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1 Introduction

Material properties of nitrides (e.g. mechanical hardness, stability) often are su-

perior to those of the respective oxides (c.f. boron oxide/boron nitride, silicon

oxide/silicon nitride, aluminum oxide/aluminum nitride). This observation is at-

tributed to the higher covalency of the constituting chemical bonds and the higher

degree of cross linking in nitride structures in comparison to oxides [1].

Binary silicon nitride Si3N4 is the most important non-oxidic ceramic material

for high performance applications. Sintered components have been widely used

in motor and turbine production (Figure 1.1). Until 1999 only the two poly-

Figure 1.1: Workpieces made from
Si3N4 (©Kyocera Corp.).

morphs α- and β-Si3N4 have been known, which

are both built up by a three-dimensional net-

work of corner sharing SiN4 tetrahedra com-

prising 3-bonded N[3] atoms (superscript num-

bers in square brackets denote the connectiv-

ity/coordination of an atom) [2, 3]. Recently,

cubic spinel-type γ-Si3N4 has been discovered,

containing a novel structural motif, SiN6 octahe-

dra, besides well known SiN4 tetrahedra [4, 5].

First principle calculations for γ-Si3N4 showed

an excellent agreement between experimentally

observed quantities and calculated results. The

transition pressure of γ-Si3N4 was computed to

12 to 13GPa, matching quite well experimen-

tally determined 12 to 15GPa [4�6]. The bulk modulus of the γ-phase was deter-

mined to 290 - 317GPa [7, 8] and computed to 280 to 310GPa [4, 6, 9].

The discovery of the spinel-type structure of γ-Si3N4 (Figure 1.2) triggered further

studies. A �rst objective was the search for so-called post-spinel phases of silicon

1



1 Introduction

nitride. Scanning a manifold of candidate structures, Kroll et al. [10] identi�ed a

CaTi2O4-type Si3N4 appearing above 150GPa. Sekine [11] has recently proposed

a post-spinel phase of Si3N4 based on shock-wave data. The formation pressure

of this novel modi�cation of silicon nitride, which was not quenchable to ambient

conditions, was deduced to be larger than 140GPa.

Figure 1.2: Structures of β- and γ-Si3N4.

A second direction in the high-pressure chemistry of silicon nitride was devoted to

the intermediate and metastable phase of wII-Si3N4 [4, 12]. It turned out that this

Figure 1.3: The transformation be-
tween the spinel-type γ-Si3N4 and wII-
Si3N4 (ball-and-stick illustration of the
distortion of SiN6 octahedra to SiN4

tetrahedra) [12].

hypothetical modi�cation of silicon nitride (re-

lated to a high-pressure modi�cation of the zinc

silicate willemite) is structurally related to the

spinel-type by a Bain-correspondence. As the

anion sublattice in spinel is approximately fcc,

the anion packing in the wII-type approximately

bcc, a transition from wII-Si3N4 to spinel-type

Si3N4 might be induced kinetically in a simi-

lar way that martensitic transitions happen [12]

(Figure 1.3).

The synthesis and structural chemistry of

ternary and higher nitridosilicates (deriving from

the binary nitride Si3N4) has only recently been

2



explored in detail. In contrast to ternary oxosilicates, which are usually synthesiz-

able from binary oxides, ternary nitridosilicates could not yet be synthesized from

binary nitrides. Nitridosilicates are usually obtained by high-temperature reaction

of the respective alkaline earth and/or rare earth metals with polymeric silicon di-

imide.

Compared to common oxosilicates, nitridosilicates exhibit signi�cantly extended

structural possibilities. As basic building blocks SiN4, SiN6, N3Si-SiN3 etc. have

to be considered (compare for examples [13�17]). Furthermore, while in oxosilicates

the possibilities of linking the fundamental building units is limited by the possi-

bilities of oxygen to either connect two polyhedra centers (O[2]) or being terminally

bound (O[1]), nitrogen can either be terminally bound (N[1]), bridging (N[2]) or con-

necting three or even four polyhedra centers (N[3], N[4]) (Figure 1.4).

Figure 1.4: Possibilities of linking coordination polyhedra by N.

Additional to the wide variety nitridosilicates show in their structural chemistry, they

exhibit interesting material properties. Besides extraordinary mechanical hardness

and thermal as well as chemical stability, they exhibit interesting optical properties.

The luminescence in Eu2+-doped Ba2Si5N8 has been studied giving rise to strong

�uorescence, thermoluminescence and upconversion properties [18]. Sr2Si5N8:Eu
2+

and SrSi2O2N2:Eu
2+ as novel powerful red- and green-emitting phosphors have been

combined with a blue GaN primary emitter to give the �rst all-nitride phosphor-

converted white LED (2pc-LED) [19]. Furthermore, the nitridosilicates M2Si5N8

(M = Ca, Sr, Ba), CeSi3N5, and BaYbSi4N7 show rather high nonlinearities up to

0.9 pm2/V2 for second harmonic generation (SHG) [20]. Nitridosilicates might there-

fore be speci�cally useful as a new class of nonlinear optical materials. In addition,

the magnetic properties of several lanthanide containing nitridosilicates have been

investigated [21].

3



1 Introduction

Phosphorus nitride and the deriving nitridophosphates are structurally related to

both oxidic phosphates and silicates but also to silicon nitride and the nitridosil-

icates. In 2001, a new high-pressure polymorph γ-P3N5 was discovered [22, 23].

Similarly to the high-pressure phase transformation of Si3N4 a partial increase of

the coordination number of P from 4 (tetrahedral) to 5 (quadratic pyramidal) oc-

curs (Figure 1.5) and this structural transformation is accompanied by a signi�cant

increase of density and mechanical hardness [22, 23].

Density functional calculations led to the prediction of an even higher condensed

kyanite-type δ-P3N5 polymorph with PN6 octahedra and PN4 tetrahedra, coming

into existence at pressures exceeding 40GPa. On decompression, this phase is likely

to undergo a shear-distortion, resulting in the yet unknown structure of δ'-P3N5,

which consists of PN6 octahedra, trigonal prisms PN5, and PN4 tetrahedra (Figure

1.5). A further signi�cant increase in density and mechanical hardness is predicted

[24].

Figure 1.5: Structures of α-P3N5 as well as the high-pressure polymorph γ-P3N5 and predicted
δ'-P3N5.

Besides this pressure induced increase of the coordination number of P in γ-P3N5,

a number of novel highly condensed nitridophosphates consisting of condensed PN4

tetrahedra were successfully synthesized at higher pressure. Known from experi-

ence these highly condensed compounds are not accessible by classical solid-state

reactions of the respective binary nitrides. By application of the so called "azide-

route" (reaction of the respective metal azide with P3N5 at high pressure and high

temperature) � among others � the syntheses of MP2N4 (M = Be, Mg, Ca, Sr, Ba)

was possible. While BeP2N4 crystallizes in the phenakite (Be2SiO4) structure [25],

4



MgP2N4, CaP2N4 and SrP2N4 exhibit the megakalsilite (KAlSiO4) structure [25�27]

and BaP2N4 is isotypic to CaB2O4-IV [25, 28, 29].

While the crystal structures and the materials properties of normal-pressure nitri-

dosilicates and nitridophosphates have been intensively investigated, nearly noth-

ing is known about any high-pressure phases of these two classes of compounds.

However, with respect to the recent endeavors that have been undertaken on the

preparation and materials properties of the binary high-pressure phases γ-Si3N4 and

γ-P3N5 and the diverse structural chemistry and broad spectrum of properties of

ternary nitridosilicates and -phosphates, such high-pressure Si/N and P/N-phases

should be accessible and would be speci�cally promising, both to basic solid-state

chemistry and materials research.

The objective of this thesis is to predict new high-pressure phases of nitridosilicates

and nitridophosphates within density functional theory (DFT), aiming at identify-

ing promising systems for high-pressure experiments as well as facilitating structural

characterization of such (e.g. from powder di�raction data) by o�ering structural

models.

The search for novel high-pressure polymorphs for a given compound is governed

by Le Châtelier's Principle ("Lorsque les modi�cations extérieures apportées à un

système physico-chimique en équilibre provoquent une évolution vers un nouvel état

d'équilibre, l'évolution s'oppose aux perturbations qui l'ont engendrée et en modère

l'e�et."), which has been speci�ed by Le Châtelier himself for the parameter pres-

sure (Loi expeérimentale de Le Châtelier). An augmentation in pressure applied to

a closed system in equilibrium and maintained at a constant temperature results in

a shift of the equilibrium towards a smaller volume. Applied to structural transfor-

mations induced by high pressure, this means a pressure-induced phase transition is

characterized by a negative volume change ∆V , or � equivalent � a positive density

change ∆ρ. A new high-pressure phase therefore can crystallize in a structure either

having in average shorter distances between the constituting atoms (giving rise to

increased electrostatic repulsion between the constituting atoms) or an increased

coordination number resulting in larger interatomic distances to reduce electrostatic

repulsion (Pressure Distance Paradoxon). In this thesis special attention was payed

to the second possibility, aiming at coordination numbers for both Si and P greater

than four.

5



1 Introduction

In the �rst part of this thesis a short outline of the standard theoretical methods as

well as the underlaying theory is given. In the second part an extensive study on the

high-pressure behavior of the compounds M3N2, MSiN2 and M2Si5N8 (M = Be, Mg,

Ca, Sr, Ba) concerning the evolution of high-pressure phases as well as pressure-

induced decomposition reactions is presented. In Chapter 7 the pressure-induced

transformation of phenakite-type BeP2N4 into spinel-type and inverse spinel-type

BeP2N4 is examined. The research presented in this thesis was conducted as part

of a research project within the priority project SPP 1236 ("Strukturen und Eigen-

schaften von Kristallen bei extrem hohen Drücken und Temperaturen" - "Struc-

tures and properties of crystals at extreme high pressures and temperatures") of the

Deutsche Forschungsgemeinschaft (DFG).

6



2 Theory and Methods

In principle, all physical and chemical knowledge about a system can be obtained

from the quantum mechanical wave function, which is obtained by solving the

Schrödinger equation of the complete many particle system. However, in practice

analytically solving the Schrödinger equation for a N-particle system proves to be

impossible for systems with more than two particles [30]. Therefore approximations

have to be introduced, since in solid state compounds the number of electrons N is

of the order of magnitude of 1023.

This chapter will give a brief description of the quantum mechanical theroy and

methods used in this thesis, followed by a short assessment of the Equations of

States (EOS) used to evaluate the calculated energy-volume data.

2.1 The Schrödinger Equation

Schrödingers equation covers most problems in the electronic structure of matter,

including time. In the majority of cases, however, atomic structures without time-

dependent interactions are examined. The time-independent Schrödinger equation

for a system composed of N electrons and M nuclei is given as

HΨ(ri, RA) = EΨ(ri, RA) (2.1)

where H is the Hamiltonian, E the energy of the system, and Ψ(ri, RA) the wave

function with ri and Ri corresponding to the electronic, spin and nuclear coordinates.

The non-relativistic Hamiltonian H , given in atomic units (see [31]), is

H = −
N∑
i=1

1

2
52
i −

M∑
A=1

1

2MA

52
A −

N∑
i=1

M∑
A=1

ZA
riA

+
N∑
i=1

N∑
j>i

1

rij
+

M∑
A=1

∑
B>A

ZAZB
RAB

. (2.2)

7



2 Theory and Methods

The �rst term corresponds to the kinetic energy Te of the electrons i, the second term

to the kinetic energy Tn of the nuclei A, where MA is the mass of nucleus A. The

third term represents the Coulomb attraction Ven between the nuclei and electrons

with ZA being the atomic number of the nuclei and riA being the distance between

the respective electrons and nuclei. The fourth term describes the Coulomb repulsion

Vnn between the electrons with rij being the distances between the electrons i and

j. The �fth term gives the repulsion Vnn between the nuclei, where ZA and ZB are

the atomic numbers of the nuclei and the RAB are the distances between the nuclei

A and B, respectively.

In a more compact way, the Hamiltonian can be written as

H = T e +T n +V en +V ee +V nn (2.3)

2.2 The Born-Oppenheimer Approximation

In 1923 Born and Oppenheimer [32] stated - since the nuclei are much heavier than

electrons and therefore move on a time scale which is approximately three orders of

magnitude larger than that of the electrons - that the electrons can be considered

to be moving in a �eld of �xed nuclei and electronic and nuclear motion can be

separated. Resulting from this assumption, T n in Eq. 2.3 can be neglected and the

contribution of V nn can be considered as a constant. The electronic Hamiltonian

then can be written as

H elec = −
N∑
i=1

1

2
52
i −

N∑
i=1

M∑
A=1

ZA
riA

+
N∑
i=1

N∑
j>i

1

rij
(2.4)

or short

H elec = T e +V en +V ee. (2.5)

The Schrödinger equation

H elecψ(ri, RA) = Eelecψ(ri, RA) (2.6)

8



2.3 The Variational Principle

then gives the electronic energy Eelec with ψ(ri, RA) being the electronic wave func-

tion. Both, Eelec and ψ(ri, RA) depend parametrically on the nuclear coordinates

RA. The energy for a given nuclear arrangement must also contain the nuclear

repulsion:

Etot = Eelec + Vnn, (2.7)

with Vnn being a constant. In the same way as the electronic Hamiltonian, the

nuclear Hamiltonian can be formulated as

H nuc = −
M∑
A=1

1

2MA

52
A + Etot({RA}). (2.8)

The energy Etot({RA}) becomes a potential for the nuclear motion.

The corresponding approximation to the total wave function then can be written as

a product of the electronic wave function ψ(ri, RA) and the nuclear wave function

Ξ(RA):

Ψ(ri, RA) = ψ(ri, RA)Ξ(RA). (2.9)

2.3 The Variational Principle

The variational principle [31] allows to approximate the ground state energy E0 of

a system without solving the Schrödinger equation exactly.

Assume Ψ̃ is a trial wave function for the exact ground state wave function Ψ0 as

de�ned in 2.6, the variational integral gives an upper boundary for the ground state

energy: ∫
Ψ̃∗H Ψ̃dτ∫
Ψ̃∗Ψ̃dτ

≥ E0. (2.10)

If Ψ̃ is normalized, i.e.
∫

Ψ̃∗Ψ̃dτ = 1, 2.10 simpli�es to:∫
Ψ̃∗H Ψ̃dτ ≥ E0. (2.11)

The lower the value of the variational integral the closer is Ψ̃ to Ψ0. Therefore, by

minimizing the variational integral the exact ground state wave function Ψ0 can be

approximated.

9



2 Theory and Methods

2.4 Density Functional Theory

In Density Functional Theory (DFT) the electronic many body wave function is

substituted by the ground-state electronic density ρ0. Thereby the degrees of free-

dom are drastically reduced, as the electronic wave function of an N electron system

depends on 3N space-spin coordinates, whereas the ground-state electronic density

only depends on 3 space-spin coordinates.

Density functional theory is founded on the works of Thomas and Fermi in the 1920s

[33�36]. They approximated the electronic kinetic energy in terms of the electronic

density ρ(r). But it required the publication of Hohenberg and Kohns landmark

paper [37] in the 1960s to boost density functional theory and �nally render it one

of the widestly used quantum mechanical methods in solid state science.

2.4.1 The Hohenberg-Kohn Theorems

The �rst Hohenberg-Kohn Theorem states, that the external potential of a system

υ(r) is determined � within a trivial additive constant � by the electron density ρ(r).

As ρ(r) also gives the number of electrons N via

N = N [ρ(r)] =

∫
ρ(r)dr, (2.12)

it also determines the ground-state wave function, the Hamiltonian and all other

electronic properties of the system.

Thus, one can formulate an energy functional E[ρ(r)] in terms of the electron density

ρ(r):

E[ρ(r)] = Te[ρ(r)] + Vee[ρ(r)] + Vne[ρ(r)] =

= FHK [ρ(r)] +

∫
ρ(r)υ(r)dr. (2.13)

The term FHK [ρ(r)] is the Hohenberg-Kohn Functional, which comprises the kinetic

energy Te[ρ(r)] and the potential energy of the electrons Vee[ρ(r)].

The second Hohenberg-Kohn Theorem provides the energy variational principle. For

10
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a trial electronic density ρ̃(r) with

ρ̃(r) ≥ 0 and
∫
ρ̃(r)dr = N (2.14)

the total energy Ẽ[ρ(r)], calculated from 2.13, is always greater or equal to the true

ground-state energy E0:

Ẽ[ρ(r)] ≥ E0∫
ρ̃(r)υ(r)dr + FHK [ρ̃(r)] ≥ E[ρ0(r)] (2.15)

If the Hohenberg-Kohn Functional FHK [ρ(r)] is known, one can easily calculate the

ground-state energy E0 and ground-state electron density ρ0(r) by minimizing the

energy functional E[ρ0(r)] with respect to the electron density.

2.4.2 The Kohn-Sham Equations

In 1965 density functional theory was further advanced by the publication of the

Kohn-Sham Equations [38], which introduced an indirect approach to the kinetic

energy functional T [ρ(r)] and thereby approached the problem of expressing the

electronic kinetic energy in terms of the charge density.

Kohn and Sham used a reference system of N non-interacting, independent elec-

trons, which are moving in an e�ective potential υeff . Then the Hohenberg-Kohn

Functional

HHK [ρ] = Te[ρ] + Vee[ρ] =

= Te[ρ] + J [ρ] + Vee,non−classical (2.16)

can be rewritten to

HHK [ρ] = Ts[ρ] + J [ρ] + EXC [ρ], (2.17)

with Ts[ρ] being the functional of the kinetic energy of N non-interacting electrons,

J [ρ] the functional of the classical part of Vee[ρ] and EXC [ρ] the functional of the

exchange-correlation energy of the electrons.

11
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The functional for the exchange-correlation energy is de�ned as:

EXC [ρ] = (Te[ρ]− Ts[ρ]) + (Vee[ρ]− J [ρ]) (2.18)

containing the di�erence between the exact kinetic energy and the kinetic energy

for N non-interacting electrons as well as the non-classical part of Vee[ρ].

The non-negative and continuous electron density of N non-interacting electrons can

be represented by

ρ(r) =
N∑
i

∑
s

|ψi(r, s)|2 , (2.19)

introducing the orthonormal (〈ψi|ψj〉 = δij) Kohn-Sham orbitals ψi, which represent

the N lowest eigenstates of the one-electron Hamiltonian.

The energy functional of Eq. 2.13 now can be rewritten to (using Eq. 2.17):

E[ρ] =

∫
ρ(r)υ(r)dr + Ts[ρ] + J [ρ] + EXC [ρ] =

=

∫
ρ(r)υ(r)dr +

N∑
i

∑
s

∫
ψ∗i (x)(−1

2
52)ψi(x)dr + J [ρ] + EXC [ρ]. (2.20)

Minimizing E[ρ] leads to the N equations:[
−1

2
52 +υeff

]
ψi = εiψi. (2.21)

The Kohn-Sham e�ective potential υeff is de�ned by

υeff (r) = υ(r) +
δJ [ρ]

δρ(r)
+
δEXC [ρ]

δρ(r)
=

= υ(r) +

∫
ρ(r')

|r− r'|
+ υXC(r) (2.22)

with the exchange-correlation potential

υXC(r) =
δEXC [ρ]

δρ(r)
(2.23)

12
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and where δ
δρ(r)

denotes function variation.

Eqs. 2.19 and 2.21 to 2.23 are the famous Kohn-Sham Equations. They need to be

solved self-consistently because of the dependency of υeff on the electron density ρ(r)

as expressed in Eq. 2.22. Starting from a guess for ρ(r) the e�ective potential υeff
is constructed via Eq. 2.22. Subsequently the Kohn-Sham orbitals ψi are derived

from Eq. 2.21 and a new electron density is calculated from Eq. 2.19. These steps

are repeated until ρ(r) does not change any further.

2.4.3 The Exchange-Correlation Potential EXC

In principle, the Kohn-Sham Theory is exact, fully incorporating the exchange-

correlation e�ects of the electrons. It would yield the exact ground-state electron

density and energy, if the exchange-correlation functional EXC [ρ] was known pre-

cisely. Unfortunately, the exact form of EXC [ρ] is not known. Therefore a number

of models have been developed in order to approximate the exchange-correlation

functional EXC [ρ] and the corresponding operator.

2.4.3.1 The Local Density Approximation LDA

In the Local Density Approximation (LDA) it is assumed, that the exchange-

correlation energy of a non-uniform system can be obtained by applying uniform

electron gas results to in�nitesimal portions of the non-uniform electron distribution.

Here, the electron density ρ(r) of the uniform electron gas [39] and the non-uniform

electron gas at point r in space are the same.

In LDA the exchange-correlation energy EXC is given by

ELDA
XC [ρ] =

∫
ρ(r)εXC [ρ]dr, (2.24)

where εXC is the exchange-correlation energy of one electron of an uniform electron

gas of the electron density ρ(r). The exchange-correlation potential υLDAXC then can
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be written as:

υLDAXC (r) =
δELDA

XC

δρ(r)
=

= εXC(ρ) + ρ(r)
∂εXC(ρ)

∂ρ(r)
. (2.25)

The exchange-correlation energy EXC can be split into an exchange and a correlation

energy part:

EXC [ρ] = EX [ρ] + EC [ρ]. (2.26)

The exchange energy part EX is given by the Dirac exchange-energy functional [39]:

EX [ρ] = −Cx
∫
ρ(r)

4
3dr, (2.27)

where Cx = 3
4
( 3
π
)

1
3 .

For the correlation energy part EC accurate values have been calculated via quantum

Monte Carlo simulations and the results have been interpolated to give an analytical

form for εC by Vosko, Wilk and Nusair [40, 41].

Despite of its simplicity the Local Density Approximation has been successful in de-

scribing the electronic structure, the formation enthalpy and the elastic and vibra-

tional properties of many systems. The disadvantages of the Local Density Approx-

imation are its applicability only to systems with slowly varying electron densities,

the general underestimation of the exchange energy by 10% and the overestimation

of the correlation energy � which is a magnitude smaller than the exchange energy

� by a factor close to 2. Therfore, LDA tends to overestimate bonding interactions

and to underestimate lattice constants [39, 42].

2.4.3.2 The Local Spin Density Approximation LSDA

Within LSDA, additionally open-shell molecules and molecular geometries near dis-

sociation as well as many-electron systems in the presence of a magnetic �eld acting

on the spin of the electrons can be described in a better way [39].

In Spin-Density Functional Theory the electron density is separated into the α-spin

electron density ρα(r) and the β-spin electron density ρβ(r). All functionals of
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DFT, which depend on ρ(r) become functionals of ρα(r) and ρβ(r). The exchange-

correlation energy EXC is then written as

EXC [ρα, ρβ] = EX [ρα, ρβ] + EC [ρα, ρβ], (2.28)

with the exchange energy EX being [43]

ELSDA
X [ρα, ρβ] = −2

1
3Cx

∫ [
(ρα)

4
3 + (ρβ)

4
3

]
dr. (2.29)

The correlation energy EC as a function of rs (radius of a sphere whose volume is

the e�ective volume of an electron ) and the spin polarization ζ has been cast into

a analytic interpolation formula of Monte Carlo simulation results by Vosko, Wilk

and Nusair [40, 41]. The spin polarization ζ is given by:

ζ =
ρα − ρβ

ρα + ρβ
, (2.30)

and ζ = 0 gives the non-polarized and ζ = 1 the fully polarized case. rs is given by

rs =

(
4πρ

3

) 1
3

. (2.31)

2.4.3.3 The Generalized Gradient Approximation GGA

By including the gradient of the electron density5ρ(r) into the exchange-correlation

energy functional EXC , corrections are made for non-uniform densities, which un-

dergo rapid changes. The exchange-correlation energy is now not only a functional

of the electron density but also of its gradient

EXC = EGGA
XC [ρ(r),5ρ(r)] , (2.32)

and again is usually split into an exchange and a correlation part [30, 42]. Several

approximations have been proposed for the exchange and the correlation energy

functionals. The more important are listed in Table 2.1.

Where LDA tends to overestimate bonding interactions and underestimates lattice

constants, the various GGA functionals give more accurate binding energies but
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Table 2.1: Examples for frequently used exchange and correlation functionals in GGA.

Exchange energy εX Correlation energy εC

PW86 (Perdew, Wang)a [44] LYP (Lee, Yang, Parr)b [45]
P88 (Becke)a [46] P86 (Perdew)a [47, 48]
BR (Becke, Roussel)b [49] PW91 (Perdew, Wang)a [50]
PW91 (Perdew, Wang)a [50] B95 (Becke)b [51]
a correction to LSDA functional
b independent functional form

overestimate lattice constants. The cohesive energy (the di�erence in energy between

atoms in a crystalline state and a system of free atoms at rest far apart from each

other) for solids is signi�cantly improved in GGA calculations over results of LDA

calculations (see [52, 53] and references therein).

2.5 The Plane Wave Method

Kohn-Sham Theory reduces the many body problem of the N-particle wave function

to N single particle problems. Nevertheless, for every bulk material there does still

remain an in�nite number of non-interacting electrons moving in a potential caused

by an in�nite number of nuclei (always bearing in mind that an in�nite crystal is

always an approximation of a �nite real crystal).

For crystalline materials the spatial periodicity of the electrostatic potential of the

nuclei imposes a periodic boundary condition on the wave functions which are solu-

tions of the Schrödinger equation. This concept was �rst expressed by Bloch, known

as Bloch's Theorem [54].

2.5.1 Bloch's Theorem

In an ideal crystal with the translation vector R the electrostatic potential V (r)

obeys translational invariance, i.e. it is a periodic function with the periodicity of

the crystal lattice:

V (r) = V (r + R). (2.33)
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This is also valid for the e�ective potential Veff (r) of the Kohn-Sham equations:

Veff (r) = Veff (r + R). (2.34)

Every eigenfunction ψk(r), that is a solution to the single particle Schrödinger equa-

tion � as given by the Kohn-Sham equations �[
−1

2
52 +Veff (r)

]
ψk(r) = Ekψk(r) (2.35)

can be expressed as a product of a plane wave exp[ikr] (k denoting a reciprocal

space vector) and a function uk(r) with the same periodicity as the real space lattice

(uk(r) = uk(r + R)):

ψk(r) = uk(r)e
ikr. (2.36)

Both, the periodic electrostatic potential Veff (r) and the Bloch waves ψk(r), can be

expanded as a Fourier series in terms of reciprocal lattice vectors G

Veff (r) =
1

Ω

∑
G

Veff (G)eiGr (2.37)

ψk(r) =
1√
Ω

∑
G

uk(G)ei(k+G)r (2.38)

with Ω being the volume of the unit cell of the system (Ω = a1 · (a2 × a3)).

The reciprocal lattice vectors G are de�ned as

G = ub1 + vb2 + wb3. (2.39)

Here, bi is the reciprocal lattice basis and u, v, w ∈ Z, with the primitive reciprocal

lattice basis bi satisfying the condition

biaj = 2πδij (2.40)

with respect to the real-space lattice basis aj [55�57].
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2.5.2 Expansion into Plane Waves

Since the functions uk(r) of the bloch waves ψk(r) (2.36) are periodic, they can be

expanded into a set of plane waves:

uk(r) =
∑
G

ck
G
eiGr. (2.41)

This gives for ψk(r):

ψk(r) = uk(r)e
ikr =

∑
G

ck
G
ei(k+G)r. (2.42)

Using this form for ψk(r), inserting it into the Schrödinger equation (2.35), multi-

plying from the left with exp[−i(k + G′)r] and integrating over r, gives:

∑
G

[
1

2
|k + G|2δG,G′ + Veff (G

′ −G)

]
ck
G

= εkc
k

G
. (2.43)

The Kronecker delta δG,G′ denotes the orthonormality of the plane waves with re-

spect to the reciprocal lattice vectors G:

δG,G′ =

∫
ψG(r) ∗ ψG′(r)dr =

1 if G = G′

0 if G 6= G′.
(2.44)

For practical use, only such plane wave vectors (k + G) are kept, that give kinetic

energies εkin, that are lower than a chosen cut-o� energy Ecut:

1

2
|k + G|2 = εkin ≤ Ecut. (2.45)

The cut-o� energy has to be carefully chosen to be large enough to achieve conver-

gence for the intended calculations [56, 57].

2.5.3 K-point Sampling

By employing Bloch's Theorem, the problem of calculating the eigenstates of an

in�nite number of electrons extended in�nitely in space is reduced to calculating
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eigenstates of a �nite number of electrons at an in�nite number of k-points in a

single unit cell in k-space (=̂ reciprocal space).

This problem is solved by assuming, that the electronic wave functions are almost

identical at k-points, which are very close to each other. Therefore, the wave function

of a region in k-space can be represented by the wave function of one single k-point

of this region. The 1st Brillouin zone (unit cell in k-space) now can be sampled by

a regular mesh of k-points.

This simpli�es the calculation of the electronic density ρ(r) by approximating the

integration over the 1st Brillouin zone by a sum over the Nkpt k-points:

ρ(r) = 2
Ω

(2π)3

∑
j

∫
BZ

|ψkj(r)|2Θ(εF − εkj)d3k =

= 2
1

Nkpt

∑
j

∑
k

fkj|ψkj(r)|2. (2.46)

Here Θ(εF − εkj) is a step-function which is either 1 for εkj ≤ εF and zero for

εkj > εF and fkj are occupation numbers (which are either 1 ore zero for insulators

or semiconductors). εF is the Fermi energy, which gives the energy of the highest

occupied state in a quantum mechanical system at absolute zero point temperature

[57].

In the present work, the Monkhorst-Pack Scheme [58] as implemented in the Vienna

ab-initio Simulation Package (VASP) [59�63], was used to create equally spaced k-

point meshes in the Brillouin zone:

k = b1
n1 + 0.5

N1

+ b2
n2 + 0.5

N2

+ b3
n3 + 0.5

N3

, (2.47)

with

n1 = 0, ..., (N1 − 1)

n2 = 0, ..., (N2 − 1)

n3 = 0, ..., (N3 − 1)

and the Ni being the numbers of subdivisions along each reciprocal lattice vector bi.

Symmetry is used to map equivalent k-points onto each other, thereby reducing the

19



2 Theory and Methods

total number of k-points. k-point grids with an even number of subdivisions Nn are

shifted of the Γ-point (center of the Brillouin zone with the reciprocal coordinates

(000)).

For hexagonal lattices Gamma centered Monkhorst-Pack grids were preferred, as

standard Monkhorst-Pack grids do not represent the full hexagonal symmetry:

k = b1
n1

N1

+ b2
n2

N2

+ b3
n3

N3

. (2.48)

2.6 The Projector Augmented-Wave Method

For pure plane wave methods two major problems occur:

(1) Convergence is slow, as a large number of plane waves is needed in order to

accurately describe the rapidly oscillating wave function close to the nuclei,

whereas the fairly smooth part of the wave function in the bonding regions is

easier to describe.

(2) Core and valence electrons are treated equally as nearly free electrons, which

is not true for core electrons. The plane wave basis only yields good results

for nearly free electrons (i.e. valence electrons) and results in wrong energies

for the core electrons.

Di�erent approaches have been developed to solve this problem (i.e. the pseudopo-

tential method, the LAPW method or the PAW method). They all make use of the

Frozen-Core Approximation. In this work, the Projector Augmented-Wave Method,

developed by Blöchl [64], as implemented in the Vienna ab-initio Simulation Pack-

age (VASP) [65] has been used.

2.6.1 The Frozen-Core Approximation

The core electrons are considered as non-essential for the description of chemical

bonding in a crystal. They are strongly localized at the nuclei and are less sensitive

to their environment than the valence electrons. The chemical bonding is mainly

described by the valence electrons. Thus, the core electron distribution basically is

the same for atoms when placed in di�erent chemical environments. Therefore, the
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core electrons can be considered inert ("frozen") and the core electron distribution

of the isolated atom can be kept for the atoms in a crystal [56, 57].

2.6.2 The Valence States and the Transformation Operator

In the PAW method pseudo (PS) wave functions |ψ̃〉 (The bra-ket or Dirac notation
used here is explained in detail for example in Ref. [31]) are de�ned, which give

the real all electron (AE) wave function |ψ〉 by a transformation T (nota bene: |ψ〉
meaning a full one-electron Kohn-Sham wave function, not a many-electron wave

function.):

|ψ〉 = T |ψ̃〉. (2.49)

This transformation operator T di�ers from identity by a sum over local, atom-

centered contributions TR:

T = 1 +
∑
R

TR, (2.50)

with R indicating a speci�c atom center.

The operators TR act only within a speci�c spherical augmentation region � denoted

ΩR � enclosing the atomic centers at R. Therefore |ψ̃〉 is identical to |ψ〉 outside
the augmentation region ΩR:

|ψ〉 = T |ψ̃〉 =

|ψ〉 outside ΩR

(1 +
∑

R
TR) |ψ̃〉 within ΩR.

(2.51)

Both, the AE wave function |ψ〉 and the PS wave function |ψ̃〉 can be expanded into

a set of partial waves, |φi〉 and |φ̃i〉:

|ψ〉 =
∑
i

|φi〉ci (2.52)

|ψ̃〉 =
∑
i

|φ̃i〉ci, (2.53)

where the ci are identical and are given by:

ci = 〈p̃i|ψ̃〉. (2.54)
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The 〈p̃i| are projector functions localized within the augmentation region ΩR of the

atom centers. There exists exactly one projector function 〈p̃i| for every |φ̃i〉, which
are orthogonal:

〈p̃i|φ̃j〉 = δij. (2.55)

The AE wave function can now be expressed as follows:

|ψ〉 = |ψ̃〉 −
∑
i

|φ̃i〉ci +
∑
i

|φi〉ci. (2.56)

Comparing this expression with 2.50 and using 2.54 we get for the transformation

operator T :

T = 1 +
∑
i

(
|φi〉 − |φ̃i〉

)
〈p̃i|. (2.57)

2.6.3 The Core States

The core states are treated within the Frozen-Core Approximation. The values for

density and energy of the core electrons are imported from all-electron calculations

of the corresponding isolated atoms. The core states are expressed by:

|ψc〉 = |ψ̃c〉 − |φ̃c〉+ |φc〉 (2.58)

similarly to the AE valence wave functions. |ψ̃c〉 is a PS core wave function, |φ̃c〉 a
"PS core partial wave" and |φc〉 is an "AE core partial wave".

2.6.4 Expectation Values

Two ways are conceivable to obtain expectation values 〈A〉:

(1) Retransforming the PS wave functions to the AE wave functions via the rela-

tion |ψ〉 = T |ψ̃〉 and using the well known relation

〈A〉 =
∑
n

fn〈ψn|A|ψn〉. (2.59)
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(2) Using the PS wave functions directly to obtain the desired expectation value

via

〈A〉 =
∑
n

fn〈ψ̃n|T †AT |ψ̃n〉, (2.60)

resulting in a PS operator Ã:

Ã = T
†
AT (2.61)

A detailed description of how to calculate expectation values within the PAW

method is given in Blöchls original work [64] and � for the implementation into

VASP � in the article of Kresse and Joubert [65].

2.7 Equations of State

A thermodynamic Equation of State (EOS) is a function that maps certain state

variables (variables that describe the current condition of a system, i.e. pressure p,

temperature T , volume V , energy E) onto each other. In high-pressure chemistry

the relation between volume V and pressure p is the most widely-used used, as these

data are easily obtained from experiments. In computational chemistry the relation

between energy E and volume V is preferred, as it can be easily calculated by using

ab-initio electronic structure techniques.

Pressure-volume and energy-volume data can be interconverted by integration over

volume and � respectively � di�erentiation with respect to volume:

E(V ) = E0 −
∫
p(V )dV (2.62)

p(V ) =
∂E(V )

∂V
. (2.63)

Several forms of EOSs for solids have been proposed. One of the oldest EOSs is

the Murnaghan EOS, developed in 1944 [66], which is still widely used. Many other

EOSs have been developed over the years, among them the Birch EOS [67] and

Vinet EOS [68, 69], which � together with the Murnaghan EOS � have been used

in this thesis to map energy-volume data.
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All EOS for solids are parameterized �ts of E(V ) and p(V ), respectively, in terms of

the ground state bulk modulus B0 and its pressure derivative B′0. The Bulk Modulus

is the reciprocal of the compressibility and is de�ned as the pressure increase that

is required to cause a given relative decrease in volume.

B = −V ∂p

∂V
(2.64)

B′ =
∂B

∂p
(2.65)

From here on the following quantities are used: (1) the zero-pressure volume V0,

(2) the zero-pressure energy E0, (3) the zero-pressure bulk modulus B0 and (4) the

pressure derivative of the zero-pressure bulk modulus B′0. It should be kept in mind,

that these quantities in principle are temperature dependent, but they are further

on used as isothermal parameters.

2.7.1 Murnaghan Equation of State

The Murnaghan EOS is based on the assumption that the bulk modulus B varies

linearly with the pressure p. It is derived by representing the bulk modulus B as

a power series in pressure p and omitting all terms but the �rst two. The pressure

dependency of the bulk modulus is then given by:

B(p) = B0 +B′0p+B′′0p
2 + Cp3 +Dp4 + ...

B(p) = B0 +B′0p. (2.66)

By integration, employing the relations given in Eq. 2.62 and Eq. 2.64, one gets the

term for E(V ):

E(V ) =

(
B0V

B′0

)[(V0

V

)B′
0

B′0 − 1
+ 1

]
− B0V0

(B′0 − 1)
+ E0. (2.67)
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2.7.2 Birch Equation of State

The Birch EOS was developed by postulating that at high pressures strain can not

be assumed as in�nitesimal and therefore be neglected. Therefore the strain energy

is expanded in a Taylor series of the �nite Eulerian strain fE:

fE =

[(
V0

V

)(2/3) − 1
]

2
. (2.68)

E(V ) is then given by:

E(V ) =

(
9V0B0

16

){
(2fE)3B′0 + (2fE)2

[
6− 4

(
V0

V

)( 2
3)
]}

+ E0, (2.69)

and the pressure dependency of the Bulk Modulus by:

B(p) = B0(1 + fE)(
1
2)[1 + (7 + 2a)fE + 9af 2

E] (2.70)

with a =
3

2
(B′0 − 4).

2.7.3 Vinet Equation of State

The Vinet EOS is a semiempiric relation of pressure p and volume V , which is

determined from the measured isotherms for a wide variety of di�erent kinds of

solids, i.e. metallic, covalent, ionic and van der Waals solids. Its development stems

from the discovery, that the isothermal EOS of metals has a simple universal form

[70, 71] and is based on the assumption, that the compressional EOS of all classes

of solids can be described by a universal function, which is scaled with the zero-

pressure volume V0, the isothermal bulk modulus B0 and the pressure derivative of
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the isothermal bulk modulus B′0. The term for E(V ) for the Vinet EOS is given by:

E(V ) =

(
9B0V0

η

){
1− [1− η(1− x)] e[η(1−x)]

}
+ E0 (2.71)

with x =

(
V

V0

)(1/3)

and η =

(
3

2

)
(B′0 − 1).

The pressure dependency of the Bulk Modulus is:

B(p) = x−2 [1 + (ηx+ 1)(1− x)] e[η(1+x)]. (2.72)

2.7.4 Validity of the Murnaghan, Birch and Vinet Equation

of State

The above given EOS are based on di�erent assumptions and models. Therefore,

the chosen EOS in�uences the results obtained from �tting E-V data. Generally, for

small compressions, all three EOS, the Murnaghan, the Birch, and the Vinet EOS,

give the same results. For larger compressions, the Vinet EOS is superior to the

Birch EOS which in turn is superior to the Murnaghan EOS ([69, 72] and references

therein). E0 and V0 are given quite accurately by all three EOS over a wide volume

or pressure range, respectively. However, the values for B0 and B′0 depend quite

sensitively on the EOS employed and on the range of pressure or volume for which

data points are available. B′0 has been reported to be subjected to uncertainties of

10% from �tting [73].

Vinet et al. [69] related, that the Vinet EOS predicts experimental p-V data quite

accurately for NaCl and H2, whereas the Murnaghan EOS fails for values of V
V0

larger than 0.8. For NaCl a comparison of the Birch EOS is also presented. The

Birch EOS gives reasonable values throughout the experimental data (up to V
V0

=

0.7), but still the results for the Vinet EOS are superior. Hama and Suito [72]

conducted an encompassing study on the validity of various EOS by comparing

them to theoretical results calculated by the APW method [74] and the quantum-

statistical model proposed by Kalitkin and Kuz'mina [75]. As reference systems they

used di�erent solids with one or two atoms in the unit cell (Ne, Ar, Al, Cu, LiH

26



2.7 Equations of State

and MgO). They found, that p-V data were best represented by the Vinet EOS (for

values of V
V0

up to 0.3), followed by the Birch EOS ( V
V0

up to 0.4) and the Murnaghan

EOS ( V
V0

up to 0.75). With regard to �ts of E-V and B-p data the results are similar.

The Vinet EOS gives the most accurate results up to large compressions, whereas

the Birch and Murnaghan EOS are less successful.

2.7.5 Energy-Volume Data Evaluation

To obtain the ground state bulk modulus B0 the volume was varied around the

zero pressure volume V0 and the calculated energies were �tted to the Murnaghan,

Birch and Vinet EOS. The range used for this evaluations encompasses values for

the lattice parameters a, b and c of 95% to 102.5% from the equilibrium values a0,

b0 and c0.

The complete E-V diagrams (no compressions larger than a reduction of the lattice

parameters than 20% was calculated) can be transformed easily to give enthalpy H

versus pressure p diagrams. To obtain the pressure p from the E-V graph a simple

numerical di�erentiation of a spline �t and the Murnaghan, Birch and Vinet EOS

was employed: p = −∂E
∂V

.

In equilibrium a system will adopt the structure with the lowest Gibbs free energy

G. A phase transformation is therefore governed by the di�erence of Gibbs free

energy:

∆G = ∆E + p∆V − T∆S. (2.73)

The contribution of the entropy is usually neglected, due to the small di�erence in

entropy between solid-state crystal structures and the comparably larger changes of

∆H within 1GPa of pressure change. Therefore,

∆H = ∆E + p∆V (2.74)

is a good measure to compare the relative thermodynamic stability of solid-state

structures under pressure. The enthalpy H as a function of pressure p for every

compound/modi�cation was calculated via:

H = E + pV, (2.75)
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using the values of E and p, obtained from the respective �tting procedures of the

E-V data. The reaction enthalpy ∆HR was calculated according to the formalism:

nA+mB → kC + lD

∆HR = [kH(C) + lH(D)]− [nH(A) +mH(B)]. (2.76)

Here, n, m, k, and l denote stoichiometric factors and A, B, C, and D the educts

and products of a reaction. Resulting from this formalism, exothermic reactions are

characterized by ∆HR ≤ 0 and endothermic reactions by ∆HR ≥ 0.

2.8 Practical Calculations

Structural optimizations, total energies, and properties are calculated within Density

Functional Theory (DFT) [37] (chapter 2.4, page 10), for which the Vienna ab-initio

Simulation Package (VASP) was used. It combines the total energy pseudopotential

method with a plane-wave basis set [59�62, 76]. The electron exchange and corre-

lation energy is treated within the Local Density Approximation (LDA) [77] (chap-

ter 2.4.3.1, page 13) and Generalized Gradient Approximation (GGA) [50, 78, 79]

(chapter 2.4.3.3, page 15). The Projector-Augmented-Wave (PAW) method was em-

ployed [64, 65] (chapter 2.6, page 20). The cut-o� energy for the expansion of the

wave function into the plane wave basis is 500 eV. Residual forces are converged

below 5 * 10-3 eV/Å. The Brillouin-Zone integration is done via the Monkhorst-Pack

scheme [58].

Structure optimizations are obtained through relaxation of all structural parame-

ters, atomic positions as well as cell parameters. Details on the used k-point mesh as

well as the calculated cell of the relevant structures of this thesis are listed in Table

B1 in Appendix B. However, it has to be noted, that a wide selection of structures

with composition M3N2 and MSiN2 (M = Be, Mg, Ca, Sr, Ba) was computed and

only the data for the structures ultimately discussed in this thesis are given in B1.

In most cases, only transition pressures derived from GGA calculations are given.

The choice of the GGA functional is based on the experience that it signi�cantly

better describes the relative energies of structures, especially when structures with

di�erent environments for the constituting atoms are concerned. As the calcu-
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lated transition pressure pt strongly depends on the calculated energy di�erence

∆E (pt = ∂E
∂V
≈ ∆E

∆V
), pt derived from GGA calculations give more accurate results

than those derived from LDA calculations.

Demuth et al. [80] and Zupan et al. [81] found for α-quartz and stishovite, that

L(S)DA calculations seriously underestimate ∆E (exp.: 0.51 - 0.54 eV (references in

[80]); L(S)DA: 0.1044 eV [80]; -0.09 eV [81]; GGA: 0.6367 eV, 0.691 eV [80], 0.51 eV

[81]). Zupan et al. even found in LSDA calculations an energetic preference of

stishovite over α-quartz.

The transition pressure of α-quartz to stishovite has been experimentally determined

to 7.2 to 7.5GPa (references in [80, 81]). The calculated transition pressure from

LDA calculations amounts to 1.3GPa [80], whereas it amounts to 8.0 GPa [80] and

6.2GPa [81], respectively, for GGA calculations. Similar results were obtained for

the diamond to β-tin structure type transition in Si, which can be observed at 10.5

to 12.5GPa (references in [81]). Zupan et al. [81] calculated pt to 6.7GPa within

L(S)DA and to 9.2GPa (PBE) and 10.6GPa (PW91) within GGA.

Since target of this thesis is to study structures and structural transformations at

high pressures, the GGA is the better choice in comparison to the LDA. Therefore,

while all calculations were controlled within the LDA as well, all enthalpy di�erences

and transition pressures given in this thesis are based on GGA calculations, if not

noted otherwise.
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Silicon nitride Si3N4, due to its extraordinary physical and chemical properties, is a

very important ceramic material. Its combined hardness, exceptional chemical in-

ertness, low density and high wear resistance render it a high-performance ceramic,

which is used in many �elds of technology. Its main applications are as a construc-

tion material for engine and turbine building, as it withstands temperatures up to

1400°C. This is attributed to the fact, that Si3N4 ceramics are encoated with a thin

SiO2 layer upon heating in air. Processing occurs mainly by injection or extrusion

molding, slip casting or pressing combined with sintering (hot-press sintering, gas

pressure sintering or pressure-less sintering) [82].

Three modi�cations of Si3N4 are known, two at ambient pressure, α-Si3N4 and

β-Si3N4 [2, 3], and a high-pressure modi�cation, γ-Si3N4 [4, 5]. α-Si3N4 and β-Si3N4

are three-dimensional networks of corner-sharing SiN4 tetrahedra, whereas γ-Si3N4

exhibits the cubic spinel structure with tetrahedrally as well as octahedrally coor-

dinated Si in a molar ratio 1 to 2. δ-Si3N4, appearing at 160GPa and possessing a

CaTi2O4-type structure, has been theoretically predicted [10].

To synthesize pure Si3N4 three processes are of major importance: (1) direct nitri-

dation of silicon powder, carbothermic reduction of SiO2 under N2 or NH3 atmo-

sphere and (3) ammonolysis of SiCl4 or SiH4. Ammonolysis of reactive silicon com-

pounds does not directly result in Si3N4 but intermediate silicon diimide "Si(NH)2"

is formed, which gives amorphous Si3N4 upon heating [82].

Regarding stability, below 1500°C the α-phase is favored, while above the β-phase is

formed. α-Si3N4 transforms into β-Si3N4 at temperatures exceeding 1650° 
C [2, 83].

A retransformation of β-Si3N4 into α-Si3N4 could not be observed, which is at-

tributed to kinetic inhibition [82]. Due to the unobserved retransformation and

frequent oxygen-impurity in α-Si3N4, it has been discussed, that α-Si3N4 does not

constitute a true polymorph of Si3N4. However, today α-Si3N4 is generally accepted
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as an independent Si3N4 modi�cation [82]. γ-Si3N4 is synthesized from α-Si3N4,

β-Si3N4 or amorphous Si3N4 at pressures between 10 to 13GPa and at tempera-

tures of 1600 to 1800°C [4, 5].

For the purpose of high-pressure studies on nitridosilicates the two phases of Si3N4

to be considered are β-Si3N4 and γ-Si3N4, since α-Si3N4 di�ers only within the error

of the method used in this thesis in energy from β-Si3N4 [6] and solely either β-Si3N4

or γ-Si3N4 are obtained from high-pressure experiments.

3.1 Structure Optimization of β-Si3N4 and γ-Si3N4

The structures of β-Si3N4 (Figure 3.1) and γ-Si3N4 (Figure 3.2) were optimized

within LDA and GGA.

β-Si3N4 crystallizes in the hexagonal space group P63/m (no. 176) and is isotypic

to phenakite Be2SiO4 [3]. Along [001] sechser and vierer ring channels penetrate

the three-dimensional network of corner-sharing SiN4 tetrahedra. Every N atom is

connecting three Si atoms. Therefore, every SiN4 tetrahedra is connected to eight

other SiN4 tetrahedra.

γ-Si3N4 crystallizes in Fd	3m (no. 227) in the spinel structure [4, 5]. Si occupies half

of the octahedral voids and 1/8th of the tetrahedral voids in the cubic close packing

of N atoms, forming a dense network of SiN4 tetrahedra and SiN6 octahedra. Every

SiN4 tetrahedron is connected to 12 SiN6 octahedra via common corners and every

SiN6 octahedron shares a common corner with six SiN4 tetrahedra and a common

edge with six SiN6 octahedra.

Data on calculated bond lengths compared to the experimental data are given in

Table 3.2. The calculated crystallographic data compared to experimental results

are given in Appendix A. The results of the zero-pressure optimization of the crystal

structures for both β- and γ-Si3N4 are in agreement with experimental values and

previous calculations [4, 6]. For β-Si3N4 the calculated volume per formula unit

Si3N4 di�ers by 1.5% (LDA) and 1.7% (GGA) from the experimentally found vol-

ume and are in good accordance with previously calculated data (Table 3.1).

32



3.1 Structure Optimization of β-Si
3
N

4
and γ-Si

3
N

4

Figure 3.1: Crystal Structure of β-Si3N4, view along [001] (Si atoms are depicted dark gray, N
atoms are depicted black, SiN4 tetrahedra are drawn).

Figure 3.2: Crystal Structure of γ-Si3N4 (Si atoms are depicted gray, N atoms black, SiN4 tetra-
hedra are drawn black, SiN6 octahedra light gray).
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Regarding γ-Si3N4, the calculated volumes are 1.7% smaller (LDA) and 1.9% larger

(GGA) than the experimantal volume. An overview of calculated lattice parameters

in comparison to the experimetal data as well as previously calculated data is given

in Table 3.1.

Table 3.1: Comparrison of calculated and experimental lattice parameter of β-Si3N4 and γSi3N4.

β-Si3N4, P63/m, Z = 2

V / 106 pm3 c / pm a / pm Ref.

145.90 291.07 760.80 exp. [3]
146.42 291.02 762.20 [9]
146 291 761 [84]
142.70 288.52 755.75 [85]
142.68 / / [6]

147.76 / / [6]

143.74 289.14 757.65 this thesis (LDA)
148.43 292.38 765.63 this thesis (GGA)

γ-Si3N4, Fd	3m, Z = 8

V / 106 pm3 a / pm Ref.

463.81 773.81 exp. [5]
481.34 783.7 [9]
467 776 [4]
452.64 767.8 [6]
469.52 777.2 [6]
468.8 776.8 [10]
455.64 769.50 this thesis (LDA)
472.02 778.62 this thesis (GGA)

The calculated Si-N bonds in β-Si3N4 are almost identical, as can be expected for

solely Si[4]-N[3] bonds. They are in good agreement with the experimental values

(see Table 3.2). For γ-Si3N4, the Si
[6]-N bonds are longer than the Si[4]-N bonds, as

is to be expected for an increased coordination number of Si. This corresponds well

to the experimental �ndings (see Table 3.2).

Comparing the calculated densities of the two considered Si3N4 modi�cations to the

experimental values, reveals that LDA overestimates the experimental density and

GGA underestimates it, as can be expected from the corresponding volume under-

and overestimation. Nevertheless, the density trend of γ-Si3N4 being denser than

β-Si3N4 is correctly reproduced (β-Si3N4: 3.24 (LDA), 3.14 (GGA); γ-Si3N4: 4.09
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Table 3.2: Bond lengths (in pm) in β-Si3N4 [3] and γ-Si3N4 [4, 5] compared to values for the
optimized structures.

β-Si3N4 experimental LDA GGA

N1[3]-Si 175.12, 175.18 172.23 174.11

N2[3]-Si 171.95, 175.34 172.87, 172.98 174.63, 174.70

γ-Si3N4 experimental LDA GGA

Si[4]-N 180.51 176.49 178.61

Si[6]-N 186.26 186.84 189.04

(LDA), 3.95 (GGA) g cm3-). Within both LDA and GGA, β-Si3N4 is lower in energy

(-63.291 eV (LDA), -57.577 eV (GGA)) than γ-Si3N4 (-62.802 eV (LDA), -56.497 eV

(GGA)) by 0.489 eV (LDA) and 1.080 eV (GGA), respectively.

The zero-pressure bulk moduli B0 were calculated to 235GPa and 293GPa (GGA)

for β-Si3N4 and γ-Si3N4, respectively, agreeing with experimental values (β-Si3N4:

256-273GPa [86�89]; γ-Si3N4: 290-317GPa [7, 8]) and being almost identical to the

calculated bulk moduli reported by Kroll and Milko [6] (β-Si3N4: 234GPa; γ-Si3N4:

292GPa) and Zerr et al. [4] (γ-Si3N4: 300GPa). Further calculated values for the

bulk modulus for β-Si3N4 range from 263-297GPa [9, 84, 90]. For γ-Si3N4 the bulk

modulus was calculated to 280GPa by Chiang et al. [9].

3.2 Energy-volume calculations of β-Si3N4 and

γ-Si3N4

The energy-volume curves of β-Si3N4 and γ-Si3N4 are depicted in Figure 3.3, from

which the enthalpy was extracted as a function of pressure as illustrated in Figure

3.4. Accordingly, the transition pressure pt of β-Si3N4 into γ-Si3N4 was calculated

to 11.5GPa. This value of pt agrees excellently with the experimentally observed

transition pressures (10 - 13GPa) [4, 5]. The results obtained for pt from the dif-

ferent evaluations of the energy-volume data are virtually the same. The maximum

di�erence in transition pressure amounts to 0.5GPa.
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Figure 3.3: Energy-volume (E-V ) phase diagram of β-Si3N4 and γ-Si3N4, calculated within the
GGA. Each symbol represents a calculation.

Figure 3.4: Enthalpy-pressure (H-p) diagram for the transition of β-Si3N4 into γ-Si3N4 (pt =
11.5GPa) (derived from the evaluation of the E-V data by the Murnaghan EOS).
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The data for Si3N4 are needed for examining the decomposition behavior under high

pressure of di�erent nitridosilicates. The phase transition of β-Si3N4 into γ-Si3N4

is taken into account for these decomposition reactions. Therefore, bellow the cal-

culated transition pressure, the enthalpy H for β-Si3N4 is used; at higher pressures

H for γ-Si3N4 is employed. Ignoring the phase transition of Si3N4 would lead to

inaccurate results and wrong decomposition or formation pressures.
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The binary nitrides of the group II elements M3N2 (M = Be, Mg, Ca, Sr, Ba) are

known for over 100 years [91�94] and are applied in di�erent areas of science and

industry. They are widely used as starting materials for the synthesis of multinary

nitrides or as �ux in chemical syntheses [95�111]. In industry they �nd various ap-

plications, among others, as additives in the re�nement process of steel [112�116],

as sintering additives for AlN and Si3N4 [117�123] and as catalysts for the transfor-

mation of hexagonal into cubic BN [124�131]. Be3N2 and Mg3N2 are also discussed

as materials used in combination with lithium-nitrogen compounds (e.g. LiN3 and

Li2NH) for hydrogen storage [132�137]. An e�ective hydrogen storage system is

strongly needed for the development of new hydrogen-based energy technologies, to

render hydrogen a viable alternative to the increasingly scarce fossil fuels.

Two modi�cations of Be3N2 with established crystal structures are known. α-Be3N2

has been identi�ed (together with α-Mg3N2 and α-Ca3N2) to crystallize in the cubic

anti-bixbyite structure (corner- and edge-sharing BeN4 tetrahedra) in 1933 [138].

The high-temperature modi�cation β-Be3N2 exhibits a hexagonal structure consist-

ing of BeN4 tetrahedra and BeN3 units and is obtained from α-Be3N2 at tempera-

tures above 1400°C [139].

For Mg3N2 only the cubic anti-bixbyite modi�cation has been unequivocally con-

�rmed. Gladkaya et al. [140] investigated the temperature-pressure phase diagram

of Mg3N2 in a range up to 1900K and 1.5 to 9.0GPa by in situ di�erential ther-

mal analysis. They proposed six phases, of which two should be attainable from

α-Mg3N2 upon heating at ambient pressure and three were obtained at tempera-

tures exceeding 1000K at high pressure. All phase transitions where reported as

reversible and the HP- and/or HT-phases as not quenchable to ambient conditions.
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No crystal structures where presented.

Three di�erent structural modi�cations of Ca3N2 have been discussed in the lit-

erature: (1) α-Ca3N2 (maroon or yellow, cubic, synthesized at T > 700 °C), (2)

"β-Ca3N2" (black, hexagonal or tetragonal, synthesized at T < 700 °C) and (3)

HP/HT-Ca3N2 (orthorhombic, synthesized at 1800 °C and 46 kbar) [138, 141�143].

The true nature of "β-Ca3N2" has recently been questioned. It apparently is a

Na-Ca-N compound, possibly a Na-Ca subnitride [144]. The description of the

HP/HT-phase of Ca3N2 by Bradley et al. [143] is, unfortunately, the only reference

addressing synthesis and characterization of this structure in the literature. The

continuing interest in Ca-N compounds then is manifested in the recent synthesis

of a new modi�cation of Ca3N2 at 200 and 420 °C from the elements or from Ca2N

and N2 by Höhn [145]. Careful structural characterization revealed a hexagonal

(anti-corundum) structure. As a second phase of Ca3N2 established beyond doubts,

this modi�cation was termed β-Ca3N2.

The structures and true nature of Sr3N2 and Ba3N2 are yet unknown, even though

these compounds have been �rst mentioned in 1892 by Maquenne [94]. In 1980

Künzel [146] proposed a defect NaCl-type structure for Ba3N2 but no further men-

tioning of this structure can be found in the literature. Even the existence of Sr3N2

and Ba3N2 has been questioned, as a multitude of binary Sr-N (Sr2N [147], SrN [148],

Sr4N3 [149], SrN2 [148], Sr(N3)2 [150]) and Ba-N (Ba3N [151], Ba2N [152], Ba3N4

[153], BaN2 [154], Ba(N3)2 [155]) compounds have been synthesized and character-

ized but still the binary nitrides M3N2 elude endeavors for characterization beyond

any doubts.

The relation of α-M3N2 (M = Be, Mg, Ca) and β-Ca3N2 to the anti-structures of

some sesquioxides motivates the search of potential high-pressure phases of M3N2

among the (anti-)HP-phases of M2O3-oxides which exhibit a very rich high-pressure

chemistry. Recent advances in instrumentation and characterization have shown a

tremendous amount of new discoveries. For example, Mn2O3, bixbyite, transforms

into the post-perovskite structure (CaIrO3-type) at 27 to 38GPa [156]. Besides the

post-perovskite structure type, the Rh2O3-II and the perovskite structure are also

widely discussed high pressure candidates for several sesquioxides. Many binary

oxides with a corundum structure at ambient pressure have been found to undergo

phase transformations �rst into a Rh2O3-II structure, then further at even higher
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pressures into a perovskite or post-perovskite modi�cation [157�171]. Corundum

(α-Al2O3) itself transforms into the Rh2O3-II-type structure at 80 to 100GPa and

is predicted to undergo a second phase transformation into the CaIrO3-type struc-

ture at 131 to 156GPa, which has been recently observed at 130GPa. [157�167].

The higher homologue In2O3 has been predicted to exhibit a transformation from the

bixbyite-type to Rh2O3-II-type structure at 10GPa and further to post-perovskite

at about 45GPa [166, 172]. Most recent experiments con�rm the prediction of the

Rh2O3-II phase for both Ga2O3 and In2O3 [173]. Hematite (Fe2O3) exhibits both

phase transformations, into a Rh2O3-II-type structure at 50 to 56GPa and into a

post-perovskite phase at 65GPa [169�171].

4.1 Optimized Structures and Energy-Volume

Calculations for M3N2 (M = Be, Mg, Ca, Sr,

Ba)

About 20 structure types where considered as potential high-pressure phases for

M3N2 (M = Be, Mg, Ca, Sr, Ba). Only those that proved to be of relevance for the

enthalpy-pressure phase diagram are described here. For all optimized structures

the coordination numbers of the M2+ ions were determined by calculating e�ective

coordination numbers (ECoN) [174] with MAPLE [175�178] in order to compare

them to the data for the experimentally determined structures (if available).

4.1.1 Be
3
N

2

For Be3N2 three polymorphs were considered: (1) α-Be3N2 (cubic anti-bixbyite

structure, space group Ia	3, no. 206) [179], (2) hexagonal β-Be3N2 (space group

P63/mmc, no. 194) [139] and (3) γ-Be3N2, crystallizing in the anti-A-sesquioxide

structure (space group P	3m1, no. 164) [180, 181] (Figure 4.1). In α-Be3N2 the Be

atoms are tetrahedrally coordinated by N, whereas the N-atoms are octahedrally co-

ordinated by Be. The structure is built up by a three-dimensional network of corner-

and edge-sharing BeN4-tetrahedra. For β-Be3N2 there exist two structural models,

which di�er in the position of one Be atom. Eckerlin and Rabenau [139] ascribe
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this Be-atom to a fully occupied 2b position, whereas Hall et al. [182] refer to it as

occupying a split-position on 4e. Thereby, the Be atom is deferred from the central

position of a trigonal bipyramid (three N atoms at 164.03 pm and two at 242.32 pm)

to a distorted tetrahedral environment (three N at 169.75 pm, one at 198.71 pm and

one at 285.94 pm). For calculational convenience the structure originally proposed

by Eckerlin and Rabenau was used. The anti-A-sesquioxide structure comprises lay-

ers of edge-sharing BeN6 octahedra and BeN4 tetrahedra double layers, which are

stacked along [001] (Figure 4.1)

The average coordination number for Be in β-Be3N2 is 3.7 for Be and 5.5 for N,

resulting in a coordination description of Be [3]1 Be [4]2 N [5]
1 N [6]

1 . The coordination num-

bers are increased for α-Be3N2 to CN(Be) = 4 and CN(N) = 6. A further increase

is achieved for γ-Be3N2, where Be is averagely coordinated by 4.7 N atoms and N

by seven Be (Be [4]2 Be [6]1 N [7]
2 ).

The calculated bond lengths Be-N for α-Be3N2 and β-Be3N2 reproduce well the

experimental data (see Table 4.1). In γ-Be3N2 the Be-N distances for four-fold co-

ordinated Be are in the range of those in α- and β-Be3N2, whereas the distances

for six-fold coordinated Be are about 20 pm longer, which can be explained by the

increased coordination number (Table 4.1).

Referring to GGA calculations, α-Be3N2 exhibits the lowest energy of the three con-

sidered polymorphs (E = -33.483 eV per formula unit) and is 0.140 eV lower in energy

than β-Be3N2 and 1.064 eV than γ-Be3N2. β-Be3N2 has still a 0.924 eV lower energy

Table 4.1: Bond lengths (in pm) in α-, β- and γ-Be3N2 compared to experimental values.

Structure Bond type LDA GGA exp.

α-Be3N2 Be[4]-N 168.51 � 176.95 170.05 � 179.53 172.45 � 181.55 [179]

β-Be3N2 Be[3]-N 162.68 164.43 164.03 [139]

Be[4]-N 165.69 � 179.21 167.60 � 181.34 169.63 � 179.42 [139]

γ-Be3N2 Be[4]-N 167.18 � 181.91 168.86 � 185.35 /

Be[6]-N 198.33 201.08 /

Ionic Radii bond type Shannon [183] Baur [184]

Be[4]-N[4] 173 /

Be[4]-N[6] / 181

Be[6]-N[4] 191 /
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Figure 4.1: Crystal Structures of the di�erent M3N2 structures: (1) anti-bixbyite (left: MN4

tetrahedra drawn, right: ball-stick), (2) β-Be3N2 (left: BeNx polyhedra, right: NBex polyhedra),
(3) anti-B-sesquioxide (left: view along [1/3 1

2/3], right: view along [010]), (4) anti-A-sesquioxide
(left: view along [1/2

1/2 0], right: view along [001]), (5) β-Ca3N2 (anti-Al2O3) (NCa6 octahe-
dra are drawn; left: view along [001], right: view along [-1/2

1/2 0]), (6) anti-Rh2O3-II (right:
NM6 octahedra layer viewed along [001], right: MN4 tetrahedra viewed along [010]), (7) hexagonal
P63/mmc (left: view along [1/2

1/2 0], interpenetrating networks of corner-sharing MN5 trigonal
bipyramids and double-layers of face-sharing MN6 octahedra, right: view along [001], MN6 octa-
hedra are depicted black, MN5 trigonal bipyramids light gray), (8) anti-CaIrO3 (view along [100],
left: MNx polyhedra, right: NMx polyhedra) (M atoms are depicted light gray, N atoms black).
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per formula unit than γ-Be3N2. This order is partly reversed with regard to density,

as β-Be3N2 exhibits the lowest density (ρ = 2.67 g cm-3, matching the experimental

density of 2.70 g cm-3 [139]), with α-Be3N2 being 1.5% and γ-Be3N2 6.74% denser

(α-Be3N2: calculated density: 2.71 g cm-3, experimental density: 2.71 g cm-3 [179];

γ-Be3N2: calculated density: 2.85 g cm-3).

Calculations of α-Be3N2 and β-Be3N2 regarding their properties can be found in the

literature [185�190], but no studies in their high-pressure behavior have been done

yet. Data on the cell parameters as well as the calculated bulk moduli in comparison

to the data calculated in this work and experimental data are listed in Table 4.2.

In general, the data obtained in this work are in good agreement with previously

published values.

Table 4.2: Comparison of previousliy calculated data for α- and β-Be3N2 compared to results of
this thesis and experimental values.

α-Be3N2, Ia	3, Z = 16

V / 106 pm3 a / pm B0 / GPa Reference

542.34 815.5 257 [188]
540.15 814.4 254 [185]
542.54 815.6 217 [190]
529.48 809 / [189]
540.39(1) 814.52 / Exp. [179]
521.98 805.16 233 this thesis (LDA)
540.46 814.56 215 this thesis (GGA)

β-Be3N2, P63/mmc, Z = 2

V / 106 pm3 a / pm c / pm B0 / GPa Reference

68.2 284.7 972.0 236 [188]
68.8 285.5 974.0 220 [190]
68.2 284.7 971.4 261 [186]
67.8 284.2 969.5 259 [186]
62.1 272.7 963.7 244 [187]
63.3 276.3 942.5 235 [187]
62.4 273.2 965.4 228 [187]
62.6 276.7 943.9 232 [187]
68.5 285.1 972.6 216 [187]
67.75 284.1 969.3 / Exp. [139]
66.24 281.77 963.41 / this thesis (LDA)
68.58 284.80 976.26 210 this thesis (GGA)
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The complete computed crystallographic data of all Be3N2 polymorphs (as well as

those for all further on presented crystal structures) together with the experimental

data, if available, can be found in Appendix A.

The energy-volume data of α-, β- and γ-Be3N2 are depicted in Figure 4.3. Trans-

formation into H-p data (Figure 4.4) shows, that only one high-pressure phase for

Be3N2 comes into existence up to very high pressures. γ-Be3N2 is a high-pressure

phase of α-Be3N2 and becomes lower in enthalpy at pressures exceeding 125GPa.

β-Be3N2 is no high-pressure phase of α-Be3N2. Neither is α-Be3N2 a high-pressure

polymorph of β-Be3N2, but the transformation pressure of β- into γ-Be3N2 is cal-

culated to 82GPa. However, if γ-Be3N2, synthesized from β-Be3N2 at pressures

between 82 and 125GPa, can be observed, strongly depends on the kinetics of the

retransformation of γ-Be3N2 into α-Be3N2, since α-Be3N2 is thermodynamically fa-

vored over γ-Be3N2 in this pressure range. All three phases and their interrelations

are illustrated in Figure 4.2.

Figure 4.2: Sequence of structures of Be3N2 together with transition pressures and changes in
density.
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Figure 4.3: Energy-volume (E-V ) phase diagram of α-, β- and γ-Be3N2, calculated within the
GGA. Each symbol represents a calculation.

Figure 4.4: Enthalpy-pressure (H-p) diagram for the transition of α-Be3N2 into γ-Be3N2 (pt =
125GPa) and for the transition of β-Be3N2 into γ-Be3N2 (pt = 82GPa) (derived from the evalu-
ation of the E-V data by the Murnaghan EOS).

46



4.1 Calculations M
3
N

2
(M = Be, Mg, Ca, Sr, Ba)

4.1.2 Mg
3
N

2

Besides α-Mg3N2 (cubic anti-bixbyite [144], see Figure 4.1) two more structure types

proved to be of importance for the high-pressure behavior of Mg3N2. The �rst

structure type, assigned to β-Mg3N2, is the monoclinic anti-B-sesquioxide struc-

ture (space group C2/m, no. 12) [191] (Figure 4.1). γ-Mg3N2 adopts an anti-

A-sesquioxide-type structure (space group P	3m1, no. 164) [180, 181] (Figure 4.1).

Both, the anti-bixbyite and the anti-A-sesquioxide structure have been described

above (see chapter 4.1.1, page 41). The anti-B-sesquioxide structure exhibits three

di�erent coordinations for Mg: tetrahedral (67%), quadratic pyramidal (22%) and

octahedral (11%). The N atoms are either six- or seven-fold coordinated in a molar

ratio of 1 to 2, resulting in a coordination representation of Mg [4]
2/3Mg [5]

2/9Mg [6]
1/9N

[6]
1/3N

[7]
2/3.

Average coordination numbers for Mg are increased in the row α-, β- to γ-Mg3N2

from 4 to 4.4 to 4.7. The coordination of N changes from octahedral (6) to an

avarage 6.7 and further to 7.

The calculated distances Mg-N for α-Mg3N2 are in good accordance with those in

experimental α-Mg3N2 [144] (compare Table 4.3). The distances for Mg[4]-N in

β-Mg3N2 and γ-Mg3N2 still match satisfactorily. Those for increased coordinations

of Mg are longer, as can be expected (Table 4.3).

Table 4.3: Bond lengths (in pm) in α-, β- and γ-Mg3N2 compared to experimental values.

Structure Bond type LDA GGA exp.

α-Mg3N2 Mg[4]-N 206.42 � 215.48 209.76 � 219.35 209.76 � 219.34 [144]

β-Mg3N2 Mg[4]-N 200.47 � 234.66 204.36 � 240.83 /

Mg[5]-N 204.83 � 229.36 208.30 � 233.85 /

Mg[6]-N 226.84, 253.07 230.78, 258.94 /

γ-Mg3N2 Mg[4]-N 203.39, 230.95 206.52, 237.36 /

Mg[6]-N 238.25 243.03 /

Ionic Radii bond type Shannon [183] Baur [184]

Mg[4]-N[4] 203 /

Mg[4]-N[6] / 214

Mg[6]-N[4] 218 /

Mg[6]-N[6] / 220
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Within GGA, α-Mg3N2 exhibits the lowest energy per formula unit (-25.217 eV),

with β-Mg3N2 having a higher energy by 0.443 eV per formula unit. γ-Mg3N2 is

0.661 eV higher in energy than α-Mg3N2 and 0.218 eV than β-Mg3N2. The order

is preserved regarding density increasement. The lowest density is attributed to

α-Mg3N2. The calculated density of 2.67 g cm-3 corresponds well to the experimen-

tal density of 2.71 g cm-3 [144]. β-Mg3N2 (ρ = 2.83 g cm-3) comes out 6.0% denser

than α-Mg3N2 and for γ-Mg3N2 the density (ρ = 2.85 g cm-3) is even augmented by

6.7% with respect to α-Mg3N2 and by 0.7% with respect to β-Mg3N2.

Comparing the calculated data for α-Mg3N2 of this thesis with previously published

results for anti-bixbyite Mg3N2 reveals a good agreement (see Table 4.4).

Table 4.4: Comparison of previousliy calculated data for α-Mg3N2 compared to results of this
thesis and experimental values.

α-Mg3N2, Ia	3, Z = 16

V / 106 pm3 a / pm B0 / GPa Reference

958.0 985.8 165 [188]
1011.1 1003.7 111 [190]
985 995 / [189]
990.31(7) 996.76(4) / Exp. [144]
952.86 984.03 122 this thesis (LDA)
1004.50 1001.50 109 this thesis (GGA)

Figure 4.5: Sequence of structures of Mg3N2 together with transition pressures and changes in
density.

Two high-pressure phases could be identi�ed for Mg3N2. By converting the E-V data

of Figure 4.6 into an H-p diagram (Figure 4.7) the transition pressure of α-Mg3N2

into β-Mg3N2 was calculated to 21GPa. At pressures exceeding 65GPa γ-Mg3N2 is
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Figure 4.6: Energy-volume (E-V ) phase diagram of α-, β- and γ-Mg3N2, calculated within the
GGA. Each symbol represents a calculation.

Figure 4.7: Enthalpy-pressure (H-p) diagram for the transition of α-Mg3N2 into β-Mg3N2 (pt =
21GPa) and into γ-Mg3N2 (pt = 65GPa) (derived from the evaluation of the E-V data by the
Murnaghan EOS).
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lower in enthalpy than β-Mg3N2 and will consequently form. Due to the gentle slope

of the relative enthalpy curves, the transition pressure of β-Mg3N2 into γ-Mg3N2

has an uncertainty of about 2GPa, as small deviations resulting from �tting with

di�erent EOSs lead to comparatively large changes in transition pressure. The three

phases of Mg3N2 and their pressure relation are depicted in Figure 4.5.

4.1.3 Ca
3
N

2

Six polymorphs prove to be relevant for being considered in the phase diagram of

Ca3N2. α-Ca3N2 adopts an anti-bixbyite structure, space group Ia	3 (no. 206) [192]

(Figure 4.1). β-Ca3N2 crystallizes in the trigonal space group R	3c (no. 167) in

the anti-Al2O3 structure [145] (Figure 4.1). The third candidate structure adopts

an orthorhombic anti-Rh2O3-II structure, space group Pbna (no. 60) [168] (Fig-

ure 4.1). Anticipating the results and the discussion, this polymorph was denoted

as γ-Ca3N2. All these three structures comprise Ca atoms tetrahedrally coordi-

nated by N, and N atoms in octahedral coordination by Ca. The fourth structure

� denoted δ-Ca3N2 � exhibits the monoclinic anti-B-sesquioxide structure (space

group C2/m, no. 12) [191] and the �fths structure � denoted ε-Ca3N2 � the trig-

onal anti-A-sesquioxide structure (space group P	3m1, no. 164) [180, 181] (Figure

4.1). In δ-Ca3N2 the coordination numbers of Ca and N are partially increased.

Whereas in α-, β- and γ-Ca3N2 Ca is always tetrahedrally and N octahedrally

coordinated (Ca [4]
3 N [6]

2 ), in δ-Ca3N2 Ca exhibits a four-, �ve and six-fold coordi-

nation (tetrahedral, quadratic prismatical, octahedral) and N a six- and seven-

fold coordination (octahedral and seven-fold), the coordination description being

Ca [4]
2/3Ca

[5]
2/9Ca

[6]
1/9N

[6]
1/3N

[7]
2/3. For ε-Ca3N2 coordination numbers are further increased

to �ve (trigonal bipyramids) and six (octahedra) for Ca and eight for N (cubes)

(Ca [5]
2 Ca [6]

1 N [8]
2 ). Given the sequence of the anti-structures of bixbyite, corundum,

and Rh2O3-II, yet another high-pressure phase with an anti-post-perovskite struc-

ture would be rational. But when compressing Ca3N2 in the anti-post-perovskite

structure (space group Cmcm, no. 63) [193], a distortion towards a higher hexagonal

symmetry was found. This fourth candidate structure, termed λ-Ca3N2, has been

identi�ed with space group P63/mmc (no. 194) (Figure 4.1). It exhibits a hitherto

undetected structure of Ca3N2 which is related to that of β-Be3N2 [139] (the Wyck-
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o� positions for M1, M2 and N1 are the same, but N2 occupies the 2d position in

λ-Ca3N2 and the 2c position in β-Be3N2). λ-Ca3N2 exhibits partially increased co-

ordination numbers for Ca and N compared to ε-Ca3N2. Whereas the coordination

polyhedra of Ca remain unchanged, the molar ratio of CN = 5 to CN = 6 shifts

from 2:1 to 1:2. N is now eight- and nine-fold coordinated.

For α-Ca3N2 the calculated crystallographic data were also compared to those of

previous calculations [189, 190], which are in good accordance with the results of

this thesis (compare Table 4.5).

Table 4.5: Comparison of previousliy calculated data for α-Ca3N2 compared to results of this
thesis and experimental values.

α-Ca3N2, Ia	3, Z = 16

V / 106 pm3 a / pm B0 / GPa Reference

1510.2 1147.3 170 [190]
1489 1142 / [189]
1510.19(23) 1147.3(1) / Exp. [192]
1404.44 1119.87 79 this thesis (LDA)
1502.54 1154.36 68 this thesis (GGA)

The calculated bond lengths Ca-N of α-, β- and γ-Ca3N2 are all in the range of those

in the experimentally determined structures for α-Ca3N2 [192] and β-Ca3N2 [145]

and correspond well to the sum of the ionic radii (Table 4.6). For δ-Ca3N2, ε-Ca3N2

and λ-Ca3N2 the spread of bond lengths is larger with the longest Ca-N distances

in λ-Ca3N2 being found for the two vertices of the CaN5 trigonal bipyramids, which

are substantially reduced under pressure.

Referring to our GGA-calculations at ambient pressure, α-Ca3N2 has the lowest en-

ergy of the four polymorphs (-26.728 eV per formula unit) and also the lowest density,

ρ = 2.62 g cm-3 (exp. value 2.61 g cm-3 [192]). β-Ca3N2 is only about 0.072 eV per

formula unit higher in energy, but also about 2.3% denser (computed 2.68 g cm-3,

matching exp. 2.68 g cm-3 [145]). The density of γ-Ca3N2 (ρ = 2.79 g cm-3) is higher

than that of both α- and β-Ca3N2, about 6.4% and 4.0%, respectively. The energy

of γ-Ca3N2 in its ground state comes out 0.163 eV per formula unit higher with

respect to α-Ca3N2. δ-Ca3N2 (ρ = 2.79 g cm-3) is 7.6% denser than α-Ca3N2 and

1.1% denser than γ-Ca3N2. Its ground-state energy lays 0.239 eV higher than that
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Table 4.6: Bond lengths (in pm) in α-, β-, γ-,δ-,ε- and λ-Ca3N2 compared to experimental values.

Structure Bond type LDA GGA exp.

α-Ca3N2 Ca[4]-N 240.53 � 241.37 245.38 � 246.86 245.16 � 248.38 [192]

β-Ca3N2 Ca[4]-N 236.21 � 247.04 241.26 � 253.04 236.44 � 255.14 [145]

γ-Ca3N2 Ca[4]-N 235.65 � 255.14 240.37 � 258.49 /

δ-Ca3N2 Ca[4]-N 228.01 � 260.10 233.46 � 271.60 /

Ca[5]-N 230.58 � 263.67 234.95 � 270.90 /

Ca[6]-N 261.77, 271.28 267.73, 279.45 /

ε-Ca3N2 Ca[4+1]-N 240.18 � 284.00 244.32 � 295.51 /

Ca[6]-N 264.45 272.40 /

ε'-Ca3N2 Ca[4+1]-N 230.39 � 368.88 233.93 � 388.02 /

Ca[6]-N 267.14 273.16 /

λ-Ca3N2 Ca[3+2]-N 221.07, 307.52 224.65, 329.66 /

Ca[6]-N 246.42, 297.20 251.77, 311.64 /

Ionic Radii bond type Shannon [183] Baur [184]

Ca[4]-N[4] / 242

Ca[4]-N[6] / 246

Ca[6]-N[4] 246 251

Ca[6]-N[6] / 255

of α-Ca3N2 and 0.077 eV than that of γ-Ca3N2. ε-Ca3N2 then is the polymorph with

the highest density we found. With ρ = 2.99 g cm-3 it is about 14.1% denser than

α-Ca3N2, 7.2% denser than γ-Ca3N2 and 5.7% denser than δ-Ca3N2. Its energy

lays 0.850 eV above that of α-Ca3N2 and 0.611 eV above that of δ-Ca3N2. Finally,

λ-Ca3N2 is lower in density than ε-Ca3N2 by 4.7%, but it is 8.6% denser than

α-Ca3N2 and still 2.1% denser than γ-Ca3N2 and 1.1% than δ-Ca3N2. The energy

of λ-Ca3N2 is 0.980 eV per formula units higher than that of α-Ca3N2, and 0.130 eV

per formula units higher than that of ε-Ca3N2. The zero-pressure bulk moduli at am-

bient pressure of the �rst three phases increase with increasing density from 68GPa

over 72GPa to 73GPa in the sequence of α-, β- and γ-Ca3N2. δ-Ca3N2 exhibits an

equilibrium bulk modulus B0 of 67GPa, ε-Ca3N2 of 76GPa and λ-Ca3N2 of 45GPa.

In Figure 4.9 the energy-volume curves of the six considered structures of Ca3N2

are shown. The E-V data were converted into the enthalpy-pressure phase diagram

shown in Figure 4.10 by standard methods (see chapter 2.7.5).

With respect to enthalpy, it turns out that α-Ca3N2 is the most stable polymorph

52



4.1 Calculations M
3
N

2
(M = Be, Mg, Ca, Sr, Ba)

of Ca3N2 for pressures up to 5GPa, at which it will transform to γ-Ca3N2. β-Ca3N2

on the other hand does not appear as a valid high-pressure phase from these cal-

culations, which refer to zero Kelvin temperature. Its appearance is likely due

to entropy e�ects that impact the free enthalpy G at higher temperatures. Once

γ-Ca3N2 is formed, it will remain stable up to about 10GPa. At this pressure

the monoclinic structure of δ-Ca3N2 becomes the most stable polymorph of Ca3N2.

Reaching pressures exceeding 27GPa, hexagonal ε-Ca3N2 is lower in enthalpy and

will consequently form. Above 38GPa, λ-Ca3N2 becomes lower in enthalpy.

In total, four new high-pressure phases of Ca3N2 are thus proposed. The sequence

of structures together with transition pressures and density increases are illustrated

in Figure 4.8.

Figure 4.8: Sequence of structures of Ca3N2 together with transition pressures and changes in
density.

4.1.4 Sr
3
N

2

Four auspicious structures for the high-pressure phase diagram of Sr3N2 could be

identi�ed. The structure with the lowest energy, as for Be3N2, Mg3N2 and Ca3N2,
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Figure 4.9: Energy-volume (E-V ) phase diagrams of α-, β-, γ-, δ-, ε- and λ-Ca3N2, calculated
within the GGA. Each symbol represents a calculation.
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Figure 4.10: Enthalpy-pressure (H-p) diagrams for the transition of α-Ca3N2 into γ-Ca3N2 (pt =
5GPa), into δ-Ca3N2 (pt = 10GPa), into ε-Ca3N2 (pt = 27GPa) and into λ-Ca3N2 (pt = 38GPa)
as well as for the transformation of β-Ca3N2 into γ-Ca3N2 (pt = 4.5GPa)(derived from the eval-
uation of the E-V data by the Murnaghan EOS).
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was the cubic anti-bixbyite structure (Figure 4.1). Hence, this theoretical modi�-

cation of Sr3N2 was termed α-Sr3N2. For β-Sr3N2 an anti-Rh2O3-II-type structure

(space group Pbna, no. 60, see Figure 4.1) [168] was discerned. Both α-Sr3N2 and

β-Sr3N2 are built up by SrN4 tetrahedra, both corner- and edge-sharing. Nitrogen

exhibits an octahedral coordination. As a third phase, denoted γ-Sr3N2, an anti-

B-sesquioxide structure [191] was identi�ed (Figure 4.1), with tetrahedral, quadratic

pyramidal and octahedral coordination for Sr and six- and seven-fold coordination

for N, resulting in a coordination description of Sr [4]2/3Sr
[5]
2/9Sr

[6]
1/9N

[6]
1/3N

[7]
2/3. Finally, the

above described hexagonal P63/mmc structure (see chapter 4.1.3, page 50 and Fig-

ure 4.1) was found to be promising under high-pressure and was therefore termed

δ-Sr3N2. From α-, β- to γ- and δ-Sr3N2 coordination numbers are continuously in-

creased for both Sr and N. In the order given above, Sr changes its coordination

number from 4 to an average 4.4 and �nally 5.7, while N goes from CN = 6 over 6.7

to 8.5.

The calculated distances Sr-N for all four Sr3N2 are listed in Table 4.7. They re-

semble quite well the Sr-N distances found in strontium nitridosilicates (examples

given in Table 4.7).

For α-Sr3N2 the energy per formula unit was calculated to -24.422 eV and the density

to 4.13 g cm-3, referring to GGA calculations. β-Sr3N2 comes out 0.126 eV higher in

energy and 6.7% denser (ρ = 4.41 g cm-3). γ-Sr3N2 exhibits a still 0.107 eV higher en-

ergy than β-Sr3N2 and 0.233 eV higher than α-Sr3N2. The density increase amounts

to 0.8% relative to β-Sr3N2 and to 7.6% respecting α-Sr3N2, resulting in a density

of 4.447 g cm-3. δ-Sr3N2 then is the polymorph with the highest energy (0.956 eV

higher than α-Sr3N2 and 0.723 eV higher than γ-Sr3N2) and density (4.454 g cm-3).

This renders it 7.8% denser than α-Sr3N2 and at least 0.2% denser than γ-Sr3N2.

Orhan et al. [189] also calculated Sr3N2 (and Ba3N2) in the anti-bixbyite-type

structure. Their results agree well with those of this work (c.f. Table 4.8). The

energy-volume curves (Figure 4.12) and the enthalpy-pressure phase diagram de-

rived thereof (Figure 4.13) revealed four phases of interest for the high-pressure

behavior of Sr3N2. Three high-pressure phases of anti-bixbyite α-Sr3N2 were found.

β-Sr3N2, which is lower in enthalpy than α-Sr3N2 at pressures exceeding 3GPa,

will remain the stable polymorph up to 12GPa, when γ-Sr3N2 becomes lower in

enthalpy. The transition pressure of β-Sr3N2 into γ-Sr3N2 has an uncertainty of
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Table 4.7: Bond lengths (in pm) in α-, β-, γ- and δ-Sr3N2 compared to experimental values.

Structure Bond type LDA GGA exp.

α-Sr3N2 Sr[4]-N 256.56 � 260.81 262.76 � 266.76 /

β-Sr3N2 Sr[4]-N 253.19 � 270.01 258.63 � 278.28 /

γ-Sr3N2 Sr[4]-N 244.36 � 277.92 250.79 � 290.44 /

Sr[5]-N 245.93 � 285.49 250.90 � 294.91 /

Sr[6]-N 282.04 � 286.30 288.91 � 294.93 /

γ'-Sr3N2 Sr[3]-N 243.37 � 248.99 248.79 � 254.74 /

Sr[4]-N 253.13 � 260.01 258.93 � 267.55 /

Sr[5]-N 254.85 � 284.32 262.27 � 293.18 /

Sr[6]-N 272.49 � 277.87 280.59 � 285.01 /

δ-Sr3N2 Sr[3+2]-N 237.59, 331.12 241.54, 357.70 /

Sr[6]-N 265.16, 319.35 271.39, 336.27 /

Nitridosilicates

SrSiN2 [14] Sr[9]-N / / 256.29 � 340.65
Sr2Si5N8 [16] Sr[10]-N / / 254.22 � 338.06

Ionic Radii bond type Shannon [183] Baur [184]

Sr[6]-N[4] 264 /

Sr[7]-N[6] / 273

Sr[7]-N[8] / 277

Table 4.8: Comparison of previously calculated data for α-Sr3N2 and Ba3N2 in the anti-bixbyite
structure compared to results of this thesis.

α-Sr3N2, Ia	3, Z = 16

V / 106 pm3 a / pm B0 / GPa Reference

1834 1224 / [189]
1737.08 1202.10 61 this thesis (LDA)
1869.73 1231.95 51 this thesis (GGA)

Ba3N2 bixbyite-type, Ia	3, Z = 16

V / 106 pm3 a / pm B0 / GPa Reference

2331 1326 / [189]
2086.70 1277.87 40 this thesis (LDA)
2279.23 1316.02 35 this thesis (GGA)
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about 2GPa, as the relative enthalpy curves exhibit similar slopes which e�ect a

�at crossing. Therefore, the di�erence in enthalpy resulting from the use of di�erent

equations of state gives rise to a comparatively large divergence in transition pres-

sure. Above 26GPa δ-Sr3N2 becomes lower in enthalpy than γ-Sr3N2. The complete

sequence of structures for anti-bixbyite-type Sr3N2 is shown in Figure 4.11.

Figure 4.11: Sequence of structures of Sr3N2 together with transition pressures and changes in
density.

Figure 4.12: Energy-volume (E-V ) phase diagram of α-, β-, γ-, γ'- and δ-Sr3N2, calculated within
the GGA. Each symbol represents a calculation.
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Figure 4.13: Enthalpy-pressure (H-p) diagram for the transition of α-Sr3N2 into β-Sr3N2 (pt =
3GPa), into γ-Sr3N2 (pt = 12GPa) and into δ-Sr3N2 (pt = 26GPa) (derived from the evaluation
of the E-V data by the Murnaghan EOS).

4.1.5 Ba
3
N

2

Four structure types were found to be of importance for the pressure enthalpy phase

diagram of Ba3N2. Interestingly, Ba3N2 is the only alkaline earth nitride which has

not the anti-bixbyite-type structure as its ground-state energy form. The anti-A-

sesquioxide structure (Figure 4.1) [180, 181] comes out lower in energy (-24.422 eV

compared to -24.272 eV within GGA). Therefore, the anti-A-sesquioxide-type Ba3N2

was termed α-Ba3N2. Noticeably, the c/a-ratio in this anti-A-sesquioxide-type struc-

ture is increased to 2.7 from the known 1.7 for rare earth oxides [180] and 1.2 for

intermetallic compounds of the Ni2Al3-type [181]. Calculating Ba3N2 with �xed

c/a-ratios of 1.7 and 1.2 leads to structures exhibiting internal pressure and with

higher energies than the structure with c/a = 2.7 (c/a = 1.2: -23.204 eV; c/a = 1.7:

-23.813 eV). The elongation of the c-axis with respect to the a-axis results in a

change of coordination for the Ba atom occupying the originally tetrahedrally co-

ordinated site to three. The structure thereby becomes a layered structure with

BaN6 octahedra layers, which are �anked on both sides by Ba atoms, coordinating

solely to N atoms within the central layer. The coordination description of this
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anti-"A-sesquioxide"-type structure is Ba [3]
2 Ba [6]

1 N [6]
2 .

β-Ba3N2 was identi�ed to have an anti-Rh2O3-II structure [168] with tetrahedrally

coordinated Ba and octahedrally coordinated N (Figure 4.1). The third structure

found � termed γ-Ba3N2 � exhibits the anti-CaIrO3 post-perovskite structure (Fig-

ure 4.1) [193]. Ba is either tetrahedrally or quadratically pyramidally coordinated

by N, whereas N is octahedrally and eight-fold coordinated by Ba. The structure is

built up by a three-dimensional network of edge-sharing BaN5 quadratic pyramids

which is interpenetrated by an equally three-dimensional network of corner-sharing

BaN4 tetrahedra. BaN5 quadratic pyramids and BaN4 tetrahedra share common

edges (Ba [4]
1 Ba [5]

2 N [6]
1 N [8]

1 ). The fourth relevant structure type is the above described

hexagonal P63/mmc structure (see chapter 4.1.3, page 50 and Figure 4.1), denoted

δ-Ba3N2, which is related to the post-perovskite structure by a group-subgroup re-

lation.

The calculated Ba-N distances are listed in Table 4.9 and are in the same range as

those found in barium nitridosilicates.

Table 4.9: Bond lengths (in pm) in α-, β-, γ- and δ-Ba3N2 compared to experimental values.

Structure Bond type LDA GGA exp.

α-Ba3N2 Ba[3]-N 259.22 265.11 /

Ba[6]-N 290.77 298.68 /

β-Ba3N2 Ba[4]-N 265.23 � 290.43 267.08 � 300.56 /

γ-Ba3N2 Ba[4]-N 263.39 � 278.79 267.09 � 293.82 /

Ba[5]-N 268.92 � 342.14 273.54 � 363.44 /

δ-Ba3N2 Ba[3+2]-N 253.34, 341.35 257.27, 359.11 /

Ba[6]-N 284.07, 341.35 290.80, 359.11 /

Nitridosilicates

BaSiN2 [14] Ba[10]-N / / 277.71 � 357.49
Ba2Si5N8 [16] Ba[10]-N / / 267.70 � 341.79
Ionic Radii bond type Shannon [183] Baur [184]

Ba[6]-N[4] 281 /

Ba[6]-N[6] / 290

Ba[6]-N[8] / 294

As aforementioned, α-Ba3N2 has the lowest energy, with β-Ba3N2 laying 0.189 eV

higher in energy and being 18.6% denser (α-Ba3N2: ρ = 4.68 g cm-3; β-Ba3N2: ρ =
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5.55 g cm-3). γ-Ba3N2 is the densest polymorph (ρ = 5.60 g cm-3). It is 19.7% denser

than α-Ba3N2 and 0.9% denser than β-Ba3N2. Its energy is higher than that of

α-Ba3N2 by 0.593 eV and by 0.404 eV than that of β-Ba3N2. δ-Ba3N2 has the highest

energy of the four polymorphs, 1.074 eV higher than α-Ba3N2 and 0.481 eV higher

than β-Ba3N2. However, with its density of 5.50 g cm-3 it is less dense than both

β-Ba3N2 (-0.9%) and γ-Ba3N2 (-1.8%) but still denser than α-Ba3N2 by 17.5%.

For Ba3N2 the structure type with the lowest energy (α-Ba3N2) is the anti-"A-sesqui-

oxide"-type structure, however exhibiting a signi�cantly increased c/a-ratio of 2.7

(compare above page 59). Under pressure the c/a-ratio is gradually reduced. Up to

7GPa c/a = 2.7 is favored, above c/a = 1.7 (similar to those of the rare earth oxides

M2O3 [180]) becomes more favorable. At pressures exceeding 36GPa the c/a-ratio

is further reduced to 1.2 (similar to the intermetallic compounds, e.g. Ni2Al3 [181])

(compare Figure 4.15). However, the anti-"A-sesquioxide"-type structure is only

stable up to 2GPa, when β-Ba3N2 will form, followed at about 32GPa by γ-Ba3N2.

At pressures above 52GPa δ-Ba3N2 is lower in enthalpy than γ-Ba3N2. For both

transitions β-Ba3N2 into γ-Ba3N2 and γ-Ba3N2 into δ-Ba3N2 the error resulting from

employing di�erent equations of state (EOS) amounts to about 2GPa and 3GPa,

respectively. In contrast to the two cases discussed above (see chapter 4.1.2, page

48 and 4.1.4, page 56), this error does not result from similar slopes of the enthalpy-

pressure curves but is founded on the di�culties arising when �tting the calculated

data points with the EOSs. Since the energy-volume curves are quite �at around V0

an accurate �t of V0 and E0 taking all calculated data points into consideration was

not feasible. Therefore, V0 and E0 were determined by only using the data points in

a small range around V0 and subsequently all data points where �tted with �xed V0

and E0. However, more or less large deviations from the calculated data occurred at

larger compressions, depending on the EOS employed (a detailed example of these

deviations is given in Appendix D).

All high-pressure phases of anti-"A-sesquioxide"-type Ba3N2 together with transition

pressures are illustrated in Figure 4.14. The energy-volume curves and the enthalpy-

pressure phase diagram are shown in Figure 4.16 and Figure 4.17.
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Figure 4.14: Sequence of structures of Ba3N2 together with transition pressures and changes in
density.

Figure 4.15: Enthalpy-pressure (H-p) diagram for α-Ba3N2 with di�erent c/a-ratios (derived
from the evaluation of the E-V data by the Murnaghan EOS).
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Figure 4.16: Energy-volume (E-V ) phase diagram of α-, β-, γ- and δ-Ba3N2 as well as anti-
bixbyite-type Ba3N2, calculated within the GGA. Each symbol represents a calculation.

Figure 4.17: Enthalpy-pressure (H-p) diagram for the transition of α-Ba3N2 into β-Ba3N2 (pt =
2GPa), into γ-Ba3N2 (pt = 32GPa) and into δ-Ba3N2 (pt = 56GPa) (derived from the evaluation
of the E-V data by the Murnaghan EOS).
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Table 4.10: E0, V0, B0 and ρ0 of α-, β- and γ-Be3N2 (E0, V0, B0 given per formula unit).

E0 / eV V0 / 106 pm3 B0 / GPa ρ0 / g cm-1

α-Be3N2 -33.483 33.78 215 2.71
β-Be3N2 -33.343 34.29 210 2.67
γ-Be3N2 -32.419 32.11 213 2.85

Table 4.11: E0, V0, B0 and ρ0 of α-, β- and γ-Mg3N2 (E0 and V0 given per formula unit).

E0 / eV V0 / 106 pm3 B0 / GPa ρ0 / g cm-1

α-Mg3N2 -25.217 62.78 109 2.67
β-Mg3N2 -24.774 59.15 109 2.83
γ-Mg3N2 -24.556 58.83 104 2.85

Table 4.12: E0, V0, B0 and ρ0 of α-, β-, γ-, δ-, ε-, ε'- and λ-Ca3N2 (E0 and V0 given per formula
unit).

E0 / eV V0 / 106 pm3 B0 / GPa ρ0 / g cm-1

α-Ca3N2 -26.728 93.91 68 2.62
β-Ca3N2 -26.657 91.77 72 2.68
γ-Ca3N2 -26.566 88.26 73 2.79
δ-Ca3N2 -26.489 87.22 67 2.82
ε-Ca3N2 -25.878 82.35 76 2.99
ε'-Ca3N2 -26.261 88.29 67 2.79
λ-Ca3N2 -25.748 86.46 45 2.85

Table 4.13: E0, V0, B0 and ρ0 of α-, β-, γ-,γ'- and δ-Sr3N2 (E0 and V0 given per formula unit).

E0 / eV V0 / 106 pm3 B0 / GPa ρ0 / g cm-1

α-Sr3N2 -24.422 116.86 51 4.13
β-Sr3N2 -24.296 109.52 55 4.41
γ-Sr3N2 -24.189 108.61 52 4.447
γ'-Sr3N2 -24.202 125.30 32 3.85
δ-Sr3N2 -23.466 108.44 34 4.454
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Table 4.14: E0, V0, B0 and ρ0 of α-, β-, γ- and δ�Ba3N2 (E0 and V0 given per formula unit).

E0 / eV V0 / 106 pm3 B0 / GPa ρ0 / g cm-1

α-Ba3N2 -24.422 156.03 10 4.68
β-Ba3N2 -24.233 131.55 44 5.55
γ-Ba3N2 -23.829 130.38 33 5.60
δ-Ba3N2 -23.348 132.79 31 5.50

4.2 Discussion

For Be3N2, Mg3N2 and Ca3N2 promising candidates for high-pressure phases have

been identi�ed and for Sr3N2 and Ba3N2, whose ambient condition crystal struc-

tures are yet unknown, zero-pressure ground state structures as well as high-pressure

phases are proposed. For all compounds, except Be3N2, several high-pressure poly-

morphs appearing below 100GPa were found. Be3N2, for which two ambient-

pressure phases (α-Be3N2 (anti-C-sesquioxid =̂ anti-bixbyite) and high-temperature

β-Be3N2) are known, exhibits only one high-pressure phase, γ-Be3N2 (anti-A-sesqui-

oxide), which is attainable from α-Be3N2 at 125GPa and from β-Be3N2 at 82GPa,

if the retransformation of γ-Be3N2 into α-Be3N2 is su�ciently kinetically hindered.

However, for rare earth sesquioxides, it has been frequently reported, that C→A (as

well as the C→B) phase transformations are not easily reversible, as they are of �rst

order (reconstructive phase transition) [194�198]. Therefore it may be assumed that

γ-Be3N2 can be obtained from β-Be3N2 and quenched to ambient conditions. No

pressure induced transformation of α-Be3N2 into β-Be3N2 and vice versa will take

place according to the calculations.

Mg3N2 exhibits two phase transformations up to 100GPa, the �rst occurring at

21GPa (β-Mg3N2) and the second at 65GPa (γ-Mg3N2). Both terminal units of the

high-pressure phase sequences of Be3N2 and Mg3N2 exhibit the anti-A-sesquioxide-

type structure with a c/a-ratio of about 1.7 (equivalent to the A-sesquioxide-type

structure of the rare earth metal oxides [180]). Mg3N2 exhibits an intermediate

anti-B-sesquioxide structure, which is related to the anti-A-sesquioxide structure by

group-subgroup relation (compare Figure 4.18). The B→A phase transition has

been classi�ed as second order phase transformation (displacive phase transforma-
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Table 4.15: Atom coordinates of β-Mg3N2 (B-sesquioxide structure [191]) and of γ-Mg3N2 (A-
sesquioxide structure [180, 181]) in C2/m setting (GGA and LDA calculation). Decimal numbers
marked with a have �xed values for space group P	3m1 (e.g. 0.25 =̂ 1/4), but could deviate from
this value in space group C2/m.

atom structure
Wycko�-
Position

x y z

Mg1 β-Mg3N2 LDA 4i 0.12317 0 0.28107
β-Mg3N2 GGA 0.12250 0 0.28111
γ-Mg3N2 LDA 0.16667a 0 0.33333a

γ-Mg3N2 GGA 0.16667a 0 0.33333a

Mg2 β-Mg3N2 LDA 4i 0.32770 1/2 0.03116
β-Mg3N2 GGA 0.32776 1/2 0.03094
γ-Mg3N2 LDA 0.33031 1/2 0.00302
γ-Mg3N2 GGA 0.33048 1/2 0.00286

Mg3 β-Mg3N2 LDA 4i 0.29010 0 0.37810
β-Mg3N2 GGA 0.28967 0 0.37809
γ-Mg3N2 LDA 0.33636 0 0.33031
γ-Mg3N2 GGA 0.33619 0 0.33048

Mg4 β-Mg3N2 LDA 4i 0.46478 1/2 0.33560
β-Mg3N2 GGA 0.46368 1/2 0.33487
γ-Mg3N2 LDA 0.49698 1/2 0.33636
γ-Mg3N2 GGA 0.49714 1/2 0.33619

Mg5 β-Mg3N2 LDA 2b 0 1/2 0
β-Mg3N2 GGA 0 1/2 0
γ-Mg3N2 LDA 0 1/2 0
γ-Mg3N2 GGA 0 1/2 0

N1 β-Mg3N2 LDA 4i 0.13562 1/2 0.48614
β-Mg3N2 GGA 0.13562 1/2 0.48725
γ-Mg3N2 LDA 0.14106 1/2 0.52561
γ-Mg3N2 GGA 0.14089 1/2 0.52578

N2 β-Mg3N2 LDA 4i 0.18964 1/2 0.13759
β-Mg3N2 GGA 0.19012 1/2 0.13765
γ-Mg3N2 LDA 0.19228 1/2 0.14106
γ-Mg3N2 GGA 0.19244 1/2 0.14089

N3 β-Mg3N2 LDA 4i 0.46790 1/2 0.18128
β-Mg3N2 GGA 0.49790 1/2 0.18104
γ-Mg3N2 LDA 0.47439 1/2 0.19228
γ-Mg3N2 GGA 0.47422 1/2 0.19244

tion) and for rare earth oxides it has been observed, that frequently the B→A trans-

formation is reverted after the physical force (i.e. pressure or temperature) ceases

to act on the sample [194, 195, 198, 199]. Therefore, for Mg3N2 probably only

anti-B-sesquioxide-type Mg3N2 can be quenched to ambient conditions, whereas

anti-A-sesquioxide-type Mg3N2 may be only observed in situ. In Table 4.15 the
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atom coordinates of β- and γ-Mg3N2, both set in C2/m, are compared to further

illustrate the relation between the two structures.

Figure 4.18: Group-subgroup relation of the A- and B-sesquioxide structure (The structure pic-
tures feature the monoclinic unit cell of B-sesquioxide (thin black line) and of A-sesquioxide (thick
black line).

Compared to Mg3N2, Ca3N2 exhibits two more high-pressure phases. An anti-

Rh2O3-II phase (γ-Ca3N2) intermittently appears ere the anti-B-sesquioxide and the

anti-A-sesquioxide-type structures come into existence. In contrast to Be3N2 and

Mg3N2 the last high-pressure phase found for Ca3N2 is not the anti-A-sesquioxide

structure but a novel hexagonal structure type (λ-Ca3N2) (for a description see chap-

ter 4.1.3, page 50). A comparison of the atomic positions of anti-B-sesquioxide and

anti-A-sesquioxide-type Ca3N2 (δ- and ε-Ca3N2) in C2/m setting, elucidating the

relationship of the two structure types as above for β/γ-Mg3N2, is given in Table

4.16.

According to the calculations, α-Ca3N2 will be stable up to 5GPa. γ-Ca3N2 will

come into existence between 5 and 10GPa. Above 10GPa, another high-pressure

phase, δ-Ca3N2, becomes lower in enthalpy than γ-Ca3N2, easily accessible in to-

day's high-pressure experimental set-ups. δ-Ca3N2 remains stable up to 27GPa,

when ε-Ca3N2 comes into existence, followed by λ-Ca3N2 above 38GPa. This pres-

sure range is still attainable in diamond anvil cell (DAC) experiments.

About 50 years ago, a high-pressure phase of Ca3N2 with orthorhombic structure has

been mentioned by Bradley et al. [143]. It was synthesized at 4.6GPa (and 1800 °C),
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Table 4.16: Atom coordinates of δ-Ca3N2 (B-sesquioxide structure [191]) and of ε-Ca3N2 (A-
sesquioxide structure [180, 181]) in C2/m setting (GGA and LDA calculation). Decimal numbers
marked with a have �xed values for space group P	3m1 (e.g. 0.16667 =̂ 1/6), but could deviate
from this value in space group C2/m.

atom structure
Wycko�-
Position

x y z

Ca1 δ-Ca3N2 LDA 4i 0.12762 0 0.27897
δ-Ca3N2 GGA 0.12567 0 0.27775
ε-Ca3N2 LDA 0.16667a 0 0.33333a

ε-Ca3N2 GGA 0.16667a 0 0.33333a

Ca2 δ-Ca3N2 LDA 4i 0.32764 1/2 0.03494
δ-Ca3N2 GGA 0.32800 1/2 0.03518
ε-Ca3N2 LDA 0.34008 1/2 -0.00674
ε-Ca3N2 GGA 0.33881 1/2 -0.00548

Ca3 δ-Ca3N2 LDA 4i 0.29041 0 0.37822
δ-Ca3N2 GGA 0.28073 0 0.37949
ε-Ca3N2 LDA 0.32659 0 0.34008
ε-Ca3N2 GGA 0.32768 0 0.33881

Ca4 δ-Ca3N2 LDA 4i 0.47058 1/2 0.34129
δ-Ca3N2 GGA 0.46826 1/2 0.33945
ε-Ca3N2 LDA 0.50674 1/2 0.32659
ε-Ca3N2 GGA 0.50548 1/2 0.32786

Ca5 δ-Ca3N2 LDA 2b 0 1/2 0
δ-Ca3N2 GGA 0 1/2 0
ε-Ca3N2 LDA 0 1/2 0
ε-Ca3N2 GGA 0 1/2 0

N1 δ-Ca3N2 LDA 4i 0.14105 1/2 0.48721
δ-Ca3N2 GGA 0.14539 1/2 0.48828
ε-Ca3N2 LDA 0.14646 1/2 0.52021
ε-Ca3N2 GGA 0.14539 1/2 0.52128

N2 δ-Ca3N2 LDA 4i 0.18231 1/2 0.13116
δ-Ca3N2 GGA 0.18256 1/2 0.13023
ε-Ca3N2 LDA 0.18688 1/2 0.14646
ε-Ca3N2 GGA 0.18794 1/2 0.14539

N3 δ-Ca3N2 LDA 4i 0.46954 1/2 0.18805
δ-Ca3N2 GGA 0.46936 1/2 0.18775
ε-Ca3N2 LDA 0.47979 1/2 0.18688
ε-Ca3N2 GGA 0.47872 1/2 0.18794

which matches the transition pressure we computed for α-Ca3N2 into γ-Ca3N2 very

closely. The cell parameters reported at that time, however, do not agree with the

data propose for γ-Ca3N2. Nevertheless, this concurrence strongly motivates exper-

iments designated to elucidate the high-pressure behavior of Ca3N2.

A constant increase in density is attained by each phase transition up to ε-Ca3N2,

68



4.2 Discussion

but remarkably, at ambient pressure, λ-Ca3N2 is lower in density than ε-Ca3N2, al-

though λ-Ca3N2 will be attained at higher pressure than ε-Ca3N2. At �rst sight, this

�nding is counterintuitive for a high-pressure phase, as one expects high-pressure

phases to be denser then the corresponding low pressure phase. But when examin-

ing the density development under pressure, one �nds, that λ-Ca3N2 becomes denser

than ε-Ca3N2 above 11GPa (Figure 4.19).

Figure 4.19: Pressure dependency of the density ρ of the high-pressure phases of Ca3N2 (Mur-
naghan EOS).

These results are somewhat complicated by a strong response of the c/a-ratio in

ε-Ca3N2 to the applied pressure. Note that above 12GPa ε-Ca3N2 with a c/a-ratio

of 1.29 is more favorable (corresponding to a anti-Ni2Al3-type structure [181]), while

below 12GPa the structure suddenly expands to a c/a-ratio of 1.78 (denoted ε' and

corresponding to a anti-La2O3-type structure [180]) (see Tables A14 and A15 in Ap-

pendix A). Computations with �xed c/a-ratio clearly indicated the crossover within

this anti-A-sesquioxide structure type (Figure 4.20).
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Figure 4.20: Enthalpy-pressure (H-p) diagram for di�erent c/a-ratios of ε-Ca3N2 (Murnaghan
EOS evaluation).

In our calculations, β-Ca3N2 does not appear as a valid high-pressure phase of

Ca3N2, since it is always found to be higher in energy than either α-, γ-, δ-,

ε- or λ-Ca3N2. The transition pressure of α-Ca3N2 into β-Ca3N2 is calculated

to 7GPa and lays higher than the transition pressure of α-Ca3N2 into γ-Ca3N2

(5GPa) as well as the transition pressure of β-Ca3N2 into γ-Ca3N2 (4.4GPa). This

�nding may well be attributed to temperature e�ects and the in�uence of defects

occurring in β-Ca3N2 on the Gibbs free energy. For crystals containing point de-

fects, the equation for the Gibbs free energy G = H − TS has to be rewritten to

G = H0 − TS0 + nD(Hf
D − TS

f
D)− kT (lnWD), where H0 − TS0 denotes the Gibbs

free energy of the perfect crystal, nD the number of defects, Hf
D the enthalpy of de-

fect formation, SfD the thermal entropy and kT (lnWD) the con�gurational entropy.

These additional terms to the Gibbs free energy are not negligible for solids contain-

ing a signi�cant defect concentration. Given the small enthalpy di�erence between

α- and β-Ca3N2 they may have substantial in�uence on the Gibbs free energy and,

thus, on the phase development.

Hypothetic anti-bixbyite Sr3N2 exhibits a quite similar high-pressure phase sequence

as Ca3N2, with the exception that the anti-A-sesquioxide structure is skipped. Con-

70



4.2 Discussion

sequently anti-bixbyite-type Sr3N2 exhibits three high-pressure phases. β-Sr3N2

comes into existence at pressures between 3 and 12GPa, followed by γ-Sr3N2, which

remains stable up to 26GPa, when δ-Sr3N2 becomes more favorable. The pressure

sensitivity of the c/a-ratio of ε-Ca3N2 (anti-A-sesquioxide-type structure) is here

re�ected in a similar behavior of γ-Sr3N2 (anti-B-sesquioxide-type structure). Two

structure variants of the anti-B-sesquioxide structure turn out to have very similar

ground state energies. When converting the monoclinic cell to a pseudo-hexagonal

cell, these two structures correspond to c/a-ratios of 1.7 (called γ-Sr3N2) and 2.0

(called γ'-Sr3N2). As in ε-Ca3N2 this pseudo-c/a-ratio is very sensitive to pressure

and computations with �xed pseudo-c/a-ratio clearly show that under pressure the

γ-Sr3N2 anti-B-sesquioxide-type structure is preferred (Figure 4.21).

Figure 4.21: Enthalpy-pressure (H-p) diagram for the di�erent pseudo-c/a-ratios of γ-Sr3N2 (c/a
= 1.7) and γ'-Sr3N2 (c/a = 2.0) (Murnaghan EOS evaluation).

Ba3N2 is the only compound in the row of the binary nitrides of the group II elements

exhibiting a di�erent ground state structure type. Hypothetic α-Ba3N2 exhibits an

anti-A-Sesquioxide-type structure with an enlarged c/a-ratio (compare chapter 4.1.5,

page 59). The phase sequence of Ba3N2 is di�erent from that of the other nitrides

of the group II elements. It is the only compound for which an anti-post-perovskite
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high-pressure phase is found (γ-Ba3N2). However the �nal high-pressure phase found

for Ba3N2 is the same as for Ca3N2 and Sr3N2. They all adopt the hexagonal phase

(space group P63/mmc) derived from the post-perovskite structure. The group-

subgroup relation of the post-perovskite and the P63/mmc structure are depicted

in Figure 4.22. Due to this relation, the phase transformation from γ- to δ-Ba3N2

is a displacive one. The movements of the atoms are indicated in Figure 4.22 and

the atomic positions for γ- to δ-Ba3N2 in Cmca setting are compared in Table 4.17.

Figure 4.22: Group-subgroup relation of the P63/mmc and the post-perovskite structure (The
structure pictures feature the orthorhombic unit cell of post-perovskite (solid line) and of P63/mmc
in the left picture (dashed line); Atom movements for the transformation are indicated in the right
picture by small arrows).

However, for Ba3N2 δ-Ba3N2 exhibits a lower density than both high-pressure phases

appearing before it comes into existence. But when examining the density devel-

opment under pressure, δ-Ba3N2 evinces an higher density increase per 1GPa, in

accordance with its lower bulk modulus compared to the other two phases. Hence,

δ-Ba3N2 exhibits a higher density than β-Ba3N2 above 1GPa and a higher density

than γ-Ba3N2 above 3.5GPa (Figure 4.23).
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Table 4.17: Atom coordinates of γ-Ba3N2 (post-perovskite CaIrO3 structure (Cmcm) [193]) and
of δ-Ba3N2 (P63/mmc structure) (GGA and LDA calculation). Decimal numbers marked with
a have �xed values for space group P	3m1 (e.g. 0.5 =̂ 1/2), but could deviate from this value in
space group C2/m.

atom structure
Wycko�-
Position

x y z

Ba1 γ-Ba3N2 LDA 4c 1/2 0.39532 1/4
γ-Ba3N2 GGA 1/2 0.39154 1/4
δ-Ba3N2 LDA 1/2 0.5a 1/4
δ-Ba3N2 GGA 1/2 0.5a 1/4

Ba2 γ-Ba3N2 LDA 8f 1/2 0.14124 0.06922
γ-Ba3N2 GGA 1/2 0.13641 0.07233
δ-Ba3N2 LDA 1/2 0.16667a 0.08990
δ-Ba3N2 GGA 1/2 0.16667a 0.08780

N1 γ-Ba3N2 LDA 4c 0 0.25037 1/4
γ-Ba3N2 GGA 0 0.25067 1/4
δ-Ba3N2 LDA 0 0.33333a 1/4
δ-Ba3N2 GGA 0 0.33333a 1/4

N2 γ-Ba3N2 LDA 4a 0 0 0
γ-Ba3N2 GGA 0 0 0
δ-Ba3N2 LDA 0 0 0
δ-Ba3N2 GGA 0 0 0

Figure 4.23: Pressure dependency of the density ρ of the high-pressure phases of Ba3N2 (Mur-
naghan EOS).
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Still, the structure and true nature of Sr3N2 and Ba3N2 are yet unknown. Even

their existence has been questioned, since they elude all endeavors for characteri-

zation beyond any doubt. But, even if these compounds are not synthesizeable at

ambient-pressure, they may be obtained in high-pressure experiments. However, as

a wide variety of binary Sr-N and Ba-N compounds with compositions di�erent from

M3N2 are known (Sr2N [147], SrN [148], Sr4N3 [149], SrN2 [148], Sr(N3)2 [150], Ba3N

[151], Ba2N [152], Ba3N4 [153], BaN2 [154], Ba(N3)2 [155]), the thermodynamic sta-

bility under pressure of the proposed Sr3N2 and Ba3N2 polymorphs against phase

agglomerates of other binary compounds and N2 or Sr and Ba, respectively, needs to

be examined. It is still unknown, if this multitude of known other binary strontium-

nitrogen and barium-nitrogen compounds constitutes a thermodynamic and kinetic

sink, which prevents the formation of the binary nitrides Sr3N2 and Ba3N2.

An overview of all high-pressure phases for the row of the nitrides M3N2 of the

group II elements is shown in Figure 4.24. This �gure clearly illustrates the above

described similarities and di�erences in the high-pressure phases sequences and the

development of these sequences going down in group II of the periodic table.

The overall average values for the calculated zero-pressure bulk moduli decreases in

the row Be3N2, Mg3N2, Ca3N2, Sr3N2, Ba3N2. The values for B0 for Be3N2 range

from 210 to 215GPa, placing them in bulk modulus among compounds as α-Si3N4

[200, 201], β-Si3N4 [201, 202], B4C [203] and SiC [203]. β-Be3N2 exhibits the lowest

ambient-pressure bulk modulus of 210GPa, followed by γ-Be3N2 with a bulk modu-

lus of 213GPa. α-Be3N2 has the highest bulk modulus, evincing a value of 215GPa.

The zero-pressure bulk moduli for the examined Mg3N2 polymorphs are about

100GPa lower than those of the Be3N2 phases. α-Mg3N2 and β-Mg3N2 exhibit

the same B0 of 109GPa, whereas the bulk modulus of γ-Mg3N2 is slightly smaller

(104GPa).

Comparing the bulk moduli at zero pressure for the considered Ca3N2 polymorphs,

which are on average 35GPa lower than those of the Mg3N2 phases, it appears that

B0 increases from 68GPa to 73GPa for α-, β- and γ-Ca3N2, then goes down to

67GPa for δ-Ca3N2, increases to 76GPa for ε-Ca3N2 and �nally drops to 45GPa

for λ-Ca3N2, even lower than that of α-Ca3N2 (68GPa). This �nding implies that

λ-Ca3N2 should be the most compressible and ε-Ca3N2 the least compressible of

all discussed modi�cations of Ca3N2. This can be also drawn on to explain why
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λ-Ca3N2 becomes denser under pressure than ε-Ca3N2, since it is more compressible

and therefore the same change in pressure ∆p results in a larger volume change ∆V

in λ-Ca3N2 than in ε-Ca3N2.

Figure 4.24: Phase sequences of M3N2 (M = Be, Mg, Ca, Sr, Ba) under pressure.

The zero-pressure bulk modulus for Sr3N2 starts at 51GPa for α-Sr3N2, increases to

55GPa for β-Sr3N2, then goes down to 52GPa for γ-Sr3N2 and 32GPa for γ'-Sr3N2,

respectively, and �nally adopts a value of 34GPa for δ-Sr3N2. These values are on

average 20GPa lower than those found for Ca3N2.

The average B0 for the considered Ba3N2 compounds is about 15GPa lower than

that for Sr3N2. The highest ambient-pressure bulk modulus found is adopted by

β-Ba3N2 (44GPa), the lowest by α-Ba3N2 (10GPa), thereby being the overall most

compressible compound in the row of the binary alkaline earth nitrides. γ-Ba3N2
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and δ-Ba3N2 exhibit bulk moduli of 33 and 31GPa, respectively.

All high-pressure transition of M3N2 (M = Be, Mg, Ca, Sr ,Ba) should be easily

detectable via X-ray di�raction experiments (ex situ and in situ), as the powder

patterns of all phases are quite di�erent. Simulated powder patterns for all com-

pounds at the respective transition pressures can be found in Appendix C.
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The MSiN2 compounds (M = Be, Mg, Ca, Sr, Ba), which are the only nitridosilicates

known for all group II elements, excepting radioactive Ra, are not only widely used

in industry, but are also of great importance for the high-pressure chemistry of the

prominent Eu2+-doped LED phosphors M2Si5N8 (M = Ca, Sr, Ba)([204], c.f. chapter

6.4.3). BeSiN2 and MgSiN2 are both used as sintering additives for Si3N4 ceramics

[205�213]. Even BaSiN2 has been discussed as a sintering agent [214]. Especially the

in�uence of MgSiN2 on the properties of Si3N4 ceramics, either as a direct sintering

agent or as a product or intermediate product when using Mg containing additives,

are widely discussed [208, 209, 215�218]. MgSiN2 itself is a prominent ceramic

[219�223] (thermally stable up to 1400°C [205] and studied particularly with regard

to thermal conductivity [222, 224�226]) and discussed to substitute for AlN [227].

CaSiN2, besides possessing promising properties for ceramics applications [228], is

an auspicious phosphor host lattice. Doped with Eu 2+ or Ce 3+ it is considered for

use in LEDs [229, 230]. CaSiN2:Ce
3+ is one of the rare phosphor materials that

can be excited by yellow-green light [230]. MgSiN2, SrSiN2 and BaSiN2 were also

shown to exhibit luminescence when doped with luminescence centers (Eu2+, Ce3+)

[231�233], rendering them interesting for possible industrial applications.

For both, BeSiN2 and MgSiN2, there is only one polymorph known. They have been

identi�ed to crystallize in an ordered wurtzite-type structure (NaFeO2-type struc-

ture), space group Pna21 (no. 33) [13, 234, 235]. The structure is built up of all-side

corner sharing SiN4 and MgN4 tetrahedra. The MN4 tetrahedra built honeycomb

layers of 3er rings perpendicular to [001] with all apices jutting out of the layers

in one direction. These layers follow an ABAB ordering and the SiN4 and MgN4

tetrahedra are arranged in alternating 1-1 zigzag rows.
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CaSiN2 crystallizes in the orthorhombic space group Pbca (no. 61), in the KGaO2-

type structure. The structure is built up by all side corner sharing SiN4 tetrahedra,

forming a three-dimensional network. The Ca2+ ions are 6- and 8-fold coordinated

by nitrogen [14]. A second, cubic modi�cation has also been described in the litera-

ture, but no detailed crystallographic data have been presented until now [230, 236].

Apparently, the luminescence properties described above are attributed to this cu-

bic modi�cation [230]. Furthermore, Cheetham et al. have pointed out, that the

cubic and the orthorhombic CaSiN2 unit cells are related by the following relation:

ac = 2
√

2ao, ac =
√

2bo, ac = co, Vc = 4Vo [230].

It has to be noted, that both the wurtzite-type structure of BeSiN2 and MgSiN2 as

well as the CaSiN2 structure can be derived from the �lled β-cristobalite structure

(also termed �lled C9 structure). By rotating the SiN4 tetrahedra of the idealized

�lled C9 structure in a certain way, one arrives either at the NaFeO2-type (C1-type

distortion) or the KGaO2-type structure (D1-type distortion) [237, 238].

SrSiN2 and BaSiN2 structures are quite di�erent from those of the other three

MSiN2 compounds. They do not exhibit a three-dimensional network structure

of corner-sharing SiN4 tetrahedra, but layers [Si[4]N[2]
2 ]2−∞ containing "bowtie" units

Si2N6 (pairs of edge-sharing tetrahedra) further connected through common cor-

ners. Between these layers, the M2+ cations are situated. BaSiN2 crystallizes in

the orthorhombic space group Cmca (no. 64), whereas SrSiN2 exhibits a monoclinic

distorted variation of the same structure with space group P21/c (no. 14) [14].

The di�erent structural behavior at ambient pressure of the MSiN2 compounds can

easily be attributed to the larger size of the group II element cations. As it emerges,

the interesting question is how such structures may behave if substantial pressure is

applied.

5.1 Optimized Structures and Energy-Volume

Calculations for MSiN2 (M = Be, Mg, Ca, Sr,

Ba)

About 15 structure types where tested as potential high-pressure phases for MSiN2

(M = Be, Mg, Ca, Sr, Ba). Only those that proved to be of relevance for the
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enthalpy-pressure phase diagram are described here. For all optimized structures

the coordination numbers of the M2+ and Si4+ ions were determined by calculating

e�ective coordination numbers (ECoN) [174] with MAPLE [175�178] in order to

compare them to the data for the experimentally determined structures (if available).

5.1.1 BeSiN
2

α-BeSiN2 crystallizes in an ordered wurtzite-type structure (space group Pna21, no.

33) [13] which can also be described as related to the β-cristobalite structure, as a

C1-type distortion of the idealized �lled C9 structure of β-cristobalite [237] (Figure

5.1). Two high-pressure candidate structures were identi�ed. β-BeSiN2 exhibits a

chalcopyrite-like structure with tetrahedrally coordinated Be and Si (space group

I 	42d, no. 122) [239]. This is another structure which is related to β-cristobalite by a

B1-type distortion [237] (Figure 5.1). Both α- and β-BeSiN2 are three-dimensional

MN4 tetrahedra networks, built up of all-side corner sharing tetrahedra. γ-BeSiN2

adopts a LiFeO2 structure (further on called s-LiFeO2 as it corresponds to the stable

low-temperature modi�cation of LiFeO2) with the tetragonal space group I 41/amd

(no. 141) [240]. It is a rock salt superstructure (doubled unit cell), where O2- forms

a cubic close packing and Fe3+ and Li+ occupy the octahedral holes, forming zigzag

rows of edge-sharing octahedra along [-0.5 -0.5 0], �lled with the same cations (Fig-

ure 5.1).

The Be-N distances and Si-N bond lengths of the optimized structures have been

examined and compared to distances in experimental BeSiN2 (Table 5.1). The cal-

culated values for four-fold coordinated Si and Be correspond with the experimental

values very well. Bond lengths for the octahedrally coordinated cations are longer,

as can be expected for increased coordination spheres.

Referring to ambient-pressure GGA-calculations, α-BeSiN2 has the lowest energy of

the four polymorphs (-30.902 eV per formula unit) and also the lowest density, ρ =

3.19 g cm-3 (exp. value 3.24 g cm-3 [13]). β-BeSiN2 is only about 0.005 eV per formula

unit higher in energy and about 0.3% denser (computed 3.20 g cm-3). This result

is not surprising given the close resemblance of the two modi�cations. γ-BeSiN2

then exhibits the highest density. With ρ = 3.82 g cm-3 this octahedra structure is

19.7% denser than α-BeSiN2 and 19.4% denser than β-BeSiN2, but also 2.146 eV
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per formula units higher in energy than α-BeSiN2, and 2.141 eV than β-BeSiN2.

The zero-pressure bulk moduli of the three polymorphs are 220GPa for α-BeSiN2,

222GPa for β-BeSiN2 and 244GPa for γ-BeSiN2. Shaposhnikov et al. [241] and

Petukhov et al. [242] reported bulk moduli of 243 GPa and 240GPa for α-BeSiN2

and

Figure 5.1: Crystal Structures of MSiN2: (1) α-BeSiN2 and α-MgSiN2, view along [001] (SiN4

tetrahedra drawn light gray, BeN4 and MgN4 tetrahedra black), (2) α-CaSiN2, view along [100]
(SiN4 tetrahedra drawn light gray), (3) Chalcopyrite (CuFeS2) and CaGeN2 (top: view along [010],
bottom: CuS4 tetrahedron and CaN8 bisdisphenoide), (4) s-LiFeO2 and m-LiFeO2 (top: octahedral
layer (s-LiFeO2: view along [-0.5 -0.5 0] rotated, m-LiFeO2: view along [001]), bottom: stacking
of octahedral layers (s-LiFeO2: view along [0.5 -0.5 0.25] rotated, m-LiFeO2: view along [010])).

and of 242GPa β-BeSiN2, respectively, but did not consider a γ-BeSiN2 or any high-

pressure phase transitions. Their values match our LDA results for the bulk modulus

(241GPa for both structures). With respect to the bulk moduli, both β-BeSiN2 and

γ-BeSiN2 are likely to be hard materials, ranking between B4C (200GPa) [203],
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α-Si3N4 (229GPa) [200] and SiC (248GPa) [203].

The ground state structures of α- as well as β-BeSiN2 have been presented in two

contributions [241, 242]. The values from these contributions in comparison to the

values of this thesis are presented in Table 5.2. For both structures of BeSiN2 the

data from this thesis agree well with those found in the literature.

Table 5.1: Bond lengths (in pm) in α-, β- and γ-BeSiN2 compared to experimental values.

Structure Bond type LDA GGA exp.

α-BeSiN2 Be[4]-N[6] 174.47�176.23 176.77�178.66 175.58�176.05 [13]

Si[4]-N[6] 172.84�174.45 174.65�176.22 175.58�176.05 [13]
β-BeSiN2 Be[4]-N[6] 175.11 177.52 /

Si[4]-N[6] 173.53 175.33 /
γ-BeSiN2 Be[6]-N[6] 186.86, 204.29 188.93, 210.54 /

Si[6]-N[6] 184.85, 186.86 187.20, 188.93 /
γ-Si3N4 Si[6]-N 186.84 [6] 189.04 [6] 186.26 [5]
Ce16Si15O6N32 Si[6]-N / / 210.44 [243]

Ionic Radii bond type Shannon [183] Baur [184]

Be[4]-N 173 181

Be[6]-N 191 /

Si[4]-N 172 179

Si[6]-N 182 /

Table 5.2: Comparison of previousliy calculated data for α- and β-BeSiN2 compared to results of
this thesis and experimental values.

α-BeSiN2, Pna21, Z = 4

V / 106 pm3 a / pm b / pm c / pm B0 / GPa Reference

130.5 493.9 569.7 463.9 264 [241]
135.6 499.9 577.2 469.9 243 [241]
133.7(3) 497.7(5) 574.7(6) 467.4(3) / exp. [13]
130.68 494.03 569.89 464.15 239 this thesis
135.49 499.73 577.02 469.89 220 this thesis

β-BeSiN2, I 	42d, Z = 4

V / 106 pm3 a / pm c / pm B0 / GPa Reference

135.4 407.3 816.4 242 [241]
141 410 836 240 [242]
130.48 401.91 807.66 241 this thesis
135.26 407.06 816.31 222 this thesis
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In Figure 5.3 the E-V curves of the three structures of BeSiN2 are displayed. The

E-V data were transformed into enthalpy-pressure data (Figure 5.4) by standard

methods as described in chapter 2.7.5, page 27. With respect to enthalpy, it turns

out that α-BeSiN2 is the most stable polymorph of BeSiN2 for pressures up to

20GPa, at which it will transform to β-BeSiN2. Given the small enthalpy di�er-

ences between α- and β-BeSiN2, the calculated value of the transition pressure has

to be taken with care. However, once β-BeSiN2 is formed, a tetrahedra structure will

remain stable up to about 76GPa. At this pressure the structure of γ-BeSiN2 with

octahedral coordination for both Si and Be becomes the most stable polymorph of

BeSiN2. The sequence of structures together with transition pressures and density

changes is illustrated in Figure 5.2.

Figure 5.2: Sequence of structures of BeSiN2 together with transition pressures and changes in
density.

5.1.2 MgSiN
2

α-MgSiN2 crystallizes in the orthorhombic space group Pna21 (no. 33) and exhibits

the same wurtzite-like structure as α-BeSiN2 [234, 235] (Figure 5.1). The search

for high-pressure polymorphs revealed only β-MgSiN2 (Figure 3) exhibiting yet an-

other LiFeO2-type structure (space group R	3m, no. 166, denoted m-LiFeO2, as it

corresponds to the meta-stable low-temperature modi�cation of LiFeO2) [244]. The

m-LiFeO2 structure can be derived from the CdCl2 structure (also R	3m), if all unoc-

cupied octahedral sites are occupied by a second sort of cation (Figure 5.1). Hence,

both s- and m-LiFeO2 are superstructures of the rocksalt structure, di�ering only in
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Figure 5.3: Energy-volume (E-V ) phase diagram of α-, β- and γ-BeSiN2, calculated within the
GGA. Each symbol represents a calculation.

Figure 5.4: Enthalpy-pressure (H-p) diagram for the transition of α-BeSiN2 into β-BeSiN2 (pt =
20GPa) and into γ-BeSiN2 (pt = 76GPa)(derived from the evaluation of the E-V data by the
Murnaghan EOS).
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the ordering of the two cations.

The calculated Mg-N and Si-N distances of α-MgSiN2 are well within the range of

the experimental values (Table 5.3). The obtained values for β-MgSiN2 are larger,

re�ecting the increased coordination. The Si-N bonds are a little bit longer than

those of octahedrally coordinated Si in γ-Si3N4 (186.26 pm [5]), in average about

5 pm. However, the Si-N bond lengths in Ce16Si15O6N32 amount to 210.44 pm [243],

which is about 15 to 20 pm longer than the values calculated for β-MgSiN2.

Table 5.3: Bond lengths (in pm) in α- and β-MgSiN2 compared to experimental values.

Structure Bond type LDA GGA exp.

α-MgSiN2 Mg[4]-N[6] 205.33�210.27 208.33�213.77 205.92�211.50 [235]

Si[4]-N[6] 172.60�174.95 174.41�176.99 173.81�179.65 [235]
β-MgSiN2 Mg[6]-N[6] 213.84 217.35 /

Si[6]-N[6] 191.33 193.95 /
γ-Si3N4 Si[6]-N 186.84 [6] 189.04 [6] 186.26 [5]
Ce16Si15O6N32 Si[6]-N / / 210.44 [243]

Ionic Radii bond type Shannon [183] Baur [184]

Mg[4]-N 191 214

Mg[6]-N 218 220

Si[4]-N 172 179

Si[6]-N 182 /

Within the ambient-pressure GGA calculations, the ground state of α-MgSiN2 has

an energy per formula unit of -28.495 eV and a density of 3.08 g cm-3 (exp. value:

3.13 g cm-3 [234, 235]). β-MgSiN2 is 1.166 eV higher in energy than α-MgSiN2 and

approximately 26% denser (3.88 g cm-3). The zero-pressure bulk modulus is 172

GPa for α-MgSiN2, well within the range of previously calculated (182GPa [245],

174GPa [246]) and measured values (146 GPa [247], 184GPa [248]). For β-MgSiN2

a zero-pressure bulk modulus of 223 GPa was calculated, which is comparable to

the experimental bulk modulus of α-Si3N4 (220GPa) [200], which is a widely used

ceramic.

Comparing the calculated crystallographic data of α-MgSiN2 with those found in

the literature (both published by Fang et al. [245, 249]) reveals a good agreement

(compare Table 5.4).

According to the enthalpy-pressure phase diagram (Figure 5.7), derived from the

energy-volume data depicted in Figure 5.6, α-MgSiN2 will transform into β-MgSiN2
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Table 5.4: Comparison of previousliy calculated data for α-MgSiN2 compared to results of this
thesis and experimental values.

α-MgSiN2, Pna21, Z = 4

V / 106 pm3 a / pm b / pm c / pm B0 / GPa Reference

164.62 522.61 637.65 493.99 182 [245]
169.94 527.08 646.92 498.40 / [249]
170.66 527.9 647.6 499.2 / exp. [235]
166.57 523.77 641.75 499.55 201 this thesis
173.39 530.69 649.89 502.75 172 this thesis

at 24GPa, increasing the coordination for both Mg and Si from a tetrahedral to an

octahedral one (Figure 5.5).

Fang et al. [245] reported a high-pressure transition of α-MgSiN2 into a CsICl2-type

structure (R	3m, no. 166) and proposed a transition pressure of 16.5GPa using LDA

calculations. The lower transition pressure they received is explained by the choice

of the di�erent functional that arti�cially favors higher coordination. The structure

type of CsICl2 is, however, misleading. Both CsICl2 and m-LiFeO2 (our choice)

exhibit the same space group, but very di�erent c/a-ratios (CsICl2: c/a = 1.9269;

m-LiFeO2: c/a = 4.9899). Moreover, the coordination environments are di�erent,

eightfold in CsICl2 and six-fold in m-LiFeO2. Since Fang et al. report their opti-

mized structure of β-MgSiN2 having octahedral coordination, it is more precisely

described by the m-LiFeO2-type.

Figure 5.5: Sequence of structures of MgSiN2 together with transition pressures and changes in
density.
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Figure 5.6: Energy-volume (E-V ) phase diagram of α- and β-MgSiN2, calculated within the
GGA. Each symbol represents a calculation.

Figure 5.7: Enthalpy-pressure (H-p) diagram for the transition of α-MgSiN2 into β-MgSiN2 (pt =
24GPa) (derived from the evaluation of the E-V data by the Murnaghan EOS).
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5.1.3 CaSiN
2

Ambient-pressure α-CaSiN2 crystallizes in the orthorhombic space group Pbca (no.

61) [14]. The structure is built up by all side corner sharing SiN4 tetrahedra, forming

a three-dimensional network, related to the β-cristobalite structure (D1-type distor-

tion of idealized C9 structure of β-cristobalite) [237]. Ca is 6- and 8-fold coordinated

to nitrogen (Figure 5.1). A �rst high-pressure polymorph found, β-CaSiN2, may be

isostructural to CaGeN2 [250] (B1-type distortion of the idealized �lled C9 structure

of β-cristobalite), which is closely related to the chalcopyrite structure [239]. It crys-

tallizes in the tetragonal space group I 	42d (no. 122). The Si atoms are tetrahedrally

coordinated by N, but Ca2+ exhibits a 4+4 bisdisphenoidal coordination. The main

di�erence between chalcopyrite-type and CaGeN2-type structures is founded on a

di�erent c/a-ratio, which results in an elongation or compression, respectively, of the

same basic structure. In chalcopyrite-type structures, both cations are tetrahedrally

coordinated, whereas in CaGeN2-like structures one cation exhibits a bisdisphenoidal

coordination (Figure 5.1). The third candidate structure, γ-CaSiN2, again adopts a

m-LiFeO2-type structure (Figure 5.1) [244].

For α- and β-CaSiN2, which both comprise four-fold coordinated Si and Ca in six-

and eight-fold coordination, the calculated bond lengths re�ect very well those found

in experimental α-CaSiN2 (Table 5.5). So do the Ca-N distances in γ-CaSiN2. The

Si-N bond lengths for the SiN6 octahedra are about 20 pm longer than those found

for SiN4 tetrahedra in α- and β-CaSiN2 and about 10 pm than those found for SiN6

octahedra in γ-Si3N4 (186.26 pm [5]), but also about 10 pm shorter than those for

SiN6 octahedra in Ce16Si15O6N32 (210.44 pm [243]).

The energy of α-CaSiN2 is computed to -29.140 eV per formula unit, its density to

3.24 g cm-3 (exp. value 3.30 g cm-3 [14]) within GGA. β-CaSiN2 is marginally higher

in energy, some 0.006 eV per formula unit, and about 0.6% denser (computed den-

sity 3.26 g cm-3) than α-CaSiN2. γ-CaSiN2, with octahedral coordination of all atoms

exhibits the highest density. With ρ = 3.87 g cm-3 it is about 19.3% denser than

α-CaSiN2 and 18.5% denser than β-CaSiN2. The energy of γ-CaSiN2 is 1.830 eV

per formula units higher than that of α-CaSiN2, and 1.825 eV per formula units

higher than that of β-CaSiN2. The zero-pressure bulk moduli of the three phases

are 131GPa, 126GPa and 189GPa for α-, β- and γ-CaSiN2, respectively. This
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Table 5.5: Bond lengths (in pm) in α-, β- and γ-CaSiN2 compared to experimental values.

Structure Bond type LDA GGA exp.

α-CaSiN2 Ca[6,8]-N[6] 236.98�304.81 241.00�314.27 240.60�309.83 [14]

Si[4]-N[6] 172.30�175.65 174.33�177.77 172.90�176.47 [14]
β-CaSiN2 Ca[4+4]-N[6] 239.17, 298.56 243.66, 307.22 /

Si[4]-N[6] 174.28 176.28 /
γ-CaSiN2 Ca[6]-N[6] 235.42 239.59 /

Si[6]-N[6] 196.58 199.78 /
γ-Si3N4 Si[6]-N 186.84 [6] 189.04 [6] 186.26 [5]
Ce16Si15O6N32 Si[6]-N / / 210.44 [243]

Ionic Radii bond type Shannon [183] Baur [184]

Ca[4]-N / 246

Ca[6]-N 246 255

Si[4]-N 172 179

Si[6]-N 182 /

places them among compounds as Zr2InC (127GPa) [251], Al4C3 (130GPa) [252]

and CaIrO3 (180GPa) [253]. Along the sequence BeSiN2, MgSiN2, and CaSiN2,

therefore, CaSiN2 phases show the lowest bulk moduli.

Interestingly, when calculating CaSiN2 in the MgSiN2-type structure [234, 235] an

even lower energy than that computed for α-CaSiN2 was obtained (-29.141 eV per

formula unit), when using the GGA. The energy-di�erence (only 0.001 eV), however,

is very small, and well within a systematic error range of DFT calculations. When

calculating an enthalpy-pressure phase diagram including CaSiN2 in the MgSiN2-

type structure, one arrives at a transition pressure of CaSiN2 in the MgSiN2-type

structure into α-CaSiN2 of 0.2GPa. Employing LDA calculations, on the other

hand, places the α-CaSiN2 0.032 eV below the MgSiN2-type.

The energy-volume curves (Figure 5.9) and the thereof derived enthalpy-pressure

diagram (Figure 5.10) disclose two high-pressure phases of CaSiN2. Accordingly, a

�rst transition of α-CaSiN2 into β-CaSiN2 is found already at 1.6GPa. β-CaSiN2

will be the most stable polymorph up to 60GPa, when the octahedrally coordinated

structure of γ-CaSiN2 is adopted. The coordination of Si is only increased during the

second phase transformation (from four to six), whereas the coordination of Ca does

not fully obey the empiric pressure-coordination rule [254]. First an increase from

an average coordination number of seven to eight takes place during transition from

α- to β-CaSiN2, but when transforming into γ-CaSiN2, the coordination number is
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reduced to six. However, the increase in density gained by six-fold coordinated Si

in combination with a higher condensation degree of the SiNx polyhedra (coordina-

tion representation for the Si-N framework: α/β-CaSiN2: [Si [4]N [2]
2 ] 2 � ; γ-CaSiN2:

[Si [6]N [3]
2 ] 2 � ) is overcompensating the reduction of the coordination number of Ca.

The succeeding polymorphs together with transition pressures and density changes

are illustrated in Figure 5.8.

Figure 5.8: Sequence of structures of CaSiN2 together with transition pressures and changes in
density.

Figure 5.9: Energy-volume (E-V ) phase diagram of α-, β- and γ-CaSiN2, calculated within the
GGA. Each symbol represents a calculation.
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Figure 5.10: Enthalpy-pressure (H-p) diagram for the transition of α-CaSiN2 into β-CaSiN2 (pt =
1.6GPa) and into γ-CaSiN2 (pt = 60GPa) (derived from the evaluation of the E-V data by the
Murnaghan EOS).

5.1.4 SrSiN
2

α-SrSiN2 crystallizes in the monoclinic space group P21/c (no. 14) in a layered

structure [14] (Figure 5.11). The basic structure motives are pairs of edge-sharing

SiN4 tetrahedra, which are connected through the remaining four corners to other

tetrahedra pairs, thereby forming non-corrugated layers in the [011] plane. The

Sr2+ ions are situated between these layers in two layers, being eight-fold coordi-

nated by N. β-SrSiN2, the �rst high-pressure polymorph found, exhibits the BaSiN2

structure (space group Cmca, no. 64) [14] (Figure 5.11), which is closely related to

the α-SrSiN2 structure insofar as they are connected by a group-subgroup relation.

The further search for high-pressure polymorphs revealed three more structures be-

sides β-SrSiN2. γ-SrSiN2 was identi�ed with the CaSiN2-type structure [14] (Figure

5.1). δ-SrSiN2 adopts a hitherto undetected structure in space group Pbcm (no. 57)

(Figure 5.11), which is related to the CaSiN2-type structure by a group-subgroup

relation. However, in this structure Si is no longer tetrahedrally coordinated, but

in a trigonal bipyramidal way, whereas Sr is still eight-fold coordinated as in α-, β-
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and γ-SrSiN2. Finally, ε-SrSiN2 was found to exhibit the m-LiFeO2 structure (space

group R	3m, no. 166) [244]. Here, the coordination of Si atoms is increased to six

(SiN6 octahedra), whereas the coordination of Sr decreases to six (SrN6 octahedra)

(Figure 5.1).

Figure 5.11: Crystal Structures of further MSiN2 structures: (1) α-SrSiN2, view along [010] (SiN4

tetrahedra drawn light gray, Sr atoms between the SiN4 tetrahedra layers), (2) α-BaSiN2, view
along [001] (SiN4 tetrahedra drawn light gray, Ba atoms between the SiN4 tetrahedra layers), (3)
Pbcm structure, left: view along [001], right: edge- and corner-sharing SiN5 trigonal bipyramids
(SiN5 trigonal bipyramids light gray, metal atoms in channels ), (4) Imma structure, top: view
along [001], bottom: edge- and corner-sharing SiN5 trigonal bipyramids (SiN5 trigonal bipyramids
light gray, metal atoms in channels ).

The calculated bond lengths (Table 5.6) in α-, β- and γ-SrSiN2, which all three

contain tetrahedrally coordinated Si and eight-fold coordinated Sr, correspond well

with those found in experimental α-SrSiN2. Sr-N distances in δ-SrSiN2 also �t in

this category. The Sr-N distances calculated for ε-SrSiN2 are on average shorter and

are close to the lower limit of the Sr-N distances for eight-fold coordinated Sr. Si-N

bonds for octahedrally coordinated Si in ε-SrSiN2 are about 20 pm longer than those

in α-, β- and γ-SrSiN2 and some 10 pm longer than those found in γ-Si3N4 [4], but

still about 10 pm shorter than those for SiN6 in Ca16Si15O6N32 [243]. δ-SrSiN2 shows

a noticeable large di�erence for axial Si-N distances of the SiN5 trigonal bipyramids
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between LDA and GGA calculations (this �nding is likely to result from an over-

estimation of the cohesive energy in LDA), whereas the three equatorial bonds are

similar. The calculated Si-Nax distances within GGA are about 30 pm longer than

within LDA and correspond to an individual bond valence νij 1 [256�258] of 0.15. νij
for Si-Nax within LDA amounts to 0.43. The valence sums for Si are 3.6 (GGA) and

4.0 (LDA), respectively. The Si-Nax distances are approximately parallel to [001].

The development of the unit cell parameters under pressure shows, that the only unit

cell parameter, that is constantly decreasing in lengths is the c-axis, whereas the a-

axis remains fairly constant before it starts to decrease and the b-axis even increases

at �rst (Figure 5.12). The equatorial Si-N bonds of the SiN5 trigonal bipyramids

Figure 5.12: Development of the unit cell parameters of δ-SrSiN2 upon compression.

1 The individual bond valence according to the bond-length-bond-strength concept for a bond
between two atoms i and j is calculated via

νij = exp
{
Rij−dij

b

}
.

Here, Rij is the bond valence parameter, b a constant (34 pm) and dij the distance between
atoms i and j. The valence sum is the sum of the individual bond valences:

Vi =
∑
j νij .

The bond-length-bond-strength concept has been developed from Pauling's concept of bond
strength [255] and is an empiric approach to bonding.
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remain almost constant during compression, whereas the axial Si-N bond lengths

are decreased constantly, arriving at reasonable values after 20% volume reduction

(Figure 5.13), well before δ-SrSiN2 is adopted as a high-pressure phase.

Figure 5.13: Si-N bond lengths in δ-SrSiN2. The error bars for the axial bonds give the dispersion
of the axial bonds. Black circles give the Si1-N distances, white circles the Si2-N distances.

The zero-pressure bulk modulus of α-SrSiN2 amounts to 102GPa and increases from

104GPa for β-SrSiN2 to 125GPa for γ-SrSiN2 (Table 5.12). δ-SrSiN2 has the low-

est bulk modulus (33GPa), which renders it the most compressible of all SrSiN2

polymorphs. This �nding is attributed to the exceptionally large compressibility of

the Si-Nax bonds parallel to the c-axis, compared to those situated in the ab-plane

(Figure 5.13). Furthermore, while the a- and b-axis are only reduced by 9 and 3%,

respectively, upon a volume reduction of 45%, the c-axis is reduced by 35% (Fig-

ure 5.12). The zero-pressure ε-SrSiN2 evinces the highest bulk modulus, exhibiting

163GPa, which is similar to the bulk moduli of MgO (160GPa [259]) and CaIrO3

(189GPa [253]).

α-SrSiN2 exhibits both the lowest energy (-28.633 eV per formula unit) and density

(ρ = 4.24 g cm-3, matching experimental 4.35 g cm-3 [14]), referring to GGA calcu-

lations. β-SrSiN2 is 0.010 eV higher in energy and 0.47% denser (ρ = 4.26 g cm-3)
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Table 5.6: Bond lengths (in pm) in α-, β-, γ-, δ- and ε-SrSiN2 compared to experimental values.

Structure Bond type LDA GGA exp.

α-SrSiN2 Sr[8]-N 253.11�307.64 260.10�322.87 256.29�314.52 [14]

Si[4]-N 170.21�176.77 172.20�178.75 170.88�178.80 [14]
β-SrSiN2 Sr[8]-N 251.90�296.99 256.87�308.01 /

Si[4]-N 170.09�176.60 172.06�178.34 /
γ-SrSiN2 Sr[8]-N 252.25�319.43 256.85�325.04 /

Si[4]-N 173.49�175.39 175.69�177.62 /
δ-SrSiN2 Sr[8]-N 242.43�338.90 240.21�330.66 /

Si[3+2]-Neq 173.54-178.12 171.01�175.18 /

Si[3+2]-Nax 208.10, 208.67 246.36, 246.89 /
ε-SrSiN2 Sr[6]-N 250.71 254.87 /

Si[6]-N 199.74 203.53 /
γ-Si3N4 Si[6]-N 186.84 [6] 189.04 [6] 186.26 [5]
Ce16Si15O6N32 Si[6]-N / / 210.44 [243]

Ionic Radii bond type Shannon [183] Baur [184]

Sr[6]-N 264 /

Sr[8]-N 272 273

Si[4]-N 172 179

Si[6]-N 182 /

than α-SrSiN2, followed by γ-SrSiN2. γ-SrSiN2 exhibits a 0.181 eV higher energy

than α-SrSiN2 and 0.171 eV higher energy than β-SrSiN2 and is about 4.93% denser

than β-SrSiN2 and 5.42% denser than α-SrSiN2 (ρ = 4.47 g cm-3). The energy of

δ-SrSiN2 in its ground state comes out 1.523 eV higher than that of α-SrSiN2 and

1.342 eV higher than that of γ-SrSiN2. The density is increased by 0.46% with re-

spect to γ-SrSiN2 and 5.90% with respect to α-SrSiN2. ε-SrSiN2 is the polymorph

with the highest density and energy. With ρ = 5.16 g cm-3 it is 21.70% denser than

α-SrSiN2 and still 14.9% denser than δ-SrSiN2. Its energy lays 2.975 eV above that

of α-SrSiN2 and 1.452 eV above that of δ-SrSiN2. For an overview of the data given

here, see Table 5.12.

In Figure 5.14 the energy-volume curves of all considered SrSiN2 polymorphs are de-

picted. From these the enthalpy-pressure phase diagram as given in Figure 5.15 was

derived. α-SrSiN2 (symmetry �xed to P21/c) is only stable up to approximately

2GPa. The calculated transition pressure into β-SrSiN2 has a rather large error

margin of 1GPa because of the similar slopes of the enthalpy-pressure curves, which

results in minimal di�erences in the evaluation by di�erent equations of state having
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Figure 5.14: Energy-volume (E-V ) phase diagram of α-, β-, γ-, δ- and ε-SrSiN2, calculated within
the GGA. Each symbol represents a calculation.

Figure 5.15: Enthalpy-pressure (H-p) diagram for the transition of α-SrSiN2 into β-SrSiN2 (pt =
2GPa), into γ-SrSiN2 (pt = 14GPa), into δ-SrSiN2 (pt = 84GPa) and into ε-SrSiN2 (pt = 130GPa)
(derived from the evaluation of the E-V data by the Murnaghan EOS).
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signi�cant in�uences on the resultant transition pressure. β-SrSiN2 remains the

stable polymorph up to 14GPa, when γ-SrSiN2 becomes lower in enthalpy. The

calculated transition pressure of γ-SrSiN2 into δ-SrSiN2 amounts to 84GPa. At

pressures exceeding 130GPa the enthalpy of ε-SrSiN2 is lower than that of δ-SrSiN2.

The coordination of Sr (CN = 8) remains constant up to the transition into ε-SrSiN2,

when it decreases to six. In α-, β- and γ-SrSiN2 Si is tetrahedrally coordinated and

increases to �ve in δ-SrSiN2 and further to six in ε-SrSiN2. As in CaSiN2 (c.f. chap-

ter 5.1.3, page 88) the density gained by octahedrally coordinated Si combined with

a higher condensation degree of the SiNx polyhedra (coordination representation

for the Si-N framework: α/β/γ-SrSiN2: [Si [4]N [2]
2 ] 2 � ; δ-SrSiN2: [Si [5]N [2]N [3]] 2 � ;

ε-SrSiN2: [Si
[6]N [3]

2 ] 2 � ) is overcompensating the reduction of the coordination num-

ber of Sr. An overview of SrSiN2 and its predicted high-pressure phases is given in

Figure 5.16.

Figure 5.16: Sequence of structures of SrSiN2 together with transition pressures and changes in
density.
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5.1.5 BaSiN
2

α-BaSiN2 is a layered nitridosilicate, crystallizing in the orthorhombic space group

Cmca (no. 64) [14]. The layers are built up by so-called "bowtie" units, consisting

of a pair of edge-sharing SiN4 tetrahedra. These units are further interconnected via

common corners, forming layers perpendicular to [010] (Figure 5.11). As a second

structure of interest, the CaSiN2 structure, a three-dimensional corner-sharing SiN4

tetrahedra network structure [14] was identi�ed (Figure 5.1) and subsequently de-

noted β-BaSiN2. A third structure, termed γ-BaSiN2 exhibits the aforementioned

Pbcm structure of δ-SrSiN2, consisting of edge-sharing trigonal bipyramids (Figure

5.11), already found for δ-SrSiN2 (compare chapter 5.1.4, page 90). The coordina-

tion for Ba is 10 in α-BaSiN2, 10+1 in β-BaSiN2 and 9 in the Pbcm structure.

With an energy per formula unit of -28.711 eV α-BaSiN2 is the polymorph with

the lowest energy. The calculated density of 5.14 g cm-3 (matching experimental

5.34 g cm-3 [14]) is also the lowest of all considered polymorphs. β-BaSiN2 is 0.414 eV

higher in energy and 5.64% denser than α-BaSiN2. γ-BaSiN2 is the densest poly-

morph found. With its density of 5.80 g cm-3 it is 12.8% denser than α-BaSiN2 and

6.8% denser than β-BaSiN2. Its energy is 2.012 eV higher than that of α-BaSiN2

and 1.599 eV than that of β-BaSiN2.

The energy-volume curves calculated for the di�erent BaSiN2 polymorphs are de-

picted in Figure 5.17, the corresponding enthalpy-pressure diagram in Figure 5.18.

Accordingly, layered α-BaSiN2 remains lowest in enthalpy up to 43GPa. From here

on up to 102GPa the three-dimensional tetrahedra network structure of β-BaSiN2

is the most stable polymorph. At pressures exceeding 102GPa γ-BaSiN2 will be

adopted. An uncertainty of about 5GPa in this transition pressure, resulting solely

from the use of di�erent equations of state (EOS) to �t the calculated E-V data,

was observed. This uncertainty is attributed to the di�erent aptitude of the EOSs

to �t data at (very) large compressions (c.f. chapter 2.7.4, page 26). Furthermore,

since the transition of β-BaSiN2 into γ-BaSiN2 is a displacive one, mainly a�ected

by a rotation of the SiN4 tetrahedra (see below Figure 5.19 and chapter 5.2, page

108), the transformation should occur gradually, leaving some leeway for the actual

transition pressure.
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Figure 5.17: Energy-volume (E-V ) phase diagram of α-, β-, γ- and γ'-BaSiN2, calculated within
the GGA. Each symbol represents a calculation. Inset shows the E-V of γ/γ'-BaSiN2 and of
γ'-BaSiN2 (symmetry �xed to Imma).

Figure 5.18: Enthalpy-pressure (H-p) diagram for the transition of α-BaSiN2 into β-BaSiN2 (pt =
43GPa) and into γ-BaSiN2 (pt = 102GPa) as well as of γ'-BaSiN2 (Imma) into γ-BaSiN2 (Pbcm)
(pt = 32-35GPa) (derived from the evaluation of the E-V data by the Murnaghan EOS).
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The Pbcm structure of γ-BaSiN2, however, is not stable at lower pressure. It is

not quenchable to zero pressure when optimizing all structural parameters (unit cell

as well as atomic parameters). Upon �xing the unit cell axes ratios, the structure

could be quenched to zero pressure. However, a gradual distortion of the structure

was detected, resulting in a more symmetric structure with space group Imma, de-

noted γ'-BaSiN2. The two structures, Imma and Pbcm, are once more related by

a group subgroup relation (Figure 5.19). The Imma structure exhibits the same

topology as the Pbcm structure and is built up by edge- and corner-sharing trig-

onal bipyramids (Figure 5.11). Interestingly, this structure transformation upon

compression/relaxation is not re�ected in the energy-volume calculations and the

symmetrization could not be suppressed in calculations using the Pbcm primitive

unit cell. Di�erentiation of the E-V curve (∂E/∂V ) reveals no �uctuations for

the derivation (Figure 5.20), which would be characteristic for structural transfor-

mations. However, upon �xing the symmetry to Imma, using the smaller Imma

unit cell (V (Imma) = 1/2 V (Pbcm)), the obtained E-V curve and the thereof derived

enthalpy-pressure curve diverge from the Imma/Pbcm curve from the point of the

Imma-Pbcm transformation on (32 to 35GPa) (Figure 5.17 and 5.18). The distor-

tion from Imma to Pbcm is clearly energetically favored above 35GPa (Figure 5.18).

A comparison of the atomic coordinates of γ'-BaSiN2 at zero pressure, of γ'-BaSiN2

at 32GPa, of γ-BaSiN2 at 35GPa and of γ-BaSiN2 at 105GPa in Pbcm setting

to illustrate the gradual distortion is given in Table 5.7. Full crystallographic data

for γ'-BaSiN2 at zero pressure and of γ-BaSiN2 at 105GPa are given in Appendix A.

Figure 5.19: Group-subgroup relation of the CaSiN2, the Pbcm and the Imma structure (Compare
Figure 5.23 for relation to β-cristobalite).
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Figure 5.20: Energy-volume (E-V ) of γ/γ'-BaSiN2 (left) and di�erentiation ∂E/∂V thereof
(right); the Imma/Pbcm transformation is marked by a circle in both graphs.

Upon further pressure reduction, the Imma structure of γ'-BaSiN2 further distorts

below 10GPa within space group Imma (Figure 5.21), with the �nal structure at

zero pressure (γ'-BaSiN2 III) possessing a very low density, even lower than that of

α-BaSiN2 by 21%. At zero pressure the enthalpy di�erence between γ'-BaSiN2 and

γ'-BaSiN2 III amounts to 0.158 eV, with γ'-BaSiN2 III being still 1.854 eV higher in

enthalpy than α-BaSiN2.

Figure 5.21: Enthalpy-pressure (H-p) diagram for the transition of γ'-BaSiN2 III into γ'-BaSiN2

II (pt = 0.5GPa) and into γ'-BaSiN2 (pt = 6GPa) (derived from the evaluation of the E-V data
by the Murnaghan EOS).
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Table 5.7: Atom coordinates of γ'-BaSiN2 (Pbcm structure) at 0GPa and 32GPa and of γ-BaSiN2

(Imma structure) at 35GPa and 105GPa (GGA calculation) in Pbcm. Decimal numbers marked
with a have �xed values for space group Imma (e.g. 0.5 =̂ 1/2), but could deviate from this value
in space group Pbcm.

atom structure
Wycko�-
Position

x y z

Ba1 γ'-BaSiN2 0GPa 4d 0.5a 0.06750 3/4
γ'-BaSiN2 32GPa 0.5a 0.06451 3/4
γ-BaSiN2 35GPa 0.44775 0.06329 3/4
γ-BaSiN2 105GPa 0.41827 0.06061 3/4

Ba2 γ'-BaSiN2 0GPa 4d 1a 0.18250 3/4
γ'-BaSiN2 32GPa 1a 0.18549 3/4
γ-BaSiN2 35GPa 0.95929 0.18555 3/4
γ-BaSiN2 105GPa 0.93317 0.18658 3/4

Si1 γ'-BaSiN2 0GPa 4d 0.5a 0.18860 1/4
γ'-BaSiN2 32GPa 0.5a 0.18927 1/4
γ-BaSiN2 35GPa 0.46649 0.18945 1/4
γ-BaSiN2 105GPa 0.44409 0.19073 1/4

Si2 γ'-BaSiN2 0GPa 4d 1a 0.06140 1/4
γ'-BaSiN2 32GPa 1a 0.06073 1/4
γ-BaSiN2 35GPa 0.97284 0.06097 1/4
γ-BaSiN2 105GPa 0.95136 0.05981 1/4

N1 γ'-BaSiN2 0GPa 4d 0.5a 0.28699 1/4
γ'-BaSiN2 32GPa 0.5a 0.28979 1/4
γ-BaSiN2 35GPa 0.46851 0.29022 1/4
γ-BaSiN2 105GPa 0.44379 0.29327 1/4

N2 γ'-BaSiN2 0GPa 4d 0.75a 0.125a 1/4
γ'-BaSiN2 32GPa 0.75a 0.125a 1/4
γ-BaSiN2 35GPa 0.70654 0.11975 1/4
γ-BaSiN2 105GPa 0.67902 0.11816 1/4

N3 γ'-BaSiN2 0GPa 4d 0.25a 0.125a 1/4
γ'-BaSiN2 32GPa 0.25a 0.125a 1/4
γ-BaSiN2 35GPa 0.20410 0.13123 1/4
γ-BaSiN2 105GPa 0.17285 0.13458 1/4

N4 γ'-BaSiN2 0GPa 4d 1a 0.03699 3/4
γ'-BaSiN2 32GPa 1a 0.03979 3/4
γ-BaSiN2 35GPa 0.94855 0.03741 3/4
γ-BaSiN2 105GPa 0.90961 0.03497 3/4

The high-pressure phases of BaSiN2 together with their transition pressures and

density changes are illustrated in Figure 5.22.

The calculated Ba-N distances and Si-N bond lengths for α-BaSiN2 agree well with

those in experimental α-BaSiN2 (Table 5.8). β-BaSiN2, which, like α-BaSiN2, con-

tains tetrahedrally coordinated Si, shows similar bond distances (Table 5.8). γ- and
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Figure 5.22: Sequence of structures of BaSiN2 together with transition pressures and changes in
density.

γ'-BaSiN2 exhibits SiN5 trigonal bipyramids for which axial and equatorial bonds

di�er in length. The equatorial bonds are in their lengths between those in α-BaSiN2

and γ-Si3N4, whereas the axial bonds are longer, in average about 10 pm longer than

those found in Ce16Si15O6N32 for SiN6 octahedra bonds (Table 5.8). Individual bond

valence νij calculations (c.f. footnote on page 92 and [256�258]) result in values for

Si-Nax of 0.33 (LDA) and 0.29 (GGA), respectively, which is about 3/4rd of the

value for Si[6]-N in Ce16Si15O6N32 (νij = 0.41). The valence sum for Si in γ- and

γ'-BaSiN2 amounts to 3.7 (LDA) and 3.4 (GGA). For γ'-BaSiN2 II and γ'-BaSiN2 III

the equatorial bonds become shorter and the axial bonds longer (Table 5.8), resulting

in a trigonal coordination for Si and a �ve-fold coordination for Ba in γ'-BaSiN2 III

according to MAPLE [175�178] calculations. The resultant structures are built

up by chains of planar SiN3 units, which are interconnected by Ba-N coordinative

bonds. This makeup of these two structures renders them most unlikely candidates

for nitridosilicates as all nitridosilicates are built up by at least SiN4 tetrahedra as

fundamental building blocks.

The zero-pressure bulk moduli for α-, β- and γ/γ'-BaSiN2 were calculated to 89,

129 and 135GPa, increasing from the ambient-pressure to the second high-pressure

phase. These bulk moduli are comparable to those of rocksalt-type SrO (82 to

108GPa) and CaO (96 to 129GPa) ([260, 261] and references therein). As expected,

the zero-pressure bulk moduli for γ'-BaSiN2 II and γ'-BaSiN2 III are lower, 118GPa

and 80GPa respectively, than that of γ/γ'-BaSiN2, since the elongation of the axial

Si-N distances in the SiN5 trigonal bipyramids results in a higher compressibility of

the structure, at least along [001].
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Table 5.8: Bond lengths (in pm) in α-, β-, γ- and γ'-BaSiN2 compared to experimental values.

Structure Bond type LDA GGA exp.

α-BaSiN2 Ba[10]-N 275.73 � 356.83 281.42 � 361.94 277.72 � 357.49 [14]

Si[4]-N 170.99 � 177.17 173.13 � 179.06 172.04 � 177.70 [14]
β-BaSiN2 Ba[10+1]-N 273.34 � 384.66 280.45 � 390.60 /

Si[4]-N 172.79 � 174.60 175.14 � 177.11 /
γ/γ'-BaSiN2 Ba[9]-N 256.25 � 365.36 261.36 � 373.46 /

Si[3+2]-Neq 174.72 � 178.23 176.75 � 181.55 /

Si[3+2]-Nax 218.45 222.92 /
γ'-BaSiN2 II Ba[9]-N 246.55 � 342.57 251.44 � 349.89 /

Si[3]-Neq 168.33 � 170.61 170.23 � 173.22 /

Si[3]-Nax 251.11 256.05 /
γ'-BaSiN2 III Ba[5]-N 253.87 � 295.81 258.31 � 301.79 /

Si[3]-Neq 163.54 � 166.17 164.92 � 168.09 /

Si[3]-Nax 355.36 361.16 /
γ-Si3N4 Si[6]-N 186.84 [6] 189.04 [6] 186.26 [5]
Ce16Si15O6N32 Si[6]-N / / 210.44 [243]

Ionic Radii bond type Shannon [183] Baur [184]

Ba[6]-N 281 290

Ba[8]-N 288 304

Ba[9]-N 293 /

Ba[10]-N 298 /

Si[4]-N 172 179

Si[6]-N 182 /

Table 5.9: E0, V0, B0 and ρ0 of α-, β- and γ-BeSiN2 (E0 and V0 given per formula unit).

E0 / eV V0 / 106 pm3 B0 / GPa ρ0 / g cm-1

α-BeSiN2 -30.902 33.87 220 3.19
β-BeSiN2 -30.897 33.82 222 3.20
γ-BeSiN2 -28.756 28.29 244 3.82

Table 5.10: E0, V0, B0 and ρ0 of α- and β-MgSiN2 (E0 and V0 given per formula unit).

E0 / eV V0 / 106 pm3 B0 / GPa ρ0 / g cm-1

α-MgSiN2 -28.495 43.35 172 3.08
β-MgSiN2 -27.330 34.42 223 3.88
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Table 5.11: E0, V0, B0 and ρ0 of α-, β- and γ-CaSiN2 (E0 and V0 given per formula unit).

E0 / eV V0 / 106 pm3 B0 / GPa ρ0 / g cm-1

α-CaSiN2 -29.140 49.26 131 3.24
β-CaSiN2 -29.134 48.96 126 3.26
γ-CaSiN2 -27.309 41.31 189 3.87
"MgSiN2" -29.141 50.64 121 3.15

Table 5.12: E0, V0, B0 and ρ0 of α-, β-, γ-, δ- and ε-SrSiN2 (E0 and V0 given per formula unit).

E0 / eV V0 / 106 pm3 B0 / GPa ρ0 / g cm-1

α-SrSiN2 -28.633 56.34 102 3.24
β-SrSiN2 -28.623 56.00 104 4.26
γ-SrSiN2 -28.452 53.41 125 4.47
δ-SrSiN2 -27.110 53.15 33 4.49
ε-SrSiN2 -25.658 46.28 163 5.16

Table 5.13: E0, V0, B0 and ρ0 of α-, β-, γ- and γ'-BaSiN2 (E0 and V0 given per formula unit).

E0 / eV V0 / 106 pm3 B0 / GPa ρ0 / g cm-1

α-BaSiN2 -28.711 62.50 89 5.14
β-BaSiN2 -28.298 59.12 129 5.43
γ/γ'-BaSiN2 -26.699 55.40 135 5.80
γ'-BaSiN2 II -26.814 59.39 118 5.41
γ'-BaSiN2 III -26.857 79.06 80 4.06
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5.2 Discussion

The ground state structures of α-MSiN2 (M = Be, Mg, Ca) as well as β-BeSiN2 and

β-CaSiN2 are related to the �lled β-cristobalite structure (�lled C9 structure) by

group-subgroup relations (Figure 5.23). They derive from the parent �lled C9 struc-

ture (space group Fd	3m, no. 227) by concerted rotation of tetrahedra (for a detailed

discussion on these rotation patterns see Appendix E). Hence, displacive phase tran-

sition pathways are conceivable for α-BeSiN2 (Pna21) into β-BeSiN2 (I 	42d) and for

α-CaSiN2 (Pnma) into β-CaSiN2 (I 	42d). This might well result in quite low acti-

vation energy barriers for these two phase transitions.

The structures of γ-BeSiN2 (I 41/amd, s-LiFeO2), β-MgSiN2 (R	3m, m-LiFeO2),

γ-CaSiN2 (R	3m, m-LiFeO2) and ε-SrSiN2 (R	3m, m-LiFeO2) are all related to the

rocksalt structure. The di�erence between the s- and m-LiFeO2-type structures is a

di�erent ordering of the two types of cations on octahedral sites. In m-LiFeO2 layers

of condensed LiO6 octahedra alternate with layers of condensed FeO6 octahedra. In

s-LiFeO2 each layer is occupied half by Li and half by Fe cations. The s-LiFeO2-type

structure seems to be preferred for compounds with both cations having approxi-

mately the same size as in BeSiN2 (r(Be) = 59 [183], 31 pm [184]; r(Si) = 54 [183],

29 pm [184]). If the two cations di�er substantially in size as in MgSiN2, CaSiN2

and SrSiN2 (r(Mg) = 86 [183], 70 pm [184]; r(Ca) = 114 [183], 105 pm [184]; r(Sr) =

132 [183], 123 pm [184]), the m-LiFeO2-type structure is favored, as the height of

the octahedral layers can be adjusted to the size of the cation occupying it.

The s-LiFeO2 structure adopted by BeSiN2 (γ-phase) is related to the α-BeSiN2 (and

α-MgSiN2) structure by a group-subgroup relation (Figure 5.24). By compressing

α-BeSiN2 along two unit cell axes and simultaneously elongating the third (corre-

sponding to the c-axis in tetragonal s-LiFeO2), the distorted hexagonal close packing

(hcp) of the anions in α-BeSiN2 is transformed into a cubic close packing (ccp, dis-

torted as well). The cations are thereby transferred from the tetrahedral sites in

hcp to the octahedral sites in ccp by only a small movement (Figure 5.24). This

transformation is analogous to the well known wurtzite-rocksalt transition [262�270],

since α-BeSiN2 exhibits an ordered wurtzite structure and s-LiFeO2 the correspond-

ing ordered rocksalt structure (compare Figure 5.25). The ordering of the cations
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Figure 5.23: Group-subgroup scheme for �lled β-cristobalite, chalcopyrite, CaGeN2, BeSiN2,
MgSiN2 and CaSiN2. Structure pictures of equivalent views of intermediate phases are given if
crystallographic data were available.

results in a doubled unit cell for s-LiFeO2 and α-BeSiN2 with regard to the rocksalt

and wurtzite structure, respectively. However, as wurtzite-type BeSiN2 transforms

�rst into a CuFeS2-type structure according to the enthalpy-pressure phase diagram

(Figure 5.4), which is not related to the s-LiFeO2-type structure, no displacive phase
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Figure 5.24: Group-subgroup scheme for s-LiFeO2 and BeSiN2/MgSiN2. Both structures are
presented in equivalent details and the polyhedra of the partner structure are enhanced by thick
black lines, respectively.

Figure 5.25: Relation of the NaCl structure to the s-LiFeO2 structure and of the wurtzite (ZnS)
structure to the BeSiN2 and MgSiN2 structure (pictures: s-LiFeO2: unit cell of s-LiFeO2 (solid
line), double unit cell of NaCl (dotted line); BeSiN2 and MgSiN2: SiN4 tetrahedra depicted light
gray, MN4 tetrahedra dark gray; wurtzite: unit cell of wutzite (dashed line), of wurtzite reduced
to Pna21 (solid line), of BeSiN2 and MgSiN2 (dotted line)).
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transition along the wurtzite-rocksalt transformation pathway will take place. The

m-LiFeO2-type structure, while also exhibiting an ordered rocksalt superstructure,

is not related to either of the discussed structures.

It has to be noted, that the s-LiFeO2 structure (I 41/amd) is not related to the �lled

β-cristobalite structure, even though the space group sequence I 41/amd to Pna21
is identical to that of �lled β-cristobalite I 41/amd to Pna21. In �lled β-cristobalite,

reduced to I 41/amd, the X atoms of ABX2 occupy the 8c positions whereas in

s-LiFeO2 they occupy the 8e positions.

Four high-pressure phases are proposed for SrSiN2. The �rst, at bout 2GPa oc-

curs from the monoclinic α-SrSiN2 structure (P21/c, no. 14) to the orthorhom-

bic BaSiN2 structure (Cmca, no. 64). This transformation, therefore, follows the

pressure-homologues rule [254], according to which high pressure conditions favor the

formation of phases with the structure of heavier homologues. These two structures

are related by a translationengleiche (t2) group-subgroup relation and only small

displacements of the atoms (Table 5.14) su�ce to transform from P21/c to Cmca

(Figure 5.26). Presumably, this displacive phase transformation will have a rather

low activation energy barrier. Consequently, the transformation may be reversed

upon quenching, which makes synthesis of β-SrSiN2 a true challenge. Nevertheless,

in-situ, for example in the DAC, the orthorhombic β-phase of SrSiN2 should be de-

tectable.

Figure 5.26: Group-Subgroup relation of the BaSiN2 and the SrSiN2 structure. Unit cell drawn:
(1) solid line P21/c, (2) dashed line: Cmca.
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Table 5.14: Atom coordinates of α-SrSiN2 [14], β-SrSiN2 (LDA and GGA calculation) and BaSiN2

[14] in P21/c (at 0GPa). Decimal numbers marked with a have �xed values for space group Cmca
(e.g. 0.25 =̂ 1/4), but could deviate from this value in space group P21/c.

atom structure
Wycko�-
Position

x y z

Sr1 α-SrSiN2 4e 0.3393(1) 0.5724(1) 0.1756(1)
β-SrSiN2 LDA 0.34308 0.56799 0.17150
β-SrSiN2 GGA 0.33911 0.56848 0.16960

Ba1 BaSiN2 0.32860 0.56520 0.16430
Si1 α-SrSiN2 4e 0.1078(4) 0.1419(3) 0.0671(4)

β-SrSiN2 LDA 0.11212 0.14191 0.05610
β-SrSiN2 GGA 0.11047 0.14142 0.05520
BaSiN2 0.09900 0.13990 0.04950

N1 α-SrSiN2 4e 0.2096(11) 0.5905(8) 0.5847(12)
β-SrSiN2 LDA 0.20502 0.59521 0.60250
β-SrSiN2 GGA 0.20300 0.59363 0.60150
BaSiN2 0.20400 0.58070 0.60200

N2 α-SrSiN2 4e 0.2192(11) 0.2252(8) 0.3845(11)
β-SrSiN2 LDA 0.23468 0.25a 0.36740
β-SrSiN2 GGA 0.22772 0.25a 0.36380
BaSiN2 0.19580 0.25a 0.34790

The calculations then revealed a CaSiN2-type structure as a second high-pressure

phase of SrSiN2. Interestingly, this transformation disregards the aforementioned

empiric "rule". In this structural transformation the layered β-SrSiN2 structure is

converted into a three-dimensional network structure. The connection pattern of the

SiN4 tetrahedra changes fundamentally from mixed edge- and corner-sharing tetra-

hedra forming SiN2 layers to edge-sharing tetrahedra forming a three-dimensional

network structure. Note further, that the total coordination of neither Si nor N

is changed in this process. However, this phase transformation is unambiguously

reconstructive.

Transforming γ- into δ-SrSiN2 again is a displacive process. It follows a klassenglei-

che (k2) group-subgroup relation pathway from orthorhombic Pbca (γ-SrSiN2) to

Pbcm (δ-SrSiN2) (Figure 5.19). Like the �rst transformation from α- to β-SrSiN2

this phase transformation can be expected to take place gradually. However, as a

di�erence to the α/β-transformation, an increase in the coordination number for Si

will be observed. Changes in the atom positions occur mainly for the x-coordinates,

becoming obvious from comparing both structures in Pbca setting (Table 5.15). A
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similar behavior is found for the B-sesquioxide to A-sesquioxide phase transitions

frequently found for rare earth oxides M2O3. A small displacement of the atoms

during the transition results in increased coordination numbers for the constitut-

ing atoms. These phase transformations are often only observable in-situ, as the

A-sesquioxide structure usually reverts to the B-sesquioxide structure upon pres-

sure release [194, 195, 198, 199].

Table 5.15: Atom coordinates of γ-SrSiN2 (CaSiN2-type structure [14]) and δ-SrSiN2 (Pbcm
structure) in Pbca (at 0GPa, LDA and GGA). Decimal numbers marked with a have �xed values
for space group Pbcm (e.g. 0.25 =̂ 1/4), but could deviate from this value in space group Pbca.

atom structure
Wycko�-
Position

x y z

Sr1 γ-SrSiN2 LDA 8c 0.25574 0.02069 0.06517
γ-SrSiN2 GGA 0.25391 0.01776 0.06476
δ-SrSiN2 LDA 0.25a 0.02869 0.06842
δ-SrSiN2 GGA 0.25a 0.00928 0.06488

Sr2 γ-SrSiN2 LDA 8c 0.33234 0.26880 0.18461
γ-SrSiN2 GGA 0.33032 0.26868 0.18502
δ-SrSiN2 LDA 0.25a 0.27502 0.18030
δ-SrSiN2 GGA 0.25a 0.25751 0.18512

Si1 γ-SrSiN2 LDA 8c 0.25543 0.00989 0.31166
γ-SrSiN2 GGA 0.25366 0.01031 0.31164
δ-SrSiN2 LDA 0.25a 0.01892 0.31091
δ-SrSiN2 GGA 0.25a 0.01862 0.31427

Si2 γ-SrSiN2 LDA 8c 0.30310 0.26477 0.43640
γ-SrSiN2 GGA 0.29974 0.26465 0.43649
δ-SrSiN2 LDA 0.25a 0.26581 0.43903
δ-SrSiN2 GGA 0.25a 0.26758 0.43597

N1 γ-SrSiN2 LDA 8c 0.06281 0.47638 0.21831
γ-SrSiN2 GGA 0.06207 0.47809 0.21898
δ-SrSiN2 LDA 0.25a 0.51061 0.20941
δ-SrSiN2 GGA 0.25a 0.50061 0.21088

N2 γ-SrSiN2 LDA 8c 0.11090 0.29309 0.02194
γ-SrSiN2 GGA 0.10577 0.29095 0.02177
δ-SrSiN2 LDA 0.25a 0.27063 0.03851
δ-SrSiN2 GGA 0.25a 0.26392 0.03809

N3 γ-SrSiN2 LDA 8c 0.17218 0.41296 0.40228
γ-SrSiN2 GGA 0.17456 0.41235 0.40145
δ-SrSiN2 LDA 0.25a 0.40601 0.38690
δ-SrSiN2 GGA 0.25a 0.42181 0.40039

N4 γ-SrSiN2 LDA 8c 0.31842 0.16840 0.34290
γ-SrSiN2 GGA 0.31232 0.16760 0.34371
δ-SrSiN2 LDA 0.25a 0.15680 0.36340
δ-SrSiN2 GGA 0.25a 0.17230 0.24967
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The fourth phase transition occurs at very high pressures (130 to 140GPa), achiev-

ing a further increase of the coordination of Si from �ve to six. By adopting

the m-LiFeO2-type structure, which is a superstructure of the rocksalt structure,

ε-SrSiN2 �nally follows the trend already found for BeSiN2, MgSiN2 and CaSiN2,

for which also rocksalt-derived high-pressure phases were found.

BaSiN2 adheres to the same high-pressure structure sequence as SrSiN2. From or-

thorhombic Cmca BaSiN2 it transforms into a CaSiN2-type structure, followed by

the displacive phase transformation into the Pbcm-type structure (Figure 5.19, Ta-

ble 5.16). No transformation into the m-LiFeO2-type structure was found up to

120GPa.

Table 5.16: Atom coordinates of β-BaSiN2 (CaSiN2 structure [14]) at 91GPa and of γ-BaSiN2

(Pbcm structure) at 105GPa (GGA calculation) in Pbca. Decimal numbers marked with a have
�xed values for space group Pbcm (e.g. 0.25 =̂ 1/4), but could deviate from this value in space
group Pbca.

atom structure
Wycko�-
Position

x y z

Ba1 β-BaSiN2 91GPa 8c 0.26678 0.03027 0.06353
γ-BaSiN2 105GPa 0.25a 0.04089 0.06061

Ba2 β-BaSiN2 91GPa 8c 0.33215 0.25867 0.18942
γ-BaSiN2 105GPa 0.25a 0.28339 0.18658

Si1 β-BaSiN2 91GPa 8c 0.25647 0.00336 0.31274
γ-BaSiN2 105GPa 0.25a 0.02789 0.30933

Si2 β-BaSiN2 91GPa 8c 0.32080 0.25916 0.43786
γ-BaSiN2 105GPa 0.25a 0.27429 0.44019

N1 β-BaSiN2 91GPa 8c 0.08063 0.48010 0.21604
γ-BaSiN2 105GPa 0.25a 0.52808 0.20673

N2 β-BaSiN2 91GPa 8c 0.15033 0.29413 0.02711
γ-BaSiN2 105GPa 0.25a 0.29523 0.03497

N3 β-BaSiN2 91GPa 8c 0.18048 0.40253 0.39851
γ-BaSiN2 105GPa 0.25a 0.41052 0.38177

N4 β-BaSiN2 91GPa 8c 0.33508 0.15576 0.35171
γ-BaSiN2 105GPa 0.25a 0.16357 0.36542

As has been already noted, the Pbcm structure of γ-BaSiN2 distorts through a cas-

cade of higher-symmetry Imma structures (γ'-BaSiN2, γ'-BaSiN2 II, compare chap-

ter 5.1.5, page 98) into a very open structure (γ'-BaSiN2 III) with lower density, but

also higher energy than α-BaSiN2. Since the nature of the β/γ-phase transformation

is also displacive, we expect that γ-BaSiN2 right away re-transforms into β-BaSiN2

upon pressure release. γ-BaSiN2 may well be only observable in-situ.
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Formation of MSiN2 from Si3N4 and M3N2

With regard to the thermodynamic stability of MSiN2 versus M3N2 and Si3N4,

BeSiN2 is thermodynamically stable against decomposition only up to 66GPa, at

which pressure a phase agglomerate of Be3N2 and Si3N4 is more favorable (Fig-

ure 5.27). However, above 83GPa BeSiN2 should reappear adopting the γ-BeSiN2

structure. Consequently, γ-BeSiN2 will be attainable above 83GPa from the binary

nitrides . However, slow interdi�usion in solid-state reactions as well as a presum-

ably high activation energy resulting from strong bonds in Si3N4 and Be3N2 has to

be overcome to achieve this goal. Therefore high temperatures should accompany

the high-pressure experiment as to overcome high activation barriers.

Figure 5.27: Enthalpy-pressure diagram for the formation of BeSiN2 (α-, β- and γ-BeSiN2) from
Be3N2 and Si3N4. The phase transition of β- into γ-Si3N4 has been taken into account (No phase
transformations of Be3N2 found up to 100GPa).

For CaSiN2 and MgSiN2 it is found, that MSiN2 (M = Ca, Mg) always is lower in

enthalpy than a phase agglomerate of M3N2 (M = Ca, Mg) and Si3N4, taking all

predicted high-pressure phases of Ca3N2 (compare chapter 4.1.3, page 52), Mg3N2

(compare chapter 4.1.2, page 48) as well as the β- to γ-phase transition for Si3N4

[4, 5] into account (Figure 5.28 and Figure 5.29). This opens up another possible

synthesis route for CaSiN2 and MgSiN2 and its high-pressure phases, as they should
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be synthesizeable under high pressure from Si3N4 and Ca3N2 or Mg3N2, respectively

(allowing for the same limitations as for BeSiN2).

Figure 5.28: Enthalpy-pressure diagram for the formation of MgSiN2 (α- and β-MgSiN2) from
Mg3N2 and Si3N4. The phase transition of β- into γ-Si3N4 as well as the proposed phase transfor-
mations of Mg3N2 (α-, β- and γ-Mg3N2) have been taken into account.

Figure 5.29: Enthalpy-pressure diagram for the formation of CaSiN2 (α-, β- and γ-CaSiN2)
from Ca3N2 and Si3N4. The phase transition of β- into γ-Si3N4 as well as the proposed phase
transformations of Ca3N2 (α-, γ-, δ-, ε- and λ-Ca3N2) have been taken into account.
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The enthalpy of SrSiN2 and BaSiN2 is � like that of MgSiN2 and CaSiN2 � always

lower in enthalpy than that of a phase agglomerate of Si3N4 and Sr3N2 and Ba3N2,

respectively (Figure 5.30 and Figure 5.31). However, one has to bear in mind, that

Figure 5.30: Enthalpy-pressure diagram for the formation of SrSiN2 (α-, β-, γ- and δ-SrSiN2)
from hypothetic Sr3N2 and Si3N4. The phase transition of β- into γ-Si3N4 as well as the proposed
phase transformations of Sr3N2 (α-, β-, γ- and δ-Sr3N2) have been taken into account.

Figure 5.31: Enthalpy-pressure diagram for the formation of BaSiN2 (α-, β- and γ-BaSiN2) from
hypothetic Ba3N2 and Si3N4. The phase transition of β- into γ-Si3N4 as well as the proposed
phase transformations of Ba3N2 (α-, β- and γ-Ba3N2) have been taken into account.
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neither Sr3N2 nor Ba3N2 could be unambiguously synthesized and characterized,

wherefore hypothetic Sr3N2 and Ba3N2 and their high-pressure polymorphs as pre-

sented in chapter 4.1.4 and 4.1.5 were employed.

115





6 Nitridosilicates M
2
Si
5
N
8
of

group II elements

Three nitridosilicates of composition M2Si5N8 are known so far for the elements

of group II: Ca2Si5N8 [15], Sr2Si5N8 and Ba2Si5N8 [16]. Since their discovery in

1995, these compounds have become prominent phosphor host lattices for LED

(light emitting diodes) applications [19, 271�274]. Their high-temperature stability

and great chemical inertness as well as their not possessing environmental haz-

ards in service, production, handling and disposal, render them ideal materials

for large-scale production and operation. Doped with Eu2+, especially Sr2Si5N8

and orthorhombic solid solutions in the system (Ba1-x-ySrxCay)2Si5N8, but also

Ca2Si5N8 and Ba2Si5N8 have already found application in phosphor converted LEDs

(pc-LEDs) using (In,Ga)N-GaN short wavelength LEDs as primary blue emitters

[18, 19, 275]. Such 2-pc-LEDs (using for example MSi2O2N2:Eu
2+ (M = Ca, Sr,

Ba), α-sialon:Yb2+ or β-sialon:Eu2+ as a second green to yellow emitting converter

material [19, 272]) exhibit excellent "warm-white"-light properties with the General

Color Rendering Index (CRI) and the Correlated Color Temperature (CCT) being

very stable against operating temperature changes and drive currents [19], as well

as signi�cantly improved luminescence in the red region [275].

M2Si5N8 (M = Ca, Sr, Ba) is synthesized from silicon diimide and the alkaline earth

metal (plus an optional addition of the dopant Eu) in a radio frequency furnace

under N2 atmosphere at temperatures between 800 and 1700 °C [15, 16, 18]. All

three compounds exhibit a three-dimensional SiN4 tetrahedra network with corru-

gated tetrahedra layers interconnected by further SiN4 tetrahedra. The cations are

situated between these layers. Ca2Si5N8 crystallizes in the monoclinic space group

Cc (no. 9), whereas isotypic Sr2Si5N8 and Ba2Si5N8 crystallize in Pnm21 (no. 31,

orthorhombic).
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6.1 Ca2Si5N8

As possible high-pressure phases for Ca2Si5N8 two structures were considered: (1)

the structure of the experimentally found HP-Ca2Si5N8 and (2) that of hypothetic

o-Ca2Si5N8, which is isostructural to the ambient pressure modi�cations of Sr2Si5N8

and Ba2Si5N8. For all optimized structures the coordination numbers of the M2+

and Si4+ ions were determined by calculating e�ective coordination numbers (ECoN)

[174] with MAPLE [175�178] in order to compare them to the data for the experi-

mentally determined structures (if available).

6.1.1 Structure Optimization for Ca
2
Si

5
N

8

Ca2Si5N8, HP-Ca2Si5N8 and M2Si5N8 (M = Sr, Ba) (o-Ca2Si5N8) exhibits rather

similar structural features (Figure 6.1). The ambient pressure phase of Ca2Si5N8

[15] crystallizes in the monoclinic non-centrosymmetric space group Cc (no. 9)

and HP-Ca2Si5N8 in the orthorhombic centrosymmetric space group Pbca (no. 61).

Sr2Si5N8 and likewise isotypic Ba2Si5N8 crystallize in the orthorhombic non-centro-

symmetric space group Pmn21 (no. 31) [16]. The three structures share common

basic structural motifs. They are built up by layers of corner-sharing SiN4 tetrahe-

dra comprising dreier rings. These layers are interconnected by further SiN4 units,

forming a three-dimensional network. Between these layers, the M2+ ions are situ-

ated and predominantly coordinated by N[2].

The SiN4 tetrahedra in the layers of all three structures have three N[3] and one N[2],

where the N[3] exclusively form the intra-layer bonds, while the N[2] are situated on

the vertices pointing either up or down. The molar fraction of tetrahedra pointing

up and down is equal according to the formula 3
∞[Si[4]

5 N[2]
4 N[3]

4 ]4− of the nitridosili-

cate network. The layers in the three M2Si5N8 structures di�er in their degree of

corrugation and the pattern of tetrahedra pointing up and down. While the layers

are strongly corrugated in M2Si5N8 (M = Sr, Ba) and HP-Ca2Si5N8, they are sig-

ni�cantly less corrugated in monoclinic Ca2Si5N8 (Figure 6.1).
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Figure 6.1: Structures of Ca2Si5N8, HP-Ca2Si5N8 and o-Ca2Si5N8/M2Si5N8 (M = Sr, Ba) (top:
views of the unit cells; middle: up-down pattern of the SiN4 tetrahedra in the layers; bottom:
coordination of the Ca atoms).

The known M2Si5N8 structures are related to that of the mineral sinoite, Si2N2O

[276, 277]. Sinoite contains the same honeycomb layers, even though none of the

M2Si5N8 layers exhibit the same up-down pattern as the layers in sinoite. The ver-

tices of tetrahedra pointing up and down in Si2N2O are occupied by O atoms, which

connect two layers. For M2Si5N8 the bridging O atoms are substituted by SiN4 tetra-

hedra, resulting in a three-dimensional charged network: 3
∞[[Si[4]N[3]]4[Si[4]N[2]

4 ]]4−.

The layers in monoclinic Ca2Si5N8 exhibit a rather simple pattern of alternating
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zigzag lines of tetrahedra (along [001]) with their vertices pointing either up or

down, whereas the pattern becomes more complex for HP-Ca2Si5N8. The up and

down pattern in M2Si5N8 (M = Sr, Ba) is not related to the pattern of either

Ca2Si5N8 structure, but exhibits groups of four tetrahedra with their vertices point-

ing in the same direction. These groups are arranged in "corner-sharing" rows along

[100] (Figure 6.1).

HP-Ca2Si5N8 can be described as a centrosymmetric variant of the non-centrosym-

metric ambient pressure modi�cation. From Figure 6.1 (top) it is evident that

high pressure formally shifts two single unit cells of Ca2Si5N8 towards each other.

This introduces a center of inversion which doubles the unit cell of HP-Ca2Si5N8

compared to its ambient pressure phase and still allows for the extreme corru-

gation of the SiN4 tetrahedra layers. Despite the similarity between monoclinic

Ca2Si5N8 and HP-Ca2Si5N8, the phase transformation is reconstructive, as required

for transforming the di�erently patterned layers. Therefore, the activation energy

for the re-transformation into the ambient pressure phase is high enough to render

HP-Ca2Si5N8 metastable. Monoclinic non-centrosymmetric Ca2Si5N8 exhibits NLO

behavior [20], whereas HP-Ca2Si5N8 unequivocally crystallizes with a center of in-

version.

For Ca2Si5N8 coordination number 7 for both crystallographic independent Ca2+

ions was derived, whereas in HP-Ca2Si5N8 one Ca2+ is 6+1 coordinated and the

other exhibits 7+1 coordination. This results in an increased coordination number

for half of the Ca atoms. For both Sr2Si5N8 and Ba2Si5N8 a coordination number of

10 was derived for both M2+ ions, whereas in o-Ca2Si5N8 coordinations of six and

seven have been determined for the two crystallographically independent Ca atoms

(Figure 6.1).

The calculated Si-N and Ca-N distances are listed in Table 6.1. They are all in

the range found in experimental Ca2Si5N8 and HP-Ca2Si5N8. As expected, Si-N[2]

bonds are shorter than Si-N[3] bonds.

Fang et al. [278] calculated the electronic structure of Ca2Si5N8 and Sr2Si5N8, but

they did not give any calculated crystallographic data.

Comparing the density of the three considered Ca2Si5N8 structures shows that the

ambient pressure phase Ca2Si5N8 has the lowest value (ρ = 3.06 g cm-3 (experi-

mental); 3.01 g cm-3 (calculated within GGA)). The next denser structure is the

120



6.1 Ca
2
Si

5
N

8

Table 6.1: Bond lengths (in pm) in Ca2Si5N8, HP-Ca2Si5N8 and o-Ca2Si5N8 compared to exper-
imental values.

Structure Bond type LDA GGA exp.

Ca2Si5N8 Ca1[7]-N 228.80�307.51 232.12�310.33 231.45�305.85 [15]

Ca2[7]-N 235.60�314.22 238.97�319.62 239.71�312.82 [15]

Si[4]-N[2] 166.58�173.22 168.22�175.03 167.12�173.90 [15]

Si[4]-N[3] 171.76�177.99 174.12�180.52 172.74�179.59 [15]
HP-Ca2Si5N8 Ca1[8]-N 237.33�330.09 240.68�336.21 241.88�330.14 [204]

Ca2[7]-N 236.81�329.48 240.33�330.55 244.34�326.16 [204]

Si[4]-N[2] 164.95�174.82 166.46�176.68 166.41�175.71 [204]

Si[4]-N[3] 173.57�176.81 175.67�179.43 173.38�180.35 [204]
o-Ca2Si5N8 Ca1[6]-N 235.31�287.22 238.61�295.06 /

Ca2[7]-N 235.25�307.49 238.57�313.36 /

Si[4]-N[2] 166.39�171.65 168.05�173.34 /

Si[4]-N[3] 173.06�174.95 174.98�177.28 /

Ionic Radii bond type Shannon [183] Baur [184]

Ca[6]-N 246 247�249

Ca[7]-N 252 /

Ca[8]-N 258 /

Si[4]-N[2] / 171

Si[4]-N[3] / 173

Si[4]-N[4] 172 /

o-Ca2Si5N8 structure (ρ = 3.06 g cm-3 (calculated within GGA)), with HP-Ca2Si5N8

being the densest phase (ρ = 3.17 g cm-3 (experimental); 3.12 g cm-3 (calculated

within GGA)). Within the GGA, Ca2Si5N8 has the lowest energy (-116.605 eV per

formula unit), followed by HP-Ca2Si5N8 (-116.536 eV per formula unit) and o-Ca2Si5N8

(-116.093 eV per formula unit).

6.1.2 Energy-Volume Calculations for Ca
2
Si

5
N

8

In Figure 6.2 the energy-volume curves of the three structures of Ca2Si5N8 are

depicted from which the enthalpy was extracted as a function of pressure as illus-

trated in Figure 6.3. Accordingly, the transition pressure of monoclinic Ca2Si5N8

to HP-Ca2Si5N8 was calculated with 1.7GPa, which reasonably agrees with the ex-

perimental value. The phase transformation of Ca2Si5N8 into HP-Ca2Si5N8 was

observed at 6GPa and 900°C. The di�erence between calculated and experimental

transition pressure is attributed to kinetic e�ects of the phase transformation.
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Figure 6.2: Energy-volume (E-V ) phase diagram of Ca2Si5N8, HP-Ca2Si5N8 and o-Ca2Si5N8,
calculated within the GGA. Each symbol represents a calculation.

Figure 6.3: Enthalpy-pressure (H-p) diagram for the transition of Ca2Si5N8 into HP-Ca2Si5N8

(pt = 1.7GPa) and of Ca2Si5N8 into o-Ca2Si5N8 (pt = 20GPa) (derived from the evaluation of
the E-V data by the Murnaghan EOS).
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At 20GPa the enthalpy of o-Ca2Si5N8 becomes more favorable than that of mono-

clinic Ca2Si5N8. However, HP-Ca2Si5N8 remains the energetically most stable phase,

which is in accordance with the experiment (Figure 6.3).

Calculations of the phonon band structure, furthermore, indicate that o-Ca2Si5N8

comprises imaginary vibrational modes within the Brillouin zone already at am-

bient pressure, ampli�ed at higher pressures. Hence, this particular structure is

dynamically instable already at ambient pressure. Monoclinic and HP-Ca2Si5N8

were proven to be free of such imaginary vibrational modes [204, 279].

6.1.3 Decomposition Under Pressure

In addition to pressure induced phase transformations, two possible decomposition

pathways under pressure were examined: (1) the decomposition of Ca2Si5N8 into the

binary nitrides Ca3N2 and Si3N4 (Eq. 6.1) and (2) the decomposition into CaSiN2

and Si3N4 (Eq. 6.2).

3 Ca2Si5N8 → 2 Ca3N2 + 5 Si3N4 (6.1)

Ca2Si5N8 → 2 CaSiN2 + Si3N4 (6.2)

The phase transition of β-Si3N4 into γ-Si3N4 (compare chapter 3.2) as well as the

phase transitions of CaSiN2 (compare chapter 5.2) and Ca3N2 (compare chapter 4.2)

were taken into account for all decomposition reactions.

It is found that the enthalpy of a phase agglomerate of Si3N4 and 2 CaSiN2 is al-

ways lower than the enthalpy of a system consisting of (2/3 Ca3N2 + 5/3 Si3N4).

Consequently, a decomposition of Ca2Si5N8 will result in the formation of CaSiN2

and Si3N4 rather than Ca3N2 together with Si3N4 (compare Figure 6.4).

In Figure 6.4 the reaction enthalpy of the decomposition of Ca2Si5N8 into Si3N4 and

CaSiN2 is displayed. Accordingly, above 15GPa Ca2Si5N8 will decompose into Si3N4

and CaSiN2. This process is mainly driven by the favorable enthalpy of γ-Si3N4 at

higher pressures. γ-Si3N4 is the only structure in this pressure range for which par-

tially octahedral coordination of Si, resulting in a higher density, is achieved. The

possibility to further densify the matter at high pressure, hence causes the decom-
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position of the ternary compound Ca2Si5N8 into binary Si3N4 and ternary CaSiN2.

Figure 6.4: Enthalpy-pressure diagram for the decomposition reactions of Ca2Si5N8 into CaSiN2

and Si3N4 and into Ca3N2 and Si3N4 (Murnaghan EOS evaluation).

6.2 Sr2Si5N8

For Sr2Si5N8, besides the experimentally found orthorhombic ambient-pressure struc-

ture (space group Pmn21, no. 31) [16], the structure of the high-pressure phase of

Ca2Si5N8 (space group Pbca, no. 61) [204] was considered (further on denoted

HP-Sr2Si5N8). For all optimized structures the coordination numbers of the M2+

and Si4+ ions were determined by calculating e�ective coordination numbers (ECoN)

[174] with MAPLE [175�178] in order to compare them to the data for the exper-

imentally determined structures (if available). For a detailed description of the

considered structures and a comparison thereof see chapter 6.1.
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6.2.1 Structure Optimization for Sr
2
Si

5
N

8

Structure optimization of Sr2Si5N8 resulted in the exact experimental structure.

HP-Sr2Si5N8 presents a reasonable structure, retaining the characteristic structural

motives of the HP-Ca2Si5N8 structure. The Sr2+ ions are ten-fold coordinated

by N in Sr2Si5N8, whereas they are 8+2- and 7+3-fold coordinated in hypothetic

HP-Sr2Si5N8. A comparison of the SrNx coordination polyhedra and their connec-

tion is given in Figure 6.5.

Figure 6.5: SrNx coordination polyhedra in Sr2Si5N8 and hypothetic HP-Sr2Si5N8.

The Sr-N and Si-N distances obtained from the optimized structures in compari-

son to the experimental values from Sr2Si5N8 are given in Table 6.2. In general,

the Si-N[2] bonds are longer than the Si-N[3] bonds. The calculated Si-N bonds in

HP-Sr2Si5N8 turn out slightly longer than those in Sr2Si5N8. However, the overall

agreement of the calculated distances with those in experimental Sr2Si5N8 is good.

Sr2Si5N8 exhibits the lower energy (-115.596 eV per formula unit) and the lower

density (ρ = 3.90 g cm-3 (experimental); 3.83 g cm-3 (calculated within GGA)) of the

two considered structures. The energy per formula unit of HP-Sr2Si5N8 amounts to

-115.402 eV and the density 3.85 g cm-3 within GGA. The zero-pressure bulk moduli

for both structures were calculated to 155GPa.
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Table 6.2: Bond lengths (in pm) in Sr2Si5N8 and HP-Sr2Si5N8 compared to experimental values.

Structure Bond type LDA GGA exp.

Sr2Si5N8 Sr[10]-N 251.21 � 337.18 255.13 � 340.91 254.22 � 338.06 [16]

Si[4]-N[2] 165.88 � 171.59 167.49 � 173.36 165.31 � 173.30 [16]

Si[4]-N[3] 173.25 � 176.34 175.28 � 178.83 174.81 � 178.60 [16]
HP-Sr2Si5N8 Sr1[8+2]-N 249.60 � 358.31 252.63 � 362.31

Sr2[7+3]-N 251.35 � 367.23 255.00 � 369.45

Si[4]-N[2] 165.63 � 175.28 167.03 � 177.18

Si[4]-N[3] 173.78 � 178.29 176.10 � 180.99

Ionic Radii bond type Shannon [183] Baur [184]

Sr[8]-N 272 265 � 273

Sr[10]-N 282 /

Si[4]-N[2] / 171

Si[4]-N[3] / 173

Si[4]-N[4] 172 /

6.2.2 Decomposition Under Pressure

The same two decomposition pathways as for Ca2Si5N8 were also considered for

Sr2Si5N8 and HP-Sr2Si5N8:

3 Sr2Si5N8 → 2 Sr3N2 + 5 Si3N4 (6.3)

Sr2Si5N8 → 2 SrSiN2 + Si3N4 (6.4)

For the phase transformations of SrSiN2 compare chapter 5.2. For the assumed

ground state structure of Sr3N2 as well as its high-pressure phases see chapter 4.2.

As for Ca2Si5N8, the enthalpy of a phase agglomerate of Si3N4 and 2 SrSiN2 is al-

ways lower in enthalpy than that of a system consisting of (2/3 Sr3N2 + 5/3 Si3N4).

Therefore, a decomposition of Sr2Si5N8 will result in the formation of SrSiN2 and

Si3N4 rather than Sr3N2 together with Si3N4 (compare Figure 6.6 and Figure 6.7).

According to the reaction enthalpy of the decomposition into Si3N4 and 2 SrSiN2,

Sr2Si5N8 will decompose at 19GPa. HP-Sr2Si5N8 decomposes at a slightly lower

pressure, at 18GPa. Here, as in the case of Ca2Si5N8, the driving force for the

decomposition is the transformation occurring in Si3N4 from the phenakite struc-

ture with purely tetrahedral Si environment to the spinel structure with partially
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octahedrally coordinated Si, which results in a signi�cant densi�cation of matter.

Figure 6.6: Enthalpy-pressure diagram for the decomposition reactions of Sr2Si5N8 into SrSiN2

and Si3N4 and into Sr3N2 and Si3N4 (Murnaghan EOS evaluation).

Figure 6.7: Enthalpy-pressure diagram for the decomposition reactions of HP-Sr2Si5N8 into
SrSiN2 and Si3N4 and into Sr3N2 and Si3N4 (Murnaghan EOS evaluation).
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6.2.3 Energy-Volume Calculations for Sr
2
Si

5
N

8

As both Sr2Si5N8 and HP-Sr2Si5N8 decompose above approximately 20GPa, a phase

transformation, if taking place at all, has to occur bellow 20GPa to be detectable. In

Figure 6.8 the energy-volume curves of the two considered structures are displayed,

in Figure 6.9 the thereof derived enthalpy-pressure phase diagram. It becomes obvi-

ous, that no phase transformation from Sr2Si5N8 into the HP-Sr2Si5N8 structure will

take place bellow 30GPa as Sr2Si5N8 is always lower in enthalpy than HP-Sr2Si5N8.

Therefore, the HP-Ca2Si5N8 structure can be ruled out as a high-pressure modi�ca-

tion of Sr2Si5N8.

6.3 Ba2Si5N8

Besides the experimentally found ambient-pressure structure of Ba2Si5N8 (orthorhom-

bic Pmn21, no. 31, isotypic to Sr2Si5N8) [16], the HP-Ca2Si5N8 structure was con-

sidered for a high-pressure phase of Ba2Si5N8 (space group Pbca, no. 61, further on

denoted HP-Ba2Si5N8). For the two optimized structures of Ba2Si5N8 the coordi-

nation numbers of the M2+ and Si4+ ions were determined by calculating e�ective

coordination numbers (ECoN) [174] with MAPLE [175�178] in order to compare

them to the data for the experimentally determined structures (if available). For an

in-depth description of the Ba2Si5N8 and the HP-Ca2Si5N8 structure and a compar-

ison thereof see chapter 6.1.

6.3.1 Structure Optimization for Ba
2
Si

5
N

8

Structure optimization for both Ba2Si5N8 and HP-Ba2Si5N8 resulted in reasonable

structures, in the case of Ba2Si5N8 reproducing very well the experimentally found

data. In Ba2Si5N8 the two crystallographic independent Ba atoms are both 10-fold

coordinated by N, whereas they are 8+3 and 8+4 fold coordinated in hypothetic

HP-Ba2Si5N8 (Figure 6.10).
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Figure 6.8: Energy-volume (E-V ) phase diagram of Sr2Si5N8 and HP-Sr2Si5N8, calculated within
the GGA. Each symbol represents a calculation.

Figure 6.9: Enthalpy-pressure (H-p) diagram for the transition of Sr2Si5N8 into HP-Sr2Si5N8

(derived from the evaluation of the E-V data by the Murnaghan EOS).
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Figure 6.10: BaNx coordination polyhedra in Ba2Si5N8 and hypothetic HP-Ba2Si5N8.

Considering the calculated Ba-N and Si-N distances for Ba2Si5N8, they are in good

agreement with the experimental values (Table 6.3). The values obtained for

HP-Ba2Si5N8 however reveal certain de�ciencies with regard to the Si-N bond lengths,

as they are quite long for Si[4]-N[3] bonds, more in the range for Si[6] (186.26 pm in

γ-Si3N4 [4, 5]) than for Si[4] (compare Table 6.3). This may well result from an

expansion of the SiN4 tetrahedra network resulting from the larger cation size of

Ba2+ compared to Ca2+ in the original structure.

Table 6.3: Bond lengths (in pm) in Ba2Si5N8 and HP-Ba2Si5N8 compared to experimental values.

Structure Bond type LDA GGA exp.

Ba2Si5N8 Ba[10]-N 266.92 � 340.16 270.98 � 343.32 267.70 � 341.79 [16]

Si[4]-N[2] 166.00 � 171.65 167.64 � 173.67 166.55 � 172.56 [16]

Si[4]-N[3] 173.75 � 177.88 175.82 � 180.57 174.07 � 179.66 [16]
HP-Ba2Si5N8 Ba1[8+3]-N 259.94 � 360.25 262.91 � 366.58

Ba2[8+4]-N 264.30 � 380.32 267.75 � 385.92

Si[4]-N[2] 166.77 � 175.73 168.11 � 177.63

Si[4]-N[3] 174.54 � 181.68 177.06 � 184.73

Ionic Radii bond type Shannon [183] Baur [184]

Ba[8]-N 288 296 � 304

Ba[10]-N 298 /

Ba[12]-N 307 /

Si[4]-N[2] / 171

Si[4]-N[3] / 173

Si[4]-N[4] 172 /
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Ba2Si5N8 turned out to have the lower energy (-115.586 eV per formula unit) of

the two polymorphs, with HP-Ba2Si5N8 being 0.994 eV higher in energy. How-

ever, Ba2Si5N8 (ρ = 4.53 g cm-3, matching experimental 4.63 g cm-3) is denser than

HP-Ba2Si5N8 (ρ = 4.51 g cm-3) by 0.04%, which renders HP-Ba2Si5N8 an unlikely

candidate for a high-pressure phase of Ba2Si5N8.

Figure 6.11: Enthalpy-pressure diagram for the decomposition reactions of Ba2Si5N8 into BaSiN2

and Si3N4 and into Ba3N2 and Si3N4 (Murnaghan EOS evaluation).

6.3.2 Decomposition Under Pressure

Analogous to the decomposition of Ca2Si5N8 and Sr2Si5N8 under pressure, the

two aforementioned decomposition reactions into (2 BaSiN2 + Si3N4) and into

(2/3 Ba3N2 + 5/3 Si3N4) were examined. A decomposition pressure of 58GPa

into 2/3 Ba3N2 and 5/3 Si3N4 and of 24GPa into 2 BaSiN2 and Si3N4 was calcu-

lated and a phase agglomerate of 2 BaSiN2 and Si3N4 is found to be always lower

in enthalpy than a phase agglomerate of 2/3 Ba3N2 and 5/3 Si3N4 at ambient and

under high pressure (Figure 6.11). Therefor, Ba2Si5N8 is predicted to decompose

into BaSiN2 and Si3N4 under pressure. All known high-pressure phases of Si3N4

(compare chapter 3.2) and the potential high-pressure phases of BaSiN2 (compare
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chapter 5.2) were taken into account as well as the postulated ambient- and high-

pressure phases of hypothetic Ba3N2 (compare chapter 4.2).

6.4 Hypothetic Mg2Si5N8

Even though the compounds of composition M2Si5N8 are known for Ca, Sr and Ba,

Mg2Si5N8 has until now eluded all synthetical endeavors. For this reason, hypo-

thetic Mg2Si5N8 has been calculated in the two experimentally known polymorphs

of Ca2Si5N8, monoclinic Ca2Si5N8 [15] and HP-Ca2Si5N8, as well as the structure of

Sr2Si5N8 and Ba2Si5N8 [16]. Their relation under pressure as well as their decom-

position behavior towards stoichiometric phase agglomerates of MgSiN2/Si3N4 and

Mg3N2/Si3N4 have been studied.

6.4.1 Structure Optimization for Mg
2
Si

5
N

8

Structure optimization for Mg2Si5N8 in all three considered structure types was

possible and resulted in reasonable structures. Monoclinic Mg2Si5N8 (equivalent

to monoclinic Ca2Si5N8, space group Cc, no. 9 [15]) turned out with the lowest

energy (-113.832 eV per formula unit) and a density of 2.91 g cm-3. HP-Mg2Si5N8

(equivalent to HP-Ca2Si5N8, space group Pbca, no. 61) is 0.581 eV higher in energy

and 2.1% denser than monoclinic Mg2Si5N8. Orthorhombic o-Mg2Si5N8 (equivalent

to Sr2Si5N8 and Ba2Si5N8, space group Pmn21, no. 31 [16]) comes out 1.273 eV

higher in energy than monoclinic Mg2Si5N8 and 0.692 eV higher than HP-Mg2Si5N8.

However, with a density of 2.71 g cm-3 it is less dense than monoclinic Mg2Si5N8

and HP-Mg2Si5N8. The calculated zero-pressure bulk moduli amount to 154GPa

for monoclinic Mg2Si5N8, 109GPa for HP-Mg2Si5N8 and 122GPa for o-Mg2Si5N8.

For monoclinic Mg2Si5N8 a trigonal pyramidal coordination by N for both crystal-

lographic independent Mg2+ ions was derived. The coordination number of half of

the Mg atoms is increased to �ve (quadratic pyramid) in HP-Mg2Si5N8, whereas the

other half retains CN = 4 (distorted tetrahedron). In o-Mg2Si5N8 the Mg2+ ions are

only three-fold coordinated by N, as they "hover" above a trigonal plane spanned

by thee N atoms (Figure 6.12).
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The calculated Mg-N and Si-N distances are given in Table 6.4. They are all in the

range of such in MgSiN2. However, in contrast to all other M2Si5N8 compounds dis-

cussed so far, the di�erence for Si[4]-N[2] and Si[4]-N[3] distances is not as pronounced

in monoclinic Mg2Si5N8. The upper boundary for both is virtually identical.

Figure 6.12: MgNx coordination polyhedra in hypothetic m-Mg2Si5N8, HP-Mg2Si5N8 and
o-Mg2Si5N8.

Table 6.4: Bond lengths (in pm) in monoclinic Mg2Si5N8, HP-Mg2Si5N8 and o-Mg2Si5N8 com-
pared to values in MgSiN2 (compare section 5.2).

Structure Bond type LDA GGA exp.

m-Mg2Si5N8 Mg[4]-N 206.34 � 231.55 209.25 � 234.27 /

Si[4]-N[2] 168.65 � 176.47 170.37 � 178.33 /

Si[4]-N[3] 170.10 � 176.65 171.94 � 178.63 /
HP-Mg2Si5N8 Mg1[5]-N 216.65 � 229.58 219.00 � 234.24 /

Mg2[4]-N 209.30 � 240.68 211.31 � 253.67 /

Si[4]-N[2] 166.60 � 174.28 168.06 � 176.03 /

Si[4]-N[3] 171.52 � 177.58 173.61 � 179.38 /
o-Mg2Si5N8 Mg[3]-N 202.12 � 207.27 203.47 � 209.84 /

Si[4]-N[2] 169.39 � 172.92 170.97 � 174.72 /

Si[4]-N[3] 171.52 � 174.82 173.34 � 176.98 /

MgSiN2 Mg[4]-N[6] 205.33 � 210.27 208.33 � 213.77
205.92 � 211.50
[235]

Si[4]-N[6] 172.60 � 174.95 174.41 � 176.99
173.81 � 179.65
[235]

Ionic Radii bond type Shannon [183] Baur [184]

Mg[4]-N 203 206 � 214

Mg[6]-N 218 212 � 220

Si[4]-N[2] / 171

Si[4]-N[3] / 173

Si[4]-N[4] 172 /
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6.4.2 Energy-Volume Calculations for Mg
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In Figure 6.13 the energy-volume curves of the three hypothetic Mg2Si5N8 phases

are depicted. The enthalpy as a function of pressure, as derived of these energy-

volume curves, is shown in Figure 6.14. According to this enthalpy-pressure phase

diagram, monoclinic Mg2Si5N8 should be the stable polymorph up to 20GPa, when

HP-Mg2Si5N8 becomes lower in enthalpy. o-Mg2Si5N8 remains higher in enthalpy

than both other polymorphs up to pressures of at least 40GPa.

Figure 6.13: Energy-volume (E-V ) phase diagram of m-Mg2Si5N8, HP-Mg2Si5N8 and
o-Mg2Si5N8, calculated within the GGA. Each symbol represents a calculation.

6.4.3 Decomposition Under Pressure

To determine, if and and if so, up to what pressures hypothetic Mg2Si5N8 is stable

against other compounds in the Mg-Si-N system, the two before discussed decom-

position pathways of M2Si5N8 were examined:
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Figure 6.14: Enthalpy-pressure (H-p) diagram for the transition of m-Mg2Si5N8 into
HP-Mg2Si5N8 (pt = 20GPa) and into o-Mg2Si5N8 (derived from the evaluation of the E-V data
by the Murnaghan EOS).

Figure 6.15: Enthalpy-pressure diagram for the decomposition reactions of hypothetic Mg2Si5N8

into MgSiN2 and Si3N4 and into Mg3N2 and Si3N4 (Murnaghan EOS evaluation).
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3 M2Si5N8 → 2 M3N2 + 5 Si3N4 (6.5)

M2Si5N8 → 2 MSiN2 + Si3N4. (6.6)

As becomes obvious from the reaction enthalpy of the two decomposition reactions

as depicted in Figure 6.15, Mg2Si5N8 would be stable against a phase agglomerate

of 2/3 Mg3N2 and 5/3 Si3N4 up to 16GPa, but it is always higher in enthalpy

than a phase agglomerate of 2 MgSiN2 and Si3N4. These �ndings explain at least

from a thermodynamic point of view, why Mg2Si5N8 could not be synthesized until

now (allowing for the limitations presented by the three known structure types for

A2B5X8 compounds). Apparently, a phase agglomerate of 2 MgSiN2 and Si3N4

constitutes a thermodynamical sink, which becomes even "deeper" under pressure.
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P-N compounds often exhibit striking similarities to Si-O compounds. This can

be traced back to the fact, that PN �
2 is isoelectronic to SiO2. HPN2 exhibits

a β-cristobalite type structure [280] and LiPN2 and NaPN2 [281, 282] are D1-

type distortions of the �lled β-cristobalite structure (isotypic to chalcopyrite). Be-

sides the diverse substance class of the zeolites, also clathrates are known for SiO2

frameworks. Clathrates are usually uncharged SiO2 frameworks built up by corner-

sharing SiO4 tetrahedra, which host neutral molecules or nothing in their cage like

pores. With [P4N4(NH)4](NH3) the �rst nitridic clathrate has been realized [283].

[P4N4(NH)4](NH3) exhibits an unprecedented HPN2 framework structure of corner-

sharing PN4 tetrahedra.

However, P-N compounds also pro�t from the extended structural possibilities of

N compared to O. Oxygen is limited to being terminal or bridging two tetrahedron

centers, whereas N can connect up to four tetrahedron centers.

Phosphorus(V)nitride P3N5, which has been mentioned as early as 1862 [92] and

whose synthesis was �rst reported in 1903 [284], but whose structure could not be

solved until 1997 [285], already evinces edge-sharing PN4 tetrahedra in its ambient-

pressure modi�cation. This �nding is in contrast to the ambient-pressure modi�-

cations of Si3N4 (α- and β-Si3N4) as well as cubic BN, which are solely built up

of corner-sharing TN4 tetrahedra [2, 3, 286]. For P3N5 as well as Si3N4 increased

coordination numbers for P (and Si, respectively) could be realized under pressure

[4, 5, 22, 23]. At 11GPa γ-P3N5 can be synthesized, which exhibits not only PN4

tetrahedra, but also PN5 quadratic pyramids. Layers of edge- and corner-sharing

PN5 quadratic pyramids are interconnected by chains of corner-sharing PN4 tetra-

hedra. Further high-pressure phases have been predicted by Kroll and Schnick [24]
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and by Dong et al. [287]. Kroll and Schnick propose a kyanite structure for δ-P3N5,

comprising PN6 octahedra and PN4 tetrahedra, which may distort upon quenching

to ambient conditions along a shear distortion path, resulting in monoclinic δ'-P3N5

built up of PN6 octahedra, PN5 trigonal bipyramids and PN4 tetrahedra. Dong et

al. propose a V3O5-type structure, composed solely of PN6 octahedra, as a second

high-pressure phase of P3N5.

Hardness measurements by Vickers indentation method revealed a hardness (HV)

of 5.1(7)GPa for partly crystalline ambient-pressure P3N5 and of 9.7(21)GPa for

γ-P3N5 [23]. The respective bulk moduli for α- and γ-P3N5 were calculated to 87

to 99GPa and 103 to 116GPa [24]. Hypothetic δ'-P3N5 might even be harder. Its

bulk modulus has been calculated to 240GPa [24].

The nitridophosphate BeP2N4 crystallizes in the phenakite(Be2SiO4)-type structure

[25]. It is the only MP2N4 compound of the group II elements exhibiting this struc-

ture type. MgP2N4, CaP2N4 and SrP2N4 crystallize in the megakalsilite(KAlSiO4)-

type structure, whereas BaP2N4 is isotypic to high-pressure CaB2O4-IV [25�29]. All

mentioned structures of MP2N4 are built up by corner-sharing PN4 tetrahedra.

Since BeP2N4 exhibits the phenakite structure like β-Si3N4 [3], which transforms into

a spinel-type structure under pressure (γ-Si3N4) [4, 5], a spinel-type high-pressure

phase of BeP2N4 seems to be likely. This is even mores so, as Si3N4 and BeP2N4

are iso(valence)electronic (32 valence electrons per formula unit) and the ionic radii

of Be2+ and P5+ are comparable to that of Si4+ [183]. In analogy to γ-Si3N4, which

exhibits a signi�cantly higher hardness than α- and β-Si3N4 [7], spinel-type BeP2N4

can be expected to be harder than phenakite-type BeP2N4 and � due to its makeup

of small atoms, its short bonds and high covalency in addition to a partly increased

coordination number from 4 to 6 � to be a quite hard material [288, 289]. Therefore,

spinel-type BeP2N4 was calculated within LDA and GGA and the transition pressure

of phenakite-type BeP2N4 into spinel-type BeP2N4 was derived from energy-volume

calculations.
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7.1 BeP2N4

BeP2N4 crystallizes in the trigonal space group R	3 (no. 148), isotypic to phenakite

Be2SiO4 [290, 291]. The structure is built up of all-side corner sharing BeN4 and PN4

tetrahedra, giving a coordination description Be [4]P [4]
2 N [3]

4 . The connectivity of the

tetrahedra is identical to that in phenakite and β-Si3N4, with a prominent charac-

teristic of the structure being sechser ring channels along [001] (compare Figure 7.1).

Figure 7.1: Structures of BeP2N4 (annealed) compared to calculated structure and β-Si3N4

(viewed along [001]).

In contrast to β-Si3N4 and phenakite, the structure of BeP2N4 is somewhat more

distorted, which becomes obvious when examining the x and y fractional coordi-

nates of atoms placed above each other viewed along [001]. In β-Si3N4 they are
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identical, due to the higher symmetry, and in phenakite, they are almost identical

with only very small deviations. In BeP2N4 larger deviations are found (compare

Table 7.1). However, when comparing these deviations for raw product BeP2N4

and an annealed sample, they are smaller for the annealed sample, suggesting, that

annealing leads towards higher crystallinity. The deviations are even smaller within

structure optimized BeP2N4 from LDA and GGA calculations.

Table 7.1: Deviations in the fractional x- and y-coordinates of cations and anions in BeP2N4 and
phenakite Be2SiO2 placed above each other viewd along [001]

structure ∆(x/y) (anions) ∆(x/y) (cations)

BeP2N4 (raw product) [25] 0.0147 � 0.0423 0.0171 � 0.0165
BeP2N4 (annealed) [25] 0.0057 � 0.0339 0.0147 � 0.0212
BeP2N4 (LDA) 0.0051 � 0.0125 0.0027 � 0.0042
BeP2N4 (GGA) 0.0054 � 0.0135 0.0026 � 0.0051
Be2SiO4 [291] 0.0006 � 0.0020 0.0013 � 0.0015

A similar tendency is re�ected in the tetrahedra angles N-P-N and N-Be-N compared

to those in phenakite (O-Be-O and O-Si-O) and β-Si3N4 (N-Si-N) (Table 7.2). They

are scattered over a larger range in raw product BeP2N4, which becomes signi�-

cantly reduced in annealed BeP2N4 but is still larger than that found in phenakite

and β-Si3N4. Again the values obtained from the optimized structures are still closer

to those found in phenakite and β-Si3N4.

With regard to the (Be/P)-N-(Be/P) angles (Table 7.2), the spread found for these

angles in raw product BeP2N4 is larger than that in all other structures. The values

in annealed BeP2N4 as well as in the calculated structures are similar to those in

phenakite and β-Si3N4.

The calculated bond lengths P-N and Be-N in comparison to the experimental val-

ues are given in Table 7.3. The spread of the calculated bond lengths is smaller than

that for the experimentally determined structure. However all values adopt values

similar to those found in α-P3N5 [292] and α-Be3N2 [179] with P-N bonds in raw

product BeP2N4 and Be-N bonds in annealed BeP2N4 exhibiting the largest spread

in bond lengths.
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Table 7.2: Tetrahedra angles and cation-anion-cation angles in BeP2N4 (experimental [25] and
calculated) as well as in phenakite [291] and β-Si3N4 [3].

N-P-N (O-Be-O) N-Be-N (O-Si-O)

BeP2N4 (raw product) 93.82 � 133.04 81.94 � 131.47
BeP2N4 (annealed) 98.73 � 118.43 101.42 � 117.95
BeP2N4 (LDA) 108.70 � 112.50 107.11 � 109.38
BeP2N4 (GGA) 107.22 � 112.78 106.72 � 109.26
Be2SiO4 107.56 � 114.29 107.80 � 113.01
β-Si3N4 108.69 � 115.64

A-X-B (A, B = Be, P, Si; X = N, O)

BeP2N4 (raw product) 102.47 � 127.18
BeP2N4 (annealed) 110.69 � 125.88
BeP2N4 (LDA) 110.48 � 127.98
BeP2N4 (GGA) 112.28 � 128.15
Be2SiO4 113.08 � 123.69
β-Si3N4 115.64 � 121.91

Table 7.3: Bond lengths in BeP2N4 (experimental [25] and calculated), compared to values in
α-P3N5 [292] and α-Be3N2 [179].

Be[4]-N P[4]-N

BeP2N4 (raw product) 159.77 � 179.41 157.18 � 186.77
BeP2N4 (annealed) 148.20 � 181.08 160.35 � 172.96
BeP2N4 (LDA) 170.52 � 173.10 161.86 � 163.73
BeP2N4 (GGA) 172.58 � 175.99 163.58 � 165.47

α-P3N5 (Cc) / 150.72 � 174.46
α-P3N5 (C2/c) / 153.66 � 172.59
α-Be3N2 172.45 � 181.55 /

Ionic Radii (Shannon [183]) 171 163
Ionic Radii (Baur [184]) 175 158

7.2 Spinel Structures

Spinels are compounds of composition AB2X4. The anions X form a cubic close

packing (ccp) and the cations occupy 1/8th of the tetrahedral voids and half of the

octahedral voids. In the normal spinel structure the A atoms occupy the tetrahe-

dral voids, whereas the B atoms are located in the octahedral voids (Figure 7.2).

In inverse spinels, half of the B atoms occupy tetrahedral sites and half occupy oc-

tahedral sites, whereas the A atoms occupy the remaining octahedral sites (Figure
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7.2). In between these two types of spinel structures countless partly inverse spinel

structures can be envisaged [293].

Figure 7.2: Spinel and inverse spinel structure (Be polyhedra are depicted in black).

BeP2N4 was calculated in the normal as well as the inverse spinel structure. Normal

spinel crystallizes in space group Fd	3m (no. 227, cubic). The Be atoms were located

on the tetrahedral sites, the P atoms on the octahedral sites. Therefore, in normal

spinel BeP2N4 (sp-BeP2N4) the coordination number of P would be increased from

four to six for all P atoms compared to ambient-pressure BeP2N4. The coordination

of Be remains unchanged.
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To construct the inverse spinel structure, the primitive unit cell of normal spinel

was used as a starting point. This cell contains two formula units, resulting in two

tetrahedral and four octahedral positions. The tetrahedral positions were solely

occupied by P. For the distribution of the remaining P and Be atoms on the oc-

tahedral positions, from a combinatorial point of view six patterns were possible.

However, all combinations resulted in the same structure (Figure 7.3). The result-

ing structure for inverse spinel exhibits the orthorhombic space group Imma (no.

74). An inverse spinel high-pressure phase of BeP2N4 (isp-BeP2N4) would result in

a partially increased coordination number for P, as only half of the P atoms are

occupying octahedral sites, whereas the coordination number for all Be would be

increased from four to six, which, to the best knowledge of the author, is not yet

known except for central Be in Zr6 clusters [294�298].

Figure 7.3: Construction of inverse spinel from the normal spinel structure (Be atoms drawn light
gray, P atoms dark gray, N atoms black; Be/PN6 octahedra are drawn, PN6 octahedra light gray,
BeN6 octahedra black.

The calculated P-N and Be-N distances for sp-BeP2N4 and inverse sp-BeP2N4 are

listed in Table 7.4. They are all in the range of such bonds found in Be3N2 and

P3N5 compounds. Be[6]-N distances are longer than Be[4]-N distances, as are bond

lengths P[6]-N in comparison to bond lengths P[4]-N.
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Table 7.4: Bond lengths in normal and inverse spinel BeP2N4, compared to values in γ-P3N5 [22, 23] and α-Be3N2 [179] as well as the
theoretically predicted P3N5 phases δ-P3N5 [24] and δ'-P3N5 [24] .

Be[4]-N Be[6]-N P[4]-N P[5]-N P[6]-N

sp-BeP2N4 (LDA) 173.76 / / / 176.19
sp-BeP2N4 (GGA) 179.91 / / / 182.24
isp-BeP2N4 (LDA) / 181.49, 184.53 162.37, 172.23 / 176.72, 181.39
isp-BeP2N4 (GGA) / 183.39, 187.22 164.05, 175.36 / 178.93, 183.99

γ-P3N5 / / 158.65, 169.76 165.71 � 177.54 /
δ-P3N5 / / 156.3 � 159.9 / 164.9 � 186.9
δ'-P3N5 / / 153.9 � 165.7 159.2 � 187.1 174.3 � 185.1
α-Be3N2 172.45 � 181.55 / / / /
γ-Be3N2 (LDA) 167.18 � 181.91 198.33 / / /
γ-Be3N2 (GGA) 168.86 � 185.35 201.08 / / /

Ionic Radii (Shannon [183]) 171 191 163 175 184
Ionic Radii (Baur [184]) 177 / 160 / /
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Phenakite-type BeP2N4 exhibits the lowest bulk modulus (220GPa (GGA)). Spinel-

type BeP2N4 has a zero-pressure bulk modulus of 291GPa within LDA and of

263GPa within GGA. The highest bulk modulus was found for inverse spinel-type

BeP2N4, which amounts to 316GPa within LDA and to 278GPa within GGA. All

calculated values are listed in Table 7.5.

Table 7.5: E0, V0, B0 and ρ0 of phenakite-type, spinel-type (sp) and inverse spinel-type (isp)
BeP2N4 within LDA and GGA (E0 and V0 given per formula unit).

E0 / eV V0 / 106 pm3 B0 / GPa ρ0 / g cm-1

BeP2N4 (LDA) -58.817 63.66 / 3.31
sp-BeP2N4 -57.721 52.01 291 4.05
isp-BeP2N4 -56.389 50.97 316 4.14

BeP2N4 (GGA) -52.840 65.99 220 3.20
sp-BeP2N4 -51.229 54.11 263 3.90
isp-BeP2N4 -49.861 53.11 278 3.97

A high bulk modulus is an indicator for hardness, but not a su�cient precondi-

tion for hardness, since the hardness of a material is determined by various factors.

It is widely accepted, that small atoms, short bonds, a high degree of covalency,

a high bond density and a high packing e�ciency are required for hard materials

[288, 289]. An increase of the coordination number alone will not necessarily e�ect a

higher hardness, since it indeed increases the packing e�ciency but also bond length

and ionicity. This results in opposed e�ects on the hardness and it remains to be

seen which factor is dominant [289]. For spinel-type γ-Si3N4 an increase in hardness

as compared to β-Si3N4 is paralleled by an increase in bulk modulus. As BeP2N4 is

iso(valence)electronic to Si3N4, the ionic radii for Be
2+ and P5+ are similar to that of

Si4+ [183], the phase transformation from phenakite-type to spinel-type BeP2N4 is

also accompanied by an increase of the bulk modulus and the bulk modulus of spinel-

type BeP2N4 adopts a value between that of corundum (B0 = 252GPa, HV = 20GPa

[203]) and γ-Si3N4 (B0 exp. = 290 - 317GPa [7, 8], B0 calculated = 292 - 319GPa

[4, 6], HV = 30-43GPa [7]), spinel-type BeP2N4 is likely to exhibit a hardness similar

to these compounds and higher than that of phenakite-type BeP2N4, which would

render it a quite hard material.
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7.4 Energy-Volume Calculations for BeP2N4

In Figure 7.4 the energy-volume curves calculated within GGA is depicted. From

this, the enthalpy-pressure phase diagram, as depicted in Figure 7.5 was derived. Ac-

cordingly, the transition pressure of phenakite-type BeP2N4 into spinel-type BeP2N4

was calculated to 24GPa within GGA. Inverse spinel-type BeP2N4 was found to be

always higher in enthalpy than either phenakite-type or spinel-type BeP2N4 up to

100GPa (compare also Figure 7.6). Therefore, only spinel-type BeP2N4 seems to be

a candidate for a high-pressure phase of BeP2N4.

As the calculated transition pressure for phenakite-type BeP2N4 into spinel-type

BeP2N4 is quite low with 24GPa, this phase transition might well be already ob-

servable in multi-anvil setups and should be easily detectable in diamond anvil cell

setups, even if - due to kinetic e�ects - the experimental transition pressure is some-

what higher than the calculated value.

Figure 7.4: Energy-volume (E-V ) phase diagram of phenakite-type, spinel-type (sp) and inverse
spinel-type (isp) BeP2N4, calculated within the GGA. Each symbol represents a calculation.
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Figure 7.5: Enthalpy-pressure (H-p) diagram for the transition of phenakite-type BeP2N4 into
spinel-type (sp) BeP2N4 (pt = 24GPa). Inverse spinel-type (isp) BeP2N4 remains always higher
in enthalpy than either other polymorph (GGA, derived from the evaluation of the E-V data by
the Murnaghan EOS).

Figure 7.6: Enthalpy-pressure (H-p) diagrams for the transition of spinel-type (sp) BeP2N4 into
inverse spinel-type (isp) BeP2N4 (left: LDA, right: GGA, derived from the evaluation of the E-V
data by the Murnaghan EOS).
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Binary Group II Nitrides

Binary oxides and nitrides are usually regarded as simple and well characterized

compounds, which do not preserve further mysteries and promise no further discov-

eries. However, this is not true, which is vividly illustrated by the binary group

II nitrides. Only for Be3N2, Mg3N2 and Ca3N2 ambient-pressure structures are

known, while the binary nitrides of formula Sr3N2 and Ba3N2 have eluded all e�orts

to discover their secrets. It is even unknown, if these compounds do exist or if

the multitude of known other binary strontium-nitrogen and barium-nitrogen com-

pounds constitute a thermodynamic and kinetic sink, which prevents the formation

of the binary nitrides M3N2.

Calculations for Be3N2, Mg3N2 and Ca3N2 revealed a wide range of promising high-

pressure phases. Especially the high-pressure chemistry of Ca3N2 is a very rich one,

revealing four high-pressure phases bellow 40GPa. Subsequent high-pressure high-

temperature experiments hopefully will con�rm these �ndings.

For Sr3N2 and Ba3N2 ground-state structures have been proposed. But, even if these

compounds are not synthesizeable at ambient pressure, they or their high-pressure

polymorphs may well be synthesizeable under high pressure. Subsequent calcula-

tions are needed to clarify the thermodynamical stability of the proposed structures

against phase agglomerates of other binary Sr- and Ba-nitrogen compounds and N2

or Sr and Ba, respectively. Examples of such equilibria, that have to be accounted

for, are given in Figure 8.1.
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Figure 8.1: Di�erent reactions to be investigated for M3N2.

Künzel [146] proposed a disordered NaCl-type structure for Ba3N2. Preliminary

calculations with a triple NaCl unit cell, however, revealed, that this structure is

higher in enthalpy than most calculated structure types and becomes even more

so under pressure. Still, it has to be considered, that a triple unit cell leaves only

limited possibilities to simulate a disordered structure. Therefore, calculations with

larger supercells have to be conducted to further clarify this matter.

Nitridosilicates

Nitridosilicates have been extensively investigated at ambient pressure and a wide

range of ambient-pressure nitridosilicates are known. All 14 known group II ele-

ment nitridosilicates are listed in Table 8.1. However, no investigations into the

high-pressure chemistry, besides one density functional study on MgSiN2 [245], had

been conducted so far.

Table 8.1: Nitridosilicates of group II elements. Compounds covered in this thesis are highlighted
gray. Compounds with experimentally realized high-pressure phase are marked with an asterisk *.

Be Mg Ca Sr Ba

BeSiN2 [13] MgSiN2[234, 235] CaSiN2 [14] SrSiN2 [14] BaSiN2 [14]

/ / Ca2Si5N8* [15, 204] Sr2Si5N8 [16] Ba2Si5N8 [16]

/ / Ca5Si2N6 [299] / Ba5Si2N6 [300]
/ / / SrSi7N10 [301] BaSi7N10 [302]
/ / / SrSi6N8 [17] BaSi6N8 [303]

Calculations for all MSiN2 nitridosilicates of group II elements revealed various high-

pressure polymorphs of these compounds. Even coordinations of �ve and six for Si
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should be within experimental reach. Six-fold coordinated Si (SiN6 octahedra) so far

have only been realized in Ce16Si15O6N32 [243] at ambient pressure and in γ-Si3N4

[4] at high pressure.

First calculations for pressure-induced decomposition reactions for ambient-pressure

Ca2Si5N8 revealed a quite low decomposition pressure (11GPa), indicating low phase

transformation pressures for potential high-pressure phases, if any do exist, as they

had to appear before decomposition. Subsequent experiments actually revealed a

novel high-pressure phase, HP-Ca2Si5N8 (see chapter 6.1, page 118 and reference

[204]), which in turn could be calculated by density functional theory. Preliminary

experiments at higher pressure indicate the predicted decomposition into CaSiN2

and Si3N4 [304]. However, further experiments are needed to corroborate this �nd-

ings.

The discovery of HP-Ca2Si5N8 strongly motivates the search for further high-pressure

polymorphs of nitridosilicates, in particular as the calculated decomposition pres-

sures of Sr2Si5N8 and Ba2Si5N8 are quite low as well (19 and 24GPa, respectively).

No experiments to ellucidate their high-pressure behavior have been conducted so

far.

Besides the eight examined group II element nitridosilicates there remain a further

six to be thoroughly investigated (c.f. Table 8.1), among them the two reduced

nitridosilicates SrSi6N8 and BaSi6N8 [17, 303], which open up a pathway to novel

structural features and material properties. Further investigations into the high-

pressure chemistry of other nitridosilicates as well as oxonitridosilicates, which fur-

ther broaden the scope of structural and material properties, seem worthwhile.

Nitridophosphates

BeP2N4, which exhibits the phenakite structure at ambient pressure, has an already

quite high bulk modulus of 220GPa within GGA. In accordance to phenakite-type

β-Si3N4 transforming into spinel-type γ-Si3N4, a pressure-induced phase transforma-

tion of BeP2N4 into a spinel-type high-pressure phase is anticipated. The calculated

transition pressure amounts to 24GPa and lays at the upper boundary of pressure

attainable in multianvil setups, but is well within the routine pressure range of di-

amond anvil cell setups. With a calculated bulk modulus of 263 (LDA) to 291GPa
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8 Conclusion and Prospects

(GGA), which is comparable to that of γ-Si3N4, interesting material properties are

anticipated for this polymorph of BeP2N4. The comparatively low calculated transi-

tion pressure as well as the predicted high bulk modulus warrant experiments aiming

at the synthesis of spinel-type BeP2N4.

As a possible competitive high-pressure phase to the spinel-type structure a mega-

kalsilite-type structure has to be considered. This high-pressure phase would be

consistent with the pressure-homologues rule, since MgP2N4, CaP2N4 and SrP2N4

adopt this structure type at ambient pressure. As a further high-pressure phase the

CaB2O4-IV structure, adopted by BaP2N4, has to be considered. Further density

functional calculations should allow a deeper insight into this issue.

As experimental and theoretical phases of P3N5, the binary mother compound of

nitridophosphates, exhibits very interesting structural properties, this trend is most

likely to be continued in high-pressure nitridophosphates. Therefore, theoretical and

experimental investigations of high-pressure nitridophosphates are most likely to be

a pro�table and interesting endeavor. The quite low calculated transition pressure

for phenakite- to spinel-type BeP2N5 and the even low transition pressure for α-

to γ-P3N5 indicate that these high-pressure phases are not unlikely to appear in

a reasonable pressure range, viable in multianvil and diamond anvil high-pressure

experiments.
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9 Summary

The aim of this work was to investigate the high-pressure behavior of di�erent nitride

compounds by means of Density Functional Theory (DFT). The Vienna ab-initio

Simulation Package (VASP) was used, which combines the total energy pseudopo-

tential method with a plane-wave basis set. Calculations were performed using

both the Local Density Approximation (LDA) as well as the Generalized Gradient

Approximation (GGA) for the exchange correlation potential and the Projector-

Augmented-Wave (PAW) method was employed.

The group II element nitrides M3N2, nitridosilicates MSiN2 and M2Si5N8 and the

nitridophosphate BeP2N4 were examined with regard to the prediction of novel high-

pressure phases, aiming especially at coordination numbers for Si and P higher than

four. Due to their makeup of small atoms, short bonds, high covalency and prob-

ably (partly) increased coordination number for Si and P, they can be expected to

be quite hard material, the more so as their parent compounds α-/β/γ-Si3N4 and

α-/γ-P3N5 are already evincing considerable hardness.

1. Nitrides M
3
N
2
of group II elements

Be3N2: The high-pressure behavior of Be3N2 was studied up 300GPa. Evalu-

ating many hypothetical polymorph of composition A3X2 leads to proposing one

high-pressure polymorph for both α- and β-Be3N2, an anti-A-sesquioxide structure.

Energy-volume calculations revealed, that α-Be3N2 will transform into γ-Be3N2 at

125GPa and β-Be3N2 at 82GPa. No transformation from α- into β-Be3N2 or vice

versa will take place under pressure.

Mg3N2: For α-Mg3N2 two high-pressure phases were found. The transformation

into β-Mg3N2 (anti-B-sesquioxide-type structure) was calculated to 21GPa and
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9 Summary

the transformation to γ-Mg3N2 (anti-A-sesquioxide-type structure) to 65GPa. The

group-subgroup relation between β-Mg3N2 and γ-Mg3N2 (B- and A-sesquioxide) are

discussed as well as the thereof resulting analogy to the displacive phase transfor-

mation of B- to A-sesquioxide-type rare earth oxides M2O3.

Figure 9.1: Phase sequences of M3N2 (M = Be, Mg, Ca, Sr, Ba) under pressure.

Ca3N2: The high-pressure behavior of Ca3N2 was studied up 100GPa. Four high-

pressure polymorphs for both α- and β-Ca3N2 are proposed: (1) an anti-Rh2O3-II

structure at 5GPa, (2) an anti-B-sesquioxide structure at 10GPa, (3) and anti-A-

sesquioxide structure at 27GPa and (4) an hitherto unknown hexagonal structure

(P63/mmc) at 38GPa, derived from the post-perovskite structure of CaIrO3 and

exhibiting octahedrally as well as trigonal bipyramidally coordinated Ca.

Sr3N2: The structure and true nature of Sr3N2 and Ba3N2 are yet unknown. Among
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all tested structures of type A3X2 the anti-bixbyite structure turned out as the one

with the lowest energy (α-Sr3N2). A high-pressure phase sequence very similar to

that of Ca3N2 was found, excepting the anti-A-sesquioxide structure: (1) an anti-

Rh2O3-II structure at 3GPa, (2) an anti-B-sesquioxide structure at 12GPa and (3)

the hexagonal P63/mmc structure at 26GPa.

Ba3N2: For Ba3N2 the structure with the lowest energy was not the anti-bixbyite

structure, but a variant of the anti-A-sesquioxide-type structure with a signi�cantly

increased c/a-ratio. The development of the c/a-ratio of this structure under pres-

sure was examined, revealing a gradual reduction under pressure. Three high-

pressure polymorphs are proposed for hypothetic α-Ba3N2: (1) an anti-Rh2O3-II

structure at 2GPa, (2) an anti-CaIrO3 structure at 32GPa and (3) the hexagonal

P63/mmc structure at 52GPa.

The development of the density for Ca3N2 and Ba3N2 and the zero-pressure bulk

moduli of the various high-pressure phases for all group II element nitrides M3N2

have been examined as well.

2. Nitridosilicates MSiN
2
of group II elements

BeSiN2, MgSiN2 and CaSiN2: BeSiN2 and MgSiN2 exhibit the same ambient-

pressure structure, which is an ordered wurtzite variant and can be derived from

idealized �lled β-cristobalite by a C1-type distortion. The structure of ambient-

pressure CaSiN2 can also be derived from idealized �lled β-cristobalite but by a

di�erent type of distortion (D1-type). For all three compounds energy-volume cal-

culations revealed a NaCl superstructure under pressure, achieving six-fold coordi-

nation for Si: for BeSiN2 a s-LiFeO2 structure (76GPa) and for MgSiN2 and CaSiN2

a m-LiFeO2 structure (24 and 60GPa, respectively). For BeSiN2 and CaSiN2 an in-

termediate phase appears, for BeSiN2 a chalcopyrite-type structure and for CaSiN2 a

CaGeN2-type structure. These two tetragonal structures are closely related, as their

main di�erence is a signi�cantly di�erent c/a-ratio, which results for chalcopyrite-

type structures in having a tetrahedral coordination for both cations, whereas in

CaGeN2-type structures one cation is tetrahedrally and one bisdisphenoidally co-

ordinated. Both structures can also be derived from idealized �lled β-cristobalite.
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They are obtained through a B1-type distortion. The group-subgroup relation of the

BeSiN2/MgSiN2, the CaSiN2, the chalcopyrite and CaGeN2 and the idealized �lled

β-cristobalite structure and the resultant displacive phase transformation pathways

are discussed.

Figure 9.2: Phase sequences of MSiN2 (M = Be, Mg, Ca) under pressure.

SrSiN2 and BaSiN2: The SrSiN2 and the BaSiN2 ambient-pressure structures are

not three-dimensional tetrahedra networks, but layered structures. Both structures

are related by a group-subgroup relation, which is discussed. Both compounds ex-

hibit a similar high-pressure behavior. According to calculations, monoclinic SrSiN2

�rst transforms into the orthorhombic BaSiN2 structure at 2GPa, most likely via

a displacive phase transformation pathway. For both SrSiN2 and BaSiN2, follow-

ing the orthorhombic BaSiN2 structure, a transformation into the CaSiN2 structure

(14 and 43GPa, respectively), followed by transformation into a hitherto unknown

Pbcm structure (84 and 102GPa, respectively), derived from the CaSiN2 structure,
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is found. The Pbcm structure is related to the CaSiN2 structure by a group-subgroup

relation and represents the �rst link of the CaSiN2 structure on its way towards the

ideal �lled β-cristobalite structure. However, in the Pbcm structure the coordina-

tion for Si is increased from tetrahedral to trigonal bipyramidal. For SrSiN2 as a

�nal high-pressure polymorph the m-LiFeO2 structure is found (130GPa), resulting

in octahedrally coordinated Si.

Figure 9.3: Phase sequences of MSiN2 (M = Sr, Ba) under pressure.

Decomposition: For all group II element nitridosilicates MSiN2 the decomposition

into binary nitrides M3N2 and Si3N4 under pressure was examined. For all except

BeSiN2 it is found, that MSiN2 always is lower in enthalpy than a phase agglomer-

ate of M3N2 and Si3N4, taking all predicted high-pressure phases of M3N2 and β- as

well as γ-Si3N4 into account. BeSiN2 is thermodynamically stable against decom-

position only up to 66GPa, at which pressure a phase agglomerate of Be3N2 and

Si3N4 is more favorable. However, above 83GPa BeSiN2 should reappear adopting

the γ-BeSiN2 structure.
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3. Nitridosilicates M
2
Si

5
N
8
of group II elements

Ca2Si5N8: Experimental HP-Ca2Si5N8 as well as hypothetical o-Ca2Si5N8 (isostruc-

tural to the ambient pressure modi�cations of Sr2Si5N8 and Ba2Si5N8) were studied

as high-pressure phases of Ca2Si5N8 up to 100GPa. The transition pressure into

HP-Ca2Si5N8 was calculated to 1.7GPa, whereas o-Ca2Si5N8 will not be adopted

as a high-pressure phase. Two di�erent decomposition pathways of Ca2Si5N8 (into

Ca3N2 and Si3N4 or into CaSiN2 and Si3N4) and their pressure dependence were

examined. It was found that a pressure induced decomposition of Ca2Si5N8 into

CaSiN2 and Si3N4 is preferred and that Ca2Si5N8 is no longer thermodynamically

stable under pressures exceeding 15GPa.

Figure 9.4: Structures of Ca2Si5N8, HP-Ca2Si5N8 and Sr2Si5N8/Ba2Si5N8.

Sr2Si5N8 and Ba2Si5N8: The structure of the high-pressure phase of Ca2Si5N8,
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HP-Ca2Si5N8, was tested for both Sr2Si5N8 and Ba2Si5N8 as a potential high-

pressure phase. For Sr2Si5N8 structure optimization resulted in a higher density

than for orthorhombic Sr2Si5N8, whereas "HP-Ba2Si5N8" turned out to be less dense

than the ambient-pressure phase. However, when examining the decomposition of

Sr2Si5N8, it became obvious, that Sr2Si5N8 will decompose into a phase agglomerate

of 2 SrSiN2 and Si3N4 before it transforms into HP-Sr2Si5N8.

For both Sr2Si5N8 and Ba2Si5N8 it was found, that a decomposition into MSiN2 and

Si3N4 is preferred over a decomposition into M3N2 and Si3N4. The decomposition

pressure for Sr2Si5N8 was calculated to 19GPa and the decomposition pressure of

Ba2Si5N8 to 24GPa.

Mg2Si5N8: For hypothetic Mg2Si5N8 the structures of Ca2Si5N8 (m-Mg2Si5N8),

HP-Ca2Si5N8 (HP-Mg2Si5N8) and Sr2Si5N8/Ba2Si5N8 (o-Mg2Si5N8) were calculated.

m-Mg2Si5N8 turned out as the polymorph with the lowest energy, transforming into

HP-Mg2Si5N8 at 20GPa. However, examining the decomposition into Mg3N2 and

Si3N4 and into MgSiN2 and Si3N4, it was revealed, that Mg2Si5N8 would be thermo-

dynamically stable against Mg3N2 and Si3N4 up to 16GPa, but a phase agglomerate

of 2 MgSiN2 and Si3N4 is always lower in enthalpy than any considered Mg2Si5N8

structure.

4. Beryllium Nitridophosphate BeP
2
N
4

The nitridophosphate BeP2N4, like β-Si3N4, crystallizes in the phenakite(Be2SiO4)-

type structure. As β-Si3N4 transforms into a spinel-type structure under pressure

(γ-Si3N4), a spinel-type high-pressure phase of BeP2N4 seems to be likely. Normal

spinel BeP2N4 (an unprecedented octahedral coordination for P and tetrahedrally

coordinated Be) as well as ideal inverse spinel BeP2N4 (an unprecedented octahedral

coordination for Be and half of P tetrahedrally and half octahedrally coordinated)

were calculated. Inverse spinel BeP2N4 comes out denser than spinel BeP2N4. How-

ever energy-volume calculations revealed, that, up to 100GPa, only spinel BeP2N4

becomes lower in enthalpy than phenakite BeP2N4, inverse spinel BeP2N4 being al-

ways higher in enthalpy than spinel BeP2N4. The transition pressure of phenakite

to spinel BeP2N4 was calculated to 24GPa within GGA. It is widely accepted, that

small atoms, short bonds, a high degree of covalency, a high bond density and a high
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packing e�ciency are required for hard materials, which applies to both phenakite

and spinel BeP2N4. In combination with the fact, that the calculated bulk moduli

for both phases are comparable to those of corundum and γ-Si3N4 and that P3N5 it-

self exhibits a Vickers hardness of 5.1(7)GPa for partly crystalline ambient-pressure

P3N5 and of 9.7(21)GPa for γ-P3N5, this suggests, that phenakite and spinel BeP2N4

are likely to be rather hard materials.

Figure 9.5: Structures of BeP2N4, experimental (phenakite-type) and hypothetic (normal and
inverse spinel-type.
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Appendix A � Crystallographic

Data

Silicon Nitride Si3N4

Table A1: Crystallographic data of β-Si3N4 [3] compared to calculated values (atomic parameters:
(1) experimental coordinates, (2) coordinates from LDA calculation, (3) coordinates from GGA
calculation).

experimental LDA GGA

space group P63/m (no. 176, hexagonal)
a / pm 760.80 757.65 765.63
c / pm 291.07(5) 289.14 292.38
V / 106 pm 3 145.90(3) 143.74 148.43
ρ / g cm-3 3.19 3.24 3.14

atom Wycko�
position

x y z

Si1 6h 0.17200 0.76900 1/4
6h 0.17377 0.76733 1/4
6h 0.17499 0.76892 1/4

N1 6h 0.33333 0.03300 1/4
6h 0.33008 0.02936 1/4
6h 0.32996 0.03082 1/4

N2 2c 1/3 2/3 1/4
2c 1/3 2/3 1/4
2c 1/3 2/3 1/4
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Appendix A � Crystallographic Data

Table A2: Crystallographic data of γ-Si3N4 [4, 5] compared to calculated values (atomic param-
eters: (1) experimental coordinates, (2) coordinates from LDA calculation, (3) coordinates from
GGA calculation).

experimental LDA GGA

space group Fd	3m (no. 227, cubic)
a / pm 773.81(2) 769.50 778.62
V / 106 pm3 463.34 455.64 472.04
ρ / g cm-3 4.02 4.09 3.95

atom Wycko�
position

x y z

Si1 8a 0 0 0
8a 0 0 0
8a 0 0 0

Si2 16d 5/8 5/8 5/8
16d 5/8 5/8 5/8
16d 5/8 5/8 5/8

N1 32e 0.38468(1) 0.38468(1) 0.38468(1)
32e 0.38245 0.38245 0.38245
32e 0.38245 0.38245 0.38245
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Nitrides M3N2 of Group II Elements

Table A3: Crystallographic data of α-Be3N2 [179] compared to calculated values (atomic param-
eters: (1) experimental coordinates, (2) coordinates from LDA calculation, (3) coordinates from
GGA calculation).

experimental LDA GGA

space group Ia	3 (no. 206, cubic)
a / pm 814.52 805.16 814.56
V / 106 pm 3 540.39(1) 521.98 540.46
ρ / g cm-3 2.71 2.80 2.71

atom Wycko�-
Position

x y z

Be1 48e 0.3865(11) 0.1465(10) 0.3758(15)
0.38593 0.14563 0.38023
0.38629 0.14575 0.38005

N1 24d 0.9785(4) 0 1/4
0.97876 0 1/4
0.97919 0 1/4

N2 8b 1/4 1/4 1/4
1/4 1/4 1/4
1/4 1/4 1/4

Table A4: Crystallographic data of γ-Be3N2 (anti-A-sesquioxide-type [180, 181]) (atomic param-
eters: (1) coordinates from LDA calculation, (2) coordinates from GGA calculation).

LDA GGA

space group P	3m1 (no. 164, trigonal)
Z 1
a / pm 278.66 281.72
c / pm 459.33 467.16
V / 106 pm 3 30.89 32.11
ρ / g cm-3 2.96 2.85

atom Wycko�
position

x y z

Be1 2d 1/3 2/3 0.74750
1/3 2/3 0.74694

Be2 1a 0 0 0
0 0 0

N1 2d 1/3 2/3 0.35147
1/3 2/3 0.35019
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Table A5: Crystallographic data of β-Be3N2 [139] compared to calculated values (atomic param-
eters: (1) experimental coordinates, (2) coordinates from LDA calculation, (3) coordinates from
GGA calculation).

experimental LDA GGA

space group P63/mmc (no. 194, hexagonal)
Z 2
a / pm 284.1 281.77 284.80
c / pm 969.3 963.41 976.26
V / 106 pm 3 67.75 66.24 68.58
ρ / g cm-3 2.70 2.76 2.67

atom Wycko�-
Position

x y z

Be1 4f 1/3 2/3 0.075
1/3 2/3 0.07802
1/3 2/3 0.07833

Be2 2b 0 0 1/4
0 0 1/4
0 0 1/4

N1 2a 0 0 0
0 0 0
0 0 0

N2 2c 1/3 2/3 1/4
1/3 2/3 1/4
1/3 2/3 1/4
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Table A6: Crystallographic data of α-Mg3N2 [144] compared to calculated values (atomic param-
eters: (1) experimental coordinates, (2) coordinates from LDA calculation, (3) coordinates from
GGA calculation).

experimental LDA GGA

space group Ia	3 (no. 206, cubic)
Z 16
a / pm 996.76(4) 984.03 1001.50
V / 106 pm 3 990.31(7) 952.86 1004.50
ρ / g cm-3 2.71 2.81 2.67

atom Wycko�
position

x y z

Mg1 48e 0.3893(1) 0.1522(1) 0.3822(1)
0.38928 0.15253 0.38222
0.38910 0.15264 0.38240

N1 24d 0.9690(2) 0 1/4
0.96863 0 1/4
0.96893 0 1/4

N2 8b 1/4 1/4 1/4
1/4 1/4 1/4
1/4 1/4 1/4
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Table A7: Crystallographic data of β-Mg3N2 (anti-B-sesquioxide-type [191]) (atomic parameters:
(1) coordinates from LDA calculation, (2) coordinates from GGA calculation).

LDA GGA

space group C2/m (no. 12, monoclinic)
Z 6
a / pm 1313.02 1342.44
b / pm 324.93 330.41
c / pm 800.18 814.43
β / pm 100.59 100.76
V / 106 pm 3 335.58 354.89
ρ / g cm-3 3.00 2.83

atom Wycko�
position

x y z

Mg1 4i 0.12317 0 0.28107
0.12250 0 0.28111

Mg2 4i 0.32770 1/2 0.03116
0.32776 1/2 0.03094

Mg3 4i 0.29010 1/2 0.37810
0.28967 1/2 0.37809

Mg4 4i 0.46478 0 0.33560
0.46368 0 0.33487

Mg5 2b 0 1/2 0
0 1/2 0

N1 4i 0.13562 1/2 0.48614
0.13562 1/2 0.48725

N2 4i 0.18964 1/2 0.13759
0.19012 1/2 0.13765

N3 4i 0.46790 1/2 0.18128
0.49790 1/2 0.18104
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Table A8: Crystallographic data of γ-Mg3N2 (anti-A-sesquioxide-type [180, 181]) (atomic param-
eters: (1) coordinates from LDA calculation, (2) coordinates from GGA calculation).

LDA GGA

space group P	3m1 (no. 164, trigonal)
Z 1
a / pm 339.09 344.26
c / pm 557.66 573.16
V / 106 pm 3 55.53 58.83
ρ / g cm-3 3.02 2.85

atom Wycko�
position

x y z

Mg1 2d 1/3 2/3 0.65763
1/3 2/3 0.65814

Mg2 1a 0 0 0
0 0 0

N1 2d 1/3 2/3 0.24349
1/3 2/3 0.24401

Table A9: Crystallographic data of α-Ca3N2 [192] compared to calculated values (atomic param-
eters: (1) experimental coordinates, (2) coordinates from LDA calculation, (3) coordinates from
GGA calculation).

experimental LDA GGA

space group Ia	3 (no. 206, cubic)
Z 16
a / pm 1147.3(1) 1119.87 1145.36
V / 106 pm 3 1510.2(3) 1404.44 1502.55
ρ / g cm-3 2.61 2.80 2.62

atom Wycko�
position

x y z

Ca1 48e 0.389(1) 0.153(1) 0.382(1)
0.39008 0.15448 0.38253
0.38965 0.15424 0.38269

N1 8b 1/4 1/4 1/4
1/4 1/4 1/4
1/4 1/4 1/4

N2 24d 0.960(2) 0 1/4
0.95959 0 1/4
0.96059 0 1/4
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Table A10: Crystallographic data of β-Ca3N2 [145] compared to calculated values (atomic param-
eters: (1) experimental coordinates, (2) coordinates from LDA calculation, (3) coordinates from
GGA calculation).

experimental LDA GGA

space group R	3c (no. 167, trigonal)
Z 6
a / pm 618.94 605.24 618.48
c / pm 1661.15 1622.65 1662.13
V / 106 pm 3 551.11 514.77 550.61
ρ / g cm-3 2.69 2.87 2.68

atom Wycko�
position

x y z

Ca1 18e 0.30005 0 1/4
0.29904 0 1/4
0.30000 0 1/4

N1 12c 0 0 0.35254
0 0 0.35358
0 0 0.35349

Table A11: Crystallographic data of γ-Ca3N2 (anti-Rh2O3-II-type structure [168]) (atomic pa-
rameters: (1) coordinates from LDA calculation, (2) coordinates from GGA calculation).

LDA GGA

space group Pbna (no. 60, orthorhombic)
Z 4
a / pm 607.34 620.30
b / pm 621.32 635.20
c / pm 872.08 895.97
V / 106 pm 3 329.08 353.03
ρ / g cm-3 2.99 2.79

atom Wycko�
position

x y z

Ca1 8d 0.60687 0.10538 0.84741
0.60627 0.10513 0.84712

Ca2 4c 0.04474 1/4 0
0.04498 1/4 0

N1 8d 0.75250 0.03232 0.11230
0.75278 0.03142 0.11210
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Table A12: Crystallographic data of λ-Ca3N2 (hexagonal P63/mmc-type structure, see chapter
4.1.3) (atomic parameters: (1) coordinates from LDA calculation, (2) coordinates from GGA
calculation).

LDA GGA

space group P63/mmc (no. 194, hexagonal)
Z 2
a / pm 382.90 389.11
c / pm 1230.07 1318.63
V / 106 pm 3 156.18 172.90
ρ / g cm-3 3.15 2.85

atom Wycko�
position

x y z

Ca1 4f 1/3 2/3 0.8851
1/3 2/3 0.08620

Ca2 2b 0 0 1/4
0 0 1/4

N1 2a 0 0 0
0 0 0

N2 2d 2/3 1/3 1/4
2/3 1/3 1/4
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Table A13: Crystallographic data of δ-Ca3N2 (anti-B-sesquioxide-type structure [191]) (atomic
parameters: (1) coordinates from LDA calculation, (2) coordinates from GGA calculation).

LDA GGA

space group C2/m (no. 12, monoclinic)
Z 6
a / pm 1458.82 1504.98
b / pm 370.47 378.30
c / pm 913.27 934.90
β / pm 100.38 100.54
V / 106 pm 3 485.50 523.30
ρ / g cm-3 3.04 2.82

atom Wycko�
position

x y z

Ca1 4i 0.12762 0 0.27897
0.12567 0 0.27775

Ca2 4i 0.32764 1/2 0.03494
0.32800 1/2 0.03518

Ca3 4i 0.29041 1/2 0.37822
0.28073 1/2 0.37949

Ca4 4i 0.47058 0 0.34129
0.46826 0 0.33945

Ca5 2b 0 1/2 0
0 1/2 0

N1 4i 0.14105 1/2 0.48721
0.14105 1/2 0.48828

N2 4i 0.18231 1/2 0.13116
0.18256 1/2 0.13023

N3 4i 0.46954 1/2 0.18805
0.46936 1/2 0.18775
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Table A14: Crystallographic data of ε-Ca3N2 (anti-A-sesquioxide-type structure (Ni2Al3-type)
[181]) (atomic parameters: (1) coordinates from LDA calculation, (2) coordinates from GGA
calculation).

LDA GGA

space group P	3m1 (no. 164, trigonal)
Z 1
a / pm 408.62 419.71
c / pm 525.57 539.83
V / 106 pm 3 76.00 82.35
ρ / g cm-3 3.24 2.99

atom Wycko�
position

x y z

Ca1 2d 1/3 2/3 0.68694
1/3 2/3 0.68311

Ca2 1a 0 0 0
0 0 0

N1 2d 1/3 2/3 0.22734
1/3 2/3 0.23052

Table A15: Crystallographic data of ε'-Ca3N2 (anti-A-sesquioxide-type structure [180]) (atomic
parameters: (1) coordinates from LDA calculation, (2) coordinates from GGA calculation).

LDA GGA

space group P	3m1 (no. 164, trigonal)
Z 1
a / pm 381.79 385.72
c / pm 639.80 685.20
V / 106 pm 3 80.77 88.29
ρ / g cm-3 3.05 2.79

atom Wycko�
position

x y z

Ca1 2d 1/3 2/3 0.65933
1/3 2/3 0.66459

Ca2 1a 0 0 0
0 0 0

N1 2d 1/3 2/3 0.23589
1/3 2/3 0.23087
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Table A16: Crystallographic data of α-Sr3N2 (anti-bixbyite-type [179]) (atomic parameters: (1)
coordinates from LDA calculation, (2) coordinates from GGA calculation).

LDA GGA

space group Ia	3 (no. 206, cubic)
Z 16
a / pm 1231.95 1202.10
V / 106 pm 3 1869.73 1737.08
ρ / g cm-3 4.13 4.45

atom Wycko�
position

x y z

Sr1 48e 0.38940 0.15546 0.38346
0.39001 0.15576 0.38324

N1 24d 0.95624 0 1/4
0.95526 0 1/4

N2 8b 1/4 1/4 1/4
1/4 1/4 1/4

Table A17: Crystallographic data of β-Sr3N2 (anti-Rh2O3-II-type [168]) (atomic parameters: (1)
coordinates from LDA calculation, (2) coordinates from GGA calculation).

LDA GGA

space group Pbna (no. 60, orthorhombic)
Z 4
a / pm 651.69 666.29
b / pm 665.80 682.23
c / pm 935.05 963.71
V / 106 pm 3 405.71 438.07
ρ / g cm-3 4.76 4.41

atom Wycko�
position

x y z

Sr1 8d 0.60760 0.10501 0.84717
0.60663 0.10413 0.84674

Sr2 4c 0.04413 1/4 0
0.04462 1/4 0

N1 8d 0.75238 0.03258 0.11279
0.75275 0.03171 0.11237
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Table A18: Crystallographic data of γ-Sr3N2 (anti-B-sesquioxide-type [191]) (atomic parameters:
(1) coordinates from LDA calculation, (2) coordinates from GGA calculation).

LDA GGA

space group C2/m (no. 12, monoclinic)
Z 6
a / pm 1562.35 1614.75
b / pm 396.99 406.03
c / pm 985.14 1011.35
β / pm 100.56 100.66
V / 106 pm 3 600.67 651.63
ρ / g cm-3 4.82 4.45

atom Wycko�
position

x y z

Sr1 4i 0.12768 0 0.27613
0.12634 0 0.27377

Sr2 4i 0.32717 1/2 0.03755
0.32794 1/2 0.03882

Sr3 4i 0.28994 1/2 0.37915
0.28998 1/2 0.38142

Sr4 4i 0.47156 0 0.34306
0.46985 0 0.34085

Sr5 2b 0 1/2 0
0 1/2 0

N1 4i 0.14199 1/2 0.48738
0.14218 1/2 0.48849

N2 4i 0.17969 1/2 0.12956
0.17973 1/2 0.12735

N3 4i 0.46975 1/2 0.18905
0.47016 1/2 0.18897
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Table A19: Crystallographic data of γ'-Sr3N2 (anti-B-sesquioxide-type [191]) (atomic parameters:
(1) coordinates from LDA calculation, (2) coordinates from GGA calculation).

LDA GGA

space group C2/m (no. 12, monoclinic)
Z 6
a / pm 1617.95 1665.54
b / pm 378.59 389.72
c / pm 1168.86 1203.24
β / pm 105.72 105.72
V / 106 pm 3 689.20 751.81
ρ / g cm-3 4.20 3.85

atom Wycko�
position

x y z

Sr1 4i 0.15930 0 0.22071
0.15912 0 0.21794

Sr2 4i 0.33453 1/2 0.07096
0.33472 1/2 0.07036

Sr3 4i 0.32434 1/2 0.46091
0.32428 1/2 0.46583

Sr4 4i 0.50836 0 0.30691
0.50995 0 0.30369

Sr5 2b 0 1/2 0
0 1/2 0

N1 4i 0.16565 1/2 0.40437
0.16595 1/2 0.40233

N2 4i 0.17480 1/2 0.07577
0.17487 1/2 0.07437

N3 4i 0.49597 1/2 0.17244
0.49591 1/2 0.17124
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Table A20: Crystallographic data of δ-Sr3N2 (hexagonal P63/mmc-type structure, see chapter
4.1.3) (atomic parameters: (1) coordinates from LDA calculation, (2) coordinates from GGA
calculation).

LDA GGA

space group P63/mmc (no. 194, hexagonal)
Z 2
a / pm 411.52 418.36
c / pm 1324.48 1430.78
V / 106 pm 3 194.25 216.87
ρ / g cm-3 4.97 4.45

atom Wycko�
position

x y z

Sr1 4f 1/3 2/3 0.08889
1/3 2/3 0.08648

Sr2 2b 0 0 1/4
0 0 1/4

N1 2a 0 0 0
0 0 0

N2 2d 2/3 1/3 1/4
2/3 1/3 1/4

Table A21: Crystallographic data of α-Ba3N2 (anti-"A-sesquioxide"-type [180, 181]) (atomic
parameters: (1) coordinates from LDA calculation, (2) coordinates from GGA calculation).

LDA GGA

space group P	3m1 (no. 164, trigonal)
Z 1
a / pm 392.14 404.17
c / pm 1045.02 1102.95
V / 106 pm 3 139.17 156.03
ρ / g cm-3 5.25 4.68

atom Wycko�
position

x y z

Ba1 2d 1/3 2/3 0.70459
1/3 2/3 0.71689

Ba2 1a 0 0 0
0 0 0

N1 2d 1/3 2/3 0.17460
1/3 2/3 0.16903

175



Appendix A � Crystallographic Data

Table A22: Crystallographic data of β-Ba3N2 (anti-Rh2O3-II-type [168]) (atomic parameters: (1)
coordinates from LDA calculation, (2) coordinates from GGA calculation).

LDA GGA

space group Pbna (no. 60, orthorhombic)
Z 4
a / pm 695.57 709.54
b / pm 700.78 722.22
c / pm 991.06 1026.84
V / 106 pm 3 483.08 526.20
ρ / g cm-3 6.05 5.55

atom Wycko�
position

x y z

Ba1 8d 0.84741 0.10299 0.84741
0.60675 0.10293 0.84625

Ba2 4c 0.04224 1/4 0
0.04218 1/4 0

N1 8d 0.75482 0.03399 0.11731
0.75397 0.03079 0.11597

Table A23: Crystallographic data of γ-Ba3N2 (anti-CaIrO3-type structure [193]) (atomic param-
eters: (1) coordinates from LDA calculation, (2) coordinates from GGA calculation).

LDA GGA

space group Cmcm (no. 63, orthorhombic)
Z 4
a / pm 380.29 389.95
b / pm 1257.24 1295.85
c / pm 983.09 1032.04
V / 106 pm 3 470.03 521.51
ρ / g cm-3 6.22 5.60

atom Wycko�
position

x y z

Ba1 4c 1/2 0.39532 1/4
1/2 0.39154 1/4

Ba2 8f 1/2 0.14124 0.06922
1/2 0.13641 0.07233

N1 4c 0 0.25037 1/4
0 0.25067 1/4

N2 4a 0 0 0
0 0 0
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Table A24: Crystallographic data of δ-Ba3N2 (hexagonal P63/mmc-type structure, see chapter
4.1.3) (atomic parameters: (1) coordinates from LDA calculation, (2) coordinates from GGA
calculation).

LDA GGA

space group P63/mmc (no. 194, hexagonal)
Z 2
a / pm 438.80 445.60
c / pm 1429.11 1544.45
V / 106 pm 3 238.30 265.58
ρ / g cm-3 6.13 5.50

atom Wycko�
position

x y z

Ba1 4f 1/3 2/3 0.08992
1/3 2/3 0.08778

Ba2 2b 0 0 1/4
0 0 1/4

N1 2a 0 0 0
0 0 0

N2 2d 2/3 1/3 1/4
2/3 1/3 1/4
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Nitridosilicates MSiN2 of Group II Elements

Table A25: Crystallographic data of α-BeSiN2 [13] compared to calculated values (atomic param-
eters: (1) experimental coordinates, (2) coordinates from LDA calculation, (3) coordinates from
GGA calculation).

experimental LDA GGA

space group Pna21 (no. 33, orthorhombic)
Z 4
a / pm 497.7(5) 494.03 499.73
b / pm 574.7(6) 569.89 577.02
c / pm 467.4(3) 464.15 469.89
V / 106 pm 3 133.7(3) 130.68 135.49
ρ / g cm-3 3.24 3.31 3.19

atom Wycko�
position

x y z

Be1 4a 0.08300 0.62500 0.00000
0.08295 0.62518 0.00452
0.08325 0.62524 0.00443

Si1 4a 0.08300 0.12500 0.00000
0.08600 0.12500 0.00368
0.08539 0.12506 0.00379

N1 4a 0.08300 0.12500 0.375(4)
0.08020 0.12317 0.37948
0.07935 0.12268 0.37875

N1 4a 0.08300 0.62500 0.375(9)
0.08325 0.62689 0.38232
0.08405 0.62750 0.38303
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Table A26: Crystallographic data of β-BeSiN2 (chalcopyrite-type structure [239]) (atomic param-
eters: (1) coordinates from LDA calculation, (2) coordinates from GGA calculation).

LDA GGA

space group I 	42d (no. 122, tetragonal)
Z 4
a / pm 401.94 407.06
c / pm 807.66 816.31
c/a-ratio 2.01 2.01
V / 106 pm 3 130.48 135.26
ρ / g cm-3 3.31 3.20

atom Wycko�
position

x y z

Be1 4b 0 0 1/2
0 0 1/2

Si1 4a 0 0 0
0 0 0

N1 8d 0.24658 1/4 1/8
0.24536 1/4 1/8

Table A27: Crystallographic data of γ-BeSiN2 (s-LiFeO2-type structure [240]) (atomic parame-
ters: (1) coordinates from LDA calculation, (2) coordinates from GGA calculation).

LDA GGA

space group I 41/amd (no. 144, tetragonal)
Z 4
a / pm 373.22 377.13
c / pm 778.38 795.48
V / 106 pm 3 108.42 113.14
ρ / g cm-3 3.99 3.82

atom Wycko�
position

x y z

Be1 4b 0 0 1/2
0 0 1/2

Si1 4a 0 0 0
0 0 0

N1 8e 0 0 0.23751
0 0 0.23533
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Table A28: Crystallographic data of α-MgSiN2 [235] compared to calculated values (atomic pa-
rameters: (1) experimental coordinates, (2) coordinates from LDA calculation, (3) coordinates
from GGA calculation).

experimental LDA GGA

space group Pna21 (no. 33, orthorhombic)
Z 4
a / pm 527.9 523.77 530.69
b / pm 647.6 641.75 649.89
c / pm 499.2 499.55 502.75
V / 106 pm 3 170.66 166.57 173.39
ρ / g cm-3 3.13 3.21 3.08

atom Wycko�
position

x y z

Mg1 4a 0.076(2) 0.625(5) 0.00(5)
0.08368 0.62280 0.99444
0.08459 0.62274 0.99455

Si1 4a 0.072(2) 0.131(5) 0.000
0.07074 0.12549 0.00589
0.06989 0.12543 0.00607

N1 4a 0.049(2) 0.095(2) 0.356(3)
0.04907 0.09583 0.35379
0.04810 0.09515 0.35261

N2 4a 0.110(1) 0.652(4) 0.414(2)
0.10834 0.65514 0.41588
0.10968 0.65582 0.41677
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Table A29: Crystallographic data of β-MgSiN2 (m-LiFeO2-type structure [244]) (atomic param-
eters: (1) coordinates from LDA calculation, (2) coordinates from GGA calculation).

LDA GGA

space group R	3m (no. 166, trigonal)
Z 3
a / pm 280.91 285.01
c / pm 1445.26 1467.99
V / 106 pm 3 98.77 103.27
ρ / g cm-3 4.06 3.88

atom Wycko�
position

x y z

Mg1 3a 0 0 0
0 0 0

Si1 3b 0 0 1/2
0 0 1/2

N1 6c 0 0 0.23690
0 0 0.23660

Table A30: Crystallographic data of β-CaSiN2 (CaGeN2-type structure [250]) (atomic parameters:
(1) coordinates from LDA calculation, (2) coordinates from GGA calculation).

LDA GGA

space group I 	42d (no. 122, tetragonal)
Z 4
a / pm 519.83 524.60
c / pm 685.66 711.65
c/a-ratio 1.32 1.36
V / 106 pm 3 185.28 195.85
ρ / g cm-3 3.45 3.26

atom Wycko�
position

x y z

Ca1 4b 0 0 1/2
0 0 1/2

Si1 4a 0 0 0
0 0 0

N1 8d 0.34930 1/4 1/8
0.35278 1/4 1/8
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Table A31: Crystallographic data of α-CaSiN2 [14] compared to calculated values (atomic param-
eters: (1) experimental coordinates, (2) coordinates from LDA calculation, (3) coordinates from
GGA calculation).

experimental LDA GGA

space group Pbca (no. 61, orthorhombic)
Z 16
a / pm 512.29(3) 505.61 516.32
b / pm 1020.74(6) 1006.25 1027.50
c / pm 1482.33(9) 1470.26 1485.69
V / 106 pm 3 775.13(8) 748.07 788.19
ρ / g cm-3 3.30 3.42 3.24

atom Wycko�
position

x y z

Ca1 8c 0.2414(1) 0.0097(1) 0.06500
0.24103 0.01001 0.06520
0.23993 0.00702 0.06505

Ca2 8c 0.3462(1) 0.2741(1) 0.18765
0.34937 0.27478 0.18738
0.34674 0.27362 0.18789

Si1 8c 0.2265(2) 0.0166(1) 0.3121(1)
0.22791 0.01642 0.31188
0.22516 0.01648 0.31202

Si2 8c 0.3172(2) 0.2700(1) 0.4372(1)
0.31891 0.27032 0.43722
0.31525 0.27002 0.43741

N1 8c 0.0949(6) 0.4774(3) 0.2155(2)
0.09711 0.47571 0.21463
0.09662 0.47687 0.21555

N2 8c 0.1495(6) 0.2761(3) 0.0354(2)
0.15387 0.27795 0.03605
0.14813 0.27539 0.03621

N3 8c 0.1972(5) 0.4268(3) 0.4090(2)
0.19312 0.42804 0.40984
0.19684 0.42725 0.40939

N4 8c 0.2762(6) 0.1798(3) 0.3382(2)
0.28046 0.18152 0.33701
0.27203 0.18018 0.33813
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Table A32: Crystallographic data of γ-CaSiN2 (m-LiFeO2-type structure [244]) (atomic parame-
ters: (1) coordinates from LDA calculation, (2) coordinates from GGA calculation).

LDA GGA

space group R	3m (no. 166, trigonal)
Z 3
a / pm 294.26 299.35
c / pm 1571.19 1596.83
V / 106 pm 3 117.82 123.92
ρ / g cm-3 4.07 3.87

atom Wycko�
position

x y z

Ca1 3a 0 0 0
0 0 0

Si1 3b 0 0 1/2
0 0 1/2

N1 6c 0 0 0.22961
0 0 0.22942

Table A33: Crystallographic data of CaSiN2 in the α-BeSiN2- and α-MgSiN2-type structure
[13, 235]) (atomic parameters: (1) coordinates from LDA calculation, (2) coordinates from GGA
calculation).

LDA GGA

space group Pna21 (no. 33, orthorhombic)
Z 4
a / pm 519.51 533.98
b / pm 726.00 727.40
c / pm 509.85 521.45
V / 106 pm 3 192.30 202.54
ρ / g cm-3 3.32 3.15

atom Wycko�
position

x y z

Ca1 4a 0.06165 0.62152 0.97971
0.07227 0.52067 0.98195

Si1 4a 0.05737 0.12567 0.00785
0.05743 0.12579 0.00814

N1 4a 0.01447 0.07477 0.33864
0.01428 0.07324 0.33444

N2 4a 0.11987 0.67596 0.44380
0.12427 0.67682 0.44547
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Table A34: Crystallographic data of α-SrSiN2 [14] compared to calculated values (atomic param-
eters: (1) experimental coordinates, (2) coordinates from LDA calculation, (3) coordinates from
GGA calculation).

experimental LDA GGA

space group P21/c (no. 14, monoclinic)
Z 4
a / pm 597.50(5) 590.19 598.28
b / pm 728.26(7) 717.19 736.70
c / pm 549.69(4) 546.17 554.10
β / pm 113.496(4) 113.34 112.66
V / 106 pm 3 219.36(3) 212.22 225.37
ρ / g cm-3 4.35 4.50 4.24

atom Wycko�
position

x y z

Sr1 4e 0.3393(1) 0.5724(1) 0.1756(1)
0.34222 0.57068 0.17836
0.33771 0.57513 0.17602

Si1 4e 0.1078(4) 0.1419(3) 0.0671(4)
0.10999 0.14191 0.06636
0.10516 0.14142 0.07085

N1 4e 0.210(2) 0.5905(8) 0.585(2)
0.20764 0.59253 0.58276
0.20941 0.58673 0.57891

N2 4e 0.219(2) 0.2252(8) 0.385(2)
0.22699 0.22736 0.38368
0.21021 0.21692 0.39061
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Table A35: Crystallographic data of β-SrSiN2 (BaSiN2-type structure [14]) (atomic parameters:
(1) coordinates from LDA calculation, (2) coordinates from GGA calculation).

LDA GGA

space group Cmca (no. 64, orthorhombic)
Z 8
a / pm 544.35 552.93
b / pm 1088.55 1115.51
c / pm 713.74 726.33
V / 106 pm 3 422.93 448.00
ρ / g cm-3 4.51 4.26

atom Wycko�
position

x y z

Sr1 8f 0 0.32843 0.06795
0 0.33044 0.06850

Si1 8f 0 0.05603 0.14188
0 0.05524 0.14139

N1 8f 0 0.39752 0.40481
0 0.39850 0.40636

N1 8e 1/4 0.11737 1/4
1/4 0.11383 1/4
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Table A36: Crystallographic data of γ-SrSiN2 (CaSiN2-type structure [14]) (atomic parameters:
(1) coordinates from LDA calculation, (2) coordinates from GGA calculation).

LDA GGA

space group Pbca (no. 61, orthorhombic)
Z 16
a / pm 516.09 526.57
b / pm 1034.37 1055.17
c / pm 1519.12 1538.14
V / 106 pm 3 810.95 854.62
ρ / g cm-3 4.71 4.47

atom Wycko�
position

x y z

Sr1 8c 0.25574 0.02069 0.06517
0.25391 0.01776 0.06476

Sr2 8c 0.33234 0.26880 0.18461
0.33032 0.26868 0.18502

Si1 8c 0.25543 0.00989 0.31166
0.25366 0.01031 0.31164

Si2 8c 0.30310 0.26477 0.43640
0.29974 0.26465 0.43649

N1 8c 0.06281 0.47638 0.21831
0.06207 0.47809 0.21898

N2 8c 0.11090 0.29309 0.02194
0.10577 0.29095 0.02177

N3 8c 0.17218 0.41296 0.40228
0.17456 0.41235 0.40145

N4 8c 0.31842 0.16840 0.34290
0.31232 0.16760 0.34371
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Table A37: Crystallographic data of δ-SrSiN2 (Pbcm-type structure, see chapter 5.1.4) (atomic
parameters: (1) coordinates from LDA calculation, (2) coordinates from GGA calculation).

LDA GGA

space group Pbcm (no. 57, orthorhombic)
Z 8
a / pm 537.98 532.84
b / pm 1715.17 1644.41
c / pm 410.04 485.27
V / 106 pm 3 378.36 425.20
ρ / g cm-3 5.05 4.49

atom Wycko�
position

x y z

Sr1 4d 0.44253 0.06844 3/4
0.48151 0.06494 3/4

Sr2 4d 0.94997 0.18029 3/4
0.98499 0.18512 3/4

Si1 4d 0.46212 0.18905 1/4
0.46289 0.18573 1/4

Si2 4d 0.96842 0.06097 1/4
0.96484 0.06396 1/4

N1 4d 0.47535 0.29059 1/4
0.49884 0.28912 1/4

N2 4d 0.68804 0.11313 1/4
0.65631 0.09955 1/4

N3 4d 0.18634 0.13656 1/4
0.15540 0.15033 1/4

N4 4d 0.95889 0.03852 3/4
0.97211 0.03815 3/4
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Table A38: Crystallographic data of ε-SrSiN2 (m-LiFeO2-type structure [244]) (atomic parame-
ters: (1) coordinates from LDA calculation, (2) coordinates from GGA calculation).

LDA GGA

space group R	3m (no. 166, trigonal)
Z 3
a / pm 302.20 308.31
c / pm 1663.63 1686.62
V / 106 pm 3 131.58 138.84
ρ / g cm-3 5.44 5.16

atom Wycko�
position

x y z

Sr1 3a 0 0 0
0 0 0

Si1 3b 0 0 1/2
0 0 1/2

N1 6c 0 0 0.22511
0 0 0.22518
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Table A39: Crystallographic data of α-BaSiN2 [14] compared to calculated values (atomic param-
eters: (1) experimental coordinates, (2) coordinates from LDA calculation, (3) coordinates from
GGA calculation).

experimental LDA GGA

space group Cmca (no. 64, orthorhombic)
Z 8
a / pm 560.09(2) 557.37 565.22
b / pm 1134.90(4) 1126.19 1157.68
c / pm 758.44(3) 752.53 764.12
V / 106 pm 3 482.10(3) 472.37 500.00
ρ / g cm-3 5.34 5.44 5.14

atom Wycko�
position

x y z

Ba1 8f 0 0.3356(1) 0.06523(2)
0 0.33459 0.06473
0 0.33557 0.06445

Si1 8f 0 0.04941(6) 0.14045(9)
0 0.04968 0.14066
0 0.04883 0.14042

N1 8f 0 0.3981(2) 0.4192(3)
0 0.39795 0.41865
0 0.39935 0.41986

N2 8e 1/4 0.0978(2) 1/4
1/4 0.09875 1/4
1/4 0.09607 1/4
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Table A40: Crystallographic data of β-BaSiN2 (CaSiN2-type structure [14]) (atomic parameters:
(1) coordinates from LDA calculation, (2) coordinates from GGA calculation).

LDA GGA

space group Pbca (no. 61, orthorhombic)
Z 16
a / pm 538.66 547.91
b / pm 1082.46 1100.70
c / pm 1545.24 1568.55
V / 106 pm 3 900.90 945.97
ρ / g cm-3 5.70 5.43

atom Wycko�
position

x y z

Ba1 8c 0.25073 0.01300 0.06646
0.25024 0.01306 0 06648

Ba2 8c 0.33496 0.26007 0.18740
0.33539 0.26105 0.18738

Si1 8c 0.25665 0.00464 0.31280
0.25482 0.00525 0.31275

Si2 8c 0.30389 0.25854 0.43829
0.30176 0.25861 0.43822

N1 8c 0.03833 0.48212 0.22824
0.03851 0.48340 0.22897

N2 8c 0.10309 0.27954 0.02242
0.09949 0.277795 0.02192

N3 8c 0.19775 0.39795 0.39520
0.20074 0.39825 0.39468

N4 8c 0.30688 0.15051 0.35557
0.30188 0.15057 0.35592
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Table A41: Crystallographic data of γ-BaSiN2 at 105GPa (Pbcm-type structure, see section 5.1.5)
(atomic parameters: coordinates from GGA calculation).

GGA

space group Pbcm (no. 57, orthorhombic)
Z 8
a / pm 501.01
b / pm 1594.55
c / pm 388.05
V / 106 pm 3 310.01
ρ / g cm-3 8.29

atom Wycko�
position

x y z

Ba1 4d 0.41827 0.06061 3/4
Ba2 4d 0.93317 0.18658 3/4
Si1 4d 0.44409 0.19073 1/4
Si2 4d 0.95136 0.05981 1/4
N1 4d 0.44379 0.29327 1/4
N2 4d 0.67902 0.11816 1/4
N3 4d 0.17285 0.13458 1/4
N4 4d 0.90961 0.03497 3/4

Table A42: Crystallographic data of γ'-BaSiN2 (Imma-type structure, see section 5.1.5) (atomic
parameters: (1) coordinates from LDA calculation, (2) coordinates from GGA calculation).

LDA GGA

space group Imma (no. 74, orthorhombic)
Z 4
a / pm 428.96 437.14
b / pm 553.83 564.39
c / pm 881.32 898.13
V / 106 pm 3 209.38 221.58
ρ / g cm-3 6.14 5.80

atom Wycko�
position

x y z

Ba1 4e 1/2 1/4 0.11636
1/2 1/4 0.11505

Si1 4e 0 3/4 0.12735
0 3/4 0.12711

N1 4e 0 3/4 0.32560
0 3/4 0.32394

N2 4a 0 1/2 0
0 1/2 0
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Table A43: Crystallographic data of γ'-BaSiN2-II (Imma-type structure, see chapter 5.1.5)
(atomic parameters: (1) coordinates from LDA calculation, (2) coordinates from GGA calcula-
tion).

LDA GGA

space group Imma (no. 74, orthorhombic)
Z 4
a / pm 494.46 503.27
b / pm 548.91 558.69
c / pm 830.13 844.92
V / 106 pm 3 225.31 237.57
ρ / g cm-3 5.70 5.41

atom Wycko�
position

x y z

Ba1 4e 1/2 1/4 0.12189
1/2 1/4 0.12032

Si1 4e 0 3/4 0.12212
0 3/4 0.12126

N1 4e 0 3/4 0.32489
0 3/4 0.32273

N2 4a 0 1/2 0
0 1/2 0
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Table A44: Crystallographic data of γ'-BaSiN2-III (Imma-type structure, see section 5.1.5)
(atomic parameters: (1) coordinates from LDA calculation, (2) coordinates from GGA calcula-
tion).

LDA GGA

space group Imma (no. 74, orthorhombic)
Z 4
a / pm 555.89 564.35
b / pm 706.41 717.17
c / pm 769.64 781.38
V / 106 pm 3 302.23 316.25
ρ / g cm-3 4.25 4.06

atom Wycko�
position

x y z

Ba1 4e 1/2 1/4 0.16071
1/2 1/4 0.15857

Si1 4e 0 3/4 0.11836
0 3/4 0.11693

N1 4e 0 3/4 0.33085
0 3/4 0.32799

N2 4a 0 1/2 0
0 1/2 0
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Nitridosilicates M2Si5N8 of Group II Elements

Table A45: Crystallographic data of Ca2Si5N8 [15] compared to calculated values (atomic param-
eters: (1) experimental coordinates, (2) coordinates from LDA calculation, (3) coordinates from
GGA calculation).

experimental LDA GGA

space group Cc (no. 9, monoclinic)
Z 4
a / pm 1435.2(3) 1426.7 1442.1
b / pm 561.0(1) 555.8 563.4
c / pm 968.9 960.5 974.9
β / pm 112.06(3) 112.03 111.92
V / 106 pm3 723.00 705.98 734.73
ρ / g cm-3 3.06 3.13 3.01

atom Wycko�
position

x y z

Ca1 4a 0.0000 0.7637(3) 0.0000
0.00073 0.76575 0.00316
0.00158 0.76405 0.00324

Ca2 4a 0.6112(1) 0.7457(2) 0.2000(8)
0.60956 0.74567 0.19761
0.60850 0.74792 0.19591

Si1 4a 0.0581(2) 0.8055(2) 0.3539(2)
0.05780 0.80322 0.35375
0.05768 0.80494 0.35325

Si2 4a 0.7557(1) 0.2097(3) 0.3182(2)
0.75531 0.20837 0.31704
0.75568 0.20942 0.31803

Si3 4a 0.7545(1) 0.4966(4) 0.0631(2)
0.75397 0.49719 0.06290
0.75416 0.49665 0.06306

Si4 4a 0.3627(1) 0.2078(4) 0.3681(2)
0.36261 0.20709 0.36838
0.36240 0.20769 0.36808

Si5 4a 0.8552(4) 0.0027(4) 0.1264(2)
0.85596 0.00250 0.12604
0.85565 0.00199 0.12629

N1 4a 0.9866(5) 0.638(1) 0.4289(6)
0.98712 0.63623 0.43149
0.98672 0.63781 0.42980

N2 4a 0.1286(4) 0.009(1) 0.9959(5)
0.12817 0.01129 0.99825
0.12861 0.01179 0.99722

N3 4a 0.7959(2) 0.2424(6) 0.1702(3)
0.79565 0.24213 0.16920
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atom Wycko�
position

x y z

0.79506 0.24145 0.16931
N4 4a 0.8027(3) 0.7484(6) 0.1752(3)

0.80353 0.74817 0.17554
0.80358 0.74716 0.17600

N5 4a 0.9798(3) 0.999(1) 0.2178(6)
0.98175 0.99628 0.21777
0.98126 0.99641 0.21768

N6 4a 0.8335(2) 0.0145(5) 0.9349(4)
0.83472 0.01337 0.93468
0.83425 0.01358 0.93527

N7 4a 0.6309(5) 0.157(1) 0.2732(7)
0.63049 0.15344 0.27188
0.63105 0.15482 0.27305

N8 4a 0.7960(3) 0.4826(6) 0.4161(3)
0.79401 0.48334 0.41423
0.79519 0.48317 0.41572

Table A46: Crystallographic data of HP-Ca2Si5N8 [204] compared to calculated values (atomic
parameters: (1) experimental coordinates, (2) coordinates from LDA calculation, (3) coordinates
from GGA calculation).

experimental LDA GGA

space group Pbca (no. 61, orthorhombic)
Z 8
a / pm 1058(2) 1048.3 1065.9
b / pm 965.2(4) 957.3 970.8
c / pm 1366(2) 1352.3 1368.2
V / 106 pm3 1395(2) 1357.01 1415.79
ρ / g cm-3 3.17 3.26 3.12

atom Wycko�
position

x y z

Ca1 8c 0.61524 0.15710 0.51597
0.61487 0.15479 0.51497
0.61304 0.15479 0.51485

Ca2 8c 0.88767 0.05759 0.40161
0.88794 0.05981 0.40223
0.88538 0.05951 0.40299

Si1 8c 0.89866 0.22495 0.65032
0.89935 0.22418 0.65015
0.89899 0.22461 0.65064

Si2 8c 0.66428 0.22806 0.77397
0.66449 0.22845 0.77370
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atom Wycko�
position

x y z

0.66437 0.22821 0.77439
Si3 8c 0.75652 0.96480 0.65560

0.75745 0.96478 0.65474
0.75598 0.96527 0.65579

Si4 8c 0.47940 0.99552 0.70824
0.48047 0.99530 0.70902
0.47925 0.99597 0.70897

Si5 8c 0.33029 0.15186 0.54115
0.33032 0.15173 0.54147
0.32983 0.15155 0.54078

N1 8c 0.41920 0.26874 0.47060
0.42181 0.27020 0.47332
0.42053 0.26990 0.47270

N2 8c 0.43205 0.04136 0.59668
0.43336 0.04082 0.59719
0.43235 0.04254 0.59772

N3 8c 0.24113 0.24800 0.61904
0.24011 0.25317 0.61874
0.23883 0.25110 0.61787

N4 8c 0.77000 0.94119 0.53427
0.77130 0.94397 0.53186
0.76965 0.94434 0.53319

N5 8c 0.52322 0.13369 0.79036
0.52262 0.13151 0.79078
0.52215 0.13207 0.79066

N6 8c 0.87773 0.88921 0.72220
0.88806 0.88806 0.72066
0.87860 0.88873 0.72217

N7 8c 0.75599 0.14245 0.68291
0.75369 0.14292 0.68207
0.75413 0.14327 0.68315

N8 8c 0.61705 0.89253 0.70096
0.61761 0.89166 0.70220
0.61609 0.89258 0.70219
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Table A47: Crystallographic data of o-Ca2Si5N8 (Sr2Si5N8-type structure [16]) (atomic parame-
ters: (1) coordinates from LDA calculation, (2) coordinates from GGA calculation).

LDA GGA

space group Pmn21 (no. 31, orthorhombic)
Z 2
a / pm 562.2 570.4
b / pm 665.0 675.3
c / pm 926.2 937.9
V / 106 pm 3 346.26 361.24
ρ / g cm-3 3.19 3.06

atom Wycko�
position

x y z

Ca1 2a 0 0.89886 0.00075
0 0.90088 0.00174

Ca2 2a 0 0.90283 0.35505
0 0.90741 0.35599

Si1 4b 0.25323 0.66895 0.68501
0.25238 0.66870 0.68434

Si2 2a 0 0.05658 0.67503
0 0.05682 0.67586

Si3 2a 0 0.42072 0.46001
0 0.42096 0.46008

Si4 2a 0 0.40479 0.90617
0 0.40454 0.90529

N1 2a 0 0.18048 0.51245
0 0.18317 0.51499

N2 4b 0.25824 0.92102 0.67252
0.25525 0.91956 0.67269

N3 4b 0.25085 0.44385 0.01437
0.25061 0.44342 0.01352

N4 2a 0 0.59619 0.77954
0 0.59387 0.77791

N5 2a 0 0.17242 0.83960
0 0.17303 0.83950

N6 2a 0 0.43250 0.27201
0 0.42853 0.27194
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Table A48: Crystallographic data of Sr2Si5N8 [16] compared to calculated values (atomic param-
eters: (1) experimental coordinates, (2) coordinates from LDA calculation, (3) coordinates from
GGA calculation).

experimental LDA GGA

space group Pmn21 (no. 31, orthorhombic)
Z 2
a / pm 571.0(1) 566.06 574.51
b / pm 682.2(1) 678.34 687.41
c / pm 934.1(2) 927.30 939.96
V / 106 pm 3 363.87 356.07 371.21
ρ / g cm-3 3.90 3.99 3.83

atom Wycko�
position

x y z

Sr1 2a 0 0.86945(16) 0
0 0.87187 0.00004
0 0.87329 0.99998

Sr2 2a 0 0.88164(15) 0.36863(9)
0 0.88281 0.36814
0 0.88477 0.36790

Si1 4b 0.25180(18) 0.66693(14) 0.68358(33)
0.25238 0.66736 0.68292
0.25171 0.66760 0.68282

Si2 2a 0 0.05493(23) 0.67711(46)
0 0.05469 0.67730
0 0.05487 0.67749

Si3 2a 0 0.41958(47) 0.46192(38)
0 0.42010 0.46071
0 0.41986 0.46099

Si4 2a 0 0.40135(47) 0.90228(36)
0 0.40155 0.90228
0 0.40167 0.90189

N1 2a 0 0.1909(13) 0.5204(12)
0 0.18903 0.52051
0 0.19037 0.52193

N2 4b 0.24781(66) 0.91217(48) 0.67282(91)
0.25006 0.91418 0.67149
0.24774 0.91351 0.67173

N3 4b 0.24888(68) 0.44434(52) 0.01051(46)
0.24963 0.44391 0.01105
0.24945 0.44379 0.01089

N4 2a 0 0.58719(85) 0.77345(59)
0 0.58685 0.77369
0 0.58618 0.77317

N5 2a 0 0.1715(15) 0.8355(12)
0 0.17267 0.83931
0 0.17401 0.83844

N6 2a 0 0.4270(87) 0.27224(56)
0 0.42798 0.27149
0 0.42480 0.27173
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Table A49: Crystallographic data of HP-Sr2Si5N8 (HP-Ca2Si5N8-type structure [204]) (atomic
parameters: (1) coordinates from LDA calculation, (2) coordinates from GGA calculation).

LDA GGA

space group Pbca (no. 61, orthorhombic)
Z 8
a / pm 1063.11 1080.46
b / pm 964.79 979.12
c / pm 1379.38 1395.26
V / 106 pm 3 1414.80 1476.05
ρ / g cm-3 4.02 3.85

atom Wycko�
position

x y z

Sr1 8c 0.61670 0.16669 0.52434
0.61536 0.16669 0.52418

Sr2 8c 0.88300 0.05292 0.39907
0.88239 0.05365 0.39955

Si1 8c 0.89685 0.22632 0.65347
0.89642 0.22742 0.65387

Si2 8c 0.66254 0.22595 0.77548
0.66254 0.22620 0.77617

Si3 8c 0.75568 0.96552 0.65972
0.75458 0.96649 0.66041

Si4 8c 0.47498 0.99670 0.70554
0.47388 0.99780 0.70548

Si5 8c 0.32758 0.14838 0.53678
0.32690 0.14783 0.53627

N1 8c 0.41241 0.27032 0.46898
0.41119 0.26923 0.46836

N2 8c 0.42501 0.03774 0.59548
0.42447 0.03967 0.59593

N3 8c 0.23376 0.23676 0.61721
0.23279 0.23529 0.61646

N4 8c 0.77258 0.93884 0.54025
0.77155 0.93988 0.54111

N5 8c 0.51672 0.13584 0.78430
0.51633 0.13683 0.78440

N6 8c 0.87524 0.88910 0.72698
0.87329 0.89001 0.72825

N7 8c 0.75440 0.14310 0.68692
0.75453 0.14387 0.68765

N8 8c 0.61383 0.89581 0.70203
0.61267 0.89709 0.70200
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Table A50: Crystallographic data of Ba2Si5N8 [16] compared to calculated values (atomic param-
eters: (1) experimental coordinates, (2) coordinates from LDA calculation, (3) coordinates from
GGA calculation).

experimental LDA GGA

space group Pmn21 (no. 31, orthorhombic)
Z 2
a / pm 578.3(1) 574.01 582.55
b / pm 695.9(1) 693.09 701.95
c / pm 939.1(2) 932.41 945.66
V / 106 pm 3 377.93(12) 370.95 38.70
ρ / g cm-3 4.63 4.72 4.53

atom Wycko�
position

x y z

Ba1 2a 0 0.85443(7) 0
0 0.85333 0.00268
0 0.85529 0.00165

Ba2 2a 0 0.87878(6) 0.36749(6)
0 0.87915 0.37067
0 0.87878 0.37063

Si1 4b 0.25085(24) 0.66376(16) 0.67931(31)
0.25134 0.66357 0.68107
0.25067 0.66443 0.68121

Si2 2a 0 0.05225 0.6772(4)
0 0.05219 0.67967
0 0.05255 0.67961

Si3 2a 0 0.41852(40) 0.46117(30)
0 0.41998 0.46263
0 0.41931 0.46280

Si4 2a 0 0.39960(36) 0.89643(29)
0 0.39929 0.89867
0 0.39978 0.89850

N1 2a 0 0.19678(100) 0.52791(84)
0 0.19824 0.53099
0 0.19849 0.53130

N2 4b 0.23920(91) 0.90631(61) 0.66940(77)
0.23987 0.90558 0.67135
0.23822 0.90558 0.67169

N3 4b 0.24683(84) 0.44763(55) 0.00702(51)
0.24670 0.44611 0.00859
0.24677 0.44592 0.00884

N4 2a 0 0.57654(86) 0.76541(61)
0 0.57581 0.76638
0 0.57642 0.76666

N5 2a 0 0.17358(120) 0.83538(86)
0 0.17395 0.83825
0 0.17572 0.83711

N6 2a 0 0.42230(96) 0.27051(66)
0 0.42053 0.27247
0 0.41772 0.27265
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Table A51: Crystallographic data of HP-Ba2Si5N8 (HP-Ca2Si5N8-type structure) (atomic pa-
rameters: (1) coordinates from LDA calculation, (2) coordinates from GGA calculation).

LDA GGA

space group Pbca (no. 61, orthorhombic)
Z 8
a / pm 1079.79 1096.69
b / pm 979.72 994.75
c / pm 1407.38 1423.23
V / 106 pm 3 1488.86 1552.64
ρ / g cm-3 4.70 4.51

atom Wycko�
position

x y z

Ba1 8c 0.61310 0.17279 0.53455
0.61249 0.17224 0.53337

Ba2 8c 0.88745 0.05573 0.39860
0.88702 0.05640 0.39872

Si1 8c 0.89429 0.23169 0.65834
0.89374 0.23254 0.65818

Si2 8c 0.66071 0.22473 0.77928
0.66077 0.22485 0.77948

Si3 8c 0.75452 0.96948 0.66561
0.75354 0.96991 0.66557

Si4 8c 0.46802 0.99982 0.70202
0.46729 0.00061 0.70212

Si5 8c 0.31970 0.14227 0.53076
0.31952 0.14221 0.53086

N1 8c 0.39978 0.26355 0.46229
0.39917 0.26282 0.46225

N2 8c 0.41229 0.03580 0.59437
0.41260 0.03781 0.59488

N3 8c 0.22351 0.22229 0.61239
0.22345 0.22144 0.61253

N4 8c 0.77570 0.94269 0.54864
0.77466 0.94299 0.54877

N5 8c 0.51151 0.14148 0.77746
0.51115 0.14329 0.77799

N6 8c 0.86829 0.89050 0.73443
0.86682 0.89124 0.73509

N7 8c 0.75767 0.14469 0.69571
0.75727 0.14517 0.69545

N8 8c 0.60925 0.90369 0.70029
0.60852 0.90436 0.70017
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Table A52: Crystallographic data of monoclinic Mg2Si5N8 (Ca2Si5N8-type structure [15]) (atomic
parameters: (1) coordinates from LDA calculation, (2) coordinates from GGA calculation).

LDA GGA

space group Cc (no. 9, monoclinic)
Z 4
a / pm 1406.15 1421.61
b / pm 531.76 538.78
c / pm 948.43 961.22
β / pm 111.00 110.97
V / 106 pm 3 662.07 687.47
ρ / g cm-3 3.02 2.91

atom Wycko�
position

x y z

Mg1 4a 0.02917 0.76379 0.04283
0.02960 0.76282 0.04197

Mg2 4a 0.58057 0.75928 0.17233
0.58008 0.75970 0.17081

Si1 4a 0.05774 0.77338 0.36111
0.05774 0.77502 0.35998

Si2 4a 0.75360 0.18658 0.31246
0.75409 0.18732 0.31328

Si3 4a 0.74786 0.49432 0.05865
0.74841 0.49518 0.05950

Si4 4a 0.36145 0.18408 0.36525
0.36127 0.18481 0.36563

Si5 4a 0.86438 0.99353 0.12318
0.86371 0.99341 0.12357

N1 4a 0.98560 0.58661 0.43969
0.98547 0.58875 0.43813

N2 4a 0.12258 0.04674 0.01822
0.12289 0.04604 0.01659

N3 4a 0.78607 0.21844 0.15457
0.78674 0.22052 0.15604

N4 4a 0.82092 0.72217 0.17359
0.81958 0.72443 0.17469

N5 4a 0.99243 0.98230 0.21680
0.99176 0.98193 0.21572

N6 4a 0.84607 0.01453 0.93247
0.84509 0.01550 0.93332

N7 4a 0.62915 0.10233 0.27555
0.62933 0.10388 0.27501

N8 4a 0.77393 0.48523 0.3518
0.77563 0.48364 0.39766
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Table A53: Crystallographic data of HP-Mg2Si5N8 (HP-Ca2Si5N8-type structure) (atomic pa-
rameters: (1) coordinates from LDA calculation, (2) coordinates from GGA calculation).

LDA GGA

space group Pbca (no. 61, orthorhombic)
Z 8
a / pm 1030.07 1047.92
b / pm 945.29 958.95
c / pm 1323.38 1338.35
V / 106 pm 3 1288.59 1344.91
ρ / g cm-3 3.10 2.97

atom Wycko�
position

x y z

Mg1 8c 0.60077 0.12671 0.49319
0.59888 0.12744 0.49332

Mg2 8c 0.87720 0.06104 0.41979
0.87445 0.06390 0.42159

Si1 8c 0.90747 0.21265 0.64571
0.90588 0.21606 0.64723

Si2 8c 0.67206 0.22626 0.77532
0.67072 0.22797 0.77600

Si3 8c 0.75574 0.95825 0.65019
0.75476 0.96179 0.65181

Si4 8c 0.48688 0.98761 0.71693
0.48572 0.99036 0.71625

Si5 8c 0.33710 0.15961 0.54662
0.33563 0.15784 0.54519

N1 8c 0.43732 0.27441 0.47925
0.43469 0.27240 0.47777

N2 8c 0.44693 0.05071 0.60359
0.44537 0.05099 0.60274

N3 8c 0.24115 0.27460 0.61332
0.23999 0.27167 0.61212

N4 8c 0.75586 0.95728 0.52275
0.75562 0.95886 0.52448

N5 8c 0.53904 0.11429 0.80516
0.53642 0.11845 0.80333

N6 8c 0.88300 0.87830 0.71480
0.88068 0.88196 0.71682

N7 8c 0.76379 0.13352 0.68686
0.76281 0.13701 0.68746

N8 8c 0.61749 0.87817 0.69818
0.61676 0.88214 0.69920
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Table A54: Crystallographic data of o-Mg2Si5N8 (Sr2Si5N8-type structure [16]) (atomic param-
eters: (1) coordinates from LDA calculation, (2) coordinates from GGA calculation).

LDA GGA

space group Pmn21 (no. 31, orthorhombic)
Z 2
a / pm 565.29 572.08
b / pm 679.22 688.13
c / pm 926.64 936.40
V / 106 pm 3 355.79 368.63
ρ / g cm-3 2.81 2.71

atom Wycko�
position

x y z

Mg1 2a 0 0.99817 0.02369
0 0.00061 0.02353

Mg2 2a 0 0.03546 0.33271
0 0.03802 0.33287

Si1 4b 0.24945 0.65808 0.68127
0.24890 0.65851 0.68112

Si2 2a 0 0.05371 0.67898
0 0.05426 0.67910

Si3 2a 0 0.42334 0.46319
0 0.42310 0.46331

Si4 2a 0 0.40338 0.90301
0 0.40393 0.90270

N1 2a 0 0.18500 0.52032
0 0.18591 0.52103

N2 4b 0.25232 0.90997 0.67428
0.25116 0.90985 0.67444

N3 4b 0.24713 0.44684 0.01186
0.24731 0.44678 0.01181

N4 2a 0 0.57684 0.76822
0 0.57758 0.76833

N5 2a 0 0.16724 0.84420
0 0.16888 0.84360

N6 2a 0 0.41193 0.27528
0 0.41003 0.27517
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Beryllium Nitridophosphate BeP2N4

Table A55: Crystallographic data of BeP2N4 [25] compared to calculated values (atomic param-
eters: (1) experimental coordinates, (2) coordinates from LDA calculation, (3) coordinates from
GGA calculation).

experimental LDA GGA

space group R	3 (no. 148, trigonal)
Z 18
a / pm 1269.45(2) 1263.42 1278.22
c / pm 834.86(2) 828.95 839.45
V / 106 pm 3 1165.13(4) 1145.92 1187.78
ρ / g cm-3 3.26 3.31 3.20

atom Wycko�
position

x y z

Be1 18f 0.2080(20) 0.2223(20) 0.249(4)
0.19309 0.21189 0.24998
0.19345 0.21169 0.24974

P1 18f 0.217(5) 0.0208(4) 0.4165(7)
0.21310 0.01874 0.41729
0.21281 0.01858 0.41721

P2 18f 0.2011(5) 0.0061(5) 0.0770(7)
0.21044 0.01462 0.08270
0.20959 0.01352 0.08278

N1 18f 0.1936(10) 0.0730(8) 0.2486(15)
0.20516 0.08195 0.24871
0.20417 0.08074 0.24851

N2 18f 0.3318(11) 0.3297(11) 0.2611(16)
0.33691 0.33618 0.24929
0.33744 0.33667 0.24924

N3 18f 0.1293(10) 0.2158(10) 0.0805(15)
0.12149 0.21184 0.07558
0.12201 0.21138 0.07514

N4 18f 0.1297(13) 0.2275(10) 0.4192(15)
0.11811 0.21251 0.42444
0.11805 0.21229 0.42485
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Appendix A � Crystallographic Data

Table A56: Crystallographic data of sp-BeP2N4 (spinel-type structure [305]) (atomic parameters:
(1) coordinates from LDA calculation, (2) coordinates from GGA calculation).

LDA GGA

space group Fd	3m (no. 227, cubic)
Z 8
a / pm 746.54 756.48
V / 106 pm 3 416.06 432.90
ρ / g cm-3 4.05 3.90

atom Wycko�
position

x y z

Be1 8a 1/8 1/8 1/8
1/8 1/8 1/8

P1 16d 1/2 0 0
1/2 0 0

N1 32e 0.50938 0.24062 0.00938
0.50947 0.24053 0.00947

Table A57: Crystallographic data of isp-BeP2N4 (ideal inverse spinel) (atomic parameters: (1)
coordinates from LDA calculation, (2) coordinates from GGA calculation).

LDA GGA

space group Imma (no. 74, orthorhombic)
Z 4
a / pm 532.38 539.86
b / pm 520.69 527.97
c / pm 735.46 745.27
V / 106 pm 3 203.87 212.42
ρ / g cm-3 4.14 3.97

atom Wycko�
position

x y z

Be1 4b 0 1/2 1/2
0 1/2 1/2

P1 4c 1/4 1/4 1/4
1/4 1/4 1/4

P2 4e 0 3/4 0.11169
0 3/4 0.11047

N1 8h 0 0.48664 0.25341
0 0.48682 0.25409

N2 8i 0.25469 3/4 0.99026
0.25439 3/4 0.99009
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Appendix B � Calculational Details

Table B1: K-point mesh, atoms per cell and type of cell used for calculations.

structure k-point mesh atoms/cell type of cell

β-Si3N4 3x3x8 14 primitive
γ-Si3N4 4x4x4 14 primitive

α-Be3N2 2x2x2 80 conventional
β-Be3N2 8x8x4 10 primitive
γ-Be3N2 6x6x4 5 primitive

α-Mg3N2 2x2x2 80 conventional
β-Mg3N2 2x6x4 30 conventional
γ-Mg3N2 6x6x4 5 primitive

α-Ca3N2 2x2x2 80 conventional
β-Ca3N2 6x6x2 30 conventional
γ-Ca3N2 8x8x4 20 primitive
δ-Ca3N2 2x6x4 30 conventional
ε-Ca3N2 6x6x4 5 primitive
λ-Ca3N2 8x8x4 10 primitive

α-Sr3N2 2x2x2 80 conventional
β-Sr3N2 8x8x4 20 primitive
γ-Sr3N2 2x6x4 30 conventional
δ-Sr3N2 8x8x4 10 primitive

α-Ba3N2 6x6x4 5 primitive
β-Ba3N2 8x8x4 20 primitive
γ-Ba3N2 8x2x4 20 conventional
δ-Ba3N2 8x8x4 10 primitive
Ba3N2 2x2x2 80 conventional
(anti-bixbyite)

α-BeSiN2 4x4x4 16 primitive
β-BeSiN2 5x5x5 16 conventional
γ-BeSiN2 5x5x4 16 conventional

α-MgSiN2 4x4x4 16 primitive
β-MgSiN2 7x7x2 12 conventional
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Appendix B � Calculational Details

structure k-point mesh atoms/cell type of cell

α-CaSiN2 4x2x2 64 primitive
β-CaSiN2 5x5x5 16 conventional
γ-CaSiN2 7x7x2 12 conventional

α-SrSiN2 4x4x4 16 conventional
β-SrSiN2 6x4x6 32 conventional
γ-SrSiN2 6x4x4 64 primitive
δ-SrSiN2 6x4x6 32 primitive
ε-SrSiN2 7x7x2 12 conventional

α-BaSiN2 4x2x4 32 conventional
β-BaSiN2 6x4x4 64 primitive
γ-BaSiN2 6x4x6 32 primitive
γ'-BaSiN2 4x4x2 16 conventional
γ'-BaSiN2-II 4x4x2 16 conventional
γ'-BaSiN2-III 4x4x2 16 conventional

Ca2Si5N8 3x3x2 30 primitive
HP-Ca2Si5N8 2x2x2 120 primitive
o-Ca2Si5N8 4x4x2 30 primitive

Sr2Si5N8 4x4x2 30 primitive
HP-Sr2Si5N8 2x2x2 120 primitive

Ba2Si5N8 4x4x2 30 primitive
HP-Ba2Si5N8 2x2x2 120 primitive

m-Mg2Si5N8 2x2x2 30 primitive
HP-Mg2Si5N8 2x2x2 120 primitive
o-Mg2Si5N8 4x4x2 30 primitive

BeP2N4 6x6x6 42 primitive
sp-BeP2N4 6x6x6 14 primitive
isp-BeP2N4 6x6x6 14 primitive

208



Appendix C � Simulated Powder

Patterns

Binary Nitrides M3N2 of the Group II Elements

Figure C1: Powder di�raction patterns of α-Be3N2 (top) and γ-Be3N2 (bottom) at 125GPa
(Cu-Kα1 radiation, Deby-Scherrer-Geometry).
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Appendix C � Simulated Powder Patterns

Figure C2: Powder di�raction patterns of β-Be3N2 (top) and γ-Be3N2 (bottom) at 82GPa (Cu-
Kα1 radiation, Deby-Scherrer-Geometry).

Figure C3: Powder di�raction patterns of α-Mg3N2 (top) and β-Mg3N2 (bottom) at 21GPa
(Cu-Kα1 radiation, Deby-Scherrer-Geometry).
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Figure C4: Powder di�raction patterns of β-Mg3N2 (top) and γ-Mg3N2 (bottom) at 65GPa
(Cu-Kα1 radiation, Deby-Scherrer-Geometry).

Figure C5: Powder di�raction patterns of α-Ca3N2 (top) and γ-Ca3N2 (bottom) at 5GPa (Cu-
Kα1 radiation, Deby-Scherrer-Geometry).
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Appendix C � Simulated Powder Patterns

Figure C6: Powder di�raction patterns of γ-Ca3N2 (top) and δ-Ca3N2 (bottom) at 10GPa (Cu-
Kα1 radiation, Deby-Scherrer-Geometry).

Figure C7: Powder di�raction patterns of δ-Ca3N2 (top) and ε-Ca3N2 (bottom) at 27GPa (Cu-
Kα1 radiation, Deby-Scherrer-Geometry).
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Figure C8: Powder di�raction patterns of ε-Ca3N2 (top) and λ-Ca3N2 (bottom) at 38GPa (Cu-
Kα1 radiation, Deby-Scherrer-Geometry).

Figure C9: Powder di�raction patterns of α-Sr3N2 (top) and β-Sr3N2 (bottom) at 3GPa (Cu-Kα1
radiation, Deby-Scherrer-Geometry).
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Appendix C � Simulated Powder Patterns

Figure C10: Powder di�raction patterns of β-Sr3N2 (top) and γ-Sr3N2 (bottom) at 12GPa (Cu-
Kα1 radiation, Deby-Scherrer-Geometry).

Figure C11: Powder di�raction patterns of γ-Sr3N2 (top) and δ-Sr3N2 (bottom) at 26GPa (Cu-
Kα1 radiation, Deby-Scherrer-Geometry).
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Figure C12: Powder di�raction patterns of α-Ba3N2 (top) and β-Ba3N2 (bottom) at 2GPa (Cu-
Kα1 radiation, Deby-Scherrer-Geometry).

Figure C13: Powder di�raction patterns of β-Ba3N2 (top) and γ-Ba3N2 (bottom) at 32GPa
(Cu-Kα1 radiation, Deby-Scherrer-Geometry).
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Appendix C � Simulated Powder Patterns

Figure C14: Powder di�raction patterns of γ-Ba3N2 (top) and δ-Ba3N2 (bottom) at 56GPa
(Cu-Kα1 radiation, Deby-Scherrer-Geometry).
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Nitridosilicates MSiN2 of the Group II Elements

Figure C15: Powder di�raction patterns of α-BeSiN2 (top) and β-BeSiN2 (bottom) at 20GPa
(Cu-Kα1 radiation, Deby-Scherrer-Geometry).

Figure C16: Powder di�raction patterns of β-BeSiN2 (top) and γ-BeSiN2 (bottom) at 76GPa
(Cu-Kα1 radiation, Deby-Scherrer-Geometry).
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Appendix C � Simulated Powder Patterns

Figure C17: Powder di�raction patterns of α-MgSiN2 (top) and β-MgSiN2 (bottom) at 24GPa
(Cu-Kα1 radiation, Deby-Scherrer-Geometry).

Figure C18: Powder di�raction patterns of α-CaSiN2 (top) and β-CaSiN2 (bottom) at 1.6GPa
(Cu-Kα1 radiation, Deby-Scherrer-Geometry).
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Figure C19: Powder di�raction patterns of β-CaSiN2 (top) and γ-CaSiN2 (bottom) at 60GPa
(Cu-Kα1 radiation, Deby-Scherrer-Geometry).

Figure C20: Powder di�raction patterns of α-SrSiN2 (top) and β-SrSiN2 (bottom) at 2GPa
(Cu-Kα1 radiation, Deby-Scherrer-Geometry).
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Appendix C � Simulated Powder Patterns

Figure C21: Powder di�raction patterns of β-SrSiN2 (top) and γ-SrSiN2 (bottom) at 14GPa
(Cu-Kα1 radiation, Deby-Scherrer-Geometry).

Figure C22: Powder di�raction patterns of γ-SrSiN2 (top) and δ-SrSiN2 (bottom) at 84GPa
(Cu-Kα1 radiation, Deby-Scherrer-Geometry).
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Figure C23: Powder di�raction patterns of δ-SrSiN2 (top) and ε-SrSiN2 (bottom) at 130GPa
(Cu-Kα1 radiation, Deby-Scherrer-Geometry).

Figure C24: Powder di�raction patterns of α-BaSiN2 (top) and β-BaSiN2 (bottom) at 43GPa
(Cu-Kα1 radiation, Deby-Scherrer-Geometry).
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Appendix C � Simulated Powder Patterns

Figure C25: Powder di�raction patterns of β-BaSiN2 (top) and γ-BaSiN2 (bottom) at 102GPa
(Cu-Kα1 radiation, Deby-Scherrer-Geometry).
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Appendix D � Equations of State

�tted to Ba
3
N
2

While �tting the Murnaghan, the Birch and the Vinet equation of state (EOS) to

the calculated data points for the di�erent calculated polymorphs of Ba3N2 it be-

came obvious, that, when using all data points signi�cant errors where introduced

in V0 and E0. Therefore, only 15 data points where used to obtain accurate values

for V0 and E0, which where subsequently used to �t all calculated data points.

The di�erence between the two possible �tting procedures are illustrated by way of

example of anti-A-sesquioxide type Ba3N2 in Figure D1 to D3. First all data points

(black squares, connected by a spline �t (solid line)) where all �tted by one EOS

without any �xed parameters ((1) dashed-dotted line) and by the same EOS with

predetermined V0 and E0 ((2) dashed line). It can be clearly seen, that curve (1)

always has a minimum shifted signi�cantly to lower volumina and is not able to

describe the true curve progression at volumes around V0, whereas for curve (2) this

area is �tted quite well. Both �tting procedures result in almost equal variations

from the true curve progression for smaller volumes.

It becomes also obvious that the Birch and Vinet equation of state are better suited

to �t the calculated energy-volume data than the Murnaghan equation of state.

For the Murnaghan equation of state the di�erence in V0 amounts to 6.73 106 pm3

and the di�erence on E0 to 0.012 eV. For the Birch and Vinet equation of states

the deviations are smaller, but still signi�cant (Birch EOS: ∆V0 = 5.07 106 pm3,

∆E0 = 0.003 eV; Vinet EOS: ∆V0 = 5.94 106 pm3, ∆E0 = 0.002 eV).
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Appendix D � Equations of State �tted to Ba
3
N

2

Figure D1: Murnaghan equation of state �t to the calculated data points for anti-A-sesquioxide-
type Ba3N2 (black squares: calculated data points, solid line: spline �t, dashed-dotted line: Mur-
naghan equation of state �t, dashed line: Murnaghan equation of state �t with predetermined V0

and E0).

Figure D2: Birch equation of state �t to the calculated data points for anti-A-sesquioxide-type
Ba3N2 (black squares: calculated data points, solid line: spline �t, dashed-dotted line: Birch
equation of state �t, dashed line: Birch equation of state �t with predetermined V0 and E0).
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Figure D3: Vinet equation of state �t to the calculated data points for anti-A-sesquioxide-type
Ba3N2 (black squares: calculated data points, solid line: spline �t, dashed-dotted line: Vinet
equation of state �t, dashed line: Vinet equation of state �t with predetermined V0 and E0).
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Appendix E � Details on Selected

Group-Subgroup Relations

Several structures occurring during the search for high-pressure polymorphs of MSiN2

compounds are related to the idealized �lled β-cristobalite structure (�lled C9 struc-

ture). The experimentally found structures of α-BeSiN2 [13], α-MgSiN2 [234, 235]

and α-CaSiN2 [14] as well as theoretical β-BeSiN2 (CuFeS2-type [239]) and β-CaSiN2

(CaGeN2-type [250]) can be derived from �lled β-cristobalite by concerted rotation

of tetrahedra. For illustrations of these rotation patterns see Figure E1 and the

works of Thompson et al. [237] and O'Kee�e and Hyde [238].

Certain intermediate structures of the group-subgroup scheme (Figure 5.23, page

106) were obtained upon compressing SrSiN2 and BaSiN2 in the MgSiN2-type and

CaSiN2-type structure, as they distorted towards a higher symmetry. Calculating

BaSiN2 in the MgSiN2-type structure resulted in an immediate distortion towards

Pnma (no. 62), which further distorted towards Imma (no. 74) upon compression.

Compressing BaSiN2 in the CaSiN2-type structure gives a distortion towards Pbcm

(no. 57). Not all of the thus obtained structures are relevant for the enthalpy-

pressure phase diagrams of the examined MSiN2 compounds (c.f. chapter 5.2).

However, δ-SrSiN2 and γ-BaSiN2 were identi�ed with the Pbcm structure. For nei-

ther the Imma, Pnma or Pbcm structure corresponding compounds could be found

either in Pearson's Crystal Structure Database of Inorganic Compounds [306] or the

Inorganic Crystal Structure Database (ICSD) [307].
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Appendix E � Details on Selected Group-Subgroup Relations

Figure E1: Comparison of the symmetry-reduced unit cell of the idealized �lled β-cristobalite
structure to the structures found in MSiN2 compounds (experimental and calculated).
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Appendix F � AWK-Script to

Convert CONTCAR- and

POSCAR-�les to INS-�les

The AWK-script CONTCAR2INS is used in combination with a simple bash-script

to convert CONTCAR or POSCAR-�les of VASP into INS-�les as used by SHELX.

Bash-Scrip

#!/bin/bash

echo "CONTCAR to INS"

echo "Name of Input-file?"

read INPUT

echo "Type in atom types in order as in CONTCAR/POSCAR!"

read ATOMS_1

echo $ATOMS_1 > ATOMS_1

echo "Title for ins-file?"

read TITLE

echo "TITL" $TITLE > TITLE

cat ATOMS_1 $INPUT > AWK-INPUT

LC_ALL=C ./contcar2ins.awk AWK-INPUT > $INPUT.1

cat TITLE $INPUT.1 > $INPUT.ins
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Appendix F � AWK-Script: Convert CONTCAR/POSCAR to INS

CONTCAR2INS

#!/usr/bin/awk -f

# Copyright (C) 2007 Rebecca Roemer http://fantasia-fuoco.de

# This program is free software: you can redistribute it and/or

# modify it under the terms of the GNU General Public License as

# published by the Free Software Foundation, either version 3 of

# the License, or (at your option) any later version.

# This program is distributed in the hope that it will be useful,

# but WITHOUT ANY WARRANTY; without even the implied warranty of

# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

# GNU General Public License for more details.

# You should have received a copy of the GNU General Public License

# along with this program. If not, see http://www.gnu.org/licenses/.

# Authors:

# * Rebecca Roemer (rr) http://fantasia-fuoco.de

# * Michael Decker (mad) http://Inspire-Mind.de

# Version:

# * 0.0.0.4: 2008-04-17 - remove bug for angle of unit cell

# calculation for scaling factors other than 1.000000

# * 0.0.0.3: 2008-03-23 - generalization for variable number of

# atom sorts (mad)

# * 0.0.0.2: 2008-03-18 - include scaling factor in calculation of

# unit cell lattice (rr)

# * 0.0.0.1: 2007-11-11 - Only working for CONTCARs containing one,

# two and three atom sorts and scaling factor 1.000000 for matrix (rr)

# Tested:

# * 2008-03-23: Kubuntu 7.10 with
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# - GNU Awk 3.1.5

# * 2008-03-21: Suse 10.2

BEGIN {

#setting different variables

myLineCounter = 0;

maxLineCounter = 0;

# cell parameters

axis[1] = 0 ; # a-axis

axis[2] = 0 ; # b-axis

axis[3] = 0 ; # c-axis

#norm (ger. Betrag) for a-, b, und c-vector

betrag[1] = 0 ; # norm a-vector

betrag[2] = 0 ; # norm b-vector

betrag[3] = 0 ; # norm c-vector

# values needed for calculation of cell parameters

cosin[1] = 0 ; # cos(alpha)

cosin[2] = 0 ; # cos(beta)

cosin[3] = 0 ; # cos(gamma)

# Scalierung der Matrixelemente

scale[1] = 0

# Matrix describing unit cell

# a1 a2 a3 (line 3 of input)

# b1 b2 b3 (line 4 of input)

# c1 c2 c3 (line 5 of input)

a[1] = 0 ; # a1

a[2] = 0 ; # a2
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Appendix F � AWK-Script: Convert CONTCAR/POSCAR to INS

a[3] = 0 ; # a3

b[1] = 0 ; # b1

b[2] = 0 ; # b2

b[3] = 0 ; # b3

c[1] = 0 ; # c1

c[2] = 0 ; # c2

c[3] = 0 ; # c3

# Unit cell angles

alpha[1] = 0 ;

beta[1] = 0 ;

gamma[1] = 0 ;

# number of atoms of different atom sorts

atom[1] = 0 ;

atom[2] = 0 ;

atom[3] = 0 ;

# total number of atoms in unit cell

number_atoms[1] = 0;

# atom sorts

atom_sort[1] = 0;

sumOfPreviousAtoms = 0;

currentAtomCount = 0;

}

# Functions from: http://www.gladir.com/CODER/AWK/acos.htm

function abs(a) {

if(a<0) a=-a;

return a;

}
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function acos(a) {

pi=3.141592653589793 ;

if(abs(a)==1) {

return (1-a)*pi/2 ;

} else {

return atan2(-a,sqrt(1-a*a))+2*atan2(0.5,0.5) ;

}

}

{ myLineCounter++;

}

myLineCounter == 1 {

for (i=1 ; i <= NF ; i++)

{ atom_sort[i] = $i ;

}

}

myLineCounter == 3 {

cale[1] = $1;

}

myLineCounter == 4 {

axis[1] = (((scale[1]*$1)∧2 + (scale[1]*$2)∧2 +

(scale[1]*$3)∧2)∧(1/2)) ;

}

myLineCounter == 4 {

betrag[1] = ((($1)∧2 + ($2)∧2 + ($3)∧2)∧(1/2)) ;

}

# Choose according to your awk (** or ∧ for "to the power of")
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Appendix F � AWK-Script: Convert CONTCAR/POSCAR to INS

# myLineCounter == 4 {

# axis[1] = (((scale[1]*$1)**2 + (scale[1]*$2)**2 +

# (scale[1]*$3)**2)**(1/2)) ;

# }

myLineCounter == 4 {

a[1] = $1 ;

a[2] = $2 ;

a[3] = $3 ;

}

# Choose according to your awk (** or ∧ for "to the power of")

# myLineCounter == 5 {

# axis[2] = (((scale[1]*$1)**2 + (scale[1]*$2)**2 +

# (scale[1]*$3)**2)**(1/2)) ;

# }

myLineCounter == 5 {

axis[2] = (((scale[1]*$1)∧2 + (scale[1]*$2)∧2 +

(scale[1]*$3)∧2)∧(1/2));

}

myLineCounter == 5 {

betrag[2] = ((($1)∧2 + ($2)∧2 + ($3)∧2)∧(1/2)) ;

}

myLineCounter == 5 {

b[1] = $1 ;

b[2] = $2 ;

b[3] = $3 ;

}

# Choose according to your awk (** or ∧ for "to the power of")
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# myLineCounter == 6 {

# axis[3] = (((scale[1]*$1)**2 + (scale[1]*$2)**2 +

# (scale[1]*$3)**2)**(1/2)) ;

#}

myLineCounter == 6 {

axis[3] =(((scale[1]*$1)∧2 + (scale[1]*$2)∧2 +

(scale[1]*$3)∧2)∧(1/2)) ;

}

myLineCounter == 6 {

betrag[3] = ((($1)∧2 +($2)∧2 + ($3)∧2)∧(1/2)) ;

}

myLineCounter == 6 {

c[1] = $1 ;

c[2] = $2 ;

c[3] = $3 ;

}

myLineCounter == 6 {

cosin[1] = ((b[1] * c[1] + b[2] * c[2] + b[3] * c[3]) /

(betrag[2] * betrag[3]));

cosin[2] = ((a[1] * c[1] + a[2] * c[2] + a[3] * c[3]) /

(betrag[1] * betrag[3]));

cosin[3] = ((b[1] * a[1] + b[2] * a[2] + b[3] * a[3]) /

(betrag[2] * betrag[1]));

}

myLineCounter == 6 {

alpha[1] = ( acos(cosin[1]) * (180 / 3.141592653589793)) ;

beta[1] = ( acos(cosin[2]) * (180 / 3.141592653589793)) ;

gamma[1] = ( acos(cosin[3]) * (180 / 3.141592653589793)) ;

}
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Appendix F � AWK-Script: Convert CONTCAR/POSCAR to INS

myLineCounter == 7 {

printf "%s%.8f %.8f %.8f %.8f %.8f %.8f\n",

"CELL 0.71073 ", axis[1] , axis[2] ,axis[3] , alpha[1] , beta[1] ,

gamma[1] ;

}

myLineCounter == 7 {

print "LATT-1";

printf "%s", "SFAC ";

}

myLineCounter == 7 {

for (i=1 ; i <NF ; i++)

{ printf "%s %s" , atom_sort[i],"" ;

}

for (i=NF ; i == NF ; i++)

{ printf "%s\n", atom_sort[i] ;

}

for (i=1 ; i <= NF; i++)

{ atom[i] = $i ;

}

max_line[0] = 8;

max_line[1] = ( atom[1] + 8) ;

for (i=2 ; i <= NF; i++)

{ max_line[i] = max_line[(i-1)] + atom[i] ;

}

}

(myLineCounter > max_line[maxLineCounter]) &&

(myLineCounter <= max_line[maxLineCounter+1]) {

currentAtomCount++;

printf "%s %s %s %s %s\n",
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atom_sort[maxLineCounter+1] currentAtomCount, maxLineCounter+1 ,

$1, $2, $3 ;

# if we are on the last line of current atom, we have to move to the

# next atom

(myLineCounter == max_line[maxLineCounter+1]) {

maxLineCounter++;

currentAtomCount= 0;

}

END { print "END" }

}
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