
Distributed Learning in Sensor Networks
— an online-trained spiral recurrent neural network, guided by an

evolution framework, making duty-cycle reduction more robust

Huaien Gao

München 2008





Distributed Learning in Sensor Networks
— an online-trained spiral recurrent neural network, guided by an

evolution framework, making duty-cycle reduction more robust

Huaien Gao

Dissertation

an dem Institut für Informatik

der Ludwig–Maximilians–Universität

München

vorgelegt von

Huaien Gao

geb. 25.10.1977

München, den 27.05.2008



Erstgutachter: Hans-Peter Kriegel

Zweitgutachter: Darius Burschka

Tag der mündlichen Prüfung: 26.Jan.2009



Acknowledgement

This thesis is completed within the joint Ph.D. program between the department of Database
and Information Systems in the Institute for Computer Science in the University of Mu-
nich and the department of Learning System in Corporate Technology, Siemens AG. Many
people have given valuable advises during the research and the writing. Without their
support, this thesis cannot have been written.

Many thanks are due to Professor Hans-Peter Kriegel who has been supportive not only
on my research activities but also on my application of “Aufenthaltsbewilligung” which is
very important to me. Also thanks are due to Prof. Dr. Darius Burschka for his kindly
agreement to act as the second examiner of this thesis.

I would like to express my sincere gratitude to Dr. Rudolf Sollacher, in Corporate Tech-
nology in Siemens AG, for he has guided, instructed, encourage, inspired and continually
motivated me.

I am also very grateful to Dr. Paul-Theo Pilgram, in Corporate Technology in Siemens
AG, for his generous hospitality to proofread the whole manuscript, and making the thesis
much smoother.

I am indebted to Prof. Dr. Bernd Schürmann and Dr. Thomas Runkler, heads of de-
partment of Learning System in Corporate Technology of Siemens AG, who have been
constantly supportive to my research and given me advises on the thesis.

Prof. Dr. Martin Greiner and Dr. Jochen Cleve are always helpful to me, no matter it
concerns about my research or other difficulty.

I will remember the help from colleagues both in Siemens AG and in University of Munich.
The following list is undoubtedly incomplete: Dr. Kai Yu, Anton Maximilian Schaffer,
Dr. Kai Heesche, Dr. Christoph Tietz, Dr. Hans-Georg Zimmermann, Dr. Peter Mayer,
Dr. Peter Kunath, Mrs. Susanne Grienberger, Dr. Volker Tresp, Yi Huang, Dr. Marco
Pellegrino, Mrs. Christa Singer.

More than to anyone else, I own to the constantly love and support from my family. In
every stage of my life, they always encourage, support and understand me. No matter the



vi ACKNOWLEDGEMENT

difficulties I am facing, they are the ones who tell me never give up and give me the power
to confront. This thesis is dedicated to them.



Abstract

The sensor networks of today tend to be built from “intelligent” sensor nodes. Such nodes
have substantial processing capability and memory, are locally distributed and communi-
cate wirelessly with one another. They are mostly battery-powered, possibly even with a
lifetime battery. Power management is hence a prime concern.

Such intelligent sensors, or “smart sensors”, are typically involved in some diagnosis task,
which would benefit greatly from an ability to predict environment data. The best of those
predictions are obtained by training a learning-model with environment data. This task
is non-trivial, computationally intensive and thus expensive on energy, particularly if the
model imposed by the environment data is dynamic and complex. As the training data
usually come from diverse sources, not only from the nearest sensor, the learning node
must communicate with other nodes to get at their measurement data. Data processors
can be made very energy efficient, whereas radio is inherently wasteful. The ultimate aim
is to find the right balance between prediction quality and energy consumption.

Unlike conventional energy management solutions, which provide routing methods or com-
munication protocols, this thesis introduces an efficient learning algorithm which improves
prediction performance of sensors and reduces computational complexity. It introduces
two techniques which both reduce the overall energy consumption of the sensor network:
intra-node and inter-node solutions.

Intra-node solution: A sensor’s duty cycle is the time fraction during which the sensor
is active. Battery life can be extended by reducing the duty cycle of the sensor. De-
pending on the communication protocol, radio communication coincides with more
or less of the sensor’s active time. The radio duty cycle can be reduced by com-
municating less frequently. This thesis introduces Spiral Recurrent Neural Networks
(SpiralRNN ), a novel model for on-line prediction, where some received data get
substituted by predicted data. It is shown that the SpiralRNN model works reliably,
thus opening a way to significant energy savings.

Inter-node solution: Communication between sensor nodes can also be diminished at
network level. Transmitting data (and receiving them) consumes energy and blocks
the airwaves, but the information transmitted is often irrelevant (depending on the
application). This thesis introduces a heuristic evolutionary method, the evolution



viii ABSTRACT

framework, which weighs up energy consumption against prediction performance,
adapting its model structure to the environment data as well as to application con-
straints. The complexity of the model gets lowered by removing some hidden nodes.
The communication effort gets reduced by removing dependencies on various “unim-
portant” data (which makes communication dispensable in those cases).

Spiral Recurrent Neural Networks (SpiralRNN ), in combination with duty-cycle reduction
and the evolution framework, are a powerful technique for balancing prediction performance
against energy consumption, and are hence valuable in the construction of sensor network
applications.



Contents

Acknowledgement v

Abstract vii

Contents ix

1 Introduction 1

1.1 Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Challenges and Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Intelligence of Sensor Node . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.2 Evolution Framework . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Structure of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 State of the Art 9

2.1 Recurrent Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 On-line Learning Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.1 Gradient Descent Learning . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.2 Back-Propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.3 Kalman Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.4 Learning Paradigms . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Backgrounds on Sensor Network Application . . . . . . . . . . . . . . . . . 22



x CONTENTS

2.4 Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4.1 Genetic Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4.2 Evolution Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4.3 Evolution with Neural Networks . . . . . . . . . . . . . . . . . . . . 25

3 Spiral Recurrent Neural Networks 27

3.1 Structure and Eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.1 Hidden Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1.2 SpiralRNN s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1.3 Eigenvalues in SpiralRNN s . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Implementation of SpiralRNN s . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.1 The Forward Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2.2 The Training Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2.3 The Autonomous Test Phase . . . . . . . . . . . . . . . . . . . . . . 41

4 Applications with SpiralRNN s 43

4.1 Experimental Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.1.1 Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.1.2 Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.1.3 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.1.4 Testing and Measurement . . . . . . . . . . . . . . . . . . . . . . . 48

4.2 Simulations with Time Series Prediction . . . . . . . . . . . . . . . . . . . 49

4.2.1 Spike21 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2.2 Mackey-Glass Dataset . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2.3 Lorenz Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3 MouseTracking with SpiralRNN s . . . . . . . . . . . . . . . . . . . . . . . 56



CONTENTS xi

4.3.1 The MouseTracking . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3.2 Training Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3.3 Competing Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3.4 Evaluation Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3.5 Results & Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.4 Conditional Prediction with SpiralRNN s . . . . . . . . . . . . . . . . . . . 63

4.4.1 Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.4.2 Conditional Prediction with RNNs . . . . . . . . . . . . . . . . . . 65

4.4.3 Experimental Settings . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.5 NN5 Competition of Data Prediction . . . . . . . . . . . . . . . . . . . . . 75

4.5.1 Towards NN5 Competition . . . . . . . . . . . . . . . . . . . . . . . 75

4.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.6 Analysis on SpiralRNN s . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.6.1 Stability of Attractors . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.6.2 Short-Term Memory Capacity . . . . . . . . . . . . . . . . . . . . . 84

4.6.3 Associative Memory Capacity . . . . . . . . . . . . . . . . . . . . . 87

5 Solutions for Distributed Sensor Networks 91

5.1 The Duty-Cycle Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.2 The Evolution Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.2.1 Evolution-Operation-Selector . . . . . . . . . . . . . . . . . . . . . 96

5.2.2 Constraint Conditions . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.2.3 Model Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.2.4 Fitness Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.2.5 Evolutionary Operations . . . . . . . . . . . . . . . . . . . . . . . . 101

5.2.6 Evolution Framework in a Nutshell . . . . . . . . . . . . . . . . . . 103



xii CONTENTS

6 Simulations in Sensor Network Applications 105

6.1 Simulation Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.2.1 Simulation 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.2.2 Simulation 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.3.1 Prediction Performance . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.3.2 Energy Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.3.3 Early Depletion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7 Summary and Conclusion 127

List of Appendices

A Eigenvalue Spectrum of SpiralRNN s 131

A.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

A.2 Eigenvalue Spectrum of Spiral Units . . . . . . . . . . . . . . . . . . . . . 132

A.3 Eigenvalue Spectrum of SpiralRNN s . . . . . . . . . . . . . . . . . . . . . 133

B MatLab Code for SpiralRNN Models 137

C MatLab Code for MouseTracking 151

List of Figures 159

List of Tables 163

Bibliography 165



Chapter 1

Introduction

Recent decades have seen widespread deployment of embedded electronic devices with
forever increasing computational capabilities [1, 2, 3, 4, 5]. Examples of such devices are
mobile phones, personal digital assistants, but also wireless sensor nodes [6, 7, 8, 9, 10, 11,
12]. The latter in particular - besides measuring all kinds of quantities like temperature,
pressure and luminosity - are able to communicate with neighboring sensor nodes and to
exchange information with each other. Due to these features, many sensor nodes together
constitute a sensor network, which is applied at a large scale in periodical environment
monitoring [13, 14, 15], such as pollution detection, building management, production
monitoring, traffic analysis, and temperature recording.

The conventional approach for sensor network applications consists in spreading sensors
across the area of interest, making them measure the relevant data, and to have a central
station which collects all the information from surrounding sensors and which processes
the data thereafter. Even though energy for one single sensor could be saved by increasing
the number of sensor nodes, so that communication via multi-hop transmission is cheaper
in this high-density network, the trend [16] is to put more computing capability into the
sensor node itself and to communicate with other nodes only when necessary, thus saving
even more energy. Sensor nodes in the network are not subordinate to any other node but
are able to collect, process and communicate information at their own will. Together they
constitute a distributed sensor network.

1.1 Goal

Designing and setting up a distributed sensor network is a complicated engineering task,
comprising issues [16] like: selection of the collaborative signal processing algorithms ex-
ecuted in each sensor node; selection of the multi-hop networking algorithms; optimal



2 1. Introduction

matching of sensor requirements with communication performance; designing a security
protocol for this pervasive network.

This thesis focuses on designing, for sensor networks with a prediction service, an on-
line learning algorithm for each sensor node, and an operating framework on the network
level, with the overall aim of reducing energy consumption and adapting to shifts in the
environment, while maintaining sensor network performance.

1.2 Challenges and Solutions

Challenges in designing such an on-line learning algorithm and operating framework will
lie mainly in the following areas:

Autonomy and autarky
Sensor nodes are commonly deployed in locations where cable access is either im-
possible or expensive. Owing to this, most sensor nodes are battery powered and
impossible, or expensive, to be recharged. Therefore, energy is extremely precious in
sensor nodes, making energy management one of the paramount issues when design-
ing sensor networks. Another consequence of autonomy is the need for sensor nodes
to organize themselves by learning and adapting to a changing environment.

Limited computational power
Progress in integrated circuit technology has vastly improved the processing capac-
ity (including the capability for data processing and data communication as well as
storage memory) of sensor-node computers. Nonetheless, the limited available en-
ergy of sensor nodes implies the usage of microprocessors and memory components
with reduced capabilities. Therefore, any information processing within the sensor
nodes has to take into account the corresponding limitations. A straight-forward
implementation of existing algorithms will fail in most cases.

Complex dynamics
The dynamics of the measured environment data can be complicated, for example
if the current value of the dynamics depends on the long-term historical value, or if
the dynamic model at one location is related to the one at another location. In some
cases, therefore, the dynamics of the measured data are a complicated system with
temporal and spatial characteristics.

The mentioned challenges in distributed sensor network applications are interrelated. To
name a few: the limited energy can hinder a comprehensive evaluation, and can thus cause
an early depletion of network energy; improvements in processing ability can optimize
the consumption of energy; complicated dynamics will normally require more comprehen-
sive data processing and larger storage memory; self-organization affects the demand for
communication, which affects the consumption of energy.



1.2 Challenges and Solutions 3

The energy limitation is a major problem in these applications. Many studies have focused
on this topic, particularly on the optimal topology of sensor networks [17, 18, 19]. This
thesis shows a novel way of saving energy: by applying learning algorithms to the embedded
sensor-node system. The approach is built around two central ideas: (1) putting intelligence
into the sensor nodes, i.e. a prediction ability, which is essential for duty-cycle reduction,
the reduction of communication activity; (2) using the evolution framework, i.e. giving
sensor nodes the ability to exchange information and to adapt to the environment, and
also to reduce the communication and computation effort to some extent.

1.2.1 Intelligence of Sensor Node

Requirements
In self-organizing autonomous distributed sensor networks, any solution for the pre-
diction of sensor data must satisfy certain requirements. They will determine the
design of the prediction model. They are:

< R1 > Autonomy:
No or little a priori knowledge about the environment shall be available to the
sensor nodes. This implies that there will be no pre-training of parameters for
the given problems, and that the sensor nodes have to construct their prediction
models basically from scratch and on-line.

< R2 > Adaptivity:
Shifts in the environment, rarely known in advance, result in the switching of
dynamics. Sensor nodes must be able to detect changes, and accordingly adjust
the model parameters in real-time.

< R3 > Efficiency:
As real-time reaction is required, the solution for prediction should be efficient
in terms of fast convergence, computational costs (number of arithmetic opera-
tions) and data storage requirements. Candidate learning systems are required
to be compact as well as robust.

< R4 > Reliability:
Unreliability of one sensor node can dramatically degrade the performance of
the whole network. Thus, reliability of the system is essential, particularly for
long-run performance. The reliability requirement implies that instabilities and
singularities should not occur during training.

Benefits
A focal “intelligent” feature is the sensor nodes’ ability to predict future values of
their own measurement data. Two use cases will illustrate the benefits:

1. Neighboring sensor nodes exchange their sensor data for resilience and for in-
network data interpolation. In order to increase their lifetime, sensor nodes



4 1. Introduction

have to reduce energy-consuming activities, in particular wireless communica-
tion with their neighbors. If the sensor nodes are able to predict their own
sensor data and those of their neighbors, they can prolong the intervals between
data exchanges, thus saving energy.

2. In control applications, sensor data may be required at regular time intervals.
However, wireless communication is inherently unreliable: transmissions may
sometimes be corrupted or may even fail, due to interference effects. If sensor
nodes are able to predict sensor data, they can at least partially compensate for
such faulty transmissions.

Task
Environment properties, such as temperature and smoke density, are the main ob-
jectives which sensor nodes measure and predict.

System dynamics of environment properties are normally temporal such that the cur-
rent value depends on the previous status; it can also be spatial such that property
values at one location depend on the data from their nearby surroundings. There-
fore, using a description in discrete time-steps, numbered by variable t (same in the
following chapters), one can use vector ~xt to represent the property value at all the
sensor nodes at time t, and use eq-(1.1) to represent the system dynamics of the envi-
ronment in general, where symbol U denotes the system dynamics of the property in
the domain. The measurement behaviour of the sensor node is expressed by eq-(1.2).
A sketch example of the environmental dynamics is shown in fig-1.1(a). These prop-
erties in the domain satisfy certain physical dynamics equations which are usually
nonlinear and complicated. However, the physical insight into the environment is a
black box to the observer. One needs to find an approximation model describing the
dynamics of the environment.

~xt+1 = U (~xt, ~xt−1, · · · ), where ~xt = [xt,1, xt,2, · · · ]T (1.1)

~yt = M (~xt) (1.2)

Solution
The multi-layer perceptron (MLP) model is proven to be a universal approximator
[20, 21] but it fails to model dynamics with long-term dependencies. Extensions of
the MLP model, such as time-delayed neural networks (TDNN ) [22, 23], can to some
extent compensate for this drawback by assigning more data as input information,
but this requires users to be aware of physical conditions which in many cases are
not available (refer to < R1 > on page-3).

Based on MLP, Recurrent Neural Network (RNN) models are able to approximate
a large class of dynamic systems [24], including ones with long-term dependency,
because RNN models possess recurrent neurons which can store history information
from input data.



1.2 Challenges and Solutions 5

Win

Wout

(b) Transform (c) Hidden Layer in RNN

~st = H (~st−1, · · · )

(a) Environment

xt+1 = U (~xt, · · · )

~yt = M (~xt)

Figure 1.1: Transforming between the dynamics of the environment and the
ones of a recurrent neural network. (a) Environmental dynamics. The curve
represents the dynamics U of the environment, which will be projected on the
plane surface by the function M which reads out or measures the current data.
(b) Transform of dynamics using multiplier matrices Win and Wout. Matrix
Win imports the environmental data into the hidden state, whilst matrix Wout

provides the mapping from the hidden-state vector space to the environment
vector space. (c) Dynamics of hidden states of RNN, which have a form
similar to the environmental dynamics but in a different vector space.

The RNN architecture comprises the ability of storing information on the previous
history in its hidden-state vector. The typical structure of RNN consists of input
layer, hidden layer and output layer, within each of which layer a vector can represent
the activation value of corresponding neuron nodes, namely ~vin, ~s and ~vout for input
layer, hidden layer and output layer respectively. A typical implementation of RNN
can be stated as in the following equations:

~st = H (Whid~st−1 + Win~vin)

~vout = G (Wout~st)

where Whid Win Wout denote weight matrices of synaptic connections between input,
hidden and output layers; activation functions are represented by symbols H and G .
For further information on recurrent neural networks, please refer to chapter-2. Note
that the current value of hidden-state vector ~st is a function of its own measurement
value at previous time step ~st−1 and other information (in this case, the input data
~vin). It can therefore be regarded as an accumulation of its own history, and expressed
using a mapping H , in general: ~st = H (~st−1, · · · ), as shown in fig-1.1(c).

With the Recurrent Neural Network architecture as a black-box model, one can build
the approximated dynamics model of the environment from the observed data. The
main idea is to use the RNN model for converting the dynamics of the environment
into the dynamics of the hidden states of the RNN model, and use the read-out
matrix Wout as the interpretation method for the final output. Such a dynamics



6 1. Introduction

transformation is illustrated by fig-1.1(b).

1.2.2 Evolution Framework

Evolutionary operations modify the structure of the learning model instead of merely mod-
ifying model parameter values. They cause therefore usually abrupt changes of the learning
model in question, which as a result requires a learning model with fast convergence.

Benefits of using the evolution approach are (1) that it modifies the model structure in
order to alter the dependence of the model on some data from outside, for instance the
dependence of the neural network structure on one particular input data item; (2) that it
reduces the complexity of the learning model because of constraints of the application and
of the hardware configuration; (3) that it is robust enough to be able to adapt to drifts in
the environment.

However, most of the available evolution methods are based on genotype selection within a
large population. These evolution methods cannot be applied in sensor networks because
of the constraints on processing speed and on storage memory as well as communication
bandwidth etc. Hence, one is looking for an evolution method suitable for sensor net-
work applications, with the aim that sensor nodes can exchange information, thus better
adapting to the environment.

1.3 Structure of Thesis

This thesis is roughly divided into four parts: chapter-2 describes the state-of-art on learn-
ing models and provides background on sensor network applications; the second part in-
cluding chapter-3 and chapter-4 is concerned with a novel structure of RNN, including com-
parisons with conventional RNN models; the third part, including chapter-5 and chapter-6,
focuses on the duty-cycle reduction and evolution framework schemes developed for sensor
network applications and related simulations; the last part is the conclusion in chapter-7.

chapter-1 (the current chapter) explains the target of this thesis and its challenges as
well as the solution in general;

chapter-2 presents the current research in related topics, mainly in two categories includ-
ing Recurrent Neural Network structure and evolution algorithms;

chapter-3 introduces a novel Recurrent Neural Network structure which is efficient and
stable for long-term prediction tasks;

chapter-4 compares results from the novel neural network structure with those from
conventional structures;



1.3 Structure of Thesis 7

chapter-5 explains the reduction of energy consumption in sensor networks, based on the
duty-cycle reduction scheme and on the evolution framework scheme;

chapter-6 presents evidence of improvement in sensor networks in terms of energy con-
sumption, by using duty-cycle reduction and evolution framework schemes

chapter-7 concludes the thesis.



8 1. Introduction



Chapter 2

State of the Art

Each sensor network application represents much knowledge and know-how from academia
and industry, such as network topology, communication protocols, integrated circuits, and
embedded learning models. In this chapter, some previous work concerned with sensor
network applications will be discussed. The discussion will be limited to topics directly
related to the solutions given in this thesis, as there are: neural network architectures and
on-line learning algorithms, evolution algorithms and the background of sensor networks.

2.1 Recurrent Neural Networks

Modern neural network architectures, particular those used in off-line tasks, are compli-
cated hybrid combinations of diverse neural structures [25, 26, 27, 28] with various statistics
models [29, 30, 31, 32, 33]. In this section, due to the sensor nodes’ limited processing ca-
pacity, neither such hybrid structures nor those evolutionary neural models [34, 35, 36, 37]
will be discussed. The state-of-the-art neural network architectures mentioned in this sec-
tion basically differ from each other in the structure of recurrent coupling topology inside
the hidden layer. A gradient calculation for each neural architecture will also be considered,
since it is one of the main factors of the learning model.

Before the discussion on recurrent neural networks (RNN), the concept of an artificial
neuron will be given first. Computation with artificial neural networks was inspired by the
functionality of a biological neural network, namely the human brain. Similar to a biological
neuron, the artificial neuron has the structure as shown in fig-2.1(a) [38] where the neuron

collects and accumulates the data ~X = [x1, . . . , x5]
T from outside, then fires an output

after applying a summation over a nonlinear function g(x), called the activation function,
with the summation sometimes being called the “netin” of neuron. This is formulated in



10 2. State of the Art

eq-(2.1), where b is the bias of the neuron, resembling the neuron’s activation threshold.

y = g

(
∑

i

wixi + b

)

(2.1)

An artificial neural network is an ensemble of many artificial neurons, where in most
cases groups of neurons activate synchronously and propagate their activation to another
group of neurons. The classical example is the feed-forward operation between two layers
of neurons as shown in fig-2.1(b), with blacked-out circles representing neurons, a hollow
circle denoting the bias “neuron” with activation value “1”. Note that neurons within each
group (layer) are usually independent from each other. Eq-(2.2) depicts such a situation
of activation of the neuron-layer. A classical artificial neural network basically consists of
groups of neurons connected from one group to another, in such a way that information is
propagated.

yi = g

(
∑

j

wi,jxj + bi

)

, ∀i (2.2)

neuron

x2

xi

x1

wi

w2

b

y

xj

g(x)

(b) layers of perceptrons

bi

yiwi,j

1

...
...

w1

(a) activation of a neuron

Figure 2.1: The activation of an artificial neuron and the feed-forward be-
tween layers of neurons. (a) Activation of a neuron with input data from out-
side, where the summation of input and bias will be subjected to the nonlinear
function g(x). (b) Synchronization of activation between layers of neurons,
with black circles as neurons and a hollow circle as the bias “neuron” with
activation value “1”.

A recurrent neural networks (RNN) is a special class of artificial neural networks whose
neurons within one layer can be directly or indirectly independent from each other, so that
historical information can be stored in these self-coupling neurons. Forwarding in recurrent
neural networks in general can be expressed as in eq-(2.3) and eq-(2.4):

st = H (Wt, st−1,xt−1) (2.3)

xt = G (Wt, st) (2.4)



2.1 Recurrent Neural Networks 11

where H is the mapping from input data xt−1 and the previous hidden-state vector st−1

to the current hidden state vector st, and G is the mapping from st to the network’s final
output xt. Such iterative forwarding will partially accumulate the information from vector
~x and store it in the hidden state vector ~s, such that st L99 {xt−1, xt−2, · · · } where symbol
L99 represents the data-fusion direction. From this information pool, represented by ~s,
the output mapping can render a precise report to the network output. Such rendering
mapping G is normally a simple linear function, with or without a squashed function on top
of it. Therefore, most RNN models differ from each other in the mapping H , consequently
in the topology of hidden-neuron connections or the structure of the hidden layer. A sketch
of RNN in general is given in fig-2.2. In the following text, several RNN models will be
discussed focusing on the difference in structure of the hidden layer.

Input Layer Hidden Layer Output Layer

St

H

...
...

Figure 2.2: Sketch of the mechanism of recurrent neural network models in
general, whose main contribution lies in the recurrent coupling in the hidden
layer, where historical information is stored.

In the following, Wloc is used to denote the synaptic links in different locations, e.g. Win

denotes the values of connection weights from the input layer to the hidden layer, Whid

denotes the values of recurrent connection inside the hidden layer and Wout denotes those
value of connections from the hidden layer to the output layer. Symbol b denotes the bias
of hidden and output neurons. All of Wloc, b and the fixed weights1 together constitute the
vector of system parameters Wt in eq-(2.3) and eq-(2.4). Note that only those trainable
weights will be taken into account in the calculation of the gradient matrix (i.e. network
output gradient w.r.t. trainable weights), and hence influence the computational cost of
the learning algorithms.

In this section, diagrams have been employed to depict the structure of different neural
network models. If nothing else if stated, black dots represent the neuron nodes of neural
network, arrows are synaptic connections between neurons or between layers (dashed arrows
are connections under training; solid arrows are constant connections with fixed weights).
Group of similar neurons are enclosed in a block circled with closed dash-dot line, in order
to show the scope of mappings H and G . Depending on the size a block, connections from
or to a block of neurons will be full connections of a m-to-n mapping but, for the sake

1 In this thesis, fixed weights occur only in the echo state network model which will be discussed later.



12 2. State of the Art

of simplicity, only a few of such connections are drawn. Connections from one neuron to
another will always be 1-to-1 connections.

Time Delay Neural Networks (TDNN ):
The classic multi-layer perceptron (MLP) architecture doesn’t have recurrent con-
nections, but it is worth discussing since all RNN models are based on or inspired
by this structure. The MLP model has been mainly used for static regression or
classification problems [39, 40, 41]. However, extensions of MLP have also been ap-
plied to temporal tasks such as time series prediction and time series classification
[42, 43, 22]. Besides current available data, a typical extension uses also previous
data as network input in order to turn the temporal sequence into spatial patterns
on the input layer of the network. Such a structure is called a time-delay neural net-
works (TDNN ) model [22, 23, 44]. For sufficient modeling power, the TDNN should
have at least 3 layers. Otherwise it would be basically a linear autoregressive model
with additional squashing of the outputs by a saturating transfer function such as
the “sigmoid” function. With j = [1, . . . , d] labeling the different components of the
d-dimensional data and τ denoting the number of previous data to be memorized for
modeling, the 3-layer TDNN architecture has the following update equations:

st = H (st−1,wt,xt−1)

xt = G (st,wt) = g(ag)

= g (Wouth(ah) + b2)

= g (Wouth(Winst + b1) + b2)

where H (. . . ) is realized as follows:

st,i+(j−1)∗τ =

{
st−1,i+1+(j−1)∗τ if i = 1, . . . , τ − 1
x̂t−1,j if i = τ

In this model, function h(. . .) is the identity map; activation function g(. . .) is the
squash function “tanh”, where it is understood that for vector arguments the squash-
ing function is applied to each vector component individually. The mapping H (. . .)
in the TDNN model is just a shift register for input vectors and is not subject to
learning. Fig-2.3(a) shows the typical structure of such a TDNN architecture for a
3-dimensional time series with τ = 4, where only the two-layered output mapping G

has to be trained.

The calculation of gradient Ψ in TDNN is given by the following equations:

Ψ =
dxt

dw
=

dg

dag

(
∂ag

∂w
+

∂ag

∂h

dh

dah

∂ah

∂w

)

The main drawback of the TDNN structure is the need to fix the time window for
temporal memory in advance, i.e. the value of the parameter τ . This requires some



2.1 Recurrent Neural Networks 13

prior knowledge about the environment which contradicts the requirement < R4 >
on page-3. In the case of an insufficient τ value, the TDNN model even fails to
modulate the dynamics of a simple spike time series (ref. section-4.1.1). As shown
in fig-2.3(b), black dots at the bottom represent the data stream values at successive
time steps. The two shaded bars represent the input data Xt1 and Xt2 of time steps
t1 and t2 respectively, and two hollowed red dots represent the corresponding target
values x̂t1 and x̂t2 of TDNN. Because of the character of the spike time series, there
is no difference in input data Xt1 and Xt2, as shown in the figure. Being a static
modeling architecture, the TDNN model produces outputs of the same value and
fails to predict the approaching spike x̂t2 .

Input Layer

Output Layer

������
������
������
������

������
������
������
������

Hidden Layer

H

G

1
1

1

1
1

1

1

1
1

1

1

1

(a) TDNN (b) TDNN with spike stream

data stream

Xt2Xt1

TDNN

τ τ
x̂t1 x̂t2

Figure 2.3: (a) Example of a TDNN model, with 3-dimensional data and
the number of data-patterns going up to 4. Note that the values of connection
weights in the pseudo hidden layer are constant and equal to 1, which means
that history is simply duplicated and shifted. (b) Example of a TDNN model
being trained with a spike time stream. Black dots at the bottom denote data
stream values with two peaks in the time window; the shaded bar represents
data of length τ collected from the input data stream to the TDNN model,
where Xt1 and Xt2 are inputs at different time steps, their corresponding tar-
gets being x̂t1 and x̂t2.

Simple Recurrent Nets (SRN ):
Unlike a shift register in TDNN, a recurrent neural network (RNN) model has recur-
rent couplings. Thus it has the theoretical ability to embed an infinite history within
its recurrent hidden layer, constituting in effect an infinite impulse filter [45]. Elman
[46] introduced simple recurrent neural networks (SRN ) with a duplicated context
unit of the hidden layer in MLP, which at the core constituted a fully connected
hidden layer of a RNN as shown in fig-2.4(a). Since then, RNNs have been applied
successfully in many applications, but mostly they were trained off-line [28, 47].



14 2. State of the Art

The discrete update equations of a SRN are:

st = H (st−1,wt,xt−1) = h(ah)

= h(Whidst−1 + Winx̂t−1 + b2) (2.5)

xt = G (st,wt) = g(ag)

= g(Woutst + b1) (2.6)

where g(. . .) is the identity output activation function and h(. . .) is the “tanh” hid-
den activation function; Whid, Win and Wout are the corresponding synaptic weights
respectively; b1 and b2 are bias parameters of output and hidden neurons.

According to eq-(2.6) and eq-(2.5), the gradient Ψ is calculated as follows:

dst

dw
=

dh

dah

(
∂ah

∂w
+ Whid

dst−1

dw

)

Ψ =
dxt

dw
=

dg

dag

(
∂ag

∂w
+ Wout

dst

dw

)

Note that calculation of dst

dw
is based on the RTRL method, therefore the previous

derivative of state vector w.r.t. model parameters is stored at each time step.

The fully occupied matrix Whid of recurrent synaptic weights will be trained. As
matrix Whid is basically unbounded, on-line training may modify the matrix value
such that the recurrent layer could become dynamically unstable. Thus it could
happen that learning doesn’t converge or is trapped in a bad solution, contradicting
to the requirement < R4 > on page-3.

Echo State Neural Networks (ESN ):
Jaeger [48, 49] proposed the echo state neural networks (ESN ), aiming at simple
learning while trying to avoid dynamic instabilities. ESN s can have the same topol-
ogy as SRN s, as shown in fig-2.4. However, in this approach, values of entries of Whid

and Win are kept fixed and initialized with random values; furthermore the former is
re-scaled such that its largest absolute eigenvalue does not exceed a predefined limit
λmax < 1; this “echo state” property of the hidden layer guarantees the diminishing
influence of past states and consequently avoids instabilities in the dynamics of the
recurrent hidden layer. This property of ESN s is responsible for its name because
input information is propagated through the hidden layer like an echo, becoming
weaker with each iteration. Despite this “echo-state” property of the recurrent hid-
den layer, ESN models are able to simulate e.g. chaotic time series. This can be
achieved by an outer feedback looping from the output of the network to its input.

As the only parameters which are subject to learning in the ESN model are the
weights Wout of the linear output mapping, this awards the ESN model a simple
learning process. The update equation for the hidden states of ESN s is similar to
eq-(2.5) for SRN s, except that the matrices Win and Whid are merged into one single



2.1 Recurrent Neural Networks 15

Output Layer

Input Layer

Hidden Layer

Output Layer

Input Layer

Hidden Layer

H

(b) ESN

G

H

(a) SRN

G

Figure 2.4: The SRN and ESN models, whose topology can be identical except
for the difference in the variable-or-constant condition of connection weights.
Both of them possess a hidden layer with random topology. (a) The SRN
model with variable connection weights, particularly that of mapping H , can
adjust the mapping H accordingly, though such unconstrained mappings can
make system unstable; (b) The ESN model with constant connection weights
except in output mapping G . Manual pre-tuning of the eigenvalue-spectrum of
mapping H makes the ESN model stable and efficient, though leaving mapping
H unchanged during training can reduce the robustness of the model.

matrix Wfix indicating that the values of its entries are fixed. The update of the
output states obeys eq-(2.11).

st = H (st−1,wt,xt−1) = h(ah) (2.7)

= h (Whidst−1 + Winx̂t−1 + b2) (2.8)

= h

(

Wfix

[
st−1

x̂t−1

]

+ bfix

)

(2.9)

xt = G (st,wt,xt−1) = g(ag) (2.10)

= g

(

Wout

[
st

x̂t−1

])

(2.11)

where Wfix and bfix are now the prefixed synaptic hidden weights and bias, and they
will not be considered in training. Fig-2.4(b) shows the structure of a ESN, where
solid lines represent synaptic connections with constant weights whilst dashed lines
represent connections to be trained. The gradient Ψ for the learning algorithm has
a very simple form:

Ψ =
dxt

dw
=

dg

dah

∂ah

∂w
(2.12)

The ESN approach requires a recurrent layer of large size in order to obtain a rich
reservoir of dynamic states in the hidden layer. The size of the hidden layer depends



16 2. State of the Art

mainly on the complexity of the learning task. Similarly, the limit value λmax has to
be carefully chosen in advance to obtain better results; however, the proper choice of
λmax is less critical than the one of the size of its recurrent hidden layer. It should not
be too small to store enough historical information in the hidden states. A typical
value for λmax is 0.8 [50].

The fact that values of input and recurrent connection weights in ESN s are constant
has simplified the training procedure of the model and reduced the computational
cost per iteration. However the fact that only the output connections are trainable
can, on the other hand, degrade the generalization ability of the model, which will
be proven in Chapter-4. In fact, as suggested by Jaeger [51], manually tuning the
λmax value in each application is important for the ESN model in order to achieve
the best performance. This requires a priori knowledge of the application and data,
in contradiction to requirements < R1 > and < R2 > given on page-3.

Hidden Layer

Input Layer

Output Layer

H

G

Figure 2.5: The structure of BDRNNs. Inside the hidden layer, every pair of
neurons constitutes a block matrix in hidden weights and they are isolated from
the other hidden neurons. Note that each sub-block has the same structure.

Block-Diagonal RNNs (BDRNN ):
Sivakumar et al. [52] introduced the BDRNN model which possesses a hidden-weight
matrix of block-diagonal structure. Each sub-block matrix is of size 2 × 2. Among
variants of this block-diagonal structure, the scaled orthogonal version of the BDRNN
is superior to the free-form version BDRNN [52, 53], where the former one consists of
scaled orthogonal sub-matrices, whilst the latter one doesn’t have any constraint (i.e.
entries of the matrix can theoretically have arbitrary value). In the scale orthogonal
version, sub-matrix w ∈ R2×2 and its entries w = {w1,1, w1,2; w2,1, w2,2} satisfy the
following formulas:

w1,1 = w2,2; w1,2 = −w2,1;

w2
1,1 + w2

1,2 ≤ 1.0

Therefore, the scaled orthogonal BDRNN model has feature similar to the ESN
model, namely that the maximum absolute eigenvalue of the hidden-weight matrix



2.2 On-line Learning Algorithms 17

is limited, such that λmax ≤ 1. It is reported in [52] that the scaled orthogonal
BDRNN with constrained eigenvalue spectrum has outperformed the free version
(without constraint) BDRNN.

The update equation of the BDRNN is similar to that of the SRN :

st = h(Whidst−1 + Winx̂t−1 + b2)

xt = g(Woutst + b1)

though with a different structure of Whid, as shown in fig-2.5. Due to the paired
structure, the number of hidden neurons in BDRNN s has to be even. The scaled
orthogonal DBRNN model resembles ESN s in that the maximum absolute eigenvalue
of Whid is limited to λmax ≤ 1.

2.2 On-line Learning Algorithms

Considering the presentation of training data, training methods for neural network models
can be roughly categorized in two classes: batch training methods and on-line training
methods. In batch training, the neural network model, in each iteration, is trained with a
batch of data items at one time, such that the change △w of model parameter w is derived
from the data set {x̂1, . . . , x̂n}:

wt = wt−1+ △w | {wt−1, x̂1, . . . , x̂n} (2.13)

By contrast, on-line learning adjusts the model parameter in each iteration with the in-
crement △w which depends on the current individual data, though in some cases also
depending on the memory vector st, as in eq-(2.14). Memory vector st holds the history
of input data, and can be realized as a hidden state vector in the recurrent neural network
case.

wt = wt−1+ △w | {wt−1, st, x̂t} (2.14)

Batch training methods using a finite training set in each iteration have generally demon-
strated their ability to provide acceptable results. However, they requires significant com-
putation power and massive amounts of memory, both unavailable or unaffordable in sen-
sor network applications. On the other hand, on-line training methods have simplified the
training process by taking only one data set into account in every iteration step. There
is much empirical evidence that on-line learning can restore the trajectory of the batch
learning model and find the minimum attractor imposed by the training data [54].

Many of the neural network learning algorithms, presented in this section, can easily be
converted to its batch-mode for off-line use (some were originally introduced as batch-mode
algorithms and were later modified to on-line ones). But as specified by the requirements
in section-1.2.1 on page-3, only their on-line versions are addressed here.



18 2. State of the Art

In spite of the difference in learning algorithms, error functions of neural network applica-
tions will normally take the form as in eq-(2.15), where the evaluation error E measuring
the Euclidean-like distance between output and target depends on parameters w, symbol
ŷ stands for the corresponding target (the network output y can be expressed as a function
of w such that y = f(w)), and the coefficient 1

2
is used for convenience of calculation.

E[w] =
1

2

d∑

i=1

(
ŷi − yi

)2
=

1

2

d∑

i=1

(

ŷi − [f(w)]i

)2

(2.15)

With the definition of residual δ:

δi = ŷi − yi = ŷi − [f(w)]i, ∀i, (2.16)

the associated gradient calculation is given by eq-(2.17):

∂E[w]

∂w
= −

d∑

i=1

δi
∂yi

∂w
= −

d∑

i=1

δi
∂[f(w)]i

∂w
(2.17)

2.2.1 Gradient Descent Learning

Being able to start from any starting point, gradient descent learning adjusts its param-
eters, as the name says, by following the error gradient. Given a task with an evaluation
error E as defined in eq-(2.15) and also a gradient as in eq-(2.17), the parameter adjustment
step is given in eq-(2.18) and the parameters are updated using eq-(2.19).

∆wj = −η
∂E

∂wj
= η

d∑

i=1

δi
∂yi

∂wj
(2.18)

wj = wj + ∆wj (2.19)

where η ∈ R+ is the predefined learning rate (usually chosen very small), j is the index,
and δi is the corresponding residual for index i.

2.2.2 Back-Propagation

The back-propagation learning algorithm for multi-layer perceptron (MLP) is a further
development of gradient descent learning; it is very successful in research and application.

Basically, back-propagation learning can be divided into two steps: the feed-forward step
and the backward propagation step. Feed-forward of the MLP model involves conveying
the information ~x from the input layer through the hidden layer (~s) to the output layer,



2.2 On-line Learning Algorithms 19

where output value ~y is supposed to coincide with target value ŷ, though in most cases
they are not equal. In the backward propagation step, the residual of the network output,
i.e.

δ† = ŷ − ~y, (2.20)

is fed backwards through the same synaptic connections, modifying the associated connec-
tion weights accordingly. These two steps are depicted in fig-2.6 where solid lines represent
the feed-forward step and dashed lines represent back-propagation step.

ŷ

y

sj

xk

δ‡

δ† yi

wout
ij

win
jk

Figure 2.6: Back-propagation of MLP. The MLP model in the example
has three layers, namely input, hidden and output layer. Inside these layers,
they have {2,3,1} neuron nodes (black dots) respectively. Arrows show the
direction of information flow: solid lines represent the feed-forward step and
dashed lines represent the backward propagation step. Output and target are
respectively denoted by y and ŷ, x and s represent the input and hidden state
of the network, δ† is the corresponding residual for the output layer, δ‡ is the
virtual residual for the hidden layer. The entries in matrices of the network
connections between hidden layer and output layer are given as wout

ij and those

between input and hidden layer are given as win
jk, where i, j, k are indices.

For the sake of simplicity, it is assumed that a three-layer MLP model has linear activation
functions for all neurons, and it uses the update equations in eq-(2.21) and eq-(2.22), where
i, j, k are the index for output, hidden and input layer respectively.

sj =
∑

k

win
jkxk (2.21)

yi =
∑

j

wout
ij sj (2.22)

The calculation of modification for weight wout
ij from hidden layer to output layer is given

below in eq-(2.23). For weight win
jk from input layer to hidden layer the calculation can be

expressed in a similar way as in eq-(2.24). Generally, the back-propagation algorithm first
guesses the direct-output residual of weights belonging to one particular layer and then
adjusts the respective parameters in the same layer accordingly.



20 2. State of the Art

∆wout
ij = −η

∂Ei

∂wij

out

= ηδ†i sj (2.23)

∆win
jk = −η

∂E

∂win
jk

= −η

d∑

i=1

∂Ei

∂sj

∂sj

∂win
jk

= η

d∑

i=1

δ†i w
out
ij xk = ηδ‡jxk (2.24)

where δ‡j =

d∑

i=1

δ†i w
out
ij (2.25)

2.2.3 Kalman Filters

A Kalman filter [55, 56, 57] is an optimal estimator, which estimates the value of state xt

of a discrete linear system in eq-(2.26) and eq-(2.27), developing dynamically over time,
where xt, the state of dynamics, is emulated in eq-(2.26) and zt, the observation of state, is
given by eq-(2.27). A, B, H are constant matrices referring to the static parameters of the
system. Symbols µt and νt represent the processing noise and measurement noise which
respectively satisfy the zero-mean normal distributions: µt ∼ N (0, Qt) and νt ∼ N (0, Rt).

xt = Axt−1 + But + µt (2.26)

zt = Hxt + νt (2.27)

Solving the mentioned dynamics system with a Kalman filter requires two steps, namely
the time update updating the state according to the given model, and the measurement
update, correcting the model obtained from the observation.

In the time update step, state value xt and its covariance matrix Pt get updated according
to the stochastic system in eq-(2.26):

P †
t = APt−1A

T + Qt (2.28)

x−
t = Axt−1 + But (2.29)

where x−
t and P †

t are respectively the temporal values for the estimated state and its
covariance, Qt is the covariance matrix of noise µt. When the observation zt+1 is available,
its state value and covariance will be corrected according to:

Pt =

((

P †
t

)−1

+ HTR−1
t H

)−1

(2.30)

xt = x−
t + PtH

T R−1
t

(
zt − Hx−

t

)
(2.31)



2.2 On-line Learning Algorithms 21

Extensions of this method have been successfully applied to non-linear system and on-line
learning [58, 59, 60, 61, 62, 63, 64, 65]. Employing the extended Kalman filter (EKF) in
training of recurrent neural networks, xt refers to the network parameters which are to be
optimized, H refers to the gradient of observation (i.e. the target data corresponding to
the network output) w.r.t. parameters. Looking for a stable model in the context of this
thesis, parameters of a well trained network should stay close to the target parameter-set.
Therefore, matrix A in eq-(2.26) is the identity matrix and the value of ut is set to ut = 0
representing the autonomy of dynamics without outer control force.

2.2.4 Learning Paradigms

Real-time recurrent learning
Real-time recurrent learning (RTRL), introduced by Williams and Zipser [66], has
been applied in many projects concerned with recurrent neural nets[67, 68, 69] where
an on-line version is available without requirement on large amount of memory. The
RTRL method is specific for recurrent neural networks where recurrent coupling
exists in the hidden layer. In RTRL it is assumed that the values of the hidden-
state vector depend also on the weights, and should also contribute to the gradient
calculation. Therefore, unlike back-propagation learning where gradient w.r.t. the
weights is inversely propagated from output layer to input layer, RTRL requires
the hidden-state gradient w.r.t. network parameters. Recalling the general evolving
equation of hidden-state in recurrent neural networks:

st = H (Wt, st−1,xt−1) (2.32)

the calculation obeys eq-(2.33), where U = {Wt, xt} denotes the other variables
besides the hidden-state vector s.

∂st

∂W
=

∂H

∂st−1

∂st−1

∂W
+

∂H

∂U

∂U

∂W
(2.33)

With the initial condition:

∂s0

∂W
= 0 (2.34)

reflecting that the initial value of hidden-state vector is independent from the network
weight, the RTRL method manages the retention of gradient information over a time
period of either fixed or indefinite length by iterating the gradient calculation in eq-
(2.33) at each time step. A sketch of RTRL paradigm is given in fig-2.7(a), where
the dash line represents the feedback from the context unit.

Teacher Forcing
Teacher Forcing [71, 72, 70] refers to the learning paradigm where learning is driven



22 2. State of the Art

Ut

∂H

∂Ut

∂H

∂st−1

st−1

H

(a) RTRL

∂Ut

∂w

∂st−1

∂w

st

trajectory of
the model’s dynamics

DATA

δ

x̂t−1
x̂t

(b) Teacher Forcing

Z
−1

Learning
Model

(c) Force of Dynamics

teacher force

target dynamics

Figure 2.7: (a) Real time recurrent learning paradigm, where the hidden-
state gradient w.r.t. weights at the previous time step will contribute to the
calculation at the current time step; (b) Teacher forcing leaning paradigm
(adapted from [70]) (c) Pursuit of dynamics by teacher forcing, with a solid
red line indicating the target dynamics and a dashed line indicating the actual
dynamics of the model which is always moving towards the target by means of
the push from the data (short solid arrow line).

by data input from outside, such that the input value is more informative in terms
of environmental dynamics. This has been shown to be an effective technique for a
training algorithm. A schematic sketch of teacher forcing is shown in fig-2.7(b). The
dashed curve represents the trajectory of dynamics of the learning model, gradually
being adjusted by the teacher force and approaching the target dynamics imposed
by the data.

2.3 Backgrounds on Sensor Network Application

Smart sensor nodes (with “intelligence”) contain not only the measurement unit but also
a micro-controller unit (MCU) 2 for data processing, a memory unit for data storage and
a radio unit for communication. Operations as well as activations of these units will
take a certain amount of time and energy, which has to be considered when designing
the sensor network. For example, the TelosB[73] is an ultra-economical wireless sensor
module launched in 2004 by the University of California at Berkeley. TelosB sensor node
is capable of transmitting data at up to 250 kbps and of handling sophisticated data-
processing applications. Table-2.3 gives some specifics on the TelosB’s energy handling.
Note that radio communication draws far more current than the other operations.

2 A micro-controller (MCU) in a sensor node resembles the CPU in a personal computer, but it is highly
optimized regarding overall operating cost. Its design aims to keep the number of external components
and connections low, which is why it has substantial on-chip ROM and RAM.



2.4 Evolution 23

Operation Draw Description

Device Standby 5.1 µA Sleeping
MCU Idle 54.5 µA After wakeup but idle
MCU Active 1.8 mA Data processing
MCU + Radio RX 21.8 mA }

Communication
MCU + Radio TX 19.5 mA
MCU Wakeup time 6 µs }

Wakeup
Radio Wakeup time 580 µs

Table 2.1: Specifications of TelosB sensor. “Radio RX” refers to receive
data, “Radio TX” refers to data transmission. Symbol “m” means 10−3 and
“µ” means 10−6. “A” (Amperes) is the unit for current and “s” (seconds) is
the unit for time.

As sensor nodes in distributed sensor networks are usually supported by un-replaceable
batteries, sensor nodes will usually be turned into sleep mode, in order to preserve energy,
after their current work has been finished and will be re-activated when a wake-up event
happens. In sensor network applications, the full cycle from activation to sleep and to
re-activation is called a working cycle.

Details of the working cycle depend on the device’s hardware and the requirements of
the application. Fig-2.8 depicts a typical working cycle of a TelosB sensor node. At the
beginning of the working cycle, the sensor is woken up as scheduled or triggered by a
wake-up event. The time for wake-up of the MCU in TelosB is about 6µs, and wake-up
of radio in TelosB takes 580µs. Having the sampled data, data transmission is carried out
next, where the transmission serves data analysis purposes . After collecting all required
data from neighbors, the smart sensor will trigger the learning process and improve the
embedded model slightly. This can conclude the active time of the sensor node. In some
cases, the sensor node may be asked to perform a prediction on its measurements where
the prediction serves for further diagonal purpose. After this, the sensor node will go into
sleep model till a wake-up condition is satisfied again.

As energy management is important in sensor networks, one of the energy consumption
criteria is the so-called “duty cycle”, i.e. the fraction of time during which the sensor is
active and working, defined as τ

T
(refer to fig-2.8).

2.4 Evolution

Computer algorithms derived from evolution theory have been caught much attention, par-
ticular from the computer games industry. The evolutionary algorithm (EA) is a generic



24 2. State of the Art

testing
(optional)

working cycle T

learning

wakeup sleeping

working time τ

communication

measuring

Figure 2.8: Typical working cycle of a sensor, consisting of “wake-up”, “sam-
pling”, “evolution & transmit”, “learning”, “testing” and “sleeping”. Note
that “testing” is only for evaluation purposes. Symbol τ represents the total
time in each cycle where the device is activated, T represents the entire work-
ing cycle time. In general, the duty cycle is calculated as the ratio of τ divided
by T .

population-based heuristic optimization algorithm. Inspired by Darwin’s biological evolu-
tion theory, the EA method involves similar operations, such as reproduction, mutation,
crossover and selection.

The state-of-the-art methods of EA, including those presented further below, are normally
based on a large population of samples, which is hard to mirror in a sensor network appli-
cation because of the limitations in memory and processing capacity. However, evolution
concepts, e.g. selection and crossover, behind these EA methods have inspired the devel-
opment of the evolution framework presented in chapter-5.

2.4.1 Genetic Algorithm

The genetic algorithm (GA) is a search algorithm aiming to find the global optimum
parameter set. In GA, parameters of the function to be optimized are encoded in a genotype
vector and the evaluation of parameters is based on the fitness value of a particular set of
parameters. Optimization means in this case: finding the representation of the genotype
vector providing the best fitness value.

Inspired by evolutionary biology, the genetic algorithm also contains elementary operations
of related concepts, including: inheritance, mutation, selection and crossover. In each
generation, a population of sample individuals (i.e. candidate set of parameters) is given,
and the fitness value of each individual in the population will be calculated. The selection
procedure consists in choosing, based on the fitness value, the best or a group of the best
individuals. They are the competition winners, and survive while all the other individuals
are discarded. A new population, the next generation, can be formed by implementing
mutation or crossover over the winners. The new generation will take part in the selection
procedure of the next GA iteration.



2.4 Evolution 25

2.4.2 Evolution Strategies

Evolution Strategies (ESs) [74, 75] are a family of search methods that based on the
population of candidate solutions. Its evolutionary operations are similar to the genetic
algorithm and include selection, crossover and mutation.

Each individual (parents included) in the population has a tuple of properties: {y, s, F (y)},
where vector y is an object parameter (i.e. a parameter which has to be optimized), s is
a set of strategy parameters, F (y) is the fitness value of parameter set y.

In each generation, a group of parents of size µ is initialized or inherits from the previous
generation: P = p1, p2, . . . , pµ. From the entire parent population, ρ parents pi ∈ P, i =
[1, . . . , ρ] are chosen to produce each offspring. Production of offspring should begin with
the mutation of strategy setting s and then parameter-set y is formed based on the strategy
setting s. Once the offspring generation is complete, its fitness value is evaluated, based
on which the parents of next generation are selected.

Based on the number of parents, individuals in each population, ESs is usually expressed
in a general form: (µ + λ) − ES or (µ, λ) − ES. The difference between these two forms
lies in the members of the population from which the parents of the new generation are
chosen: in the (µ + λ) − ES scheme, new parents are selected from the offspring and old
parents; in the (µ, λ) − ES scheme, old parents are not considered.

2.4.3 Evolution with Neural Networks

Evolutionary algorithms, e.g. GA and ES, are suitable for global searching and are easy
to implement, and have therefore been combined with other learning methods, including
neural network learning. Such hybrid algorithms use a neural network model in applications
with e.g. prediction, classification and regression, while simultaneously searching, with
the evolution algorithm, for a better neural network model (in terms of parameters or
topology).

with parameters: Belew et al. [76] encouraged in 1990 the combination of genetic al-
gorithms with connectionist learning in neural networks, because “the use of GA
provides much greater confidence in the face of the stochastic variation” and also
because GA “can allow training times to be reduced by as much as two orders of
magnitude”. One of the difficulties of this combination lies in the encoding of the
connection weights into the discrete and binary genome string. In their paper, real-
valued connection weights are assumed to be bounded within a region which will be
divided into 2B intervals where B is application-defined and refers to the length of
a substring for each connection weight in the genome string. The real-value of the
connection weight can then be transformed to the binary space.



26 2. State of the Art

A similar example can be found in [77] where the so-called CMA-ES, an evolution
strategy (ES) which adapts the covariance matrix of the mutation distribution, has
been applied to the optimization of the weights of neural networks for solving rein-
forcement learning problems.

with topology: Stanley [78, 79] introduced the “Neuro-Evolution of Augmenting Topolo-
gies (NEAT)” method which is able to change the topology of a neural network as
well as the connection weights, such that this method can search for a solution in the
neural network structure space as well as in the parameter space.

NEAT uses a dynamically expandable representation of structure for encoding, so
that it can record not only the structure itself but also changes in the structure.
By virtue of this representation, NEAT permits the implementation of mutation and
crossover evolutionary operations on the structure of the neural network.

Another important concept of NEAT is the innovation protection. Rather than
pushing newly born structures into the arena for competition, NEAT only allows
local competition of newly born individuals with individuals of similar structure.
This way, novel structures are protected and have time to optimize their structure
before being confronted with strong species.



Chapter 3

Spiral Recurrent Neural Networks

Similar to conventional recurrent neural networks, the novel architecture Spiral Recurrent
Neural Networks (SpiralRNN ) [80] has a layered structure with a standard input layer
receiving environment data, a hidden layer with self-coupling connections providing tem-
poral memory, and an output layer projecting this temporal information into the target
space. This procedure is expressed by the following equations:

input → hidden : s† = Winxt−1 + b1 (3.1)

hidden → hidden : st = H (Whidst−1 + s†) (3.2)

hidden → output : xt = G (Woutst + b2) (3.3)

where H and G are activation functions of hidden neurons and output neurons respec-
tively, b1 and b2 are respectively the bias of hidden neurons and output neurons, xt−1 and
xt are respectively the network input and output, st and st−1 are the hidden-state vector at
time t and t− 1 respectively, s† is the temporal variable representing the hidden-state vec-
tor before self-feedback, Win, Whid and Wout refer to the corresponding connection-weight
matrices from input to hidden layer, within the hidden layer, and from hidden to output
layer.

The spiral recurrent neural network (SpiralRNN ) uses a hidden layer of special structure,
such that it can efficiently control the eigenvalue spectrum of the hidden-weight matrix
Whid. In the following, the structure of a SpiralRNN will be introduced and followed by
implementation of SpiralRNN s.

3.1 Structure and Eigenvalues

The structure of a SpiralRNN is based on “spiral units”, which also contribute to the
evolutionary operation described in chapter-5. Therefore the structure of “spiral units”



28 3. Spiral Recurrent Neural Networks

will be introduced first, followed by the structure of a SpiralRNN as an entire architecture
and then theoretical explanation on the relationship between the eigenvalue spectrum and
network parameter is made. Formulas in the coming text will use the notations listed in
table-3.1.

Symbol Descriptions

d the dimension of data
nwei the total number of parameters (connection weights) in network

n
units

the total number of hidden units
Nhn the total number of hidden neurons in network
n

hnu
the number of hidden neurons in (the current) hidden unit

{n
hnu

}
k

the number of hidden neurons in the kth hidden unit
st the hidden-state vector at time t

s
(k)
t the hidden-state vector of the k-th hidden unit at time t

Table 3.1: Terminology of symbols

3.1.1 Hidden Units

The SpiralRNN structure can be broken down into smaller units, namely “hidden units”
or “spiral units”. Each hidden unit possesses a group of hidden nodes and synaptic con-
nections between them, as well as connections between the input/output nodes and the
enclosed hidden nodes. Fig-3.1(a) illustrates a typical hidden unit with three input nodes
and three output nodes, where the hidden layer structure is only shown symbolically. Note
that hidden nodes are fully connected to all input nodes and all output nodes. More details
of the connections inside the hidden layer are shown in fig-3.1(b), where the connections
from only one particular neuron to all other neurons in the hidden unit are displayed.
With all neurons in the hidden unit aligned clockwise on a circle, values of connection
weights are defined such that the connection from one node to its first clockwise neighbor
has value β1, the connection to its second clockwise neighbor has value β2 and so on. The
definition of connection values is applied to all the neurons, so that all connections from
neurons to their respective first clockwise neighbors have an identical weight β1, and all
the connections from neurons to their second clockwise neighbors have value β2, and so on.
More detail is provided in fig-3.1(c), which depicts recurrent connections from two hidden
neurons. Different combinations of arrow shapes and line styles in fig-3.1(c) represent
different associated values of connection weights.



3.1 Structure and Eigenvalues 29

(b)

β6

β7

β5

β4 β3

β2

β1

(c)(a)

Output Layer

Hidden Layer

Input Layer

Figure 3.1: (a) The structure of a hidden unit with 3 input nodes and 3
output nodes; (b) Partial structure of a hidden unit, where only the outgoing
connections from one neuron are shown; connections from other neurons will
have the same structure of connections and weights. (c) Partial structure of
a hidden layer which shows the outgoing connections of two hidden neurons;
connections associated with identical values are denoted by the same combina-
tion of arrow shape and line style.

M =











0 β1 β2 . . . βn
hnu

−1

βn
hnu

−1 0 β1 . . .
...

βn
hnu

−2 βn
hnu

−1 0
. . .

...
...

...
. . .

. . . β1

β1 . . . . . . βn
hnu

−1 0











n
hnu

×n
hnu

P =








0 1 0
...

. . .
. . .

0
. . . 1

1 0 . . . 0








n
hnu

×n
hnu

(3.4)

This configuration of connection weights results in a hidden-weight matrix - matrix M
on the left-hand-side of relation (3.4). The value of matrix M is determined by a vector
~β ∈ R(n

hnu
−1)×1 where n

hnu
refers to the number of hidden neurons in the hidden unit.

Furthermore, matrix M can be decomposed into entries of ~β and the permutation matrix
P:

M = β1P + β2P2 + . . . + βn
hnu

−1P
n

hnu
−1

(3.5)

where matrix P ∈ Rn
hnu

×n
hnu

shown on the right hand side of relation (3.4) is the per-
mutation matrix which up-shifts 3 by one position of entries in a multiplier vector. It is
obvious that P’s variant P2 is also a permutation matrix up-shifting a multiplier vector
by two positions. Similarly, Pn

hnu up-shifts the multiplier vector by n
hnu

positions, and

3 The “up-shift” operation shifts vector entries from the bottom up to the top; For those entries
originally at the top, they will be shifted to the bottom circle-wise.



30 3. Spiral Recurrent Neural Networks

therefore:
P = Pn

hnu

This also implies that the eigenvalue λ̂k [81] of any permutation matrix P i (i ∈ N
+)

satisfies:
|λ̂k| = 1, k = 1, . . . , n

hnu

Therefore, the maximum absolute eigenvalue of matrix M is bounded, such that the relation
in (3.6) holds. The proof of the relation in (3.6) will be given in appendix-A.2.

|λn
hnu

| ≤
n

hnu
−1

∑

i=1

|βi| (3.6)

When the vector ~β is defined as the product between a predefined value γ ∈ R
+ (Discussion

of γ value will be given in section-4.6.2.) and a variable vector ~ξ, i.e.:

~β = γ tanh
(

~ξ
)

, (3.7)

matrix M can be rewritten as in the following equation:

M =

n
hnu

−1
∑

i=1

γ tanh(ξi)P i,

and the relation (3.6) can be further developed into relation (3.8).

|λn
hnu

| ≤ γ

n
hnu

−1
∑

i=1

|tanh(ξi)|

≤ γ(n
hnu

− 1) (3.8)

3.1.2 SpiralRNN s

The construction of SpiralRNN s is generally based on spiral hidden units. It simply con-
catenates several hidden units together, and fully connects all hidden neurons to all input
and output neurons. Note that hidden units are separated from each other, i.e. there is no
interconnections between any hidden neuron from one hidden unit and any hidden neuron
of another hidden unit (see fig-3.2(a)). Assuming the number of hidden units of the entire
network is n

units
, the hidden-weight matrix Whid of the entire network has the form shown

in fig-3.2(b). The matrix Whid is a block-diagonal matrix with n
units

number of blocks,
each of which is a square matrix and corresponds to the hidden-weight matrix of one of
the hidden units. Note that the sizes of different sub-blocks Mi can differ, one cause for
the implementation of the evolution framework as presented in section-5.2.



3.1 Structure and Eigenvalues 31

Input Layer

Output Layer

Hidden Layer

Whid =







M1

M2
. . .

Mn
units







(a) (b)

Figure 3.2: (a) The typical structure of SpiralRNNs. Note that all hidden
units have the same type of topology (however the number of hidden nodes in
the hidden units can be different), as shown in fig-3.1, and are separated from
each other whereas the input and output connections are fully connected to the
hidden nodes. (b) The corresponding hidden-weight matrix Whid, which is a
block-diagonal matrix.

Setting up such a block-diagonal structure helps to establish a constraint upon the eigen-
value spectrum of the hidden-weight matrix Whid as shown in eq-(3.9). The proof will be
given in appendix-A.3.

|λ| ≤ max
k

{

||~β(k)||taxi

}

, k ∈ [1, · · · , n
units

] (3.9)

3.1.3 Eigenvalues in SpiralRNN s

Besides the boundary condition, parameter vector ~β of the synaptic connection inside
the hidden-layer is in fact directly connected to the eigenvalues of hidden-weight matrix.
According to [82, 83], each sub-block of hidden-weight matrix (ref. fig-3.2(b)) is a circulant

matrix. Eigenvalue λm of circulant matrices is related to entries of the first column ~β of
matrix, as in eq-(3.10).

λm =

n∑

k=1

βke
−2πm(k−1)i/n m = 1 . . . n (3.10)

Here, i is the imaginary unit indicating the complex value and n indicates the matrix size.
It is obvious that, λm is the discrete Fourier transform (DFT) of the sequence ~β, whose
values are subjected to be learnt during the training of neural network. Therefore, eq-(3.10)

can be re-written into a linear transformation between eigenvalues ~λ and the connection
weights ~β:

~λ =
√

nMDFT
~β (3.11)



32 3. Spiral Recurrent Neural Networks

In eq-(3.11), matrix MDFT is the DFT matrix with the form:

MDFT =
1√
n










1 1 1 · · · 1
1 w w2 · · · wn−1

1 w2 w4 · · · w2(n−1)

...
...

...
...

1 wn−1 w2(n−1) · · · w(n−1)(n−1)










n×n

(3.12)

where w = e−2πi/n is a primitive n-th root of unity. Note that the DFT matrix MDFT is
a constant matrix when value of n is fixed. Therefore, during the training of SpiralRNN
model where value of ~β is modified, the eigenvalues ~λ of the hidden-weight matrix is adapted
according to the linear mapping in eq-(3.11). As such linear mapping is relatively simpler
and easier to learn, the training of SpiralRNN s can control the eigenvalue-spectrum of
hidden-weight matrix in a much more straightforward and efficient manner.

3.2 Implementation of SpiralRNN s

Being trained on-line as required by requirement < R1 > on page-3, the SpiralRNN model
can be implemented in three modes within one time step (the time interval between the
availability of two successive data). They include: the forward phase, the training phase
and the autonomous test phase. An implementation in pseudo code is given in table-3.2.

The forward phase involves propagation of information from the input layer through
the hidden layer to the output layer; The historical information stored in the hidden
state melds together with the current environment information, and produces the
new hidden-state information, which is further rendered into the network output.

The training phase involves training of network parameters according to the error func-
tion; gradient-based methods are fitting by on-line learning without the requirement
of large memory; after the adjustment in each time step, the system will continue
the forward phase as soon as the input and target data for the next time step are
available;

The autonomous test phase of a neural network model is the procedure where the
model continuously evolves by following the forward phase, where the network input
of the current time step is the output of the previous time step. Note that, throughout
this procedure, the model does not interface with data from outside except for the
initial input value.



3.2 Implementation of SpiralRNN s 33

for each time step t
obtain the latest data x̂t;

set the previous data x̂t−1 as input of network;
}

Forward phase
iterate the network and generate output xt;

calculate error: δt = x̂t − xt;
}

Training phase
update the connection weights according to the error

if is required
set data x̂t as input

}

Testing phase
continuously iterate the network

end
end

Table 3.2: Pseudo code: implementation of SpiralRNNs

3.2.1 The Forward Phase

For convenience, rewrite the forward equations of SpiralRNN s in eq-(3.1) to eq-(3.3):

input → hidden : s† = Winxt−1 + b1 (3.13)

hidden → hidden : st = H (Whidst−1 + s†) (3.14)

hidden → output : xt = G (Woutst + b2) (3.15)

Given the special structure of the hidden-weight matrix Whid in a SpiralRNN model de-
scribed in section-3.1, Whid can be converted into a block-diagonal matrix where each block
has the form

Mk =

{n
hnu

}
k
−1

∑

i=1

β
(k)
i P i

(k), (3.16)

where {n
hnu

}
k

represents the number of hidden nodes in the kth hidden unit, index k ∈
[1, · · · , n

units
], index i ∈ [1, · · · , {n

hnu
}

k
− 1], vector ~β(k) and matrix P(k) are respectively

the associated vector and the (1-position) permutation matrix of sub-block matrix Mk in
Whid. According to the size of sub-block in Whid, vector st can be divided into vectors of
smaller size s

(k)
t ∈ R{n

hnu
}

k
×1, each s

(k)
t is to the hidden-state vector of the corresponding

hidden unit, i.e.:

Whid =







. . .
∑{n

hnu
}

k
−1

i=1 β
(k)
i P i

(k)

. . .







Nhn×Nhn

, st =







...

s
(k)
t
...







Nhn×1

, k ∈ [1, · · · , n
units

],



34 3. Spiral Recurrent Neural Networks

where Nhn is the total number of hidden nodes. Then, eq-(3.14) can be re-written as:

st = H













...
∑{n

hnu
}

k
−1

i=1 β
(k)
i P i

(k)s
(k)
t−1

...







Nhn×1

+ s†







, k ∈ [1, · · · , n
units

]

where the definition of s† can be found in eq-(3.18). Furthermore, given the definition
~β(k) = γ tanh(~ξ(k)), the equation above will be re-written as:

st = H








γ







...
∑{n

hnu
}

k
−1

i=1 tanh
(

ξ
(k)
i

)

P i
(k)s

(k)
t−1

...







Nhn×1

+ s†








,

k ∈ [1, · · · , n
units

] (3.17)

Therefore eq-(3.13) to eq-(3.15) can be written element-wised, as in eq-(3.18) to eq-(3.20).
Note that eq-(3.19) calculates the hidden-state vector of each hidden unit where vector
s†(k) stands for the corresponding sub-vector of s†.

s†(i) =

d∑

j=1

Win(i, j)xt−1(j) + b1(i), i ∈ [1, · · · , Nhn] (3.18)

s
(k)
t (i) = H



γ

{n
hnu

}
k
−1

∑

q=1

tanh
(
ξ(k)
q

)
{n

hnu
}

k∑

m=1

Pq
(k)(i, m)s

(k)
t−1(m) + s†(k)(i)



 ,

with k ∈ [1, · · · , n
units

] , i ∈ [1, · · · , {n
hnu

}
k
] (3.19)

xt(i) = G

(
Nhn∑

j=1

Wout(i, j)st(j) + b2(i)

)

, i ∈ [1, · · · , d] (3.20)

3.2.2 The Training Phase

With the network output readily generated in the forward phase, the training of a Spiral-
RNN model starts by comparing the output with the target value, i.e. determining the
error. The error (residual) is put into relation to the change in the network parameters,
similar to the gradient-based learning methods. The training follows the extended Kalman
filter (EKF) with the gradient calculation based on real time recurrent learning (RTRL).
The following will explain the calculation of network output gradient w.r.t. all network
parameters, then the EKF based algorithm is addressed. A sketch of the training phase is
given in fig-3.3.



3.2 Implementation of SpiralRNN s 35

Input Layer

Gradient
Calculation

Z
−1

EKF

Output Layer

Hidden Layer

Target x̂t

Output xt

Input x̂t−1

Data

Figure 3.3: Training of a SpiralRNN, with the dashed line representing the
learning of network parameters.

1. Gradient

In order to implement the real time recurrent learning (RTRL) method (refer to
section-2.2.4), both the output gradient w.r.t. parameters ∂x/∂w and the hidden-
state gradient w.r.t. parameters ∂s/∂w are calculated. The ∂s/∂w will also be saved
and recalled in each training step because of the self-coupling in the hidden layer. As
the teacher forcing technique (refer to section-2.2.4) is used, the gradient calculation
is truncated in the sense that the output gradient of the previous time step is not
saved. Therefore, at time step t, ∂xt−1/∂w = 0, where xt−1 is the input in eq-(3.13).

In the following, the calculations of ∂x/∂w and ∂s/∂w are given in the order of the
neural network structure, namely the output layer, the hidden layer and the input
layer. Afterward, gradient values ∂x/∂w and ∂s/∂w are separately concatenated,
and will be further used in the parameter-training algorithm.

Output layer:
Eq-(3.20) yields the network output gradient w.r.t. the connection weights
from the hidden layer to output layer as well as the bias of output nodes. The
relevant equations are eq-(3.21) and eq-(3.22), with i, k ∈ [1, · · · , d] where d
is the dimension of the data, j ∈ [1, · · · , Nhn] where Nhn is the total number
of hidden neurons, G ′

k is the derivative of the k−th activation output w.r.t.
its corresponding “netin”4, δ is the Kronecker’s delta function. The respective
gradient matrix ∂s/∂w is zero since the hidden-state vector is independent from
the weights in the output layer.

4The value of “netin” is the neuron value before the activation function is performed, as described in
section-2.1



36 3. Spiral Recurrent Neural Networks

∂xt(k)

∂Wout(i, j)
= G

′
kst(j)δi,k (3.21)

∂xt(k)

∂b2(i)
= G

′
kδi,k (3.22)

Hidden layer:
The recurrent connection weights between any two hidden neurons constitute
the variables in the hidden layer5. These recurrent connections are determined
by the associated vectors ~β(k), k ∈ [1, · · · , Nhn], where the value of ~β(k) is deter-

mined by the vector variable ~ξ(k) and the predefined γ ∈ R
+. In the following,

the network output gradient w.r.t. vector ~ξ will be given.

Given the forward equation in eq-(3.17), the derivative of the ith component of

vector s
(k)
t in the k-th hidden unit w.r.t. the jth component of corresponding

vector ~ξ(k) is calculated in eq-(3.23), using not only the direct derivative of vector
~ξ(k), but also the corresponding partial derivative from the hidden state vector
at the previous time step.

∂s
(k)
t (i)

∂ξ(k)(j)
= H

(k)′(i)





{n
hnu

}
k∑

m=1

Pj
(k)(i, m)s

(k)
t−1(m)

∂β(k)(j)

∂ξ(k)(j)
+

γ

{n
hnu

}
k
−1

∑

q=1

tanh
(
ξ(k)
q

)
{n

hnu
}

k∑

m=1

Pj
(k)(i, m)

∂s
(k)
t−1(m)

∂ξ(k)(j)



(3.23)

with
∂β(k)(j)

∂ξ(k)(j)
= γ

(
1 − tanh2

(
ξ(k)(j)

))
(3.24)

where H (k)′(i) is the gradient of s
(k)
t (i) w.r.t. its corresponding “netin”, Pj

(k)(i, m)

is the respective element of the permutation matrix Pj
(k) corresponding to the

k -th hidden unit, j is the exponential operator, i and m are the indices in the
matrix, and ∂s

(k)
t−1(i)/∂ξ(k)(j) is the corresponding hidden-state gradient of s

(k)
t−1

w.r.t. the j-th entry of vector ~ξ(k).

Note that the hidden-state gradient from one hidden unit w.r.t. the ξ value of
another hidden unit is always zeros, because hidden units are isolated from each
other, i.e.:

∂s
(k1)
t (i)

∂ξ(k2)(j)
= 0, k1 6= k2, ∀i, j.

5 The bias of the hidden neurons are like connection weights for an additional constant input in the
input layer.



3.2 Implementation of SpiralRNN s 37

Using the hidden-state gradient, the network output gradient w.r.t. correspond-
ing parameters can be computed as followed:

∂xt(i)

∂ξ(k)(j)
= G

′(i)

{n
hnu

}
k∑

m=1

W
(k)
out(i, m)

∂s
(k)
t (m)

∂ξ(k)(j)
,

i ∈ [1, · · · , d]
k ∈ [1, · · · , n

units
]

j ∈ [1, · · · , {n
hnu

}
k
]

Input layer:
Variables in the input layer are the connection weights from the input to hidden
layer, and the bias of hidden neurons. Similar to eq-(3.23), the derivative of the
hidden-neuron activation values w.r.t. parameters consists of the direct gradient
and the partial derivative:

∂s
(k)
t (i)

∂W
(k)
in (m, n)

= H
(k)′(i)

(

xt−1(n)δi,n +

γ

{n
hnu

}
k
−1

∑

q=1

tanh
(
ξ(k)
q

)
{n

hnu
}

k∑

l=1

Pq
(k)(i, l)

∂s
(k)
t−1(l)

∂W
(k)
in (m, n)

)

(3.25)

∂s
(k)
t (i)

∂b
(k)
1 (j)

= H
(k)′(i)

(

1 +

γ

{n
hnu

}
k
−1

∑

q=1

tanh
(
ξ(k)
q

)
{n

hnu
}

k∑

l=1

Pq
(k)(i, l)

∂s
(k)
t−1(l)

∂b
(k)
1 (j)

)

(3.26)

Furthermore, the derivative of the network output w.r.t. respective variables is
computed as following:

∂xt(i)

∂W
(k)
in (m, n)

= G
′(i)

{n
hnu

}
k∑

l=1

W
(k)
out (i, l)

∂s
(k)
t (l)

∂W
(k)
in (m, n)

∂xt(i)

∂b
(k)
1 (j)

= G
′(i)

{n
hnu

}
k∑

l=1

W
(k)
out (i, l)

∂s
(k)
t (l)

∂b
(k)
1 (j)

2. Training method - extended Kalman filter (EKF )

The training method will be addressed in the following text. First there will be a
review of the general scenario of sensor prediction and a definition of the probability
distribution function over the variables in the system. The solution for parameter
estimation of the learning model is derived based on the probability distribution
functions of parameters w given the training data x̂t, i.e. f

wt|X̂t
, which is the extended

Kalman filters (EKF ) given certain approximations and specifications.

In order to predict data, each sensor node has to maintain and update a model of the
environment allowing the model to predict future observations. A typical starting



38 3. Spiral Recurrent Neural Networks

point for a model of a generic dynamic system is:

st = H (st−1,wt, x̂t−1) (3.27)

x̂t = G (st,wt, x̂t−1) + νt (3.28)

wt = wt−1 + µt (3.29)

Eq-(3.27) describes the dynamic evolution of the environment hidden-state vector,
i.e. the new hidden state vector st at time t. The value of st depends in some, usually
nonlinear, way on the previous hidden state vector st−1 and the previous observation
vector x̂t−1 and the model parameters wt. Eq-(3.28) describes the measurement
process of sensor: x̂t is the vector of observations (sensor data) at time t, G (. . . ) is
the model estimation of these observations based on st, wt and x̂t−1. The variable νt is
the measurement noise vector, assumed to be normally distributed with a probability
distribution function (p.d.f.) fνt

= N (νt |0, Rt ). Finally, eq-(3.29) describes the
evolution of the model parameters: that the dynamics of the environment within a
reasonable time window are assumed to be stationary, i.e. the model parameters
are static, up to additive random fluctuations µt; these are assumed to be normally
distributed with zero mean, covariance matrix Qt and thus with a corresponding
p.d.f. fµt

= N (µt |0, Qt ).

Using the Bayes rule, the chain rule and the Chapman-Kolmogorov equation [56],
the conditional p.d.f. f

wt|X̂t
for the model parameters at time t given the current

and all previous observations X̂t = {x̂t, x̂t−1, ..., x̂0} is given by following equations:

f
wt|X̂t

= f
wt|x̂t,X̂t−1

=
f
x̂t|wt,X̂t−1

f
wt|X̂t−1

f
x̂t|X̂t−1

(3.30)

f
x̂t|wt,X̂t−1

=

∫

f
x̂t|stwt,X̂t−1

f
st|wt,X̂t−1

dst (3.31)

f
wt|X̂t−1

=

∫

f
wt|wt−1,X̂t−1

f
wt−1|X̂t−1

dwt−1 (3.32)

Eq-(3.30) is the famous Bayes rule, eq-(3.31) introduces the hidden-state vector st

into the “evidence” p.d.f. and eq-(3.32) is the “prior” p.d.f. for the model parameters
wt. The last equation introduces the conditional p.d.f. f

wt−1|X̂t−1
which allows to

interpret eq-(3.30) to eq-(3.32) as iterative update equations for f
wt|X̂t

.

Before the on-line training rules from these update equations are derived, one has to
introduce some assumptions and approximations, and they present in the specification
of each p.d.f.:

(Sa) f
wt−1|X̂t−1

≈ N (wt−1 |w̄t−1, Pt−1 ) is assumed to be normally distributed with

mean w̄t−1 and covariance matrix Pt−1. In general this p.d.f. will be multi-
modal; however, if the environment doesn’t change its dynamics too fast and if
the model is powerful enough, then the model parameters should become static
and this assumption is justified.



3.2 Implementation of SpiralRNN s 39

(Sb) f
wt|wt−1,X̂t−1

= N (wt |wt−1, Qt ) according to the assumption made in eq-(3.29).

(Sc) f
st|wt,X̂t−1

= δ(st − H (H (. . . ,wt, x̂t−2),wt, x̂t−1)) with the dots indicating an

iteration of the function H ( ) which further represents the previous hidden
states st−τ (τ = 1, 2, . . . ) according to eq-(3.27). The Dirac delta-function δ( )
corresponds to a normal distribution with infinitesimally small covariance matrix
and reflects the assumption that any uncertainty comes from the measurements
and from (random) changes of model parameters.

(Sd) f
x̂t|stwt,X̂t−1

in eq-(3.31) is normal distributed with mean value G (st,wt, x̂t−1)

and covariance matrix Rt according to eq-(3.28), i.e.
f
x̂t|stwt,X̂t−1

= N (x̂t |G (st,wt, x̂t−1), Rt ).

With the specifications (Sa) and (Sb), eq-(3.32) is a convolution of normal distribu-
tions and thus f

wt|X̂t−1
can be easily calculated:

f
wt|X̂t−1

= N

(

wt

∣
∣
∣w̄t−1, P

†
t

)

with P †
t = Pt−1 + Qt (3.33)

Given the δ-function like p.d.f. f
st|wt,X̂t−1

in specification (Sc) and the p.d.f. of

f
x̂t|stwt,X̂t−1

in specification (Sd), one finds:

f
x̂t|wt,X̂t−1

= N (x̂t |G (st,wt, x̂t−1) , Rt ) (3.34)

st = H (H (...,wt, x̂t−2) ,wt, x̂t−1) (3.35)

The same assumption as made in specification (Sa) for f
wt−1|X̂t−1

- namely the slow

change of the model parameters wt when the model has been well trained - justifies
another approximation: the function G (...) can be linearized with respect to their
dependence on the model parameters wt. In particular,

G (st,wt, x̂t−1) ≈ xt + Ψ(wt − w̄t−1), (3.36)

where the output vector xt and the gradient matrix Ψ are respectively defined as:

xt = G

(

s†t , w̄t−1, x̂t−1

)

and Ψ =
dxt

dw̄t−1

(3.37)

Finally, the definition of s†t is given here. According to eq-(3.35) and eq-(3.36), s†t
should be the hidden state vector calculated with the previous model parameters
w̄t−1. However, this requires a recalculation of the whole history whenever the model
parameters change and therefore is not a viable solution for on-line learning in dis-
tributive sensor application. Instead, the approximation in eq-(3.38) is applied, which
implies that the model takes s†t as the flawless hidden value.

s†t ≈ H (H (..., w̄t−2, x̂t−2) , w̄t−1, x̂t−1) (3.38)



40 3. Spiral Recurrent Neural Networks

With the approximations in eq-(3.36), eq-(3.37) and eq-(3.38), the calculation of
f
x̂t|wt,X̂t−1

in eq-(3.34) is rewritten as:

f
x̂t|wt,X̂t−1

= N

(

x̂t

∣
∣
∣G

(

s†t , w̄t−1, x̂t−1

)

+ Ψ(wt − w̄t−1), Rt .
)

(3.39)

Combining eq-(3.33) and eq-(3.39), the p.d.f. f
wt|X̂t

in eq-(3.30) ends up with a

normal distribution in eq-(3.40). Note that P †
t is computed in eq-(3.33) and Ψ is the

gradient described on page-35.

f
wt|X̂t

= N (wt |w̄t, Pt ) (3.40)

with w̄t = w̄t−1 + PtΨ
T R−1

t (x̂t − xt) (3.41)

Pt = P †
t − P †

t ΨT
(

ΨP †
t ΨT + Rt

)−1

ΨP †
t (3.42)

Eq-(3.40) is consistent with specification (Sa) whilst eq-(3.41) and eq-(3.42) consti-
tute the extended Kalman filter (EKF) (for more details see [55, 56, 57]).

The derivation of the on-line learning rule using a Bayesian approach implies that this
rule is optimal, provided that the above specifications and approximations are justified -
optimal in the sense that the learning rule yields the most likely model parameters at time
t given a history of observations made so far.

The choice and update of the parameter matrices Qt and Rt, which are respectively the
covariance matrices of noise nut and mut, will be described in simulation setting in section-
4.1.3. Calculation of gradient Ψ in eq-(3.37) can be generally expressed in eq-(3.43) (for
more details on gradient calculation, please refer to previous text on page-35). Note that
eq-(3.43) is calculated in an iterative manner with the approximation in eq-(3.38).

Ψ =
dxt

dw̄t−1
=

∂xt

∂s̄†t

ds†t
dw̄t−1

+
∂xt

∂w̄t−1

=
∂G

(

s†t , w̄t−1, x̂t−1

)

∂s†t

ds†t
dw̄t−1

+
∂G

(

s†t , w̄t−1, x̂t−1

)

∂w̄t−1

(3.43)

with
ds†t

dw̄t−1
=

∂s†t
∂w̄t−1

+
∂s†t

∂s†t−1

ds†t−1

dw̄t−1
≃ ∂s†t

∂w̄t−1
+

∂s†t

∂s†t−1

ds†t−1

dw̄t−2
(3.44)

The latter expression in eq-(3.44) is the gradient calculated in real time recurrent learning
(RTRL) [66] with teacher forcing. Potential problems may occur, if some eigenvalues of

the Jacobian matrix
∂s†t

∂s†t−1

are too large; this may lead to an unlimited amplification of

gradient components.

From above, an RTRL-gradient based EKF learning rule has been derived, based on a
Bayesian approach and with reasonable approximations. The resulting maximum likelihood



3.2 Implementation of SpiralRNN s 41

estimation of the model parameters guarantees the convergence of the learning process -
at least for an environment whose dynamics do not change. Different from the adaptive
learning rule in [84], also aiming at a fix-point dynamics for the model parameters, this
learning rule is derived from a probabilistic approach. In the next chapter, this learning rule
together with gradient calculated by teacher forcing based RTRL is taken as the generic
on-line learning rule for all neural network models.

3.2.3 The Autonomous Test Phase

The autonomous test refers to the test procedure, where the system operates monologically
and generates the autonomous output. Autonomous output refers to a network output
sequence generated within one autonomous test. Assuming that a model f has been
trained on-line with the training data {x̂1, . . . , x̂t}, the autonomous test of length τ is
initialized by giving x̂t as the model input and iterates the trained model τ times, where
in each time step the network input takes the output value at previous step time, as shown
in eq-(3.45). The output xt+k is the k-step ahead prediction output based on initial value
x̂t. The autonomous output is then constructed by concatenating all prediction outputs of
the autonomous test: {xt+1, . . . , xt+τ}, where its corresponding target is {̂xt+1, . . . , x̂t+τ}.

xt+k+1 = f(xt+k), k = 0, . . . , τ − 1 (3.45)

with xt = x̂t (3.46)

Input Layer

Z
−1

Output Layer

Hidden Layer

initial input

xt = x̂t

Output x
t+k

Input x
t+k−1

Figure 3.4: Autonomous test of SpiralRNNs, with the dashed line at the
initial input indicating that no further data will serve as input data.



42 3. Spiral Recurrent Neural Networks

In simulations, autonomous tests will be conducted at assigned time steps, namely test
points (ref. section-4.1.4), after a training phase. Before starting the autonomous test,
environment data will be supplied as feed-in values for the input layer of the SpiralRNN
model. After that, the structure and connection weights will be held unchanged, mean-
while the model iterates autonomously (as described in section-3.2.1) and generates the
autonomous output. The iteration of the model will be terminated when the autonomous
output vector has reached to a predefined length. Fig-3.4 illustrates the autonomous test
procedure of the SpiralRNN.



Chapter 4

Applications with SpiralRNN s

In this chapter, the spiral recurrent neural network (SpiralRNN ) structure will be compared
with state-of-art recurrent neural network (RNN) models in various simulations. These
simulations include the prediction on benchmark time series, experiments with real-world
data and conditional prediction simulations, as well as the experience in a data prediction
competition. Before explaining the detail of each comparison, the experimental setup will
be described, as all experiments share a largely common network settings.

Due to scarce energy and memory of sensor nodes, training of neural networks is performed
in an on-line manner, where in each time step the network parameters (i.e. connection
weights) are updated after comparing the network output to the target data value, as
this is required in sensor network applications where no large memory is available. Since
energy consumption is a major concern in sensor network applications, the experiments
are compared under the condition that the processing effort for training of other networks
is roughly on the same level. For statistics reasons, each task task is performed 30 times
in order to achieve accuracy and confidence on the result.

Simulations are carried out in the MatLab R© environment. The MatLab scripts imple-
menting SpiralRNN are given in appendix-B.

4.1 Experimental Settings

4.1.1 Tasks

In prediction comparisons, several data sets are used, including the Lorenz time series data
set, the spike time series data set and the Mackey-Glass data set. Chaotic time series are



44 4. Applications with SpiralRNN s

used here because they never return to a previous data value and thus probe the models’
ability of generalization. Spike time series contain long sequences of null-activity which
requires a certain memory horizon in order to predict the spikes. All of these time series
are disturbed by additive noise of normal distribution6, i.e.: ηt ∼ N (0, 0.012). Fig-4.1
depicts some examples of these time series.

200 300 400 500

0

1

(a) Spike21

200 300 400 500

1

1.5

0.5

(b) Mackey-Glass

0.4 0.6 0.8 1 1.2 1.4
0.4

0.6

0.8

1

1.2

1.4

(c) Mackey-Glass Orbit

Figure 4.1: Examples of time series, where the X-axis is time and the Y-axis
is data. (a) Example of Spike21; (b) example of Mackey-Glass; (c) example
of Mackey-Glass periodical orbit, xt versus xt−τ with τ = 17.

1. One-dimensional spike time series are used for testing stability and memory horizon.
In the simulations, the spike time series has the period 21, i.e. in each period one
single entry has value 1 whilst all other 20 entries zero. This task and the data set
is named Spike21, because of its period length. The variance of Spike21 is manually
set to 1, i.e. σ2 = 1, where the value of variance will be required for the performance
evaluation. An example of the data can be seen in fig-4.1(a)

2. The Mackey-Glass chaotic time series, proposed in [85] as a model for the production
of white blood cells, satisfies the differential equation in eq-(4.1)

ẋ(t) =
axt−τ

1 + xc
t−τ

− bxt, t ≥ 30 (4.1)

where parameters take on the settings: a = 0.2, b = 0.1, c = 10, τ = 17. Data xt at
the beginning will be initialized with the value of 0.5, whilst from t ≥ 30 the data
value is obtained by applying eq-(4.1) with step size h = 1. Only data with t ≥ 50
are used for training and evaluation. in order to avoid the initial part. An example
of one-dimensional Mackey-Glass data is given in fig-4.1(b); fig-4.1(c) demonstrates
the periodical aspect of the chaotic data set. The variance of Mackey-Glass data
reads: σ2 = 0.0518.

3. As a benchmark chaotic time series, the Lorenz time series has been frequently em-
ployed for stability tests because of its sensitivity to the initial conditions. Learning

6 The normal distribution of a variable v is denoted by N (v̄, σ2), with v̄ being the mean of variable
and σ2 being the variance. The same denotation will be used in the following text.



4.1 Experimental Settings 45

the dynamics driven by the Lorenz data set can be a challenge for neural network
models due to the complexity of dynamics involved, which can be described by a
three-dimensional chaotic system:

ẋ = 16(y − x)

ẏ = (40 − z)x − y (4.2)

ż = xy − 6z

Euler’s method is used for the integration of the time series with step size ∆h = 0.01
and the initialization x0 = 0.1; y0 = 0.1; z0 = −0.1. The time series are scaled down
by a factor of 20 such that its value is bounded within a reasonable range. An
example of Lorenz data can be found in fig-4.2. The variance of the 3-dimension
Lorenz time series reads: [0.5473,0.7298,0.5251].

200 300 400 500

−1

0

1

(a) 1st

200 300 400 500

−1

0

1

(b) 2nd

200 300 400 500

1

2

3

(c) 3rd

Figure 4.2: Examples of the Lorenz chaotic time series, where the X-axis
is time and the Y-axis is data of the respective dimension. (a) 1st dimension;
(b) 2nd dimension; (c) 3rd dimension;

4.1.2 Networks

The computational complexity in the extended Kalman filter (EKF) depends on the num-
ber of model parameters (synaptic weights and biases) to be optimized. Since the effort
spent on EKF computation dominates the computational cost of on-line training, for fair-
ness reasons, comparisons are implemented under the condition that all network models
have a similar number of parameters to be optimized. In the following, this number of
parameters is called the complexity of the system, or simply complexity, and is denoted by
Cs.

Given the value of Cs and the dimensionality d of the time series, one can determine the size
and topology of the different networks. Including bias on hidden and output neurons7, the

7 The bias is not included in the echo state networks (ESN ), see [51]



46 4. Applications with SpiralRNN s

total number of trainable parameters in the SpiralRNN model, for example, is calculated
as Cs = 2Nhn(d + 1) + d, with Nhn referring to the amount of hidden nodes and d referring
to the data dimension, as indicated in table-4.1.2. Italic values in table-4.1.2 indicate the
total number of trainable connection weights, and the number of hidden neurons in each
network when Cs is roughly8 equal to expected values of 50, 100 and 200 respectively.

d (exp.) Cs actual Cs / (number of hidden nodes) Nhn

dim. of exp. complexity SpiralRNN ESN BDRNN SRN
data of system Cs 2Nhn(d + 1) + d (Nhn + d)d 2Nhn(1 + d) + d Nhn

2 + 2dNhn + Nhn + d

1
50 60/15 61/60 57/14 55/6
100 100/25 111/110 105/26 109/9

2
100 120/20 124/60 122/20 128/9
200 192/32 204/100 206/34 206/12

3
100 96/12 129/40 115/14 101/7
200 192/24 219/70 211/26 201/11

Table 4.1: The actual network size and number of hidden nodes for each
RNN structure in different scenarios (dimension of data, network complexity).
The first column states the dimensionality (from 1 to 3) of each tasks. The
second column is the expected network size, ranging from 50 to 200. The rest
of the columns itemizes the actual network size and the number of hidden
nodes, separating by “/”. The formulas below the model names indicate how
to calculate the actual total number of parameters given the values of d and
Nhn.

Without explicit notification, the hyperbolic tangent “tanh” serves as the hidden activation
function of each network model, and the output activation function is the identity function.
By default, values of all the connection weights are initialized such that they satisfy the
normal distribution N (0, 0.012).

Construction of the SpiralRNN model follows the description in chapter-3, with γ = 1 for
all simulations and experiments.

For the ESN model, according to [50], the hidden weight matrix Whid is uniformly randomly
initialized over the range [−1, 1] with 95% sparsity, and then the matrix is rescaled such
that the maximum eigenvalue λmax is equal to 0.80 in order to set the spectral radius. All
the other connection weights in the ESN model have uniform random initial values which
vary over the range [−0.1, 0.1]; the connections include those from input to hidden layer,
those from input and hidden layer to output layer, and those from output layer to hidden
layer9. Values of all connection weights are fixed, except for the connections from input

8 It is not always possible to construct a neural network whose complexity Cs exactly equals an arbitrary
value.

9 Even though connections from output to hidden layer are optional and are not included in [50], here
they are nevertheless included in the ESN model in order to have better performance.



4.1 Experimental Settings 47

and hidden layer to output layer.

To construct the scaled orthogonal version of the BDRNN model (for details please refer

to chapter-2 on page-16), for each block matrix

[
w1 w2

−w2 w1

]

, a parameter-pair {w1, w2}
is defined as:

w1 = Υsin(Θ), w2 = Υcos(Θ)

where Υ = tanh(Φ) ∈ (−1, 1) and Φ ∈ R. With such parametrization, it is satisfied that:

w2
1 + w2

2 = (Υsin(Θ))2 + (Υcos(Θ))2

= Υ2 = (tanh(Φ))2

≤ 1

Therefore, training of w1, w2 has become the problem of training Φ, Θ. The gradient
calculation has to be adjusted accordingly.

4.1.3 Training

All neural network models are trained in an on-line manner (refer to section-2.2), which
means that the training and the update of network parameters occur at each time step when
a new target value is given. During on-line training, for example at time step t, input10

x̂t−1 is fed into the input layer of the neural network, the network iterates thereafter with
updating the hidden state and generates the output xt+1, which is then compared to the
target data x̂t. Model parameters (weights) will be modified according to the error and
the training algorithm. This concludes the on-line training at time step t.

The on-line training keeps running in each time step, including the time steps with au-
tonomous tests. For more information about autonomous testing and test points, please
refer to the next section on section-4.1.4. Training will stop if the absolute value of the
gradient has been accumulated so high such that MatLab complains and returns warning
messages. However, this has only been observed in simulations with the SRN model.

Training of networks has been implemented with teacher forcing RTRL-based EKF model,
except for ESN models where the recurrent weights are not trained, thus no RTRL algo-
rithm is implemented.

About the parametrization of EKF method, the covariance matrix Pt is initialized as the
identity matrix Id of a size dependent on the model complexity Cs. The identity matrix
implies that at the beginning there is large uncertainty in the model parameters but no a

10 Due to teacher forcing, data x̂t−1 is used rather than the previous output xt−1.



48 4. Applications with SpiralRNN s

priori correlation between them. The model noise covariance matrix Qt is constant and is
set to a diagonal matrix whose diagonal entries are all equal to 10−8, i.e. Qt = 10−8Id, thus
allowing a small fluctuation of the model parameters in order to adapt to the switching
of data dynamics. The measurement covariance matrix Rt is initialized as 10−2Id, but its
value can be on-line adjusted according to the output error e = xt − x̂t. This is done using
the moving-average technique with a coefficient α = 0.01 in eq-(4.3). The employment of
fluctuation variable η is for the sake of preventing the singularity of matrix Rt. Practically,
the addition of ηId is not necessary because of the variousness of e value. The value of η
is set to η = 0 in the simulations.

Rt = (1 − α)Rt−1 + α
(
e · eT + ηId

)
(4.3)

4.1.4 Testing and Measurement

Autonomous testing starts when the accumulated time step t coincides with any of the
predefined test points. Different comparison tasks are scheduled for different test points.
For example, in the task of Spike21, test points 11 are set for the time step t = {10[3:0.5:5]}.

An autonomous test takes the initial network input and applies the update equations
without any other data, where at each time step the network input value takes on the
value of the network output from the previous time step (refer to section-3.2.3). The
number of autonomous iterations depends on the particular task, varying from 200 to 2000
time steps. During the whole autonomous test, the values of the network connections
are held constant. At the end of the autonomous test, the autonomous output is the
concatenation of the network outputs of all autonomous time steps. After the autonomous
test, the hidden-state vector will be restored to the original value right before the beginning
of the autonomous test.

The measurement of prediction performance is based on the logarithmic normalized mean
square error (logNMSE ). The value of logNMSE is based on the comparison between the

successive autonomous output vector ~x and the respective target vector ~̂x. Assuming the
length of autonomous output is ι̃, the data variance is given as σ2, it follows that:

ε̃ =
1

ι̃

ι̃∑

t=1

log10

(

(xt − x̂t)
2/σ2

)

(4.4)

ε =
1

d

d∑

ε̃

11 Expression [3 : 0.5 : 5] uses the MatLab colon operator “:” and it results in a vector with the first
and last entries equal to 3 and 5 respectively, the difference between any two successive entries being 0.5.
The list of test points in this case is [1000, 3162, 10000, 31623, 100000].



4.2 Simulations with Time Series Prediction 49

where the values of variance σ2 of each data set can be found in section-4.1.1. In the case
of multi-dimensional data, the value of ε will be the mean over the dimensions, as shown
in above equation. The final result will be the mean value over the 30 runs of simulations
for all tasks. The standard deviation of the logNMSE will be provided to investigate the
stability of the result.

In the calculation of logNMSE in eq-(4.4), the logarithm is applied before the arithmetic
mean, thus yielding a result which is closer to the geometric mean value of the normalized
error. By doing this, logNMSE has weighted the error in favour of short-term prediction
rather than long-term prediction. This corresponds to the fact that, in general, an error
in a short-term prediction is exponentially propagated to the long-term prediction, thus
making the prediction worthless. Therefore it makes sense to concentrate on the short-term
prediction when a general criterion for error assessment is required.

4.2 Simulations with Time Series Prediction

As mentioned in the previous section, simulations of each scenario are performed 30 times
where autonomous outputs are generated at each assigned test point in each simulation.
Assessment is based on the logNMSE values of these autonomous outputs.

Result tables in this section are organized as follows: the first column shows a running
number of the test points assigned to the task, simulation results are reported in the
remaining columns, grouped in pairs for each RNN model. Inside each pair of columns,
the left column lists the average of logNMSE over 30 runs and the right column lists the
associated standard deviation value. In some experiments with the SRN model, simulations
stopped half-way due to instability. In such cases, the resulting mean value of logNMSE will
be quoted in parentheses, and they are calculated without taking those canceled simulation
runs into account. The corresponding value in the “std.” column states the number of
invalid runs in parentheses.

In diagrams showing logNMSE results, the X-axis indicates test points and the Y-axis
stands for the logNMSE evaluation value. Note that the logNMSE value itself is on a
logarithmic scale. In some tasks, some RNN models have performed badly such that their
mean logNMSE values differed much from the others; these values are therefore omitted for
the clarity of the diagram. Vertical bars at the resulting data points in logNMSE diagrams
represent standard deviations of the corresponding RNN model. For clarity’s sake, only
the standard deviation of the SpiralRNN model is shown in such diagrams. The standard
deviation values of the other RNN models can be found in respective tables.



50 4. Applications with SpiralRNN s

4.2.1 Spike21 Dataset

Simulations with the Spike21 data have been conducted twice, where the network com-
plexity Cs was set to 50 in the first test and to 100 in the second. In both cases, five test
points for autonomous test were placed at time steps t = {10[3:0.5:5]} and each autonomous
test lasted for ι̃ = 2000 time steps, i.e. models were forced to iterate for 2000 steps without
any interference from outside!

A specialty of the Spike21 data set lies in its values being constant (constant “0” in
this case) for most of the time, which means that the data presented to the input layer are
identical at most of the time. Therefore, a standard TDNN model, with limited knowledge
about the problem, could have a smaller number of history data patterns in the input layer
than the period length of the time series in the equation, and thus would fails to predict
the arrival of spikes because it would lack information about their period. In such a case,
TDNN will try to minimize the output error by searching the cluster center of all the
data, which equals to 1

21
≃ 0.05 in the Spike21 case. Such a situation can also occur

in conventional recurrent neural networks, particularly at the beginning when they are
not yet well trained. However, even in such a case with bad performance, conventional
RNN models can still yield promising logNMSE evaluation results because of the closeness
between value “ 1

21
” and “0”, and consequently get a misleading favourable assessment.

In order to avoid such misleading evaluation, it is advisable to measure the error only at
time steps where the corresponding targets are spikes. Assuming a set Λ includes all the
time steps t where the data x̂t are spikes, such that Λ = {t|x̂t ≃ 1, t ∈ [1, ι̃]} where ι̃ is
the length of the autonomous test, evaluation in eq-(4.4) is modified for the Spike21 task,
such that:

ε =
1

nΛ

∑

t∈Λ

log10

(

(xt − x̂t)
2/σ2

)

(4.5)

where nΛ is the number of entries in the set Λ.

The comparison of performance according to the modified logNMSE in eq-(4.5) is shown in
fig-4.3(b) and their value as well as standard deviation are listed in table-4.2. It is shown
in these plots and tables, that the ESN has failed to provide an acceptable result in terms
of modified logNMSE because it can only provide a constant result rather than a spike
sequence. Without consideration of those failed simulations, SRN has outperformed the
other models. As this instability problem of SRN has emerged with progressing training
step, one can observe in table-4.2 that the number of failing simulations increases from one
test point to the next. The SpiralRNN model, on the other hand, has demonstrated its
stability in performance and learning speed.

Results comparing these RNN models with complexity Cs ≃ 100 can be found in fig-4.4
and in table-4.3. The SpiralRNN model has again manifested its efficiency and stability in
terms of the modified logNMSE.



4.2 Simulations with Time Series Prediction 51

1 2 3 4 5

−4

−2

NO. of Test Points

no
rm

. l
og

N
M

S
E

(a) standard logNMSE

1 2 3 4 5

−4

−2

0

NO. of Test Points

m
od

. l
og

N
M

S
E

 

 

spiralRNN
ESN
BDRNN
SRN

(b) modified logNMSE

Figure 4.3: Comparisons in terms of logNMSE with Spike21 data, where
the model complexity is set to Cs ≃ 50. In both diagrams, the X-axis stands
for the five test-points, and the Y-axis refers to the logNMSE values. Note
that neither diagram reveals the unsuccessful simulations of the SRN model;
both diagrams share the same legend. (a) Comparison in terms of standard
logNMSE; (b) comparison in terms of modified logNMSE.

Test SpiralRNN ESN BDRNN SRN
Point mean std. mean std. mean std. mean std.

1 -0.067 0.073 -0.011 0.062 -0.047 0.009 -0.041 0.012
2 -0.337 0.733 -0.080 0.324 -0.046 0.009 -0.050 0.022
3 -1.516 1.872 -0.017 0.055 -0.042 0.009 -1.780 2.015
4 -2.196 2.088 -0.013 0.071 -0.045 0.017 (-3.219) (1)
5 -2.821 2.142 -0.024 0.049 -0.047 0.009 (-4.518) (8)

Table 4.2: Comparison in terms of the modified logNMSE and the standard
deviation with the Spike21 date set, where the model complexity is Cs ≃ 50.
Note that, in the experiment with the SRN model, an instability is caused by
test point No. 4; the value in parentheses in column “std.” is the count of
invalid simulations.

4.2.2 Mackey-Glass Dataset

The Mackey-Glass data set, generated according to eq-(4.1), is a one-dimensional chaotic
time series. Parameter τ controls the time delay in the model, which makes the time series
combine periodical and chaotic features. See fig-4.1(c).

Test points in experiments with Mackey-Glass data are placed at time steps t = {10[4:0.25:5]}.
The length of autonomous tests was set to ι̃ = 200 because the characteristics of chaotic
data make the long-term prediction deviate far away from the trajectory, thus removing
all meaning from any prediction with 2000 steps.



52 4. Applications with SpiralRNN s

1 2 3 4 5

−4

−2

NO. of Test Points

no
rm

. l
og

N
M

S
E

(a) standard logNMSE

1 2 3 4 5

−4

−2

0

NO. of Test Points

m
od

. l
og

N
M

S
E

 

 

spiralRNN
ESN
BDRNN
SRN

(b) modified logNMSE

Figure 4.4: Comparisons in terms of logNMSE with Spike21 data, where the
model complexity is set to Cs ≃ 100. The X-axis stands for the five test points,
and the Y-axis refers to the logNMSE values. Note that both diagrams have
ignored the unsuccessful simulations of the SRN model. (a) Comparison in
terms of standard logNMSE; (b) comparison in terms of modified logNMSE.

Test SpiralRNN ESN BDRNN SRN
Point mean std. mean std. mean std. mean std.

1 -0.271 0.635 -0.032 0.165 -0.044 0.015 -0.039 0.009
2 -1.023 1.639 -0.056 0.172 -0.044 0.013 -0.057 0.043
3 -1.575 1.920 -0.088 0.341 -0.050 0.031 (-3.345) (1)
4 -2.560 2.167 -0.045 0.094 -0.039 0.013 (-4.010) (2)
5 -2.765 2.091 -0.033 0.399 -0.060 0.060 (-4.269) (4)

Table 4.3: The comparison in terms of the modified logNMSE and standard
deviation with the Spike21 date set, where all RNN models have the same
model complexity value Cs ≃ 100. Note that, in the experiment with the SRN
model, an instability is caused by test point No. 3; the value in parentheses in
column “std.” is the count of invalid simulations.

Results of RNN models predicting Mackey-Glass are given in fig-4.5. It is shown in fig-4.5
and table-4.4 that the ESN model can only be comparable at the early stages, whereas
it fails in long-term prediction because of the fixed structure of the hidden layer. An
increase in complexity will help to improve the performance of a ESN in general, but
it has no improving effect in long-term prediction. The SRN model is superior in this
task, particularly when the network complexity Cs ≃ 50 in fig-4.5(a); however, when the
complexity Cs increases to 100, it not only loses this advantage over the SpiralRNN but
also produces worse result than itself at previous time steps, as shown in fig-4.5(b). This
reveals in a way the instability of the SRN model itself.

SpiralRNN has outperformed the other RNN models in most cases, and this advantage has



4.2 Simulations with Time Series Prediction 53

Test SpiralRNN ESN BDRNN SRN
Point mean std. mean std. mean std. mean std.

1 -0.554 0.305 -0.667 0.268 -0.413 0.082 -0.964 0.391
2 -0.799 0.439 -0.666 0.351 -0.429 0.116 -0.941 0.415
3 -1.096 0.532 -0.622 0.277 -0.526 0.110 -1.225 0.513
4 -1.191 0.537 -0.838 0.459 -0.428 0.100 -1.394 0.445
5 -1.681 0.670 -0.752 0.286 -0.606 0.315 -2.123 0.512

Table 4.4: Comparison in terms of logNMSE and standard deviation on
data set Mackey-Glass. All models have the model complexity value Cs ≃ 50;

shown to increase with longer training. ESN can produce comparable autonomous output
in the short term, i.e. with small ι̃ value, but it fails to catch up with the dynamics in the
longer term, as it is shown in fig-4.5(b). On the other hand, SpiralRNN has retained its
advantage over the ESN and other models by enlarging the network size (refer to table-4.5).

1 2 3 4 5

−2

−1

0

NO. of Test Points

lo
gN

M
S

E

 

 

spiralRNN
ESN
BDRNN
SRN

(a) Cs ≃ 50

1 2 3 4 5

−2

−1

0

NO. of Test Points

lo
gN

M
S

E

 

 

spiralRNN
ESN
BDRNN
SRN

(b) Cs ≃ 100

Figure 4.5: Comparison of RNN models in terms of logNMSE with different
complexity on Mackey-Glass data set. (a) Model complexity Cs ≃ 50; (b)
model complexity Cs ≃ 100.

Test SpiralRNN ESN BDRNN SRN
Point mean std. mean std. mean std. mean std.

1 -1.062 0.651 -1.076 0.433 -0.449 0.092 -0.688 0.3580
2 -1.013 0.500 -1.175 0.417 -0.492 0.172 -0.805 0.3520
3 -1.510 0.428 -0.547 0.233 -0.578 0.167 -0.675 0.3150
4 -1.564 0.532 -1.146 0.433 -0.546 0.188 -1.005 0.6480
5 -2.016 0.579 -0.908 0.343 -0.801 0.391 -1.198 0.6380

Table 4.5: Comparison in terms of logNMSE and standard deviation on
Mackey-Glass data set. All models have the model complexity value Cs ≃ 100;



54 4. Applications with SpiralRNN s

4.2.3 Lorenz Dataset

Test points in the Lorenz data set are time steps t = {10[3:0.25:5]}, where each autonomous
test runs 200 time steps. Comparison results of RNN models with complexity Cs ≃ 100
are illustrated in fig-4.6 and table-4.6. Fig-4.6 contains three diagrams, each of which
represents comparisons with different values of ι̃ in eq-(4.4).12 Whilst table-4.6 has only
shown the result when ι̃ = 200, table-4.7 and fig-4.7 report the results of comparing RNN
models with complexity Cs ≃ 200.

1 2 3 4 5 6 7 8 9

−4

−2

NO. of Test Points

lo
gN

M
S

E

 

 

spiralRNN
ESN
BDRNN
SRN

(a) ι̃ = 5

1 2 3 4 5 6 7 8 9
−4

−2

0

NO. of Test Points

lo
gN

M
S

E

 

 

spiralRNN
ESN
BDRNN
SRN

(b) ι̃ = 50

1 2 3 4 5 6 7 8 9

−2

0

NO. of Test Points

lo
gN

M
S

E

 

 

spiralRNN
ESN
BDRNN
SRN

(c) ι̃ = 200

Figure 4.6: Comparison in terms of logNMSE on Lorenz data set with
various autonomous output lengths ι̃. All models have the model complexity
value Cs ≃ 100.

Test SpiralRNN ESN BDRNN SRN
Point mean std. mean std. mean std. mean std.

1 -0.353 0.417 -0.799 0.301 -0.373 0.388 -0.199 0.467
2 -0.287 0.337 -0.713 0.248 -0.365 0.243 -0.243 0.291
3 -1.202 0.458 -1.009 0.376 -1.028 0.398 -0.470 0.441
4 -0.734 0.359 -0.930 0.424 -0.792 0.377 -0.546 0.346
5 -0.941 0.262 -0.594 0.419 -0.790 0.344 -0.388 0.528
6 -1.294 0.411 -0.906 0.470 -1.150 0.370 -0.699 0.468
7 -1.822 0.518 -1.063 0.448 -1.919 0.505 -1.239 0.644
8 -1.577 0.380 -0.700 0.448 -1.370 0.326 -1.256 0.474
9 -1.452 0.543 -0.517 0.344 -1.518 0.615 -1.287 0.568

Table 4.6: Comparison in terms of logNMSE and standard deviation on
Lorenz data set. The model complexity is Cs ≃ 100, and the autonomous test
length is ι̃ = 200.

12 Changing the evaluation variable ι̃ doesn’t affect the simulation result itself. Since autonomous tests
in Lorenz simulation last 200 time steps, the evaluation with ι̃ only considers the first ι̃ items of output
data out of the whole autonomous output.



4.2 Simulations with Time Series Prediction 55

As shown in fig-4.6(a), all RNN models are similarly successful in short-term 5-step pre-
diction. In particular the ESN model has already underlined its ability at test point No.1
even though the other RNN models have caught up with the ESN at test point No.3. As
the value of ι̃ increases, i.e. when longer-term prediction is taken into consideration, the
ESN cannot maintain the advantage it had in short-term prediction, as shown in fig-4.6(b)
and fig-4.6(c). The other RNN models with trainable hidden layers have been proven to
be superior, especially the SRN model and the SpiralRNN model.

1 2 3 4 5 6 7 8 9

−4

−3

NO. of Test Points

lo
gN

M
S

E

 

 

spiralRNN
ESN
BDRNN
SRN

(a) ι̃ = 5

1 2 3 4 5 6 7 8 9
−4

−3

−2

−1

NO. of Test Points

lo
gN

M
S

E

 

 

spiralRNN
ESN
BDRNN
SRN

(b) ι̃ = 50

1 2 3 4 5 6 7 8 9

−2

0

NO. of Test Points

lo
gN

M
S

E

 

 

spiralRNN
ESN
BDRNN
SRN

(c) ι̃ = 200

Figure 4.7: Comparison in terms of logNMSE on Lorenz data set with
various autonomous output lengths ι̃. All networks have the model complexity
Cs ≃ 200.

Test SpiralRNN ESN BDRNN SRN
Point mean std. mean std. mean std. mean std.

1 -0.869 0.302 -0.968 0.382 -0.673 0.311 -0.6310 0.329
2 -0.478 0.227 -0.895 0.480 -0.426 0.235 -0.6950 0.306
3 -1.912 0.434 -1.076 0.992 -1.495 0.407 -1.3050 0.337
4 -1.653 0.520 -1.079 0.572 -0.957 0.350 -1.5340 0.609
5 -1.594 0.248 -0.607 0.475 -1.240 0.270 -1.2950 0.277
6 -1.689 0.537 -1.169 0.569 -1.603 0.455 -1.4170 0.506
7 -2.211 0.645 -1.577 0.527 -2.263 0.594 -1.9520 0.635
8 -2.306 0.376 -0.890 0.413 -1.882 0.385 -2.4750 0.578
9 -2.196 0.508 -0.941 0.341 -1.857 0.510 -2.2650 0.455

Table 4.7: Comparison in terms of logNMSE and standard deviation on
Lorenz data set. All models have the model complexity Cs ≃ 200, and the
autonomous test length reads ι̃ = 200.

4.2.4 Discussion

The novel recurrent neural network model SpiralRNN has shown its efficiency and stability
in the above simulations. In most cases, it provides the best performance among the



56 4. Applications with SpiralRNN s

state-of-art architectures. An example of autonomous output of the SpiralRNN model
on the chaotic MackeyGlass time series is shown in fig-4.8 where the difference between
autonomous output and target data can hardly be identified till around time step 400.

0 200 400 600 800 1000
0.4

0.6

0.8

1

1.2

1.4

Figure 4.8: The autonomous output of a trained SpiralRNN model vs.
corresponding target data. The solid line is autonomous output, and the dashed
line is target data.

In simulations, shortcomings of other conventional RNN models have revealed. The ESN
model is simple to implement, and in much literature it has been proven to be powerful
in off-line learning in many literatures. However, it doesn’t provide good results in on-line
training, an important requirement in distributed sensor network applications. Further-
more, as indicated by Jaeger, the ESN model requires further parameter tunning to control
the maximum absolute eigenvalue of the hidden-weight matrix, which is contrary to the
requirement < R1 > for easy deployment of sensors, mentioned on page-3. The SRN
model has general recurrent layer structure and theoretically the most suitable structure
for dynamics modeling, but it suffers from instability as shown in the simulations with
Spike21 data. The BDRNN has only shown comparable performance in some simulations
with the Lorenz data set.

4.3 MouseTracking with SpiralRNN s

This section present a piece of software which applies the SpiralRNN model to a real-world
prediction application. The software is called “MouseTracking” as it tries to trace the
movements of a computer mouse controlled by a human user. This toy software has been
coded and implemented in the MatLab environment, and its MatLab scripts can be found in
appendix-C. Fig-4.9 shows the MouseTracking interface, with the upper subplot depicting
the growing trajectory (in blue) as well as the autonomous prediction (in red) and the



4.3 MouseTracking with SpiralRNN s 57

lower subplot showing the whole history up to now on a logarithmic scale. MouseTracking
accepts keyboard commands as listed in appendix-C.

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0
Trajectory

0 500 1000 1500 2000 2500
−10

0

10

20
Logorithmic NMSE

Figure 4.9: MouseTracking’s graphical interface.

4.3.1 The MouseTracking

When the software is running, the human user continuously move the computer mouse such
that cursor on the computer monitor runs along a given closed trajectory. The movement
is noisy and subject to leaps due to the sensitivity of the optical mouse to the underlying
surface. The computer, acting as a sensor, traces and samples the mouse movements on
the computer screen at a fixed rate. After some pre-processing, the position data are sent
to the recurrent neural network (RNN) model in the computer so that the RNN model can
train the network parameters and build an approximated model. Training takes place on-
line, i.e. the parameters are adjusted as soon as new measurement data for each time step
are available. Test points for this MouseTracking software are {[1 : 1 : 5] ∗ 103}.13 When
time step t coincides with a test point, meaning also that the RNN model has now been
trained with t data items altogether, the autonomous test will start and generate an output
sequence of coordinates. The autonomous test will generate 1000 steps, and its output is
expected to coincide with the user’s trajectory. The pseudo-code for MouseTracking is
given in table-4.8.

4.3.2 Training Data

As mentioned, the optical mouse is controlled by a human user so that the cursor traverses
along the figure-of-8 trajectory shown in fig-4.10(a). Every 1/100 second14, the position of

13 These test points are {1e3, 2e3, 3e3, 4e3, 5e3}. As it will be mentioned in the later text, period of
trajectory employed in the simulation is roughly around 130, therefore, at test-point t = 1e3, the whole
trajectory has presented only 8 times in the training data.

14 This value is manually set and is empirical.



58 4. Applications with SpiralRNN s

initialize the neural network model and other configuration;
set the vector of test points;
for each time step t

measure the coordinates of the position of the mouse;
implement the training of network parameters based on the observation data
if t = one of test points

set the latest observed data as input of network;
implement autonomous prediction and generate the autonomous output;
(autonomous output is stored for evaluation purpose)

end
end

Table 4.8: The pseudo code for the MouseTracking.

the mouse cursor is measured by the computer. Such a measurement will not be used di-
rectly as the input for the learning model. Instead, some pre-processing of data is required,
because the user’s varying hand speed makes the raw measurement data less predictable.
In pre-processing, the path of the computer mouse is divided into segments of identical
length. The boundary points that split the mouse path into segments of identical length15

are concatenated together after their coordinates have been normalized. The boundary
points subdividing the mouse path into identical stretches are taken as time-step points, as
if the computer mouse were moving at a constant speed. This is shown in fig-4.11, where
the hollowed arrow indicates the movement direction, the dashed line is the movement
path of cursor, circles represent the data measured by computer every 1/100 second, and
black dots refer to boundary points that segment the movement path of cursor. Note that
the distance between circles is various, due to the human-controlled moving of mouse, and
once the movement path is known the positions of measured point is dispensable.

The normalization of boundary points’ coordinates is implemented such that coordinates
on the computer monitor screen cover the range [−1, 1] on both axes and the center of
the screen lies at the origin. The identical length mentioned above is set to “0.02” after
normalization. Example values of two coordinates of the trajectory are given in fig-4.10(b),
where the trajectory period can be observed, being roughly equal to 130 time steps. Dots
in the figures represent some of the boundary points16, and dashed curves illustrate the
trajectories. Fig-4.10(a) exhibits a couple of leaps in the trajectory due to a malfunction
of the optical mouse.

15 The path length between two boundary points is equal to the predefined identical length, even if the
distance between boundary points occasionally differs from the length due to the curvature and noisiness
of the trajectory.

16 For clarity’s sake, only every fifth points is shown in the diagram.



4.3 MouseTracking with SpiralRNN s 59

−0.6 −0.4 −0.2 0 0.2
0.1

0.2

0.3

0.4

0.5

0.6

0.7

X−coordinate

Y
−

co
or

di
na

te

(a) “8” shape trajectory

400 600 800

−0.5

0

0.5

Time step

C
oo

rd
in

at
e 

va
lu

e

 

 

d−1
d−2

(b) coordinates of trajectory

−0.6 −0.4 −0.2 0 0.2
0.1

0.2

0.3

0.4

0.5

0.6

0.7

X−coordinate

Y
−

co
or

di
na

te

(c) prototype trajectory

Figure 4.10: Example of a trajectory and its coordinate values and prototype
pattern: (a) Trajectory of “8” shape; (b) coordinate values of trajectory;. (c)
prototype trajectory (It is useful in evaluation).

Measurement dataBoundary point

0.02
0.02

0.02

0.02

0.02

Figure 4.11: Segmentation by boundary points in MouseTracking. The hol-
lowed arrow indicates the movement direction, the dashed line is the movement
path of the cursor, circles represent the position measured by computer in ev-
ery 1/100 second, and black dots refer to boundary points that segment the
movement path of cursor. The identical length between boundary points is
“0.02”. The positions of these boundary points are taken as the training data
at each “time” step.

4.3.3 Competing Models

In this simulation, SpiralRNN is compared to ESN and BDRNN (SRN model is omitted
because of the instability). Configuration and initial parameter setting follow the descrip-
tion in section-4.1. Note that the number of input or output neurons in the network equals
the dimension of the data (2 in this case).



60 4. Applications with SpiralRNN s

4.3.4 Evaluation Methods

The MouseTracking performance evaluation differs from other tests. Recall that the mouse
trajectory, as controlled by a human user, contains leaps as shown in fig-4.10(a). The target
for comparison is a prototype trajectory extracted from the original data. The prototype
trajectory is depicted in fig-4.10(c) with length of 47 and denoted as P = {p1, p2, . . . },
where only every third point is shown for clarity’s sake. For each prediction point x, the
prediction error is defined as the square of the shortest distance from the prediction point to
the prototype trajectory, as shown in eq-(4.6). The evaluation error ε for the autonomous
output (of length 1000) at a particular test point is given by eq-(4.7) which takes the mean
value over the prediction length. For statistics reasons, the final evaluation error will be
the mean over 30 simulations.

ǫi = min
k

{
∑

d

(xi(d) − pk(d))2
}

(4.6)

ε = ǫi, i = 1, . . . , 103 (4.7)

Note that the above evaluation method is invalidated if the predicted trajectory stays in
the neighborhood of fixed points close to the prototype trajectory. In order to evaluate
the result in another light, the frequency analysis results based on Fourier transformation
are also given. Given the autonomous output trajectory at each test point, one can use
the discrete Fourier transform (DFT) for estimating the frequency of the output time
series; MatLab provides the discrete Fourier transformation through the fft command. As
the length of the autonomous trajectory is 1000, the 1024-point DFT is calculated as in
eq-(4.8):

Y =
1

1000
fft(X, 1024) (4.8)

where X is the time series in question and Y is the output vector of the discrete Fourier
transform of length 1024. For clarity’s reason, only the frequency spectrum range from 0 to
0.03 is shown below since the dominating frequencies of the original trajectory are located
in this range; for example the dominant frequency of the trajectory is f ∗ ≃ 1/130 ≃ 0.0077.
The final result of the frequency analysis will again be averaged over 30 simulations. To
properly show the frequency analysis result in figure, the MatLab code17 is given in table-
4.9. For the sake of clearness, only the frequency spectrum within the range [0, 0.03] is
displayed.

4.3.5 Results & Discussion

Table-4.10 reports the evaluation error of neural network models at all test points, where
the model complexity of neural network is set to Cs ≃ 100. The corresponding comparison

17 The MatLab code derives from the sample code given in the function reference of command fft under
MatLab environment.



4.3 MouseTracking with SpiralRNN s 61

Fs = 1; % (sample frequency)
nn = 1024;
fr = Fs/2*linspace(0, 1, nn/2); % (frequency axis ticks)
plot(fr, 2*abs(Y(1:n/2)));

Table 4.9: The MatLab code for plotting the frequency figure.

with network complexity Cs ≃ 200 is given in table-4.11. Both tables report similar results,
namely that SpiralRNN has an advantage over ESN and BDRNN, in particular after long-
term training of the model.

XXXXXXXXXXXX
Model

Test Point
No.1 No.2 No.3 No.4 No.5

SpiralRNN -1.49 -1.99 -2.42 -2.44 -2.51
ESN 0.15 -1.07 -1.84 -1.86 -1.75

BDRNN -1.69 -2.01 -1.99 -2.09 -2.20

Table 4.10: Comparison of evaluation error ε at each test point. The neural
network models have complexity Cs ≃ 100. (The smaller the error value is,
the better the prediction result is.)

XXXXXXXXXXXX
Model

Test Point
No.1 No.2 No.3 No.4 No.5

SpiralRNN -1.19 -2.01 -2.51 -2.46 -2.78
ESN -1.88 -1.28 -1.67 -2.05 -1.89

BDRNN -1.49 -2.07 -2.12 -2.15 -2.20

Table 4.11: Comparison of evaluation error ε at each test point. The neural
network models have complexity Cs ≃ 200. (The smaller the error value is,
the better the prediction result is.)

The frequency analysis of a simulation with model complexity Cs ≃ 100 is provided in fig-
4.12, where the frequency analyses of X-coordinate time series are depicted as blue dash
curves and the ones for Y-coordinates value are given as green solid curves. SpiralRNN
produces (ref. fig-4.12(b)) autonomous output trajectories with the frequency spectrum
similar to the frequency spectrum of the target data (ref. fig-4.12(a)), while the other
models cannot. The frequency analysis for models with larger network size Cs ≃ 200 has
confirmed the superior of the SpiralRNN model, which is given in fig-4.13.

Fig-4.14 respectively depicts examples of autonomous output trajectories at test points
No.3, 4, 5 using the SpiralRNN model with complexity Cs ≃ 100. These output examples
were extracted from the same simulation. Note that, in fig-4.14(b) of the No.4 autonomous



62 4. Applications with SpiralRNN s

0 0.01 0.02 0.03 0.04
0

0.1

0.2

0.3

0.4
frequency analysis of original trajectory

 

 

X−coordinate
Y−coordinate

(a) Target

0 0.01 0.02 0.03 0.04
0

0.02

0.04

0.06

0.08

0.1
frequency analysis of spiralRNN

(b) SpiralRNN

0 0.01 0.02 0.03 0.04
0

0.01

0.02

0.03

0.04

0.05

0.06
frequency analysis of ESN

(c) ESN

0 0.01 0.02 0.03 0.04
0

0.005

0.01

0.015

0.02

0.025

0.03
frequency analysis of BDRNN

(d) BDRNN

Figure 4.12: Frequency analysis of the output trajectory at test point No.5
of competing neural network models with complexity Cs ≃ 100. Note that the
vector value at frequency “zero” is trivial and is therefore omitted in diagrams,
and that the period length of data is 130 therefore the dominant frequency is
1

130 ≃ 0.008.

0 0.01 0.02 0.03 0.04
0

0.1

0.2

0.3

0.4
frequency analysis of original trajectory

 

 

X−coordinate
Y−coordinate

(a) Target

0 0.01 0.02 0.03 0.04
0

0.05

0.1

0.15

0.2
frequency analysis of spiralRNN

(b) SpiralRNN

0 0.01 0.02 0.03 0.04
0

0.02

0.04

0.06

0.08
frequency analysis of ESN

(c) ESN

0 0.01 0.02 0.03 0.04
0

0.01

0.02

0.03

0.04
frequency analysis of BDRNN

(d) BDRNN

Figure 4.13: Frequency analysis of the output trajectory at test point No.5
of competing neural network models with complexity Cs ≃ 200. Note that the
vector value at frequency “zero” is trivial and is therefore omitted in diagrams,
and that the period length of data is 130 therefore the dominant frequency is
1

130 ≃ 0.008.

test, the first loop of the autonomous output coincides with that of the target, even though
it deviates later to a slightly deformed limit-cycle. Fig-4.14(c) of the No.5 autonomous
test depicts a rather close prediction of the trajectory.

Similar performance and result have been observed for the MouseTracking software with
other shapes of trajectory, e.g. triangle and square. SpiralRNN has demonstrated to be
efficient and stable in learning data from the physical world.



4.4 Conditional Prediction with SpiralRNN s 63

−0.6 −0.4 −0.2 0 0.2
0

0.2

0.4

0.6

0.8

X−coordinate

Y
−

co
or

di
na

te

 

 

Target
auto. output

(a) No.3

−0.6 −0.4 −0.2 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

X−coordinate

Y
−

co
or

di
na

te

 

 

Target
auto. output

(b) No.4

−0.6 −0.4 −0.2 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

X−coordinate

Y
−

co
or

di
na

te

 

 

Target
auto. output

(c) No.5

Figure 4.14: Typical examples of autonomous output trajectories produced
by the SpiralRNN model with complexity Cs ≃ 100. The red solid curves are
the autonomous trajectories predicted by the SpiralRNN and the blue dashed
curves refer to the original trajectories during the previous 1000 time steps
before the respective test point. (a) Autonomous output at the No.3 test point;
(b) autonomous output at the No.4 test point; (c) autonomous output at the
No.5 test point.

4.4 Conditional Prediction with SpiralRNN s

There are many applications where a system evolves differently depending on one or more
external triggering “context” signals. A typical example in discrete manufacturing is a
robot manipulating bottles transported by automated guided vehicles (AGV). Depending
on sensor signals indicating (i) the presence of a bottle, (ii) whether the bottle is already
filled or empty and (iii) which liquid to fill in, the robot starts different sequences of actions
like filling liquid from different sources or ignoring already filled bottles. Installation and
reconfiguration of automation system will be greatly simplified by those controllers which
can be easily trained to perform these sequences of actions depending on sensor information.

In the context of this section, the term “conditional prediction” refers to those applica-
tions where the learning model is trying to approximate the dynamics model with the
assistance of an external triggering signal. The information provided by such additional
signals can improve the efficiency and accuracy of the control, which is useful in at least
three categories:

1. Comparison of a predicted trajectory with an actual trajectory for diagnostic pur-
poses;

2. On-line training of a specific sequence of actions for control purposes;

3. Substitution of missing trajectory data by predicted ones.

SpiralRNN contributes to conditional prediction problem by providing an efficient and
stable learning model. A warehouse application scenario will be outlined below and the



64 4. Applications with SpiralRNN s

implementation of the SpiralRNN model in conditional prediction [86] will be described.
Simulation and result as well as analysis are given afterwards.

4.4.1 Scenario

Consider an AGV system in a warehouse on 11×11 grid with various commodities in it, as
shown in fig-4.15. Inside, each type of commodity has its own unique cabin, associating a
unique path18 which connects the entrance to this particular cabin. A trailer or trolley runs
through the grid, and ships a product to its assigned cabin whenever the product arrives
at the entrance. Differences between products can be digitalized as each production type
is associated with a unique value, and this additional information is available as soon as
the product shows up at the entrance.

��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������

�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������

����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������

F

A

D

C

E

B

y(×0.1)

Entrance

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

0

10

x(×0.1)

Postern

Schematic Diagram of warehause

Figure 4.15: The schematic diagram of a warehouse in 11×11 grid. Product
cabins are denoted by capital letters with circle, obstacles are shaded areas.
For example, the cabin for product A is located at (0.1, 0.7), product B at
(0.9, 0.5), product E at (0.8, 0.8). Products can enter the warehouse via the
entrance (0.4, 0) or the postern (0, 0.8). Trajectories of products coming into
the warehouse via the entrance are shown in solid lines, and trajectories via
postern are shown in dashed lines.

Imagine each trolley has an “intelligent sensor” attached. When the trolley is assigned
a job to convey product A to its respective cabin, the sensor is given the associated cor-
responding additional information. This additional information identifies the production
type, and can be digitalized as φA. During transport, the sensor measures the correspond-

ing trajectory ~p(A) =
{

p
(A)
1 , . . . , p

(A)
n

}

of product A. The trajectory data will be used to

train the embedded model of the sensor node, such that it satisfies p
(A)
t+1 = f ∗(p

(A)
t , φA),

with f ∗ symbolizing the model to be trained and p
(A)
t referring to the corresponding entry

18 As shown in fig-4.15, these are bifurcations in these unique paths.



4.4 Conditional Prediction with SpiralRNN s 65

of trajectory ~p(A) at time step t. Training stops when the product has been transported
to the assigned cabin, which is indicated by sending a terminating signal to the sensor.
Assigned a new job (for example, to convey a product D to its cabin), the trolley is given a

new trigger value φD, and has to go through another path ~p(D) =
{

p
(D)
1 , . . . , p

(D)
n

}

. In this

case, the embedded model has to be switched to another attractor such that it satisfies
p

(D)
t+1 = f ∗(p

(D)
t , φD). Therefore, during the transport of different products, the embedded

model of the sensor is trained to modulate different attractors of different trajectories, as
shown in eq-(4.9). After a certain time of learning, the embedded model is supposed to be
able to tell the trolley the proposed entire trajectory for a particular product, as soon as
the φ value is known.

p
(i)
t+1 = f ∗

(

p
(i)
t , φi

)

, i = A, B, · · · (4.9)

4.4.2 Conditional Prediction with RNNs

Recalling the general model of a recurrent neural network, as shown in eq-(4.10) and
eq-(4.11),

st = H (Wt, st−1,xt−1) (4.10)

xt = G (Wt, st) (4.11)

one can further simplify them by omitting the intermediate hidden-state vector st, as shown
in eq-(4.12).

xt = f (xt−1) (4.12)

In order to apply recurrent neural network models in conditional prediction, the following
adjustments are required:

• As eq-(4.9) is not analogous to the general model of RNN in eq-(4.12), a rearrange-
ment is required to shape the eq-(4.9) into eq-(4.13) for reasons of modeling. Now,
a RNN model can be applied to the conditional prediction by taking xt as the tuple
combining the trajectory data pt and the corresponding φ value, i.e. xt = [pt, φ].

[

p
(i)
t+1, φi

]

= f ∗
(

p
(i)
t , φi

)

, i = A, B, · · · (4.13)

• The initialization condition of a trajectory consists in the value setting of starting
point p0 and the trigger signal φ. While the φ value is directly determined by the
product type, the starting point value p0 can be manipulated. This starting point
is virtual and doesn’t exist in the actual trajectory. To achieve stable reproductions
of the associated trajectory patterns, this virtual starting point p0 for the particular
trajectory pattern should remain unchanged. There are two options for the initial-
ization of p0, where in both cases the p0 value of particular trajectory pattern has to



66 4. Applications with SpiralRNN s

remain unchanged after initialization, as if it was an actual part of the corresponding
trajectory pattern. They are:

Scheme-1 The p0 value is set to zero for all trajectories without exception.

Scheme-2 The p0 value is randomly initialized when the particular product occurs
for the first time.

Note that the introduction of the virtual staring point p0 magnifies the impact of the
initial tuple x0 on the learning. Similar effect can be achieved by setting the hidden-
state vector s with a particular randomly-predefined value whenever model starts the
training of a particular trajectory pattern. In this thesis, the former solution (with
the introduction of p0) is taken.

With the new model in eq-(4.13) and the completion of training data (by inserting the vir-
tual starting point), recurrent neural network (RNN) models can be applied in conditional
prediction problems. The implementation comprises the initialization step, the training
step and the testing step.

Initialization:
Whenever a product appears at the entrance (or the postern), no matter whether it is
for training or testing, the sensor triggers the signal φ according to product type and
starts the initialization. In the initialization, the hidden-state vector of the neural
network will be reset to zero in order to avoid any influence from the past. The tuple
x0 = [p0, φ] is only initialized when the product type is presented at the first time. In
this way, the initial tuple x0 is unique and constant for the corresponding trajectory.
The pseudo-code for the initialization is given in table-4.12.

Training:
At time step t + 1, for instance, the target tuple is constructed with the latest
data: x̂t+1 = [pt+1, φ]. The neural network iterates itself according to eq-(4.10) and
eq-(4.11) with the previous tuple x̂t as input. Note that, by teacher forcing, xt−1

(network output) is replaced by x̂t−1 (data) in eq-(4.10). As in an on-line learning
mode, network parameters are updated at each time step, and the output xt+1 is
compared to the new-constructed target tuple x̂t+1. The on-line training is again
based on an extended Kalman filter (EKF) combined with the real-time recurrent
learning (RTRL). When the trolley arrives the target cabin, the attached sensor
triggers a termination signal, and stops the training process. The pseudo-code for
training with any trajectory pattern is given in table-4.13.

Testing:
In testing, the product type is known, as is the φ value. The task is to reproduce
the corresponding trajectory of a particular product for monitoring purposes when
the corresponding φ value is given. Again, the initialization is carried out before
everything else, setting up the initial tuple x0 and eliminating from the hidden state
any remaining information.



4.4 Conditional Prediction with SpiralRNN s 67

obtain the corresponding φ value of a trajectory pattern;
reset the value of hidden-state vector s to zero;
switch initialization scheme of p0

case 1: (scheme-1)
set value of p0 to zero

case 2: (scheme-2)
if the trajectory pattern occurs for the first time
then

randomly initialize the p0 value over the range of (-1,1);
save this initial value for this pattern;

else
restore the p0 value from the corresponding saved value;

end
end
construct the initial tuple x0 = [p0, φ]

Table 4.12: The pseudo code for the initialization in conditional prediction

implement the initialization step and obtain the initial tuple x0

for each data pt+1 in the trajectory pattern ~p
construct a new tuple x̂t+1 = [pt+1, φ]
set the previous tuple x̂t as the network input;
iterate the neural network according to eq-(4.10) and eq-(4.11);
calculate the residual δ = x̂t+1 − xt+1;
adjust parameters according to the δ value based on the EKF;

end

Table 4.13: The pseudo code for training in conditional prediction.

With the initial tuple x0 from the initialization step, the neural network iterates
according to eq-(4.10) and eq-(4.11) as it does in training step. Instead of comparing
with the target, as it did in training, the network output in testing phase will be used
as network input in the next iteration of this autonomous test. Such autonomous
iterations continue until the stopping criterion is satisfied, usually by the length of
the autonomous test reaching the predefined value lp. The pseudo-code for testing
of one trajectory pattern is given in table-4.14.



68 4. Applications with SpiralRNN s

implement initialization step and obtain the initial tuple x0

while the iteration step it doesn’t exceed value of lp
set the tuple xt as the network input;
iterate the neural network according to eq-(4.10) and eq-(4.11) and
generate the network output xt+1;
increase the it value by one;

end
concatenate all autonomous outputs to form the predicted trajectory ~x = {x1, . . . , xn};

Table 4.14: The pseudo code for testing in conditional prediction

4.4.3 Experimental Settings

Data
The trajectory data set is directly extracted from the trajectory coordinates of dif-
ferent products in the warehouse scenario shown in fig-4.15. It is assumed that the
trolley, so as to convey products, moves at a constant speed19 and that, within a
sampling-time interval of the sensor, the trolley moves from one grid point to one of
four neighboring grid points, as long as they are not blocked by obstacles. The φ
values for trajectory patterns A to F are respectively set to {1,−1, 0.5,−0.5, 2,−2}.
The value of p0 can be set according to either of two initialization schemes, to show
the effects of different initializations on performance. The length of each trajectory
(excluding the virtual starting point) is set to lp = 11 but may also have different
values for different trajectories. The number of trajectory patterns np in each simula-
tion varies, ranging from 2 to 6. Choice of trajectory patterns will usually start with
product A, e.g. trajectories of products A, B and C will be chosen when np = 3.
Data are corrupted by normally distributed noise satisfying N (0, 10−2).

Comparison models
The performance of SpiralRNN models will be compared to that of conventional
neural network models, such as echo state networks (ESN ), block diagonal recurrent
nets (BDRNN ) and the classical multi-layer perceptrons (MLP) with three layers.
Recall that the EKF algorithm dominates the training effort and that the complexity
of the EKF algorithm is determined by the number of parameters in the model.
Neural network models will be compared to each other under the condition that all
models have similar network sizes. As the number of input/output neurons of models
is dependent on the dimension of data and is therefore fixed (in this case, input entries
include two for the trajectory coordinates and one for the φ value), one can change
the number of hidden nodes in order to change the model complexity Cs. Table-4.15
lists the number of hidden neurons in the competing models with different network

19 When the trolley is not operated at constant speed, dividing the trajectories into segments of identical
length can fake constant speed, as is done with the MouseTracking data in section-4.3.2.



4.4 Conditional Prediction with SpiralRNN s 69

sizes, and the listed settings will be used in simulations.

P
P

P
P

P
P

P
PP

Cs

model
SpiralRNN ESN BDRNN MLP

100 weights 12 30 12 14
200 weights 24 63 24 28
300 weights 36 96 38 42

Table 4.15: Numbers of hidden neurons in neural network models with var-
ious network complexities (different Cs values). Note that the values in the
first column refer roughly to the number of trainable weights of the networks.

Without explicit notification, parameters in all models will be initialized according to
the normal distribution N (0, 10−2). For reasons of easy deployment, the construction
of the SpiralRNN model follows chapter-3. The number of hidden units will be the
same as the number of input nodes, where all hidden units have an identical number
of hidden nodes. The configuration of the ESN model follows [50]. Its hidden weight
matrix Whid is initialized randomly over range [−1, 1] with the sparsity value 95%;
afterwards the matrix is rescaled such that the maximum eigenvalue of Whid is equal
to 0.8. The BDRNN model will take the scaled orthogonal version (refer to [53]),
where entries of each of the 2×2 sub-block matrices are determined by two variables
w1 and w2 satisfying w2

1 + w2
2 ≤ 1. Similar to the other models, the three-layer MLP

model has 3 input and output nodes, whereas the number of hidden nodes is adjusted
according the network complexity.

Training and testing
Training will be carried out in rounds, and it is called “training round”. In each
training-round, the model is trained with all trajectory patterns, one by one in ran-
dom order. After nt rounds of training, a test round begins. In a test round, the
trained model tries to reproduce the seen trajectory patterns, given the correspond-
ing φ values and their respective virtual starting points, Training and testing follow
the respective description in section-4.4.2.

Evaluation
Even though the data set is 3-dimensional, the evaluation focuses only on the trajec-
tory entry set, named Γ, rather than the entry for φ. The evaluation error ε at each
test round is calculated according to eq-(4.14) and eq-(4.15). Note that ǫi,t,k refers
to the error of lp-step-ahead prediction when t = lp, and that ǫi,t,k in eq-(4.15) refers
to taking the mean value of ǫ over all indices i, t and k. For statistics reasons, the
final result takes the average value as well as the standard deviation value over 30
simulations.

ǫi,t,k = (x̂i,t,k − xi,t,k)
2, i ∈ Γ, t ∈ [1, lp], k ∈ [1, np] (4.14)

ε = ǫi,t,k (4.15)



70 4. Applications with SpiralRNN s

Because of the regular grid where the interval between grid lines equals 0.1 (refer to
fig-4.15), a prediction is considered to be matched if the absolute prediction error
|x̂ − x| is smaller than 0.05. Therefore, the threshold value θ for evaluation is set
to logarithmic value of 0.05, as in eq-(4.16). This threshold value will be used as an
indication of fulfillment of performance in the following discussion.

θ = log(0.052) ≃ −2.6 (4.16)

4.4.4 Results

Simulations have been implemented with two initialization schemes for p0, as described on
page-66. In all tasks, simulations are repeated 30 times for statistics reasons. Evaluation
is done by considering the mean value and standard deviation value of results over 30
simulations. All numbers in tables are base-10 logarithm values of the respective ε. In
the histograms, the X-axis represents the ε value in 10−3 units, and the Y-axis shows the
occurrence frequency of the respective ε value.

Results with p0 initialization scheme-1

With scheme-1, p0 is set to all zeros without exception. Results in table-4.16 re-
port the performance of mentioned neural network models in different tasks where
the number of network parameters varies from 100 to 300 and the np value is set
respectively from 3 to 5. Example histograms of ε values are given in fig-4.16 (Note
the different scales of the X-axis and the Y-axis in different sub-figures). Each sub-
figure in fig-4.16 depicts the histogram of the particular neural network model (with
settings Cs = 200, nt = 30 and np = 4). The SpiralRNN model outperforms the
others in these tests even though the MLP model has given relatively comparable
and stable (ref. fig-4.16(c)) performance, whilst the BDRNN suffers from the outlier
in the result (refer to fig-4.16(d)) and the ESN model hasn’t be able to deliver a
good result.

Table-4.17 depicts the results of the SpiralRNN model in different tasks (w.r.t. net-
work size and np value) after nt training rounds. Each column in the table represents
one task with a particular network size and a particular np value. A simulation result
is not available for all nt values, and symbol “-” means no simulation was performed.
Bold font marks the first result in each column better than threshold value θ (if there
is). The performance of SpiralRNN improves if it sees more data, as the value of nt

increases. But for complicated tasks (with a bigger value of np), the model cannot
deliver satisfying results even after nt = 110 training rounds.

Results with p0 initialization scheme-2

Table-4.18 presents the performance results from competing models which have been
trained nt = 20 rounds, where neural network models are set to different network
sizes from 100 to 300 and are supposed to reproduce different numbers of trajectory



4.4 Conditional Prediction with SpiralRNN s 71

task 100 weights, np = 3 200 weights, np = 4 300 weights, np = 5
H

H
H

H
H

H
model

nt 10 30 50 70 10 30 50 70 10 30 50 70

SpiralRNN -2.31 -2.75 -2.93 -2.99 -2.15 -2.74 -3.19 -3.31 -2.02 -2.50 -2.63 -2.87
ESN -0.71 -0.71 -0.72 -0.72 -0.70 -0.70 -0.71 -0.71 -0.69 -0.73 -0.73 -0.73

BDRNN -2.02 -2.23 -2.29 -2.38 -1.90 -1.71 -2.37 -2.49 -1.82 -2.25 -2.36 -2.24
MLP -2.24 -2.42 -2.56 -2.56 -2.07 -2.63 -2.69 -2.70 -1.67 -2.12 -2.39 -2.55

Table 4.16: Comparisons of evaluation error ε defined in eq-(4.15) of dif-
ferent models in different tasks (w.r.t. network sizes and number of trajectory
patterns np). Note that all values are on a logarithmic scale and initialization
scheme-1 is used.

0 5 10 15
0

5

10

15

20

(a) SpiralRNN

185 190 195 200 205 210
0

2

4

6

8

10

(b) ESN

1 2 3 4 5
0

1

2

3

4

5

6

(c) MLP

0 100 200 300 400
0

5

10

15

20

25

30

(d) BDRNN

Figure 4.16: Histograms of evaluation error ε (over 30 simulations) of neural
network models with 200 network parameters with np = 4 trajectory patterns
and nt = 30 training rounds. The X-axis refers to the value of evaluation error
in unit of 10−3, and the Y-axis shows the occurrence frequency of respective
ε value. Note the different scales of the X-axis and Y-axis in different sub-
figures.

patterns. A comparison of histograms of these models (with settings Cs = 200,
nt = 20 and np = 4) is shown in fig-4.17. The SpiralRNN model has surpassed all
the other mentioned models in terms of accuracy (refer to table-4.18) and stability
(refer to fig-4.17). The ESN model has failed in most of the cases, and the BDRNN
has again seen outliers in simulations. The MLP has shown slow convergence, and
performance degrades fast when value of np increases.

Table-4.19 reports the performance improvement of SpiralRNN with more training
data, as the value of nt increasing from 10 to 40. Fig-4.18 shows the histograms of ε
values of SpiralRNN in different nt training rounds, where the model has the network
size of 300 weights and the task is to reproduce np = 5 trajectory patterns. The
initialization scheme-2 for the p0 value has proven efficient, since results of all tasks
at nt = 20 training rounds have shown lower evaluation error than the threshold
value (refer to table-4.19). An example of such an improvement can be found in
histograms in fig-4.18, where the improvement from nt = 10 (sub-figure 4.18(a)) to



72 4. Applications with SpiralRNN s

network size 100 weights 200 weights 300 weights
H

H
H

H
H

H
nt

np 2 3 4 5 4 5 6 5 6

10 -2.70 -2.31 - - -2.15 - - -2.02 -
30 -3.28 -2.75 -2.22 -1.97 -2.74 -2.28 - -2.50 -
50 -3.69 -2.93 -2.35 -2.14 -3.19 -2.29 -1.65 -2.63 -2.09
70 -3.64 -2.99 -2.44 -2.21 -3.31 -2.41 -1.75 -2.87 -2.21
90 - - -2.49 -2.23 - -2.66 -1.88 - -2.29
110 - - - - - - -1.93 - -2.36

Table 4.17: Performance improvement of SpiralRNN in successive train-
ing rounds with different tasks (w.r.t. network size and number of trajectory
patterns np). Symbol “-” means that no simulation was performed for that
scenario. Note that initialization scheme-1 is used and iall values are on a
logarithmic scale.

Model
100 weights 200 weights 300 weights

np=2 np=3 np=4 np=4 np=5 np=6 np=5 np=6

SpiralRNN -3.23 -2.84 -2.44 -3.04 -2.76 -2.53 -2.97 -2.73
ESN -1.15 -0.82 -0.66 -0.77 -0.64 -0.50 -0.70 -0.57

BDRNN -1.52 -2.17 -1.98 -2.25 -2.24 -1.97 -2.27 -2.23
MLP -2.11 -2.01 -1.10 -2.27 -1.73 -1.29 -1.76 -1.51

Table 4.18: Comparison of evaluation error after nt = 20 training rounds
between models in different network sizes and in different tasks. Note that
initialization scheme-2 is used and all values are on a logarithmic scale.

0 1 2 3
0

2

4

6

8

10

(a) SpiralRNN

0 100 200 300 400 500
0

1

2

3

4

5

6

7

(b) ESN

0 5 10 15
0

2

4

6

8

10

(c) MLP

0 20 40 60 80
0

5

10

15

20

25

30

(d) BDRNN

Figure 4.17: Histograms of evaluation error ε (over 30 simulations) of neural
network models with 200 network parameters with np = 4 trajectory patterns
and nt = 20 training rounds. The X-axis is the evaluation error in 10−3

units, and the Y-axis shows the occurrence frequency of the respective ε value.
Initialization scheme-2 is used. Note the different scales of the X-axis and the
Y-axis in different sub-figures.



4.4 Conditional Prediction with SpiralRNN s 73

nt = 20 (sub-figure 4.18(b)) is significant, which also implies that the model converges
after nt = 10 and before nt = 20.

training rounds
100 weights 200 weights 300 weights

np=2 np=3 np=4 np=4 np=5 np=6 np=5 np=6

nt=10 -2.76 -2.46 -1.99 -2.47 -2.23 -2.03 -2.39 -2.02
nt=20 -3.23 -2.84 -2.44 -3.04 -2.76 -2.53 -2.97 -2.73
nt=30 -3.43 -3.00 -2.54 -3.19 -2.99 -2.76 -3.17 -3.04
nt=40 -3.63 -3.04 -2.63 -3.34 -3.11 -2.84 -3.31 -3.21

Table 4.19: Comparison of the evaluation error ε of SpiralRNN models
in different network sizes in different tasks. Note that all values are on a
logarithmic scale and that initialization scheme-2 has been used.

0 5 10 15
0

2

4

6

8

10

(a) nt = 10

0 2 4 6 8
0

5

10

15

20

(b) nt = 20

0 2 4 6
0

5

10

15

20

25

(c) nt = 30

0 1 2 3 4
0

5

10

15

20

(d) nt = 40

Figure 4.18: Histograms of evaluation error ε (over 30 simulations) of the
SpiralRNN model with 300 network parameters with np = 5 trajectory patterns
at different nt training rounds. The X-axis is the evaluation error in 10−3

unit, and the Y-axis shows the occurrence frequency of the respective ε value.
Initialization scheme-2 is in use. Note the different scales of the X-axis and
the Y-axis in different sub-figures.

Discussion
Results shown in the above tables and figures clearly show that:

(1) Different trajectories can be stored by recurrent neural networks simultaneously.
A well trained model can even distinguish trajectories which are not totally
different right from the beginning, e.g., the trajectories of products C and D
shown in fig-4.15. Typical examples of trajectory prediction provided by a
SpiralRNN model are given in fig-4.19, where the SpiralRNN model has 200
weights and reproduces all np = 4 trajectory patterns after nt = 20 training
rounds. Note that in each sub-plot the output trajectory is the autonomous
result of the SpiralRNN model, given initial starting value x0 but no further
data input. This autonomous prediction does not necessarily match at every
prediction step, but predictions of trajectories follow the trend of the respective
target and are themselves distinguishable from each other (refer to fig-4.19).



74 4. Applications with SpiralRNN s

0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

0.8

 

 

Auto. Output
Target

(a) trajectory A

0.4 0.5 0.6 0.7 0.8 0.9

0

0.1

0.2

0.3

0.4

0.5

 

 

Auto. Output
Target

(b) trajectory B

0.4 0.5 0.6 0.7

0

0.2

0.4

0.6

0.8

 

 

Auto. Output
Target

(c) trajectory C

0.4 0.45 0.5

0

0.2

0.4

0.6

0.8

 

 

Auto. Output
Target

(d) trajectory D

Figure 4.19: The autonomous outputs on np = 4 trajectory patterns from
a SpiralRNN model with 200 weights after nt = 20 training rounds. The red
dot at location (0.4, 0) marks the warehouse entrance. Note that these are the
autonomous outputs when a trained SpiralRNN model is only given different
respective initial starting values as initial input. Initialization scheme-2 is in
use.

(2) Different neural network models have shown different convergence speeds, where
the SpiralRNN model outperforms other approaches in different prediction tasks
and with different network size.

It is worth mentioning that the SRN model shows similar or even slightly better
results than the SpiralRNN but sometimes suffers from instability such that
training fails completely (refer to section-4.2.1). On the other hand, this result
indicates that the constraints on the hidden layer structure of a SpiralRNN
do not severely constrain the modeling power of this architecture compared to
the unconstrained SRN. The fact that ESN models don’t provide acceptable
performance shows that their reduced variability (only the output weights can
be trained) imposes too many constraints and that the linear mapping imposed
by the output weights is not sufficient for the conditional prediction described in
this section. The BDRNN and MLP models have achieved better results than
the ESN, but suffer from slow convergence. These results are also confirmed by
the histograms in fig-4.16 and fig-4.17.

(3) Simulations with initialization scheme-2, where p0 is randomly initialized but
kept constant afterwards for each trajectory pattern, have shown better perfor-
mance than those with scheme-1 where p0 is reset to zero without exception.

It is manifested in table-4.19 that, after nt = 20 or even nt = 10 training rounds,
the SpiralRNN model is able to achieve an evaluation error smaller or close to
the threshold θ in all mentioned tasks. However, the results in table-4.17 with
initialization scheme-1 do not reflect such efficiency. Fig-4.18, as an example,
shows the fast convergence of scheme-2 as well as of the SpiralRNN model.

Simulations in this section were conduced with trajectory data of dimension 2, but it can
be easily extended to support the application with high dimensional data. The length of
data pattern can vary, but a longer data pattern requires more training or a larger network



4.5 NN5 Competition of Data Prediction 75

for recognition and modeling of the dynamics of the whole trajectory pattern.

4.5 Using Online Learning of SpiralRNN in NN5 Data

Prediction Competition

NN5 competition20 is one of the leading competitions with an emphasis on utilizing com-
putational intelligence methods in data prediction. The data in question come from the
amount of money withdrawn from ATM machines across England. These data exhibit
strong periodical (e.g. weekly, seasonally and yearly) behavior (ref. fig-4.20). The associ-
ated processes have deterministic and stochastic components. In general, they will not be
stationary, as for example more tourists are visiting this area or a new shopping mall has
opened. There are in total 111 time series in the database, with each time series represent-
ing the withdrawal from one ATM machine and each data point in particular time series
indicating the withdrawal amount of the day from the particular ATM machine. All 111
time series were recorded from the 18th March 1996 till 22nd March 1998, and therefore
contain 735 data points. The task of the competition is to predict the withdrawal of each
ATM machine from 23rd March 1998 to 17 May 1998, 56 data points in total. The eval-
uation of prediction performance is based on the so-called SMAPE error value defined in
eq-(4.17), where y∗

t and F ∗
t are respectively the predicted output and data.

Esmape = 1/n
n∑

t

|y∗
t − F ∗

t |
(y∗

t + F ∗
t )/2

× 100% (4.17)

4.5.1 Towards NN5 Competition

Theoretically, SpiralRNN can learn the dynamic characters of given data by itself. How-
ever, additional input can help to find a more accurate solution and to speed-up conver-
gence. For the current task these are: (1) providing periodic input mimicking calendar
information; (2) using committee of experts approach on top of neural network training.

20http://www.neural-forecasting-competition.com/



76 4. Applications with SpiralRNN s

0 200 400 600 800
0

20

40

60

80

100
68

(a) sample 1

0 200 400 600 800
0

5

10

15

20

25

30
89

(b) sample 2

0 200 400 600 800
0

10

20

30

40

50

60
110

(c) sample 3

0 200 400 600 800
0

20

40

60

80
1

(d) sample 4

Figure 4.20: Sample data from NN5 competition dataset with cross markers
indicating Saturdays.

Data characteristics

The time series data in the NN5 dataset exhibit at least the following features 21; :

F1 Strong weekly periodic behaviour dominates the frequency spectrum,
usually with higher values on Thursday and/or Friday;

F2 Important holidays such as the Christmas holidays (including the New
Year holiday) and the Easter holidays have a visible impact on the data;

F3 Several of the time series such as time series No. 93 No.89 show strong
seasonal behavior, i.e. a yearly period;

F4 Some of the time series (like No. 26 and No. 48) show a sudden change
in their statistics, e.g. a shift in the mean value.

21Note that the Easter Fridays in 1996 to 1998 should have the indice “19”, “376” and “753” in the
given data and the Saturdays before Christmas day of 1996 and 1997 have the indices “283” and “648”.



4.5 NN5 Competition of Data Prediction 77

Pre-processing and additional inputs

The data presented to the neural network are mapped to a useful range by the logarithm
function. In order to avoid singularities due to original zero values, they are replaced with
small positive random values.

Additional sinusoidal inputs are provided as a representation of calendar information.
These additional inputs include:

1. Weekly behavior addressing feature F1. Refer to fig-4.21(a) and note the period is
equal to 7.

2. Christmas and seasonal behavior addressing feature F2 and F3. It is often observed
from the dataset that, right after the Christmas holiday, withdrawal of money is low
and then increases during the year, finally reaching its summit value right before
Christmas. Seasonal features do not prevail in the dataset, but they do exist in
several of them, e.g. time series No. 9, No. 88. As both are regular features with a
yearly period, it makes sense to provide an additional input as shown in fig-4.21(b)
which has the period value 365.

3. Easter holiday bump addressing feature F2. The Easter holidays did not have as much
impact on the data dynamics as the Christmas holidays did, but it shows an effect
on the usage of ATM in some areas (shown in some time series). Furthermore, as the
58-step prediction interval includes the Easter holidays of year 1998, the prediction
over the holiday can be improved when the related data behavior is learnt. This
additional input uses the Gaussian-distribution-shape curve to emulate the Easter
holiday bump as in fig-4.21(c).

Supplied with additional inputs, SpiralRNN s were trained online (see fig-4.22) such that
data points were fed-in the network one-by-one and network parameters were trained be-
tween the time-step interval, as described in section-3.2.2.

320 325 330 335 340

−1

−0.5

0

0.5

1

(a) Weekly-input

0 200 400 600 800
−1

−0.5

0

0.5

1

(b) Christmas-input

0 200 400 600 800
0

0.2

0.4

0.6

0.8

1

(c) Easter-input

Figure 4.21: Additional inputs of neural networks. On the X-axis is the time
steps, and Y-axis is the additional input value.



78 4. Applications with SpiralRNN s

0 200 400 600 800
0

0.2

0.4

0.6

0.8

1

320 325 330 335 340

−1

−0.5

0

0.5

1

0 200 400 600 800
−1

−0.5

0

0.5

1

Input Layer

Gradient
Calculation

Z
−1

EKF

Output Layer

Hidden Layer

Target x̂t

Output xt

Input x̂t−1

Data

Figure 4.22: Online training of SpiralRNN in NN5 competition with addi-
tional inputs.

Committee of experts

SpiralRNN is capable of learning time series prediction with fast convergence; nevertheless,
the learned weights correspond to local minimima of the error landscape as mentioned in
[87]. As computational complexity is not an issue for this competition, a committee of
experts ansatz is applied.

The committee of experts consists of several SpiralRNN models with identical structure
but different initialization of parameter values. Each SpiralRNN model operates in parallel
without any interference to the others. Online training will be done through the time
series, step by step. The importance of experts’ output in the committee, i.e. the weights
of the experts’ output, is determined by the average SMAPE value over the last 56 steps.
Therefore, at time step t = 735 − 56 = 679, each model produces a prediction for the
next 56 steps using its output as the input for next time step. After that, online learning
continues until the end. For the predicted 56 values, the SMAPE error values compared to
their respective data are determined and averaged over these values. Note that, during the
autonomous prediction, current output of network will be fed back as input for next time
step, therefor there is no intervention from outside of neural network. This autonomous
output, namely ~Ut, will be stored and SMAPE error value will be calculated by comparing
~Ut with the future available data values in the time series. Each SpiralRNN model k
measures the average SMAPE value εk according to eq-4.18, where Es refers to the SMAPE
error calculation.

εk =
1

56

56∑

t=1

Es(~Ut, Ût) (4.18)



4.5 NN5 Competition of Data Prediction 79

Similarly, autonomous predictoin will also be produced at the last time step t = 735 where
data ŷt|t = 735 is provided to the network model k and generates the 56-step autonomous
output Pk. With the SMAPE error measurement εk and the 56-step autonomous prediction
Pk, one can produce the final prediction using the voting weights of each expert k, such
that:

φ =

n∑

k

1/ε2
k (4.19)

Pt =
1

φ

n∑

k=1

Pt,k/ε
2
k (4.20)

The whole procedure is listed in table-4.20, and a schematic diagram fig-4.23 depicts the
organization of the committee.

0. Initialize the n experts;
1. For a SpiralRNN model k, implement on-line training with the data and

make a 56-step prediction Uk at time step t = 679. The prediction value
Uk will be compared to the data in order to obtain the average SMAPE
error value according to eq-4.18.

2. After the prediction at time step t = 679, continue the online training
till the end, and produce another 56-step autonomous prediction Pk.

3. Based on their εk values, combine the prediction Pk according to eq-4.20.

Table 4.20: Committee of experts.

expert 1 expert 2 expert n

final output

w1 ∼ 1/ε2
1 w2 ∼ 1/ε2

2
wn ∼ 1/ε2

n

Figure 4.23: Committee of SpiralRNN experts where their weights in com-
mittee are determined by their SMAPE values on testing dataset.



80 4. Applications with SpiralRNN s

Adapted EKF on-line training of SpiralRNN

The SpiralRNN model used for the competition is constructed according to the description
in chapter-3 and in section-4.1. Modifications locate in (1) the number of output is fixed
to one so that there is no need to predict the additional inputs whose values are known
beforehand and are easy to obtain, and (2) the adapted calculation of gradient matrix Ψ
in eq-3.43.

Recall that logarithm operator is used in order to map the data into a reasonable range
before they are fed into the neural network, and that SMAPE error evaluation is used as in
eq-(4.17). Therefore, the calculation of gradient Ψ is adapted as in eq-4.23 with yt = ln(y∗

t )
being the output in transformed scale and Ft = ln(F ∗

t ) the data in transformed scale:

s = exp(yt) + exp(Ft) (4.21)

d = exp(yt) − exp(Ft) (4.22)

Ψt = −exp(yt)

s

(

sign(d) +
|d|
s

)
∂yt

∂wt
(4.23)

As there exist data with missing values, the parameter-update is skipped when missing
data are involved in the training, but meanwhile still accumulate the gradient of output
w.r.t. parameters, until data values are available again.

4.5.2 Results

Here, some results of the prediction task are shown. In order to provide evaluation results,
the last 56 data of each time series were treated as test data while the remaining data were
used for online-training. In fig-4.24, prediction and data are compared for time series 35
which has a pronounced weekly periodicity. Obviously, this periodicity can be reproduced
very well, even details like the small bump.

Seasonal behavior of data can also be learned as shown in fig-4.25. The curves in both
sub-plots begin with the values in Christmas holidays (with time indices around 280 and
650). The rise and fall of the data during the first about 100 days and a subsequent rise
in fig-4.25(a) can also be seen one year later in Fig-4.25(b). Obviously, the model is able
to capture this behaviour pretty well.

Easter holidays can also be recognized by the trained model as shown in fig-4.26 for time
series No. 110. Since the expert-weight in the committee is determined by the average
SMAPE value as in eq-4.20 which doesn’t focus on the error during Easter holiday period,
the ability to predict the accurate values for the easter holidays has been diluted. But
as shown in fig-4.26, the jumping feature in data for Easter holiday has been recognized
by the on-line training. The Easter holidays in 1996 to 1998 are indexed at times around



4.5 NN5 Competition of Data Prediction 81

700 710 720

5

10

15

20

25

30

35

35

Figure 4.24: Comparison between result and data showing weekly behavior
for time series 35. Dashed line with circles is the data and solid line with
squares is the prediction. Time is on the X-axis.

300 350 400

5

10

15

9

(a) seasonal-data

650 700 750 800

5

10

15

9

(b) seasonal-result

Figure 4.25: Comparison between result and data for time series 9 showing
seasonal behavior. Dashed curve is the data and solid curve is the prediction.
X-axis is time.

20, 375 and 755. In fig-4.26, the prediction for the Easter holidays 1998 shows a similar
behaviour as the Easter holidays in 1996 and 1997 with a pronounced peak.

Table-4.21 shows the SMAPE errors on the test set (i.e. the data from the last 56 time
steps) with a varying number of experts. Obviously, the number of experts does not alter
the average result, which allows to save computational effort. Fig-4.27 shows the histogram
of committee-averaged SMAPE values over 111 time series in the dataset. The majority
of the results have a SMAPE value around 20. It is shown that, using the committee
of experts approach where the weight of each expert’s vote is determined by the error of



82 4. Applications with SpiralRNN s

autonomous output, one can avoid the degradation from the over-fitting of some experts.

0 200 400 600 800
0

10

20

30

40

50
97

Figure 4.26: Prediction result (solid curve) and data (dashed curve) for time
series 110 showing a peak around Easter. X-axis is time.

# experts 3 5 10 15 20 30

SMAPE 21.44 20.92 21.41 22.26 22.18 21.6

Table 4.21: Statistic results. The committee-averaged SMAPE error value of
the expert committee on all 111 time series with different number of experts.

0 10 20 30 40 50
0

2

4

6

8

10

12

SMAPE error value

O
cc

ur
re

nc
e

Figure 4.27: Histogram (over 111 time series) of committee-average SMAPE
error from experts .

4.6 Analysis on SpiralRNN s

This section makes a general analysis of SpiralRNN models, using some of the results
and methods from previous sections. Topics include the attractors learnt by the Spiral-



4.6 Analysis on SpiralRNN s 83

RNN model, the short-term memory capacity and the associative memory capacity of a
SpiralRNN model.

4.6.1 Stability of Attractors

Stability of a trained SpiralRNN model has been demonstrated by autonomous tests with
deviated initial input values. Note that, in autonomous tests, the model uses the previous
output value as the current input value. The only exception is the initial input value which
is supplied from outside.

Fig-4.28 shows the autonomous outputs generated by a trained SpiralRNN model from
the simulation with data set Spike21. Each sub-figure in fig-4.28 shows the result from
simulation with different initial input values {±0.1,±1,±10,±100} respectively. The first
part of the autonomous output corresponds to the transition phase from the initial state
to the attractor regime. Without exception, the models with different initial input have
shown periodical behaviour in the attractor regime, where the autonomous outputs have
the period equal to 21.

50 100 150 200
−0.5

0

0.5

1

1.5

(a) -0.1

50 100 150 200
−0.5

0

0.5

1

1.5

(b) -1

50 100 150 200
−0.5

0

0.5

1

1.5

(c) -10

50 100 150 200
−0.5

0

0.5

1

1.5

(d) -100

50 100 150 200
−0.5

0

0.5

1

1.5

(e) 0.1

50 100 150 200
−0.5

0

0.5

1

1.5

(f) 1

50 100 150 200
−0.5

0

0.5

1

1.5

(g) 10

50 100 150 200
−0.5

0

0.5

1

1.5

(h) 100

Figure 4.28: Stability test of a trained SpiralRNN model from the simulation
with the Spike21 data set. The sub-figures show the results for different initial
input values {−0.1,−1,−10,−100,+0.1,+1, +10, +100} respectively. The X-
axis is the time in the autonomous tests, and the Y-axis is the output.

As another example, fig-4.29 depicts the trajectories of two hidden-neuron activations
during the autonomous test with a trained SpiralRNN model from a simulation with the
Lorenz data set. In the autonomous test, the SpiralRNN model, with a different initial
input value, iterates itself for 1000 time steps. Meanwhile, the hidden-state vector is



84 4. Applications with SpiralRNN s

recorded for each time step. Sub-figures in fig-4.29 show the trajectories of the first and
second entries of the hidden-state vector. Positions of two entries in the first five time
steps of the autonomous test are denoted by black square markers. Depending on the
initial position, the trajectories follows different zigzag paths but are always attracted by
the limit cycle driven by the Lorenz data. Note the different scales of the sub-figures, and
that the position of the limit-cycle is in the range [−0.2, 0.6] for the X-axis and [−0.2, 0.6]
for the Y-axis in all sub-figures22.

−0.5 0 0.5 1

−0.4

−0.2

0

0.2

0.4

0.6

(a) {−4,−4,−4}
−0.2 0 0.2 0.4 0.6

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

(b) {−4,−4, +4}
0 0.5 1

−0.2

0

0.2

0.4

0.6

0.8

(c) {−4, +4,−4}
0 0.5 1

−0.2

0

0.2

0.4

0.6

0.8

(d) {−4, +4, +4}

−1 −0.5 0 0.5 1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

(e) {+4,−4,−4}
−1 −0.5 0 0.5

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

(f) {+4,−4, +4}
0 0.5 1

−0.4

−0.2

0

0.2

0.4

0.6

(g) {+4, +4,−4}
−0.5 0 0.5

−0.2

0

0.2

0.4

0.6

(h) {+4, +4, +4}

Figure 4.29: Stability test of a trained SpiralRNN model from simulations
with the Lorenz data set. Each sub-figure shows the trajectory of two hidden
neurons during autonomous tests with different initial inputs. The starting
point coordinates are given beneath each sub-figure. The X-axis and the Y-
axis respectively refer to activation values of these two hidden neurons. The
first five positions of the trajectory are denoted by black square marks.

4.6.2 Short-Term Memory Capacity

The short-term memory Mst of a SpiralRNN model has been evaluated with the Spike
time series. Spike time series are those periodical time series, where most of the entries
have a constant value and periodical sparse entries having an other constant value (refer
to section-4.1). The distance between two spikes is called the period Pt of the time series.
The autonomous test with Spike time series requires a model being able to retain the
spike information from the input and able to produce repetitions of spikes in output in an
autonomous manner. Note that, during the autonomous test, there are no further data
affects the procedure except for the initial input. Therefore, if a network is able to produce

22 Trajectories of different-hidden neurons can have different shapes of limit cycle and position.



4.6 Analysis on SpiralRNN s 85

an autonomous output of spikes, one can claim that the trained network has a short-term
memory capacity Mst of not less than the period of the time series.

In each simulation, following the network setting (with γ = 1) as described in section-
4.1.2, a SpiralRNN model with Nh hidden nodes is trained with the Spike data set with
the period value Pt. After every 2000 training steps, model generates an autonomous
output Ŷ of length23 200. If the autonomous output ~Y and the respective target Ŷ satisfy
eq-(4.24), it is claimed that this network has the short-term memory Mst ≥ Pt, then
the current simulation is terminated and a new simulation will be implemented with same
network structure but the training data is replaced with the Spike time series of longer
period (i.e. larger Pt value). Otherwise, the training is continued, until the model has
been trained for 1e5 steps. Such 1e5-step simulation will be implemented at most 30 runs.
If the model has not satisfied eq-(4.24) in any of the 30 simulations, the network is claimed
to have the shor-term memory Mst < Pt, and a new simulation is implemented with same
training data but larger network (i.e. larger Nh value). Note that both values of Pt and
Nh start from 2, and increase with the step pace 2.

log10(Ŷi − Yi)
2 < −2, for all i ∈ [1, 200] (4.24)

The assessment result of short-term memory capacity of SpiralRNN models is shown in
fig-4.30. The short-term memory capacity of SpiralRNN models increases as the network
become larger, whilst the increment is getting smaller. The relationship is approximated24

by eq-(4.25), where the margin errors are calculated with the confidence level 95%. The
term “−2 + |b|” in eq-(4.25) is used in order to avoid the complex value when c < 1.

Mst = a(Nh − 2 + |b|)c, Nh ≥ 2 (4.25)

with a = 16.8 ± 0.88, b = 0 ± 0.66, c = 0.42 ± 0.10

Recall that the ESN model and the BDRNN model manually set the maximum absolute
eigenvalue of hidden-weight matrix Whid to a particular value λmax < 1, in order to enable
the “echo effect” (i.e. the amplitude of the hidden-state vector is shrinking when model
iterates). In SpiralRNN, the parameter γ (ref. eq-(3.7) and eq-(3.8)) has a similar func-
tionality. However, the γ value doesn’t establish a rigid limit on the eigenvalue spectrum
of matrix Whid, but reflects the difficulty of model to achieve a wider eigenvalue spectrum.
Taking the γ value from the set25

{
1, 1

2
, 1

4
, 1

8

}
respectively, SpiralRNN s have produced dif-

ferent performance in terms of short-term memory capacity. Fig-4.31 depicts the result,
where each curve denoted by the same type of markers represents the Mst values of model

23 The length of autonomous output has to be greater than the period of the training data, such that
at least one spike is supposed to show up in the autonomous test.

24 The regression value of variable b in eq-(4.25) is not exactly equal to 0, but 0.0061.
25 Simulations with γ value bigger than 1, such as 2 and 4, have been considered, but they all reported

instability problems since system becomes instable with too large eigenvalue of matrix Whid.



86 4. Applications with SpiralRNN s

0 20 40 60
0

20

40

60

80

100

# of hidden nodes

 

 

M
st

Figure 4.30: The short-term Memory capacity Mst v.s. the amount of hidden
neurons Nh of SpiralRNN model. Circles are from assessment, and the dashed
curve is the regression curve drawn by eq-(4.25).

with particular γ value. The dashed curves are drawn from the regression results based
on the assessment values denoted by markers, where the blue curve is the regression result
for the γ = 1 case and the red curve for γ = 1/2 (The parameter values when γ = 1/2 are
a = 7.9, b = 0.03 and c = 0.44.).

It can be observed from the figure, that:

(1) With a bigger γ value, SpiralRNN s having the same Nh hidden nodes will possess
larger short-term memory capacity.

(2) For larger γ values, e.g. γ = 1 or γ = 1/2, the short-term memory of SpiralRNN s
satisfies the power law Mst = α(Nh − n0)

c0, where the n0 ≃ 2 and c0 ≃ 1
2

, and the
α value is proportioned to the predefined value of γ.

(3) The Mst curves for small γ values, e.g. γ = 1/4 and γ = 1/8, have shown threshold
behavior. After the threshold phase at the beginning, the latter part of both curves
seem to start satisfying a power law. The values of both curves are also roughly
proportioned to their respective γ values.

Therefore, increasing the γ value can extend the short-term memory capacity of Spiral-
RNN s. However, as mentioned, the model will become instable when the eigenvalue spec-
trum of matrix Whid is recklessly enlarged, choosing a moderate γ value is therefore a tricky
job. Practically, a typical setting is γ = 1.

Note that, even though a large γ value tends to widen the eigenvalue spectrum of hidden
matrix, the actual eigenvalue spectrum is depending on both values of γ and tanh(~ξ)
(ref. eq-(3.7)) where the squashed function “tanh” helps the train of ξ value and obtains
an appropriate eigenvalue spectrum.



4.6 Analysis on SpiralRNN s 87

0 20 40 60
0

20

40

60

80

100

number of hidden nodes

sh
o

rt
−

te
rm

 m
e

m
o

ry
 c

a
p

a
ci

ty

 

 

17(x−2)0.42 →

8(x−2)0.44 →

1
1/2
1/4
1/8

Figure 4.31: Comparison of the impact of γ value on short-term memory of
SpiralRNNs. The assessment data are obtained by repeating the simulation as
described above, but setting the γ values to one of

{
1, , 1

2 , 1
4 , 1

8

}
and changing

the Nh increasing step-pace from 2 to 4. The regression equations are shown
aside the regression curves, but the approximated coefficients are used for the
sake of clarity.

4.6.3 Associative Memory Capacity

Generally, the associative memory of a neural network model illustrates the neural net-
work’s ability of memorizing data patterns, where “data pattern” means one single data
vector. The neural network is in such a case a static model, mapping different inputs to
different instances in a finite set of target pattern. However, the associative memory of
the network model in terms of temporal time series, instead of tracking down to attractors
presented by training data, requires the network model to be able to store the dynamics
of various trajectory patterns, burdening more difficulties on the learning model.

Conditional prediction applications in section-4.4 has indicated that SpiralRNN has certain
associative memory and is able to reproduce different trajectory patterns, given the initial
starting vector. To evaluate the associative memory, SpiralRNN s configured with different
numbers of hidden nodes Nh are trained and tested, where the simulation data consists
of varying number np of trajectory patterns. Giving particular values of Nh and np,
conditional prediction simulation will be carried out in a similar way as in section-4.4:

(1) The experiment starts with a smaller networks (The value of Nh starts from 6, such
that the network comprises 3 hidden units and each hidden unit has 2 hidden nodes);



88 4. Applications with SpiralRNN s

Training data is the combination of np = 2 trajectory patterns.

(2) With each pair of {Nh, np}, at most 30 simulations are performed, each of which
contains 50 training rounds. In each training round, the learning model is trained
on-line with the presentation of these np trajectory patterns, in a shuffled sequence
but each pattern only once. The hidden-state vector of network is reset before the
training with any trajectory pattern starts (refer to section-4.4). After every 10
training rounds, a testing round starts, trying to reproduce all np trajectories in an
autonomous manner separately.

(3) The autonomous output results are evaluated. Let lp be the length of trajectory
patterns (the lp value is identical to all pattern), xi,k be the ith-step ahead prediction
over the kth pattern, and x̂i,k be the respective target, the evaluation error ε is
calculated as:

ε =
1

np

1

lp

lp∑

i=1

np∑

k=1

(x̂i,k − xi,k)
2 (4.26)

(4) If it satisfies ε ≤ 0.052, this particular SpiralRNN network with Nh hidden nodes
is claimed to be capable of reproducing np number of trajectory patterns of length
lp, and thus the associative memory satisfies Ma ≥ np. The model (with the same
structure but re-initialized values) will then be assessed with a training data with
more patterns, i.e. higher np value.

If ε ≤ 0.052 is not satisfied at least once within 30 simulations, it is claimed that
SpiralRNN with Nh hidden nodes is not able to reproduce np number of trajectory
patterns with length lp. New experiment will start with same value in np but a larger
SpiralRNN model by increasing the Nh value 26 by 3.

Note that the threshold value is set to 0.05, half the grid distance 0.1, so that the
prediction can be rounded to the nearest grid point if the error is less than 0.05.

(5) The experiment keeps continuous until simulations with Nh = 60 are finished.

The training data, i.e. combination of trajectory patterns, are generated in a fashion
different from section-4.4. Each trajectory starts from the origin rather than (0.4, 0), pace
of trajectory is again 0.1 which means, at one step, one of the coordinates of trajectory
is kept unchanged while the other one changes by 0.1. In each trajectory pattern, one
coordinate of trajectory coordinates is monotonically increasing or decreasing. The initial
starting point (including the additional information φ) of the data is uniformly randomized
in the range [−5, 5] for each pattern. A total of 60 random patterns is generated, where
sample patterns in each simulation are randomly selected, rather than selecting them in
sequence as in section-4.4.

Fig-4.32 depict the assessments on the associative memory of dynamics. Each figure

26 i.e. each hidden unit has one more hidden node



4.6 Analysis on SpiralRNN s 89

demonstrates the result with different value on lp, the length27 of trajectory pattern, where
lp = 11 in fig-4.32(a) and lp = 5 in fig-4.32(b).

0 20 40 60
0

5

10

15

20

number of hidden nodes

nu
m

be
r 

of
 tr

aj
ec

to
ry

 p
at

te
rn

s

(a) for longer pattern

0 20 40 60
0

10

20

30

40

number of hidden nodes

nu
m

be
r 

of
 tr

aj
ec

to
ry

 p
at

te
rn

s
(b) for shorter pattern

Figure 4.32: The associative memory of a SpiralRNN shows the ability to
store several dynamics of trajectory patterns. The X-axis is the network size
of model indicated by the total number of hidden nodes, and the Y-axis is the
maximum number of patterns which the model can learn. Red dashed lines
are regression lines showing the linearity between Ma and Nh. (a) Trajectory
patterns of length lp = 11; (b) trajectory patterns of length lp = 5.

It is easy to observe that the associative memory capacity Ma of SpiralRNN s is roughly
linear with the amount of hidden nodes Nh. The dashed red lines in both figures suggest
this linearity. In particular, in fig-4.32(a) the associative memory satisfies eq-(4.27), and
in the case of short trajectories in fig-4.32(b) it satisfies eq-(4.28). The reasons why the
associative memory capacity with trajectory pattern of lp = 11 is worse than that the one
with lp = 5 are:

• A longer trajectory pattern requires a longer training time to train the model so that
it can adapt to the dynamics imposed by the data;

• The evaluation is based on the autonomous output where an error at one time step
degenerates future results exponentially, therefore the evaluation error for longer
trajectory pattern tends to be larger than that for shorter ones.

Ma ≃ (0.31 ± 0.02)Nh (for longer patterns) (4.27)

Ma ≃ (0.64 ± 0.04)Nh (for shorter patterns) (4.28)

The linearity between the network’s associative memory capacity and the network’s Nh

value can also be found in Hopfield networks. According to [88], the associative memory

27 The length of trajectory is counted here without taking the initial starting point into account.



90 4. Applications with SpiralRNN s

capacity28 Mhf of Hopfield network satisfies Mhf = 1/(2 log ǫ−1)Nh for small error ǫ,
where ǫ is the threshold value of acceptable evaluation error. Even though it is unfair
for SpiralRNN s to compare the recognition of trajectory pattern with the recognition
of fixed point pattern, the associative memory of Hopfield networks at ǫ = 0.05 reads:
Mhf = 0.17Nh, which indicates the superiority of SpiralRNN s over Hopfield networks in
associative memory capacity.

28The associative memory capacity of Hopfield networks refers to the number of fixed points in the
hidden-state space.



Chapter 5

The Duty-Cycle Reduction and
Evolution Framework for
Distributed Sensor Networks

A distributed sensor network consists of sensor nodes. Among these nodes, there is no
master sensor being in charge of data flow and central data processing, but all of these jobs
have to be done locally by each sensor. This chapter addresses some issues in building such
distributed sensor networks with data predicting ability, including the energy consumption,
which is one of the paramount challenges for sensor network applications, and the prediction
performance of distributive sensor nodes. Solutions are provided in two categories, namely
intra-node viewpoint and inter-node viewpoints.

Intra-node
In the intra-node viewpoint, solution for energy consumption focuses on the duty
cycle of sensor nodes. This can be done mainly within the sensor node and doesn’t
directly involve its neighbors.

The energy consumption of a sensor node can be greatly curtailed with the diminution
of its duty cycle. Duty cycle of one device is defined as the proportion of time
during which this device is operated. When a sensor is embedded with a well trained
model which provides good prediction, it can diminish the effort to receive data
from neighbor by substituting of the requesting communication with the prediction.
This is also the reason why a learning model with good performance in long-term
prediction is required. Fig-5.1 has illustrated this concept.

Inter-node
In inter-node view-point, reduction in energy consumption can be realized by chang-
ing the embedded learning model of sensor, which requires the information from its
neighbors.



92 5. Solutions for Distributed Sensor Networks

����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������

A sensor node “A”

B

C

learning model

Figure 5.1: Sketch of sensor “A” emphasizing the concept of the duty-cycle
reduction. Shaded box in the middle represents the embedded learning model.
Symbols “B,C” refer to the data from neighbor sensors “B,C” respectively.
Symbol “A” refers to the measured data by sampling. Dashed arcs, indicating
the expensive wireless communication, are replaced by the cheap prediction
from sensor itself.

To reduce the communication cost, one direct way is to change the interface of the
embedded model. The interface of the embedded model refer to the combination of
available data streams, which represent themselves as the model input (and output).
By changing such interface, the embedded model has the chance to choose those
“important” data streams as input and omit those “unimportant” data streams.

Furthermore, changing the embedded model applies not only to the interface but
also to the inner structure of model itself, where such training of embedded model
can be intensive. To reduce the energy consumption in computation, the structure of
embedded model is simplified by evolution or co-evolution. This requires the sensor
node to request the structure information from its neighbors.

Both situations mentioned above require the sensor to be “context-aware” to have
have certain knowledge of the environment and its neighbor. Only based on such
knowledge, it can takes the decision on choice of data streams and on structure
modification.

Solutions from intra-node and inter-node view-points can be implemented separately, how-
ever, they are connected closely to each other. In one way, from intra-node viewpoint it
requires each sensor to train a sufficient recurrent neural network (RNN) model for predic-
tion, whereas a good prediction is based on the assumption that enough spatial data are
available (ref. chapter-1), which can be influenced by inter-node operations. In the other
way around, from intra-node view-point, the modification of model structure can degen-
erate the prediction performance, and requires some time for the “recover” of the model.
This will consequently hinder the implementation of intra-node solutions. Furthermore,
both intra-node and inter-node solutions are feasible under the assumption that the em-
bedded model is fast-converge efficient on-line learning prediction model. Only with such
embedded model, can the prediction be wealthy enough to replace the measured data, and



5.1 The Duty-Cycle Reduction 93

can the model be able to recover from evolution in reasonable time.

In the following sections, details of the duty-cycle reduction and evolution framework will
be given.

5.1 The Duty-Cycle Reduction

The idea behind the duty-cycle reduction scheme is straightforward. Duty cycle is the one
of the main criteria to evaluate the life-time of a sensor node. When the duty cycle is
reduce, the amount of working time of a sensor within unit time is reduced, hence the life
time of the device with given limited energy is accordingly prolonged.

Recalling the typical working cycle of a TelosB sensor node in fig-2.8, communication nor-
mally occupies the main portion of the working time slots because of the administrative
overhead, the waiting and listening time as well as the ever-strengthen processor29. More-
over, in a broadcasting radio network, sensor node usually spends more time in requesting
communication (listening to neighbors) than in issuing communication (sending out data).
Therefore, duty cycle can be greatly reduced if the frequency of requesting communication
is lowered. To achieve this, replace the transferred data by their respective prediction data
is one of the most efficient ways.

Even though such substitution of data streams can save energy spending, a long-standing
absent of measured data from neighbors will cause the learning model diverge, and some-
times make the system unstable. The learning model need the genuine measured data,
from time to time, in order to keep the model dynamics on the right attractor area. There-
fore, the communication requesting for measured data need to be resumed periodically.
Such period of activity pattern for requesting communication is determined by a positive
integer Ap ∈ N

+ and is named the “activity period” (for requesting communication) of
sensor node in this context. Being related but different from the duty-cycle of a sensor,
the value of Ap refers to the number of working cycles of sensor, during one of which the
requesting communication is allowed. Fig-5.2 illustrates the concept of activity period.

By implementing the duty-cycle reduction, sensor node can directly save the energy spent
on requesting communication. As mentioned, the advance of integrated circuit has made
computation much more cheaper than that of communication, and such gap becomes larger.
Therefore, the duty-cycle reduction scheme will have more and more superiority in the
future.

The pseudo-code of the duty-cycle reduction is given in table-5.1, where the requesting
communication operation is implemented only when “noReduction=1”. Note that, even

29 Faster processor (data processing capability) relatively makes the communication much more expen-
sive.



94 5. Solutions for Distributed Sensor Networks

���������� �������� ���������� ����������

������
������
������
������

������������

������
������
������
������

������������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

cycle 3

cycle 4

cycle 5

cycle 6

cycle 1

cycle 2

working cycle working cycle

cycle 3

cycle 4

cycle 5

cycle 6

cycle 1

cycle 2

(a) normal (b) Df = 3

Figure 5.2: Explanation of activity period. Each working cycle consists of
the time slot for sending (solid bar without shadow), the time slot for receiv-
ing (solid bar with shadow), and time slots for other operations or sleeping
(bars with dashed line). Each sub-figure lists distribution of time slots for 6
successive working cycles. (a) the normal case; (b) the activity period value
Ap = 3: in every 3 successive working cycles, sensor is allowed to receive data
from outside only once.

during working cycles where requesting communication is omitted, the on-line training of
the embedded model is kept continuous, because the sensor can always have access to the
real data of its own measurement30. In this case, the calculation of gradient only takes the
residual value, corresponding to sensor’s own measured data, into account.

5.2 The Evolution Framework

Because of the limit on the memory capacity and the processing speed of a processor,
standard evolutionary algorithm based on genotype selection from large population cannot
be applied in sensor network applications. On the other hand, sensor network consists of
large amount of sensor nodes, and they can exchange data via the wireless communication.
In this sense, evolution can be realized, if sensors are able to deliver their component (i.e.
model structure) information to their neighbors, and adopt information from neighbors.
However, conventional recurrent neural networks (RNN) cannot be easily adapted to such
co-evolution concept in sensor network, either because of the massive-junction of the hidden
layer (e.q. ESN, SRN etc.) or the identicalness of structures between separated units
(e.g. BDRNN ). The SpiralRNN model, on the contrary, can be easily split into hidden
units because of its special structure. Taking hidden units as samples in the population,
sensor nodes exchange structure information among each other, and try to find the better
combination of hidden units to form the embedded model, as depicted in fig-5.3. Note that
only one of evolutionary operations such as “discard” and “absorption” will be implemented
at each time.

30 Depending on applications, energy spent in sampling is normally cheaper than in communication.



5.2 The Evolution Framework 95

for each time step
if time step is multiple of Ap, noReduction=1; else, doReduction=1; end

if noReduction=1
request data from neighbors;
replace input by transferred data plus own measurement data;

elseif doReduction=1 (duty-cycle reduction)
replace input by previous output value plus own measurement data;

end
iterate the SpiralRNN model and generate output result;
if noReduction=1

calculate the residual of output comparing with target;
elseif doReduction=1 (duty-cycle reduction)

calculate the residual of the output of neuron
which is corresponding to its own measurement data;

end

implement training of parameters based on the residual value;
end

Table 5.1: Pseudo code for the duty-cycle reduction.

Adapt from neighbor

Discard

Sensor node Sensor node

Evolution operations

Figure 5.3: Structure modification in a sensor node. The embedded model of
sensor node is changed by re-combining the hidden units from itself and from
neighbors. Note that only one of evolutionary operations such as “discard”
and “absorption” will be implemented at each time.

In addition to modifying the model structure itself, evolution should also be able to modify
the model interface and find a better combination of input data streams. The model
interface refers to the input and output of the embedded model. As the ultra goal of the
model is to predict the local measured data, rather than those measured data from the
neighbors. The embedded model can theoretically choose any combination of measured



96 5. Solutions for Distributed Sensor Networks

data from neighbors plus the measured data from itself, and use this combined data in the
training of model parameters. Such evolution not only simplifies the model complexity but
also dilute the communication pressure for requesting data. This evolutionary operation
requires the model assess the importance of particular neighbor data to the prediction of
its own data.

In this section, a evolutionary operation scheme called the evolution framework is intro-
duced. It carries out evolutionary operations (some were mentioned above) to modify
the embedded structure of a sensor node, with the aim to adapt to the environment and
meanwhile reduce energy consumption. The evolution framework is guided by the vector
P, the so-called evolution-operation-selector, which is a probability vector for all possible
operations (ref. section-5.2.1). The evolution framework starts from adjusting the value of
P based on the fitness value of structure as well as constraints imposed by the applications,
and decides which operation will be operated based on the value of P. A sketch of such
evolution framework is given in fig-5.4. In the following, details of the evolution framework
will be discussed, with the order starting from P as shown in fig-5.4.

�����������
�����������
�����������
�����������

Constraint Evolution
Operation

Fitness
Model
Training

ω = 1

Select ω
ω 6= 1

Pω

adjust

adjust

Figure 5.4: Sketch of the evolution framework

5.2.1 Evolution-Operation-Selector

Whether or not to conduct evolutionary operation and which evolutionary operation is
going to be implemented are decided by vector P, the so-called evolution-operation-selector.
Vector P is a probability vector with each entry of P describes the probability of one
particular operation being performed and it always satisfies eq-(5.1).

∑

ω

Pω = 1 (5.1)

The first entry of P, i.e. P1, represents the probability of “null operation”, that is, nothing
concerning evolution will be done but normal on-line training of weights in neural network



5.2 The Evolution Framework 97

is performed. The value of P1 will be initialized with high value, such that no evolutionary
operations will be conducted at the beginning before the neural network is considered to be
mature, i.e. the model is somehow well trained in terms of the current structure. Rest of
the entries in P are those probabilities of evolutionary operations (refer to section-5.2.5),
with small values at the beginning. Each time step, values of probability for evolutionary
operations will increase by small amount as in eq-(5.2), so that the probability of them
being chosen is getting higher along time. Note that ϕ denotes a small fluctuation, and a
typical setting is ϕ = 10−3.

Pω = Pω ∗ (1 + ϕ) , ω ∈ [2, . . . ] (5.2)

Addition to the regular increment as in eq-(5.2), value of respective entry of particular
evolutionary operation in P may also be altered based on the constraints (ref. section-
5.2.2) imposed by the application.

Index of active operation is first randomly chosen according to the probability represented
by P value. With the selected index, the respective operation will be further considered
in terms of the constraints of application (ref. section-5.2.2). Once such operation is not
contradictory to the constraints it will be implemented afterward and the respective value
in P is cut down and have to wait for the next time when it is picked; if the operation
is contradictory to the constraints it will be skipped and the “null operation” will be
implemented instead.

5.2.2 Constraint Conditions

Constraint conditions are based on the consideration of energy consumption, memory ca-
pacity limits, the sensor nodes’ processing capabilities and other constraints related to
the particular application. Depending on applications, one can specify other constraint.
These constraint conditions set up boundaries for model properties, in such a way that a
candidate operation (as mentioned in section-5.2.1) is rejected if the proceeding of such
operation will lead to the breach of boundaries.

In the following, those constraints considered in simulation in chapter-6 will be addressed:

(1) processing complexity (Cs). Size of the embedded learning model (number of train-
able parameters in the neural network model) determines the complexity of the learn-
ing model. The limit in processing capacity of the embedded processor of sensor node
hinders the learning model from employing the model structure of large network size.

(2) maximum and minimum number of input data streams (nxds and nnds). Number of
input data streams, i.e. the dimension of the input data, can affect the energy con-
sumption because of the communication requirement. A smaller value of this number



98 5. Solutions for Distributed Sensor Networks

implies that the sensor can reduce its effort of listening to neighbors for the input
data. But on the other hand, rich information on the environment, which is realized
by increasing number of input whose data is transferred from the neighboring sensors,
helps the sensor to build up a precise prediction model and thus enhance effect of the
duty-cycle reduction. Therefore, there is always the compromise between the predic-
tion model accuracy and the energy consumption, which leads to the contradiction
between values of nxds and nnds. And the conflict between them is also depended on
the application details.

(3) maximum and minimum redundancy of data (nxrd and nnrd). In order to remedy
the situation that one particular sensor is temporarily inaccessible, redundancy of
the respective data in the sensor network is very helpful. Such redundancy exists
in the form that another sensor node is using its value for the prediction and at
the same time will have a predicted value for the inaccessible sensor. When the
prediction at the spot where inaccessible sensor locates is required, the redundancy
of the measurement can serve as an alternative. Large value in nxrd could lead to
large complexity of embedded neural network, while small amount of nnrd could make
the sensor network less robust.

(4) recover time (trc). Right after the evolutionary operation, the structure of the Spi-
ralRNN model is changed abruptly and prediction performance of the model can be
unacceptable. To ensure the novelty of new SpiralRNN structure is preserved, the
value of trc should be large enough such that the SpiralRNN model is prevented from
evolution before the model becomes mature.

5.2.3 Model Training

The principle of training of the embedded learning model is similar to the one described in
section-3.2.2. The difference lies in that, when predicted data instead of transferred data
are used for training, the residual value between output and target of those respectively
replaced data is set to zero, such that the adjustment of parameters in the SpiralRNN
model is only subject to the residual of its own measurement data. Let m be the index
of sensor’s own measurement data in the input/output vector, and T † be set of time steps
when transferred data is replaced by predicted data, the residual value of ith output at
time step t is calculated as followed:

δi,t =







0 t ∈ T †, i 6= m
ŷi − yi t ∈ T †, i = m
ŷi − yi t /∈ T †

(5.3)

As it will be mentioned later, the evolutionary operations alter the structure of SpiralRNN,
and change the combination of connection weights. The covariance matrix P in extended
Kalman filter (ref. eq-(3.33)) is modified according to the modification of the connection



5.2 The Evolution Framework 99

weights combination. In particular, when structure components are pruned, the connection
weights will be removed from the training set, and matrix P is shrunken, in such a way that
the corresponding rows and columns in matrix P that related to the deduced connection
weights will be removed (ref. fig-5.5(a)). When a new component is added, the training
set and the matrix P are extended in block-matrix manner (ref. fig-5.5(b)), where all the
new entries are zeros except the new diagonal entries are set to typical values, e.g. “1”.

�����
�����
�����
�����

�����
�����
�����
�����
���
���
���
���

���
���
���
���

���
���
���

���
���
���

�
�
�
�

���
���
���

���
���
���

��
��
��
�� ���

���
���
��� ���

���
���
���

���
���
���
���

��
��
��
��

���
���
���

���
���
���

���
���
���

���
���
���

��
��
��
�� �

�
�
�

��
��
��
��
�
�
�
�

(a) (b)
Figure 5.5: Modification of matrix P in extended Kalman filter when struc-
ture of SpiralRNN is changed. (a) Matrix P is shrunk by removing the cor-
responding rows and columns; (b) Matrix P is enlarged by extending the di-
agonal and filling with values equal “1”, where the new diagonal entries are
represented by dots and the empty areas are entries equal “0”.

5.2.4 Fitness Values

Three types of fitness values are required in this context, including the fitness value for the
learning model as a whole, the fitness value for each hidden units in the SpiralRNN model
and the fitness value for each data stream of the sensor node in question. All of these
fitness values indicate how much does the respective structure fit the current situation,
where the larger the value is the better the respective structure fits. These fitness values
are introduced in following:

1. Fitness value for sensor node as a whole indicates how well the learning model in the
sensor fits with the circumstance. This fitness value is useful to find out the best
neighbor adapting to the circumstance. Based on fitness values from one sensor’s
neighbors, the sensor can be aware of the strength of its neighbors which help to make
further decision. Calculation of this fitness value is based on the current fitness f̃c at
each time step in eq-(5.4), then a Kalman filter is applied to calculate its mean value.
Eq-(5.4) takes into account both the performance of sensor node together and the
model complexity. As these two factors can not be compared directly, a multiplication
operation between them is superior to a weighted summation operation as usual, but



100 5. Solutions for Distributed Sensor Networks

the coefficient α should be carefully selected based on the requirement of application.

f̃c = −
(nwei

N

)α

E∗ (5.4)

ft = Kf
(

f̃c

)

(5.5)

where E∗
i =

|ǫi|
σi

i ∈ [1, . . . , d]

where f̃c is the current estimation, function Kf stands for the Kalman filter which es-
timates the mean value, ǫi = ŷi−yi is the direct output error of the SpiralRNN model,
nwei and N are respectively the actual number of weights in the SpiralRNN model
and the maximum number of weights allowed, α is the coefficient associated with the
weight-ratio, σ is the standard deviation of data which is also online-estimated by a
Kalman filter, i is the index in I/O list of the learning model. The calculation of the

standard deviation σ of variable X is based on the definition σ2 =
(
X − X

)2
, which

can be realized by:

σ2 = Kf
(
(ŷi − Kf (ŷi))

2 ). (5.6)

2. Fitness value for spiral unit serves for the purpose of implementing evolution based
on ranks of all the spiral units inside one sensor node, where the ranking is the de-
termined by the respective fitness value. In particular, it is prerequisite for No.(1)
and No.(3) evolutionary operations in section-5.2.5. As shown in eq-(5.7), fitness
value is computed as the sum of the absolute gradient value of output w.r.t. asso-
ciated hidden state vector of the k -th spiral unit, which indicates the importance of
corresponding hidden-state vector.

f̃ (k)
c =

∑
∣
∣
∣
∣
∣

∂yt

∂s
(k)
t

∣
∣
∣
∣
∣

k ∈ [1, . . . , n
units

] (5.7)

f
(k)
t = Kf

(

f̃ (k)
c

)

(5.8)

In the equation shown above, variable f̃
(k)
c stands for the current estimation of fitness,

function Kf again refers to the Kalman filter operation, yt represents the output
vector of SpiralRNN model at time step t, s

(k)
t is the hidden state vector in k-th spiral

unit in question at time t, notation k and n
units

follow chapter-3 and respectively refer
to the index for hidden unit and the total number of spiral units in the SpiralRNN
model.

3. Data stream also has its fitness value which describes the dependence of the Spiral-
RNN model of one sensor node on the respective data stream. One natural way is to
measure the covariance between different data streams, which indicates how relevant
is the neighbor data stream related to the measured data stream from sensor itself.
Covariance of two variables X and Y can be calculated according to eq-(5.9), where



5.2 The Evolution Framework 101

X refers to the mean value of variable X.

COV (X, Y ) =
(
X − X

) (
Y − Y

)
(5.9)

Therefore, the fitness value of data stream ŷ
(i)
t is equal to the mean value of

(ŷ
(i)
t − ȳ

(i)
t )(ŷ

(m)
t − ȳ

(m)
t ), ∀i ∈ [1, d] and i 6= m,

where i is the index for the i -th data stream of the sensor in question, m (1 ≤ m ≤ d)

is the particular index of the data stream measured by sensor itself and ȳ
(i)
t is the

mean value of data stream ŷ
(i)
t . Calculation starts with the temporal variable f †

i for
each index i, where the normalization is taken in order to avoid the misleading when
value of data stream relatively remains constant and calculation of σ is according to
eq-(5.6).

f †
i =

ŷ
(i)
t − Kf

(

y
(i)
t

)

σi
, ∀i ∈ [1, d]

As two variables are regarded as irrelevant when the absolute value of covariance
is small, the current estimation of fitness is given as f̃

(i)
c in eq-(5.10) with absolute

operation and the fitness value takes the mean estimation by Kalman filter.

f̃ (i)
c =

∣
∣
∣f

†
i f

†
m

∣
∣
∣ i 6= m (5.10)

f
(i)
t = Kf

(

f̃ (i)
c

)

i 6= m (5.11)

As mentioned, in the calculation of fitness values, Kalman filter (Kf) is heavily used
in estimating the corresponding mean values of different variables. Since the subject of
estimation in this case is the same subject of measurement and there is no dynamics
evolution for the estimated variable, the update-and-measurement steps of Kalman filter
in eq-(2.26) and eq-(2.27) are simplified as:

xt = xt−1 + µt (5.12)

zt = xt + νt (5.13)

Looking for a stable result of estimation, the settings Qt = 10−8 and Rt ∼ N (0, 1) are
taken and are fixed after initialized, and Pt is initialized with a random value taken from
the normal distribution N (0, 1). For the relationship between variables Pt, Qt and Rt,
more details can be found in section-2.2.3.

5.2.5 Evolutionary Operations

Within each sensor node, evolutionary operations will take a particular hidden unit or
input nodes for data streams as genes for evolutionary operations. Implementation of these



102 5. Solutions for Distributed Sensor Networks

evolution operations, satisfying those constraints mentioned in section-5.2.2, modifies the
structure of SpiralRNN in sensor nodes. The first three operations are related to the spiral
unit and the last two operations concern on the data stream of SpiralRNN :

(1) to remove a hidden unit. The choice of the spiral unit to be removed is determined by

the fitness value f
(k)
t in eq-(5.7) of spiral units. The spiral unit with the least value in

f
(k)
t will be chosen and be removed from the structure. Certainly, this operation will

be bypassed when the embedded SpiralRNN model contains only one spiral unit.

(2) to create and insert a new hidden unit. A new hidden unit can be created and
inserted under the condition that such insertion will not cause the model complexity
Cs exceeding the constraint limit. The structure of the new hidden unit, following
the description in section-3.1.1, is similar to that of other hidden units but with
randomized amount of hidden nodes.

(3) to adopt a hidden unit from neighbor sensor. The procedure contains the following
sequential steps (assuming the sensor in question is named sensor “A”):

① choose the neighbor sensor which has the best fitness value ft (ref. eq-(5.4)) in
the neighborhood, and name it sensor “B”;

② from the sensor “B”, choose the hidden unit with the best fitness value f
(k)
t

(ref. eq-(5.7)) under the condition of satisfying the complexity limit of sensor
node;

③ merge the selected hidden unit from sensor “B” to sensor “A”;

The new hidden unit in sensor “A” remains changed values of its hidden connec-
tions and the connections from common input nodes 31 to newly added hidden
nodes. The other connection values will be initialized satisfying with the distribution
N (0, 0.012).

(4) to remove data stream. The data stream with smallest fitness value f
(i)
t (ref. eq-

(5.10)) will be removed from the model. This causes the connections from all hidden
nodes to the corresponding input node and output node being erased. Note this
only removes the corresponding data stream from the learning model, the physical
communication connection can be resumed whenever it is required.

(5) to re-insert a data stream. Re-insertion of a data stream will re-introduce the selected
data stream to the learning model. When there exist data streams being available for
re-insertion (i.e. they were previously removed from the model, and current model

does not depend on this data stream), the eligible data stream with the strongest f
(i)
t

(ref. eq-(5.10)) fitness value32 will be selected and added as one of input data streams.

31 Sensor “A” has different combination of data streams as sensor “B”, whereas the intersection of the
data streams between sensor “A” and “B” is corresponding to the common input nodes between them.

32 Fitness value f
(i)
t of removed data streams will be kept unchanged after the being removed from input

layer.



5.2 The Evolution Framework 103

Those corresponding new connections are initialized with values ∼ N (0, 0.012).

Note that, in order to avoid too much change in the model structure, only one of mentioned
operations will be conducted at one time. Furthermore, the recover time trc also prevents
two evolutionary operations from being implemented within a short time.

5.2.6 Evolution Framework in a Nutshell

Combining the aforementioned issues, table-5.2 has shown the pseudo-code for the pro-
ceeding of the evolution framework at one time step, which is corresponding to fig-5.4.

choose the operation according to the probability values in P;
estimate the proposed values of respective properties

when the chosen operation was performed;
if the proposed values against any constraint condition

reject the chosen operation;
else

perform the selected evolutionary operation with
the aid from the fitness values;

reduce the corresponding probability value in P;
end
perform the normal on-line training operation;
update the fitness values;
update the probability values in P;

Table 5.2: Pseudo code for the evolution framework.

Being able to modify the structure of embedded model whereas a longer time is required
to recover from the structure modification, the evolution framework is useful at least in:

1. the applications where sensors measure the dynamical environment properties such
that modification of the embedded model is allowed.

2. the applications with dense sensor network and many sensors measuring the same
variable such that redundant data prevail and occupy the communication brand-
width.

3. the sensor network applications emphasizing the long-term performance and able to
endure deficits in short-term.



104 5. Solutions for Distributed Sensor Networks



Chapter 6

Simulations in Sensor Network
Applications

In this chapter, the spiral recurrent neural network (SpiralRNN ) model (ref. to chapter-
3) together with the duty-cycle reduction and evolution framework (ref. to chapter-5) are
applied in simulations, where the task for the sensor network is to predict temperature
values.

In the following, settings for simulations are given first, and it is followed by the simulation
results. At last, the discussion, focusing on the energy consumption and the maintenance
of the prediction performance, is given.

For simplicity, the term “communication energy” is employed referring the energy spent
in communication; similarly, the term “computation energy” refers the energy involved in
data processing.

6.1 Simulation Settings

Assume there is a field with a regular grid of 11 × 11. Four heat sources and ten sensor
nodes are located randomly inside the grid field, but they are not overlapped each other.
Each sensor node has one temperature measurement unit, one communication module and
one processing unit where the SpiralRNN model is employed as the embedded learning
model.

Temperature values at positions of heat sources are dependent on the strength of heat
source which obeys the dynamics shown in eq-(6.1) to eq-(6.4). Because of radiation and
thermal conduction, heat energy diffuses from heat sources to their surrounding, such that
the temperature in the domain is varying in terms of time and location. Sensor nodes are



106 6. Simulations in Sensor Network Applications

required to train their learning models for temperature prediction, meanwhile mitigate the
energy consumption.

Without explicit notification, one simulation consists of a training phase, which lasts for
5e3 time steps, and a prediction test phase, which lasts for 50 time steps. For statistic and
generality reasons, simulations will be implemented 30 times, where in each simulation the
arrangement of the network (sensor node position, communication topology etc.) as well
as that of the heat source (source position, value of temperature etc.) will be changed at
random.

Heat source and temperature
Totally there are four heat sources in the field, where their positions are randomly
chosen from the grid points. Each heat source emits certain amount of heat energy
into the surrounding. The amount of emitted heat energy is variant at different time
such that the strength of heat sources has similar dynamics as the Lorenz equations:

ḣ1 = 16(h2 − h1 − h4) + h3 (6.1)

ḣ2 = (40 − h3)h1 − 0.5h2h4 (6.2)

ḣ3 = h1h2 − 6h3 (6.3)

ḣ4 = 0.1h3(h1 − h2) + 0.1h3 (6.4)

where ḣ refers to the time derivative of h, ḣi refers to the ith entry of ḣ and each
entry of vector ~h indicates the temperature change at particular heat source with
[0.1, 0.1,−0.1,−0.1] as the initial value of ~h. Starting with value ~T0 = 0, temperatures
at the heat sources can be calculated from eq-(6.5), where µ is the noise satisfying

N (0, 0.012). For convenient reason, values of temperature ~T are scaled down by

factor of 10, such that ~T value is within a reasonable range. Fig-6.1 illustrates the
scenario data, where fig-6.1(a) and fig-6.1(b) respectively present the 3-D mesh plot
and the contour plot of the temperature profile in the grid field at an instance, fig-
6.1(c) shows the heat sources’ temperatures which vary over time, and fig-6.1(d)
gives examples of temperature over time that measured by sample sensor nodes.

~Tt+1 = ~Tt + 0.01~h + µ (6.5)

Diffusion
With heat energy diffusing through the domain, the temperature at any position
in the space has variant values at different time. To calculate the temperature of
these grid-points, let ut

i,j represents the temperature at grid point (i, j) at time t.
It is known that, at one position, the difference of heat energy at different time
is proportional to the difference between the amount of energy flowing in and the
amount of energy flowing outwards. Assuming this is a homogeneous domain, the



6.1 Simulation Settings 107

2 4 6 8 10

2
4

6
8

10
0

1

2

3

(a) mesh plot

2 4 6 8 10
2

4

6

8

10

(b) temperature contour

700 750 800 850 900

0

2

4

6

8

(c) heat sources’ temperature

2800 2900 3000 3100 3200 3300
0

0.5

1

1.5

2

2.5

(d) measured temperature

Figure 6.1: Data example of heat diffusion simulations. (a) A 3-D wire-
frame mesh plot of the temperature in the grid. Note that the temperature
surface is dynamically changing, and the plot only shows the temperature at
one instance; (b) The corresponding contour plot of the temperature surface;
(c) Temperature values of heat sources; (d) Measured temperature values from
4 sample sensor nodes.

aforementioned relation is also applicable to the temperature. Therefore, eq-(6.6)
holds.

ut+1
i,j − ut

i,j

∆t
= kd

ut
i−1,j + ut

i+1,j + ut
i,j−1 + ut

i,j+1 − 4ut
i,j

∆x2
(6.6)

where constant kd is the diffusion coefficient depending on the materials involved, ∆t
is the difference in time, ∆x is the distance between two grid-points and is identical
for any two grid-points. Solve the above equation, such that:

ut+1
i,j =

kd∆t

∆x2

(
ut

i−1,j + ut
i+1,j + ut

i,j−1 + ut
i,j+1

)
+

(

1 − 4
kd∆t

∆x2

)

ut
i,j

u0
i,j = 0



108 6. Simulations in Sensor Network Applications

Note that, the temperature in the grid field is initialized as zeros. For simulation
purpose, the following parametrization is taken:

s =
kd∆t

∆x2
= 0.15. (6.7)

Let ~U be a vector listing temperature values of all grid-points one column after
another, therefore ~U ∈ R121×1 because of the grid size 11 × 11. The numerical
solution of the heat diffusion is realized by eq-(6.8), with the initial condition ~Ut=0.

~Ut+1 = sH~Ut + ν (6.8)

where ν ∼ N (0, 0.012) is Gaussian white noise, matrix H is a block-tridiagonal
system with sub-block matrix A in the diagonal position and sub-block matrix Id in
the off-diagonal position. The matrix A is further a tridiagonal matrix with value
“−4” in diagonal entries and value “1” in off-diagonal entries, as shown in eq-(6.9).
Matrix Id is the identity matrix which has the same size as matrix A.

H =








A Id

Id
. . .

. . .
. . .

. . . Id
Id A








121×121

A =








−4 1

1
. . .

. . .
. . .

. . . 1
1 −4








11×11

(6.9)

Note that ~Ut in eq-(6.8) represents the temperature vector for all grid points in
the domain, including those grid points for heat sources and sensor nodes. As it is
mentioned, temperature values at heat sources are solely determined by heat sources
but not by diffusion. Eq-(6.10) is therefore applied.

~Ut+1,Λ = ~Tt+1 (6.10)

where Λ is the set of indices in ~Ut for those grid points where heat sources locate.
Entries in ~Ut corresponding to the sensor nodes position are the measured data of
sensor nodes, and are taken as training data for the learning model.

Sensor Net
Ten sensor nodes are randomly spread across the grid-field, and constitute a static
connected non-directed network via wireless connections. Many researches [89, 90]
have proposed methods for the automatic construction of ad hoc networks. For the
purpose of simulation, a simple semi-self-organized version is employed here, and it
contains the following steps:

① randomly distribute ten sensor nodes in the grid field;

② gradually increase the communication range of each sensor node;



6.1 Simulation Settings 109

③ once sensor A has found sensor B within its communication range, it will take
sensor B as its neighbor sensor. The directed connection “A→B” is then estab-
lished.

④ each sensor continues the process No.3 until its neighbor number has reached
“3”

⑤ convert all these directed connections recognized in step No.3 to un-directed
mappings, such that once sensor node A recognizes node B as its neighbor,
node B will also take A as neighbor.

⑥ manually check whether the network as a whole is connected. If not, repeat
from the first step.

With this approach, one can obtain a reasonable connected network. Fig-6.2 gives an
example. Depending on the distance between the sensor node with the heat sources
and also on the strength of the nearby heat source, the variation of temperature
values through time is different. It is shown in fig-6.1(d), as an example, that the
temperature changes frequently at some location while the temperature at other
locations is basically constant.

2 4 6 8 10

2

4

6

8

10
 1 2

 3

 4

 5

 6

 7

 8

 9 10

Figure 6.2: Sample topology of sensor network. Red stars shows where the
heat sources locate; blue dots represent ten sensor nodes; the number aside
sensor node shows the ID of respective sensor node; lines between two sensor
nodes refer to established wireless connections between them.

Prediction model
Within each sensor node, a SpiralRNN model is deployed for the purpose of signal
processing as SpiralRNN models are proven to be efficient and stable for on-line
training. The number of input neurons of the SpiralRNN model is initialized as the
number of sensor nodes in its neighborhood (including the sensor itself), such that



110 6. Simulations in Sensor Network Applications

the measurement data from each sensor node within the neighborhood is presented
in the input layer of the SpiralRNN model, and apparently in the output layer as
well. Note that, at any time instance, the number of input nodes must be identical
to the number of output nodes, but the input number or output number can vary
during the simulation because of the evolution. Fig-6.3 gives an example of such a
structure.

Parameters of the SpiralRNN model is configured mainly under the same way as
described in section-4.1. The difference lies in that the number of hidden units and
number of hidden nodes in each hidden unit will be randomly initialized, subject to
the condition that the model complexity Cs (number of model parameters; ref. page-
45) should not exceed 80% of the maximum allowed complexity value. This maximum
allowed complexity value depends on the particular requirements of application, and
is set to 100 or 200 in corresponding simulations.

E
D
B
C

outputerrordata

Z−1
SpiralRNN

(b) SpiralRNN in node-C

training

(a) sensor net

D
E

B

A

C

Figure 6.3: (a) An example of sensor network with 5 sensors, where sensor
node “C” is connected to sensor nodes “B” “D” “E”; (b) The SpiralRNN
model inside sensor node “C”. The SpiralRNN model is trained with data from
all 4 sensors inside the neighborhood of sensor “C”. In the autonomous-test
phase, only the output corresponding to its own measure data is considered.

Settings for evolution
Referring to section-5.2, the evolution framework is guided by the value of P. Entries
of P represent the occurrence probabilities of corresponding operations. The initial
value of vector P is [0.8, 0.04, 0.04, 0.04, 0.04, 0.04], with the first entry corresponding
to normal on-line training and the rest five entries corresponding to evolutionary
operations (refer to section-5.2.5). In each training step, entry values for evolutionary
operations in P slightly increase by 10−3:

Pi = Pi(1 + 10−3), ∀i ∈ [2, 6], (6.11)

in order to gradually increase the possibility of evolutionary operations. Choice
of operations at each training step is based on the vector P, a random value rd



6.1 Simulation Settings 111

(ref. section-5.2.1) and application constraints (ref. section-5.2.2). Once an evolu-
tionary operation is selected and is implemented, its respective probability decreases
by 20%, in order to avoid successive repetition of respective evolutionary operation.

Parameters of application constraints (ref. section-5.2.2) are defined as following:
values of nxds and nxrd are set to 4 in order to reduce the effort for computation and
communication; values of nnds and nnrd are set to 2 in order to keep the efficiency
of the embedded model and maintain the redundancy of measurement data of each
senor node; for protection of novel structure, the recover time is set to trc = 200.
The maximum complexity of embedded model in sensor node is set to Cs = 100 and
Cs = 200 in different simulations, as will be mentioned later.

Training
No matter which operation is chosen based on the P value, the on-line training of
model parameters is conducted, where parameter values are updated at each time
step (Details of implementation of on-line training of the SpiralRNN can be found
in section-3.2.2). Keeping the on-line training at every time step, the autonomous
test starts at time step t = 5001, and ends at t = 5050. In each autonomous test,
prediction is conducted for up to 15 steps, i.e. the model evolves itself 15 times
(Details of autonomous test can be found in section-3.2.3).

Evaluation
Simulation evaluation focuses on the energy consumption as well as the prediction
performance. Proposed criteria include: (1) logarithmic error evaluation on predic-
tion (2) the amount of arithmetical operations np, the amount of transfer data nm

and their respective variance; (3) the amount of consumed electric charge based on
the specs of TelosB sensor node.

(1) Performance evaluation of one sensor node focuses only on the prediction error

of its own measurement data. For example, let x
(τ)
t denotes the τ -step ahead

prediction at time step t, and x̂
(τ)
t the corresponding target. Note that both of

them are vectors. Without loss of generality, let m be the index of its measure-
ment data in the input, then the evaluation is based on the particular residual
of m-th entries: x̂

(τ)
t (m) − x

(τ)
t (m). Given the value of standard deviation σ of

sensor’s measurement data, the τ -step ahead prediction error at time t is given
by eq-(6.12). A mean value of ε

(τ)
t is calculated for the results of 50 successive

time steps from t = 5001 to t = 5050, as shown in eq-(6.13). The final prediction
error of the entire sensor network is the respective average value of all sensors.

ε
(τ)
t = log10






(

x
(τ)
t (m) − x̂

(τ)
t (m)

)2

σ2




 , τ = 1, 2, · · · (6.12)

ε(τ) = ε
(τ)
t , t ∈ [5001, . . . , 5050] (6.13)



112 6. Simulations in Sensor Network Applications

(2) The energy consumption is split into two parts: communication energy con-
sumption and computation energy consumption. In real-world applications, the
actual amount of consumed energy is related to the way how data processing
and communication are handled. For example, as a shared medium network,
sensor nodes transfer data according to channel access methods such as time di-
vision multiple access (TDMA). Generally speaking, a time frame under TDMA
is divided into time slots of even interval, where each time slot is occupied by
one of the sensor nodes to transfer data meanwhile other neighbor sensor nodes
are switched to listening mode. The energy consumption is therefore related to
the length of each time slot and the amount of time slots during which the sen-
sor radio is activated. However, for the sake of simplicity, evaluation of energy
consumption in the simulation is based on the amount of arithmetic operations
and the amount of communicate data, as stated in the following. Note that all
these values are calculated in the training phase of one run (i.e. one simulation
that takes 5000 time steps)

• (nm) The total amount of communication data of one sensor node during
the training in one simulation. The value of nm considers both of the
data being sent out and received, indicating the amount of energy spent in
communication.

• (np) The total amount of arithmetic operations in training for one sensor
node in one simulation.

• (vm) The variance of sensors’ nm values in one simulation, indicating the
imbalance of communication energy consumption in the sensor network;

• (vp) The variance of sensors’ np values in one simulation, indicating the
imbalance of computational energy consumption in the sensor network.

The values of nm and np focus on the total energy of one sensor which have been
consumed during the simulation, whilst the evaluation of vm and vp indicate the
early depletion of sensor network in the case where one or couple of sensor nodes
have run out of power much earlier than the others.

(3) With the estimated values of nm and np, one can roughly estimate the energy
which has been used in the simulations. Recalling the specification of TelosB
sensor mote in chapter-2, the working current of device is 1.8mA when the 16-bit
micro-controller MSP430 works on summit frequency of 8MHz. The amount of
electric charge spent on np amount of arithmetic operation can be calculated as
in eq-(6.14), where the unit “mAh” stands for milli-Amp hour, and 3600 reflects
that one hour has 3600 seconds.

np

8 × 106
× 1

3600
× 1.8 (mA) = 6.25 × 10−11np (mAh) (6.14)

With the activation of radio, working current of sensor rises to 21.8mA for re-
ceiving data and 19.5 for data transfer. For the sake of simplicity, it is assumed



6.2 Simulation Results 113

that the working current value equals 20mA in both receiving and sending op-
erations. The radio bandwidth of TelosB is up to 250kbps. Each packet in
communication between sensors should contain at least three entries - the mea-
surement data itself, the ID of the sensor from which the data are sent and
the time step when the measurement was made. Therefore, omitting overheads,
communication of one piece of measurement data is actually required to trans-
fer at least three piece of data. One can use eq-(6.15) to calculate the electric
charge spent on data communication.

3 × 16 × nm

250 × 103
× 1

3600
× 20 (mA) = 1.067 × 10−6nm (mAh) (6.15)

where value “16” is corresponding to the 16-bit operation of TelosB mote.

Eq-(6.14) and eq-(6.15) will be employed in calculation of energy spending in
the discussion about early depletion in section-6.3.3.

Simulation in a nutshell
Summarizing all the mentioned concepts, the simulation is implemented with the
following steps:

① Construct a sensor network with sensor nodes and communication connections;

② Prepare the temperature profile of heat sources with aid from eq-(6.1) to eq-
(6.5);

③ Complete the temperature profile of the entire domain by eq-(6.8) and eq-(6.10);

④ From ~U , extract the corresponding entries as sensor nodes’ measurement data,
which will be the training data of embedded learning models;

⑤ Initialize the embedded SpiralRNN models of all sensor nodes;

⑥ Implement the on-line training of the SpiralRNN model with measurement data
for 5e3 time steps; The duty-cycle reduction and evolution framework are ap-
plied;

⑦ Conduct data prediction for 50 time steps.

⑧ Assess the prediction performance and the energy consumption.

6.2 Simulation Results

Simulations are conducted under the guidance given in chapter-5 and the settings of sim-
ulation in section-6.1. In the first comparison, the effects of the evolution framework (EF)
and duty-cycle reduction (DCi) are emphasized by comparing with the so-called “normal”
scheme. In the second demonstration, the impact of different activity period Ap values
(ref. section-5.1) is addressed.



114 6. Simulations in Sensor Network Applications

Note that the sensor network setting (including the position and topology of sensor nodes,
and the temperature profile in the space) is different in each of 30 runs, and, in each
run, the same setting is applied to different competing schemes. The maximum model
complexity Cs determines the size of the model when it is initialized, whereas the actual
value of model complexity is varying in schemes with the evolution framework.

6.2.1 Simulation 1

As the first experiment, several operation schemes are compared. They include:

① An “EF” scheme refers to the scheme using the evolution framework to modify the
SpiralRNN structure;

② In a “DC2” scheme, the duty-cycle reduction is implemented with the activity period
value Ap = 2;

③ An “EF+DC2” scheme combines “EF” and “DC2” schemes together;

④ In the “normal” scheme, both evolution framework and duty-cycle reduction are not
applied but only the normal on-line training of model parameters is implemented.

Table-6.1 has listed the prediction performance of these schemes, where the maximum
complexity of the SpiralRNN is set to 100, i.e. Cs = 100. The result has indicated that the
“normal” scheme does outperform the other schemes in terms of prediction performance.
The advantage of the “normal” scheme has been expected, because it enjoys the stability in
structure and keeps the access to the measurement data of its neighbors all the time. But
such advantage is not significant, if the standard deviation values of prediction errors are
taken into account. Fig-6.4 depicts the comparisons of aforementioned schemes in terms
of 1st-step to 15th-step prediction. The extended bar coming from the curve of “normal”
scheme refers to the standard deviation of prediction error in “normal” scheme. It has
been shown that the difference between the “normal” scheme and other schemes is not
significant, at least for short-term prediction.

Evaluating the energy consumption, fig-6.5(a)(b) illustrate the average amount of arith-
metic operation per sensor node per simulation (np) and the average amount of communi-
cation data per sensor node per simulation (nm); fig-6.5(c)(d) report their corresponding
variance (the variance value among all sensor nodes in the network) values vp and vm.

As shown in fig-6.5(a)(c), applying the evolution framework has helped the “EF” scheme
and the “EF+DC2” scheme to gain the advantage in saving the computation energy, mean-
while the computation energy consumption among sensor nodes are more balanced, as with
lower value in vp. On the other hand, the communication energy can be reduced and bal-
anced by employing the duty-cycle reduction as manifested in fig-6.5(b)(d), where in the



6.2 Simulation Results 115

ε(1) ε(5) ε(10) ε(15)

mean std. mean std. mean std. mean std.

normal -1.80 0.32 -1.40 0.27 -1.03 0.24 -0.78 0.24
EF -1.74 0.30 -1.24 0.22 -0.84 0.19 -0.61 0.17
DC2 -1.75 0.28 -1.29 0.20 -0.90 0.19 -0.66 0.20

EF+DC2 -1.73 0.29 -1.19 0.22 -0.80 0.20 -0.58 0.20

Table 6.1: Predictive error ε(τ) (τ ∈ [1, 5, 10, 15]) of different schemes (“nor-
mal”, “EF”, “DC2” and “EF+DC2” schemes). The maximum model com-
plexity is set to Cs ≃ 100. All ε(τ) values are on a logarithmic scale.

0 5 10 15 20
−2.2

−2

−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6
logarithmic prediction error

 

 

normal
EF
DC2
EF+DC2

Figure 6.4: Comparison in prediction error ε(τ) (τ ∈ [1, . . . , 15]) of different
schemes (“normal”, “EF”, “DC2” and “EF+DC2” schemes). The maximum
model complexity is set to Cs = 100. The X-axis stands for prediction step,
and the Y-axis refers to the logarithmic prediction error value. Length of the
extended bar represents the value of standard deviation of prediction error of
the “normal” scheme.

“DC2” scheme sensor nodes have saved 50% of energy in communication comparing with
the “normal” scheme.

Increasing the maximum complexity Cs of the embedded SpiralRNN model to Cs = 200,
similar results are reported in fig-6.6 and table-6.2, namely that the evolution framework
and duty-cycle reduction respectively help to reduce the arithmetic operation effort and
the communication effort.



116 6. Simulations in Sensor Network Applications

normal EF DC2 EF+DC2
0

0.5

1

1.5

2

2.5
x 10

7 computation cost (# operations)

(a) np

normal EF DC2 EF+DC2
0

500

1000

1500

2000

2500
communication cost (# transferred data)

(b) nm

normal EF DC2 EF+DC2
0

0.5

1

1.5

2

2.5

3
x 10

17 variance of # arithmetic operations

(c) vp

normal EF DC2 EF+DC2
0

1

2

3

4

5

6

7

8
x 10

8 variance of # communication cost

(d) vm

Figure 6.5: Comparisons on the computation cost np (average amount of
arithmetic operations per sensor node) and the communication cost nm (av-
erage amount of communication data per sensor node) of different schemes,
as well as their respective variance values. The maximum model complexity is
Cs ≃ 100. (a) average np value in the network; (b) average nm value in the
network; (c) variance vp of np in the network; (d) variance vm of nm in the
network.

ε(1) ε(5) ε(10) ε(15)

mean std. mean std. mean std. mean std.

normal -1.85 0.32 -1.51 0.29 -1.17 0.25 -0.94 0.25
EF -1.78 0.32 -1.31 0.26 -0.90 0.24 -0.65 0.22
DC2 -1.82 0.31 -1.44 0.25 -1.08 0.25 -0.84 0.24

EF+DC2 -1.78 0.33 -1.28 0.26 -0.88 0.25 -0.65 0.23

Table 6.2: Predictive error ε(τ) (τ ∈ [1, 5, 10, 15]) of different schemes (“nor-
mal”, “EF”, “DC2” and “EF+DC2” schemes). The maximum model com-
plexity is set to Cs = 200 All values of ε(τ) are on a logarithmic scale.

6.2.2 Simulation 2

From the previous section, it is shown that the implementation of the duty-cycle reduction
reduces the communication effort, and that implementation of the evolution framework
scheme helps reducing the complexity of learning model. Combining both methods as
“EF+DC2”, one could obtain a better solution in terms of both nm and np values. The
comparison results with different sizes of the learning model are given in fig-6.5 and Table-
6.1 for the Cs = 100 case, in fig-6.6 and Table-6.2 for the Cs = 200 case.

However, “EF+DC2” scheme didn’t provide an outstanding advantage in communication
energy consumption. This is so because the evolution framework inherently requires com-
munication effort to obtain necessary information. On the other hand, the evolution frame-
work is beneficial to minimizing the computational effort as well as to adapting the learning
model to changing environment. It is therefore necessary, particularly in complicated ap-
plications which require intensive data processing. In order to obtain the advantage both



6.3 Discussion 117

normal EF DC2 EF+DC2
0

2

4

6

8

10
x 10

7 computation cost (# operations)

(a) np

normal EF DC2 EF+DC2
0

500

1000

1500

2000

2500
communication cost (# transferred data)

(b) nm

normal EF DC2 EF+DC2
0

1

2

3

4

5

6
x 10

18 variance of # arithmetic operations

(c) vp

normal EF DC2 EF+DC2
0

2

4

6

8

10
x 10

8 variance of # communication cost

(d) vm

Figure 6.6: Comparisons on the computation cost np (amount of arithmetic
operations per sensor node) and the communication cost nm (amount of com-
munication data per sensor node) of different schemes and their respective
variances. The maximum model complexity is Cs = 200. (a) average np value
in the network; (b) average nm value in the network; (c) variance vp of np in
the network; (d) variance vm of nm in the network.

in data processing and in communication, one straight-forward solution is to combine the
duty-cycle reduction with the evolution framework, and meanwhile further increase the ac-
tivity period value in duty-cycle reduction in order to achieve higher efficiency in energy
spent on communication.

Let “EF+DCi” indicates the scheme with i being the value of activity period Ap. For
example, in “EF+DC3” scheme, sensor radio will be switched to the listening mode once in
every three working cycles. Following simulations are conducted with “EF+DCi” schemes
with different Ap values.

The results in table-6.3 compares the average prediction performance ε(τ) of sensors, where
complexity of the embedded learning model is set to Cs = 100. It is shown that the
performance difference between different schemes in “EF+DCi” series is small in short-term
prediction, even though the difference slightly expands when the prediction-step increases.
While the increase in Ap value deteriorates the prediction performance to some extent,
it helps to reduce the energy consumption in communication. This is manifested in fig-
6.7(b)(d). As expected, computational effort is reduced due to the application of the
evolution framework, which is proven in fig-6.7(a)(c).

Simulation results corresponding to model complexity Cs = 200 are given in fig-6.8, and
table-6.4. They have all reported the similar result as discussed above.

6.3 Discussion

Based on the simulation results in previous section, some important issues in distributed
sensor network applications will be addressed in the coming text. The discussion focuses



118 6. Simulations in Sensor Network Applications

ε(1) ε(5) ε(10) ε(15)

mean std. mean std. mean std. mean std.

EF+DC2 -1.73 0.29 -1.19 0.22 -0.80 0.20 -0.58 0.20
EF+DC3 -1.64 0.31 -1.06 0.24 -0.69 0.22 -0.48 0.22
EF+DC4 -1.61 0.26 -1.05 0.20 -0.67 0.19 -0.45 0.19
EF+DC5 -1.65 0.29 -1.05 0.19 -0.66 0.20 -0.45 0.21
EF+DC6 -1.64 0.30 -1.04 0.23 -0.64 0.22 -0.42 0.24

Table 6.3: Comparisons of predictive error ε(τ) (τ ∈ [1, 5, 10, 15]) in
“EF+DCi” series scheme. The maximum model complexity is set to Cs ≃ 100
Note that values of ε(τ) are on a logarithmic scale.

normal EF+DC2 EF+DC4 EF+DC6
0

0.5

1

1.5

2

2.5
x 10

7 computation cost (# operations)

(a) np

normal EF+DC2 EF+DC4 EF+DC6
0

200

400

600

800

1000

1200

1400
communication cost (byte)

(b) nm

normal EF+DC2 EF+DC4 EF+DC6
0

0.5

1

1.5

2

2.5

3
x 10

17 variance of # arithmetic operations

(c) vp

normal EF+DC2 EF+DC4 EF+DC6
0

2

4

6

8

10

12

14

16
x 10

7 variance of # communication cost

(d) vm

Figure 6.7: Comparisons of np and nm between the “EF+DCi” series and
the “normal” scheme and their respective variance. The maximum model com-
plexity is set as Cs ≃ 100. (a) Mean of sensors’ np values in the network; (b)
mean of sensors’ nm values in the network; (c) variance of different sensors’
np values in the network; (d) variance of different sensors’ nm values in the
network.

ε(1) ε(5) ε(10) ε(15)

mean std. mean std. mean std. mean std.

EF+DC2 -1.78 0.33 -1.28 0.26 -0.88 0.25 -0.65 0.23
EF+DC3 -1.73 0.30 -1.20 0.20 -0.81 0.17 -0.58 0.17
EF+DC4 -1.63 0.29 -1.10 0.25 -0.70 0.27 -0.47 0.27
EF+DC5 -1.66 0.28 -1.11 0.20 -0.69 0.22 -0.48 0.24
EF+DC6 -1.65 0.31 -1.10 0.23 -0.70 0.23 -0.48 0.24

Table 6.4: Comparisons of predictive error ε(τ) (τ ∈ [1, 5, 10, 15]) in
“EF+DCi” series scheme. The maximum model complexity is set to Cs ≃ 200.
Note that values of ε(τ) are on a logarithmic scale.

on the prediction performance of sensor model, the energy consumption in general, and
the early depletion problem.



6.3 Discussion 119

normal EF+DC2 EF+DC4 EF+DC6
0

2

4

6

8

10
x 10

7 computation cost (# operations)

(a) np

normal EF+DC2 EF+DC4 EF+DC6
0

200

400

600

800

1000

1200

1400
communication cost (byte)

(b) nm

normal EF+DC2 EF+DC4 EF+DC6
0

1

2

3

4

5

6
x 10

18 variance of # arithmetic operations

(c) vp

normal EF+DC2 EF+DC4 EF+DC6
0

0.5

1

1.5

2

2.5
x 10

8 variance of # communication cost

(d) vm

Figure 6.8: Comparisons of np and nm between the “EF+DCi” series and
the “normal” scheme and their respective variance. The maximum model com-
plexity is set as Cs ≃ 200 (a) Mean of sensors’ np values in the network; (b)
mean of sensors’ nm values in the network; (c) variance of different sensors’
np values in the network; (d) variance of different sensors’ nm values in the
network.

6.3.1 Prediction Performance

Considering the prediction performance, the “normal” scheme without evolution framework
and duty-cycle reduction has shown its strength by producing a lower prediction error ε.
Depending on particular application requirement, such a difference is not significant, at
least not for short-term prediction. This can be confirmed by the comparison of the
normalized root mean square error (normalized RMSE) between the DC2 scheme and the
“normal” scheme on different prediction steps as shown in fig-6.9. The normalized RMSE
is calculated by taking the square root value of the prediction error which is calculated
similar to the value of ε(τ) in eq-(6.12) and eq-(6.13) but without the “log10” calculation.
Positions of two curves in fig-6.9 are slight shifted for sake of clearness. Each curve shows
the respective mean value of the normalized RMSE as well as the respective maximum
(upper bar) and minimum (lower bar) normalized RMSE values among the 30 simulations.
It is shown, that the normalized RMSE values of these two schemes are very closed all the
time, but there exists outliers in both schemes whereas the outliers have imposed more
damage in longer-term prediction in DC2 scheme because the lack of half of training data
in the DC2 scheme.

Comparably, “DC2” scheme has shown a better result than the “EF” scheme, particularly
with the increase of complexity Cs of the embedded model (refer table-6.1 and table-6.2).
This is due to the fact that the “EF” scheme which will require a certain amount of time
in order to recover.



120 6. Simulations in Sensor Network Applications

0 5 10 15
0

1

2

3

4

5

6

prediction step

pr
ed

ict
io

n 
er

ro
r

 

 

normal
DC2

Figure 6.9: Comparison of the normalized root mean square error between
DC2 and the “normal” schemes on different prediction steps. Positions of
two plots are slight shifted for sake of clearness. Each plot shows the mean
normalized error as well as the maximum (upper bar) and minimum (lower
bar) normalized error among the 30 simulations with one of the schemes.

6.3.2 Energy Consumption

Results from the previous section have shown clearly that schemes using the evolution
framework have an advantage in reducing arithmetic operations, and that schemes us-
ing duty-cycle reduction mitigate the effort for communication, though not for arithmetic
operations.

Duty-cycle reduction

With the duty-cycle reduction, sensor nodes do not need to listen to their neighbors
in every working cycle (even though they are still required to turn on the radio for
sending out their own measurement data). Therefore, the number of communication
time slots during when the radio is on has been reduced from k + 1 to 1, where k is
number of one sensor’s neighbors. Thus, in the “DC2” scheme where sensor nodes
need to listen to their neighbor once in two working cycles, the reduction rate rk

of energy spent on communication for sensor node with k neighbors is calculated in
eq-(6.16) [87].

rk =

(

1 − 2 + k

2(1 + k)

)

× 100% (6.16)

lim
k→∞

rk = 50%

Such calculation can be generalized for other “DCi” schemes as in eq-(6.17), with
i indicating the activity period Ap value. The limit value of ri,k implies that the



6.3 Discussion 121

communication-energy consumption in “DCi” scheme reduces to 1
i

of the amount in
the “normal” scheme.

ri,k =

(

1 − (i − 1) + (1 + k)

i(1 + k)

)

× 100%

=

(

1 − 1

i

)(

1 − 1

1 + k

)

× 100% (6.17)

lim
k→∞

ri,k =

(

1 − 1

i

)

× 100%

Fig-6.10(a) illustrates the increase of the reduction rate with the rise in the neigh-
bor number. For a sensor network with a connection degree33 of 6, the duty-cycle
reduction can save the communication effort by more than 40%. It is also observed
that the gap between “DC2” and “DC3” is bigger than the difference between “DC3”
and “DC4”, and so on, which indicates the diminishing marginal utility of activity
period Ap value. This can be explained by the variable fmu defined in eq-(6.18),
which assesses the ratio of between the increment in reduction rate and the current
reduction rate. The ratio fmu of increment decreases when the activity period Ap

increases. Note that the fmu value is independent from the neighbor number k, and
that i refers to the activity period Ap value.

fmu(i) =
ri,k − ri−1,k

ri−1,k
=

1

i(i − 2)
, i = 3, · · · (6.18)

The distribution of fmu given in fig-6.10(b) shows how much proportion of commu-
nication energy has been saved by increasing the value of activity period Ap by one.
The value decreases from 33% at i = 3 to 12% at i = 4, and further falls down to
less than 5% from i = 6.

Even though the reduction rate is growing when Ap value increases, the gain from
the increase of Ap value is getting smaller. Furthermore, the increase in Ap value
implies that the embedded model has been trained by less genuine data than before,
which will deteriorate the prediction performance. Therefore, one needs to compro-
mise between a higher reduction rate in energy consumption and a better prediction
performance. However, this is apparently depending on the particular application.

Evolution framework

Compared to the “normal” scheme, the evolution framework has saved the compu-
tation effort (np value) respectively by 50% (ref. fig-6.5) and by 40% (ref. fig-6.6).

On the other hand, the amounts of communication data (nm value) of the “EF”
scheme indicate that the scheme is more expensive in communication. However, the
disadvantage of evolution framework has been exaggerated, because:

33 The “magic number” to keep the connectivity of a radio network is six [91].



122 6. Simulations in Sensor Network Applications

0 5 10 15 20 25 30
20

30

40

50

60

70

80

# of neighbors

re
du

ct
io

n 
ra

te
   

 (
%

)

reduction rate of duty cycle

 

 

DC2
DC3
DC4
DC5
DC6

(a) reduction rate

3 4 5 6 7 8 9 101112131415
0

10

20

30

m
ar

gi
na

l u
til

ity
 (

%
)

i

diminishing marginal utility

(b) marginal utility of Ap (i value)

Figure 6.10: (a) Reduction rates of “DCi” schemes versus the number of
neighbors. (b) The diminishing marginal utility of activity period Ap.

① The data required by evolutionary operations can be received together with
measurement value from the same neighbor sensor.

② Particular in TDMA channel access method, the number of sensor’s neighbors
is the primary factor that determines the duration of time slots for receiving,
which in fact affects the energy consumption.

Thus, the energy consumption for communication in the “EF” scheme has been over-
estimated, even though the amount of transferred data in the “EF” scheme is indeed
higher than that of the “normal” scheme.

Furthermore, the occurrence of evolutionary operations decreases when evolution
framework gradually alters the model structure. The energy consumption spent in
transferring data, which is necessary for evolutionary operations, is therefore shrink-
ing along with the occurrence frequency. Fig-6.11 shows the convergence of model
structure by illustrating the probability of evolution-operations occurrence per sensor
node. The X-axis refers to the training time step, and the Y-axis stands for the aver-
age (over a time window of length 200 time steps) percentage of evolution-operations
occurrence per sensor node in “EF+DC6” scheme. The decrease in probability man-
ifests the convergence of embedded model of sensors. Note that the value of recover
time (ref. page-98) is set to trc = 200, thus the upper limit of the average probability,
that one sensor conducts evolutionary operation at one time step, is equal to 0.5%.

On the contrary, the evolution framework can be beneficial to reduction of com-
munication by removing34 irrelevant data streams. With the evolution framework
changing the dependency of model, the amount of model inputs can be altered. Fig-
6.12, shows the histogram (over 30 simulations) of the average amount of model
inputs per sensor node after 5000 training step. The X-axis presents the average

34 The removal of irrelevant data stream is motivated by the fact that some neighbor data is not
important for the prediction of its own measurement data. See to fig-6.1(d).



6.3 Discussion 123

0 5000 10000 15000
0

0.05

0.1

0.15

0.2

0.25

time step

oc
cu

rre
nc

e 
pe

rc
en

ta
ge

 (%
)

Figure 6.11: The occurrence probability of evolution operations. The X-
axis represents the training time step; the Y-axis refers to probability that
evolutionary operation is conducted in sensor at one time step. Each value is
calculated as the average within a time window of length 200.

number of input neurons per sensor node, the Y-axis indicates the occurrence among
30 simulations. The higher amount of model inputs of sensor node is, the more com-
munication effort is required to fetch measurement data. For the “normal” scheme
which doesn’t have evolution operation, the average amount of model inputs is about
4.8; the counterpart value for the other schemes with evolution framework is about
2.5. The ratio of communication activities is calculated as:

2.5 − 1

4.8 − 1
× 100% = 39.47%

This ratio means that, at the end of the simulation (after 5000 training steps), each
sensor with evolution framework has its communication activities reduced35 by 60%,
and it implies that sensor with the evolution framework is able to mitigate the energy
spent on communication in a long-run.

6.3.3 Early Depletion

Figures including fig-6.5, fig-6.6, fig-6.7 and fig-6.8 have illustrated the statistic characters
of distribution of energy consumption in sensor network. The higher the values of vp and
vm are, the more difference exists in the energy consumption among different sensors, and
this will lead to early depletion of network since a sensor with higher energy consumption
will run out of battery energy earlier and make the network disconnected. Fig-6.7(c)(d)

35 The implementation of evolution framework does require additional administrative data from neigh-
bors. But as discussed, such additional effort has been exaggerated.



124 6. Simulations in Sensor Network Applications

2 3 4 5 6
0

2

4

6

8

10

12

(a) “normal”

2 3 4 5 6
0

2

4

6

8

10

12

(b) “EF+DC2”

2 3 4 5 6
0

2

4

6

8

10

12

(c) “EF+DC4”

2 3 4 5 6
0

2

4

6

8

10

12

(d) “EF+DC6”

Figure 6.12: Histogram (over 30 simulations) of average amount of model
inputs per sensor node. The X-axis presents the average amount, and the Y-
axis indicates the corresponding occurrences. Simulations last 5000 training
steps, and the maximum model complexity is set to Cs = 100.

and fig-6.8(c)(d) have shown the evidence of the advantage of “EF+DCi” schemes over
“normal” scheme in terms of avoiding early depletion.

In another way, energy consumption during the training phase of one simulation is esti-
mated by applying eq-(6.14) and eq-(6.15). Fig-6.13 depicts histograms (over 30 simula-
tions) of the maximum communication-energy consumption in one sensor. Fig-6.14 shows
similar histograms about the energy consumption in computation. The X-axis, in“mAh”
units, refers to the maximum amount Mchar of electric charge consumed by all sensor
nodes in the network; the Y-axis shows the respective occurrences. The smaller the value
of Mchar is, the less energy has been spent, and the longer life-time of sensor node will be.

0.02 0.04 0.06 0.08 0.1
0

2

4

6

8

10

12

14

(a) “normal”

0.02 0.04 0.06 0.08 0.1
0

2

4

6

8

10

12

14

(b) “EF+DC2”

0.02 0.04 0.06 0.08 0.1
0

2

4

6

8

10

12

14

(c) “EF+DC4”

0.02 0.04 0.06 0.08 0.1
0

2

4

6

8

10

12

14

(d) “EF+DC6”

Figure 6.13: Histogram (over 30 simulations) of the maximum value (over all
sensors in the network) of communication-energy consumption. The X-axis,
in “mAh” unit, refers to the maximum amount Mchar of consumed electric
charge in one simulation; the Y-axis shows the respective occurrences.

It is manifested in fig-6.13 and fig-6.14 that the maximum energy consumption, in commu-
nication and computation respectively, spent in “EF+DCi” schemes is much less than
the consumption in the “normal” scheme. In addition, as shown in fig-6.13, scheme
“EF+DC6” delivers better and stable result in communication-energy consumption than
the “EF+DC4” and “EF+DC2” schemes. This confirms the contribution of activity pe-
riod Ap on communication-energy saving. In fig-6.14, since the evolution framework is the



6.3 Discussion 125

0 0.1 0.2 0.3
0

5

10

15

20

25

(a) “normal”

0 0.1 0.2 0.3
0

5

10

15

20

25

(b) “EF+DC2”

0 0.1 0.2 0.3
0

5

10

15

20

25

(c) “EF+DC4”

0 0.1 0.2 0.3
0

5

10

15

20

25

(d) “EF+DC6”

Figure 6.14: Histogram (over 30 simulations) of the maximum value (over
all sensors in the network) of computation-energy consumption. The X-axis,
in “mAh” unit, refers to the maximum amount Mchar of consumed electric
charge in one simulation; the Y-axis shows the respective occurrences.

primary factor reducing the computation effort, “EF+DCi” schemes have shown energy
saving by factor of 40% comparing with the “normal” scheme.



126 6. Simulations in Sensor Network Applications



Chapter 7

Summary and Conclusion

Distributed sensor networks built from “smart sensors” help to change the way human-
being experience the physical world. “Smart sensors” have this name because of their
abilities of data processing and wireless communication, even though these abilities are
small compared to the average personal computer. Here more important, often these
“smart sensors” have irreplaceable batteries, due to application requirements of autonomy
and autarky as well as manufacture reasons.

Such “smart sensors” are often employed in diagnosis and control tasks, but in fulfilling
such tasks they occasionally have to predict environment data and present the result in
lieu of genuine information. Prediction is successful if the learning model, embedded in the
sensor node, is stable and efficient enough to learn the dynamics on-line and from scratch,
furthermore if the sensor nodes can communicate with each other, so that information
required for building the learning model can be obtained also from neighbors. Realization
of these assumptions is costly because (1) much computation is necessary for successfully
training a learning model, and (2) frequent communication extends the sensor node’s duty
cycle, thus reducing battery life. Sensor network application is therefore a compromise
between prediction performance and energy consumption.

Contributions
Instead of improving communication protocol and network routing, the usual solution
in such cases, this thesis proposes using an efficient embedded learning model and
special operation schemes. These issues are addressed from two viewpoints, namely
intra-node and inter-node solutions.

• The intra-node viewpoint focuses on duty-cycle reduction, replacing data trans-
fer by data prediction with the aim of reducing costly communication. The
implementation of the duty-cycle reduction can save energy by more than 40%
when network’s connectivity is more than 5. This duty-cycle reduction is a suc-
cess if an embedded model can be found which learns efficiently and stably from



128 7. Summary and Conclusion

scratch, and which implements a precise prediction of the measurement data.
A novel neural network structure, the spiral recurrent neural network (Spiral-
RNN ), is such a model. SpiralRNN differs from conventional recurrent neural
networks in the special structure of its hidden layer which possesses a trainable
but structurally constrained recurrent layer, guaranteeing a bounded eigenvalue
spectrum. Simulations of time series prediction have shown the efficiency and
stability of the SpiralRNN model, which created the impulse for implementing
the duty-cycle reduction scheme.

• The inter-node viewpoint focuses on the exchange of information among sensors
in the neighborhood. The search for an embedded learning model had to be con-
ducted in a systematic way, and for this we introduced the heuristic evolution
framework, which is able to exchange information and modify the structure and
parameters of the SpiralRNN model under the application constraints. The evo-
lution framework is also able to dilute the communication pressure by changing
the model’s dependency on neighbor measurement, and omitting the communi-
cation effort for “unimportant” measurements. Depending on applications, this
approach reduces the communication activity by 60% at long-run, and saves
computation energy by more than 40%.

Achievements
We have implemented the SpiralRNN model in several simulations of time series pre-
diction problems, comparing the SpiralRNN model with conventional neural network
models such as a time delayed neural network, an echo state neural network, a simple
recurrent net and a block-diagonal recurrent neural network. In all of those, the Spi-
ralRNN model has been of excellent prediction performance. Equally, its stability
has been demonstrated in simulations with benchmark time series including spike
time series with period 21, Mackey-Glass time series and Lorenz time series. Partic-
ularly in the experiments with spike time series, the SpiralRNN model has shown its
ability to store the temporal information with dependency on time longer than the
size of its hidden layer. We have assessed the relationship between the short-term
memory Mst and the number of hidden nodes Nh of a SpiralRNN model, which
satisfy: Mst ≃ 16.8(Nh − 2.0)0.42.

We have tested the SpiralRNN model in the physical world by implementing Mouse-
Tracking, a toy software which analyzes the movements of a “mouse” device controlled
by a human user. It has been shown that the SpiralRNN model was able to reproduce
a figure-of-8 trajectory, which in general requires a learning model with substantial
short-term memory.

The conditional prediction ability of the SpiralRNN model has been examined in a
simulation of a warehouse logistics management scenario. It has been shown that
the SpiralRNN model can simultaneously retain different dynamic models within
the learning model and recall them when the sensor triggers unique information
for various dynamics. Based on the simulations of conditional prediction, we also



129

measured the associated memory Ma of SpiralRNN. The results have shown linearity
with the number of hidden nodes Nh such that Ma ≃ 0.31Nh for longer pattern
(lp = 11) and Ma ≃ 0.64Nh for shorter pattern (lp = 5), and both results are
superior to that of the Hopfield network.

The prediction capability and special structure of the SpiralRNN model has encour-
aged the implementation of duty-cycle reduction and evolution framework in sensor
network applications. We have simulated a heat diffusion scenario with sensor nodes
spread out in a grid for predicting the temperature. Duty-cycle reduction and the
evolution framework have been employed in a simulation where their impact on en-
ergy saving and on prediction performance was investigated. It was confirmed that
duty-cycle reduction reduced the communication effort by replacing transferred data
by predicted data from the sensor itself, and that the evolution framework scheme
simplified the structure of the learning model by evolutionary operations, and with
considerable confidence removed some “unimportant” input from the model, and
hence saved energy on computation as well as on communication.

Conclusion
The novel SpiralRNN model has shown excellent prediction performance and stabil-
ity. This formed the basis for the implementation of the duty-cycle reduction which
curtails the communication effort, and the evolution framework, which mainly sim-
plifies the computation. Both approaches aim to reduce the energy consumption of
a sensor network at the expense of prediction performance, where the latter proved
insignificant due to the effectiveness of the SpiralRNN model. The combination of
duty-cycle reduction and the evolution framework, based on the learning model Spi-
ralRNN and balancing performance against energy consumption, is therefore of great
value in applications of sensor networks.



130 7. Summary and Conclusion



Appendix A

Eigenvalue Spectrum of SpiralRNN s

A.1 Preliminaries

Lemma 1 Given value n
hnu

∈ N
+ and a nonsingular matrix A ∈ Rn

hnu
×n

hnu
and ma-

trix DA ∈ Rn
hnu

×n
hnu

as its canonical form, i.e. the diagonal matrix with eigenvalues
{λ1, λ2, · · · , λn

hnu
} of A on the main diagonal, also given matrix PA = [~p1, ~p2, · · · , ~pn

hnu
] ∈

Rn
hnu

×n
hnu

where columns of PA are the unit eigenvectors of matrix A, then the eq-(A.1)
holds. Matrix PA is named the modal matrix of A, and matrix DA is named the spectral
matrix of A.

A = PADAP−1
A (A.1)

Lemma 2 Given matrix A, PA, DA ∈ Rn
hnu

×n
hnu

as defined in Lemma-1, the eq-(A.4)

shows: (1) the modal matrix of exponential matrix Ak is identical with the modal matrix of
matrix A; (2) the spectral matrix of exponential matrix Ak can be obtained by implementing
an exponential function on the spectral matrix of matrix A.

Ak = PADAP−1
A · PADAP−1

A · PADAP−1
A · · ·PADAP−1

A
︸ ︷︷ ︸

k

(A.2)

= PA DA · DA · DA · · ·DA
︸ ︷︷ ︸

k

P−1
A (A.3)

= PADk
AP−1

A (A.4)

Lemma 3 Given β ∈ R, and matrix A ∈ Rn
hnu

×n
hnu

with its modal matrix PA and
respective spectral matrix DA, a matrix B = βA will have the modal matrix PB and the
spectral matrix DB, such that:

PB = PA

DB = βDA



132 A. Eigenvalue Spectrum of SpiralRNN s

Proof According to Lemma-1, it holds A = PADAP−1
A , and

B = βA = βPADAP−1
A

= PAβDAP−1
A

∴ BPA = PA(βDA)

since matrix A’s modal matrix PA is an orthogonal matrix and matrix
DB = βDA is a diagonal matrix like DA, therefore matrix B’s modal
matrix PB = PA and B’s spectral matrix DB = βDA.

A.2 Eigenvalue Spectrum of Spiral Units

Definition For value n
hnu

∈ N
+, the taxicab norm of a vector ~β ∈ Rn

hnu
×1 is defined,

using operator || · ||taxi, as the sum of absolute values of all entries, i.e.:

||~β||taxi =

n
hnu∑

i=1

|βi| = |β1| + |β2| + . . . + |βn
hnu

| (A.5)

Theorem - 4 Given value n
hnu

∈ N
+, and a matrix M ∈ Rn

hnu
×n

hnu
which can be decom-

posed as

M = β1P + β2P2 + . . . + βn
hnu

−1Pn
hnu

−1 =

n
hnu

−1
∑

i=1

βiP i

where vector ~β ∈ R(n
hnu

−1)×1 and matrix P ∈ Rn
hnu

×n
hnu

is the permutation matrix in
eq-(3.4) which up-shifts the entries of multiplier for one position, the maximum absolute

eigenvalue of matrix M is smaller than the taxicab norm of vector ~β:
∣
∣λn

hnu

∣
∣ ≤

∣
∣
∣

∣
∣
∣~β
∣
∣
∣

∣
∣
∣
taxi

= |β1| + |β2| + . . . + |βn
hnu

−1|

Proof Let matrices PP and DP respectively denote the modal matrix and the spectral
matrix of matrix P. Let matrices PPi and DPi respectively denote the modal matrix and
the spectral matrix of matrix P i with i ∈ [1, n

hnu
−1], where matrix P i is the exponentiation

of P with the exponent i. According to Lemma-1, it holds:

P = (PP)(DP)(PP)−1

P i = (PPi)(DPi)(PPi)−1, i ∈ [1, n
hnu

− 1]

According to Lemma-2, it satisfies:

PPi = PP

DPi = (DP)i

with i ∈ [1, n
hnu

− 1]



A.3 Eigenvalue Spectrum of SpiralRNN s 133

Given matrix M =
∑n

hnu
−1

i=1 βiP i, it reads:

M =

n
hnu

−1
∑

i=1

βi(PPi)(DPi)(PPi)−1

= PP





n
hnu

−1
∑

i=1

βi(DPi)



P−1
P

= PP





n
hnu

−1
∑

i=1

βi

(
DP

)i



P−1
P (A.6)

with ~β ∈ Rn
hnu

×1

Assuming the eigenvalues of matrix P is
{

λ̂1, · · · , λ̂n
hnu

}

, its spectral matrix DP has
{

λ̂1, · · · , λ̂n
hnu

}

in the diagonal. Therefore, with eq-(A.6), matrix M ’s eigenvalue λk can

be calculated as followed:

λk =

n
hnu

−1
∑

i=1

βi(λ̂k)
i ∀k ∈ [1, · · · , n

hnu
] (A.7)

As all eigenvalues of a permutation matrix lie in the unit cycle [81], it satisfies,

|λ̂k| = 1, ∀k ∈ [1, · · · , n
hnu

] (A.8)

Thus, taking the absolute value over both side of eq-(A.7), it holds ∀k ∈ [1, · · · , n
hnu

], that:

|λk| =

∣
∣
∣
∣
∣
∣

n
hnu

−1
∑

i=1

βi(λ̂k)
i

∣
∣
∣
∣
∣
∣

≤
n

hnu
−1

∑

i=1

∣
∣
∣βi(λ̂k)

i
∣
∣
∣

≤
n

hnu
−1

∑

i=1

|βi|
∣
∣
∣λ̂i

k

∣
∣
∣

=

n
hnu

−1
∑

i=1

|βi|

Therefore, the maximum absolute eigenvalue of matrix M is bounded, and is limited by
the taxicab norm of vector ~β, i.e. ||~β||taxi.

A.3 Eigenvalue Spectrum of SpiralRNN s

Theorem - 5 Let Nhn ∈ N, q ∈ [1, · · · , Nhn] , and a block-diagonal matrix W ∈ RNhn×Nhn

has n
units

∈ N numbers of sub-block matrices Mk, k ∈ [1, · · · , n
units

], each of which can be



134 A. Eigenvalue Spectrum of SpiralRNN s

decomposed as:

Mk =

{n
hnu

}
k
−1

∑

i=1

β
(k)
i (Pk)

i, k ∈ [1, · · · , n
units

] (A.9)

where {n
hnu

}
k

stands for the length of diagonal vector of sub-block matrix Mk, β
(k)
i is the i-

th entry of the vector ~β(k) ∈ R({n
hnu

}
k
−1)×1, matrix Pk ∈ R{n

hnu
}

k
×{n

hnu
}

k
is the permutation

matrix which up-shifts the entries of multiplier by one position, Pk has the same size as
Mk. Note that ~β(k) as a whole is a vector, and symbol (k) indicating the association with
the k-th sub-block matrix is not an exponent.

Then the maximum absolute eigenvalue ||λ||∞ = max{|λq|} of matrix W is bounded by the

maximum taxicab norm value in all ~β(k) vectors, i.e.

||λ||∞ ≤ max
k

{

||~β(k)||taxi

}

, k ∈ [1, · · · , n
units

]

where ||~β(k)||taxi =

{n
hnu

}
k
−1

∑

i

|β(k)
i |

Proof According to Theorem-4, the eigenvalue of the k-th sub-block matrix Mk of W is
calculated as:

|λ(k)
j | ≤ ||~β(k)||taxi =

{n
hnu

}
k
−1

∑

i=1

|β(k)
i |, j ∈ [1, · · · , {n

hnu
}

k
]

k ∈ [1, · · · , n
units

]
(A.10)

Meanwhile, the determinant of block-diagonal matrix det(·) is equal to the product of de-
terminants of all its sub-block matrices:

det(W ) = det(M1) × det(M2) × · · · × det(Mn
units

) (A.11)

Given λ ∈ R and I an identity matrix with the same size as matrix W , the matrix (W −λI)
is also a block-diagonal matrix. Let matrix Ik be an identity matrix with the same size of
the k-th sub-block matrix Mk and λ

(k)
j be the j-th eigenvalue of Mk, j ∈ [1, · · · , {n

hnu
}

k
],

then the relations hold:

det(W − λI) =

n
units∏

k=1

det(Mk − λIk)

=

n
units∏

k=1

(

(λ − λ
(k)
1 )(λ − λ

(k)
2 ) · · · (λ − λ

(k)
{n

hnu
}

k
)
)

=

n
units∏

k=1

{n
hnu

}
k∏

j=1

(λ − λ
(k)
j )



A.3 Eigenvalue Spectrum of SpiralRNN s 135

Hence, the eigenvalue spectrum of a block-diagonal matrix aggregates the eigenvalue spec-
tra of its sub-block matrices. Therefore, given any eigenvalue λj of block-diagonal ma-
trix W , there exists one of the sub-block matrices which has the same eigenvalue, i.e.
∀q ∈ [1, · · · , Nhn], ∃k ∈ [1, · · · , n

units
] and ∃i ∈ [1, · · · , {n

hnu
}

k
], such that:

|λq| =
∣
∣
∣λ

(k)
i

∣
∣
∣ ≤

∣
∣
∣

∣
∣
∣~β(k)

∣
∣
∣

∣
∣
∣
taxi

=

{n
hnu

}
k
−1

∑

j=1

∣
∣
∣β

(k)
j

∣
∣
∣ (A.12)

As a result, the eigenvalue spectrum of matrix W is limited by the maximum taxicab norm
value of the associated vectors.

||λ||∞ ≤ max
q

{

|λq|
}

≤ max
k

{

||~β(k)||taxi

}

, k ∈ [1, · · · , n
units

]



136 A. Eigenvalue Spectrum of SpiralRNN s



Appendix B

MatLab Code for SpiralRNN Models

To implement SpiralRNN models in the MatLab environment, create MatLab scripts for
all of the following functions and save them in a folder with the name “@spiralRNN”.

• To start training a SpiralRNN model, go to the directory where folder “@spiralRNN”
exists as a sub-folder.

• Construct the class “spiralRNN” by calling the constructor function “spiralRNN”.

net = spiralRNN(dim,nuh);

• In each time step with pair of network input and corresponding target: {dat,tar},
train the model with the command “trnng”.

net = trnng(net,dat,tar);

• Autonomous test can start, given the initial starting data “dat” and prediction step
“fut”, at any time with command “auttt”.

output = auttt(net,dat,fut);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function net = spiralRNN(varargin)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%SPIRALRNN - Constructor of the MatLab class ’spiralRNN’

% SPIRALRNN by itself only initializes the MatLab structure and

% specifies the size of all its components and values of some

% of them.

% This function itself does not implement learning or testing, and such

% operation will be conducted by other scripts in the same

% class.

%



138 B. MatLab Code for SpiralRNN Models

% This script supports various ways of updating, which is controlled

% by boolean parameters: ’trainDiff’ and ’loopBack’. By default ’trainDiff’

% is set to be 1 and loopBack = 0, note that ’loopBack’ is active

% only when trainDiff=1 .

% - trainDiff=1, input of network remains unchanged whilst target

% of output is set to the difference of data instead of

% data itself, i.e. tar=x(t+1)-x(t) instead of tar=x(t+1).

% Parameter ’loopBack’ is active only when trainDiff=1

% o loopBack=1, input will be set to as the sum of previous

% input and previous output, i.e. x(t+1)=x(t)+y(t);

% o loopBack=0, input will be set normal

% - trainDiff=0, tar=x(t+1)

%

% SYNTAX:

%

% net = spiralRNN(dim, nhu, tdf, lpb) constructs the structure net

% by specifying "dim" as the dimension of data fed into network, "nhu"

% as number of hidden nodes in each hidden unit (by default, number

% of hidden units will be equal to "dim"),

% Parameters "tdf" and "lpb" are optional, their values will be assigned

% to ’trainDiff’ and ’loopBack’ respectively, and their default values are

% 1 and 0.

%

% It requires input:

% dim - dimension of data;

% nhu - number of neurons in each hidden units (number of hidden units

% is equal to ’dim’)

% tdf - boolean argument, whether to train with difference of data

% lpd - boolean argument, whether to loop back the output as input

%

% and returns output:

% net - object of class, containing all the information about

% the neural network;

%

if or(nargin>4,nargin<2)

error(’Incorrect number of parameters’)

else

% dimension of data, which determinates the

%number of input/output neurons in network

dimension=varargin{1};

% number of neurons in each spiral unit

% (each spiral unit possesses same number of neurons)

nhmini=varargin{2};



139

if nargin>=3

% to set the training target as the difference between data or not

net.trainDiff=varargin{3};

else

net.trainDiff = 1; % default value --- train the original data target

end

if nargin>=4

net.loopBack = varargin{4};% to use the output value as in input or not

else

net.loopBack = 0; % default value --- train without loopBack

end

end

net.ninr = dimension; % dimension of input

net.nout = net.ninr; % dimension of output

net.nhmini = nhmini; % number of neurons in each spiral unit

net.nhidden = net.ninr*net.nhmini; % total number of neurons in hidden layer

outfn=’linear’; hidfn=’tanh’;

net.outfn = outfn; % output activation function

net.hidfn = hidfn; % hidden activation function

net.MaxHidPropCoef = 1; % maximum absolute value of coefficient in W_hid

nl=0.01;

net.w1 = (2*rand(net.nhidden,net.ninr)-1)*nl; % weights from input to hidden

net.b1 = (2*rand(net.nhidden,1)-1)*nl; % bias of hidden neurons

net.w2 = (2*rand(net.nout,net.nhidden)-1)*nl; % weights from hidden to output

net.b2 = (2*rand(net.nout,1)-1)*nl; % bias of output neurons

% initial coef. in the hidden-weigth matrix

hidCoefIndx = [2:nhmini];

net.hidPropCoef = randn(length(hidCoefIndx),net.nout);

if length(hidCoefIndx)>1, deno=length(hidCoefIndx)-1;

else deno=1;

end

net.hidPropCoef = (2*rand(length(hidCoefIndx),net.nout)-1)/deno;

% construct the recurrent hidden weight matrix ---

% (permutation matrices in ’whidPack’ will

% be used in construction of hidden matrix W_hid)

Mtem=diag(ones(1,nhmini-1),1)+diag(ones(1,1),-(nhmini-1));

for j=1:size(net.hidPropCoef,2)

whidB = blkdiag(zeros((j-1)*net.nhmini),Mtem,zeros((net.nout-j)*net.nhmini));

for i=1:size(net.hidPropCoef,1)

packIdx=(j-1)*(nhmini-1)+i;



140 B. MatLab Code for SpiralRNN Models

net.whidPack{packIdx} = whidB^(hidCoefIndx(i)-1);

end

end

net.input = zeros(net.ninr,1); % initial input

net.output = zeros(net.nout,1); % initial output

net.err = zeros(net.nout,1); % initial error

net.hidState = zeros(net.nhidden,1); % initial hidden state

net.preHidState = zeros(net.nhidden,1); % initial previous hidden state

net.preData = zeros(net.ninr,1); % initial previous data;

% construct Vweight vector which assembles all the parameters to be trained.

% This vector, instead of all other weight matrices (e.g. w1, w2, b1 etc.),

% will be used in EKF; while those weight matrices will be used in

% feed-forward step since it is more straight-forward

net.Vweight = [net.w1(:);net.b1(:);net.hidPropCoef(:);net.w2(:);net.b2(:)];

% total number of parameters/neural connection to be trained

net.noswei = length(net.Vweight);

% initial derivative

net.g_s_w = zeros(net.nhidden,net.noswei);%deri. of hidden state w.r.t. weights

net.g_o_w = zeros(net.nout,net.noswei); %deri. of network output w.r.t. weights

net.kalmanP = eye(net.noswei)*1; % initial P matrix for kalman filter

net.kalmanQ = eye(net.noswei)*1e-8; % initial Q matrix for kalman filter

net.kalmanR = eye(net.nout)*0.01; % initial R matrix for kalman filter

net.name = ’spiralRNN’;

net = class(net,’spiralRNN’);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [opt,hdv] = auttt(net,fin,nss)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%AUTTT - Implementation of autonomous testing in spiralRNN model.

% AUTTT implements the autonomous test (i.e. output of previous step is

% fed in as input "fin" for the current step, and so on) and returns the

% result stream.

%

% SYNTAX:

%

% [opt,hdv] = auttt(net,fin,nss) returns the autonomous test results

% for "nss" steps when net is triggered by the feed-in of "fin".

% Returned results include the output "opt", hidden states "hdv"(for debug)



141

%

% It requires input:

% net - object of class, containing all the information about

% the neural network;

% fin - [dim,1] column vector which contains data to be fed in the

% network as input

% nss - total number of iterations in the autonomous prediction

%

% and returns output:

% opt - [dim,nss] matrix, contains sequence of output column vectors for

% ’nss’ steps in autonomous prediction.

% hdv - [nhn,nss] matrix, contains sequence of hidden-state vectors for

% ’nss’ steps in autonomous prediction, where ’nhn’ refers to

% the number of hidden nodes in network

%

opt=zeros(length(fin),nss);

hdv=zeros(net.nhidden,nss);

for i=1:nss

net=frwrd(net,fin); % forward-step of network,

if net.trainDiff == 1

fin=net.output + fin;

else

fin=net.output;

end

opt(:,i)=fin; % record output vectors from autonomous test

hdv(:,i)=net.hidState; % record hidden state vectors from autonomous test

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function net = drvtv(net)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%DRVTV - Calculation of derivative

% DRVTV calculates the derivative of output w.r.t. connection

% weight. Error message has been stored in the component "err".

%

% SYNTAX:

%

% net = drvtv(net),

%

% It requires input:

% net - object of class, containing all the information about



142 B. MatLab Code for SpiralRNN Models

% the neural network;

%

% and returns output:

% net - object of class, the following components of net will be

% directly modified by this script:

% o g_s_w: [nhn,noswei] matrix refers to the derivative of hidden state

% w.r.t. all the weights, ’nhn’ refers to number of hidden nodes

% in the network, ’noswei’ is the total number of weights

% o g_o_w: [dim,noswei] matrix refers to the derivative of output vector

% w.r.t. all the weights, ’dim’ is dimension of data

%

% preparation of data

ninr=net.ninr;nh=net.nhidden;nout=net.nout;

maxCoef = net.MaxHidPropCoef;

tanhCoef = tanh(net.hidPropCoef); %connection weights

% WHID = zeros(nh); % hidden-weight matrix

% for i=1:length(tanhCoef(:)), WHID = net.whidPack{i}*tanhCoef(i) + WHID; end

WHID = fthdm(net);

% derivative of hidden FUNCTION

if or(strcmp(net.hidfn,’rectanh’)==1,strcmp(net.hidfn,’tanh’)==1)

Vz2 = 1.0 - net.hidState.^2;

elseif strcmp(net.hidfn,’linear’)==1

Vz2 = ones(size(net.hidState));

else

error(’Unsupported hidden activiation function’);

end

diagVz2 = diag(Vz2);

% GRADIENT CALCULATION

p_s_i = diagVz2*net.w1; % p_s_w: der. of current state w.r.t. network input

p_s_s = diagVz2*maxCoef*WHID; % der. of current state w.r.t. previous state

p_o_s = net.w2; % p_o_s: der. of output w.r.t. current state

% construct p_s_w: partial der. of current state w.r.t. weights

p_s_w = zeros(nh,net.noswei);lastidx=0;

p_s_w(:,lastidx+(1:nh*ninr)) = kron(net.input,eye(nh))’; % about net.w1

lastidx=lastidx + nh*ninr;

p_s_w(:,lastidx+(1:nh)) = eye(nh); % about net.b1

lastidx=lastidx + nh;

for i=1:length(tanhCoef(:)),

p_s_w(:,lastidx+i)=maxCoef*(1-tanhCoef(i)^2)*net.whidPack{i}*net.preHidState;

end % about net.tanhCoef

lastidx=lastidx + length(tanhCoef(:));



143

p_s_w = diagVz2*p_s_w;

% construct p_o_w: partial der. of output w.r.t. weights

% only need to fill in those entries corresponding to the output

% weight and the output bias

p_o_w = zeros(nout, net.noswei);

p_o_w(:,lastidx + (1:nout*nh)) = kron(net.hidState,eye(nout))’; % about net.w2

lastidx=lastidx + nout*nh;

p_o_w(:,lastidx + (1:nout)) = eye(nout); % about net.b2

lastidx=lastidx + nout;

% calculate gradient g_s_w: gradient of current state w.r.t. weights

net.g_s_w = p_s_w + p_s_s*net.g_s_w + p_s_i*net.g_o_w;

% calculate gradient g_o_w: gradient of output w.r.t. weights

net.g_o_w = p_o_w + p_o_s*net.g_s_w;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function net = eKftn(net,drp)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%EKFTN - Implementation extended Kalman filter training algorithm

% EKFTN - Implementation extended Kalman filter algorithm

% on the training of network connection weights.

%

% SYNTAX:

%

% net = eKftn(net,drp) trains the values of connection weights

% in net structure according to the derivative information in ’drp’,

% modification of value lies in the aggregated vector net.Vweight.

% Matrix ’drp’ is of size [dim,noswei]

%

% It requires input:

% net - object of class, containing all the information about

% the neural network;

%

% and returns output:

% net - object of class, the following components will be directly

% modified by this script:

% o kalmanP: P matrix in extended Kalman filter

% o kalmanR: R matrix in extended Kalman filter

% o Vweight: vector which assembles all of the trainable weights

%



144 B. MatLab Code for SpiralRNN Models

net.kalmanP=net.kalmanP+net.kalmanQ;

kal=net.kalmanP*transpose(drp)*inv((drp)*net.kalmanP*transpose(drp)+net.kalmanR);

net.kalmanP=net.kalmanP-kal*drp*net.kalmanP;% posterior covariance of weigths

net.Vweight=net.Vweight + kal*net.err;

% update of kalman R

maPeriodCoefR = 0.01; % coefficient for calculation of M.A. value of kalmanR

net.kalmanR = maPeriodCoefR*net.err*transpose(net.err) ...

+ (1-maPeriodCoefR)*net.kalmanR;

% Q is kept unchanged

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function net = frwrd(net,fin)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%FRWRD - Implementation of forward step of ’spiralRNN’ model.

% FRWRD implements the iteration of spiralRNN model for one step

% and return results. The network parameters are to be kept for

% the sake of further iterations.

%

% SYNTAX:

%

% net = frwrd(net,fin), where fin is the fee-in vector,

% returns the network with updated components

%

% It requires input:

% net - object of class, containing all the information about

% the neural network;

% fin - data vector which feeds in the network as input

%

% and returns output:

% net - object of class, the following components of net will be

% directly modified by this script:

% o input: input vector of network

% o preHidState: hidden-state vector in the previous time step

% o hidState: updated hidden-state vector in current time step

% o output: output vector of network

% o preData: given data of previous time step (only when net.loopBack=1)

%



145

% preparation

if net.loopBack==0,

net.input = fin;

elseif net.loopBack==1

net.input = net.output + net.preData;

net.preData = fin;

end

% feed forward step

[output,HidState] = spiralFoward(net);

% restore data

net.preHidState = net.hidState;

net.hidState=HidState;

net.output=output;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [outState,hidState]=spiralFoward(net)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%SPIRALFORWARD - Implementation of feed forward step of spiralRNN.

% SPIRALFORWARD implements the feed forward step of spiralRNN model

% and returns the output vector "VoutStates" and hidden state vector

% "VhidStates".

% fetch the hidden-weight matrix

hdm = fthdm(net);

% update the hidden state vector

hidState = net.hidState;

netin = net.w1*net.input + net.b1;

netin = netin + hdm*hidState;

switch net.hidfn

case ’tanh’, hidState = tanh(netin);

case ’linear’, hidState = netin;

otherwise, error(’Unrecognize recfunc’);

end

% update of output vector

netin = net.w2*hidState + net.b2;

switch net.outfn

case ’linear’, outState= netin;

case ’tanh’, outState = tanh(netin);

otherwise, error(’Unrecognize outfunc’);



146 B. MatLab Code for SpiralRNN Models

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function hdm = fthdm(net)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%FTHDM - Obtain the hidden-weight matrix of ’spiralRNN’ model

% FTHDM can fetch the hidden-weight matrix of ’spiralRNN’ model

% directly. Creation of this script is mainly for reason of reviewing,

% but it is also called by ’spiralFoward’ which is a sub-routine

% of script ’frwrd.m’.

%

% SYNTAX

%

% hdm = fthdm(net),

%

% It requires input:

% net - object of class, containing all the information about

% the neural network;

%

% and returns output:

% hdm - hidden-weight matrix of ’spiralRNN’

%

% recurrent coupling coefficients

tanhCoef = tanh(net.hidPropCoef);

% initialization of matrix

hdm = zeros(net.nhidden);

for i=1:length(tanhCoef(:)),

hdm = net.MaxHidPropCoef*net.whidPack{i}*tanhCoef(i) + hdm;

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function net = trnng(varargin)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%TRNNG - Implementation of training step in ’spiralRNN’ model

% TRNNG calculates the derivative of output w.r.t. to all

% the synaptical weights in network and adjusts the values

% of weights accordingly, finally returns back the trained

% structure net.

%



147

% SYNTAX:

%

% net = trnng(net) trains the weights directly, assuming

% the forward step has been already implemented and the error

% message as well as hidden state vector etc are up-to-date

% and available.

%

% net = trnng(net,fin,tar) will conduct a forward step to

% generate the output and calculate the error

% at first and then implement the training and update of weights

% of network.

%

% It requires input:

% net - object of class, containing all the information about

% the neural network;

% fin - data vector which feeds in the network as input;

% tar - vector of target data;

%

% and returns output:

% net - object of class, the following components of net will be directly

% modified by this script:

% o err (only when number of input arguments is larger than 1)

% o g_o_w (will be reset to zero only when loopBack=0)

%

% fetch arguments

net = varargin{1};

if nargin==3,

fin = varargin{2};

tar = varargin{3};

doForward = 1;

elseif nargin==1

else error(’Number of input arguments is incorrect.’)

end

% when required, implement feed-forward

if and(exist(’doForward’,’var’),doForward==1),

net = frwrd(net,fin);

net.err = tar - net.output;

if net.trainDiff == 1, net.err = net.err - fin; end

end

% calculate the derivative of network output w.r.t. net connection weights

net = drvtv(net);



148 B. MatLab Code for SpiralRNN Models

% using KALMAN FILTER to adjust the values in ’Vweight’.

% (In order to keep the interface of script ’eKftn.m’ indentical

% for all the recurrent neural network model, we do NOT simplify

% the interface to net=eKftn(net). Anyway, it is trival)

net = eKftn(net,net.g_o_w);

% update network weights, (according to values of ’Vweight’)

net = wgtup(net);

% reset the gradient information when necessary

if net.loopBack == 0

% no gradient will be looped back when doing teacher forcing

net.g_o_w = zeros(size(net.g_o_w));

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function net = wgtup(net)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%WGTUP - Update of weights in all connection matrices.

% WGTUP updates the value of all connection weights, given

% the update component net.Vweight. Update order should be consistent

% with the combination of the derivative information as in script

% "drvtv.m"

%

% SYNTAX:

%

% net = wgtup(net),

%

% It requires input:

% net - object of class, containing all the information about

% the neural network;

%

% and returns output:

% net - object of class, the following components of net will be directly

% modified by this script:

% o w1: weight matrix which connects input and hidden layer

% o b1: bias vector of hidden nodes

% o hidPropCoef: coefficient of connection among hidden nodes

% o w2: weight matrix which connects hidden and output layer

% o b2: bias vector of output nodes

%

Vweight=net.Vweight;



149

ninr=net.ninr;nh=net.nhidden;nout=net.nout;

% restore weight (input --> hidden)

lastidx=0;

net.w1(:) = Vweight(lastidx + (1:ninr*nh));

lastidx=lastidx + ninr*nh;

% restore bias of hidden neurons

net.b1(:) = Vweight(lastidx+(1:nh));

lastidx=lastidx+nh;

% restore hidden coefficient

net.hidPropCoef(:)=Vweight(lastidx+(1:prod(size(net.hidPropCoef))));

lastidx=lastidx+prod(size(net.hidPropCoef));

% restore weight (hidden --> output)

net.w2(:) = Vweight(lastidx+(1:nh*nout));

lastidx=lastidx+nh*nout;

% restore bias of output

net.b2(:) = Vweight(lastidx+(1:nout));

lastidx=lastidx+nout;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function res=get(net,ppn)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% GET - Fetch the value of component in given structuure. (for debug)

% GET return the value res which belongs to the component with

% the name ppn from structure net.

%

% res=get(net,ppn)

%

res=eval(strcat(’net.’,ppn));

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function net=set(net,ppn,val)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%SET - Change of value of component in net (for debug)

% SET enables outsider to change the configuration of structure

% directly. This change of value will be permenent.



150 B. MatLab Code for SpiralRNN Models

%

% net=set(net,ppn,val) uses data val to reset the component

% property, which has the name string as ppn, of structure net

%

eval(strcat(’net.’,ppn,’=val;’));



Appendix C

MatLab Code for MouseTracking

The MouseTracking is a toy software developed in the MatLab environment as the first application
of the SpiralRNN model in real-world problems. The software measures the position of the mouse
cursor on the computer monitor, preprocessing is applied to these raw measurement data such
that those points dividing the trajectory path into even segments are treated as training data of
the SpiralRNN model. These points separating stretches are called “boundary points”. Based
on the training data, the SpiralRNN develops the embedded model to adapt to the dynamics
of data so that it can make an autonomous prediction of the cursor trajectory, given its latest
position.

The software supports keyboard commands with the keys “s”, “t”, “n” and “q”. Details of the
keys can be found in the function description in the following. Note that one must keep the
software interface on top (being activated or high-lighted) in order to make the software respond
to keys being pressed.

To install, create MatLab scripts for all of the following functions and save them into the folder
named “mousetracking” or other. In order to implement the SpiralRNN model, the folder “@spi-
ralRNN” mentioned in appendix-B has to be placed as a subfolder in the aforementioned folder.
To launch the software interface, go to the directory “mousetracking” in the MatLab environment
and type the following command, where “nhdut” determines the size of the network model and
“prdst” specifies the prediction length.

net = mouseTrack(nhdut,prdst)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function net = mouseTrack(nhdut,prdst)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% MOUSETRACK - implement MouseTracking which tracks the mouse cursor

% MOUSETRACK - implement the MouseTracking, which constructs a SpiralRNN

% model as the learning model, measures the pre-pocesses the data from



152 C. MatLab Code for MouseTracking

% mouse position and uses these as training data. Training error

% is drawn in the bottom subplot of interface, and upper subplot

% depicts the measured position of cursor.

% Autonomous test prediction can be lauched by human user at

% any time, where a red curve will be drawn to show the prediction

% trajectory of mouse cursor.

%

% Keyborad command is supported, where "s" stands for starting the

% training meanwhile user should move the mouse on certain imagine

% trajectory, "t" stands for taking the autonomous test but it will

% not stopped until the prediction steps has been reached,

% "n" stands for start a new training and reinitial all the parameters,

% "q" stands for quiting the software.

% Software will stay in the pause mode after the autonomous test,

% and wait for the next command either "s" or "t" or "n" or "q".

%

% SYNTAX:

% net = mouseTrack(nhdut,prdst)

%

% It requires input:

% nhdut - number of hidden nodes in each hidden unit of SpiralRNN

% prdst - prediction step, number of iterations in autonomous test

%

% and return output:

% net - learning model of SpiralRNN

%

if (ischar(nhdut)),nhdut=str2num(nh_unit);end

if (ischar(prdst)),prdst=str2num(prdst);end

clear global CntKey

global CntKey

% initialization

dim=2;

net=spiralRNN(dim,nhdut); % construct the class

scrWidth=1152;scrHeight=864; % resolution of computer monitor

allowTest=0;

allowTrain=0;

iter=0;

trajectory=zeros(dim,5e3);

trajectErr=zeros(1,5e3);

lengthTraj=0;

lengthTraE=0;

%relaxing/pause time between each iteration, such that computer can relax



153

iterPause=0.01;

% preparation the interface

fig = gcf; clf; set(fig,’KeyPressFcn’,@getCntKey);

figure(fig);subplot(2,1,1);axis([-1,1,-1,1]) ,title(’Trajectory’)

toContinue=1;

while toContinue

iter=iter+1;

% detect the key press

allowTrain=0;

allowTest=0;

if CntKey==’s’

allowTrain=1;

elseif CntKey==’q’

close all

return;

elseif CntKey==’t’

allowTest=1;

elseif CntKey==’n’

clear class net

iter=0;

net=spiralRNN(dim,nhdut);

fig = gcf; clf; set(fig,’KeyPressFcn’,@getCntKey);

lengthTraj=0;

lengthTraE=0;

CntKey=’s’;

continue;

else

end

if allowTrain==1

% initialization

if ~exist(’utl’,’var’),

utl = 0.02 ;

dfd = utl;

end

if ~exist(’knnpt’,’var’)

newdata=get(0,’PointerLocation’);

newdata(1)= (newdata(1)-scrWidth/2)/(scrWidth/2);

newdata(2)= (newdata(2)-scrHeight/2)/(scrHeight/2);

knnpt=transpose(newdata); % the lastest known point on the trajectory



154 C. MatLab Code for MouseTracking

iter=iter-1;

continue;

end

if ~exist(’prevInP’,’var’),

prevInP = knnpt; % the latest boundary point

end

trajectory(:,lengthTraj+1) = knnpt; % record the position of cursor

lengthTraj=lengthTraj+1;

% get data from mouse position

fig=gcf;

newdata=get(0,’PointerLocation’);

newdata(1)= (newdata(1)-scrWidth/2)/(scrWidth/2);

newdata(2)= (newdata(2)-scrHeight/2)/(scrHeight/2);

ltstm=transpose(newdata); % the latest measuremet of mouse cursor

% interpolation

if gtdst(knnpt,ltstm) >= dfd

% when mouse cursor moves to a new position such that the distance

% is far enough to form at least one new boundary point.

% sgmpt - concatenation of boundary points

% dfd - difficiency in length to new the next boundary point

[sgmpt,dfd] = intpl(knnpt,ltstm,dfd,utl);

else

% when mouse cursor moves to a new position where the distance

% is not far enough to form at least one new boundary point,

% then update the value, skip the training and waiting

% for next measurment.

dfd = dfd - gtdst(knnpt,ltstm);

iter=iter-1;

knnpt = ltstm;

continue;

end

% training

nosIntPoint=size(sgmpt,2);

for k=1:nosIntPoint

% train the network

net=trnng(net,prevInP,sgmpt(:,k));

% record the training error

iterErr(:,k) = get(net,’err’);

% assign current target as the input for next iteration



155

prevInP=sgmpt(:,k);

end

% record the error and boundary points

trajectErr((1:nosIntPoint)+lengthTraE)=mean(iterErr(:,1:nosIntPoint).^2);

trajectory(:,(1:nosIntPoint)+lengthTraj)=sgmpt;

lengthTraj = lengthTraj + nosIntPoint;

lengthTraE = lengthTraE + nosIntPoint;

% plot the trajectory and training error

subplot(2,1,1),title(’Trajectory’)

plot(trajectory(1,1:lengthTraj),trajectory(2,1:lengthTraj))

drawnow

if iter>=2

subplot(2,1,2),

plot(log(trajectErr(1:lengthTraE)/var(trajectErr(1:lengthTraE))));

title(’Logorithmic NMSE’),grid on, drawnow

end

% take the latest measurement point value in "knnpt"

knnpt=ltstm;

if size(trajectErr,2)>5e3,disp(’TrnngIter>=5e3’);return;end

pause(iterPause); % slow down the simulation

elseif allowTest==1

% autonomous test

testOutput=auttt(net,prevInP,prdst);

% plot the result of autonomous test

figure(fig)

subplot(2,1,1),

hold on,

plot(testOutput(1,1),testOutput(2,1),’gp’);

for k=2:size(testOutput,2),

plot(testOutput(1,1:k),testOutput(2,1:k),’r’,’linewidth’,4); drawnow,

end

hold off

title(’Trajectory’)

% print out notice after plotting

temStr = strcat(num2str(prdst),’ steps’);

temStr = [’Red line indicates the autonomous prediction with ’,temStr];

disp(temStr);

% release the indicator



156 C. MatLab Code for MouseTracking

CntKey=’’;

allowTest=0;

iter=iter-1;

else

iter=iter-1;

end

pause(0.001) % relax the computer

end % end of WHILE

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function dst = gtdst(pt1,pt2)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%GTDST - get the distance between two point (2-dimensional)

% GTDST calculates the euclidean distance between two 2-dimensional

% point, and return the value.

%

% SYNTAX:

% dst = gtdst(pt1,pt2);

%

% It requires the input:

% pt1 - position vector of point 1

% pt2 - position vector of point 2

%

% and returns output:

% dst - euclidean distance between two given points

%

dst = sqrt(sum((pt1-pt2).^2));

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [sgp,dfd] = intpl(psp,lms,dfd,utl)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% INTPL - interpolate the mouse trajectory

% INTPL - divide the path from "psp" to "lms" into even segments

% with each segement has length equals "utl", and concantenate

% all the segement points (points dividing the segments)

% and the defficiency of the last trial

%

% SYNTAX:

% [sgp,dfd] = intpl(psp,lms,dfd,utl);



157

%

% It requires the input:

% psp - position vector of the latest boundary point

% lms - position vector of the latest measurement of mouse cursor

% dfd - deficiency (of length) which was required

% in the previous interpolation

% utl - unit of length which is used to segment the path of cursor

%

% and returns the output:

% sgp - concantenation of the position of newly formed boundary points

% dfd - deficiency (of length) which is required

% in the current interpolation

%

% the distance from psp to lms

availableDist = gtdst(psp,lms);

if availableDist < dfd

% when "availableDist" is not longer than "dfd"

% to form a segmentation

sgp = [];

dfd = dfd - availableDist; % update dfd

else

% number of segments which can be made within the "availableDist"

fac = ceil((availableDist-dfd)/utl);

% construct the boundary point one by one, and store in "sgp"

sgp = zeros(2,fac);

sgp(:,1) = gnsgp(psp,lms,dfd);

for i=2:fac

sgp(:,i) = gnsgp(sgp(:,i-1),lms,utl);

end

% calculate the deficiency to form another boundary point

dfd=utl - gtdst(sgp(:,fac),lms);

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function nsp = gnsgp(psp,lms,rql)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% GNSGP - generate the boundary points

% GNSGP generates one boundary point based on the position of previous



158 C. MatLab Code for MouseTracking

% boundary point and the latest measurement point.

%

% SYNTAX:

% nsp = gnsgp(psp,lms,rql)

%

% It requires the input:

% psp - the previous boundary points

% lms - position vector of the latest measurement of mouse cursor

% rql - the required length in order to form a segment

%

% and returns the output:

% nsp - the position vector of the newly constructed boundary point

%

% distance

dPs = gtdst(psp,lms);

% calculate the position of boundary point

% such that distance from "psp" to "nsp"

% is equal to "rql"

nsp = zeros(2,1);

nsp(1) = rql/dPs*(lms(1)- psp(1))+psp(1);

nsp(2) = rql/dPs*(lms(2)-psp(2))+psp(2);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function getCntKey(src,evnt)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% get the key press

global CntKey

CntKey = evnt.Character;



List of Figures

1.1 Dynamics transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Artificial neurons and layers of neurons . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Sketch of RNN in general . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Sketch of TDNN model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Sketches of the SRN and ESN model . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5 Sketch of BDRNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.6 Back-propagation of MLP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.7 Learning paradigms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.8 Working cycle of a sensor node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1 The structure of a hidden unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 The typical structure of SpiralRNN s . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 Training of a SpiralRNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4 Autonomous test of SpiralRNN s . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1 Data examples from Spike21 and Mackey-Glass datasets . . . . . . . . . . . . . . . 44

4.2 Lorenz chaotic time series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3 Results in Spike21 data with complexity Cs ≃ 50 . . . . . . . . . . . . . . . . . . . 51

4.4 Results in Spike21 data with complexity Cs ≃ 100 . . . . . . . . . . . . . . . . . . 52

4.5 Results in Mackey-Glass dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53



160 LIST OF FIGURES

4.6 Results in Lorenz data with model complexity Cs ≃ 100 . . . . . . . . . . . . . . . 54

4.7 Results in Lorenz data with complexity Cs ≃ 200 . . . . . . . . . . . . . . . . . . . 55

4.8 Autonomous output of MackeyGlass data . . . . . . . . . . . . . . . . . . . . . . . 56

4.9 MouseTracking ’s graphical interface . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.10 Dataset examples in MouseTracking . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.11 Segmentation in MouseTracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.12 Frequency analysis in MouseTracking with Cs ≃ 100 . . . . . . . . . . . . . . . . . 62

4.13 Frequency analysis in MouseTracking with Cs ≃ 200 . . . . . . . . . . . . . . . . . 62

4.14 Output examples of SpiralRNN in MouseTracking . . . . . . . . . . . . . . . . . . 63

4.15 Schematic diagram of warehouse . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.16 Histogram of evaluation error in scheme-1 . . . . . . . . . . . . . . . . . . . . . . . 71

4.17 Histogram of evaluation error in scheme-2 . . . . . . . . . . . . . . . . . . . . . . . 72

4.18 Histogram of evaluation error of SpiralRNN in scheme-2 . . . . . . . . . . . . . . . 73

4.19 Result examples from conditional prediction . . . . . . . . . . . . . . . . . . . . . . 74

4.20 Sample data from NN5 dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.21 Additional inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.22 Online training of SpiralRNN in NN5 competition . . . . . . . . . . . . . . . . . . 78

4.23 Committee of SpiralRNN experts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.24 Comparison between result and data showing weekly behavior for time series 35. Dashed line with circles

4.25 Comparison between result and data for time series 9 showing seasonal behavior. Dashed curve is the data

4.26 Prediction result (solid curve) and data (dashed curve) for time series 110 showing a peak around Easter.

4.27 Histogram (over 111 time series) of committee-average SMAPE error from experts . 82

4.28 Stability test with SpiralRNN in simulation with Spike21 . . . . . . . . . . . . . . 83

4.29 Stability test with SpiralRNN in simulation with Lorenz . . . . . . . . . . . . . . . 84

4.30 Measurement on short-term memory of SpiralRNN . . . . . . . . . . . . . . . . . . 86

4.31 Comparison of the impact of γ value on short-term memory . . . . . . . . . . . . . 87



List of Figures 161

4.32 Measurement on associative memory of SpiralRNN . . . . . . . . . . . . . . . . . . 89

5.1 Schematic diagram of the duty-cycle reduction . . . . . . . . . . . . . . . . . . . . . 92

5.2 Explanation of activity period . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.3 Structure modification in a sensor node . . . . . . . . . . . . . . . . . . . . . . . . 95

5.4 Sketch of the evolution framework . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.5 Modification of matrix P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.1 Data example of heat diffusion simulations . . . . . . . . . . . . . . . . . . . . . . . 107

6.2 Example topology of sensor network . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.3 Example of sensor nodes in the network . . . . . . . . . . . . . . . . . . . . . . . . 110

6.4 Comparison of prediction error in Simulation-1 . . . . . . . . . . . . . . . . . . . . 115

6.5 Comparisons in Simulation-1 with Cs ≃ 100 . . . . . . . . . . . . . . . . . . . . . . 116

6.6 Comparisons in Simulation-1 with Cs ≃ 200 . . . . . . . . . . . . . . . . . . . . . . 117

6.7 Comparisons of np and nm in “EF+DCi” series with complexity Cs ≃ 100 . . . . . 118

6.8 Comparisons of np and nm in “EF+DCi” series with complexity Cs ≃ 200 . . . . . 119

6.9 Comparison of prediction between DC2 and the “normal” schemes . . . . . . . . . 120

6.10 Reduction rate in duty-cycle reduction . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.11 Occurrence probability of evolution operations . . . . . . . . . . . . . . . . . . . . 123

6.12 Histograms of amount of input neurons in sensor network . . . . . . . . . . . . . . 124

6.13 Histograms of maximum communication energy consumption . . . . . . . . . . . . 124

6.14 Histograms of maximum computation energy consumption . . . . . . . . . . . . . . 125



162 List of Figures



List of Tables

2.1 Specifications of the TelosB device . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1 Terminology of symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Pseudo code: implementation of SpiralRNN s . . . . . . . . . . . . . . . . . . . . . 33

4.1 Configuration of RNN architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2 Comparison with Spike21 and Cs ≃ 50 . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3 Comparison with Spike21 and Cs ≃ 100 . . . . . . . . . . . . . . . . . . . . . . . . 52

4.4 Comparison with Mackey-Glass and Cs ≃ 50 . . . . . . . . . . . . . . . . . . . . . 53

4.5 Comparison with Mackey-Glass and Cs ≃ 100 . . . . . . . . . . . . . . . . . . . . . 53

4.6 Comparison with Lorenz and Cs ≃ 100 . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.7 Comparison with Lorenz and Cs ≃ 200 . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.8 The pseudo code for the MouseTracking. . . . . . . . . . . . . . . . . . . . . . . . 58

4.9 MatLab code for plotting frequency figure . . . . . . . . . . . . . . . . . . . . . . . 61

4.10 Comparison in MouseTracking with Cs ≃ 100 . . . . . . . . . . . . . . . . . . . . . 61

4.11 Comparison in MouseTracking with Cs ≃ 200 . . . . . . . . . . . . . . . . . . . . . 61

4.12 Pseudo code for initialization in conditional prediction . . . . . . . . . . . . . . . . 67

4.13 Pseudo code for training in conditional prediction . . . . . . . . . . . . . . . . . . . 67

4.14 Pseudo code for testing in conditional prediction . . . . . . . . . . . . . . . . . . . 68

4.15 Amount of hidden neurons in conditional prediction simulation . . . . . . . . . . . 69

4.16 Results of models in conditional prediction with scheme-1 . . . . . . . . . . . . . . 71



164 List of Tables

4.17 Results of SpiralRNN in conditional prediction with scheme-1 . . . . . . . . . . . . 72

4.18 Results of models in conditional prediction with scheme-2 . . . . . . . . . . . . . . 72

4.19 Results of SpiralRNN in conditional prediction with scheme-2 . . . . . . . . . . . . 73

4.20 Committee of experts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.21 Statistic results. The committee-averaged SMAPE error value of the expert committee on all 111 time series

5.1 Pseudo code for the duty-cycle reduction . . . . . . . . . . . . . . . . . . . . . . . . 95

5.2 Pseudo code for the evolution framework . . . . . . . . . . . . . . . . . . . . . . . . 103

6.1 Comparison in prediction error in simulation-1 with Cs ≃ 100 . . . . . . . . . . . . 115

6.2 Comparison in prediction error in simulation-1 with Cs ≃ 200 . . . . . . . . . . . . 116

6.3 Comparison in prediction error in “EF+DCi” series with Cs ≃ 100 . . . . . . . . . 118

6.4 Comparison in prediction error in “EF+DCi” series with Cs ≃ 200 . . . . . . . . . 118



Bibliography

[1] D. Estrin, D. Culler, K. Pister, and G. Sukhatme, “Connecting the physical world with
pervasive networks,” IEEE Pervasive Computing, vol. 1, pp. 59– 69, 2002.

[2] J. J. Garrahan, P. A. Russo, K. Kitami, and R. Kung, “Intelligent network overview,” IEEE
Communication Magazine, vol. March, pp. 30–36, 1993.

[3] J. Stankovic, T. Abdelzaher, C. Lu, L. Sha, and J. Hou, “Real-time communication and
coordination in embedded sensor networks,” Proceedings of the IEEE, vol. 91, pp. 1002–
1022, 2003.

[4] C.-Y. Chong and S. Kumar, “Sensor networks: evolution, opportunities, and challenges,”
Proceedings of the IEEE, vol. 91, pp. 1247–1256, 2003.

[5] A. Kun, W. Miller, and W. Lenharth, “Modular system architecture for electronic device
integration in police cruisers,” Intelligent Vehicle Symposium, 2002. IEEE, vol. 1, pp. 109–
114, 2002.

[6] A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, and J. Anderson, “Wireless sensor net-
works for habitat monitoring,” ACM International Workshop on Wireless Sensor Networks
and Applications (WSNA’02), 2002.

[7] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless sensor networks:
A survey,” Computer Networks, vol. 38, pp. 393–422, 2002.

[8] G. J. Pottie and W. J. Kaiser, “Wireless integrated network sensors,” Commun. ACM,
vol. 43, no. 5, pp. 51–58, 2000.

[9] J. Heidemann, F. Silva, C. Intanagonwiwat, R. Govindan, and D. Estrin, “Building efficient
wireless sensor networks with low-level naming,” in SOSP ’01: Proceedings of the eighteenth
ACM symposium on Operating systems principles, ISBN: 1-58113-389-8, (New York, NY,
USA), pp. 146–159, ACM Press, 2001.

[10] D. Estrin, R. Govindan, J. Heidemann, and S. Kumar, “Next century challenges: Scalable
coordination in sensor networks,” Proceedings of the Fifth Annual International Conference
on Mobile Computing and Networks (MobiCOM ’99), pp. 263–270, 1999.

[11] A. Kansal, A. A. Somasundara, D. D. Jea, M. B. Srivastava, and D. Estrin, “Intelligent fluid
infrastructure for embedded networks,” in MobiSys ’04: Proceedings of the 2nd international



166 BIBLIOGRAPHY

conference on Mobile systems, applications, and services, (New York, NY, USA), pp. 111–
124, ACM Press, 2004.

[12] E. C. Uberbacher and R. J. Mural, “Locating protein-coding regions in human DNA se-
quences by a multiple sensor-neural network approach,” Proceedings of the National Academy
of Sciences, USA., vol. 88, pp. 11261–11265, 1991.

[13] E. Yoneki, “Evolution of ubiquitous computing with sensor networks in urban environments,”
in Ubicomp - Workshop on Metapolis and Urban Life, pp. 56–60, September 2005.

[14] B. Hong and V. K. Prasanna, “Constrained flow optimization with applications to data
gathering in sensor networks,” in First International Workshop on Algorithmic Aspects of
Wireless Sensor Networks, 2004.

[15] A. Hac, Wireless Sensor Network Designs. John Wiley & Sons, 2003.

[16] R. V. Dyck and L. Miller, “Distributed sensor processing over an ad hoc wireless network:
simulation framework and performance criteria,” in Military communications conference,
2001.

[17] W. Ye, J. Heidemann, and D. Estrin, “An energy-efficient mac protocol for wireless sensor
networks,” Twenty-First Annual Joint Conference of the IEEE Computer and Communica-
tions Societies, vol. 3, pp. 1567– 1576, 2002.

[18] B. Chen, K. Jamieson, H. Balakrishnan, and R. Morris, “Span: An energy-efficient coordi-
nation algorithm for topology maintenance in ad hoc wireless networks,” Wireless Networks,
vol. 8, pp. 481–494, 2004.

[19] V. Rajendran, K. Obraczka, and J. J. Garcia-Luna-Aceves, “Energy-efficient, collision-free
medium access control for wireless sensor networks,” Wireless Networks, vol. 12, pp. 63–78,
2006.

[20] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are universal
approximators,” Neural Netw., vol. 2, no. 5, pp. 359–366, 1989.

[21] F. Scarselli, “Universal approximation using feedforward neural networks: A survey of some
existing methods, and some new results.,” Neural Networks, vol. 11, pp. 15–37, 1998.

[22] A. Waibel, T. Hanazawa, G. Hinton, and K. Shikano, “Phoneme recognition using time-delay
neural networks,” IEEE Transactions on Acoustics, Speech and Signal Processing, vol. 37(3),
pp. 328–339, 1989.

[23] J. Hertz, A. Krogh, and R. G. Palmer, Introduction to the theory of neural computation.
Addison Wesley, 1991.

[24] L. Li, “Approximation theory and recurrent networks,” International Joint Conference on
Neural Network, vol. 2, pp. 266–271, 1992.

[25] J. Choi, M. Bouchard, and T. Yeap, “Decision feedback recurrent neural equalization with
fast convergence rate,” IEEE Transactions on Neural Networks, vol. 16, pp. 699–708, 2005.



BIBLIOGRAPHY 167

[26] A. C. Tsoi and A. Back, “Locally recurrent globally feedforward networks: a critical review
of architectures,” IEEE Transactions on Neural Networks, vol. 5, no. 2, pp. 229–239, 1994.

[27] J. Perez-Ortiz, J. Calera-Rubio, and M. Forcada, “A comparison between recurrent neural
architectures for real-time nonlinear prediction of speech signals,” Neural Networks for Signal
Processing XI, 2001, pp. 73–81, 2001.

[28] H. Zimmermann, R. Grothmann, A. Schaefer, and C. Tietz, New Directions in Statisti-
cal Signal Processing: From Systems to Brain, ch. Identification and Forecasting of Large
Dynamical Systems by Dynamical Consistent Neural Networks. MIT Press, 2005.

[29] D. C. Psichogios and L. H. Ungar, “A hybrid neural network-first principles approach to
process modeling,” AIChE Journal, vol. 38, pp. 1499 – 1511, 2004.

[30] Y. Yao, G. Marcialis, M. Pontil, P. Frasconi, and F. Roli, “Combining flat and structured
representations for fingerprint classification with recursive neural networks and support vec-
tor machines,” Pattern Recognition, vol. 36, pp. 397–406, 2003.

[31] E. J. Hartman, J. D. Keeler, and J. Nowalski, “Layered neural networks with Gaussian
hidden units as universal approximations,” Neural Computation, vol. 2, pp. 210–215, 1990.

[32] K. Watanabe, J. Tang, M. Nakamura, S. Koga, and T. Fukuda, “Fuzzy-Gaussian neural
network and its application to mobile robot control,” IEEE Transactions on Control Systems
Technology, vol. 4, pp. 193–199, 1996.

[33] A. Petrosian, D. Prokhorov, W. Lajara-Nanson, and R. Schiffer, “Recurrent neural network-
based approach for early recognition of Alzheimer’s disease in EEG,” Clinical Neurophysiol-
ogy, vol. 112, pp. 1378–1387, 2001.

[34] P. Angeline, G. Saunders, and J. Pollack, “An evolutionary algorithm that constructs recur-
rent neural networks,” IEEE Transactions on Neural Networks, vol. 5, pp. 54–65, 1994.

[35] J. Sum, C.-s. Leung, G. H. Young, and W.-k. Kan, “On the Kalman filtering method in
neural-network training and pruning,” IEEE Transactions on Neural Networks, vol. 10,
pp. 161–166, 1999.

[36] J. Sum, L. wan Chan, C. sing Leung, and G. H. Young, “Extended Kalman filter-based
pruning method for recurrent neural networks,” Neural Comput., vol. 10, no. 6, pp. 1481–
1505, 1998.

[37] R. Setiono and H. Liu, “Neural-network feature selector,” IEEE Transactions on Neural
Networks, vol. 8, pp. 654–662, 1997.

[38] W. McCulloch and W. Pitts, Bulletin of Mathematical Biophysics, ch. A Logical Calculus
of Ideas Immanent in Nervous Activity, pp. 115–133. Springer New York, 1988. Reprinted
from theBulletin of Mathematical Biophysics, Vol. 5, pp. 115-133 (1943).

[39] R. P. Lippmann, “An introduction to computing with neural nets,” IEEE Acoustics, Speech
and Signal Processing Magazine, vol. 4, pp. 4–22, Apr. 1987.



168 BIBLIOGRAPHY

[40] R. P. Lippmann, “Pattern classification using neural networks,” IEEE Comm. Mag., vol. 27,
pp. 47–69, 1989. November.

[41] J. Bioch, O. v. d. Meer, and R. Potharst, “Classification using Bayesian neural nets,” IEEE
International Conference on Neural Networks, vol. 3, pp. 1488–1494, 1996.

[42] D. E. Rumelhart and e. a. J. L. McClelland, Parallel distributed processing: explorations in
the microstructure of cognition. Cambridge, Mass.,MIT Press, 1986.

[43] T. Sejnowski and C. Rosenberg, “Parallel networks that learn to pronounce english text,”
Complex Systems, vol. 1, pp. 145–168, 1987.

[44] J. Ma, “The capacity of time-delay recurrent neural network for storing spatio-temporal
sequences,” Neurocomputing, vol. 62, pp. 19–37, 2004.

[45] A. D. Back and A. C. Tsoi, “FIR and IIR synapses, a new neural network architecture for
time series modeling,” Neural Computations, vol. 3, pp. 375–385, 1991.

[46] J. L. Elman, “Finding structure in time,” Cognitive Science, vol. 14, no. 2, pp. 179–211,
1990.

[47] H. Zimmermann, R. Grothmann, A. Schaefer, and C. Tietz, “Dynamical consistent recurrent
neural networks,” Int. Joint Conference on Neural Networks (IJCNN), 2005.

[48] H. Jaeger, “The ”Echo State” approach to analysing and training recurrent neural networks,”
Tech. Rep. GMD Report 148, German National Research Center for Information Technology,
2001.

[49] H. Jaeger, “Short term memory in echo state networks,” Tech. Rep. GMD Report 152,
German National Research Center for Information Technology, 2002.

[50] H. Jaeger, “Adaptive nonlinear system identification with echo state networks,” Advances
in Neural Information Processing Systems, vol. 15, pp. 593–600, 2003.

[51] H. Jaeger, “Tutorial on training recurrent neural networks, covering BPTT, RTRL, EKF
and the ”echo state network” approach.,” Tech. Rep. GMD Report 159, German National
Research Center for Information Technology, 2002.

[52] S. Sivakumar, W. Robertson, and W. Phillips, “Online stabilization of block-diagonal re-
current neural networks,” IEEE Transactions on Neural Networks, vol. 10, pp. 167 – 175,
1999.

[53] P. Mastorocostas and J. Theocharis, “On stable learning algorithm for block-diagonal re-
current neural networks, part 1: the RENNCOM algorithm,” IEEE International Joint
Conference on Neural Networks, vol. 2, pp. 815– 820, 2004.

[54] L. Bottou, On-line learning in neural networks, ch. On-line learning and stochastic approx-
imations, pp. 9–42. New York, NY, USA: Cambridge University Press, 1998.

[55] R. Kalman, “A new approach to linear filtering and prediction problems,” Transactions of
the ASME–Journal of Basic Engineering, vol. 82, pp. 35–45, 1960.



BIBLIOGRAPHY 169

[56] F. Lewis, Optimal Estimation: With an Introduction to Stochastic Control Theory. A Wiley-
Interscience Publication, 1986. ISBN: 0-471-83741-5.

[57] G. Welch and G. Bishop, “An introduction to the Kalman filter,” Tech. Rep. Technical Re-
port 95-041, University of North Carolina at Chapel Hill, Department of Computer Science,
2002.

[58] J. A. Perez-Ortiz, F. A. Gers, D. Eck, and J. Schmidhuber, “Kalman filters improve LSTM
network performance in problems unsolvable by traditional recurrent nets,” Neural Network,
vol. 16, pp. 241–250, Mar 2003.

[59] P. Trebatickye, “Recurrent neural network training with the extended Kalman filter,”
IIT.SRC 2005, pp. 57–64, 2005.

[60] P. L. Bogler, “Tracking a maneuvering target using input estimation.,” IEEE Transactions
on Aerospace and Electronic Systems, vol. AES-23, no. 3, pp. 298–310, 1987.

[61] S. Singhal and L. Wu, “Training multilayer perceptrons with the extended Kalman algo-
rithm,” Advances in neural information processing systems 1, pp. 133–140, 1989.

[62] D. E. Catlin, Estimation, Control, and the Discrete Kalman Filter. ISBN: 038796777X,
Springer, 1988.

[63] Y.-R. Kim, S.-K. Sul, and M.-H. Park, “Speed sensorless vector control of an induction
motor using an extended Kalman filter,” Industry Applications Society Annual Meeting,
1992., Conference Record of the 1992 IEEE, vol. 1, pp. 594–599, 1992.

[64] R. G. Brown and P. Y. C. Hwang, Introduction to Random Signals and Applied Kalman
Filtering: with MATLAB excercises and solutions. John Wiley & Sons,Inc., 3rd ed., 1997.

[65] L. Xie and Y. C. Soh, “Robust Kalman filtering for uncertain systems,” Syst. Control Lett.,
vol. 22, no. 2, pp. 123–129, 1994.

[66] R. Williams and D. Zipser, “A learning algorithm for continually running fully recurrent
neural networks,” Neural Computtion, vol. 1, pp. 270–280, 1989.

[67] A. W. Smith and D. Z. and, “Learning sequential structure with the real-time recurrent
learning algorithm,” International Journal of Neural Systems, vol. 1, pp. 125 – 131, 1989.

[68] T. Chow and Y. Fang, “A recurrent neural-network-based real-time learning controlstrategy
applying to nonlinear systems with unknown dynamics,” IEEE Transactions on Industrial
Electronics, vol. 45, pp. 151–161, 1998.

[69] C. Fi-John, C. Li-Chiu, and H. Hau-Lung, “Real-time recurrent learning neural network for
stream-flow forecasting,” Hydrological processes, vol. 16, pp. 2577–2588, 2002.

[70] S. Haykin, ed., Nueral Networks - a Comprehensive Foundation. Prentice Hall, 1999.

[71] N. B. Toomarian and J. Barhen, “Learning a trajectory using adjoint functions and teacher
forcing,” Neural Networks, vol. 5, pp. 473 – 484, 1992.



170 BIBLIOGRAPHY

[72] N. Toomarian and J. Barhen, “Fast temporal neural learning using teacher forcing,” Inter-
national Joint Conference on Neural Network, vol. 1, pp. 817–822, 1991.

[73] J. Polastre, R. Szewczyk, and D. Culler, “Telos: Enabling ultra-low power wireless research,”
in The Fourth International Conference on Information Processing in Sensor Networks: Spe-
cial track on Platform Tools and Design Methods for Network Embedded Sensors, pp. 364–
369, 2005.

[74] T. Bäck, F. Hoffmeister, and H.-P. Schwefel, “A survey of evolution strategies,” Proceedings
of the Fourth International Conference on Genetic Algorithms, pp. 2–9, 1991.

[75] H.-G. Beyer, “Evolution strategies.” http://www.scholarpedia.org/, September 2007.

[76] R. K. Belew, J. McInerney, and N. N. Schraudolph, Artificial Life II, ch. Evolving Networks:
Using the Genetic Algorithm with Connectionist Learning, pp. 511–547. Addison-Wesley,
1992.

[77] C. Igel, “Neuroevolution for reinforcement learning using evolution strategies,” Evolutionary
Computation, vol. 4, pp. 2588 – 2595, 2003.

[78] K. O. Stanley and R. Miikkulainen, “Evolving neural networks through augmenting topolo-
gies,” Evolutionary Computation, vol. 10, pp. 99–127, 2002.

[79] K. O. Stanley, Efficient Evolution of Neural Networks through Complexification. PhD thesis,
Department of Computer Sciences, The University of Texas at Austin, 2004.

[80] H. Gao, R. Sollacher, and H.-P. Kriegel, “Spiral recurrent neural network for online learning,”
in 15th European Symposium On Artificial Neural Networks Advances in Computational
Intelligence and Learning, (Bruges (Belgium)), April 2007.

[81] K. Wieand, “Eigenvalue distributions of random permutation matrices,” The Annals of
Probability, vol. 28, no. 4, pp. 1563–1587, 2000.

[82] D. Geller, I. Kra, S. Popescu, and S. Simanca, “On circulant matrices.” Preprint.

[83] R. M. Gray, Toeplitz and Circulant Matrices: A Review. Now Publishers, Norwell, Mas-
sachusetts, 2006.

[84] B. Schuermann, J. Hollatz, and U. Ramacher, “Models of brain function and artificial neu-
ronal nets,” Models of Brain Function and Artificial Neuronal Nets, pp. 167–185, 1990.

[85] L. Glass and M. C. Mackey, From Clocks to Chaos, The Rhythms of Life. Princeton Univer-
sity Press, 1988.

[86] H. Gao and R. Sollacher, “Condictional prediction of time series using spiral recurrent neural
network,” in European Symposium on Artificial Neural Networks Advances in Computational
Intelligence and Learning, 2008.

[87] R. Sollacher and H. Gao, “Efficient online learning with spiral recurrent neural networks,”
in to appear in: International Joint Conference on Neural Networks, 2008.



BIBLIOGRAPHY 171

[88] R. J. McEliece, E. C. Posner, E. R. Rodemich, and S. S. Venkatesh, “The capacity of the
hopfield associative memory,” IEEE Trans. Inf. Theor., vol. 33, no. 4, pp. 461–482, 1987.

[89] R. Wattenhofer, L. Li, P. Bahl, and Y.-M. Wang, “Distributed topology control for power
efficient operation in multihop wireless ad hoc networks,” in Twentieth Annual Joint Con-
ference of the IEEE Computer and Communications Societies, 2001.

[90] W. Krause, R. Sollacher, and M. Greiner, Lecture Notes in Computer Science, ch. Self-
* Topology Control in Wireless Multihop Ad Hoc Communication Networks, pp. 49–62.
Springer Berlin / Heidelberg, 2005.

[91] L. Kleinrock and J. Silverster, “Optimum transmission radii for packet radio networks or
why six is a magic number,” in National Telecommunications Conference, 1978.


	Acknowledgement
	Abstract
	Contents
	Introduction
	Goal
	Challenges and Solutions
	Intelligence of Sensor Node
	Evolution Framework

	Structure of Thesis

	State of the Art
	Recurrent Neural Networks
	On-line Learning Algorithms
	Gradient Descent Learning
	Back-Propagation
	Kalman Filters
	Learning Paradigms

	Backgrounds on Sensor Network Application
	Evolution
	Genetic Algorithm
	Evolution Strategies
	Evolution with Neural Networks


	Spiral Recurrent Neural Networks
	Structure and Eigenvalues
	Hidden Units
	SpiralRNNs
	Eigenvalues in SpiralRNNs

	Implementation of SpiralRNNs
	The Forward Phase
	The Training Phase
	The Autonomous Test Phase


	Applications with SpiralRNNs
	Experimental Settings
	Tasks
	Networks
	Training
	Testing and Measurement

	Simulations with Time Series Prediction
	Spike21 Dataset
	Mackey-Glass Dataset
	Lorenz Dataset
	Discussion

	MouseTracking with SpiralRNNs
	The MouseTracking
	Training Data
	Competing Models
	Evaluation Methods
	Results & Discussion

	Conditional Prediction with SpiralRNNs
	Scenario
	Conditional Prediction with RNNs
	Experimental Settings
	Results

	NN5 Competition of Data Prediction
	Towards NN5 Competition
	Results

	Analysis on SpiralRNNs
	Stability of Attractors
	Short-Term Memory Capacity
	Associative Memory Capacity


	Solutions for Distributed Sensor Networks
	The Duty-Cycle Reduction
	The Evolution Framework
	Evolution-Operation-Selector
	Constraint Conditions
	Model Training
	Fitness Values
	Evolutionary Operations
	Evolution Framework in a Nutshell


	Simulations in Sensor Network Applications
	Simulation Settings
	Simulation Results
	Simulation 1
	Simulation 2

	Discussion
	Prediction Performance
	Energy Consumption
	Early Depletion


	Summary and Conclusion
	Eigenvalue Spectrum of SpiralRNNs
	Preliminaries
	Eigenvalue Spectrum of Spiral Units
	Eigenvalue Spectrum of SpiralRNNs

	MatLab Code for SpiralRNN Models
	MatLab Code for MouseTracking
	List of Figures
	List of Tables
	Bibliography

