9
3

F
a
ct

o
r

2
.7

9
9

2
.5

0
0

4
.1

5
4

0
.3

7
7

1
.5

4
5

2
.3

7
5

2
.4

9
9

1
.7

4
2

1
.9

8
8

2
.6

3
0

0
.6

4
7

1
.1

7
3

Y
e
a
r
ly

G
r
o
w

th
R

a
te

s
A

R
If
o

Z
E

W
F
a
ct

o
r

If
o

Z
E

W
F
a
ct

o
r

If
o

Z
E

W
F
a
ct

o
r

If
o

Z
E

W
F
a
ct

o
r

A
R

L
F
-V

A
R

(p
)

If
o

1
.9

9
5

Z
E

W
0
.7

3
5

-0
.3

0
9

F
a
ct

o
r

1
.4

2
9

1
.3

2
9

1
.1

6
8

M
ID

A
S

A
lm

o
n

If
o

1
.8

5
2

1
.4

3
4

1
.4

6
2

1
.0

6
4

Z
E

W
2
.0

1
3

1
.1

2
4

1
.6

2
7

0
.6

5
3

0
.1

5
5

F
a
ct

o
r

2
.0

4
9

1
.0

0
3

2
.4

8
8

1
.0

1
3

0
.7

0
9

1
.4

3
8

M
ID

A
S

B
et

a
If
o

1
.8

5
2

1
.4

3
4

1
.4

6
2

1
.0

6
4

0
.8

1
4

1
.1

3
7

0
.6

6
3

Z
E

W
2
.0

1
3

1
.1

2
4

1
.6

2
7

0
.6

5
3

0
.1

5
5

-2
.6

6
9

0
.4

6
6

0
.1

5
5

F
a
ct

o
r

1
.4

7
8

0
.5

2
1

1
.7

7
3

0
.4

2
7

-0
.5

1
4

-0
.1

7
7

-1
.1

1
0

-0
.5

1
4

-0
.1

7
7

M
F
-V

A
R

(p
)

If
o

2
.4

5
7

2
.2

7
9

1
.8

0
0

2
.5

8
0

2
.3

5
0

2
.0

1
0

1
.8

0
2

2
.3

5
0

2
.0

1
0

2
.5

4
8

Z
E

W
2
.6

4
8

2
.0

6
9

1
.7

0
0

3
.0

2
5

2
.2

0
5

2
.3

3
2

1
.6

4
4

2
.2

0
5

2
.3

3
2

3
.2

9
0

0
.6

7
4

F
a
ct

o
r

2
.3

7
6

1
.6

1
7

1
.5

5
2

2
.1

9
5

1
.5

9
1

2
.1

3
3

1
.2

8
3

1
.5

9
1

2
.1

3
3

3
.2

9
2

-0
.1

6
8

-1
.6

7
3

N
o
te

s
:

T
h
is

ta
b
le

co
n
ta

in
s

th
e

re
su

lt
s

o
f

th
e

st
a
ti

st
ic

a
l
te

st
o
f

eq
u
a
l
R

M
S
E

o
f

tw
o

m
o
d
el

s
p
ro

p
o
se

d
b
y

C
la

rk
a
n
d

W
es

t
(2

0
0
7
).

A
t-

st
a
ti

st
ic

g
re

a
te

r
th

a
n

+
1
.2

8
2

(f
o
r

a
o
n
e

si
d
ed

0
.1

0
te

st
)

o
r

+
1
.6

4
5

(f
o
r

a
o
n
e

si
d
ed

0
.0

5
te

st
)

in
d
ic

a
te

s
th

a
t

M
o
d
el

2
(r

o
w

s)
h
a
s

a
si

g
n
ifi

ca
n
t

sm
a
ll
er

R
M

S
E

th
a
n

M
o
d
el

1
(c

o
lu

m
n
s)

a
n
d

v
ic

e
v
er

sa
.

H
et

er
o
sc

ed
a
st

ic
a
n
d

a
u
to

co
rr

el
a
ti

o
n

ro
b
u
st

st
a
n
d
a
rd

er
ro

rs
(N

ew
ey

-W
es

t)
a
re

co
m

p
u
te

d
.



7. Empirical Examples 188

T
ab

.
7.

6:
C

om
pa

ri
so

ns
of

R
M

SE
:
St

at
is

ti
ca

l
T
es

ts
fo

r
h

=
4

Q
u
a
r
te

r
ly

G
r
o
w

th
R

a
te

s
A

R
(p

)
L
F
-V

A
R

(p
)

M
ID

A
S

A
lm

o
n

M
ID

A
S

B
et

a
M

F
-V

A
R

(p
)

A
R

If
o

Z
E

W
F
a
ct

o
r

If
o

Z
E

W
F
a
ct

o
r

If
o

Z
E

W
F
a
ct

o
r

If
o

Z
E

W
F
a
ct

o
r

A
R

L
F
-V

A
R

(p
)

If
o

-0
.2

9
0

Z
E

W
1
.7

9
1

2
.1

2
0

F
a
ct

o
r

1
.9

3
3

1
.9

4
0

0
.8

2
6

M
ID

A
S

A
lm

o
n

If
o

0
.4

9
3

2
.4

8
4

-0
.5

6
4

-0
.5

1
9

Z
E

W
0
.9

1
3

2
.2

7
5

-0
.5

8
7

-0
.5

7
8

0
.8

6
4

F
a
ct

o
r

1
.8

0
3

1
.9

7
0

-0
.2

0
3

-0
.7

1
3

0
.8

4
3

0
.8

2
5

M
ID

A
S

B
et

a
If
o

1
.1

7
5

2
.3

2
3

0
.3

1
4

0
.1

3
7

1
.2

0
3

1
.1

3
7

0
.4

4
1

Z
E

W
0
.8

9
7

2
.4

0
4

-0
.4

5
4

-0
.4

4
6

0
.9

4
2

0
.5

0
7

0
.0

3
0

0
.1

6
9

F
a
ct

o
r

1
.3

2
3

1
.8

7
7

0
.7

1
2

0
.6

7
5

1
.3

7
8

1
.1

2
9

0
.8

9
7

1
.2

8
0

1
.1

5
6

M
F
-V

A
R

(p
)

If
o

3
.1

1
6

2
.2

0
7

2
.4

4
7

2
.1

4
0

1
.8

0
5

1
.9

7
3

2
.4

0
3

1
.9

9
2

1
.9

0
3

2
.5

6
4

Z
E

W
2
.0

0
5

3
.1

1
6

2
.1

8
3

1
.5

2
3

2
.3

2
8

2
.2

7
6

1
.5

3
3

2
.6

6
5

2
.3

4
2

4
.1

6
4

0
.9

5
6

F
a
ct

o
r

2
.7

4
4

2
.2

2
4

2
.6

9
3

2
.1

9
0

1
.6

8
9

1
.8

4
4

2
.4

2
3

1
.8

9
9

1
.7

8
4

2
.8

5
3

0
.2

0
2

-0
.1

9
7

Y
e
a
r
ly

G
r
o
w

th
R

a
te

s
A

R
If
o

Z
E

W
F
a
ct

o
r

If
o

Z
E

W
F
a
ct

o
r

If
o

Z
E

W
F
a
ct

o
r

If
o

Z
E

W
F
a
ct

o
r

A
R

L
F
-V

A
R

(p
)

If
o

1
.2

0
7

Z
E

W
0
.5

1
3

0
.0

9
3

F
a
ct

o
r

1
.5

8
6

1
.9

9
9

1
.3

0
0

M
ID

A
S

A
lm

o
n

If
o

1
.6

4
1

1
.6

2
3

1
.3

8
2

-0
.0

4
3

Z
E

W
1
.6

4
8

1
.6

7
6

1
.4

0
1

0
.4

4
5

0
.4

6
0

F
a
ct

o
r

2
.0

3
6

1
.4

8
7

1
.5

6
3

0
.0

4
0

-0
.1

1
7

-0
.2

2
5

M
ID

A
S

B
et

a
If
o

2
.3

6
9

2
.0

0
5

1
.8

2
7

0
.7

3
2

0
.6

6
0

0
.4

1
5

1
.7

3
9

Z
E

W
1
.6

4
8

1
.6

7
6

1
.4

0
1

0
.4

4
5

0
.4

6
0

0
.7

3
6

1
.0

0
9

0
.2

0
8

F
a
ct

o
r

1
.9

3
5

1
.4

3
2

1
.5

1
6

-0
.0

4
5

-0
.2

6
1

-0
.3

8
1

-1
.1

7
4

-0
.4

0
0

-0
.3

8
1

M
F
-V

A
R

(p
)

If
o

2
.1

0
4

2
.2

1
6

1
.7

2
4

2
.1

6
3

1
.9

5
3

2
.3

3
6

1
.8

9
1

1
.6

5
4

2
.3

3
6

1
.9

2
4

Z
E

W
2
.1

9
1

2
.4

3
0

1
.7

3
0

3
.4

5
0

2
.7

6
3

2
.5

7
0

2
.7

7
3

2
.0

0
6

2
.5

7
0

2
.7

9
8

1
.2

5
8

F
a
ct

o
r

1
.9

8
6

2
.1

4
2

1
.5

8
0

2
.6

6
1

2
.1

0
1

2
.2

7
3

2
.3

5
1

1
.4

8
0

2
.2

7
3

2
.4

0
2

0
.5

9
2

-2
.3

0
5

N
o
te

s
:

T
h
is

ta
b
le

co
n
ta

in
s

th
e

re
su

lt
s

o
f

th
e

st
a
ti

st
ic

a
l
te

st
o
f

eq
u
a
l
R

M
S
E

o
f

tw
o

m
o
d
el

s
p
ro

p
o
se

d
b
y

C
la

rk
a
n
d

W
es

t
(2

0
0
7
).

A
t-

st
a
ti

st
ic

g
re

a
te

r
th

a
n

+
1
.2

8
2

(f
o
r

a
o
n
e

si
d
ed

0
.1

0
te

st
)

o
r

+
1
.6

4
5

(f
o
r

a
o
n
e

si
d
ed

0
.0

5
te

st
)

in
d
ic

a
te

s
th

a
t

M
o
d
el

2
(r

o
w

s)
h
a
s

a
si

g
n
ifi

ca
n
t

sm
a
ll
er

R
M

S
E

th
a
n

M
o
d
el

1
(c

o
lu

m
n
s)

a
n
d

v
ic

e
v
er

sa
.

H
et

er
o
sc

ed
a
st

ic
a
n
d

a
u
to

co
rr

el
a
ti

o
n

ro
b
u
st

st
a
n
d
a
rd

er
ro

rs
(N

ew
ey

-W
es

t)
a
re

co
m

p
u
te

d
.



7. Empirical Examples 189

T
ab

.
7.

7:
C

om
pa

ri
so

ns
of

R
M

SE
:
St

at
is

ti
ca

l
T
es

ts
fo

r
h

=
1/

3
Q

u
a
r
te

r
ly

G
r
o
w

th
R

a
te

s
B

ri
d
g
e

E
q
u
a
ti

o
n

M
ID

A
S

A
lm

o
n

M
ID

A
S

B
et

a
M

F
-V

A
R

(p
)

If
o

Z
E

W
F
a
ct

o
r

If
o

Z
E

W
F
a
ct

o
r

If
o

Z
E

W
F
a
ct

o
r

If
o

Z
E

W
F
a
ct

o
r

B
ri

d
g
e

E
q
u
a
ti

o
n

If
o

Z
E

W
1
.8

3
7

F
a
ct

o
r

2
.3

6
2

2
.2

3
3

M
ID

A
S

A
lm

o
n

If
o

4
.2

1
9

2
.8

4
1

3
.9

5
8

Z
E

W
3
.1

9
1

2
.6

4
4

3
.2

1
7

0
.1

6
6

F
a
ct

o
r

3
.8

9
0

1
.7

2
7

2
.7

5
0

2
.0

7
7

1
.6

9
6

M
ID

A
S

B
et

a
If
o

4
.2

1
9

2
.8

4
1

3
.9

5
8

1
.8

5
7

2
.3

5
8

2
.5

0
9

Z
E

W
3
.1

2
0

2
.3

5
1

3
.1

7
5

0
.0

5
2

-0
.3

1
8

2
.7

3
4

0
.0

5
2

F
a
ct

o
r

4
.2

3
6

2
.0

0
4

3
.2

1
5

1
.5

3
8

1
.2

6
8

2
.1

2
9

1
.5

3
8

1
.3

9
2

M
F
-V

A
R

(p
)

If
o

3
.4

2
2

2
.5

4
5

3
.2

2
0

0
.2

1
7

1
.9

3
1

2
.3

6
8

0
.2

1
7

2
.4

4
9

1
.7

8
3

Z
E

W
2
.3

6
4

2
.0

8
4

2
.2

4
6

-0
.3

7
0

-0
.6

3
3

2
.8

7
1

-0
.3

7
0

0
.0

1
9

1
.4

5
6

0
.4

4
7

F
a
ct

o
r

2
.7

2
0

2
.2

1
2

2
.3

0
6

-0
.1

5
3

0
.5

9
3

2
.5

7
9

-0
.1

5
3

0
.7

9
8

1
.5

0
2

2
.1

7
4

1
.6

8
4

Y
e
a
r
ly

G
r
o
w

th
R

a
te

s
If
o

Z
E

W
F
a
ct

o
r

If
o

Z
E

W
F
a
ct

o
r

If
o

Z
E

W
F
a
ct

o
r

If
o

Z
E

W
F
a
ct

o
r

B
ri

d
g
e

If
o

Z
E

W
1
.5

5
1

F
a
ct

o
r

0
.1

3
6

-2
.2

1
9

M
ID

A
S

A
lm

o
n

If
o

-0
.6

8
1

1
.6

4
4

1
.9

1
1

Z
E

W
-1

.4
8
9

-2
.2

8
5

-1
.5

2
2

0
.8

5
0

F
a
ct

o
r

0
.5

6
8

0
.3

3
8

1
.6

6
7

2
.1

4
9

1
.5

4
8

M
ID

A
S

B
et

a
If
o

-0
.6

9
1

1
.6

2
8

1
.8

8
4

0
.4

6
6

2
.6

7
2

1
.8

5
1

Z
E

W
-1

.9
5
8

-2
.5

4
0

-2
.1

2
8

1
.1

2
5

1
.2

1
9

0
.8

6
8

1
.1

2
8

F
a
ct

o
r

-0
.1

9
9

-0
.3

8
6

0
.7

3
0

1
.6

4
6

2
.2

7
9

1
.4

2
4

1
.6

6
6

1
.9

9
6

M
F
-V

A
R

(p
)

If
o

1
.1

1
6

1
.7

6
5

2
.0

5
0

1
.5

5
6

2
.6

6
5

1
.8

2
3

1
.6

2
6

2
.1

9
0

2
.0

9
6

Z
E

W
0
.6

6
5

-0
.0

8
2

1
.4

0
3

2
.0

3
7

2
.6

4
8

1
.6

4
8

2
.0

6
5

2
.3

5
6

1
.7

9
6

1
.0

4
5

F
a
ct

o
r

-0
.7

1
3

-1
.3

6
9

-0
.4

6
6

1
.2

9
2

1
.1

9
5

1
.1

4
9

1
.2

9
5

1
.2

1
0

0
.3

9
7

-0
.3

0
0

-1
.6

6
6

N
o
te

s
:

T
h
is

ta
b
le

co
n
ta

in
s

th
e

re
su

lt
s

o
f

th
e

st
a
ti

st
ic

a
l
te

st
o
f

eq
u
a
l
R

M
S
E

o
f

tw
o

m
o
d
el

s
p
ro

p
o
se

d
b
y

C
la

rk
a
n
d

W
es

t
(2

0
0
7
).

A
t-

st
a
ti

st
ic

g
re

a
te

r
th

a
n

+
1
.2

8
2

(f
o
r

a
o
n
e

si
d
ed

0
.1

0
te

st
)

o
r

+
1
.6

4
5

(f
o
r

a
o
n
e

si
d
ed

0
.0

5
te

st
)

in
d
ic

a
te

s
th

a
t

M
o
d
el

2
(r

o
w

s)
h
a
s

a
si

g
n
ifi

ca
n
t

sm
a
ll
er

R
M

S
E

th
a
n

M
o
d
el

1
(c

o
lu

m
n
s)

a
n
d

v
ic

e
v
er

sa
.

H
et

er
o
sc

ed
a
st

ic
a
n
d

a
u
to

co
rr

el
a
ti

o
n

ro
b
u
st

st
a
n
d
a
rd

er
ro

rs
(N

ew
ey

-W
es

t)
a
re

co
m

p
u
te

d
.



7. Empirical Examples 190

T
ab

.
7.

8:
C

om
pa

ri
so

ns
of

R
M

SE
:
St

at
is

ti
ca

l
T
es

ts
fo

r
h

=
2/

3
Q

u
a
r
te

r
ly

G
r
o
w

th
R

a
te

s
B

ri
d
g
e

E
q
u
a
ti

o
n

M
ID

A
S

A
lm

o
n

M
ID

A
S

B
et

a
M

F
-V

A
R

(p
)

If
o

Z
E

W
F
a
ct

o
r

If
o

Z
E

W
F
a
ct

o
r

If
o

Z
E

W
F
a
ct

o
r

If
o

Z
E

W
F
a
ct

o
r

B
ri

d
g
e

E
q
u
a
ti

o
n

If
o

Z
E

W
1
.2

3
5

F
a
ct

o
r

2
.1

7
0

2
.3

0
4

M
ID

A
S

A
lm

o
n

If
o

3
.7

3
2

2
.6

3
8

4
.1

3
1

Z
E

W
3
.2

4
2

2
.3

7
4

3
.2

9
6

0
.0

9
1

F
a
ct

o
r

2
.5

8
6

2
.5

6
7

1
.8

5
6

-1
.1

9
0

-0
.7

1
8

M
ID

A
S

B
et

a
If
o

3
.7

3
2

2
.6

3
8

4
.1

3
1

0
.6

1
5

2
.2

7
6

3
.0

9
4

Z
E

W
3
.0

8
4

2
.1

1
3

3
.0

9
5

-0
.2

9
5

-1
.0

2
2

1
.8

9
0

-0
.2

9
5

F
a
ct

o
r

2
.1

8
9

1
.9

7
7

2
.0

3
4

-0
.7

1
5

-0
.0

4
5

2
.0

9
5

-0
.7

1
5

0
.2

0
2

M
F
-V

A
R

(p
)

If
o

4
.1

2
6

2
.7

2
3

3
.9

8
2

1
.0

5
8

2
.5

9
1

2
.8

2
9

1
.0

5
8

2
.9

4
2

3
.9

7
0

Z
E

W
1
.8

6
4

1
.5

0
5

2
.0

4
4

-1
.2

0
3

-1
.4

5
0

1
.5

0
9

-1
.2

0
3

-0
.6

9
8

1
.9

8
0

-1
.0

2
0

F
a
ct

o
r

2
.5

4
1

1
.8

0
6

2
.0

6
0

-0
.9

4
3

0
.1

8
7

1
.5

9
1

-0
.9

4
4

0
.5

5
5

2
.6

9
0

-0
.5

8
8

2
.5

0
3

Y
e
a
r
ly

G
r
o
w

th
R

a
te

s
If
o

Z
E

W
F
a
ct

o
r

If
o

Z
E

W
F
a
ct

o
r

If
o

Z
E

W
F
a
ct

o
r

If
o

Z
E

W
F
a
ct

o
r

B
ri

d
g
e

E
q
u
a
ti

o
n

If
o

Z
E

W
1
.5

6
4

F
a
ct

o
r

0
.0

8
0

-2
.1

8
9

M
ID

A
S

A
lm

o
n

If
o

-0
.0

1
4

2
.1

4
1

2
.2

6
1

Z
E

W
-2

.0
0
1

-2
.3

5
0

-1
.7

0
6

0
.5

6
4

F
a
ct

o
r

-1
.9

0
0

-1
.9

6
9

-1
.5

3
8

-0
.1

4
6

0
.1

0
8

M
ID

A
S

B
et

a
If
o

0
.0

9
8

2
.1

1
9

2
.2

6
4

1
.6

0
3

2
.6

7
9

2
.8

0
0

Z
E

W
-2

.1
8
1

-2
.6

4
4

-2
.1

4
3

0
.8

9
6

1
.4

9
0

2
.0

8
0

0
.7

4
1

F
a
ct

o
r

-0
.9

6
6

-1
.2

5
4

-0
.9

3
8

1
.7

2
5

2
.0

5
0

1
.9

2
5

1
.5

6
2

2
.4

4
7

M
F
-V

A
R

(p
)

If
o

0
.6

9
4

1
.9

6
7

2
.1

7
6

1
.4

2
5

2
.5

2
3

2
.7

7
0

1
.3

3
2

2
.1

5
1

1
.8

4
6

Z
E

W
0
.5

4
9

-0
.6

5
5

1
.0

6
7

2
.4

3
1

2
.3

0
0

2
.6

0
9

2
.3

6
5

2
.3

0
4

2
.1

6
7

2
.2

9
4

F
a
ct

o
r

-1
.2

8
8

-1
.4

3
7

-0
.8

9
0

0
.2

7
8

0
.6

4
8

1
.3

9
4

0
.1

8
2

0
.6

9
4

0
.7

4
1

-0
.3

3
7

-1
.3

0
8

N
o
te

s
:

T
h
is

ta
b
le

co
n
ta

in
s

th
e

re
su

lt
s

o
f

th
e

st
a
ti

st
ic

a
l
te

st
o
f

eq
u
a
l
R

M
S
E

o
f

tw
o

m
o
d
el

s
p
ro

p
o
se

d
b
y

C
la

rk
a
n
d

W
es

t
(2

0
0
7
).

A
t-

st
a
ti

st
ic

g
re

a
te

r
th

a
n

+
1
.2

8
2

(f
o
r

a
o
n
e

si
d
ed

0
.1

0
te

st
)

o
r

+
1
.6

4
5

(f
o
r

a
o
n
e

si
d
ed

0
.0

5
te

st
)

in
d
ic

a
te

s
th

a
t

M
o
d
el

2
(r

o
w

s)
h
a
s

a
si

g
n
ifi

ca
n
t

sm
a
ll
er

R
M

S
E

th
a
n

M
o
d
el

1
(c

o
lu

m
n
s)

a
n
d

v
ic

e
v
er

sa
.

H
et

er
o
sc

ed
a
st

ic
a
n
d

a
u
to

co
rr

el
a
ti

o
n

ro
b
u
st

st
a
n
d
a
rd

er
ro

rs
(N

ew
ey

-W
es

t)
a
re

co
m

p
u
te

d
.



7. Empirical Examples 191

7.6.2 The Monthly Data Set

We employ and extended the same data set as used in Marcellino and Schu-

macher (2007). The monthly data set for Germany contains 111 time series

over the sample period 1992:01 until 2006:12. The source of the time series

is the Bundesbank database. The download date is 21 June 2008. In this

data set there are missing values at the end of the sample.

Natural logarithms were taken for all time series except interest rates. Sta-

tionarity was enforced by appropriately differencing the time series. Most of

the downloaded time series are already seasonally adjusted. Remaining time

series with seasonal fluctuations were adjusted using Census-X12 prior to the

forecasting exercise. We also corrected for outliers. Large outliers are defined

as observations that differ from the sample median by more than six fold the

sample inter-quartile range (see Watson (2003)). The identified observation

is set equal to the respective outside boundary of the inter-quartile.

Included monthly time series

Money market rates Overnight money Monthly average

Money market rates One-month funds Monthly average

Money market rates Three-month funds Monthly average

Money market rates Six-month funds Monthly average

Money market rates Twelve-month funds Monthly average

Money market rates Fibor one-month funds Monthly average

Money market rates Fibor three-month funds Monthly average

Money market rates Fibor six-month funds Monthly average

Money market rates Fibor nine-month funds Monthly average

Money market rates Fibor twelve-month funds Monthly average

Money stock M3 3-month moving average (centred)

Money Stock M1

Money Stock M2

Money Stock M3

Turnover Intermediate goods

Turnover Capital goods
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Turnover Durable goods

Turnover Non-durable goods

Turnover Industry

Turnover Consumer goods

Orders received Value

Orders received Value Intermediate goods

Orders received Value Capital goods

Orders received Value Consumer goods

Employment

Orders received Volume

Orders received Volume Intermediate goods

Orders received Volume Capital goods

Orders received Volume Consumer goods

Unemployment

Unemployment rate (unemployment as a percentage of the civilian labour

force)

Job vacancies

Orders received Construction sector

Orders received Structural engineering

Orders received Housing construction

Orders received Industrial construction

Orders received Public sector construction

Orders received Civil engineering

Orders received Industrial clients

Orders received Public sector clients

Consumer price index

Consumer price index

Producer price index of farm products

Production Production sector including construction

Production Production sector excluding construction

Production Construction sector Total

Production Structural engineering

Production Civil engineering
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Production Energy

Production Industry

Producer prices for industrial products (domestic sales)

Producer price index of industrial products / Total

Imports Price index

Exports Price index

Terms of trade

Retail turnover Value

Retail turnover Value Including retail of motor vehicles and including petrol

stations

Retail turnover Volume

Retail turnover Volume Including retail of motor vehicles and including petrol

stations

Yields on debt securities outstanding issued by residents Public debt securi-

ties

Yields on debt securities outstanding issued by residents Total

Yields on debt securities outstanding issued by residents Mortgage

Yields on debt securities outstanding issued by residents Public

CDAX price index / End 1987 = 100 End of month

Yields on debt securities outstanding issued by residents Debt securities is-

sued by special purpose credit institutions / Monthly average

Yields on debt securities outstanding issued by residents Other bank debt

securities / Monthly average

Yields on debt securities outstanding issued by residents Corporate bonds /

Monthly average

Yield on foreign DM/EURO bonds outstanding issued by a German-managed

syndicates / Monthly average

Yields on debt securities outstanding issued by residents / Listed Federal

securities / Monthly average

CDAX performance index End 1987 = 100 End of month

REX price index End of month

REX performance index End 1987 = 100 End of month

Yields on debt securities outstanding issued by residents Mean residual ma-
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turity of more than 1 and up to 2 years

Yields on debt securities outstanding issued by residents Mean residual ma-

turity of more than 2 and up to 3 years

Yields on debt securities outstanding issued by residents Mean residual ma-

turity of more than 3 and up to 4 years

Yields on debt securities outstanding issued by residents Mean residual ma-

turity of more than 5 and up to 6 years

Yields on debt securities outstanding issued by residents Mean residual ma-

turity of more than 6 and up to 7 years

Yields on debt securities outstanding issued by residents Mean residual ma-

turity of more than 7 years /Monthly average

Yields on debt securities outstanding issued by residents Bank debt securities

Mean residual maturity of more than 1 and up to 2 years

Yields on debt securities outstanding issued by residents Bank debt securities

Mean residual maturity of more than 2 and up to 3 years

Yields on debt securities outstanding issued by residents Bank debt securities

Mean residual maturity of more than 3 and up to 4 years

Yields on debt securities outstanding issued by residents Bank debt securities

Mean residual maturity of more than 4 and up to 5 years

Yields on debt securities outstanding issued by residents Bank debt securities

Mean residual maturity of more than 5 and up to 6 years

Yields on debt securities outstanding issued by residents Bank debt securities

Mean residual maturity of more than 6 and up to 7 years

Yields on debt securities outstanding issued by residents Bank debt securities

Mean residual maturity of more than 7 years

Yields on debt securities outstanding issued by residents Public debt securi-

ties Mean residual maturity of more than 1 and up to 2 years

Yields on debt securities outstanding issued by residents Public debt securi-

ties Mean residual maturity of more than 2 and up to 3 years

Yields on debt securities outstanding issued by residents Public debt securi-

ties Mean residual maturity of more than 3 and up to 4 years

Yields on debt securities outstanding issued by residents Public debt securi-

ties Mean residual maturity of more than 4 and up to 5 years
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Yields on debt securities outstanding issued by residents Public debt securi-

ties Mean residual maturity of more than 5 and up to 6 years

Yields on debt securities outstanding issued by residents Public debt securi-

ties Mean residual maturity of more than 6 and up to 7 years

Yields on debt securities outstanding issued by residents Public debt securi-

ties Mean residual maturity of more than 7 years

Yields on debt securities outstanding issued by residents Bank debt securities

DAX price index End 1987 = 1000 End of month

DAX performance index End 1987 = 1000 End of month

Yields on debt securities outstanding issued by residents Listed Federal se-

curities Residual maturity of more than 15 and up to 30 years

Price of gold in London / morning fixing 1 ounce of fine gold = USD ...

Yields on debt securities outstanding issued by residents Mean residual ma-

turity of more than 7 and up to 8 years

Yields on debt securities outstanding issued by residents Mean residual ma-

turity of more than 8 and up to 9 years

Yields on debt securities outstanding issued by residents Mean residual ma-

turity of more than 9 and up to 10 years

Yields on debt securities outstanding issued by residents Public debt securi-

ties Mean residual maturity of more than 7 and up to 8 years

Yields on debt securities outstanding issued by residents Public debt securi-

ties Mean residual maturity of more than 8 and up to 9 years

Yields on debt securities outstanding issued by residents Public debt securi-

ties Mean residual maturity of more than 9 and up to 10 years

Yields on debt securities outstanding issued by residents Bank debt securities

Mean residual maturity of more than 7 and up to 8 years

Yields on debt securities outstanding issued by residents Bank debt securities

Mean residual maturity of more than 8 and up to 9 years

Yields on debt securities outstanding issued by residents Bank debt securities

Mean residual maturity of more than 9 and up to 10 years

Yields on listed Federal securities (only bonds eligible as underlying instru-

ments for future contracts are included

Yields on debt securities outstanding issued by residents Mortgage Pfand-
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briefe Mean residual maturity of more than 1 and up to 2 years

Yields on debt securities outstanding issued by residents Mortgage Pfand-

briefe Mean residual maturity of more than 2 and up to 3 years

Yields on debt securities outstanding issued by residents Mortgage Pfand-

briefe Mean residual maturity of more than 3 and up to 4 years

Yields on debt securities outstanding issued by residents Mortgage Pfand-

briefe Mean residual maturity of more than 4 and up to 5 years

Yields on debt securities outstanding issued by residents Mortgage Pfand-

briefe Mean residual maturity of more than 5 and up to 6 years

Yields on debt securities outstanding issued by residents Mortgage Pfand-

briefe Mean residual maturity of more than 6 and up to 7 years

Yields on debt securities outstanding issued by residents Mortgage Pfand-

briefe Mean residual maturity of more than 7 years / Monthly average

Yields on debt securities outstanding issued by residents Mortgage Pfand-

briefe Mean residual maturity of more than 7 and up to 8 years

Yields on debt securities outstanding issued by residents Mortgage Pfand-

briefe Mean residual maturity of more than 8 and up to 9 years

Yields on debt securities outstanding issued by residents Mortgage Pfand-

briefe Mean residual maturity of more than 9 and up to 10 years

Yields on debt securities outstanding issued by residents Public Pfandbriefe

Mean residual maturity of more than 1 and up to 2 years

Yields on debt securities outstanding issued by residents Public Pfandbriefe

Mean residual maturity of more than 2 and up to 3 years

Yields on debt securities outstanding issued by residents Public Pfandbriefe

Mean residual maturity of more than 3 and up to 4 years

Yields on debt securities outstanding issued by residents Public Pfandbriefe

Mean residual maturity of more than 4 and up to 5 years

Yields on debt securities outstanding issued by residents Public Pfandbriefe

Mean residual maturity of more than 5 and up to 6 years

Yields on debt securities outstanding issued by residents Public Pfandbriefe

Mean residual maturity of more than 6 and up to 7 years

Yields on debt securities outstanding issued by residents Public Pfandbriefe

Mean residual maturity of more than 7 years
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Yields on debt securities outstanding issued by residents Public Pfandbriefe

Mean residual maturity of more than 7 and up to 8 years

Yields on debt securities outstanding issued by residents Public Pfandbriefe

Mean residual maturity of more than 8 and up to 9 years

Yields on debt securities outstanding issued by residents Public Pfandbriefe

Mean residual maturity of more than 9 and up to 10 years

Price of gold in London afternoon fixing 1 ounce of fine gold = USD ...

Term structure of interest rates on listed Federal securities (method by Svens-

son) residual maturity of 1 years

Term structure of interest rates on listed Federal securities (method by Svens-

son) residual maturity of 2 years

Term structure of interest rates on listed Federal securities (method by Svens-

son) residual maturity of 3 years

Term structure of interest rates on listed Federal securities (method by Svens-

son) residual maturity of 4 years

Term structure of interest rates on listed Federal securities (method by Svens-

son) residual maturity of 5 years

Term structure of interest rates on listed Federal securities (method by Svens-

son) residual maturity of 6 years

Term structure of interest rates on listed Federal securities (method by Svens-

son) residual maturity of 7 years

Term structure of interest rates on listed Federal securities (method by Svens-

son) residual maturity of 8 years

Term structure of interest rates on listed Federal securities (method by Svens-

son) residual maturity of 9 years

Term structure of interest rates on listed Federal securities (method by Svens-

son) residual maturity of 10 years

Ifo business situation capital goods producers

Ifo business situation producers durable goods

Ifo business situation producers non-durable goods

Ifo business situation retail trade
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Ifo business situation wholesale trade

Ifo business expectations next six months capital goods producers

Ifo business expectations next six months producers durable goods

Ifo business expectations next six months producers non-durable goods

Ifo business expectations next six months retail trade

Ifo business expectations next six months wholesale trade

Ifo stocks of finished goods capital goods producers

Ifo stocks of finished goods producers durable goods

Ifo stocks of finished goods producers non-durable goods

7.6.3 The Daily Data Set

The daily data were downloaded on the 12 August 2008 from the Deutsche

Bundesbank and the IMF data base. In contrast to the monthly data, we

did not seasonally adjust the data. Natural logarithms were taken for all

time series except interest rates. Stationarity was enforced by appropriately

differencing the time series. We also corrected for outliers as in the monthly

case.

Included daily time series

Money market rates reported by Frankfurt banks / Overnight money

Yields on debt securities outstanding issued by residents / Public debt secu-

rities

Yields on debt securities outstanding issued by residents

Yields on debt securities outstanding issued by residents / Mortgage Pfand-

briefe

Yields on debt securities outstanding issued by residents / Public Pfandbriefe

Yields on debt securities outstanding issued by residents / Corporate bonds

Yield on foreign DM/EURO bonds outstanding issued by a German man-

aged syndicate

Yields on debt securities outstanding issued by residents / Listed Federal

securities
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Yields on listed Federal securities (only bonds eligible as underlying instru-

ments for future contracts are included)

Yields on debt securities outstanding issued by residents / Bank debt secu-

rities

Price of gold in London / morning fixing / 1 ounce of fine gold = USD ..

Price of gold in London / afternoon fixing / 1 ounce of fine gold = USD ...

Yields on debt securities outstanding issued by residents / Listed Federal

securities / Residual maturity of more than 3 and up to 5 years

Yields on debt securities outstanding issued by residents / Listed Federal

securities / Residual maturity of more than 5 and up to 8 years

Yields on debt securities outstanding issued by residents / Listed Federal

securities / Residual maturity of more than 8 and up to 15 years

Yields on outstanding debt securities issued by residents / Listed Federal

securities / Residual maturity of more than 15 and up to 30 years

DAX

Government Benchmarks, Bid, 10 Year, Yield, Close, EUR

Government Benchmarks, Bid, 2 Year, Yield, Close, EUR

Government Benchmarks, Bid, 3 Year, Yield, Close, EUR

Government Benchmarks, Bid, 7 Year, Yield, Close, EUR

Interest Rate Swaps, Ask, 1 Year, Close, EUR

Interest Rate Swaps, Ask, 10 Year, Close, EUR

Interest Rate Swaps, Ask, 2 Year, Close, EUR

Interest Rate Swaps, Ask, 3 Year, Close, EUR

Interest Rate Swaps, Ask, 30 Year, Close, EUR

Interest Rate Swaps, Ask, 4 Year, Close, EUR

Interest Rate Swaps, Ask, 5 Year, Close, EUR

Interest Rate Swaps, Ask, 6 Year, Close, EUR

Interest Rate Swaps, Ask, 7 Year, Close, EUR

Interest Rate Swaps, Ask, 8 Year, Close, EUR

Interest Rate Swaps, Ask, 9 Year, Close, EUR

Spot Rates, USD/DEM, Close, DEM

Deposit Rates, 1 Month, Close, EUR

Deposit Rates, 1 Week, Close, EUR
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Deposit Rates, 12 Month, Close, EUR

Deposit Rates, 2 Month, Close, EUR

Deposit Rates, 3 Month, Close, EUR

Deposit Rates, 6 Month, Close, EUR

Deposit Rates, 9 Month, Close, EUR

Deposit Rates, T/N, Close, EUR

Interbank Rates, BBA LIBOR, 1 Month, Fixing, EUR

Interbank Rates, BBA LIBOR, 1 Week, Fixing, EUR

Interbank Rates, BBA LIBOR, 10 Month, Fixing, EUR

Interbank Rates, BBA LIBOR, 11 Month, Fixing, EUR

Interbank Rates, BBA LIBOR, 12 Month, Fixing, EUR

Interbank Rates, BBA LIBOR, 2 Month, Fixing, EUR

Interbank Rates, BBA LIBOR, 3 Month, Fixing, EUR

Interbank Rates, BBA LIBOR, 4 Month, Fixing, EUR

Interbank Rates, BBA LIBOR, 5 Month, Fixing, EUR

Interbank Rates, BBA LIBOR, 6 Month, Fixing, EUR

Interbank Rates, BBA LIBOR, 7 Month, Fixing, EUR

Interbank Rates, BBA LIBOR, 8 Month, Fixing, EUR

Interbank Rates, BBA LIBOR, 9 Month, Fixing, EUR

Interbank Rates, EONIA, O/N, Fixing, EUR

Interbank Rates, EURIBOR, 12 Month, Fixing, EUR

Interbank Rates, EURIBOR, 3 Month, Fixing, EUR

Policy Rates, ECB Lombard Rate (Ceiling), EUR



8. SUMMARY AND CONCLUSIONS

The continuous inflow of information concerning economic variables is closely

monitored by central banks, governments and companies. Knowledge of the

current and future states of the economy is essential as a basis for public

and private decisions. However, there is no ’official’ definition of the state

of economy, nor is there a representative economic time series. Nevertheless,

GDP is widely acknowledged as the most comprehensive indicator for the

economic performance of countries. Therefore, possession of accurate esti-

mates of current and future values of GDP is essential for economic agents.

But there are considerable challenges: GDP is only sampled at quarterly

intervals, published with delay, and then subject to several revisions.

Therefore, there is a requirement for methods which are able to estimate

and forecast (final) GDP and other low-frequency variables by using higher-

frequency information. The existing solutions in the literature are barely

connected, not described, compared, and tested comprehensively against each

other. In this thesis, we provide new research to fill this gap.

In a first step we outline the techniques capable of handling mixed-frequency

data. The predominant approach in applied forecasting is to transform the

data into a single frequency. Early approaches to combine different frequen-

cies were linkage models and bridge equations. Linkage models pool forecasts

from different frequencies to improve the forecasting accuracy of the lower

frequency. They have often been used in the late 1980s and early 1990s. In

contrast, bridge equations are still quite popular in applied work, especially

at central banks. Bridge equations allow to update the current estimate of

an economic variable as soon as new information becomes available. Yet it

is essentially still a single-frequency approach.
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Recently, two pure mixed-frequency models were developed: the state-space

VARMA and the MIDAS (MIxed DAta Sampling) approach. We review

these two techniques extensively and compare them against each other.

In an extensive literature review we link these approaches to the existing em-

pirical applications. In general, we can conclude that mixed-frequency data

matter for forecasting. Many articles demonstrate that accounting for timely

information improves the forecasting accuracy of lower-frequency variables,

notably the GDP. Recently, factor models have played a dominant role in fore-

casting. The extraction of factors allows forecasters to condense a large data

set into a few factors and therefore to account for the aspect of parsimony in

econometrics. Recent factor models also account for mixed-frequency data.

Nevertheless, the focus is still on monthly data.

Currently, there are only few practical applications of the two mixed-frequency

time series approaches. But they clearly demonstrate their advantage in fore-

casting over single-frequency approaches. In this thesis we confirm and gen-

eralize these early findings in a systematic way. Mixed-frequency approaches

are feasible, provide more accurate forecasts, and are able to accommodate

any given data structure.

As model selection is essential for any forecasting calculation, we investigate

how to best specify mixed-frequency models. Although standard model se-

lection criteria can in principle be applied, this aspect has been neglected

in the literature to date. The estimation of mixed-frequency VAR models is

computationally intensive, especially for models with many variables. Nev-

ertheless, we find that small models selected on the basis of the BIC criterion

are sufficiently accurate for forecasting purposes.

In the MIDAS context we elicit whether the weighting function should be re-

stricted (for example to ensure declining weights) and how many lags should

be included for estimation. We find that the number of included lags, the

restriction aspect, and the forecast performance are interrelated. In some

cases restrictions cause a deterioration in the forecasting performance. For

strongly persistent target variables the restrictions may indeed improve fore-
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casting accuracy. Applying the BIC criterion can determine the optimal

number of lags included. Since the additional inclusion of lags does not in-

crease the number of estimated parameters, there is a risk of including too

many lags and thereby reducing the estimation sample. As a rule of thumb,

we suggest using four or five times the frequency mixture as a starting point

for lag selection. These results apply to both the exponential Almon lag and

the Beta weighting function.

The evaluation of the appropriate model specification prepares the ground for

a systematic forecasting comparison in our Monte Carlo study. Employing

four data-generation processes displaying realistic economic data structures,

we find that mixed-frequency time series models are at least as good as

their single-frequency counterparts. In many cases the use of untransformed

mixed-frequency data clearly outperforms the temporal aggregated data re-

sults. However, none of of the mixed-frequency approaches clearly domi-

nates. For processes with strongly autoregressive components the MF-VAR

model has an advantage over the MIDAS technique. Given the structure

and length of standard macroeconomic time series, forecasts generated by

both approaches are robust, and improvements in forecasting accuracy by

increased sample size are rather small. Given the heteroscedastic nature of

many economic and financial series, the relative gain in forecasting accuracy

relative to single-frequency models is smaller compared to the homoscedastic

case. The biggest advantage of mixed-frequency models is achieved by adjust-

ing the information set. Allowing for intra-period information is only feasible

for mixed-frequency models (except for bridge equations), and clearly im-

proves forecasting accuracy. Relative gains up to 80 percent can be reached.

Therefore, the mixed-frequency VAR and the MIDAS approach provide use-

ful tools for updating current estimates of macroeconomic variables, even

these are published with delay and are subject to revisions.

We verify the finding from the Monte Carlo study in a real-data example

using German GDP. Thus, we are the first to compare both approaches with

real data. The Ifo Business Climate Index, the ZEW Index of Economic Sen-

timent, and factors extracted from a large database were used as indicators.
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Independently of the indicators, the mixed-frequency VAR and the MIDAS

model outperformed single-frequency benchmark models both in the short

and long run.

Eventually we went a step further by replacing monthly with daily indica-

tors. Static and dynamic factors are extracted from a daily database and

used within the MIDAS framework as indicators. Although our approach

does not outperform short-run monthly generated forecasts, we consider this

experiment as a useful starting point for future research where daily or even

higher-frequency data can help to nowcast the economy in almost real-time.

We propose three steps for future research. First, one should account for non-

equidistantly sampled time series. Second, the computational burden must

be reduced considerably, since state-space models are able to handle any data

patterns but they quickly become infeasible with large data sets. Third, one

needs to account for heteroscedastic and erratic data. In our investigation

we find that these patterns transmit to the forecast evaluation measures.

Therefore they are not reliable in assessing the forecasting performance in

almost real time.

This thesis can trigger the discussion of how far we can push the usage

of high-frequency data for the purpose of forecasting. Maybe there is a

frequency-mixture limit, where it is inadvisable to use still high-frequency

data to generate forecasts. To phrase it differently: Are temporally aggre-

gated forecasts are superior beyond a certain level of aggregation?

A further issue for future research is, whether the advantage of mixed-

frequency models over single-frequency models still holds when the forecast

horizon is increased. Our empirical example provides evidence in the affir-

mative.
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