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Introduction

The concept of abstract Wiener spaces, introduced by L. Gross in [14], arises
from the problem of finding a measure on an infinite dimensional Hilbert
space H. The Gaussian measure on the cylinder sets of H fails to be σ-
additive; it is categorically impossible to find measures on H which are trans-
lation invariant and positive on nonempty open sets. But if one considers an
appropriate weaker norm on H and denotes the Banach space completion of
H with respect to this new norm by B, then there exists a Gaussian measure
P on B. The triple (B,H, P ) is called an abstract Wiener space. This ter-
minology is justified since the classical Wiener space of continuous functions
on the unit interval can be regarded as an abstract Wiener space. In fact,
any separable Banach space appears as an abstract Wiener space.

The Malliavin calculus is an infinite-dimensional differential calculus and was
introduced by P. Malliavin in [21]. The derivative is a linear but unbounded
operator defined on a closed subspace of the space of square integrable func-
tions f : B → R. It takes values in the space of square Bochner integrable
functions g : B → H. The integral is defined as the adjoint operator of the
derivative. Originally conceived to investigate regularity properties of the
law of solutions of stochastic differential equations, the Malliavin calculus
evolved into an area of study in its own right. Recently it has also been
applied to the theory of finance (cf. [13]).

In contrast to the classical Wiener space, in the case of abstract Wiener
spaces there is no natural notion of time. Naturally, this leads to difficulties
when defining a stochastic integral. In a new approach (cf. [32]), Üstünel
and Zakai solve this problem by working with a resolution of the identity on
H. This provides a notion of time and adaptedness, enabling them to define
the stochastic integral of certain adapted H-valued random variables. The
integrators are B-valued random variables called abstract Wiener processes.
Both, the integrands and the integrator live on an arbitrary probability space.

It is a well known result from model theory that there exist polysaturated
models of mathematics. On the one hand these models have the same for-
mal properties as the standard model. On the other hand all sets in satu-
rated models are essentially compact: for every cardinal number κ there is
a polysaturated model in which each set is κ-compact. As a consequence
we obtain the existence of numbers α 6= 0 in the extended models which are
smaller than any real number in the standard model. These numbers are
called infinitesimals. Certainly we have to pay a price for obtaining such
properties: the sets in the saturated models, called the internal sets, are
no more unrestricted closed under subset formation. But sets which can
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be defined in terms of other internal sets are internal themselves. Using
polysaturated models, we can replace objects of the standard model by in-
ternal objects of considerably lower complexity. For example we can work
with the set {1, ..., H} instead of the continuous time interval [0, 1]. Here
H is a hyperfinite natural number, i.e. an internal natural number greater
than every standard natural number. The passage to the extended model can
also be reversed: it is often possible to identify internal sets with standard
sets via the so-called standard part map. For example, we can define the
Lebesgue integral as the standard part of a hyperfinite summation. Another
example is H. Osswald’s (see [24] and [25]) method to introduce a notion
of time in abstract Wiener spaces: instead of B, one works with the space
of B-valued functions on the unit interval. This allows for the definition of
a Brownian motion as the standard part of an internal random walk, and
to define a stochastic integral as the standard part of an internal Riemann-
Stieltjes-integral.

By means of polysaturated models we can define a Loeb probability space
which allows us to treat the Malliavin calculus on abstract Wiener spaces
and the Üstünel-Zakai-integral simultaneously. First, we replace B by a hy-
perfinite dimensional subspace F of ∗H which contains H. We then equip F
with the Loeb measure induced by the internal Gaussian measure, a method
due to Lindstrøm (cf. [18]). In [8], Cutland and Ng establish an infinitesimal
approach to the Malliavin calculus for the classical Wiener space. In this
approach the basic operators have natural descriptions as classical differen-
tial operators on internal Euclidean spaces. Using the hyperfinite space F,
we generalize this saturated model approach of the Malliavin calculus to ab-
stract Wiener spaces. In this setup, a resolution of the identity is a family of
orthogonal projections on H, indexed by the unit interval. By working with
F instead of H, we can express the resolution by an internal family of projec-
tions on ∗H, indexed by a hyperfinite set. Furthermore, we can describe the
internal projections in terms of an internal orthonormal basis of F. Using a
saturation argument, we manage to establish a linear dependence between
the index set of the internal family of projections and the index set of the
orthonormal basis of F. This paves the way for our further proceeding: we
define a canonical internal Itô integral, whose standard part turns out to be
the Üstünel-Zakai-integral.

One of the most interesting theorems of this thesis is the Clark Ocone formula
for abstract Wiener spaces, because it establishes a connection between the
Malliavin derivative and the stochastic integral. This kind of fundamental
theorem of calculus states, roughly speaking, that each Malliavin differen-
tiable function equals the stochastic integral of its derivative. This theorem
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is well known for the classical Wiener space but new in this general form.
The orthogonal projection pr from the space of square Bochner integrable
functions ψ : F→ H onto the space of adapted functions plays a major role
in the Clark Ocone formula. The crucial point is that our saturated model
approach makes it possible to define the assignment ψ 7→ prψ constructively,
i.e. given a generic ψ we have the information how pr ψ explicitely looks like.
Endowed with this information, the proof of the Clark Ocone formula is a
simple hyperfinite computation.

This shows once again that polysaturated models are not only an isolated
field of research. By the transfer to internal objects many operations can be
expressed constructively. This leads to new results in various mathematical
disciplines, such as functional analysis and stochastic analysis. See for exam-
ple the treatment of stochastic differential equations by Hoover and Perkins
in [15].

In the appendix, which is independent of the rest of the thesis, we consider the
so called Lévy transformation of Brownian motion L. This transformation
operates on the space of continuous functions on the unit interval. It is
one of the most famous open problems in stochastic analysis whether it is
ergodic. (See Question 1 in Chapter VI of [28].) We construct an internal
transformation τ on a hyperfinite dimensional space and show that L is
ergodic if and only if τ is ergodic. This allows us to see the open question
concerning the ergodicity of L from a different point of view, since τ is given
explicitely, whereas L is defined by a stochastic integral.
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1 Some Definitions and Notations

Let us start with some definitions and notations. For sets A and B we write
A := B if A equals B by definition. If A and B are formulae, we write
A :⇔ B if A is equivalent to B by definition. Let R denote the set of
the real numbers. Set further R+

0 := {x ∈ R | x ≥ 0}, N := {1, 2, ...} and
N0 := {0, 1, 2, ...}. For n ∈ N and any set I we define

In6= := {(i1, ..., in) ∈ In | k 6= l⇒ ik 6= il}

and if I is a set of real numbers we define

In< := {(i1, ..., in) ∈ In | k < l⇒ ik < il}.

Therefore I1
6= = I1

< = I. For any topological space X let bX denote the Borel

σ-algebra on X and for B ⊂ X let B denote the closure of B in X. For any
subset A of a real vector space X let span(A) denote the smallest subspace
of X containing A. For subsets A and B of a set X let

A4B := {x ∈ A | x 6∈ B} ∪ {x ∈ B | x 6∈ A}

denote the symmetric difference of A and B. For any Banach space B
we denote by B′ the topological dual of B, i.e. the space of all continuous
linear functions ϕ : B→ R.

Given any Hilbert space H, we denote the scalar product by < · , ·>H and the
norm by ‖ · ‖

H
. Sometimes we omit the index H. Fix x, y ∈ H and A,B ⊂ H.

The vectors x and y are said to be orthogonal if < x, y >= 0. In this case
we write x⊥y. We further set

x⊥A :⇔ x⊥z for all z ∈ A ,
A⊥B :⇔ z⊥B for all z ∈ A and

A⊥ := {z ∈ H | z⊥A}.

For a finite dimensional subspace A of H let dim(A) denote the dimension
of A. By the Riesz representation theorem, we can identify H with H′. If
H is an L2-space, we sometimes write < · , ·>2 instead of < · , ·>H and ‖ · ‖2

instead of ‖ · ‖
H

. For a closed subspace A of H, denote by prHA the orthogonal
projection onto A. For x ∈ H and a finite subset A of H we set

xA := prHspan(A)x := prHspan(A)(x).
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For h ∈ H and m ∈ N let

h�m : H
m → R ,

(k1, ..., km) 7→
m∏
i=1

< ki, h > .

Then h�m is a symmetric multilinear form on Hm. Suppose that (An)n∈N is
a sequence of closed subspaces of H such that An⊥Am if n 6= m. Set

⊕∞n=1An :=

{
∞∑
n=1

xn | xn ∈ An

}
.

Then ⊕∞n=1An itself is a closed subspace of H.

Fix a probability space (Λ, C, µ) and let S ⊂ C be a sub-σ-algebra. If f : Λ→
R is C-measurable, we write f : (Λ, C)→ R or simply f ∈ C. If (Λ′, C ′, µ′) is
another probability space and g : Λ→ Λ′ is a measurable function, we write
g : (Λ, C)→ (Λ′, C ′). We denote by C ⊗ C ′ the product σ-algebra of C and C ′
and by µ⊗ µ′ the product measure of µ and µ′. Set

Nµ := {A ∈ C | µ(A) = 0}.

Denote by S ∨ Nµ the smallest σ-algebra that contains S and Nµ. Then
a subset A of Λ is in S ∨ Nµ if and only if there is a set B ∈ S such
that A 4 B ∈ Nµ. Set EµF := EF :=

∫
Λ
Fdµ. If V is a set of functions

f : (Λ, C) → R we denote by σV the smallest σ-algebra such that all f ∈ V
are σV-measurable. If P = P (ω) is a property which depends on ω ∈ Λ we
say that P holds µ-almost surely if {ω ∈ Λ | P (ω) fails} ∈ Nµ. In this case
we write P holds µ-a.s. A function f : Λ→ R is measurable with respect to
S ∨ Nµ if and only if there is a function g ∈ S such that f = g µ-a.s.

Let
L2(µ) := L2

C(µ) := L2(Λ, C, µ)

denote the Hilbert space of square µ-integrable functions f : Λ→ R. For an
f ∈ L2

C(µ) denote by ESf the conditional expectation of f with respect to
S.

We are working with the standard model of mathematics and with a polysat-
urated model. The interplay between these universes is established by an
elementary embedding ∗ from the standard model into the extended model.
In [1] and [20] you can find introductions to these concepts. Now we are
specifying the compactness property we have mentioned in the introduction.
Fix a standard set I and a set A in the extended model. Assume further
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that for each i ∈ I there is an internal subset Ai of A such that the family
(Ai)i∈I has the finite intersection property, which means that the inter-
section of each finite subfamily is nonempty. Then we obtain ∩i∈IAi 6= ∅.
This property is called polysaturation. For α, β ∈ ∗R we write α ≈ β if
|α− β| < 1/n for all n ∈ N. A number α ∈ ∗R is called limited if there is
an n ∈ N such that |α| < n, otherwise α is called unlimited. Note that an
α ∈ ∗R is limited if and only if there is an a ∈ R such that a ≈ α. In this
case a is uniquely determined. Set

Lim := {α ∈ ∗R | α is limited } .

For any α ∈ ∗R the standard part ◦α of α is defined by

◦α =


a if α is limited and a ∈ R with α ≈ a ,
∞ if α is not limited and α > 0 ,
−∞ if α is not limited and α < 0 .

Let (Ω,B,Γ) be an internal probability space. Set

N := {M ⊂ Ω | ∀ε ∈ R+
0 ∃N ∈ B with M ⊂ N and Γ(N) < ε}

and
LΓ(B) := {B ⊂ Ω | ∃A ∈ B with B 4 A ∈ N } .

For B ∈ LΓ(B) and A ∈ B with B 4 A ∈ N set Γ̂(B) := ◦Γ(A) . Then

(Ω, LΓ(B), Γ̂) is a probability space in the standard sense and N equals the

set of all µ̂-nullsets Nµ̂. (Ω, LΓ(B), Γ̂) is called the Loeb space of (Ω,B,Γ),
see again [1] or [20] for details. For an internal function F : (Ω,B)→ R the
implications ∫

|F | dΓ ∈ Lim ⇒ |F | is limited Γ̂-a.s.

and ∫
|F | dΓ ≈ 0 ⇒ |F | ≈ 0 Γ̂-a.s.

are valid. An internal function F : Ω → ∗
R is called a lifting of a function

f : Ω → R if F ≈ f Γ̂-a.s. It is well known that a function f : Ω →
R is LΓ(B)-measurable if and only if there is a B-measurable lifting F of
f . The notion of S-integrability provides an important connection between
integration on Loeb spaces and internal integrals. Fix an internal function
F : (Ω,B)→ ∗

R. Then F is called SΓ-integrable if∫
{|F |≥N}

|F | dΓ ≈ 0

for each unlimited N ∈ ∗N. This property is equivalent to the conditions
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•
∫

Ω
|F | dΓ ∈ Lim and

•
∫

Ω
|F | dΓ ≈ 0 for each N ∈ B with Γ(N) ≈ 0.

For p ∈ [1,∞[ denote by SLp(Γ) the set of all G ∈ B such that |G|p is SΓ-
integrable. By Hölder’s inequality we obtain that F ∈ SLp(Γ) if E |F |2p is
limited. We say that F is square SΓ-integrable if F ∈ SL2(Γ). This is the
case if for each n ∈ N there is a G ∈ SL2(Γ) such that ‖G− F‖2 < 1/n. The
term S-integrable is justified by the fact that a function f : (Ω, LΓ(B))→ R

is Γ̂-integrable if and only if there is an S-integrable lifting G of f . In this
case ∫

fdΓ̂ ≈
∫
GdΓ.

If F ∈ B is S-integrable, the implications from above become equivalences:∫
|F | dΓ ∈ Lim ⇔ |F | is limited Γ̂-a.s.

and ∫
|F | dΓ ≈ 0 ⇔ |F | ≈ 0 Γ̂-a.s.

We further mention that all of the assertions about Loeb spaces and S-
integrability we have made remain true if Γ(Ω) ∈ Lim but Γ is no longer
necessarily a probability measure. The proof of the next lemma is a typical
example for the use of polysaturation arguments.

1.1 Lemma

Let (X, ‖ · ‖) be an internal normed space. Fix a sequence (xn)n∈N with xn ∈
X and suppose that there is a strictly monotone increasing map g : N → N

such that the implication

l, k ≥ g(n)⇒ ‖xk − xl‖ ≤ 1
n

is valid for all l, k, n ∈ N. Then there is an x ∈ X such that ‖x− xk‖ ≤ 2
n

for all k, n ∈ N with k ≥ g(n).

Proof. A first saturation argument shows that, since the sequence

Gn := {F : ∗N→ X | ∀1 ≤ k ≤ n (F (k) = xk)} , n ∈ N

has the finite intersection property, there is an internal sequence (yn)n∈ ∗N in
X such that yn = xn for all n ∈ N. Note further that ∗g : ∗N → ∗

N is an
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internal strictly monotone increasing function. Now

Fm :=

{
x ∈ X |

∥∥y∗g(m) − x
∥∥ ≤ 1

m

}
, m ∈ N

has also the finite intersection property. For x ∈ ∩m∈NFm we obtain

‖x− xk‖ ≤
∥∥x− xg(n)

∥∥+
∥∥xg(n) − xk

∥∥ ≤ 2 · 1
n

for n, k ∈ N and k ≥ g(n). �

Note that for a set A in the standard model the inclusion {∗a | a ∈ A} ⊂ ∗A
is strict if and only if A is not finite. Therefore there is a great difference
between A and ∗A. But if we are only interested in A as an object and do
not care about the elements of A, we sometimes identify A with ∗A. For
example, we do not distinguish between x and ∗x if x is a real number or an
element of a Banach space.

For x, y ∈ ∗H we write x ≈ y if ‖x− y‖ ≈ 0. A function f : (Λ, C)→ (H, bH)
is called square Bochner integrable if ‖f‖ is in L2(µ). Note that for
H = R square Bochner integrable is the same as square integrable. Denote
by L2

C(µ,H) the space of square Bochner integrable functions. Sometimes we
write L2(µ,H) instead of L2

C(µ,H). If we identify f, g ∈ L2
C(µ,H) if f = g

µ-a.s. then L2
C(µ,H) becomes a Hilbert space with respect to the scalar

product
< f, g >L2

C(µ,H) := Eµ < f, g >H .

Now suppose that (Λ, C, µ) = (Ω, LΓ(B), Γ̂). Fix an internal function F :
(Ω,B)→ (∗H, b∗H) and any mapping f : Ω→ H. Then F is called a lifting

of f if f ≈ F Γ̂-a.s. We will make use of the following lifting theorem.

1.2 Proposition

(See [2], Theorem 6 and [26], Theorem 8.9.1.) A mapping f : Ω → H is
measurable (with respect to the σ-algebras LΓ(B) and bH) if and only if there
exists a lifting F : (Ω,B)→ (∗H, b∗H) of f . Furthermore, f is square Bochner
integrable if and only if f has a lifting F such that ‖F‖ ∈ SL2(µ).

Set T := {1, ..., H} for an unlimited H ∈ ∗
N. Let (Bk)k∈T be an internal

filtration in B. Using a method of Keisler (see [16]) we construct a filtration
in the standard sense. Define for t ∈ [0, 1]

ct := {B ∈ LΓ(B) | ∃k ∈ T ∃A ∈ Bk with k
H
≈ t and A4B ∈ N} .
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1.3 Proposition

(A) (See [16]. See also [20], Theorem 5.2.10 for a detailed proof.)
The system (ct) is an increasing family of σ-algebras such that N ⊂ c0.
Furthermore, the filtration (ct) is right continuous, i.e. we have

cs = ∩{ct | t ∈ ]s, 1]}

for each s ∈ [0, 1[ .

(B) Fix k ∈ T and t ∈ [0, 1] with k
H
≈ t. Then for each F ∈ Bk the standard

part ◦F is ct-measurable.

(C) Fix t ∈ [0, 1] and suppose that f ∈ L2(Ω, ct, Γ̂). Then there is an F ∈
SL2(Γ) and a k ∈ T with k

H
≈ t such that F ∈ Bk and F is a lifting of

f .

Proof. Assertion (B) follows from the fact that LΓ(Bk) ⊂ ct. It remains to
prove (C). We can assume that t < 1. Fix any SL2-lifting G of f . It suffices
to show that for each n ∈ N the set

Kn :=
{

(F, k) | k ∈ T, F ∈ Bk,
∣∣t− k

H

∣∣ < 1
n

and ‖F −G‖2 <
1
n

}
is nonempty. Because this implies that the decreasing system (Km) has the
finite intersection property, and any pair (F, k) in the intersection of all sets
Km will satisfy the conditions of assertion (C). So let n ∈ N. Fix a k ∈ T
such that t < ◦ k

H
< t+ 1

n
. Then ct ⊂ LΓ(Bk)∨N . Without loss of generality

we may assume that f ∈ LΓ(Bk). Thus there is a Bk-measurable SL2-lifting
F of f . We obtain that (F, k) ∈ Kn. �
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2 Abstract Wiener Spaces

The Lebesgue measure on Rn is uniquely determined (up to some constant)
by the following conditions: it is translation invariant, it assigns finite values
to bounded Borel sets and it assigns positive numbers to non-empty open
sets. It is easy to see that there cannot be a measure with these properties
on the Borel σ-algebra bH of an infinite dimensional Hilbert space H, even
if we replace translation invariant by rotation invariant. On the other hand
we have to face the fact that Gaussian measure on the cylinder sets of H is
not σ-additive (see below). A possible solution to the problem of finding a
kind of natural measure on bH lies in the concept of abstract Wiener spaces,
introduced by L. Gross in [14]. The crucial point lies in the introduction of
a weaker norm on H. The theory of L. Gross, as well as the infinitesimal ap-
proach to abstract Wiener spaces by Lindstrøm (see [19]) are sketched in this
section. We further recommend the introduction to abstract Wiener spaces
presented by Kuo in [17]. We start from an arbitrary infinite dimensional
and separable Hilbert space H. Set

E := {E ⊂ H | E is a finite dimensional subspace of H} .

Fix E ∈ E with orthonormal basis (a1, ..., an). The Gaussian probability
measure µE on bE is given by

µE(A) :=
√

2π
−n
∫
{(α1,...,αn)∈Rn|

∑n
i=1 αiai∈A}

e−
1
2

(x2
1+...+x2

n) d x1...xn .

2.1 Lemma

(See [26], Lemma 2.2.3, for a detailed proof.) The probability measure µE
does not depend on the choice of the orthonormal basis (a1, ..., an).

The cylinder sets in H are the sets

Z := (ϕ1, ..., ϕn)−1(A)

with n ∈ N, ϕi : H → R linear and continuous and A ∈ bRn . Denote by
ZH the system of the cylinder sets in H. It is easy to verify that ZH is an
algebra. A different characterization of the cylinder sets allows to define a
measure on ZH.
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2.2 Proposition

(See Definition 4.2 and Proposition 4.1 in [17].) A set Z ∈ bH is a cylinder set
in H if and only if there are sets E ∈ E and B ∈ bE such that Z = B+E⊥. In
this case set µH(Z) := µE(B). Then µH is well defined and finitely-additive,
but not σ-additive on ZH.

A norm | · | on H is called measurable if for each ε > 0 there is an Eε ∈ E
such that for each E ∈ E

E⊥Eε ⇒ µE({x ∈ E | |x| > ε}) < ε .

For example, each norm on H given by a Hilbert-Schmidt operator is mea-
surable.

2.3 Lemma

(See [17], Lemma 4.2.) If | · | is a measurable norm on H then there is a
c ∈ R+ such that |h| ≤ c · ‖h‖ for all h ∈ H.

We mention that bH is always understood with respect to the Hilbert space
norm ‖ · ‖. Fix a measurable norm | · |. Let B denote the completion of
(H, | · |). Let B

′
denote the topological dual of B. The cylinder sets in B are

the sets
Z := (ϕ1, ..., ϕn)−1(A)

with n ∈ N, ϕi ∈ B
′

and A ∈ bRn . Denote by ZB the system of the cylinder
sets in B. Note that if B is a cylinder set in B then B ∩H is a cylinder set
in H. Now we can define a finitely-additive measure P on ZB by setting

P (B) := µH(B ∩H) .

This construction leads to a well behaved probability measure on bB.

2.4 Proposition

(See [17], Theorem 4.1 and Theorem 4.2.) The system ZB generates the
σ-algebra bB. Furthermore, there is a σ-additive extension of P to bB.

This extension is uniquely determined and should also be denoted by P . The
triple (B,H, P ) is called an abstract Wiener space.

Now we want to define a canonical map

δH : H→ L2(P ).

First we need some technical prerequisites.
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2.5 Proposition

(A) For ϕ ∈ B′ the restriction ϕ�H of ϕ to H is continuous with respect to
‖ · ‖.

Therefore and since H is dense in B we can consider B′ as a subspace of H.

(B) The space B′ is dense in (H, ‖ · ‖).

(C) Each ϕ ∈ B′ is normal distributed with mean 0 and variance ‖ϕ ‖2.

Proof. (A) This is a consequence of Lemma 2.3.

(B) Fix h ∈ H with h ⊥ B′. Then h ∈ B and ϕ(h) = 0 for each ϕ ∈ B′. This
implies h = 0.

(C) We can assume that ‖ϕ ‖ = 1. Set h := ϕ�H and E := span{h}. For any
c ∈ R we obtain

P ({ϕ ≤ c}) = µH({ϕ ≤ c} ∩H) =

µH({α · h | α ∈ R and ϕ(α · h) ≤ c}+ E⊥) =

µE({α · h | α ≤ c}) =
1√
2π

∫ c

−∞
e−

1
2
x2

dx. �

By Proposition 2.5, the map

(B′, ‖ · ‖)→ L2(B, bB, P ) , ϕ 7→ ϕ

is linear and norm preserving, therefore it possesses a uniquely determined
linear and norm preserving extension δH : (H, ‖ · ‖) → L2(B, bB, P ). The
isometry δH is called the divergence operator.

By saturation, there is an internal set F ∈ ∗E such that H ⊂ F. For the
moment, fix any F with this property. In the next section we will specify F.
Define µ := µF and

Ns(F) := {x ∈ F | ∃y ∈ B with |x− y| ≈ 0} .

Note that if for an x ∈ F there is a y ∈ B such that |x− y| ≈ 0 then this y is
uniquely determined. Therefore we can define the standard part map on
F by

St : F→ B

x 7→
{
y if x ∈ Ns(F) and if y ∈ B with |x− y| ≈ 0
0 if x /∈ Ns(F)

.
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2.6 Proposition

(See Lemma 9 and Theorem 10 in [19].) We have µ̂(Ns(F)) = 1. Further-
more, the mapping St : (F, Lµ(bF))→ (B, bB) is measurable and µ̂ ◦St−1 =
P .

In fact this construction gives rise to an alternative proof of P : ZB → [0, 1]
having a σ-additive extension.
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3 Resolutions of the Identity

In [32], Üstünel and Zakai introduce a stochastic integral for Hilbert space
valued random variables. In order to obtain a notion of time, they are working
with a resolution of the identity on H. Using saturation, we manage to obtain
a hyperfinite dimensional subspace F of ∗H which is related very closely to
the resolution of the identity and which contains H. This will pave the way
for a canonical infinitesimal approach to this new stochastic integral.

Note that a linear and continuous operator T : H → H is the orthogonal
projection on a closed subspace of H if and only if T 2 = T and < Tx, y > =
< x, Ty > for all x, y ∈ H. (See [9], Theorem 4.7.1.) A sequence (πt)t∈[0,1] of
mappings πt : H→ H is called a resolution of the identity if the following
properties are fulfilled.

• Each πt is an orthogonal projection.

• For s < t we have πsH $ πtH.

• For each h ∈ H the map [0, 1] 3 t 7→ πth ∈ H is continuous.

• We have π0 = 0 and π1 is the identity on H.

We fix a resolution of the identity (πt). Set∏̂
: ∗[0, 1]× ∗

H→ ∗
H

(s, x) 7→ (∗π) (s, x) .

If s ∈ ∗[0, 1] we often write
∏̂

s for
∏̂

(s, · ). Note that for each t ∈ [0, 1] we
have

∗ (πtH) =
∏̂

t
∗
H .

Our purpose is to prove the existence of a hyperfinite dimensional subspace
of ∗H which fits together very well with (πt). Set for h ∈ H and m ∈ N

Uh,m := {F ∈ ∗E |h ∈ F, m divides dim(F) and

∀1 ≤ k ≤ m dim(
∏̂

k
m

∗
H ∩ F) = k

m
dim(F) }.

3.1 Proposition

The sequence (Uh,m)h∈H,m∈N has the finite intersection property.

17



Proof. Fix l ∈ N \ {1}, h1, ..., hl ∈ H and m1, ...,ml ∈ N. Set n :=
m1 · ... ·ml · l . For K ∈ {1, ..., n} set

AK :=
∏̂

K
n

∗
H ∩

(∏̂
K−1
n

∗
H

)⊥
.

Then each AK is an internal closed subspace of ∗H. By the properties of the
resolution of the identity, each AK is infinite dimensional. Note further that∏̂

µ
n

∗
H = ⊕µK=1AK for 1 ≤ µ ≤ n .

For 1 ≤ K ≤ n chose an internal orthonormal system c1
K , ..., c

n
K in AK such

that
pr
∗
H

AK
h1, ..., pr

∗
H

AK
hl ∈ span(

{
c1
K , ..., c

n
K

}
). (1)

We show that

F := span
(
{ciK | i,K ∈ {1, ..., n}}

)
∈

l⋂
η=1

Uhη ,mη ,

i.e. we show that the following holds,

(A) h1, ..., hl ∈ F ,

(B) n divides dim(F) and

(C) ∀1 ≤ η ≤ l ∀1 ≤ k ≤ mη dim(
∏̂

k
mη

∗
H ∩ F) = k

mη
dim(F) .

Property (A) follows from (1) and (B) holds since dim(F) = n2. To prove
(C), fix 1 ≤ η ≤ l and 1 ≤ k ≤ mη. Set w := n

mη
. Since∏̂

k·w
n

∗
H ∩ F =

(
⊕k·wK=1AK

)
∩ F = span

(
{ciK | 1 ≤ i ≤ n, 1 ≤ K ≤ k · w}

)
,

we obtain

dim(
∏̂

k
mη

∗
H∩F) = dim(

∏̂
k·w
n

∗
H∩F) = k·w·n = k

mη
· n2 = k

mη
· dim(F). �

By saturation, there is an F ∈
⋂

m∈N, h∈H
Uh,m. This implies that H ⊂ F. Set

ω := dim(F) and I := {1, ..., ω}. Again by saturation, there is an unlimited
H ∈ ∗N such that ω

H
∈ ∗N \ N and such that for 1 ≤ k ≤ H we have

dim(
∏̂

k
H

∗
H ∩ F) = k

H
· ω . (2)

18



Set T := {1, ..., H} and define

σ : T ∪ {0} 3 k 7→ k
H
· ω ∈ I ∪ {0}.

Now we set
∏

k :=
∏̂

k
H

for k ∈ T ∪ {0}. We will often write
∏

k x instead

of
∏

k(x). Note that (2) shows the close relationship between F and π: the
internal resolution (

∏
k)1≤k≤H cuts F into slices of dimension ω

H
. We fix an

internal orthonormal basis (bi)i∈I of F such that for each k ∈ T∏
k
∗
H ∩ F = span

(
{b1, ..., bσ(k)}

)
.

For any x ∈ F set prx : F 3 y 7→ < x, y >. Note the difference between
prx and prF{x}. For i ∈ I set pri := prbi . Finally, for J ⊂ I and x ∈ F
set xJ := prF{bi|i∈J}x. By Lemma 2.1, µ := µF is a well defined internal
probability measure on bF. We state some basic properties of the mappings
pri.

3.2 Proposition

For any x ∈ F the map prx is normal distributed with mean 0 and variance
‖x‖2. Therefore if ‖x‖ is limited, then prx ∈ SLp(µ) for every p ∈ [1,∞[.
Furthermore, (pr

i
)i∈I is a sequence of independent random variables. Finally,

for k ∈ T and 1 ≤ i ≤ σ(k) we have bi =
∏

k bi.

Proof. We can assume that ‖x‖ = 1. Chose a2, ..., aω ∈ F such that
(x, a2, ..., aω) is an orthonormal basis of F. Then we obtain for c ∈ ∗R

µ({prx ≤ c}) =

1√
2π

ω

∫
{(α1,...,αω)∈∗Rω |α1x+

∑ω
i=2 αiai∈{prx≤c}}

e−
1
2

(y2
1+...+y2

ω)dy1...yω =

1√
2π

ω

∫
{(α1,...,αω)∈∗Rω |α1≤c}}

e−
1
2

(y2
1+...+y2

ω)dy1...yω =

1√
2π

∫ c

−∞
e−

1
2
y2

dy .

Hence prx is normal distributed with mean 0 and variance 1. If ‖x‖ is limited,
then for each p ∈ [1,∞[ the expectation of |prx|2p is limited, which implies
that prx ∈ SLp(µ).

To show that (pri) is a sequence of independent variables fix c1, ..., cω ∈ ∗R
and note that

µ({x ∈ F | ∀1 ≤ i ≤ ω : pri(x) ≤ ci}) =
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1√
2π

ω

∫
{(α1,...,αω)∈∗Rω |∀i∈I:αi≤ci}

e−
1
2

(y2
1+...+y2

ω)dy1...yω =

ω∏
i=1

1√
2π

∫ ci

−∞
e−

1
2
y2

dy =
ω∏
i=1

µ({x ∈ F | pri(x) ≤ ci}).

Now fix k ∈ T and i ∈ I with i ≤ σ(k). Note that
∏

k
∗
H ∩ F =

span({b1, ..., bσ(k)}), thus there is an h ∈ ∗H with bi =
∏

k h. Therefore∏
k bi =

∏
k

∏
k h =

∏
k h = bi. �

An important fact, namely that if h ∈ H and k ∈ T , then
∏

kh is almost the
same as the projection of h onto span({bi | 1 ≤ i ≤ σ(k)}), is a consequence
of the following proposition. Recall that for x, y ∈ ∗

H the formula x ≈ y
means ‖x− y‖ ≈ 0.

3.3 Proposition

Fix t ∈ [0, 1], k ∈ T and i ∈ I such that t ≈ k
H
≈ i

ω
. Then, for any h ∈ H,

we obtain
πth ≈

∏
kh ≈ h{1,...,i}. (3)

Therefore, < h, bi >
2≈ 0 and

∑
j∈I < h, bj >

4 ≈ 0 .

Proof. The first assertion, πth ≈
∏

kh, follows from the continuity of the
resolution of the identity. If an l ∈ T has the property that l

H
∈ [0, 1], then∏

lh ∈ F, in this case we obtain

∏
lh =

ω∑
i=1

<
∏

lh, bi > · bi =

σ(l)∑
i=1

<
∏

lh, bi > · bi = h{1,...,σ(l)}.

Now fix an ε ∈ R+
0 and a δ ∈ R+

0 such that

∀l,m ∈ T
(
|m− l|
H

< δ ⇒ ‖
∏

mh−
∏

lh‖ <
ε

2

)
.

We show that
∥∥∏

kh− h{1,...,i}
∥∥ < ε. Therefore we chose l1 and l2 in T ∪ {0}

such that

• σ(l1) ≤ i ≤ σ(l2),

• l1
H
∈ R, l2

H
∈ R,

• l1 ≤ k ≤ l2 and
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• l2−l1
H

< δ.

We obtain∥∥∏
kh− h{1,...,i}

∥∥ ≤ ∥∥∏kh−
∏

l2
h
∥∥+

∥∥∏
l2
h− h{1,...,i}

∥∥ <
ε

2
+

√√√√ σ(l2)∑
j=i+1

< h, bj >2 ≤ ε

2
+

√√√√ σ(l2)∑
j=σ(l1)+1

< h, bj >2 =

ε

2
+
∥∥∏

l2
h−

∏
l1
h
∥∥ < ε.

This proves (3). Now (3) implies that for each j ∈ I we have < h, bj >
2≈ 0,

therefore maxj∈I < h, bj >
2≈ 0. Finally we obtain∑

i∈I

< h, bi >
4≤

∑
i∈I

< h, bi >
2 ·max

j∈I
< h, bj >

2 =

‖h‖2 ·max
j∈I

< h, bj >
2≈ 0. �

Define
H1 := {x ∈ F | ∃h ∈ H (x ≈ h)}.

One of the most important tools in the theory of saturated models is the
concept of S-continuity. An internal function F : I → ∗

R is called S-
continuous if F (i) ∈ Lim for all i ∈ I and if the implication

∀i, j ∈ I
(
j−i
ω
≈ 0⇒ F (j)− F (i) ≈ 0

)
is valid. The S-continuity of an internal function G : T → ∗

R is defined anal-
ogously. The next proposition is an immediate consequence of Proposition
3.3.

3.4 Proposition

For each F ∈ H1 the function

I → ∗
R, i 7→

i∑
j=1

< F, bj >
2

is S-continuous.
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Set
W := σ{ ◦prx | x ∈ H1} ∨ Nµ̂ .

Now we define two internal filtrations in bF. For i ∈ I set

Bi := σ{prj | 1 ≤ j ≤ i}.

Define B0 := {∅,F}. For k ∈ T ∪ {0} set

Ck := Bσ(k) .

Let (ct)t∈[0,1] be the standard part of (Ck)k∈T , see Section 1. For t ∈ [0, 1] set

Wt := ct ∩W .

Now we have two internal filtered probability spaces and a filtered probabil-
ity space in the standard sense, namely (F, bF, (Bi)i∈I , µ) , (F, bF, (Ck)k∈T , µ)
and (F,W , (Wt)t∈[0,1], µ̂) .
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4 The Chaos Decomposition Theorem

For n ∈ N0 the nth Hermite polynomial is given by

Hn(x) :=
(−1)n

n!
e

1
2
x2 · d

n

dxn
e−

1
2
x2

.

If f, g are random variables which are normal distributed with mean 0 and
variance 1 then the variables In(f) and Im(g) are orthogonal in the respec-
tive L2-space, if n 6= m and if any linear combination of f and g is also
normal distributed. (See Lemma 1.1.1 in [23].) This property gives rise to
an orthogonal decomposition of L2(P ). Set K0 := R and

Kn := span{Hn(δHh) | h ∈ H with ‖h‖ = 1}, n ∈ N.

Then we have, see Theorem 1.1.1 in [23],

L2(B, bB, P ) = ⊕∞n=0Kn .

Thus for each ϕ ∈ L2(P ) there is a sequence (ϕn)n∈N0 such that ϕk ∈ Kk and

ϕ =
∞∑
n=0

ϕn in L2(B, bB, P ).

Fix m ∈ N. In the case of the classical Wiener space C[0, 1] each ϕm can be
written as a multiple stochastic integral. But if we consider abstract Wiener
spaces, we cannot regard ϕm as a multiple stochastic integral, since in this
situation there is no natural notion of a stochastic integral. Using saturated
models we obtain a new approach to the chaos decomposition of L2(P ).
Instead of L2(P ) we will work with the space L2

W(µ̂). (In Section 13 we will
prove that the two spaces can be identified.) Generalizing the methods in
[8] and [20] to abstract Wiener spaces, we obtain a chaos decomposition of
L2
W(µ̂) where the components are standard parts of well behaved internal

linear combinations of products pri1 · ... · prim . Thus the components of the
decomposition are explicitely given.

A proof of the following well known facts about the Hermite polynomials can
be found in [20] (Lemma 6.4.8).

• We have (n+ 1)Hn+1 + Hn−1 = Hn · id for all n ∈ N.

• For each n ∈ N0, Hn is a polynomial of degree n and each polynomial
of degree n is a linear combination of H0, ..., Hn.

We need the following proposition about dense subspaces of L2-spaces.
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4.1 Proposition

Fix any probability space (Ω,B,Γ). Let V be a vector space of functions
f ∈ B such that ef ∈ L2(Ω,B,Γ). Set A := σV ∨ NΓ. Then

M := span ({fn | f ∈ V , n ∈ N0})

is dense in L2(Ω,A,Γ).

Proof. Fix any ϕ ∈ L2(Ω,A,Γ) with ϕ⊥M . We have to show that ϕ = 0.
Without loss of generality we can assume that ϕ ∈ σV . Define two measures
P+ and P− by setting

P±(A) =

∫
A

ϕ±dΓ

for A ∈ σV . We show that for every f ∈ V∫
Ω

efdP+ =

∫
Ω

efdP− <∞ .

Then, see [20], Lemma 6.4.12, the measures P+ and P− coincide and therefore
ϕ = 0 Γ-a.s. Set

fm :=
∑m

n=0

fn

n!

and note that fm → ef Γ-a.s. Since |fm| ≤ e|f |, the Lebesgue theorem
implies that fm → ef in L2(Γ). But then ϕ⊥M and the continuity of the
scalar product yields∫

Ω

efdP+ −
∫

Ω

efdP− =< ef , ϕ >2 = lim
m→∞

< fm, ϕ >2 = 0 . �

Recall the definition of H1 in Section 3. We identify x ∈ H1 with the map
prx. Now let n ≥ 2 and set

H̃n := {F : Fn → ∗
R |F is an internal symmetric multilinear form} .

Fix a function G and a sequence of functions (Gm)m∈N with G,Gm ∈ H̃n. We
call G an Sn-limit of (Gm) if for each k ∈ N there is an m0 ∈ N such that

∑
i1<...<in

(Gm −G(bi1 , .., bin))2 <
1

k
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for each m ≥ m0. Let Hn be the smallest R-linear subspace of H̃n which is
closed under Sn-limits and which contains the functions G�n for G ∈ H1.
For n ∈ N and G ∈ Hn define

In(G) :=
∑

i1<...<in

G(bi1 , ..., bin) · pri1 · ... · prin .

If n = 1, we write I(G) := I1(G). Note that I(G) = prG. Define further
H0 := Lim and

I0(F ) : F→ ∗
R ,

x 7→ F

for F ∈ H0. We state some basic properties of the functions In(G).

4.2 Proposition

(A) For n ∈ N and G ∈ Hn we have∑
i1<...<in

G(bi1 , ..., bin)2 ∈ Lim and
∑

i1<...<in

G(bi1 , ..., bin)4 ≈ 0 .

(B) Fix n,m ∈ N, F ∈ Hn and G ∈ Hm. Then

< In(F ), Im(G) >2 =

{ ∑
i1<...<in

F (bi1 , ..., bin) ·G(bi1 , ..., bin) if n = m
0 otherwise

.

(C) For n ∈ N and F ∈ Hn we have In(Fn) ∈ SL2(µ).

Proof. (A) For n = 1, the assertion follows from Proposition 3.3. Now let
n > 1 and set

G1
n := {G ∈ Hn |

∑
i1<...<in

G(bi1 , ..., bin)2 ∈ Lim},

G2
n := {G ∈ Hn |

∑
i1<...<in

G(bi1 , ..., bin)4 ≈ 0} .

Then the spaces Gin are closed under Sn-limits and contain the functions G�n

for G ∈ H1. Thus Hn = Gin for i = 1, 2.

(B) The assertion follows from the fact that (pri) is a sequence of independent
random variables such that Epri = 0.
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(C) We show that E (In(F ))4 ∈ Lim.

E (In(F ))4 = E

∑
i1<...<in

F (bi1 , ..., bin)4 · pr4
i1
· ... · pr4

in +

E

∑
i1<...<in
j1<...<jn

{i1,...,in} 6={j1,...,jn}

F (bi1 , ..., bin)2 ·F (bj1 , ..., bjn)2 ·pr2
i1
· ... ·pr2

in ·pr
2
j1
· ... ·pr2

jn ≤

∑
i1<...<in

F (bi1 , ..., bin)4·3n +
∑

i1<...<in
j1<...<jn

{i1,...,in} 6={j1,...,jn}

F (bi1 , ..., bin)2·F (bj1 , ..., bjn)2·3n ≤

3n + 3n

( ∑
i1<...<in

F (bi1 , ..., bin)2

)2

∈ Lim �

The following proposition is of great importance, since it establishes the
connection between the Hermite polynomials and the iterated Itô integrals.
On the other hand, the proof is long and it consists of uninteresting technical
details, so the reader can omit it in the first reading.

4.3 Proposition

(A) For G ∈ H1 and n ≥ 2 we have µ̂-a.s.∑
i1,...,in−1∈In−1

6=

∑
s∈{i1,...,in−1}

G(bi1) · ... ·G(bin−1) ·pri1 · ... ·prin−1 ·G(bs)
2 ·pr2

s ≈ 0 .

(B) For G ∈ H1, n ≥ 2 and 1 ≤ k ≤ n we have µ̂-a.s.∑
i1,...,in∈In6=

G(bi1) · ... ·G(bik)
2 · ... ·G(bin) · pri1 · ... · pr2

ik
· ... · prin ≈

∑
i1,...,in−1∈In−1

6=

∑
s∈I

G(bi1) · ... ·G(bin−1) · pri1 · ... · prin−1 ·G(bs)
2 · pr2

s .

(C) For n ∈ N and G ∈ H1 with
∑
i∈I
G(bi)

2 ≈ 1 we have µ̂-a.s.

(n+ 1)In+1(G�n+1) ≈ In(G�n)I (G)− In−1(G�n−1) ,

where I0(G�0) := 1 .
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(D) Fix n ∈ N and G ∈ H1 with
∑

i∈I G(i)2 ≈ 1. Then

Hn(I(G)) ≈ In(G�n) µ̂-a.s.

Proof. (A) Assume that n = 2. Then

E

(∑
i∈I

G(bi)
3 · pr3

i

)2

= E
∑
i∈I

G(bi)
6 · pr6

i = 15 ·
∑
i∈I

G(bi)
6 ≈ 0.

Now assume that n > 2. Fix k ∈ {1, ..., n− 1}. We obtain

E

 ∑
i1,...,in−1∈In−1

6=

G(bi1) · ... ·G(bik)
3 · ... ·G(bin−1) · pri1 · ... · pr3

ik
· ... · prin−1


2

=

E

∑
i1,...,in−1∈In−1

6=

G(bi1)2 · ... ·G(bik)
6 · ... ·G(bin−1)2 · pr2

i1
· ... · pr6

ik
· ... · pr2

in−1
=

15 ·
∑

i1,...,in−1∈In−1
6=

G(bi1)2 · ... ·G(bik)
6 · ... ·G(bin−1)2 ≤

15 ·
∑
i∈I

G(bi)
6 ·

(∑
i∈I

G(bi)
2

)n−2

≈ 0 .

(B) We have µ̂-a.s.∑
i1,...,in−1∈In−1

6=

∑
s∈I

G(bi1) · ... ·G(bin−1) · pri1 · ... · prin−1 ·G(bs)
2 · pr2

s −

∑
i1,...,in∈In6=

G(bi1) · ... ·G(bik)
2 · ... ·G(bin) · pri1 · ... · pr2

ik
· ... · prin =

∑
i1,...,in−1∈In−1

6=

∑
s∈{i1,...,in−1}

G(bi1) · ... ·G(bin−1) ·pri1 · ... ·prin−1 ·G(bs)
2 ·pr2

s ≈ 0 ,

because of (A).

(C) First suppose that n = 1. We first show that∑
i∈I

G (bi)
2 pr2

i ≈ 1 µ̂-a.s. (4)
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Note that

E

(∑
i∈I

G (bi)
2 pr2

i −
∑
i∈I

G(bi)
2

)2

= E

(∑
i∈I

G (bi)
2 (pr2

i − 1
))2

=

E

∑
i∈I

G (bi)
4 (pr4

i + 1− 2pr2
i

)
=
∑
i∈I

G (bi)
4 · 2 ≈ 0 .

Thus we get µ̂-a.s.

I (G)2 =

(∑
i∈I

G (bi) · pri

)2

=

2
∑
i<j

G (bi) ·G(bj) · pri · prj +
∑
i∈I

G (bi)
2 · pr2

i ≈ 2 I2(G�2) + 1 .

Now assume that n > 1. We get µ̂-a.s.

In(G�n)I (G) =

1

n!

∑
i1,...,in∈In6=

∑
s∈I

G(bi1) · ... ·G(bin) · pri1 · ... · prin ·G(bs) · prs =

1

n!

∑
i1,...,in∈In6=

∑
s∈I\{i1,...,in}

G(bi1) · ... ·G(bin) · pri1 · ... · prin ·G(bs) · prs+

1

n!

∑
i1,...,in∈In6=

∑
s∈{i1,...,in}

G(bi1) · ... ·G(bin) · pri1 · ... · prin ·G(bs) · prs =

1

n!

∑
i1,...,in+1∈In+1

6=

G(bi1) · ... ·G(bin+1) · pri1 · ... · prin+1+

1

n!

n∑
k=1

∑
i1,...,in∈In6=

G(bi1) · ... ·G(bik)
2 · ... ·G(bin) · pri1 · ... · pr2

ik
· ... · prin

(i)
=

n+ 1!

n!

∑
i1<...<in+1

G(bi1) · ... ·G(bin+1) · pri1 · ... · prin+1+

n

n!

∑
i1,...,in−1∈In−1

6=

∑
s∈I

G(bi1) · ... ·G(bin−1) · pri1 · ... · prin−1 ·G(bs)
2 · pr2

s

(ii)
≈

(n+ 1)In+1(G�n+1)+
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n

n!

∑
i1,...,in−1∈In−1

6=

G(bi1) · ... ·G(bin−1) · pri1 · ... · prin−1 =

(n+ 1)In+1(G�n+1) + In−1(G�n−1) ,

where (i) follows from (B) and (ii) follows from (4).

(D) For n = 1 there is nothing to prove. Now fix n ∈ N and suppose that
the assertion is already proved for 1 ≤ k ≤ n. From assertion (C) and from
the induction hypothesis it follows that µ̂-a.s.

Hn+1(I(G)) =
1

n+ 1
(Hn(I (G))I (G)−Hn−1 (I (G))) ≈

1

n+ 1

(
In(G�n)I (G)− In−1(G�n−1)

)
≈ In+1(G�n+1) . �

Now we can prove the chaos decomposition theorem for abstract Wiener
spaces.

4.4 Proposition

If n ∈ N0 and G ∈ Hn then ◦In(G) ∈ L2
W(µ̂). Furthermore, for ϕ ∈ L2

W(µ̂)
there is a sequence (Fn)n∈N0 of functions Fn ∈ Hn such that

ϕ =
∞∑
n=0

◦In(Fn) in L2
W(µ̂) .

If (Gn)n∈N is another sequence with this property, then F0 ≈ G0 and∑
i1<...<in

(Fn −Gn(bi1 , ..., bin))2 ≈ 0

for each n ∈ N.

Proof. For n ≥ 2 the set Gn := {F ∈ Hn | ◦In(F ) ∈ L2
W(µ̂)} is a linear

space over R containing functions of the type G�n for G ∈ H1. The space
Gn is also closed under Sn-limits. Therefore Gn = Hn. This proves the first
assertion of the proposition. We now show, using similar arguments as in the
proof of Lemma 1.1, that for n ∈ N the space

{ ◦In(Gn) | Gn ∈ Hn}
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is closed in L2
W(µ̂). Let (Gk) be a sequence in Hn such that (◦In(Gk)) is a

Cauchy sequence in L2
W(µ̂). Then there exists a strictly monotone increasing

function g : N→ N such that for each k ∈ N and for k1, k2 ≥ g(k) we have∥∥◦In(Gk1)− ◦In(Gk2)
∥∥2

2
<

1

2 · k
.

By part (B) of Proposition 4.2, this implies that∑
i1<...<in

(
Gk1(bi1 , ..., bin)−Gk2(bi1 , ..., bin)

)2
<

1

k

for k ∈ N and k1, k2 ≥ g(k). Now extend (Gk)k∈N to an internal sequence

(Gk)k∈ ∗N in H̃n and verify that

Fk :=

{
G ∈ H̃n |

∑
i1<...<in

(
G(bi1 , ..., bin)−G∗g(k)(bi1 , ..., bin)

)2
<

1

k

}

has the finite intersection property. Fix a G ∈ ∩k∈NFk. Then G ∈ Hn

and ◦In(Gk) → ◦In(G) in L2
W(µ̂). Thus { ◦In(Gn) | Gn ∈ Hn} is a closed

subspace of L2
W(µ̂). Since ◦In(Gn)⊥ ◦Im(Gm) for n 6= m , this implies that

M := {
∞∑
n=0

◦In(Gn) | Gn ∈ Hn}

is also a closed linear subspace of L2
W(µ̂). Because of part (D) of Proposition

4.3, ◦I(G)n ∈M for all n ∈ N andG ∈ H1. But this impliesM = L2(F,W , µ̂)
because of Proposition 4.1. �

In this situation we call the functions Fn the kernels of ϕ.
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5 A Decomposition of Hilbert Space Valued

Functions

Recall that L2
W(µ̂,H) denotes the Hilbert space of square Bochner integrable

functions f : (F,W) → H. Since the domain of the Skorohod integral is a
subspace of L2

W(µ̂,H) and since we want to define the Skorohod integral via
a chaos decomposition of L2

W(µ̂,H), we will present such a decomposition in
this section, in a similar way as in Section 4. A function f ∈ L2

W(µ̂,H) is
called simple if there is a g ∈ L2

W(µ̂) and an h ∈ H such that f(x) = g(x) ·h
for all x ∈ F.

5.1 Lemma

The space of linear combinations of simple functions is dense in L2
W(µ̂,H).

Proof. We show that ϕ ∈ L2
W(µ̂,H) is null if it is orthogonal to every simple

function. Fix an orthonormal basis (en) of H and an n ∈ N. We have to
show that 〈ϕ, en〉H = 0 in L2

W(µ̂). But this follows from the fact that for each
g ∈ L2

W(µ̂) we have

E 〈ϕ, en〉H · g = E 〈ϕ, g · en〉H = 〈ϕ, g · en〉L2
W (µ̂,H) = 0 . �

Let SL2(µ,F) denote the space of all internal functions

F : (F, bF)→ (F, bF)

for which ‖F‖ is in SL2(µ). A function F ∈ SL2(µ,F) is called nearstan-
dard if there is an f ∈ L2

W(µ̂,H) such that f ≈ F µ̂-a.s. Then we say that f
is the standard part of F and that F is an SL2(µ,F)-lifting of f . In this
case f is uniquely determined and we set ◦F := f . Therefore ◦F ∈ L2

W(µ̂,H)
for any nearstandard function F . Note that if internal functions F,G are
SL2(µ,F)-liftings of standard functions f, g ∈ L2

W(µ̂,H) then

< f, g >L2
W (µ̂,H) ≈ Eµ < F,G >F and ‖f‖L2

W (µ̂,H) =

√
E ‖F‖2

F
.

5.2 Lemma

Each f ∈ L2
W(µ̂,H) has an SL2(µ,F)-lifting.

Proof. Because of Proposition 1.2 there is an internal function

G : (F, bF)→ (∗H, b∗H)
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such that ‖G‖ ∈ SL2(µ) and G ≈ f µ̂-a.s. Set F := pr
∗
H

F
G. Since ‖F‖ ≤

‖G‖, the function F is in SL2 (µ,F). We obtain

F (x) = pr
∗
H

F
G(x) ≈ pr

∗
H

F
f(x) = f(x)

for µ̂-almost all x ∈ F. �

Set H0,1 := H1. Fix n ∈ N. Let H̃n,1 be the internal space of all multilinear
forms F : Fn+1 → ∗

R that are symmetric in the first n variables. A function
F ∈ H̃n,1 is called an Sn,1-limit of a sequence (Fm)m∈N of functions Fm in

H̃n,1 if for every k ∈ N there is an m0 ∈ N such that

∑
i∈I

∑
i1<...<in

(F − Fm(bi1 , ..., bin , bi))
2 <

1

k

for each m ≥ m0. Now let Hn,1 be the smallest linear space over R that is
closed under Sn,1-limits and that contains the functions F � G for F ∈ Hn

and G ∈ H1, where

F �G : F
n+1 → ∗

R ,

(h1, ..., hn+1) 7→ F (h1, ..., hn) ·G (hn+1) .

Set for F ∈ Hn,1

In,1(F ) : F→ F
′ ,

x 7→

(
y 7→

∑
i1<...<in

F (bi1 , ..., bin , y) · pri1(x) · ... · prin(x)

)
.

Since F = F
′ we can regard In,1(F ) as an F-valued function. For F ∈ H0,1

we define

I0,1(F ) : F→ F ,

x 7→ F .

Now we sum up some properties of such functions.

5.3 Proposition

Fix n,m ∈ N0, F ∈ Hn,1 and G ∈ Hm,1.
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(A) We have
E < In,1(F ), Im,1(G) >F ={ ∑

i∈I
∑

i1<...<in
F (bi1 , ..., bin , bi) ·G(bi1 , ..., bin , bi) if n = m,

0 otherwise .

(B) The function In,1(Fn) is in SL2(µ,F).

(C) The function In,1(F ) is nearstandard.

Proof. Assertion (A) follows from a straightforward calculation. For the
proof of the assertions (B) and (C) we can assume that n ≥ 1. Set

Gn,1 := {F ∈ Hn,1 | In,1(F ) is in SL2(µ,F) and nearstandard } .

The set Gn,1 is a linear space over R, because for F,L ∈ Gn,1 and a, b ∈ R

In,1(aF + bL) = a · In,1(F ) + b · In,1(L)

and the set of nearstandard functions in SL2(µ,F) is closed under linear
combinations. Now fix F ∈ Hn and L ∈ H1. Since

In,1(F � L)(x) = In(F )(x) · L

for all x ∈ F, we obtain that In,1(F � L) ∈ SL2(µ,F). There is an h ∈ H
with h ≈ L. We obtain

In,1(F � L)(x) ≈ ◦In(F )(x) · h

for µ̂-almost all x ∈ F, which implies that In,1(F � L) is nearstandard. Now
fix an F ∈ Hn,1 and a sequence (Fk) in Gn,1 which converges to F in the
Sn,1-sense. We have to show that F belongs to Gn,1. Since for k ∈ N

E (‖In,1(F )‖ − ‖In,1(Fk)‖)2 ≤

E ‖In,1(F )− In,1(Fk)‖2 =∑
i∈I

∑
i1<...<in

(F − Fk(bi1 , ..., bin , bi))
2 ,

the function ‖In,1(F )‖ is in SL2(µ), thus In,1(F ) ∈ SL2(µ,F). A similar ar-
gument shows that ◦In,1(Fk) is a Cauchy sequence in L2

W(µ̂,H) and therefore
converges to an f ∈ L2

W(µ̂,H). Let Φ be an SL2(µ,F)-lifting of f . For any
k ∈ N we obtain √

E ‖In,1(F )− Φ‖2 ≤
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√
E ‖In,1(F )− In,1(Fk)‖2 +

√
E ‖In,1(Fk)− Φ‖2 ≈√∑

i∈I

∑
i1<...<in

(F − Fk(bi1 , ..., bin , bi))
2 + ‖◦In,1(Fk)− f‖L2

W (µ̂,H) .

This implies that In,1(F ) is nearstandard. Thus F ∈ Gn,1 and the proof is
finished. �

Now we are ready to prove a chaos decomposition theorem for Hilbert space
valued functions.

5.4 Proposition

Fix ϕ ∈ L2
W(µ̂,H). Then there is a sequence (Fn)n∈N0 of functions Fn ∈ Hn,1

such that

ϕ =
∞∑
n=0

◦In,1(Fn) in L2
W(µ̂,H) .

If (Gn)n∈N0 is another sequence with this property, then∑
i∈I

∑
i1<...<in

(Fn −Gn(bi1 , ..., bin , bi))
2 ≈ 0

for each n ∈ N0.

Proof. A similar saturation argument as in the proof of Proposition 4.4
shows that

M := {
∞∑
n=0

◦In,1(Fn) | Fn ∈ Hn,1}

is a closed subspace of L2
W(µ̂,H). Because of Lemma 5.1 and Proposition 4.4

it suffices to show that for any f ∈ L2
W(µ̂) with

f =
∞∑
n=0

◦In(Gn) , Gn ∈ Hn ,

and for any h ∈ H the operator f · h is in M . First note that for n ∈ N0 we
have

In,1(Gn � h) = In(Gn) · h ,
therefore the series

∑∞
n=0

◦In,1(Gn� h) converges in L2
W(µ̂,H). It suffices to

show that

f · h =
∞∑
n=0

◦In,1(Gn � h) in L2
W(µ̂,H) .
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This follows from the fact that for g ∈ L2
W(µ̂) and k ∈ H we have

<
∞∑
n=0

◦In,1(Gn � h), g · k >L2
W (µ̂,H) =

∞∑
n=0

< ◦In,1(Gn � h), g · k >L2
W (µ̂,H) =

∞∑
n=0

< ◦In(Gn) · h, g · k >L2
W (µ̂,H) =

∞∑
n=0

< ◦In(Gn), g >2 · < h, k >H =

<
∞∑
n=0

◦In(Gn), g >2 · < h, k >H =< f · h, g · k >L2
W (µ̂,H) . �

In this situation we call the functions Fn the kernels of ϕ. We mention that
◦I0,1(F ) equals the Bochner integral of ϕ. But since we do not use this fact
we do without a proof.
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6 Adapted Hilbert Space Valued Functions

In this section we define a closed subspace of L2
W(µ̂,H), namely the space of

the adapted functions. This notion of adaptedness is introduced in [31] and
based on the resolution of the identity π. Furthermore we show that each
adapted function has an SL2(µ,F)-lifting which is adapted in an internal
sense. This will allow us later to define the stochastic integral as the standard
part of an internal stochastic integral.

A function ϕ ∈ L2
W(µ̂,H) is called adapted if for each t ∈ [0, 1] and each

h ∈ H the mapping < ϕ, πth > is ct-measurable, which implies that it is
evenWt-measurable. Denote by L2

A(µ̂,H) the space of all adapted functions.
Thus L2

A(µ̂,H) is a closed subspace of L2
W(µ̂,H). A function f ∈ L2

A(µ̂,H)
is called simple adapted if

f = g · (πt − πs)h

for s < t in [0, 1], g ∈ L2(F,Ws, µ̂) and h ∈ H.

6.1 Lemma

(See [31], Lemma 2.2.) The space of linear combinations of simple adapted
functions is dense in L2

A(µ̂,H).

Proof. We show that f ∈ L2
A(µ̂,H) is zero if it is orthogonal to every

simple adapted function. First observe that under this circumstances for any
h ∈ H the process m := (< f, πth >)t∈[0,1] is a continuous (ct)-martingale
with m0 = 0. We will see that m is of finite variation, which implies that
it is zero. (See Proposition 1.2 in Chapter IV of [28].) For every partition
0 = t0 < ... < tn = 1 of [0, 1] and every x ∈ F we have

n∑
i=1

∣∣< f (x) , πti − πti−1
h >

∣∣ =
n∑
i=1

∣∣< πti − πti−1
f (x) , πti − πti−1

h >
∣∣ ≤

n∑
i=1

∥∥πti − πti−1
f (x)

∥∥ · ∥∥πti − πti−1
h
∥∥ ≤ ‖f (x)‖ · ‖h‖ .

This implies that for every x ∈ F m(x, · ) is of finite variation. �

An element F of SL2(µ,F) is called adapted if

< F, bi >∈ Bi−1 for all i ∈ I. (5)

The next proposition claims that the functions in L2
A(µ̂,H) are exactly the

standard parts of the adapted nearstandard functions in SL2(µ,F).
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6.2 Proposition

If F ∈ SL2(µ,F) is adapted and nearstandard, then ◦F is in L2
A(µ̂,H). On

the other hand, every g ∈ L2
A(µ̂,H) has an adapted SL2(µ,F)-lifting G.

Proof. Fix h ∈ H, t ∈ [0, 1] and k ∈ T with k
H
≈ t. We have to show that

< ◦F, πth > is ct-measurable. Proposition 3.3 implies that

< ◦F, πth >≈< F, h{1,...,σ(k)} >=

σ(k)∑
i=1

< h, bi > · < F, bi > (6)

µ̂-a.s. Since F is adapted, the right hand side of (6) is Ck-measurable.
Now part (B) of Proposition 1.3 implies that the left hand side of (6) is
ct-measurable. It remains to show that the R-linear space

M :=
{
g ∈ L2

A(µ̂,H) | g has an adapted SL(µ,F)-lifting
}

is a closed subspace of L2
A(µ̂,H) which contains each simple adapted function

f ·(πt−πs)h. Because of part (C) of Proposition 1.3, there is a k ∈ {2, ..., H}
with k

H
≈ s and a Ck-measurable F ∈ SL2(µ) such that F is a lifting of f .

If l ∈ T with l
H
≈ t then F · (

∏
l −

∏
k)h is an adapted SL2(µ,F)-lifting

of f · (πt − πs)h. Now fix a sequence (fn) in L2
A(µ̂,H) such that each fn

has an adapted SL2(µ,F)-lifting Fn. Fix further an f ∈ L2
A(µ̂,H) such that

fn → f . Because of Lemma 5.2 there is an SL2(µ,F)-lifting F of f , but F is
not necessarily adapted. Extend (Fn)n∈N to an internal sequence (Fn)n∈ ∗N of
mappings such that each Fn : (F, bF) → (F, bF) has the property (5). Then
there is an unlimited N ∈ ∗N such that

E ‖FN − F‖2
F
≈ 0.

Therefore, FN is an adapted SL2(µ,F)-lifting of f . �
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7 The Orthogonal Projection from L2
W(µ̂,H)

onto L2
A(µ̂,H)

Now we are ready to express the image of the orthogonal projection of a
ψ ∈ L2

W(µ̂,H) onto L2
A(µ̂,H) in terms of the kernels of ψ. This result, which

is interesting for its own sake, allows for example a straightforward approach
to the Clark Ocone formula in Section 12.

Up to now we have used the term adapted for two kinds of functions, namely
for certain f ∈ L2

W(µ̂,H) and for certain internal functions F : F → F.
Fix an m ∈ N. In addition, we call an element G of Hm,1 adapted if for
i1, ..., im, i ∈ I the implication

G(bi1 , ..., bim , bi) 6= 0 ⇒ i1, ..., im < i

is valid. The use of the term adapted in this situation is justified by the
following fact.

7.1 Lemma

If G ∈ Hm,1 is adapted then Im,1(G) is adapted, which implies that ◦Im,1(G)
is also adapted.

Proof. For an adapted G ∈ Hm,1 we have

< Im,1(G), bi > =
∑

i1<...<im<i

G(bi1 , ..., bim , bi) · pri1 · ... · prim ∈ Bi−1

for each i ∈ I. Thus Im,1(G) is adapted. Because of Proposition 6.2, this
implies that ◦Im,1(G) ∈ L2

A(µ̂,H). �

For G ∈ Hm,1 define G< : Fn+1 → ∗
R by

G<(x1, ..., xm, x) :=∑
i1,...,im<i

< x1, bi1 > · ... · < xm, bim > · < x, bi > · G(bi1 , ..., bim , bi) .

Note that G< is an element of H̃m,1 which is adapted and closely related to
G. In order to be able to build the standard part of Im,1(G<) we must show
that G< is even in Hm,1.

39



7.2 Proposition

If F ∈ Hm,1 then F< ∈ Hm,1.

Proof. Set

Gm,1 := {F ∈ Hm,1 | F< ∈ Hm,1}

and verify that Gm,1 is an R-linear subspace of Hm,1 which is closed under
Sm,1-limits. Therefore it suffices to show that (G� L)< is inHm,1 forG ∈ Hm

and L ∈ H1. Fix L ∈ H1 and note that

Gm := {G ∈ Hm | (G� L)< ∈ Hm,1}

is an R-linear subspace of Hm which is closed under Sm-limits. It remains
to show that for fixed G ∈ H1 we have(

G�m � L
)< ∈ Hm,1 . (7)

The formula (7) is valid if we can find a sequence (Nk)k∈N with Nk ∈ Hm,1

such that (G�m � L)< is an Sm,1-limit of (Nk). Fix k ∈ N and 1 ≤ n ≤ k
and set

Ikn := {(n− 1) ω
k

+ 1, ..., n · ω
k
} .

Furthermore set ikn := max Ikn. By Proposition 3.3, for any interval J ⊂ I
and for any x ∈ H1 we have xJ ∈ H1. Therefore the function Nk, defined by

Nk :=
∑

1≤n<k

G�m{1,...,ikn}
� L{ikn+1,...,ikn+1}

is an element of Hm,1. Note that Nk is adapted and for each set of indices
i1 < ... < im < i we have

Nk(bi1 , ..., bim , bi) = G�m � L(bi1 , ..., bim , bi)

if there is an n ∈ {1, ..., k − 1} such that im ∈ {1, ..., ikn} and i ∈ Ikn+1. If this
is not the case we have

Nk(bi1 , ..., bim , bi) = 0 .

Let ε > 0. Since ∑
i1<...<im

G�m(bi1 , ..., bim)2 ∈ Lim
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and because of Proposition 3.4 there is a k0 ∈ N such that

∑
i1<...<im

G�m(bi1 , ..., bim)2 ·
∑
i∈I

|i−im|<ω
k

L (bi)
2

 < ε

for k ≥ k0. Thus we obtain for k ≥ k0∑
i1<...<im

i∈I

((
G�m � L

)< −Nk(bi1 , ..., bim , bi)
)2

=

∑
i1<...<im<i

((
G�m � L

)
−Nk(bi1 , ..., bim , bi)

)2
=

∑
i1<...<im<i
i−im<ω

k

((
G�m � L

)
−Nk(bi1 , ..., bim , bi)

)2 ≤

∑
i1<...<im<i
i−im<ω

k

(
G�m � L

)2
(bi1 , ..., bim , bi) ≤

∑
i1<...<im

G�m(bi1 , ..., bim)2 ·
∑
i∈I

|i−im|<ω
k

L (bi)
2

 < ε.

Thus (G�m � L)
<

is an Sm,1-limit of (Nk) and therefore the proof is finished.

�

Denote by prWA ψ the image of the orthogonal projection of a ψ ∈ L2
W(µ̂,H)

onto L2
A(µ̂,H). How does prWA ψ look like? For ψ = ◦Im,1(G) a natural

candidate for prWA ψ is ◦Im,1(G<). The next proposition guarantees that this
is indeed the case, therefore we can express the orthogonal projection from
L2
W(µ̂,H) onto L2

A(µ̂,H) by the assignment G 7→ G<. For F ∈ H0,1 set
F< := F .

7.3 Proposition

Fix a ϕ ∈ L2
W(µ̂,H) with chaos decomposition

ϕ =
∞∑
n=0

◦In,1(Fn) in L2
W(µ̂,H),
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where Fn ∈ Hn,1 for n ∈ N0. Then

prWA ϕ =
∞∑
n=0

◦In,1(F<
n ) in L2

A(µ̂,H) . (8)

Proof. First note that the right hand side of (8) converges, since

‖◦In,1(F<
n )‖L2

A(µ̂,H) ≤ ‖
◦In,1(Fn)‖L2

W (µ̂,H) .

The operator prWA is linear and continuous, therefore it suffices to show that

prWA
◦Im,1(Fm) = ◦Im,1(F<

m) (9)

in L2
A(µ̂,H) for a fixed m ∈ N. Since both functions in (9) are adapted

and since the linear combinations of simple adapted functions are dense in
L2
A(µ̂,H), see Lemma 6.1, it suffices to show that

< prWA
◦Im,1(Fm), g · (πt − πs)h >L2

A(µ̂,H) =

< ◦Im,1(F<
m), g · (πt − πs)h >L2

A(µ̂,H)

for s < t in [0, 1], g ∈ L2(F,Ws, µ̂) and h ∈ H. According to part (C) of
Proposition 1.3 there is a k ∈ T with k

H
≈ s and a Ck-measurable G ∈ SL2(µ)

which is a lifting of g. We further fix an l ∈ T with l
H
≈ t and obtain

< prWA
◦Im,1(Fm), g · (πt − πs)h >L2

A(µ̂,H) =

< ◦Im,1(Fm), g · (πt − πs)h >L2
W (µ̂,H) ≈

Eµ < Im,1(Fm), G · h{σ(k)+1,...,σ(l)} >F =∑
i1<...<im

Fm(bi1 , ..., bim , h{σ(k)+1,...,σ(l)}) · EµG · pri1 · ... · prim =

∑
i1<...<im≤σ(k)

Fm(bi1 , ..., bim , h{σ(k)+1,...,σ(l)}) · EµG · pri1 · ... · prim =

∑
i1<...<im≤σ(k)

F<
m(bi1 , ..., bim , h{σ(k)+1,...,σ(l)}) · EµG · pri1 · ... · prim =

∑
i1<...<im

F<
m(bi1 , ..., bim , h{σ(k)+1,...,σ(l)}) · EµG · pri1 · ... · prim =

Eµ < Im,1(F<
m), G · h{σ(k)+1,...,σ(l)} >F ≈
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< ◦Im,1(F<
m), g · (πt − πs)h >L2

W (µ̂,H) =

< ◦Im,1(F<
m), g · (πt − πs)h >L2

A(µ̂,H),

where we have used that

(πt − πs)h ≈ h{σ(k)+1,...,σ(l)}

and that
EµG · pri1 · ... · prim = 0

for σ(k) < im. �

After our exhaustive survey of the spaces L2
W(µ̂), L2

W(µ̂,H) and L2
A(µ̂,H) it

is quite easy to introduce the stochastic integral, the Skorohod integral and
the Malliavin derivative. This will be the topics of the next three chapters.

43





8 The Stochastic Integral

In this section we show that for an adapted F ∈ SL2(µ,F) the function

F 3 x 7→< F (x), x >F

is in SL2(µ) and that

‖< F ( · ), · >F‖2 =

√
E ‖F‖2

F
.

This allows us to define the stochastic integral of an f ∈ L2
A(µ̂,H) by∫

fdπ := ◦ < F ( · ), · > ,

where F ∈ SL2(µ,F) is an adapted lifting of f . We further show that∫
fdπ is W-measurable. In Section 13 we will see that this definition of the

stochastic integral coincides with the integral introduced in [32].

8.1 Proposition

Fix an adapted F ∈ SL2(µ,F). Then for each j ∈ I the function

F 3 x 7→
j∑
i=1

< F (x), bi > · pri(x)

is square Sµ-integrable.

Proof. Let νI be the internal counting probability measure on the internal
powerset ∗P(I) of I. Define for x ∈ F and j ∈ I

M(x, j) :=

j∑
i=1

< F (x), bi > · pri(x) .

Then M is an internal (Bi)i∈I-martingale. Due to a result of Lindstrøm (cf.
[18]) and Hoover and Perkins (cf. [15]) (see also [26], Theorem 8.14.1 for a
detailed proof) it is sufficient to show that the function∑

i∈I

< F, bi >
2 · pr2

i

is in SL1(µ). Set

F̃ : F× I 3 (x, i) 7→< F (x), bi > and

p̃r : F× I 3 (x, i) 7→ pri(x) .
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Since
Eµ⊗νI F̃

2ω = E
∑
i∈I

< F, bi >
2 = E ‖F‖2

F
∈ Lim ,

the measure

µ̃ : bF ⊗ ∗P(I) 3 A 7→
∫
A

F̃ 2ω dµ⊗ νI

takes only limited values. And since

Eµ̃ p̃r
4 =

∫
F×I

p̃r4 · F̃ 2ωdµ⊗ νI = 3 · E ‖F‖2
F
∈ Lim,

we obtain that p̃r2 ∈ SL1(µ̃). Now fix A ∈ bF with µ(A) ≈ 0. Observe that
the Sµ-integrability of ‖F‖2

F
implies that µ̃(A× I) ≈ 0. We obtain∫

A

∑
i∈I

< F, bi >
2 ·pr2

i dµ =

∫
A×I

p̃r2dµ̃ ≈ 0. �

For an adapted function F ∈ SL2(µ,F) the function
∫
F 4

∏
, given by∫

F 4
∏

: F→ ∗
R ,

x 7→< F (x) , x >F

is called the internal stochastic integral of F . Note that∫
F 4

∏
=
∑
i∈I

< F, bi > · pri .

Because of Proposition 8.1 the function
∫
F 4

∏
is square Sµ-integrable. A

straightforward calculation shows that

<
∫
F 4

∏
,
∫
G4

∏
>2 = E < F,G >F (10)

for adapted functions F,G ∈ SL2(µ,F). This gives rise to the following
definition. Take f ∈ L2

A(µ̂,H) and fix an adapted SL2(µ,F)-lifting F of f.
Set ∫

fdπ := ◦∫ F 4∏.
Because of (10) the mapping

∫
fdπ is well defined, because of Proposition

8.1 it is in L2(F, Lµ(bF), µ̂). We call this map the stochastic integral of
f . The stochastic integral fulfills the following continuity and measurability
conditions.
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8.2 Lemma

The map

L2
A(µ̂,H)→ L2(F, Lµ(bF), µ̂)

f 7→
∫
fdπ

is linear and norm preserving. Furthermore,
∫
fdπ ∈ W for all f ∈ L2

A(µ̂,H).

Proof. Fix an f ∈ L2
A(µ̂,H) and let F be an adapted SL2(µ,F)-lifting of f.

Then we have

Eµ̂

(∫
fdπ

)2 ≈ Eµ
(∫
F 4

∏)2
= Eµ ‖F‖2

F
≈ ‖f‖2

L2
A(µ̂,H)

because of (10). Thus f 7→
∫
fdπ is norm preserving. Since for a simple

adapted function g the map
∫
gdπ is W-measurable and since the linear

combinations of simple adapted functions are dense in L2
A(µ̂,H), the integral∫

fdπ is W-measurable for all f ∈ L2
A(µ̂,H). �
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9 The Skorohod Integral

Now we define the Skorohod integral δψ of suitable (i.e. integrable) variables

ψ ∈ L2
W(µ̂,H). For ψ = ◦In,1(F ), F ∈ Hn,1 we set δψ = ◦In+1(F̃ ), where F̃

is a symmetrization of F . The crucial point is to show that F̃ is in Hn+1.

Fix n ∈ N and F ∈ Hn,1. Set

F̃ : F
n+1 → ∗

R

(x1, ..., xn+1) 7→
n+1∑
k=1

F (x1, ..., xk−1, xk+1, ..., xn+1, xk) .

Note that F̃ ∈ H̃n+1. Note further that for α, β ∈ ∗R and G ∈ Hn,1 we have

˜αF + βG = αF̃ + βG̃ .

The next lemma implies that for a sequence (Fk) in H̃n,1 which converges to

an F ∈ H̃n,1 in the Sn,1-sense the function F̃ is an Sn+1-limit of (F̃k).

9.1 Lemma

There is an α ∈ R such that for each G ∈ H̃n,1∑
i1<...<in+1

G̃(bi1 , ..., bin+1)2 ≤ α ·
∑
i∈I

∑
i1<...<in

G(bi1 , ..., bin , bi)
2.

Proof. Set α := 3 · n! · (n+ 1)2. We obtain∑
i1<...<in+1

G̃(bi1 , ..., bin+1)2 =

∑
i1<...<in+1

(
n+1∑
k=1

G(bi1 , ..., bik−1
, bik+1

, ..., bin+1 , bik)

)2

=

∑
i1<...<in+1

n+1∑
k=1

G(bi1 , ..., bik−1
, bik+1

, ..., bin+1 , bik)
2+

2·
∑

i1<...<in+1
1≤k<l≤n+1

G(bi1 , ..., bik−1
, bik+1

, ..., bin+1 , bik)·G(bi1 , ..., bil−1
, bil+1

, ..., bin+1 , bil) ≤
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(n+ 1) ·
∑

(i1,...,in+1)∈In+1
6=

G(bi1 , ..., bin+1)2+

2 · (n+ 1)2 ·
∑

(i1,...,in+1)∈In+1
6=

G(bi1 , ..., bin+1)2 ≤

3 · (n+ 1)2 · n! ·
∑
i∈I

∑
i1<...<in

G(bi1 , ..., bin , bi)
2. �

Now we show that F̃ is even in Hn+1. This guarantees that ◦In+1(F̃ ) is in
L2
W(µ̂).

9.2 Lemma

The function F̃ is in Hn+1.

Proof. Set
Gn,1 := {L ∈ Hn,1 | L̃ is in Hn+1}

and note that this set is an R-linear space which, by Lemma 9.1, is closed
under Sn,1-limits. We show that Gn,1 = Hn,1. To this end we must prove
that for a fixed G ∈ H1 the set

Gn := {L ∈ Hn | L�̃G ∈ Hn+1}

equals Hn. Again it is easy to see that Gn is an R-linear space which is
closed under Sn-limits. It remains to show that for each N ∈ H1 the function
N�n ∈ Gn, i.e. that N�n�̃G ∈ Hn+1. Set

Φ :=
∑

i1<...<in+1

N�n�̃G(bi1 , ..., bin+1) · pri1 · ... · prin+1 .

It is sufficient to show that Φ ∈ SL2(µ) and that ◦Φ ∈ W . This follows from
the fact that we have µ̂-a.s.

Φ =
∑

i1<...<in
i∈I\{i1,...,in}

N�n(bi1 , ..., bin) ·G(bi) · pri1 · ... · prin · pri =

∑
i1<...<in

i∈I

N�n(bi1 , ..., bin) ·G(bi) · pri1 · ... · prin · pri−

∑
i1<...<in
i∈{i1,...,in}

N�n(bi1 , ..., bin) ·G(bi) · pri1 · ... · prin · pri =
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In(N�n) · I(G)−∑
i1<...<in−1

i∈I\{i1,...,in−1}

N�n−1(bi1 , ..., bin−1) ·N(bi) ·G(bi) · pri1 · ... · prin−1 · pr2
i ≈

In(N�n) · I(G)−∑
i1<...<in−1

i∈I\{i1,...,in−1}

N�n−1(bi1 , ..., bin−1) ·N(bi) ·G(bi) · pri1 · ... · prin−1 · 1 ≈

In(N�n) · I(G)−∑
i1<...<in−1

i∈I

N�n−1(bi1 , ..., bin−1) ·N(bi) ·G(bi) · pri1 · ... · prin−1 · 1 ≈

In(N�n) · I(G)− In−1(N�n−1) ·
∑
i∈I

N(bi) ·G(bi) . �

For G ∈ H0,1 set G̃ := G. Now define for n ∈ N0

δ ◦In,1(F ) := ◦In+1(F̃ ).

This definition is possible because of Lemma 9.1. Now we set

∆ := {
∞∑
n=0

◦In,1(Fn) ∈ L2
W(µ̂,H) |

∞∑
n=0

◦In+1(F̃n) converges in L2
W(µ̂)}

and define the Skorohod integral by

δ : ∆→ L2
W(µ̂)

∞∑
n=0

◦In,1(Fn) 7→
∞∑
n=0

◦In+1(F̃n) .

In Section 13 we will show that our definition of δ coincides with the usual
definition of the Skorohod integral.

Now we will prove that the Skorohod integral is an extension of the stochastic
integral, i.e. that each adapted ϕ ∈ L2

W(µ̂,H) is Skorohod integrable and that
the Skorohod integral of ϕ coincides with its stochastic integral. This fact
follows from a straightforward internal calculation.
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9.3 Lemma

For each n ∈ N and for each adapted F ∈ Hn,1 we have

In+1(F̃ ) =
∫
In,1(F )4

∏
.

Proof. The statement holds even for n = 0, since

I1(F̃ ) = I(F ) =
∫
I0,1(F )4

∏
.

Now assume that n ≥ 1. Since F is adapted,

In+1(F̃ ) =
∑

i1<...<in+1

n+1∑
k=1

F (bi1 , ..., bik−1
, bik+1

, ..., bin+1 , bik) · pri1 · ... · prin+1 =

∑
i1<...<in+1

F (bi1 , ..., bin+1) · pri1 · ... · prin+1 =

∑
i∈I

∑
i1<...<in

F (bi1 , ..., bin , bi) · pri1 · ... · prin · pri =

∑
i∈I

In(F ( · , bi)) · pri =
∫
In,1(F )4

∏
. �

9.4 Lemma

We have L2
A(µ̂,H) ⊂ 4 .

Proof. This follows from the fact that for each n ∈ N and for each adapted
F ∈ Hn,1 we have∥∥∥◦In+1(F̃ )

∥∥∥
2

= ‖◦In,1(F )‖L2
W (µ̂,H) . �

9.5 Proposition

Let ϕ ∈ L2
A(µ̂,H). Then δϕ =

∫
ϕdπ.

Proof. Because of Proposition 7.3 there is a sequence (Fn)n∈N of adapted
functions Fn ∈ Hn,1 such that

ϕ =
∞∑
n=0

◦In,1(Fn) in L2
A(µ̂,H).
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By the continuity of the stochastic integral, by the definition of the Skorohod
integral and by Lemma 9.3 we obtain

δϕ = δ

∞∑
n=0

◦In,1(Fn) =
∞∑
n=0

◦In+1(F̃n) =

∞∑
n=0

◦∫ In,1(Fn)4
∏

=
∞∑
n=0

∫ ◦In,1(Fn)dπ =
∫∑∞

n=0
◦In,1(Fn)dπ =

∫
ϕdπ .

�
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10 The Malliavin Derivative

Now we define the Malliavin derivative Dϕ of suitable (i.e. differentiable)
variables ϕ ∈ L2

W(µ̂). For F ∈ Hm, m ≥ 1 we set D ◦Im(F ) := ◦Im−1,1(F 6=),
where F 6= is a slight modification of F .

For m ∈ N and F ∈ Hm we define F 6= : Fm → ∗
R by setting

F 6=(x1, ..., xm) :=∑
(i1,...,im)∈Im6=

< x1, bi1 > · ... · < xm, bim > ·F (bi1 , ..., bim) .

(Note that F 6= = F for m = 1.) Since we have∑
i1<...<im

(
F − F 6=(bi1 , ..., bim)

)2
= 0,

the function F 6= is in Hm. Note further that for α, β ∈ ∗
R and G ∈ Hn we

have
(αF + βG)6= = αF 6= + βG 6= .

10.1 Lemma

If F ∈ Hm then F 6= ∈ Hm−1,1.

Proof. We can assume that m ≥ 2. Set

Gm :=
{
G ∈ Hm | G 6= ∈ Hm−1,1

}
.

The fact that, for L ∈ H1,∑
i1<...<im−1

i∈I

(
(L�m)6= − L�m

)2
(bi1 , ..., bim−1 , bi) ≈ 0

implies that L�m ∈ Gm. Furthermore, Gm is an R-linear space. Since for
G ∈ Hm we have ∑

i1<...<im−1
i∈I

G 6=(bi1 , ..., bim−1, bi)
2 =

1

(m− 1)!
·

∑
(i1,...,im)∈Im6=

G(bi1 , ..., bim)2 =

m ·
∑

i1<...<im

G(bi1 , ..., bim)2 ,

(11)
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the space Gm is closed under Sm-limits. Therefore Gm equals Hm. �

Now set

D
1,2 :=

{
∞∑
n=0

◦In(Fn) ∈ L2
W(µ̂) |

∞∑
n=1

◦In−1,1(F 6=n ) converges in L2
W(µ̂,H)

}

and define the Malliavin derivative by

D : D1,2 → L2
W(µ̂,H)

∞∑
n=0

◦In(Fn) 7→
∞∑
n=1

◦In−1,1(F 6=n ) .

By (11) the operator D is well defined. In Section 13 we will show that D
coincides with the Malliavin derivative as it is defined in the literature.
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11 Representation of Martingales

After introducing their new stochastic integral in [32], Üstünel and Zakai are
showing that the well known result about the representation of martingales
as stochastic integrals extends to the setup of abstract Wiener spaces. Using
our infinitesimal approach, we obtain a new proof of this result.

We show that a function m : F × [0, 1] → R is a square integrable (Wt)-
martingale if and only if there is a ϕ ∈ L2

A(µ̂,H) such that

mt = Em0 +
∫
πtϕdπ µ̂-a.s.

An internal martingale M : F × T → ∗
R is called square Sµ-integrable if

for each k ∈ T the function Mk is in SL2(µ). The process M is called
S-continuous if for µ̂-almost all x ∈ F the function

M( · , x) : T → ∗
R, t 7→M(t, x)

is S-continuous. The S-continuity of a process N : F × I → ∗
R is defined

analogously. The next proposition is about sufficient conditions for a pro-
cess being a continuous L2-martingale. A detailed proof of this well known
criterion can be found in [5] (Satz 1.5.3).

11.1 Proposition

Let m : F× [0, 1]→ R be any mapping. Suppose that M : F× T → ∗
R is an

internal S-continuous and square Sµ-integrable (Ck)k∈T -martingale. Assume
further that for each k ∈ T and each t ∈ [0, 1] with k

H
≈ t

Mk ≈ mt µ̂-a.s.

Then m is a square µ̂-integrable continuous (ct)t∈[0,1]-martingale.

In this context M is called a lifting of m. Now we fix an adapted nearstan-
dard function F ∈ SL2(µ,F).

11.2 Proposition

The internal process

M : F× I 3 ( · , j) 7→
j∑
i=1

< F, bi > · pri
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is an S-continuous, square Sµ-integrable (Bi)i∈I-martingale.

Proof. By Proposition 8.1 the function Mj is square Sµ-integrable for each
j ∈ I. Since F is adapted the process M is an internal (Bi)-martingale. It
remains to show that M is S-continuous. By a result of Hoover and Perkins
(cf. [15]; see also [26], Theorem 8.15.1 for a detailed proof) it is sufficient to
show that the process

[M ] : F× I 3 ( · , j) 7→
j∑
i=1

< F, bi >
2 ·pr2

i

is S-continuous. Let E be the set which consists of all x ∈ F such that the
following properties are fulfilled.

(A) There is an h ∈ H such that F (x) ≈ h,

(B)
∑

i∈I < x, bi >
4 · < F (x), bi >

2 ∈ Lim,

(C)
∑

i∈I < F (x), bi >
2 ∈ Lim and

(D)
∑

i∈I < x, bi >
2 · < F (x), bi >

2 ∈ Lim.

Note that µ̂(E) = 1. Fix an x ∈ E. By (D), [M ](x, j) ∈ Lim for each j ∈ I.
Now fix j1 < j2 in I with j2−j1

ω
≈ 0. We have to show that

j2∑
i=j1+1

< F (x), bi >
2 · < x, bi >

2≈ 0 .

Define an internal counting measure ν̃ on ∗P(I) by setting

ν̃({i}) :=< F (x), bi >
2 .

Because of (C), ν̃(I) ∈ Lim. Set κ : I 3 i 7→< x, bi >
2. Because of (B),

κ ∈ SL1(ν̃). Because of (A) and because of Proposition 3.4

ν̃({j1 + 1, ..., j2}) =

j2∑
i=j1+1

< F (x), bi >
2 ≈ 0.

Therefore,

j2∑
i=j1+1

< F (x), bi >
2 · < x, bi >

2 =

∫ j2

j1+1

κdν̃ ≈ 0 . �

For k ∈ T we set ∫ k
1
F 4

∏
:=

σ(k)∑
i=1

< F, bi > · pri .
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11.3 Proposition

The internal process (∫ k
1
F 4

∏)
k∈T

is an S-continuous, square Sµ-integrable (Ck)k∈T -martingale.

Proof. It remains to show the S-continuity of the process. Set

M : F× I 3 ( · , j) 7→
j∑
i=1

< F, bi > · pri .

Due to Proposition 11.2, M is S-continuous. Fix an x ∈ F such that

• M(x, i) ∈ Lim for each i ∈ I and

• M(x, i) ≈M(x, j) for i, j ∈ I with j−i
ω
≈ 0.

Since for each k ∈ T we have σ(k)
ω

= k
H

it follows that

•
∫ k

1
F 4

∏
(x) ∈ Lim for each k ∈ T and

•
∫ k

1
F 4

∏
(x) ≈

∫ l
1
F 4

∏
(x) for k, l ∈ T with l−k

H
≈ 0. �

Now we can show that the stochastic integral
∫
fdπ corresponds to a martin-

gale. Therefore we must equip the integral with a notion of time. Again this
will happen with the resolution of the identity. Note that for ϕ ∈ L2

A(µ̂,H)
and t ∈ [0, 1] the function πtf is in L2

A(µ̂,H).

11.4 Proposition

For each f ∈ L2
A(µ̂,H) the process (

∫
πtfdπ) has a lifting in the sense of

Proposition 11.1 and therefore is a continuous L2-martingale with respect to
(ct). Furthermore, (

∫
πtfdπ) is adapted to (Wt).

Proof. Let F be an adapted SL2(µ,F)-lifting of f . Then
(∫ k

1
F 4

∏)
k∈T

is

S-continuous. We will show that
(∫ k

1
F 4

∏)
k∈T

is a lifting of
(∫

πtfdπ
)
t∈[0,1]

.

Therefore fix k ∈ T and t ∈ [0, 1] with k
H
≈ t. We will show that

∫ k
1
F4

∏
is

a lifting of
∫
πtfdπ. Set F̂ :=

σ(k)∑
i=1

< F, bi > · bi. Note that F̂ is adapted and
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in SL2(µ,F) and that
∫ k

1
F4

∏
=
∫
F̂4

∏
. We show that F̂ is an SL2(µ,F)-

lifting of πtf . Take an x ∈ F such that f(x) ≈ F (x). Then Proposition 3.3
implies

F̂ (x) = pr{1,...,σ(k)}F (x) ≈ pr{1,...,σ(k)}f(x) ≈ πtf(x) .

The second assertion follows from Lemma 8.2. �

Now we are going to show that every square integrable (Wt)-martingale can
be written as a stochastic integral. For this purpose we fix a process

m : F× [0, 1]→ R

which is a square integrable (Wt)-martingale. We further fix a sequence
(Fn)n∈N with Fn ∈ Hn such that

m1 = Em1 +
∞∑
n=1

◦In(Fn) in L2
W(µ̂) .

11.5 Lemma

For n ∈ N we have µ̂-a.s.

◦In(Fn) =
∫ ◦In−1,1(F<

n )dπ

which, by Lemma 8.2, implies that

‖◦In(Fn)‖L2
W (µ̂) = ‖◦In−1,1(F<

n )‖L2
A(µ̂,H) .

Proof. We obtain µ̂-a.s.

◦In(Fn) ≈ In(Fn) =
∑

i1<...<in

Fn(bi1 , ..., bin) · pri1 · ... · prin =

∑
i1<...<in

F<
n (bi1 , ..., bin) · pri1 · ... · prin =

∑
i∈I

∑
i1<...<in−1

F<
n (bi1 , ..., bin−1 , bi) · pri1 · ... · prin−1 · pri =

∑
i∈I

In−1(F<
n ( · , bi)) · pri =

∫
In−1,1(F<

n )4
∏
≈
∫ ◦In−1,1(F<

n )dπ . �

Therefore the sequence (
∑m

n=1
◦In−1,1(F<

n ))m∈N converges in L2
A(µ̂,H). De-

note its limit by ψ.
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11.6 Proposition

The variable m1 has the representation m1 = Em1 +
∫
ψdπ in L2

W(µ̂).

Proof. By the continuity of the stochastic integral we obtain µ̂-a.s.

Em1 +
∫
ψdπ = Em1 +

∫ ∞∑
n=1

◦In−1,1(F<
n )dπ =

Em1 +
∞∑
n=1

∫ ◦In−1,1(F<
n )dπ = Em1 +

∞∑
n=1

◦In(Fn) = m1 . �

11.7 Proposition

For each t ∈ [0, 1] we have

mt = Em1 +
∫
πtψdπ in L2

W(µ̂).

Proof. This follows immediately from Proposition 11.4 and from Proposition
11.6. Just take expectations. �

As a consequence we obtain that each square integrable (Wt)-martingale
is continuous. This corresponds to the well-known fact that a Brownian
filtration does not admit a discontinuous martingale (cf. Theorem 3.4 in
Chapter V of [28]).
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12 The Clark Ocone Formula

The Clark Ocone formula provides a connection between the Malliavin deriva-
tive and the stochastic integral. It can be regarded as the stochastic version
of the fundamental theorem of calculus. This formula is well known in the
case of the classical Wiener space, see Proposition 1.3.5 in [23]. Our version
for abstract Wiener spaces is, as far as we know, new and constitutes the
main result of these notes.

12.1 Proposition

For ϕ ∈ D1,2 we have

ϕ = Eϕ+
∫
prWA (Dϕ) dπ .

Proof. Since both, the projection operator prWA and the stochastic integral
are linear and continuous operators and by the definition of the Malliavin
derivative, it suffices to show that for a fixed n ∈ N and for any F ∈ Hn we
have

◦In(F ) =
∫
prWA (D ◦In(F )) dπ in L2

W(µ̂).

From Proposition 7.3 and from∑
i1<...<in

i∈I

(
(F 6=)< − F<

)2
(bi1 , ..., bin , bi) = 0

it follows that

prWA (D ◦In(F )) = ◦In−1,1(F<) in L2
A(µ̂,H).

By Lemma 11.5 we obtain∫
prWA (D ◦In(F )) dπ =

∫ ◦In−1,1(F<)dπ = ◦In(F ) in L2
W(µ̂) . �

Proposition 11.6 yields that each ϕ ∈ L2
W(µ̂,H) has the representation

ϕ = Eϕ+
∫
ψdπ

for a ψ ∈ L2
A(µ̂,H). If ϕ ∈ D1,2 then Proposition 12.1 implies that ψ equals

the projection of the derivative of ϕ onto the space of adapted functions.
The common ground of these two propositions is the formula

◦In(F ) =
∫ ◦In−1,1(F<)dπ .
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13 Reference to Abstract Wiener Spaces

In this section we show that the operators D and δ are indeed the operators
of the Malliavin calculus. Furthermore we will show that the integral

∫
fdπ

is the stochastic integral of Üstünel and Zakai. Since this reference to the
standard theory does not influence the correctness of the theory we have
established up to now, some of the proofs are omitted.

In order to get a relation to the standard world of abstract Wiener spaces,
we must identify the spaces L2(P ) and L2

W(µ̂). We also must identify the
spaces L2(P,H) and L2

W(µ̂,H). This is possible because of the choice of
the σ-algebra W . Remember the definition of the divergence operator δH in
Section 2.

13.1 Proposition

The σ-algebra W is generated by the mapping St, i.e. St−1(bB) ∨ Nµ̂ = W.
Furthermore, the mappings

L2(P )→ L2
W(µ̂), f 7→ f ◦ St

L2(P,H)→ L2
W(µ̂,H), g 7→ g ◦ St

are surjective isometries. Furthermore, we have

δH(h) ◦ St = ◦I(h) (12)

for each h ∈ H.

Proof. We only show (12). First assume that there is a ϕ ∈ B′ such that
ϕ(y) =< h, y > for each y ∈ H. Fix further an x ∈ Ns(F). (See Section 2.)
By the continuity of ϕ we obtain

δH(h) ◦ St(x) = ϕ(St(x)) ≈ ∗ϕ(x) =< h, x >= I(h)(x) ≈ ◦I(h)(x) .

Since B′ is dense in H, the result is also true for an arbitrary h ∈ H. �

Now we sum up the introduction to the Malliavin derivative as it is presented
in Appendix B of [33]. Let S(Rn) denote the functions of rapid decrease.
(See [27], page 133.) We call a function f ∈ L2(P ) cylindrical if

f = F (δH(h1), ..., δH(hn))

65



for an F ∈ S(Rn) and for h1, ..., hn ∈ H. We define the derivative D̃f of such
a cylindrical function by

D̃f :=
n∑
i=1

∂iF (δH(h1), ..., δH(hn)) · hi,

where ∂iF denotes the i-th partial derivative of F . The Cameron-Martin
theorem implies that D̃f1 = D̃f2 in L2(P,H) if f1 = f2 in L2(P ). The

operator D̃ is closable: if a sequence (fn) of cylindrical functions converges

to zero in L2(P ) and if (D̃fn) is a Cauchy sequence in L2(P,H), then (D̃fn)

converges also to zero. Therefore we can extend the operator D̃ to the space

D̃
1,2 :={

f ∈ L2(P ) | ∃(fn) such that fn → f and such that (D̃fn) is Cauchy
}

by setting
D̃f := lim

n→∞
D̃fn

if the sequence of cylindrical functions (fn) converges to f and (D̃fn) is a
Cauchy sequence.

Now we show that the operator D̃ corresponds to the operator D we have
defined in Section 10. To this end we need the following result about the
derivative D.

13.2 Proposition

(A) Suppose that h1, ..., hn ∈ H and fix a function F ∈ S(Rn). Then
F (◦I(h1), ..., ◦I(hn)) ∈ D1,2 and

DF (◦I(h1), ..., ◦I(hn)) =
n∑
i=1

∂iF (◦I(h1), ..., ◦I(hn)) · hi.

(B) Let (ϕn) converge to ϕ in L2
W(µ̂) and suppose that each ϕn ∈ D1,2.

Assume further that (Dϕn) is a Cauchy sequence in L2
W(µ̂,H). Then

ϕ ∈ D1,2 and Dϕn → Dϕ.

13.3 Proposition

Suppose that f ∈ D̃1,2 and set ϕ := f ◦St. Then ϕ ∈ D1,2 and Dϕ = D̃f ◦St.
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Proof. First suppose that f is cylindrical, i.e. that

f = F (δH(h1), ..., δH(hn))

for an F ∈ S(Rn) and for h1, ..., hn ∈ H. Since δH(hi) ◦ St = ◦I(hi), we
obtain ϕ = F (◦I(h1), ..., ◦I(hn)). Thus ϕ ∈ D1,2 and

Dϕ =
n∑
i=1

∂iF (◦I(h1), ..., ◦I(hn)) · hi =

(
n∑
i=1

∂iF (δH(h1), ..., δH(hn)) · hi

)
◦ St = D̃f ◦ St.

Now suppose that f is a genuine element of D̃1,2. Fix a sequence (fn) of

cylindrical functions, converging to f such that (D̃fn) is a Cauchy sequence.
Set ϕn = fn ◦ St for n ∈ N. Then ϕn → ϕ and (Dϕn) is a Cauchy sequence.
Thus ϕ ∈ D1,2 and

Dϕ = lim
n→∞

Dϕn = lim
n→∞

(D̃fn ◦ St) = ( lim
n→∞

D̃fn) ◦ St = D̃f ◦ St. �

Now we sketch the definition of the Skorohod integral, again following the
presentation in Appendix B of [33]. The subspace 4̃ of L2(P,H) is defined

as followed: a function g ∈ L2(P,H) is in 4̃ if and only if there is a constant

c ∈ R such that for each f ∈ D̃1,2 the estimation∣∣∣< D̃f, g >L2(P,H)

∣∣∣ ≤ ‖f‖2 · c

holds. For each such g the assignment

D̃
1,2 → R, f 7→ < D̃f, g >L2(P,H)

is a bounded operator, which, since D̃1,2 is dense in L2(P ), implies that there
is an element of L2(P ), denoted by δHg such that

< D̃f, g >L2(P,H) =< f, δHg >2

for all f ∈ D̃1,2. This gives rise to a function

δH : 4̃ → L2(P ).

The operator δH is called the Skorohod integral. Later we will see that for a
h ∈ H and for

g : F→ H, x 7→ h

we have δHg = δH(h).

Now we show that δH corresponds to the operator δ we have introduced in
Section 9. We want to make use of the following fact.
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13.4 Proposition

For ϕ ∈ D1,2 and ψ ∈ 4 we have < ϕ, δψ >2 = < Dϕ,ψ >L2
W (µ̂,H).

13.5 Proposition

Fix a g ∈ 4̃ and set ψ := g ◦ St. Then ψ ∈ 4 and δψ = δHg ◦ St.

Proof. Let ψ have the decomposition ψ =
∑∞

n=0
◦In,1(Fn) with Fn ∈ Hn,1.

By the definition of 4, we have to show that the series

∞∑
n=0

◦In+1(F̃n) (13)

converges in L2
W(µ̂). Since g ∈ 4̃, there is a c ∈ R such that∣∣∣< D̃f, g >L2(P,H)

∣∣∣ ≤ c · ‖f‖2

for all f ∈ D̃1,2. This implies that∣∣∣< Dϕ,ψ >L2
W (µ̂,H)

∣∣∣ ≤ c · ‖ϕ‖2

for all ϕ ∈ D1,2. Thus we obtain for each m ∈ N∥∥∥∥∥
m∑
n=0

◦In+1(F̃n)

∥∥∥∥∥
2

2

= <
m∑
n=0

◦In+1(F̃n), δ
m∑
n=0

◦In,1(Fn) >2 =

< D
m∑
n=0

◦In+1(F̃n),
m∑
n=0

◦In,1(Fn) >L2
W (µ̂,H) =

< D
m∑
n=0

◦In+1(F̃n), ψ >L2
W (µ̂,H)≤ c ·

∥∥∥∥∥
m∑
n=0

◦In+1(F̃n)

∥∥∥∥∥
2

.

But this implies that ∥∥∥∥∥
m∑
n=0

◦In+1(F̃n)

∥∥∥∥∥
2

≤ c,

and this estimation does not depend on m, therefore the series (13) converges.
It remains to show that

δψ = δHg ◦ St.
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Since D1,2 is dense in L2
W(µ̂), it suffices to show that

< δψ, ϕ >2 = < δHg ◦ St, ϕ >2

for each ϕ ∈ D1,2. Fix such a ϕ and let f ∈ D̃1,2 with f ◦ St = ϕ. We obtain

< δψ, ϕ >2 = < ψ,Dϕ >L2
W (µ̂,H) = < g ◦ St, D̃f ◦ St >L2

W (µ̂,H) =

< g, D̃f >L2(P,H) = < δHg, f >2 = < δHg ◦ St, ϕ >2 . �

The next lemma states a relation between functions of the kind δHg and
functions of the kind δH(h).

13.6 Lemma

Fix a h ∈ H and set g : B → H, x 7→ h. Then g ∈ 4̃ and δHg = δH(h) in
L2(P ).

Proof. Since for f ∈ D̃1,2 we have

< D̃f, g >L2(P,H) = < D̃f ◦ St, g ◦ St >L2
W (µ̂,H) = < D(f ◦ St), h >L2

W (µ̂,H) =

< f ◦ St, δh >L2
W (µ̂) = < f ◦ St, ◦I(h) >L2

W (µ̂) ≤ ‖f‖L2(P ) ‖h‖H ,

we obtain g ∈ 4̃. And since

δHg ◦ St = δ(g ◦ St) = δ(◦I0,1(h)) = ◦I1(h) = δH(h) ◦ St in L2
W(µ̂),

we obtain the desired equality

δHg = δH(h) in L2(P ) . �

Now we sketch the definition of the stochastic integral on abstract Wiener
spaces due to Üstünel and Zakai (cf. [32]), which is based on a resolution
of the identity (πt)t∈[0,1]. Both, the integrands and the integrator live on an
arbitrary filtered probability space (Λ, C, (Ct)t∈[0,1], ν). We fix a function

b : (Λ, C)→ (B, bB)

with v◦b−1 = P . Let us define yet another divergence operator by setting

δν : H→ L2(ν) ,

h 7→ δH(h) ◦ b .
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Note that δν inherits the characteristic properties of δH such as continuity
and linearity. The mapping b is called abstract Wiener process if for
each f ∈ B′ the process (δν(πtf)) is a martingale with respect to (Ct). More
detailed we say that the triple (b,H, (πt)) is an abstract Wiener process on
(Λ, C, (Ct), ν). Let the space L2

A(ν,H) be defined in analogy to L2
A(µ̂,H).

Again we call a function ψ ∈ L2
A(ν,H) simple adapted if

ψ = ϕ · (πt − πs)h

for s < t in [0, 1], ϕ ∈ L2(Λ, Cs, ν) and h ∈ H. For such functions ψ we set

δ′νψ := ϕ · δν((πt − πs)h). (14)

By the properties of abstract Wiener processes, the function δν((πt − πs)h)
is independent of Cs. (See page 132 in [32].) This implies that the functions
ϕ and Cs are independent, therefore δ′νψ is square ν-integrable. Note further
that

‖δ′νψ‖2 = ‖ψ‖L2
A(ν,H) .

Therefore and since the linear combinations of adapted functions are dense
in L2(ν,H), there exists a uniquely determined linear and norm preserving
operator

δ′ν : L2
A(ν,H)→ L2(ν)

that fulfills (14) for each simple adapted function ψ. This is the stochastic
integral of Üstünel and Zakai. The next proposition makes it clear that what
we have defined in Section 8 coincides with this integral.

13.7 Proposition

The triple (St,H, (πt)) is an abstract Wiener process on (F,W , (Wt), µ̂). Fur-
thermore, we have

δ′µ̂ψ =
∫
ψdπ (15)

for each ψ ∈ L2
A(µ̂,H).

Proof. By Proposition 2.6 and Proposition 13.1 the map St is measurable
and measure preserving. We show that for each h ∈ H the process (δµ̂(πth))
is a (Wt)-martingale. Therefore fix h ∈ H and t ∈ [0, 1] and set

g : F→ H, x 7→ h ,

gt : F→ H, x 7→ πth and

ft : B→ H, x 7→ πth .
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We obtain

δµ̂(πth) = δH(πth) ◦ St (i)
= (δHft) ◦ St

(ii)
= δ(ft ◦ St) = δgt

(iii)
=
∫
πtgdπ ,

where (i) follows from Lemma 13.6, (ii) follows from Proposition 13.5 and
(iii) follows from Proposition 9.5. It remains to show (15). Since both
integrals are linear and norm preserving, it is sufficient to show this equation
for simple integrands ψ. Therefore fix

ψ = ϕ · (πt − πs)h

with s < t in [0, 1], ϕ ∈ L2(F,Ws, µ̂) and h ∈ H. Fix further indices k, l in T
such that k

H
≈ s and l

H
≈ t and a Bk-measurable SL2-lifting Φ of ϕ. Then

Ψ := Φ · (
∏

l −
∏

k)h ∈ SL
2(µ,F)

is an adapted lifting of ψ. We obtain µ̂-a.s.∫
ψdπ ≈

∫
Ψ4

∏
=
∑
i∈I

< Ψ, bi > · pri =

Φ ·
∑
i∈I

< (
∏

l −
∏

k)h, bi > · pri = Φ · I((
∏

l −
∏

k)h) ≈

ϕ · ◦I((πt− πs)h) = ϕ · δH((πt− πs)h) ◦ St = ϕ · δµ̂((πt− πs)h) = δ′µ̂ψ . �

Given any stochastic basis (Λ, C, (Ct)t∈[0,1], ν) and any abstract Wiener pro-
cess b we can carry out the Malliavin calculus on L2

C(ν) and L2
C(ν,H) if C is

generated by b. This follows from the fact that each abstract Wiener process
is measure preserving. In this situation the question concerning the validity
of the Clark Ocone formula arises. We have seen that in the setup of this
thesis the answer is ’yes’. It remains to investigate if this result depends on
the choice of the stochastic basis.
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14 Appendix: an Internal Representation of

the Lévy Transformation of Brownian Mo-

tion

In this self-contained section we construct an internal transformation τ on
a hyperfinite dimensional Euclidean space and show that τ is ergodic if and
only if L is ergodic, where L denotes the Lévy transformation of Brownian
motion. As, in opposition to L, the mapping τ is constructively given, this
approach allows to see the open problem whether L is ergodic from a different
angle.

Let bC[0,1] be the Borel σ-algebra on C[0, 1] and let W be Wiener-measure on
bC[0,1]. Furthermore let ψ be the canonical Brownian motion on the classical
Wiener-space (C[0, 1], bC[0,1],W ), i.e.

ψ : C[0, 1]× [0, 1] 3 (x, t) 7→ x(t) .

Define a measure-preserving transformation L by

C[0, 1] 3 ω 7→ L(ω) :=

∫ ·
0

sgn(ψ) dψ (ω) ∈ C[0, 1] ,

where the sgn-mapping is defined as usual by

sgn : R 3 x 7→


1 if x > 0
0 if x = 0
−1 if x < 0

.

The map L is referred to as the Lévy transformation of Brownian mo-
tion. It is an open problem whether L is ergodic, i.e. whether for each
A ∈ bC[0,1] the implication

A is L-invariant =⇒ W (A) ∈ {0, 1}

is valid, where A is called L-invariant if W (A4L−1(A)) = 0. This question
is mentioned for example in [3], [10], [22], [28], [30] and [34]. In [11], Du-
bins, Émery and Yor have introduced a condition in terms of time-changing
a Brownian motion and show that this condition is equivalent to L being er-
godic; in [12], Dubins and Smorodinsky have proven that a discrete analogue
of L is ergodic.

There is an infinitesimal approach to the Malliavin calculus (on the classical
Wiener space) due to Cutland, Ng (see [8]) and Osswald (see [20]) that
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replaces C[0, 1] by a hyperfinite dimensional Euclidean space. Our aim is to
search for a transformation in this internal setting which corresponds to L.

We want the internal counterpart of the mapping sgn, denoted by Sgn, to
take only values in {−1, 1} and therefore define

Sgn : ∗R 3 x 7→
{

1 if x ≥ 0
−1 if x < 0

.

Let H ∈ ∗N be unlimited, i.e. H > n for every n ∈ N. Define T := {1, .., H}
and Ω := ∗

R
H . For k ∈ T let

πk : Ω 3 X = (X1, ..., XH) 7→ Xk

be the projection onto the k-th component. Let bΩ be the internal Borel
∗σ-algebra on Ω. There is exactly one internal probability measure such that
the projections πk are independent and normal distributed with mean 0 and
variance 1

H
. Denote this measure by Γ. This construction of Cutland and Ng

gives rise to an internal probability space (Ω, bΩ,Γ). Define τ : Ω→ Ω by

τ(X)t :=

{
Xt if t = 1

Sgn(
∑t−1

i=1 Xi)Xt if t ∈ {2, ..., H} .

14.1 Lemma

The mapping τ : (Ω, bΩ,Γ)→ (Ω, bΩ,Γ) is bijective and measure preserving.

Proof. Fix X,Y ∈ Ω with X 6= Y . Set k := min{l ∈ T | Xl 6= Yl}.
Obviously, τ(X)k 6= τ(Y )k and therefore τ(X) 6= τ(Y ), thus τ is injective.
Now let Y ∈ Ω. Define X1 := Y1, Xn+1 := Sgn(

∑n
i=1 Xi)Yn+1 and verify that

τ(X) = Y . Hence τ is onto. Since the projections πt and the function Sgn
are measurable, τ is measurable. Finally, prove that (πt ◦ τ)t≤H is a sequence
of independent variables and that each πt◦τ is normal distributed with mean
0 and variance 1

H
, which implies that Γ = Γ ◦ τ−1. �

14.2 Lemma

The transformation τ : (Ω, bΩ,Γ)→ (Ω, bΩ,Γ) is not ergodic.

Proof. Ergodicity fails, since the set {π1 < 0} is τ -invariant but has measure
1/2. �
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Let (Ω, LΓ(bΩ), Γ̂) be the Loeb space of (Ω, bΩ,Γ). Set

NΓ̂ :=
{
A ∈ LΓ(bΩ) | Γ̂(A) = 0

}
.

The next lemma is an immediate consequence of Lemma 14.1 and of the
definition of Loeb spaces.

14.3 Lemma

The transformation τ : (Ω, LΓ(bΩ), Γ̂) → (Ω, LΓ(bΩ), Γ̂) is bijective and
measure-preserving.

After introducing a sub-σ-field W of LΓ(bΩ) that corresponds to bC[0,1], we
will show that L is ergodic if and only if

τ : (Ω,W , Γ̂)→ (Ω,W , Γ̂)

is ergodic. This approach allows a new view on the Lévy transformation,
since τ is bijective and defined pointwise, whereas

L(x) = L(−x)

for W -almost all x ∈ C[0, 1].

We will use the following lemma about stochastic integrals.

14.4 Lemma

Fix two probability spaces (Λ, C, µ), (Λ′, C ′, µ′) and a measure-preserving map-
ping

κ : (Λ, C, µ)→ (Λ′, C ′, µ′) .

Let (Ct)t∈[0,1] and (C ′t)t∈[0,1] be filtrations in C, C ′ respectively such that

Ct = κ−1(C ′t) ∨Nµ

for each t ∈ [0, 1]. Assume further that

X : Λ′ × [0, 1]→ R

is a (C ′t)-Brownian motion and that

Y : Λ′ × [0, 1]→ R
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is in L2(Λ′ × [0, 1]) and (C ′t)-predictable. Then the process (Xt ◦ κ) is a (Ct)-
Brownian motion, the process (Yt ◦ κ) is (Ct)-predictable and(∫

Yt dXt

)
◦ κ =

∫
(Yt ◦ κ) d (Xt ◦ κ) .

For k ∈ T ∪ {0} set Bk :=
∑k

l=1 πl. We define a sub-σ-algebra of LΓ(B) by

W := σ{ ◦Bk | k ∈ T} ∨ NΓ̂ ,

i.e. W is the smallest σ-field on Ω that includes NΓ̂ and such that the
functions ◦Bk, k ∈ T are measurable. Define further for X ∈ Ω, t ∈ [0, 1] and
k ∈ T with k

H
≈ t

b(X, t) := ◦Bk(X) and set κ(X) := b(X, · ) .

A proof of the next statement can be found in [20].

14.5 Lemma

The process b is Γ̂-almost surely well defined and a Brownian motion. Fur-
thermore, the mapping

κ : (Ω,W , Γ̂)→ (C[0, 1], bC[0,1],W )

is measure-preserving and

W = κ−1(bC[0,1]) ∨NΓ̂. (16)

Let (Bt)t∈[0,1] be the filtration in bC[0,1] which is generated by ψ and set for
t ∈ [0, 1]

Wt := κ−1(Bt) ∨NΓ̂.

14.6 Lemma

For each t ∈ [0, 1] and k ∈ T with k
H
≈ t we have Γ̂-a.s.∫ t

0

sgn (bs) d bs ≈
k∑
l=1

Sgn(Bl−1) · πl .
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Proof. This follows immediately from the definition of the stochastic integral
in [20], since

sgn (bt) ≈ Sgn (Bk)

for Γ̂-almost all X ∈ Ω. �

The main proposition of this section states the equivalence of τ and L con-
cerning ergodicity.

14.7 Proposition

The transformation

L : (C[0, 1], bC[0,1],W )→ (C[0, 1], bC[0,1],W )

is ergodic if and only if the transformation

τ : (Ω,W , Γ̂)→ (Ω,W , Γ̂)

is ergodic.

Proof. The assertion follows from Equation (16) and from the fact that the
diagram

C[0, 1]
L−→ C[0, 1]

↑ κ ↑ κ

Ω
τ−→ Ω

commutes Γ̂-a.s., which implies that A ∈ bC[0,1] is L-invariant if and only if

κ−1(A) is τ -invariant. Note that the fact that the diagram commutes also
implies that

τ−1(W) ⊂ W.

In order to prove that κ ◦ τ = L ◦ κ Γ̂-a.s. we fix a t ∈ [0, 1] and show that

ψt(L ◦ κ) = ψt(κ ◦ τ) Γ̂-a.s.

Fix a k ∈ T with k
H
≈ t and note that because of Lemma 14.4 and Lemma

14.6

ψt(L ◦ κ)(X) =

∫ t

0

sgn (ψs) dψs(κ(X)) =

∫ t

0

sgn (bs) d bs(X) ≈

k∑
l=1

Sgn (Bl−1)(X) ·Xl = Bk(τ(X)) ≈ bt(τ(X)) = ψt(κ ◦ τ)(X)

for Γ̂-almost all X ∈ Ω. �
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