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Kurzfassung

Diese Dissertation befasst sich mit der Quantenkontrolle von Schwingungs-

prozessen im Hinblick auf molekulares Quantencomputing. Der Ansatz des

Quantencomputing Konzepts basiert auf Schwingungsfreiheitsgraden von poly-

atomaren Molekülen. Die logischen Werte der Qubits 0 oder 1 werden jeweils

durch einen bestimmten Anregungsgrad einer Normalmode kodiert und die lo-

gischen Quantenoperationen werden durch speziell geformte, ultrakurze Laser-

pulse implementiert. Diese Laserfelder lassen sich mit Hilfe der sogenannten

Optimalen Kontrolltheorie ermitteln.

Das Konzept des molekularen Quantencomputings, das ursprünglich auf

Quantengattern basierte, die einen IR Anregungsprozess im Molekül bewirken,

wird im ersten Teil der Dissertation auf Raman aktive Normalmoden übertra-

gen. Daraus ergibt sich der Vorteil, dass nun auch andere Frequenzbereiche,

z.B. der Bereich um 800 nm, für die Realisierung der Quantenoperationen im

Experiment zur Verfügung steht. Im nahen IR und UV/VIS Bereich existieren

schon seit längerer Zeit ausgereifte Techniken des Pulsformens.

Mittels verschiedener ab-initio Untersuchungen konnte das Molekül Butyl-

amin und speziell dessen Raman aktive C-H Streckschwingungen, als ein

geeignetes Qubit System zur ersten theoretischen Demonstration dieser Idee,

ermittelt werden. Ein universeller Satz von Quantengatter, bestehend aus

kurzen und einfach strukturierten Laserpulsen konnte mit sehr hohen Effizien-

zen optimiert werden. Zur Berechnung der nichtresonanten Laserfelder, die

den Schwingungsprozess induzieren, der den logischen Operationen zu Grunde

liegt, musste das bisher in der Optimalen Kontrolltheorie verwendete Kon-

trollfunktional modifiziert werden. Die Erweiterung um Frequenzfilteropera-

tionen erlaubt nun zum ersten Mal die Kontrolle von nichtresonanten Zwei-

Farben-Prozessen und die gleichzeitige Berechnung der beiden an dem Prozess

beteiligten Laserfelder. Dieses neu entwickelte, kontrolltheoretische Verfahren

stellt eine universelle Methode dar und lässt sich leicht auf verschiedene Prozesse
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übertragen in denen entspechende Filteroperationen hilfreich oder sogar essen-

tiell sind.

Nachdem gegenwärtig die ersten erfolgreichen Demonstrationen von

geformten, ultrakurzen Laserpulsen auch im mittleren IR Bereich vorgestellt

werden, ist es interessant die Übereinstimmung der jeweilig gefundenen Ergeb-

nisse von theoretischen und experimentellen Kontrollstudien zu vergleichen.

Die experimentelle Herangehensweise basiert auf Optimierungen mit Rück-

kopplungsschleifen, deren zentrale Elemente ein evolutionärer Algorithmus, ein

Pulsformer und ein Rückkopplungssignal, das auf die Effizienz des Prozesses

schließen lässt, sind. Die experimentellen Ergebnisse für die optimalen Laser-

pulse können sehr komplex und auch ungünstigerweise sehr lang ausfallen. In

der vorliegenden Arbeit wurden verschiedene Strategien entwickelt um dies zu

umgehen. Untersucht wurden in diesem Zusammenhang zwei verschiedene An-

sätze der Phasenmodulation, eine Einschränkung der Variationsbreite der Phase,

sowie die spektrale Breite der Eingangspulse. Als Ergebnis konnte gezeigt wer-

den, dass eine parametrisierte, sinusförmige Phasenmodulation, die oft im Ex-

periment Verwendung findet um die Komplexität der Felder zu reduzieren, zu

unflexibel ist für eine effiziente Implementierung von Quantengattern. Dagegen

bieten sich gepixelte Maskenfunktionen in Kombination mit einer geeigneten

Wahl der Eingangspuls- und Optimierungsparameter an.

Alternativ zu dem bisher verwendeten evolutionären Algorithmus wurden

neue Optimierungsmethoden vorgeschlagen, die auf einem ”multi-objective”

genetischen Algorithmus und einem natürlichen Algorithmus, dem sogenannten

Ameisenalgorithmus, beruhen. Diese Methoden führen leicht zu den gewünsch-

ten Ergebnissen, ohne Verlust der hohen Quanteneffizienz und lassen sich direkt

auf die experimentelle Herangehensweise übertragen. Diese Studien erlauben

eine Optimierung direkt im Suchraum des Experiments und lassen von daher

verlässliche Vorhersagen zu, bei denen alle experimentellen Rahmenbedingungen

konsequent eingehalten werden können. Aussagen zur experimentell maximal

erreichbaren Effizienz mit den zur Verfügung stehenden Eingangspulsen können

getroffen werden, aber auch eine Benennung der geeignetsten Startbedingungen

wird möglich.

Zusätzlich wurden Quantenkontrollstudien von Schwingungsprozessen in of-

fenen Systemen durchgeführt, d.h. dissipative Effekte wurden direkt in die

theoretischen Untersuchungen miteinbezogen. Aus den Resultaten lässt sich

ableiten, dass möglichst kurze Pulsdauern essentiell für hohe Quantenausbeuten
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sind und genau dies lässt sich mit den in der Dissertation entwickelten und

vorgestellten Kontrollverfahren erreichen.

Einen Schritt über einzelne Qubit Systeme hinaus, wurde durch die Kon-

struktion eines ersten, kleinen Quantennetzwerkes gemacht. Hierbei wurden

zwei molekulare Qubit Einheiten durch eine lineare Molekülkette miteinander

verknüpft. Diese Idee stellt ein erstes Konzept in Richtung der Skalierbarkeit

des Quantencomputing Ansatzes dar. Ein Modellsystem wurde aufgesetzt und

ein Laser-getriebener Schwingungsenergietransfer über das Kettenmolekül von

der einen Qubit Seite auf die andere Seite optimiert. Dies lässt sich als eine

Kommunikation zwischen benachbarten Qubit Einheiten verstehen und könnte

so zur Konstruktion von Quantenregistern oder einer entsprechenden Wechsel-

wirkung mit molekularen Speichereinheiten führen.
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Introduction

As femtosecond laser pulses are a key technology of this century, their usage

makes advances to new application fields. Recent practical implementations of

ultrashort pulses can be found in information and life science or in industrial

fabrication, e.g. in high-precision micro-machining.

The ultrafast pulses operate on time scales, in which molecular vibrations

and chemical reactions occur, and they also represent a tool for time-resolved

observations of quantum dynamical processes in molecules. In 1999, the Nobel

Prize in chemistry was awarded to A. Zewail for his pioneering work on the

analysis of transition states in chemical reactions with the help of femtosecond

laser spectroscopy [1, 2]. At the same time, the first ideas on the usage of such

ultrafast events for the control of molecular quantum dynamics emerged. The

goal is to employ the coherent laser light for the control of quantum phenomena

in atoms and molecules in a desired way [3]. The ultrashort laser source can be

used for the coherent manipulation of laser-induced wave packet dynamics. The

electric laser fields, which couple to the quantum systems, have to be modulated

appropriately by shaping the phase and the amplitude of the incident laser

pulses to gain the desired control over the quantum processes. R. S. Judson

and H. Rabitz proposed the idea of quantum control experiments based on a

closed loop setup [4]. The structures of the laser fields are optimized with

the help of evolutionary algorithms, which allow for adaptive improvements

of the efficiency related to the desired quantum processes. Feedback signals

determining the quantum yields of the experimental outcome are necessary for

the adaptive setup.

In theory, a similar technique has been proposed based on optimal control

theory [5, 6]. Instead of the experimental feedback signal, here the explicit

knowledge of the Hamiltonian is required. The strategy proved to be a successful

tool in many theoretical studies as it allows for the identification of possible

control mechanisms and pathways as well as for the theoretical demonstration

of new application possibilities. Quantum control theory plays a central role for

1



Introduction

the prediction of laser field shapes for the experiment and for assessing their

experimental outcomes.

Many applications of coherent control with shaped femtosecond laser pulses

have been presented so far in theory and experiment, where the fields of research

reach from biology to chemistry and physics. An application, which requires

precise control of quantum systems is quantum information processing. Partic-

ularly, when the quantum computing scheme is based on molecular degrees of

freedoms, these sophisticated control strategies are essential. A molecular quan-

tum computing concept has been proposed [7], where the quantum bits (qubits)

are coded by vibrational eigenstates of IR active normal modes. In this scheme,

the quantum logic operations are implemented by specially shaped, electric laser

fields in the mid-IR regime, and they are optimized with optimal control theory.

The focus of this thesis is on quantum control strategies in the context of

molecular quantum computing with vibrational qubits. The concept is trans-

ferred to the 800 nm regime, by using Raman active modes for the coding of the

qubit states. The laser source in this frequency regime is easily accessible and

pulse shaping techniques are well established. For the calculation of the Raman

quantum gates, new modifications of the optimal control theory functional have

to be developed.

Additionally, the experimental control strategies based on closed loop tech-

niques from the experiment will be adapted to theory. This will allow for an

insight into the differences, which arise from quantum control performed in the

time domain with optimal control theory and in the frequency domain with

evolutionary algorithms. The experimental search spaces can be investigated

and predictions of new search strategies in the experiment will become possible.

Routes towards preferably simple, robust and short laser pulse solutions, driving

the desired quantum processes, can be revealed.

New control algorithms are developed and explored in the context of molec-

ular quantum computing, but the advantages of their application will also be

transferrable to a large variety of control tasks in different research areas. The

theoretical results will benefit related control experiments and they demonstrate

the decisive role of theory in coherent control. Vibrational relaxation effects are

incorporated in the quantum gate calculations to allow for the most precise

simulation of future experiments and for reliable predictions.

A first approach towards the scalability of the molecular quantum computing

concept is investigated and will be presented in the last part of the thesis based
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on the connection of the vibrational qubit systems with linear chain molecules.

Across the molecular bridges, a laser-driven vibrational energy transfer is opti-

mized, which facilitates the communication between individual qubit systems.
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1 Fundamentals of quantum

dynamics, information and

control

The control prospects of vibrational quantum processes, such as state-to-state

transitions, unitary transformations and vibrational energy transfer through

molecular chains are investigated in this thesis. In all cases, the driving forces

are external, electric laser fields inducing the wave packet dynamics. The funda-

mental tool for the description and simulation of these processes is the solution

of the time-dependent Schrödinger equation. The basic quantum dynamical

considerations with respect to the Schrödinger equation, numerical propaga-

tion methods, the evaluation of eigenfunctions and the description of dissipative

effects will be introduced. Additionally, an overview of the idea of quantum

computers, quantum information processing and in particular on the concept of

molecular quantum computing with vibrational qubits will be given. Besides

the pure detection of quantum processes, also experimental and theoretical ef-

forts are made to control these processes in an optimal way. The fundamental

control concepts in theory, optimal control theory (OCT) and in experiment,

closed loop techniques are introduced and the basics of ultrashort laser pulses

are presented.

1.1 Quantum dynamics

Quantum processes can be studied by solving the time-dependent Schrödinger

equation, where usually numerical propagation schemes are applied. The calcu-

lations can be performed, based either on a grid or on an eigenstate representa-

tion. For the latter case, the eigenfunctions and eigenvalues have to be known

and their evaluation will be briefly addressed. Both approaches differ in the

choice of the basis functions and can easily be transferred into each other.
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1 Fundamentals of quantum dynamics, information and control

Generally, a quantum system cannot be regarded as completely isolated and

different intra- and intermolecular effects may play a role in the dynamics. For

the investigation of induced dissipative effects, the wave function description is

transferred to the density matrix representation, where effects such as energy

relaxation can be incorporated in the quantum dynamical calculation. The fun-

damental considerations of the density matrix formalism and the corresponding

propagation schemes are presented.

1.1.1 Schrödinger equation

The quantum dynamics of a molecular system with the Hamiltonian Ĥmol is

governed by the time-dependent Schrödinger equation:

i
∂

∂t
Ψmol(t) = ĤmolΨmol(t), (1.1)

(all equations are given in atomic units [au]). The stationary, molecular wave

function Ψmol depends on the nuclear coordinates R and on the electronic coor-

dinates r. It can be separated according to:

Ψmol(R, r) = Ψnuc(R)Ψel(r;R), (1.2)

into a nuclear wave function Ψnuc(R), depending on the nuclei coordinates R

only, and an electronic part Ψel(r;R), with a parametric dependence on the

nuclear arrangement. For the quantum dynamical calculations, the treatment

of the electrons and nuclei can be separated, according to the Born-Oppenheimer

approximation, due to dynamical time scales, differing by magnitude.

The molecular Schrödinger equation Eq. 1.1 can be separated, since the influ-

ence of the nuclear, kinetic operator on the electronic wave function is negligible

in the investigated cases. The stationary, electronic Schrödinger equation with

the electronic Hamiltonian Ĥel is obtained:

Ĥel Ψel(r;R) = Eel(R) Ψel(r;R). (1.3)

The electronic Hamiltonian includes the kinetic energy operator T̂el, the electron-

electron interaction operator V̂el,el, the interaction operator with the nuclei V̂el,nuc

and the nuclei-nuclei interaction part V̂nuc,nuc:

Ĥel = T̂el + V̂el,el + V̂el,nuc + V̂nuc,nuc. (1.4)
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1.1 Quantum dynamics

The solution of Eq. 1.3 for different molecular arrangements leads to potential

energy curves Eel(R) or potential energy surfaces Eel(Ri), in higher dimensional

cases, and is commonly performed with ab-initio quantum chemical methods.

The fundamental quantum chemical approach is Hartree-Fock (HF) theory

based on a mean field approximation of the electrons. Post-HF methods, such

as perturbation theory and configuration interaction methods, were developed to

improve the description of the averaged electronic correlation of the HF theory.

A comprehensive review on quantum chemistry can be found in [8]. A different

approach is pursued in case of density functional theory (DFT) [9], where the

many-body electronic wave function is replaced by the electronic density as the

basic quantity. The fundamental principles are the Hohenberg-Kohn theorems,

stating that the ground state density minimizes the total energy of the system

and can be used to calculate the molecular ground state properties. Throughout

this thesis, DFT is applied for the quantum chemical calculation of the potential

energy surfaces E(Ri) and the corresponding molecular properties.

The intramolecular motion of the nuclei is described by the quantum dy-

namics of the nuclear wave function Ψnuc(R) on the calculated potential energy

surfaces E(Ri) ≡ V̂nuc. As from now, the label nuc is omitted for the nuclear

wave function Ψnuc, and it will be denoted by Ψ. In case of the Hamiltonian,

the label 0 indicates that it is time-independent. The time evolution of the nu-

clear wavefunction Ψ is governed by the time-dependent, nuclear Schrödinger

equation:

i
∂

∂t
Ψ(t) = Ĥ0Ψ(t). (1.5)

The nuclear, time-independent Hamiltonian Ĥ0 includes the kinetic energy T̂nuc

of the nuclei and the potential energy V̂nuc. Integrating the time-dependent,

nuclear Schrödinger equation (Eq. 1.5) determines the equations of motion as

the action of the propagator Û(t) on the nuclear wave function:

Ψ(t) = Û(t, t0) Ψ(t0) = e−iĤ0 (t−t0)Ψ(t), (1.6)

where the propagator of the time-independent Hamiltonian Ĥ0 is Û(t, t0). The

nuclear wave function evolves in the time interval ∆t = tj − ti according to:

Ψ(tj) = e−iĤ0∆tΨ(ti). (1.7)

An additional, time-dependent perturbation of the Hamiltonian, might be due

to an external, electric field ε(t), interacting with the molecular system (Eq. 1.8).
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1 Fundamentals of quantum dynamics, information and control

The interaction is mediated by the molecular dipole moment µ (the correspon-

ding operator is µ̂).

Ĥ(t) = Ĥ0 − µ̂ε(t) (1.8)

In this case, the Hamiltonian Ĥ(t) is time-dependent and the propagation has

to be performed in sufficiently small time steps, so the perturbation can be

regarded as constant during the time interval ∆t = tj − ti. The corresponding

propagation equation is given by:

Ψ(tj) = e−i(Ĥ0−µ̂ε(ti))∆t Ψ(ti). (1.9)

1.1.2 Propagation

The wave function in the quantum dynamical calculations can either be formu-

lated by a grid based method, e.g. in the discrete variable representation [10]

or can be represented in the eigenstate basis. In all dynamical calculations of

this thesis, the latter case is applied. The basis vectors correspond to the vibra-

tional eigenfunctions Ψn. The wave function is represented by a n-dimensional

vector c(t) with the complex, time-dependent elements cn(t), derived from the

projection:

cn(t) = 〈Ψn|Ψ(t)〉. (1.10)

The matrix representation H0 of the time-independent Hamiltonian Ĥ0 is diag-

onal, where the elements H0 (nn) are given by the eigenenergies En.

H0 (nn) = 〈Ψn(R)|Ĥ0(R)|Ψn(R)〉 = En, H0 (nm) = 0 (1.11)

For the laser-molecule interaction, the dipole matrix elements µnm of the matrix

µ have to be evaluated according to:

µnm = 〈Ψn(R)|µ̂(R)|Ψm(R)〉. (1.12)

The temporal evolution of the wave function in the eigenstate representation is

formally determined by:

c(tj) = e−i(H0−µε(ti))∆tc(ti) = e−i(H∆t)c(ti) = U(∆t)c(ti). (1.13)

8



1.1 Quantum dynamics

Different numerical approaches can be used to evaluate the propagation steps,

given by the exponential equation (Eq. 1.13). Detailed reviews on quantum

dynamical methods are presented in [11] and [12].

The numerical evaluation of the term e−iH∆t Ψ can be performed efficiently

with different techniques, where particularly the split operator (SPO) method

and the Chebychev polynomial expansion are applied and summarized briefly.

If an external laser source couples to the molecular system, the Hamiltonian

matrix is non-diagonal due to the transition dipole matrix elements µnm. To

evaluate a propagation step, the dipole operator matrix µ is diagonalized (µdiag)

and the corresponding transformation matrices X and X† are used to change to

the diagonal representation and back. A second order SPO propagation step is

performed as follows:

c(tj) = e−iH0
∆t
2 X† eiµdiagε(ti)∆t X e−iH0

∆t
2 c(ti). (1.14)

The propagator U(∆t) (Eq. 1.13) is approximated here by a product of expo-

nential functions of the Hamiltonian (H0) and laser-molecule interaction (µε(t))

part. Other propagation schemes are based on polynomial expansions of the

time evolution operator, such as the Chebychev propagator. Here, the propaga-

tor U(∆t) (Eq. 1.13) is approached by a Chebychev series, taking the form:

e−iHt ≡
N∑

n=0

an(t)Φn(−iH), (1.15)

where:

an(t) = 2Jn(t) and a0(t) = J0(t). (1.16)

Φn are complex Chebychev polynomials, depending on the Hamiltonian and

obeying the recursion relation:

Φn+1 = −2iHΦn + Φn−1. (1.17)

The time-dependent expansion coefficients an(t) are determined by Bessel func-

tions. For the implementation, the argument of Φn has to be mapped onto

the interval [−i, i]. The eigenvalues of H are consequently shifted and scaled

to the range [−1, 1]. The propagation is then performed with the normalized

Hamiltonian and a shift parameter is introduced, compensating for the normal-

ization. The order of expansion N has to be chosen large enough to ensure the

convergence of the series.

9



1 Fundamentals of quantum dynamics, information and control

1.1.3 Eigenfunctions

The vibrational eigenfunctions Ψn have to be evaluated explicitly to set up the

quantum dynamical calculations in the eigenstate representation. They can be

determined by solving the stationary, vibrational Schrödinger equation:

Ĥ0(R)Ψn(R) = (Eel(R) + Tnuc(R))Ψn(R) = EnΨn(R). (1.18)

A relaxation method [13, 14] is applied, where an incident, vibrational wave

packet Ψ(t) is propagated in imaginary time. The propagation methods pre-

sented in Sec. 1.1.2 can be used, but here the wave functions and operators are

constructed in the grid basis.

The components of the wave packet with the highest energies are attenuated

faster during the propagation period and the wave packet is basically relaxed to

the vibrational ground state.

Ψ̃n(R) ≡ e−iĤ0(R)(−i∆t)Ψ(R, t) = e−Ĥ0(R)∆tΨ(R, t) (1.19)

This procedure is applied several times, for each eigenfunction and each time

the resulting, approximated vibrational eigenfunction Ψ̃n is projected out. Af-

terwards, the Hamiltonian is set up in the basis of the approximated eigenfunc-

tions and diagonalized to obtain very exact solutions of the stationary, nuclear

Schrödinger equation (Eq. 1.18).

1.1.4 Dissipative dynamics

In principle, a molecular subsystem, such as a vibrational normal mode, can

never be regarded as a completely isolated system and environmental effects

have to be taken into account. Molecular collision or intramolecular vibrational

redistribution can occur, changing the population of the quantum states (re-

laxation) or stochastically perturbing the phase (dephasing). The simulation

of these effects can be incorporated in the quantum dynamical studies, using

density matrix theory [15].

Density matrix

The molecular subsystems investigated in this thesis correspond to sets of se-

lected vibrational normal modes. They can be regarded as open quantum sys-

tems in the density matrix formalism and can interchange energy with the en-

vironment, where the environmental effects are described as distortions. The

10



1.1 Quantum dynamics

density matrix is a statistical operator, defined as:

ρ̂ = |Ψ〉〈Ψ|, (1.20)

with the vibrational state vector |Ψ〉. Expressing the wave function in the basis

of vibrational eigenfunctions: |Ψ〉 =
∑

n an|Ψn〉 and 〈Ψ| =
∑

m a
∗
m〈Ψm| (in

general, the coefficients are time-dependent) leads to the matrix representation

ρ of the operator ρ̂:

ρ =
∑
nm

ana
∗
m|Ψn〉〈Ψm|. (1.21)

The respective matrix elements of the density operator are given by:

ρnm = 〈Ψn|ρ|Ψm〉 = ana
∗
m. (1.22)

The diagonal elements ρnn = |an|2 are equal to the probability that the system

is in the state |Ψn〉 and the off-diagonal elements ρnm (n 6= m) represent the

coherences of the system. Due to the orthonormality of the basis functions, the

trace of the density matrix is Tr(ρ) = 1.

Liouville equation

The temporal evolution of a quantum system, represented by a density matrix,

is governed by the Liouville equation:

i
∂ρ(t)

∂t
= [H,ρ(t)]. (1.23)

Eq. 1.23 is known as the non-dissipative Liouville-von Neumann equation, which

can also be rewritten as:

ρ̇(t) = Lρ(t) = −i[H,ρ(t)], (1.24)

with the Hamiltonian Liouvillian superoperator L. When the quantum sys-

tem is interacting with the environment, the dynamics can be described by the

dissipative Liouville-von Neumann equation under the Markov approximation

(neglecting memory effects). The explicit bath modes (environment) are not

treated explicitly, but their influence on the quantum system is described ac-

cording to:

ρ̇(t) = Lρ(t) = (Lsys + LD)ρ(t) = −i[H,ρ(t)] + LD(ρ(t)). (1.25)

11



1 Fundamentals of quantum dynamics, information and control

The Liouvillian superoperator L consists of a system part Lsys and a dissipative

part LD. The dissipative correction LD is a function of the density matrix.

Here, the Lindblad approach [16, 17, 18] to the Markovian description of open

quantum systems is applied with the mathematical form:

LD(ρ(t)) =
∑
i=0

{
CiρC†

i −
1

2

[
C†

iCi,ρ
]

+

}
, (1.26)

and the Lindblad operators Ci. They correspond to raising and lowering oper-

ators of the i-th two-level system |a〉, |b〉, which is set up for every relaxation

channel:

Ĉi =
√

Γab|a〉〈b| =
√

Γab

(
0 1

0 0

)
, Ĉ†

i =
√

Γba|b〉〈a| =
√

Γba

(
0 0

1 0

)
.

(1.27)

The energy relaxation rates are defined as Γab = 1
T1

. Additionally, pure dephas-

ing effects can be taken into account with Lindblad operators of the type:

Ci =
√
γ∗ab(|b〉〈b| − |a〉〈a|) =

√
γ∗ab

(
−1 0

0 1

)
. (1.28)

In this case, γ∗ab is associated with the pure dephasing time scale T ∗2 : γ∗ab = 1
T ∗2

.

The total dephasing rate is given by 1
T2

= 1
T ∗2

+ 1
2T1

. Inserting the Lindblad

approach for the dissipative part (Eq. 1.26) into the Liouville-von Neumann

equation (Eq. 1.25) leads to the following equations of motion for the diagonal

and off-diagonal elements of the density matrix:

∂ρnn

∂t
=

N∑
p

−i[Vnp(t)ρpn − ρnpVpn(t)] +
N∑
p

(Γpnρpp − Γnpρnn), (1.29)

∂ρmn

∂t
= −i[(Em − En)ρmn +

N∑
p

(Vmp(t)ρpn − ρmpVpn(t))]− γ∗mnρmn. (1.30)

The matrix V is the laser-molecule interaction potential, defined as V = −µε(t)

and Ei are the vibrational eigenenergies, i.e. the diagonal matrix elements of

the molecular Hamiltonian matrix H0.
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1.2 Quantum computing

Propagation

As numerical method to solve the Liouville-von Neumann equation (Eq. 1.25) a

polynomial expansion, related to the Chebychev propagation scheme, the Faber

propagator [19, 20, 21] is used. The Chebychev polynomials are a special case

of the Faber polynomials. The latter can be used to approximate functions of

variables, defined in the complex plane. The formal solution of Eq. 1.25 is given

by:

ρ(t) = eL(t−t0)ρ(t0), (1.31)

with the initial density matrix ρ(t0) at the time t = t0, where again the ma-

trix representation is used for the quantum dynamical calculations. The Faber

polynomial method is applied to approximate the exponential of the matrix L:

ρ(t) ≡
n∑

k=0

bk(t)Fk(L)ρ(t0). (1.32)

The structure is equivalent to the corresponding Chebychev approximation

(Eq. 1.15), the time-dependent coefficients bk(t) depend on Bessel functions

and the domain of the complex eigenvalues of the Liouvillian, determined by

the strength of the dissipative versus the system part. The Faber polynomials

can be constructed according to a recursion relation, similar to the Chebychev

polynomials. Detailed discussions on the Faber propagator can be found in

[20, 19].

1.2 Quantum computing

Quantum information, as a rather young research area comprises the fields of

quantum cryptography, quantum teleportation and quantum computing. It pro-

vides the opportunity for applications of principles from quantum theory to

modern technologies. In this thesis, the control prospects of molecular vibra-

tions with ultrashort laser pulses are studied with respect to the implementation

of quantum logic gates of a quantum computer. The basic principles of quantum

computing will be briefly reviewed, a corresponding detailed discussion can be

found in [22]. Additionally, the main ideas and achievements of the concept of

molecular quantum computing with vibrational qubits will be presented.
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1.2.1 Universal quantum computing

R. Feynman first proposed the idea of a computer, processing data, with the

help of quantum phenomena [23]. The concept of a universal quantum computer

was presented by D. Deutsch, suggesting that a theoretical quantum computing

machine should combine principles from quantum mechanics together with the

concept of a Turing machine [24].

The main difference to a classical computer establishes in the units of infor-

mation, which are quantum bits (qubits), instead of classical bits. Whereas, a

classical bit is always represented by either of the two states 0 and 1, a qubit

can take any state of a linear, coherent superposition of both basis states |0〉
and |1〉 with the probability amplitudes α and β:

ψ = α|0〉+ β|a〉, |α|2 + |β|2 = 1; α, β ∈ C. (1.33)

Measuring the qubit in the standard basis, the probability of the outcome |0〉
is |α|2 and for |1〉 it is |β|2. The measurement leads to a collapse to a classical

state. The state space for N classical bits is of the dimension 2N , where a

register of N qubits spans a 2N -dimensional Hilbert space. Two major differen-

ces originate from the quantum nature of the qubits. One of them is quantum

parallelism, which is the fundamental principle of the power of most modern

quantum algorithms. It arises from the fact that the quantum register can exist

in a superposition of basis states. An operation performed on this state is thus

performed on each single component. A crucial point of quantum computing

is the state measurement, where the probability is equal for each outcome. In

P. Shor’s algorithm for factorization [25] this problem is circumvented, as the

superposition state is transformed into a state by a quantum Fourier transform

(QFT) returning the correct answer with a high probability.

An additional point is quantum correlation or quantum entanglement, which is

a pure quantum mechanical phenomenon. In case of a measurement of entangled

multi-qubit states, the states of the single qubits are not independent anymore,

but still the outcome of a single measurement is statistical. These states cannot

be described by a direct product of the single qubit states, e.g.:

(a1|0〉+ b1|1〉)⊗ (a2|0〉+ b2|1〉) 6=
1√
2
(|00〉+ |11〉). (1.34)

Entanglement gives rise to the speedup of quantum algorithms operating on

pure states.
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1.2 Quantum computing

D. Deutsch formulated requirements that have to be fulfilled by quantum

computers [24]. One of these conditions is the preparation of a defined initial

state. As a second point, the implementation of a universal set of quantum gates

needs to be possible. The quantum gates are the elementary, logic operations,

which can be performed by a quantum computer on the qubits. Quantum

gates are reversible and can be represented mathematically by unitary matrices.

The set of universal quantum gates consists of a certain reduced amount of

operations, which can be used to express any unitary operation as a sequence

of them [26]. It could be shown that this is fulfilled by the two-qubit controlled

NOT (CNOT) gate together with all one-qubit gates NOT, Π and Hadamard.

The corresponding Pauli matrices take the forms given in Eqs. 1.35 and 1.36 for

the two-qubit basis {|00〉, |01〉, |10〉, |11〉}.

NOT =


0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

 , CNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 (1.35)

Π =


1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1

 , H =
1√
2


1 0 1 0

0 1 0 1

1 0 −1 0

0 1 0 −1

 (1.36)

The NOT and CNOT gates, given in Eq. 1.35 are qubit flip gates. In case of the

NOT operation the flip of the state of the second (active) qubit is performed,

independently of the state of the first qubit. The corresponding CNOT gate

involves a control qubit (first qubit). Only, if this is in state |1〉, the active (sec-

ond) qubit is flipped. A phase rotation of π of a qubit in state |1〉 is implemented

by a Π operation (Eq. 1.36). The Hadamard gate (Eq. 1.36) involves phase ro-

tations in combination with qubit flips and is essential for the preparation of

superposition states. A corresponding set of gates exists, where the role of the

first and second (passive and active) qubits are interchanged. In accordance

to the definition that a universal set can be used to implement any quantum

operation, the sequence CNOT2 CNOT1 CNOT2 composes a SWAP operation.

A further requirement of D. Deutsch is the preferably correct readout of the

qubits after the quantum gate operations. Additionally, DiVincenzo formulated

further essential requirements [27] for the realization of quantum computers.
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The defined qubit system needs to be scalable, the storage of quantum infor-

mation data must be possible and stable, furthermore a favorable relation of

switching to decoherence times needs to exist.

1.2.2 Implementation of quantum information processing

Only ten years after the first description of the universal quantum computer,

the first CNOT gate was realized by C. Monroe and D. Wineland [28] based on

trapped ions, an implementation previously proposed by I. Cirac and P. Zoller

[29]. In principle, any two-level system could be used as a qubit system, but

also multi-level systems are suitable, if there is a possibility to decouple the

non-qubit basis states efficiently. The electronic states of the ions in an electro-

magnetic trap are used to code the qubit states. The quantum information can

be processed through the collective motion of the ions in the trap. Lasers apply

couplings between the qubit states or a coupling between the internal qubit

states and the external motional states to perform quantum gates or generate

entanglement. A strategy for scaling the ion trap approach to larger numbers of

qubits has been developed, based on arrays of ion traps [30]. In 2005, the first

quantum byte has been achieved [31]. Ion traps as qubit systems are only one

of the proposals so far.

Another very promising quantum computing technology was proposed in 1997

by D. Cory and is based on nuclear magnetic resonance (NMR) [32, 33]. In

the year 2000, a five-qubit NMR computer was presented using spin states of

molecules as qubits [34]. The difference to other implementations is that the

scheme is based on ensembles of molecules. The quantum gates are realized

through radio frequency pulses.

Other concepts rely e.g. on electronic degrees of freedom in solid state, such

as spins of electrons in quantum dots and superconducting flux (or charge)

qubits in Josephson junctions [35, 36, 37, 38, 39, 40, 41]. A scalable setup for

quantum computing with superconducting circuits has been recently presented

[42]. Implementations based on photons, where e.g. the polarization of light

codes the qubit states are also investigated [43, 44, 45].

1.2.3 Molecular quantum computing

The concept of molecular quantum computing with vibrational qubits was first

proposed by C. Tesch and R. de Vivie-Riedle [7]. The qubit states are encoded
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in vibrational states of normal modes of polyatomic molecules. Mediated by

the molecular dipole moment, the quantum gates can be realized by ultrashort,

specially shaped femto- to picosecond pulses. The theoretical proof of principle

was presented for the molecule acetylene [7, 46, 46, 47], where in case of a two

and three qubit system the universal set of quantum gates could be successfully

implemented. Additionally, quantum algorithms, such as the Deutsch-Josza

algorithm [48] or a QFT [49] were calculated for two-qubit systems. Further

studies suggested to select transition metal carbonyls as promising candidates,

due to strong IR absorbance [50, 51, 52]. Studies on the effects of molecular pa-

rameters determining the vibrational modes, the intramode anharmonicity and

the anharmonic coupling reflected basic requirements on these parameters and

the effects on the efficiencies and properties of the quantum gates [53]. Phase

effects within the shaped laser pulses were investigated as well as a quantum

Fourier transformation implemented [49]. Investigations of further molecular

candidates with the same or similar qubit coding schemes were performed by

several other groups [54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66]. A compre-

hensive review on this topic is given in [67]. First experiments, which may allow

for the realization of the proposed quantum computing scheme, were presented

recently [68, 69, 70, 71, 72]. Here, the shaping of mid-IR pulses and tracing

the population mechanism is essential. How the control schemes are performed

in experiment will be shown in Sec. 1.3.2. In theory, the optimization of the

quantum gates is based on OCT, which will be introduced in Sec. 1.3.3.

1.3 Quantum control

Quantum systems and quantum processes have been studied for a long time

with lasers, the main goal was to understand the observed system [1]. In current

experiments the central question is the controllability and efficient manipulation

of quantum systems. Here, the aim is to steer quantum processes in a desired

way, which is commonly referred to as quantum control [3]. The experiments

are based on ultrashort laser pulses, which are amplitude and phase modulated.

A brief overview will be given on ultrashort laser pulses. The experimental and

theoretical approaches to quantum control will be illustrated, i.e. pulse shaping

techniques based on evolutionary algorithms and OCT.
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1.3.1 Ultrashort laser pulses

Ultrashort laser pulses are the driving force of quantum control experiments.

Their generation, characterization and their mathematical description will be

briefly reviewed.

Pulse generation and characterization

Ultrashort pulses in the femto- to picosecond regime can be realized by insert-

ing amplitude modulators in the laser cavity [73]. Saturable absorbers, either

organic dyes or semiconductor materials, are used for passive mode-locking,

modulating the losses in the cavity. The materials bleach out at high intensi-

ties. Due to initial intensity fluctuations in the resonator, a stronger fluctuation

will experience less loss and will self-amplify, as a result a short pulse is gener-

ated. Ultrashort pulses of a few femtoseconds can be realized based on the Kerr

lens mode locking mechanism. The refractive index of a medium is intensity-

dependent, for large pulse intensities. The refractive index changes across the

pulse profile in a Kerr medium leading to self-focusing of the pulse.

For ultrashort pulse characterizations, the laser waveforms need to be sam-

pled by comparatively short events and the used methods are based on

(auto)correlation functions. One technique is frequency resolved optical gat-

ing (FROG) [74, 75]. Several delay times are scanned, where the pulse is gated

with a replica. In experiment, this is performed by using nonlinear optical effects

(such as second harmonic generation or two photon absorption). The correlation

function is additionally spectrally dispersed and the frequency resolved correla-

tion trace can be measured. A different technique is SPIDER (spectral phase

interferometry for direct electric field reconstruction) [76, 77] based on spec-

tral interferometry. Here, a pulse is interfered with a frequency-shifted replica

of itself. In this thesis, some of the calculated pulses are transferred to the

joint time-frequency domain using the FROG technique to retrieve information,

which cannot be derived from the time or frequency representations solely.

Mathematical description

The time duration of an ultrashort pulse is on the order of femto- to picosec-

onds, exhibiting a broad spectrum according to the Fourier relation. The electric

field of the pulses can either be specified in the time (Eq. 1.37) or in the fre-

quency domain (Eq. 1.38), where both representations are connected via Fourier
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transforms [78].

ε(t) =
1

2π

∫ ∞

−∞
ε̃(ω)eiωtdω = F [ε̃(ω)] (1.37)

ε̃(ω) =

∫ ∞

−∞
ε(t)e−iωtdt = F−1[ε(t)] (1.38)

The complex Fourier transformation of the real, electric field ε(t) is complex-

valued and obeys the symmetry ε̃(ω) = ε̃∗(−ω), where ∗ denotes the complex

conjugated. It is sufficient to characterize the spectral field only by the positive-

valued part ε̃+(ω). The power spectrum of the laser field is determined by:

|ε̃(ω)|2 = <(ε̃+(ω))2 + =(ε̃+(ω))2. (1.39)

An inverse, complex Fourier transformation of ε̃+(ω) leads to the associated

description of a complex, time-dependent field (Eq. 1.40).

ε(t) = ε̃+(t) + ε̃−(t) (1.40)

=
1

2
E(t)eiΓ(t) + c.c. (1.41)

=
1

2
E(t)eiω0teiϕ(t) + c.c. (1.42)

= E(t) cos(ω0t+ ϕ(t)) (1.43)

The complex field can also be represented by a product of a real amplitude

function E(t), commonly known as the envelope function, and a phase term

eiΓ(t) (Eq. 1.41). Assuming the spectral amplitude centered around the carrier

frequency ω0, Eq. 1.41 can be rewritten as Eq. 1.42, with the time-dependent

phase ϕ(t), or in concise form as Eq. 1.43. In general, the phase function can

be expressed as a Taylor series around the time t = t0 (Eq. 1.44).

ϕ(t) = ϕ(t0) +
d

dt
ϕ(t0) (t− t0) +

d2

dt2
ϕ(t0) (t− t0)

2 + ...

= ϕCEP + γ t− δ t2 + ... (1.44)

The zero-order temporal phase coefficient ϕCEP in Eq. 1.44 is commonly referred

to as carrier-envelope phase (CEP) and corresponds to a constant phase. It

describes the temporal relation of the envelope function with respect to the

carrier frequency oscillation of the electric field at the time t0, where it is assumed
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that the field is centered around t0. The higher order temporal phase coefficients

are time-dependent. The first order coefficient γ leads to a frequency shift,

whereas a time dependence of second order δ induces a linear frequency change,

denoted as linear chirp.

The pulse power per unit area in a material of refractive index n is given by

the temporal intensity:

I(t) = ε0 c n
1

T

∫ t+T/2

t−T/2

ε2(t′)dt′ =
1

2
ε0 c n E2(t), (1.45)

and by the energy density per unit area:

W =

∫ ∞

−∞
I(t)dt. (1.46)

The pulse durations τp and the bandwidth, i.e. the spectral width ∆ωp of

the ultrashort pulses are commonly defined as the full width at half maximum

(FWHM) of the intensity profiles:

τp = FWHM{I(t)}, (1.47)

∆ωp = FWHM{I(ω)}. (1.48)

Since the electric field in the time domain is directly related to the field in the

spectral domain, Eq. 1.47 and Eq. 1.48 are interdependent. The corresponding

time-bandwidth product:

τp∆ωp ≥ 2πcB, (1.49)

has a minimum value of cB = 4 ln 2/(2π) = 0.441 in case of a Gaussian pulse

shape. If a pulse exactly fulfills the lowest limit, it is known to be bandwidth-

or Fourier-limited (FL). The temporal dependence of a Gaussian pulse is:

ε(t) = ε0 e
−(t/τG)2 cos(ωct), (1.50)

with the parameter τG = τp/
√

2 ln 2 and a maximum energy ε0 and the equiva-

lent spectral dependence takes the form:

ε̃(ω) = ε0e
−2 ln 2

“
ω−ωc
∆ωp

”2

. (1.51)
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1.3.2 Coherent control with genetic algorithms

Coherent control experiments based on learning loop techniques are used to con-

trol quantum processes with modulated laser light [4, 79, 80]. The fundamentals

of the learning loops together with pulse shaping techniques will be introduced

in this section. A key element of the optimization strategy is the genetic algo-

rithm (GA), improving the shaped laser pulses. Since the use of GAs can also

be adapted to theoretical control studies, the essentials of genetic computing

are also reviewed. In the last part, OCT is addressed, which has proven to be a

very powerful tool for the theoretical prediction of laser pulse shapes in control

studies.

Learning loops and pulse shaping

Experimental learning loop techniques have been applied successfully in various

fields on control problems from chemistry, physics and biology [81, 82, 83, 84, 85,

86, 87, 88]. They are based on tailored femtosecond pulses, acting on quantum

systems. A pulse shaping device [89, 90, 91] is used as an external control

source. A feedback signal, i.e. the systems’ response, can be retrieved from the

experiments. Alternatively, in a theoretical setup, the response signal can be

calculated.

An optimization algorithm is used in both cases to improve the desired quan-

tum processes, by means of altering the generated laser fields. In this thesis,

the prospects of a theoretical learning loop approach based on GAs for different

optimization tasks are explored. The learning loop experiments calculations can

be performed by sending preliminary defined FL pulses through a theoretical

pulse shaper.

A spectral pulse shaping device consists of two spectrometers, one which dis-

perses the spectral components onto space in its Fourier plane and the other

one is applied in a reversed way to recollimate the frequencies. A spatial light

modulating (SLM) device can be inserted in the optical path, which can apply

a spatial phase and transmittance pattern in the Fourier plane and the spec-

trum of the pulse becomes modulated. Most frequently, three types of SLMs

are used, acousto-optic modulators, deformable mirrors or liquid crystal SLMs.

The shaping process of a FL pulse ε̃in(ω) is mathematically described by:

ε̃out(ω) = M(ω)ε̃in(ω), (1.52)
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where M(ω) is called the mask function, consisting of a transmittance T (ω) and

a phase φ(ω) part [92, 93]. It can be decomposed into n different, complex-valued

filter functions:

Mn(ω0
n) = Tn(ω0

n) exp(iφn(ω0
n)), (1.53)

for each of the n pixels. Each pixel comprises a spectral range of ∆ωn with

the respective central frequency ω0
n. The total spectral range of the mask is

∆ω =
∑

n ∆ωn. The transmittance function T (ω) is defined in the interval [0, 1]

and the phase function φ(ω) in the range [−π, π]. To describe the pulse shaping

procedure theoretically, the discretized mask function is interpolated, using a

cubic spline interpolation scheme and masked onto an incident FL pulse. The

temporal electric field is modulated according to:

ε̃mod(ω) = ε0

√
T (ω) e

−2 ln 2
“

ω−ωc
∆ωp

”2

eiφ(ω). (1.54)

In case of the phase function φ(ω), two approaches are possible, it can either

be optimized in an analytic form, e.g. a sinusoidal phase modulation can be

applied of the general form:

φ(ω) =
∑

i

ai sin(biω + ci). (1.55)

In this case, 3 · i different parameters have to be optimized. Alternatively, each

value of the phase function can be varied individually. For a shaper with N

pixels, 3 · i or N parameters have to be optimized for the phase function. If

additionally a transmittance function T (ω) is taken into account in similar ways,

the number basically doubles and a vector consisting of all these parameters has

to be optimized by the GA.

Genetic algorithms

The fundamentals of GAs are briefly introduced for the application of femtosec-

ond pulse shaping. A general and very detailed review on GAs can be found in

[94]. As a class of evolutionary algorithms, GAs are global search heuristics, fre-

quently used for combinatorial optimization problems. The basic ideas are taken

from evolutionary biology, the basic structure of a GA is sketched in Fig. 1.1

and will be explained in the following. For the first generation of a GA, a start-

ing population of candidate solutions, called individuals, is randomly generated
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evaluation
of fitness

new generation

initialization

crossover

reproduction

yes
no

convergence?

end

begin

mutation

Figure 1.1: Structure of a genetic algorithm.

(initialization). Each individual has a genome, which corresponds to the phase

and transmittance function in these simulations. A set of simple operations is

defined, which generate the successive populations out of the initial population.

The operators used in the GA are the selection (reproduction), the crossover

(recombination) and the mutation operator.

In case of the selection operator, individuals are copied for the next generation

according to their objective function value, i.e. the fitness. The fitness of each

individual in the current population is evaluated by propagating the molecular

system with each generated laser field and the efficiency of the quantum process

is calculated. A higher fitness means that the probability for this individual,

contributing offspring to the next generation is higher, which can be regarded

as an artificial version of Darwinian natural selection. In algorithmic form, the

selection operator can either be implemented by a biased roulette wheel, where

a slot is assigned to each individual of the current generation. The slot size

is defined proportionate to the fitness value of the respective individual. The

candidates are selected by spinning the biased roulette wheel. The individuals,
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1 Fundamentals of quantum dynamics, information and control

performing better in the objective function, have a higher chance contributing

offspring than others. Copies of the selected individuals are made, which enter a

mating pool, corresponding to a new, tentative population. Another possibility

of the selection operation is the tournament selection, which is based on a biased

roulette wheel, but selects two individuals and decides for the higher-valued one.

Consequently, more probably higher-valued individuals will be reproduced in

case of the tournament selector.

After the selection has been performed in the GA, crossovers between the

individuals in the mating pool take place. First, they are mated at random and

crossings between a pair of individuals can occur. Different crossover techniques

exist, a one-point crossover operation, used here, is based on a single crossover

point of both parent individuals. All data of the genome beyond the crossing

point is swapped between the two mating individuals and two new individuals

are created.

The mutation operator plays only a secondary role and normally the mutation

probability is chosen low compared to the recombination probability. The role

of the mutation operator is to prevent the algorithm from loss of potential useful

genetic material. A mutation randomly alters a single value in the genome of

an individual, with a small probability.

The new generation of offspring is evaluated according to their fitness and

evolves in the next iteration. In this thesis, a steady-state GA from the GAlib

genetic algorithm package [95] is applied. It is based on overlapping populations.

The amount of overlap can be selected and corresponds to the percentage of the

replaced population in each generation. Temporary, the offspring generation is

added to the parent generation and the worst individuals are removed from the

set. If an offspring is worse than an individual from the parent generation it will

not pass over to the next generation. As an advantage, good solutions remain

in the population for more iterations.

1.3.3 Optimal control theory

The corresponding theoretical technique to quantum control experiments is

OCT. An optimality criterion has to be achieved and the method finds an ap-

propriate control law for it, the optimal laser field. Different OCT concepts for

quantum control investigations were developed, predominantly in the groups of

H. Rabitz [96, 6], D. Tannor and S. Rice [97, 5] based on the calculus of varia-
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tions. In general, the following OCT functional (Eq. 1.56) has to be maximized.

J (ψi(t), λ(t), ε(t)) = F (τ)−
∫ T

0

α(t) |ε(t)|2 dt−
∫ T

0

λ(t) G (ψi(t), ε(t)) dt

(1.56)

It includes three terms, the optimization aim F (τ), an integral over the laser

field, penalizing the pulse fluence and an ancillary constraint.

The optimization aim F (τ) is to transfer the initial wave function ψi into a

final state φf after the laser excitation time T and can be formulated as the

square of the scalar product of the initial state, propagated in time with the

target state:

F (τ) = |〈ψi(T )|φf〉|2. (1.57)

Initial and target states can be chosen as eigenstates or arbitrary superpositions

of eigenstates. For the implementation of global quantum gates, it is necessary

to perform several qubit basis transitions with the same laser pulse. In this sense,

global means that independently of the initial qubit state the correct transition

has to be performed. For these calculations, the definition of the control aim is

extended and for a N -dimensional qubit basis it takes the form:

F (τ) =
N∑

k=1

|〈ψik(T )|φfk〉|2. (1.58)

A different formulation of the optimization aim additionally facilitates the cor-

rect phase relation between the single transitions [98, 99, 49].

The second term of Eq. 1.56 is an integral over the laser field ε(t) with a time-

dependent factor α(t). In principle, high values of α assure low field intensities

and complexities. Depending on the implementation, it is known as the penalty

factor or Krotov change parameter. With the choice of α(t) = α0/s(t) and e.g.

a sinusoidal shape function s(t), an envelope function can be impressed on the

laser field [100, 14]. This guarantees smooth switching on and off behaviour of

the pulse, instead of abrupt field intensity changes for the times t = 0, T .

The last term of the functional (Eq. 1.56) comprises the time-dependent

Schrödinger equation as an ancillary constraint, denoted by G (ψi(t), ε(t)), with

the Lagrange multiplier λ(t):∫ T

0

λ(t)G (ψi(t), ε(t)) = 2<
[
C

∫ T

0

〈
λ(t)

∣∣i [Ĥ0 − µ̂ε(t)
]

+
∂

∂t

∣∣ψi(t)
〉
dt

]
.

(1.59)
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1 Fundamentals of quantum dynamics, information and control

Separable differential equations can be derived from this form due to the for-

mulation 2< in Eq. 1.59 and a suitable choice of the factor C in dependence

on the definition of the optimization aim. In case, a single transition is chosen

as control aim (Eq. 1.57), the factor C becomes C = 〈ψi(t)|ψf (t)〉. For multi-

target optimal control theory (MTOCT) the control objective equals Eq. 1.58

and the factor C in the ancillary constraint includes a sum, running over all k

transitions. The complete multi-target functional reads:

J (ψik(t), λk(t), ε(t)) =
N∑

k=1

{
|〈ψik(t)|φfk〉|2

− 2<
[
〈ψik(T )|φfk〉

∫ T

0

〈λk(t)|i
[
Ĥ0 − µ̂ε(t)

]
+
∂

∂t
|ψik(t)〉dt

]}

− α0

∫ T

0

|ε(t)|2

s(t)
dt. (1.60)

The calculation of optimal laser fields now relies on finding the extremum of

the functional (Eq. 1.60) with respect to the functions ψik(t), λk(t) and ε(t).

The derivative of the functional with respect to λk(t) and ψik(t) leads to the

following coupled equations of motion:

i
∂

∂t
ψik(t) =

[
Ĥ0 − µ̂ε(t)

]
ψik(t), ψik(0) = φik, (1.61)

i
∂

∂t
λk(t) =

[
Ĥ0 − µ̂ε(t)

]
λk(t), λk(T ) = φfk, (1.62)

with the corresponding boundary conditions. The propagated wave functions

ψik(t) have to correspond to the initial states φik at the time t = 0 and the

Lagrange multipliers are equal to the target states at the end of the propagation

λ(T ) = φfk. According to [96], the functional (Eq. 1.60) is also differentiated

with respect to the laser field ε(t), where only linear terms are kept and terms

containing (δε(t))2 are neglected.

δε(t)J = J (ψik(t), λk(t), ε(t) + δε(t))− J (ψik(t), λk(t), ε(t))

≈ −
N∑

k=1

∫ T

0

[
2α0

ε(t)

s(t)
+ 2=〈ψik(t)|φfk〉〈ψfk(t)|µ̂|ψik(t)〉

]
δε(t)dt

= 0 (1.63)
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Since there is no incident condition imposed on δε(t), Eq. 1.63 is fulfilled when

the integrand turns zero and an equation constructing the electric field can be

derived:

ε(t) = − s(t)

α0N
=

[
N∑

k=1

〈Ψik(t)|Ψfk(t)〉
〈
ψfk(t)

∣∣µ̂∣∣ψik(t)
〉]
. (1.64)

The coupled Eqs. 1.61, 1.62, 1.64 can be interpreted in different ways and dif-

ferent methods to obtain the optimal field were proposed. The schemes can

be based on gradient-type optimization of the laser fields [101, 102]. Alter-

natively, the Krotov method, which is a global iterative procedure, was de-

veloped [5, 103, 99]. In this case, the 2N + 1 coupled differential equations

(Eqs. 1.61, 1.62, 1.64) are solved iteratively by a self-consistent field method,

which proceeds in the following way. The target states Ψfk(t) are propagated

backward in time with the electric field ε(t) (Eq. 1.62). Afterwards, simulta-

neous propagation forward in time of the wave functions and the target states

takes place (Eqs. 1.61, 1.62), where the new field is determined in each step

as intermediate feedback according to Eq. 1.64. This field is then used in the

next iteration for back-propagation. Also, schemes using an immediate feedback

from the control field in an entangled fashion were proposed, where quadratic

convergence is reached [6].

According to [104], the constraint on the pulse fluence can also been chosen

to take the form: ∫ T

0

α0

s(t)
[ε(t)− ε′(t)]2, (1.65)

in the OCT functional (Eq. 1.60), where ε′(t) corresponds to the electric field

from the previous iteration. The constraint restricts the change in pulse energy

in each iteration with the Krotov change parameter α0. In the next iteration

step of MTOCT, the improved laser field ε(t)k+1 is constructed as follows:

εk+1(t) = εk(t) +
s(t)

α0N
=

[
N∑

k=1

〈Ψik(t)|Ψfk(t)〉
〈
ψfk(t)

∣∣µ̂∣∣ψik(t)
〉]
. (1.66)

This method is known as the modified Krotov OCT scheme.

From the OCT-optimized laser fields, the mask functions can be retrieved [92]

according to:

M(ω) = ε̃+(ω)/εin(ω). (1.67)
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The calculated, shaped OCT pulses are Fourier transformed and the positive,

spectral part, centered at the frequency +ω0 is fitted with a Gaussian enve-

lope εin(ω), centered at the same frequency. Since the shaping device can only

attenuate or retard spectral components, the fit is required to encompass all fre-

quency components of the shaped OCT field. The calculated mask functions are

a direct link between OCT and the corresponding optimal control experiments

(OCEs).
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2 Molecular quantum computing

based on the stimulated,

non-resonant Raman effect

Thus far, the concept of molecular quantum computing with vibrational qubits

has been implemented theoretically in IR active vibrational normal modes with

very high quantum efficiencies [50]. The logic gate operations are realized by

shaped laser pulses in the mid-IR regime. First applications of direct pulse

shaping techniques in this frequency regime were demonstrated in the latest ex-

periments [68, 69], which presently open a way for the realization of vibrational

qubits in the IR regime. The first efficient vibrational state-to-state transitions,

which are key elements of vibrational IR quantum gates, have been shown re-

cently [70].

In contrast, shaping of laser light in the UV/VIS and near-IR domain is a

widely established technique [105, 106, 107, 81, 87] and the implementation

prospects of molecular non-resonant Raman quantum gates in the easily acces-

sible frequency regime are investigated and presented for the first time. This

type of quantum gates will provide new flexibilities, such as the choice of laser

wavelengths.

2.1 Stimulated, non-resonant Raman quantum

computing

In the initially proposed concept of molecular quantum computing, the qubit

states were defined by vibrational eigenstates of an IR active normal mode and

specially shaped IR laser fields act as the quantum gate operations [7]. This

scheme is now transferred to Raman active vibrational normal modes, where

equivalently the degree of excitation of the selected modes codes the qubit basis
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2 Molecular quantum computing based on the stimulated, non-resonant Raman effect

states |0〉 and |1〉, as exemplified in Fig. 2.1. Based on the stimulated, non-

resonant Raman effect, the quantum logic operations can be implemented and

the laser-molecule interaction is mediated by the molecular polarizability α̂, in

this case.

0
1

Figure 2.1: Example of a one-qubit system. The qubit basis states |0〉 and |1〉
are coded by two vibrational states (green) and the qubit flips are performed

by a non-resonant laser-molecule interaction.

Finding a suited molecular system for the theoretical proof of principle is not

a trivial task. From previous studies [53] it is known that the selected normal

modes of the candidate have to fulfill several requirements. To set up a two-qubit

system, the molecule must exhibit at least two strong Raman active vibrational

modes. Typically, C-H stretching vibrations meet this demand. Besides the

spectroscopic activity, the set of selected vibrational modes should be strongly

anharmonic, with respect to the intra- (∆i) and intermode (∆ij, also known as

anharmonic coupling) anharmonicities [53]. The relevance of this requirement

is demonstrated in Fig. 2.2. The level structure of a model two-qubit system is

presented in Fig. 2.2 a), where the arrows indicate qubit basis and subsequent

transitions, which are relevant for the discussion. Mostly, two different cases

may be existent in a set of two vibrational modes. In the first case [upper panel

of Fig. 2.2 b)], the intramode anharmonicity is similarly high as the anharmonic

coupling. This turns out as a favorable situation for the implementation of a

CNOT gate, where only a qubit flip (green line) occurs if the control qubit (first

qubit in this example) is in state |1〉. The optimized laser pulse is most prob-

ably centered at the transition frequency |10〉 → |11〉 (green line), as shown in

Fig. 2.2 c), upper panel. In contrast, the intramode anharmonicity may be sig-
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2.1 Stimulated, non-resonant Raman quantum computing

nificantly stronger than the intermode anharmonicity [Fig. 2.2 b), lower panel],

which leads to two close transition frequencies |10〉 → |11〉 (green line) and

|00〉 → |01〉 [black line, Fig. 2.2 b) and c), lower panels]. For such a molecular

case, a NOT gate involving the two qubit flips (green and black line) can be

realized easily.

a) b) c)

Figure 2.2: Clarification of the role of normal mode anharmonicities for the

implementation of quantum logic gates in a two-qubit system. a) Level

structure of a model two-qubit system. The arrows indicate qubit basis

and subsequent transitions. b) Definition of the intramode anharmonicity

∆i and the anharmonic coupling ∆ij for two different model systems. c)

Spectrum of laser pulses acting as quantum gates with respect to the vi-

brational transition frequencies.

A promising molecular candidate needs to be suited for the implementation

of the complete universal set of quantum gates and not only for one single logic

operation. Therefore, the system must provide balanced anharmonic properties,

so each quantum gate operation can be realized by simple structured and short

laser pulses.

A favorable candidate, complying with these conditions was found by scan-

ning several molecules with promising Raman spectra, i.e. at least two strong

Raman active and resolvable modes. Quantum chemical calculations (b3lyp/6-
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2 Molecular quantum computing based on the stimulated, non-resonant Raman effect

31++G**) were performed to investigate the corresponding anharmonic features

[108]. The most promising molecule was found to be n-butylamine with the two

strongly Raman active C-H stretching modes depicted in Fig. 2.3. The funda-

b)a)

Figure 2.3: n-butylamine - candidate for the implementation of non-resonant

Raman quantum gates. The two-qubit basis states are defined by the vi-

brational ground states and first excited states of the two Raman active

C-H stretching modes depicted in a) and b).

mental frequencies of these modes are ν1 = 2990 cm−1 and ν2 = 3030 cm−1

and the anharmonicities ∆1 = 74 cm−1, ∆2 = 103 cm−1 and ∆12 = 22 cm−1.

The potential energy surface and the polarizability tensor components were

calculated along the vibrational modes. The 2D structure of the selected compo-

nents αxx, αyy, αzz, αxy of the polarizability are depicted in Fig. 2.4. The eigen-

functions and eigenvalues were explicitly evaluated with the relaxation method

presented in Sec. 1.1.3 and the transition frequencies and anharmonicities de-

termined. The eigenfunctions were used to transfer the polarizability compo-

nents into the eigenstate representation (equivalently to the dipole moment in

Eq. 1.12).

For the definition of the two-qubit basis (|00〉, |01〉, |10〉, |11〉) as sketched in

Fig. 2.3 the vibrational ground state of each selected normal mode is encoded

as the logic value |0〉 and the first excited state as the logic value |1〉.

2.2 MTOCT with frequency filters

The quantum operations are based on the stimulated, non-resonant Raman effect

and the induced quantum dynamics obeys the following Schrödinger equation:

i
∂

∂t
Ψ(t) = Ĥ0Ψ(t)− 1

2
ε1(t)α̂ε2(t)Ψ(t). (2.1)
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2.2 MTOCT with frequency filters

Figure 2.4: 2D structure of four selected components of the polarizability tensor

α̂ along the two selected C-H stretching modes of n-butylamine.

The laser-molecule interaction is dependent on the two control fields ε1(t) and

ε2(t). A new strategy has to be developed for the simultaneous optimization of

both laser pulses. The multi-target formulation of the OCT functional Eq. 1.60

with the time-dependent Schrödinger equations (Eq. 2.1) cannot be applied in

this case, as will be explained in detail, since it demonstrates the difficulties

which arise from optimal control calculations of non-linear, non-resonant pro-

cesses.

As a first step the desired control objective is assumed as a simple state-to-

state transition from the vibrational ground state (Ψi = Ψ0) to the first excited

state (Ψf = Ψ1), as indicated in Fig. 2.5 a). Even, if additionally one laser is

kept fixed (ε1) during the optimization with the OCT scheme (Eq. 1.60) and

the time-dependent Schrödinger equation (Eq. 2.1), the result will differ from

the initially desired one, sketched in Fig. 2.5 a). This situation is visualized in

Fig. 2.5 b), the two processes marked on the left (light-blue and dark-blue) and
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2 Molecular quantum computing based on the stimulated, non-resonant Raman effect

on the right (green and light-blue) are not distinguishable within this formalism

and both paths will be used. Consequently, the spectrum of the optimized

laser field ε2 will contain two frequency components ω2 and ω3 = ω2 + 2∆

[Fig. 2.5 c), ∆ corresponds to the transition frequency |0〉 → |1〉]. This point

is not inherently problematic yet, but also does not correspond to the simplest

solution of a pulse with one distinct carrier frequency, as considered in Fig. 2.5 a).

The OCT algorithm (based on Eq. 1.60) completely fails, if both laser fields

ε1(t) and ε2(t) are optimized simultaneously, since equivalently to the frequency

component ω2, which splits into the two components ω2 and ω3, in addition

the spectrum of the previously fixed laser ε1(t) will also start to split into two

components ω1 and ω1 +2∆. As a further progressive effect, the spectra of both

laser fields will spread completely in the frequency domain.

0
1

ω1 ω2

ω3ω2

2∆1ω ω2

ω3

∆

∆

a) b) c)

Figure 2.5: a) Level scheme of a non-resonant Raman state-to-state transition,

which has to be optimized. b) In case of the OCT optimization of the

laser field ε2(t) [ε1(t) is fixed during this optimization], the two indicated

processes are not distinguishable for the OCT algorithm and both transition

pathways are used. c) Resulting spectrum of the optimized laser field ε2(t).

As an answer to this problem, one has to gain control over the laser pulse

spectra within the OCT formalism. Several suggestions have been presented,

dealing with this challenge and introducing this feature in different ways

[101, 109, 110, 92]. However, all approaches demonstrated so far do not show

monotonic convergence or are not generally applicable.

A new, modified implementation of OCT based on the Krotov method, which

allows for strict limitations on the spectrum of the optimized laser fields, was

developed and will be presented [111]. The new multi-target optimal control
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2.2 MTOCT with frequency filters

functional for a molecular non-resonant Raman interaction takes the form:

J [Ψk(t),Φk(t), ε1(t), ε2(t)] =∑
k

{
|〈Ψk(T )|Φk〉|2 −

2∑
l=1

α0

∫ T

0

|εl(t)− ε̃l(t)|2

s(t)
dt−

2∑
l=1

γl|Fl(εl(t))|

− 2 <

[
〈Ψk(T )|Φk

〉 ∫ T

0

〈Φk(t)|
[
i

(
Ĥ0 −

1

2
ε1(t) α̂ ε2(t)

)
+
∂

∂t

]
|Ψk(t)〉dt

]}
.

(2.2)

It includes the two laser fields εl(t) with l = 1, 2 and the time-dependent

Schrödinger Eq. 2.1 with the non-resonant Raman interaction The control ob-

jective is determined by the square of each overlap 〈Ψk(T )|Φk〉 of the propagated

initial states Ψk(T ) at the final time T with the target states Φk of the global

quantum gate operation. The change of the pulse energy is restricted with the

Krotov change parameter α0. The appropriate choice of the initial reference

field ε̃l(t) and of the parameter α0 finds solutions of minimal pulse energies. A

temporal shape function [100] s(t) is inserted to achieve smooth switching on

and off behavior of each laser field. The temporal duration of the laser-molecule

interaction can be limited either by the total time T or by the shape function

s(t), in accordance to the control scenario and the decoherence time scales. The

wave function has to satisfy the time-dependent Schrödinger equation (Eq. 2.1)

including the time evolution of the non-resonant Raman process.

ω3ω2 ω3ω2

2ω ω3

∆

∆

a) b) c)

Figure 2.6: a) Performed filtering operation of the laser field spectra for the

optimization of a non-resonant Raman transition. b) Respective band-pass

filter and c) band-stop filter.
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A new frequency constraint is introduced in the MTOCT functional (Eq. 2.2),

where the new terms Fl(εl(t)) are given in the time representation and restrict

each electric field εl(t). Throughout the formalism, the frequency filter operation

is treated mathematically correct, together with the corresponding Lagrange

multipliers γl(t). The filter operations can in principle be realized in the time

domain by linear digital filters, and particularly by finite impulse response (FIR)

filters [112]:

F (ε(t)) =
N∑

j=0

cjε(t− j∆t), (2.3)

with the FIR filter coefficients cj and the step size ∆t in the discrete time

representation. By variation of the MTOCT functional (Eq. 2.2) with respect

to the initial states Ψk(t), the target states Φk(t) and the laser fields εl(t), a set

of coupled differential equations can be derived. The iterative calculation of the

laser fields is performed with the Krotov method [103]. The next iteration step

n+ 1 for the laser field ε1(t) and analogously for ε2(t) can be formulated as:

εn+1
1 (t) = εn

1 (t)− s(t)

2α0

(
γ1(t)−

∑
k

C1,k

)
, (2.4)

with εn
1 (t) = ε̃1(t), and:

C1,k = =[〈Φk(t, ε
n
1 , ε

n
2 )|Ψk(t, ε

n+1
1 , εn+1

2 )〉
× 〈Φk(t, ε

n
1 , ε

n
2 )|α̂εn+1

2 |Ψk(t, ε
n+1
1 , εn+1

2 )〉].
(2.5)

The Lagrange multipliers γl(t) can be interpreted as correction fields needed to

suppress the undesired frequency components. In the optimal case the Lagrange

multipliers γl(t) are adjusted to subtract exactly the undesired field components

from the optimized uncorrected fields
∑

k Cl,k (Eq. 2.5). The spectral constraint

Fl(εl(t)) depends only linearly on each electric field and it is possible to realize

the side conditions |Fl(εl(t))| = 0 using Fourier filters fl(ω). It turned out that

under practical considerations, it is easier to use Fourier filters instead of FIR

filters. The Lagrange side conditions can be implemented in form of band-stop

filter operations [Fig. 2.6 c)] using the inverse f ′l (ω) = 1 − fl(ω) of the band-

pass filters [Fig. 2.6 b)] fl(ω), which guarantees that only the undesired spectral

components pass the band-stop filters [Fig. 2.6 c)]. The spectral and temporal

shape functions have to obey the time-frequency uncertainty principle.
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2.2 MTOCT with frequency filters

The Lagrange multipliers γl(t) cannot be determined directly. In fact, for the

calculation of γl(t) the field change
∑

k Cl,k must be predicted in the actual iter-

ation step. This task is performed by propagating the target states Φk and the

intital wave functions Ψk with the laser fields εn
l (t) from the previous iteration.

The construction of the resulting fields γ′l(t) resembles the OCT fields of the

unmodified algorithm.

γ′1(t) =
∑

k

=[〈Φk(t, ε
n
1 , ε

n
2 )|ψk(t, ε

n
1 , ε

n
2 )〉

×〈Φk(t, ε
n
1 , ε

n
2 )|α̂εn

2 |ψk(t, ε
n
1 , ε

n
2 )〉] ≈

∑
k

C1,k

(2.6)

Filtering this output γ′1(t) or analogously γ′2(t) with the band-stop filter f ′l (ω)

[Fig. 2.6 c)] transforms them into the correction fields γ1(t) or γ2(t). The trans-

formation is accomplished with the help of Fourier transforms F .

γl(t) = F−1[f ′l (ω) · F(γ′(t))] (2.7)

Each of the new fields εn+1
l (t) can now be calculated by inserting the result

from Eq. 2.7 in Eq. 2.4. The Lagrange multipliers γl(t) represent the time-

dependent electric fields of the undesired frequency components. The correction

fields are evaluated in each iteration step and are subtracted from the optimized

uncorrected field (Eq. 2.4). Finally, to maintain the validity of the side condition

the optimized field has to be filtered with the band-pass operation fl(ω) after

each iteration.

The modified OCT scheme provides monotonic convergence, i.e. each itera-

tion step improves the objective. Its convergence is proved analogously to the

procedure given in [104] for standard Krotov OCT. The difference in the line of

argumentation arises from the new constraints and enters in:∫ T

0

− α0

s(t)
∆ε2

l (t) + γl(t) |Fl(ε
n+1
l (t))| − γl(t) |Fl(ε

n
l (t))|

+ ∆εl(t)

[
2
α0

s(t)
∆εl(t) + γl(t)

]
dt ≥ 0,

(2.8)

(conforming with Eq. A15 of [104]). ∆εl(t) = εn+1
l (t) − εn

l (t) denotes the

change of the laser fields between two iterations.

In accordance with a Lagrange side condition, the output of the filter oper-

ations has to be zero. Consequently, all terms of Eq. 2.8 containing Fl(ε(t))
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2 Molecular quantum computing based on the stimulated, non-resonant Raman effect

become zero. Inserting Eq. 2.4 into Eq. 2.8 leads to:∫ T

0

3

4

s(t)

α0

γ2
l (t) +

s(t)

α0

γl(t)
∑

k

Ck +
1

4

s(t)

α0

(∑
k

Ck

)2

dt ≥ 0, (2.9)

where only one non-quadratic term appears besides two positive, quadratic ones.

As a result, the integral is always greater than or equal to zero, which meets the

requirements of monotonic convergence.

2.3 Molecular candidate and Raman quantum

gates

The theoretical implementation of Raman quantum gates, comprising a non-

resonant, two-photon, two-color process, can be regarded as a great challenge for

the new OCT scheme with frequency filters (Eq. 2.2). The quantum dynamics

are carried out with a Chebychev propagation scheme (Sec. 1.1.2, [113]).

A schematic sketch of the vibrational ladder and the transitions induced by

the two quantum gate operations NOT and CNOT are depicted in Fig. 2.7.

As already explained, the OCT scheme (Eq. 1.60) fails for the simultaneous

optimization of two non-resonant laser fields, since the virtual states are not

determined within the formalism and the carrier frequencies of the laser pulses

are independent of the eigenvalues of the system. The new algorithm provides

the opportunity to optimize both laser fields within a selected and limited fre-

quency range and simple structured, stimulated, non-resonant Raman quantum

gates with high efficiencies can be predicted for the first time.

The OCT calculations were performed in the eigenstate representation, using

the 50 lowest eigenstates. The laser-molecule interaction is based on the x2-

tensor component (Fig. 2.4) and consequently both laser fields ε1(t) and ε2(t)

are assumed x-polarized. For the optimizations, temporal shape functions of

the form:

s(t) = sin2

(
t

T
π

)
, (2.10)

are used, where the time t runs from 0 to T , the end of the laser-molecule

interaction period. A universal set of quantum gates is implemented for the

n-butylamine two-qubit system by stimulated, non-resonant Raman processes.

The CNOT, NOT and Hadamard gate with efficiencies above 99 % are presented
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2.3 Molecular candidate and Raman quantum gates

01
10
11

00

Figure 2.7: Stimulated, non-resonant Raman quantum gates. a) A global NOT

gate is indicated by the arrows |00〉 ↔ |01〉 and |10〉 ↔ |11〉. A CNOT

gate is realized by pulses, switching the state of the active qubit when the

control qubit (first qubit) is in state |1〉 and induces the population transfer

|10〉 ↔ |11〉.

in Fig. 2.8. The Π gate is assumed to be implemented by a time delay for the cor-

rect phase rotation. The laser fields ε1(t) and ε2(t) of the global CNOT gate can

be realized by simple Gaussian-shaped laser fields [compare Fig. 2.8 a) for ε1(t),

the shape of ε2(t) is equivalent]. Their related spectra are depicted together

with their band-pass filter functions fl(ω) in Fig. 2.8 b). The carrier frequencies

were chosen to be in the near IR regime with 800 nm (12500 cm−1) and 643 nm

(15541 cm−1). The global NOT and Hadamard operations [Fig. 2.8 c) and d)]

are more complex in structure, because two vibrational transitions [compare

Fig. 2.7 a) for the NOT gate] have to be driven simultaneously and the funda-

mental qubit transition is close to the corresponding passive one. The x2-tensor

component of the polarizability drives the vibrational transitions for both qubit

modes. Thus, it can be expected that polarized fields shaped to discriminate

the qubit modes, might further simplify the laser field structures.

The monotonic convergence for the CNOT gate optimization with a Kro-

tov change parameter α0 = 10 (referring to the fluence integral calculated in

au) can be traced from Fig. 2.9, solid line. The dashed line shows the evo-

lution (normalized to unity) of the undesired spectral components during the

optimization. Since the guess fields were chosen as simple, bandwidth tailored

Gaussian-shaped laser fields, no frequency components have to be suppressed.

In the first iteration step, the amount of undesired spectral components jumps
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2 Molecular quantum computing based on the stimulated, non-resonant Raman effect
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Figure 2.8: The non-resonant Raman fields ε1(t) acting as quantum logic op-

erations are depicted. The corresponding laser fields ε2(t) have the same

envelope functions, but different carrier frequencies. a) Global CNOT gate

laser field. b) Spectra of both CNOT fields with their band-pass functions

(dashed lines). c) Laser field for the global NOT gate and d) for the global

Hadamard operation.
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Figure 2.9: The solid line indicates the convergence of the modified

OCT algorithm after the total time T (determined by the yield∑4
k=1

1
4
〈Ψik(T )|Ψfk(T )〉) during the optimization. The amount of the sup-

pressed frequency components during the optimization is shown by the

dashed line (scaled to one).

to a maximum of less than 1 % of the pulse energy, but converges to zero, while

reaching the optimization aim.

2.4 Application prospects of bandwidth-limited

OCT

In general, OCT as the theoretical counterpart to OCEs is a powerful method

for the prediction of pulse structures as an initial guess and guidance for OCE.

With OCT, insight into the quantum pathways of these processes is directly

available and the numerous applications range from the control of chemical

reactions in gas and condensed phase [114, 115] to the control in nanostructures

[116, 117] and to quantum optical problems like quantum information processing

[7, 67, 118, 119] or the preparation of cold molecules [104, 120]. However, one

fundamental difference between OCE and OCT is the spectral bandwidth of

the laser field, inherently present in the experiment but in principle unlimited

in the original OCT formulation. The general comparability of experimental

and theoretical results may be complicated, since the theoretical answer for the

optimal pulse can always span a wide bandwidth with quantum pathways out

of experimental reach.

The presented frequency filtering OCT algorithm [111] is the first method,
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2 Molecular quantum computing based on the stimulated, non-resonant Raman effect

which allows for the treatment of the time and the frequency domain on an

equal footing in OCT calculations, while preserving the monotonic convergence

and universal applicability. It guarantees a close link to learning loop control

experiments and offers an elegant possibility to study OCEs theoretically by

explicitly including the experimental feature of the limited spectral bandwidth

as a constraint.

The optimized non-resonant Raman quantum gates demonstrate the power

of the presented method, but are only one of the possible applications of the

frequency filtering OCT scheme. The control of other multi-color, multi-photon

processes with ultrashort laser pulses is now accessible. Additionally, the appli-

cations of the new method can be easily transferred to various problems, covering

a wide range of physics. For control tasks beyond the typical molecular physics

area, such as the preparation of cold molecules by photo-association [104], atom

transport in optical lattices [121], fast and robust gate operations with trapped

ions [122] and NMR qubits [123] and voltage waveforms for transport sequences

in ion traps [124], frequency filtering becomes a crucial requirement to predict

realizable control functions. In general, the simplification of theoretical control

functions, such as pulse shapes for the experiment can be achieved.

2.5 Conclusion

A new realization strategy for the concept of molecular vibrational quantum

computing has been presented by the implementation of simple structured, non-

resonant stimulated, Raman quantum gates of high efficiencies [111]. Thereby,

vibrational quantum computing in the ground state is transferred for the first

time to the 800 nm regime, which is well established and accessible for pulse

shaping techniques.

For the optimization of the non-resonant Raman quantum gates, a Krotov

OCT approach has been developed, which treats time and frequency domain

equally, thus, unifying global optimal control with spectral constraints. The

new tool optimizes laser fields under realistic experimental spectral conditions.

Optimal laser fields and control pathways in the experimentally accessible search

space are predictable now. Additionally, an arbitrary pattern can be imprinted

on the selected frequency range to suppress or enhance distinct quantum path-

ways. Thus, a strong and direct link to OCE is provided. The method has been
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2.5 Conclusion

successfully demonstrated for a non-resonant multi-photon process, but can also

easily be transferred to linear processes.
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3 Control of vibrational quantum

processes with genetic algorithms

OCT [96, 97, 6] and OCEs [81, 87] have been successfully demonstrated for nu-

merous applications in molecular physics, driving control processes with modu-

lated laser pulses. However, the underlying search strategies differ, while OCT

operates in the time domain, OCE optimizes the laser fields in the frequency do-

main. This implies that both search procedures experience a different bias and

follow different pathways on the search landscape. A clear advantage of OCT

is the possibility to strictly limit the laser-molecule interaction time, which is

important, especially in the condensed phase, where decoherence sets an upper

limit for the temporal control window. In the parameter space of OCT, it was

possible for different control tasks [7, 111] to find a subspace of high-efficiency

solutions with simple structured laser fields, providing robust mechanisms.

In recent years, coherent control of molecular vibrational excitation with

shaped mid-IR pulses has been achieved [72, 125, 126, 71, 91]. Additionally, first

methods of direct pulse shaping in this frequency regime have been developed

[70, 68, 69]. This allows, together with the possibility to follow the population

transfer induced by the modulated pulses [70], for the first experimental imple-

mentation of quantum logic operations realizing molecular vibrational quantum

computing operating on IR active modes.

Inspired by these recent developments, the question is investigated of whether

and how OCE results can be traced in the OCT solution space of simple struc-

tured and short laser pulses. The focus is on similarities and differences of GA

and OCT searches and solutions found. Based on knowledge from previous OCT

studies, the aims are simple and robust GA solutions. This will enable the pre-

diction of a promising and concerted search strategy and for optimal solutions

within the control space of the experiment.

The control and optimization prospects in the frequency domain are studied

theoretically, using a GA and shaping FL pulses. The results are discussed

45



3 Control of vibrational quantum processes with genetic algorithms

in comparison to OCT solutions and the possible overlap of OCE and OCT

solution subspaces is explored. Strategies to approach OCT solutions in OCE

searches, based on GA for amplitude and phase modulation, are investigated

and presented. In the theoretical simulation, the experimental constraints, e.g.

the incident pulse duration, the carrier frequency, the maximum energy and the

properties of the mask functions, can be met and conserved in the beginning

and during the optimization.

The objectives of this study are state-to-state transitions and unitary trans-

formations, within the scope of vibrational excitation of transition metal car-

bonyls. Previous theoretical studies [50, 52, 51] already proposed transition

metal carbonyls, and in particular MnBr(CO)5, as favorable candidates for the

realization of molecular quantum computing with vibrational IR qubits. Addi-

tionally, many experimental studies illustrate the suitability of such complexes

for photo-physical investigations [127, 128, 129, 130, 131] and recent experi-

ments on coherent control of W(CO)6 [70] provide the opportunity to check

the consistency of theory and experiment. The possibility to optimize vibra-

tional quantum gate operations with GAs theoretically, has been demonstrated

previously [59, 62] for small molecules.

Analogously to experimental closed loop setups, the application prospects of

two different implementations of the phase function are investigated, a pixeled

phase variation and a sinusoidal phase modulation. The approach based on

analytic, parametrized phase forms was introduced in the experiment to decrease

the complexity of the shaped pulses and to facilitate the interpretation of OCEs

[132]. The control landscape generated by the parametrized phase functions are

examined and the underlying mechanisms clarified. Strategies to decrease the

complexity of pulse shapes gained from from the pixeled mask function approach

are developed. They benefit from previous OCT calculations. Additionally, the

capabilities of the experimental GA search are extended by optimizing the FL

pulses with the GA simultaneously to the phase and transmittance functions.

The most promising FL pulse properties and mask functions for future quantum

control experiments can be predicted from these calculations.

3.1 Model systems and computational details

The objectives of this study are vibrational state-to-state transitions and uni-

tary transformations for the two metal carbonyls W(CO)6 and MnBr(CO)5.
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Figure 3.1: IR active normal mode vibrations used for the implementation

of state-to-state transitions and unitary transformations. a) T1u mode of

W(CO)6. b) A1 mode of MnBr(CO)5. c) E mode of MnBr(CO)5.

The control investigations are performed for strongly IR active C-O stretching

normal modes of the metal carbonyls, the T1u mode of W(CO)6 [Fig. 3.1 a)] and

the E and A1 mode of MnBr(CO)5 [Fig. 3.1 b) and c)]. The potential energy

curve of the T1u mode of W(CO)6 and the corresponding dipole moment are

calculated quantum chemically [108] with density functional theory (b3lyp/6-

31G∗, LanL2DZ for W), in case of the MnBr(CO)5 see [50]. The vibrational

eigenfunctions are explicitly calculated by a relaxation method (Sec. 1.1.3), the

dipole matrix elements are evaluated and the Hamiltonian is set up in the eigen-

state representation. In case of the molecule W(CO)6, the vibrational eigenstates

from the transient spectrum [70] are used to simulate the experimental condi-

tions accurately, the energy of the higher lying vibrational levels are extrapo-

lated with the anharmonicity traced from the spectrum. The time propagation

is performed with the SPO technique (Sec. 1.1.2). For the quantum gate cal-

culations the vibrational ground state is defined as the qubit state |0〉 and the

first vibrational excited state as |1〉.
The shaped laser fields, driving the desired vibrational quantum processes

are optimized similar to the closed loop technique, which is often pursued in

experiments and sketched schematically in Fig. 3.2. The incident, FL pulses are

characterized by the carrier frequency ωc, the FL pulse duration τp (FWHM)

and the maximum intensity ε0 as given in Eq. 1.50. With the shaping device

a phase and a transmittance function is impressed on a FL pulse spectrum
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3 Control of vibrational quantum processes with genetic algorithms

loop
closed

algorithm

pulse shaper

experiment

Figure 3.2: Schematic sketch of the closed loop setup in OCEs.

according to Eqs. 1.52 and 1.54. The phase functions used in this study are either

parametrized sinusoidal functions as given in Eq. 1.55 or pixeled mask functions

(phase and transmittance) are used. The modulated field is then applied on

the sample in the experiment or in this theoretical study the molecular system

is propagated under the influence of the time-dependent electric laser field and

the quantum yield of the process is calculated afterwards. This data is returned

to the optimization algorithm, where a steady-state GA from the GAlib genetic

algorithm package [95] is applied in this study. It replaces only the individuals

with the lowest fitness by offspring. As an advantage, good solutions remain

in the population for more iterations. The phase and transmittance functions

are now optimized by the GA operators, borrowed from Darwinian evolutionary

theory, to increase the efficiencies of the control processes iteratively.

In optimal control calculations [96, 97, 6, 7], pulse parameters are entered in

terms of a guess laser field, but they are not binding for the formalism and are

generally altered during the optimization, except of the pulse duration. OCT-

specific parameters, which need to be chosen initially, are a penalty factor for

the restriction of the pulse energy and a shape function, to ensure a smooth

switching on and off behavior of the pulse intensity (Eq. 1.60). For the GA, one

has to specify the FL pulse parameters, the number of pixels and the pixel width

explicitly. These parameters stay fixed during the optimization. Solutions for

the selected FL pulse and pixel properties are generated exclusively. Whereas, in

OCT the required properties of the FL pulses can be deduced from the optimal

laser field ([92], Eq. 1.67) and can vary for runs with different penalty factors.
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3.1 Model systems and computational details

Additional GA-specific input data are the mutation rate, the crossing-over rate,

the replacement factor, the population size and the sampling of the shaper. The

parameters 0.33 for the replacement rate, 0.05 for the mutation rate and 0.95

for the crossover rate are used.
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Figure 3.3: From a) to d): NOT gates optimized with a GA. c), d) Lower

panels: scaled spectra (black line), phase (red line) and transmittance (blue

line) functions. Due to the cubic spline interpolation the transmittance

might slightly overshoot the range [0, 1], this should not affect the validity

of the results. e) OCT result for the NOT gate.
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3 Control of vibrational quantum processes with genetic algorithms

3.2 Results and discussion

The results for the state selective excitation of the T1u of W(CO)6 analogously to

the experiment [70] are investigated. Additionally, quantum gates are optimized

for the metal carbonyls with sinusoidal phase functions and pixeled mask func-

tions and both approaches discussed. Strategies, based on the knowledge from

previous OCT calculations, are used and lead to simplifications of the resulting

laser fields.

3.2.1 NOT gate: T1u mode of W(CO)6

The first optimization aim is a NOT gate operation, switching the qubit basis

states |0〉 ↔ |1〉 for the qubits encoded in a T1u normal mode of W(CO)6.

The pixeled phase φ(ω) and transmittance functions T (ω) are optimized with

a spectral pixel resolution of 10 cm−1. The FL pulse parameters are given in

Tab. 3.1, first row. The best individual yields an efficiency of 99.6 % and a

τp [fs] ε0 [au] ωc [cm−1]

105 0.002 2000

480 0.001 2000

700 0.0003 2000

Table 3.1: FL pulse properties for NOT gates.

rather complex envelope function, depicted in Fig. 3.3 a). Similar structures of

highly efficient quantum gates have been reported earlier for different molecules

[59, 63, 62]. For more robust laser fields, the focus is on the simplification

of such pulses, in favor of adiabatic state switching and low field intensities.

From OCT, a certain tendency to longer FL pulses for gate operations in the

carbonyl complexes is known. Consequently, the FWHM of the FL pulse is

increased and the parameters given in Tab. 3.1, second row, are used. A clear

simplification of the envelope function results with a shorter time duration and

the laser field consists only of a few subpulses [Fig. 3.3 b)]. In previous OCT

work [52], the variations within the phase functions were very small. Thus,

assumingly the envelope functions can further be simplified when additionally

the maximum phase variation is limited, i.e. the co-domain is decreased from

[0, 2π] to [0, 0.1 · 2π]. The result is shown in Fig. 3.3 c), upper panel, in the time
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3.2 Results and discussion

domain and in the lower panel, in the frequency domain, the envelope reveals

three subpulses.

For comparison, a corresponding OCT calculation was performed, where a

total pulse duration of 5.3 ps was used for the shaped OCT pulse and a penalty

factor α = 200. The resulting, highly efficient NOT gate laser field (99.3 %) is

presented in Fig. 3.3 e), together with the calculated spectrum (black line) and

mask functions [phase: red line, transmittance: blue line, both not interpolated,

spectral pixel width < 7 cm−1, lower panel of Fig. 3.3 e)]. The field is almost

completely amplitude modulated, but not phase-shaped. The FWHM of the

corresponding FL pulse is elongated to 825 fs and the spectrum is centered at

the fundamental transition frequency (1983 cm−1).

The FL pulse derived from the OCT result is employed as incident pulse for

further GA calculations and a spectral pixel width of 6 cm−1 is used. First, the

co-domain of the phase function is confined to a minimum range of [0, 2π] · 0.01.

The resulting NOT gate (not shown here) is also highly efficient, however, the

phase is still varying and the GA fully uses the available range, the phase func-

tion is limited to. Statistically, varying phases are much more probable than

constant phase functions in GA optimizations. As these fluctuating phase func-

tions already give good solutions, the GA has no bias for flat phase functions.

No correlation is imposed on the phase values of the pixels to enforce constant

phase functions, as in case of OCT, where this is indirectly implemented by

the use of high penalty factors α. Thus, the OCT optimization explores and

converges in a different part of the search space compared to theoretical and ex-

perimental GA applications. Ultimately, only amplitude shaping of the OCT FL

pulse is allowed in the GA search and the resulting field is shown in Fig. 3.3 d).

An efficiency exceeding 99.9 % is reached, and the GA finds a solution very close

to the OCT result. The laser fields mainly differ in the duration, as the GA

offers no time constraint for the optimized pulse [Fig. 3.3 d), e), upper panels].

Although, limitations on the phase range lead to simplified control fields, more

demanding control tasks will require some flexibility in the phase function [52].

The strategy of elongated FL pulses and a limited co-domain of the phase

function, is also attempted for a Hadamard operation. A spectral pixel resolu-

tion of 10 cm−1 is used and the parameters for the FL pulse are given in Tab. 3.1,

third row. For high quantum yields the boundaries of the phase variation must

be relaxed to [0, 2π] · 0.5 and efficiencies exceeding 99.4 % are obtained (Fig. 3.4).
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Figure 3.4: Upper panel: Hadamard gate, lower panel: scaled spectrum (black

line), phase function φ(ω) (red line) and the transmittance function T (ω)

(blue line).

3.2.2 Objective with a cost function

Purely pixel-based GA optimizations yield complex field structures for unitary

transformations. Simplifications of pulse structures can be achieved when the

knowledge from OCT results is used, i.e. simple solutions can be found within

the search space of the GA. As OCT results are not always available, a favorable

alternative is to extend the objective by a cost function, analogously to OCT. In

Sec. 3.2.1, the objective was simply defined by the efficiency of the population

transfer:

O =
1

N

N∑
k=1

|〈Ψik(T )|Φfk〉|2, (3.1)

with each of the k wave functions Ψi(T ) propagated to the final time T and

the target states Φf . The field intensity weighted by a penalty factor α is now

subtracted from the overlap term:

O =
1

N

N∑
k=1

|〈Ψik(T )|Φfk〉|2 − α

∫ T

0

ε(t)2dt. (3.2)
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Consequently, efficient laser fields with low intensities dominate the ones with

high intensities. For a mask function with a spectral pixel resolution of 10 cm−1
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Figure 3.5: a) Convergence of the quantum yield and b) of the objective func-

tion for different α values. c) Optimized laser fields for different α values.

and the FL pulse parameters given in Tab. 3.2, the penalty factor α is scanned

exemplarily for the state-to-state transition 0 → 1 [Fig. 3.5 a) and b)]. α is given

in atomic units, referring to the variables ε(t) and t also used in atomic units. Ac-

cordingly with ascending values of α, the maximum objective reached, decreases

and the monotonic convergence of the GA runs slightly vanishes [Fig. 3.5 b)].

Still, control efficiencies above 99 % are reached up to a value of α = 20 and

the monotonic convergence stays mostly acceptable [Fig. 3.5 a)]. The resulting

envelope functions [Fig. 3.5 c)] more and more resemble each other with increas-
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3 Control of vibrational quantum processes with genetic algorithms

τp [fs] ε0 [au] ωc [cm−1]

725 0.001 2000

Table 3.2: FL pulse properties for a GA search with a modified objective

function.

ing α and it can be deduced that the GA is guided towards similar pathways to

achieve the optimization aims.

Equivalently to the energy cost function, population in distinct vibrational

levels (e.g. overtone states) or the complexity of the envelope can be incorpo-

rated.

3.2.3 Phase modulation in analytic form

The exclusive application of analytic phase functions emerged from the aim to

reduce the complexity of the shaped laser fields and to understand the underlying

mechanisms [85, 132, 133]. In OCT, it is neither possible to address the phase

function of the laser fields directly, nor can analytic expression be defined. In

the GA scheme this is straightforward to implement.

State-to-state transition in the T1u mode of W(CO)6

The control landscape for multipulses

The state-to-state transition 0 → 1 in the T1u mode of W(CO)6 is optimized

with a sinusoidal phase modulation following the experiment [70]:

φ(ω) =
∑

i

ai(sin biω + ci), (3.3)

where i = 1 and ci = 0 is used. Analogously to the experiment, no trans-

mittance function is employed. The FL pulse properties are given in Tab. 3.3.

The resulting multipulses are characterized by the phase parameters ai and bi.

The control landscape is investigated by scanning the influence of these param-

eters (a1 = a and b1 = b) on the quantum efficiency (Fig. 3.6), where a is

dimensionless and b is a time, given in atomic units. Sections of the control

landscape are shown in Fig. 3.6 for the large parameter range a: [0.6, 2.4] and

b: [20000, 40000], the smaller inset shows an enlarged upper part of the control
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3.2 Results and discussion

τp [fs] ε0 [au] ωc [cm−1]

212 0.001 1983

Table 3.3: FL pulse properties for analytic phase functions.

surface. The landscape is characterized by a high periodicity along b, with effi-

ciencies ranging from 0 % to 90 %. The variation along a is significantly lower

and thus b is the dominant control parameter.

The phase parameter a is the modulation depth, which determines the relative

intensity of the single subpulses. The modulation time b defines the temporal

shift between the individual subpulses. The temporal pattern of the CEP of

the individual subpulses is constant for a given c value. For c = 0 the CEP

shift from subpulse to subpulse is π in the first half of the pulse sequence and

zero in the second half [Fig. 3.7 a), upper panel, dashed line]. This pattern is

Figure 3.6: Control landscape for the quantum yield as a function of the phase

parameters a and b for the transition 0 → 1 calculated for the ranges a :

[0.6, 2.4] and b : [20000, 40000]. The inset shows an enlarged part of the

surface.

not affected by variation of b. However, depending on b, an optical phase jump

occurs between the subpulses, due to the combination of the fixed CEP pattern

and the varying temporal shifts. The range of the optical phase jump [0, 2π]

corresponds to an oscillation period of the carrier frequency ωc = 1983 cm−1
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3 Control of vibrational quantum processes with genetic algorithms
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Figure 3.7: a) Multipulse generated with a sinusoidal phase modulation. The

dashed line shows the corresponding CEP pattern. b) The scaled spectrum

(black line) and the sinusoidal phase function (red line) is depicted.

and is reflected in Fig. 3.6 in the periodicity of the control surface (a difference

of ∆ b ∼ 700 au between the high-efficiency regions equals ∼ 16.82 fs).

Mechanisms induced by multipulses

The phase effects on the population transfer mechanism |0〉 → |1〉 are discussed

exemplarily for a cut along the control surface marked in Fig. 3.6 by the vertical

line in the smaller inset (a = 0.8 and b: [38000, 39000]). In Fig. 3.8 the change in

population of the states 0 [Fig. 3.8 a)] and 1 [Fig. 3.8 b)] are plotted as a function

of time and of b. For three b values (b ∼ 38200, 38550, 38900) the initial state

0 is almost completely depopulated, but only in two cases (b ∼ 38200 and

b ∼ 38900) the population is transferred into the target state 1. Two values

(marked as black arrows) are selected, one which leads to a high and one which

leads to low transfer efficiency into state 1. Their individual mechanisms are

shown in Fig. 3.9. The black line corresponds to the initial state 0, the red line

to the target state 1 and the green line to the overtone state 2. Also included

are the corresponding laser fields and the optical phase jumps (in units of π)

between the single subpulses. A b value of 38900 induces a phase jump of 1.9π.
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b)

highest efficiency

lowest efficiency

population of state  1

a) population of state  0

b
Time (fs)

b
Time (fs)

Figure 3.8: Population transfer mechanisms for the excitation 0 → 1 with the

phase parameters a = 0.8, b: [38000, 39000]. Progression of the population

a) in state 0, b) in state 1. The time axis point in opposite directions for

better visibility.

In the first half of the pulse sequence an optical phase jump of 0.9π results as

the combination of the b induced phase jump and the CEP shifts from subpulse

to subpulse. Since there are no CEP shifts in the second part, the optical

phase jump is here 1.9π. From the transfer mechanisms [Fig. 3.9 a)], it can be

deduced that the first optical phase jumps of about π lead to subpulses, which

reverse the action of the preceding pulse. See e.g. the action of the subpulse at

t = 3000 fs or even more pronounced for t = 3900 fs. This finding is general for
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Figure 3.9: Mechanisms, scaled laser envelopes and phase shifts for two selected

sets of phase parameters. a) a = 0.8, b = 38900, b) a = 0.8, b = 38450.

all subpulses with optical phase jumps of π and is more effective, the closer the

optical phase jump is to π. These optical phase jumps are most effective when

the carrier frequency of the laser is in resonance with the transition energy. In

the present study, the laser is tuned to the 0 → 1 transition, thus all overtone

transitions (such as 1 → 2) are less affected.

The main subpulse [Fig. 3.9 a), upper panel] starts to depopulate the target

state again. Due to the higher intensity, the target state is repopulated after-

wards by the remaining pulse. For the next subpulse (second half of the pulse

sequence), the optical phase jump is almost 2π and the population transfer into

the vibrational state 1 is continued, whereas the overtone state 2 is depopulated.

The same holds for the last subpulse. From the control landscape (Fig. 3.6) and

the mechanisms discussed (Fig. 3.8), it can be concluded that the best results

are reached for the given setting (i.e. molecular and FL pulse properties) for

optical phase jumps close to π in the first half of the pulse sequence and close

to 2π in the second half. If b = 38450 [Fig. 3.9 b)] optical phase jumps of 1.6π,

and 0.6π are obtained. In this case, neither a reversal of the excitation process,
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3.2 Results and discussion

nor a continuation takes place. Instead, the net transfer in the first vibrational

excited state is almost zero, while the overtone state is populated.

Analogously, the complete control landscape depicted in Fig. 3.6 with respect

to the periodicity in b can be understood. A deviation of its structure will only

emerge when a parameter b is selected, which leads to subpulses overlapping in

time.

best individual

start

Figure 3.10: Control landscape for the quantum yield as a function of the

phase parameters a and b for the transition 0 → 1: in the range a : [0.8, 1.6]

and b : [20000, 40000] calculated with the pulse duration as cost function

(Eq. 3.4). The search path of the GA run is indicated by the black dots.

Pulse duration as cost function

Variation of the parameter a determines the relative intensity of the single sub-

pulses. Large a values increase the effective number of subpulses and equiv-

alently the pulse duration. Such GA results would be unfavorable when time

limitation is required to protect the coherence of molecular processes. There-

fore, a cost function is included within the objective function to confine the

pulse duration:

O =
1

N

N∑
k=1

|〈Ψik(T )|Φfk〉|2 − αττ. (3.4)
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3 Control of vibrational quantum processes with genetic algorithms

For τ the FWHM of the shaped pulse is used in atomic units and the penalty

factor ατ = 0.00025 (units 1/t [au]). The structure of the control landscape

changes (Fig. 3.10) as the algorithm is forced to converge to a subspace with

shorter durations, recognizable by the lighter areas (from yellow to red) in

Fig. 3.10. As can be traced from the GA run, the best result (88.4 %) within

the parameter range [0.0, 2.4] for a and [20000, 40000] for b is found after a few

generations. The dots mark the best individuals of the generations and the line

maps the GA search path on the landscape. The corresponding best laser field,

its spectrum and phase function is depicted in Fig. 3.7.

NOT gate in the T1u mode of W(CO)6

Starting with the FL pulse (Tab. 3.3), suited for the fundamental state-to-state

transition, a NOT gate with a sinusoidal phase modulation is optimized and a

slightly enlarged search space for b: [20000, 50000] is used. For this search space

no high-efficiency solution of a NOT gate exists. The transition |0〉 → |1〉 can

be switched with an efficiency of 81.8 %, but the reverse process only reaches

48.2 %. The explanation can be given from the control landscapes of both pro-

cesses (Fig. 3.11). Their periodicity is shifted by half an oscillation, i.e. a

maximum for a |0〉 → |1〉 transition matches a minimum or a secondary maxi-

mum condition for the |1〉 → |0〉 process and vice versa. The mechanism reveals

that good solutions for the process |0〉 → |1〉 induce overtone transitions into

the vibrational state v = 2 when the laser field operates on state |1〉 to reverse

the switching. The best efficiencies for the reverse process |1〉 → |0〉 are reached

for a parameter b ∼ 38550, where the optical phase jumps are ∼ 2π (1.86π)

in the first part and ∼ π (0.86π) in the second part of the pulse sequence.

The sequence of these optical phase jumps is exactly reversed to the progression

required for the |0〉 → |1〉 transition. Consequently, unitary operations cannot

be realized by a simple sinusoidal approach for the phase modulation. Only

when the distinct optical phase jumps are weakened can their implementation

be successful.

A straightforward solution is to increase the summation over i > 1 in Eq. 3.3.

Thereby, the efficiency of the NOT gate can be raised to 95 %, however, at the

cost of higher complexity of the shaped laser fields. A new strategy is pursued

to obtain efficient NOT gates with simple structures. Besides the phase param-

eters (ai, bi, ci), the FL pulse properties are included in the GA optimization

60



3.2 Results and discussion

1     00     1

1     00     1

Figure 3.11: Control landscapes for the quantum yield as a function of the

phase parameters a and b for both NOT processes |0〉 → |1〉 (left) and

|1〉 → |0〉 (right). Upper panel: a: [0.8, 2.4], b: [38000, 40000]. The

periodicity of the surfaces is shifted by half an oscillation. Lower panels:

a: [3.95, 5.55], b: [44000, 46000]. The control landscapes for both switching

processes match. The landscapes are evaluated for different FL pulses.

simultaneously, which is related to amplitude shaping. Hence, the genome of

the GA is extended by the carrier frequency ωc, the maximum energy E0 and

the FWHM of the FL pulse τp. This approach increases the flexibility of the

GA optimization beyond the experimental possibilities and guarantees that the

full dimensionality of the defined control parameter space can be used, here on

the basis of sinusoidal phase modulation.

For the five degrees of freedom, the parameter ranges are given in Tab. 3.4.

As a result, a sinusoidal phase modulated NOT gate could be optimized with

an efficiency exceeding 99.6 % [Fig. 3.12 a)]. The resulting parameters are given

in Tab. 3.4 and the control landscapes of both NOT processes are depicted

in Fig. 3.11, lower panels. Now, the maxima on the control surfaces of both
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3 Control of vibrational quantum processes with genetic algorithms

parameter min. max. GA result

a 0.0 5.0 4.75

b 20000 60000 44625

ε0 [au] 0.0 0.01 0.00056

τp [fs] 0.0 2500 1504

ωc [cm−1] 1950 2050 1990.9

Table 3.4: Parameter ranges for the FL pulse properties and sinusoidal phase

functions for a NOT gate.

processes |0〉 → |1〉 and |1〉 → |0〉 match. The significant change in the control

landscapes (Fig. 3.11 upper and lower panels) arises from the combination of a

rather narrow-band FL pulse and phase parameters, which lead to temporally

overlapping subpulses (Fig. 3.11, lower panels) without pronounced optical phase

jumps. As a consequence, the multipulse character vanishes. The variation of

amplitude in combination with phase modulation seems to be essential to realize

a unitary transformation.

FL pulse optimization for the state-to-state transition in the T1u mode of

W(CO)6

The same optimization strategy is applied for the 0 → 1 state-to-state tran-

sition. The corresponding parameters are given in the Tab. 3.5. The best

result (∼ 94 %) within 200 generations for a population size of 50 is shown in

Fig. 3.12 b). The optimal pulse is very similar in shape to the laser field found

in the experiment [70]. Also the excitation mechanism [Fig. 3.12 b), lower panel]

provides the same features with the main part of population transferred by the

second half of the multipulse. The explicit FL pulse and phase properties are

given in Tab. 3.5. This good agreement for the pulse structure and mechanism

shows that the presented approach is able to match the search spaces in theory

and experiment and predicts that the highest possible transition rate will be

obtained for a FL pulse with τp = 215.8 fs.
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3.2 Results and discussion

parameter min. max. GA result

a 0.0 2.4 2.22

b 20000 50000 43140

ε0 [au] 0.0 0.01 0.00107

τp [fs] 0.0 700 215.8

ωc [cm−1] 1950 2000 1998.0

Table 3.5: Parameter ranges for the FL pulse properties and sinusoidal phase

functions for a state-to-state transition.
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Figure 3.12: a) GA-optimized NOT gate and mechanism (0 → 1 transition).

b) Optimized pulse for the 0 → 1 state-to-state transition in W(CO)6 and

mechanism. The black lines indicate the population in state |0〉, the red

lines in state |1〉 and the green (blue) in the overtone state v = 2 (v = 3).

3.2.4 Prediction of quantum gates for MnBr(CO)5

The GA optimization is extended to the two-qubit system MnBr(CO)5, for

which a universal set of quantum gates with OCT was previously calculated

[52]. The predicted, highly efficient quantum gates were simple structured and

an interesting point is whether comparable solutions can be provided by the

GA.

A universal set of quantum gates, with great importance attached to structural
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3 Control of vibrational quantum processes with genetic algorithms

simplicity, is optimized as benchmark for future experimental searches. The

quantum gates involving population transfer (CNOT, NOT and Hadamard) are

calculated explicitly. It is assumed that the Π gate is implemented by a time

delay, which induces the correct phase rotation. Quantum gates, yielding phase

correct target states, can be optimized either by maximizing the fidelity, defined

as:

F =
1

N2

∣∣∣∣∣
N∑
k

〈Ψik|Φfk(T )〉

∣∣∣∣∣
2

. (3.5)

Alternatively, one can optimize the population transfer only:

P =
1

N

N∑
k=1

|〈Ψik(T )|Φfk〉|2, (3.6)

and make use of the free phase evolution of the qubit basis states, i.e. append

a phase gate. This is equivalent to a certain delay time of several femto- to

picoseconds, in which the phase of each state evolves until the correct phase

relation is reached at the end of the delay [49]. The second approach converges

faster and corresponds to the direct, experimental observable. Exemplarily, the

CNOT and NOT gates are depicted in Fig. 3.13, where the subscript E de-

notes that the gate is operating on the E symmetric mode and A on the A1

symmetric mode, respectively. These gates were optimized by maximizing the

population transfer. A delay time will have to be attached to receive the correct

phase relation. 15 pixels with a spectral width of 5 cm−1 for each pixel were

used and the phase variation was confined to [0, 2π] · 0.5, no further constraints

were applied. These quantum gates (Fig. 3.13) operate very efficiently with a

population transfer exceeding at least 99.0 %. They are similarly simple struc-

tured compared to the OCT results [52] but clearly longer in duration as the

defined phase space is again fully utilized, allowing for large amplitude modula-

tions of the mask functions. In OCT calculations, the phase function cannot be

addressed directly, however, the penalty factor together with the choice of the

total laser-molecule interaction time can suppress unnecessary jumps in phase

and/or transmittance.

For the CNOTE gate, also the fidelity of the process using a GA was max-

imized. The duration of the shaped pulse is determined by using a threshold

value of 5 · 10−6 au≈ 25 · 10−6 GV/cm of the electric field. The propagation
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Figure 3.13: GA-optimized CNOT and NOT gates for MnBr(CO)5, operating

either on the A, or on the E mode, with scaled spectra (black lines), phase

functions (red lines) and transmittance functions (blue lines) depicted in

the lower panels.

starts when this threshold is exceeded the first time. Equivalently, it ends when

the value is reached the last time. At this final time, the fidelity of the whole

process is calculated. In Fig. 3.14 a), a comparison of the convergence of both

approaches, the maximization of the fidelity versus the population transfer, is
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3 Control of vibrational quantum processes with genetic algorithms

shown. The population size is 50 and the number of generations 1000. The

GA run for the pure population transfer (red line) reaches an efficiency of over

99 % after approximately 100 generations. The optimal quantum gate is de-

picted in Fig. 3.13. An additional delay time of ∼ 4 ps makes the CNOT gate

phase-correct for use in quantum algorithms. In the second case [Fig. 3.14 a),

black line], a maximum fidelity of ∼ 97 % is reached after 700 generations.

The slightly reduced fidelity is mainly due to an incomplete population transfer.

Additionally, implementation prospects of pure sinusoidal phase modulation of
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Figure 3.14: a) Convergence of the maximization of the population transfer

versus the fidelity for the CNOTE gate. Phase-correlated optimization of

the CNOT gate: b) laser field, c) scaled spectrum (black line), phase (red

line) and transmittance function (blue line).

two-qubit quantum gates were tested. In the multipulse parameter ranges, the

efficiencies of the quantum gates cannot compete with free phase and amplitude

modulated laser fields. Thus, for the experimental implementation of multi-

qubit quantum gates, the more flexible approach of a pixeled mask functions

is most promising. To avoid unnecessary complex pulse structures, it will be

helpful to confine the co-domain of the phase to a limited range.
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3.3 Conclusion

3.3 Conclusion

The differences originating from quantum control in the frequency domain by a

GA and in the time domain by OCT are investigated. With a careful choice of

the OCT-specific parameters, it is always possible in OCT calculations to find

the simplest structured laser fields for high-efficiency solutions, which are prob-

ably the most robust ones. By default, a GA is used in closed loop experiments

and its application in theoretical studies facilitates reliable predictions in the

search space, strictly limited to the experimental parameters and their varia-

tion range. Pixel-based mask functions often lead to complex pulse structures

with long pulse durations. In the GA search, approaches to decrease the com-

plexity of the resulting pulse structures were introduced, borrowing concepts

from previous OCT work. The studied objectives were state-to-state transitions

and unitary transformations in the vibrational manifold of transition metal car-

bonyls. For pixeled phase and transmittance functions, longer FL pulses and

the restriction of the co-domain of the phase function lead to simplifications

of the pulse envelopes. Additionally, cost functions were implemented in the

objective function, which can be used to reduce the field intensity or the pulse

duration and guide the GA runs into distinct subspaces of simple structured

and short results. Analogously, cost functions may be included, which decrease

the complexity of the envelope function or the degree of the overtone excitation.

For the GA runs with the modified objectives, solutions already approaching

the subspace of optimal OCT results could be found.

Additionally, the effect of sinusoidal phase modulation, frequently used in ex-

periment, omitting amplitude modulation, was investigated. The corresponding

control landscape could be calculated and from its analysis one can derive the

physical mechanism of the vibrational multipulse excitation. The laser fields and

transfer mechanism obtained for the state-to-state transfer in W(CO)6 agrees

very well with the experiment [70]. The best, highly efficient solutions, were

obtained when the FL pulses properties (carrier frequency ωc, maximum energy

ε0 and FWHM τp) were optimized simultaneously. From the results, it can be

predicted that multipulses are not suitable for the implementation of unitary

transformations. This could easily be extracted by the analysis of the control

landscapes. When the sinusoidal phase approach is used, an optimized FL pulse

is essential for high efficiencies, i.e. a certain amount of amplitude shaping is re-

quired. In general, it was found that pixeled phase and transmittance functions
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3 Control of vibrational quantum processes with genetic algorithms

will lead to higher quantum yields. To reduce the complexity of the resulting

field envelope, alternatively to the analytic phase confinement, parameter con-

straints and limitations on the co-domains can be introduced, without loss of

efficiency.

In summary, with the GA optimization scheme, one has the possibility to

explore the experimental search space by setting all relevant parameters to the

actual, experimental conditions. The comparison showed that good agreement

for pulse shapes and mechanisms could be reached. Stimulated by these re-

sults, several strategies to approach the subspace of low-complexity OCT re-

sults could be implemented successfully and simple structured, robust pulses for

the GA search with high efficiencies could be proposed. For the experimental

implementation of unitary transformations based on vibrational qubits, it can

be predicted that the use of pixeled phase and amplitude modulation together

with a careful choice of the phase range limitation will be most promising [134].
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4 Optimization with

multi-objective genetic

algorithms

The optimization strategies presented in Chapter 3 are based on a single objec-

tive function, which corresponds to the quantum efficiency of the investigated

processes. Features like the pulse intensity may be included in the formalisms

as cost functions, similiar to OCT (Eqs. 1.56, 1.60, 2.2). The additional cost

term is subtracted from the objective function in the GA optimization (e.g.

Eq. 3.2), however, the convergence of the quantum yield is reduced in this case.

If a problem is to be studied, involving the control of several features simulta-

neously, multi-objective algorithms are suited for this task. They can handle

several control objectives at the same time. The concept of multi-objective

GAs (MOGAs) will be presented and the notion of optimality, which is not ob-

vious anymore within this formalism will be explained. The new technique is

applied to optimize picosecond laser fields, driving the vibrational quantum pro-

cesses, state-to-state transitions and unitary transformations as already studied

in Chapter 3. It allows for the additional control of features related to the shaped

laser fields and the excitation mechanisms simultaneously to the quantum yield.

Within the parameter range, accessible to the experiment, the main focus is on

short pulse durations and low pulse energies to obtain preferably robust laser

fields. Equivalently, the amount of intermediate overtone excitation can be min-

imized, which is crucial for quantum control scenarios when dissipative effects

occur. Additionally, the interdependency of these properties and the quantum

yield is interesting, this could not be studied with OCT so far.
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4 Optimization with multi-objective genetic algorithms

4.1 Multi-objective genetic algorithm and

application

For the first generation of GAs, a starting population of individuals is randomly

generated, where each individual, i.e. each solution is described by a decision

vector x = (x1, x2, ..., xn) in the decision or parameter space X of dimension

n. The fitness of every individual is evaluated. Afterwards, a selection of the in-

dividuals is performed and they are randomly recombined and mutated to build

up a new generation, which is evolving to find better solutions for the control

problem. In a single-objective algorithm the fitness is determined by assigning

each solution to an objective value y in the one-dimensional objective space Y

according to f : X → Y . A solution x(1) ∈ X is better than another solution

x(2) ∈ X if the corresponding objective value y(1) > y(2). All solutions, existing

in the parameter space X, are mapped on the objective space Y and a single

optimal solution is the result of a single-objective GA run. In the GA investiga-
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Figure 4.1: 2D Pareto front (red line and dark-green circles). The light-green

dots are feasible points, whereas the yellow ones indicate infeasible solu-

tions, with respect to the constraints.

70
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tions presented in Sec. 3.2.2, where two conflicting goals should be accomplished

simultaneously, both of the criteria were mapped onto a single objective value y

or in other words, a cost function in the objective was included besides the orig-

inal optimization aim [94]. This optimization strategy leads to a compromise of

both control aims similar as in OCT, but the interdependency of the two single

objectives cannot be traced clearly. Multi-objective optimizations, also known

as multi-criteria optimizations, are best suited for such multi-dimensional con-

trol tasks. Now, a solution is assigned to an objective vector y = (y1, y2, ..., yk)

with the dimensionality k, given by the number of objectives [135]. The decision

of which solutions are better than others is more complex and is made with the

selection operator. Here, the concept of Pareto optimality (Pareto dominance

relation) is applied. An objective vector y(1) prevails all other vectors y(j) if no

component y
(1)
i is smaller than the corresponding components y

(j)
i and at least

one component has to be larger. Such solutions are said to be non-dominated

and they can be mapped onto different objective vectors. Consequently, a Pareto

optimal set of solutions is obtained, which build up the Pareto front (Fig. 4.1)

in the objective space. The front represents the varying impact of the individual

objectives.

In this study, the Elitist Non-Dominated Sorting Genetic Algorithm II

(NSGA-II) [136] is applied, which has already been used in quantum control

experiments [137]. Additionally, various supplementary constraints might be

included in the NSGA-II algorithm. If a solution violates a constraint, it is

an infeasible solution and discarded from the set. A schematic sketch of the

Pareto front with feasible and infeasible solutions is depicted in Fig. 4.1. The

multi-objective algorithm is applied to design optimal laser fields for molecu-

lar control scenarios, where it is desirable, to control additional features on the

outcome simultaneously. With this algorithm several control objectives can be

maximized or minimized, such as the quantum yield and the pulse duration, the

degree of overtone excitation, the complexity of the pulse and many more. As

in the previous studies (Chapter 3) the genome of the GA comprises the phase

and transmittance functions. The modulated laser fields are again constructed

by modulations of the FL pulse spectra with the mask functions and calculation

of the feedback signals. In case of the phase function φ(ω) the two approaches

(parametrized and pixeled forms) will be tested in the MOGA study.
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4.2 Results and discussion

The MOGA calculations focus on the vibrational excitation processes of IR

active modes of the two metal carbonyls W(CO)6 and MnBr(CO)5, already

studied with single-objective GAs and presented in Chapter 3.

4.2.1 2D Pareto fronts for state-to-state transitions

Possible routes for highly efficient state-to-state population transfer, induced by

preferably short laser pulses, are investigated theoretically for the T1u mode of

W(CO)6. The fundamental transition 0 → 1 participates as one key element

in the corresponding molecular unitary transformations, where short switching

times are very desirable.

The dependence of the quantum yield on different factors, referring to the

pulse properties and the control mechanisms is explored. Simultaneously to the

maximization of the quantum yield, the additional aims are minimal tempo-

ral pulse duration, pulse energy and intermediate overtone population. These

features are especially relevant when decoherence sets an upper limit for the

laser-molecule interaction time. The dissipative effects will be most disturb-

ing when intermediate overtone excitation is high. Within the experimentally

available range, the pulse energy is minimized to prevent side effects, such as

non-linear processes. The experimentally investigated molecule W(CO)6 is used

as a candidate to study different 2D Pareto fronts. The MOGA calculations

presented are performed with a population size of 60 and 500 generations.

Objectives: quantum yield and pulse duration

The MOGA offers an elegant possibility to study the relation of the quantum

yield and the pulse duration of shaped laser fields. From the previous GA study

(Chapter 3) it is known that the quality of the solutions depends on the FL

pulse properties. Therefore, the genome of the MOGA, which comprises only

the mask parameters in the experiment, is extended by the FL pulse properties,

the FWHM τp, the carrier frequency ωc and the maximum energy ε0.

As a first test, pixeled mask functions with a spectral pixel resolution of

10 cm−1 are used for all calculations presented in Sec. 4.2.1 together with the

parameters given in Tab. 4.1 for the incident pulse. As an alternative, an an-

alytic form φ(ω) = a sin(b ω) for the phase function is applied, as often used
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parameter min. max.

a 0 10

b 20000 60000

ε0 0.00001 au 0.001 au

τp 100 fs 2000 fs

ωc 1950 cm−1 2020 cm−1

Table 4.1: FL pulse properties for state-to-state transitions.

in the experiment [85, 133, 132] and especially in the mid-IR regime [70]. The

two phase parameters a and b are optimized. In total, five parameters, have

to be adjusted by the GA, given in Tab. 4.1 for analytic phase functions. If

pixeled mask functions are applied with 20 pixels for each function (phase and

transmittance), 43 parameters including the FL pulse properties are optimized.

The Pareto fronts for the maximization of the quantum yield and minimiza-

tion of the pulse duration are depicted in Fig. 4.2. The duration of a shaped

laser field is defined as the period of time, during which the field |ε(t)| exceeds a

threshold value of 5 · 10−6 GV/cm. Below this energy the mid-IR molecule-laser

interaction with the carbonyl complexes is negligible. In the upper panel, pixeled

mask functions and in the lower panel analytic phase functions are optimized.

The efficiencies are shown from 25 % to 100 % and the high-fidelity region is

enlarged in the smaller insets. Both Pareto fronts are convex with respect to

the feasible solutions, which is the simplest case for MOGA optimizations. The

convex behavior implies that a high quantum yield and short pulse durations

are objectives which are reconcilable to some extent. The fronts are charac-

terized by two branches, the vertical one corresponds to high quantum yields

and the horizontal one to short pulse durations. A main difference, traced from

Fig. 4.2 a) and b), is that in case of an analytic phase modulation the durations

of the pulses, reaching high efficiencies, are clearly longer. The FHWMs of the

initial FL pulses are in the same range for both approaches. They are found

to be rather long (1.0 − 1.5 ps) and the analytic, sinusoidal phase modulation

cannot generate multipulses for the solutions, setting up the Pareto front in

Fig. 4.2 b). Thus, the long durations of the sinusoidal phase modulated pulses

are not due to large subpulse shifts in the multipulse, but rather caused by the

inflexible sinusoidal phase approach.
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Figure 4.2: MOGA results for the two objectives: high quantum yield and

low pulse duration. a) Pixeled mask functions. b) Analytic phase function.

In both cases the black symbols indicate the feasible solutions and the red

dots border the Pareto fronts.

In Fig. 4.3 the best solutions (> 99 %) for the pixeled mask functions and the

analytic phase are depicted together with the corresponding scaled spectra and

their mask functions. The pixeled phase function (Fig. 4.3, left) is rather flat

and the shaped pulse provides a duration of ∼ 8 ps. In contrast, the sinu-

soidal phase (right) leads to a temporal duration of ∼ 20 ps. The efficiencies

of all laser fields exceeding 80 % are monitored (Fig. 4.4, top). For the analytic

phase (black dots), 30 solutions are found on the Pareto front and 22 for the

pixeled mask functions. Additionally, the FL pulse properties are given in the

lower three panels. There is no explicit trend for these properties, instead, in

the high-fidelity region different solutions with optimal parameters are found
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Figure 4.3: Resulting best laser fields for the two objectives: high quantum

yield and low pulse duration, in the upper panels. The respective mask

functions (red: phase; blue, dashed: transmittance) and scaled spectra

(black) are depicted in the lower panels. Left: pixeled mask functions. The

solid black line refers to the spectrum of the FL pulse, whereas the black

dashed line shows the shaped, scaled spectrum. Right: analytic phase

modulation.

varying over a broad range, i.e. the FWHMs reach from 900 fs to 1880 fs, the

maximum energy from 0.001GV/cm to 0.0033 GV/cm and the carrier frequency

from 1984 cm−1 to 1991 cm−1. This very advantageous result means that the op-

timal subspace of different control parameters is rather flexible, and an optimal

solution, matching best with the experimental conditions, can be selected from

the set. A very obvious distinction can be found in the magnitude of the maxi-

mum energy, which is always larger for pixeled mask functions, where additional

amplitude modulation is possible. This can be seen in Fig. 4.3, left side, where

a pronounced spectral damping by the transmittance function is induced. Ac-

companied by the fact that the carrier frequencies for pixeled mask functions

are detuned by 5 cm−1 (Fig. 4.4, bottom) compared to the analytic functions,

the transmittance suppresses the major spectral component (Fig. 4.3, left side),

to reach a higher frequency resolution. From the previous results (Chapter 3),

it is clear that the complexity of the phase function, in case of the pixeled mask
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modulation and the red triangles to pixeled mask functions.
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Figure 4.5: Resulting Pareto fronts for the two objectives: high quantum yield

and short pulse duration, where the phase range is confined, i.e. scaled by

the factors f given in the legend.

functions, can easily be reduced by decreasing the co-domain of the phase func-

tion by a factor f (given in the legend) to the range [0, 2π] · f . The effect of

limited phase ranges are shown in Fig. 4.5, where it can be traced that smaller

ranges benefit the MOGA search. In general, phase variations between each

pixel are much more probable than flat phase functions, but lead to longer pulse

durations and complex structures [134]. To find optimal solutions with respect

to both objectives, either the number of GA generations can be enlarged sig-

nificantly or as demonstrated in Fig. 4.5 the co-domain of the phase can be

confined.

Only a small part of the complete Pareto front (Fig. 4.2), the high-fidelity

region, exceeding efficiencies of 99.0 % is relevant in the context of quantum

information processing. If such a high-efficiency constraint is introduced and

not fulfilled by a solution, this infeasible point is discarded. Consequently, the

algorithm searches more intensively in the region of the feasible solutions, which

become predominantly located in the high-fidelity regime. This region is better

sampled now, since the same number of generations and population size as before

is used. The fidelity is limited to a minimum of 99.0 % and a corresponding

calculation for the pixeld mask functions leads to a Pareto front, more dense
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Figure 4.6: MOGA optimization constrained to the high-fidelity region. Red

dots: position of the Pareto-optimal solutions, black symbols: position of

all feasible solutions, light-blue dots: Pareto front of the corresponding

unconstrained calculation [Fig. 4.2 a)].

in the regime from 100 % to 99 % (Fig. 4.6). The black symbols indicate the

position of all feasible solutions and the red dots of the Pareto-optimal solutions.

The front is steeper and dominates the previous front without the use of the

constraint [shown in Fig. 4.2 a) and for comparison indicated in Fig. 4.6 by the

light-blue dots]. Here, significantly shorter FWHMs of the FL pulses in the range

of 590 fs are found, which is, however, a statistical finding. This can be traced

from several MOGA runs with efficiency-constraints, but with random starting

individuals. In each run, the highly efficient solutions converged to different FL

pulse FWHMs, distributed in the complete range used (Tab. 4.1). All these

solutions must also be found in the unconstrained search when the number of

iterations is enlarged. In conclusion, in case of pixeled mask functions, a very

broad FWHM range at least from 100 fs to 2000 fs, appropriately combined with

the remaining FL pulse parameters, can lead to highly efficient, short laser pulses

for state-to-state transitions.
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Figure 4.7: a) Result of the MOGA optimization with the two objectives high

quantum yield and low pulse energy. b) The most efficient laser pulse

together with the scaled spectrum and mask functions is depicted.
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Minimization of the pulse energy

The pulse energy, which is a further crucial feature, was unconfined so far and

no bias on the energy-efficiency of the transfer process was implemented. Anal-

ogously to OCT, where a penalty energy function is included, the energy of the

shaped field (
∫ T

0
ε(t)2dt) can be incorporated as the second objective besides

the maximization of the quantum yield. No constraint on the phase range is

used and the FL pulse parameter ranges are given in Tab. 4.1. The resulting

Pareto front is depicted in Fig. 4.7 a), for pixeled mask functions. The minimum

pulse energy of the Pareto-optimal solutions has to exceed 3.4 · 10−4 J/cm2 for

an efficiency of 99 %. There are several optimal points on the front, exceeding

efficiencies of 99 % with similar envelope functions for the modulated laser fields.

The rather short pulse durations in the range of ∼ 8 ps, which was obtained

before when the minimization of the pulse duration was the second control aim,

cannot be maintained. The temporal duration of the best pulse now exceeds

20 ps [Fig. 4.7 b)]. The best pulse is obtained with a transmittance function

strongly damping the spectral signal of the FL pulse. This is one possible solu-

tion, also often observed in OCT. Less spectral damping can be obtained when

the FL pulse energy is limited, which is not possible in OCT calculations. To

reach all desired features at the same time, the three objectives, low energy,

short pulse duration and high quantum yield, have to be defined. Correspon-

ding calculations will be presented in Sec. 4.2.2 for a unitary transformation.

Minimization of the overtone population

A high degree of intermediate overtone population may be obstructive for quan-

tum control experiments. Population relaxation times (T1) in the condensed

phase for carbonyl complexes are only approximately half as long as the T1 time

scale of the first excited vibrational state or even shorter [70]. A low overtone

excitation can be reached indirectly by using long FL pulses, but the amount

of overtone population can also explicitly be formulated as a second objective.

The intermediate population Pi(t) in all i overtone states, i.e.
∑N

i=2

∫ T

0
Pi(t)dt

can be minimized, where the time is used in atomic units. The corresponding

Pareto front is shown in Fig. 4.8 a). For the used setup, it can be seen that still

a finite amount of overtone excitation has to be taken into account for highly

efficient solutions. A value of 0.05 integrated population corresponding to an
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Figure 4.8: a) Result of the MOGA optimization with the two objectives high

quantum yield and low overtone population. Black and red symbols: for

pixeled mask functions. Blue symbols: for analytic phase functions. b)

Pareto fronts, with confined co-domains ([0, 2π] · f) of the phase range,

where the factors f are given in the legend.

intermediate population maximum of 16 % in the second vibrational state is still

necessary.

Solutions with confined phase ranges [Fig. 4.8 b)] cannot compete with the

calculation for the complete range [0, 2π] and a flexible phase functions turns

out to be essential here. A progression of the Pareto front similar to the pixeled

phase [Fig. 4.8 a), red symbols] is obtained when a sinusoidal phase modulation

is applied on the rather long FL pulses (blue symbols). Consequently, the sinu-
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soidal phase functions facilitates the suppression of the amount of population

transfer in higher vibrational levels equivalently to the pixeled mask functions.

With the analysis of the 2D Pareto fronts, the interplay of the quantum yield

with additional features of interest can be understood and interpreted for the

first time, qualitatively as well as quantitatively. From the 2D fronts it is also

possible to judge whether higher dimensional fronts are needed to improve the

solutions with respect to their feasibility.

4.2.2 3D Pareto front for a unitary transformation

It is desirable to reach all objectives, presented in Sec. 4.2.1, simultaneously

for effective, robust and realizable quantum gate operations. The effect of the

three most relevant objectives: the maximization of the quantum yield, the

minimization of the shaped pulse duration and the energy density per area, will

be discussed. The quantum yield is defined as the average quantum efficiency

of the single population transfer processes induced by the quantum gate oper-

ation. To obtain a phase correct quantum gate, an additional time delay has

to be attached, for correct phase rotation [49]. As an example, the two-qubit

CNOT gate, operating on the E mode of MnBr(CO)5 is used. The calculations

are performed for pixeled mask functions with a spectral resolution of 10 cm−1

for 1000 generations and a population size of 100 individuals. Additionally, a

constraint of a minimum 90.0 % yield is applied. The 3D Pareto front, shown in

Fig. 4.9 a), is tilted in the 3D objective space and for better visualization it is

interpolated. The highest efficiencies are shown as the red section and mark the

region of unitary transformations that can be realized with minimal pulse energy

and duration. For short pulses, the section is slightly curved, while for increasing

pulse durations the energy stays constant. For durations < 9 ps, intermediate

overtone excitation occurs and higher energies are necessary to depopulate these

states again. For longer pulse durations the spectral resolution suffice to avoid

overtone excitation and the required energy only depends on the size of the

fundamental transition matrix element. The Pareto front tilts towards lower

quantum yields for smaller pulse energies and durations. The pulses, found as

Pareto-optimal solutions provide very simple envelope functions. Most of them

are almost Gaussian-shaped or composed of few Gaussian-shaped pulses over-

lapping in time. The quantum gate laser field with the highest efficiency is

presented in Fig. 4.9 b). The pulse energy is 11.8 · 10−4 J/cm2 and the pulse du-
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Figure 4.9: a) 3D Pareto front for the unitary transformation CNOTE with the

three objectives quantum yield, pulse duration and pulse energy. b) CNOTE

gate, one of the optimal solutions from the optimal set. The position is

indicated on the 3D Pareto front by the black dot.
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Figure 4.10: a) 3D Pareto front for a unitary transformation with different

factors f , confining the co-domain of the phase function [0, 2π] · f . Projec-

tion onto two objectives: b) pulse duration and energy c) yield and pulse

energy d) yield and pulse duration.

ration is 12 ps. The Pareto-optimal pulse shapes are very similar to the previous

OCT results [53, 52]. Here, the duration was varied manually to obtain simple

pulse structures, in the MOGA calculation the pulse duration was selected as an

objective. Now, the solutions found by the search strategies OCT and MOGA

clearly coincide, which means that the MOGA results match the OCT subspace

or vice versa the simple structured OCT results are located on the Pareto fronts.

Different co-domains [0, 2π] · f for the phase functions are compared in

Fig. 4.10, where a spectral pixel resolution of 10 cm−1, a population size of

60 and 500 generations were used. In Fig. 4.10 a) the 3D Pareto fronts for the

factors f = 1.0, 0.5, 0.1, 0.0 are depicted, Figs. 4.10 b), c), d) show projections

onto two of the objectives. From Fig. 4.10 b), the relation of the pulse energy

and the pulse duration can be traced. The pulse durations become shorter for
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confined co-domains, e.g. for pure amplitude modulation (f = 0, cyan dots)

the mean pulse duration is ∼ 7 ps compared to ∼ 14 ps for full phase modu-

lation (red dots), which can also be seen in Fig. 4.10 d). On the other hand,

flexible phase functions lead to shaped pulses with the least pulse energy (red

dots in Fig. 4.10 c) and vice versa, the most energy is needed for pulses, which

are amplitude modulated only. All 3D Pareto fronts obtained for the factors

f confining the co-domains would merge into one for a large number of gen-

erations. If one feature, such as the pulse duration, is of special interest the

search can be accelerated significantly by reducing the phase range. If more,

conflicting features are of interest, an appropriate compromise must be found,

e.g. low pulse energy is facilitated by flexible phase functions, whereas low pulse

durations are realized by small phase variations.

Changing the spectral resolution for the pixels from 10 cm−1 to 5 cm−1 enables

faster convergence, but leads to more complex envelope functions. Additionally,

the pulse duration regime for high-efficiency solutions shifts from 7ps− 15 ps to

8 ps− 27 ps. From these results, it can be suggested for experimental studies

to use only the minimum necessary spectral resolution of the pixels so that the

desired quantum yield can still be reached. This will lead to envelope functions

with the lowest complexity, the shortest pulse durations and lowest energies,

which are the most robust solutions in the search space.

4.3 Conclusion

This study focused on MOGAs for the optimization of mask functions for laser

fields, driving different quantum processes such as state-to-state transitions and

unitary transformations [138]. By default, single-objective GAs are used in

closed loop experiments, where the main emphasis is put on the quantum yield

and no bias concerning e.g. the pulse duration is included. Here, different other

features of the shaped laser pulse or the excitation mechanism are optimized

simultaneously. Particularly, the pulse duration, the energy density per unit

area and the induced degree of intermediate overtone excitation are taken into

account. The Pareto fronts for each set of objectives are constructed. All of them

are convex with respect to the dominated feasible solutions and consequently the

selected objectives (quantum yield, pulse energy, pulse duration, intermediate

overtone population) can be reconciled. The minimum requirements on the laser

pulses or crucial features of the excitation mechanisms can be extracted from
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these fronts. Highly efficient Pareto-optimal solutions can be realized with a

large variety of FL pulse parameters, which is very advantageous as it makes the

subspace of control parameters rather flexible and an optimal solution, matching

best with the experimental conditions, can be located and selected from the

Pareto fronts. From the analysis of the 2D and 3D Pareto, the interplay of

various objectives of interest can be traced, qualitatively and quantitatively.

For experimental applications, it can be suggested to use only the minimum

necessary spectral resolution of the pixels and to adapt the phase co-domain

to generate short pulse durations. These results are assumed to be the most

robust ones also against dissipation, and as a positive side effect, they show

very simple envelope functions. In addition, the MOGA and OCT predictions

for the unitary transformations match very well. The most promising solutions

for given control scenarios were found and experimental routes towards them

were revealed [138].
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5 Laser field optimization with a

modified ant colony algorithm

Quantum control experiments based on computer controlled pulse modulators

typically lead to complex pulse shapes [133]. When using pixeled mask functions,

the pixel values are completely uncorrelated and can take any arbitrary value in

the range [0, 2π]. Distinct phase jumps between neighboring pixel are possible,

which tends to generate complex laser fields, consisting of several subpulses.

Strongly varying phases and transmittance functions also lead to longer pulse

durations. An idea, circumventing the high complexities and allowing for the

interpretation of the control processes is based on the parametrization of the

shaped pulses, frequently sinusoidal forms have been applied in the experiment

[133, 85, 132]. The parametrized mask functions are characterized by smoother

progressions and the resulting envelopes can turn out simpler. However, from

the theoretical investigations presented in Chapter 3 and discussed in [134], it is

clear that the parametrized, sinusoidal phase modulation, is not the best choice

in the context of molecular quantum computing with vibrational qubits and for

the implementation of highly efficient quantum gates.

Since the efficiencies of complex and long pulses are not necessarily lower

than for simpler pulse structures, the GA-based concepts, which is used in the

experiments by default without a limitation of the phase range will only pro-

duce simple solutions (with simple pulse structures similar to OCT results) by

instance. The simplest laser fields could be optimized theoretically by the use

of multi-objective algorithms as shown in Chapter 4, allowing for the control

over any desired property of the laser pulse or the resulting mechanism. Here,

also the confinement of the phase range, presented in Chapter 3, was used as for

the single-objective algorithm. However, this is only a first step, since the phase

functions can still to vary in the available ranges, the co-domains are limited

to. Moreover, it would not be reasonable to implement a similar restriction of
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the transmittance functions and for too strong phase limitations the GAs might

lose the required flexibility for more complex control tasks.

Thus, a new optimization concept, also operating in the frequency domain as

GAs, is necessary, which tolerates phase jumps, needed to reach high quantum

efficiencies, but avoids strong fluctuations of the mask functions. Such a concept

will lead to simple results and could be implemented as an alternative to single-

objective algorithms in the experiment.

A new optimization strategy is presented, which combines the benefits of both

mask function approaches from the experimental setup, parametrized and pix-

eled forms. Learning from their advantages and shortcomings, it is clear that a

slight correlation between the pixel values has to be implemented. This intro-

duces a control on the complexity of the mask functions, which is directly related

to the complexity of the resulting shaped laser fields. The value, each pixel takes,

will still be optimized freely, but with the new method, a tunable correlation

between neighboring pixels is introduced, while the flexibility of the phase is

assured by avoiding strict parametrizations. The optimization procedure still

corresponds to a learning loop setup, but instead of a GA, the optimization is

based on a modified ant colony optimization (ACO) scheme.

5.1 Basics of ACO

ACO was first introduced by M. Dorigo [139, 140]. It is a probabilistic technique

for combinatory optimization problems. As a natural algorithm, it is a part of

swarm intelligence. The idea of ACO was originally derived from ants and

their behavior of finding direct paths from their nest to the food source fast,

despite the fact that they are almost blind. The algorithm basically mimics the

behavior of natural ants. Initially, ants search for food randomly [Fig. 5.1 a)].

Coincidentally, an ant can find a short track and when returning to the colony,

after finding food, they deposit pheromone trails τ [Fig. 5.1 b) and c)], which

is the major feature of the collective communication network. Depending on

the strength of the pheromone trail, the following ants, which encounter such a

path, will probably follow the trail instead of travelling at random [Fig. 5.1 c)].

Consequently, when returning from such a path, as a positive feedback, they will

even reinforce it and build up a collective memory, attracting more ants. Since

ants are not completely blind, also a visibility function η is taken into account

in the algorithm, helping the ants to find shorter ways. The artificial ants in the
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Figure 5.1: Initially, ants are searching for food randomly a). After a short

time an ant trail has established d), due to pheromone deposition b), which

is attractive to other ants c) and builds up a collective memory.

89



5 Laser field optimization with a modified ant colony algorithm

algorithm choose their paths according to a probability function p, depending

on the pheromone trail τ and the visibility η. Over time, the pheromone trails

start to evaporate (with the evaporation rate 1− ρ and the trail persistence ρ)

and their attraction to following ants, passing these trails, will be reduced. If an

ant takes a long way from the nest to the food source and back, the pheromone

density will be lower than on short tracks and the short ones will be preferred

by other ants. Within a short time, a direct ant trail from the nest to the food

source will be established [Fig. 5.1 d)].

This optimization scheme has been demonstrated for the travelling salesman

problem [139, 140] and also applied successfully in various, mainly technical

branches. Also different fields in chemistry make use of the ACO algorithm,

such as protein folding [141] and conformational analysis of flexible, drug-like

molecules [142]. The original probability function of the algorithm presented by

M. Dorigo for the travelling salesman problem is given in Eq. 5.1, describing the

probability for an ant to travel from the city i to j in the iteration t, summing

over all m towns.

pij(t) =
[τij(t)]

α[ηij(t)]
β∑

m[τim(t)]α[ηim(t)]β
(5.1)

The pheromone trail between these cities is given by τim(t) and is adjusted from

iteration to iteration, whereas the visibility ηim is constant. The parameters α

and β specify the impact of the pheromone trail and the visibility.

5.2 ACO application to quantum control

In theoretical quantum control studies, simple structured control fields, induc-

ing adiabatic switching mechanisms without high overtone population, can be

obtained with OCT, using high penalty factors [52]. When the outcome is

transferred to the frequency domain, the corresponding mask functions can be

retrieved as a direct link to the experiment [92]. Usually, the phase function is

rather smooth and phase jumps are rare and not pronounced [52]. The mod-

ulation of the transmittance function is stronger and often suppresses spectral

components of the FL incident pulses. A default GA implementation cannot be

used directly to provide results conforming with OCT properties of the mask

functions and MOGA optimizations might be demanding to realize in experi-
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5.2 ACO application to quantum control

ment. In contrast, the pulse characteristics known from the simple structured

OCT results can be conserved when using the ACO algorithm, which also op-

erates in the frequency domain.

In this approach, probability functions p are defined, referring to the transmit-

tance (pT ) and the phase (pφ). In GA calculations, each value of the phase and

transmittance range is equally likely to be chosen. Instead, the modified ACO

approach, similar to the one presented in [142] for the conformational analysis of

drug-like molecules, is based on non-uniform probability functions. Here, they

consist of the visibilities ηφ and ηT and the pheromone trail functions τφ and

τT , given in Eqs. 5.2 and 5.3.

pφi(∆φi, t) = (1− β)τφi(∆φi, t) + βηφ(∆φi) (5.2)

pTi(∆Ti, t) = (1− β)τTi(∆Ti, t) + βηT (∆Ti) (5.3)

Both types of probability functions are calculated in each iteration t.

pφi(∆φi, t) describes the probability that an ant will choose a phase variation

∆φi between the pixels i and i− 1. The total number of phase pixels is n. Each

pair of neighboring pixels has its own phase probability function, denoted by the

index i in pφi . Accordingly, ∆Ti gives the difference of the transmittance values

for the two neighboring pixels i and i− 1. The parameter β specifies the weight

of the visibility functions η and the pheromone trail attractiveness τ . The phase

visibility function ηφ (Eq. 5.4) allows for phase jumps between neighboring pix-

els discretized in the range ∆φi : [−π, π]. Since the phase variations should be

as low as possible, a normal distribution, centered at a phase jump ∆φi = 0,

is chosen. The size of the standard deviation σφ
η determines the probability of

larger phase variations occurring between two neighboring pixels.

ηφ(∆φi) = Nηφ 1

σφ
η

√
2π

e
− 1

2

 
∆φi

σ
φ
η

!2

(5.4)

The phase visibility function is constant for each iteration t and for each pair

of pixels of the phase function. Similarly, the transmittance visibility function

(Eq. 5.5) is defined. Since the transmittance should vary only slowly, deviations

between the pixels are defined and discretized in the range ∆Ti : [−1, 1] and

the distribution is centered around ∆Ti = 0.

ηT (∆Ti) = NηT 1

σT
η

√
2π

e
− 1

2

„
∆Ti
σT

η

«2

(5.5)
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5 Laser field optimization with a modified ant colony algorithm

The parameters NφT
and NηT

are used to normalize both functions. The algo-

rithmic pheromone trail communication network works as follows. A trail (for

each pair of pixels) is updated in every new iteration t+ 1, where a certain part

of the old trails τ , determined by ρ, does not evaporate from one iteration to

the next one and is added to the respective trail updates ∆τ (Eqs. 5.6 and 5.7).

τφi(∆φi, t+ 1) = ρτφi(∆φi, t) + (1− ρ)∆τφi(∆φi) (5.6)

τTi(∆Ti, t+ 1) = ρτTi(∆Ti, t) + (1− ρ)∆τTi(∆Ti) (5.7)

Again, the functions are discretized in the ranges of ∆φi and ∆Ti. The trail

updates are given in Eqs. 5.8 and 5.9.

∆τφi(∆φi) = N τφ
i

∑
k

∆τφi,k(∆φi) (5.8)

∆τTi(∆Ti) = N τT
i

∑
k

∆τTi,k(∆Ti) (5.9)

They correspond to a sum over the trail updates referring to the individual k ants

in the actual iteration step and include parameters to normalize the functions

for each pair of pixels i. The single trail updates, referring to the path of an ant

k are given in Eqs. 5.10 and 5.11 and are evaluated in every iteration for every

ant.

∆τφi,k(∆φi) =
Y k

σ
√

2π
e
− 1

2

„
∆φi−∆φk

i
σ

«2

(5.10)

∆τTi,k(∆Ti) =
Y k

σ
√

2π
e
− 1

2

„
∆Ti−∆Tk

i
σ

«2

(5.11)

The functions reflect normal distributions with the standard deviations σ lo-

cated around the phase or transmittance variation values ∆φk
i and ∆T k

i chosen

by the k−th ant. The distributions are additionally weighted by a factor cor-

responding to the quantum yield Y k of the process, driven by the laser pulse,

which is constructed from the path of ant k. To reach faster convergence, these

expressions (Eqs. 5.10 and 5.11) can further be modified, which will be discussed
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5.2 ACO application to quantum control

below. At the first iteration t = 0, the probability functions correspond to the

respective visibility functions, since no pheromone trail exists in the beginning:

pφi(∆φi, 0) = ηφ(∆φi), (5.12)

pTi(∆Ti, 0) = ηT (∆Ti). (5.13)

Now, a specified number of ants starts to travel over n− 1 values, for the phase

and transmittance functions. They take discretized values in the ranges of ∆φi

and ∆Ti (sampled in 1000 intervals), according to the respective probability

functions. As selection operator, a biased roulette wheel is applied. The slot

sizes are proportionate to the corresponding amplitude values of the probability

functions. Within an iteration, each ant makes n − 1 roulette wheel selections

for the phase function. The first phase pixel value is set to φ0 = 0 and the

complete function is composed of the optimized ∆φi values, starting for i = 1,

according to:

φi = φi−1 + ∆φi. (5.14)

The same holds for the transmittance function:

Ti = Ti−1 + ∆Ti. (5.15)

The initial value is set to T0 = 1. In case that the transmittance over- or un-

dershoots the domain of definition, it is readjusted to this range. As illustrated

in Chapter 3 and in [134], the constructed phase and transmittance functions

modulate the incident laser pulses. The molecular system is afterwards prop-

agated under the influence of the external, electric field and the yield of the

desired quantum process, corresponding to the feedback signal is evaluated. If

all ants of the actual iteration have completed their tour, i.e. constructed their

laser fields and the quantum yield is evaluated, they deposit a certain amount

of pheromone on the trails according to Eqs. 5.10 and 5.11 and the trails are

updated using Eqs. 5.8, 5.9, 5.6, 5.7. Together with the visibility functions the

new probability functions are determined based on Eqs. 5.2 and 5.3 and the

next generation of ants starts to travel. Learning from the previous ants, they

alter the laser fields statistically, according to the updated collective memory

and improve the quantum yield.

For the study of the power of the modified ACO method, a vibrational NOT

quantum gate for the molecule W(CO)6 was chosen as objective. As before, the
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Figure 5.2: Convergence of the ACO approach over the first 100 iteration.

In each case the maximum quantum yields are depicted. Black line: the

30 % best ants contribute to the probability functions. Red line: the ants

reaching quantum efficiencies higher than 90 % contribute. Green line: all

ants contribute to the probability function.

qubit basis states |0〉, |1〉 are encoded by the vibrational ground state and first

excited state of a T1u symmetric mode of the carbonyl complex. For the quantum

gate optimizations, a FL pulse with the carrier frequency ωc = 2000 cm−1, the

FWHM of the intensity profile τp = 468 fs and the maximum energy ε0 =

0.001 au = 0.005GV/cm was used.

Tests on the convergence were performed, where the usage of Eqs. 5.10 and

5.11 were altered. In the first run, they were used as given in the equations

above (Eqs. 5.10, 5.11, green line of Fig. 5.2). This approach shows the slowest

convergence and an efficiency of 99 % is reached for the first time after 59 itera-

tions in the calculation and is exemplified in Fig. 5.2. In the other case the ants,

which reach quantum efficiencies over 90 % or the ones with efficiencies above

the average of all ants in the actual iteration, contribute to the pheromone trail.

The red line in Fig. 5.2 is the convergence of the ACO run, where the ants reach-

ing efficiencies higher than 90 % take part in the construction of the probability

function. Here, after 16 iterations a quantum yield of 99 % is reached. As a last

case, only the ∼ 30% best ants deposited pheromone on their paths. This latter

variant proved to provide the fastest convergence (99 % after 4 iterations, black

line in Fig. 5.2) behavior with the most efficient results, where 30 ants and 1000

iterations were used in the calculation.

For preferably short and simple structured laser fields a choice of the values

given in Tab. 5.1 has proven suitable. In Fig. 5.3 a), the average and maximum
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Figure 5.3: a) Average (gray) and maximum (black) quantum yields for a NOT

gate optimization. b) Best NOT gates (left: ACO, right: GA) after 1000

iterations. The calculations were performed for FL pulses with τp = 468 fs.

c) Best NOT gates (left: ACO, right: GA) obtained for τp = 100 fs. d)

Scaled spectra of FL pulses (dashed-dotted, black line) and shaped pulses

(solid, black line), depicted in c). The transmittance in marked in green

(dashed) and the phase in red (dotted).

95



5 Laser field optimization with a modified ant colony algorithm

Figure 5.4: Evolution of the phase probability function for ∆φi, the phase

jump between the two neighboring pixels, associated with the most intense

spectral component of the FL pulse. The first five iterations are additionally

enlarged for better visibility of the initial Gaussian distribution.

β ρ σ σT
η σφ

η

0.05 0.1 0.01 0.5 0.1

Table 5.1: ACO-parameters used in the NOT gate optimization.

quantum yields are displayed for this set of parameters. The most efficient

NOT gate is depicted in Fig. 5.3 b), left. For comparison of GA and ACO re-

sults, a GA run as in Chapter 3 is performed for the same FL pulse and with a

population size of 30 and 1000 generations. The structure of the resulting GA

laser field [Fig. 5.3 b), right] is more complex and the pulse duration doubles.

The elongated pulse duration together with the slightly increased intermedi-

ate overtone excitation (not shown here) will become crucial in the presence of

dissipation. When shorter FL pulses are applied (ωc = 2000 cm−1, τp =100 fs,

ε0 = 0.003 au≈ 0.015 GV/cm) as often used in the experiments, the complexity

of the GA-optimized fields significantly increases [Fig. 5.3 c), right]. The strong
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5.2 ACO application to quantum control

phase and transmittance modulations [Fig. 5.3 d), right] cause the high complex-

ity and longer pulse duration in comparison to the ACO solution [Fig. 5.3 c),

left]. For the ACO calculation the same optimization parameters (changing only

σT
η = 0.05, σφ

η = 0.01) were used. The corresponding laser field stays short

and comparably simple with small mask function modulations [Fig. 5.3 d), left].

Such simple mask functions are seldom reached in GA runs, since there is no

bias on small variations between the pixels. Due to the simple transmittance

function of the ACO solution [Fig. 5.3 d), left], the shaped spectrum exhibits

only the minimum necessary peak for the transition process and the phase is

almost constant. The GA-optimized amplitude function [Fig. 5.3 d), right] gen-

erates several frequency components with different phase relations, which do not

enable a straightforward extraction of the mechanism.

With the convergence scheme based on the 10 best ants contributing

pheromone, the dependence of the control parameters on the algorithm was

studied. These calculations were performed for 30 ants and 100 iterations and

each control parameter was scanned while keeping the others constant, as given

in Tab. 5.1. The parameters β, balancing trail attractiveness and visibility, and

ρ, the trail persistence can be chosen in the range from 0 to 1. The algorithm

seems to be very robust, particularly with regard to the quantum yield of the

best individuals, which are all above 98 %. The higher the impact of the visibil-

ity function is chosen, the lower is the average reached yield in the ACO runs.

In principle, the contribution of the visibility selected can be rather small, since

in the beginning the probability function is completely defined by the visibility

and the character is preserved by selection of high ρ values. The dependence

on ρ is equally robust and the average value of the ants in different iterations

converges to ∼ 90%, for ρ = 0.0 − 0.8. Above ρ = 0.8 only low learning

effects, according to Eqs. 5.10 and 5.11 take place, which hinder or even pre-

clude convergence. Scanning the influence of the parameters σφ
η , σT

η shows that

the best quantum yields are all above 98 % for values exceeding 0.02. Smaller

values for σT
η constitute too strict limitations on the amplitude modulation. In

general, narrower normal distributions can be applied for the phase functions.

The average yield values rise significantly faster for σ ≤ 0.25 than for larger

ones. The pulse complexities are not affected by the choice of the parameters β

and ρ. Here, a significant effect is observed for the parameter σ, consequently

small values should be selected.

The evolution of the probability function during the optimization is illus-
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5 Laser field optimization with a modified ant colony algorithm

trated in Fig. 5.4 along the phase deviation ∆φi for a pair of neighboring pixels,

associated with the most intense spectral component of the FL pulse. In the

first iteration the probability function equals the Gaussian distribution of the

visibility function ηφ (enlarged part in Fig. 5.4). During the optimization, the

ants, reaching high quantum yields (≥ 90 %), are significantly involved in the

construction of the pheromone trail. In combination with the small σ value,

this leads to the rather narrow trail widths, which still remain located close

to ∆φi = 0, guaranteeing simple phase functions, despite of the fact that the

contribution β of the visibility function is chosen low. However, the presence

and significance of the visibility with a rather broad distribution can still be

traced. For the iterations 200 − 300, probability maxima arise at ∆φi = −0.2

from a statistical selection out of the trailing edges of the visibility, contributing

slightly to the probability function. This is in some sense similar to the effect of

the mutation operator in GAs, providing new features for the pool of individuals

and it demonstrates the flexibility of the algorithm. On the one hand, the ini-

tial probability function, determined by the pure visibility function, steers the

optimization towards low phase deviations, but on the other hand the algorithm

stays flexible and in principle, phase jumps are possible. If such a phase jump

turns out to be essential or favorable for high quantum yields, this feature will

survive, until potentially better properties are found, as in case of the proba-

bility maxima, which arises at iteration t ∼ 200 and completely vanishes after

t ∼ 300.

5.3 Conclusion

An optimization scheme for modulated laser pulses, controlling vibrational pro-

cesses, based on ACO is presented [143]. This idea combines the advantages

from previous control studies [134], using GAs as optimization routines. In

the GA approach, parametrized and pixeled mask functions were applied, each

variant exhibiting its own advantages and shortcomings. Learning from both

concepts, a tunable correlation of the pixel values is introduced with the ACO

method. The variant is flexible enough to tolerate necessary phase jumps, but

to avoid strong phase fluctuations. Strong modulations will lead to unnecessar-

ily long and complex pulses and can be suppressed in GA optimizations only

for parametrized phase forms. Such a parametrized approach, however, can-

not be applied for all control tasks [134]. The use of pixeled mask functions in
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GA is contrarily most universal, but here only the magnitude of phase jumps

can be reduced, the pixel values stay uncorrelated. Restrictions on the trans-

mittance modulation are not reasonable at all, as they would lead to a loss in

optimization flexibility. With the ACO method simple structured pulses, espe-

cially exhibiting significantly shorter pulse durations, are obtained, which is of

high importance when efficient quantum gate operations or state-to-state tran-

sitions are optimized in the presence of dissipation. In addition, the information

on the mechanism can already be deduced from the corresponding mask func-

tions [Fig. 5.3 d), left]. The presented ACO scheme is directly transferable to

quantum control experiments and it is suggested as an alternative to GAs [143].
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6 Vibrational quantum gates under

the influence of dissipation

A crucial factor for the maximum possible efficiency of vibrational quantum

gate operations in condensed phase is the impact of dissipative effects. Vibra-

tional relaxation within the qubit modes can take place and couplings to other

vibrational degrees of freedom might occur. In this section the implementa-

tion prospects of mid-IR quantum gates in transition metal carbonyl complexes

are studied in condensed phase based on experimental vibrational decay time

scales. Corresponding control techniques are presented for the quantum gate

optimizations in a dissipative environment. The robustness against vibrational

relaxation of quantum gates optimized previously (Sec. 3.2.1) is studied. Ad-

ditionally, quantum gates are optimized in the presence of dissipation, and the

concept of precompiled quantum computing is presented and discussed.

6.1 Optimization under the influence of dissipation

The control calculations are performed with OCT operating in the time do-

main and with GAs in the frequency domain. The differences, which arise from

the implementation of the density matrix formalism in the quantum dynamical

calculations are briefly presented.

6.1.1 Optimization with OCT

For the density matrix formalism, the MTOCT functional in the eigenstate rep-

resentation based on the dissipative Liouville-von Neumann equation (Eq. 1.25)
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takes the form:

J (ρik(t),σk(t), ε(t)) =
N∑

k=1

{
〈〈ρik(T )|ρfk〉〉

−
∫ T

0

〈〈
σk(t)

∣∣∣∣ ∂∂t + i [LH + LD]

∣∣∣∣ρik(t)

〉〉
dt

}

− α0

∫ T

0

|ε(t)|2

s(t)
dt. (6.1)

The double-space notation 〈〈Â|B̂〉〉 corresponds to the scalar product in Liou-

ville space, which is equivalent to Tr(Â†B̂) in Hilbert space. The dissipative

OCT functional (Eq. 6.1) is related to the form in the wave function represen-

tation (Eq. 1.60). ρik(t), ρfk(t) are the initial and final states and σk(t) are

the Lagrange multipliers which correspond to the target states ρfk(T ) at the

time t = T . The second term of Eq. 6.1 includes the dissipative Liouville-von

Neumann equation (Eq. 1.25), with the two Liouvillian superoperators LH for

the Hamiltonian part and LD for the dissipative part. The last term restricts

the pulse fluence of the electric field ε(t) with the shape function s(t) and the

penalty factor α0. For the shape function, the form:

s(t) = sin2

(
t

T
π

)
, (6.2)

is used, with the time t running from 0 to T . By variational calculus the equa-

tions of motion of the initial and final states as well as the construction of the

laser fields can be derived (Eqs. 6.3, 6.4 and 6.5).

i
∂

∂t
ρik(t) = (LH + LD)ρik(t) (6.3)

i
∂

∂t
σk(t) = (LH + LD)†σk(t) (6.4)

ε(t) =
s(t)

α0

=〈〈σk(t)|µ|ρik(t)〉〉 (6.5)

These equations are solved iteratively, according to the scheme introduced in

Sec. 1.3.3. For all dissipative OCT calculations in this chapter, the propagations

are performed with the Faber propagator, presented in Sec. 1.1.4.
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6.1.2 Optimization with genetic algorithms

The GA optimization strategy of quantum processes including dissipative effects

is equal to the method used in Chapter 3. The only difference is the dissipa-

tive Liouville-von Neumann equation (Eq. 1.25) instead of the time-dependent

Schrödinger equation (Eq. 1.5). In contrast to the OCT calculations, where the

Faber propagator is applied, here a different propagation scheme is used, since

significantly more propagations have to be performed when using GA-based

optimization strategies.

In case of OCT calculations, the number of propagations n(p) is equal to

n(p) = 3 · n(T ) · n(I), where n(T ) is the number of transitions to be optimized

and n(I) corresponds to the number of iterations (which is normally on the or-

der of 100). The factor 3 results from the approach used to solve the coupled

differential equations (Eqs. 6.3, 6.4 and 6.5). For GA calculations the number of

propagations is n(p) = n(T ) · n(G) · n(P ), scaling with the chosen population

size n(P ) and the number of generations n(G). The quantity n(G) · n(P ) is

usually applied on the order of 3 · 104 − 1 · 105. Consequently, a fast propa-

gation scheme is needed and as in case of the wave packet propagation, a SPO

propagation scheme is introduced. Similar approaches have been applied for the

grid basis [144, 145, 146].

In the eigenstate representation, the coherent propagation of a density matrix

can be performed in the Hilbert space (H) according to Eq. 1.14:

ρ(tj) = |Ψ(tj)〉〈Ψ(tj)| (6.6)

= U(∆t)|Ψ(ti)〉〈Ψ(ti)|U(∆t)† (6.7)

= U(∆t)ρ(ti)U(∆t)† (6.8)

= Usys Uint Usys ρ(ti)U
†
sys U

†
int U

†
sys (6.9)

= Ucoh ρ(ti)U
†
coh, (6.10)

with the propagator for the molecular part:

Usys = e−iH0
∆t
2 , (6.11)

and for the laser-molecule interaction part:

Uint = X† eiµdiagε(ti)∆t X. (6.12)
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6 Vibrational quantum gates under the influence of dissipation

When dissipative effects are to be treated explicitly, these parts have to be

propagated, according to:

(ρ̇(t))D = LDρ(t), (6.13)

ρ(tj) = Udissρ(ti) = eLD∆tρ(ti), (6.14)

which is performed in the Liouville space here and is denoted by the label (L)

in the following. The Liouville space is a unitary vector space, where each

linear operator from the Hilbert space corresponds to a vector. A dissipative

propagation step is evaluated according to:

ρ(tj) = U
(H)
coh TH→L

(
V(L) eL

diag(L)
D ∆t V−1(L) ρ(L)(ti)

)
TL→HU

†(H)
coh , (6.15)

with the superscript index denoting either the Hilbert (H) or the Liouville (L)

spaces, respectively. The coherent propagators are composed of the molecular

Hamiltonian part (Usys) and laser-molecule interaction (Uint) part: U
(H)
coh =

Usys Uint Usys (Eqs. 6.9 and 6.10). The transformation matrices TH→L and

TL→H are necessary to transform the density matrix from the Hilbert to the

Liouville space and back, since ρ is a vector in the Liouville space. The matrices

V(L) and its inverse V−1(L) diagonalize the dissipative part LD and transform it

back. In this case the inverse matrix is explicitly calculated, since V(L) is not a

unitary matrix and the transposed form does not equal the inverse matrix. The

dissipative part LD(ρ(t)) is constructed according to the Lindblad expression

(Eq. 1.26) in the Hilbert space and is transferred to the Liouville space to obtain

LD, which corresponds to a real, non-symmetric matrix.

6.2 Results and discussion

As a first study, the robustness of the quantum gate operations, optimized in the

absence of dissipative effects, are investigated and discussed. A further question

is, how efficient the gates can be implemented in the condensed phase with the

help of optimization techniques. The last part introduces the concept of pre-

compiled quantum computing, which might become necessary in the condensed

phase for the realization of efficient quantum algorithms based on vibrational

qubits.
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Figure 6.1: Vibrational NOT gates operating on the T1u mode of W(CO)6, cal-

culated with GAs in Sec. 3.2.1 [a) corresponds to Fig. 3.3 a), b) to Fig. 3.3 b)

and c) to Fig. 3.3 c)]. The upper panels show the FROG representation of

the electric fields depicted in the second row. In the last two rows the in-

duced mechanisms are shown, where the solid lines refer to the propagation

in a dissipative environment and the dashed lines to the non-dissipative case

for comparison. The black lines indicate the population of the vibrational

ground state, the red lines refer to the first excited state and the green lines

to the second overtone.

6.2.1 Robustness of quantum gates against dissipation

From an experimental study on the vibrational excitation of W(CO)6 [70] in n-

hexane the vibrational life time of the T1u mode is known. It consists of a long-

time component corresponding to the vibrational relaxation of the T1u mode

105



6 Vibrational quantum gates under the influence of dissipation
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Figure 6.2: Vibrational NOT gates operating on the T1u mode of W(CO)6,

calculated with OCT for a non-dissipative environment. The upper panels

show the FROG representation of the electric fields depicted in the sec-

ond row with pulse duartions of a) 5.3 ps and b) 7.4 ps. In the last two

rows the induced mechanisms are shown, where the solid lines refer to the

propagation in condensed phase and the dashed lines to a non-dissipative

environment. The black lines indicate the population of the vibrational

ground state, the red lines refer to the first excited state and the green lines

to the second overtone.
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6.2 Results and discussion

and a fast decay component. Earlier studies suggest that the fast component

can be referred to an intermode energy transfer from the probed T1u mode to

the Raman active Eg mode [129]. From a biexponential fit of the vibrational

decay, the two T1 times: T1 = 152 ps and T1 = 5.6 ps can be deduced for

the T1u mode in condensed phase and are applied in this theoretical study. As

indicated in the experimental work [70], the T1 times scale nearly harmonically,

i.e. they scale with the vibrational quantum number. Such a progression is

used to set up the Lindblad operators (Eq. 1.27) for the dissipative matrix

(LD). The T2 times can be retrieved from homogeneous linewidths of excitation

spectra and the corresponding pure dephasing time scales can be calculated

according to the equation: 1
T2

= 1
2T1

+ 1
T ∗2

. For the presented calculations, the

pure dephasing time scale were not taken into account, but their influence on

quantum information processing will be discussed.

The robustness of different laser fields acting as vibrational NOT gates in the

T1u mode of W(CO)6 are investigated. The quantum system is propagated using

the Faber scheme (Sec. 1.1.4), with the three laser pulses, optimized as NOT

gates for a non-dissipative environment [Fig. 3.3 a), b) and c)]. These fields are

also shown in Fig. 6.1 together with their FROG representations. The induced

mechanisms in condensed phase (solid lines) are compared to the ones without

dissipation (dashed lines) in the lower two rows, where the pulse is operating

on the vibrational ground state (black line, last but one row) and on the first

vibrational excited state (red line, last row). The population of the overtone

state v = 2 is indicated by the green line. The dissipation strongly reduces

the efficiency of the quantum gate operations in all three cases. The efficiency

refers here to the population transfer yield and is not meant as the purity of

the quantum state. The dissipative quantum yields of the single processes are

given in the respective mechanism panels (in red for the excitation process |0〉 →
|1〉 and black for |1〉 → |0〉). The NOT gate efficiency in condensed phase is

calculated as the average yield of both single excitation processes and given in

the panels depicting the laser fields.

Due to the strong impact of the dissipation, the robustness of the laser fields

against the vibrational decay can be clearly traced, and which pulse features

play the major role for the robustness can be studied. In general, quantum gate

solutions can differ in the amount of intermediate overtone excitation, the pulse

duration and the complexity of the envelope functions.

The amount of overtone excitation is relatively low in all three cases and is
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6 Vibrational quantum gates under the influence of dissipation

here obviously independent of the spectral widths of the pulses. This can be

understood from the FROG representations (upper panels of Fig. 6.1). The

dashed lines indicate the energy of the fundamental transition |0〉 → |1〉 of the

T1u mode at 1983 cm−1. The major spectral part is shifted to higher frequencies

and in contrast the overtone transitions |1〉 → 2, 2 → 3 ... have lower frequen-

cies, which is the reason for the low degree of intermediate population transfer

to higher lying vibrational states.

Fig. 6.1 a) 6.1 b) 6.1 c) 6.2 a) 6.2 b)

pulse duration [ps] 16.4 12.6 7.4 5.3 7.4

|0〉 → |1〉 [%] 48.5 45.0 55.4 64.7 55.5

|1〉 → |0〉 [%] 57.6 66.0 72.2 76.0 73.9

NOT [%] 53.0 55.5 63.8 70.4 64.7

tswitch [ps] 4.2 4.6 3.5 2.4 3.3

Table 6.1: Pulse parameters and quantum efficiencies for the NOT gates de-

picted in Fig. 6.1 and Fig. 6.2.

The three depicted NOT gate solutions (Fig. 6.1) mainly differ in the pulse

duration (given in Tab. 6.1) and in the complexity. The overall NOT gate

efficiency (shown in the panels of the laser pulses) increases from case a) to c)

with decreasing pulse duration [from a) 16.2 ps to c) 7.3 ps] and decreasing pulse

complexity. Also the efficiencies of the single excitation processes |0〉 → |1〉 and

|1〉 → |0〉 are higher in case c) compared to a). But, for the |0〉 → |1〉 excitation

referring to the pulse depicted in Fig. 6.1 b) the efficiency is lower than for the

longer and more complex pulse shown in Fig. 6.1 a). The explanation can be

given by analyzing the period of time between the qubit basis switching process,

which corresponds to the crossing point of the populations in the qubit basis

states |0〉 and |1〉 and the end of the laser-molecule interaction. This duration

is determined for the three pulses in Fig. 6.1 and given as the time tswitch in

Tab. 6.1. It is longer in case of the NOT gate shown in Fig. 6.1 b) than for a)

and explains the reduced efficiency of the |0〉 → |1〉 transition in case of the laser

field b). In general, one of the most intense subpulses induces the population

inversion from the initial to the target state and when strong dissipative effects

are present, then the pulse decay from this point in time has to be preferably

fast. Usually this means that the total pulse duration is short.

108



6.2 Results and discussion

0 100 200 300 400 500
Iteration

0.5

0.6

0.7

0.8

Y
ie

ld
 φ: [−0.1 π, 0.1 π]
 φ: [−0.5 π, 0.5 π]
 φ: [− π,  π]

0 100 200 300 400 500
Iteration

0.5

0.6

0.7

0.8

Y
ie

ld

 φ: [−0.1 π, 0.1 π]
 φ: [−0.5 π, 0.5 π]
 φ: [− π,  π]

a)

b)

Figure 6.3: Quantum efficiencies of the pixel-based GA optimization of a NOT

gate operation. a) The FL pulse durations were chosen in the range from

300 fs to 3000 fs and b) from 50 fs to 100 fs. In both cases the phase range

[−π, π] was limited by a factor f , where the quantum yields for f = 0.1 are

indicated by the black lines, for f = 0.5 by the red lines and for f = 1.0

by the green lines.

This finding is compared to a simple structured OCT result shown in

Fig. 6.2 a). The NOT gate is optimized using MTOCT (Eq. 1.60, efficiency

> 99 %, α0 = 200) without taking into account dissipative effects and af-

terwards the system is propagated in the presence of dissipation. The pulse

duration of the almost Gaussian-shaped laser field is 5.3 ps, which is ∼ 2 ps

shorter than the shortest NOT gate shown in Fig. 6.1 c). Again, the FROG rep-

resentation is displayed [Fig. 6.2 a)], which indicates a narrower spectral range

than for the previously discussed NOT gates (Fig. 6.1). The pulse action is not

as sensitive to dissipation as observed in the previous cases, and the efficiency

decreases only to 70.4 %. The short duration tswitch ∼ 2.4 ps is the reason for the

lower impact of the vibrational decay on the population transfer mechanisms.

Furthermore, it needs to be clarified, if only the pulse duration is decisive for
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6 Vibrational quantum gates under the influence of dissipation

the efficiency reached in the presence of vibrational dissipation or if additionally

the pulse complexity plays a role. To answer this question, a NOT gate with

a pulse duration of 7.4 ps, the same duration as the GA result in Fig. 6.1 c),

is optimized with OCT (α0 = 200) in a non-dissipative environment. After-

wards the OCT solution is propagated with dissipation. The resulting pulse, the

FROG representation and the induced mechanisms are depicted in Fig. 6.2 b).

The relevant data are also given in Tab. 6.1. The structures of the OCT and

GA fields [Fig. 6.1 c) and Fig. 6.2 b)] with the same pulse duration differ sig-

nificantly. Besides the pulse duration, also the tswitch time is almost the same,

i.e. 3.3 ps in the case of the OCT calculation. Accordingly, the |0〉 → |1〉 exci-

tation processes are equally efficient. The total quantum yield of the NOT gate

operation amounts to 64.7 %, which is only ∼ 0.9 % better than the NOT gate

presented in Fig. 6.1 c).

In conclusion, when the amount of intermediate overtone excitation is low,

especially for the transition |0〉 → |1〉, the pulse duration and particularly the

tswitch duration determines the strength of the dissipative impact. The example

presented demonstrates that the actual structure of the laser field envelopes and

their complexities play only a minor role.

6.2.2 Quantum gate optimization in a dissipative

environment

A further important point is whether the efficiencies, reached by the pulses in

Sec. 6.2.1, can be enhanced by optimization techniques in the presence of dis-

sipation. In a previous theoretical work such a question has been investigated,

based on optimal control of dissipative dynamics in the context of molecular

quantum computing with OCT [63]. The authors optimized quantum gate op-

erations in the presence of dissipation and compared them to laser fields opti-

mized without dissipation but propagated afterwards in the presence of dissipa-

tion. They could conclude that dissipative OCT basically does not improve the

results gained from non-dissipative optimization. Similar OCT investigations

have been performed on the vibrational excitation of CO molecules adsorbed

on metal surfaces [147, 148, 149]. In contrast, this study focuses on dissipative

OCT and GA optimizations. Here, the role of the pulse durations and penalty

factors as well as of the incident laser pulses is investigated to obtain as efficient

laser fields as possible, driving the quantum gate operations in condensed phase.
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6.2 Results and discussion

With the pixel-based GA approach, introduced in Chapter 3 and the SPO

propagation scheme, presented in Sec. 6.1.2, NOT gate optimizations were per-

formed in the condensed phase (with T1 and T2 = 2 · T1). In all calculations a

spectral pixel width of 10 cm−1 was assumed.
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Figure 6.4: Optimized NOT gates in condensed phase. In the optimization the

dissipative environment is explicitly taken into account. The laser fields in

a) and b) are optimized with a GA and in case of c) with OCT. The panels

show the FROG representations, the electric laser fields and the induced

population transfer mechanisms (from top to bottom).

The number of generations is 500 and the size of population 60. As already

discussed in Chapter 3, the genome of the GA comprises the mask function pixels

and the FL pulse parameters. The maximum FL pulse energy ε0 is chosen to

be below 0.01 au ≈ 0.05GV/cm and the carrier frequency ωc is in the range
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6 Vibrational quantum gates under the influence of dissipation

from 1970 cm−1 to 1990 cm−1. The phase range [−π, π] · f was varied in the

calculations with the factor f and additionally two different ranges for the FL

pulse durations were applied and compared. In the first set of calculations,

the FWHM of the FL pulses were chosen between 300 fs and 3000 fs (similar to

the ranges used in Chapters 3 and 4). In the second case, the durations were

shortened to 50 fs to 100 fs (similar FL pulse durations are frequently used in the

experiment, e.g. in [70]). The obtained maximum quantum yields are displayed

in Fig. 6.3, where the panel a) shows the results for longer FL pulse durations

and b) for the shorter ones.

Again, the choice of limited phase ranges very obviously benefits the GA

search. For the smallest range used [f = 0.1, black line in Fig. 6.3 a)], a

maximum efficiency of 73.8 % is reached for a NOT gate with a duration of 4.3 ps.

The pulse is depicted in Fig. 6.4 a), together with the FROG representation and

the induced mechanisms. The quantum efficiency is slightly better than for the

initially non-dissipative OCT-optimized NOT gate [Fig. 6.2 a)], this is mainly

due to the fact that the pulse duration is 1 ps shorter. When optimizing the

vibrational quantum processes in the presence of dissipation with GAs, the

differing possible pulse durations, in contrast to OCT, is an advantage of the

GA approach. The pulse durations are not chosen manually, as in case of OCT,

but determined indirectly by the FL pulse and mask function properties, which

are optimized by the algorithm.

If shorter FL pulse durations [50 fs - 100 fs, Fig. 6.3 b)] are selected for the

dissipative GA optimizations, two differences to the previous calculations with

longer FL pulses [300 fs - 3000 fs, Fig. 6.3 a)] can be observed. The quantum

efficiencies increase to 76.8 % [Fig. 6.3 b)] in comparison to a maximum of 73.7 %

[Fig. 6.3 a)] and the influence of the phase limitation by the factor f is higher.

The latter point can be understood as follows. In all calculations the same pixel

width of 10 cm−1 is applied. Since the spectra of shorter FL pulses are broader,

more pixels are needed for the mask functions. The variations in the phase

and transmittance functions can consequently affect the pulse complexities and

durations stronger. Thus, strictly confined phase ranges facilitate lower phase

variations over the broad pixel masks and benefit the GA search even more than

for longer FL pulse durations.

From the GA calculation [Fig. 6.3 b)], it can be traced that despite the broad

spectrum, short FL pulses are equally suited as longer FL pulses for the quantum

gate calculations (in this case even slightly better), but the restriction of the
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6.2 Results and discussion

phase domain is now even more relevant. The best GA solution for the short

FL pulse range with f = 0.1 is depicted in Fig. 6.4 b) with the FROG and the

mechanisms. However, it needs to be mentioned that the strategy of the usage

of short FL pulses cannot be pursued for every qubit system. It is possible if

there are few IR active normal modes, as for W(CO)6, or if the modes are still

resolvable by the pulse.
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Figure 6.5: A scan of T1 times is performed for the NOT gate implementation

with the aim to find the minimum decay time scale, which still allows for

an efficient implementation of a NOT gate operation.

α0 100 50 10 5 3 2

quantum yield [%] 66.7 73.6 79.9 80.6 80.7 81.0

Table 6.2: Resulting quantum yields of the OCT optimized NOT gates in

condensed phase, depending on the penalty factor α0.

For corresponding dissipative OCT calculations, the laser-molecule interaction

time has to be defined explicitly and cannot be altered or optimized by the

OCT formalism. Based on the best GA result [Fig. 6.4 b] with a pulse duration

of 2.4 ps, the OCT pulse duration is limited to 2.0 ps to find out if further

enhancements are possible by decreasing the duration. In addition the penalty

factor α0 has to be determined. It is scanned in these calculations from 2 to

100 and the results are given in Tab. 6.2. Below the value α0 = 2 the resulting

laser fields are physically not meaningful, i.e. not realizable in the experiment.

Starting with larger α0 values, the solutions are simple structured, but with low
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6 Vibrational quantum gates under the influence of dissipation

efficiencies. For the penalty factor α0 = 2, the highest efficiency is reached

and the result is depicted in Fig. 6.4 c). Since the pulse duration is slightly

shorter than in case of the best GA solution, the OCT result is more complex,

but also more efficient with 81 %. The spectrum is very broad and as can be

deduced from the mask function calculations, a FL pulse with a FWHM below

50 fs is required. From the mechanisms and the FROG representation the high

efficiency of the quantum gate can be attributed to the fact that the predominant

switching process occurs only ∼ 570 fs before the laser-molecule interaction is

over.

From the calculations presented in this section, it can be concluded that for

the given dissipative time scales, comprising also a fast component of 5.6 ps, a

vibrational NOT gate could be implemented in condensed phase still with ac-

ceptable population transfer efficiencies for an experimental proof of principle.

Additionally, it was found that the results gained form GA and OCT optimiza-

tions conform very well, with respect to the efficiencies, the pulse durations and

the complexities.

Now, a further question arises on how long the T1 time scales need to be for

the implementation of highly efficient quantum gates in the condensed phase.

Corresponding calculations were performed with the pixel-based GA approach

for a NOT gate. The phase range was again limited to [−0.1π, 0.1π] to accelerate

the GA search. The vibrational decay was assumed to be monoexponential

with T1 times reaching from 10 ps to 200 ps. The quantum yields reached in

the GA runs are depicted in Fig. 6.5, and it can clearly be traced that for

T1 ≥ 200 ps highly efficient vibrational quantum gates can be implemented,

even in condensed phase. This seems to be very realistic, as the vibrational

decay time e.g. of the A1 symmetric mode in MnBr(CO)5 is monoexponential

with T1 ∼ 200 ps [150].

As already indicated, the T ∗2 time scales can be deduced from homogeneous

linewidths and incorporated in the theoretical study. The decay rate associated

with T2 then changes from 1
T2

= 1
2T1

to 1
T2

= 1
2T1

+ 1
T ∗2

. From Eq. 1.30 the influence

of the T ∗2 time and the corresponding rate γ∗ can be seen. It diminishes the size

of the off-diagonal elements ρnm (n 6= m) of the density matrix, i.e. it reduces the

coherence of the quantum state additionally to the T1 relaxation. The amount of

coherence can be determined by the purity of the state (Tr(ρ2)). As an effective

laser-molecule interaction is only possible with the coherent part of the quantum

system, long T ∗2 times are favorable for the implementation of quantum gates.
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Figure 6.6: Optimized CNOT laser fields in dissipative environment operating

a) on the A1 mode, b) on the E mode of MnBr(CO)5 and c) a respective

SWAP operation. The upper row shows the laser fields and the correspon-

ding FROGs are depicted in the lower row.

6.2.3 Precompiled quantum computing

The notion of precompiled quantum computing means that quantum algorithms

are not composed of universal quantum operations (as done in universal quan-

tum computing), instead either the complete algorithm or a part of it (e.g. a

QFT or a SWAP operation) is implemented as one unitary operation [67]. This

idea has been proposed e.g. for molecular quantum computing with vibronic

superpositions in electronically excited states [67, 151, 152, 153].

If molecular quantum computing with vibrational qubits is realized in gas

phase experiments, the T1 and T2 time scales will be longer than they are in

condensed phase. To demonstrate the advantage of the precompiled concept,

the time T1 = 200 ps is used in the calculations, where the effect will be

stronger than for the longer gas phase time scales. As an example, a SWAP

gate operation, which is composed of three CNOT gates in universal quantum
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6 Vibrational quantum gates under the influence of dissipation

computing, is discussed:

SWAP = CNOT1 · CNOT2 · CNOT1 (6.16)

=


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 ·


1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

 ·


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 (6.17)

=


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

 . (6.18)

For the qubit basis {|00〉, |01〉, |10〉, |11〉}, it interchanges the qubits states |01〉
and |10〉: 

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

 ·


ψ00

ψ01

ψ10

ψ11

 =


ψ00

ψ10

ψ01

ψ11

 . (6.19)

With dissipative OCT (Eq. 6.1) two CNOT gates, one operating on the A1

symmetric mode and the other one on an E symmetric mode of MnBr(CO)5 were

optimized with pulse durations of 7 ps. In addition, a direct SWAP operation

according to Eq. 6.18 was calculated, where a total duration of 13 ps was used.

The quantum operations are displayed in Fig. 6.6. The CNOT gates [Fig. 6.6 a)

and b)] can basically be realized by two subpulses, overlapping in time, with

the same carrier frequency ωc. For the CNOTA gate the carrier frequency is

ωc ∼ 2005 cm−1 and ωc ∼ 2060 cm−1 for the CNOTE gate. In contrast, the

SWAP laser field [Fig. 6.6 c)] contains both frequency components at the same

time as can be seen from the FROG (lower panel). This is the reason for the beat

structure of the pulse envelope function (upper panel). The average efficiency

of the precompiled SWAP operations is 94.3 % and the corresponding induced

population transfer mechanisms are depicted in Fig. 6.7 b). For the universal

SWAP, composed of the CNOT gates, the system is propagated with the CNOT

gate laser fields, which are delayed in time for phase correctness [49]. After the

first CNOTA gate, a delay of 3.4 fs is necessary, then the CNOTE gate is operat-

ing, followed by a 3.2 ps time delay and the second CNOTA gate. The average
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Figure 6.7: Mechanism of a) a universal and b) a precompiled SWAP operation,

with the two-qubit basis states |00〉 (black), |01〉 (red), |10〉 (green), and

|11〉 (blue).

quantum efficiency is 88.8 % and the mechanism is depicted in Fig. 6.7 a). The

interaction of the distinct CNOT gates with the qubit system and the correspon-

ding switching processes at the times t ∼ 3.5 ps, 10.5 ps and 21.0 ps [Fig. 6.7 a)]

can be clearly observed. The precompiled SWAP operation is directly driven,

and the qubit basis states |00〉 and |11〉 are here intermediately used as tran-

sition pathways. The higher efficiency of the precompiled operation (∼ 5.5 %)

has to be attributed mainly to the short pulse duration, which is roughly half

as long as for the universal SWAP gate. Since in gas phase the vibrational life

times will be longer, the effect of precompiled quantum computing will reduced,

but it will still help to enhance the quantum efficiencies.
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6 Vibrational quantum gates under the influence of dissipation

6.3 Conclusion

In this study, the efficiency of logic operation in the mid-IR regime on vibrational

qubits were investigated in the presence of dissipation. The vibrational relax-

ation time scales were directly taken from the experiment. The implementation

prospects of NOT gates for W(CO)6 in the condensed phase were studied to get

an idea on the maximum efficiency of future quantum control experiments.

The robustness of laser fields, which were optimized in the absence of vibra-

tional relaxation, were explored by propagation in a dissipative environment.

It can be concluded that predominantly the pulse duration accounts for the

strength of the dissipative impact. From dissipative GA optimizations, it can

be learned that a broad range of FL pulse properties will be suited for the

quantum control experiments. The phase limitation, however, is still a very

important issue, especially, when short FL pulse durations are chosen. The best

solutions for shorter FL pulses are not inherently found by the GA, but the

search is still promoted significantly by the limitation of the phase range.

A scan on required T1 times showed that a time scale of ∼ 200 ps will be

sufficient for highly efficient quantum gate implementations and promising ex-

perimental results are to be expected for the A1 mode of MnBr(CO)5. Addi-

tionally, the concept of precompiled quantum computing was presented and its

advantages were discussed for the example of a SWAP operation.
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7 Molecular chains for vibrational

quantum information processing

Population transfer between vibrational eigenstates is an important process for

several phenomena in chemistry and physics. Intramolecular vibrational re-

distribution (IVR) has been studied in many different systems, such as pro-

tein molecules [154, 155], charge transport in molecular wires [156, 157, 158],

transport of excitons in macromolecules [159, 160], transport of heat and

energy in chain molecules [161, 162, 163, 164] or other molecular systems

[165, 166, 167, 168]. A comprehensive review on energy transfer dynamics can

be found in [169].

After a local vibrational excitations of molecules, IVR processes can be stud-

ied with time-resolved pump probe techniques. Particularly, multi-dimensional

IR spectroscopy [170, 171, 172, 173, 174, 175] facilitates an insight into the vi-

brational dynamics. Besides the time resolution, also technical advances have

been reached in the spatial resolution of spectroscopic techniques, e.g. optical

nearfield control in nanostructures [176, 116]. On the basis of all these new

developments, the precise detection and control of vibrational energy transfer

processes in molecules will become possible in future.

For the concept of molecular quantum computing with vibrational qubits

an approach to scale the number of qubits is necessary for the construction

of quantum registers. One possibility is that more than two normal modes

of a molecule are used to define the qubit modes and to set up a multi-qubit

system for a single molecule. But as not all normal modes are strongly IR (or

Raman) active and resolvable at the same time, the size of the qubit system

is generally limited. A different idea is based on the connection of individual

qubit systems through molecular chains. This study focuses on a laser-driven

vibrational energy transfer across such bridging molecules. The process can

then be regarded as information transfer in the context of molecular quantum

information processing with vibrational qubits.
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7 Molecular chains for vibrational quantum information processing

The idea is related to one-dimensional spin chains acting as quantum chan-

nels [177, 178]. The generation of entanglement and the transport of quantum

information has already been investigated in such systems [179]. In this study,

the aim is to implement a laser-driven vibrational state transfer from one qubit

site to another one across the molecular chain states. A model system is set

up based on the linear octatetraene molecule, which is decribed by ab-initio

methods. Two qubit systems are coupled to the chain, and laser fields are cal-

culated with OCT, driving an efficient state transfer. Additionally, vibrational

relaxation is incorporated in the study.

7.1 Approach for quantum information processing

with vibrational qubits

As a first approach to quantum information transfer across an octatetraene

chain (Fig. 7.1), a model system is constructed in the basis of stretching local

modes. The molecular geometry is optimized quantum chemically using DFT

C C C C C C C C HH

(r ) (r ) (r )

r r r r r’r’r’A B C D C B A

GFE

Figure 7.1: Octatetraene chain with the local mode coordinates qi referring to

the displacement of the C-C bondings, with the equilibrium bond lengths

ri.

(bp86/6-31G(d,p)) [180]. Along each local mode (explicitly for the coordinates

qA, qB, qC, qD, referring to the bond lengths rA, rB, rC, rD in Fig. 7.1) the 1D C-C

potentials (V̂ 1D
C ) are calculated and the corresponding vibrational eigenfunctions

and eigenvalues are evaluated (Sec. 1.1.3) with the kinetic Hamiltonian operator

T̂ 1D
C and the mass mC:

T̂ 1D
C = − 1

mC

∂

∂r2
i

. (7.1)
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7.1 Approach for quantum information processing with vibrational qubits

Additionally, for pairs of local modes (qAqB, qBqC, qCqD, qAqC, qBqD, qCqE) the

2D potentials V̂ 2D
CiCj

are set up. For neighboring oscillators (qAqB, qBqC, qCqD),

the kinetic coupling has to be accounted for in the kinetic Hamiltonian T̂ 2D
CiCj

:

T̂ 2D
CiCj

= −1

2

(
2

mC

∂

∂r2
i

+
2

mC

∂

∂r2
j

− 2

mC

∂

∂ri

∂

∂rj

)
. (7.2)

In contrast, for two non-neighboring oscillators (indicated by the label CiXCj),

the Hamiltonian consists of the 2D potential part V̂ 2D
CiXCj

and the kinetic Hamil-

tonian T̂ 2D
CiXCj

, which is assumed to be cartesian, i.e. uncoupled:

T̂ 2D
CiXCj

= −1

2

(
2

mC

∂

∂r2
i

+
2

mC

∂

∂r2
j

)
. (7.3)

In this case, the only coupling of the oscillators is due to an intermode anhar-

monicity of the potential energy surfaces (V̂ 2D
CiCj

and V̂ 2D
CiXCj

).

The total wave function Ψ, representing the carbon stretching mode part of

the octatetraene molecule, is expanded in the basis of the 1D local mode func-

tions φn. The number of local wave functions with the vibrational coordinates

qn is n = 7. The product function Ψm takes the form:

Ψm = Πnφn(qn) = φ1φ2φ3φ4φ5φ6φ7. (7.4)

The Hamiltonian matrix H and the corresponding matrix elements are calcu-

lated as follows. The diagonal elements are equal to the sum of the eigenvalues

of the corresponding local mode states, which will be shown below. For the

m-th product state (e.g. the total ground state Ψ0 ≡ 0000000 is assumed as

the state m = 0 and the state with one quantum of excitation in the qA local

mode Ψ1 ≡ 1000000 corresponds to m = 1), the matrix element is calculated

according to:

Hmm = 〈Ψm|
∑

n

Ĥ1D
n (qn)|Ψm〉 (7.5)

= 〈Π(m)
n φ(m)

n (qn)|
∑

n

Ĥ1D
n (qn)|Π(m)

n φ(m)
n (qn)〉 (7.6)

=
∑

n

〈φ(m)
n (qn)|Ĥ1D

n (qn)|φ(m)
n (qn)〉. (7.7)

H00 = 2 · ε0A + 2 · ε0B + 2 · ε0C + ε0D (7.8)

H11 = ε1A + ε0A + 2 · ε0B + 2 · ε0C + ε0D (7.9)
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7 Molecular chains for vibrational quantum information processing

Inserting the product function Eq. 7.4 into Eq. 7.5 leads to Eq. 7.6. This equa-

tion can be further simplified, yielding Eq. 7.7, as the 1D Hamiltonians Ĥ1D
n (qn)

depend only on one local coordinate qn. Two examples for diagonal matrix ele-

ments are given in Eqs. 7.8 and 7.9. Here, εxn are the eigenenergies of the local

modes qn, and x denotes the degree of excitation of these modes. The kinetic

coupling of next-neighbor oscillators as well as the intermode anharmonicity of

the 2D potential energy surfaces contribute to the off-diagonal elements. The

highest dimensionality of couplings taken into account here is 2D. Equivalently,

one could also calculate the corresponding 3D or multi-dimensional potential

energy surfaces and take the higher dimensional potential couplings into ac-

count. However, from test calculations on the smaller butadiyne system, it was

found that the importance of these terms are lower and they can be neglected

for the octatetraene model system. The off-diagonal elements Hlm (l 6= m) of

the Hamiltonian matrix H are calculated as:

Hlm = 〈Ψl|
∑

k

∑
j

Ĥ2D
kj (qkqj)|Ψm〉 (7.10)

= 〈Π(l)
n φ

(l)
n (qn)|

∑
k

∑
j

Ĥ2D
kj (qkqj)|Π(m)

n φ(m)
n (qn)〉 (7.11)

= 〈Π(l)
n φ

(l)
n (qn)|

∑
k

∑
j

(T̂ 2D
kj (qkqj) + V̂ 2D

kj (qkqj))|Π(m)
n φ(m)

n (qn)〉. (7.12)

The indexes k and j refer to all 2D operators, taken into account. In this study

they denote the following pairs of local modes: qAqB, qBqC, qCqD, qAqC, qBqD,

qCqE and the corresponding mirrored parts (e.g. q′Aq
′
B referring to the bond

lengths r′A and q′B in Fig. 7.1). Eq. 7.12 can be further simplified, since the

2D Hamiltonians T̂ 2D
kj (qkqj) and V̂ 2D

kj (qkqj) depend on two coordinates and they

only act on the local mode wave functions, referring to these local coordinates

(qkqj), e.g.:

H01 = 〈0000000|
∑

k

∑
j

Ĥ2D
kj (qkqj)|1000000〉 (7.13)

= 〈0000000|Ĥ2D
AB(qAqB) + Ĥ2D

BC(qBqC) + Ĥ2D
AC(qAqC) + ...|1000000〉 (7.14)

= 〈00|Ĥ2D
AB(qAqB)|10〉+ 〈00|Ĥ2D

BC(qBqC)|00〉+ 〈00|Ĥ2D
AC(qAqC)|10〉+ ... .

(7.15)

Although exclusively 2D couplings are accounted for in this setup of the

Hamiltonian matrix H, the vibrational normal modes can be well approached,
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7.1 Approach for quantum information processing with vibrational qubits

Chain
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Qubit B

1110
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Figure 7.2: Model system for two qubits connected by local mode states of a

molecular chain (black). As indicated by the green and blue qubit levels,

the fundamental frequencies of the qubit modes differ in this setup. The red

and magenta arrows indicate the kinetic and potential couplings between

the local mode chain states, and additionally a coupling between a qubit

overtone state and one chain state at each site is assumed (brown arrows).

since delocalized states as e.g. 1011101 are taken into account. The maximum

number of states used in these calculations is on the order of 300.

The octatetraene model, as described above, is extended by vibrational qubit

systems, which are assumed to be directly connected to the octatetraene chain.

Similar molecular systems, including sp-hybridized carbon chains, have been

synthesized in the group of J. Gladysz [181, 182]. In these structures, platinum

complexes related to the transition metal carbonyl structures, investigated in

the previous chapters as qubit systems, are directly linked to both ends of the

molecular carbon wire. For the calculations, the product wave function (Eq. 7.4)

is expanded by qubit normal mode states, and the system Hamiltonian is ex-

tended by the respective matrix elements. The qubit systems are supposed to

be connected to the chain ends, instead of the hydrogen atoms in octatetraene

(Fig. 7.1). A model setup of this system, composed of a linear carbon chain, de-

scribed in the local mode basis and two coupled qubit normal modes, is sketched

in Fig. 7.2.

For the optimization of a state transfer from one qubit site to the other one

across the chain molecule, two different qubit systems linked to the molecular
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7 Molecular chains for vibrational quantum information processing

bridge, were constructed according to Fig. 7.3 a) and b). The qubit mode Q(A)

[left side of Fig. 7.2 and Fig. 7.3 a)] is assumed to have a fundamental transition

frequency of ωQ(A) = 1400 cm−1 and an anharmonicity of ∆Q(A) = 43 cm−1,

whereas the parameters for the qubit mode Q(B) are ωQ(B) = 2200 cm−1 and

∆Q(B) = 30 cm−1. The dipole moment of the Q(A) mode is set to 0.18 au =

0.45Debye and to 0.13 au= 0.33Debye for the Q(B) mode. They are assumed

to scale harmonically, i.e. with the square root of the vibrational quantum

number.

Additionally, a coupling is introduced between the overtone state v = 3 of the

qubit mode Q(A) and a chain state, where the vibrational excitation is located at

the Q(A) site of the chain in the local coordinate qA [Ψ ≡ 2000000, Fig. 7.3 b)].

The size of the coupling element is selected to be 0.0008 au. Analogously, the

second overtone state (v = 2) of the Q(B) qubit mode is coupled to the chain

state Ψ ≡ 0000002.

18 cm−1

A: 3

B: 2

280 cm−1

00000022000000

Chain

30

02

01

10
20

00
A B

a) b)

Q(B)Q(A)
Q(A):3

Q(B):2

Figure 7.3: a) Vibrational state-to-state transfer, which has to be driven from

the second excited state of the qubit mode Q(A) to the first excited state of

the qubit mode Q(B) by an optimized ultrashort laser field. The overtone

and combination states are not shown, for reasons of simplicity, but they

are taken into account in the calculations. b) Couplings between the qubit

mode and local chain states and energetics of the corresponding levels.

7.2 State transfer and quantum channels

In this study, the optimization aim is a vibrational state-to-state transfer from

the state vQ(A) = 2 to vQ(B) = 1 as indicated by the red arrows in Fig. 7.3 a).
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7.2 State transfer and quantum channels
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Figure 7.4: a) Optimized laser field, driving the state-to-state transfer from

v = 2 on the Q(A) qubit mode to v = 1 on the Q(B) qubit mode across

the chain states. b) Corresponding FROG representation of the laser pulse.

The initial and target states of interest will be denoted as 20 and 01, only

referring to the vibrational degrees of excitation in the qubit modes qQ(A)qQ(B),

neglecting the chain states. A laser pulse driving the vibrational population

transfer 20 → 01 is optimized with OCT (Eq. 1.60) and an efficiency of 99.2 %

is reached for a short pulse duration of ∼ 2.1 ps. The corresponding laser field is

depicted in Fig. 7.4 a), and the FROG representation is shown in Fig. 7.4 b). The

FROG diagram reveals a simple pulse structure with two subpulses delayed in

frequency and time. It can be traced that the center frequency of the subpulses

does not match the transition frequencies v2 → v3 of 1314 cm−1 for the qubit

mode Q(A) and v2 → v1 of 2170 cm−1 for the qubit mode Q(B), as indicated by

the red arrows in Fig. 7.3 a).

The mechanism is calculated to understand the vibrational energy transfer

process. The evolution of the population in the qubit mode states is shown in

Fig. 7.5 a). Initially, the complete population is in the state 20 (blue) and the

chain local modes are in the ground state. After 0.5 ps the amount of population

in the state 20 starts to decrease and is transferred into the target state 01 (dark-

green), but also intermediately to a small extent to the state 02 (light-green),

which couples directly to the chain at the qubit site Q(B). The mechanism of

the local mode chain states is shown in Fig. 7.5 b). At least 15 local mode

states significantly participate in the transfer process and are intermediately

populated.

The transition pathway of the population transfer from the initial qubit state
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7 Molecular chains for vibrational quantum information processing
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Figure 7.5: Mechanism induced by the laser field depicted in Fig. 7.4 a). a) The

population in the qubit mode states are depicted, where the vibrational

quantum numbers of the local chain states are 0. The blue line refers to the

initial state 20 and the dark-green line to the target state 01 of the transfer

process. In panel b), the intermediate population of the local chain states

is shown. Here, only the vibrational quantum number of the local chain

states are given.

20 into the chain states and out of them into the target state 01 has to be clari-

fied. The Hamiltonian, set up in the local mode representation, is diagonalized,

and the normal modes of the coupled qubit-chain system are obtained. Certain

local mode chain states mix with the qubits mode states 30 and 02, which are

directly coupled to the chain, and they are included in the normal modes of

the system. The basis of the dipole moment matrix µ, referring to qubit mode

transitions, is changed to the normal mode basis. This is performed with a

transformation matrix Y (Eq. 7.16) corresponding to the matrix of the normal

mode eigenvectors, which were obtained from the diagonalization of the local

mode Hamiltonian.

µnormal = YµlocalY†. (7.16)

As a result, different transition pathways connecting the initial and target state

of the qubit modes with the normal modes can be detected. These pathways

can be associated with different transition dipole strengths and are illustrated

in Fig. 7.6. The blue lines refer to the transitions from the initial state 20
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normal modes

Q(B)Q(A)

Figure 7.6: From the change of the local mode to the normal mode basis,

different transition pathways from the initial and target states into the

normal mode states can be found. They are indicated by the blue lines for

the initial state and by the green lines for the target state. The varying

width of the lines indicates that the transition dipole strengths differ.

into the normal mode states and the green lines back into the target state 01.

Every blue transition line is related to a green transition path. The differing

dipole strengths are indicated by the width of the transition lines. In general the

dipole moment matrix elements are larger when the contribution of the coupled

local mode states 2000000 and 0000002 to the respective normal mode vectors

is higher.

The transition pathways, shown in Fig. 7.6, allow for the identification of the

optically accessible normal mode states n (i.e. the transition matrix elements

into these states is µ 6= 0). The possible transitions from the initial (20, blue)

and target (01, green) states into these normal mode states n are depicted in

Fig. 7.7 a). They are plotted versus the transition frequencies 20 → n (blue) and

n→ 01 (green). Fig. 7.7 b) shows an equivalent graph, but here the size of the

corresponding dipole matrix elements for the transitions are indicated by the

height of the vertical lines. Each blue line (20 → n) refers to a corresponding

green line (n → 01), where in both cases the same normal mode state n is

used for the transfer. This can be visualized, by plotting the transition dipole

strengths against the number of the respective normal modes states n, as shown

in Fig. 7.7 c).
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Figure 7.7: a) Transition pathways from the initial (20, blue) and target (01,

green) states into the normal mode states, plotted as a function of the tran-

sition frequency. b) Transition pathways scaled by the size of the respective

dipole matrix elements. c) Pathways from both qubit sites, plotted against

the normal modes n.
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Figure 7.8: Transition pathways with spectra of the laser pulses driving the

state transfer across the chain molecule through different quantum channels.

a) n = 17, b) n = 20, c) n = 21 and d) n = 23 [Fig. 7.7 c)].

By means of these plots, the state transfer process induced by the optimized

laser pulse [Fig. 7.4 a)] across the molecular chain can be understood. The

pulse couples the qubit mode Q(A) to one or more optically addressable normal

mode states n with the first subpulse and transfers the population from the
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7 Molecular chains for vibrational quantum information processing

state 20 into the local chain states, which form the respective normal modes.

The second subpulse draws the population out into the target state 01. The

carrier frequencies of the two subpulses [1677 cm−1 and 2233 cm−1 traced from

the FROG representation of the optimized laser field in Fig. 7.4 b)] with respect

to the transition pathways [Fig. 7.7b) and c)] reveal that predominantly two

normal modes (n = 22 and n = 23) are used as transfer channels. As can be

deduced from Fig. 7.7 c) several different quantum channels are available for the

vibrational population transfer process.

Now a question arises on whether and how the other channels can be used,

and if the vibrational energy transfer can be optimized through a single normal

mode. For the OCT calculations of the state transfer processes through different

normal modes, the initial guess laser fields have to be chosen properly, i.e. a good

starting laser field should provide the two frequency components matching the

transition frequencies. A desired transfer channel can be selected [Fig. 7.7 c)] and

the required frequencies can be extracted from Fig. 7.7 b). A very helpful OCT

technique, which assists these kinds of optimizations, is the frequency filtering

method presented in Chapter 2 and in [111]. But also the approach based on

laser pulses tailored with simple spectral constraints [110] can be used for the

calculations. In the population transfer optimizations through distinct quantum

channels, only minor parts of the spectrum have to be suppressed, as long as the

guess laser field is set into resonance with the normal mode transitions and the

penalty factor α for the optimization is selected high enough. Corresponding

optimizations were performed for the normal modes n = 17, 20, 21 and 23

[Fig. 7.7 c)] and the results are depicted in Fig. 7.8. The respective laser fields

in the time domain are similarly simple as the one depicted in Fig. 7.4 a). The

spectra of the calculated laser pulses are mapped onto the available transition

pathways and it can be traced that predominantly one normal mode is used

as a transfer channel in each case [Fig. 7.8 a) n = 17, Fig. 7.8 b) n = 20,

Fig. 7.8 c) n = 21 and Fig. 7.8 d) n = 23]. The transition frequencies for the

excitation processes 20 → n and n→ 01, with n referring to the transfer modes

(17, 20, 21 and 23), exactly correspond to the carrier frequencies of the single

subpulses. The relative size of the dipole matrix elements into and out of the

quantum channels account for the differing intensities of the two subpulses.

Since the transition dipole moment for the process 20 → n is larger in case

of n = 17, 21, 23 [blue lines in Fig. 7.7 c)], the spectral intensities of the first

subpulses are lower [spectral parts associated with the blue lines in Fig. 7.8 a),

130



7.3 Investigation of dissipative influence

c) and d)]. The situation is reversed for n = 20 [Fig. 7.8 b)]. The presented

quantum channels (n = 17, 20, 21 and 23) turned out to be the most suited

ones for the vibrational transfer process and when inspecting the corresponding

transition dipole strengths [Fig. 7.7 c)] the reason becomes clear. All of them

show similarly sized dipole moment elements for the excitations 20 → n and

n → 01, i.e. the green and blue lines are equally high. This is particularly the

case for the normal mode 20, and accordingly, the spectral intensities of both

subpulses in Fig. 7.8 c) are similar.

From these calculations, it is expectable that a transfer of superposition states

is possible, where different quantum channels can be used for the process. This

result may facilitate quantum information processing with vibrational qubits

in future, where after quantum gate operations, the resulting eigenstates or

superposition states can be communicated to other qubit units.
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Figure 7.9: Mechanism of a dissipative propagation. The vibrational popu-

lation in the first excited state of the highest energy normal mode of oc-

tatetraene (red) relaxes to the ground state (black) and to several resonant

deformation mode states (here: green, orange, blue). For short propagation

times of ∼ 2 ps, as necessary for the vibrational state transfer, the decay

of population is negligible.

7.3 Investigation of dissipative influence

As already presented for the qubit operations in Chapter 6, dissipative effects

are also studied for the vibrational state transfer process across a chain molecule.
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7 Molecular chains for vibrational quantum information processing

For these calculations, a simple IVR model octatetraene is set up in the nor-

mal mode representation based on ab-initio data. The complete population is

assumed to be in the first vibrational level of the highest energy C-C stretch-

ing mode of octatetraene (∼ 2300 cm−1). As observed in Sec. 7.2, such a state

can serve as a transfer channel for the vibrational population. For the dissipa-

tion, the vibrational energy relaxation within this normal mode is taken into

account as well as a coupling to overtone and combination states of deformation

modes, which are in resonance to the initially excited state. To find the resonant

states, for each deformation mode an anharmonicity of 5 cm−1 is assumed and

the energy of the overtone and combination states are extrapolated. Overall, 3

resonances were found, with energy differences below ∆E = 5 cm−1 between the

deformation states and the initially populated state. Different relaxation rates

for the IVR processes into these states and for the relaxation into the ground

state are scanned and an example with a relaxation time of ∼ 200 ps is shown

in Fig. 7.9. The calculations show that the IVR and relaxation time scales need

to be on the order of 200 ps to obtain high efficiencies of the vibrational state-

to-state transfer processes (with durations of approximately 2 ps, as calculated

in Sec. 7.2).

7.4 Conclusion

With the idea of a linear, molecular chain connecting individual molecular qubit

systems, a first effort towards the scalability of the molecular quantum comput-

ing approach with vibrational qubits has been made. In this study, two different

qubit systems are assumed to share quantum information with the help of a

laser-driven vibrational state-to-state energy transfer. A model system, com-

posed of an octatetraene chain and two qubit modes at each site, was set up,

where the bridging molecule was described in the local mode basis. As a first

approach, a coupling is assumed between local chain states and an overtone state

of each qubit mode. This description may be extended in the future, by incor-

porating different coupling elements, with the size depending on the energy gap

between the coupled states. With OCT as an optimization tool, highly efficient

laser fields providing very short pulse durations could be optimized, driving the

state transfer processes. From the inspection of the transfer mechanisms, dif-

ferent available transition pathways corresponding to normal mode states could

be detected. They can be regarded as quantum channels for the information
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transfer, and it was shown that several of these pathways can be used for the

transfer. The suitability of the quantum channels depends on the relative size

of the transition dipole matrix elements with regard to both qubit sites and the

OCT strategy with spectral constraints (Chapter 2, [111]) allows for the control

of the transfer through the single channels.
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The thesis focuses on theoretical control strategies in the context of molecular

quantum computing with vibrational qubits. The initially proposed concept

[7], based on quantum gates, operating on IR active modes, is extended to

Raman active modes. An advantage of this idea is that the stimulated, non-

resonant Raman effect can be used for the implementation of quantum logic

operations in the experimentally easily accessible 800 nm regime. A universal

set of highly efficient quantum gates could be optimized with a newly presented

OCT functional. This method allows for the optimization of two laser fields

simultaneously, differing in the carrier frequency and driving the non-resonant

process. The OCT functional is applied in the Krotov formalism and is extended

by frequency filters. The ideas are taken from electrical engineering and allow

imposition of strict frequency limitations on the optimized laser fields, while

the method operates in the time domain [111]. The frequency filtering OCT

scheme is a universal method and facilitates the optimization of ultrashort laser

pulses, driving multi-photon, multi-color quantum processes, and it is widely

applicable, also in research fields beyond the scope of molecular physics.

The first experimental demonstrations of direct IR shaping techniques on

the coherent control of vibrational population transfer in carbonyl complexes

[70] open the route towards the first implementation of the molecular quantum

computing approach, operating on IR active modes. Inspired by these results,

the experimental search strategy with learning loops and genetic algorithms

was adapted to theory which allows operating directly in the same search space.

Quantum control theory plays a central role here, in predicting and assessing

the experimental results. Furthermore, optimizations beyond the boundaries

of the experimental setup can be performed and lead to new inputs for the

experiments. New search and optimization strategies were investigated, and the

theoretical quantum control studies [134] will contribute to better experimental

quantum control results.

In quantum control experiments, frequently parametrized phase modulations
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are applied because of their advantages to reduce the shaped pulse complexity

and to allow for the interpretability of the induced mechanisms. Their applica-

tion prospects for the implementation of efficient logic operations were studied

and by scanning the control landscapes it could be shown that such strict phase

forms do not provide enough flexibility for the efficient use in vibrational quan-

tum information processing [134]. On the other hand, results obtained from

pixeled mask functions and incident laser pulse properties, applied in the exper-

iment, lead to overly complex solutions and to very long shaped pulse durations.

The reasons for the high complexity could be explained and techniques for

the simplification of pulse structures and the decrease of pulse durations were

presented. Among those are the usages of longer incident pulse durations, am-

plitude modulation and limitation of the phase ranges. These approaches are

directly transferable to the experiment and should lead to better solutions. As a

further step, the advantages of multi-objective genetic algorithms for quantum

control tasks were presented for the first time. These algorithms enable the con-

trol of several features of the desired outcome simultaneously. In this context,

the maximization of the quantum yield, the minimization of pulse durations and

energies as well as intermediate overtone excitation were studied. The solutions

were gained from the resulting multi-dimensional Pareto fronts [138], and the

interplay of the pulse features could be traced.

Also, alternative optimization approaches to genetic algorithms were inves-

tigated which can be implemented in the experimental setup in a straight-

forward way. Learning from the advantages and shortcomings of pixeled and

parametrized mask functions in combination with genetic algorithms, the usage

of the ant colony optimization algorithm was proposed and demonstrated for

the first time [143]. It introduces a tunable correlation between the pixels and

provides a high flexibility, since distinct phase and transmittance jumps are tol-

erated if they are necessary to reach high quantum yields, but they are avoided

if possible. As a result strong fluctuations of the mask functions will be sup-

pressed and comparative calculations with genetic algorithms demonstrated the

strength of the ant colony method. The algorithm is also directly transferable to

the experimental implementation and is supposed to lead to the most promising

results in experimental quantum control studies [143].

If a theoretical solution, calculated with optimal control theory, is not real-

izable due to experimental limitations, it is always possible to find and predict

the optimal search strategy, mask functions and shaped laser pulse for an ex-
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perimentally accessible input pulse with the presented theoretical methods at

hand.

The efforts that have been made on quantum control techniques operating in

the frequency regime allow for the optimization of simple structured pulses with

short pulse durations. This is relevant in the context of quantum computing,

where short switching times of the logic operations are favorable. Additionally,

dissipative effects reduce the efficiency of the operations in the quantum systems

and short, simple structured pulses are assumed to be less sensitive to dissipative

effects. To study the influence on vibrational relaxation on the quantum gates,

the density matrix formalism was used and the dissipative environment was

modeled with the Lindblad approach incorporating experimentally measured

vibrational life times in the theoretical calculations. The robustness of quantum

gate operations was studied and it could be traced that when intermediate over-

tone excitations are similarly low, the pulse durations play the dominant role

on how strong the dissipation will take place. The pulse complexity is only of

minor importance for equally long pulse durations. From optimization studies

based on genetic algorithms in the presence of dissipation, it can be learned

that also relatively short incident pulses with FWHMs from 50 fs to 100 fs, as

frequently employed in the experiments, are suited for the implementation of

efficient quantum gates in one-qubit systems, despite their broad spectra. The

carrier frequency has to be detuned to higher wave numbers with respect to

the fundamental or qubit basis transition. An important point here is the strict

limitation of the phase range. For larger molecules, however, the choice of longer

FL pulse durations should be favored, since they provide narrower spectra and

the shaped pulses will not interact with other vibrational modes of the molecule.

The dissipative OCT results conform very well with the GA results. Similarly to

the GA solutions they indicate that switching processes towards the end of the

laser-molecule interactions are most efficient. It could be shown that T1 time

scales on the order of 200 ps should be sufficient for the experimental demon-

stration of highly efficient quantum gates in MnBr(CO)5, operating on the A1

symmetric normal mode in condensed phase. When these experiments will be

performed in gas phase, where the dissipative time scales will be significantly

longer, multi-qubit gate operations will become realizable. The first experi-

mental realizations are currently performed in the group of M. T. Zanni, and

high efficiencies are to be expected. Additionally, the concept of precompiled
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quantum computing was demonstrated for vibrational quantum gates and the

advantage of a precompiled SWAP gate operation was discussed.

First efforts towards the scalability of the molecular quantum computing ap-

proach with vibrational qubits have been made. A quantum network was con-

structed from two single qubit systems with molecular, linear chains, connecting

them. A laser-driven vibrational energy transfer across the bridging chain has

been optimized and it can be interpreted as information transfer between the

single qubits systems. Different quantum channels for the transfer could be de-

tected, where suited ones can be addressed individually and even the transfer

of superposition states between the qubit systems might be possible. Frequency

filtering optimal control theory was used for the optimization of the laser fields

addressing the single quantum channels.
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thank you, Marty and Dave, for fruitful discussions in Ringberg and Munich.

I’m looking forward to your new experimental results.

Allen Mitgliedern unserer Arbeitsgruppe möchte ich danken für die Diskus-
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