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Abstract ix 

Abstract 
This thesis describes novel processes in two important areas of human-computer interaction (HCI) and 

demonstrates ways to combine these in appropriate ways. 

First, prototyping plays an essential role in the development of complex applications. This is especially true if a 

user-centred design process is followed. We describe and compare a set of existing toolkits and frameworks that 

support the development of prototypes in the area of pervasive computing. Based on these observations, we 

introduce the EIToolkit that allows the quick generation of mobile and pervasive applications, and approaches 

many issues found in previous works. Its application and use is demonstrated in several projects that base on the 

architecture and an implementation of the toolkit. 

Second, we present novel results and extensions in user modelling, specifically for predicting time to completion 

of tasks. We extended established concepts such as the Keystroke-Level Model to novel types of interaction with 

mobile devices, e.g. using optical markers and gestures. The design, creation, as well as a validation of this 

model are presented in some detail in order to show its use and usefulness for making usability predictions. 

The third part is concerned with the combination of both concepts, i.e. how to integrate user models into the 

design process of pervasive applications. We first examine current ways of developing and show generic 

approaches to this problem. This leads to a concrete implementation of such a solution. An innovative integrated 

development environment is provided that allows for quickly developing mobile applications, supports the 

automatic generation of user models, and helps in applying these models early in the design process. This can 

considerably ease the process of model creation and can replace some types of costly user studies. 

Zusammenfassung 
Diese Dissertation beschreibt neuartige Verfahren in zwei wichtigen Bereichen der Mensch-Maschine-

Kommunikation und erläutert Wege, diese geeignet zu verknüpfen. 

Zum einen spielt die Entwicklung von Prototypen insbesondere bei der Verwendung von benutzerzentrierten 

Entwicklungsverfahren eine besondere Rolle. Es werden daher auf der einen Seite eine ganze Reihe vorhandener 

Arbeiten vorgestellt und verglichen, die die Entwicklung prototypischer Anwendungen speziell im Bereich des 

Pervasive Computing unterstützen. Ein eigener Satz an Werkzeugen und Komponenten wird präsentiert, der 

viele der herausgearbeiteten Nachteile und Probleme solcher existierender Projekte aufgreift und entsprechende 

Lösungen anbietet. Mehrere Beispiele und eigene Arbeiten werden beschrieben, die auf dieser Architektur 

basieren und entwickelt wurden. 

Auf der anderen Seite werden neue Forschungsergebnisse präsentiert, die Erweiterungen von Methoden in der 

Benutzermodellierung speziell im Bereich der Abschätzung von Interaktionszeiten beinhalten. Mit diesen in der 

Dissertation entwickelten Erweiterungen können etablierte Konzepte wie das Keystroke-Level Model auf 

aktuelle und neuartige Interaktionsmöglichkeiten mit mobilen Geräten angewandt werden. Der Entwurf, das 

Erstellen sowie eine Validierung der Ergebnisse dieser Erweiterungen werden detailliert dargestellt. 

Ein dritter Teil beschäftigt sich mit Möglichkeiten die beiden beschriebenen Konzepte, zum einen 

Prototypenentwicklung im Pervasive Computing und zum anderen Benutzermodellierung, geeignet zu 

kombinieren. Vorhandene Ansätze werden untersucht und generische Integrationsmöglichkeiten beschrieben. 

Dies führt zu konkreten Implementierungen solcher Lösungen zur Integration in vorhandene Umgebungen, als 

auch in Form einer eigenen Applikation spezialisiert auf die Entwicklung von Programmen für mobile Geräte. 

Sie erlaubt das schnelle Erstellen von Prototypen, unterstützt das automatische Erstellen spezialisierter 

Benutzermodelle und ermöglicht den Einsatz dieser Modelle früh im Entwicklungsprozess. Dies erleichtert die 

Anwendung solcher Modelle und kann Aufwand und Kosten für entsprechende Benutzerstudien einsparen.
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1 Introduction and Structure 
The style of interacting with computer systems is about to change drastically. Clearly, the standard scenario 

where one person communicates with a single desktop computer through keyboard and mouse will remain 

important for the next couple of years. However, in many situations there is a shift towards a less clear boundary 

between computers and the world. There has been increasing attention in research, media and industry to 

distributed and mobile computing in the last years and there is strong evidence that this will manifest itself even 

stronger in the near future. The basic vision of pervasive computing is that devices and environments are getting 

smarter and the possibilities of input and output increase drastically. A variety of new applications have already 

become possible with the introduction of large public displays, radio frequency identification, powerful mobile 

devices, sensor networks, and a large number of available software components and services. 

In this new space, methods like those for creating user interfaces or evaluating applications that worked well for 

the desktop setting have to be checked and often need to be revised. One widely used way of trying to create 

devices, applications, and environments that are really accepted by end-users is to take potential users into 

account from the very beginning of the development process („user-centred design‟). This implies that, ideally, 

there should be input from users to the idea, design, as well as implementation of a system. Practically, this can 

be achieved in two ways (which are not mutually exclusive). The first is to divide the development process into 

several phases and for each phase build a prototype presented to a sample of potential users. The second 

possibility is to integrate models into the development process that represent important aspects of users. Since a 

model is per definition a simplification, this bears the risk of imprecise or incomplete data. On the other hand, it 

can be used whenever needed and reduces the need for cost intensive and time consuming user studies. We will 

show advantages and weaknesses of both ways and provide techniques and tools to support both of them. 

Such models underlying the development of a system can provide characteristics, metrics, and properties that can 

be checked. If this can be done automatically, a number of errors and issues can be avoided. However, in 

practice, it is still important to generate prototypes of applications and devices in order to assess, communicate, 

and evaluate the ideas. Therefore, we provide a rich set of tools to create applications in the domain of pervasive 

computing. We also present ways of combining the power of prototyping with the expressiveness of user 

models. One of the prototyping environments we will describe is based on programming by demonstration and a 

user interaction time model. It thus allows quickly building functional prototypes and at the same time helps in 

identifying issues in task sequences and gives well grounded estimates of the time users will need to perform 

these tasks on the envisioned target platform. 

1.1 Goals and Contributions 
The key contributions of this thesis can be found in three areas. 

Prototyping 

 An introduction and detailed comparison of available hardware and software prototyping tools 

 The design and implementation of the EIToolkit for rapid prototyping of pervasive applications 

 Various examples and case studies developed based on that toolkit 

User models 

 An introduction to the application of user models for usability, e.g. the Keystroke-Level Model (KLM) 

 Validated extensions to the Keystroke-Level Model for mobile interactions with the real world 

 A demonstration of the use of graph theory methods for user interface and interaction design 

Incorporating user models in the development process 

 An extensible framework for building pervasive applications employing user models 

 Easy to use interfaces to create prototypes and applications based on usability input from user models 

 The design and implementation of MAKEIT, a prototyping framework for applications on mobile devices 
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1.2 Structure 
After the introduction of important terms and an overview of pervasive computing, a set of related and own work 

is briefly presented that serves to show the design space of pervasive computing. Since one part of this thesis 

demonstrates new paths to design and implement pervasive and mobile applications, development processes of 

pervasive and mobile applications are concisely described in Chapter 2, Developing Pervasive Applications, 

including a brief overview of available methods, tools and frameworks to create tangible prototypes. 

User models and their influences on user interface design play an important role in reaching the goals of this 

work. Therefore, existing cognitive and related user models are described in Chapter 3, User Models for UI 

Design. We concentrate on models that allow for making predictions with regard to interaction times of end-

users and present important application areas of such models. One of those, the Keystroke-Level Model (KLM), 

is treated in more detail since it is used extensively in the following chapters. In order to be able to use the model 

in the new domain of pervasive computing, our work provides several extensions of the original concept to novel 

areas such as physical mobile interactions. The measurement and validation of new parameters for the KLM are 

described in conjunction with several examples. We built a variety of development tools on top of such models 

and can thus fully include their advantages early in the development process of pervasive applications. 

One further specific contribution developed in this thesis is the EIToolkit, an open source toolkit designed to 

support the creation of pervasive applications. Its idea, architecture and implementation are presented in 

Chapter 4, Tools for Rapid Application Development. This section also contains a detailed set of requirements 

for such toolkits collected from a long list of related work and experiences. It influenced design decisions during 

the development of our tools and can serve to evaluate other toolkits or to pick a specific one for own purposes. 

The following Chapter 5, Prototyping Using EIToolkit and User Models, describes another central theme of this 

thesis, i.e. the combination of user modelling approaches and prototyping tools. After a description of the 

concept, a series of (e.g. graphical) tools on top of the EIToolkit is demonstrated. These can be used to quickly 

build applications using a variety of virtual and physical input and output components. They are intended to 

lower the threshold of building such applications while still maintaining a high ceiling, i.e. they allow creating 

complex applications without requiring more effort than necessary. The second part of this chapter concentrates 

on existing and new approaches to integrate models like those described in Chapter 1 into existing and novel 

development tools. In order to substantiate these ideas, we present examples of the integration of a KLM module 

in two existing application development environments. 

Chapter 6, Case Studies – Applications Based on the EIToolkit, then shows a selection of applications and 

scenarios implemented using the EIToolkit. It distinguishes between two main branches. First, we developed 

several components that enable the use of some technology or technique without having to learn the details of 

their use. One example is the Particle microcontroller system that allows developers to quickly build smart, 

distributed sensors. Second, device and application specific components are described that connect the toolkit to 

specific devices or applications like remotely controllable power sockets and music player software. 

These theories are then used in conjunction with the EIToolkit in the following Chapter 7, Prototyping Mobile 

Device Applications. It provides a working implementation of a standalone, integrated development environment 

for the creation of mobile phone applications. The chapter begins with a description of current tools to create 

applications especially tailored for mobile devices. After a short excurse on how graph theory can be used in the 

domain of user interface design, the MAKEIT environment and its use are presented in detail. It builds on state 

graphs and uses programming by demonstration in conjunction with several of the methods and tools described 

in previous chapters to easily generate mobile applications using models such as the KLM and building on 

EIToolkit support. Besides the process of creating such applications itself, implications for application design 

and several example applications developed using this system are given. 

The final Chapter 8, Summary and Future Work, reviews the content of the thesis, restates the set of 

contributions and ends with a treatment of future and open work. It shows where the work presented here offers 

a solid basis for other developers to add dedicated extensions for specific application needs and where the 

research community can help to extend the systems to reach a further level of generality of the processes which 

can only be achieved by wide application, acceptance, and development. 



2 Developing Pervasive Applications 3 

2 Developing Pervasive Applications 
 

This chapter introduces the research area of pervasive computing, discusses related terms and 

fields and shows in which ways this thesis contributes to several of these aspects. 

2.1 Pervasive Computing ......................................................................................................... 3 

 2.1.1 Brief History and Overview ........................................................................................... 3 

 2.1.2 Applications and Related Terms .................................................................................... 5 

2.2 Application Development Process .................................................................................. 11 

 2.2.1 Prototyping ................................................................................................................... 13 

 2.2.2 Implementation ............................................................................................................ 15 

 2.2.3 Deployment .................................................................................................................. 15 

 2.2.4 Evaluation .................................................................................................................... 16 

 

The two main parts of this chapter are concerned with a description of pervasive computing and related terms 

(2.1) and the components of typical application development processes within this field (2.2). In the course of 

those descriptions, we show in which areas the contents of this thesis are most profoundly located and to which 

specific aspects it contributes most. 

2.1 Pervasive Computing 
In order to introduce the topic, place our research in the design space of applications and development, and to 

describe important terms and concepts, we begin with a concise overview on the topic of pervasive computing. 

2.1.1 Brief History and Overview 
Pervasive computing and ubiquitous computing are two terms that have caught much attention over the last 

years. However, the terms are still not used coherently in the literature. In this work, we use pervasive and 

ubiquitous (or „ubicomp‟) applications) interchangeably, although they are sometimes used to carry somewhat 

different meaning. Niemelä and Latvakoski, for example, describe pervasive computing as to concentrate on user 

interactions with mobile and wireless devices, creation and deployment of applications, and the use of ubiquitous 

services to enhance the user experience [Niemelä and Latvakoski 2004]. However, ultimately, they also decided 

to follow the general movement in research and conclude in general not to distinguish between those two terms. 

We refer to, e.g., [Satyanarayanan 2001], who gives an overview of the history, some current work, and 

proposed research necessary to further tackle requirements of pervasive computing scenarios, most of which still 

hold even if some years have passed since then. 

In 1991, Mark Weiser first published his vision of bringing computing beyond the desktop [Weiser 1991]. He 

deliberately distinguished it from virtual reality which uses a different, virtual, artificial environment which 

maps in some sort to the real world. He coined the term ubiquitous computing during his work at Xerox PARC 

(Xerox Corporation's research centre in Palo Alto, USA). Major concepts of this vision include the seamless 

integration of possibly hundreds of computers in the real world, that there is no need for the user to focus on a 

(specific) computer, and that any surfaces can be turned into a display and show arbitrary information. Two 

important concepts are location and scale. This means that a system can use information about the location of its 

users to adapt information and output accordingly. On the other hand, different situations need different types of 

utilities. One of the consequences is that helpful technology must be able to scale. For mobile use, input and 

output footprint must be very small; as soon as several people are involved or the space changes, larger screens 

and collaborative input possibilities become interesting. 

One category of ideas within ubiquitous computing has started with the name calm computing and has later been 

called ambient computing. This subsumes all those types of applications that try to minimise information 

overload and convey information in a way that do not need the primary focus of the users. Examples are known 
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objects that can be changed according to some input variable, e.g., connecting the height of water fountains to 

the stock market, or colours of buildings or objects to the weather forecast. All of those have in common that 

information can be registered peripherally without interrupting a main task. 

An interesting dilemma that emerges from those ideas is that the (distributed) objects can become very much 

specialised. This means that they can potentially be used to efficiently solve a small set of dedicated problems. 

However, it also means that one would have to have many of those devices at hand at any time to be prepared for 

a variety of applications. This favours devices that incorporate much functionality as we see today with mobile 

phones and PDAs. Unfortunately, most of those all-in-one devices are less effective in use when applied to a 

specific problem. One example that relates to the scalability issue mentioned above is text input. A desktop 

keyboard enables rather comfortable and quick text input. Surely, it is less suitable for mobile use or in specific 

environments like the car. 

Another issue is that, on the one hand, technology is supposed to disappear (see for example the Disappearing 

Computer Initiative1 for a range of related projects) so as to be indistinguishable from the object and 

environment one is used to. On the other hand, users often need or want to have control over what happens. On 

occasion, feedback or input from the user is necessary. More often even, as soon as a person‟s mental model of a 

system does not fit to the system‟s behaviour, this person needs access to the system to control, change, or just 

understand what is happening. Thus, the system must either be visible in some way or there must at least be 

some method to gain access of its input and output capabilities as well its way of working. The term „affordance‟ 

gains enormous weight here. It defines the way an object or application describes itself and the way it can be 

used without previous knowledge or learning phase. If a user interface element looks like a door handle for 

example, it is very likely that people will try to press it down to initiate an action. A pilot‟s instrument panel on 

the other hand has in general not a clear affordance and implies a steep learning curve. One of the aims in 

pervasive computing is to exploit the affordances of physical objects and transfer it to other possible 

applications. 

One way to achieve that is to stick to these physical objects as handles into the computational world and 

introduce technology such as processors, sensors, actuators, and input / output capabilities directly into such 

objects. This enables implicit interactions and context aware applications to be built that do not or only slightly 

change the original behaviour. By adding a set of sensors to a camera, as we did for example in [Holleis, Kranz, 

and Schmidt 2005a], it is possible to support users in their interactions by automatically rotating pictures and 

recording environmental and location information for later classification. Other approaches to generate 

applications with high affordance have been to use virtual representations of physical objects that people know 

how to operate like files and folders, or buttons, tabs, and form fields. Of course, the indirect manipulation 

through mouse and keyboard drastically reduces the similarity effect. One attempt to remedy this situation is to 

use physical handles such as our display cube [Terrenghi et al. 2005] or an object with physical knobs and 

buttons in combination with larger displays such as in [Hilliges, Baur, and Butz 2007]. 

Pervasive computing draws from several topics in computer science and other research fields. This is one reason 

why several terms and notions have been created and emerged to describe the whole area as well as different 

subjects within the design space covered by corresponding applications. The next section gives an overview of 

many facets and ideas with which pervasive computing is concerned. 

                                                           
1 The Disappearing Computer, an EU-funded initiative of the Future and Emerging Technologies (FET) activity of the 

Information society Technologies (IST) research program; project page: http://www.disappearing-computer.net 

http://www.disappearing-computer.net/
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2.1.2 Applications and Related Terms 
As is always the case with an area that is as complex and steadily changing, there exist many definitions and 

ways to describe pervasive computing. For the sake of this thesis, we adopt the one given by the editors of the 

Journal of Pervasive and Mobile Computing: 

It catches the most important aspects of distributed devices and services, i.e. anywhere and anytime access to 

information. It also promotes the adaptation and use of contextual information to make people‟s tasks better, 

quicker, or more comfortable in a way that they only notice this support as little as possible. One of the best 

ways to put that last part into words is a famous statement of Mark Weiser about ubiquitous computing: 

From that perspective also stem the terms describing very similar concepts namely disappearing computer and 

calm computing. When the use of real world objects and tangible devices is emphasized, pervasive computing 

also sometimes appears using the names physical computing or tangible media. Another more recently coined 

term by Greenfield in [Greenfield 2006] is everyware. By stressing the fact that sensing, processing, and services 

are available anywhere and anytime, he tries to bring the many facets of pervasive computing into one coherent 

paradigm of interaction. This particular process of spreading components, intelligence, and services in the world 

has also led to the notion of distributed computing in conjunction with ubiquitous computing; see for example 

[Barbeau 2002] for a treatment of that connection. 

With all these different components that make up pervasive applications, it is difficult, if not impossible, to 

completely classify their design space since nearly all possible applications have some or can be augmented with 

some aspects of pervasive computing. In order to give an overview on what kind of applications have 

traditionally been built in the area of pervasive computing, the following presents a list of common categories 

and gives examples for each. This is not an exhaustive list in the respective area; the given samples denote some 

recent, prominent or very typical application areas. 

The categories are: tangible computing, embedding information, ambient computing, context aware applications, 

wearable computing, augmented and virtual reality, computer supported cooperative work (CSCW), 

communicating information, mobile applications, and input in pervasive computing. 

In our work, we contributed to several of those categories with various projects developed in our research group. 

A selection of these projects is mentioned in the following together with representative examples of works from 

other research groups. Whenever we directly reference our own work, we denote this by a footnote (2). Some of 

them provide additional information on some of the topics treated in detail in this thesis and will be elaborated in 

appropriate later sections. Some images from our projects are shown to the right of the descriptions. 

“The goal of pervasive computing is to create ambient intelligence where network 

devices embedded in the environment provide unobtrusive connectivity and services 

all the time, thus improving human experience and quality of life without explicit 

awareness of the underlying communications and computing technologies. In this 

environment, the world around us […] is interconnected as pervasive network of 

intelligent devices that cooperatively and autonomously collect, process and 

transport information, in order to adapt to the associated context and activity.” 

[Das, Conti, and Shirazi] 

“The most profound technologies are those that disappear. They weave themselves 

into the fabric of everyday life until they are indistinguishable from it.” 

[Weiser 1991] 
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Tangible Computing 

Even if one of the paradigms followed with pervasive computing is that technologies 

should step into the background of any user interface or interaction, one line of 

research is concerned with making information and its manipulation visible and 

tangible. As an example, we built a cube with displays as its six sides, [Kranz, 

Schmidt, et al. 2005]2. One of its many applications can be found in learning, where 

for example multiple-choice tests, image associations, or 3D projection tests can be 

performed [Terrenghi et al. 2005]2. The cube allows grasping, playing with, and 

passing information (in this case the whole application) to others, opening new 

possibilities. 

This area also includes many works that produce haptic feedback in addition to the 

most commonly used visual and auditory channels. A simple example is the 

vibration motor found in most modern phones to convey an almost inaudible signal 

[Sahami et al. 2008]. As an advanced example, consider the Phantom device, 

[Salisbury and Srinivasan 1997], which can simulate the forces that apply when 

touching objects. This can be used, e.g., for training of medical surgery. 

The concept of tangible computing is also described by other terms like passive real-

world props, graspable, manipulative, and embodied interfaces [Fishkin 2004]. 

Another very active research area is tabletop and surface computing. Applications 

range from games (see [Magerkurth et al. 2005] for an overview on computer 

augmented entertainment and tabletop games in particular), to music generation (e.g. 

the reacTable, [Jordà et al. 2007] and [Kaltenbrunner and Bencina 2007]), to 

computer supported cooperative work (CSCW, see below, and the thesis [Ringel 

Morris 2006] for a good overview on this topic). 

 

 

 

A cube with displays as its 

sides, [Terrenghi et al. 2005] 
 

 

Small wireless displays that 

can display information about 

each others‟ state, [Holleis, 

Kranz, and Schmidt 2005b] 

Embedding Information 

As described below, there exist many possibilities to sense the current context of the 

user or an application. However, this generates issues in areas such as privacy, 

accuracy, power consumption, etc. 

Embedding information directly places information at the spot where it is of interest, 

see [Schmidt, Kranz, and Holleis 2004]2 and [Schmidt, Kranz, and Holleis 2005]2. 

For example, information about the weather is displayed close to where the umbrella 

or the clothes are located [Matthews et al. 2004], or directly in the umbrella3. As we 

argue in [Holleis, Rukzio, et al. 2006b]2, it is not even absolutely necessary to have 

such displays fixed at a certain position. It can also be left to the users to move them 

around and put them in places suitable for their purpose. See also a more detailed 

treatment in Section 6.2.1. 

Public, and especially situated displays, are currently very actively studied by many 

research groups. The papers in [O'Hara, Perry, and Churchill 2003] give insight into 

social, technical, and interactional aspects in this area. 

 

 

 

Hanger for clothes with 

embedded sensors and several 

displays. [Schmidt, Kranz, and 

Holleis 2004] 

                                                           
2 One of the projects created within the DFG project Embedded Interaction by the author of this thesis and colleagues; home 

page of the research group: http://www.hcilab.org 
3 Ambient Devices, Ambient Umbrella; product page: http://www.ambientdevices.com/products/umbrella.html 

http://www.hcilab.org/
http://www.ambientdevices.com/products/umbrella.html
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Ambient Computing 

Ambient devices build on the fact that in an arbitrary environment, a human 

concentrates on a small part of it at any one time. Besides this area in focus, there is 

a large area in the periphery where some information can be registered without being 

disturbed in one‟s main task. One can notice people entering a room, lights being 

switched on, etc. Some of those even only enter the mind unconsciously like types 

of background music. Ambient displays exploit this fact and show information 

supposed to be less important than the foreground task but interesting enough that a 

user wants to stay up-to-date. A widely known ambient device is the ambient orb, a 

spherical lamp that can change the colour of its light with soft transitions. It is, e.g., 

used in [Matthews et al. 2004] as an example of an ambient motion monitor that 

conveys a notion of remote activity. Extended versions are currently being 

developed. One of the first examples of an ambient device is the dangling string 

(created long before it was mentioned in [Weiser and Brown 1996]) which is a string 

dangling from the ceiling that adapts its speed of turning to indicate network flow. 

Other appliances include applications like the ambient umbrella, or the use of 

screensavers. We implemented the latter concept on mobile phones to support 

people in remembering and getting reminded about their personal communication 

and location behaviour [Schmidt, Häkkilä, et al. 2006]2. Several projects also 

combine ambient information displays with the possibility to access more detailed 

information through, e.g. a mobile device, see for example [Prante et al. 2004]. 

 

 

 

 

Mobile phone screensavers 

displaying information about 

communication behaviour, 

preserving privacy, [Schmidt, 

Häkkilä, et al. 2006] 

Context Aware Applications 

Applications in the area of embedding information get most of the context they need 

from the direct placement in the desired surroundings. Most ambient devices receive 

their data input from few specific channels to not overload their complexity. In 

contrast to that, context aware applications rely on their capability to retrieve context 

from the environment to adapt their appearance and behaviour. A simple example is 

described in [Holleis, Kranz, and Schmidt 2005a]2, where context information such 

as location and temperature is added to digital pictures the very moment the pictures 

were taken. The term context itself has received much attention and many 

definitions exist that differ in detail. Dey gives a short discussion on that topic and 

we use his definition here: 

“Context is any information that can be used to 

characterize the situation of an entity. An entity is a 

person, place, or object that is considered relevant to the 

interaction between a user and an application, including the 

user and applications themselves.”  [Dey 2001] 

Much work has been put into location based services [Steiniger, Neun, and 

Edwardes 2006] like a myriad of nearby restaurant recommendation finders, mobile 

tourist guides [Ballagas, Kratz, et al. 2007], or presence systems [Kranz, Holleis, 

and Schmidt 2006]2. However, as stated in [Schmidt, Beigl, and Gellersen 1998], 

this is not the only type of context to sense. Besides relative or absolute location, 

they list many additional types of sensors that can sense low-level types of context, 

e.g., temperature, humidity, touch, movement, and orientation. This input can be 

used to infer higher-level context, e.g. emotions, mood, or activity (sitting / walking, 

reading / watching, running for the bus / fitness, see for example the special issue of 

the IEEE Pervasive Computing magazine [Davies, Siewiorek, and Sukthankar 

2008], for additional recent work). 

 

 

 

 

 

[Holleis, Kranz, and Schmidt 

2005a]; sensor box and picture 

with corresponding sensor 

data; thickest line is compass 

data 
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Wearable Computing 

Sensing context as described in the last item often needs special placement of a 

variety of sensors. Sometimes, a single sensor can be enough to get an idea of 

movements in a whole house, as for example described in [Patel, Reynolds, and 

Abowd 2008]. However, most of the time, the explicit placement of sensors is vital. 

Especially for activity recognition, the ability to have sensors directly on the body of 

the user can be of much help, see e.g. [Laerhoven and Gellersen 2004] for a 

description of detecting motion and pose of a person by using several sensor nodes 

distributed in that person‟s clothing. This is included in the research area of 

wearable computing. Already in 1998, much research has gone into the creation of 

fabric computer interfaces, see e.g. [Orth, Post, and Cooper 1998]. More recently, 

Linz, Kallmayer et al. show in [Linz et al. 2005] how to use flexible electronic 

modules and a way of connecting them with conductive yarn. This can be seen as an 

enabling basis for such work as [Holleis, Paasovaara, et al. 2008]2 which looked into 

the placement and usability of touch sensors on clothing. It could also make it easier 

to deploy technology such as the Lilypad Arduino, [Buechley, Eisenberg, et al. 

2008], a prototyping platform for applications integrated into clothes. 

Wearable computing also touches other aspects like fashion design and retrieving 

energy from body movements to power embedded devices and sensors, see [Mateu 

and Moll 2005]. Besides input – be it explicit through touch or wearable keypads, or 

implicit by collecting and interpreting sensor data – various methods of data output 

have also been studied. Famous examples are video enhanced glasses or goggles, 

headphones, vibration motors etc. Many augmented reality applications as described 

next are based on such extended wearable accessories. 

 

 

 

Phone bag with touch controls 

integrated in the design. 

Prototype from [Holleis, 

Paasovaara, et al. 2008] 

 

 

The picture of the body below 

indicates regions where people 

would expect touch input on 

clothing to be, see [Holleis, 

Paasovaara, et al. 2008] 

Augmented and Virtual Reality 

This subject is concerned with applications that either add to or completely replace how we perceive the real 

world. The first concept is known as augmented reality (AR), the second as virtual reality (VR). Virtual 

reality lets the user completely immerse into a virtual world which can either be realistically modelled using 

real places, persons, and textures, or abstract showing for example concepts or data structures. Possible 

applications range from entertainment [Benford, Magerkurth, and Ljungstrand 2005], to tourist information 

[Díez-Díaz, González Rodríguez, and Vidau 2007], to training and simulation scenarios, e.g. in the area of 

medical surgery (see [Neubauer 2005] for a broad overview as well as technical details on the subject). Many 

of those use head mounted displays and high-end computing machines to directly process and add 

information to the visual channel. Recently, however, mobile devices have caught up in terms of processing 

power and graphical capabilities. Applications such as an automatic, PDA-based translator for street signs 

seen through the built-in camera [Zhang et al. 2002], or mobile, collaborative games [Wagner et al. 2005] 

have become possible. The high mobility of the user in general imposes a non-trivial problem on the 

implementation of such applications since the discrepancy between the user or the device and the 

environment has to be measured very precisely and then computationally eliminated. Some generic work like 

the ARToolkit4 can be used to simplify such processes. As closely as augmented reality and wearable 

computing are related, much research combines different areas like for instance AR and tangible computing, 

see [Bianchi et al. 2006] for an example. 

                                                           
4 ARToolkit at HITLab, University of Washington; project page: http://www.hitl.washington.edu/artoolkit/ 

http://www.hitl.washington.edu/artoolkit/
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Computer Supported Cooperative Work (CSCW) 

Computers have always been built to aid and support work done by their users. However, the rather fixed 

setting and limited input and output capabilities of the standard desktop systems have hindered the 

collaborative aspect that is found very important in small and larger teams. The importance and long history 

of the field of computer supported cooperative work can be seen in the dedicated CSCW conference series5 

that started as early as 1986 and its various related conferences and workshops. A variety of smart meeting 

rooms with support for video and audio conferencing and quick and easy transfer and sharing of information 

such as virtual and physical documents has been introduced over the years, see for example [Jaimes and 

Miyazaki 2005]. 

This supports collaboration between teams at remote locations. Still, even when team members are 

co-located, perhaps in the same room, it is not trivial to find the right infrastructural and interface means to 

combine physical and virtual information in a way that it really improves interaction styles. Tabletop surfaces 

suggest themselves as mediator for various types of scenarios where several people can work together on one 

common subject. A comprehensive overview of recent research and technological prototypes (even though it 

mostly focuses on work from the Stanford University) can be found in [Morris et al. 2006]. Of course, these 

approaches have strong links to augmented reality and tangible computing. 

Communicating Information 

This is a very broad area and one of those where it shows most prominently that 

pervasive computing includes experts and research from a great variety of fields. 

Projects dealing with communicational issues can range from very low-level 

networking protocols and hardware cable design to more high-level technologies 

like VOIP (voice over IP, i.e. internet telephony) and video conferencing to 

specialised applications that incorporate various input and output channels. The 

project we describe in [Holleis, Kranz, and Schmidt 2005b]2 incorporates several 

small, wirelessly connected, mobile displays without any visible input capabilities. 

A set of gestures can be used to communicate simple messages to the other displays, 

e.g. for remote voting: four possibilities are shown; to make a decision, the device is 

put on the table oriented in a specific way. Then, the position and amount of lines on 

the display show the votes of the other participants in that particular group. Another 

example concentrating on the output side is [Sahami et al. 2008] where we describe 

a mobile phone with several haptic actuators. 

A contrasting approach that does not abstract information so much is shown in the 

Hug [Gemperle, DiSalvo, et al. 2003], which manifests the need for types of remote 

communication other than speech. It is a soft form that can comfortably be held in 

one‟s arms and, in addition to a phone which can provide an audio and possibly 

video connection, it uses an array of pressure and accelerometer sensors to convey to 

the remote party physical actions such as stroking or hugging (see also the newer 

HugShirt6, which remotely sends a hug to another person‟s shirt through mobile 

phones connected with Bluetooth). In fact, much research goes into how to 

communicate one‟s state of mind, emotions and feelings to a remote person. A 

recent project for instance uses a small vibration motor attached to a normal ring to 

transfer the heartbeat of a friend in real-time, [Werner, Wettach, and Hornecker 

2008]. In a similar project a few years earlier, we describe a standard alarm clock 

augmented with internet access [Schmidt 2005]2. Through its connection to other 

alarm clocks, its functionality can adapt to the presence and state of remote clocks 

and persons like husband / wife or colleagues. 

 

 

 

 

 

[Schmidt 2005]: information 

about connected alarm clocks 

is aggregated and displayed 

 

 

[Holleis, Kranz, and Schmidt 

2005b]: a simple, tangible 

interface for voting over a 

distance 

                                                           
5 CSCW Conference Series; CSCW‟08 conference page: http://www.cscw2008.org 
6 Cute Circuit, HugShirt, 2006; product page: http://www.cutecircuit.com/projects/wearables/thehugshirt/ 

http://www.cscw2008.org/
http://www.cutecircuit.com/projects/wearables/thehugshirt/
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All those projects that focus on communicating information in a different way than 

by standard telecommunication means have in common that they often need to 

include expertise in hardware, software, HCI, and many more areas. Surely, most 

applications need to use some form of communication, be it between two people in 

the same building, between a larger group of people distributed all over the world, or 

also simply between the user and a computer. This implies that the problem of 

having to congregate diverse expertise arises for many pervasive computing 

applications. Fortunately, however, abstractions exist for many of those issues that 

can alleviate such problems. Many projects, for example, simply use existing 

infrastructure and communicate using HTTP, i.e. simple web access, and thus do not 

need to consider the choice and implementation of the concrete type of network 

communication (e.g. whether a device is connected by LAN, WLAN, Bluetooth, 

GPRS, etc.). In addition, toolkits exist – for instance our EIToolkit described in 

more detail in Chapter 4 – that relieve developers from the need to know hardware 

details of every possible sensor and also abstract from specific implementations. 

 

DEVICEVIZ graphical, 

rule-based prototyping 

environment, see Section 5.2.2 

Mobile Applications, Anywhere / Anytime Access 

The success of mobile and pervasive computing applications in the last years has 

largely been driven by technological advances that made it possible to communicate 

wirelessly across wide distances, that enabled access to technology and information 

to a high percentage of the world‟s population, and that continuously reduce the 

amount of effort and money for such applications for both developers and users. As 

examples, a car is currently equipped with about 100 networked processors7, dish 

washers employ processors and logics far beyond their real requirements, and 

modern mobile phones are more powerful than standard computers have been just a 

decade ago. According to analyst Informa Telecoms & Media, the number of mobile 

phone subscriptions has reached 3.3 billion, i.e. 50 % of the world‟s population in 

20078 with 59 countries actually having more subscriptions than inhabitants. Over 

one billion phones have been sold in 20079 and many of these phones incorporate 

additional sensors and actuators such as GPS (Global Positioning System), 

accelerometers for orientation and gesture input, compasses, and cameras. This 

renders phones and other mobile devices like PDAs and PocketPCs a very 

interesting and powerful platform for pervasive computing applications. 

As has been mentioned before in conjunction with the term „everyware‟, pervasive 

computing builds heavily on the fact that many services can be accessed 

independent of time and place. Underlying infrastructure for the mobile web (using 

technology like GPRS, UMTS, protocols like WAP, services like i-mode, etc.) is 

now widely available. To overcome the small input and output areas of mobile 

devices, much research has been put into the use of public displays, see, e.g., 

[Tuulos, Scheible, and Nyholm 2007] of how to combine the personal, private 

screen of a phone with public displays. Interacting with non-private displays 

obviously has implications on privacy as information is potentially displayed that 

users do not want to share. Furthermore, interactions in front of a large display 

might especially attract interest by passers-by. In [Holleis, Rukzio, Otto, et al. 

2007]2, we show that this is especially true if gesture input is used and can be 

exploited in a positive way for advertising purposes. Nevertheless, input to small or 

public devices is a difficult process. We will especially concentrate on mobile 

application development in Chapter 7. 

 

 

 

 

 

[Holleis, Rukzio, Otto, et al. 

2007]: paper prototypes and 

advanced phone interaction 

 

[Holleis, Huhtala, and Häkkilä 

2008]: capacitive sensors that 

sense touch and pressure add 

another input dimension to a 

phone keypad 

                                                           
7 Column at Embedded.Com “Motoring with Microprocessors”: http://www.embedded.com/columns/significantbits/13000166 
8 News entry “Global Mobile Penetration Hits 50% Today”, analysis of Informa Telecoms & Media: 

http://www.telecoms.com/itmgcontent/tcoms/news/articles/20017483752.html 
9 News entry “Cell Phone Sales Hit 1 Billion Mark”, analysis from Gartner:  

http://news.cnet.com/8301-10784_3-9881022-7.html 

http://www.embedded.com/columns/significantbits/13000166
http://www.telecoms.com/itmgcontent/tcoms/news/articles/20017483752.html
http://news.cnet.com/8301-10784_3-9881022-7.html
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Input in Pervasive Computing 

Pervasive applications impose two specific problems on the way information can be 

fed into their systems. First, the user interface and the whole idea that there actually 

is an application running in the background should not be made explicit to the user. 

Thus it is difficult to provide non-obtrusive but still very much intuitive input 

modalities. Second, mobile users most often interact with their own mobile devices 

with tiny keypads or keyboards which makes text input very cumbersome. Besides 

various types of text input on small keyboards (see [Wigdor and Balakrishnan 2004] 

for an overview), speech [Starner 2002] and gestural input [Kranz, Freund, et al. 

2006]2 has been analysed. This applies not only with respect to the mobile devices 

we carry but also in specific settings such as on the bike or in the car. 

Even though the quality of speech recognition is on the increase, it might not be 

appropriate in all situations. Whenever the type of information that needs to be 

entered into a pervasive system does not need to be very elaborate, however, 

specialised methods can be used. For example, in [Holleis, Kranz, Winter, et al. 

2006]2, body movement on a chair is used to control an application. In [Holleis, 

Paasovaara, et al. 2008]2, we analysed various types of touch input controls on 

clothing and wearable accessories, e.g. to control a music player. The device in 

[Kranz, Holleis, and Schmidt 2005]2 is another example of a gadget that only allows 

a very restricted type of input, in this case just the distance between the body and the 

device and an additional large button. This makes sense when a highly specialised 

scenario constrains the set of interactions that are possible, e.g., when wearing thick 

gloves. On the other hand, research is conducted to extend the input capabilities of 

existing appliances. As an example, we augmented a standard mobile phone keypad 

with a capacitive touch sensor on each key [Holleis, Huhtala, and Häkkilä 2008]2. 

This means that a third dimension is available on the phone keypad which enables 

concepts like 3D movement, tooltips, and additional shortcuts in menus. 

 

 

 

Images from a study with a 

cushion augmented with 

sensors [Holleis, Kranz, 

Winter, et al. 2006] 

 

 

[Kranz, Freund, et al. 2006] 

detailing gestural input 

methods: a sensor cube and 

visualisation 

A taxonomy of how problems of distributed computing have become more complicated and accompanied by a 

range of additional problems (such as adaptive applications and location dependency) with the emerging area of 

mobile computing can be found in [Satyanarayanan 2001]. A similar effect appears when introducing issues of 

pervasive computing (e.g. invisibility and smart spaces) to mobile computing. 

2.2 Application Development Process 
Pervasive applications have many requirements in that they need to incorporate many different areas of 

computing: distributed software, hardware support, heterogeneity of platforms, operating systems, devices, etc. 

Surely, other software programs also need to deal with certain of these aspects, e.g., specialised hardware (grid 

computing, robot control), different platforms and devices (web browsers, virtual machines), distributed systems 

(data warehouse, stock exchange), or user-focused applications (data visualisation, end-user programming). 

However, a majority of pervasive applications rely on combining a large set of those areas. This is one reason 

why framework, toolkit and development support are crucial to push development for pervasive applications. 

Besides providing input to several aspects of pervasive computing, one of the major contributions of this thesis is 

support for enabling and simplifying the creation of such a diversity of applications, e.g. by providing tools such 

as the EIToolkit (see Chapter 4) and the MAKEIT programming environment (see Chapter 7). 

An important aspect for creating pervasive applications is derived from the fact that the success of many of such 

programs relies on their affordance, i.e., simply put, their ability to express their purpose and functionality 

without additional explanation or documentation. Many programs are not targeted at experts in a certain area but 

on a (fictive) average person who has access to the required technology like for example a mobile phone with 

web access. This implies that the user should play an important role at the beginning as well as during the whole 

development process. 
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A typical procedure that follows such a user-centred design (UCD) process involves several steps. An ISO 

standard10 describes how to apply user-centred design methods in the development life-cycle of interactive 

applications. However, no exact actions are specified, partly because the scope of the standard is very generic 

and aimed at a broad range of applications. In general, and based on the standard, a process following UCD 

principles includes, first of all, initial studies about related work, interested stakeholders and target groups, user 

expectations and profiles, application conditions and scenarios, as well as business cases and system 

requirements. Next, there will be the task of creating design solutions. This can involve several stages from 

coarse (low-fidelity) prototypes made from paper to polished applications (or high-fidelity prototypes) running 

on a simulated or even the target platform (see also Section 2.2.1). These products will then be evaluated and 

results will be fed into potential redesigns as shown in Figure 1. After the initial requirements have been met, a 

first working system can be developed. This can also consist of several stages beginning with a horizontal 

implementation, e.g. providing the whole menu structure of a user interface (UI) but without most of the 

functionality and then later filling in the necessary semantics. As before, each stage should be tightly 

accompanied and followed by an evaluation (see also Section 2.2.4). The results of the evaluation are 

subsequently used to refine the implementation. This is most often in the form of small bug fixes, patches, or 

small changes. Sometimes, however, some more fundamental flaws in the design might be discovered and it 

might lead to the need of a redesign. In most of these stages, simulation techniques can be employed. They can 

help in identifying problems with technology (e.g. scaling or power consumption), resource requirements and 

performance, and also usability. The last aspect can be covered, e.g., by simulating devices or functionality (such 

as using the Wizard of Oz technique where a human simulates automatic behaviour behind the scenes or the 

EIToolkit which can be used to generate arbitrary system input), situations and scenarios (e.g. by deploying it to 

virtual platforms such as Second Life), or simulating users with user models as described in Chapter 1. 

This iterative design is supposed to produce a version that fulfils all initially set requirements and can then 

finally be deployed (see also Section 2.2.3). There are many similarities to standard software engineering 

processes but also some aspects where the development of pervasive applications departs. This includes 

involving several areas like hardware engineering and a large focus on UI design in novel areas. We refer to 

[Kranz 2008] for a more detailed comparison of these approaches. 

Although the UCD process presented here is rather generic and can (and should) contain methods from software 

engineering such as performance and stress tests, the user-centred aspect is most important to keep in mind while 

creating (prototypical) versions and planning evaluations. A tight contact with prospective users or their 

representatives found through the initial analysis is critical. If this is too expensive in terms of money and time, a 

possible solution can be to compare the design against previously found user profiles and personas. Another 

possibility, pushed in this thesis, is to employ user models in order to facilitate this process. Although real 

customer studies are preferred in some cases, such models can be used to cheaply and quickly replace controlled 

lab studies. We will further detail this approach in the following Chapter 1. 

 

Figure 1: A common process based on which a user-centred design (UCD) development cycle  

can be applied. A critical part is to integrate the target users into each of the process parts. 

In the following sections, we will briefly go into more detail about some of the steps in this development cycle 

and show where and how our approaches can improve the development of pervasive applications. We assume 

that the initial creative stages of finding ideas and looking for a business case, as well as the analysis of the state 

of the art, user expectations, application requirements, etc. have already been performed. 

                                                           
10 ISO 13407:1999 Human-centred design processes for interactive systems; web page (access not free): 

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=21197 
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2.2.1 Prototyping 
An important aspect in the development cycle, especially when following a user-centred design process is to be 

able to see, try, and convey ideas. This is especially critical when people with different backgrounds are working 

together. Designers, for example, make use of a totally different vocabulary as computer programmers do. They 

also often think in different ways and roles. One possibility to alleviate this situation is to produce prototypes 

early and repetitively. These can be used to convey ideas to colleagues as well as to potential users, to get an idea 

of technical feasibility, and to get early feedback from users. Another potential advantage is that customers and 

users can be actively involved. Prototypes can also often be used in the target environment. 

Prototypes are used to find out about aspects important for the success of an application or product. They can be 

used in different types of studies to get an idea of the affordance of a device, the practicality of interactions, the 

comprehensibility of tasks, and much more. This ranges from subjective opinions about non-functional 

prototypes to objective measurements such as task completion time and error rate for more advanced prototypes. 

They can also serve as physical instances for deciding between various designs and implementation possibilities. 

Several types of prototypes exist, fitting to different stages and requirements. One criterion is fidelity. Low-

fidelity prototypes remain sketchy and far from the product but are usually simple, quick, and cheap to produce. 

We favour high-fidelity prototypes since data gathered from studies can be more directly applied to the 

envisioned product. The mobile phone prototyping environment we propose in Chapter 7, for example, allows 

quickly generating applications that run on the target platform and thus convey the correct feeling of handling to 

users. Developers can still decide whether to produce vertical (completely implementing one or a few features) 

or horizontal prototypes (demonstrating the breadth of available functionality of a device or application but 

skipping the implementation of most of those). 

Simple versions of a product can be created in software, e.g. using GUI-builders, rapid design builders like 

Adobe Flash, or toolkits such as those presented in Section 4.1.2, Software-focused Toolkits. Other types of 

prototypes include sketches, short videos, and paper prototyping. 

2.2.1.1 Methods and Tools to Create (Tangible) Prototypes 
One of the main contributions of this thesis is to provide a platform to easily generate prototypes of pervasive 

applications. However, there are a number of established ways to generate prototypes. Non-functional prototypes 

are often created using paper prototyping. With paper, a pair of scissors, some glue, and various pencils, one can 

create mock-ups of devices and user interfaces. Dynamic contents can then be simulated by exchanging the 

contents of a screen, replacing parts of it, or erasing, writing, or attaching additional text and graphics. The 

method is extremely quick, prototypes are easy to adjust, and for many applications it can convey a good enough 

impression of the desired product. It is mostly employed very early in the development process when the focus 

of the evaluation is on the idea and style of interaction but details such as look and feel can also be tested. It 

belongs to the category of throwaway prototyping since the prototypes do not help in implementing the system. 

We used paper prototyping in several projects, for example to generate and manifest initial ideas of an Eclipse 

plug-in that helps developing pervasive applications. This is presented in Section 5.3.3. Another application was 

to find out very early about people‟s actions and reactions to using NFC interactions with a mobile phone. The 

results have been integrated into a framework for such interactions [Rukzio, Wetzstein, and Schmidt 2005] 

which we use in a mobile phone application development environment described in Chapter 7. This environment 

is also used to leverage such paper prototyping processes using images and storyboards in order to quickly 

generate working test applications. The results have also been proven valuable for the generation of user model 

parameters that allow us to apply interactional data (such as task completion time information) to prototypes 

without the need for real user studies (see the following chapter about user modelling). In addition, we used 

other prototyping techniques such as 3D printouts (e.g. [Kranz, Schmidt, et al. 2005]). This is still rather 

expensive. However, such printers are getting cheaper and it can already pay off for mid-sized groups to buy one 

of these. Often, a cheaper variant is to exploit and augment existing objects as we did in [Schmidt, Holleis, and 

Kranz 2004]. Although we do not currently provide own hardware, the tools we present in Chapters 4 to 7 

especially ease the use of third-party hardware, in particular if they include some sort of „smartness‟, such as 

toolkits like [Lee et al. 2004] and [Greenberg and Fitchett 2001]. 
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Such toolkits can radically lower the threshold of developing applications for pervasive computing. Languages 

that base on a set of graphical UI widgets have helped to generate software user interfaces more quickly and 

ensured the adherence to certain standards and guidelines. Besides the two mentioned in the last paragraph, there 

exist a variety of hardware toolkits that try to achieve the same goals for physical interfaces. There has yet been 

no definite standard. However, those tools can tremendously accelerate development, especially for people 

without detailed technical knowledge. We present, compare, and evaluate several of them in Section 4.1, A 

Review of Existing Prototyping Toolkits. Of course, the software part is most often at least equally important 

and we treat software focused toolkits in the same section. The strength of our EIToolkit framework presented in 

Chapter 4 lies in its ability to abstract and combine software and hardware components and thus simplify the 

generation of pervasive applications. 

2.2.1.2 Prototyping Issues 
Obviously, prototypes play an important role for development, especially if a user-centred design process should 

be followed. It enables developers to present their ideas to colleagues as well as end-users in a more concrete 

way than would be possible by sketches alone. However, there are a couple of drawbacks that have to be taken 

into account. Some of those can be alleviated by using concepts presented in this thesis. 

 Prototypes can only test specific aspects: some problems of deployed, real products like power 

consumption, bandwidth, cost, etc. are often not treated. Distributed, complex applications or very small or 

huge devices as well as those using hardware which is not yet available make it difficult to prototype. 

 High level of abstraction: the level of abstraction required by users of low-fidelity prototypes can influence 

study results. Testers in general succeed differently in interpreting a rough prototype as a finished product. 

 Convey false impressions: users can get false ideas with respect to the real state and performance of the 

project; e.g. a simulated speech interface will work better than most speech recognising software. 

 Applicability of results: some results from the handling of a prototype cannot be directly transferred to the 

envisioned product. Emulating text recognition on a paper prototype feels and works differently than on a 

real touch screen with an automatic system. 

 Long way from prototype to product: since many prototypes use communication through a central device 

(i.e. most often a PC is used to transform, adapt and forward communication between system components), 

these approaches are difficult to deploy, e.g. to another site or sell to the public.  

 Consequences of changes: since prototypes can often be adapted quickly and easily, it may be difficult to 

see the implications on the existing system such as a back-end. 

 Prototyping tools target a specific audience: prototyping tools and environments are often built to support 

a specific target group of developers. For example some replace low-level programming with scripting (but 

users nevertheless need programming abilities), some allow designers to concentrate on visuals (reducing 

the potential complexity of applications), or some use specific abstractions for young developers (which will 

often reduce efficiency). 

 Prototypes cost: the effort in creating prototypes should not be underestimated. In contrast to evolutionary 

prototyping where a system is continuously refined, many of such rapidly built systems are throwaway 

prototypes and thus do not contribute directly to the progress of the product since they often neglect aspects 

like form factor, weight, etc. Difficulties arise as people have to use several different ways of developing, 

i.e. paper prototyping, hardware, and software, and with each of them have to use different types of design 

tools, programming languages etc.. 

However, only few of these issues imply that prototyping methods should not be employed. By allowing 

prototypes to be built directly on the target platform (e.g. on mobile phones [Holleis and Schmidt 2008], see 

Chapter 7), prototyping can achieve realistic levels. This can also simplify the transition from prototype to 

product. Complex algorithms such as image analysis can, for example, be simulated using the Wizard of Oz 

technique. Entirely novel devices or those that are hard to build can be simulated using augmented or virtual 

reality. By involving prototyping tightly in the development process, the impact of problems such as 

implementations diverging from the users‟ needs can be reduced and correct information about the state of the 

project can be communicated. 
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In general, tools can aid in keeping development costs down and also help in retrieving objective results. As we 

discuss in following chapters, a system can for instance be prototyped in software and – through the use of 

existing user models – metrics can be generated that are valid for the envisioned target (e.g. hardware) platform. 

Advantages of tools such as the MAKEIT environment (Chapter 7) are that prototypes can be generated on the 

fly, in fact even during meetings or user studies. To immediately counter issues and user feedback, it is possible 

to quickly change and alter prototypes. An important aspect is also that the threshold of creating prototypes is 

lowered. It is extremely valuable in a heterogeneous team that, for example, designers or even end-users can 

create simple prototypes to try things out, to store designs, and to explain ideas to colleagues. A combination of 

developing by simply demonstrating tasks and writing code as in Chapters 5 and 7 allows systems to be used 

across groups participating in the development. This combination also provides a low threshold and a high 

ceiling and has been one of the requirements of the EIToolkit suite introduced in Chapter 4. We also make use of 

standard tools such as drawing tablets, (scanned) images, and well-known development environments such as the 

Eclipse IDE to enable a broad range of developers to feel comfortable with their tools. 

2.2.2 Implementation 
One of the most difficult tasks in implementing a pervasive computing application is arguably to cope with the 

heterogeneity of the devices involved. Sometimes teams need to employ knowledge in microcontroller 

programming (assembler, C), mobile device (restricted C++ or Java), and platform independent software 

development including web-based services at the same time. They also have to tackle other issues of distributed 

and mobile systems like various data types, interrupted communications, and roaming users. 

Even though most emphasis in this thesis is put on rapid prototyping and the quick generation of demonstrators, 

much of its work can also be applied to implementing final products. The combination of heterogeneous devices, 

the focus on reusability of components, and the support for existing applications, development environments, 

and toolkits (hardware as well as software), enables developers to make use of a broad basis on top of which 

interesting applications can be built. 

It will not be an integral part to consider direct implementation specific issues. However, we will show several 

approaches to implement pervasive systems, focusing on rapid prototyping with graphical tools. We will also 

demonstrate the utility of different programming languages, the use of code generators and combinations of 

graphical tools with scripting or code writing. 

2.2.3 Deployment 
Deploying an application can happen in various levels and stages. The most general situation is that a system is 

made available for public access, will work independently and run unsupervised. Davies and Gellersen draw 

from experiences with the deployment of a variety of pervasive applications [Davies and Gellersen 2002]. They 

describe that the step from limited prototypes to polished products requires many aspects to be tackled. They 

give a list of technical, social and legal, as well as economic issues that makes deployment of pervasive 

applications difficult even if most standard problems concerned with distributed, ad-hoc systems such as name 

resolution, configuration or error management have already been taken care of. Several projects created and 

deployed in the past serve as illustration to collected challenges that must be treated with care to enable or 

facilitate the deployment of pervasive applications. 

Although we do not go into much detail about deploying systems in this thesis, we adopted many of these 

challenges in the list of requirements that a development framework should comprise. Section 4.2, Toolkit 

Requirements for Pervasive Applications describes these prerequisites and also shows which of them are 

fulfilled by the current version of our EIToolkit. 

It should also be noted that it is possible to deploy systems generated with similar tools to those presented here at 

least for collaborative and research purposes as has been successfully done with the iRoom and its components, 

[Borchers et al. 2002]. 
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2.2.4 Evaluation 
A major part of the development cycle, especially when following a user-centred design process is governed by 

evaluations. Most of the different types of prototypes imply specific types of evaluations. Additionally, various 

methods to evaluate a system have been introduced and proven valuable, depending on the specific stage in the 

development process, the desired results and the amount of time (and money) that is available. 

Scholtz and Consolvo describe nine ubiquitous computing evaluation areas that they identified to be important 

for evaluating pervasive applications [Scholtz and Consolvo 2004]. These are abstract values for which an 

evaluator has to find ways of measuring. The authors argue that this process has to be project and 

implementation specific and cannot be generalised easily. It includes aspects concerning user attention, device 

invisibility, and application robustness. However, there is also a set of evaluation techniques that can be used to 

find out about many of those issues. In summary of the current situation in evaluating pervasive applications, 

there are still few results regarding the methodologies to use, what kinds of tools and standardised technology 

would be needed, and how to evaluate specific aspects like context awareness. [Neely et al. 2008] report on 

several workshops independently organised around the theme of evaluation requirements and systems in 

ubiquitous computing. They conclude that although there is strong interest in the subject, most methods used at 

the moment follow standard methods adopted from general HCI studies, which might not be the perfect solution. 

Still, much work has to be done to improve the situation. As one promising area, the combination of evaluations 

in the physical and the virtual world is mentioned. We are convinced that the models and integration strategies 

described in the following chapters can contribute to this research area in the sense stated in the paper. 

Some types of evaluation methods, for example focus groups and brainstorming approaches like the Six 

Thinking Hats method [de Bono 1999], are applied very early in the development process where the focus is on 

finding ideas, creating concepts, and gathering requirements. Although many methods can be performed using 

early prototypes as well as final products, observational user studies, for instance, are best employed for 

functional applications close to finalisation. This ensures that people do not need to employ much imagination to 

fill in missing parts or to try to judge how they might evaluate a, say, different input method. The results will be 

more reliable if the user interface is as intended. Then, objective (time, errors) and subjective (pre- and post-

study opinions) aspects can be measured. In between, i.e. for rough prototypes providing more or less 

functionality, expert and heuristic evaluations as well as cognitive walkthroughs are often chosen as a quick and 

inexpensive method. Domain experts are recruited to check the system, either by using it as an end-user would, 

by following certain tasks and trying to identify issues, or by comparing the system at hand against guidelines, 

usability principles, and other criteria. 

Although we do not provide an entirely new evaluation system, we introduce methods based on user models to 

simulate user tests of a deployed product far before the system reaches a state mature enough to be evaluated by 

end-users. This is not meant as a complete substitute to real user tests, however. As we argue for example in 

[Schmidt, Terrenghi, and Holleis 2007], direct interaction with users in a participatory design process can bring 

much insight into users needs, especially if a prototype or product can be evaluated in a natural environment, e.g. 

the home of the users themselves. Thus, there are several drawbacks of using only models for evaluation, e.g.: 

 No direct observation: observations and conversations with users that can sometimes lead to further 

insights are not available; on the other hand, this eliminates some subjectivity on the side of the evaluator 

 Learning effects: it is difficult (but possible, see for example [Brown 1996]) to incorporate learning effects 

into models; however, it is not necessary to treat learning for first-use or routine tasks 

 Models simplify: by definition, models might not capture all aspects of a system; however, they can 

indicate issues that require more attention 

 Modellers influence: sometimes, aspects not thought of by the modeller do not appear in the evaluation, 

too; however, appropriate tools can help reducing this threat and even help end-users to become modellers 

themselves; additionally, the influence of a person designing a user study and questionnaires should also not 

be underestimated 
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On the positive side, several difficulties of evaluations with real end-users can be overcome by employing 

objective user models for evaluation, e.g.: 

 Easy specification of the target group: for user studies, it may be difficult to concretely specify the target 

user group; models, in contrast, can be generic in some points and can often be quickly adapted for that 

 Gain of objectivity: it is often hard to tell or find out why exactly an interface posed a problem for users; 

models can directly show where and what the problems were and often reveal their causes 

 Less cost of recruiting: the cost of recruiting (enough) participants of the target group can be high; models 

can often be built quickly and reused in similar or other projects or project stages 

 Less cost in time: an evaluation with users takes a considerable amount of time (usually about an hour per 

person in addition to the design and preparation of the study and the combination and interpretation of 

results); the time to apply a user models is negligible; the same holds for analysing gathered data 

 Less cost of changes: changes such as in target group or interface / implementation are costly to 

incorporate, and some users simply do not like changes; most models can be easily adjusted in many aspects 

 Better control on learning effects: learning can largely influence results: if the same person repeats a test, 

learning might have a higher impact than the changes in the system actually under observation, if another 

user is chosen, comparability is reduced; models behaviour does not change unintentionally and some 

learning effects can be incorporated 

We will go into some more detail in the next chapters. In general, user models can be applied to incorporate 

simulated use of a system earlier, more tightly and cheaper in the development process. Different types of users 

can be generated in order to make tests with regard to specific target groups or system tolerance with the use of 

personas and user profiles. This can increase the speed of iterative development and reduce effort and cost for 

user studies. However, it would be optimistic to hope that an easy to use system with high affordance that 

directly targets the users‟ needs can be found without involving target users at all. Still, we can argue that a 

considerable set of issues can be found without the often subjective and expensive help of user studies which, 

alone or not done with appropriate rigour, also cannot guarantee a successful application. 
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This chapter introduces the notion of user models and their application to human computer 
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After introducing the term and application of user models in the sense we use it (3.1), we delve into the area of 

cognitive user models and explain the concepts of specific models such as GOMS and KLM (3.2). This leads to 

a discussion on the properties and applicability of these models (3.3) before we detail an extension we developed 

for one of these models in the area of physical mobile interaction (3.4). We then present a summary of this work 

and point to additional extensions that can bring models like the KLM to further application areas (3.5). 

3.1 User Models – Overview 
In general, a model is a simplified version of an entity or method; simplified in the sense that certain details 

might be abstracted or ignored. Within the scope of the model, complex situations or processes can be illustrated 

and made easier to understand. It must be kept in mind that models normally imply a certain set of assumptions 

and setting, outside of which no guarantees can be made that the model still holds. When simulating complicated 

processes, or processes that are only partially understood, models are often used to simplify them. An example 

that we are going to treat in more detail here is how to model human cognitive and motor behaviour in order to 

simulate and make predictions on the interaction of users with pervasive systems. 

It should be noted here that we mainly employ user models for predicting error rates and interaction times. In a 

broader sense, user models have been used, among others, to create dialogue systems [Wahlster and Kobsa 1989] 

or recommender and personalisation systems [Resnick and Varian 1997]. In contrast to personalisation, our goal 

is rather to abstract from individual differences (see, e.g., stereotypes in [Rich 1979]). We refer to the conference 

series on user modelling11 and [Wahlster and Kobsa 1989] for a more detailed overview on the involved terms: 

                                                           
11 Conference on User Modeling, Adaptation, and Personalization; UMAP‟09 web page: http://umap09.fbk.eu 

 “The aim of research in HCI is not necessarily to develop computer systems that 

construct a model of the user. Instead, knowledge about users‟ mental models should 

enable designers to build systems that can be more easily understood by users, or at 

least to predict learnability and performance.” 

[Wahlster and Kobsa 1989] 

http://umap09.fbk.eu/
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Other examples specific to the domain of human computer interaction include assistive systems built in line with 

simulated user behaviour. Here, user models can improve context-sensitive help systems by making predictions 

on possible goals and subsequent desired steps of the users [Gong and Elkerton 1990]. User models can also 

replace users (acting as surrogate users). These models are built to include all information necessary to behave 

similar to real users and have been given the means to interact with a system. As such, different designs can be 

tested and behaviour studied or the models can be used as test engines for interfaces [St. Amant 2000]. Although 

most of the systems we describe here would allow using different types and different purposes of models, we 

concentrate on predictive models and use them throughout the prototyping and development process in order to 

predict task completion times on the target platforms. 

We follow the understanding of S. MacKenzie and use the term „descriptive models‟ for models that provide a 

basis for understanding, reflecting, and reasoning about certain facts and interactions [MacKenzie 2003]. They 

provide a conceptual framework that simplifies a, potentially real, system. We contrast that with the term 

„predictive models‟ which is used to characterise models that estimate some metrics in advance, i.e. before an 

application or product has been implemented. This terminology is not uniformly used in the literature. For 

example, [Ritter and Young 2001] distinguish between descriptive and functional models. In their terminology, 

descriptive models incorporates both types of models described above while functional models focus on models 

that can be used as a replacement for users, i.e. to simulate how people would use an interface. 

In the next section, we briefly describe the concept of descriptive models. They include, for instance, models that 

classify devices by a set of properties, e.g., the number of dimensions sensed. We briefly discuss two examples. 

The Three-state Model for graphical input devices gives a concise and useful characterisation of the way input is 

realised with graphical devices. As second example, Guiard‟s model of bimanual skill is outlined. These 

descriptive models can also be used to inspect an idea or a system and make statements about their probable 

characteristics. However, they are mostly used to reflect on a certain subject. We will then further focus on 

predictive models, which provide analytical metrics about certain characteristics of the modelled system. They 

are most often engineered with more mathematical rigour than descriptive models. We will briefly mention 

several examples, including such famous ones as Fitts‟ or the Hick-Hyman Law. Additionally, there are classes 

of such models that are based on state transitions or grammars. The focus on that chapter will be, however, on 

those models that make predictions about human performance, especially in terms of the time to completion of 

tasks. As such, the GOMS family of models and the Keystroke-Level Model will be treated in some detail. 

The KLM will then be extended to be able to model advanced interactions with mobile phones such as gestures 

and visual markers. This will serve as a basis for the effort to combine such models with prototyping and 

development tools described in the next chapters. 

3.1.1 Descriptive Models 
Since we do not focus on descriptive models in this work, we only briefly touch on two examples in order to see 

differences to predictive models and their possible utility in designing applications. 

The first example is Buxton‟s Three-state Model for graphical input devices [Buxton 1990]. As the name 

suggests, it is built around three states, namely out-of-range, tracking, and dragging, Figure 2. It can thus easily 

model such devices as the mouse which is normally in the tracking state and can be brought into dragging mode 

by pressing a button when the cursor is over an icon. A simple tablet input method, on the other hand, is 

normally in the out-of-range state and can be brought into tracking mode but needs additional means to bring it 

into the dragging state. A tablet with a stylus can exploit all three states. The model has been employed very 

often to characterise and evaluate new input techniques, e.g. Apple‟s TrackPoint touchpad, see [MacKenzie 

2003]. However, although it has proven to manage combining several input technologies, it has weaknesses in 

detail and expressiveness. An interesting extension to the model is given in the ExperiScope project 

[Guimbretière, Dixon, and Hinckley 2007], which uses visualisations built on both, the Three-state Model and 

the Keystroke-Level Model. The latter is a predictive model that we will use extensively throughout the rest of 

this work and that will be introduced in the following section. They also extend Buxton‟s model with additional 

states to include novel technology such as multi-level buttons and pressure sensing techniques. 
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Figure 2: Three-state Model of Buxton [Buxton 1990]. Figure taken from [MacKenzie 2003]. 

The visualisation in the ExperiScope project also includes a separation between the dominant and non-dominant 

hand. Our second example, Guiard‟s Model of Bimanual Skill, elaborates exactly on this distinction between the 

different use of the preferred and the non-preferred hand in routine tasks [Guiard 1987]. Figure 3 illustrates and 

concretises the differences. 

 

Figure 3: An illustration of Guiard’s Model of Bimanual Skill
12

. 

There are manifold implications that can be drawn from that model for the design of user interfaces. As argued 

in [MacKenzie and Guiard 2001], the model clearly indicates that the task of scrolling should be done with the 

non-preferred hand. However, in most desktop settings this is implemented as to be done with keys (e.g. page 

up / down), the mouse (scrollbar), or the mouse wheel which are all actions normally initiated by the preferred 

hand. In applications such as treated in Chapter 7 about mobile device applications, the non-preferred hand 

should be used to hold the mobile device and perform tasks such as mode switching. Another application of the 

model suggests having the non-preferred hand guide the other one in tasks such as pointing in a direction or at an 

object or identifying rough directions for capturing visual tags. 

3.1.2 Predictive Models 
This section treats a set of models that allow making predictions about a system. Most of them are used to give 

some kind of performance estimate about the projected use of the modelled system. One of the most famous ones 

that we will only briefly introduce here incorporates results of studies done by Paul Fitts in 1954 and has later 

become known as Fitts‟ Law to acknowledge its importance and applicability. It gives timing information about 

pointing tasks and can be used to calculate the throughput of specific devices. We then briefly introduce more 

general approaches based on grammars and state graphs that we will reuse in work described later, before we 

focus on the area of cognitive models that will form the foundation of several extensions and applications 

provided in this thesis. 

                                                           
12 Figure taken from “Models of Interaction – What are they?“, slides for the course “Research in Advanced User Interfaces: 

Models, Methods, Measures”, University of Tampere, Finland; course page: http://www.cs.uta.fi/~scott/mmm/ 
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Fitts’ Law 

In 1949, C. E. Shannon provided an expression subsequently known as the Shannon-Hartley theorem that 

calculates an upper bound of the capacity C of a communication channel with given bandwidth B and signal-to-

noise ratio S/N [Shannon 1949]. The formula for C is the first in Equation (1). 

In his work, Fitts came up with an analogy for human targeting tasks involving arm movements [Fitts 1954]. The 

setup of the experiment backing the analogy required test persons to alternately tap on target areas of width W 

that were placed at distance D to each other. Fitts specified the formula to calculate the index of difficulty, ID, as 

a metric of the difficulty of a task as given in Equation (1) as IDFitts with the units of bits.  
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To improve the analogy to the Shannon-Hartley theorem above, a slightly different form of the calculation for ID 

is given in Equation (1) as IDMacKenzie in [MacKenzie 1989]. Besides being closer to the formulation on 

communication capacity, this has, according to research by the author, the advantage that the results correlate 

even closer to empirical values than Fitts‟ original version. Another positive effect is that the ID can no longer be 

negative. In IDFitts, the term 2D/W can be smaller than one (and consequently the logarithm smaller than zero) for 

very close or large targets. Such a negative index of difficulty does not fit well to the model. The added „+1‟ in 

MacKenzie‟s equation ensures that, in those cases, the ID approaches zero instead. 

Using ID = IDMacKenzie, often referred to as the Shannon notation of Fitts‟ index of difficulty, the movement time 

MT necessary to hit a target at distance D and width W is expressed by Equation (2), where MT is linear in ID. 
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The parameters a and b are constants specific to the device used. The simplest method to find particular values 

for these parameters is to perform controlled tests with varying values for distance D and width W and to fit a 

line through the gathered data points, e.g. using linear regression. 

Further detail on Fitts‟ analogy to information processing can be found in numerous documents. Its use and 

importance in human-computer interaction has probably been treated in most detail in [MacKenzie 1991]. In 

[MacKenzie 1992], the author also describes methods to correctly adjust the width according to the exact 

location of users‟ pointing actions and error rates. Fitts‟ Law is now incorporated as an ISO standard to evaluate 

pointing devices13. This shows that, although first conceived as a tool to measure and predict pointing times in 

one dimension, it holds remarkable well for higher dimensions and more complex pointing tasks. It still should 

not be taken as granted that the formula holds for arbitrary novel types of pointing interaction as some 

adjustments have to be made, see for example the treatment of a seemingly elementary task in two dimensions in 

[MacKenzie and Buxton 1992]. We will refer to Fitts‟ law again in Section 3.4.2, Model Parameters where text 

input on mobile phone keypads and pointing tasks using phones with built-in tag readers are studied. 

Grammar based: Task Action Grammar 

Grammars are often used to formalise the syntax of a language or a system. One of the advantages is that a 

grammar can concisely describe the rules along which all elements of a language are generated. For the purpose 

of describing interactive systems, the Task-Action-Grammar (TAG) has been defined in [Payne 1984] and 

[Payne and Green 1986]. It helps to formalise a mapping between the user‟s conceptual model of a system and 

the real application‟s behaviour. The TAG is a context-free grammar that formally describes how tasks can be 

solved taking sequences of appropriate actions. This helps in identifying the steps needed to complete a task and 

is especially useful in grouping tasks with similar functionality. 

                                                           
13 ISO 9241-9:2000, Ergonomic Requirements for Office Work with Visual Display Terminals (VDTs), part 9;  web page 

(access not free): http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=30030 

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=30030
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As an example consider the task to navigate in a document. We base it on the example given in [Green, Schiele, 

and Payne 1988] and update it to the behaviour in current word processors. We also show how different types 

models can work together by applying the descriptive Key-Action-Model developed as a simple example in 

[MacKenzie 2003] using the distinction of „symbol keys‟, „executive keys‟ and „modifier keys‟. 

task[unit, direction]  modifier_key[unit] + executive_key[direction] 

modifier_key [unit = letter]  "" 

modifier_key [unit = word]  "CTRL" 

executive_key [direction = forward]  "cursor right" 

executive_key [direction = back]  "cursor left" 

Written in this way, one can clearly see the separation of choosing the granularity of the action and the direction. 

One could also have a slightly different set of rules: 

task[unit, direction]  modifier_key [unit] + executive_key [direction] 

modifier_key [unit = line]  "" 

modifier_key [unit = paragraph]  "CTRL" 

executive_key [direction = forward]  "cursor down" 

executive_key [direction = back]  "cursor up" 

However, it is not sensible to simply combine these two example rule sets as this would result in a not 

deterministic model (see, e.g., the „executive_key [direction = forward]‟ rule). In this example, this can be easily 

solved by adding „down‟ and „up‟ to the possible values of „direction‟. However, it is still often easier to add 

such functionality to the modelled system than to update the model. 

By attaching time predictions to the terminal symbols, one can make predictions about the performance for the 

entire task. An example of the use of TAG as an evaluation tool to identify learnability problems in an interface 

without having to perform any user testing is given in [Brown 1996]. Already in 1988, Green et al. used the TAG 

in a study about command languages where they compared various formal modelling techniques and design 

guidelines in the context of learnability [Green, Schiele, and Payne 1988]. In their comparison to actual results, 

they found the predictions of the TAG most accurate. However, they also showed that there is the need for 

several extensions to the TAG technique whenever it is not only used to analyse the consistency of command 

languages. Together with the fact that the concept of grammars is not easily grasped by people without 

background in computer science or language processing, this approach seems less attractive from a prototyping 

point of view. Sometimes, however, behaviour is already defined using grammars, e.g. in Backus-Naur form 

anyway. In such cases, the application of TAG might be advantageous. 

State transition based 

One way to see a device or an application is as a system reacting to events by transitioning from one state into 

another. We use this approach in Chapter 7, which describes, among other things, an interface for developers to 

create a state transition based model of an application using a visual approach and a specific graph data structure. 

Statecharts have long been looked at to provide a graphical simplification of larger systems, see for example its 

introduction in [Harel 1987]. 

            

Figure 4: User interface (left) and excerpt of a state graph of a syringe pump (right) from [Thimbleby and 

Gow 2007]. The device which has a display and 10 buttons generates a graph with 54 states and 157 arcs.  
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A formal construct to treat these structures are for instance finite state machines (FSM). Several researchers 

argue that FSMs are not appropriate to model real interactive systems due to the simplifications they induce and 

the large number of states necessary to describe systems of even moderate size, e.g. [Palanque and Paternò 

1998]. However, it often is exactly this power of simplifying complex behaviour that makes it valuable to 

understand and assess fundamental issues and properties. Thimbleby argues along similar lines in [Thimbleby, 

Cairns, and Jones 2001], although he targets a different implementation using Markov models which offers the 

advantage of being better scalable than FSMs. 

We do not go into more detail about state transition based systems here but will revisit the approach several 

times, e.g. when treating the d.tools system that heavily bases on a statechart to create its application logic 

[Hartmann, Klemmer, et al. 2006] and postpone a detailed discussion to Chapter 7. 

3.2 Cognitive User Models 
In contrast to the approaches described in the last section, we now briefly mention models that concentrate less 

on describing the semantics of a device or application but target a formalisation of the way people think and act. 

These models can be summarised using the term cognitive user models. We briefly introduce the general concept 

and a few formalisms used to describe them before delving deeper into a specific family of such models that we 

are using throughout the rest of this work. 

Model Human Processor 

Most of these models are based on a certain type of understanding of how humans interact with each other and 

with systems. We introduce the Model Human Processor (MHP) since the models we describe afterwards draw 

heavily from its concepts. 

The starting point of all these attempts to describe how humans interact is the human information processing 

model. In its extended version of [Barber 1988], it describes that any external input sequentially runs through 

four stages: encoding, comparison, response selection, and response execution. These stages are themselves all 

influenced by the two factors attention and memory. This means that all four stages are executed differently, 

with different speed, efficiency, priority, error proneness, etc. depending on whether or how much the person is 

focused on the task at hand and what and how much information is stored and accessed during each step of 

processing. 

Memory plays an especially important role in information processing. Already in 1968, Atkinson and Shiffrin 

proposed three different types of memory: sensory, working (or short-term), and long-term memory [Atkinson 

and Shiffrin 1968]. Based on such approaches, the Model Human Processor was developed in [Card, Newell, 

and Moran 1983]. Its three interactive systems each consist of a processor and interact with different types of 

memory. The perceptual processor produces information that is stored in visual and auditory storage; the 

cognitive processor outputs into working memory and has access to both, working and long-term memory; and 

finally the motor processor coordinates actions. 

Of course, this is a very coarse view on human abilities and it does not take into account any connections to the 

environment or collaborative actions. However, it proved to be very valuable for tasks where one person 

interacts with one system, e.g. a computer. Other models have also been developed that look into the relations of 

information processing in the presence of several people. Such a distributed cognitive model has, e.g., been 

presented by [Hutchins 1991]. We refer to the extensive literature provided at the ACT-R project page14 for 

recent developments. 

In order to make use of most of the models and architectures described in the following, tasks have to be defined 

that should be evaluated (benchmark tasks). There are several formalisms and modalities to describe such tasks. 

An overview of those can be found in [Paternò 2002]. 

                                                           
14 ACT-R cognitive architecture at Carnegie Mellon University; project page: http://act-r.psy.cmu.edu/publications/index.php 

http://act-r.psy.cmu.edu/publications/index.php
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Cognitive Architectures 

For the rest of this work, we will focus on two models, namely GOMS and the Keystroke-Level Model (KLM). 

These have the advantage of being abstract and simple enough to be employed and understood with only little 

introduction. They are models to formalise and describe human behaviour. Frameworks which implement such 

models of human cognition are called cognitive architectures. These try to simulate the human brain and possibly 

human methods to retrieve input and manipulate the environment. Although, ultimately, all those architectures 

base on similar assumptions, they vary in approach, detail, and in focus. [Ritter 2004] provides an introduction 

and many pointers to reviews and reports in that area. 

We briefly mention three of the architectures that are in use nowadays. In order to keep the focus on our main 

approach followed in this chapter, we will not go into much detail. However, we want to acknowledge their 

existence since it might be interesting as future work to combine their power (which cannot be fully described 

here) with approaches given in this thesis. 

The SOAR system (short for states, operators, and reasoning) views all human processes as steps within the task 

of solving a problem [Laird, Newell, and Rosenbloom 1987]15. As often done in logics processing, it builds on a 

knowledge base. A main goal (task) is split into sub goals that are solved independently and whose results are 

passed into the knowledge base for reuse. This is represented as a goal stack in a model of working memory. 

Production memory stores all the knowledge necessary to execute tasks. Deciding between several possible 

production rules in one state is modelled as a sub goal and based on preferences from other rules. A central 

concept in SOAR is to use all information available to choose and execute actions. Thus, it cannot properly 

model uncertainties, irrational decisions, or forgetting. Decisions are always optimal with respect to the 

knowledge available. 

The ACT-R system (short for adaptive control of thought, rational) is also based on production rules and 

chooses optimal strategies [Anderson 1993]. However, this optimality is based on gain which means that it will 

choose the method that incurs the least cost while having the highest probability to achieve the current goal. This 

implies that, in contrast to SOAR, not all knowledge is necessarily used, e.g. if it would be too expensive to 

retrieve this knowledge, and thus can cope with inaccurate information. In ACT-R, cost is implemented using 

time and, similar to other parameters attached to rules, is adjusted through learning processes during the runtime 

of the model. The focus on time also renders ACT-R superior to SOAR with respect to time predictions. 

The EPIC (short for executive-process interactive control) system can be viewed as to add „eyes‟ and „hands‟ to 

a cognitive architecture [Meyer and Kieras 1997]16. It provides various processors in charge for input and output 

such as a visual and auditory processors as well as one for manual motor processing. This enables the system to 

directly interact with an implementation or a simulation of a user interface (provided it is implemented in a 

certain way to be able to interface with the architecture). Similar properties have been added to other 

architectures, see for example [Salvucci, Zuber, et al. 2005] for ACT-R in which extensions are described 

enabling the ACT-R system to observe and control a driving simulator. A further difference to the previously 

mentioned architectures is that there is no decision making aspect within the system. All processors (e.g. 

cognitive and motor control) can work and also all production rules can fire in parallel. Only if two steps use the 

same resource, a process to decide which of them takes precedence has to be provided by the modeller. This 

offer of parallelism provides flexibility but makes implementing constraints between different processes more 

complex. A drawback of EPIC is that the model does not offer means to incorporate learning although it is 

generally seen important to have a tight coupling between information processing and learning. 

 

The following two sections go into some detail about two predictive models that also base on the Model Human 

Processor and are important to follow the reasoning in the next chapters of this work. 

                                                           
15 This is the initial publication of the SOAR system; the architecture has been continuously refined, see the project page: 

http://sitemaker.umich.edu/soar/home 
16 This is the initial publication of the EPIC system; the architecture has been continuously refined, see the project page: 

http://ai.eecs.umich.edu/people/kieras/epic.html 

http://sitemaker.umich.edu/soar/home
http://ai.eecs.umich.edu/people/kieras/epic.html
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3.2.1 GOMS: Goals, Operators, Methods, Selection Rules 
In 1983, i.e. 25 years before this writing, Card, Moran, and Newell presented, among other things, a model to 

describe tasks and how users are proceeding to do these tasks in their book „The Psychology of Human-

Computer-Interaction‟ [Card, Newell, and Moran 1983]. Since the model is composed of four components, 

namely goals, operators, methods, and selection rules, they named it GOMS. Despite its age, it is still one of the 

most widely cited and used models of its kind. 

Analysing a task of a user who is interacting with a computer system, the first element to be perceived is the 

purpose of the task, i.e. what users want to achieve. All the models treated here assume that this target is clear, at 

least to the users themselves. In the GOMS language, this is called the goal. In all interactive systems, there 

exists a certain set of steps that can be performed, such as typing a command or selecting with the mouse. The 

GOMS model calls these single units of interaction operators. To achieve the aforementioned goal, a sequence 

of operators can be used. Often, there exist several such sequences, i.e. methods, to achieve the same goal. In this 

event, users can choose between different methods. Which method they use in a particular moment can depend 

on several factors like available or preferred input method, complexity of the task, etc. To adequately model such 

choices, GOMS uses selection rules. These specify the conditions under which a specific method is employed. 

Goals: In most variants of GOMS, this is a rather verbal description of what a user wants to accomplish. 

Examples include „move the cursor one word forward‟, „copy a word / file / disk from place A to place B‟, „open 

file F‟, „order product P online‟, „write a paper about X‟. As can be seen, the complexity and abstractness of such 

a goal can vary greatly. It can be as simple and quick to solve as moving a cursor but can also be complex and 

involving many sub-goals as when writing a paper. It should be noted, however, that GOMS is best employed in 

that broad area in between those extremes. For too straightforward and quick tasks, it is often too much effort in 

contrast to the achieved gain. On the other side of the continuum, with very complex tasks involving much of 

human‟s creativity, problem solving, or communication skills, it can be difficult to model all the details. 

However, it is easily possible and often of great help to have a model of all the sub-tasks that need to be 

accomplished. In the example of writing a paper, a model might not be able to correctly describe all the aspects 

of extracting the important contents, summarizing the results, identifying parts that still need to be done, etc. It 

could be used, though, to create or analyse an interface built to support a user in performing this task, i.e. write a 

paper from scratch. 

In written models, goals are preceded by the „Goal:‟ keyword. 

Operators: Most systems provide the user with a variety of different ways to interact with it. For the GOMS 

model, these are split into small units. Depending on the abstraction of the whole model, this can mean pressing 

a key or combining several steps as in „enter address‟ or ‟open file‟. It is in the responsibility of the modeller to 

choose this level but it needs to be taken care that it remains consistent throughout the model; an operator should 

not be split somewhere else in the model. 

In most cases, an operator describes direct user input by entering commands with a keyboard, selecting menu 

items with a mouse, or more advanced actions like performing gestures, using speech, or using tag based 

interaction. Other systems might support implicit interaction where the system draws from knowledge of the user 

and the environment. Actions not intentionally meant to be manipulating the system like entering a room can 

thus also be used as input. These play a superior role in the Keystroke-Level Model described further below. 

In written models, operators are often given a name but otherwise simply listed one per line. 

Methods: Different sequences of operators that lead to the same goal are subsumed into a method. It is important 

to capture such methods because different users might have different ways of doing something. Also, this 

construct serves to enable the comparison of different methods using the model.  

In written models, each method is assigned a name or short description. A list of methods is enclosed by brackets 

and introduced by the „select‟ keyword. 
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Selection Rules: Having different methods for one goal means that people have to choose between those 

methods. The reasons to select a specific path can be manifold. Some users might only know about one of these, 

others generally prefer mouse over keyboard, etc. In many cases, the choice will also depend on the specifics of 

the task, e.g. selecting a word might be done differently than selecting a whole page. The need to specify such 

rules not only makes the model applicable more generally, i.e. to more situations and types of users, it also helps 

the designer to think about possibilities and potential extensions, affordances, hints, or missing shortcuts. 

In written models, selection rules are specified separately for each „select‟ statement. Each rule is preceded by 

the „Rule n:‟ keyword with n being the number of the rule. 

As an example we use the goal to move one word (n characters) to another place (the end of the text) in the MS 

Word text editor. It was done for Office 2003 or older but most of it still holds for newer versions (with some 

changes in menu names). We assume that the cursor is at the beginning of the word to move. One approach is to 

separate different methods first and then specify each of them with appropriate sub-goals, see Figure 5. 

 

 

There are several more variants that differ in detail, e.g., a menu item can be activated with the mouse or with the 

keyboard or a combination of the two. Even without such distinctions, there are an impressive number of 

methods of how to achieve that simple goal. The reason why this has been implemented in such diverse ways 

can be found when trying to set up the selection rules. The main reasons why people choose a specific method 

are a personal preference between keyboard and mouse and whether people know and remember keyboard 

shortcuts or not. One possibility to satisfy both groups that prefer mouse or keyboard, respectively, as well as 

novices who more often use the (context) menu and advanced users who prefer the quick keyboard shortcuts is 

to offer all these methods in parallel. For systems that target expert users, the decision might be different. One 

important aspect to note here is that in building the model before, during or after the design of such a user 

interface, the designer gets a framework to think about, e.g., who are the users, what are prerequisites inherent to 

the system, what is the initial learning effort and what steps are necessary to help the user get more efficient. 

Figure 5: GOMS model of a moving a word in a text editor. Three different methods are described (only 

the use-keyboard method is fully described). Selection rules are not printed. 

Goal: move the word starting at the cursor position to the end of the text 

 [select use-keyboard 

  delete-and-write 

  use-mouse] 

 

Goal: use-keyboard 

 Goal: select word 

  [select use <shift> and n*<cursor right> 

   use <shift> and <ctrl> and <cursor right>] 

  verify selection 

 ... 

 

Goal: delete-and-write 

 ... 

 

Goal: use-mouse 

 Goal: select word 

  [select click at beginning and drag till the end of the word 

   double-click on the word] 

  verify selection 

 Goal: move word 

  [select click on word and drag till end of text 

   Goal: copy-paste-with-mouse 

    ...] 

 verify move 

Method 1 

Method 2 

Method 3 

Sub-goal 

Main goal with 

methods 
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Today, GOMS is considered to be a whole family of cognitive modelling approaches. Besides the Keystroke-

Level Model described afterwards and the original GOMS, i.e. the one described in [Card, Newell, and Moran 

1983], at least two more variants have been developed and are in active use, NGOMSL and CPM-GOMS. We do 

not employ those additional two in this work and therefore mostly point the reader to the corresponding, quite 

extensive existing literature. John and Kieras, for example, give a good overview and comparison of the four 

models in [John and Kieras 1994]. 

NGOMSL, short for natural GOMS language, uses a structured natural language notation, [Kieras 1988]. It bases 

on a cognitive architecture called cognitive complexity theory (CCT). Working memory plays an integral part in 

this architecture (see also the description of the Model Human Processor, above). In fact, working memory 

triggers rules specified in very much analogous form as in the original GOMS but using a specific format 

prescribed by the CCT. Besides manipulating the working memory itself, these rules can also trigger external 

operators, e.g. those on a keystroke level. 

Two main differences to standard GOMS lie in the inclusion of access to working and long time memory and the 

different treatment of cognitive and perceptual operators. While the first adds a new way to evaluate an interface 

directly with respect to the load placed on memory, the last is more due to different underlying systems without 

considerably changing the result (the original GOMS mostly captures time for cognitive processes in a „verify‟ 

operator, NGOMSL distributes this into every single step, and the CCT architecture incorporates one for a 

sequence of actions). One of the most interesting applications of NGOMSL is that it can be used to predict the 

time to learn a specific interface. This power is derived from the empirical result that the learning effort is 

roughly linear in the number of NGOMSL statements and long time memory chunks that need to be learned; see 

[Gong 1993]. By removing duplicate entries, knowledge transfer is simulated. The constants involved in this 

linearity have to be measured. If existing values are used, strict care has to be taken that the same methodology 

and style has been used in both, the empirical measurement of those values and the setup of the model at hand. 

It should be stressed that this model cannot be used to predict learning or execution times for unknown operators. 

The method to predict learning time assumes that the user is already familiar with how each of the operators‟ 

actions is to be executed. 

One of the limitations of those models – namely that all actions that lead to a goal are modelled to be executed in 

sequence without support of parallelism – has been sought to be overcome by a variation called CPM-GOMS 

[John 1990]. It uses the mechanism of the critical path method (CPM) often employed to plan the timeline of 

projects. All single items necessary to reach a goal are defined and dependencies between them are specified, i.e. 

if an item A needs to be executed before another item B, then B depends on A. It explicitly allows parallel 

activities. These relationships can then be visualised in a PERT chart17. The longest path in this chart is called 

the critical path since it defines the minimum duration of the whole process. The disadvantage of this type of 

model is that, to be able to have cognitive, perceptual, and motor operators interleave each other, it must be very 

detailed and very low-level. In fact, modelling starts with an original GOMS model and refines its methods to 

the level of processing done by the cognitive, perceptual, and motor processors used in the MHP architecture. An 

implication is that, for tasks that do not offer strong evidence that several operations are running in parallel, the 

CPM-GOMS model might be too much of an effort. 

A simplification that some models use to simulate parallelism is to set the times of some operators to be executed 

in parallel to zero. Available templates for some activities have been provided to simplify the creation of such 

models [John and Gray 1994]. However, the modeller has to keep in mind that the assumption of experienced 

users underlying all the GOMS models is taken to the extreme by this model as it models all processes to be 

executed as fast as the MHP allows. The assumed times to locate something on a screen and to verify the results 

of an action are slower than a person new to an interface would probably need. For many specialised applications 

where some tasks are repeated quite often, these assumptions are very likely to hold, however. 

                                                           
17 PERT (program evaluation and review technique) Chart; a tool to visualise the flow of activities. A common application is 

to emphasise the critical path on which all activities can be found that would delay the whole process if any one of them 

were delayed; see for example the NetMBA documentation at http://www.netmba.com/operations/project/pert/ 

http://www.netmba.com/operations/project/pert/
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3.2.2 KLM: Keystroke-Level Model 
In the following, the Keystroke-Level Model, KLM is introduced. In some sense, it is the simplest of the GOMS 

family. It has the advantage of being very quick to understand even by people without background in cognitive 

science. The reason is that the level of detail in which such a model has to be set up is clearly defined. On the 

one hand, it is on a level low enough for people to be able to easily follow and understand it; on the other hand, 

and in contrast to the CPM-GOMS, it abstracts from the details of the Model Human Processor. Nevertheless, its 

predictions have proven to be sound and valuable. 

The KLM is especially useful when there are one or several clearly defined and describable sequences of actions, 

e.g. to achieve some task. It concentrates on the operators defined by the GOMS concept and does not treat 

different methods and thus also does not need any selection rules. One specific goal is modelled using a 

sequence of operators at the keystroke-level. That means that operators typically include small units of actions 

that have a direct impact on the interface. Common examples are mouse clicks, key presses, and hand 

movements. The time spent with cognitive and other processes not directly modelled in one of the operators, is 

subsumed into one generic „mental‟ operator. It models such aspects as searching for the position of an item or 

verifying results. It is obvious that it can be sensible to use the original GOMS formulation to more abstractly 

analyse a system and then use the KLM to concretely describe a critical segment. 

Three years before the publication of the book introducing GOMS, the Keystroke-Level Model was introduced 

[Card, Moran, and Newell 1980]. It has originally been used to analyse simple interactions with a computer-

mouse-keyboard setting. Much work has been put into extending the use of KLM to a variety of other areas; an 

example of our own work in this area is described in Section 3.4 KLM Extensions for Advanced Mobile Phone 

Interactions and we list an extensive sample of other works below. The original formulation includes six 

operators with one more added later for button presses, as detailed in [Kieras 1993] (this paper also provides a 

good introduction to KLM), see Table 1. 

Table 1: Original Keystroke-Level Model operators for the desktop setting. 

Operator Description Associated Time 

K 

Keystroke, typing one letter, number, 

etc. or function key like „CTRL‟, 

„SHIFT‟ 

Expert typist (90 wpm): 0.12 sec 

Average skilled typist (55 wpm): 0.20 sec 

Average non-secretarial typist (40 wpm): 0 .28 sec 

Worst typist (unfamiliar with keyboard): 1.2 sec 

H 
„Homing‟, moving the hand between 

mouse and keyboard 
0.4 sec 

B / BB Pressing / clicking a mouse button 0.1 sec / 2*0.1 sec 

P Pointing with the mouse to a target 
0.8 to 1.5 sec with an average of 1.1 sec 

Can also use Fitts‟ Law 

D(nD, lD) 
Drawing nD straight line segments of 

length lD 
0.9*nD + 0.16*lD 

M 
Subsumed time for mental acts; 

sometimes used as „look-at‟ 

1.35 sec (1.2 sec according to [Olson and Olson 

1995]) 

R(t) or W(t) 
System response (or „work‟) time, 

time during which the user cannot act 

Dependent on the system, to be determined on a 

system-by-system basis 

The keystroke operator models typing one character. Often, a sequence of consecutive characters is either written 

in the form of „K[hallo]‟ or another operator name „T(n)‟ for typing n characters is introduced. The time is 

simply the number of characters multiplied by the time associated with one K since no difference is made 

between different keys. For specific keyboards or special characters, this might have to be revised. However, for 

short texts, an average value can usually be found. 

There are only few aspects that have to be treated with care when applying the Keystroke-Level Model. Most of 

the operators are clearly self-explanatory and easy to apply. The Mental Act operator, M, though, can pose some 

difficulties. Kieras concisely summarises the use of the M operator: 
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The operator is not meant to model cognitively hard operations such as looking for a solution for a problem or 

making calculations. Some model generators break that operator down into a visual part such as a „look-at‟ 

operator in order to describe searching a specific element on screen or validate an entered value and a separate 

„think‟ operator. We do not need that level of detail and stick to one operator that subsumes both actions. 

Despite its rather clear description, placing these M operators is often difficult when creating a KLM. We give a 

list of heuristics that help in deciding where to insert an M below. However, it should be remembered that, in 

most cases, the result of a KLM is a single time value. Thus, it does not matter where or in which order the 

operators are placed. It is much more important to think about the number of Ms in an action sequence. Simply 

put, a pause should be allowed before starting a new sub-sequence of actions such as typing a text, or whenever 

some remembered information such as a file or menu name needs to be accessed. 

The second aspect that needs attention from modellers is the expert-user assumption underlying all GOMS 

approaches: the prediction holds best if the modelled users know what they are doing, i.e. they do not have to 

think or search for possible ways to solve a task. The models are best suited for routine tasks that are executed 

often. We provide several reasons why this assumption does not hamper the application of these models to 

manifold application areas below in Section 3.3. [Baskin and John 1998] compare KLM with CPM-GOMS in an 

experiment. They conclude that, with increasing experience (they observed one user repeating a task 500 times), 

CPM-GOMS can outperform KLM with respect to prediction precision. The main reason for this was identified 

as being the amount and duration of mental act operators placed in the KLM. With extensive practice, the user 

needed less time than predicted by these operators. However, this can be seen as an extreme case of routine. We 

do not go into detail about how to render this operator dynamic by including learning effects and proceed by 

giving some examples to illustrate the use of KLM. For text input, Isokoski and MacKenzie suggest to add a 

learning rate function to model the change of text entry speed from first sight to asymptotically expert use, 

[Isokoski and MacKenzie 2003]. 

A simple example of a KLM shows the difference between different implementations and input methods for a 

common task in the Microsoft Word text editor. As task, we chose to add some space after a paragraph. In 

versions before Word 2007, the necessary steps were to open the „Format‟ menu entry, find the „Paragraph‟ item 

and change a setting in the appearing dialogue. The corresponding KLM can be found in Table 2 for using 

mainly the keyboard (5.73 seconds) or the mouse (8.21 seconds), respectively. In Word 2007, a new ribbon 

replaces the menu and directly shows icons to access most functionality. It contains a shortcut icon offering a 

drop down menu with an entry for adding space to a paragraph. The accompanying KLM is found in Table 3 for 

the mouse (7.65 seconds) and in Table 4 for the keyboard (7.22 seconds). This chooses a standard amount of 

space to be added. Remarkably enough, most of these predictions are of a very similar magnitude indicating that 

there has been little improvement (for that particular task). For completeness, Table 5 shows the KLM that 

applies if a user happens to use the quite complex keyboard shortcut (2.47 seconds). 

When comparing the models for the mouse interaction of the two Word versions, one can see that the steps of 

interaction are very much the same (except that, in one case, the size of the space has to be entered explicitly). 

The expert user assumption removes differences that might arise with novice users such as problems in 

identifying the correct icon. The model as given in the tables assumes that the distances and the sizes of the 

targets (i.e. menu headings and names, icons, etc.) are approximately the same. Sometimes, this has to be 

modelled more precisely, e.g. using Fitts‟ Law described earlier. Word 2007, for example, displays a context 

menu directly besides the current cursor position after selecting some portion of text, shown in Figure 6. A KLM 

using the standard 1.10 seconds for pointing would not be able to extract its advantage to the same icons placed 

in the menu bar. Only if the distances that the mouse has to be moved are taken into account the time saved by 

this approach can be correctly predicted. 

“[The Mental Act operator] is based on the fact that when reasonably experienced 

users are engaged in routine operation of a computer, there are pauses in the stream 

of actions that are about a second long and that are associated with routine acts such 

as remembering a filename or finding something on the screen.” 

[Kieras 1993] 
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Table 2: KLM to add a 6pt space after a paragraph in Microsoft Word  

prior to version 2007 using keyboard shortcuts or the mouse to call a dialogue via the menu. 

Description 
Operator 

(keyboard) 
Time allocated 

Operator 

(mouse) 
Time allocated 

Locate menu „Format‟ M 1.35 M 1.35 

Press ALT-o or mouse click K,K 2*0.28 P,B 1.10+0.10 

Locate entry „Paragraph‟ M 1.35 M 1.35 

Press „p‟ or mouse click K 0.28 P,B 1.10+0.10 

Locate item in dialogue M 1.35 M 1.35 

Point to item K,K 0.28 P,B 1.10+0.10 

Enter a 6 for a 6pt space K 0.28 K 0.28 

Close the dialogue (ENTER) K 0.28 K 0.28 

Sum (keyboard):  5.73 sec. Sum (mouse):  8.21 sec. 

 

Table 3: KLM to add some space after a paragraph in Microsoft Word 2007 using the mouse. It is 

assumed that the ‘Home’ section in the ribbon is not active. Otherwise, it would be 2.55 seconds faster. 

 

 

Table 4: KLM to add a space after a paragraph in Microsoft Word 2007 using keyboard shortcuts. 

 
 

 

Table 5: KLM to add a space after a paragraph in Microsoft Word 2007 using a known keyboard shortcut. 

Description Operator Time 

Prepare for shortcut M 1.35 

Press ALT-h-k-a 4*K 4*0.28 

Sum: 2.47 sec. 

Description Operator Time  

Locate ribbon heading „Home M 1.35 

Click on heading P,B 1.10+0.10 

Locate icon „Line Spacing‟ M 1.35 

Click on icon P,B 1.10+0.10 

Locate „Add Space After Paragraph‟ M 1.35 

Click on entry P,B 1.10+0.10 

  Sum: 7.65 sec. 

Description Operator Time 

Prepare for shortcut M 1.35 

Press ALT K 0.28 

Locate key for „Home‟ M 1.35 

Press „h‟ K 0.28 

Wait for visualisation R(t) 0.70 

Locate key for „Line Spacing‟ M 1.35 

Press „k‟ K 0.28 

Locate key for „Add space‟ M 1.35 

Press „a‟ K 0.28 

 Sum: 7.22 sec. 
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Figure 6: Mouse path for using the text highlighter in Word 2007. 

Left: using the ribbon. Right: using the new context menu that appears close to the mouse cursor. 

The target size is the same but the distance is considerably different. 

It is not difficult to create Keystroke-Level Models for existing applications if all interactions are known and 

operators have been defined for all of them. The definition of new operators or the adaptation of existing ones to 

new domains proves to be more difficult and time intensive. Section 3.4 below describes an example for such a 

setting. In general, the steps that need to be taken to apply the KLM to a given design are straightforward. We 

reproduce a list from [Kieras 1993] with some additions: 

Many non-trivial examples of Keystroke-Level Models can be found in the literature. We will see another more 

complex example in Section 3.4.4 using the model extended for interactions with mobile phones.  

3.3 Discussion and Applications of the GOMS Family of Models 
The following list of pros and cons of modelling applications with GOMS models has been extracted from 

various sources including personal communications, publications (most prominently [John, Why GOMS? 1995] 

by Bonnie E. John and an included sidebar by Jacob Nielson) and through personal experiences with that subject. 

The different versions of GOMS are perhaps best treated in a comparison found in [John and Kieras 1994]. We 

concentrate on an analysis that tries to generalise over these particular differences. The analysis is also based on 

some of the issues and advantages mentioned in Section 2.2.4 for the application of user models in general. The 

following treatment is specialised to variants of GOMS and KLM. 

1. Choose one or more representative task scenarios. 

2. Have the design specified to the point that keystroke-level actions can be listed 

for the specific task scenarios. 

3. For each task scenario, figure out the best way to do the task, or the way that 

you assume users will do it. 

4. List the keystroke-level actions and the corresponding physical operators 

involved in doing the task. 

5. If necessary, include operators for when the user must wait for the system to 

respond, R(t). 

6. Insert mental operators, M, for when user has to stop and think. See the 

guidelines given in [Card, Moran, and Newell 1980] and more detailed 

heuristics in [Kieras 1993] 

7. Look up the execution time for each operator. If these are parameterised or exist 

in different flavours (e.g. system response time or text input) then find the 

values appropriate to your application. 

8. Add up the execution times for the operators. 

9. The total of the operator times is the estimated time to complete the task. 

Adapted from [Kieras 1993] 

  

distance 

  distance 
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Weaknesses with Respect to Application and Results 

 Just spending time is not modelled: GOMS models build on sequences of actions that lead to a specific 

state or goal; merely killing time as identified by [Nielsen 2000] to be a potential „killer‟ application is 

difficult to model; however, this is a distinct niche which is separated easily from routine tasks. 

 Difficult to target specific users: a user study can sample exactly the target group whereas this is more 

difficult with models; however, models can often be easily specialised in several aspects. Also, GOMS 

assumes expert, near error-free interactions which are often not mirroring reality; however, there are 

approaches to counter this, e.g. using typing speeds of less experienced persons, or explicit modelling of 

novice users as shown in [Pavlovych and Stürzlinger 2004] for mobile text entry. 

 No real users: the modeller has to predict the way(s) people will follow to accomplish a certain task; this 

might not be the way users will choose and if a specific action sequence is predetermined, this can 

potentially influence the results; however, the „methods‟ parameter in a GOMS analysis can take care of 

several possibilities. Even if the sequence of actions taken has been correctly identified, for entirely new 

systems (i.e. without a direct predecessor), actual usage motivations and ways of use can diverge from the 

task analysis; however, if identified, these can be incorporated into the model. Also, comments from users in 

a study can be informative and reveal opinions, restraints, suggestions etc.; however, the more objective 

model analysis can often give more precise explanations of why an interface is inferior to another one. In the 

end, it is always sensible to have a user study with target end-users accompany tests with user models. 

 Difficult to model novel interactions: as stated above, previously unknown operators or those not studied 

in depth are difficult to incorporate without time consuming pre-studies, see for example [Holleis, Otto, et 

al. 2007]; however, if done with rigour, it can subsequently be used without the need to re-run studies. 

 Various variable parameters: some operations like system response times can be difficult to predict, 

especially in distributed systems (which also includes, e.g., simple web browsing); however, such 

parameters can often be ignored if they are fixed and occur the same number of times in different designs. 

 Users like to have impact: it can have a positive advertisement effect when users see that the can have (or 

think that they have) a real impact on the development of an application; however, suggestions that are not 

taken into account and false impressions (e.g. a prototype looks finished but it takes long time till the release 

of the product) can have an even stronger negative impact. 

Strengths with Respect to Learning, Results, and Efficiency 

Good treatment of learning effects 

 Measurement of learnability: GOMS/KLM can predict the time needed to learn to perform tasks. 

 Independence of sequences: it can reduce bias due to the order in which users are presented with interfaces. 

 Measurement of knowledge requirements: it can show how much prior knowledge users need to have; 

this can lead to a redesign to give novice users better guidance, e.g. repeat helpful information like an 

invoice address entered on a no longer visible page. 

Good results 

 Gives reasons: GOMS/KLM explains why something is judged to be slower or more difficult; user studies 

often only show what is negative. 

 Helps in decision making: it provides cues for deciding between two or more different interfaces. 

 Identifies bottlenecks: it can find components that should be re-implemented using a better (e.g. faster) 

method; we describe an example in Section 3.4.4. 

 Provides illustrative figures: it can give predictions that can directly be converted into cost which make it 

well suitable for reporting to management. 

 Combines various views: it can bring together requirements and descriptions from a variety of views like 

those from end-users, domain experts, designers, etc. 

 Treats feasibility and cognitive load: it can indicate how much a user needs to remember between steps 

and can thus be used to predict the frequency of errors and also whether target users can use it. 
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Less cost in money and time 

 Quick to apply: in Gong and Kieras‟ analysis, it took only 12 % of the whole project time to apply such an 

analysis, and only half of the time of executing user-surveys and a formal user-study, [Gong 1993]. 

 Quick to prepare: GOMS/KLM can predict long-term, skilled user performance; in contrast to many types 

of studies like think-aloud or cognitive walkthrough, there is no need to train people. 

 Helpful to design: it can help developers to focus on understanding the problem and the application 

domain, [Gong and Kieras 1994]. 

 Cheap to apply: it alleviates some issues with user studies which are cumbersome, expensive, take a long 

time, and are subjective. 

 Easy to repeat: it can be run any number of times, on a number of different tasks. 

 Quick to analyse: its results can directly be extracted; retrieving information from, e.g., user studies, and 

transcribing it often takes considerably longer than gathering the data itself. 

 Precise to interpret: it shows also small changes; sometimes even a difference in the range of seconds can 

be very important, especially if a task is done or repeated several thousands of times as in the case of 

telephone operator workstations [Gray, John, and Atwood 1992]. 

 Easy to convey: its results are easy to understand and quick to explain; they can be used to pass information 

to colleagues, managers and customers who do not necessarily have a background in cognitive modelling. 

Discussion 

A strong argument in favour of such models is that, in the last 25 years, a variety of projects have emerged that 

confirmed the validity of the GOMS model in various domains. Extensions and variants have been introduced to 

broaden its applicability into areas including some that had not even been known at the time of its introduction. 

The models can be compared to and developed along the assumed conceptual model of the users. This is 

important, among other things, to find discrepancies in the way developers and users think. 

Sometimes it is seen as a drawback of such models that they assume nearly error-free expert user interaction. 

[Baskin and John 1998] describe the impact of the expert-assumption on models built with KLM and GOMS. In 

the end, KLM revealed remarkably precise prediction results in several projects (e.g. [Teo and John 2006]). Even 

in cases where experimental studies indicated that estimates were in fact considerably off the actual measured 

values, the estimated difference between two examined designs still proved to be a strong basis for making a 

choice between them (e.g. [Gong and Elkerton 1990], [Koester and Levine 1994], [Dunlop and Crossan 2000], 

and [Myung 2004]). 

It should be stressed that time to completion of a task is only one aspect of a promising application. Still, it is an 

important criterion for a large set of applications ranging from small games to reservation systems, from sub-

tasks to larger systems, from support to search systems. This is especially true for applications designed as side 

tasks or that exploit people‟s precious and short amount of spare time, e.g., between two tasks or while waiting 

for a meeting or the bus. These fundamentally rely on quick and hassle-free interactions. In addition to games 

and entertainment, mobile phones are increasingly used to enhance productivity and throughput in various fields 

like security or ticket sale. This is one of the platforms on which people do often not fully concentrate for a 

longer period of time. In general, experience has shown that it is essential to assess designs and applications 

early in the development phase. The phone company NYNEX probably saved millions of dollars [Gray, John, 

and Atwood 1992] because the Keystroke-Level Model was used to find out that the interaction performance of a 

newly designed workstation would have been slower to use than the existing system. As mentioned below, this 

also illustrates that saving a few seconds can make a huge difference as soon as a task is repeated a large number 

of times or by a large number of people. 

The GOMS/KLM approach has been developed as a rather general method to describe and analyse a wide 

variety of applications. However, in the beginning, it was mainly targeted at small, static interactions of one user 

with a simple system. In the years after its introduction, it has been adopted by many researchers and application 

designers alike and has been extended in several dimensions. In the following, we briefly list a few areas in 

which it has successfully been applied in order to demonstrate the power and generality of the approach. 
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Application Areas 

An important advantage of the user model analysis is that it can be applied to ideas and designs. There is no need 

to have the system implemented as long as the single interaction steps are known [Haunold and Kuhn 1994]. 

This tremendously helps in the design process because such tests can be run extremely early. An additional 

advantage is that, by creating the test environment (i.e. identifying important tasks, analysing the necessary 

steps, etc.), an improved understanding of the system under development can be achieved. Although distinctively 

more complex models would be necessary to directly support creative tasks, GOMS/KLM can also be applied in 

this area. It should be noted that the mental operator provided by the KLM is not suitable to model such creative 

actions. However, at least the routine parts of creative tasks, e.g. the use of dialogues or toolboxes can be 

evaluated even if the main task is mostly creative. In general, it is not necessary that a system is modelled on the 

whole. The models can also be applied to sub-systems or independent parts of a system. It is also easily possible 

to use different methods for different parts or to combine it with other usability methods. 

A totally different area is that of surrogate users. The main aspect that renders this so different is that the task is 

mostly not directly set by the one who is using an interface but by, e.g. a customer. A telephone support person 

who tries to help a customer is such an example (see [Lawrence, Atwood, and Dews 1994] for an application of 

CPM-GOMS). The person is using a specific system to retrieve data, look up manuals etc. However, the goals 

that have to be achieved using that interface are set by the customer for whom the person acts as a surrogate user. 

There has been some discussion to what types of systems these techniques can be employed. Historically, it has 

been used for rather static settings where, for example, a person creates and edits a manuscript in a text editor. 

However, it has been shown to work well for user-paced, passive systems from CAD systems [John and Kieras 

1996] to flight-management computers in commercial airplanes [Irving, Polson, and Irving 1994]. It has also 

proven to be valid for single-user, active systems like radar monitoring [Santoro, Kieras, and Campbell 2000] or 

video games [John, Vera, and Newell 1993]. Recently, research also began to bring the analysis of coordinated 

work (see [Min et al. 1999]) to the realm of collaboration between several people with combined tasks [Kieras 

and Santoro 2004]. However, most advances break group tasks down into single tasks and define communication 

operators to coordinate them. This still does not seem to capture the full power of collaborative settings and 

leaves much work to do in this area. Another recent work to narrow this gap and extends KLM by analysing a 

collaborative game in detail is described in [Ferreira and Antunes 2006]. 

A further general area of application can be found in assistance systems. For example, context-sensitive and 

task-oriented help can be based upon such models, see e.g. [Pangoli and Paternó 1995]. Task-based 

documentation, both for developers and users, can profit largely from GOMS specifications. 

As an additional, novel application area, we propose cross-platform evaluation as ongoing work in [Holleis, 

Kern, and Schmidt 2007]. It is easy to enhance any type of prototype like a paper or interactive HTML / Flash 

prototype to generate a KLM of a given task sequence. Our model estimates execution time of those tasks on, 

e.g., a mobile phone without the need to have a single line of code actually running on a phone. This can be 

generalised to various platforms. 

There are possibly hundreds of specific application areas to which GOMS/KLM has been applied. Sometimes, 

extensions or variants have been specifically developed in order to take advantage of the full power of KLM and 

others, e.g. [Holleis, Otto, et al. 2007]. Only a small portion of those has been published to a larger audience. 

With the intention of giving a glimpse of the spectrum that these cover, we briefly indicate a few sample 

applications that can act as references for further research: menu selection [Lane et al. 1993], manual map 

digitising [Haunold and Kuhn 1994], email organisation [Bälter 2000], predictive text input to mobile phones 

[How and Kan 2005], in the driving context [Salvucci, Zuber, et al. 2005], [Pettitt, Burnett, and Karbassioun 

2006], and specific interface designs [Hinckley et al. 2006]. 

A novel, recent extension and application of the KLM approach can be found in [Luo and Siewiorek 2007]. A 

KLM for mobile devices is created using storyboards [John and Salvucci 2005]. User actions are correlated with 

system actions. The latter are connected to energy consumption derived from interaction benchmarks on the 

target platform. This information is then enough to predict the time and energy consumption of defined tasks. 
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In the remainder of this chapter, we focus on time / performance predictions for the evolving domain of mobile 

phone interactions building upon KLM. This choice is motivated by the large number of publications in the 

human computer interaction community using KLM in a variety of emerging application domains. Many 

projects in cognitive modelling such as ACT-R rely on such data in ongoing research areas like in-vehicle 

interfaces. We adopt and define a set of operators giving sound and study-based estimates of performance 

measures for each of them. Developers of mobile applications, which possibly include wireless identification 

tags (RFID) and smart objects, can then describe tasks as a sequence of these operators and predict user 

interaction times without even needing to create prototypes. Table 7 shows an annotated excerpt of a model 

resulting from the new mobile phone KLM developed in this section (the full model is listed in Table 16). 

3.4 KLM Extensions for Advanced Mobile Phone Interactions 
Mobile phones have become a computing and communication platform that provides services going far beyond 

traditional phone calls and text messaging. Still, nearly the only aspect that has already received attention from 

researchers from a modelling point of view is text input. We first introduce the notion of physical mobile 

interactions and then provide a number of additions and changes to the known set of KLM operators in order to 

be able to cope with the new set of interactions. These are motivated, explained, and justified before a set of user 

studies is presented to attach time values to each of the operators. We then show a validation study where we 

designed a system, identified a task and modelled it with the extended KLM. The comparison with real user data 

indicates a very good fit of the predicted values. The remainder of this section is closely based on the paper 

[Holleis, Otto, et al. 2007]. 

3.4.1 Physical Mobile Interactions 
Mobile phones can be used to manipulate virtual data, e.g. received messages, contact details, and information 

from the World Wide Web. Additionally, today‟s devices allow interactions with the real world through several 

sensors and systems. We first introduce such novel interaction methods before we go into more detail about 

modelling them in various novel extensions of the KLM. 

Mobile Phone Interactions 

Mobile phones have mainly been used to make phone calls, send text messages, and sometimes as calendar. 

However, other uses are becoming more and more popular. Taking pictures, surfing the web, storing data, and 

playing music as well as videos are some of them. Additionally, researchers started to use it as universal remote 

control (e.g., [Myers 2002]) and suggest further interactions with the world (see Figure 7). This adds several new 

interaction styles that have not yet been treated by any interaction model. In [Rukzio, Leichtenstern, et al. 2006], 

we define physical mobile interactions as being interactions between a user, a mobile device, and a smart object 

in the real world. The user interacts with the mobile device and the mobile device interacts with the smart object. 

This allows the implementation of systems envisioned, e.g., in [Kindberg et al. 2002], or [Rukzio, Paolucci, et al. 

2006] and allows bridging the physical and virtual worlds using devices that many people carry with them, see 

also [Want, Fishkin, et al. 1999]. 

Although many people still think that mobile phone applications include mostly games and entertainment, 

phones are increasingly used to enhance productivity. In Japan, for example, it is common to buy tickets for 

public transport with the phone. Security personnel can use a mobile device that can read tags to quickly log the 

places they have checked. 

Up to now there is no user performance model available for physical mobile interactions. We studied general 

preferences of people to use a specific physical mobile interaction method (touching, pointing and scanning) in 

[Rukzio, Leichtenstern, et al. 2006]. In this study, we also show that performance in terms of time is an issue for 

users. However, no quantitative performance numbers have been measured and only individual opinions of 

subjects are given. Ballagas et al. describe, explore and categorise a multitude of interaction types with mobile 

phones but do not give any timings or comparisons in that respect [Ballagas, Borchers, et al. 2006]. 
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Figure 7: A sample of physical mobile phone interactions:  

using tags and taking pictures (for example of visual markers). 

Interaction Types and Technology 

Besides number entry and menu selection, there are several ways physical mobile interactions can be 

implemented. [Ailisto et al. 2003] and [Ballagas, Borchers, et al. 2006] give an overview of current technology 

for physical selection (visual patterns, electromagnetic and infrared methods) and compare them according to 

several characteristics like transfer rate and operating range. In [Välkkynen, Korhonen, et al. 2003] and 

[Välkkynen and Tuomisto 2005], as well as in [Rukzio, Leichtenstern, et al. 2006], projects are described using 

prototypical implementations of three basic physical selection techniques, touching (using RFID [Want, Fishkin, 

et al. 1999], Near Field Communication [Rukzio, Leichtenstern, et al. 2006], or proximity sensors [Välkkynen, 

Korhonen, et al. 2003]), pointing (visual codes like Semacodes and QR Codes [Rekimoto and Nagao 1995] and 

[Rohs and Gfeller 2004], laser pointer and light sensors [Välkkynen, Korhonen, et al. 2003], IrDA (Deutsche 

Post: Mobilepoint), or object recognition [Föckler et al. 2005]), and scanning (WLAN, GPS, Bluetooth [Rukzio, 

Leichtenstern, et al. 2006]). 

Another interaction method we investigated is performing gestures. The underlying technology can be based on 

tracking the phone by an external camera, using the phone‟s built-in camera [Ballagas, Rohs, and Sheridan 

2005], or reading sensors (found, e.g., in the Nokia N96 or the Samsung SGH-E760 and S4000 phones). 

We keep the revised KLM as general as possible to be able model most of these types of actions and we give 

accurate estimates for some special cases. 

3.4.2 Model Parameters 
In this section we show differences and similarities between the KLM used for desktop interaction and the new 

KLM for mobile phone interactions. As presented before, the original KLM defines six operators and assigns 

time values to each of them: Keystroke (K, key and button presses), Pointing (P, mouse movements), Drawing 

(D(nD,lD), straight lines drawings with the mouse), Homing (H, hand movement between keyboard and mouse), 

Mental Act (M, pauses needed for reflection, choice, etc), and System Response Time (R(t), user waits for the 

system). Kieras additionally lists Button Press / Button Lift (B, for pressing or releasing a mouse button, BB for a 

mouse click) as a standard operator [Kieras 1993]. 

Some operators have to be added to describe interactions that do not exist in the standard desktop metaphor. 

Others have to be examined closely to see whether the original timing specifications are still applicable or new 

values have to be derived. Others again are not applicable to the phone setting at all. The execution time of a task 

in the new model is then given by Equation (3) where OP = {A, F, G, H, I, K, M, P, R, SMicro, SMacro} is the set of 

available operators and nop, dop, Dop are the numbers of occurrences of an operator op in the model without 

distraction, with slight, and with strong distraction, respectively. Distractions are modelled with the X operator. 

 opXDXdnT strongopslightop

OPop

opexecute  


)(  (3) 
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We first briefly describe which operators we adopted, which we needed to adapt for the new setting, and which 

we newly introduced. After that, we present several user studies in which we measured average timings for each 

of them. A table summarising the operators and the allocated times can be found in Table 6 on page 48. 

3.4.2.1 New Operators 
We added in total seven operators to the standard KLM. Three of them are concerned with how users shift their 

focus of attention and potentially get distracted due to the mobility of the device. Another three cope with novel 

types of interaction with the new platform and one needed to be introduced to model the initiation of interactions 

with a mobile phone. 

Macro Attention Shift (SMacro) 

One major difference from desktop interaction to using a phone is that the attention of users may have to be split 

between the phone and the real world surrounding them (Figure 8).  

 

Figure 8: Attention shift (SMacro) between the mobile phone and objects in the real world. 

Thus, a Macro Attention Shift operator models the time needed to shift the focus between the contents on the 

screen of the mobile device to an object (e.g., a poster) in the real world and vice versa. The original KLM does 

not need to consider this case since it assumes that the whole interaction session takes place on one single screen. 

Micro Attention Shift (SMicro) 

SMicro models the time needed to look from the display to the key regions and vice versa (Figure 9). 

Although this can also happen in the desktop setting, this has not been mentioned in the original KLM. A 

possible explanation is the expert user assumption: users were not expected to need to look at the keyboard at all 

and therefore this time was incorporated into the Keystroke operator. This is different on mobile phones since the 

mapping of the keys is considerably more complex. Even experienced users tend to spend some time to confirm 

their input. Thus, the Micro Attention Shift operator allows a much more fine grained control over user 

interaction. It can also model uncertainty when, e.g., entering critical data like credit card numbers. 

 

Figure 9: Regions of a standard mobile phone: keypad, hotkeys, and display.  

The SMicro operator measures eye movements between those regions. 

Distraction (X) 

Since interactions with mobile phones take place in the real world, people are likely to be distracted from their 

main task by approaching people, passing cars, conversations, etc. This is accounted for by the Distraction 

operator. In contrast to all other operators, distraction is modelled as a multiplicative factor modifying the times 

of other operators. We distinguish between slight Xslight and strong Xstrong distraction. 

keypad 
hot 

keys 
display 
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Action (A(t)) 

This general operator models the time needed to execute a certain complex action with the phone that cannot 

sensibly be subdivided into smaller tasks and modelled with a combination of other operators. Possible actions 

include touching RFID tags, or focus to take a picture of a marker or other objects. The time for this operator 

highly depends on the type of action and, similar to the response time operator R(t) must be input to the model 

(indicated by the (t) notation). 

Gesture (G) 

This operator models the time needed when using a system that recognises gestures such as rotating or shaking 

the device, or drawing numbers in the air. 

Finger Movement (F) 

This operator models the time needed for a user to move a finger from one place (especially a key or button) to 

another one on the device. It will in most models be subsumed in the Keystroke operator but allows designers a 

more fine-grained modelling, e.g., to adjust for predicted repeated key presses. 

Initial Act (I) 

In the KLM for the desktop, it is generally assumed that users are already sitting in front of their keyboard, 

mouse and monitor, ready to initiate the next task. The phone introduces a completely different setting since 

people have to carry out some preparations (e.g., locating it in a bag) before being able to use it in most 

circumstances. The value depends on whether the interaction was initiated by the user or externally, e.g., by an 

incoming call. 

3.4.2.2 Adapted Operators 
We slightly changed three of the original operators to fit our needs. First, the keystroke operator needed to be 

adapted to the different keypad. Second, we generalised the mouse pointing operation to pointing with the 

mobile phone to a target in the real world (such as to an RFID tag). And third, we interpreted the homing 

operator as a specific movement with the phone switching from listening to reading or writing. 

Keystroke or Button Press (K) 

[Card, Moran, and Newell 1980] originally defined the Keystroke operator K to be the average time needed to 

push a button. It is to be measured by dividing the time needed for a longer sequence of button presses by the 

number of these presses. Even though KLM is targeted at expert users, immediate corrections of incorrectly 

pressed buttons, e.g. by hitting backspace, have explicitly been allowed and incorporated. 

There are four factors influencing the value of K in our setting. Distances between buttons are much smaller on a 

phone than on a standard keyboard thus removing the need for head and larger eye movements and indicates a 

smaller value for K. However, buttons are in general harder to spot and to press and people use only one or two 

fingers to type (in contrast to up to ten fingers for keyboard input). Finally, all but the most experienced users 

check and validate their input at some points needing some Micro Attention Shifts. The last three aspects suggest a 

higher value. 

For text input, we concentrate on multi-tap which, based on figures presented from industry in a panel at 

MobileHCI 2006, is still used by about every second user. Predictive text entry methods are still not available in 

all languages and many names of people and places as well as colloquial terms still need to be entered with 

multi-tap. In addition, multi-tap proves useful for comparisons with previous research. Still, variants like T9 can 

be – and have been, see the references in the appropriate section below – easily modelled using KLM. 

Pointing (P) 

Pointing has originally been defined to model the time used to move a cursor to a target area using the mouse. 

This is in general not applicable for mobile phone applications except in rare applications in which a cursor can 

be controlled using the joystick or special buttons. Such interactions can be modelled using appropriate 

Keystrokes since they are not based on Fitts‟ Law as is the original interpretation of P. 
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For larger screens or handheld devices using stylus input, we refer to [Luo and John 2005] who updated the 

values for Pointing for touch and stylus use. In our context, this models the time needed to move the phone from 

one place to another possibly to perform some Action at that point (which itself is not included in the pointing 

action and has to be represented by an A following the P). This operation is similarly based on Fitts‟ Law as the 

original operator. 

Homing (H) 

In the original KLM, this modelled the movement of the hand from the keyboard to the mouse or back. For 

mobile phone interactions, this is not relevant. However, the action of moving the phone from a position where 

one can read the screen to one‟s ear or back is an analogous motion and similarly important. Therefore, we use 

the Homing operator whenever the user changes from listening and speaking to reading the screen or vice versa. 

In this setting H can be expected to be somewhat smaller but close to Pointing P. 

3.4.2.3 Unchanged Operators 
The two operators for mental breaks and system response time could be adopted without changes. 

Mental Act (M) 

This operator can be adopted as defined and existing usage guidelines like from [Kieras 1993] can be used. 

There is no reason why a new setting should change the value of this parameter. It has been derived as a general 

value for short pauses to think about the next action, to find something on screen, or to validate an input. Since 

we use new operators, we give additional guidelines in a later section on the Mental Act operator. 

Most studies adopted the original choice of M = 1.35 seconds for their applications (e.g., [Dunlop and Crossan 

2000], [Haunold and Kuhn 1994], or [James and Reischel 2001]). [Mori, Matsunobe, and Yamaoka 2003] and 

[Myung 2004] propose a smaller value of 0.38 and 0.57 seconds, respectively. However, these values were taken 

from much specialised applications. The latter one, for example, examined Korean text input only. For general 

settings, a higher average value can be assumed. Larger values than the original value are reported in [Manes, 

Green, and Hunter 1996] which mainly result from studying an explicit scenario (a car navigation system) and 

users who do not have the routine of expert users assumed by KLM. Current cognitive architectures like ACT-R 

confirm the original value. We also found no evidence to justify a change. 

Response Time (R(t) or W(t)) 

The Response Time operator models the time the system needs to react to user input as long as it blocks the user 

from executing further actions. It can be adopted as defined and must be input to the model (thus the (t) notation) 

since it is highly variable and dependent on the application. 

3.4.2.4 Not Applicable Operators 
Two operations tightly connected to the use of a computer mouse are not used in the mobile phone setting. 

Mouse Button Press (B) 

The Button operator B models the action of pressing or releasing a mouse button. It has no direct equivalent in 

the world of mobile devices. 

Drawing (D(nD,lD)) 

The Drawing operator D models manual drawings of nD straight line segments with a total length of lD (measured 

in cm) with a mouse. This is not applicable in our setting with mobile phones. However, this might find an 

application with possible future additions to advanced mobile device interactions. In some settings where the 

device is used, for example, to perform some drag and drop operations, this might be a fitting way of modelling 

such applications. 
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3.4.3 User Studies for Time Measurements 
To be able to use the model in practice and to predict the time required for certain complex tasks based on the 

model, the duration of a single application of an operator must be known. In total, we performed seven studies to 

acquire the data to estimate execution times. We recruited volunteers of various backgrounds (about 50 % 

students) on a study by study basis (between nine and 19 participants per study). We did not see any differences 

caused by gender with, altogether, 41 % female participants. If not explicitly stated otherwise, we present the 

median of the measured values and list 1st and 3rd quartiles in Table 6. 

Before conducting each of the studies, questionnaires were given to the users to clarify their experience with 

mobile phones in general and more specifically with the mobile phone interaction technique under observation. 

We also aimed to adhere to the expert user assumption by running one or several training sessions with each 

user. Participants had to repeat the same or similar tasks until they (and we) were confident that they would 

make only minimal errors. Erroneous trials were discarded. With the exception of one study that used a 

stationary eye tracker, all studies were executed in various, every day, non-laboratory situations. 

3.4.3.1 Special Operators 

Initial Act (I), Homing (H) 

Without preparation or creating a specific situation, we observed people in everyday settings, receiving and 

answering phone calls, and specifically asked them to pull out their mobile phone and execute a phone call. We 

videotaped all these actions and extracted timing information from 11 people, aged 25-54 with an average of 

34.6 years, 4 female, all used to standard mobile phone interactions, see Figure 10. 

 

Figure 10: Average time in seconds of 11 persons to prepare for a phone interaction. 

We distinguish between externally and self initiated situations as well as a ‘best case’. 

We found that the value for the Initial Act operator strongly depends on whether the interaction was initiated by 

the users themselves (leading to a median value of I = 3.89 seconds) or externally, e.g., by an incoming call 

(median I = 5.32 seconds). Those values are highly diverse, however, since people have very different ways to 

store the phone (for example in a trouser pocket, a handbag, or in a pocket attached to the belt). A best-case 

study in which the phone was placed on a table in front of the users who initiate the action themselves or expect 

a call gives a median of I = 1.18 seconds. Thus, if no assumptions can be made, we suggest an average value of 

I = 4.61 seconds. For repeated or expected interaction the I = 1.18 seconds estimate should be used. 
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Figure 11: Average time in seconds of 10 persons to change between a position with  

the phone at the ear and one looking at the screen and vice versa. 

The median is 0.95 seconds; bars indicate range between 1
st
 and 3

rd
 quartiles. 

In the same study we measured times needed to switch from a phone position where the screen can be read to 

one close to the ear and back, see Figure 11. As this is very similar to changing from keyboard to mouse and vice 

versa, we use the Homing operator to describe this action. The times of all people under observation were very 

similar and we extracted a median of H = 0.95 seconds. As expected, this is only slightly smaller than the found 

value of Pointing P = 1.00 second described below. To model the fact that people have to refocus on the phone‟s 

screen and continue their interrupted action, we strongly suggest that a Mental Act operator be placed after a 

Homing away from the ear as specified in the heuristics given in the section about the Mental Act operator. 

Pointing (P), Action (A(t)) 

To measure execution times for Pointing and Action, we needed an application where such interactions occur 

quite often. In some countries like Japan, visual markers and near field communication (NFC) are already very 

wide-spread technologies in the public see, e.g., [Boyd 2005], and [Fowler 2005]. This is not yet the case in 

Europe. Therefore, in conjunction with other projects run in our lab (e.g., [Rukzio, Schmidt, and Hussmann 

2004]), we prepared a movie poster acting as user interface for several interaction methods. Users can select and 

use different services by, e.g., touching NFC tags or taking pictures of visual markers. We asked users to follow 

the brief instructions on the poster and let them buy tickets for their favourite movies in a theatre close to them. 

From the videotaped footage we were able to extract timing measurements regarding the movement (P) and 

alignment (A(t)) of the phone to the NFC tag, and the approach (P) and focus (A(t)) of the phone to take a picture 

of a marker. 

 

Figure 12: Average time in seconds for 37 pointing operations with NFC tags. 

The median is 1.00 second; bars indicate range between 1
st
 and 3

rd
 quartiles. 
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The user study was carried out with 9 persons, aged 22-46, with an average of 28.6 years, 2 female. From a set of 

64 error free videotaped actions, we deduced Pointing P = 1.00 second. The 37 NFC interactions (Figure 12) 

showed that aiming at the NFC tag itself did not need any separate action besides the phone movement and we 

define ANFC = 0. The remaining 27 photographs of visual markers led to a value of Apicture = 1.23 seconds for 

correct positioning and focusing (note that this does not include Pointing). 

Note also that the time needed by the system to recognise the tag or interpret the marker and initiate the 

appropriate action is not included in the Pointing or Action operator but must be modelled by with the Response 

Time operator R(t). 

Macro Attention Shift (SMacro) 

Using a careful frame-by-frame manual analysis of the video tapes from the study presented in the last section, 

we counted the number and determined the duration of head and eye movements that indicate an attention switch 

from the phone to the poster and vice versa. We extracted a total of 121 attention shifts, see Figure 13. The times 

of the shifts in one direction do not differ significantly at all from those in the other direction (t = .57, p > .56). 

Thus, we propose a common value of SMacro = 0.36 seconds. 

 

Figure 13: Average time in seconds for a change in focus between phone and real world. 

The median of 121 observations is 0.37 seconds; bars indicate range between 1
st
 and 3

rd
 quartiles. 

Micro Attention Shift (SMicro) 

Most current mobile phones suggest a separation into three regions: display, hot keys, and keypad (Figure 9). 

Finding out when and to which section people looked proved to be infeasible with conventional videotaping. 

Therefore we used an eye gaze tracker from Eye Response Technologies that samples images with a sufficient 

rate of 60Hz. The participants had to run three pre-set tasks that included writing a short text message (mainly 

text input), changing the ring-tone (mainly menu navigation), and setting the time of the alarm-clock (menu 

navigation and number input). 

  

Figure 14: Eye gaze positions during a task, overlaid over the phone in use.  

Left: write a text message. Right: set alarm time. 
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All 10 people (aged 24-34 with an average of 27.5 years, 6 female) were allowed to use their own mobile phone 

and we ran several sessions to ensure error free interaction. We then automatically calculated the number and 

time of gaze position changes between the regions from the logged data. Figure 14 shows data overlaid on some 

phones. We counted more than 1500 shifts between the three regions and found the following median values: 

display ↔ hotkeys 0.12 seconds, display ↔ keypad 0.14 seconds, and keypad ↔ hotkeys 0.04 seconds. If no 

distinction should or can be made between the single sections of the phone, we suggest using the median of all 

values of SMicro = 0.14 seconds. In Figure 15, one can see that the eye tracker does not deliver continuous values. 

Also, some values are below its accuracy and have not been taken into account for calculating the final values. 

 

Gesture (G) 

To measure gesture input, we used a Samsung SGH-E760 phone with built-in acceleration sensors and a few 

games and standard applications that can be controlled using simple gestures (Figure 16). The times are 

consistent across different gestures. However, if new gestures like those introduced with the iPhone should be 

modelled, it some study to ensure applicability would be advised. 

  

 
 

  

Figure 16: The Samsung SGH-E760 phone and some of its recognised gestures. 

The times were extracted from videos of 6 different types of gestures, each done by 10 people (aged 23-33 with 

an average of 26.3 years, 5 female), see Figure 17 and we fixed an average value of G = 0.80 seconds. 

 

Figure 17: Average time in seconds for one of six gestures with a mobile phone by 10 persons. 

The median is 0.80 seconds; bars indicate the range between 1
st
 and 3

rd
 quartiles. 

0

50

100

150

200

250

300

350

400

1 201 401 601 801 1001 1201 1401

Micro Attention Shift

0

0,2

0,4

0,6

0,8

1

1,2

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59

Gesture

Figure 15: Average time in milliseconds for a change in focus between different regions on a phone. 

The median of 1509 observations is 0.14 seconds. 
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Keystroke (K) 

Keystrokes were measured with a small program that logs timestamps of pressing and releasing keys into a file 

on the mobile phone (using the File API on a Nokia N90). We invited 19 people, aged 25-40 with an average of 

27.8 years, 9 female. Each person entered two mobile phone numbers of their own choice. All of them used the 

wide-spread one-hand thumb entry method. During the study we observed that no errors were made. 

The Nokia N90 phone features a standard 12 button keypad. The median of all interaction times is 4.63 seconds 

and the time per keystroke was calculated to be K = 0.39 seconds, see Figure 18. For the five most experienced 

users we got a value of K = 0.33 seconds per keystroke. 

 

Figure 18: Average time in seconds for a keystroke on a mobile phone keypad of 19 persons. 

The median is 0.39 seconds; bars indicate range between 1
st
 and 3

rd
 quartiles. 

Another interesting value we estimated is the mere physical action of pressing and releasing a key. It was 

measured by the key logger to be 0.13 seconds (the most experienced users were only 10 milliseconds faster, i.e. 

needed 0.12 seconds) and will be used to calculate Finger Movement time in the next section. 

We measured standard keypad input separately from the hotkeys, although we did not take additional special 

hotkeys into account that can be found on several phone models on the side or top of the phone. For the hotkeys 

of the Nokia N90 phone (4 buttons and a 5 button joystick), K = 0.16 seconds were measured as a median. The 

smaller value can be easily explained with the smaller distance between buttons and the larger average size as 

well as the more direct and known semantic mapping of the buttons. See the modelling example on page 160 for 

a remark about how to model the time necessary to switch between the standard keypad and hotkeys. 

These findings are close to those of related research. [Mori, Matsunobe, and Yamaoka 2003] for example also 

mentions 0.39 seconds. The original KLM suggests values between 0.08 and 1.20 with 0.28 seconds for a user 

with average routine on a standard sized desktop QWERTY keyboard. An average value for typing random 

characters is also given. This better resembles text input on mobile phones. The suggested value of 0.50 seconds 

again comes quite close to our estimate. 

These values are meant for individual button presses or number input only. Several projects already verified and 

improved the Keystroke-Level Model of more complex variants of text entry. The results are quite diverse: 

[Dunlop and Crossan 2000] predict a value of 2.01 and 1.84 seconds on average for multi-tap and predictive text 

input, respectively. [How and Kan 2005] specify 1.32 and 1.00 for the same techniques, assuming an average 

SMS length of 60 characters. [Silfverberg, MacKenzie, and Korhonen 2000] also examined multi-tap and 

predictive text input and give values of 0.57 and 0.30 seconds for optimal expert use. The comparatively very 

small values result from only modelling the pointing component with the help of Fitts‟ Law, neglecting the time 

needed to find and actually press the buttons as well as verification. [Pavlovych and Stürzlinger 2004] calculate 

values ranging from 2.04 to 1.58 seconds for different input methods and suggest how those times should be 

adjusted for different states of routine. 
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These results might indicate that KLM does not work too well in this respect. However, [James and Reischel 

2001] show that, although the predicted times can differ from actual performance times, relative relations 

between different designs prove to be correct and significant. Because of the rich set of publications in that area, 

we did conduct detailed studies for text entry. Some values were taken from the study used to find values for the 

Distraction operator described later. 

Finger Movement (F) 

From our observations during the tests for the Keystroke parameter we can report that most users verified less 

than every second number they typed. This means that the average total time needed to enter an 11 digit number 

was actually composed of 11 physical key presses, on average 4 Micro Attention Shifts, and 10 Finger 

Movements. Since we know the values of the other operators, we can calculate F to be 0.24 seconds for all but 

the quickest users. According to our experience, full experts tend to only check their typing once during writing. 

Modelling that behaviour for the five quickest users results in the median value of F = 0.22. To additionally 

verify those assumptions, we ran an extra 10 tests using a mobile phone with a blinded display considerable 

reducing the use of Micro Attention Shifts. The upshot of this study was a median of F = 0.23 seconds. These 

results from the 323 keystrokes performed in the tests make it a very stable parameter. Figure 19 shows 

movement paths of three sample phone numbers types in the tests. 

The value is also very close to what others like Silfverberg et al. found who measured 0.27 seconds with the 

thumb and 0.31 seconds using the slower two-handed index finger input [Silfverberg, MacKenzie, and Korhonen 

2000]. In [Mori, Matsunobe, and Yamaoka 2003], the authors specify 0.19 seconds for F. 

When movements occur in the hotkey region only (as is the case for menu navigation sequences and when 

starting an application), F is smaller. Our studies indicate that the time drops to F = 0.16 seconds on average. 

Depending on the interaction, designers can choose which value fits better or use an average according to an 

assumed ratio of key uses. 

   

Figure 19: Approximate finger movements (F) occurred while typing  

three different phone numbers on the Nokia N90 keypad. 

3.4.3.2 General Parameters 
Some parameters cannot be measured in a single specific setting. The system response time, for example, differs 

strongly depending on the phone model, the application running on it, and the action invoked. Also, the influence 

of mental preparation and the appropriate placement of the Mental Act operator has always been a complex issue 

in KLM models. Kieras gives several suggestions and heuristics specifying where and in what quantity the 

operator should be placed that also apply to the model as used in this work, [Kieras 1993]. Another parameter 

that belongs to the same category is the Distraction operator D that we newly introduced. It has not been treated 

in previous research on task models but we found that it has a considerable impact on time performance and 

there is a whole set of applications especially in the area of mobile interactions that are considerably influenced 

by distractive and disruptive factors. 

Response Time (R(t) or W(t)) 

As already discussed, information on system response times is supposed to be input to the model since these are 

highly diverse. We can, however, support the assumption of Silfverberg et al. that key presses in general have 

immediate feedback [Silfverberg, MacKenzie, and Korhonen 2000]. Menu browsing and selection was also 

running in negligible amounts of time on all phones we investigated. Starting applications needed anything 

between 0 and 6 seconds. For our setting, we only explicitly give values for the special cases when tags are 

detected (NFC) or pictures taken. 
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Figure 20: Measured response times in seconds for NFC and visual marker recognition  

with a Nokia 3220 and N71, respectively. Median values are 2.58 and 2.22 seconds;  

bars indicate range between 1
st
 and 3

rd
 quartile. 

Our 10 tests with a Nokia 3220 with a built-in NFC reader showed that the processing of a tag takes on average 

RNFC = 2.58 seconds. It should be noted that this time has significantly decreased and on the new Nokia 6131 it 

takes roughly 1 second. Using a Nokia N71, measurements for visual marker processing resulted in 

Rmarker = 2.22 seconds, see Figure 20. 

Distraction (X) 

Interactions in the real world have to take into account various events that divert the concentration on the task at 

hand. This includes approaching people, passing cars, traffic lights, conversations, etc. Situations in which it is 

known that such distractions occur frequently (like at a bus stop) can be modelled with the Distraction operator. 

People cope with such situations in different ways. They use their peripheral view, make quick glances, or 

introduce pauses. Initial tests showed that the behaviour also depends on the type of task. Thus, distraction 

cannot be easily modelled as certain specific actions. Through our tests we found that it is more appropriate to 

model distraction as a multiplicative factor rather than an additive operator. 

 

Figure 21: Average time in seconds to type one character on a mobile phone  

of 10 persons in three settings with different amount of distraction. 

Minor distraction adds about 6 %, major distraction about 21 % to the time. 

Although the type and consequences of distractions can be manifold, several studies of distraction and multi-

tasking, e.g., [Salvucci 2002], proved feasible in cognitive modelling. We give a simplified and rough but 

nevertheless justified idea how a task is probably slowed down by common side activities. 

We ran three experiments, each with the same 10 people, aged 24-33, with an average of 26.7 years, 3 female. 

Subjects had to write a short message (about 90 characters) on their own phone in 3 different settings: a silent 
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room (experiment 1), standing on a busy street (experiment 2) and walking along and crossing that street 

(experiment 3). To obviate the possibility of sequence effects, we varied the order in which the participants 

conducted those trials. They also freely chose the contents of the message to write. 

Typing speed of the participants varied considerably (0.76 to 3.49 characters per second in experiment 1). 

However, relative changes in the performance of each user are quite consistent. Experiments 2 and 3 revealed in 

an analysis of variance that the expected increase in time demand for distracted tasks is relevant well beyond the 

5 % level (t = 2.23, p < .03 and t = 3.28, p < .01). The results suggest to add Xslight = 6 % of the modelled time to 

the whole interaction if there is an anticipated slight distraction and Xstrong = 21 % for distractions that force 

persons to deviate from their task in a more rigorous or regular fashion. Figure 21 illustrates the data. 

Mental Act (M) 

As said earlier, we found no reason to change the value of M = 1.35 seconds from the original KLM. However, 

since we added and slightly changed the interpretation of some operators, we update the heuristics in [Kieras 

1993] to place M‟s. The general principle remained the same: use Rule 0 to place M‟s and then cycle through 

Rules 1 to 5 for each M to see whether it should be deleted. 

Rule 0 Place M‟s in front of all K‟s, H‟s, SMacro‟s and G‟s. 

Rule 1  If an operator following an M is anticipated in the operator before M, delete the M 

(e.g., PMK becomes PK). 

Rule 2  If a string of MKs belongs to a cognitive unit (e.g., writing a known number), then 

delete all M‟s but the first. 

Rule 3  If a K is a redundant terminator (e.g., the selection key for entering submenus), 

then delete the M in front of it. 

Rule 4 Delete the M in front of a H which describes the movement from the reading to the 

listening position. 

Rule 5 If unsure, emphasise more the number than the placement of the occurrences of the 

M operator. 

3.4.3.3 Parameter Values Overview 
Table 6 shows the results of the studies. The median of each operator is given in the „Time‟ column. If 

applicable, the other two columns contain the 1st and 3rd quartiles, respectively. If not specified otherwise, all 

times are specified in seconds. The names of operators we newly introduced in this work have been set in bold. 

Table 6: Overview of the proposed times for all operators. Newly defined operators are set in bold. 

Operator Time Qu. 1 Qu. 3  Operator  Time Qu. 1 Qu. 3 

A, Action 

picture / marker 1.23 0.61 1.44  M, Mental Act 1.35 - - 

NFC 0.00 - -  P, Pointing 1.00 0.84 1.20 

in general variable, input to model  

R, System 
Response Time 

NFC 2.58 2.46 2.80 

B, Mouse Button Press not applicable  visual marker 2.22 2.09 2.82 

D, Mouse Drawing not applicable  in general variable, input to model 

F, Finger Movement 0.23 0.20 0.29  SMacro, Macro Attention Shift 0.36 0.28 0.44 

G, Gestures 0.80 0.73 0.87  

SMicro, Micro 
Attention Shift 

keypad ↔ display 0.14 0.14 0.19 

H, Homing 0.95 0.81 1.00  hotkey ↔ display 0.12 0.02 0.14 

I,  
Initial Act 

external trigger 5.32 3.98 7.51  keypad ↔ hotkey 0.04 0.02 0.12 

self triggered 3.89 2.23 4.89  in general 0.14 0.10 0.16 

optimal setting 1.18 1.10 1.26  
X, Distraction 

slight 6 % 3 % 13 % 

no assumptions 4.61 - -  strong 21 % 11 % 25 % 

K, 
Keystroke 

keypad average 0.39 0.37 0.48       

keypad quick 0.33 0.32 0.37       

hotkey 0.16 0.15 0.20       
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3.4.4 Evaluation of the Extended KLM 
Generating such values for specific operators has a long tradition in cognitive modelling. However, the mere 

setup of a study and the measurement of times are of limited value since it is not clear whether the new operators 

behave as expected when applied in the KLM context. The assumption of this model is that a task can be split 

into unit actions and the total time to perform the task can be predicted by the sum of the durations of all the unit 

actions. A conventional way of evaluating and adding credibility to such values is to apply the model to some 

real world tasks and compare the predictions to actual user data. Examples can be found in various works on the 

topic, e.g. [James and Reischel 2001] or [Teo and John 2006]. 

Therefore, in order to validate the values we found for the mobile phone KLM, we set up a scenario in our lab 

and modelled it using our new parameters. We then ran a user study and measured the actual times that each of 

the participants needed to perform certain tasks and then compared the predictions to the observed timing data. 

Scenario 

The scenario was based on a ticket service for public transportation in Munich, Germany. The tasks included the 

download of a service from a poster augmented with NFC tags (see [Broll et al. 2007]). The interaction device 

was a Nokia 3220 with built-in NFC reader. People had to order a ticket to a pre-defined target for three persons 

and write a text message to a friend about the expected time of arrival. In order to illustrate the applicability of 

the modelling approach, two different ways of accomplishing the main task were implemented: using a form 

input on the phone‟s web browser, and using the NFC capabilities of the phone, see Figure 22. 

The participants were either routinely working with the used technology or trained before the study. None of 

them had taken part in any of the earlier studies. We also alternated the order in which participants had to use the 

two different types of technology to minimise any learning or other distracting effects 

 

Figure 22: Setting for the evaluation of the phone KLM. Participants had to  

order a transportation ticket using, e.g., NFC interaction. 

KLM Prediction 

The KLM predicts 147.48 seconds for the NFC version of the scenario with a total of 135 operators. Table 7 

shows some excerpts (the full model is listed in Table 16 in the Appendix). The model of the other variant of the 

scenario using direct input and browsing uses 110 operators and predicts 122.77 seconds (the full model can be 

found in the Appendix in Table 17). Distractions were neither observed nor modelled. The prediction was 

calculated before any user tests were made based on a detailed analysis of the scenario and the heuristics given in 

an earlier section. 
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Table 7: Selected sequences from the proposed mobile phone Keystroke-Level Model of a  

scenario based on NFC tags. See Table 16 in the Appendix for the full model. 

Description Operator Allocated Time 

Pick up the mobile phone I 1.18 sec. 

Enter main menu M, K[Hotkey] 1.35 sec. + 0.16 sec. 

Go to „Programs‟ M, 3K[Hotkey] 1.35 sec. + 3*0.16 sec. 

Select „Programs‟ K[Hotkey] 0.16 sec. 

Go to „Collection‟ M, K[Hotkey] 1.35 sec. + 0.16 sec. 

Select „Collection‟ K[Hotkey] 0.16 sec. 

Select „Choose program‟ K[Hotkey] 0.16 sec. 

Open application M, K[Hotkey] 1.35 sec., 0.16 sec. 

Wait for program to open R 4.63 sec. 

Read instructions M 1.35 sec. 

Scroll down to read further K[Hotkey] 0.16 sec. 

Read instructions M 1.35 sec. 

Attention shift from mobile phone to poster M, SMacro 1.35 sec., 0.36 sec. 

Movement to tag P 1.00 sec. 

Action to accomplish NFC interaction A[NFC] 0.00 sec. 

Process tag R[NFC] 2.58 sec. 

Attention shift from poster to mobile phone M, SMacro 1.35 sec., 0.36 sec. 

Read instructions M 1.35 sec. 

Scroll down to read further K[Hotkey] 0.16 sec. 

Read instructions M 1.35 sec. 

Download ticket service K[Hotkey] 0.16 sec. 

… … … 

 Sum: 147.48 sec. ~ 2:27 min. 

Empirical Validation 

Both alternatives of the scenario were completed by 9 people, aged 23-34 with an average of 27.6 years, 

3 female. The times needed for the first version ranged from 106 to 133 seconds with an average of 117 seconds 

( = 9.40). The values are remarkably close to the predicted value of roughly 123 seconds. The upshots of the 

second, NFC version of the scenario are similar in magnitude: the average duration of the task was 137 seconds 

(times ranged between 120 and 162 seconds,  = 13.1) which is also quite close to the KLM estimate of 

147 seconds. 

This means that the deviations of the KLM predictions to each data sample are in the good range of -15 % to 

+18 %. The measured averages actually deviate only 5 % and 8 %, respectively. Even more important, the speed 

loss of 16.7 % of the NFC implementation predicted by the KLM is confirmed by the study with a measured 

average increase in task completion time of 14.4 %. 

3.4.5 Discussion and Related Work 
It is evident that average users handle complex interaction styles differently and with different speed. It can also 

be hard to get into a routine for tasks that are new to a user even after several repetitions. This may render the 

expert user assumption difficult to support. The complexity of the interactions adds to this problem. However, 

our experience and evaluation show that for a set of interaction methods known to its users through at least 

sporadic use, estimates given by the mobile phone KLM are very good indeed. Especially when target users are 

early adopters or professional workers, it is very likely that these learn and adapt quickly and reach a state of 

experience that can be modelled close enough to make sound predictions. 
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We presented models of two different implementations of a real world scenario that also indicate that well 

grounded design decisions can be reached purely based on the model predictions. Nevertheless, we strongly 

encourage other researchers to expand our initial set of studies and examine our results through additional 

measurements and scenarios. 

The collection of introduced operators is necessary to apply KLM to interactions such as those described in this 

work. According to the experiences in our lab and after reviewing relevant publications, we conclude that this set 

also suffices to capture the interactions possible with mobile phones at the current state of the art. Of course, 

time will inevitably bring different and additional types of interactions in the future for which new operators 

might have to be defined. Others might need adjustments when new or radically more time consuming variants 

are introduced (like complex gestures). It can also happen that some interactions become considerably easier (for 

example by getting rid of the need to accurately aim and focus for visual marker recognition). Nevertheless, after 

having conducted our tests, we are very positive that those changes are easy to integrate into the model and 

predictions can be made that lead to an early and valuable basis for design decisions. 

As has been mentioned before and stated by several research papers, e.g. [Pavlovych and Stürzlinger 2004], the 

model can be very valuable even if the absolute times are not as accurate as in our evaluation. As we have seen, 

interesting results can be achieved. For example, it was quite surprising for us that the NFC version was indeed 

slower than the one using the phone‟s web browser. This can give a clue for deciding between two different 

designs. Of course, it should never be forgotten that there are other characteristics that influence users‟ 

preferences and might even have higher priority than time to completion. The NFC technique might be judged as 

having better affordance, being quicker to learn, offering a more novel and interesting method, being 

subjectively quicker, or simply as being more fun. These naturally are aspects that have to be taken into account 

when designing an application. We see it as further work to look into how such aspects could be modelled and 

potentially be integrated into a KLM. One example of such an integration is [Luo and Siewiorek 2007] where a 

prediction of energy consumption on mobile devices has been combined with a standard KLM. 

Assuming that time to completion of tasks should play a central role in interface design, it should also be 

stressed that the model can provide insight into where exactly time is lost within a task. In the case of the NFC 

interaction, one of those parts was identified to be the response time until a tag was read and feedback provided. 

Up to now, most research on performance measures for phone users has been limited to the input of text for short 

messages: an initial work by Dunlop and Crossan shows KLM operator sequences for three different text entry 

methods (traditional, predictive, and word completion) [Dunlop and Crossan 2000]. However, the authors 

adopted the original operator values used for desktop interaction which proved to be imprecise in this new 

environment. This is improved by How and Kan whose presented model is more fine-grained [How and Kan 

2005]. They define 13 operators that more directly map onto the phone keyboard interface according to the 

different input methods (multi-tab etc.). New times are gathered from videotaped sessions with a small set of 

subjects and a message typing task. However, this unnecessarily complicates the modelling process. In a 

complementary approach pursued in 2004, non-perfect users are considered using the cognitive load operator to 

model input verification [Pavlovych and Stürzlinger 2004]. Although we do not focus on text messages, our 

model supports this view using Micro Attention Shifts. There is also work reporting on time measurements for 

keystrokes and the Mental Act operator for text input in different languages (see for example [Myung 2004] for 

the Korean language). 

In addition to text input, Mori et al. studied how the time values of the original KLM operators apply to mobile 

phone menu navigation and conclude that the operator values fit quite well and suggest only minor modifications 

[Mori, Matsunobe, and Yamaoka 2003]. 
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3.5 Further KLM Extensions 
In Table 8, we present a composition of KLM operators concerning text input commonly used on small devices. 

One can see that there is sometimes considerable variance within the values given for the same method. This 

shows that care has to be taken to account for the assumptions set by the authors. 

Table 8: Text entry speed on small device keypads for T9, multitap, Less-Tap,  

and some specific settings. Values are given as words per minute (WPM). 

Text Entry Method WPM Reference 

T9 25.0 [Dunlop and Crossan 1999] 

T9  index finger (thumb): 45.7 (40.6) [Silfverberg, MacKenzie, and Korhonen 2000] 

T9, empirical  expert: 

 novice: 

T9, model 

20.4 

9.09 

17.6 

[James and Reischel 2001] (they also give 

different values according to type of messages 

used, e.g. chat vs. newspaper) 

T9 expert: 

 novice: 

4.80 

3.80 
[Cockburn and Siresena 2003] 

T9 novice: 7.58 [Pavlovych and Stürzlinger 2004] 18 

   
Multitap 18.4 [Dunlop and Crossan 1999] 

Multitap 14.9 [Dunlop and Crossan 2000] 

Multitap  index finger (thumb): 

 with timeout kill button (thumb): 

22.5 (20.8) 

27.2 (27.5) 
[Silfverberg, MacKenzie, and Korhonen 2000] 

Multitap, model 

Multitap, empirical expert: 

 novice: 

14.9 

7.93 

7.98 

[James and Reischel 2001] (they also give 

different values according to type of messages 

used, e.g. chat vs. newspaper) 

Multitap  expert: 

 novice: 

8.20 

5.00 
[Cockburn and Siresena 2003] 

Multitap 7.15 [Pavlovych and Stürzlinger 2003] 

Multitap  novice 5.87 [Pavlovych and Stürzlinger 2004] 18
 

Multitap expert: 

(hotkeys or number input) novice: 

30.4 

25.7 
[Holleis, Otto, et al. 2007] 

   
Less-Tap 23.5 [Dunlop and Crossan 1999] 

Less-Tap  index finger (thumb): 25.0 (22.2) [Silfverberg, MacKenzie, and Korhonen 2000] 

Less-Tap 7.82 [Pavlovych and Stürzlinger 2003] 

Less-Tap  novice: 6.53 [Pavlovych and Stürzlinger 2004] 

   
Especially designed novice: 

Fastap keyboard expert: 

7.10 

8.50 
[Cockburn and Siresena 2003] 

Unistrokes 

Roman hand printing 

Graffiti 

MDITIM (Minimal Device Independent 

Text Input Method) 

51.5 

33.5 

35.5 

31.1 

 

[Isokoski 2001] (values are calculated without 

taking inter-character times into account) 

2 thumbs on small QWERTY keyboards 60.7 [MacKenzie and Soukoreff 2002] 

Graffiti 17.3 [Fleetwood et al. 2002] 

                                                           
18 Note that [Pavlovych and Stürzlinger 2004] reproduces slightly different values than given in the original text of 

Silfverberg et al. [Silfverberg, MacKenzie, and Korhonen 2000] for multitap and Less-Tap and swapped their predictions 

for use with index finger and thumb in the description. 
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Text input has been studied for a long time and rather extensively since it is one of the most difficult, tedious, 

and time consuming tasks on small devices. Thus, the keystroke operator has been adapted for specific input 

methods (also see for example the Say operator in Table 9) and specific keyboards. Examples for the latter 

include the keyboard found on the Ali-Scout navigation system with 22 buttons in two rows modelled in [Manes, 

Green, and Hunter 1996] or the 16 button input cursor device of a digitising pad in [Haunold and Kuhn 1994]. 

Substantial research has also gone into different layouts of keyboards, especially for soft keyboards. An 

overview can be found in [MacKenzie, Zhang, and Soukoreff 1999]. 

There is to our knowledge no published research yet that includes new mobile interaction techniques in its 

predictive user model. A beginning is indicated in [Luo and John 2005] and its follow-up [Teo and John 2006] 

where the authors show that the method can be soundly applied to handheld devices using stylus-based 

interfaces. They also present a tool they developed to automatically generate KLM models from storyboard 

descriptions. This tool, called the „CogTool‟ has been introduced in [John and Salvucci 2005]. The research 

group states in future work that they plan to apply their research and tool support to novel interfaces like speech 

input or gesture control. 

A great advantage of the modularity of Keystroke-Level Models is that results from third parties can easily be 

reused. Therefore, efforts to measure and validate new operations can be valuable for many other research 

groups and industry applications. Obviously, one has to carefully inspect the setting and assumptions made 

during the measurement process. Sometimes, specific operators get adjusted after some time. An example is 

work by [Clarkson et al. 2007] who refine and validate assumptions underlying a previously published version of 

a model of two-thumb text entry. It should also be taken into consideration that there is a trade-off between 

having many, detailed operators and few slightly less exact operators. The more parameters a model has, the 

more complex it gets to model, understand, and subsequently interpret it. 

Table 9 lists some results retrieved from selected publications where the authors measured the time necessary for 

specific operations outside the realm of text entry. Note that such a list can hardly be exhaustive. Especially 

since by far not all efforts in this direction have been published or are accessible somewhere. There are possibly 

hundreds of applications that have been modelled in industrial settings and whose modellers opted to derive new 

operators and made measurements for them. However, not all of them had the means or interest to make those 

additions available to the public. There is, for example, a body of work in the area of workplace evaluation that 

use similar models for their evaluations. However, it is difficult to find or get access to such values. 

Nevertheless, there are still novel areas where active research also shows much interest in models such as the 

KLM. We presented in [Holleis, Kern, and Schmidt 2007] the concept of combining prototyping tools for 

tangible interfaces with user modelling aspects. We proposed mobile phone and in-car interfaces as specific 

application areas. There is also much work being done in the latter area of vehicular interfaces. Salvucci for 

example concentrates on the distracting aspects of interfaces for car drivers in [Salvucci 2002]. He and 

colleagues also developed an extension to the ACT-R cognitive architecture called Distract-R which helps in 

modelling and testing the impact of interfaces to driver distraction [Salvucci, Zuber, et al. 2005]. In a similar 

effort, Pettitt and co-authors extended the KLM and aim for replacing the cumbersome and time-consuming 

occlusion method for measuring the visual demand of in-car user interfaces, [Pettitt, Burnett, and Stevens 2007]. 

In the table, we did not include slight adaptations of existing parameters for very specific settings. For example, 

there are several projects in which deviating values for Pointing P and Drawing D were used, either based on 

Fitts‟ Law or measured empirically, since specific designs and interactions allow more specific predictions, e.g. 

[Haunold and Kuhn 1994]. In [Hinckley et al. 2006], for example, the authors present a setting where most 

mouse targets lie very close to each other and thus question the applicability of Fitts‟ Law or most average 

values proposed elsewhere in different settings. Other specialisations include tailored pointing operators such as 

using cursor control keys to control a large screen in a very early interactive display system [Kankaanpaa 1988]. 

There is little research present in the area of pervasive computing besides text input on small, mobile devices. As 

detailed in a later chapter, we see our work as a basis for further research to enable designers of a great variety of 

pervasive applications to use models such as the KLM early in the design process. 
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Table 9: Some operators with which the original KLM has been extended gathered from literature. 

If not specified otherwise, values are given in seconds. 

Operator Description Value Reference 

Illumination 
Adjustment factor to be added for low light 

conditions 

10-

15 % 

[Manes, Green, and 

Hunter 1996] 

(they additionally 

give times for 

specific classes of 

buttons) 

   

Age 
Adjustment factor to be added for age middle: 

 older: 

45 % 

119 % 

Search Constant, SC 

Time to find an item for which a user cannot 

currently recall the name and location: 

M + SC * #items / 2 

0.20 

[Bälter 2000]    

Scroll Constant, SCr 

Time needed to scroll if some items are not 

visible: 

(1 - (#visibleItems) / (#items)) * SCr 

2.60 

   Query Formulation Time to formulate a search query for emails 5.00 

Search Time to search the display for an item 0.55 
[Kankaanpaa 1988] 

   Kpen Press a button on the pen input device 0.25 

Eye Eye movement general 0.23 [Card, Newell, and 

Moran 1983]    Perceivebinary Perceive a simple, binary signal  0.10 

Perceivecomplex Perceive a complex visual signal (word or code) 0.34 
[John and Newell 

1989] 

Say, unpractised Say a syllable in an unpractised sentence 0.17 

[John 1990] 
   Say, practised Say a syllable in a highly practised sentence 0.13 

   
Listen 

Time to recognise a pause as a turn in a 

conversation 
0.65 

Reach-far (Rf) 
Hand movement from steering wheel to in-car 

device and v.v. („reach-far‟) 
0.45 [P. Green 2003] 
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This chapter begins with a description and comparison of various types of existing prototyping toolkits (4.1). 

Based on these and existing literature, a list of general requirements for such toolkits is assembled (4.2) and the 

EIToolkit and a number of existing approaches are evaluated against that list. After a presentation of design 

considerations for the EIToolkit (4.3), we give a concise overview of its architecture and concentrate on some 

specific aspects and issues of its implementation (4.4). 

4.1 A Review of Existing Prototyping Toolkits 
This section summarises several products and projects that pursue similar aims as our EIToolkit, namely 

providing means to ease the combination of software and hardware to form „intelligent‟ applications. We point 

out the strengths and weaknesses of these approaches and show where our toolkit builds on the strengths of those 

approaches and where it offers solutions to shortcomings revealed during this evaluation. 

Most of the approaches discussed in this section will be compared and contrasted in Table 10 against a list of 

requirements for such toolkits defined and elaborated upon in the next section. These are cited also with their 

Arabic number found in Table 11 on page 82 in order to provide a more concise format and direct lookup. 

The toolkits and frameworks presented here are split into three categories. Hardware-focused toolkits 

concentrate on physical building blocks and tangible components, while software-centred projects are more 

concerned with expanding current development environments and APIs. The last type subsumes all projects 

trying to combine the physical and digital world and propose solutions for development support in this area. 

4.1.1 Hardware-focused Toolkits 
Hardware components and products are often harder to develop than pieces of software. It requires physical 

skills ranging from the ability to work with crude tools such as saws, drilling machines, and hammers, to very 

fine tools such as soldering irons, needles, and pincers. Most importantly, however, a difficulty arises from the 

fact that many of the standard software prototyping approaches are not applicable to hardware: existing software 

code can be used and run, example code can be copied and adapted, software objects can easily be cloned, 

worked on collaboratively, sent and distributed, etc. Some researchers have started to provide developers with 

ready-made components to simplify use, reuse, adaptation, and combination of hardware. The EIToolkit does not 

directly include custom hardware components but focuses on integrating existing approaches within its model. 
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General Purpose 

The beginning of tangible computing was marked by Ishii and Ullmer‟s work on tangible interfaces [Ishii and 

Ullmer 1997]. They introduced „phicons‟ to represent physical icons. However, in this early work, most of these 

phicons were complex and highly specialized and the authors did not provide toolkit support for such interfaces. 

One way of trying to tackle the problem of a high threshold in creating hardware artefacts is to provide a base 

component that relieves the user from having to cope with various issues concerning power supply, connecting 

external parts, reading and processing sensor values, and transferring data between components or to a central 

component such as a PC. There are a variety of small yet very powerful processor boards available. Some of 

those even run complete versions of a Linux operating system19 . This simplifies the use and programming of 

those components. However, the price that one has to pay for this power and comfort are short battery recharge 

cycles, impractical size, and considerable cost. Other examples in that direction include the Motes [Nachman et 

al. 2005] that are used by several research institutes and run the TinyOS operating system. 

Particle Computer System 

Less powerful but more energy saving, smaller, and cheaper are the Particle Computers [Decker et al. 2005]. The 

small boards (about 35x48x10mm) consist of a PIC microcontroller, 512kB flash memory, a ball switch to detect 

movement, some small lights, and an RF transceiver for sending data wirelessly to other components (sensor 

networks) or special receivers using a custom protocol. A connector collects most usable pins from the processor 

and enables attaching additional boards. One of those was explicitly built after an analysis of the most often used 

types of sensors in pervasive applications, namely movement, light, force, temperature, audio, humidity, and 

proximity [Beigl et al. 2004]. This makes the approach quite extensible, if only for those who know how to 

design and build custom printed circuit boards. In our experience however, the RF module exhibits problems 

even in close range (within a few meters), and makes the connection to other platforms such as mobile phones 

difficult. This is one of the reasons why we, after using them successfully for several projects, switched to a 

custom platform with Bluetooth transceiver. There is some support for high-level programming, e.g. using the 

standard parts and sensors without the need to reprogram code running on the microcontroller. 

Arduino and Wiring 

Similarly, Arduino and Wiring boards (see Section 6.2.2, Connection to Third Party Platforms and Components) 

are not powerful enough to run a complete operating system. However, the purpose of these prototyping 

platforms is mostly to gather sensor data, perform straightforward processing, and control simple actuators. Thus 

they have been used in many prototyping projects such as the Lilypad Arduino wearable control [Buechley, 

Eisenberg, et al. 2008]. One of the disadvantages is that programming the devices is still a rather low-level task. 

Specialized Components 

Several projects concentrate on the problem that those generic platforms often need to be physically extended 

and programmed to fulfil their task.  

Phidgets 

Arguably the most prominent example of a toolkit providing support for specific hardware needs is the Phidgets 

project [Greenberg and Fitchett 2001], [17]. Their physical widgets offer special-purpose, integrated components 

like a servo controller that are attached to a PC using USB. The advantage of this approach is that the hardware 

parts do not need to be programmed for most applications and thus the logics can be implemented in software on 

the host PC. Several APIs in different languages are available with the aim that developers can use their 

favourite language and use hardware components by simply reading from or assigning values to virtual versions 

of the physical objects. Phidgets are commercially available but are not targeted at hardware extensibility. 

Additionally, drawbacks include that they do not provide wireless components and cannot directly be combined 

with other toolkits. 

                                                           
19 A long list of boards that support embedded Linux: http://www.linuxdevices.com/articles/AT8498487406.html 

http://www.linuxdevices.com/articles/AT8498487406.html
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Calder Toolkit 

Similar in principle is the Calder toolkit which provides several input and output components such as RFID 

(radio frequency identification) readers and tags, buttons, knobs, joysticks, and lights [Lee et al. 2004], [31]. 

These are connected either by short cables or by a wireless link to hub components that include a microcontroller 

and a USB connection to a PC. Different to Phidgets, the authors emphasize the use for designers who want to 

augment their physical designs with functionality thus bringing forward small devices with wireless capabilities. 

From a design perspective, this is close to the approach of the BOXES system described below but provides 

more functionality with the cost of slightly larger and less flexible modes of attachment. At a software level, the 

Calder components register themselves as USB Human Interface Devices and can be accessed using C code or 

wrappers around them. This is identical to the way Phidgets are used and does not provide means for non-

programmers to create more than the simplest applications. 

Voodoo-I/O 

Such an example is Voodoo-I/O [Villar and Gellersen 2007], [Block, Villar, and Gellersen 2008]. It is still 

general in the sense that one basic component is connected to a PC by USB. However, it is specialized to simple 

controls on (currently) flat surfaces offering a large set of specific input and output modules. A special substrate, 

about 10 mm thick with a built-in conductive layer can be cut into any shape and is used as a basis for 

prototyping the looks and form of the desired device. A set of small controls such as buttons, knobs, sliders, and 

lights can then be attached at any location by simply firmly attaching them into the surface. A 1-wire bus system 

transfers information about the appearance, disappearance, and state of mobile components such as phones, 

sensors, or devices that are switched on or off, to a central controller that forwards these messages to a host PC. 

The foremost advantages are that there is no restriction in placing the components and that they can be 

repositioned at runtime, allowing a designer or user the opportunity to quickly try out different designs without 

having to make any changes to the running application. Different software controls are provided. By mapping 

inputs to simulated keystrokes, the majority of existing software applications can easily be controlled by physical 

representations of their inputs. Although the system is specialised to the supported components, not targeted at 

distributed applications, and does not support further interaction models, it can tremendously improve the rapid 

prototyping of simple hardware devices. There is potential in extending the system to 3D and distributed models 

when the technology becomes easier to fabricate and cheaper to get. 

Crickets 

The Crickets offer an embedded processor unit with bidirectional infrared communication and connections for 

two analogue inputs and outputs [Martin, Mikhak, and Silverman 2000], [36]. Additionally, several 

manufactured sensor and actuator boards such as a MIDI music synthesizer, numeric displays, or distance and 

sound sensors can be attached through a bus system making it extensible and simple to use. The Crickets also try 

to lower the threshold of building applications by running a virtual machine on their microcontroller and 

enabling the use of a simple dialect of the Logo programming language. There is no support for debugging. 

However, a dynamic mode lets users program in a simulated interactive style. 

Lilypad Arduino 

There are several additional projects that provide hardware components but are conceptually very similar to the 

ones described above with slightly different emphasis. Buechley, for example, introduces a sewable version of 

an Arduino microcontroller hardware board that is extensible in a way such that different sensors and actuators 

can simply be attached [Buechley, Eisenberg, et al. 2008]. The main focus of this project is to enable novices to 

work with basic electronics and to make such wearable controls aesthetically pleasing.  

X10 

Devices such as X1020, for example, are built to reduce the infrastructural requirements for setting up a system 

with several nodes. These modules can communicate through an existing standard power network. Advances 

based on those as well as the iStuff toolkit are described below since they integrate hardware and software 

development much tighter than the previous, more clearly hardware-focused toolkits. An advantage of this 

toolkit is that there are many manufactured elements available such as motion sensors, lamps, and switches. 

                                                           
20 X10 home automation components; product page: http://www.x10.com/automation/ 

http://www.x10.com/automation/
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4.1.2 Software-focused Toolkits 
Many software solutions try to combine several types of technology, platforms, and different programming 

languages into one coherent development system. Examples include the Microsoft .NET suite that allows 

developing applications for platforms like Windows XP, Windows Vista, or Windows Mobile in languages like 

C++, C#, and Visual Basic, and enables combining those through various common technologies. Focusing on 

projects that in some way connect software development with external components, we list several application 

areas together with examples of tools used in this area. 

We separate the systems into the following categories: generic approaches, augmented reality and wearable 

computing, robotics, phones and other mobile devices, simulation and collaboration, tabletop interfaces, active 

spaces, intelligent environments, and end-user focused approaches. 

Generic Approaches 

Plan B 

A problem common to all infrastructures and middleware systems is that several prerequisites have to be 

fulfilled by the platforms it runs on. Plan B tries to minimise these requirements by using the file system concept 

present in nearly all operating systems on most higher-power computational units [Ballesteros et al. 2007], [5]. It 

provides file discovery services and also allows specifying some graphical user interfaces with file hierarchies. 

One of the advantages of using files is that users can inspect those and write custom data to them at any time. It 

is slightly more complicated to implement event-based services such as notifications or streaming devices such 

as a mouse, but it is possible. People who know how to look for specific data in the Plan B directory structure 

and can work with scripts and Unix-style pipes and bash-programming will find it easy to create simple 

applications like home automation systems. However, the initial threshold is quite high. Since most processing 

takes place while writing to and reading from files, it is difficult to isolate, find, and treat errors. It offers some 

support for adapting to resources that become unavailable (e.g. devices that are switched off or leave the radio 

range) and can easily be extended with additional services but makes quick prototypes and replacing 

(processing) parts more demanding. 

Equip Component Toolkit 

From the large Equator Project21 emerged a toolkit called the Equip Component Toolkit [Greenhalgh et al. 

2004], [18]. It is a highly component-based system that seeks to implement as few restrictions on applications as 

possible. Similar to the EIToolkit and also the iStuff toolkit described below, it employs an event-based tuple-

space approach. To emphasise their claim for generality, they extend fixed tuple types to a subset of CORBA to 

allow complex, hierarchical types and matching of data between applications. This alleviates the restrictions of 

some other component-based systems such as P2PComp [Ferscha et al. 2004] and PCOM [Becker et al. 2004] 

that need to adhere to specific (identical) protocols for inter-component communication. While requiring 

considerable effort to setup an initial infrastructure, „inspectable properties‟ and built-in protocol translators 

simplify the extension and observation of running systems. A flow-based graphical editor can aid in generating 

simple applications. However, the huge amount of visual components automatically generated from the CORBA 

descriptions complicates the first entry into the system. Besides iStuff, this is probably the framework that is 

most related to the EIToolkit. They share the focus on extensibility, support for external devices, portability, and 

diverse access for users including creating and observing applications. In contrast to the EIToolkit, it does not 

directly support control of existing applications, has no facilities to operate stream- or state-based, does not offer 

component simulation, and does not integrate into existing prototyping tools. 

                                                           
21 The Equator six-year Interdisciplinary Research Collaboration (IRC); project page: http://www.equator.ac.uk/ 

http://www.equator.ac.uk/
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PowerInteraction 

A similar intent has recently been shown by the PowerInteraction22 toolset also known as VID-Framework 

[Lorenz, Eisenhauer, and Zimmermann 2008]. The goal of the project is to provide a generic architecture to 

simplify the connection of available services and devices. It focuses on data input and provides mechanisms to 

abstract from physical hardware, software and input metaphors using the concept of virtual input devices. The 

implementation of the component-based framework uses standardised web services technologies to connect 

available services. It is actively developed in Java and Java ME but is not restricted to these languages. By using 

concrete implementations of the generic architecture, the framework enables a flexible combination of a variety 

of input and output sources and thus supports the modelling, rapid prototyping, and developing of dynamic and 

mobile distributed applications. 

One.World 

Another toolkit attempting to facilitate the development and deployment of pervasive applications is One.World 

[Grimm 2004], [19]. It builds on three requirements enabling and supporting roaming users, dynamic 

composition as well as combination of devices, and information exchange. The latter two are in common with 

the EIToolkit as are the use of events and self-describing tuples. A distinguishing feature is the use of 

environments (in other projects also named sessions) that bundle applications and data. Thus, One.World can, 

like the EIToolkit, store data persistently and, by nesting environments, other applications can observe and make 

use of the information passed in nested environments. However, it does not support replaying logged information 

or simulated components. Even though it allows easily extending the system and is based on the Java Runtime, it 

cannot directly command existing applications, has limited support for external devices and protocols, and does 

not integrate easily in design processes or other prototyping tools. It does, however, provide some mechanisms 

for application specific, automatic adaptation. 

JSense, TASK, SNACK 

The lack of support for debugging sensor applications and simulating components has been picked up by JSense 

[Santini et al. 2006], [48]. The central concept is a hardware abstraction layer that allows a user to directly access 

sensors and actuators without necessarily knowing their implementation details. It is aimed to provide 

information gathering and processing together in a centralised development environment using a high-level 

programming language such as Java. The implementation of these concepts allows near platform independence 

and a largely extensible system like the EIToolkit. However, it requires each sensor node to run a version of the 

abstraction layer, thus limiting the number of supported devices. The use of different programming languages is 

not easily possible and history, replay, or simulation of data is not taken into consideration. Other directly related 

sensor network development applications are the Tiny Application Sensor Kit (TASK) [Buonadonna et al. 2004] 

and the Extensible Sensing System EES (see the sidebar in [Szewczyk et al. 2004]). Their use is limited, 

however, since the former cannot directly be extended and both are targeted towards users without programming 

abilities, thus reducing the complexity of possible applications. The Sensor Network Construction Kit (SNACK) 

is an example of the opposite approach which only gives access to the computational nodes through a proprietary 

component composition language [Greenstein, Kohler, and Estrin 2004]. 

IrisNet 

Such issues are attempted to be mitigated by Intel‟s IrisNet framework [Nath et al. 2002], [42]. It tries to deliver 

a system for world-wide sensing systems by making sensors available through a combination of web services 

with standardised databases and XML-based queries. It provides resource discovery and distribution of data. The 

latter allows shifting computational resources and bandwidth according to current needs. General assumptions of 

the IrisNet are that most processing can be done close to the sensing systems, that only high-level events need to 

be sent across the network, and that data can be pulled if of interest (e.g. a camera-based movement detector 

would not send its video stream; an interested application can query whether a movement has occurred and ask 

for an image at that point in time). While the EIToolkit also has the capabilities of accessing distributed and 

stored data, it is not optimised for general web-based access. IrisNet, on the other hand, cannot directly simulate 

sensor input and has a high threshold requiring a high competence in programming (a developer of a minimal 

service needs to write a browser front end, a „senselet‟, and an XML schema). 

                                                           
22 PowerInteraction, project page: http://www.fit.fraunhofer.de/projects/mobiles-wissen/power-interaction.html 

http://www.fit.fraunhofer.de/projects/mobiles-wissen/power-interaction.html
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Context Toolkit 

Not explicitly web-based but also relying on the use of XML and HTTP, the Context Toolkit builds on a strict 

definition of context and implements so-called context widgets [Dey, Salber, and Abowd 2001], [13]. These are 

related to UI widgets with the distinction that generated events are asynchronous and can be modified on their 

way to a client. Data from external sensors and actuators can easily be included. As in the EIToolkit, components 

are reusable and distributed applications can easily be created. The implementation using Java ensures that it 

runs on most platforms and the lightweight protocol makes it easy to use with most devices. Device discovery 

mechanisms and simple to use interfaces provide a low initial threshold. However, knowledge about how to 

write call-back functions is necessary to work with the system. The existence of aggregators and interpreters in 

conjunction with the chance to use several programming languages such as Java, C++, Visual Basic, and Python 

allow creating rich applications. In contrast to the EIToolkit, simulation and replaying of logged data is not 

possible as are state- and query-based applications. The most prominent and lasting contribution is the concept of 

context widgets and various ways of combining inputs to context and processing it for services and applications. 

.NET Micro Framework 

Lastly, there are some programming environments that concentrate on developing applications on small devices 

and sensor nodes. The .NET Micro Framework (see for example [Thompson 2007]) brings the power of .NET 

programming to resource restricted devices (although there are still requirements that many sensor nodes do not 

fulfil, e.g., a minimum of 256kB RAM and 512kB Flash/ROM; it mostly supports ARM processors). The 

support here is much more on the side of single, local applications than the distributed ones using heterogeneous 

devices of pervasive computing. 

Augmented Reality and Wearable Computing 

One of the intersections of software applications and the physical world is augmented reality (AR). In these 

applications, information is projected over a view of the real world. Examples range from repair or construction 

work assistance with enhanced goggles to mobile tourist guides where data is included in the video stream of the 

camera. All of these applications have in common that some artefacts in the world have to be recognized. This 

can mean exact identification (e.g. face recognition), type identification (e.g. a product), or location / orientation 

(e.g. for manipulating virtual data with a tangible control). The ARToolkit (see page 8) is a very popular library 

that enables its users to create AR applications without the need of detailed knowledge in vision recognition and 

image processing. It uses small markers to detect the exact viewpoint of the user / camera. Several other libraries 

simplifying the use of AR technologies have been written. However, they are often still cumbersome to use and 

the combination and replacement of several of them is still a problem.  

Developers Augmented Reality Toolkit (DART) 

One approach to overcome those issues is the Developers Augmented Reality Toolkit (DART) [MacIntyre et al. 

2004], [35]. Foremost, it is a framework that integrates into a designer‟s tool, namely Adobe Director and also 

uses its programming language Lingo. It supports rapid prototyping by using Wizard of Oz techniques for 

complex algorithms and integrates into the whole design cycle by helping designers to go from simple 

storyboards to 3D contents and „animatics‟ (sequenced 2D storyboards with synchronised audio). As in the 

EIToolkit, capturing and using captured data is easily possible. Most important is that underlying sensing 

technology can be exchanged or updated without changing the application. It is one of the few tools which offer 

readymade solutions for a set of small but frequently arising problems by providing a suite of Lingo scripts. 

Drawback of the architecture are that only PC-based applications can be written, existing applications cannot be 

controlled, and it is strongly based on Lingo as well as DART specific protocols. It is, however, with some effort 

possible to connect external components other than cameras. 

DWARF 

There are also systems for augmented reality that try to enable developers to use existing components to create 

applications and to simply connect several services that implement commonly used tasks in augmented reality 

applications. The DWARF system, for example, is aimed at leveraging such libraries as the ARToolkit and 

provides modules bundling software and hardware pieces that belong together [Bauer et al. 2001]. A layered 
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architecture ensures that low-level hardware and software such as trackers and data storage are encapsulated and 

abstracted. The used middleware allows easily combining services and the architecture enables developers to 

write and integrate new components. Existing components can also mostly be configured using XML 

descriptions. The whole system is an extensible framework dedicated to a variety of different user profiles with a 

large focus on augmented reality applications. 

Papier-Mâché 

Another AR toolkit that additionally manages to combine sensors such as RFID with marker detection is Papier-

Mâché [Klemmer, Li, et al. 2004], [30]. It generalises inputs by encapsulating detected objects into „phobs‟. 

Each of the three supported input types, i.e. RFID, barcode, and marker detection generates phobs with the IDs 

of objects that appear, disappear, or get modified. Each phob, however, can potentially carry additional 

information such as the picture that triggered the event of the visual system. This abstraction helps a developer in 

exchanging one input method with another, e.g., a system developed using vision can be deployed on an RFID 

system. The threshold of creating such applications is lowered by a simple monitoring environment that shows 

the state of each sensing technology and all currently detected objects. There is a simple graphical way of putting 

applications together. Still, most applications need to be developed using Java programming albeit very simple 

constructs are mostly enough. The EIToolkit does not provide explicit AR support. However, external vision 

systems can easily be connected whereas it is difficult to extend the Papier-Mâché system which is also limited 

in the number and types of protocols it uses. It is also not built for distributed applications and there is no further 

support for deploying the system. 

A Construction Kit for Electronic Textiles 

One common application area of augmented reality is wearable computing. This includes a variety of display 

technologies integrated into glasses as well as mobile devices. Wearable computing applications also use sensors 

with relatively low data rates such as temperature, accelerometers, tilt, motion, and bend sensors. Even though 

there is much work going on in this area, there are only few toolkits to aid in their development. Buechley 

describes hardware that allows the quick composition of individual components such as simple sensors 

(temperature, light, pressure) and actuators (lights, vibration motors). The kit supports integrating the 

microcontroller and other components into clothing by attaching conductive yarn to connect and power different 

parts [Buechley 2006]. Available components are still quite large and the programming of the microcontroller 

represents an obstacle for many inexperienced developers and hinders collaboration with designers. 

Robotics 

Vision technology and image processing algorithms needed for AR applications are also central for the 

development of various types of robots. Without going into much detail about application areas, conceptual and 

mechanical problems, two environments for prototyping and developing robotics applications shall be mentioned 

that are closely related to the EIToolkit and similar frameworks. 

LEGO Mindstorms NXT 

The LEGO Mindstorms NXT robotics kit23 features a central processing unit based on an ARM7 

microcontroller. It is able to control up to four sensors and three motors. Available sensors include light, touch, 

distance, movement (accelerometer), and direction (compass). The firmware and sensor specifications are openly 

available and thus the creation of custom sensors is possible though not directly supported. The system also 

provides a basic visual programming environment targeted at end-users. Several blocks can be put on a stage and 

are interpreted sequentially. Each block represents basic actions such as motor control or sound output as well as 

triggers based on attached sensors. In this way, simple programs in an if-then style can be quickly generated and 

downloaded on the processor. Complex programs can only be realized through the connection of other third-

party programming languages. The abstractions found in the NXT systems hinder the kit‟s use for physical 

interfaces beyond robotics applications. However, through the easy combination with standard Lego parts, 

hardware prototypes can be built and adapted very easily. The combination with the provided software allows 

deployment on the (only supported) target platform but limits its use for debugging and runtime access. 

                                                           
23 Lego Mindstorms NXT robotics kit; product page: http://mindstorms.lego.com 

http://mindstorms.lego.com/
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Microsoft Robotics Studio 

Microsoft Robotics Studio24 pursues similar goals but is more open in its applicability. In fact, it can also be used 

to create programs to be run with the LEGO Mindstorms NXT hardware. In contrast to that, however, it does not 

provide any particular hardware system and is targeted to the use of third-party robotics kits such as from 

fischertechnik25. A similar visual programming language is used to make the entry to robotics programming 

easier. However, the possibilities are much stronger including variables and more complex structures. Still, more 

challenging applications have to be written in other languages like those found in Microsoft Visual Studio (the 

visual constructs can be used to generate C# code). Although some concepts of the methodology used in the 

Robotics Studio could potentially be used in other fields, it concentrates on robotic applications. This is visible in 

both the hardware platforms it supports and the simulation environment in which applications can be tested. 

Similar to the EIToolkit it favours a loosely coupled infrastructure (by using decentralised software services), 

extensibility by third parties, and several reusable components providing useful functionality. On the other hand, 

it does not focus on discovery, state- or stream-based applications, does not leverage data processing (e.g. sensor 

input and context information), has little support for direct debugging (such as storing and replaying), and does 

not integrate into development cycles or other development tools. 

Phones and other Mobile Devices 

The deployment of applications in environments different than standard PCs is one of the core concepts of 

pervasive computing. Besides robots and wearable computers, mobile phones and PDAs are emerging platforms 

due to their large distribution, acceptance, and increasing power regarding processor and graphics capabilities. 

The creators of mobile phone hardware have slowly started to enable third-party programs on their hardware and 

various development environments and programming languages are now available for such platforms. 

Carbide, EclipseME, NetBeans Mobility Pack 

Nokia‟s Carbide IDE26 (integrated development environment) started as a multi-language development tool for 

mobile phone programming. After having quit the development of the Java version Carbide.j, development is 

now supported mainly for C++. As with the other IDEs described next, it hides many activities necessary to 

generate a deployable phone program like compiling, pre-verifying, bundling, obfuscating, etc. and relieves the 

developer from being concerned with these steps. It is based on the Eclipse framework and can therefore exploit 

its plug-in system. In addition to coding, the IDE provides a visual interface for building graphical user 

interfaces targeted at mobile phone displays. Similar to this approach, plug-ins to the known IDEs NetBeans and 

Eclipse (the corresponding plug-in is EclipseME27) have been created in order to harness the power of existing 

development tools. They make use of many of the built-in features such as code highlighting, auto-completion, 

syntax checking, and compilation scripts. In addition, the NetBeans Mobility Pack plug-in28 uses a graphical 

editor to design the screens of an application and a simple mapping of input widgets like buttons to transitions 

between screens. An emulator is also provided in which an application can be run. Its set of features is limited 

(e.g. no Bluetooth functionality) but it can be used to test whether the user interface works as expected. 

However, there are still differences with respect to the layout of user interface widgets that depend on the actual 

phone model and version of the operating system and are not modelled correctly. Programs developed using 

these frameworks use a subset of the Java language called Java Micro Edition, Java ME (formerly J2ME)29 and 

is based on Sun‟s Java Wireless Toolkit for CLDC30 (formerly J2ME Wireless Toolkit, J2ME WTK). Many 

phone models provide a Java runtime machine on which such programs can be run. 

                                                           
24 Microsoft Robotics Studio; project page: http://msdn2.microsoft.com/en-us/robotics/default.aspx 
25 fischertechnik Robo Interface; product page: http://www.fischertechnik.com/html/computing-robot-kits.html 
26 Nokia‟s Carbide IDE; development page: http://www.forum.nokia.com/main/resources/tools_and_sdks/carbide/ 
27 EclipseME, emerged from the mobile tools for the Java platform project; project page: http://www.eclipseme.org/ 
28 NetBeans Mobility Pack, Java ME plug-in; development page: http://mobility.netbeans.org/ 
29 Sun‟s Java Micro Edition, Java ME; developer page: http://java.sun.com/javame/ 
30 Sun‟s Java Wireless Toolkit for the Connected Limited Device Configuration (CLDC); 

developer page: http://java.sun.com/products/sjwtoolkit/ 

http://msdn2.microsoft.com/en-us/robotics/default.aspx
http://www.fischertechnik.com/html/computing-robot-kits.html
http://www.forum.nokia.com/main/resources/tools_and_sdks/carbide/
http://www.eclipseme.org/
http://mobility.netbeans.org/
http://java.sun.com/javame/
http://java.sun.com/products/sjwtoolkit/
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Windows Mobile Platform, Maestro 

A different approach has been chosen by Microsoft who advertises the Windows Mobile31 platform on a set of 

more powerful devices. It is a restricted version of a Microsoft Windows operating system on which many of the 

programming paradigms for developing applications for Windows can be used. Thus, most functionality of the 

.NET framework can be employed. Maestro32 is a commercial tool for prototyping mobile phone applications. It 

uses a hierarchical state machine, software simulation, and graphical widgets to help constructing graphical user 

interfaces. It is a powerful tool chain implemented in Java that can be used to create complex applications. 

However, its openness is restricted by the commercial licences and the effort of setting up the environment and 

the threshold to begin developing is quite high. The framework can be extended to develop software for 

embedded devices other than phones but it is tailored for Java ME devices that support MIDP33. 

iStuff Mobile 

All these projects (and there are many more, e.g., for the iPhone) show that there is demand for such 

development tools. Most of them are limited in the sense that they are closed frameworks that do not work well 

in conjunction with other tools. There is no direct support for the integration of third-party applications, external 

hardware and prototyping is restricted by using limited emulators. iStuff Mobile tries to tackle these issues by 

combining mobile phone programs with a variety of hardware toolkits using a graphical composition language. It 

builds on the iStuff framework (see page 69) and extends the central event repository (called the event heap) to 

events from a mobile phone. A background application running on the phone is able to collect user input such as 

button clicks and relay this information via Bluetooth to a PC running iStuff. Reversely, events generated within 

the framework and targeted to the phone are captured by the background application and either directly executed 

or forwarded to the current foreground application. Within the event heap, data from other external devices, 

applications, and sensors can be made available. Thus, phone events and external events can be combined. By 

attaching sensors to the phone, this setup eases the process to create context aware mobile applications or to 

extend the phone‟s functionality with additional interaction methods such as gestures. iStuff Mobile also 

provides a way of simplifying development of these applications itself. By integrating the event heap structure 

into Quartz Composer34, a graphical scripting language from Apple, a simple „cable patching‟ method can be 

used to specify flow graphs and conditions to create basic application logic. In order to raise the ceiling of 

possible programs, JavaScript components are introduced to enable dynamic and more complex data processing. 

Obviously, the indirect connection between phone and sensors has the advantage that no direct hardware 

manipulations have to be made and sensors can easily be exchanged. On the other hand, a PC must be present as 

controller and a certain time lag is introduced. In contrast to the EIToolkit, simulating events and devices and 

distributed applications are not envisioned. There is no direct support for data processing, the use of Quartz 

Composer limits platform independence, and information about appearance and disappearance of parts is not 

available. However, the tight coupling of physical and virtual components and the opportunity to quickly create 

sensor enhanced phone prototypes make it a powerful tool in the hands of developers and designers alike. 

Simulation and Collaboration 

Mobile platforms are continuously getting more powerful and hardware is generally becoming cheaper. 

However, there are always reasons why an envisioned application cannot (yet) be developed on the target 

platform. It might not yet be available (if only in a certain country), still be too expensive, there might be 

delivery problems or licensing issues, devices might be in use by others, or there might simply be a lack of 

expertise to develop on that very device. Often, it is not clear at the beginning of a project what device, which 

configuration, and what infrastructure should be chosen. Since it can be very expensive with regards to both time 

and money to try out several alternative simulations can be very useful. 

                                                           
31 Microsoft Windows Mobile platform; product page: http://www.microsoft.com/windowsmobile/ 
32 Cybelius Maestro development suite; product page: http://www.cybelius.com/products/default.htm 
33 Java Specification Request 118, Mobile Information Device Profile (MIDP); specification page: 

http://jcp.org/aboutJava/communityprocess/final/jsr118/index.html 
34 Apple‟s Quartz Composer software; main documentation: 

http://developer.apple.com/documentation/GraphicsImaging/Conceptual/QuartzComposer/ 

http://www.microsoft.com/windowsmobile
http://www.cybelius.com/products/default.htm
http://jcp.org/aboutJava/communityprocess/final/jsr118/index.html
http://developer.apple.com/documentation/GraphicsImaging/Conceptual/QuartzComposer/qc%20intro/chapter%201%20section%201.html
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UbiWise 

One platform to test several options for pervasive computing applications is described in UbiWise [Barton and 

Vijayraghavan 2002], [7]. A 3D model of the environment is generated and devices can either be distributed or 

carried by people placed in this environment. The Quake III Arena game engine35 is used as modelling and 

graphics engine for which several easy to use editors exist. A 3D first person view of the rooms and buildings of 

the virtual world is available which can show virtual objects such as dynamic picture frames. Another window 

shows the users‟ personal devices carried with them as well as close-ups of all other available devices and allows 

control of these using mouse and keyboard. For simulation purposes, parts of the graphical representation of a 

device can be assigned to act to mouse clicks (just as in [Hudson and Mankoff 2006], [23]) and output regions 

can be defined, e.g. for the use of a web browser. In this way, the interactions possible with a device like a 

camera can easily be simulated. UbiWise focuses, like the EIToolkit, on providing help in debugging 

applications by tracing devices and interactions as well as recording and playback of logged data. The simulation 

framework allows studying aspects like user interfaces, protocols , wireless transmission and location issues, and 

exploring and testing scenarios. Of course, the use of a 3D virtual environment and specific software makes 

using and extending the system more complex than in some other approaches. 

Yamamoto 

Yamamoto is a similar tool to visualise and simulate settings and scenarios for location based services [Stahl and 

Haupert 2006]. It uses a handcrafted modelling and visualisation tool to create maps and plans of buildings as 

well as their environment. It focuses on a simple and easy to use interface. As such, the creation of 3D models is 

for example facilitated by tools to help tracing the outline of objects from imagery such as scanned plans. All 

items are geo-referenced such that, e.g., several fine-grained models can be combined into a common world. 

Activation zones can be defined that trigger specific location based services. Sensors such as RFID and IR 

beacons can be arbitrarily placed and their ranges visualised as circle segments. The world can then be traversed 

in 2D or a 3D rendering. The underlying data model uses an event heap implementation. To that, various types 

of sensors can potentially be connected through a generic HTTP connection. More specifically, virtual displays 

can be added showing real-time content of external displays through a VNC36 connection. Although the 3D 

modelling system of Yamamoto is designed in an extensible way, it currently is specialised on navigation. As 

such, a route finding algorithm is included that can help to design and test applications for pedestrian navigation. 

FUSE Platform 

Two important aspects for pervasive applications built on top of existing frameworks are the opportunity to 

allow users and devices (temporarily) leaving an environment, changing input and output devices, and moving 

between different ways of being connected to the system as well as having people work together (e.g. for 

computer supported collaborative work, CSCW). The FUSE platform achieves these goals by supporting 

roaming of users and their devices and maintaining session management responsible for creating, joining, and 

modifying sessions that keep track of users, services, and data [Izadi et al. 2004], [25]. In contrast to the 

EIToolkit, FUSE directly tackles connectivity issues as well as mobile and asynchronously working participants. 

During disconnections, messages to the client are stored such that appropriate ones can be repeated upon 

reappearance, i.e. the client is informed about important changes during its absence. The notion of „migratable 

objects‟ enables clients to move data towards a session such that it remains accessible to others during phases of 

disconnection. FUSE is implemented using JNI37 and supports standard protocols such as WAP and HTTP to 

include many different platforms and devices. Like the EIToolkit, it supports cooperation with other tools like 

the MASSIVE-3 system, a collaborative virtual 3D environment [Greenhalgh, Purbrick, and Snowdon 2000]. It 

is largely extensible through the use of community facilitators and protocol adaptors, allows a variety of 

platforms, protocols and programming languages, supports information logging, history, and replay, and 

provides different levels of abstractions. Its weaknesses lie in a considerable overhead for deploying the 

framework and lack of support for making errors and low-level events visible and traceable and for simulating 

components. The EIToolkit offers a few additional features such as state-based computing, control of off-the-

shelf applications and specialised protocols for time critical and stream-based projects. 

                                                           
35 Id Software, Quake III Arena; developer page: http://www.idsoftware.com 
36 Virtual Network Connection (VNC), remote display system; project page: http://www.hep.phy.cam.ac.uk/vnc_docs/ 
37 Java Native Interface, JNI; project page: http://java.sun.com/javase/6/docs/technotes/guides/jni/index.html 
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Tabletop interfaces 

DiamondSpin, DiamondTouch 

Another approach to connecting the physical with the virtual world is to use tabletop interfaces. They also 

suggest themselves for collaborative purposes since several people can view content and interact with it at the 

same time. Categorizing tabletop computing into software-focused toolkits does not mean that there is not major 

effort put into the development of the hardware. However, from a third-party point of view, only the 

development of APIs and other functionality makes such technology available for a wider range of applications 

and projects. Currently, Microsoft is trying to bring augmented tables into the public with their Surface project38. 

However, up to now there is no software developer kit (SDK) available to broadly make use of this technology. 

The DiamondSpin project [Shen et al. 2004], on the other hand, provides a full Java toolkit for collaborative 

interfaces on large interactive surfaces, specialized for people sitting around a common table. It features the full 

set of Java Swing‟s graphical user interfaces but makes them arbitrarily rotatable on differently shaped tabletops. 

Document visualization techniques, Fisheye transformations, and menu bars are supported as is the 

differentiation between shared and private areas on one display. Besides general interactional issues like the 

different viewing angle of participants, several problems regarding input arise. Besides technical challenges such 

as reliably detecting multiple fingers on the display – which is being solved – some problems arise because 

multiple people interact at the same time. First, the system should recognize who is currently manipulating an 

object. The DiamondTouch technology has a solution for up to four seated persons using conductive seat pads 

and capacitive sensing [Dietz and Leigh 2001]. Second, it should be possible to employ the other more 

conventional types of input such as mouse and keyboard. 

SDGToolkit 

Tse and Greenberg suggest a toolkit for single display groupware (SDG) that allows several mice and keyboards 

(or input pointing devices in general) to be attached to a display system [Tse and Greenberg 2004]. In order to 

make identification of mouse pointer easier for the users, the pointers and their coordinate space are rotated in 

accordance to the user‟s viewing angle. For developers, inputs generate standard mouse and keyboard events as 

in most interface toolkits but different users are distinguished by an additional identifier in the event parameters. 

Synlab API 

Although such systems are targeted at general collaboration between people, applications building on those 

toolkits are restricted to the tabletop platform. From a research perspective, combinations with other areas like 

ambient devices, intelligent rooms, and tangible interaction is of special interest. An attempt to combine tabletop 

interfaces with additional modalities such as tangible object that potentially have their own input interfaces is the 

Synlab API [Mazalek 2006]. It abstracts from the actual sensing method in use (e.g. computer vision, 

electromagnetic tags, or acoustic measurement) and allows additional events to be generated ranging from RFID 

tagged objects to physical manipulations of displays such as tilting or spinning. An application for such a 

combination (in this case tracking of visual markers on physical objects) can be found in the reacTable 

application [Jordà et al. 2007], a tangible music synthesizer application using a set of quite powerful widgets to 

control sound generation, filters, and modifiers. Many of the toolkits based on such multi-touch solutions base on 

the Open Sound Control (OSC) protocol, see for example the TUIO protocol [Kaltenbrunner and Bencina 2007] 

used by the reacTable, and can thus easily be integrated into the EIToolkit. 

Active Spaces, Intelligent Environments 

Tabletop interfaces are often used in conjunction with other large display technology and input methods like 

multi-touch and gestures. This research area appears with different names such as intelligent environments and 

active or smart spaces. The common idea is to augment one or several rooms, buildings, or even remote locations 

with input and output technology such that interactions can use the whole environment. Different to the idea of 

pervasive computing in general, these applications are still confined to certain areas and often applied in specific 

fields like augmented workplaces or aware homes. Scenarios envision that information such as a calendar stored 

on a person‟s mobile phone follows from the bath mirror to the kitchen wall, editing and combining pictures and 

                                                           
38 Microsoft Surface, tabletop hardware and software; project page: http://www.microsoft.com/surface 
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documents takes place on a central table making use of large displays in the surroundings, simple gestures can be 

used to push images to a picture frame or printer, or simply send and store it somewhere. Sometimes, such 

environments are proactive and context aware such that they can adapt to the user‟s needs and provide 

information (only) when and where it is needed. Underlying principles include the collaboration of several types 

of technology, high affordance of the interaction methods, implicit and explicit input, and the use of various 

modalities for interactions. The EIToolkit supports several of those interaction models, although of course the 

concrete implementation of the devices and coordination modules has to be done on top of it. Besides the iStuff 

(see below) toolkit that exhibits a tight integration of physical and virtual prototyping and is therefore described 

below in the section about combining hardware and software development, three frameworks developed 

specifically for such active spaces shall be highlighted. 

SpeakEasy 

First, the SpeakEasy project [Newman, Izadi, et al. 2002], [43] is a recombinant framework that seeks to enable 

the ad hoc connection of services and targets user interface generation for mobile devices. The underlying 

concept of connecting different applications is based on mobile code, i.e. code that can be downloaded to and 

then executed on a different device. This includes „typehandlers‟ that can convert data between different formats 

and „session objects‟ that are shared between applications in order to initiate and control their connection. This 

renders the system very flexible and extensible even during runtime. The EIToolkit has better support for 

directly controlling existing applications. However, dynamic type conversions and connections are far less 

formalized and less strictly defined. Even though SpeakEasy contributes a lot with respect to user interface 

generation, it does not directly provide visualizations of available services, interfaces, or data flow. 

Obje Perception Framework (OPF) 

The Obje Perception Framework (OPF) builds on Obje, an infrastructure derived from SpeakEasy [Van Kleek et 

al. 2006], [52]. The OPF adds support for context acquisition and processing. In comparison with tools that 

mostly concentrate on context inference such as Exemplar ([Hartmann, Abdulla, et al. 2007]), OPF also 

concentrates on system features such as interoperability, mobility, and distributed applications. Nevertheless, it 

uses concepts from systems such as the Context Toolkit ([Dey, Salber, and Abowd 2001]), e.g. preceptors 

(context widgets) and aggregators (combiners and interpreters). A prominent feature of OPF is that, once a query 

for a specific context (specified using tuples and variables) is available, the system first tries to answer it with 

existing resources using a discovery service and, in case of failure, automatically and dynamically uses a 

pipeline system to instantiate available aggregators. By holding references to objects in use, aggregators can also 

be released when not needed, thus minimising communication. This is targeted at one of the system‟s main 

goals, namely to control and reduce energy consumption. This is further achieved by, e.g., allowing aggregators 

to push code towards the sensing preceptors. The system is implemented in Python and various auxiliary 

libraries and projects are available. An advantage with respect to projects using tuple spaces such as iStuff 

described below, is that no centralised instance is necessary, making it easier to deploy the whole system. 

Gaia 

The last project in this category is called Gaia, [Román et al. 2002], [47]. It has similarities with the OPF system 

but focuses less on energy awareness and the construction of context inferring pipelines. It is set up as an 

operating system and thus provides (abstractions of) several features of common operating systems such as 

program execution facilities, I/O and file operations, and resource allocation. It explicitly allows external sensors 

to gather information about location, temperature, weather and the like through context providers. As in 

InterPlay ([Messer et al. 2006], [39]) described below, tuples with a structure drawn from English language are 

used to store context information. A generalised model-view-controller (MVC) pattern allows, among other 

things, more generic views of input and output devices and one input device to control several applications. As a 

framework, it uses a generic mapping system between the requirements of applications to available services but 

relies heavily on script-based rules and actions. A security model and automatic service discovery are listed as 

future work. In comparison with the EIToolkit, it presents a very much extensible and dynamic structure. It 

lacks, however, integration of graphical, existing prototyping, and design tools, and does not provide direct 

support of control of existing programs, deployment, and different data protocols. It is open in some sense, 

though, as for example [Ranganathan, Al-Muhtadi, and Campbell 2004] describes an approach using the context 

predicate system of Gaia to allow coping with imprecise data using various approaches like fuzzy logics and 
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Bayesian networks. In [Ranganathan, Chetan, et al. 2005], Ranaganathan et al. have further developed the Gaia 

infrastructure to provide a programming model. It provides virtual active spaces with sets of operators (such as 

„in‟ to describe that a person is in a certain location, independent from available locating methods) and uses 

semantic matching on top of ontologies to automatically discover services and execute queries and programs. By 

restricting themselves to a specific ontology, combinations with other active spaces become more difficult for 

developers and integrators and the many automatic decisions reduce the amount of control and understanding 

end-users have of the system. 

End-user Focused 

Lastly, one branch of research should be mentioned that could be applied to most of the projects described 

above. After a system has been developed and deployed, it is rare in pervasive computing scenarios that the 

system performs optimally over time without any changes. Users are mobile and environments and requirements 

can be highly dynamic. Besides the ideas described above to automatically adapt to certain changes (e.g. by 

using the mapping system in Gaia), it is also possible to include the user in the adaptation process. Of course, the 

threshold has to be sufficiently low to avoid long training times and frustration. 

Customizable Pervasive Applications, VisualRDK 

Weis et al. show a tool with which professional developers implement applications for smart homes. Just before 

deploying it, a customisation step is introduced that allows end-users to adapt and combine different components 

with each other, [Weis, Handte, et al. 2006], [53]. By using a graphical programming language, users connect 

events from one component to input commands of another component e.g. to control the volume of a media 

player with a mobile device. The graphical language has been subsequently extended by the same authors and 

now enables further end-user programming capabilities [Weis, Knoll, et al. 2007]. This is similar to the tools we 

describe in Section 5.2, Graphical, State-based Application Development. The composition language uses 

concepts like „component contracts‟ and „signals & slots‟ to achieve compatibility between components. In 

comparison with the EIToolkit, the underlying PCOM system [Becker et al. 2004] also allows quick extensions, 

adaptations, and alterations of developed systems. It has, though, little support for debugging and data processing 

techniques. The plug-in mechanism allows the control of existing applications but still provides a rather closed 

setup which does not integrate too easily into the development cycle of pervasive applications. 

Interplay 

While VisualRDK is not targeted at the average end-user but at a person with basic knowledge of programming 

who is very much interested in technology and in configuring applications, Interplay builds on an interface for 

users who think task-based and not technology-based [Messer et al. 2006], [39]. Their approach is to let users 

compose pseudo-English sentences to express their desires. The components of these sentences specify what 

should be done („verb‟) with which object („subject‟) at what location („target device‟). When a user specifies to 

play (verb) a certain movie (subject) on a specific TV set (target device), a „Task Orchestration Layer‟ collects, 

prioritises, and converts this sentence according to existing rules, device capabilities, and location information. 

The „Seamless Device Integration‟ layer is then responsible to, among other things, support a single directory 

where information about devices, content, and users is stored and maintains sessions (elsewhere also called 

environments). This layer relies on external middleware solutions such as Universal Plug and Play (UPnP39) that 

can discover and connect different components. The prototypical implementation is based on Java and uses the 

Web Ontology Language (OWL40) and the Resource Description Framework (RDF41) to describe and serialize 

device and task descriptions. Rules are processed using the Java Expert System Shell (JESS42) rule engine. The 

(not optimized) prototype has considerable feedback times in the range of seconds which is slow for an 

interactive system. Its formal basis and layered architecture leaves much room for extensions and potential for 

dynamic changes of the system. However, from a toolkit point of view, it is still a closed infrastructure and does 

not support debugging, simulation, error recovery, or combination with other higher-level frameworks. 

                                                           
39 Universal Plug and Play, UPnP; UPnP Forum: http://www.upnp.org 
40 Web Ontology Language, OWL; project page: http://www.w3.org/TR/owl-features 
41 Resource Description Framework, RDF; project page: http://www.w3.org/RDF 
42 Java Expert System Shell, JESS; project page: http://herzberg.ca.sandia.gov/jess 

http://www.upnp.org/
http://www.w3.org/TR/owl-features
http://www.w3.org/RDF
http://herzberg.ca.sandia.gov/jess
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Jigsaw 

Another approach to give end-users the power of combining sensors, events, and services is presented as Jigsaw 

in [24] and a subsequent publication that focuses less on the underlying system but more on scenarios and user 

views [Rodden, Crabtree, et al. 2004]. A jigsaw metaphor is introduced to have end-users connect inputs 

(physical to digital transformers), processing (digital transformers), and outputs (digital to physical transformers) 

in the shape of puzzle pieces. The metaphor helps to choose the correct pieces for each function and to find 

matching parts. However, only simple, linear control flow can be created and the usability depends much on the 

graphics of the icons on the puzzle pieces. An interesting add-on is the manifestation of the digital jigsaw pieces 

with paper pieces that can tangibly be connected. 

SiteView 

The idea of using tangible objects to control an active space has also been adopted in the SiteView prototype 

[Beckmann and Dey 2003]. However, the link between the physical world and digital manipulators is much 

more eminent. The main interaction space is a floor plan of the surroundings where the user can place physical 

objects (detected using integrated RFID tags) to express rules and actions. Each of those objects, called 

„interactors‟, either specify conditions using time or weather information, or actions such as light or temperature 

control. The described prototype suffers from a very small space of possible rules but shows potential in 

extending the system. The authors conclude that the system is easily usable to create simple rules but that there 

might be space to customise the tools for different user groups such that more expert users could override 

physical constraints in combining constraints (deliberately introduced to keep the complexity down). 

4.1.3 Toolkits Tightly Combining Hardware and Software 

BOXES 

A way of tackling the difficulties in building custom hardware different to those described above has been 

pursued by the creators of the BOXES system [Hudson and Mankoff 2006], [23]. They use existing, tangible 

objects, possibly ones that have been created by using specific formable shapes or foam (often used by designers 

to create rough shape models) and attach electrodes to it to simulate physical objects with input components. The 

electrodes are connected to a small sensor board that uses a touch sensing circuit to detect when a finger gets in 

contact with the electrode. The board generates events and sends them to the PC using a USB connection (that 

could potentially be replaced by a small wireless Bluetooth sender). The combination with software is realised 

by a tool that further supports the rapid prototyping of applications often without requiring explicit knowledge in 

programming at all. The tool is capable of simulating key presses and mouse clicks at arbitrary locations. 

Developers map the touch of an electrode to a series of mouse and keyboard events and can thus use the features 

of available programs for their designs. This system is similar to the approach of the EIToolkit and allows a large 

diversity of actions. Still, for applications that depend on previous states (such as a simple toggle button) or more 

complex actions, custom programs need to be written. Compared to the EIToolkit, the system integrates very 

well into the way designers prototype but does not include further external sensors (a potential connection to the 

Calder Toolkit is only mentioned), does not support actuators, has rather closed protocols, and a strict focus on 

local, PC-based application development. 

Real World Interfaces 

While the X10 protocol (see page 57) and devices (wired and also wireless options are available43) are very 

much hardware related, the Real World Interfaces project attempts to leverage it from a purely device-centric 

view to a toolkit to create real world interfaces [McCrickard, Bussert, and Wrighton 2003], [38]. Several layers 

and abstractions have been developed to remove some limits of the protocol such as blocking of the 

communication bus until an addressed component replies. The combination with a variety of interfaces to 

languages such as C and C++ and especially interface toolkits like Amulet and Tcl/Tk render the system much 

easier to use for simple and complex applications. Still, very limited support for different hardware and software, 

for discovery, higher data rates, debugging and error control as well as integration into other toolkits or 

development processes make it less suitable for general use. 

                                                           
43 X10 home automation, wireless components; product page: http://www.x10wirelesshome.com/ 

http://www.x10wirelesshome.com/
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iStuff 

A more generic approach, although also with a slight emphasis on augmented environments, is pursued by the 

iStuff system [Ballagas, Ringel, et al. 2003], [4]. It tends to concentrate on the software side but also provides 

several hardware components. Besides supporting X10 devices mentioned before, provided input devices are 

buttons, sliders, and other augmented physical objects like a mouse, a pen (for handwriting recognition), and a 

microphone (for speech recognition). On the output side, simple buzzers, speakers, and light controls are offered. 

On the software side, there are many similarities with the EIToolkit system. iStuff builds on the iROS 

application model which in turn uses an event heap data structure that passes, stores, and provides information as 

tuples. This decouples applications from underlying services and from each other in time as well as in space 

allowing for observation, change, and on-the-fly remapping of data flow. The latter can be done by using the 

PatchPanel software [Ballagas, Szybalski, and Fox 2004] which allows mapping tuples from input to output. It 

also makes data accessible in a whole subnet and thus enables distributed applications. The iStuff infrastructure 

has permeated to different application and research areas and by now also includes iCrafter, a framework for 

describing, discovering, combining, and automatically generating graphical user interfaces tailored for the use on 

several devices with different requirements and capabilities. From a hardware point of view, in comparison with 

devices that are provided by, e.g., [Lee et al. 2004], [31] or [Hudson and Mankoff 2006], [23], iStuff hardware is 

mostly too large to be used in integrated devices for information embedding. However, the toolkit system is 

largely extensible, is compatible with several platforms and programming languages, and the type of applications 

that can be created is nearly unrestricted. One of the most prominent strengths of the system is the inherent 

support for dynamically adapting and changing a running system. Nevertheless, even though this leverages rapid 

prototyping, there is hardly any integration or combination with other prototyping or designer‟s tools. In contrast 

to the EIToolkit, support for understanding, debugging, and simulating parts of the system is missing. 

d.tools, Exemplar 

iStuff does not provide any means to directly see the relationship between physical artefacts and their virtual 

counterparts. In contrast, d.tools features a direct connection between hardware and software components 

[Hartmann, Klemmer, et al. 2006], [22]. The appearance and disappearance of a component is visually apparent 

and changes in the hardware are immediately shown in the virtual representation. Vice versa, Wizard of Oz style 

development is possible. The d.tools system has been designed to integrate the whole cycle of iteratively 

designing, testing, and analysing applications. The hardware parts consist of a microcontroller board connected 

to a PC using USB. Sensors compatible with the standard I²C protocol44 can be attached to such interface boards 

which also support the direct connection of simple buttons and sensors that output data by adjusting their 

resistance or voltage. Since information passing is done in the open OSC protocol, other devices and applications 

that use OSC can be incorporated as well. In contrast to other toolkits like the EIToolkit or Calder [Lee et al. 

2004], [31], only wired components are currently provided. d.tools lets users build applications in a simple way. 

First, a 2D graphical representation of the envisioned product is drawn and icons for sensors and actuators 

present in the hardware prototype are placed into the representation. Next, the planned semantics of the device is 

described by creating a graph of the different states of the device and specifying the actions between such states. 

Issues with such graphical, state-based approaches include the large number of states necessary to describe even 

small systems, that all actions are sequential, and that the possible complexity of applications is limited. 

Therefore, several methods are applied in order to allow more complex applications. Parallelism can be achieved 

by allowing several states to be active at the same time. Java code can be attached to states to generate behaviour 

otherwise difficult or impossible. Finally, testing prototypes is supported by recording video data of the 

interaction with a device, correlating video scenes with events (i.e. actions). An add-on called Exemplar helps in 

processing available sensor data [Hartmann, Abdulla, et al. 2007], [21]. It allows for demonstrating actions using 

hardware sensors and provides a software visualisation for selecting, filtering, pattern matching, and generalising 

such input to create events based on future, similar input. Shortcomings of d.tools are the need for a central 

device such as a PC (this is shared with the EIToolkit), the inability to control existing, off-the-shelf 

components, and the lack of exploitation of the state-based approach. In contrast to the EIToolkit, the framework 

incorporates iterative design and directly supports analysing and testing applications. However, the dependence 

on its implementation in Java, the integration into the Eclipse IDE, and the restriction to use the graphical 

environment with code attachments limits its practical use. 

                                                           
44 I²C protocol, Philips Semiconductors, now developed by NXP; project page: http://www.semiconductors.philips.com/i2c 

http://www.semiconductors.philips.com/i2c
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4.2 Toolkit Requirements for Pervasive Applications 
In this subsection, we present important requirements that a system used for prototyping and developing 

pervasive applications should support. Although we cannot claim that it is exhaustive (especially since a specific 

project might have some very specific requirements in addition to the ones mentioned below), it surely 

represents a large quantity of the issues concerned with such approaches. The list results from experiences in our 

own research group and the discussion and collaboration with colleagues and researchers of other institutions. 

Several meetings like the EIToolkit workshop45 or DIPSO‟07 [Kawsar et al. 2007] workshops, and more domain 

specific ones like Classroom of the Future workshop [Mäkitalo-Siegl et al. 2007] also contributed to this 

compilation. Most importantly, requirements were derived from a detailed literature study and the review of the 

toolkits presented in the last section.  

Again, whenever we cite a publication that was used as a source for this list or was evaluated against this list, we 

also cite its Arabic number as listed in Table 11 on page 82. This provides a more concise way to write and a 

quicker way to access the publication. 

There are several more aspects that are listed in, e.g. [Banavar et al. 2000] that can be important to develop 

pervasive applications. Some of them are specifically concerned with specialised application domains like 

augmented environments [Román et al. 2002], [47]. We also examined these projects but focused on those 

requirements we found of particular, general importance and those that have been directly mentioned as 

requirements by at least three independent sources. Thus, for each of the requirements, a list of references is 

given that explicitly argue for the importance of that requirement. Note that this does not necessarily mean that 

the respective project is successfully implementing it. Reversely, projects that implement a particular 

requirement but do not explicitly specify and rectify it are not listed. For example, several toolkits support 

creating on-screen PC programs but not all argue that this is important for people to create and debug distributed, 

mobile applications. Thus, we tried to distinguish between the requirements of those systems and the features 

that a particular system actually offers (the latter is afterwards presented in Table 10 for a selection of projects). 

Several papers talk about evaluating pervasive systems, e.g. [Neely et al. 2008] where the authors report about 

the discussions in several workshops on the topic of evaluation methods, or address general requirements, e.g. 

[Want and Pering 2005], which lists power management, discovery, user interface adaptation, and location-

aware computing. Another recent publication, [da Costa, Yamin, and Geyer 2008], elaborates on challenges for 

pervasive applications derived from previous publications and own experiences of the authors. They bring 

forward ten abstract categories and provide very generic approaches and types of technology that can help to 

tackle these (e.g. use virtual machines and interoperable protocols to achieve heterogeneity). Most of them 

directly map to requirements listed on the following pages such as context awareness and management, mobility, 

dependability, heterogeneity, and spontaneous interoperation. Others such as invisibility or transparent user 

interaction are more abstract and difficult to be considered in underlying development tools. However, these 

challenges are not directly targeted at the systems with which pervasive applications are built, but rather to the 

systems themselves. Still, this should of course have an impact on development environments. Therefore, we try 

to incorporate those at least indirectly. Intelligent power management, for example, can be supported by being 

able to shift computation in a system. We directly include discovery and see that location- or more general 

context aware computing is one implication of the ability to use several external sensor systems. 

Edwards and Grinter provide seven challenges for ubiquitous computing applications in the home, [Edwards and 

Grinter 2001]. Besides problems of heterogeneity of devices, extensibility over time, reliability, and potential 

mismatches between the mental models of its users and the actual behaviour and implementation of the system, 

most identified issues touch social, historical, maintenance, and design issues as well as missing domain 

knowledge. These aspects require much further work in order to see how these can be supported by design 

processes and development tools. A very similar reasoning can be applied to the 14 challenges of [Henricksen, 

Indulska, and Rakotonirainy 2001]. They distinguish four groups, namely support for devices, for software 

components, for users, and for user interfaces. They state that pervasive computing development tools mostly 

support the second and third group of challenges. 

                                                           
45 EIToolkit Workshop. December 07-09, 2005; web page: https://wiki.medien.ifi.lmu.de/view/HCILab/EIToolkitWorkshop 

https://wiki.medien.ifi.lmu.de/view/HCILab/EIToolkitWorkshop
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We categorise our list of gathered requirements into four areas. 

a) Support hardware, software and development paradigms: different properties such a system needs 

to support an appropriate variety of hardware, software and development paradigms. This includes 

devices, protocols as well as different ways of development. 

b) Creating applications: the developer should be aided in creating simple as well as complex programs 

quickly and easily. The system should give support for several different approaches. 

c) Debugging and changing applications: during and after the process of creating applications, a 

paramount property of development support tools is to provide help and guidance in debugging and 

exchanging parts of an application. 

d) Integrating (into) the development process: the set of provided tools should fit into the development 

process currently applied. This can be realised in two ways. Either existing programs should be able to 

integrate the new tools or the new tool chain incorporates the current development process. 

For all of the requirements in the following list, we mention whether and how our EIToolkit fulfils each of those. 

a) Support Hardware, Software, and Paradigms 

A development toolkit needs to provide support for various devices, protocols and programs. It should abstract 

from their respective capabilities and encapsulate them into an interface that is as simple and general as possible 

but provides access to functionality as detailed as necessary. In addition to such components, certain types of 

development processes, paradigms and programming languages should be acknowledged. A third item in this 

sense includes infrastructural issues such as portability and other more general properties of a system like 

security aspects. 

Supported components 

- Control off-the-shelf and proprietary programs: [3, 11, 16, 21, 22, 25, 26, 27, 29, 53] 

Commercial off the shelf (COTS) devices and programs that are not open-source rarely offer a well defined, 

open API to control them. Some motivations for using such devices can be found in descriptions of a project 

done in our group to connect a standard Nokia 770 internet tablet to Particle sensor nodes. Such 

modifications lie outside the capabilities of a software toolkit. However, software programs that do not 

provide an accessible interface can often be controlled at least in some aspects. 

The EIToolkit supplies, e.g., a component to emulate keystrokes and send them to an arbitrary application. 

- Allow external hardware sensors / actuators / devices: [3, 4, 20, 22, 28, 29, 31, 32, 40, 41, 42] 

One of the most important features for pervasive applications is support for a variety of sensors such as 

cameras, movement sensors, light sensors as well as actuators like displays, motors, and lights. 

The EIToolkit uses several protocols and communication methods to reach as many external components as 

possible. A mechanism to easily exchange and expand the mode of communication assures that it is open for 

future innovations. 

- Support different protocols and devices in general: [7, 8, 11, 20, 25, 28, 37, 45] 

Besides lower-level communication protocols (UDP, TCP, Bluetooth, ...), a toolkit should enable 

applications using higher-level protocols. If not natively supported, it should be comparatively easy to 

connect a novel device. 

The EIToolkit supports protocols like OSC and RTP that build on other lower-level protocols like UDP and 

TCP, respectively. This broadens the available base of components that are directly supported. The stub 

concept helps in keeping the necessary additional layer between the toolkit and any new devices / protocols 

as minimal as possible. 
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- Support the communication between devices, applications and people: [4, 7, 18, 20, 25, 34, 35, 40, 42] 

Passing data is central in many applications, especially if sensors and actuators are used. The exchange of 

information should be made simple, visible, and controllable. This includes devices, applications as well as 

users, and other people involved in the system. 

The EIToolkit offers a central communication area through which most messages are passed. Components 

interested in all or specific messages can register themselves and are notified appropriately. The messages 

can be visualised, logged and replayed. It does not directly support more high-level and abstract ways of 

enhancing person to person communication as, e.g., in [Hilliges, Terrenghi, et al. 2007] in which the authors 

describe a system for enhancing communication between people taking part in a collaborative setting focused 

on creativity and brainstorming. 

- Support wired as well as wireless components: [4, 31] 

The way to communicate with external components should not depend on a specific mode. For some 

projects, it is more important to have a reliable power source while for some others unrestricted movement is 

more critical. 

The EIToolkit supports several protocols, e.g., serial line (wired) and Bluetooth (wireless). 

Infrastructural aspects and general properties 

- Support for deploying the system: [1, 12, 15, 53] 

Developed systems often run on simulated devices and / or on one machine instead of on distributed nodes. 

Deployment generates several new issues that need to be tackled, see, e.g. [Davies and Gellersen 2002] or the 

special issue of IEEE Pervasive Computing on Real-World Deployments [Fox et al. 2006]. 

A possible approach is described in [Andersson 2000]. 

The EIToolkit does not offer help in this respect other than the separation of components by design. 

- Reusable components: [4, 10, 13, 16, 18, 27, 31, 42, 52] 

To be able to support the rapid construction of applications, parts of a toolkit that can be used in different 

situations should be encapsulated into reusable components. These components should also remain 

exchangeable throughout the development process. This includes sensors, actuators as well as whole devices 

and possibly applications. 

The EIToolkit is mainly based on message passing. The sender of particular messages can be exchanged as 

long as the messages remain the same. With regard to such events, the toolkit enables components to define 

and describe their interfaces. As we describe, e.g., in [Holleis and Schmidt 2005], components can then easily 

be exchanged according to their interface and interface inheritance. 

- Portability across multiple platforms: [4, 22, 23, 27, 28, 42, 45] 

This relates to several previous items. Applications should be able to run – with appropriate efforts – on 

different platforms. Designers often use the Mac environment while more technology-oriented groups may 

prefer Linux variants. A toolkit should be available on several of those and the toolkit should enable 

communication across all of those, especially in sight of a cooperation of different roles. 

The EIToolkit does not depend on a specific platform and supports message passing over protocols that are 

platform and programming environment independent. It encapsulates the communication facilities so that 

these can be exchanged or augmented with specific platform dependent ones. Components can be written and 

adapted to run on arbitrary platforms that support some form of external communication. 

- Build ‘local’ as well as distributed applications: [8, 28, 41, 53] 

Applications that run locally should also be able to run in a distributed manner, i.e. the single components 

can be separated. This implies some sort of treatment of time synchronisation issues. 

Since the EIToolkit is based on passing messages between components over UDP or similar protocols, 

applications are not limited to run on a single machine. For time critical applications, it relies on time-stamps 

and the capabilities of OSC, see the next item. 
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- Allow high data rates and time critical applications: [21, 35, 45, 47, 52]  

First, this aspect addresses the issue of applications requiring that events are generated and data is passed 

within certain time bounds. This strongly depends on the devices, load of the network, amount of data sent, 

as well as other infrastructural limitations. Second, it refers to applications that need to generate or react on 

events in a specific timely order or at specific absolute or relative points in time, e.g. those generating music. 

Packets sent through the EIToolkit include timestamps. In addition, as described in more detail on page 84, 

the OSC protocol provides some mechanisms to time messages. There is no dedicated control about 

particular delivery times. For high data rates, the EIToolkit supports different protocols, e.g. for streaming. 

- Operate packet-based as well as stream-based: [21, 35, 41, 52] 

Although packet-based messages sent through, e.g., UDP or TCP are appropriate for events, several types of 

applications (using cameras, music, etc.) require stream-based data exchange. 

The EIToolkit supports both, packet-based and stream-based communication. 

- Use standardised but flexible protocols: [4, 8, 18, 29] 

There must either be a compromise between a fixed standard protocol and an open format, or it must be 

possible to switch between several formats. There are obvious advantages of using standard protocols 

followed by most of the toolkits referenced in this section. However, projects like [Greenhalgh et al. 2004], 

[18] that use powerful systems (CORBA, in this case) suffer from problems such as complex structures and 

difficulties in observing and simulating messages. Others such as [Johanson and Fox 2002] that use a custom 

format harden the combination with other components. 

The EIToolkit suggests and implements a simple, general packet format but leaves the formatting of the 

specific contents to the data provider and custom PacketFormatters can always be added for specific needs. 

- Inform about appearance and disappearance: [6, 8, 13, 22, 25, 27, 29, 41, 42, 45, 52] 

Discovery of components can be an important factor for an application. It should also be made known when a 

component is no longer available. 

Developers of components for the EIToolkit should make their components known when they appear. They 

should provide information on request from a central component. The information can then be used to check 

whether a component is „still alive‟. The developer is supported but not forced to adhere to this guideline. 

- Ability to shift or distribute computation load in the system: [10, 37, 41] 

In a heterogeneous system, some devices are more powerful than others. It should be possible to move 

critical or heavy processing to those machines. 

The EIToolkit does not provide automatic dynamic scheduling or load shift algorithms in its basic version. 

However, the developer can decide which stubs to run where and have them carry out the main calculations 

while others merely relay data. 

There are several classical technical criteria such as performance or scalability that are doubtlessly important for 

any infrastructure. However, as described in [Edwards, Bellotti, et al. 2003], we focus more on the “value for 

end-users” than on core “technical workability”. In [Bass and Kates 2001], the authors also elaborate on several 

dozens of connections between software architecture and usability. Still, two aspects that are mentioned as 

requirements for such infrastructures in the literature reviewed shall be explicitly mentioned: first, security and 

privacy [29, 34, 37, 40]. This aspect covers many topics including access control and authentication. Most 

security related issues relate to the stability of the system and to guard private information from external 

observers. In general, several applications using common data should be separated such that one cannot know 

about the other if this is not desired. The EIToolkit is designed as an open system and does not directly employ 

security related tools or standards. Of course, the communication system can easily be enhanced with 

cryptographic methods to shield delicate information. Second, robustness [11, 28, 29, 34] incorporates other 

issues like single point of failure, network disruptions, and dependency between components but is closely 

linked to the criterion to be stable with respect to changes and errors, stated in c) below. 
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b) Creating Applications 

The main task of a development toolkit is to assist its users in creating applications with all the subsystems and 

components it supports. Developers should be made aware of components that are not directly supported and 

guide them to a possible solution, i.e. help to connect those to the toolkit. 

Low threshold 

- Ease of use: [31] and almost all others 

Writing applications should be easy and quick to learn; existing programs should be easy to read for others 

and comprehensible to novice users. A main aspect is that it should be simple to express certain algorithms. 

However, some toolkits may target a specific group or experts in some area; e.g. the authors of [Weis, 

Handte, et al. 2006], [53] state that they try to make it possible that “technically interested persons can 

develop customizations that can be used by others as well”. 

For the EIToolkit, the message passing system is easy enough to understand for developers. People without 

much background in technology or programming can rely on add-on tools such as those described in 

Section 5.2, Graphical, State-based Application Development. 

- Simple things must be simple: [4, 14, 17, 22, 32, 35, 40] 

The system should allow simple applications to be developed quickly, simply and with as little programming 

knowledge as possible. 

In the EIToolkit, connecting components with each other is just a matter of converting messages. 

- Hide implementation details: [20, 22, 35, 43, 52] 

A main function of a toolkit is to hide often difficult implementation details, while exposing functionality 

through a well-defined interface. 

The EIToolkit hides details like discovery and communication protocols in components that communicate 

through a standard channel. The details of the messages, though, are left to the developer of the component. 

- Abstract and package: [6, 8, 20, 28, 48, 52] 

Express standard and non-standard input and output controls through well designed interfaces and packages 

and combine those with the same or similar user interface. 

The EIToolkit allows but does not enforce the combination of similar components. 

- Separate services from applications: [25, 29, 35, 39, 40] 

Application development should be separated from those parts that offer access to sensors, actuators, and 

other internal or external components. 

The EIToolkit deliberately separates a hierarchy of stubs from the one of applications. 

- Support or integrate visualisations: [3, 16, 22, 28, 42, 52, 53] 

A not too complex visualisation of components and their relationships can provide a quick entry point for 

beginners and an overview of the whole and parts of the system. 

Note that this does not necessarily mean support for a visual programming language although this is a 

possibility, e.g. statechart-based systems like presented in Chapter 7. 

The component and message-based architecture of the EIToolkit is particularly suitable for graphical 

visualisations. This can also imply supporting the movement of user interfaces to devices with specific 

requirements or visualising data flow. 

- Allow additional tools on top: [3, 6, 8, 17, 28, 51] 

A toolkit should offer means to extend its way of development. For example, it should enable tools on top 

that lower the required amount of programming hence enabling a different view on developing applications. 

The EIToolkit allows this, see for example Section 5.2, Graphical, State-based Application Development. 
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- Scheme to link physical and virtual components: [22, 35, 44, 52] 

To render the control and programming of external components easier, it helps to have some identification 

scheme to link external parts with software components, i.e. to simplify identification and use if, for example, 

some sensor is attached. 

The EIToolkit supports the specification of unique IDs for components but has no way of checking their 

validity or uniqueness. 

- Don’t impose a specific architecture / paradigm: [35] 

Let developers the freedom to choose an architecture / paradigm of their choice. 

The EIToolkit has a focus on event-based processing but is free in the development of components and 

applications, including programming paradigms and languages. 

High ceiling 

- Allow complex applications to be built: [4, 22, 35, 42] and almost all others  

Although there is often no need to have a Turing-complete language, a nearly arbitrary set of applications and 

algorithms should be possible to build. 

The EIToolkit allows the full power of most available programming languages to be used. 

- Support data processing: [20, 21, 28, 37] 

An integral part in many applications in pervasive computing is the access and processing of sensor data. 

Transformations such as filtering, smoothing and aggregating data should be made available. 

The EIToolkit does not contain an extensive library of such transformations. However, it is easy to connect 

external libraries to the system and it supports the hierarchical application of such filters. 

- Provide solutions to common tasks: [2, 21, 35, 52] 

In systems using heterogeneous, distributed components, several identical or at least similar tasks have to be 

solved in many projects. Common examples are creating and parsing messages, combining them, processing 

sensor data, and accessing external libraries. Wizards, samples, pre-packaged processing libraries and access 

to a variety of systems and protocols are possible ways to support this. 

The EIToolkit provides a set of components for many standard problems as described in the next chapter. 

- Support the re-use of fragments: [20, 28, 40, 41] 

Often, software parts can be written that are applicable in a more general way than for one specific purpose. 

It should be possible to write and re-use such components or patterns for similar problems. 

The EIToolkit is based on independent components and as such well-suited for this approach. 

Ways of development 

- Support hierarchical data processing: [11, 13, 20, 43, 54] 

As has been stated before, data exchange and processing is often a critical part of an application. Raw sensor 

data, e.g., almost always needs special treatment before it can be used sensibly in applications. Most 

developers use a model as suggested in [Gellersen and Beigl 2002] to generate more high-level events from 

low-level data. In a hierarchical process, data is processed generating higher-level „cues‟ that abstract from 

raw data. A pressure sensor mounted on a chair, e.g., can provide continuous pressure data. A next level 

generates „occupied‟ / „not occupied‟ events using a threshold algorithm. Another, possibly application 

dependent, level on top of that can, for instance, combine that information with a building entry identification 

component and subsequently supply information about „person A is sitting at a desk‟. iCrafter [Ponnekanti et 

al. 2001] built on top of [Ballagas, Ringel, et al. 2003], [4] is another example that uses such higher-level 

components. 

The EIToolkit offers support for such kind of hierarchical data processing and at the same time gives access 

to all layers. This is especially useful for generating a sense of the current context of an activity. 
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-  Allow different programming environments and languages: [18, 26, 27, 28, 47] 

It is important to support a multitude of different development environments, platforms and languages to 

ensure that a broad enough user base can potentially use the system. Such widespread support does not need 

to be natively built into a system. However, the system must be open in that sense. 

The EIToolkit provides direct implementations in C++, Java, and C#. Since the central design is based on 

decoupled components communicating through a common communication area accessible through standard 

connections and protocols, it is possible to connect almost any device or application that has a method of 

communication. For example, all programs and languages that allow browsing to a web page are supported. 

- Support event-based development: [3, 13, 28, 29, 41, 42, 51, 52] 

Many applications follow an event-driven model, reacting on pushed information. Input components generate 

an event in a specific interval or whenever a change occurs. This in general keeps the used data rate low 

enough and generating applications simple and understandable. 

The EIToolkit is based on a publish-subscribe or observer model. This means that the standard way of 

interacting with components is to generate and listen to events. 

- Support pulling for data (as opposed to, potentially event-driven, pushing): [13, 25, 41, 43, 54] 

For some reasons such as the use of devices that need to keep their power consumption very low or if 

continuous sending of data would be excessive, a pull model that allows applications to query for information 

exactly in the moment they need it can be more appropriate. A toolkit should support both pull and push 

models to cater for all specific application needs. 

Even though the EIToolkit uses an observer model, each component stub can decide to adjust its behaviour 

by listening to control or request messages from other applications. This means that it is possible that a stub‟s 

output is controlled by others. Problems arising by conflicting requests (e.g., „send every second‟ versus 

„send every minute‟) have to be handled by each component themselves. It is conceivable, though, to write a 

component that receives such control messages and finds solutions for such problems and forwards adjusted 

messages. There is a stub that provides data when requested by HTTP requests and one that writes messages 

into a database for asynchronous querying. 

- Support state-based development: [22, 27, 32, 33] 

Often, specifications of applications concentrate on the result of some event. To a lesser extent it is important 

how this is achieved. The more detailed knowledge is necessary to understand a process, the more details 

should be left to the back-end. One way of interpreting this is to think of a state-based approach. If the 

desired result is known, the component only needs to be brought into that specific state. 

The EIToolkit directly supports a state-based approach. It models the visible, interface related and potentially 

internal state of components. As described in Section 5.2.1, the system can be used to bring a component into 

a required state without needing to know the necessary sequence of events beforehand. Tools such as the 

mobile device development IDE described in Chapter 7 use a state-based approach to allow for simple 

programming by demonstration. 

- Create on-screen PC programs: [28, 32] 

Although many applications in the domain of pervasive computing focus on distributed systems that depart 

from the known desktop computer setting, it is important to be able to create programs that run on a standard 

PC. This assists in keeping the focus on the involved components, helps in developing and debugging, and it 

simplifies communication, demonstration, collaboration, and distribution of software. This should be 

complemented with support for deploying the final system on the target hardware and software platforms. 

The EIToolkit focuses on developing applications using a variety of distributed components. At the same 

time, applications running on a single PC are of course possible and encouraged. 
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c) Debugging and Changing Applications 

During and after the development phase, it is desirable – and often necessary – that programs can easily be fixed 

and changed. One part in this process is concerned with debugging and correcting bugs. This means that the 

logics of the program as well as the data and communication flow should be well observable. Another part 

includes all those cases where programs have to be adapted to fit a different set of controls, operating system, or 

even change to fit different requirements. 

Observing and debugging 

- Storage [13, 25, 26, 28, 42], history [13, 25], logging [22, 26], and replay [32, 35]: 

Data produced and required by each component can be distributed or shared, permanent or volatile, etc. To 

take advantage of tests, logging of messages and data is extremely important. This is especially true for long-

term tests or those with deployed, possibly external setups. To understand situations that led to a certain state 

or to use a realistic emulation of external components, it should be possible to replay created logs. For several 

types of application, e.g. those based on learning, accessing data from the past can essential. 

The EIToolkit does not impose any restrictions with regard to storage. Any component can use resources 

within its capabilities and provide data, for example as an RTP stream, to other components. There are 

generic components that can persistently store and replay messages. The EIToolkit offers components that 

can log and later resend all or a specific subset of messages. Another component can be used to write (a 

selection of) messages into a separate database that can be used as an alternative data source. 

- Allow remote control and observation: [4, 13, 16, 22, 26, 29, 52] 

Maintaining a running system is much easier if it can be done remotely. Debugging code, e.g. by setting 

breakpoints, stepping through the execution, inspecting the current value of variables, etc., helps to find and 

fix bugs. An important aspect is to be able to observe all messages passed in the system. 

The EIToolkit relies on the extensive set of debugging tools included in IDEs such as Visual Studio or 

Eclipse. In addition, it can visualise all communicated data and allows remote observation and influence. 

- Simulate components: [7, 22, 32, 51, 52] 

Simulating components is often necessary, e.g. if the actual components are not available or do not run in 

some environment. Sometimes, a specific output needs to be generated, potentially the same output several 

times. Many components like sensors hardly ever produce the same data twice during a certain time span. 

The EIToolkit is optimised in a way that actual components like input and output devices can be replaced 

with software components without changing the rest of the system. 

- Find errors and issues in the idea, design and architecture of an application: [22] 

The development steps executed before any implementation is started could be part of a toolkit. 

The EIToolkit has only very little support for such high-level decisions apart from offering the opportunity of 

trying out several ideas or device variants with often very little effort. 

- Make errors and exceptions accessible and potentially offer solutions: [47] 

Predictable errors (such as a non-existent device) as well as unexpected ones can occur during development 

and runtime. If possible, these should be made obvious and help in treating those should be suggested. 

The EIToolkit mostly relies on the exception handling of the programming languages. For inter-component 

communication, the standard messaging mechanism with messages of special types can be used. 

- Provide feedback about what is happening behind the scenes: [13] 

The power of abstracting functionality is that users do not need to know details. But nevertheless, it can 

sometimes be necessary to know about implementation details, e.g. for timing issues. It should be possible to 

get as much information about abstractions in use as possible. 

The EIToolkit is based on independent components. Currently, only guidelines exist specifying that they 

should be descriptive with respect to their internals. We are in the process of developing further ways for 

stubs to provide information about their capabilities, interface, and physical structure. 
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Changing and updating 

- Allow incrementally extending the system: [2] and almost all others 

Applications should be able to adapt and change according to needs of their users and the environment. The 

authors of [Rodden and Benford 2003], [46], for example, argue that the dynamics of buildings should 

influence the development of domestic applications. In the same sense, it should be possible to extend 

development tools with technology, techniques, and other novel achievements. 

The component-based architecture of the EIToolkit fits perfectly to this requirement. 

- Support quick alterations: [22, 31, 34, 42, 51, 52] 

Trying out different designs or implementations should be quick and easy. 

Since the EIToolkit is based on independent components, these can be replaced with ease. 

- Allow easily and quickly exchanging input, output and application logic: [4, 6, 11, 13, 22, 28, 36, 40, 42, 52] 

It should be possible to treat input, output, and application logic differently. 

Each component of the EIToolkit should be designed in order to fulfil exactly one of these three tasks. This 

makes input, output, and processing parts independent. 

- Be stable with respect to changes and errors: [6, 10, 25, 26, 27, 29, 36, 42, 43, 47] 

Applications should need only minor changes if parts are exchanged or show faulty behaviour. 

The component concept of the EIToolkit ensures that parts offering the same interface can be exchanged 

without interruption. Only little configuration, e.g. reformatting messages is necessary in most other cases. 

d) Integrating (into) the Development Process 

The usability of a set of tools or development environments is sometimes reduced because it does not fit into the 

development process of the users. There are two ways of how to combine a new tool to an existing development 

approach. Either the tools allow integrating the process into their own system or the tools can be integrated into 

that process improving parts of it. The d.tools project [Hartmann, Klemmer, et al. 2006], [22] is an example of 

the first approach. It uses a design-test-analysis cycle model and users can use their own methods to execute the 

three parts. However, it also prescribes a lot of the process which reduces the freedom of development. 

The EIToolkit is guided by the second approach and provides assistance in several steps in the development 

process, most notably the generation of low and high-fidelity prototypes. Through the connection to existing 

tools like Adobe Flash and functions like logging and replay, it also supports the analysis and study of existing 

or created applications. 

- Support the different phases of the application design: [22, 31, 32, 35] 

The process of developing an application should all be supported by a toolkit. Each accomplishment should 

be transferred and reusable in the following phase. This includes phases like drafting the concept, 

implementing prototypes, testing a design, iterating over it and deploying the application. 

The EIToolkit as such is most probably too low-level to be useful for all phases. However, it can serve as a 

basis for appropriate tools, see, e.g., Section 5.2, Graphical, State-based Application Development. It is 

especially valuable for quick prototyping and testing of variants. 

- Support the use of design tools: [22, 31, 35, 42] 

Well-known design tools such as Adobe Director should be directly supported. 

The EIToolkit does not integrate directly into Adobe Director or other design tools.  

- Connect to existing prototyping and programming tools: [4, 17, 22] 

Tools often used for prototyping like Adobe Flash should be supported. This also includes procedures 

normally not supported by computers such as paper-prototyping. [Hudson and Mankoff 2006] [23] shows 

how paper prototyping methods could be employed for such purposes. 

The EIToolkit has been integrated into the Eclipse IDE, the d.tools project [Hartmann, Klemmer, et al. 2006], 

[22] and Flash. It can be used from within programming languages such as Visual Basic that support one of 

the toolkit‟s protocols (that includes all programming languages that can access web pages). 
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There are a couple of further features that often appear in requirements lists. Some of them are mostly 

consequences of the requirements listed above and thus not listed as a separate item. 

Scalability [26, 29] is an issue on several layers. At a low level, data passing mechanisms must not clobber the 

network. That can be assured by having exchangeable protocols (that can be optimised and distribute the load) 

and event- and stream-based messaging. At a higher level, hierarchical data processing methods, filters, and 

visualisations can ensure that developers are not overburdened with masses of data. Context [13, 29, 50], [Yau 

et al. 2002] can be treated as a special case of processing sensor data. It can help tremendously having a 

hierarchical method to filter and aggregate data to higher level events as suggested in [Schmidt, Beigl, and 

Gellersen 1998]. Programming by demonstration [21, 32, 48] (see Chapter 7, Prototyping Mobile Device 

Applications) is another programming paradigm that can be used on top of a toolkit‟s features. Configurability / 

end-user programming [9, 24, 33, 49, 53] basically combines two requirements: first, the system must provide 

support in deploying a system; second, simple visual tools on top of the system must be available to enable users 

with no experience in programming and little knowledge about technical details to change and configure a 

system according to their needs. Multiple users [2, 4, 27] should normally be able to use a system 

simultaneously. Besides aspects that touch privacy (e.g. defining access rights) and security (e.g. implementing 

access rights), the distributed nature and the choice of protocols used for data transfer should support multiple 

users. The sensor and sensor interpretation layers are responsible for the identification of users. 

In Table 10, we now show whether the described requirements and features are supported, partly supported / 

under development, or not supported in the current version of the EIToolkit and several other related toolkits. 

There is an Excel sheet available online that contains this data46. It is not particularly surprising that the 

EIToolkit is found at the top of this list as it was designed taking most of these requirements into account. More 

value of the table can arguably be derived from the online version. It is possible to specify weights for each of 

the items and therefore check for the most appropriate toolkit(s) for more specific settings and prioritised 

requirements. It also contains brief remarks giving an indication about why specific rankings have been given 

and thus provides pointers into the relevant publication for further information on particular topics. 

The table uses three different symbols to indicate the relationship of each toolkit with the given requirement: 

„‟ means the requirement is fulfilled, „‟ means it is only partly fulfilled or can be fulfilled with little effort, 

and „‟ signifies that this particular requirement is not fulfilled. Numerically, we rate the toolkits by assigning 

values „1‟, „0‟, and „-1‟, respectively and add them. In Table 10, we used weights equal to „1‟ for all 

requirements. Thus, since the list comprises 46 items, a project can be rated with a value ranging from 

-46 to +46. A value of zero therefore indicates that the number of positive and negative entries is the same. 

 

                                                           
46 Comparison of current hardware and software toolkits for pervasive application development; Excel sheet available at 

http://www.paul-holleis.de/files/diss/toolkits_requirements.xlsx 

http://www.paul-holleis.de/files/diss/toolkits_requirements.xlsx


 

Table 10: Categorisation of the EIToolkit and several related projects with regard to the criteria detailed in Section 4.2, Toolkit Requirements for Pervasive Applications. 

(  : requirement fulfilled        : requirement only partly fulfilled / could be fulfilled with little effort        : requirement not fulfilled ) 
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Allow complex applications to be built                         

Support data processing                         

Provide solutions to common tasks                         

Support the re-use of fragments                         

Ways of development 
 

         
 

       
 

   
  

Support hierarchical data processing                         

Allow different programming environments and languages                         

Support event-based development                         

Support pulling for data (as opposed to, potentially event-driven, pushing)                         

Support state-based development                         

Create on-screen PC programs                         

c) Debugging and Changing Applications 
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Storage, history, logging, and replay                         

Allow remote control and observation                         

Simulate components                         

Find errors and issues in the idea, design and architecture of an application                         

Make errors and exceptions accessible and potentially offer solutions                         

Provide feedback about what is happening behind the scenes                         
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Allow incrementally extending the system                         

Support quick alterations                         

Allow easily and quickly exchanging input, output and application logic                         
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d) Integrating (into) the Development Process 
 

         
 

       
 

   
  

Support the different phases of the application design                         

Connect to existing prototyping and programming tools                         
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4.3 EIToolkit – Design Decisions 
In the last two chapters, we strongly argued for tools that support prototyping applications and either build on or 

take into account models such as the Keystroke-Level Model. This chapter presents, based on the analysis in the 

previous section, the design and functionality of the EIToolkit47 which will serve as the basis of such tools. It has 

a component-based architecture that allows for easily combining heterogeneous devices and programs. Since the 

beginning of the toolkit development in 2004, several other research projects have built frameworks and toolsets 

to ease the creation of tangible or pervasive applications as has been described in the last section. 

4.3.1 Envisioned Application Scenarios 
The following three scenarios demonstrate the aims of the toolkit from a user‟s point of view. They show three 

different ideas, from simple to complex, and ways of implementing these using the EIToolkit. 

Angelina’s Automatic Music Interrupter (Figure 23) 

Angelina built a small hardware board with an attached pressure sensor. The board continuously reads the 

sensor value and uses a Bluetooth sender to communicate changes in the pressure data. She mounts the sensor 

on her chair and can thus detect whether she is sitting on the chair or not. Angelina likes to listen to music or an 

audio book while working (she obviously has an easy job). She now simply wants playback to be stopped 

whenever she leaves her desk and resumed when she returns without her needing to explicitly execute any 

actions such as bringing the multimedia player into the foreground and hitting any buttons. 

  

Figure 23: Make simple things simple: music playback is paused while the seat is not occupied. 

The sensor board communicates through the serial protocol over Bluetooth. Thus, a toolkit component makes all 

messages available to the toolkit with no effort. Also, the Winamp multimedia player is directly supported 

(alternatively, MS Windows multimedia keys can be used to control other applications such as the Windows 

Media Player). All Angelina needs to do is to create an application that sends an event containing the message 

„pause‟ to the Winamp wrapper whenever the pressure sensor indicates that the person stood up, and a „resume‟ 

event in the opposite case. To simplify this, Angelina can easily select the necessary events and connect them to 

the appropriate actions in a graphical tool. 

Brad’s Context Aware System Development (Figure 24) 

Brad is developing an application supposed to react proactively to a user’s actions without explicit input, i.e. the 

system uses sensors to get the state of the environment and the user and then deduces appropriate actions. For 

sensing, he uses infrastructure from his customer that he can access only locally and at specific times (since it is 

in use by others the rest of the time). They employ specific microcontroller boards that connect to a PC using 

OSC48 which is a protocol primarily intended to transmit audio data but has often been employed ti 

communicate sensor data in general. He therefore records sensor data of one day for later analysis. In his own 

office, he can replay the sensor data, use components to filter and aggregate data, as well as simulate specific 

events by hand. Thus, he can develop applications without needing to continuously access the infrastructure. 

                                                           
47 Embedded Interaction Toolkit, EIToolkit; project page: http://www.eitoolkit.de 
48 Open Sound Control, OSC; project page: http://www.cnmat.berkeley.edu/OpenSoundControl/ 

free 

occupied resume 

pause 

EIToolkit 

http://www.eitoolkit.de/
http://www.cnmat.berkeley.edu/OpenSoundControl/


4 Tools for Rapid Application Development 85 

 

Figure 24: When connected to some external resources, a toolkit component can be used to log all or 

certain messages. These can later be replayed to further develop an application offline. 

Brad can use the toolkit‟s OSC wrapper to connect the sensor data to the EIToolkit. A logging component stores 

all messages occurring in a specific time interval. If he is not interested in all generated messages, he can easily 

filter out specific messages. He can then replay these messages any time later. Whenever he needs to test a 

specific scenario that he has not yet recorded, he can use a further component to generate and simulate custom 

messages and events. For his project, he writes simple transducers that filter (e.g. only temperature values larger 

than some value), enhance (e.g. apply a running average), or combine data (e.g. switching the light off and 

closing the door indicates leaving the room). 

Celine’s Ideas for Ambient Email Visualisation (Figure 25) 

Celine wants to visualise the amount of new emails. Ultimately, she wants to use her small water spring as 

ambient device, i.e. more water means more emails. During development, she does not yet have control over the 

well and uses a Flash software visualisation. She also plans to potentially replace the spring later with another 

device like a light to avoid her office being flooded coming back from a holiday without reading emails. 
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Figure 25: The design of the toolkit makes it easy to use several visualisations  

at the same time or exchange them during runtime. 

Celine writes software to retrieve the number of unread emails and sends it to the toolkit whenever a change 

occurs. She uses the component that makes toolkit data available on a TCP port to access it from Flash and 

writes a visualisation. The moment she finishes the control of the spring and connects it to the toolkit, her 

envisioned application is working. Software and hardware visualisation are running at the same time. She can 

even remove existing or add further visualisations at any time without the need to change or restart anything. 

4.3.2 Requirements Identification 
Before and during the design of the EIToolkit, we collected requirements based on the list presented in the 

previous section that it should fulfil. Since the resources available for the implementation were restricted, some 

limitations had to be accepted as well. 

To enable the toolkit to support a number of projects over the years, we strongly built on a component-based 

approach. Thus, we were able to add features that we found out to be important later and enlarge the support for 

additional components that emerged over time. The architecture ensures backward compatibility to existing 

applications. 
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The following list shows the most important requirements, features, and properties the toolkit is built upon, 

based on scenarios such as those presented in the last section. 

 Component-based architecture: besides a central code base for core functionality, most code should be 

encapsulated into smaller components. These components should be separated in a way that they can be 

developed independently and be easily exchanged. 

 Thin connection layers: it should only be required to write a very small additional layer of software to 

connect the toolkit to specific hardware and software. 

 Programming abstractions: writing an application that builds on various components should mean not 

more than combining these components. No additional knowledge about the concrete implementation or 

(proprietary) communication protocols should be necessary. 

 Open and replaceable main protocol: communication should be based on a well-known, open, widely 

used communication protocol such as UDP or TCP/IP. This should be exchangeable and other forms of 

communication should be possible. 

 Support of extension protocols: further protocols such as the Real-time Transport Protocol49 (RTP), OSC, 

or MIDI should be supported to enable cooperation with other applications and especially streaming of data. 

 Logging: to facilitate development and debugging, it should be possible to log all data to screen and into a 

file in a simple but comprehensive format. Filters should be available to reduce the amount of logged data. 

 Simulation and replay: to emulate devices that are not available or to simulate the output of components in 

specific events, it should be possible to generate messages and replay information using stored logging data. 

 Interface descriptions: in order to get more information about a component, components can optionally 

describe their interface for automatic detection, connection, and integration. This should be done in a 

comprehensible and standardised format. 

 Simple component replacement: it should be possible to easily replace components with the same or 

similar functionality with each other. This ensures, for example, that components can be updated and 

prototyping can be done in software before replacing it with a hardware device. Interface information can 

potentially be used to automatically exchange components according to their interface (i.e. if they inherit the 

same interface), see for example our approach in [Holleis and Schmidt 2005]. It should also be transparent 

for an application developer whether a wrapper around some software or a hardware component is used. 

 Layered context processing: it should be possible to apply sensor fusion and filtering techniques (in 

separate components and several layers), see for example the concept of cues described in [Schmidt, Beigl, 

and Gellersen 1998]. 

 Easy hardware extension: several hardware platforms should directly be supported (such as Particle 

Computers). Others should be connected using specific protocols such as serial connections or OSC. 

 Independence: the implementation of the toolkit should support various platforms, operating systems, and 

programming languages as well as paradigms. 

To keep the toolkit manageable, easy and quick to use, and to keep the implementation effort reasonable, the 

following restrictions have been specified in advance: 

 No direct high-level guarantees: there will be no direct guarantees or control on quality of service, 

reliability, or speed. This makes the system much easier to use in the majority of cases where such direct 

control is not necessary. Often, such properties can be added later and in the appropriate components, when 

desired, see for example [Mayrhofer 2007] for an approach regarding authentication. There will also be no 

inherent support to ensure security and privacy of communication. Measures such as encryption, making 

data anonymous or filtering data can be implemented by each or special components. 

 Restricted evaluation support: there will be no direct support for finding errors and issues in the idea, 

design and architecture of an application. Although tools for debugging, logging, and simulating will be 

provided, most core toolkit elements are on a lower level than necessary for that purpose. However, 

components on top of it can be developed, e.g. the more high-level development tools described in 

Section 5.2 about graphical application development or the user models developed in following sections. 

                                                           
49 Real-time Transport Protocol, RTP, RFC 3550; definition of the standard: http://tools.ietf.org/html/rfc3550 

http://tools.ietf.org/html/rfc3550
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 Simple base protocol: there will be a simple and human-readable (but potentially inefficient and restricted) 

protocol for passing messages. However this can be exchanged for more sophisticated protocols later. 

 Simple interface descriptions: the expressive power of descriptions of the capabilities of components will 

be simple and not necessarily based on more complex standards. A transition to standard interface 

description languages (IDLs) is planned for a later increment in the development process. Further types of 

component descriptions, i.e. a 3D model of physical devices such as the orientation of accelerometer 

sensors, will not be implemented immediately but will already be integrated in the design. 

 No direct support for deployment: there will be no direct support for deploying the system. Currently, the 

idea is to route most communication traffic through a central point or restrict it to a common subnet. Even if, 

for example, two mobile devices communicate only with each other and do not need any intermediary, this 

path is taken. It remains future work to enable the deployment of such applications which are completely 

separated from the toolkit‟s infrastructure. The decision was taken since developing, debugging, distributing 

software and especially collaboratively developing it is considerably easier this way. 

 Focus on stand-alone tools: even though integration in the design process of pervasive applications is a 

main goal and we show how to integrate the toolkit with other projects and development environments (see 

Sections 5.3.2 and 5.3.3), the integration into design tools like Adobe Director is not an element of the core 

functionality but can be added later with appropriate extensions. 

The following sections provide insight into how these requirements have been implemented in the design and 

architecture of the system. 

4.4 Architecture and Implementation 
The basic idea of the EIToolkit is to represent resources by proxy components (called „stubs‟) in the system. A 

resource in this sense can be anything that takes some input or provides some output. This includes software 

from small pieces like simple visualisations to complex applications like a spreadsheet program. It also explicitly 

allows hardware components like sensors connected to a microcontroller, displays of various types, and 

compound devices like PCs, cars, or infrastructure in general. Figure 26 illustrates the architecture. 

The role of stubs is close to that of a proxy or driver communicating with a specific device. They encapsulate all 

the information needed to communicate with the resource they represent. On the toolkit side, all stubs pass and 

receive messages through a common, specific protocol. This design ensures that components are separated from 

each other, thus being easily exchangeable and allowing applications to be as independent from the 

implementation of specific components as possible. Of course, application developers need to know about the 

semantics and at least some details about how a resource works. However, the toolkit relieves the developer from 

having to learn, know, and implement specific details for any resources. 

It should be noted at this point that introducing new resources to the toolkit does not necessarily imply that a new 

stub has to be written. As detailed in Section 6.2 about technology enabling applications, there exist stubs that 

can be used to connect all possible applications based on a specific technology. One stub for example can read 

from serial line, i.e. a COM port. Any device based on, e.g., the Smart-Its microcontroller platform [Gellersen, 

Kortuem, et al. 2004] which is connected to a PC with a serial cable can thus communicate with the toolkit. This 

stub at the same time also enables communication with mobile devices that use the serial line over Bluetooth 

protocol to exchange data. Another example is the control of MS Windows applications. A stub can emulate key 

presses on the Windows operating system and thus prototypically control nearly all running applications. 

Nevertheless, it is sometimes advantageous to implement a specific stub for a specific application or device. This 

can then support all the features of the resource in the best possible way and run without side effects to other 

applications (as incurred by, e.g., the stub that generates keystrokes). In fact, there is no reason why these 

general and specific stubs should not be available at the same time. 
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Figure 26: Overall architecture and idea of the EIToolkit system. Components are connected to a common 

communication area using small and lightweight stubs. Applications can then connect the data from 

different components simply by filtering, changing and relaying messages from one set of component to 

another. Messages can be stored, retrieved, and exchanged between remote sites. 

Applications can then use the data sent through the common communication area and potentially query the 

interfaces provided by these stubs. Their core functionality is then to detect events that are important to them, 

process them, and generate commands to be executed by other stubs. They implement the desired semantics 

using the input and output capabilities provided through the available stubs without the need to know about 

implementation specific details of these stubs. 

One potential drawback of this approach can be that a number of programs have to be started separately. Often, 

one stub has to be started for generating events, one for executing commands, and one application component 

connecting those. Besides the effort to start these, most stubs provide some sort of graphical user interface or at 

least feedback, e.g., through a console window. These are important for debugging and observation but may 

clutter the application‟s user interface. We suggest having, if possible, a central component that acts as a 

command centre of available stubs and applications. Through it, stubs can be initiated and possibly brought into 

a window-less state where no visual feedback is provided. If necessary, their interfaces can be revoked. 

One more automated approach that we implemented is a component that maintains a user-generated mapping of 

applications to stubs. In that way, whenever an application is started, the corresponding stubs are initiated 

automatically. A simple garbage collector type of daemon is then also able to shutdown stubs that are no longer 

needed. This means, however, that there is a central point in the infrastructure that has global knowledge of all 

available applications, all running stubs, and their desired connections. Besides some technical issues, this 

implies that the user of this system needs to maintain and update some configuration. We show possible 

approaches to end-user adaptation and programming later in this chapter. A slightly simpler idea is to have all 

messages specify their target or each stub by sending a specific message at the beginning to indicate the desired 

target. However, this complicates writing generic stubs and limits the runtime re-configurability of the system. In 

[Holleis and Schmidt 2005], we propose a hierarchical system of real world objects. Together with the interface 

descriptions that stubs can provide, this would at least allow replacing objects if they represent an equal or a 

specialisation of a required interface. 

Application Implementation 

As an example, consider Angelina‟s scenario above (page 84). A simple pressure sensor is mounted on her chair, 

connected to a controller board that sends events via Bluetooth using serial line communication. The SerialStub 

receives these events and forwards them to the EIToolkit. On the output side, the WinampStub is running which 

translates EIToolkit messages to control events for the Winamp music player. 
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The only part that needs to be written is an application listening to events from the sensor and producing 

corresponding commands for the music player. In this simple setting, this merely means to send a „pause‟ 

command whenever the sensor board sends a new event (independently whether it is a „pressure:on‟ or 

„pressure:off‟ event). This setting is illustrated in Figure 27. If the sensor board sent an analogue value for the 

pressure sensor, the application would need to additionally add a threshold.  

 

Figure 27: Illustration of the implementation of Angelina’s scenario described on page 84. Only the 

application at the bottom of the figure needs to be implemented. The rounded boxes show the entire 

custom code necessary. Alternatively, the graphical tools shown in Section 5.2 could have been used. 

The main structure builds on four parts supporting the quick development through a set of libraries and other 

utility classes: 

 Creating stubs: templates and wizards (i.e. scripts) exist to create stubs in several programming languages; 

basic functionality is provided and additional settings (such as whether the stubs send and / or receive 

messages) can be configured. 

 Communicating with components: libraries exist that simplify and standardise the use of communication 

listeners and senders in general 

 Enabling specific technologies: libraries exist that encapsulate the code necessary to communicate with 

specific technologies (such as specific stubs or applications, or using specific protocols) 

 Expanding the use: there exists a library collecting available stubs and applications; even though this has 

not yet been thoroughly implemented, it is thought to have this part connected to an (online) database that 

can dynamically use components contributed from various sources. 
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 wa_hwnd = FindWindow((LPCTSTR)"Winamp v1.x", NULL); 

 

void WinampStub::PacketReceived(PacketEvent &pktEvent) { 

    if (*pktEvent.GetPacket()->GetMessageType() == "pause") 

         LRESULT ret = SendMessage(wa_hwnd,  

                 WM_COMMAND, WINAMP_BUTTON_PAUSE, 0); 

} 

pause 

CSerial serial; 

serial.Open(“COM4”, 0, 0, true); 

do { 

   ... // read from serial line into inputBuffer 

   Packet packet(GetName(), “”, inputBuffer, GetWildcardAll()); 

   EIProperties::GetPacketSender()->SendPacket(&packet); 

} while (bytesRead > 0); 

 

void AngelinasApp::PacketReceived(PacketEvent &pktEvent) { 

     if (*pktEvent.GetPacket()->GetMessageType() == "pressure") { 

         Packet packet(GetName(), “pause”, “”, “WinampStub”); 

         EIProperties::GetPacketSender()->SendPacket(&packet); 

    } 

} 

EIToolkit 
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Architecture Implementation 

Table 12 gives an overview of the most important interfaces and classes in conjunction with their most 

prominent methods. A detailed description can be found in the online documentation and in the source code. 

This brief list shall only introduce a few terms and give an idea of some of the architectural aspects. One main 

consideration was to keep the core parts clean and simple to ease its understanding and use by others. 

Table 12: Main classes and interfaces of the EIToolkit system with their most important methods. 

Classes and Methods Function 

Stub 
 Start, Stop, IsRunning, GetName 

Stubs connect the toolkit and external devices or applications. 

Most functionality is specific to the application. 

Application 
 Start, Stop, IsRunning, GetName 

Applications specify the components that communicate between 

the different stubs and implement the application logics. 

Packet 
 Get- / SetSenderID,  
 -ReceiverID, -MessageType, -Message 
PacketEvent 
 Get- / SetPacket, -Timestamp 

A Packet is the smallest unit of information. It contains 

information about the sender, the desired receiver as well as 

message content, and a type identifier describing the message. 

A PacketEvent adds further information like a timestamp when 

the packet has been sent / received. 

PacketFormatter 
 WritePacket, ParsePacket 
 GetWildcardAll 

A PacketFormatter can serialise and parse serialised messages. 

The class SimplePacketFormatter is a reference implementation 

using a simple colon separated string for a packet‟s elements. 

PacketSender 
 AddPacketSenderImpl, SendPacket 
PacketSenderImpl 
 SendPacket 

The PacketSender manages a list of PacketSenderImpl classes 

which are responsible for sending messages using a specific 

protocol. 

An implementation of a PacketSenderImpl is the UDPClient. 

PacketObserver 
 PacketReceived 
PacketReceiver 
 AddPacketObserver, NotifyObservers 
 AddPacketReceiverImpl 
PacketReceiverImpl 
 SetPacketReceiver, NotifyPacketReceiver 

Stubs and applications implement the interface PacketObserver 
if they need to receive messages and are registered at the 

PacketReceiver class. 

A PacketReceiver manages a list of PacketReceiverImpl classes 

which are responsible for receiving messages using a specific 

protocol. A reference implementation of a PacketReceiverImpl is 

the UDPServer. 

EIProperties 
 UseStandards, StopStandards 
 Get- / SetPacketFormatter,  
 -PacketReceiver, -PacketSender 

The EIProperties class acts as a central access point for toolkit 

components. It offers access to the PacketReceiver, 
PacketSender, and PacketFormatter classes (implemented as 

singletons). 

 

In the following, we briefly describe three aspects of the system that are important for later sections and offer 

some insight into restrictions and power of the current implementation. 

Sending and Receiving Data 

By default, all data sent and received in the toolkit is in form of packets. This decision was made since it maps 

directly to many standard packet-based communication protocols such as UDP. In addition, it suits well to 

bundle data additional to the payload useful for routing, early filtering, etc. Nevertheless, continuously sending 

data is also important in many applications. Therefore, we included support for streaming of data such as sensor 

output and video transmission (as explained below). Since packed-based protocols are not suitable for such data 

communication, we employ separate channels and use the standard protocol to exchange information about this 

separate channel. 

Packets accordingly contain information about its sender, a characterisation of the type of the message, the 

message itself, and, optionally, the desired receiver. A message type can distinguish descriptive control messages 

from those containing actual content or it can further describe the content. Specifying an explicit receiver is 

treated as a suggestion that can speed up processing. A component thus can choose to process only those packets 
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sent especially to this component. Since such a mechanism would anyway not be enough to ensure a secure 

connection between exactly two parties, a component is also explicitly allowed to also listen and accept packets 

sent to others or to broadcast to all entities. This allows applications to be built that observe the communication 

of other components, e.g. a general logging and replaying application. 

 

Figure 28: UML diagram of the PacketEvent and Packet classes. A packet encapsulates information about 

who sends what to whom. Additionally, the message can be described with a message type field.  

A PacketEvent holds a timestamp of the packet. 

Implementation Details 

Whenever a packet is sent or received, a PacketEvent is built that additionally includes a time stamp recording 

the time when it was sent or received, respectively, see Figure 28. This can be used by time-critical applications. 

Following the delegation pattern, a singleton instance of a general PacketSender class is used within the toolkit 

to send packets, see Figure 29. Its implementation is designed to keep the actual way of sending (protocol, etc.) 

as independent as possible from the caller‟s implementation. The central properties mechanism registers one or 

several instances of the interface PacketSenderImpl at the PacketSender. If another component running in the 

toolkit needs an additional sender implementation, it can add it during runtime. The standard implementation 

uses a UDPClient for broadcasting packets over a specific UDP port. Other implementations can, e.g., use a 

dedicated TCP connection. 

 

Figure 29: UML diagram of the classes responsible to send packets. PacketSender is a singleton that 

delegates actual sending of data to instances of PacketSenderImpl. 

The receiving side is implemented in a similar way, see Figure 30. A singleton PacketReceiver manages two 

sets. One consists of one or more classes that implement the interface PacketReceiverImpl. These are responsible 

to listen to messages sent using a specific protocol (e.g. most probably generated by one of the 

PacketSenderImpl classes). The standard implementation listens to UDP packets at a specific port. The second 

list managed by PacketReceiver is a set of observers (interface PacketObserver) that are notified when one of the 

PacketReceiverImpl classes receives a packet. The PacketReceiver itself implements PacketObserver and is 

registered as the only observer in all receiver implementations, i.e. all receiver implementations notify this class. 

In this way, only the two classes PacketSender and PacketReceiver are used by stubs or applications. All other 

details are hidden behind this concept. The internals of which protocols are used can be exchanged or adapted 

without any influence with respect to the users‟ point of view. 
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Figure 30: UML diagram of one part of the EIToolkit architecture. The central component in this 

diagram is the PacketReceiver class. It uses instances of PacketReceiverImpl to delegate packet reception 

and notifies all registered PacketObserver instances (such as stubs or applications) of incoming packets. 

The connection-less type of communication ensures that any party can send data without waiting for any 

subscriber to appear. On the other hand, in the current implementation, applications cannot access messages that 

have been sent before they registered themselves. One way is to use the storage mechanism of the toolkit which 

saves messages to a file. However, the replaying mechanism resends all messages. This can generate undesired 

results if other applications also use these messages. A better solution is to – as done for example in [Ballagas, 

Ringel, et al. 2003] – attach a tuplespace implementation. It stores data packets and allows applications to query 

for specific packets, read, and remove packets from the space. We are currently adding such functionality to the 

toolkit which is sometimes necessary, for example, to enable services that become unavailable for a certain 

period to catch up with information that it missed during that time. 

Streaming 

The packet based messaging system is not ideal for streaming a lot of data in real time. For such purposes, the 

messaging service can be used to make information available about where such streaming data is available. 

One implementation we made available is based on RTP. It uses the open implementation called JRTPLIB50. To 

setup a stream and read it, controlled by the messaging system, you only need to use the two stubs 

RTPStreamerStub and RTPListenStub. In the following, the C++ implementation is briefly described: 

 RTPStreamInfoEI: It encapsulates all information necessary to describe a stream (except its ID). If you want 

to provide a stream, e.g., you have to call SetDestinationIp and SetDestinationPort.  

 RTPStreamerStub: This is a stub used to provide information about streaming data. The stream is identified 

by a unique ID that must be specified. The stub offers information about its stream with a specific message 

(SendRTPInfo()). Parameters are specified through the RTPStreamInfoEI class described above. 

 RTPListenStub: This is a stub used to receive streaming data from a stream with a specific ID. The stub gets 

the information about the stream by requesting it (SendStreamRequest()) and waiting for the stream 

information message which is parsed into an RTPStreamInfoEI instance described above. 

                                                           
50Java RTP implementation, JRTPLIB; project page: http://research.edm.uhasselt.be/~jori/page/index.php?n=CS.Jrtplib 
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Component Descriptions 

One of the goals of the toolkit is the simple use of its components. An approach taken to simplify the automatic 

and manual use of the toolkit‟s stubs is to allow each stub to provide information about itself. This information is 

split into two parts, interface description and state description. 

Interface description: All capabilities of stubs fall into two categories. First, everything that the stub produces 

(e.g. if a stub encapsulates the keyboard, it might send a message whenever a key is pressed), is called an event 

sent by the stub. Second, a stub offers input in the sense that other components in the toolkit can send a 

command to it which the stub then executes. These inputs are called operations. An interface description thus 

incorporates a set of events and a set of operations. Concerning the implementation, the descriptions of an event 

and an operation are both encapsulated into a class to keep the description reusable and extensible. To keep the 

initial system simple, the name of the event or operation is used. It can later be expanded to use interface 

description languages (IDLs) such as CORBA51. 

Each stub can choose to inherit from DescribingPacketObserver instead of the standard PacketObserver 

interface. This declares that the stub offers the opportunity to be queried for its interface. This query – as is its 

answer – is passed using the same packet communication mechanism as always. 

Allowing to transmit information about the interface of a stub enables applications that help a developer to 

implement an application. As shown in Section 5.2, tools can be written that make use of the toolkit and present 

the user with visualisation of available stubs and their capabilities. One simple application example is to let some 

outputs (events) be directly and graphically connected to some inputs (operations). In this fashion, simple 

applications like the one presented in Angelina‟s scenario on page 84 (pause playback when someone leaves the 

desk) can be built very quickly and efficiently. 

Additionally, automatic documentation can be built and the replacement of components can be supported. The 

latter means that there can be a hierarchy of interfaces and thus it can automatically be deduced whether a 

component can be replaced by another one (or by several). Although this approach has not yet been completely 

exploited, it is clear that it offers vast possibilities. We published some ideas in that direction in [Holleis and 

Schmidt 2005]. 

State description: Besides the capabilities (interface) of an object, its current state is of interest as well. As will 

be outlined later in Sections 5.2.1 and 7.2, one way to think of software development is to bring devices and 

applications into a certain state at a specific time or situation. A state in this sense is the set of values of all 

external, i.e. visible, and internal parts of a system that are potentially changed during runtime. This includes 

external components such as switches, displays, or lights with possible states being simply on / off, or including 

parameters such as intensity or frequency. Internally, there are the states of variables and physical as well as 

volatile data storage. As has been argued in, e.g., [Thimbleby and Gow 2007], from a user‟s point of view, only 

the external components are visible and thus count for the user‟s mental model of the system. However, it is up 

to the implementer of a stub to decide whether to include internal states in the description or not. 

The system to store a state is currently kept rather straightforward and is subject to enhancements. For each 

variable that contributes to the state of the whole stub, a StateDesc object is created which contains a name and a 

description of the range of possible values in a standard mathematical form, e.g., limited ranges such as 

‘{on, off}’ or ‘[0, 1, ..., 255]‟, or unlimited ranges such as „[0, ... [‟. A stub is then associated with an object of type 

CombinedStateDesc which combines these single states by creating the cross product of all these, denoted by 

„P{stateDesc1, statedesc2, ...}‟. This technique has some limitations. The inability to express restrictions such as 

when the possible values of one variable depends on the value of another one. However, it is able to express a 

superset of the possible states. Users are required to have some knowledge about the stub to be able to interpret 

and make use of that information. They will then be able to choose between those states of interest, e.g., to use 

them only if the system is powered on. The main feature of such StateDesc and CombinedStateDesc classes is 

that they can be compared with each other and that wildcards can be used in this process to denote currently 

unimportant variables (such as internal ones). 

                                                           
51 Common Object Request Broker Architecture, CORBA, project page: http://www.corba.org 

http://www.corba.org/
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Portability 

For a toolkit like the EIToolkit, it is especially important that it can run on different types of machines as well as 

operating systems and that it can also be used in conjunction with many programming languages. The use of 

cross-platform languages like .NET and Java helps achieving this goal. In addition, the separation of applications 

into several stubs that communicate using standard protocols removes the necessity that all components are 

written in the same language. 

Furthermore, the toolkit‟s core parts have been implemented natively in three different programming languages 

namely C++, Java, and C#. There exists technology like SWIG52 that can be used to make implementations 

written in one programming language available to another one. Additionally, one of the key features of the .NET 

technology is the possibility to wrap and reuse code written in different languages. This can still be used with the 

given implementation. However, providing software in more than one language has several advantages: 

 Language features: the unique features and strengths of each language can be exploited. 

 Language support: there might exist better support for certain devices, protocols, or hardware in some 

programming languages. Java, e.g., does not directly support serial line communication for the Microsoft 

Windows operating systems any more. 

 Broader code basis: often, users of implemented functionality want to use external libraries. The selection 

of possible components increases which also means that, if such external code does not work as expected, it 

can be replaced more easily. 

 Lower threshold: for users with deep knowledge in only one programming language, it is much easier to 

accept, understand, and use code when it is written in that particular language. People are more likely to find 

and to try pieces of code if it is written in their favourite language. 

 Simplified debugging: the possibility to debug code it simplified if all elements are written in the same 

language and do not need any intermediaries or are wrapped in some libraries. Also, the same development 

environments can be used. 

Disadvantages of the pursued approach mainly include some overhead for system developers since they have to 

write code several times. However, there is always the fallback solution of using implementations in a different 

language. Also, it can introduce different ways of thinking and implementing specific tasks which can help to 

come up with solutions that are more efficient, more robust, less error prone, etc. 

As noted before, the decision to separate components and use, e.g., UDP to communicate between them allows 

employing any programming language capable of using this protocol. For all those languages or platforms that 

do not allow direct access to this protocol, wrappers can be written to enable them to use their specific 

capabilities. Flash for example does not currently provide means to send or receive data directly via UDP. 

However, as do most languages, it supports access to TCP/IP. A simple TCP-to-UDP „converter‟ that connects to 

a Flash application using TCP and reroutes the sent information to the toolkit‟s UDP port and vice versa enables 

Flash programs to use all functionality of the EIToolkit and its connected components. We used this approach 

for example in [Holleis, Kern, and Schmidt 2007] where an interactive Flash visualisation shows the interior user 

interface of a car communicates with a Keystroke-Level Modelling component through the EIToolkit. 

 

                                                           
52 Simplified Wrapper and Interface Generator, SWIG; project page: http://www.swig.org 

http://www.swig.org/
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5 Prototyping Using EIToolkit and User Models 
 

This chapter introduces ways of prototyping using the EIToolkit described in the last chapter. 

The main focus is on generally lowering the threshold of creating prototypes and at the same 

time taking into account usability metrics like the time a user needs to complete a task. 
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After having introduced the EIToolkit and various advantages of user models for developing applications in the 

last chapters, we now bring these concepts into practise. First, we introduce the concept of a state graph and its 

potentials for usability purposes (5.1). Next, we illustrate some graphical approaches to development using state-

graphs and the EIToolkit as underlying system (5.2). After that, explicit support for the combination of user 

models and prototyping tools is examined, concentrating on the demonstration of how to integrate our approach 

into existing tools (5.3). This also demonstrates the possibility of state-based development and sets the basis of 

the MAKEIT development environment for mobile devices described in the following chapter. 

5.1 Describing Application Semantics with State Graphs 
Applications and their behaviour can be described in many ways. For the purposes at hand, it proves suitable to 

use graph theory in which a state graph represents application logic. Simply put, a state graph is a description of 

the possible states of an application and the transitions that bring the application from one state into another. 

Since the notion of such graphs bases on a formal framework, we briefly introduce a few graph theoretical terms. 

5.1.1 Graph Theoretical Foundations 
Whenever we use terms and concepts from graph theory, we refer to a fairly standard set of definitions that can 

be found in many standard textbooks such as [Aho, Hopcroft, and Ullman 1983]. However, in order to avoid 

possible misunderstandings, we define the most important terms in the appendix on page 175. This includes 

terms like neighbourhood, paths, and connected components. 

In general, we write G = (S, A) to refer to a graph G consisting of a set of nodes S and edges A. Additionally, a 

widely used convention is to have a function 𝑙𝑆: 𝑆 → 𝐿𝑆 associating labels from a set of labels LS to each node. In 

analogy to that, edges can be labelled with a function 𝑙𝐴: 𝐴 → 𝐿𝐴. For our purposes, this is not enough, however, 

and we map an entire hierarchy of attributes to each graph element (node and edge), see Definition 1. It is 

beneficial to have the attributes in form of a hierarchy since it maps well to a tree-based data structure. It can 

also be used to group attributes with similar function, e.g. graphic attributes for drawing, or semantic attributes 

for specific purposes. In our scenario, nodes will contain information about the state of the application they 

represent and edges contain information about the actions that lead from one state to another. The labelling 

functions are implemented as an attribute mapping. 
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Definition 1 (Attribute Mapping) 
In a graph G = (S, A) there is an attribute mapping function 𝑎𝑡𝑡:  𝑆 ∪ 𝐴 × 𝑆𝑡𝑟𝑖𝑛𝑔 → 𝑂𝑏𝑗𝑒𝑐𝑡 that associates a graph 

element e  𝑆 ∪ 𝐴 with an arbitrary piece of data. The object is further described by a string which can be used to implement 

a hierarchy of attributes. 

As a special case, if the meaning of an edge attribute is the cost of traversing it (e.g. its length), then att(a, X) can be written 

as ||a||X or, if it is clear what attribute identifier X is meant, ||a|| for an edge a  A. 

An important notion in graph theory is a path connecting two or more nodes. In general, a shortest path in a 

graph is the path between two nodes that uses the smallest possible number of edges. For a graph whose edges 

are mapped to attributes, the term „shortest‟ can be intended otherwise. If, for example, a graph describes a 

network of roads and each edge has its length as attribute (often called its „weight‟), a shortest path should be the 

one with the smallest sum of lengths, which is not necessarily the one with the smallest number of edges. To 

distinguish between those cases, we define a specialisation of a shortest path in the following Definition 2. 

Definition 2 (Length of a Path and Shortest Path with Respect to (Attribute) X) 
A path p(sa, sb) in a graph G = (S, A), sa, sb  S which uses edges a0, a1, ..., an is a shortest path with respect to (attribute) 

X, if and only if 

 ∀𝑎 ∈ 𝐴: ∃𝑜𝑖 ∈ 𝑂𝑏𝑗𝑒𝑐𝑡: 𝑎𝑡𝑡 𝑎, 𝑋 = 𝑜𝑖 , i.e. X describes an attribute for edges and each edge has such an attribute 

associated with it, 

  𝑎𝑡𝑡 𝑎, 𝑋  | 𝑎 ∈ 𝐴 = 𝑀 forms at least a magma, i.e. has a closed binary relation +: 𝑀 × 𝑀 → 𝑀 (i.e. „attributes 

can be summed up‟), 

  𝑎𝑡𝑡 𝑎, 𝑋  | 𝑎 ∈ 𝐴  has a total order ≤ (i.e. „all attributes can be compared with a ≤ relation‟), and 

 for every path p' ϵ {p(sa, sb)} which uses edges a'0, a'1, ..., a'n it holds that  

att(a0, X) + att(a1, X) + ... + att(an, X) ≤ att(a'0, X) + att(a'1, X) + ... + att(a'n, X). 

The length of a path with respect to (attribute) X then is ||p(sa, sb)||X = att(a0, X) + att(a1, X) + ... + att(an, X) = ||a0||X + 

||a1||X + ... + ||an||X. If it is clear to which attribute is referred, we simply write ||p(sa, sb)||. 

It follows that ∀𝑎 ∈ 𝐴 ∶ 𝑎𝑡𝑡 𝑎, 𝑋 = 1    ||p(sa, sb)||X = |p(sa, sb)|. 

The second condition in the definition of the shortest path ensures that sums of elements as used in the fourth 

condition can also be compared with other sums or elements using the relation from the third condition. 

Examples for shortest paths include all graphs that define a weight function for their edges like distance or cost; 

one such class of graphs describes network flow where each edge is assigned a certain capacity. We will focus 

on examples where the weight describes the amount of time necessary to traverse an edge. 

5.1.2 Definition of the State Graph 
The following Definition 3 defines a state graph as a structure to describe the behaviour of an application. 

Definition 3 (State Graph, Transition, Action-ID Function) 
A state graph is a directed graph G = (S, A). The states of the application that is currently designed represent the set of 

nodes S. There is an edge a = (s1, s2)  A between two nodes s1 and s2 if and only if an action has been defined that lets the 

application switch from s1 to s2. An edge is also called an action or transition since it describes the transition from its source 

to its target state. Each edge is associated with an action ID by a special attribute mapping function, the action-ID function 

𝑎𝑐𝑡𝑖𝑜𝑛: 𝐴 → 𝐴𝑐𝑡𝑖𝑜𝑛𝑠 with Actions being the set of action IDs. 

One node can be the source or target of several actions. However, the graph must fulfil the following constraints: 

 Disambiguation Property: ∀ 𝑠𝑎 , 𝑠𝑏 ,  𝑠𝑎 , 𝑠𝑐 ∈ 𝐴 ∶ 𝑎𝑐𝑡𝑖𝑜𝑛  𝑠𝑎 , 𝑠𝑏  ≠ 𝑎𝑐𝑡𝑖𝑜𝑛  𝑠𝑎 , 𝑠𝑐  , i.e. all actions with the 

same state as source must be pairwise disjoint. This means that from one state there cannot be transitions fired by 

the same action to two different states. Otherwise it would be non-deterministic as it would not be clear which 

strategy should be employed to choose the transition that should be used when the according action is executed. 

This also implies that no two edges between two states have the same action, eliminating redundancy. 

 Start State Property: There is a distinguished state called the start state sS that is a source, i.e. not the target of any 

transition. This represents the state the application is in right before its use. 

 Reachability Property: ∀𝑠 ∈ 𝑆 ∶ ∃𝑝 𝑠𝑆 , 𝑠 , i.e. all states can be reached from the start state by a sequence of 

transitions. Note that this is not the same as saying that every node must have an incoming edge (simply imagine a 

graph with two connected components). This also implies that there is exactly one start state sS. 

We will see several examples of state graphs in the following sections and also in Chapter 7. An important 

aspect in the system we will describe below is that these properties are ensured by construction and thus cannot 

be violated. 
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5.1.3 Advantages of Using State Graphs in User Interaction Design 
Thimbleby and Gow describe several aspects that can be derived from an underlying graph model [Thimbleby 

and Gow 2007]. Definition 4 introduces five terms that prove to be useful for further characterisations of graphs 

for that purpose. 

Definition 4 (Eccentricity, Radius, Centre, Diameter, Periphery) 
In a graph G = (S, A), the eccentricity ecc(s) of a node s  S is the longest shortest path p(s, s') with s'  S. 

The radius of a graph is its smallest eccentricity, i.e. rad(G) = min({ecc(s) | s  S}). The centre of a graph is the set of all 

nodes with eccentricity equal to the radius. 

The diameter of a graph is its largest eccentricity, i.e. dia(G) = max({ecc(s) | s  S}). The periphery of a graph is the set of 

all nodes with eccentricity equal to the diameter. 

Note that those definitions use the notion of lengths of paths. If this is replaced by the length with respect to an 

attribute as defined above, we can derive the same definitions with respect to this attribute, e.g. ecc(s, X). 

Some properties of state graphs important with respect to usability are listed in Table 13 and Table 14 together 

with the sufficient characteristics of a state graph G = (S, A), with s, sa, sb, soff ϵ S, and a0, a1, ..., an ϵ A that can be 

used to verify or check this property. Those in Table 13 are adapted from [Thimbleby and Gow 2007], re-written 

in a more concise and formal way. We also added several novel properties shown in Table 14 that are of interest 

from a usability point of view such as a possibility to predict user goals. 

Table 13: Properties of applications or devices that directly map  

to properties of the corresponding state graph. 

Property of the Application / Device Property of the Corresponding State Graph 

There are no dead-ends and no unreachable states. G is strongly connected. 

There is a state s from which one can get everywhere but not 

back, e.g. for a non-reusable device like a fire extinguisher. 

G is connected but not strongly connected, G \ {s} is 

strongly connected 

The set of states from which all tasks are cheapest. Nodes in the centre 

The set of states in which all most expensive tasks start and end. Nodes in the periphery 

The expected average cost of a task. 

The characteristic (average) path length, i.e. 

   𝑝 𝑝  𝑠𝑜𝑟𝑡𝑒𝑠𝑡  𝑃𝑎𝑡    𝑝: 𝑝 𝑠𝑜𝑟𝑡𝑒𝑠𝑡 𝑃𝑎𝑡   . This 

does, per definition, not include trivial paths of length 0. 

Cost to undo an action. 
 𝑝 𝑠𝑏 , 𝑠𝑎   for an action (sa, sb). 

Average undo cost:    𝑝 𝑠𝑎 , 𝑠𝑏   𝑠𝑎 ,𝑠𝑏  ∈𝐴   𝐴   

Cost to undo an „overrun‟ action, i.e. accidently executing an 

action twice (e.g. double instead of single click; often happens 

when feedback is not present or slow) 

 𝑝 𝑠𝑐 , 𝑠𝑏   for a path p(sa, sc) using actions a1 = (sa, sb) 

and a2 = (sb, sc) with action(a1) = action(a2) 

Cost to „reboot‟ an application and return to the previous state.  𝑝 𝑠𝑏 , 𝑠𝑜𝑓𝑓   +  𝑝 𝑠𝑜𝑓𝑓 , 𝑠𝑎   for an action (sa, sb) 

Set of actions essentially to know to be able to use all 

functionality. 

Smallest set of edges that disconnect G (also called 

minimum cut). 

States good to know in order to use the device. 
Very strongly connected states, i.e. {s | deg(s) > n} for 

some n („hub nodes‟). 

Cheapest sequence of actions to use all actions. Important, e.g., 

for testing purposes. 

Solution to the Chinese postman tour problem (see for 

example [Aho, Hopcroft, and Ullman 1983]). 

Cheapest sequence of actions to visit all states, i.e. related to the 

minimal knowledge to be able to control the application 

perfectly. 

Solution to the travelling salesman problem (see for 

example [Aho, Hopcroft, and Ullman 1983]). 
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Table 14: More properties that directly map to properties of the corresponding state graph, see Table 13. 

Property of the Application / Device Property of the Corresponding State Graph 

Predicted goal of a user interaction. 

If  𝑎𝑛  𝑎0 ,𝑎1 ,…,𝑎𝑛−1  is the conditional probability that an action an is executed 

after having executed the sequence a0, a1, ..., an-1, the most probable goal starting 

from a state sa can be computed by  𝑠 |  𝑝 𝑠𝑎 , 𝑠  = 𝑚𝑖𝑛  𝑝 𝑠𝑎 , 𝑠𝑏  , 𝑠𝑏 ∈ 𝑆  . 

Those probabilities can be approximated by using the relative frequencies of 

logging data. A simplification could use the probability that an action is 

executed instead of the conditional probability. 

Set of paths that justify introducing 

shortcuts (i.e. those with high cost).  

 𝑝 | 𝑝 𝑃𝑎𝑡,  𝑝 𝑋 > 𝑛  for some threshold n in the magma formed by 

 𝑎𝑡𝑡 𝑎, 𝑋  | 𝑎 ∈ 𝐴  (see Definition 2). This can also be done or combined with 

the previous measures. 

Necessary steps to get to a specific state s 

(e.g. how to get to the list of messages). 
{p(sS, s)} where sS is the start state or the current state. 

A measure of how many ways there exist 

to reach a goal. 

    𝑝 𝑠𝑎 , 𝑠𝑏  | 𝑝 𝑎𝑐𝑦𝑐𝑙𝑖𝑐  𝑠𝑎≠𝑠𝑏∈𝑆    𝑆   𝑆 − 1    gives the average number of 

paths between two arbitrary nodes sa, and sb. The condition (p acyclic) is 

necessary to exclude the infinite number of paths containing cycles. 

Cheapest way(s) to achieve something. Find the shortest path(s). 

As in Definition 4, the notion of „cost‟ (and thus „cheap‟ and „expensive‟) has been chosen to allow for different 

metrics in the underlying actual cost of edge traversal. If the length of a path is defined by the number of its 

edges, then a cheapest path uses the least possible number of edges. The length could also be defined with 

respect to a certain attribute leading to a minimisation of the sum of all edge weights it uses. As such, a cheapest 

path can mean the most efficient, quickest, easiest, the one which generates most fun, is used most often, etc. 

5.2 Graphical, State-based Application Development 
There are two ways of creating applications on top of state graphs. The first is to develop an application and then 

generate a state graph from the program description or from executing representative tasks on the application. 

The second is to generate the application semantics in conjunction with the state graph. We will concentrate on 

the latter approach in the rest of this as well as in the following chapter. More precisely, we will show how to 

create the state graph in parallel to application development or even how to directly build the state graph in order 

to define application behaviour as done in the following section. 

Two of the requirements identified in the previous chapter are „simple applications should be simple to create‟ 

and „visual tools should be easy to put on top of the toolkit‟. In order to demonstrate ways to accomplish these 

requirements with the EIToolkit, we developed several add-ons to the system. A most simple one is a wizard 

producing a sample project (Visual Studio, C++) specialised to parameters like name, support for receiving 

and / or sending messages, etc. The next four subsections show more sophisticated approaches concentrating on 

graphical ways of developing applications. The first two are stand-alone applications, while the others illustrate 

how existing tools can be augmented with such functionality. 

5.2.1 Example 1: Output-state-based Development 
Simply put, one goal in writing (pervasive) applications is to make something happen, under certain 

circumstances. Slightly rephrased, an application or device should execute a specific function or be brought into 

some state under specific conditions. This view applies especially well to simple devices that use input and 

output facilities with discrete states such as buttons or lights. Additionally, even continuous inputs are often used 

in a discrete way by applying thresholds or defining intervals, e.g. triggering an event when the temperature 

drops below 30 degrees (see for example [Hartmann, Abdulla, et al. 2007]). Proceeding along this way of 

thinking, we present a visual approach exploiting several features of the EIToolkit and focus on system states. 

Our OSBAD system (working title, being the abbreviation of „output state based application development‟) 

directs the user along a series of steps until a set of rules has been specified that define the desired behaviour. 
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The simple process involves the following steps: 

1. Specify output 

a. Specify the components that should be brought into a specific state and / or 

b. Specify the operations that should be executed 

2. Specify inputs 

a. Identify the components whose state (changes) are of interest and / or 

b. Identify the events that are of interest 

3. Define dependencies: which output components depend on which input components 

4. Optionally define rules: specific input conditions that trigger the output 

Example scenario 

David lives in a smart home where most of the electronic devices are connected and remotely controllable. As a 

simple application, he wants the lights to go on when he enters his house. He indicates four main lights and 

decides to trigger them after having stepped through the garden door as well as the front door. His detection 

system informs him when he is on his premises and in his house. After leaving both, house and garden, the lights 

should be switched off. 

Outputs

2 sensors

4 lights

...

Inputs

2 sensors

4 lights

...

P{on,off; on,off; on,off; on,off}

P{in,out; in,out}

P{on,off; on,off; on,off; on,off}

P{in,out; in,out}

4 lights

{on; on; on; on}

2 sensors

{in; in}

1. 
outputs

4. 
rules

2. 
inputs

3. 
dependencies

 

Figure 31: Conceptual interface to generate rules focused on the output of an application. 

Here, four lights are to be switched on whenever the two sensors are in the correct state. 

Figure 31 illustrates the steps mentioned above. David would choose the four lights as desired outputs and the 

two sensors as inputs. In the final step, he would specify that the four lights should be switched on, i.e. the 

application controlling them should be in state {on; on; on; on}, whenever the two sensors indicate that he 

passed both, his garden and the front door, i.e. this application enters state {in; in}. 

To simulate this scenario, consider one input device with two buttons that can either be pressed, „yes’, or not, 

„no’, thus simulating the detection system, and one output device with four lights that can each be switched „on’ 

and „off’. The top left part of Figure 32 (which shows the user interface of the OSBAD prototype) lists both 

components („2Buttons’ and „4LEDs’). The „range‟ column indicates the state space of the components. The 

4LEDs component, for instance, can be in any of the 16 states possible with four independent lights with binary 

states each denoted by the power set „P{on,off; on,off; on,off; on,off}‟. This is chosen on the output side. The 

input condition will depend on the state of the 2Buttons device (see the selection in the top right part of 

Figure 32). In the visualisation, it is also possible to choose operations (on the output side) or events (on the 

input side), i.e. commands that should be executed when a certain event occurs. These two approaches, state-

based and action-based, can also be mixed, e.g. a command is executed when a device is in a specific state. 

The dependency of input and output components is visualized in the bottom left part of the figure. Two concrete 

instances of a condition have been created to the right of it. They specify that, if both buttons are pressed, i.e. 

2Buttons is in state „{yes, yes}‟, all lamps are switched on, i.e. 4LEDs should be brought into the state „{on, on, 

on, on}‟ and, if no button is pressed, the lights are switched off. In all other cases (one button toggled, the other 

not), nothing happens. This is exactly the semantics described in the scenario. 
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Figure 32: The main screen of the OSBAD application development prototype. If the two buttons 

(component ‘2Buttons’) are pressed (state ‘{yes, yes}’) the four LEDs (component ‘4LEDs’) will be 

switched on (state ‘{on, on, on, on}’). Similarly, the second condition specifies that in the moment  

when no button is pressed, all LEDs will be switched off. 

The EIToolkit, on which OSBAD is based, takes care of the automatic detection of available components, the 

categorization into input and output components (using the interface description capabilities of stubs) as well as 

the execution of the rules built using the OSBAD system. Whenever the „Execute’ button is toggled, all specified 

rules are active. Rules can also be (de-)activated, removed, added and changed during runtime. Using two simple 

EIToolkit components, the given scenario can easily be emulated. 

 

Figure 33: A visualisation of the state graphs for the components  

‘2Buttons’ (top) and ‘4LEDs’ (bottom) used in Figure 32. 

The application behaviour is again illustrated in Figure 33 (the example will also be reused to demonstrate 

another technique in the following section). A device with four LEDs can be in 16 different states. Whenever the 

two buttons are in one of the highlighted states, the four lights are brought into the highlighted states of the 

4LEDs component, respectively. Note that there are potentially 4! = 24 different shortest paths to get, e.g., from 
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state „{off, off, off, off}‟ to „{on, on, on, on}‟ provided there exist methods to independently toggle each light. 

However, there are also infinitely many paths that do not lead to the desired state (since the graph contains 

cycles). The system must be able to find one of those correct paths automatically. 

One way to solve this problem is to know the state graph in advance and apply standard algorithms for finding 

paths within graphs. Although there are a lot of advantages when the state graph is known (see Section 5.1.3 for 

a more detailed treatment), it is cumbersome and error prone for application developers if they have to specify it 

independently of application development. If, for some reason, the state graph of the system is known, the 

desired path(s) can be easily calculated using any graph search algorithms like breadth-first search. This includes 

finding the shortest path or the best path (e.g. using Dijkstra‟s well-known algorithm, see for example [Aho, 

Hopcroft, and Ullman 1983]) in the event that transitions are labelled with some cost function. In the following 

Chapter 7, we will present a project that bases application development on state graphs which can then be used 

to make such calculations. 

We now briefly present a heuristic to find such a path without knowing the state graph in advance. To be able to 

easily switch between various heuristics, our implementation uses a stub component to encapsulate it. The 

StateFinderStub uses a heuristic based on the assumption that every action can be undone by executing it a 

second time directly after the first execution. This assumption captures of course only a small portion of all 

possible applications. It implies that, e.g., there are no counters or methods with side-effects (making it useful in 

combination with pure functional languages such as Haskell). The same approach can of course be used 

whenever a dedicated undo function is implemented in the system and made public to the StateFinderStub. 

The stub executes a modified depth-first search in the state graph (without actual knowledge of the state graph). 

The necessary backtracking operation is enabled by the undo assumption. This may even include backtracking 

beyond the state at which the search was initiated since one of the tested actions might undo the action from a 

potential previous state to this start state. This means that the desired end state will always be reached, i.e. the 

search will be successful, if there exists a path in the undirected graph underlying the directed state graph. The 

heuristic tries to speed up the process of finding the target state by following a gradient process. A simple metric 

is used to define the distance of the current state to the target state. The system then first pursues those edges 

where this distance does not grow. Since the state graph may contain cycles, the algorithm marks visited edges in 

order to avoid unnecessarily executing actions. In fact, most real devices have cycles, one that occurs most often 

being from any state to the „off’-state and back. 

As is the case with most heuristics, this approach can also slow down the search if the distance function is not 

monotonic along paths from the source to the target. In fact, for a state graph with m edges, a simple greedy 

algorithm would need at most 2m-2 steps (each edge but the last two traversed two times, first to execute an 

action, then to undo it). It can easily be shown that the heuristic could need up to 3m-4. However, it is 

conjectured that the heuristic nevertheless makes sense since many paths in state graphs will follow decreasing 

state distances and the asymptotic complexity still remains in O(m), i.e. O(n²) with n being the number of nodes 

in the graph as the number of edges can be quadratic in n. 

The assumption that every action can be undone by repeating the action assures and implies that there are no two 

states that lead to the same state with the same action, otherwise the undo would be ambiguous. The assumption 

at least holds for two-state actuators like simple lights, some display implementations and internal Boolean 

states. It is also possible to get rid of this assumption and allow any instance of a state graph. However, this 

complicates the path finding algorithm. It cannot, for instance, be guaranteed anymore that a solution is found if 

the graph is not strongly connected. 

An informal evaluation of the OSBAD prototype with five people with profound technical knowledge but no 

background in visual programming showed that the user interface – though clearly structured according to the 

interaction process – needs some training time. Also, having first to define the output side follows a goal 

oriented process but can be counter-intuitive for people who think more along the lines of causes and actions. 

This led to a different view described in the following section. 
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5.2.2 Example 2: Trigger-action-based Development 
The OSBAD system in the previous section focused, in both its visualisation and its task flow, on the target 

(output) state of the system. This makes sense since often the „results‟ of an application are most important. 

However, the mental model of users developing a system often more closely follows an if-then approach. This 

most possibly results from the wide-spread use of imperative programming languages and might be different for 

other groups. People without programming skills, for example, often prefer to demonstrate what they want the 

system to do [Lieberman, Paternò, and Wulf 2006]. This model of programming by demonstration is also 

different from the output-state-based approach. We provide such a system in Chapter 7. 

Our DEVICEVIZ prototype presented now offers very similar power to the previous system but stresses the flow 

of action from triggering states and events to their respective causes. It also allows the specification of a more 

direct connection between triggers and the available methods as well as the injection of custom code into the 

created system. 

 

Figure 34: The main screen of the DEVICEVIZ prototyping environment. Components that produce output 

(events) are arranged on the left hand side. Those that accept input (commands) are shown on the right. 

This figure shows the same application as developed in the OSBAD environment in Figure 32. When the 

two buttons are both pressed / not pressed, the four LEDs are switched on / off, respectively. 

Figure 34 shows that the input and the output side are both given the same emphasis. Following the reading 

direction from left to right common in the US and Europe, components that provide some output, i.e. fire events, 

are placed on the left hand side; those that accept input or can be triggered, e.g. commands, are placed to the 

right. Obviously, the direction of flow can trivially be adjusted to a reading direction from right to left. A vertical 

layout would need slightly more effort since the connection points would also have to be altered. Since states of 

components can act both as sources of action and targets, a state box appears for each available component on 

both sides. Initially, it shows a general description of the state space, e.g. the power set „P(yes,no; yes,no)‟ for 

the component featuring two buttons as explained above. The user can click on this description and generate an 

arbitrary number (up to the cardinality of the state space, i.e. |P(...)|) of specific state instances like „{yes, yes}‟. 

Placeholders for parts of a state that should not be restricted can also be used in that pattern matching process. As 

in the previous tool, it is also incorporated to add simple tests like „> 10‟. However, since the tool is not targeted 

at experts, it is not implemented as a full logic processor and also currently does not allow calculations or 

references to other data. In the example shown in Figure 34, the two states indicating that the two buttons are 

both pressed or released are connected to two output states of the component with four lights, thus creating the 

same application as in the description of the previous system. The connection can be drawn by a simple drag-n-

drop operation with the mouse. A rubber band and snapping mechanism helps in defining application behaviour. 
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As mentioned before, DEVICEVIZ also allows quick rules to be set that do not include states. Figure 35 indicates 

how the method „led0_switch‟ can be triggered whenever the first button is pressed or released. The code box 

that can be flipped open in the centre of the screen gives a rather high level view of what this particular 

connection means. This box enables developers to insert additional code logic that is out of the scope of the 

graphical development tool. This is, for example, necessary when using external knowledge or invoking complex 

calculations. When generating the execution rules, the additional code can be compiled and used in the rules at 

runtime. It would also be possible to apply different kinds of programming paradigms in these boxes instead of 

text based coding or to use a fully fledged code editor like the one found in Eclipse. 

 

Figure 35: Using ‘button1’ to toggle ‘LED1’. The pseudo code of the lower connection is shown with 

precondition (‘2Buttons/button1_off’) and consequence (‘4LEDs/led0_switch’). 

All such visualisations that strive to offer the user a simplified view and a handle on the available system 

struggle with a possible reduction in expressive power. Although the scripting code component gives additional 

freedom to advanced users, several aspects still cannot be covered easily. Some questions include:  

 How is data transferred from one component to another (e.g. the ambient light level to adapt a light source)? 

 How are wildcards and patterns visualised and used? 

 How can visual clarity be ensured for more complex applications? 

 What if multiple inputs need to be taken into account for one action? 

The first two issues are difficult to solve for people with no previous knowledge or understanding of the concept 

of variables. It can partly be overcome by using colour-coded shapes or icons to represent the same data at 

different places. Our suggestion for slightly advanced users is to employ a notation standard in many pattern 

matching languages, i.e. to use „\1‟, „\2‟, etc. in order to specify the pieces of data used as input or matched 

against. Considering the third issue, visual clutter, we recognise that this is a problem common to all graphical 

development tools. Currently, the components can be rearranged by hand but we could also employ graph 

drawing algorithms used for bipartite graphs. If the number of available components grows, one has to introduce 

means to help finding a specific one, e.g. through a search box or dialog (which could also use patterns to search 

for certain interfaces). We explicitly provide a solution for the fourth issue mentioned above, i.e. the fact that 

several components on the input side may need to be used for some actions. A similar problem is that a specific 

action may only be triggered by an event if the system is in a specific state. A simple example is that any button 

of a device only has an impact if the device is currently switched on. We deal with such issues by introducing an 

additional component. The box in the centre of Figure 36 allows an arbitrary number of input connections and 

offers ways to connect these, e.g. using a Boolean „and‟, meaning that both preconditions have to be satisfied. 

Advantages of such approaches are that the application semantics can be quickly grasped, its behaviour can be 

adapted during runtime with a small number of mouse clicks, and it offers a visual stage that eases the threshold 

to begin developing and reduces the amount of programming necessary. Another very helpful feature (mentioned 

as a key requirement in the last chapter) is that there can be a tight coupling between the application and the 

development tool as demonstrated, for example, in the d.tools system [Hartmann, Klemmer, et al. 2006]. By 

manipulating generators of data and events, e.g. occluding a hardware light sensor, the user interface can present 

the data and, more importantly, highlight which component is currently active and which event or rule would be 

fired. This largely eases development by demonstration and exploration as well as incremental development. 
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Figure 36: An additional component allows combining several input events with  

Boolean or comparison operators. In this example it specifies that ‘button1’ and  

‘button2’ both need to be pressed to trigger the specified action. 

5.3 Combining Models and State-based Prototyping Tools 
Creating user models and developing applications are both non trivial tasks. There are many people that are 

experts in one of these domains. Only few of them would judge themselves to be experts in both areas. An 

additional problem in using models such as those mentioned in previous chapters for developing and prototyping 

applications is that the initial threshold to be able to build accurate models is quite high. 

We have seen in the last chapters that there are a number of tools that can help in creating pervasive applications. 

An integral part of the current chapter is to provide methods to combine the two worlds of cognitive modelling 

and prototyping of pervasive applications. Both tasks can profit from a description of the other one: modelling 

tools can exploit knowledge about an application‟s internal structure and description of its user interface; 

prototyping tools can use information from modelling processes to automatically adapt applications according to 

identified issues and provide the user with concrete suggestions about solving problems identified by the models. 

After introducing some new approaches to make modelling easier, we go into more detail about core components 

for a framework we built that can combine the creation of prototypical applications with the generation of 

models for those applications and show how these can be interconnected. It uses a variety of concepts introduced 

in the last chapters, most prominently the Keystroke-Level Model and its extensions (Chapter 1) and the 

EIToolkit and its areas of application (Chapters 4 and 5). The following Chapter 6 applies much of this research 

and goes into detail of a development environment specialised in the creation of mobile phone applications. 

5.3.1 KLM Component for Combining Prototyping with User Modelling 
It is possible to automatically generate a Keystroke-Level Model for a specific task expressed as a series of 

actions. Since such a generator is of use independent of an application, we exploited the EIToolkit architecture 

and built a KLM stub for that purpose. It mainly consists of a database of mappings from actions to time values, 

each optionally with a set of options. In our implementation, we chose XML to describe these mappings. 

As can be seen on the left hand side in Figure 37, such a specification consists of some ID describing the action 

(<prop> tag) and timing information (<klm> tag). This simple case is displayed for example in the „Take 

Picture‟ action which represents the response time needed on average by a phone after taking a picture. The 

value of 1.23 seconds is simply recorded. A more advanced entry can be found, e.g., with the action of pointing 

the phone somewhere, for example in order to touch an NFC tag or to take a picture. Three options are provided, 

one being an overall estimate of 1.00 seconds. Another option allows specifying a user-defined value while the 

third one employs Fitts‟ Law. The parameters for the last option specify the constants of the pointing device in 

“A common criticism of formal methods, and indeed of many other usability 

engineering methods, is that they depend for their success to an excessive degree on 

craft knowledge […]. That is, there are specialized skills tacit in many approaches, 

and other practitioners therefore find them harder to deploy with good results than 

their proponents.” 

[Thimbleby, Cairns, and Jones 2001] 
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use as well as the actual distance to the target and the target size. The text within the <option> tag specifies the 

formula to actually calculate the time necessary to execute this action. The right side of Figure 37 shows the 

basic graphical interface of the stub by presenting all available options to the user and potentially allows adding 

new or changing existing entries. 

... 
 

  <prop name="Distraction"> 

    <klm> 

      <options> 

        <option opt1="slight">6 %</option> 

        <option opt1="strong">21 %</option> 

      </options> 

    </klm> 

  </prop> 

 

  <prop name="Point Somewhere"> 

    <klm> 

      <options> 

        <option opt1="estimate">1.00</option> 

        <option opt1="custom" opt2="$0">$0</option> 

        <option opt1="fitts’ law" opt2 = "$0" opt3="$1" opt4="$2" 

                     opt5="$3>$0+$1*lb($2/$3+1) "</option> 

      </options> 

    </klm> 

  </prop> 

 

  <prop name="Take Picture"> 

    <klm>1.23</klm> 

  </prop> 
 

... 

 

Figure 37: Left: excerpt of an XML file specifying existing KLM operators. ‘$1’, ‘$2’, ...  

placeholders can be used as variables to specify required input from the modeller. Modelling  

pointing with Fitts’ Law, for example, requires four parameters, see Section 3.1.2. 

Right: visualisation of the KLM stub showing the available operators. 

Some time values depend strongly on the type and instance of the interaction device. There are different values 

assigned for, e.g., the homing operator in the original KLM describing the hand movement from keyboard to 

mouse and vice versa, and the same operator used in a mobile setting to describe different interaction modes with 

a mobile phone. There are two possibilities to incorporate this in the XML file. Either this is taken care of by 

choosing designated options, or by defining different sets of these mappings in one single XML file. The last 

approach has the advantage of needing to specify the overall setting just once. Obviously, some parameters that 

stay the same (like the mental act operator) then appear several times unless some kind of reference scheme or 

hierarchical structure is devised – an option that would render the file more complex to understand and edit. 

The mode of operating the stub is then simply as follows. First, initiate the task by sending a „start_interaction‟ 

command and specify the type of KLM to be used. Next, action descriptions can be sent. For each of those, the 

stub adds the appropriate operator if available in the chosen mapping and returns the associated time value, i.e. 

sends a message back to the sender of the action. By emitting the „end_interaction‟ command, the task is 

specified to be finished and the stub can send the sum of the times of the single operators. 

The KLM stub can be used by any party that uses or is compatible with the EIToolkit‟s ways of communication. 

It does, however, in its current state of development not provide much more functionality than the controlled 

mapping between actions and KLM operators. It would be easy, though, to incorporate more services like 

automatically applying the common heuristics to place mental operators, to time and add pauses in a live 

demonstration of tasks as mental or system response operators, or to add more graphical visualisations of tasks 

and their model. In the following two sections, as well as in Chapter 7, we show how this stub can be integrated 

into novel and existing development environments in order to exploit the advantages of early modelling task 

interaction times. 
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5.3.2 Example 1: Integration into the d.tools Environment 
The d.tools design, test, and analysis environment offers a statechart-based visual design tool [Hartmann, 

Klemmer, et al. 2006]. In this section, we describe how to integrate Keystroke-Level Models into its design 

process. At this point, it is helpful to know that d.tools manages the communication between the software part 

and its hardware using OSC messages over UDP. This makes the direct connection to the EIToolkit very simple. 

With slight modifications, the discovery and description mechanisms of the two can be combined. Whenever a 

user initiates a transition in the state diagram, an OSC message is generated that can be used to control any 

hardware or software connected to the EIToolkit in the same way as it influences any d.tools component. 

The d.tools system offers an approach similar to our mobile phone development environment presented in the 

following Chapter 7. It is based on a visual, statechart-based prototyping model as can be seen in Figure 38. 

Creating the model 

The first step in using d.tools is designing the look and interface parts of the device currently built. All 

compatible physical user interface items like buttons, lamps, or microphone have a visual equivalent. Already in 

this step, user modelling tools could be employed. For example, Fitts‟ Law could determine the time needed to 

move from one button to the next; or some models could be used to find out which elements can potentially be 

operated simultaneously (see, e.g. Section 3.1). However, without a more detailed knowledge of the semantics 

and use of the application, most existing tools build on actual interaction sequences or logs and are therefore of 

limited value. Fitts‟ Law, for example, can only be applied if both, the target and the source are known, i.e. 

where a user has positioned the pointing device before clicking on the target. A more fitting approach in this case 

would be to offer help in implementing guidelines for user interfaces which are available for different systems, 

for instance for Windows Vista53, the Apple user interface54, or general web pages, e.g. [Lynch and Horton 

2004]. Similar approaches for tangible interfaces are still a matter of research. 

The device that is being designed with d.tools in Figure 38 on the next page is simple but offers enough 

possibilities to show the idea and features of the system. It mainly consists of two buttons and two differently 

coloured lights. These visual elements can have direct equivalents in hardware, i.e. two push buttons and two 

LEDs. A simple statechart has been created that consists of six states. Four of them are different in their 

appearance using the two lights as indicators (all off, all on, and two states with exactly one on). The example 

shows that it is sometimes necessary to clone the same visual appearances into several states. Possible reasons 

include different desired behaviour depending on the sequence of actions that led to this state, or different 

internal states that are not reflected by the indicators. There are several paths that take the device from the state 

with both lights switched off (top left) to the state with only the left light switched on (in the centre). One of 

these paths is highlighted in the illustration. The sequence of button presses for this path is „1-1-1‟. Another 

possible path would use the button sequence „1-2‟. Since the graph contains cycles, there are an infinite number 

of possible paths, e.g. by repeating the sequence of actions „1-1-2-2-2‟. 

                                                           
53 Microsoft Windows Vista, user experience guidelines: http://msdn2.microsoft.com/en-us/library/aa511258.aspx 
54 Apple, user experience guidelines: http://developer.apple.com/documentation/UserExperience/index.html 

http://msdn2.microsoft.com/en-us/library/aa511258.aspx
http://developer.apple.com/documentation/UserExperience/index.html


5 Prototyping Using EIToolkit and User Models 107 

 
 

Figure 38: Left: d.tools visualisation of the states and transitions of a simple application involving two 

buttons and two lights with the start (top left) and target (centre) states selected. A path between them is 

highlighted (button sequence ‘1-1-1’). Right: The bottom pane shows a series of KLM operators and an 

estimate of the time necessary to execute the selected action sequence on the target device. 

An interesting aspect to note here is that each action from the user is clearly defined by the interaction object in 

use. For example, if a transition from one state to the next is triggered by pressing a button, this action defines 

the necessary user action, i.e. pointing to the button and pressing it. Still, this information may not be enough to 

apply the models described in the previous chapters. To distinguish between, e.g., a button on a touch screen and 

a physical push button, additional information may be necessary. This can either be done by using special 

widgets while designing the device or by editing properties of the widget. As we have seen in the description of 

the KLM stub in the last section, it often suffices to have a set of conditions once at the beginning. A setup could 

be described, e.g. by specifying that the device in use is a mobile phone with a touch screen or a desktop 

application to be controlled with a mouse. 

User model descriptions can then be added automatically to the application description. Whenever a transaction 

from one state to another is defined, an appropriate description of the user model, e.g. KLM time information, 

can be added. If a button press is necessary, a KLM can augment the transaction with information about the time 

needed to press this button. 

Using the model 

As shown in Figure 38, the extension of the d.tools environment allows selecting a start and a target state. This 

initiates the calculation of all possible, acyclic paths between the start and the target state. One of those is 

immediately highlighted. In a different view, the model properties for this particular path are shown. This view 

also offers the possibility to browse through the set of paths. The KLM parameters seen in the screen give an 

indication of the time each of the transaction will need (within the assumptions detailed in Section 3.2.2). This 

can then be used to calculate a total amount of time necessary to execute the given sequence of actions. 

Some of the model‟s operators need more information than is encoded in the transaction alone and often even 

more than in the triple „(current state, transaction, next state)‟. If pointing time should be included in the 

estimate, e.g. using Fitts‟ Law, some information about the previous actions that led to the current state is 

necessary. In the example, the previous position of the finger or device used for pointing must be known to be 

able to employ Fitts‟ formula. Since, at this point, the whole path from the start state to the target state is known, 

this information can be extracted (except for the start state, where some assumptions about the state of the users 

have to be made in any case, e.g. whether they have their hands on the keyboard or the mouse). 
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One of the contributions of the d.tools project, the support for analysing the use of the system within the 

development environment, also offers opportunities for our approach, i.e. enhancing development with user 

modelling support. In the same way as the design can be adjusted using results from the analysis, the predictions 

done by the user models can also profit from actual usage data: although the added modelling is supposed to 

describe average (expert) behaviour well, a few or even a single trial with an independent user can reveal errors 

in the model, missing operators originating from the automatic generation of the model, or a divergence of actual 

data because of novel technology or wrong assumptions. A more detailed treatment of how to combine 

application development with predictive user models will be described in the following Chapter 7. Contrary to 

the d.tools approach, this concentrates on the development of applications for mobile devices. 

Implementation 

Since the demonstration of an action sequence in d.tools already sends descriptive commands of the transitions 

used, there is little to implement to such information. The pane shown at the bottom right part of Figure 38 can 

be implemented independently of the d.tools system. However, it was some effort to add certain user interface 

components: the original statechart visualisation did not allow selecting two states and or assigning specific 

meaning to them as was necessary in order to specify the start and target state of a particular task. However, 

because of the modular and object oriented way d.tools is implemented on top of existing graph modelling tools, 

these additions proved to be quickly possible after having worked through the custom code. 

 

Figure 39: Initial paper prototype of a design of an Eclipse plug-in. Whenever a device or component 

comes in range, it is displayed and can be used in a way as simple as possible. 
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5.3.3 Example 2: Integration into the Eclipse Environment 
As second example of integrating EIToolkit functionality into existing tools and development environments, we 

considered the Eclipse IDE. Figure 39 shows one of the initial paper prototypes used to convey the idea, explore 

the possibilities, and see how to best incorporate the additional views into the existing Eclipse workspace. An 

initial arrangement of windows (called a „perspective‟ in Eclipse) has been chosen. All other parts can be 

exchanged and are made from small pieces of paper with appropriate text and pictures. 

The user interface consists of three main parts: 

 One shows a list of available components (in Figure 39, one can see a knob and a multi-purpose display with 

generic names „KNOB 1‟ and „DISPLAY 1‟ on the left hand side). These are displayed with a name and 

possibly an icon or image of the represented object. 

 Another part provides detailed information about the properties of a selected object (the element „KNOB 1‟ 

with, e.g., minimum and maximum value is visible at the bottom of Figure 39). 

 The third part, the programming space, shows an editor for programming the system. In most cases this 

would just be the standard code editor provided by the Eclipse framework. Depending on the programming 

language used, this could of course also be some kind of visual editor. Using the provided editors for, e.g., 

Java or C++ means that a vast amount of auxiliary information can be employed. This includes function and 

variable completion, syntax highlighting, automatic compilation, and more. 

As an example, consider the setting shown on the left side in Figure 40. A Particle microcontroller uses a light 

sensor as input and is connected to a light that it can control. The very moment the Particle is switched on, the 

EIToolkit registers its existence through the Particle stub and makes information about it available to the 

extended Eclipse system. 

 

Figure 40: Left: a physical test setting using a Particle computer, a light sensor and an LED. 

Right: an excerpt of corresponding code created in Eclipse. The light sensor value is 

read and, if it reflects a dark environment, the LED is switched on. 

This means that a Java class incorporating the information about this Particle is automatically generated (called, 

e.g., Particle_2_229_0_0_0_0_204_42, using its ID to generate a unique class name). The code on the right hand 

side in Figure 40 shows all that is necessary to implement an application that switches the light on whenever it 

gets dark, i.e. the value of the light sensor decreases below a certain value (100). The methods used, „getLight’ 

and „setLED’, can be easily found through the standard auto completion feature of Eclipse since these have been 

made available in the respective Java proxy class. Figure 41 shows this feature in another automatically 

generated class encapsulating access to the application Skype. When accessing the Skype component, Eclipse 

provides the methods available for it. Among those common to all Java objects, one can find methods to 

login / logout and to set the current state. 
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Figure 41: Left: Sample implementation of an Eclipse viewer that shows available objects and their 

interface. Right: The Eclipse auto-completion feature when using a stub component. In this example, the 

Skype stub offers a method called ‘setState’ to change the current state of the user. 

These generated classes internally use the EIToolkit to relay procedure calls and implement data transfer 

between the software and the microcontroller system. Although not fully implemented in the prototype, the pull 

based method shown in this example can also be implemented by registering a listener to a method of interest, 

possibly giving details about the parameters of interest, and getting notified (pushed) with appropriate events. 

The advantage of the presented system is that the implementation is done completely in an environment and 

programming language that is independent of the hardware implementation. Thus, developers can use their 

preferred IDE and still make use of advanced technology outside the range of components normally included in 

such an environment. A disadvantage of all such systems is that processing is split into two parts meaning that 

data has to be transferred from one platform to the other. In case that sensor data has to be processed in real time 

and that it is sampled very quickly, e.g., data from accelerometers for gesture detection, this can become a 

bottleneck. However, it still can serve as a first step in developing an application. A refined algorithm can, e.g., 

later be implemented on the microcontroller itself while the rest of the application can remain unchanged. 

To further help alleviating the problem of having different platforms for this particular setting, a solution has 

been built for the combination of MS Visual Studio and Particles. We ported the code base running on the 

Particle computers in a way that it can be compiled in Visual Studio.NET. Much of the internal functionality has 

been stripped and empty function stubs are used. Primitive data types are translated correctly which helps 

avoiding a prime source for errors. Not all internal functions are implemented, support for restricting the use of 

memory is only rudimentary available, and performance will differ greatly on machines, e.g. time slices have not 

been implemented (in fact, at the time of this writing, developers of the Particles at TecO were starting to work 

on a more sophisticated emulator platform which might also support some of those constraints mentioned here.). 

Still, it can serve as a convenient testing environment of algorithms. Again, auto-completion, syntax 

highlighting, online context-sensitive help, etc. are readily at hand. Code written that way can very often be used 

exactly as it is on the target Particle. Besides the easier and more comfortable way of editing and debugging, the 

approach also offers the possibility to simply plug in different functions that emulate external sensors. One can, 

for example, use the Particle in the target scenario, make some gestures, and record the data. This sensor data can 

then be used and analysed with a PC application and recognition algorithms written for it. The algorithm can 

then also be quickly tested against other arbitrary signals. The functions for sending data via the built-in RF 

module have been altered to directly emulate the output of the receiving bridges. That means that any program 

supposed to remotely talk to a Particle can also be tested against the emulation without any changes. 

 

Some of the results of the projects described in this chapter have been used in conjunction with other approaches 

to create a graphical environment specialised for the development of mobile phone applications. It also makes 

use of the KLM facilities described in this section but combines the development, modelling, and evaluation part 

more tightly. Thus, in the next chapter, we concentrate on mobile applications and the combination and 

implementation of many of the concepts treated in the last chapters. It reuses the concept of state graphs and 

graphical programming and builds on the KLM component introduced above, additionally employing 

programming by demonstration. 
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6 Case Studies – Applications Based on the EIToolkit 
 

This chapter demonstrates the concrete use of the EIToolkit in various projects. It shows a set 

of technologies that are supported in the current state of the system and provides a sample of 

applications that can be built on top of it. 
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In the course of our research, several components and applications have been developed that take advantage of 

the capabilities of the EIToolkit. Some of these have been written to support various devices like a remote 

controlled power plug (6.1). Others enable the use of some technology in general, e.g. a stub supporting a 

specific microcontroller platform (6.2). We provide a generic, versatile, and massively configurable visualisation 

system of input and output components used to observe and control all devices and applications connected to the 

toolkit (6.3). We then describe the use and advantages of the system in a specific application domain, i.e. 

wearable computing (6.4).  

6.1 Device Specific Applications 
In the following, we briefly list a sample of devices and applications that have already been connected to the 

toolkit. This provides some idea about the variety of options open to a user of the toolkit. Since these stubs are 

very specific, a short description of each shall suffice. Source code and documentation are available55. 

 IP power socket: the PM211-MIP56, a power socket with two sockets that can be independently switched 

on and off. The socket is connected to the internet by LAN. A toolkit stub produces – in combination with a 

username and a password – HTTP get requests that can control the sockets. Other Infratec power sockets 

(like the PM4-IP that offers four independent sockets) are equally supported. 

 Joystick input devices: using an open source Joystick library57, events (position of axes, state of buttons) 

from various joysticks, steering wheels and joypads are generated and made available over the toolkit. This 

also works if several joysticks are attached to a single PC. 

 MS PowerPoint presentation control: events are generated that control a slideshow in a MS PowerPoint 

presentation. 

 Winamp
58

 media player: the media playback controls (start, stop, forward, etc.) can be remotely controlled 

using the Winamp API59 

 Steerable projector: Dave Molyneaux from Lancaster University is working on steerable projector 

solutions in combination with tangible user interfaces and employs the toolkit for his purposes60. 

                                                           
55 EIToolkit documentation; project page: https://wiki.medien.ifi.lmu.de/HCILab/EIToolkitDocumentation 
56 Infratec PM211-MIP Socket, (c.f. Conrad Electronic); product page: http://www.conrad.de/goto.php?artikel=999171 
57 Joystick Driver for Java, open source; project page: http://sourceforge.net/projects/javajoystick 
58 Winamp Multimedia Player; product page; http://www.winamp.com 
59 Winamp Multimedia Player SDK API; developer page: http://www.winamp.com/development/sdk 
60 Embedded Interactive Systems, Computing Department, University of Lancaster; group page: http://eis.comp.lancs.ac.uk 

https://wiki.medien.ifi.lmu.de/HCILab/EIToolkitDocumentation
http://www.conrad.de/goto.php?artikel=999171
http://sourceforge.net/projects/javajoystick/
http://www.winamp.com/
http://www.winamp.com/development/sdk
http://eis.comp.lancs.ac.uk/
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 MIDI (Musical Instrument Digital Interface): a stub has been developed that translated ASCII codes of 

letters into music notes and plays them over the MIDI device of a PC using the Windows Multimedia API. 

 Small wireless displays: a stub that allows sending text and images to a wireless display as well as 

retrieving its 3D orientation; see Section 6.2.1 and [Holleis, Rukzio, et al. 2006b]. 

 Laser pointer detection module: a sensor module detects pointing on an object with a laser pointer 

modulated with a specific frequency. See [Rukzio, Leichtenstern, et al. 2006] for a use case scenario. 

 Skype
61

 status: allows remotely setting the current Skype status [Kranz, Holleis, and Schmidt 2006]. 

 Wiimote
62

 control: the remote controller of Nintendo‟s Wii, also known as „Wiimote‟, can be accessed 

including buttons, accelerometer, position data, lights and the rumble feature (a vibration motor). 

 Nabaztag
63

 control: the device Nabaztag is used to display information such as financial data in an ambient, 

unobtrusive, and fun way. Using the Violet API64, an EIToolkit component has been developed that can 

control the rabbit‟s functions including lights, ear movements, and text to speech engine. 

It should be mentioned at this point that writing such a stub only involves handling the communication with the 

device or application it should support. The stub controlling the status of the Skype application, for example, 

uses only code generated by the EIToolkit stub wizard, code that the Skype API65 needs (mostly for initially 

connecting to the Skype application), and 24 lines of custom code. The custom code merely translates incoming 

messages like „online‟ into commands that the API understands, e.g. „#cmd11 SET USERSTATUS ONLINE‟. 

6.2 Technology Enabling Applications 
Conceptually more interesting than device specific connections are those that make a whole set of applications 

and devices available to toolkit users. In the following we present several of those approaches. 

6.2.1 Example Projects Using the Particle Microcontroller Platform 
The Particle microcontroller platform [Decker et al. 2005] is a rather generic platform to create applications 

using one or many sensor and actuator nodes. Its main advantage is the small footprint of its components. At the 

time of this writing, there exist five different nodes with different characteristics and intended use: Particles (low 

power radio frequency (RF) communication), µPart (micro sender-only node), cPart and Part-c (small, low-

power RF), Blueticle (Bluetooth communication), zPart (supports ZigBee66). They use different versions of the 

PIC microcontroller family67. There also exist several add-on boards which offer a variety of sensors and 

actuators. The „spart‟ sensor module, for example, provides 3D acceleration sensing, sensors for force, pressure, 

ambient light, infrared light, temperature and sound. More details can be found on the project page68. 

Programming Particles can be done in assembler or C. We used Particles in multiple projects, e.g. [Holleis, 

Kranz, Winter, et al. 2006], [Holleis, Kranz, and Schmidt 2005a], and [Holleis, Rukzio, et al. 2006b]. In order to 

support the development of applications using factory-made Particle systems, components developed by third-

party groups, as well as custom-made add-on boards, it is important to get access to the communication system. 

For self-made sensor and actuator boards, it is still necessary to write or adapt code on the microcontroller. We 

provided some detail about how to enable systems such as the Particles to simplify application development with 

the help of integrated development environments like Eclipse in Section 5.3.3. 

The ParticleGeneral stub has been written to generally connect the Particle system to the EIToolkit. It listens to 

all messages sent by Particles using the libparticle project68. The data is then repackaged and sent to the toolkit. 

Reversely, any message sent directly to the ParticleGeneral stub is transferred to the Particle communication 

system. The message type of the toolkit packet is used to specify the receiver ID and the Particle packet type. 

                                                           
61 Skype phone and chat application; product page: http://www.skype.com 
62 Nintendo Wii game console and Wii remote control; product page: http://www.nintendo.com/wii 
63 Nabaztag ambient rabbit; product page: http://www.nabaztag.com 
64 Violet‟s API for the control of registered Nabaztag devices; developer page: http://doc.nabaztag.com/api/ 
65 Skype API, Skype developer zone; developer page: https://developer.skype.com 
66 ZigBee Alliance; the protocol is often seen as the low-power successor of Bluetooth; project page: http://www.zigbee.org/ 
67 Microchip PIC Microcontrollers; product page: http://www.microchip.com/ 
68 TecO Particle communications library; developer page: http://particle.teco.edu/software/libparticle/index.html 

http://www.skype.com/
http://www.nintendo.com/wii
http://www.nabaztag.com/
http://doc.nabaztag.com/api/
https://developer.skype.com/
http://www.zigbee.org/
http://www.microchip.com/
http://particle.teco.edu/software/libparticle/index.html
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The ParticleGeneral stub thus enables EIToolkit applications to communicate with Particle nodes and 

encapsulates all the necessary communication implementation details. Whenever a receiver ID is given, an 

acknowledged sending process is used to reduce the risk of packet loss. However, this behaviour can be easily 

switched off if desired. 

6.2.1.1 Wireless Display Controller 
For several projects (e.g. [Holleis, Rukzio, et al. 2006b], [Holleis, Kranz, and Schmidt 2005b], [Schmidt, 

Terrenghi, and Holleis 2007]), we built a small wireless display, see Figure 46. 

Hardware implementation 

Its main components are a Particle 2/29 base board and a custom-made add-on board. The add-on board can be 

attached to the Particle using a standard connector. The display is a Batron BT9604069 chip on glass 

monochrome display with a resolution of 96x40 pixels. This is enough to show icons and small images as well as 

five lines of text with 16 characters each with a fixed font where each letter uses 5x8 pixel and one pixel space 

between two consecutive letters in a row. 

   

Figure 42: Lard layout (left) and schematic (right) of the add-on board designed using the CadSoft 

EAGLE
70

 layout editor. In the schematic, one can see the 21 pin connector to a Particle on top, the 

connectors for the displays on the right and the acceleration sensor and the 12V generator on the left. 

Seven of the nine resistors seen in Figure 42 are necessary pull-up resistors for the internal I²C communication 

from the PIC to the display. The other two are required by the ADXL311JE71 accelerometer sensor to ensure 

proper and stable operation. The majority of the capacitors are used to stabilise power supply and reduce jitter on 

sensor output lines. The LTC1261CS72 chip producing a negative voltage of 12V is necessary internally for the 

Batron display. 

                      

Figure 43: Left: On the back of the board, a 21 pin connector connects the board to a Particle node. 

Right: On the top left side, a small connector board containing a second ADXL311JE acceleration sensor 

is soldered orthogonally to the main board to achieve a 3D orientation measurement. 

                                                           
69 Batron BT96040 display; product page: http://www.data-modul.com/de/products/passive_displays/ 

graphic_displays/bthq-96040av1-fstf-12-i2c-cog.html 
70 CadSoft Online, EAGLE Layout Editor; product page: http://www.cadsoft.de/ 
71 Analog Devices, ADXL311 accelerometer; product page: http://www.analog.com/en/prod/0,,764_800_ADXL311,00.html 
72 Linear Technology LTC1261 negative voltage generator; product page: 

http://www.linear.com/pc/productDetail.jsp?navId=P1160 

http://www.data-modul.com/de/products/passive_displays/graphic_displays/bthq-96040av1-fstf-12-i2c-cog.html
http://www.data-modul.com/de/products/passive_displays/graphic_displays/bthq-96040av1-fstf-12-i2c-cog.html
http://www.cadsoft.de/
http://www.analog.com/en/prod/0,,764_800_ADXL311,00.html
http://www.linear.com/pc/productDetail.jsp?navId=P1160
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To support applications relying on a long running time without changing batteries, the display power can be 

switched on and off by the microcontroller. Up to six displays can be controlled using one single board. As 

shown in Figure 44, one display can also directly be soldered on the board to minimise required space. A 21-pin 

connector (Figure 43 on the left hand side) connects a Particle base node with the sensor board, see Figure 44. 

The node provides power, controls the displays using I²C commands and reads and sends the analogue 

accelerometer values to a base station connected to a PC or LAN. 

       

Figure 44: Left: these two images show the final setup with one display added in the front and a Particle 

with a AAA battery placed at the back. Right: example content of the screen. 

Software implementation 

To control the display, we built a small stub for the EIToolkit. This Batron display stub is an example of a device 

specific stub designed on top of the technology enabling Particle stub. It supports a list of commands (such as 

write some text, display an image) reacting on corresponding EIToolkit packet messages. The message type is 

used to specify the operation name as well as its parameters – except when one of the parameters is some text. 

Text is always specified in the packet message body. The character used to separate the name of the operation as 

well as the parameters is, by convention, the underscore „_‟. 

Message type: <operation name>_<param0>_...<paramn> 

Message content: <text_param> 

As an example, „hello‟ can be written when the following packet is sent to the stub: 

Message type: text_20_10 

Message content: hello 

 

6.2.1.2 Applications and Studies 
The desire to use such displays in longer term studies meant that we needed to give some of those to people‟s 

homes for some period of time (see [Schmidt, Terrenghi, and Holleis 2007] for detailed reasoning). For that, an 

electronically and electrically working version is not enough. We had to have the display placed in different 

orientations on a surface. We also wanted to increase robustness and, especially, increase the acceptability of the 

display with regard to persons without a particular background or interest in electronics or technology. This was 

possible by designing and creating a robust housing for the display, Particle and battery, see Figure 45. 

      

Figure 45: Left: 3D model of the display housing. 

Right: materialised using a 3D printer (the ruler’s unit is centimetre). 
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Although, currently, few persons have direct access to a printing machine that creates tangible objects from 3D 

models, the value and potential of such technologies should not be underestimated in the process of prototyping 

applications. The casing we designed has several different tangible textures on its sides to provide a haptic 

sensation which side currently is on top. We also experimented with a rounded back. This allows two different 

modes of interaction, depending on the centre of gravity within the housing: when the centre of gravity is close 

to the display, the housing can be placed on each of its two long sides and it will not move. Moving, e.g., the 

batteries to the back, these two states are merged into one: the display tumbles over and rolls on its back. 

Depending on the application, this can be a desired behaviour. 

In our description, categorisation and study of presence and instant messaging systems [Kranz, Holleis, and 

Schmidt 2006], we used this display design as a tangible input component to set the user‟s state in messaging 

applications like Skype (e.g. „online‟ or „away‟). The right image in Figure 45 shows one possible labelling. The 

state in the application can be set using the Skype API. The orientation of the display, i.e. on which side it is put, 

or which side is on top, respectively, determines the current state. This setting has three main advantages over 

the standard mode built into messenger systems like Skype: the current state is visualised physically, the 

visibility on the desk makes forgetting to set one‟s state less probable, and changing one‟s state is much faster. 

Especially changing from any state to „offline‟ can be done with a flick of the hand in the moment while leaving 

the desk; the display is just thrown on its round back, see the leftmost picture in Figure 46. Although there can be 

made no direct link between states like „away‟, „invisible‟, „not available‟ and „online‟ to the four orientations in 

the centre of Figure 46, the participants in an informal study confirmed our assumption of a strong affordance 

between setting the state to „do not disturb‟ and placing the device with its display facing down. Unfortunately, a 

planned long-term study had to be cancelled because of too short battery life time. 

 

Figure 46: The six possible discrete states of the wireless display in a housing designed and fabricated 

especially for this board. These states can easily be recognized using the built-in accelerometers. 

There are six different positions in which the display can rest (shown in Figure 46). Shifting the centre of gravity 

to the back as described above, this number of possible states can be reduced to four. Integrating a small motor 

that shifts a small weight could also be used to remotely change the centre of gravity and, e.g., remotely and 

physically switch from the „online‟ state to an „offline‟ state by letting the display tumble on its round back. 

Environment-based Messaging 

We used the display and the sensor board (often with slight variations) for various projects. In one application 

that also demonstrates the utility of the EIToolkit, we investigated the use of situated messaging [Holleis, 

Rukzio, et al. 2006a]. The key idea is to enhance current communication possibilities. Almost all of the messages 

that are sent using email, phones, mail, etc. are designed to reach one or several persons. In contrast to that, we 

propose to direct notes to a specific location rather than persons. This places the message directly into a context 

where it might make much more sense than if it were sent to one or several people. As simple examples, 

consider „Don‟t eat the cake‟ posted to a display close to the fridge or requests like „Can anyone please feed my 

fish?‟ with possible answers „with what?‟, „done‟ or „already died‟. 

Often, messages are not of interest to people who are travelling elsewhere, especially when they are concerning 

coordinative or informative messages related to households or joint residences. A display at the house entrance 

can then take on the role of a reminder. Although it is still more appropriate to send important and time critical 

messages to the corresponding person, the system would save broadcasting a request to several persons if just the 

first person returning home would see it and could react on it. 
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Figure 47: Abstract architecture of the system that uses small situated wireless displays as end points of 

communication. The ‘controller application’ acts as a mediator to update changes in the database of 

messages. These messages can be viewed and answered using the displays themselves. The creation of 

messages is mainly done using a web browser based interface. (Taken from [Holleis, Rukzio, et al. 2006a].) 

Figure 47 shows the general architecture of the system. Large parts of the necessary software are actually taken 

on by the EIToolkit. Only the web interface and database connection had to be implemented independently. 

One characteristic that differs from standard messaging systems is that the sender has no idea if or when the 

message is read. Without having undertaken specific studies, general discussions show that people seem to have 

a rather optimistic opinion with regard to the addressee receiving and reading an SMS message without much 

delay. Getting a notification when a message has been delivered to the partner‟s handset or the possibility to 

request an answer for important messages adds in this understanding. Whenever a message is sent to a place, 

there are fewer ways of finding out whether the message has reached someone (or even the „right‟ person). For 

this reason, we added a rich set of input methods to the display without inadequately increasing the size. We thus 

discarded suggestions to add a small keyboard or keypad. A touch screen and a set of buttons also seemed to be 

inappropriate in some situations, e.g. wearing gloves when entering the house, having dirty or wet fingers in the 

bathroom or kitchen, etc. In the end we opted for simple gesture based input. Besides the orientation of the 

display as shown in Figure 46, additional ways of input have been devised: 

 Display number of unread messages: the standard position with the display facing to the front shows the 

current number of unread messages. 

 Read a message: this is meant to be an implicit gesture; picking the display up and holding it in some angle 

shows the first unread message; the active angle range has been determined by measuring the angle of the 

display with respect to the ground floor when people held it in the hand to read the contents of the screen 

 Proceed to the next message: tilting the display towards the body as if emptying the contents through the 

display switches to the next unread message. 

 Answer a message: there is no way of writing a verbatim answer. We use a version where the sender 

specifies up to three possible answers. By tilting the display to the left, to the right or turning it upside down, 

one of those can be chosen, see Figure 48. 

We were aware of some issues in the current design. For example, there was no way of leaving a message 

unread, e.g. if it was intended for someone else. However, at this stage we were more interested in the general 

acceptability and intuitiveness of the interface. Thus, based on the prototype described in the previous section we 

conducted a small user study with 8 students of media informatics aged between 21 and 25. The goal was to 

evaluate the overall idea of environment-based messaging and the specific concept of using gestures to interact 

with small displays in this context. At the beginning, we thus explained a specific scenario of such a system in a 

flat-sharing community. We said that every person in the flat has a small display in a private room and, in 

addition to that, there are displays in all public rooms like kitchen, lobby, or bathroom. The study took place in 

two parts. In every phase there was a predefined sequence of messages provided by the display and the students 

had to set predefined answers. 
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Figure 48: Wireless display used for situated messaging. Top left: a question with three possible answers. 

Top right and bottom left: a user chooses between answers by tilting in the direction of the arrows. 

Bottom right: a selection has been made. Note that the display is always visible and facing the user. 

First, the testers used the system without any knowledge about the provided functionalities and supported 

gestures. The goal of the first phase was to see how intuitive the gestures and the provided functionalities are. It 

turned out that most testers had considerable problems to figure out the provided functionality, especially with 

the intended gestures for interaction with the display: for example, some testers moved the display on the table 

because they thought that the arrows (see the picture in the top left of Figure 48) indicate a direction and not a 

rotation which had been our intention. Furthermore, their gestures were often performed too fast or short for our 

implementation and they were not able to set answers. Figure 49 shows some impressions. 

 

Figure 49: Some issues from the study about gesture input. The person on the left felt uncomfortable with 

the gestures; the other person held the display without being able to see the text on the display any more. 

(Taken from [Holleis, Rukzio, et al. 2006a].) 
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In the second phase, we started by explaining what features were possible and which gestures could be used. We 

were interested in seeing how quick people could learn the gestures we devised. In this phase, everyone managed 

to answer the given questions correctly as planned. Thus, we generally conclude that the set of gestures we chose 

were not intuitive in the sense that people did not guess them at first try. However, it requires only little effort 

and a short time to actually learn how to use them. An informal discussion revealed some subjective opinions 

with respect to environment-based messaging. In general, participants of the study liked the idea but had 

difficulties in seeing the advantages in comparison with standard SMS sending. Still, people understood the idea 

of sending messages to places instead of to people and valued the concept. Additionally, we found an additional 

requirement to include SMS and larger displays for sending and receiving messages using the provided system. 

One important outcome of the project was that, using the EIToolkit, we were able to split the implementation 

part such that the web interface and database connection could be implemented by a person without any 

knowledge about the technical details of the display or the implementation of the gesture recognition algorithm. 

It was also possible to adapt and refine the gesture recognition algorithms without incurring any changes in the 

user interface or back-end. We refer to [Holleis, Rukzio, et al. 2006b] for further project specific results. 

Mobile Selection Techniques 

To furthermore explore the possibilities of interacting with mobile devices in a certain environment, we 

conducted experiments comparing different input methods using mobile devices. In [Rukzio, Leichtenstern, et al. 

2006], we studied the differences of three selection methods. Using a mobile phone, users were asked to select 

devices such as TV sets, stereos, or other home appliances either by touching them, pointing to them, or by 

scanning the environment and selecting one from a list. Touching was implemented using RFID tags with the 

PMIF framework [Rukzio, Wetzstein, and Schmidt 2005] and the scanning technique uses a simple Bluetooth 

query to retrieve a list of available devices. The pointing method was more difficult to implement. Users should 

be able to select a remote device merely by pointing with their mobile device towards this device. There are 

several ways to realise this. One is to use markers on the objects and image processing algorithms using the 

built-in phone camera. Together with the use of infrared communication (IrDA), it has the disadvantages of not 

providing direct feedback to the user and of incurring a counterintuitive way of pointing with a phone. As a 

remedy, we added a small laser pointer module to a phone and built detection modules attachable to any object 

(Figure 50). The detection modules trigger an event whenever the laser beam is detected and send a unique ID to 

a central server using Bluetooth. In order to distinguish between a hit by the laser beam and sudden changes in 

ambient light or occlusion of light by passing people, the laser was modulated with a certain frequency. This 

made it possible to nearly completely rule out any misdetection. Ma and Paradiso already introduced this concept 

and used different frequencies for different pointers and could even transfer some data during the pointing task 

[Ma and Paradiso 2002]. Our detection modules were connected to the main application using EIToolkit 

technology. This allows, e.g., to easily exchange the modules with any other technology without incurring any 

changes in the back-end. For further details and results, we refer to [Rukzio, Leichtenstern, et al. 2006]. 

    

Figure 50: Prototype of phone with attached laser pointer (left) and a light detection module (right). 
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6.2.2 Connection to Third Party Platforms and Components 
Besides the various links to external hardware (e.g. the Particle platform), software (e.g. through the Skype or 

Winamp APIs), and communication protocols (e.g. HTTP) that have been mentioned before, some additional 

connections are worth mentioning to demonstrate the openness and compatibility of the toolkit. 

The following is an excerpt of the list of technologies that are currently supported by the toolkit. For more 

details, we refer to the source code and documentation that are available for each of those in the toolkit. 

 Serial line communication: sending and receiving data via serial line enables not only the communication 

with several prototyping platforms as described below but also the connection to several manufactured 

devices like set-top boxes or sensors. 

 Bluetooth communication: enables communication with microcontroller nodes equipped with Bluetooth 

transceivers as well as with devices with built-in Bluetooth such as most current computers or phones. 

 Open Sound Control (OSC) and other protocols: enables the use of various devices and programs based 

on these protocols, e.g. the graphical multimedia processing program Max/MSP73, the IDE d.tools 

[Hartmann, Klemmer, et al. 2006] and many more (see a list on the OSC project page74). 

 Streaming of data: see also Section 4.4; enables the use and creation of multimedia applications that 

continuously need to receive or send larger amounts of data since UDP messages are not suitable for 

streaming data. Support and sample applications have been implemented that use UDP control messages to 

negotiate a protocol and information about ports etc. and then allow streaming over TCP or RTP. 

 Keyboard event emulation: a powerful concept to control nearly arbitrary applications (even those without 

a dedicated, open API) and also to switch between applications; obviously, allowing that kind of control is 

connected with high security and privacy risks. 

One early, small-scale, embedded prototyping platform was conceived within the Disappearing Computer 

Initiative. The Smart-Its project aims at augmenting everyday objects with “sensing, perception, computation, 

and communication” [Gellersen, Kortuem, et al. 2004]. The nodes communicate either directly or via a radio 

module with each other or a PC over serial line. An EIToolkit stub can be used to handle the translation of 

incoming data through one of the PC‟s COM ports into EIToolkit messages and vice versa. 

Other platforms that have gained more attention in the past years are Wiring75 and Arduino76. Arduino boards are 

based on ATmega168 processors and offer several digital and analogue inputs and outputs. They are available in 

different form factors, supporting either USB, serial, or Bluetooth communication capabilities. They feature a 

custom made programming language and a graphical development environment based on Processing77. The 

target group includes hobbyists, artists, and designers. There are some projects that help users with only little 

background in electronics and hardware design to simplify and speed up the learning process. Fritzing, e.g., is a 

project from the University of Potsdam, Germany, that offers a graphical user interface for electronic design 

automation (EDA). A virtual Arduino board can be connected with a virtual representation of a breadboard (a 

board that allows simple adding and wiring electronic components). The software is then supposed to support the 

user in the process from the first designs until a finished printed circuit board (PCB). 

Wiring and Arduino can both interface with each other or a PC using OSC over serial line communication. An 

EIToolkit stub can thus be used to mediate between the boards OSC messages and the toolkit‟s UDP messages. 

The UNIX style component referencing mechanism of OSC neatly fits into the message type concept employed 

by the EIToolkit. A more detailed description of how to connect to those platforms using OSC can also be found 

on the d.tools project page78. 

                                                           
73 Cycling '74, Max/MSP development environment; project page: http://www.cycling74.com/products/maxmsp 
74 Open Sound Control, OSC; application areas page: http://opensoundcontrol.org/osc-application-areas 
75 Wiring, hardware prototyping platform; project page: http://wiring.org.co 
76 Arduino, hardware prototyping platform; project page: http://www.arduino.cc 
77 Processing, programming language; project page: http://www.processing.org 
78 d.tools, prototyping environment; project page: http://hci.stanford.edu/dtools 

http://www.cycling74.com/products/maxmsp
http://opensoundcontrol.org/osc-application-areas
http://wiring.org.co/
http://www.arduino.cc/
http://www.processing.org/
http://hci.stanford.edu/dtools/
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The following list is a sample of current rapid prototyping platforms that support people without extensive 

technological background in creating functional physical prototypes: 

 Gainer [Kobayashi et al. 2006]: the hardware consists of a Cypress microcontroller, a USB-to-UART 

bridge and an I/O module board. The connection to development applications such as Flash, Max/MSP, and 

Processing is realised through serial line. As such, the EIToolkit has a built-in stub for communication. 

 Phidgets [Greenberg and Fitchett 2001]: a commercially available plug and play platform based on 

configurable devices communicating by USB. On the PC side, application support is offered for .NET, 

Visual Basic, LabView, Java, Delphi, C, C++ and Python. The d.tools project group implemented an OSC 

wrapper for Phidgets which makes it available to the EIToolkit, see [Hartmann, Klemmer, et al. 2006]. 

 DaKa
79 („DatenKäschtli‟): a recent, similar project by the Zürich University of the Arts that offers a low-

cost, low-level USB module with several input and output pins. It also uses serial data communication and 

provides development interfaces for several languages such as C/C++ and Python. For that, a custom 

EIToolkit stub would have to be written. 

 CREATE USB Interface
80: another project providing a USB controller module. This particular board is 

based on a Microchip PIC18F4550 microcontroller. There exist wrappers to access its input and output 

capabilities from the EIToolkit, e.g., using OSC. One interesting aspect that distinguishes it from other 

works is the prototyping area built into the standard modules. 

 MAKE Controller Kit
81: an open source board based on an Atmel ARM7 SAM7X processor. A pluggable 

application board offers additional application-level features such as various networking interfaces (LAN, 

CAN (Controller Area Network), USB, etc.) and additional internal storage. The main board offers access to 

most low-level signals and allows attaching a variety of sensors and actuators. Applications can be 

developed in .NET, Processing, Java, Max, PureData82, Adobe Flash, or C/C++. Connections to a PC and 

the EIToolkit can also be made using serial line communication. 

 Scratch Sensor Board
83: the Scratch programming language is a free graphical programming environment 

targeted at young people developed by the Lifelong Kindergarten group at the MIT Media Lab [Monroy-

Hernández and Resnick 2008]. The Scratch Sensor Board has recently been developed to extend the possible 

applications to resources like microphones, light sensors, sliders, etc. It additionally has four generic pins 

that can connect the board to other external sensors using alligator clips. The board also communicates using 

the serial line protocol and can thus easily be connected to the EIToolkit. 

 Linux operating system based boards: in addition to the specific boards presented above, many devices 

are available that run some version of a UNIX / Linux operating system. An example is the Fox Board 

LX83284 running Linux. It offers two USB and an Ethernet interface in addition to four dozens general 

purpose I/O lines usable for communication using I²C, serial or parallel ports or sensor and actuator control. 

Depending on the model, EIToolkit compatibility is ensured through serial line access or can be easily 

created by, e.g., running a webserver on the module. 

 Voodoo-I/O (Pin’n’Play): as has been described earlier (see page 57), Voodoo-I/O is a platform developed 

by the Embedded Interactive Systems group at the Lancaster University Computing Department [Villar and 

Gellersen 2007]. The general idea is to enable users to completely customise a physical user interface, even 

during run-time. An interface is decomposed in its most basic components, i.e. sliders, knobs, buttons, 

displays, etc. Those parts are available as very small independent devices and are simply attached to a 

special material offering both power and communication facilities. Thus, interface items can be placed, 

grouped, and moved wherever desired. An EIToolkit stub has been created that packs information sent by 

the Voodoo-I/O input components over a USB connection into an EIToolkit message and can send 

commands to output components. As a sample application the events generated by a set of buttons were 

made available as keystrokes on a PC. A user can thus place buttons at arbitrary positions on a projected 

display equipped with the Voodoo-I/O substrate and control, e.g., the visible area in Google Earth85. 

                                                           
79 DaKa, hardware prototyping platform; project page: http://interaction.zhdk.ch/projects/daka 
80 CREATE USB Interface (CUI); project page: http://www.create.ucsb.edu/~dano/CUI 
81 MAKE Controller Kit; project page: http://makezine.com/controller 
82 PureData (Pd), dataflow programming environment; project page: http://puredata.info 
83 Scratch Board, hardware prototyping platform; project page: http://scratch.mit.edu/pages/scratchboard 
84 Fox Board LX832, see ACME Systems product page: http://www.acmesystems.it/?id=4 
85 Google Earth, maps and satellite images; product page: http://maps.google.com 

http://interaction.zhdk.ch/projects/daka
http://www.create.ucsb.edu/~dano/CUI/
http://makezine.com/controller/
http://puredata.info/
http://scratch.mit.edu/pages/scratchboard
http://www.acmesystems.it/?id=4
http://maps.google.com/
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6.3 Data Visualisation Tool with Exchangeable Components 
Often, a first step in developing applications depending on sensor input and actuator output is to understand the 

values that are being generated. The correct use of touch or accelerometer sensors, for example, may not be 

obvious from the beginning. Furthermore, one component can be slightly different to another component even if 

they are from the same type. This can be due to differences in the manufacturing process, different ways of 

accessing and interpreting the values, updated firmware, or external influences like temperature and humidity. 

Some applications are even little more than displays of some sort that show information from different sources, 

e.g. an umbrella stand with an integrated light issuing a reminder or warning depending on the current weather 

forecast [Schmidt, Kranz, and Holleis 2005], or picture frames that present information about other people‟s 

opinions [Holleis, Kranz, and Schmidt 2005b]. They completely rely on a well chosen portrayal of gathered 

information. However, the development of applications that go further than that also needs a good understanding 

of what information is available. To achieve that, a versatile tool for visualising a variety of dynamic values is of 

much value. On the other hand, producing a stream of values, be it as input from the end-user or as a simulation 

of existing or envisioned sensor input, is also often necessary in order to test and build a working application. 

DATAVIS
86 is a set of components that builds on the EIToolkit communication structure. The main visual 

application area serves as a simple container in which an arbitrary selection of components can be inserted. Each 

component serves either as a virtual sensor and visualises one piece or a stream of data (e.g. a bar graph) or acts 

as an actuator and provides a visual handle to produce one or a sequence of values (e.g. a slider). 

 

Figure 51: Sample components visualizing different types of parameters. The bars on the left are useful 

for single discrete or continuous parameters. The visualisation in the centre shows the relationship 

between two parameters, e.g. x and y coordinates. Scales can be omitted for qualitative analyses. 

Figure 51 shows a sample of possible output components. They are used to visualise information transferred 

using the EIToolkit. An arbitrary number of components (of the same type or of different types) can be displayed 

at the same time. They can be arranged and grouped to one‟s liking. To connect a component to data available in 

the toolkit, it is normally enough to specify the message type of messages passed through the EIToolkit. If a 

component accepts more than one message type (for example displaying a 2D point for two streams of 1D 

coordinates), a context menu allows quickly setting the specific inputs. All available properties can quickly be 

altered through context menus including, for instance, the colour of the data points, potential minimum and 

maximum values, and display of the current value as text. 

The current visualisation concentrates on a manual method where the user chooses the messages of interest and 

the accompanying type of visualisation. Another possible approach would be one that we applied in the concept 

for the attribute inspector in the Gravisto graph visualisation toolkit [Bachmaier et al. 2004]. The inspector 

presents a visual representation of the properties (called attributes) of graph elements. These properties are 

organised in a hierarchical structure. A node can, for example, have a label described by a label attribute. This is 

comprised of a string, possibly an icon as well as information about positioning. The position itself consists of 

several attributes like relative coordinates. Such a relative coordinate is then finally represented by two numbers 

                                                           
86 DataVis, data visualization components for the EIToolkit; project page: https://wiki.medien.ifi.lmu.de/HCILab/DataVis 

https://wiki.medien.ifi.lmu.de/HCILab/DataVis
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which are stored as primitive types (i.e. double values). In the same way, each EIToolkit message could be 

associated with a specific type. When data of some type A is passed through the messaging system, all available 

types are searched whether they are suitable to represent this data. If none is found, the type hierarchy is used to 

decompose A into its subcomponents and the procedure continued recursively. In this way, the most suitable 

representation of the data structure can be found automatically. However, the automated process implies issues 

like information overflow, rapidly changing visualisation structure, and reduced control over the representations. 

One important point became clear after using the DATAVIS system for several smaller projects (mainly involving 

a range of simple sensors like light or touch sensors [Holleis, Huhtala, and Häkkilä 2008], but also more 

complex ones like steering wheels in ongoing work about in-car user interfaces [Kern et al. 2008] or multi-touch 

systems based on, e.g., [Döring and Beckhaus 2007]): the diversity of possibilities to pass even one and the same 

value complicates the strive for a simple connection between data and visualisation. Those problems are well-

known and manifold solutions have been proposed starting from defining a standard protocol to sending 

accompanying type information (see for example the OSC protocol or more complex data transmission and 

message passing descriptions like CORBA). However, even in settings where multiple types of data have to be 

transmitted (e.g. information about content, position, recipient, and security breaches of an intelligent transport 

box [Müller, Holleis, and Schmidt 2007]), the structure and content of messages is rather well defined. 

Therefore, one possible approach of tackling such format issues is to let users choose between several ways of 

interpreting the data as well as a small scripting window to manually extract the information from within more 

complex messages like encrypted data. 

Currently we use the flexibility of the EIToolkit to dynamically insert stubs at any point in time and simply write 

another stub that translates the data from one representation to one that the current visualisation components 

understand. In order to make the visualisation tool more flexible, we added support for regular expressions to 

define input and output. 

Note that the separation into input and output components is not necessarily meant to be on a component level. 

Most components that allow the user to specify some value, e.g. a slider or a checkbox, are also suitable to 

produce a message containing the same value. As another example, the coordinate component in Figure 51 that 

shows two input values as x and y coordinate can also be used to accept mouse input and produce the appropriate 

coordinate events. 

Technically, the system is realised by using interfaces named InputComponent and OutputComponent for each 

type of component. Thus, components that exhibit both functionalities can simply implement both interfaces. 

The DATAVIS application then uses the reflection API of Java to locate and load available instances of those 

interfaces. For each of those, a button is generated that lets the user add instances of this component to the main 

interface. The button also gives a hint whether the component is used as input, output, or both. Components can 

be placed and moved freely within the window. 

 

Figure 52: Generic components used for data input (sliders, checkboxes, and a combo box). 
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To quickly emulate sensors or generate events, output components can be used to produce data in a visual way. 

Figure 52 shows sliders, checkboxes, and a drop down box where one can select from various values or custom 

values, all of which can generate and send EIToolkit messages. The example in the figure shows a simulation of 

a 3D acceleration sensor where each of the axes can be switched on or off with checkboxes and its values set 

using sliders. A combo box element is used to send dedicated start and stop events to the processing application. 

Input and output components can be added, removed, freely positioned, and adopted through properties at any 

time during compile or runtime. Since all components extend the standard Java Swing graphical panels, they can 

be used in any existing or new application based on Java Swing. In the spirit of the EIToolkit‟s several basic 

programming platforms, future work includes providing similar tools in other languages. 

6.4 Wearable Computing 
One specific area in which such a toolkit and the tools described before can be widely employed is wearable 

computing. It is in fact particularly suitable for this approach since it makes use of one or more controller units 

that process and communicate data from a multitude of different sensors and actuators. Especially in the early 

stages of trying and designing wearable controls, these components often need to be moved to different places, 

exchanged with other components (e.g., newer versions), and simulated (e.g. when an expensive control is not 

yet available or a particular use-case scenario difficult to provide). 

In two projects in close collaboration with the User Experience Group of J. Häkkilä at Nokia Research, Finland 

we looked into where on clothing and wearable accessories areas can be identified to be used as input location 

with a special focus on touch input and user acceptance (Section 6.4.2). We also extended input methods on 

mobile devices with an extra dimension by integrating touch sensors into a phone keypad (Section 6.4.3). Parts 

of this section are closely based on [Holleis, Paasovaara, et al. 2008] and [Holleis, Huhtala, and Häkkilä 2008]. 

6.4.1 Related Work within Wearable Computing 
Although electronics can be integrated into textiles, it is still difficult for garments to have all the characteristics 

of usual clothes as well as a network of sensors, input and output features, wireless connection, and power to run 

for a satisfactory period of time. However, there have been enormous advances in textile fabrication processes as 

well as in the understanding of integrating conductive yarn. [Marculescu et al. 2003] and [Post et al. 2000] give 

in-depth overviews about the subject of smart textiles. They cover early work like the Georgia Tech Wearable 

Motherboard described in [Park, Mackenzie, and Jayaraman 2002], as well as current work like the wearable 

digital MP3 player [Jung, Lauterbach, and Weber 2002]. The authors point to a number of challenges and visions 

as well as technological advances that drive research in the wearable computing community. 

In the following, we deliberately leave out a more detailed treatment of the huge range of wearable devices that 

are either carried or in some other way obtrusively alter the way people wear clothes. We refer to overviews such 

as [Rhodes and Mase 2006] and the review [Randell 2005] for pointers to such projects and products, and 

mention those only if they have a distinct relation to our work. 

A general overview and collection of issues, end-user needs and appropriate technology has been assembled 

through several years of experience with designers, technologists and industrial collaborators by [McCann, 

Hurford, and Martin 2005]. Most research done in the field of smart clothing can be split into four categories. 

Much effort has gone into a technology driven approach that will enable systems and applications to be built. 

This includes research in the miniaturization of devices and power supplies, wireless communication methods as 

well as the integration of conductive wires into available clothing. Other researchers and product designers have 

focused on providing ideas and solutions for very specific areas of applications and usage settings. This includes 

specific environments as well as particular tasks. In recent years, development support of wearable systems and 

smart textiles has received increased attention. This includes actual hardware components as well as software 

frameworks that aid in the connection and interaction of such components. Only few results can be found about 

actual studies that consider the usability and the acceptance of such wearable controls in general, see section 

„Studies with Wearables‟ below. The remainder of this section treats each category in more detail and gives 

further pointers to corresponding research projects. 
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Technology Driven Projects 

A huge step towards the goal of including electronic components like sensors, actuators and computing 

platforms into clothing is achieved when these elements can be integrated into the sewing process. The second 

important quality of such components must be to seamlessly integrate into the comfort and original qualities of 

the garment. One way of encasing electronic circuits in a way that they are protected from power and data lines, 

do not depart from the design of the clothing, and still enable the normal use like folding, is described in 

[Hannikainen, Mikkonen, and Vanhala 2005]. Button shaped casings are used to hide electronics, provide 

connections that can be sewn, and preserve a cloth-like look as buttons often appear for fastening pockets or 

even for mere design purposes. 

[Linz et al. 2005], show how to use flexible electronic modules and a way of connecting them with conductive 

yarn. The system allows using common fabrication processes and does not change the flexibility and feel of the 

textiles used. Although the requirements put on the yarn (e.g. that it can be sewn by a machine and must be 

conductive on the outside) place some restrictions on the material and their use, the reliability tests done by the 

authors show promising results. Metal wires are rather inflexible, however, and can reduce the wearablitity of the 

garment. Several companies now offer conductive yarn for little money. SparkFun offers one, e.g., which has a 

resistance of about 270 Ohms per metre87. The paper „Conductive Fabric Garment for a Cable-Free Body Area 

Network‟ describes a setup of a cable-free body area network which is based on conductive fabrics that are 

supposed to behave like normal fabrics [Wade and Asada 2007]. The authors provide a 2-wire bus transmitting 

power and data to sensor nodes. These can be located anywhere on a piece of garment and can take power from a 

single battery. Details about the underlying two wire bus system can be found in [Wade and Asada 2004]. Since 

one of the central issues in such conductive circuits is power loss because of the wiring, the placement of nodes 

will in practice be restricted. Wade and Asada set up a model to predict the resistance of large parts of a body 

shaped piece of textile. This can give hints as to where nodes should be placed most effectively. 

A closer presentation and examination of different types of yarn that can be used for such purposes as well as 

their properties regarding knitting, yarn control, relaxation, and geometry of knitted structures, is found in 

[Power and Dias 2003]. These projects provide enabling technology for creating smart textiles, especially for 

mass production scenarios. They can all be applied to several parts of our setups. [Orth, Post, and Cooper 1998] 

show what technology was already available in 1998 with respect to such fabric computing interfaces. 

Projects Targeted to Specific Tasks or Settings 

There are many more projects for specific application areas that use some instance of wearable computing than 

can be recounted here. However, the vast majority of those use larger additional devices like wrist keyboards or 

focus much more on the output or implicit input side. This includes a variety of head-up displays, headsets, 

watches or other body-worn displays well-known for several museum and tourist guide scenarios. Implicit input 

is implemented by motion trackers and systems using health monitoring sensors. Explicit and direct input of 

users has mostly been studied for various methods of text input. One of the famous examples is the Twiddler 

system which is a one-handed chording keyboard that has been demonstrated to outperform the multi-tap 

standard for mobile text entry [Lyons, Plaisted, and Starner 2004] (but requires a longer learning time).  

Concentrating on current mobile phones, there are currently two ways of data input: using buttons or a touch 

screen. The first approach provides tactile feedback, the second usually not. Some effort has been made in 

combining these by adding tactile feedback to touch screens (e.g. [Poupyrev and Maruyama 2003] who use a 

small vibrating actuator placed behind small displays), but the affordance and feeling of a button can only be 

simulated this way. To overcome the limitations of small keypads, several ideas have been followed including 

speech input and auditory UIs [Brewster 2002], but their usage can be limited, e.g. because of social situations. 

Gesture input has also been suggested, but such methods suffer from problems in recognition as well as in social 

acceptability [Ronkainen et al. 2007]. Obviously, attachable or fold-out keyboards could be used but these 

negatively affect size and mobility. 

                                                           
87 SparkFun conductive thread; product page: http://www.sparkfun.com/commerce/product_info.php?products_id=8544 

http://www.sparkfun.com/commerce/product_info.php?products_id=8544
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One approach that enhances conventional keypad input is to add a touch sensitive layer on top of the buttons. In 

this way, touches and slight presses on the buttons can be detected while keeping the normal look and feel of the 

buttons. This enables additional functionality and interaction types to be added to standard applications.  In 

[Rekimoto, Ishizawa, et al. 2003], the authors first presented a working prototype of a keypad augmented with 

capacitive sensors and introduce the notion of „previewable user interfaces‟. Similar to tooltips on PCs, touching 

a button can give information about what would happen if this button was pressed. The authors provide several 

application ideas; however, no evaluations with users have been reported. Moreover, there is no working version 

with a real mobile phone. [Clarkson et al. 2006] add a layer of piezoresistive force sensors, one below each 

phone key. This enables them to continuously measure force exerted on each key. It therefore adds a continuous 

dimension to each key and enables applications such as smooth zooming into images proportional to the force on 

a button. The authors present, among others, an application for text input that uses a technique similar to that 

presented in [Zeleznik, Miller, and Forsberg 2001] simulating a tri-state button. A disadvantage of the force 

sensors is that, below a certain amount of pressure on a button, the sensors do not register the touch. They also 

cannot distinguish between pressure in a pocket from the touch of fingers. 

PreSenseII further develops this concept by using a touch pad and adding force sensors below it [Rekimoto and 

Schwesig 2006]. Thus, a continuous space in three dimensions can be achieved. However, this looses the 

affordance and feeling of buttons and tactile feedback has to be simulated with a piezo-actuator. Again, no 

formal studies have been undertaken to get feedback from users. Although the touchpad clearly gives more 

freedom and possibilities, we argue in favour of the affordance and clear separation of buttons and see an 

advantage in leaving the current user interface unchanged to ease the process for users of getting used to such a 

new way of interaction (see Section 6.4.3). 

Other modern data input methods that can be used in conjunction with mobile phones but also in different 

settings include speech recognition and data gloves equipped with sensors to retrieve hand position and detect 

gestures (see, e.g., the glove of [Liu, Liu, and Jia 2006] which is used specifically for text input). Both 

approaches have advantages but also, among others, the disadvantages that they often lack social acceptance, 

need heavy processing and power, are still unreliable, and impose not negligible amounts of training on the user. 

[Rantanen et al. 2000] focus on the design for a specific application domain and give an example of the design of 

a wearable interactive system for a particular type of environment. They introduce a vest and a combined input 

and output device (appropriately called the YoYo interface) which is especially designed for an arctic 

environment requiring, e.g., the use of gloves during the interaction. 

A slightly different approach is taken by B. H. Thomas who demonstrates the e-SUIT in [B. H. Thomas 2002]. 

He shows how to augment a standard business-type suit with input and output features in a way to minimize the 

social weight, i.e. the “measure of the degradation of social interaction that occurs between the user and other 

people caused by the use of that item of technology”. This means that the location of buttons and other controls 

is not controlled by aspects such as ease of finding, accessing or using them, but more from a social acceptability 

point of view. However, as stated in the paper, issues of look and feel, location, etc. are open research questions. 

The placement of interaction items like buttons has been based on the author‟s judgment. We extend this work 

by presenting study-based results for the acceptance, location and type of controls to be used. 

Development Support 

To bring the development of wearable systems forward and to enable more people to implement their own ideas 

of smart textiles, it is vital to provide frameworks and toolkits. These can then be used to reduce the complexity 

of building such systems. In order to rapidly construct textiles using simple input, output, and processing units, 

one can employ the construction kit for electronic textiles recently published in [Buechley 2006] and [Buechley, 

Eisenberg, et al. 2008]. It offers temperature, light and pressure sensors, LEDs and small vibration motors, as 

well as a programmable microcontroller. The components are constructed in a way that helps connecting them to 

conductive wires. It is as such similar to the tools that we used ourselves to create the settings in our studies. The 

toolkit‟s rather bulky and standardized components do not seem to offer easy customization possibilities of their 

appearance, however. The toolkit includes a pressure sensitive button but does not use any touch sensing 
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components. Obviously, the highest obstacle in creating a running application is still the programming of the 

microcontroller to process all the data and implement the logics. However, it won‟t take long until such assistive 

systems like the d.tools project [Hartmann, Klemmer, et al. 2006] include hardware support for the special 

requirements of wearable computing. Other projects, e.g. [Witt, Nicolai, and Kenn 2007], focus more on a 

model-driven approach and abstract descriptions to enable the semi-automatic generation of different user 

interfaces for display devices like PDAs or head-up displays. 

Studies with Wearables 

Some interesting projects have emerged that can assist those wanting to develop or evaluate ideas and systems in 

the wearable domain. [Knight, Deen-Williams, et al. 2006] present a methodology to evaluate wearable systems. 

Among other things, they concentrate on physiological and biomechanical aspects as well as the comfort of 

wearing or carrying such a system. The last aspect is analyzed in more detail in [Knight and Baber 2005] who 

also give tool support in assessing the comfort of large wearable computers. More focused on the development 

process, [Hurford, Martin, and Larsen 2006] provide the interesting result from a survey that the user-centred 

design approach is still only rarely employed in the field of wearable computing. 

Of value for the work described here are also especially publications that concentrate on studying the location of 

controls on the human body. The well-known analysis from Gemperle et al. shows details about where on the 

human body solid and flexible forms can be attached best [Gemperle, Kasabach, et al. 1998]. This study focuses 

on places that are most stable during motions. The authors of [Thomas et al. 1999] briefly describe a study to 

find out where people would want to place a small touch pad during different activities like sitting and standing. 

The results do not seem to be entirely conclusive but suggest, e.g., that the front of the thigh is a good position 

for placing such an input device. The main driving factors of the study to find optimal placements of optical 

input devices on the human body described in the technical report [Mayol, Tordoff, and Murray 2001] are the 

possible occlusion by the wearer, a clear sight to the main workspace of the user, and movements of body parts 

that can influence the retrieved image. Since we do not use cameras for input and focus on public, every day use 

in our application scenarios, aspects like reachability and social acceptability are more important in this context. 

Even though the EIToolkit currently has the disadvantage of routing all messages and events through a common 

infrastructure, we argue that it can be well applied in this area of research. It offers the possibility of using all 

components available for the toolkit for no additional cost in terms of implementation effort. It also allows easily 

exchanging sensor and actuator technology without influencing the application itself. This supports quickly 

exploring a larger amount of design possibilities in a shorter time. 

6.4.2 Touch Input on Clothing 
One issue that arises in the domain of wearable computing is command input. Many applications in that area are 

supposed to augment or support specific activities. A general guideline for such projects is to seamlessly 

integrate technology such that the main activity is not disturbed. This means that feedback and output from, but 

especially input to the system, has to be integrated in a user friendly and unobtrusive way. One proposed solution 

is speech input technology developed to offer hands-free interactions. However, besides accuracy issues, the 

useful situations are often limited in practice, e.g. due to social situations where silent use is often preferred. 

Thus we looked into manual input and decided to concentrate on touch controls that can be integrated well into 

existing as well as specifically designed clothing [Holleis, Paasovaara, et al. 2008]. 

Advances in computing technology have led to computing devices in different forms to be present in our 

everyday life. Mobility is a phenomenon that has taken giant steps during the recent decade e.g. due to 

miniaturization, improvements in energy consumption and developments in communication infrastructure. The 

use of mobile computing devices such as mobile phones, mobile music players, and PDAs have become part of 

common practices, and overall omnipresence of the technology is gradually approaching the vision of 

Ubiquitous Computing [Weiser 1991] by becoming a truly integrated part of our society and personal life. 
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Despite of the high adoption rate with mobile computing, input technologies have not yet evolved to an optimal 

level in the means of usability. Almost without exceptions, the manual control of a mobile device happens with 

buttons integrated into the gadget. This results in a large number of small buttons placed in a small physical area. 

Such input devices can sometimes be difficult to use especially if they are placed, e.g., in a pocket or handbag. 

To overcome the problem, remote controllers and headsets with input buttons have been introduced. However, 

these need to be remembered by the users to be taken along and their physical shape significantly influences the 

comfort of carrying them. Additionally, if the control has to be held in one hand and controlled by the other, this 

leaves no hand free for other activities. Other suggested controls are integrated, e.g., in headphones or cables. 

This means, however, that the location of the controls is defined by the device and not by usability aspects. 

Wearable computing offers an interesting approach for integrating new input methods to mobile computing 

technology and hence shows potential in mobile HCI. The term „wearable computing‟ generally refers to a small 

computer attached to its user in some way other than holding it. The main characteristics of wearable computers 

are that they are always accessible by the user and that the user can continue various activities while using them. 

Wearable computing offers large areas available for placing input controls and can embed controls into users‟ 

normal clothing. It can utilize smart textiles which constitute an underlying technology for wearable computers 

(e.g. power and data lines integrated into clothing). An ultimate goal of wearable computing is that all 

technology is completely and seamlessly integrated into clothing or accessories like bags or standard glasses. 

Research on wearable computing has so far concentrated on demonstrating new concepts and applications. 

Systematic studies on the performance, preferences, expectations and acceptability of such technology have been 

rare. However, studying these aspects is important for creating usable and successful products, and can offer 

valuable insights for future designers of wearable computing applications. As has been described in [Rantanen et 

al. 2000], besides the technological and material aspects, a piece of intelligent clothing also has to provide the 

esthetical and functional properties expected from clothing in general.  

In this section we present different wearable prototypes controlling mobile technology that we developed in 

order to study the user experience with that technology. We present results of an extensive, two-phase user study 

concentrating on usability and acceptability issues with the technology, and discuss about general guidelines and 

lessons learned with designing wearable input technology. 

6.4.2.1 Developed Prototypes 
As has been mentioned in the previous section, there are a few projects that attempt to theoretically describe 

users‟ views on different aspects on wearable computing. Since, however, people‟s knowledge about the 

possibilities and opportunities that wearable computing offers is still restricted, we strongly argue in favour of 

giving people demonstrators and prototypes at hand. This can significantly increase the precision and validity of 

people‟s responses and is necessary to effectively find out about users‟ opinions, fears and acceptance of such 

ideas. We thus report on the set of prototypical devices and garment we built. These can be seen as an enabler for 

testing, demonstrating, and studying such applications. 

Base Technology 

The four prototypes developed for these studies all rely on the same type of technology although slightly 

different sensors and controller boards can be used for different packaging restrictions. 

The underlying principle of the touch sensors we used is capacitive sensing. This technique has been in use for a 

long time already, one of the notable early uses being the musical instrument invented by L. Theremin in 1919. 

Since then it has already been used in touch sensitive tablets, e.g. [Lee, Buxton, and Smith 1985] and nowadays 

the controls of modern stoves and washing machines are often equipped with touch controls based on capacitive 

sensing. Without going into too much detail, the method relies on generating an electric field the strength of 

which is measured. When an object such as a finger interferes with the electric field, the capacitance measured at 

the receiver changes and can be used to detect proximity or touch. 
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Figure 53: Two versions of capacitive sensing circuits. Left: A larger board with twelve sensors.  

Right: Flexible soldering of five sensors with a thickness of only 1.5 mm. 

The general hardware for our prototypes and studies in the area of wearable computing consists of three parts. 

The main part is a custom-made circuit board housing sensor chips to detect touch on its connected electrodes. 

Different layouts and versions have been built. One uses twelve QT11088 chips that can each be used to detect 

touch or proximity at one electrode. The rather big board shown in Figure 53 on the left is well suitable for 

applications where a small base size is not essential. It is easy to connect and the sensitivity can be adjusted to 

one‟s needs. Another version, shown in Figure 53 on the right, has been optimised towards a small size and is 

not built on a rigid PCB to allow it to be flexible in order to ease its integration into clothing. It uses only five 

chips and can therefore only detect touch on five electrodes. However, several of these can easily be used in 

parallel. A third version, shown in Figure 54, uses a single chip from Analog Devices, AD714289, that offers 

support for up to 14 sensors. It needs to query the sensor inputs sequentially but still manages to provide a 

complete update each 36ms. Besides a small footprint, it has built-in algorithms for automatic environmental 

compensation and adaptive sensitivity levels. A disadvantage for prototyping purposes is that soldering is very 

hard without professional equipment. 

 

Figure 54: Analog Devices’ AD7142 chip with up to 14 capacitive sensor inputs. Here, it is displayed 

attached to a phone and powered from the phone’s battery for the project described in Section 6.4.2. 

The second part of the hardware is responsible for communication. We use a Linkmatik 2.0 Bluetooth 

transceiver90 (Figure 55, right). It can be controlled by a simple serial protocol on the local side and also provides 

a serial line over Bluetooth which makes it very easy to connect to external devices like a PC. The EIToolkit‟s 

stub for serial line communication (see Section 6.2) can be used for this purpose. Program logic, i.e. initialisation 

                                                           
88 Quantum Research Group, QProx company page: http://www.qprox.com/ 

QT110 Family QTouch Sensor IC, product page: http://www.qprox.com/products/page-16035/qt110.html 
89 Analog Devices AD7142 programmable controller for capacitance touch sensors; product page: 

http://www.analog.com/en/prod/0,,760_1077_AD7142,00.html 
90 RF Solutions Ltd, Linkmatik 2.0 Bluetooth Transceiver 

 product page: http://www.rfsolutions.co.uk/acatalog/LinkMatik_2.0.html 

 data sheet: http://www.flexipanel.com/Docs/LinkMatik%202.0%20DS379.pdf 

http://www.qprox.com/
http://www.qprox.com/products/page-16035/qt110.html
http://www.analog.com/en/prod/0,,760_1077_AD7142,00.html
http://www.rfsolutions.co.uk/acatalog/LinkMatik_2.0.html
http://www.flexipanel.com/Docs/LinkMatik%202.0%20DS379.pdf


6 Case Studies – Applications Based on the EIToolkit 129 

of the sensors, interpretation of their output, and generation of events using the Bluetooth transceiver is done by 

a PIC 18F2550 microcontroller (Figure 55, left). It is a low-power controller that offers support for several 

protocols like USB or I²C. This renders it a valuable fit for applications in the wearable domain where power 

consumption is a big issue and many different sensors and actuators are potentially in use. Sensor values are read 

at a frequency of about 25 Hz. Whenever a change in the values is registered, an event is generated and sent 

through the attached Bluetooth module. 

  

Figure 55: Left: Microcontroller with connections for power and 2x5 input / output connections.  

Right: Linkmatik 2.0 Bluetooth module. Both measure about 30x25mm. 

The third part consists of the electrodes used to lead the touch sensitive areas to the desired locations. 

Characteristics of those electrodes such as shape, colour, and size can be determined on a project to project basis. 

Some possible implementations are introduced later and can be seen in Figure 56. 

   

Figure 56: Possible implementations of touch buttons; the conductive yarn can be sawn in specific shapes, 

thin layers can be placed on top, or conductive tape can be used to enhance sensitivity (top right). 

This platform enables designers to quickly add touch controls to nearly arbitrary clothing, accessories and other 

devices. The only need is to integrate areas with conductive material (which is available as strings, sheets, etc.) 

and attach them to the platform. The microcontroller and sensors can be powered using a variety of batteries 

ranging from about 3 to 12 Volt. Our prototypes either use an external small battery pack or are powered directly 

from a mobile phone‟s battery. An abstract overview of the system is shown in Figure 57. Any device that 

supports the serial communication over Bluetooth protocol can then wirelessly connect to the sensor board. We 

implemented applications that react on touch input running on Series 60 phones, Nokia N800 internet tablets and 

PCs using Java ME and Python for Series 60, Python for Unix systems, and Java / C++ in conjunction with 

EIToolkit functionality, respectively. 

 

Figure 57: Abstract overview of the architecture of the whole system. 
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For quickly implementing and testing prototypes, we used the EIToolkit infrastructure to generate a versatile 

platform to which different applications could be connected. An EIToolkit stub receives events from the 

Bluetooth transceiver and makes them available to EIToolkit applications. Another stub can then be used to 

transform these messages according to, e.g., the layout of the buttons or the purpose of the application. These 

messages are then suitable for stubs like the one controlling the Winamp multimedia player or the one emulating 

key presses that are used to control applications like specific music players, the Windows Media Player, or 

digital TV receiver applications. This setting allows simply and on-the-fly remapping between touch input and 

effect. This proved to be not only important for initial application development but also vital during user studies. 

Some people for instance wanted to have volume up and down functions swapped with respect to others. 

The whole system consisting of microcontroller, Bluetooth module, some additional required components, a few 

lights for status display and the AD7142 sensor is not larger than a small mobile phone battery, about 2x4x1cm 

in size. As a side note, the overall price of one such system is dominated by the Bluetooth module. The one we 

commonly use costs about 110€ as a single item. There are much cheaper modules that, for example, do not 

support the unnecessarily large range of up to 100 meters as does the Linkmatik module. Most of those are, 

however, more difficult to use in a non-automated process. Upcoming ZigBee modules promise a small 

footprint, good bandwidth, and reduced power consumption. All other items (microcontroller, sensors, etc.) add 

up to approximately 10€. This price is only valid for developers who want to use one or only a few of those 

systems – the price tag will of course be significantly less with higher volumes. 

We now briefly present four different types of clothing or wearable accessories that we augmented with touch 

controls based on the technology presented above. Afterwards, we go into some detail about two studies we 

performed using those components. The prototypes were backed by the EIToolkit which enormously facilitated 

conducting the study since we were able to adapt application behaviour quickly and on the fly. 

Phone Bags 

We created two sample versions of touch controls on off-the-shelf mobile phone bags, one is shown in 

Figure 58. The touch sensitive areas were made from thin conductive wires. The areas were intended to be 

integral parts of the existing design or shaped in ornamental forms themselves so as to constitute an interesting 

design that does not immediately suggest its button functionality. 

Building on the fact that many people use their mobile as a music player, we added five buttons for the common 

controls to start / pause a song, skip forward, skip backward, turn the volume up, and turn it down. 

   

Figure 58: Left: One of the phone bags with five touch areas seamlessly integrated in the existing design. 

Right: a smaller phone bag with just two touch areas, ornamental and blackened, thus barely visible. 

The demonstration implementation was mainly targeted to control the music player function of a phone placed 

inside the bag. A Java ME application directly receives Bluetooth messages and controls the playback of 

available music files. Since we built all the application with the EIToolkit and conformed to some simple 

messaging standards, it is also possible to use it – without modifications of any sort – to control an N800 internet 

tablet or a home cinema application running on a PC (as the one we describe in Study II below). 
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Helmet 

As a second example of a wearable accessory, a standard bicycle helmet has been equipped with two buttons 

realized as two larger touch sensitive areas. We undertook a quick set of trials to find out the optimal location 

and shape of these areas. It was chosen to be on the left and right side of the helmet such that it is easy to find 

them. This tackles the problem that one cannot see where the controls are while wearing the helmet. Since the 

touch controls do not need to completely cover the whole area, it was easy to integrate them into the existing 

design by using conductive foil to imitate the manufacturer‟s name and logo as well as some ornaments like lines 

or arrows, see Figure 59. The small controller and battery were attached to the helmet in a place supposed to not 

alter the safety features of the helmet. 

In this prototype, we also experimented with a small lamp attached to the front of the helmet that could provide 

some feedback to the user, e.g., blink when a control was touched. 

 

Figure 59: An off-the-shelf bicycle helmet equipped with touch sensitive areas on  

both sides (‘GIRO’ logo and the arrow). A lamp in the front can give feedback. 

Gloves 

We built a versatile test implementation of gloves with controls on the back of the palm that can be controlled 

using the index finger of the other hand. The necessary modifications of the gloves are in fact very small and can 

be implemented very cheaply. As can be seen in Figure 60, the index finger of the control hand has been 

extended with a small patch of conductive yawn to enhance the capacity flow to the sensor. The more expensive 

electronic parts (e.g. Bluetooth module) are meant to be attached separately. Since especially working gloves are 

replaced in shorter intervals, this ensures that the additional cost is kept to a minimum. In the test prototype, 

different sets and layouts of controls can be attached to the glove using a small plug and Velcro tape. In a final 

version, this could of course also be embroidered into the glove. 

 

Figure 60: The prototypes used to demonstrate the idea of adding touch input on gloves. Some 

configurable buttons are placed on the left palm. The right index finger is used to initiate commands. 
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Apron 

For a larger study of direct input on clothing, we built an apron equipped with three different implementations of 

a set of touch button (Figure 61) and a small pocket for the electronics and, possibly, a phone. One of the major 

issues in finding out about how and what people would want and accept, is the interplay between functionality 

and fashion. To find out more about this, we use three different button styles: visible button-like shapes, 

ornamental buttons, and nearly invisible buttons. 

In Figure 63, it can be seen how wearing the apron looks like. Sure enough, some male participants had the 

impression of wearing a skirt but got quickly used to it, especially since we placed some part of the studies in a 

kitchen scenario. 

There are three obvious reasons for choosing an apron. First of all, it is a stand-alone piece of clothing that can 

be employed, besides as a standard apron, as a remote control. More importantly however, it served as a 

simulation tool for controls embedded into a skirt, trouser, or pair of shorts. Such an approach drastically eased 

the study process. Several versions can be tested relieving participants from having to change clothes in the 

beginning and during the course of a study. In contrast to other attachments, the apron still conveys the feeling 

that it is closely attached to the body, moves with the motions of the wearer‟s body, and also otherwise behaves 

like a normal piece of garment. Second, this additionally enables the use of only one piece of technologically 

enhanced garment that fits all sizes and allows using one and the same sensor, processing and communication 

platform for different layouts and types of controls. And third, it fulfils an important prerequisite of our study 

that people have the freedom of slightly adjusting and relocating the set of controls on the body. This possibility 

of quickly and unconsciously rearranging controls gives much better results about optimal positions than just 

having users try to imagine them. 

 

 

Figure 61: The apron (top) and close-up of the 3 different designs of the touch buttons (bottom). 
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6.4.2.2 Setup of the User Studies 
In order to evaluate the wearable inputs, two user studies were arranged. Before each study, a pilot with one 

participant was held in order to refine the questions and to time the sessions to have an appropriate length. 

Participants 

The two user studies were done during July and August 2007 in Finland. The first study included 10 participants 

recruited as test participants in an ad hoc fashion. For the second user study, 8 participants were pre-recruited for 

a one hour test session each. In the beginning of the second study, the questions and tasks of the first study were 

repeated increasing the number of participants for the first study to 18. 

In the tests, there were an equal number of male and female participants, with ages ranging from 16 to 30 years. 

Young people were chosen as a target group for the study as such types of technology typically enter the market 

first at this group. This appeared to be true as all of the test participants had mobile phones and 15 out of the 18 

also owned MP3-players. To get an idea of how „wearable‟ their current habits to use mobile technology was, we 

also asked where they stored their mobile devices at the time of the test. Only one participant was carrying an 

MP3 player at the time of the interview, but all had their mobile phone with them. All female participants carried 

their phone in a bag but half of them responded to also have it sometimes in their trouser pocket and one person 

in her jacket pocket. With regard to male participants, 7 of 9 had the phone in their trouser pocket correlating 

with their handedness, and 2 carried the phone mostly in a bag. 

Study I  

The first user study was held in a public place, a city café, and consisted of a semi-structured interview during 

which the participant could try out all three prototypes (Figure 62). The gathered material was based on the 

direct answers to the questions as well as on observations. Three researchers were involved in the interviewing 

situation – one interacting with the user, and the other ones observing the users and preparing the prototypes. 

Each test session took approximately 20 minutes. 

In the beginning, ten background questions were asked. After that, the bag, helmet, and gloves were shown to the 

participant, in this order. With each prototype, the impressions and opinions of the participant about these were 

gathered. In the end, the participants were asked which of the ideas were their favourite and the reasons for that. 

Finally, they were asked about the benefits and obstacles they saw with wearable computing and to demonstrate 

where (on the body) they would like to place such input controls. To facilitate the question about placing the 

wearable input, we introduced the users with the idea of a near-to-eye display with the possibility to play 

computer games or watch videos unnoticed by others, thus needing a suitable set of wearable controls. 

   

Figure 62: Study setups in a public shopping mall for Study I and a usability lab for Study II. 
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Study II 

The second study took approximately one hour per participant and consisted of two parts. The first part of 

Study II was held in a semi-public restaurant and had an identical setup with Study I. 

The second part of the Study II was arranged in a usability lab immediately after the first part (Figure 62). The 

user was asked to perform tasks with wearable controls integrated into an apron, see Figure 63, where three sets 

of controls had the same function but a different look and feel (i.e. visible buttons, ornaments, and nearly 

invisible buttons). The tasks were set up to resemble two different environments, namely a train setting and a 

home kitchen scenario. 

The train setting simulated a small semi-public display integrated in the front seat of a train compartment. The 

user was asked to control a front seat display with apron buttons while sitting. Some tasks were: 

 Find a certain TV channel. 

 Turn the volume up and down. 

 Stand up („in order to get coffee‟) and perform some tasks. 

 Perform some tasks with a coffee cup in hand. 

This was repeated with different wearable controls (Figure 63). The order in which the controls were used was 

changed with each participant. 

In the kitchen scenario, home cinema devices (stereo and TV) were controlled using the controls on the apron. In 

this scenario, the user was standing in the kitchen, „preparing‟ a meal and should control first the TV and 

afterwards the stereo running in the background. Here, the tasks included navigating TV channels and changing 

the volume. After that, users were asked to control the music player with the same wearable controls. Here, they 

were additionally asked how they would switch between devices with wearable inputs and about their opinions 

related to settings, controls and tasks. 

 

Figure 63: The apron worn by a user and adjusted such that the visible set of  

controls is located on the upper thigh as used in Study II. 
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6.4.2.3 Results, Lessons Learned, and Guidelines 
In the studies we present here, the participants often had to rate a specific tool, type of interaction or give their 

opinion. We used an answer scheme according to a Likert scale which translates into numbers between 1 (very 

negative) through 3 (neutral / do not know) to 5 (very positive). For such quantitative data, we present mode 

values. Besides the subjective values of the participants, the observers also rated the interactions according to 

their own observations. There was a high correlation between the ratings (> 75 %), the main differences being 

that observers more often neglected difficulties at the first attempts of a user with a specific technique. This also 

indicates that users were not influenced too much by the „presenter-bias‟, i.e. possibly trying to be polite to the 

presenters. Given citations from non-English speaking participants have been translated to English. 

Wearable Accessories 

All participants from the studies carried a mobile phone with them at that moment. Common storage places were 

bags and pockets suggesting that it can indeed be of additional value to them to be able to control some 

functionality without needing to take the phone in the hands. 

The social acceptability is a large issue for the design of wearable devices and controls. As one of the initial 

questions, we asked where people would be prepared to use wearable controls in public. Only controls on a 

trouser, wrist band or separate bag received acceptable values (median values of 4 or more). Locations on the 

upper body like shirt or scarf were generally rejected (median values of 2 or less). 

Several participants who tried the devices mentioned that, because of a personal taste, they do not like dangling 

or attachable things. Those then suggested integrating the controls into clothing like a belt or trouser. This 

additionally motivated us to initiate the second study described next. 

Wearable Controls 

Participants in this study could put on the apron and control media playing in the infrastructure as described 

above. Generally speaking, the users were very positive about the applications and the ease of controlling; 

especially that they were not bound to a specific location in the room, that a line of sight to any of the devices 

was not necessary, and that there was actually no sign of any control or computing infrastructure. When asked 

about how to switch from controlling one device to another, all but one suggested using another special button 

on the clothing. This indicates that, when seeing how this interaction technique works, they do not think of 

physically walking to a device. However, if the choice of available devices grows, solutions to select the desired 

device like those we presented in [Rukzio, Leichtenstern, et al. 2006] are clearly superior than having one button 

to cycle from one to the next. 

Main Findings 

In the course of the studies as well as during the analysis of the results, several issues have been identified that 

should be taken into account by application developers in this area. This section goes into some detail about the 

four most important guidelines that we found. Afterwards, we more concisely mention several others in a 

lessons-learned section. 

There are No Clear Expectations on Layout and Meaning 

Even for simple interfaces involving only very few controls, there seems to be no clear expectation of the 

arrangement, layout and meaning of the controls. For the media player control (start / pause, next, previous, 

volume up, volume down) for example, we had 5 different interpretations of one and the same button layout 

(swapping, e.g., next and previous or volume up and down). Hence one could argue this should be customizable 

and that idea also appealed to the participants. We implemented this version for the N800 scenario. However, an 

interesting observation was that all of those who initially expected different behaviour than they found, accepted 

the given mapping and got used to the specific arrangement after at most 2 wrong attempts. This means that the 

need for configuration is maybe less important if the next guideline is followed. 
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Locating and Identifying Controls must be Quick and Easy 

For a successful design, it is essential that users can find the controls and see the functionality assigned to them 

visually and tactile. A tactile way of finding a control is important for all applications that should possibly be 

operated during other activities („blind‟). In our sample applications, for example, purely visual controls might 

be enough for the setting using the public display in the train seat. The other music player applications, however, 

are often in use while doing sports, cooking, etc. Not much surprisingly, the first reactions on the three control 

designs (visible, ornamental, invisible) were according to this statement: 

“Big buttons are ugly. It would be even better if the metallic ones were part of a larger ornament. 

The invisible ones „look‟ of course the best.” 

However, during the experiment, the observed and subjective grades given for the four tasks were lower for the 

invisible controls than for the visible or ornamental ones (however, statistically significant only with respect to 

the visible ones: a 1-tailed, paired t-test gives p < .03). As can be seen in Figure 64, people found it harder to use 

without looking (significant differences for all three button styles: pvisible < .001, pornamental < .01, pinvisible < .0001). 

Nevertheless, only the invisible ones made the scores degrade in a completely unacceptable way. 

 

Figure 64: Subjective ratings (mode) according to a Likert scale from 1 (negative), to 3 (neutral)  

to 5 (positive). Four tasks have been evaluated with three different designs; each of those was also  

done allowing tactile search only (‘blind’). 

This data suggests using controls that are embedded in the design, are visible and tangible as well as look and 

feel different for different functionality is the best choice. 

Ensure One-handed Interaction 

Besides the appearance of controls, care must be taken to ensure that one handed interaction is possible as this is 

expected from a wearable control. This should not be underestimated. In fact, several existing designs can be 

found that use, e.g., the sleeve to embed a keypad or keyboard. This means that both arms and hands cannot 

serve any other purpose at the moment of input. Avoiding this is especially important for use during specific 

activities like cycling, motor biking, running, skating, or working. A designer can thus also decide not to follow 

this guideline if a thorough investigation of the usage of patterns of the target group reveals it is unnecessary. For 

any generic application, though, it is vital. 

Provide Immediate Feedback 

Even a short delay between input and action can be extremely critical. We observed that people do not yet know 

or understand the way of operating touch controls. Although all our touch control designs have a haptic 

impression, all people initially used those expecting some tactile, „button-like click‟ feedback. Whenever there 

was no immediate consequence after a touch, people tried to push the electrodes harder instead of releasing and 

touching it again. In most controls we implemented a dwell time which required people to stay on a control for a 

short amount of time to tackle false sensor readings and to avoid accidentally initiated commands (see also the 

next section). According to observations and comments, this accounted for more than a third of the problems the 

users initially had in controlling the applications. The physical separation of controls and system and the several 

points of failure require a minimal delay between input and action (see, however, the guideline „Need to Tackle 

the Fear of Accidentally Initiated Commands‟ below about ways to avoid accidental uses). 



6 Case Studies – Applications Based on the EIToolkit 137 

Lessons Learned 

This section briefly describes more results that we were able to draw from the studies described above. 

Even Minimal Enhancements Can Convince the User 

A very positive and motivating finding was that, even if several scenarios arguably offered only a small increase 

in the ease of handling, such approaches are very much appreciated. For the designs used as remote control for a 

phone, more than half of the participants explicitly valued the indirect access: 

“That is useful. No need to take phone out while walking or cycling. I don‟t see any bad sides.” 

Additionally, the demonstration with the augmented helmet showed that people also recognize the value of 

having an additional motivation to using such safety devices. 

Preserve the Original Functionality 

For users it is paramount that the original functionality and way of use must not be compromised. This also 

includes safety concerns, e.g., when embedding hardware in a helmet. It especially applies to devices that have a 

distinct set of functions to fulfil like gloves. 

Need to Tackle the Fear of Accidentally Initiated Commands 

As mentioned above, we saw a timing dilemma in our experiments. On one side, users want to be sure that they 

don‟t operate a button when touching it by accident. On the other hand, longer required dwell time when 

deliberately touching often led to frustration as there is no immediate reaction. Mechanisms that provide 

immediate response and also have a key lock function need to be developed. Possible solutions include using 

double taps (as suggested in [Ronkainen et al. 2007]) or operate the sensors only when the palm touches a 

surface slightly above the controls. 

 

Figure 65: Preferences of people where wearable touch controls are acceptable. The darker the colour, the 

more often this place was indicated. The thigh was mentioned most often (standing postures only). 

Optimal Position of Controls Influenced by Posture 

The optimal position of controls with regard to the body shows clear trends over the whole population of 

participants (see Figure 65). However, body posture has an impact on optimal positions and hence the location of 

controls which are operated while standing may have a different slightly optimal location while sitting. Although 

we did not concentrate on further exploring this yet, we can say that all but one of the users raised the controls on 

the thighs when standing by about six inches. Several persons also wanted the button functions to be different 

while standing. We implement that using a built-in accelerometer and refer to, e.g., [Lombriser et al. 2007], 

[Mattmann and Tröster 2006] for projects and links to more advanced recognition methods. 
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It should be noted here that all of the participants stated that they judged detachable controls to make sense. The 

two reasons given were that the location could be controlled and it could be used for different clothing and can 

be reused even if, e.g., the gloves break. However, the cost of embedding the touch electrodes (and possibly 

sensors) is already minimal. Only more expensive parts like the wireless connection module must be replaceable. 

A possible solution for the location problem could be replicating sets of controls at different positions. 

More General Remarks 

For clothes as well as accessories, users put fashion forward as a main concern. This provides a good opportunity 

to improve the expressiveness of clothing (e.g. a technical style) but is a serious risk as people might not like the 

product merely because of its appearance and not because of its function or functionality. Including fashion and 

clothing designers for a commercial project is therefore mandatory. 

Besides fashion design, one of the issues we confirmed in the interviews is that there exists a variety of specific 

interface needs, in particular with regards to the gloves (e.g. for different work environments). 

Additionally, an often expressed issue is that people do not want to be concerned with another device to charge. 

Long battery life and ease of handling, storing and charging is critical. We propose to employ a simple plug 

mechanism to connect and draw power from the phone, e.g., implemented in the phone bags or a pocket (we saw 

that more than 60 % of the participants kept it in a trouser pocket). We refer to [Toney, Thomas, and Marais 

2006] for a way of simplifying the management (which includes recharging) of smart clothing with enhanced 

clothes hangers. 

Generally speaking, integration of controls into garment enables possibilities for interactions during activities 

like working or cycling that were difficult or not possible. This shows the utility of wearable controls but at the 

same time introduces new risks to these activities. 

6.4.3 Touch Input on Mobile Phone Keypads 
Command and text input on mobile devices is the focus of numerous research projects. Their small size heavily 

restricts the user interface design space. Whereas screen resolution has increased, thus allowing sophisticated 

GUIs, the input mechanism has remained rather unchanged through the history of mobile phones. The next 

section presents findings from a possible extension of small-sized keyboards focusing on the evaluation of 

several applications based on this idea: we added touch sensors to the keypad of a normal mobile phone, thus 

adding an additional dimension to the input possible with such a keypad. 

Technology and Prototype 

This project also demonstrates a design process supported by our EIToolkit approach. Although the final 

application was supposed to run on a phone independently of any infrastructure, the toolkit proved helpful during 

the iterative development process. As one of the first steps, for example, we implemented a simple PC 

application visualising the output of the touch sensors, see Figure 66. It is very easy to write and test applications 

in this way as they do not need to be compiled for, transferred to, and installed on a phone. 

 

Figure 66: PC application to visualise touch states on a phone’s keypad. More pressure is visualised with 

darker colour / red. When a finger exerts too much pressure, other keys are touched as well. 
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We used Flash Lite91 to develop applications for the user studies. This has the advantage that graphics and 

animations can be taken from the applications developed using the EIToolkit. It also enables the straightforward 

initial testing and evaluation of the applications and quick alteration and replacement of background themes. 

 

Figure 67: Nokia N73 with touch electrodes on the keypad, Microcontroller,  

Bluetooth transmitter and AD7142 touch sensor board (far right) attached to the top. 

Our prototype (see Figure 67) uses the AD7142 touch sensor chip based on capacitive sensing. It can detect 

touch on up to 14 electrodes (nearly) concurrently. Upon detection, an event is sent that contains information 

about the keys that have been touched as well as a value indicating the amount of exerted pressure. 

In order to place the electrodes on the phone keypad, a Nokia N73 phone was disassembled and thin isolated 

metal wires were placed around the keys. Figure 68 shows how the wires were routed in a way they do not touch 

and still cover a large part of each key. The wiring is nearly invisible and does not change the feeling and 

functionality of the keys at all. Since we had to place the additional sensor electronics on top of the phone in 

order not to change its way of holding and handling, it was a challenge to route the wires through the phone‟s 

body without collisions and without letting the internal components influence the sensitive measurement. 

    

Figure 68: Layout of the electrode wires on the keypad of the N73 and its use in the test applications. 

A problem with Flash Lite in its current version is that it does not support serial connections to Bluetooth 

devices. Inspired from the Flyer project92 (which relies on Python for S60 and requires a full installation of 

Python and the Python Script Shell), we developed two EIToolkit stubs as Java ME MIDlets that on one side 

connect to a Bluetooth module and on the other can forward data to Flash Lite using the XMLSocket connection 

available in Flash Player 3.0. Thus, touch events from the sensor platform received by the Java ME MIDlet are 

forwarded to the Flash Lite applications where they trigger a specific action like showing a pop-up menu. 

End of 2007, Nokia released its Nokia N81 8GB with a touch sensitive hotkey ring that can be used to scroll 

through menus (also planned to be on later phones such as the N96 but was removed in the production models). 

We deliberately did not use the hotkeys or joystick region of the phone to attach the touch sensors. First of all, 

the area is very small such that touch with fingers often leads to wrong detections. Second, we also planned to 

enhance text and number input. Lastly, there are many applications that use the keypad as main control or 

shortcuts since hotkeys are already dedicated to menu and options navigation. 

                                                           
91 Adobe Flash Lite runtime for mobile devices; product page: http://www.adobe.com/products/flashlite 
92 Flyer open source Python framework for Flash Lite; among other features, it uses XMLSockets to communicate data from 

Python to Flash applications; project page: http://code.google.com/p/flyer/ 

http://www.adobe.com/products/flashlite
http://code.google.com/p/flyer/
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User Interface 

On top of our touch keypad, we developed three distinct applications building upon a simulation of the graphical 

user interface of Series 60 phones. The applications present the phonebook and the image gallery. The basic 

functionality is the same as in the standard applications except the number keys are used to scroll and select.  

Info screen application 

The first application was used to introduce the touch-press feature. It is possible to browse names available in the 

phone book by pressing up and down and to look at the respective phone number by pressing the middle button. 

When merely touching the middle button, a window showing recent calls to this contact popped up (see 

Figure 69). This info screen disappears after a moment when the finger is released from the button. 

Pictures application 

The second application also uses the phonebook, but shows a collection of images related to the selected contact 

in the pop-up (see Figure 69, right). During the time the pop-up is shown, all available images can be scrolled by 

touching the up and down keys. This pop-up also automatically disappears after a short while without touch. 

     

Figure 69: Phonebook application with two types of pop-up info  

screens that appear when touching the select key. 

Gallery application 

The third application features a thumbnail gallery in which users can browse images and enter a full screen 

browsing mode by pressing buttons. In full screen mode, it is possible to zoom into and out of the image by 

simply touching the up and down keys. The sequence is illustrated in Figure 70. 

     

Figure 70: Image gallery application. While clicking selects, touching 

zooms in and out of the currently selected image. 

User Study 

The main focus of the study was to find out whether people understood the basic concept of touchable buttons, 

how they judged the user experience of this kind of interaction and whether they could find benefits from such 

an extension. We recruited 10 people for the tests, 4 female, all of them Finnish, between 20 and 50 years old, 

most of them having a technical background. All of them were right-handed, familiar with the S60 look-and-feel, 

used the phonebook daily, and the image gallery at least weekly. Besides telling the users that the buttons were 

touch sensitive, we initially did not give any details in order to see how intuitive the prototype user interface was.  
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In the tests, we had two different kinds of use for this technique. One was to use the touch sensitive buttons as 

enabling technology for pop-up windows showing additional information about menu items. The other one was 

to use it to implement shortcuts to commands such as zooming. The given tasks were: 

 Select „Lisa‟ in the two phonebook applications and touch the middle key. 

 Scroll the images in the (second) phonebook application and exit the view. 

 Select the image of the city in the gallery and find out how to zoom. 

The user tests took place in a usability lab furnished like a standard living room. A small video camera mounted 

on the phone was continuously recording finger movements and screen content. After the tests, people filled in a 

questionnaire where they could judge and comment on different usability metrics. 

Study Outcome 

Only 2 of the 10 participants had difficulties using the first application – mainly because there was a too long 

delay before the window popped up and users didn‟t keep their fingers long enough in the same position. We 

reduced the delay from 0.7 to 0.5 seconds for the other participants which clearly improved the situation. Despite 

of the delay, people perceived a clear difference between touch and press actions. 

The usefulness of the technique was rated high, see Figure 71, and participants found both pop-ups and shortcuts 

practical. The participants felt that touching can increase input speed and in general liked it. Our application 

made zooming easier and faster than in existing galleries with the S60 look-and-feel, and the interaction 

techniques were seen as a way to reduce the use of menus. One participant mentioned that the input technique 

could also improve possibilities to use the phone with one hand only, as today, for example, the copy-paste 

function in S60 phones needs to be performed with two hands. 

As application specific feedback, users mostly liked the idea of pop-up screens, but typically wanted to see some 

other information than recent calls, e.g. phone number, address, a picture, or application help. The opinion was 

split on the way the pop-up window was closed: one half liked that it disappeared automatically, the other half 

wanted to manually control when the screen would go back to standard mode. The image gallery application 

turned out to be the most popular one. Eight of ten users found out the zoom function without help, and after 

finding it, they all liked it. Here, dealing with the delay was somewhat problematic again.  

People were positive towards the interaction in general, but also saw potential issues. The concerns with the 

input method were mainly related to learnability and memorability. Participants were worried that they had more 

things to remember because they had to learn where touch is enabled and what functions the buttons had. Also, 

anxiety to learn the correct sensitivity for a proper use of touch-press was mentioned. However, some people got 

quite comfortable with the touch buttons and even tried whether scrolling movements would also work. 

Easy 

to use 
 

Hard 

to use 

Fun 

 

No fun 

Useful 

 

Not 

useful 

Figure 71: Feedback from the user study. Possible values ranged from  

‘completely agree’ to ‘neutral’ to ‘completely disagree’. 
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People are very reluctant in accepting erroneous or slow device behaviour. To have such touch functionality in a 

deployed product, the sensing system must therefore work extremely well. Achieving such correct behaviour is 

especially challenging when sensor placement and sensitivity should be optimized for a mass market. People are 

also reluctant to do calibrations. Based on our observations, we recommend people can switch the feature off. 

As Figure 72 illustrates, care must be taken to have enough spacing between buttons. When pressing one button, 

the one below is often also touched. This effect is especially strong if the keypad is used with the thumb and 

increases the farther away from the centre of the hand the finger are since they are then held more horizontally. 

 

Figure 72: When pressing a key, a finger often touches a lower key at the same time. 

There is a necessity of a small delay (we found a value of around 0.5 seconds to be sensible) between touch and 

triggered action since otherwise the action would always occur when pressing a button (without the intention of 

triggering it by touching). Since people do not like to wait, such touching interactions should mainly be used to 

display additional, non-critical information or to enable functionality with a large benefit (e.g. shortcuts). Often, 

people are hesitating before they initiate an action, and offering help or information at such times seems to have 

large potential. However, we also observed that people often move or keep their fingers on a button without a 

particular intention or just to reflect about something, potentially resulting in erroneous actions. Also, based on 

our observations, wide and varying use of touch enabled button functionality can lead to confusion and can be 

hard to learn and remember. Thus, UI designers must be very careful in using touch for such purposes since 

otherwise it might quickly become more annoying than helpful. 

The EIToolkit functionality helped in designing, testing, and creating the described applications. In the following 

chapter, we show how the development of such applications can be even more simplified and accelerated using a 

specifically designed development environment for mobile phone applications. We also present more examples 

of applications realised using the touch features of out prototype. 
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7 Prototyping Mobile Device Applications 
 

This chapter introduces a development process and environment to quickly generate 

prototypical applications on mobile devices. It provides a low threshold and a high ceiling and 

enables people with various backgrounds to create applications. It makes use of the EIToolkit, 

user models, and many of the processes described in previous chapters. 
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First, we give an introduction to the concept of mobile phone programming, the design goals of the MAKEIT 

environment, and a succinct treatment of related work (7.1). We then show how mobile phone applications are 

developed, describe how our framework enables simple prototyping, and detail the role of programming by 

demonstration in the design and creation of applications (7.2). After treating some implementation specific 

issues (7.3), we describe how a separate code generation is used to develop for different target platforms (7.4) 

and list interactions and features currently supported by MAKEIT (7.5). A short evaluation and discussion of the 

system concludes the chapter (7.6). 

Parts of this chapter have been published as [Holleis and Schmidt 2008]. 

7.1 Introduction and Related Work 
Mobile phones have become a ubiquitous computing platform outnumbering desktop computers. A large portion 

of current mobile phones offer means for third parties to develop custom software for them. Most notably many 

of them run Java ME, Symbian OS, or the Windows Mobile platform. Modern phones provide rich ways for 

interaction, reaching from speakers, microphones, and keyboards, to gestures, cameras, and colour touch screens. 

Additionally, more and more such devices include additional sensors, e.g. for acceleration (e.g. Samsung 

SGH-E760, Nokia 5500 / N96, Apple‟s iPhone). Interaction with physical objects using barcodes is a common 

feature in many phones and some devices can read smart labels (e.g. NFC reader in the Nokia 6212). 

Furthermore, phones can be extended with external sensors connected via Bluetooth, e.g., GPS, step counting 

and ECG (electrocardiograph). Thus, current mobile devices and phones provide a promising platform for many 

pervasive computing applications. 

These basic technical capabilities enable developers and interaction designers to create novel interactive 

experiences using mobile phones in domains such as data access via physical artefacts, context aware 

applications and mobile health applications. Although APIs exist that allow accessing sensor values, it is still 

often a challenge to create sophisticated user interfaces that exploit all these capabilities. In comparison to 

conventional interaction techniques, there is yet little established knowledge about how to build compelling 

applications using these new means. Hence developments often rely on trial and error which can be costly. In 

most cases, novel experiences require functional prototypes to be built and evaluated. We believe that 

prototyping and tool support is essential to make this process efficient. Development environments support the 

implementation on source code level and to some extent the design of the interaction flow (e.g. in the NetBeans 

Visual Editor). Some of them have been mentioned in Section 4.1 about general software and hardware toolkits. 

There is, however, a lack of tools supporting prototyping interactive mobile applications that make use of 

advanced interaction techniques using internal and external sensors. 
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To support development, a user-centred design process is often employed based on paper prototypes. It is 

commonly agreed that at least partially working prototypes are essential in order to efficiently develop 

interactive applications, to assess new interaction concepts, and to convey ideas and interfaces to end-users as 

well as developers. Including target users in this phase can be especially important for pervasive systems. 

Various arguments and examples can be found in a special issue on rapid prototyping in the IEEE Pervasive 

Computing magazine [Davies, Landay, et al. 2005]. 

With our system, we address the gap between low-fidelity paper prototyping and fully working implementations. 

The MAKEIT framework (short for „mobile applications kit estimating interaction times‟) is used to create 

functional, high-fidelity prototypes of applications that support advanced interaction techniques and run on 

mobile devices. In particular, we focus on the need to easily create and change applications while at the same 

time providing assistance in keeping estimated end-user interaction times low. We thus build on the concept of 

programming by demonstration in order to keep the initial threshold low and follow a similar process to paper 

prototyping by building a state graph supported and maintained by the system. 

In order to help the developer evaluate novel applications, we integrate testing with user models as described in 

the last chapters. A goal is to enable people who are not experts in user modelling to make use those in order to 

derive usability measures. To our knowledge, this is the first project that combines an environment for quick 

prototyping of mobile device applications with the direct support for the integrated creation and application of 

predictive user models. The contributions of this project include: 

 An integrated development environment for high-fidelity prototyping of mobile phone applications using 

programming by demonstration. 

 A connection to other development tools such as the EIToolkit which enables the simple use of advanced 

interaction techniques within the developed application. 

 An underlying model based on state graphs that can validate parts of the application logic, detect flaws in 

the navigational structure, and suggest alternatives. 

 An integrated model that can estimate task completion times early in the design process without needing to 

deploy a prototype on the actual target hardware platform. 

Concepts and projects related to the MAKEIT system fall into four categories. First, several rapid prototyping 

environments have been suggested. Second, programming by demonstration has been employed by some 

projects, mostly for specific areas or end-users. Third, there has been much research in the area of user models 

and some applications can be used to generate user models. Finally, very little support is available to combine 

application development tools with the generation and exploitation of user models. 

Rapid Prototyping Environments 

The first category subsumes all kinds of rapid prototyping and authoring frameworks as well as tools that can be 

used to quickly create prototypes of mobile or pervasive applications. A comprehensive review of this area has 

been given in Section 4.1. Some of those also follow a state-based approach but, in comparison to MAKEIT, they 

all are restricted in one or several of the following aspects. 

 They are strictly based on a set of available components like text boxes and lists and do not allow quickly 

adding free drawings and designs. 

 They do not directly support advanced interaction methods such as gestures or using RFID tags. 

 They have not been built to integrate non-functional properties like KLM parameters.  

 They do not use underlying models that can be exploited for consistency checks or usability analysis. 

 The built prototype depends on the presence of a PC as a common gateway and data store. 

 They do not leverage a single, well-known development environment for these multiple purposes. 
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Programming by Demonstration 

A strong concept in the area of end-user application development is programming by demonstration. The idea is 

to remove the need for explicit textual or graphical programming. By simply performing an action, the computer 

system is supposed to understand the intentions of the user and can then use this interaction to trigger some 

action. In practice, however, this is not so simple to realise. One of the hard questions is how to abstract from the 

demonstrated actions (and how to know whether abstraction is necessary and in what magnitude). If an example 

interaction is opening a door, there must be some means to specify whether this is equal to any door to be 

opened, the same door to be opened by different angles, etc. 

The idea itself is rather old, see for example [Halbert 1984] or [Nardi 1993] for overviews. Specifically in the 

area of prototyping for pervasive computing, the paradigm of programming by example or by demonstration has 

been directly followed, e.g., by Topiary [Li, Hong, and Landay 2004], HP Mediascape [Hull, Clayton, and 

Melamed 2004], and DENIM [Newman, Lin, et al. 2003]. They allow specifying triggers of actions, which are 

comparable to the actions used in the MAKEIT environment. Topiary and Mediascape concentrate on location-

based applications where certain places and regions are indicated on a map. Subsequently, actions can be 

triggered based on movements related to these regions. The DENIM project shows similarities to the approach 

presented here, letting the designer create transitions between states. The integration of conditionals, i.e. actions 

that depend on the properties of a state is planned; this would reduce the number of states visible at the same 

time as do corresponding approaches in MAKEIT. The system, however, requires its user to learn several types of 

gestures, is designed for web page generation, is not open and easily extensible for external components, and 

does not integrate well with later steps in the application development process. It will be interesting to see how a 

planned, more powerful visual programming language will influence the capabilities and usability of the system. 

In [Hartmann, Abdulla, et al. 2007], the authors describe the Exemplar system with which users can demonstrate 

specific events based on continuous sensor data. The variety of interaction reaches from simple thresholds to 

more complex pattern recognition algorithms. Their approach to ease the automatic adaptation of the 

demonstrated actions is to keep the users in the loop while iterating and refining the provided examples by 

graphically adjusting parameters. Another example of programming by example relevant to our work can be 

found in the description of the CogTool [John and Salvucci 2005]. It is a storyboard-based system that can 

generate simple Keystroke-Level Models by demonstrating a task on a mock-up of a mobile device. This is 

similar to part of the development process suggested in the environment described in this chapter. 

It should be noted that programming by demonstration is different to visual programming in general (as 

employed, e.g., by [Monroy-Hernández and Resnick 2008] in the Scratch language). iCap, for example, is a 

visual language that uses condition-consequence (if-then) rules and relations between people, places and things 

to define the semantics of an application [Sohn and Dey 2004]. Even though the threshold to creating application 

can be much lower than when using textual programming, more understanding and knowledge about concepts, 

rules, and syntax is required than with programming by demonstrating action sequences. 

User Modelling Tools 

There are many strategies and methodologies for usability evaluations of user interfaces. These reach from 

think-aloud (users tell what they are thinking and why they are doing certain actions) to log file analysis to 

questionnaires and surveys. Ivory and Hearst give an extensive overview of 132 usability evaluation methods 

[Ivory and Hearst 2001]. One analytical approach involves user models such as GOMS and KLM. Ivory and 

Hearst‟s work can serve as a reference for those methods and also shows a description of several tools that are 

able to generate user models. We explicitly mention several tools that had a high impact or are more widely in 

use today in order to compare them to our own system. Some approaches mentioned in Section 3.2 in the area of 

cognitive user modelling such as ACT-R, EPIC, and SOAR are related but are mainly used to describe and 

formalise such models. In this section, we concentrate on those tools that aid developers without deep knowledge 

in cognitive modelling in some way to employ user models. 
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GLEAN helps in automating the process to derive usability metrics from GOMS models [Kieras, Wood, et al. 

1995]. A user interface developer has to provide a GOMS model and a set of benchmark tasks. In addition, the 

system needs an abstract description of the user interface to enable the system to interact with it, e.g. to know 

when a hand movement between mouse and keyboard occurs or where objects are in order to find and modify 

them. GLEAN has the advantage that it directly uses cognitive concepts such as a simplified model of working 

and long time memory to interact with a user interface. However, a property that complicates the generation of 

predictions for non-experts is the language that has to be used to describe the GOMS model and the tasks. 

GOMSL, a machine readable version of the natural GOMS language (NGOMSL) prescribes the structure and 

syntax of goals, methods, and operator descriptions. In addition, the need for manually describing a 

representation of the interface makes the system rather cumbersome to use. Still, GLEAN has been demonstrated 

to model differences between interfaces in a similar way as hand-made models but needs only a fraction of 

modelling time. 

A similar approach is followed by Apex [Matessa, Remington, and Vera 2003]. It differs in implementation 

detail and in that it supports CPM-GOMS modelling which enables parallelising certain actions. It provides a 

framework defining a formal specification and a procedural description language with Lisp syntax to specify the 

methods to perform a sequence of steps. In order to let steps that only use one of the cognitive, perceptual, or 

motor resources (CPM) run in parallel, templates are defined to bundle, order, and prioritise unit operators. Apex 

is quite powerful in automating part of the process to generate a GOMS model and offers a visualisation as a 

PERT chart. However, the initial specification of the methods and tasks still requires that a user has much 

knowledge about the underlying system and can express procedures in a programming language. 

In order to further simplify the generation, modification, and execution of GOMS models, Quick GOMS has 

been introduced in [Beard et al. 1997]. It features a tree-like visualisation of the hierarchical structure of a 

GOMS task. The graph can directly be manipulated and properties of each component is visualised. Using this 

hierarchy, interesting elements of the tasks can be expressed. For example, relative probabilities can be set that 

specify what method will be used how often with respect to other methods for the same task. Execution time 

predictions are given for the unit operators and are propagated to their parent. This means that the predictions 

can easily be seen for each sub-goal at any time. Quick GOMS allows for much easier and quicker alterations in 

a user interface than possible in GLEAN and Apex. However, there is no connection to the real user interface 

being developed and it cannot be tested whether the model conforms to the interface or whether some errors 

have been introduced. We refer to [Baumeister, John, and Byrne 2000] who provide a more detailed comparison 

between GLEAN, Quick GOMS, and other tools to generate GOMS models. 

A well-known project called CRITIQUE attempted to deal with some of the issues pointed out with these tools 

[Hudson, John, et al. 1999]. A similarity with our MAKEIT tool for mobile device programming is that users can 

demonstrate the tasks they want to have modelled. For this, CRITIQUE draws from a specific user interface 

toolkit named subArctic in order to automatically generate a GOMS model. This process requires a selection of 

heuristics to be applied and the authors use a set of patterns to match events to operators and filter unimportant 

events such as minimal mouse movements within a double click. A comparison of an example model to real user 

data revealed that some assumptions, e.g. on the experience of the users, had to be reconsidered. One of the 

strengths of the CRITIQUE system is that small changes within the model can easily be done since a different 

method can quickly be demonstrated or additional operators be added. The tight connection to the subArctic 

interface toolkit complicates the combination with other systems or applications and we judge the effort of 

needing to program in C++ or learning a new language for user interface descriptions as too high for being 

accepted by a broad audience of non-experts. 

Besides these rather complex projects, there are some approaches that mainly consider ways to visualise KLM 

and GOMS models and action sequences. Since we concentrate more on the generation and interpretation of 

these models, we refer to a recent project called ExperiScope [Guimbretière, Dixon, and Hinckley 2007] for an 

example and overview of that part. It provides many features such as clustering of patterns and combines KLM 

with Buxton‟s Three-state Model mentioned in Section 3.1. Many other systems, notations, and visualisations 

describe models of tasks and applications. We refer to [Mori, Paterno, and Santoro 2002] for an overview of 

those methods and projects including, for example, a treatment of UML to model such tasks. 
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Prototyping Tools Integrating User Models 

Prototyping tools that explicitly incorporate user models are hardly available. Some applications incorporate user 

traces into the process of developing a user interface prototype. SUEDE [Klemmer, Sinha, et al. 2000] and 

WebQuilt [Hong et al. 2001], e.g., record user test data for speech and web UIs, respectively. The major 

difference to our system is that we do not rely on actual user data but use validated interaction models. This 

drastically reduces time and cost for reaching decisions regarding projected user interaction times. 

There is only one project where a prototyping tool is suitably connected to user modelling: John et al. introduce 

the idea of the CogTool application in [John, Prevas, et al. 2004] and refine it in [John and Salvucci 2005]. 

CogTool offers the possibility to create quick designs of applications based on storyboards encoded as HTML. 

Users then record the execution of tasks by interacting with these storyboards with the mouse. From these action 

sequences, a model is generated and described in the ACT-Simple language, a construct similar to KLM 

[Salvucci and Lee 2003]. Some interaction types are automatically translated, i.e. mouse actions are converted 

into appropriate actions for the target platform, e.g., a mouse click to a tap with a stylus. The system has 

subsequently been used to integrate the modelling and simulation of user interface interaction as secondary tasks 

while driving [John, Salvucci, Centgraf, et al. 2004]. A slightly more specialised and fully integrated version is 

described in a follow-up [Salvucci, Zuber, et al. 2005]. The whole process of designing a mock-up interface, 

demonstrating tasks, specifying scenarios, running simulations, and displaying results has been packaged into a 

single application. Similar to the MAKEIT environment, CogTool provides a visual tool to define user models. 

However, MAKEIT additionally focuses on providing support for the actual implementation by generating source 

code, incorporates more non-functional parameters, and supports a wider range of interactions and extensions. 

7.2 Creating Prototypes of Mobile Phone Applications 
This section describes the architecture and interface of the MAKEIT development environment that allows 

quickly and simply prototyping applications for mobile devices. A common screen-based interaction process is 

reflected in the way it helps designing applications. A state graph data structure represents the possible flow of 

actions in a program. By creating such a state graph, the designer lays out the functionality supported by the 

application, the possible sequences of user actions, and the resulting visual behaviour of the mobile device. 

Furthermore, the system is able to semi-automatically adorn transitions between states with additional 

non-functional parameters, such as KLM operators. The framework can then retrieve predictions of the 

interaction time of any possible (i.e. defined) sequence of actions by a potential user. These predictions are based 

on a modelled, deployed version of the application running on a real phone. The system is designed to support a 

variety of interaction techniques as listed below. Some common ones are directly integrated, whereas others can 

be customized and easily added. For some of those interactions, a detailed discussion can be found in our paper 

about physical mobile interactions [Rukzio, Leichtenstern, et al. 2006]. Example interactions currently used are: 

 Media Capture: capturing audio and video, and storing or potentially analysing it is used in many 

applications, e.g. [Holleis and Schmidt 2007]. 

 Visual Markers: using the camera in the phone, marker-based interactions can be supported; this includes 

simple recognition of barcodes but also advanced augmented reality applications, e.g. [Rohs 2005]. 

 Proximity: based on proximity, actions can be triggered or application behaviour can be changed; one 

example is scanning for Bluetooth devices, e.g. [Mahato et al. 2008]. 

 Gestures: accelerometers built into phones offer many opportunities for interaction based on movements 

and gestures, e.g. [Kranz, Freund, et al. 2006]. 

 RFID / NFC: to capture the identity of a tagged object, RFID and NFC tags provide easy means; to 

implement physical mobile interactions, the identifier can be linked to further content, e.g. [Boyd 2005]. 

 Location: GPS or cell IDs are widely used to retrieve information about the user‟s location enabling 

location based services and interactive applications; e.g. [Hull, Clayton, and Melamed 2004]. 

 External sensors: ECG and oxygen saturation are examples of physiologic parameters that can be sensed 

for applications reacting to body signals, e.g. [Nuria and Flores-Mangas 2006]; other sensors can e.g. 

retrieve orientation [Holleis, Kranz, Winter, et al. 2006] or touch [Holleis, Huhtala, and Häkkilä 2008]. 
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7.2.1 Generating the Application Behaviour 
The overall concept of MAKEIT is similar to that of paper prototyping where typical steps are to start with a 

picture of a mobile phone with an empty screen and then to simulate pressing some key which results in 

preparing another picture and drawing content into the new screen. Next, the user is allowed to, e.g., touch an 

NFC tag and another screen is prepared. This process is repeated until all important states have been prepared. 

This is exactly how one can work with MAKEIT. However, it eliminates the difficulty of keeping track of the 

stack of pictures and the mapping between screens and actions. 

One part of the user interface presented to the developer comprises an image of a modern mobile phone featuring 

the standard set of keys and an empty display (see Figure 73). All keys can be pressed using the mouse to emit 

events to the framework running behind the visualisation. Next to the phone are several buttons that can be used 

to simulate advanced interactions with the phone. Examples include taking a picture or touching an RFID tag. 

Since not all of those actions are supported by all phone models and new types of interactions are added as we 

speak, this list of buttons is automatically generated from an XML properties file which can easily be extended 

and potentially depend on the features of the phone model in use. Using the action buttons and the controls 

provided by the mobile phone, the developer can simulate actions with a simple click. This triggers a dialog in 

which the interface designer or developer can specify the new contents of the display. It can be a simple string or 

a URL / filename of a web page or image. Simple drawings can also be made in place, which is especially useful 

for people working with graphic tablets and directly mimics paper prototyping. 

By repeatedly linking actions to visual elements, a linear sequence of screens can be created which represents the 

execution of a task in an application; however the majority of applications are more complex requiring richer 

application logic. This motivates the use of a state graph as defined in Definition 3 on page 96. 

 

Figure 73: The keys in the simulated phone and additional interaction techniques can be  

chosen and the content of its display is updated accordingly. 
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7.2.1.1 Programming by Demonstration 
The MAKEIT environment promotes the following steps to be executed in order to generate an application taking 

the expressiveness of user models into account during this process: 

 Specify the contents of the mobile phone screens (type text / use an image / draw). 

 Specify actions (press a key / activate a complex action like a gesture, RFID reading, ...). 

 This builds a state graph 

 Switch to demonstration mode and demonstrate a sequence of actions. 

 This specifies a path in the state graph 

 Use the model to check and secure specific properties. 

 Automatically generate mobile phone code 

 This generates a MIDlet and NetBeans project files. 

 Adapt for final program. 

 Optionally run a user study. 

The arrows on the right indicate a potentially iterative process. After demonstrating certain tasks and analysing 

the built model, certain properties of the application have potentially been found that call for adaptations in the 

initial application design. Similarly, a user study run with the built application can still lead to necessary changes 

that can easily be incorporated into the state graph. 

In the following, we go into further detail on the description and the actual use of the development environment. 

7.2.1.2 Building the State Graph 
MAKEIT provides a visualisation of the set of possible states as well as the transitions triggered by actions. A 

further part of the user interface presents the state graph described in Section 5.1.2. Initially, this comprises only 

the start state showing an empty phone screen. 

The moment an action is triggered, a new node is created in the state graph and an edge is added between the 

current node and the new node. The edge is labelled with the name of the action (Figure 74). A dialog then 

prompts the developer for the content of the new screen. The new node is automatically selected, indicated by 

coloured dots in the corners of the rectangle representing the current screen contents of the mobile phone. After 

specifying the content of the new screen, the next action will continue the sequence and generate another node. 

This can be used to quickly create a vertical prototype that allows executing defined functionality in detail 

whereas not all functions that the application will provide when finished are supported. 

 

Figure 74: When triggering the ‘Touch NFC’ action, a new state is generated and a  

transition from the start state is added labelled with the action’s name. 



150 7.2 Creating Prototypes of Mobile Phone Applications 

The creation of the state transitions is not restricted to a linear sequence. When a node of the state graph is 

selected with the mouse, the defined contents will be updated on the virtual phone‟s screen and the application is 

brought into this state. Demonstrating an action can be done in whatever state the application has been set to. 

This adds the possibility of leaving a state through different actions. One possible application is to implement 

different ways to reach the same goal, e.g., press a key, make a gesture or touch a tag. The left part in Figure 75 

shows the application that the key „8‟ is used to browse through a list and another one, „5‟, to activate the 

selected item. 

Adding edges to nodes, i.e. transitions to states, is only limited by the number of different actions allowed for the 

present state. Following the Disambiguation Property (two edges with the same source node must have different 

associated actions), transactions that already exist for a specific state cannot create a new edge. Instead, if such 

an action occurs, the existing transition is fired and the system changes the current state to the target of the edge. 

Such inputs from the user do not change the state graph. In this way, any sequence of tasks that has already been 

designed can be easily walked through and tested. This highly adds to the utility since people often go back to 

the beginning to recap the task at hand. 

 

Figure 75: Reducing the number of visible states by condensing several nodes. 

Merging States 

One of the potential problems with state graphs is that the number of states can grow rapidly. The maximum 

number of states succeeding a node is only bounded by the number of different actions allowed for this node. 

However, in our analysis, we found that most applications, besides screens with highly dynamic content that are 

much better implemented in code anyway, do not need many screens. In addition, there are several possibilities 

to reduce the number of states. One is to condense several nodes into a super-node, as is often done to visualise 

and work with large hierarchical graphs (see Figure 75). We successfully used this approach for example in a 

graphical system for describing graph queries [Holleis and Brandenburg 2004]. 

A visually as well as semantically clear approach is based on the observation that applications often return to the 

same state after different sequences of interactions. Situations in which this occurs afford the merging of equal 

states. In the case of the visualisation chosen for this project, this means that it must be possible to combine two 

nodes (as shown in Figure 76). We define a merging operation in Definition 5 as follows: 

Definition 5 (Merge Operation) 
Merging two nodes S1  S and S2  S in a graph G = (S, A), i.e. merge(S1, S2), means  

 for all nodes X  S such that an edge a = (S1, X) exists, add an edge a’ = (S2, X) and copy the properties of a to a’; 

all edges a of the form a = (X, S1) are treated analogously 

 delete S1 (and all adjacent edges, i.e. those that have S1 as source or target node) from G 

Merging is only defined if no edges are added which would conflict with the Disambiguation or the Start State Property. 

By definition, the Reachability Property is not affected by any merge operation. 
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Figure 76: Merging two states by simply moving one node (empty) over another. 

Merging states can introduce cycles to the graph which theoretically drastically complicates the automatic 

calculation of a visually pleasing layout of the state graph (it can, e.g., break planarity, i.e. the property that a 

graph can be drawn without any edge crossing). However, in our experience, most graphs seem to be fairly easy 

to layout since most cycles are very short. By moving the nodes in the view, the graph can also be manually 

adjusted anytime. Figure 76 shows how merging can quickly be performed in the user interface by simply 

dragging one node on top the other node. 

Example 

The example in Figure 77 demonstrates that the merging feature is absolutely essential for many situations like 

the aforementioned use of a list of items. Scrolling up and down through a list would repeatedly generate the 

same states. The figure shows a list that can be scrolled by pressing the number keys „2‟ and „8‟. The „5‟ key 

selects the current item and switches to a state that handles the selected option in the list. This selection method 

can easily be replaced by, e.g., a gesture without inducing any other change in the graph. This example also 

illustrates that a node can be the target of several edges as the according state can be reached in several ways. It 

also keeps the number of states low by having only one state („loading …‟) that is responsible for displaying a 

reaction to the selected option. One could also split the node in a way such that pressing the selection key will 

lead to a different state for each menu entry. Any combination of the two approaches is also possible. 

 

Figure 77: Designing list scrolling. When an item is selected (key ‘5’), the same state is reached, regardless 

of the previous state. Coding could then be employed to show a dynamic screen. 

Another example for having several transitions to one state is an exit or error state. Applications may have a 

dedicated exit state, for example an „off‟ state. Anytime an error occurs, an error state can be reached which 

offers fallback solutions. The approach can in general not be used, however, for a generic message state 

(presenting, e.g. a message like „This action is not yet supported‟) since in most cases the application flow 

should return to the state that initially triggered the message. This would contradict the Disambiguation Property. 
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Design Space 

We emphasise at this point that neither the state graph nor the tools to create it claim to be a full-fledged visual 

programming language. We leave difficult tasks to the places where it can be done best: the source code of the 

mobile application. The design space of the applications that can be created by using this mechanism only is 

clearly limited. For example, information cannot directly be passed from one state to the next, and it is not 

known which steps have led to a certain state. Although features like that could be added by using a richer data 

model, the simplicity of the chosen approach suffices to quickly start with and concretely test ideas and different 

interface and interaction designs. In [Holleis, Huhtala, and Häkkilä 2008], we added touch sensors to the 

standard keypad of a mobile phone. Using the MAKEIT framework, we were able to quickly develop and test 

several variations of a contact list showing preview information when the selection button is touched or an image 

gallery with zooming by touching. The contact list application with a list of four names, e.g., needs only 4·2 = 8 

states. More details can be found below in Section 7.5.3. 

7.2.2 Analysing Tasks during Application Creation 
One of the important aspects in designing applications is to see and understand if and in what ways a task can be 

executed with a proposed design. During the design of the flow of an application, i.e. the creation of the state 

graph, a path finding algorithm can be employed. Selecting a start state sa and a target state sb, an algorithm finds 

all possible paths p(sa, sb). Remember that a path is defined as a sequence of directed edges that connects one 

node with another. In this case, we limit the notion of paths to simple paths that do not contain a node or edge 

more than once. This avoids cycles and bounds the number and length of all paths by the number of nodes and 

edges in the graph. Note that a path does not necessarily exist between two arbitrary nodes. On the contrary, 

sinks, i.e. nodes that are not the source of any edge in the graph (for example states that indicate that a device 

cannot be reused) can only be the target node in a path, but no paths will start from those. However, the 

Reachability Property of the graph dictates that there will always be at least one path p(sS, s) from the start node 

sS to any other node s in the graph. 

 

Figure 78: Two paths from the node ‘OK to Start’ on the left and the ‘Go Shopping’ node on the right. 

In the graph visualisation, a path is shown by highlighting its edges as well as the traversed nodes of the path 

(Figure 78). There are potentially several paths between two states which can all be browsed and highlighted. 

The paths can additionally be used to provide an analysis of non-functional properties. This (and why there 

appears a „Best Path‟ button in Figure 78) is explained in the following sections. 

7.2.2.1 Adding Non-Functional Properties 
Non-functional properties are all characteristics not directly concerned with the semantics of an element. In the 

case of the transitions in the state graph, this means attributes of an action like the time necessary to execute it, 

the effort needed, the pleasure generated, or the privacy affected by it. In the following, we concentrate on 

interaction time characteristics and build on knowledge about the Keystroke-Level Model introduced previously. 

We have already seen that, by triggering actions defined in the state graph, a task can be sequentially walked 

through and the state of the mobile phone is updated accordingly. To be able to additionally incorporate actions 

necessary to use the operator model of KLM, this part is elaborated in the user interface. After a version of the 

application has been defined using the state graph, the user can switch to simulation mode. The user interface is 

then extended with several additional actions. These KLM actions can also be easily configured and new 

elements can be added whenever new types of interaction are added in future phones using a property file. 
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In simulation mode, all actions can then be executed as defined in the state graph. Furthermore, additional KLM 

operators can be added at any time, in any state, in any order. Most of these actions have been introduced in one 

form or the other in the part treating the mobile phone KLM we developed in Section 3.4. Table 15 gives a quick 

overview over the meaning of some of the standard operators, see [Holleis, Otto, et al. 2007]. The general idea of 

those operations is that additional information about how a task is executed can be gathered and stored. The 

mentioned actions mostly concentrate on interaction times. 

Table 15: Some non-functional operations supported in simulation mode. 

Operator Value Details 

Initial Act (average, self initiated, …) 4.61 sec. Time necessary to retrieve and look at the phone 

Mental Preparation 1.35 sec. Time to mentally prepare for the next action 

System Response variable The time the system needs for computations 

Pause variable Interrupt for some amount of time 

Distraction (slight, strong) 6 %, 21 % 
Actions done while being distracted are slowed down 

on average by some factor 

Move to Ear / Move to View 0.95 sec. 
Time needed to move the phone between a state 

looking at the screen and one close to the ear 

Point Somewhere (average) 1.00 sec. 
Time needed to move the phone to a specific point 

(e.g. to touch a tag there) 

As a simple example scenario, consider a poster that displays some products and advertises a URL. The task is 

simply to browse to this given website. A designer thinks about implementing one or more of the following three 

options: enter the URL by hand, take a picture of a marker on the poster or use the phone‟s NFC capabilities to 

retrieve the URL from a tag embedded in the poster. A simple state graph that is generated in less than two 

minutes is shown in Figure 79, left. Since one exit state has been attached to all three interaction methods, 

selecting the start and the end state will list all three interaction paths. 

As next step, the details for each path can be demonstrated: in simulation mode, a separate window shows the 

action sequence of the currently highlighted path. In the example, from the start state, the hotkey „h3‟ is pressed 

and the system prompts for the URL. The act of touching an NFC tag incorporates four steps: a unit of mental 

preparation is set to account for the time needed to prepare oneself for the interaction; in the rather coarse 

modelling of the KLM, this also includes the vague focusing on the target tag (action „Mental Preparation‟). 

Next, the movement of the phone is done (action „Point Somewhere‟). After the actually reading the tag („Touch 

NFC‟), the system needs some time to process that tag („System Response (NFC)‟), see Figure 79, right. There 

are heuristics that can be used to add operators not specified as actions (such as mental acts). However, the 

developer can always add such operators while stepping through the actions of the current path. 

     

Figure 79: Left: Three different ways of specifying a URL: using an NFC tag, entering  

the URL with the keypad, and detecting a visual marker using the phone’s camera. 

Right: Actions for the NFC interaction from the graph shown on the left. 
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7.2.2.2 Analysing the Augmented Path 
The times for the described actions of the NFC interaction in the example are: hotkey (0.16 seconds), mental 

preparation (1.35), pointing (1.00), touching after pointing (0.00), system response time (2.58). This results in a 

total interaction time of roughly five seconds. The analysis of the other two interaction techniques results in 9.9 

seconds (for an URL of 25 characters) and roughly six seconds (for a visual marker). In general, each path 

between start and end state can be associated with a usability measure such as the time that executing this path 

would take in real life. The system can then find the „best‟ path which will be the interaction method that takes 

the least amount of time. In this example, the algorithm would suggest the NFC interaction. It should be noted at 

this point that several of the operations like reading NFC tags always result in the same sequence of KLM 

operators. Those additional non-functional actions can automatically be retrieved and saved. Missing steps, e.g., 

an anticipated period of mental preparation can thus be easily added to the transition in question. 

As a further example, we recently used the mobile phone KLM to model different ways of interacting with more 

complex physical posters, e.g. for buying public transportation tickets. A graphical browser-based phone 

application was tested against one that used NFC tags embedded in the poster. Surprisingly, the model predicted 

that the text input variant would be considerably faster (two minutes instead of close to three minutes). We ran 

several tests with different users and found the model to be remarkably correct. Interestingly though, all users 

had the false subjective impression that they had been faster with the NFC version which points into the possible 

direction of adding such subjective opinions to the modelling system as well. 

It is also important to see that such action sequences, augmented with interaction information, can not only be 

used to compare one method to another. A representation of the modelled sequence of actions is extremely 

useful to find bottleneck parts of the interaction sequence, i.e. those that are responsible for long interaction 

times. In the scenario under consideration, one of the problems identified was the time lost with checking the 

feedback of the phone after each single reading of a tag. A proposed solution is that detailed feedback is only 

given after a series of interactions. This can easily be changed in the state graph of the application by removing 

the intermediate feedback states and adding a later feedback state. 

7.3 Implementation 
Implementing applications using many different programs, hardware and software platforms, communication 

protocols, and programming languages is, in general, difficult. To counter that, we started the open source 

project EIToolkit which has been described in Chapter 4. To briefly recapitulate, it is a component-based 

architecture in which each component is represented by a proxy-like object called a stub. These stubs translate 

messages between a general communication area to the specific protocol of the devices and vice versa. Any 

component can then register to listen to messages directly addressed to it or broadcast to all. This enables 

exchanging components on the fly. The system also allows changing the protocol of the messages on a per 

component basis. The toolkit currently supports a simple proprietary format over UDP or TCP as well as OSC 

and RTP. The last two are widely used protocols for audio and multimedia systems and streams. Several 

microcontroller platforms can be connected through existing stubs as well as over a serial connection. Sample 

stubs are available, e.g. for media players or direct MIDI output. See Chapter 5 for more details. 

Independently of the MAKEIT application, we implemented the KLM semantics in an EIToolkit application as 

described in Section 5.3.1. Thus, we have a component that is practically platform-independent and can be used 

remotely. Specific control messages choose the type of KLM, e.g. specific to mobile phones or to another set of 

controls. After that, queries are sent to the stub presenting information of an action. For a key press of a hotkey 

on a mobile phone, a sample message might contain the ID „HotKey‟ and parameters „1 thumb‟, „expert’. The 

KLM stub browses its known operators and, if available, sends an answer containing a time value back to the 

sender of the query, e.g. the MAKEIT system. This toolkit integration proves to be quite useful since the 

implemented KLM can easily be updated and extended without changing the applications that make use of it. It 

also allows applications to employ the KLM without direct knowledge about its implementation and manner of 

operation. A further advantage is that a KLM analysis can often be attached to applications (provided they 

present some information about their use) and interactions can be analysed without the need to especially design 

the application for that purpose. 
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Data Structure of the State Graph 

For the implementation of the state graph and its visualisation, we reused most code from our graph visualisation 

toolkit called Gravisto [Bachmaier et al. 2004]. The data structure provided by Gravisto has been adopted 

without changes. Beside the basic features of graphs consisting of nodes and edges, the toolkit provides a 

mechanism to attach arbitrary data to any of the graph elements (nodes and edges) present in a graph. This data 

is stored in the form of hierarchically structured attributes of primitive as well as composed types. This structure 

is extremely helpful when several pieces of data have to be managed with graph and matches well with our 

attribute mapping function (see Definition 1 on page 96). The graph elements are used to store the states and 

contents of the display as well as information about the transitions between states and detailed information about 

timing and other model parameters. 

The creation and manipulation tools of Gravisto were adapted to ensure the concordance with the state graph 

properties and to enable additional features like merging states. This was easily possible due to the modularity of 

the code structure. Some visual features have been added to correctly display state images. Gravisto also enables 

storing a generated state graph in a file in the standard graph data format GraphML93 which is based on XML 

and supports custom attributes. A saved state graph can then be loaded without data loss and the connection to 

the mobile phone visualisation in the user interface is immediately updated. 

Figure 80 shows part of a serialisation of a state graph to GraphML. Most details regarding graphical properties 

such as node shape, size, and position have been omitted. The code generator described in the next section 

creates a canvas (i.e. screen) for each of the states and a command for each of the transitions. Depending on the 

type of transition, the trigger of each command is implemented differently. Keystrokes, for example, are 

implemented using a special call-back function of the Canvas class used to display screens. 

 

Figure 80: Annotated excerpt of the GraphML description of the state graph displayed in Figure 79. 

                                                           
93 GraphML, file format for graphs; project page, http://graphml.graphdrawing.org 

<?xml version="1.0" encoding="UTF-8" standalone="no"?> 
<graphml xmlns="http://graphml.graphdrawing.org/xmlns/graphml" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"  
xsi:schemaLocation="http://graphml.graphdrawing.org/xmlns/graphml http://graphml.graphdrawing.org/xmlns/graphml/graphml-
structure-1.0rc.xsd"> 
 
<key attr.name=".directed" attr.type="boolean" for="graph" id="graph_directed"/> 
<key attr.name=".content" attr.type="string" for="node" id="node_content"/> 
<key attr.name=".transition" attr.type="string" for="edge" id="edge_transition"/> 
 
 
<graph edgedefault="directed" id="G"> 
   <data key="graph_directed">true</data> 
 
   <node id="n0"> 
      <data key="node_content">OK to start</data> 
   </node> 
 
   <node id="n1"> 
      <data key="node_content">Specify URL</data> 
   </node> 
 
   <node id="n2"> 
      <data key="node_content">show page</data> 
   </node> 
 
   ... 
 
   <edge id="e0" source="n0" target="n1"> 
      <data key="edge_tranisiton">h3</data> 
   </edge> 
 
   <edge id="e1" source="n1" target="n2"> 
      <data key="edge_transition">Touch NFC</data> 
   </edge> 
 
   ... 
 
</graph> 

</graphml> 

 

states 

transitions 

attributes 

http://graphml.graphdrawing.org/
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7.4 Mobile Device Source Code Generation 
The whole semantics of the application under development is stored in the state graph. Nodes contain the data 

for states and the contents of the screens that will be displayed on the device. Edges represent actions from one 

state to another and additionally store information about non-functional parameters associated with transitions. A 

dedicated framework component transforms the state graph into a MIDlet, i.e. a program for the Java ME virtual 

machine which can be compiled, moved to, and run on many modern phones. Since the created application may 

need to be complemented with code changes, e.g. for dynamic screen contents, project files are generated that 

can be opened in the NetBeans development environment. The program can then be extended, compiled, 

downloaded to a phone, and tested there. Alternatively, the files can easily be imported into other development 

environments such as Eclipse. The manifold features of an integrated development environment such as syntax 

highlighting, choosing the target platform and debugging can thus be exploited. Of course, this also eases 

making quick alterations and additions to the code itself as is currently necessary for implementing the dynamic 

content of a screen. 

In this process, the state graph is converted into a set of conditional statements. If an event named a occurs in a 

state S, the state T is loaded if and only if there is a transition (S, T) labelled with the action a. This is a common 

and easily understandable way to program such applications. In a mobile phone application, each screen is 

represented by an object. We use a custom sub-class of the Java ME class Canvas to write code that can load and 

draw images as well as render text to the screen. It is a low-level implementation of a screen and can also receive 

key events from the phone‟s keyboard. 

It should be noted that it is the responsibility of the phone‟s operating system to choose how exactly to display 

hotkey actions. If, for example, several hotkey actions are defined, those can be each associated with a different 

physical key or they could all be packed as items in an options list opened through a single physical key. This 

might not be the look and feel intended by the programmer using our state graph approach. However, this is a 

restriction given by the current mobile phone programming model and not by the code generation module. To 

the best of our knowledge, all existing emulators suffer from similar problems. 

     

Figure 81: Left: template for the methods that create an image from a file.  

Right: instance of this template with $name$ = ‘image0’ and $relpath$ = ‘/hello/ab.jpg’. 

Code generation is fully generic and uses templates for all methods. One template, for example, is used to 

generate function for initialising the application. This is the place to add code such as to start Bluetooth 

connectivity. Figure 81 shows a template and an instance of the method responsible for loading an image. All 

those templates are used by the code generation module to assemble the MIDlet file (which itself is a template 

including several sub templates). By adapting and extending these templates, the generated code can be quickly 

updated to novel functionality. It is also possible to integrate the generated code into existing MIDlets. 

getimage.template, instance: 

public Image get_image0() { 

    if (image0 == null) {                        

        // Insert pre-init code here 

        try {                         

            image0 =  

                       Image.createImage ("/hello/ab.jpg"); 

        } catch (java.io.IOException exception) { 

            exception.printStackTrace(); 

            return null; 

        }                       

        // Insert post-init code here 

    }                        

    return image0; 

}  

getimage.template: 

public Image get_$name$() { 

    if ($name$ == null) {                        

        // Insert pre-init code here 

        try {                         

            $name$ =  

                        Image.createImage("$relpath$"); 

        } catch (java.io.IOException exception) { 

            exception.printStackTrace(); 

            return null; 

        }                       

        // Insert post-init code here 

    }                        

    return $name$; 

}  
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As can be seen in the example template, the default comments (e.g. „// Insert pre-init code here‟) that the wizard 

of the NetBeans Mobility Pack generates have been left intact. Together with the generation of corresponding 

project files, this means that the graphical designer component of this particular IDE can also load the generated 

files and all graphical and code-based advantages of that environment can be used. 

In order to follow the general goal of a component-based architecture, the implementation of the code generation 

is also bundled into a separate component. It can be used as a standalone program that, given a state graph as 

input, generates a mobile phone application from it. This also implies that potentially any other application that 

produces a state graph can use this implementation to generate a mobile phone application. Of course, certain 

conventions for the encoding of the description of states and transitions into the attributes of nodes and edges 

have to be followed. 

Interaction Patterns 

Some parts in the state graph may appear several times when generating applications. Some of them are even 

independent of the type of application. One example is a scroll list as is depicted in Figure 77. In order to take 

advantage of such sub graphs, we added the possibility to define and use patterns of such recurring graphs which 

is a common technique in model-based development. There is only one obligatory element that has to be 

specified in order to create such a pattern: a graph has to be (programmatically) created that represents the 

pattern. In the example, this could consist of two nodes n0 and n1 with specific labels and two directed edges 

(n0, n1) and (n1, n0) as shown in the dialogue in Figure 82. An interaction pattern can depend on a series of 

options defined for this particular pattern. The scroll list example offers the possibility to set the number of 

consecutive items within the list. There are various possibilities to graphically represent such a list. In Figure 82, 

simple text with HTML mark-up is used. The list could also consist of several images which enables the use of 

complex graphical menus (see Figure 77 for such an example). 

 

Figure 82: Dialog to create a scroll list with n entries. The currently selected item is 

 highlighted using underscores (‘_’) and bold text specified with HTML. 

As hinted at in the previous paragraph, the current version of the tool still incurs some effort in programming. 

However, this process could easily be made considerably simpler by allowing the selection of a subgraph as a 

pattern. Still, integrating options such as the size of the graph or a specific numbering of nodes is difficult to 

implement in such a manner. 

These patterns enable the generation of a library of application parts that can then simply be added to an empty 

graph or combined with an existing graph. This supports code reuse, can help to save screen space, and 

accelerate the development process. 
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7.5 Capabilities and Examples 

7.5.1 Supported Interactions and Features 
The framework is highly extensible as will be detailed below. Currently, we directly support the following 

types / classes of interactions: 

 User modelling: KLM operators are placed according to corresponding actions. The user can add or modify 

suggested operators and thus fine-tune the model. 

 Buttons / keys: still the most important way of interacting with a mobile device is through its keys and 

special buttons (hotkeys). All buttons to which the Java ME API provides access are supported by MAKEIT. 

 RFID / NFC: it should be noted that the framework is very open to extensions as we show in further detail 

below. As one example, we integrated the PMIF framework described in [Rukzio, Wetzstein, and Schmidt 

2005]. This allows for interactions with RFID and NFC tags as well as visual markers. If a transaction with 

some RFID tag has been defined, for instance, code is generated that waits for and acts on the reading of a 

tag with the specified ID. 

 Bluetooth: the current implementation of the framework also supports advanced interactions using external 

Bluetooth sensors and devices. A transaction using this communication channel is created by specifying the 

event sent through Bluetooth to the phone. This allows arbitrary sensors and actuators to be used in 

conjunction with the phone‟s functionality. 

 EIToolkit: the development environment allows integrating EIToolkit events into the prototyped 

application. This means that all types of interactions enabled by that the connection to the EIToolkit can 

directly be used (see Chapter 5 for examples). This connection is not directly available on the mobile 

platform, though. 

7.5.2 Sample Applications 
In order to get a better impression for what kind of applications can be prototyped with the framework, we 

present some examples that have been implemented with MAKEIT. 

NFC poster interaction 

RFID and near field communication (NFC) currently become heavily used in areas such as supply chain 

management or mobile payment. As a sample application, Figure 83 shows the state graph of an interface that 

lets a user choose a ticket based on the number of people and zones for which it should be valid. The application 

uses a poster with embedded NFC tags which is used by simply clicking on the appropriate virtual buttons with 

their NFC enabled phone. 

This example graph assumes a correct sequence of selecting the parameters. However, for example in order to 

evaluate different approaches, more transitions could simply be added. On the other hand, this would imply that 

an intermediate error state would have to be added to signal that not all parameters have been set before choosing 

the payment button. 

  

Figure 83: Left: state graph for an application where users can buy a public transportation ticket using 

NFC tags on a poster. Right: fragment of the poster with NFC tags attached to its back. 

In this example, one can see the different ways of generating the content of the different screens in the phone 

application. The first state on the left uses simple text while the states in the second column show some images 

taken from the web. Next, images quickly drawn in a graphics program have been imported, and the final state 

features a dollar sign sketched directly in a dialog within the development environment. 
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Touch browser 

Browsing web pages and text or viewing larger images on small devices is not straightforward to do and several 

strategies have already been implemented. In Section 6.4.3, Touch Input on Mobile Phone Keypads, we 

introduced the setup and a study about touch enabled keypads on mobile phones. Figure 84 presents part of the 

state graph of a prototypical image viewer application for small devices that offers a preview feature. On the 

phone, the keys „2‟ and „8‟ are used to move a cursor upwards and downwards, respectively. In the figure, one 

can easily see that merely touching one of those keys brings forward the content of that side. The moment the 

user stops touching the key, the view jumps back to the previous view. Only by pressing the respective key, the 

view permanently changes in the selected direction. Thus, touching a key provides a preview of the action that 

pressing it will perform. One could of course also choose appropriate hotkeys for these actions; the interface of 

MAKEIT allows changing such settings with ease. 

 

Figure 84: Prototype of a touch based browser or image viewer. Touching shows a preview  

of the part of the content that a click on the same button will bring up. 

Touch Input on mobile phone keypads (see Section 6.4.3) 

Another idea to use the touch enabled phone keypad was to enhance the standard phone contacts list with 

additional functionality. Whenever a specific contact is selected and the selection key is touched, additional 

information about that contact is displayed (such as a picture or the time or amount of the last conversations with 

that contact). Only when the selection key is pressed, the entry gets selected and standard information is shown. 

The development of this application took some time, especially because of the necessary combination of various 

tools such as Python or Java ME and Flash Lite. Using MAKEIT in conjunction with the EIToolkit, the same 

application can be prototyped within minutes. Figure 85 shows the state graph that encapsulates the full 

application logic for the first three entries of the list. 

Although the state graph representation blurs details, one can easily see that the top row of three boxes models 

browsing a list with the „2‟ and the „8‟ key. Touching the „5‟ key pops up a small window displaying some 

information as can be seen in the phone screen on the right in the figure. Pressing the „5‟ key in any state selects 

the entry and shows full name, telephone number, etc as expected. One could argue that pressing a key always 

involves touching it first and that the transitions between the list selection states and the selected entry states 

could be left out. However, since there is a slight delay in recognizing touch (in fact, we deliberately introduced 

one for this scenario), this means that the original application behaviour did not change. Only after a slight 

hesitation or delay while touching the key, the popup is shown. 

     

Figure 85: Left: state graph of phonebook application enhanced with a touch key based preview. 

Right: screen in the phone emulator. The currently selected state (bold frame) is always visible. 
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Text entry acceleration 

Another application for touch sensors on mobile phone keys that we currently evaluate can speed up multi-tap 

text input. Figure 86 shows a state graph that allows entering the word „deep‟ using multi-tap. When a letter 

appears on the same key as the preceding one, there are currently two ways of entering this letter (as opposed to 

changing the one last typed): either one waits a short time (approximately one second on most phones), or one 

hits a specific hotkey. In the graph, the first is implemented using a special timer transition with one second as 

value. The second is specified using the hotkey „h3‟. 

In order to see how much this method could speed up text entry, we determine all involved actions. The studies 

in [Holleis, Otto, et al. 2007] did not look into switching between the number keypad and the hotkey panel 

during typing. We conjecture that it adds two finger movements between the keypad and the hotkey area adding 

another 0.62 seconds (2∙0.23 + 0.16 seconds). In a quick, informal trial on a Nokia N95 phone which has its 

hotkeys on a separate, slightly elevated panel, we found that people typed a given sentence of 30 characters with 

27.0 words per minute if there were no consecutive letters on the same key, and with 21.5 words per minute for 

text with, on average, every sixth letter needing a measure of disambiguation. Calculating the overhead incurred 

by the hotkey results in a value of 0.57 seconds which corresponds very well to our prediction of 0.62 seconds. 

 

Figure 86: State graph showing three different methods in multi-tap text entry (transitions between  

the grey states) to enter letters which are on the same key as the one before: waiting for a timeout,  

pressing a dedicated hotkey, or releasing the current key. The word entered is ‘deep’. 

In the state graph, we implemented a third way of disambiguating letter input. If one wants to change the letter 

just typed, the finger stays on the current button and simply presses it again. On the other hand, when a new 

letter should be added, a user briefly lifts the finger before pressing the button again. This decreases the slow-

down per use from approximately 0.6 seconds (or one second when using the timeout method) down to 

0.31 seconds. This value results from adding 0.08 seconds for lifting the finger (assumed to be half the time for a 

physical keypress) and 0.23 seconds for touching, i.e. the value specified for an arbitrary finger movement. We 

can show that, in English, approximately every 10th character is on the same button as its predecessor: with a 

random selection of various articles from the Financial Times UK with a total of roughly 10000 letters, we 

calculated the relative frequency that two consecutive letters are on the same phone key to be 10.1 %; using the 

700 English sample phrases in the set provided in [MacKenzie and Soukoreff 2003] resulted in 9.63 %; in 

another corpus with more than 10.000 real English text messages provided in [How and Kan 2005], this 

frequency was 11.4 %. Even though these values are relatively low, text entry speed for the example above could 

be increased from 21.5 to 23.8 words per minute (or even 26.8 if people had used the timeout method) with this 

new method. 

The graph in Figure 86 shows that it would be very time consuming to demonstrate the entire semantics of multi-

tap text entry. However, by quickly demonstrating the different ways of typing one or two words, an application 

can very quickly be generated that allows demonstrating and evaluating the idea. It also creates a code structure 

which is easy to generalize to arbitrary letter input. 
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7.5.3 Extensibility of MAKEIT 
For actions that are not yet directly integrated into the prototype and are added afterwards, stubs are generated 

that leave room for the developer to add the concrete code that implements the action. As mentioned above, the 

code generation component uses several template files that contain method stubs and code excerpts. If necessary, 

these templates can be adapted and extended to work for new interaction techniques. In the following, we briefly 

present the process to add new functionality to the MAKEIT system. As an example, we use the touch enabled 

buttons that we implemented for the studies in [Holleis, Huhtala, and Häkkilä 2008]. Events from the touch 

sensors are sent by Bluetooth to an application running on the phone. Section 6.4.3 presented more details. 

There are three steps necessary to add such novel features to the MAKEIT system. First, add code that captures 

the new event, i.e. registers when a button is touched, to the „MIDlet.template‟ file. In the following code 

excerpt, an auxiliary class TouchConnection is used that opens a Bluetooth connection. 

public class $name$ extends MIDlet  

  implements CommandListener, TouchEventListener, KeyListener { 

TouchConnection touch; 

... 

private void initialize() { 

  touch = new TouchConnection(this); 

  touch.start(); 

 ... 

} 

Second, add a new action element („Touch‟) to the „transitions.xml‟ file: 

<transition mode=”plan” name=”Touch”> 

 <options> 

  <option>ON_0</option> 

  <option>ON_1</option> 

  ... 

  <option>OFF_*</option> 

 </options> 

</transition> 

This second step will add a button with a dropdown list to the interface of MAKEIT which can then be used to 

create transitions between states according to the specified option. The code generator module uses, besides the 

direct edits in the MIDlet template, the information from the XML file. In this example, using the specified name 

„Touch‟, it will automatically create an „onTouch(String option)‟ method called when such an event is captured 

and an interface „TouchEventListener‟ that contains the signature of this method. This enables developers to 

easily generate the code that actually captures and passes the event. In this case, the implementation of the code 

generation is particularly easy since it is nearly identical to existing code treating standard keypresses. 

An optional final step enables the modelling component to integrate predictions about the new technique. The 

KLM stub presented earlier also builds upon an XML file which describes the timings associated with each 

action. The following code excerpt shows how such values can be added. 

<prop name="Touch"> 

 <klm> 

  <options> 

   <option opt1="ON_0">0.23</option> 

   ... 

   <option opt1="OFF_*">0.08</option> 

  </options> 

 </klm> 

</prop> 
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7.6 Discussion and Summary 

7.6.1 Initial Evaluation 
The prototype has not yet undergone a full formal evaluation. However, we got initial feedback on the 

prototyping and analysis process by demonstrating the system to and carrying out interviews with four experts 

working in different areas of developing and evaluating pervasive computing applications as well as students of 

a user interface master‟s class. 

We saw that the main user interface quickly engages people to try to interact with it. Even without initial 

explanations, all were capable of grasping the idea that they could generate application logic on the fly. It 

became obvious that it was not clear in the beginning that more than linear sequences of actions could be 

created. After finding out or being told that it is possible to interact with the state graph itself, most people 

intuitively began to merge states by moving nodes. Demonstrating and refining the corresponding KLM model 

proved to be more difficult and indicated some necessary adjustments in the user interface. However, this was in 

part due to the missing familiarity of the participants with user modelling in general. All participants saw the 

advantage of graphically programming by demonstration and that arbitrary screen content could be used. The 

more programming oriented users initially asked for more complex visual control structures but also agreed that 

shifting complex aspects to the source code makes sense. They appreciated the possibility to quickly create 

prototypes and provide the starting point for more advanced applications without being hindered to implement 

whatever they want. The users agreed that the environment helps people concentrate on what they can do best: 

designers can quickly test ideas and create interaction sequences while developers can focus on implementing. 

The fact that screens could also be drawn in some separate graphics program was especially valued by the design 

oriented people since, when creating paper prototypes, they often assemble images and text using their own 

tools. Similarly, developers positively mentioned that they could use their own tools to write their code. 

7.6.2 Strengths of MAKEIT 
With MAKEIT, we address the gap between low-fidelity paper prototyping and high-fidelity implementations of 

mobile phone applications. The framework is used to quickly create functional prototypes for mobile devices 

supporting advanced types of interaction. In particular, it focuses on the need to easily create prototypes and help 

in evaluating and deciding between different interaction designs using a predictive user model. 

The development process is based on state graphs eliminating the need to remember the order of paper material. 

The advantage of paper prototypes to be able to quickly react to unforeseen events during user studies remains. 

The required setup time can be slightly longer than for paper prototyping but considerably shorter than for 

implementing. Using state graphs, several types of errors like unreachable states can be avoided by design. The 

state graph also provides an easy way to understand and visualise application logic. We presented several 

approaches that counter issues when working with state graphs such as condensing and merging of states. 

One of the most prevalent features of the MAKEIT development environment is its ability to allow programming 

by demonstration. This enables many users to create programs that otherwise would have difficulties in 

developing applications due to a lack of programming knowledge. The paradigm of programming by 

demonstration can easily be brought beyond standard interactions such as using the phone‟s keypad and display. 

We showed that the incorporation of advanced mobile phone interactions, including reading NFC tags, taking 

pictures, and reacting to external sensors is equally easy within the graphical user interface by using simulations. 

The application with all actions can be simulated within the tool. Additionally, a code module is provided that 

automatically generates a MIDlet, i.e. a program that can be run on an appropriate mobile phone. 

MAKEIT employs a mechanism to create Keystroke-Level Models (KLM). While demonstrating a task, the 

necessary KLM operators are automatically generated and stored within the state graph description of the 

application. This model can then easily be used to make predictions about user performance for specific tasks, 

find bottlenecks within the application behaviour, and compare various ways of performing a task in terms of 

completion time. By simply selecting a state, the environment can provide all possible sequences of actions that 

lead to this state and provide corresponding KLM information. We argued that by integrating such a model as 

early in the process as possible, several issues and later changes can be successfully avoided.
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8 Summary and Future Work 
In this thesis, we described our results in research in the field of human-computer-interaction focusing on 

support for rapid prototyping and predictive user modelling. We also provided extensive means to combine these 

and introduced systems that enable quickly generating pervasive computing applications using the power of user 

models to predict certain usability factors early in the design process without the need for costly user studies. 

Key contributions of this thesis are the following:  

 Introduction and extensions of user models for advanced mobile interactions. 

 Provision of powerful tool support for the development of pervasive applications (EIToolkit). 

 Design and evaluation of innovative interaction techniques and applications within pervasive computing. 

 Design and implementation of innovative combinations of prototyping and model generation (MAKEIT). 

8.1 Summary of the Contributions 

Pervasive Computing and User Models 

In order to set the scene of the work presented in this thesis, we provided an overview of pervasive computing 

and associated application areas and terms. This also served to demonstrate the breadth of our own research in 

this area by identifying and associating corresponding own projects and results within these categories, e.g. 

tangible computing ([Terrenghi et al. 2005]), wearable computing ([Holleis, Paasovaara, et al. 2008]), and 

mobile computing ([Holleis, Huhtala, and Häkkilä 2008]). We reused some of these projects in later chapters as 

proof of concept and examples for more general approaches such as prototyping and modelling methods. 

As an introduction to one of the main topics in this thesis, we provided a concise description of methods to create 

and apply prototypes for pervasive applications. We included a discussion on the pros and cons of prototyping in 

this particular area and showed its importance in helping to assess and improve the usability and applicability of 

a product. We treated two ways of evaluating a prototype or a finished application or device in more detail. One 

employing user studies, the other relying on models that predict and explain certain behaviour and performance 

of its users. A discussion on advantages and issues in employing such models for testing ideas, prototypes, and 

applications was followed by a detailed treatment of user models in the area of human computer interaction. 

We gave an in-depth introduction into the definition, use, and variations of user models including descriptive 

models (such as Buxton‟s Three-state Model and Guiard‟s model of bimanual skill) and predictive models (such 

as Fitts‟ Law, task action grammars, and state transition based systems). Much of the work presented here is 

based on a specific model of the latter category, the Keystroke-Level Model (KLM). In order to focus on and 

understand its use and features, we provided an introduction and treatment of cognitive user models including 

the Model Human Processor, a selection of cognitive architectures, and a variety of instances from the GOMS 

family of models very much related to the KLM. 

Specifically, we gave the definitions, showed ways of applying, and provided examples of GOMS and KLM. A 

profound discussion on pros and cons and application areas of these models has been retrieved and collected 

from an extensive list of published research, projects, and personal experiences. This provides an introduction as 

well as a list of arguments which other researchers and practitioners can rely upon to check whether such an 

approach could be useful for them. Such user models are a simplification and formalisation of human cognition 

and try to predict human behaviour based on their model assumptions. They have been applied, refined, and 

validated in many studies and projects in the last 25 years. Still, new types of interactions require constant 

updates in the expressive power of these models. We considerably contributed to this process by extending the 

original KLM for advanced interactions with mobile phones. Such interaction types have emerged recently and 

we actively participated in their development and evaluation, [Rukzio, Leichtenstern, et al. 2006]. Therefore, we 

provided an introduction to advanced mobile interactions and an extensive review of related work for this area. 
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Such interactions include the handling of visual markers, gestures, and RFID tags, with which no models such as 

the KLM have dealt before. Also, since the settings in which applications are used that employ such novel 

features differ considerably in terms of mobility and type of interaction, aspects such as distraction and 

distribution of attention had to be taken into account as well. We described our novel results that identify, 

measure, and model advanced mobile phone interactions. 

Finding, isolating, and measuring KLM operators is described in detail since it is important to understand 

potential underlying assumptions for their application [Holleis, Otto, et al. 2007]. It involved several types of 

user studies in different environments. In that process, we identified and introduced seven new KLM operators, 

adapted three operators from the original formulation of KLM, and were able to confirm the use of two original 

operators in the new setting. Novel types of interaction have been described including operators for shifting the 

attention between different parts on the phone or between the phone and the environment. Other important 

aspects involved novel types of interaction like gestures, visual tag recognition, and the use of NFC tags. In order 

to model distraction, we introduced a novel multiplicative operator that is adjustable for various settings. 

To facilitate reproducing the results, we described the setup and execution of an extensive set of studies to 

measure interaction times and to assign performance values to the identified operators. We employed various 

techniques such as frame-by-frame video analysis, mobile phone applications, and eye tracking to extract these 

values. We believe this also provides an important contribution in itself and conjecture that these techniques can 

also be reused in different settings and for further types of future interactions. 

We did not focus on text input for mobile devices in these studies but provide a concise overview of the set of 

existing work and operators handling various types of text input such as predictive methods like T9. 

Our resulting Keystroke-Level Model for advanced mobile interactions has been validated in a study and is 

available for free. In this study, we compared data predicted by our model with data observed within that study. 

We examined two different types of interaction for mobile phones, one using a mobile web browser and one in 

combination with a poster enhanced with near field communication tags. The results showed that the deviations 

of the KLM predictions were small. Most importantly, the relative difference in task completion time between 

the two methods of interaction has been predicted exceptionally well (a model prediction of 30 % compared to 

an observed average speed loss of 31 %). Additionally, we compared some of our operator values to related 

approaches and thus further supported the validity of our results. 

Throughout this work, we provided examples of the application of such models to real world scenarios. We 

showed that this represents an objective means to retrieve usability information from an application (or a model 

of an application) and can be used to design, understand, and streamline programs. We also described selected 

further extensions contributed by other researchers and identified additional research areas such as tangible 

computing and car interfaces where we are in the process of providing insight into how to user model these types 

of interactions. 

Prototyping and Toolkit Support 

Developing pervasive applications is still a difficult task. Even though the research area has shifted into focus in 

the last years, development support is still scarce compared to conventional software development. Our 

contribution is a powerful and extensible framework for the rapid and easy development of prototypes and 

applications. We developed the EIToolkit to facilitate the processes necessary to create programs in the broad 

area of pervasive computing [Holleis and Schmidt 2008]. A detailed requirements analysis led to the description 

of the architecture and main implementation aspects of the toolkit. Some specific aspects uncommon in related 

approaches have been selected and were treated in more detail such as the support for simulating data input and 

simultaneous support for packet and stream-based data communication. The EIToolkit consists of a 

communication framework and set of tools that greatly reduce the effort of creating pervasive computing 

applications. It offers abstractions, simplifications, and common interfaces that ease the process of combining 

various kinds of technologies, devices, and applications such as custom-built sensors and actuators, as well as 

existing programs. It features simple access to all compatible components through several programming 
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languages. In order to further reduce the threshold of building applications with the toolkit, we presented a 

variety of tools on top of the EIToolkit. These enable persons without technical background to quickly assemble 

programs using, for example, graphical tools for generating program semantics and rules. We conjecture that this 

improves the dialog between, e.g., designers and programmers in a team since it facilitates expressing and 

conveying ideas, designs, as well as data flow within an envisioned system. 

In order to evaluate the framework, we derived a comprehensive set of 46 requirements for such toolkits from an 

extensive literature review, various professional meetings, workshops, and discussions on the topic, as well as 

personal experiences. We split them into four main categories and several subcategories and list them together 

with a concise explanation and gave a list of references for each for easy additional review. This provides a 

novel amalgamation of knowledge that previously only has been available in a distributed or unpublished form. 

For the purpose of placing the EIToolkit within the design space of applications supporting the development of 

pervasive applications, an extensive set of existing toolkits were gathered and presented. In total, 50 toolkits and 

frameworks were categorised into hardware-focused toolkits, software-focused toolkits, and those tightly 

combining hardware and software. They were analysed and compared with respect to the EIToolkit idea, design, 

and implementation. A subset of 24 projects that proved to have similar goals as the EIToolkit and for which it 

was possible to gather enough information were collected and tested against the criteria of the requirements list. 

This can help developers decide which toolkit is most appropriate to their needs according to the concrete set of 

requirements that they judge to be most important. A dynamic evaluation sheet is available online to directly 

retrieve the ratings of the evaluated toolkits according to weights placed on specific requirements. 

To demonstrate the applicability and power of the toolkit, we presented several scenarios and applications that 

have been built using the EIToolkit, e.g. [Holleis, Kranz, Winter, et al. 2006], [Schmidt, Terrenghi, and Holleis 

2007], and [Rukzio, Leichtenstern, et al. 2006]. These fall into two categories. First, we presented components 

supporting applications using specific devices or applications. This includes, for example, controllable power 

sockets, Skype, and Winamp on the output side, and devices such as the Wiimote control on the input side. For 

the second category, components were shown that leverage the use of a whole set of applications since they 

enable some kind of technology or protocol such as communication over serial line or Bluetooth. 

As a further example for the use of the EIToolkit, we described the hardware and software design, creation, and 

implementation of small wireless displays and illustrated their use in a project about environment-based 

messaging. We showed that there is still substantial effort needed to build such custom hardware but that the 

EIToolkit considerably reduces the amount of necessary knowledge and skills to build applications on top of 

that. The actual study also revealed interesting results on the subject at hand. Sending messages to places instead 

of people is promising. However, it also showed that the design of gesture-based interfaces requires much 

consideration and well-planned user studies in order to find out what gestures people can easily do and how to 

increase the affordance of such interfaces. We also found that providing several ways of entering data into a 

system (e.g. mobile application, web browser, text messaging) is necessary to accommodate to users‟ needs. 

In another project concerned with mobile interactions, we extracted insight about users‟ attitudes with respect to 

different ways of selecting remote devices. We compared the interaction types scanning (showing a list of 

Bluetooth enabled devices), touching (using NFC technology), and pointing. The pointing interaction was 

quickly implemented using the EIToolkit in conjunction with a prototyping board equipped with simple light 

sensors, [Rukzio, Leichtenstern, et al. 2006]. 

We further demonstrated the application of the EIToolkit and our expertise in two projects using capacitive 

sensing within the field of wearable computing. We showed the design and development of several general 

purpose wireless hardware boards used for sensing proximity and touch by human fingers focusing on 

minimisation and flexibility of the involved electronics. 

The first project concentrated on touch input on clothing and wearable accessories in general [Holleis, 

Paasovaara, et al. 2008]. Besides providing detailed insight into related work within this subject, categorised into 

technology, specific applications, development support, and user studies, we introduced four different 

prototypes. They were based on the same technology but optimised for specific scenarios. Controls on phone 



166 8.1 Summary of the Contributions 

bags or directly into clothing focused on replicating part of a phone‟s interface while controls placed on gloves 

or a bicycle helmet were specialised around concrete activities. Two larger studies examined the acceptability 

and potential use of such technologies and applications. They resulted in ten guidelines, sorted in order of 

importance to potential users. These guidelines will help designers of similar applications to avoid general issues 

and to refine their applications. In addition, we were the first to study possible locations where on the body 

people expect and would accept touch controls and we were able to give a map of preferred locations. We also 

prepared the means in terms of design, software, and hardware for further studies aimed at clarifying opinions of 

users with regard to the concrete layout and arrangement of controls placed on clothing. 

Another set of results emerged from studies performed with a mobile phone with a key pad augmented with 

touch sensors [Holleis, Huhtala, and Häkkilä 2008]. Besides providing implementations of software components 

that facilitate creating applications combining sensors with mobile phones and existing development 

environments such as Flash Lite, we showed a range of existing applications and provided an additional set of 

novel ideas such as overlaying images or other information on a contact entry. A study revealed the usefulness of 

the created programs and several aspects and guidelines that have to be taken into account for such applications. 

In addition to various novel devices, projects, protocols, and applications used in conjunction with the EIToolkit, 

we listed several currently widely used hardware prototyping platforms and demonstrated ways to make them 

available to users of the EIToolkit. Similar to our approach of supporting various programming languages, this 

enlarges the number of potential users and eases the adoption of the toolkit. 

Since simplifying the development of applications is a central goal of the EIToolkit, we added a platform to 

visualise and simulate sensor events and other data that need to be communicated. DATAVIS is an extensible 

system that encapsulates components for visual input and output of numerical and textual data. It provides a 

simple way of visualising data flow in an application providing a variety of components such as bar graphs for 

output and sliders or dropdown boxes for input. This tremendously eases initial experiments with new sensors or 

actuators, debugging running applications, as well as simulating data (a feature provided by only very few other 

approaches). It is available for all applications using the EIToolkit communication structure. 

One way of keeping the initial threshold of creating applications low is to not have people learn new 

programming paradigms, languages or environments. Therefore, we also demonstrated how the toolkit integrates 

into existing frameworks and integrated development environments such as the Eclipse IDE. Besides enabling 

easy entry into application development, an important aspect of frameworks such as the EIToolkit is that they 

provide a high ceiling, i.e. allow complex applications to be built. This trade-off between low threshold and high 

ceiling is often problematic with such approaches. We managed to have a broad spectrum in this respect by 

providing simple to use tools to quickly generate straightforward applications, but at the same time always 

allowing the developer to work with the program‟s code in order to define more complex application logic. 

In order to further develop user friendliness and to simplify development, we presented two sample tools built on 

top of the EIToolkit. They provide graphical environments that simplify creating programs using two different 

paradigms. One builds on the idea that a main goal of developing an application often is to bring a system into a 

certain state, possibly depending on some event or other state. The system guides the developer along these lines. 

The second environment is similar in that it lets the developer graphically specify application logic. The 

underlying principle, however, is rather based on events and consequences. We provided a highly configurable 

and scriptable cable-patching interface for quick but powerful rapid prototyping of simple applications. 

Prototyping Applications with User Modelling Support 

We demonstrated several ways of how to combine the first two aspects, namely predictive user models and 

prototyping support. Drawing from concepts of user-centred design, we showed that there are good reasons for 

incorporating user studies early in the design process. However, such studies often require functional prototypes 

and can involve high costs in terms of money and, especially, time. We adopted the reasoning of the cognitive 

modelling community that employing user models can save considerable amount of effort compared to user 

studies and generate similarly valid results. 
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Existing work that combines prototyping tools with predictive models is still scarce. We highlighted recent 

results and provided our own powerful solutions that integrate user models into application development. One 

approach allows incorporating our ideas into existing development environments. A configurable and extensible 

component of the EIToolkit encapsulates all available KLM data [Holleis, Kern, and Schmidt 2007]. This makes 

it available to a large variety of applications. Simply sending descriptions of actions generates a model that can 

then be used to retrieve task completion time of tasks using these actions. The module has been used in several 

projects. In accordance with all EIToolkit components, it can also easily be exchanged with other model 

generating stubs (an example would be a potential connection to cognitive architectures such as ACT-R). 

As two example showcases for the integration of KLM semantics into existing IDEs without built-in modelling 

support, we picked d.tools and the Eclipse IDE. We identified integration points and provided implementations 

demonstrating how these systems can make use of the power of user modelling. Within this context, we also 

showed how the features of such IDEs can be leveraged to speed up and ease the prototyping of pervasive 

applications by automating discovery processes and interface generation with the help of the EIToolkit. 

Approaches like our prototypical graphical environments introduced above base on the concept of state graphs 

that describe application behaviour. We provide an extensive discussion on advantages of this concept and 

extended ideas from related work with novel properties that can help usability research based on simple graph 

properties. As an example, it is possible to automatically find the cheapest way to achieve a goal using varying 

interpretations of the notion of „cost‟. We also showed that the same approach can be used to make predictions 

about a user‟s potential goal after having performed some sequence of initial actions. 

Building on such state graphs, we created a standalone development environment called MAKEIT that 

incorporates many of the features and capabilities discussed above [Holleis and Schmidt 2008]. It is specialised 

on the development of applications running on mobile phones. The use of a state transition system means that 

many of the advantages of knowing the underlying state graph of an application that we introduced before can 

directly be exploited. This has the huge advantage that it is possible to integrate some structural properties into 

the generation process of the application. Thus, it is, for example, ensured by construction that all screens that 

are designed can actually be reached. This, as we argued formally, offers the opportunity to automatically check 

and retrieve properties of the application such as how a specific goal can be achieved. The graph-based 

semantics of the application is stored in a structure with an attribute hierarchy based on an extensible graph data 

solution and can be serialised to and loaded from an international standard file format, GraphML. 

The MAKEIT system is a prototyping environment targeted at keeping the initial threshold of developing 

applications very low. To achieve that, we employed the concept of programming by demonstration. This means 

that developers can use a simulated on-screen mobile device and simply demonstrate action sequences on it. The 

project targeted the gap between quick but low-fidelity prototyping methods, such as paper prototyping, and 

high-fidelity implementations. The visual appearance of states on the device, i.e. the content of the screen on the 

device, can be quickly sketched. We introduced several methods to specify these contents directly within the 

application. These can consist of text, images, or can be quickly drawn within the application. This offers similar 

advantages as paper prototyping but alleviates disadvantages such as having to keep track of the potentially 

complex chain of screens and to manually replace the screens while executing the application. It also ensures 

that people can concentrate on the idea, look, and behaviour of programs. 

With MAKEIT, tasks can easily be demonstrated and a corresponding application that perfectly serves the 

purpose of a vertical prototype is generated automatically. In conjunction with an easy integration of graphics, 

this ensures that people without programming knowledge can also engage in creating and demonstrating mobile 

applications. An application can be run within the environment in parallel to the development process or it can 

be compiled into a Java ME MIDlet and run on a mobile phone. A further way to facilitate and speed up the 

development is achieved by providing recurring patterns as templates. A scrollable list, for example, can thus be 

quickly added from a template library and only the items on it need to be adapted. We also provided several 

suggestions to keep the state graph clear and small by, e.g., using hierarchical grouping and merging of states. 

The proposed process enables designers and developers to quickly create demonstrators. These can then be used 

to convey initial ideas, to test the feasibility of concepts, and as prototypes for additional user studies. 
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A further aspect that renders the environment novel is the tight integration of a modelling tool. The KLM 

component described above is used in conjunction with the state graph to automatically create a Keystroke-Level 

Model of the applications under construction. By simply indicating source and target state, all possible ways to 

achieve the target goal are calculated and time predictions are given. Thus, one can directly see whether and how 

the given task can be completed in acceptable time. The integration of KLM semantics directly within the 

development system provides the chance to exploit the power of task completion time predictions already in the 

design phase. Since the demonstration of actions that describe the application logics also involved automatically 

adding KLM operators, time estimates of the various actions and methods can be displayed continuously and on 

the fly. Besides choosing a best method (in terms of task completion time), this can help developers find and 

figure out bottlenecks and time consuming interactions for which remedies can be found and easily integrated in 

such early stages. 

The described system incorporates standard types of interaction with mobile devices such as using the keypad 

and hotkeys. Additionally, advanced mobile interactions are available such as taking pictures or touching 

RFID / NFC tags. This includes both, the implementation of applications using such interactions as well as the 

generation of the prediction models. We described that it also supports the connection to the EIToolkit which 

means that a large set of sensors, actuators, and applications can be used from the created application. 

Furthermore, the environment was designed to be very extensible since it is likely that new types of interactions 

or new sensors and actuators will be introduced. We illustrated the few and simple steps necessary to integrate 

new actions in both, the application development interface and the model generator. MAKEIT is the first approach 

combining the concept of developing advanced mobile interactions by demonstration with the on the fly 

generation of predictive models and an interface to take advantage of these features. We provided several 

examples of applications that have been prototyped with the system. 

In conclusion, we introduced an approach to support prototyping and developing pervasive applications, 

extended a well-known predictive model to novel types of interaction important for pervasive computing, and 

demonstrated ways of combining those to enable the use of such user models during initial stages in 

development. We thus provided important insight and progress into research about how to simplify the 

development of usable pervasive computing applications and prepared the stage for further extensions of both, 

the prototyping and the modelling part. Other researchers are enabled to exploit and reuse many of the 

approaches presented here, and additional aspects such as novel types of interactions or subjective measurements 

will be easy to identify and to add to the framework in the future. 

Main Publications 

Selected applications and projects have been published in the following full papers / articles: 

The cube as tangible object in the domain  

of learning 

[Terrenghi, Kranz, Holleis, et al. 2005] in the 

Journal of Personal and Ubiquitous Computing 

Mobile selection techniques [Rukzio, Leichtenstern, et al. 2006] at Ubicomp’06 

Embedding sensors in everyday objects 
[Holleis, Kranz, Winter, et al. 2006] in the Journal 

of Virtual Reality and Broadcasting 

Guidelines for domestic pervasive  

computing applications 

[Schmidt, Terrenghi, and Holleis 2007] in the 

Journal of Pervasive and Mobile Computing 

Touch input on mobile phones [Holleis, Huhtala, and Häkkilä 2008] at TEI’08 

Touch interfaces for wearable computing [Holleis, Paasovaara, et al. 2008] at MobileHCI’08 

Key concepts described in this thesis have been published in the following full papers: 

KLM for advanced mobile phone interactions [Holleis, Otto, et al. 2007] at CHI’07 

MAKEIT development environment [Holleis and Schmidt 2008] at Pervasive’08 
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8.2 Outlook and Future Work 
Obviously, several of the projects introduced in this work are prototypes that can profit from enhancements and 

further iterations in order to optimise the design, functionality, or applicability for user studies. For example, the 

EIToolkit support of the Particle microcontroller platform could benefit from, at the one end, generalisations 

such that further platforms can be easily exchanged for it, and, at the other end, specialisations in the form of 

optimisations and a library of examples and applications. A similar argumentation holds for the displays in the 

project about environment based messaging. Even though the EIToolkit ensures that, e.g. through message 

rerouting and interface coherence, parts of an application can be swapped with other components, additional 

support for semantic exchangeability could be added. Another example is the provided library of data 

visualisation components in the EIToolkit framework. The set of modules is open to extensions to more dynamic 

ones like graphs or charts that can also display properties like minimum and maximum values, running averages, 

patterns, etc. It is also planned to incorporate third-party developments and existing data visualisation toolkits. 

As a representative of several projects described in this thesis, we illustrate ongoing and possible future work in 

the area of input in wearable computing. 

Interactions with Wearables 

One focus of our work has been to create, use, and refine tools to quickly generate and evaluate objects and 

applications in the area of wearable computing, e.g. using touch controls. We built several working prototypes 

and evaluated them in several user studies. A comprehensive set of guidelines have been extracted from the 

results. Clearly, these prototypes can be improved and iterated such that they fulfil the whole range of 

requirements and guidelines that we identified in the process. 

Also, we are currently in the process of extending some of the studies to more participants and more detailed 

settings and questions. For example, we try to further classify and identify user expectations and user acceptance 

for specific places on the body where potential user interfaces could be placed. By providing concrete scenarios 

and various setups, we seek to extract even more detailed results and guidelines for future products. 

Two additional areas which we deliberately left out in our previous studies are personal layout preferences and 

end-user configurability. We plan to work with professional designers to create different designs of basic sets of 

controls. For that, we already started to build a set of button-like wires that can be overlaid on designs and 

connected to the sensor platform within a few minutes and therefore tested on the fly (see Figure 87). 

     

Figure 87: Prototyping material for quickly testing control interface layouts: several strips of  

conductive wires with ornamental buttons can quickly be connected to the sensing system. 

Moreover, as shown in Figure 88, we reserved an area on one part of our prototyping apron that can be used to 

learn about the different ideas of people about their personal optimized layout of specific controls. As expressed 

in one of the main findings in the project, people often have their own ideas about how an interface should look 

like. This even applies to a very simple five button layout. As example, in one of the studies, only about 60 % of 

the users felt that the volume up button in a placement on the thigh should actually point upwards. 

Further research is proposed to be done in the area of combinations of various technologies and interfaces. 

Especially in view of a desired simple use by end-users, interesting aspects appear when allowing the users to 

transfer or combine interfaces on, e.g., a phone with input methods embedded in clothing and output technology 

such as augmented reality integrated in one‟s glasses. 
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Figure 88: Several easily exchangeable layouts for the media player control scenario. 

User Models 

The various interactions available in wearable computing constitute one example that show how highly dynamic 

research in predictive user models is. Whenever a model such as KLM is to be applied to a new area of 

interaction, all operators and possible actions have to be examined. Sometimes general parameters can often be 

reused (e.g. gestures or Fitts‟ Law to estimate arm movement times for interactions with touch controls on the 

body). Still, it has to be carefully weighed whether an existing operator can used or a novel one has to be 

introduced – which requires a lot of work for studies. 

However, not only novel types of interaction such as the advent of small touch screens and gesture interactions, 

like those featured by the iPhone result in a required update of the KLM. It is an ongoing task to update operator 

times. For example due to technological advances, operator times might have to be adjusted from time to time. 

One example that applies to the models introduced in this thesis is for example the response time of NFC 

interaction. New phones such as the Nokia 6212 have become considerably faster than the 3220 model. Thus, the 

system response time for this particular interaction needs an adjustment from 2.2 seconds to roughly 1.0 second. 

This shows that there are reasons to parameterise KLM operators with respect to involved technology. 

Additionally, there are many areas in which continuous adaptation is necessary. We already identified several 

research areas that pose additional restrictions and call for a revaluation of existing time values. In tangible 

computing and in-car interfaces, we are in the process of providing insight into how to model these types of 

interactions with respect to task completion time predictions. 

A possible attempt to generalise the applicability of models such as the KLM is to create a connection to 

cognitive architectures such as ACT-R. This approach is followed by the CogTool project that generates 

KLM-like structures in a language called ACT-Simple [John and Salvucci 2005]. This has the advantage that 

adjustments in the underlying model execution engine can be done without changing the model itself. However, 

the transformation into the architecture represents a breach for the user because it is difficult to understand what 

is going on behind the scenes. This points to additional work to add visualisations of the applied models. This 

has partly been achieved in the MAKEIT environment and related work such as ExperiScope [Guimbretière, 

Dixon, and Hinckley 2007] but still needs more attention in order to achieve a broader acceptance and use. 

EIToolkit for Rapid Prototyping 

Future work for the EIToolkit generally includes supporting the requirements identified for prototyping toolkits 

that it and existing add-ons do not yet satisfy. Especially interesting will be the integration of design tools such 

as Adobe Flash into application development. One way to achieve that would be to use graphical tools such as 

the MAKEIT project and embed Flash capability into its process, e.g. when specifying the contents of the current 

screen or the transitions between them. Another option would be to, reversely, integrate EIToolkit functionality 

into the Flash environment; an option we explored by augmenting the Eclipse environment. 
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Moreover, support for deployment of applications on mobile devices without requiring infrastructure is 

necessary. The EIToolkit is not tightly integrated for direct use with mobile applications as has been described in 

Chapter 7. The connection is currently only available in emulations such as MAKEIT. A related issue is that, even 

if two devices only needed to communicate directly with each other, the current approach would still require a 

central component such as a PC through which the traffic is routed. This could be alleviated by running an 

EIToolkit component directly on the mobile devices that can transparently relay the messages through 

appropriate channels such as a WLAN or GPRS connection. 

As has been mentioned, the interface and capabilities description facilities in the current version of the EIToolkit 

are still rudimentary. In addition to exploring more powerful concepts such as CORBA for transmitting interface 

descriptions, possible enhancements will also include, for example, semantic information (e.g. update rates, 

constraints, etc.) and physical properties (e.g. size, sensor orientations, possible movements, etc.). 

In order to further lower the threshold of creating programs, an additional library of components to be used as 

basis for the development of applications should be made available. Such items could, e.g., help to translate 

messages from one type to another. They could also include mechanisms for input processing such as filtering, 

combining, or changing sensor values. Many algorithms known from data mining or artificial intelligence could 

be provided as components, e.g. neural networks for pattern recognition. It would also be possible to integrate 

those in the described graphical development processes. 

Regarding the combination of EIToolkit and user modelling, we provided a simple KLM component that keeps a 

list of KLM operators and can be controlled externally to query and define a model for task sequences. In order 

to generalise this concept, the component would need to be extended with a global database of model parameters 

and should be further customisable. This would allow the continuous improvements and extensions to such 

models mentioned before to be integrated easily and made broadly available. 

Prototyping Applications with User Modelling Support 

Potential improvements of the introduced prototypes for low-threshold application development include mostly 

craftsman‟s work about integrating coding capabilities, polishing user interfaces, adding wizards and help, and 

visualising component properties. However, as has been mentioned, there are also more general questions that 

will have to be treated such as problems concerned with scaling. As soon as there are hundreds or more 

components available in the system, discovery, presentation, and selection of appropriate devices and 

components becomes an issue. Concepts from data visualisation, search, and weighting mechanisms need to be 

devised and employed. 

From a research perspective also very interesting is how to add various specialised implementations for different 

target users. Similar to the Scratch language targeted at young children [Monroy-Hernández and Resnick 2008], 

it is conceivable to have various notions and views on the same project from a designer‟s, a modeller‟s, and a 

programmer‟s point of view. 

In these aspects, the MAKEIT framework has the advantage to have been designed in a very extensible way. With 

regard to its capabilities, we currently plan to support or extend the support for several types of interactions in 

addition to the mentioned set of features: 

 Bluetooth: currently, events that can be specified for input via a Bluetooth connection are distinguished by 

string matching. This implies that the prototyping framework currently does not allow defining variables 

within an event that could be further processed. This concept is powerful enough for many applications. 

Gesture recognition, for example, is often done directly on the controller that reads the sensor values. Data 

to be sent then consists only of the name or an ID of the gesture that has been recognised. However, in order 

to support more powerful applications, some additions for data processing have to be integrated. 

 Touch screens: the concepts implemented in MAKEIT fit well for interactions with touch screens. Stylus or 

finger-based input can easily be demonstrated and simulated with the mouse. The modelling system can then 

use KLM operators for these interaction methods, e.g. taken from [Luo and John 2005]. 
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 EIToolkit: mobile phones have not yet been directly connected to the EIToolkit which means that, in the 

current prototype, this connection will not be available on the target platform. The extension of the 

EIToolkit to more directly support developing programs for mobile devices is therefore part of ongoing 

research. Currently, the EIToolkit communicates with MAKEIT through a Bluetooth connection. Although 

this already enables, for instance, the use of a phone as remote control or the integration of external sensors 

and actuators to mobile phone applications, a more direct integration would be favourable. We are currently 

looking into collaboration with the creators of the iStuff Mobile toolkit [Ballagas, Memon, et al. 2007] in 

order to make use of their more direct connection of a mobile phone with computer-based infrastructure and 

combine it with our concept of modelling and programming by demonstration. 

 RFID / NFC: although acting on the proximity of such tags (using a supported phone model) can be done 

using the PMIF framework described in [Rukzio, Wetzstein, and Schmidt 2005], the mechanism is currently 

limited to reading a simple ID. Such tags can store data in the order of thousands of bytes which could 

potentially be used for application logic. We argue that such processes are better implemented in code than 

using a graphical environment. However, a better support for rich-content tags would be advantageous. 

 Devices / skins: future iterations of the prototype should take into account differences in hardware and 

software access, e.g. concerning the use of specific libraries or the amount and placement of buttons. For the 

latter issue, a potential approach is to detect the shape of the phone and the placement of its buttons from a 

picture as suggested by [St. Amant, Horton, and Ritter 2004]. In general, support for the use of specific 

buttons can be an issue. For example, not all available buttons can be used since the Java ME API does not 

give access to all of them (for example the power button). Currently, the implementation supports a specific 

phone model‟s layout and S60 phones for the code base only. However, by adjusting the code generation 

module, it is possible to extend the compatibility to systems such as Apple‟s iPhone or Google‟s Android 

platform without the need to introduce changes in the user interface. 

 User modelling: the KLM part is mostly based on user input. Currently, the placement of the mental act 

operator M does not employ the full set of heuristics available. Additional intelligence could also be used in 

a way such that the system tracks operator placement and learns specific sequences after some time. 

Additionally, if user performance data was available for a specific action sequence, automatic improvements 

to the model could be suggested. 

Most of these identified shortcomings can be implemented with moderate research effort. There are, however, 

two aspects that are inherent in the approach and goal of the system and require further investigation. 

First, highly dynamic applications are difficult to create. One approach would be to introduce animation style 

sequences and use a tool similar to the Adobe Flash development environment to generate more advanced 

transitions. However, most dynamic transitions depend on data from previous transitions. This could be tackled 

by storing such information in the graph. However, issues with data consistency, data types, addressing and 

computing of information would render the interface significantly more complex for the user. The advantages of 

increasing the power of creating applications have to be compared with the increase in complexity and gradient 

of the learning curve. As we argued before, we argue for shifting such effort into the programming domain 

where such transitions can be implemented more easily. 

The second problem with this approach is again one of scalability. The number of states in a state graph of even 

a moderately sized application can be high and render it difficult to keep an overview on the application‟s 

semantics, especially if the state graph is generated automatically. If there are many transactions, it can be 

difficult to find a pleasing layout. We provided some means to reduce this number of states using merging and 

condensing of states. Other than that, the only way to reduce the complexity is to split the application in several 

parts, e.g. one for each entry in a menu, and combine them afterwards. As long as the main application area of 

the development environment is the rapid prototyping of smaller applications, these issues should have minor 

impact. Nevertheless, advances in graph layout algorithms and additional ways of condensing the visualisation 

would help to increase the ease of describing more complex algorithms. One way of research might go in the 

direction of three dimensional representations. 
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In addition, further research on solutions for supporting state-based application development is possible. This 

includes the expressive power and automatic generation of state descriptions as well as formalisations and 

algorithms for bringing an application into a specific state. Whenever (state) graphs are used underlying the 

development of applications, they can be employed for usability purposes. However, besides the mentioned 

approaches, this possibility is still not fully exploited and warrants additional research. 

Another area of possible improvement is to further evaluate and improve the concept and user interface with a 

larger user study and concentrate on simplifying the inclusion of standard controls and widgets in the phone‟s 

screen like text input fields and scroll lists. Approaches like those seen in the upcoming Adobe Flash Catalyst 

project94 (previously marketed as Adobe Thermo) aim at this direction by automatically converting drawings of, 

e.g., a text area to a functional text box. A second option is used by [St. Amant, Horton, and Ritter 2004] who 

apply models (using GOMS and ACT-R) to menu interaction on mobile phones and present a system to semi-

automatically extract buttons from an image using shape detection algorithms. 

Under active development is the extension of the concepts for mobile device development implemented in 

MAKEIT to all types of pervasive applications. It is definitely possible to use a similar interface for other areas 

within pervasive computing. Reviewing the categories introduced in Chapter 2, it is clear that it would be 

difficult to include inherently different metaphors such as virtual reality applications. However, concepts like 

ambient computing, context aware applications, wearable and tangible computing are potential candidates. In 

[Holleis, Kern, and Schmidt 2007], we for example indicated opportunities for that last category. In wearable 

computing, instead of the mobile phone, a certain piece of clothing could be displayed. The graphical interface 

would then need to be adapted in a way that specific types of sensors and actuators could be attached and altered. 

The same principle would apply for smart environments. The environment would have a representation on 

screen and available sensors could be used as sources for events creating state graph transitions, while actuators 

could be manipulated according to the respective states. [Hull, Clayton, and Melamed 2004] show approaches in 

that direction for location-based applications. The separation and possible coexistence of multiple sensors and 

actuators has already been integrated into the design of the system but has not yet been fully exploited. 

Our systems laid the foundations for manifold potential combinations with research approaches that fit to 

specific parts of our system. As an example, pattern matching or data mining methods can be applied to further 

expand the power of programming by demonstration in conjunction with analogue sensors and more complex 

context information. Besides the suggested solutions, our work provides the ground for others to contribute to 

the further generalisation of the approaches which is only fully possible by broad approval, use, and continuous 

further development. 

 

 
 

                                                           
94 Adobe Flash Catalyst, interaction design tool; project page: http://labs.adobe.com/technologies/flashcatalyst/ 

http://labs.adobe.com/technologies/flashcatalyst/
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Appendix 

Graph Theoretical Terms 

We base our formalisations that use terms and concepts from graph theory mostly on standard and recognised 

definitions. In order to avoid misinterpretations, we give definitions of the terms we use in the following. 

Definition 6  (Undirected Graph 𝑮 , Node, Edge) 

An undirected graph 𝐺  = (S, A) is a finite non-empty set S of objects called nodes (also called vertices) together with a 

(possibly empty) set A of two-element sets {s1, s2} of distinct nodes s1, s2  S called (undirected) edges. 

In the literature, the most prominent notation is G = (N, E) with N being the set of nodes and E the set of edges. 

However, since the specific graph used in this work uses states (S) and actions (A) instead, we directly use these 

letters for consistency. 

Definition 7  (Directed Graph 𝑮   , Digraph, Arc) 

A directed graph 𝐺  = (S, A), also called a digraph, is a finite non-empty set S of objects called nodes (also called vertices) 

together with a (possibly empty) set A of ordered pairs (s1, s2) of distinct nodes s1, s2  S called (directed) edges (or arcs). 

Definition 8 (Graph, Graph Element) 
A graph is either a directed or an undirected graph. The set of edges E of a graph can also contain directed and undirected 

edges at the same time. 

The union of the set of nodes and the set of edges is called the set of graph elements. 

Note that these definitions do not allow multiple edges since, for a graph G = (S, A), A is a set and does not allow 

duplicates. 

Definition 9 (Simple Graph, Self-loop) 
An edge is called a self-loop (also reflexive or trivial) if it is of the form (s, s). A graph G = (S, A) without self-loops is 

referred to as simple. 

Note that since the edges of undirected graphs are two-element sets, there exist no self-loops in undirected 

graphs. 

Definition 10 (Out-Edge, In-Edge, Source Node, Target Node) 
In a graph G = (S, A), an edge a = (s1, s2)  A is an out-edge (also called outgoing edge) of node s1  S. It is an in-edge (also 

called incoming edge) of node s2  S. 

For an edge a = (s1, s2)  A, s1 is the source node and s2 the target node of a. 

For undirected graphs, these terms are undefined. 

Definition 11 (Incident Node / Edge) 

In a digraph 𝐺  = (S, A), s  S is an incident node to an edge a  A if a is an out-edge or an in-edge of n. 

In an undirected graph 𝐺  = (S, A), s  S is an incident node to an edge a  A if a node s'  S exists such that a = {s, s'}. 

In a graph G = (S, A), s  S is an incident node to an edge a  A if one of the previous two conditions holds for n. 

In a graph G = (S, A), a  A is an incident edge to a node s  S if s is incident to edge a. 

In directed graphs, another definition sometimes used is that an edge leaves its source and is incident to its 

target node. 

Definition 12  (Out-Neighbour, In-Neighbour, Neighbour) 

In a digraph 𝐺  = (S, A), a node s  S is an out-neighbour of a node s'  S, if there exists an edge a = (s', s)  A. 

A node s  S is an in-neighbour of a node s'  S if there exists an edge a = (s, s')  A. 

In a graph G = (S, A), a node s  S is a neighbour of a node s'  S, if there exists an edge a  A for which holds a = (s, s')  or  

a = (s', s)  or  a = {s, s'}. 
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Definition 13 (In-Degree, Out-Degree) 

In a digraph 𝐺  = (S, A), the in-degree and out-degree of a node s  S, indeg(s) and outdeg(s), are the number of in-edges and 

out-edges of s, respectively. 

In a graph G = (S, A), the in-degree and out-degree of a node s  S are the number of in-edges and out-edges of s, 

respectively, plus the number of undirected edges incident to s. 

For undirected graphs, the terms in-degree and out-degree are undefined; instead the term degree is used: 

Definition 14 (Degree, Source, Sink) 
In a graph G = (S, A), the degree of a node s  S is the number of edges incident to s. 

In a digraph 𝐺  = (S, A), a source is a node with an in-degree of zero. A node with an out-degree of zero is called a sink. 

Thus, for a digraph, the degree is the sum of in-and out-degree. This does not hold for an undirected graph, since 

the undirected edges would be counted twice. 

Obviously source and sink nodes are not defined for undirected graphs. 

Definition 15 (Path, Path Length, (Strongly) Connected, Cycle, Acyclic Graph) 
In a graph G = (S, A), a directed path of length n is a sequence of n directed edges where an edge has the same target node 

as the source node of the subsequent edge. In other words, a path p(sa, sb), of length n from a node sa  S to a node sb  S is 

defined as a sequence of n edges that connects sa with sb, i.e. a path p(sa, sb) exists, if and only if  

  there is an edge a = (sa, sb)  A, i.e. path of length n = 1, or 

  there exists an n  {2, 3, …}, edges a0, a1, …, an-1  A and nodes s0, s1, …, sn-2  S with a0 = (sa, s0), a1 = (s0, s1), 

…, an-1 = (sn-2, sb). 

An undirected path is defined analogously but uses only undirected edges. A path in general may use directed and 

undirected edges. Directed edges must always be traversed from their source to their target node. Note that there is potentially 

more than one path between two nodes. We use {p(sa, sb)} to refer to all distinct paths between sa  S to a node sb  S. 

Two nodes s1, s2  S are connected if s1 = s2 or there exists a path p(s1, s2) between them. They are strongly connected if the 

path uses only directed edges (from source to target). 

A cycle is either a directed path where the source node of the first edge coincides with the target node of the last edge, i.e. a 

path p(s, s) with s  S, or an undirected path where each node appears exactly twice. A graph that does not contain any cycle 

is said to be acyclic. 

Note that there can be several paths that connect two nodes. If the graph contains cycles, there can even be 

infinitely many of them. Paths play an important role in graph theory. For the state graphs introduced below, 

they describe, e.g., whether, how, and in how many steps users can reach their goal. 

Definition 16 (Underlying Undirected Graph, Subgraph) 

The graph G that is created by replacing all directed edges of a directed graph 𝐺  with undirected edges is called the 

underlying undirected graph of graph 𝐺 . 

A graph G = (S, A), whose node and edge sets are subsets of another graph G' = (S', A'), i.e. S  S' and A  A', is called a 

subgraph of the other graph. 

Definition 17 ((Strongly) Connected Graph, (Strongly) Connected Component) 
A graph G = (S, A), is connected if every pair of nodes in the graph is connected. A maximally connected subgraph of G is a 

connected component. 

The description „strongly’ applies if only directed edges are used. 

This implies that each node and each edge belongs to exactly one connected component. 

Definition 18 (Shortest Path) 
A path p(sa, sb) with length l in a graph G = (S, A) with node sa, sb  S, is a shortest path, if and only if for every path 

p' ϵ {p(sa, sb)} with length |p'| = l' it holds that l ≤ l'. 
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Full Keystroke Level Models of the Evaluation Scenario 

The following tables present the complete model of the interactions described in Section 3.4.4. Table 16 shows 

the version using NFC (with the Nokia 3220 NFC phone) while Table 17 shows the version using a standard 

browser on the same phone. 

Table 16: KLM used to evaluate the KLM extensions for advanced mobile phone interactions, see 

Section 3.4.4. It uses the NFC reader of the Nokia 3220 phone and an NFC enabled poster. 

Continued on next page. 

Description Operators Time 

Pick up the mobile phone I[optimal] 1.18 sec. 

Enter main menu M, K[Hotkey] 1.35 sec., 0.16 sec. 

Go to „Programs‟ M, K[Hotkey] 1.35 sec., 0.16 sec. 

Select „Programs‟ K[Hotkey] 0.16 sec. 

Go to „Collection‟ M, K[Hotkey] 1.35 sec., 0.16 sec. 

Select „Collection‟ K[Hotkey] 0.16 sec. 

Select „Choose program‟ K[Hotkey] 0.16 sec. 

Open application K[Hotkey] 0.16 sec. 

Wait for program to open R 4.63 sec. 

Read instructions M 1.35 sec. 

Scroll down to read further K[Hotkey] 0.16 sec. 

Read instructions M 1.35 sec. 

Choose „Options‟ M, K[Hotkey] 1.35 sec., 0.16 sec. 

Choose „Direct input‟ K[Hotkey] 0.16 sec. 

Go to „Transportation‟ M, 2K[Hotkey] 1.35 sec., 2*0.16 sec. 

Select „Transportation‟ K[Hotkey] 0.16 sec. 

Choose „Options‟ M, K[Hotkey] 1.35 sec., 0.16 sec. 

Choose „Confirm‟ M, K[Hotkey] 1.35 sec., 0.16 sec. 

Read instructions M 1.35 sec. 

Scroll down to read further K[Hotkey] 0.16 sec. 

Read instructions M 1.35 sec. 

Click „Next‟ K[Hotkey] 0.16 sec. 

Confirm network access M, K[Hotkey] 1.35 sec., 0.16 sec. 

Wait for service download R[adv] 15.88 sec. 

Go to duration: 1 day M, K[Hotkey] 1.35 sec., 0.16 sec. 

Choose duration: 1 day K[Hotkey] 0.16 sec. 

Go to start zone: zone2 M, K[Hotkey] 1.35 sec., 0.16 sec. 

Choose start zone: zone2 K[Hotkey] 0.16 sec. 

Go to end zone: zone4 M, K[Hotkey] 1.35 sec., 0.16 sec. 

Choose end zone: zone4 K[Hotkey] 0.16 sec. 

Go to passenger number:1 person M, K[Hotkey] 1.35 sec., 0.16 sec. 

Choose passenger number: 1 person K[Hotkey] 0.16 sec. 

Select „Options‟ M, K[Hotkey] 1.35 sec., 0.16 sec. 

Select „Send‟ M, K[Hotkey] 1.35 sec., 0.16 sec. 
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Description Operators Time 

Wait for server connection R 10.94 sec. 

Read instructions M 1.35 sec. 

Scroll down to read further K[Hotkey] 0.16 sec. 

Read instructions M 1.35 sec. 

Select „Options‟ M, K[Hotkey] 1.35 sec., 0.16 sec. 

Select „Send‟ M, K[Hotkey] 1.35 sec., 0.16 sec. 

Wait for server connection R 10.94 sec. 

Read instructions M 1.35 sec. 

Scroll down to read further K[Hotkey] 0.16 sec. 

Read instructions M 1.35 sec. 

Scroll down to read further M, K[Hotkey] 1.35 sec., 0.16 sec. 

Select „Card number‟ M, K[Hotkey] 1.35 sec., 0.16 sec. 

Enter four numbers M, 4K[Keypad] 1.35 sec., 4*0.36 sec. 

Attention shift from keypad to display and back SMicro  0.14 sec. 

Enter four numbers 4K[Keypad] 4x 0.36 sec. 

Attention shift from keypad to display and back SMicro 0.14 sec. 

Enter four numbers 4K[Keypad] 4*0.36 sec. 

Attention shift from keypad to display and back SMicro 0.14 sec. 

Enter four numbers 4K[Keypad] 4*0.36 sec. 

Attention shift from keypad to display and back SMicro 0.14 sec. 

Select „OK‟ M, K[Hotkey] 1.35 sec., 0.16 sec. 

Go to „payment method‟: VISA M, 3K[Hotkey] 1.35 sec., 3*0.16 sec. 

Select „payment method‟: VISA K[Hotkey] 0.16 sec. 

Select „Options‟ M, K[Hotkey] 1.35 sec., 0.16 sec. 

Select „Send‟ M, K[Hotkey] 1.35 sec., 0.16 sec. 

Wait for server connection R 10.94 sec. 

Read instructions M 1.35 sec. 

Scroll down to read further K[Hotkey] 0.16 sec. 

Read instructions M 1.35 sec. 

Scroll down to read further K[Hotkey] 0.16 sec. 

Read instructions M 1.35 sec. 

Click „Main‟ M, K[Hotkey] 1.35 sec., 0.16 sec. 

Click „Exit‟ K[Hotkey] 1.35 sec., 0.16 sec. 

Wait till program shuts down R 4.63 sec. 

Exit to main screen M, K[Hotkey] 1.35 sec., 0.16 sec. 

Time for the whole interaction  122.77 sec. ~ 2:03 min. 
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Table 17: KLM used to evaluate the KLM extensions for advanced mobile phone interactions, 

see Section 3.4.4. It uses the web browser on the Nokia 3220 phone. 

Continued on next page. 

Description Operators Time 

Pick up the mobile phone I 1.18 sec. 

Enter main menu M, K[Hotkey] 1.35 sec., 0.16 sec. 

Go to „Programs‟ M, 3K[Hotkey] 1.35 sec., 3*0.16 sec. 

Select „Programs‟ K[Hotkey] 0.16 sec. 

Go to „Collection‟ M, K[Hotkey] 1.35 sec., 0.16 sec. 

Select „Collection‟ K[Hotkey] 0.16 sec. 

Select „Choose program‟ K[Hotkey] 0.16 sec. 

Open application M, K[Hotkey] 1.35 sec., 0.16 sec. 

Wait for program to open R 4.63 sec. 

Read instructions M 1.35 sec. 

Scroll down to read further K[Hotkey] 0.16 sec. 

Read instructions M 1.35 sec. 

Attention shift from mobile phone to poster M, SMacro 1.35 sec., 0.36 sec. 

Movement to tag P 1.00 sec. 

Action to accomplish NFC interaction A[NFC] 0.00 sec. 

Process tag R[NFC] 2.58 sec. 

Attention shift from poster to mobile phone M, SMacro 1.35 sec., 0.36 sec. 

Read instructions M 1.35 sec. 

Scroll down to read further K[Hotkey] 0.16 sec. 

Read instructions M 1.35 sec. 

Download ticket service K[Hotkey] 0.16 sec. 

Confirm network access M, K[Hotkey] 1.35 sec., 0.16 sec. 

Download service R 15.88 sec. 

Attention shift from mobile phone to poster M, A[macro] 1.35 sec., 0.36 sec. 

Movement to tag „From‟ P 1.00 sec. 

Action to accomplish NFC interaction A[NFC] 0.00 sec. 

Process tag R[NFC] 2.58 sec. 

Find next tag M 1.35 sec. 

Movement to tag „To‟ P 1.00 sec. 

Action to accomplish NFC interaction A[NFC] 0.00 sec. 

Process tag R[NFC] 2.58 sec. 

Find next tag M 1.35 sec. 

Movement to tag „Duration‟ P 1.00 sec. 

Action to accomplish NFC interaction A[NFC] 0.00 sec. 

Process tag R[NFC] 2.58 sec. 

Find next tag M 1.35 sec. 

Movement to tag „Number of passengers‟ P 1.00 sec. 

Action to accomplish NFC interaction A[NFC] 0.00 sec. 

Process tag R[NFC] 2.58 sec. 
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Description Operators Time 

Movement from poster to the body P 1.00 sec. 

Attention shift from poster to mobile phone M, SMacro 1.35 sec., 0.36 sec. 

Scroll down and validate the four inputs 18K[Hotkey], 4M 18*0.16 sec., 4*1.35 sec.  

Choose „Options‟ M, K[Hotkey] 1.35 sec., 0.16 sec. 

Select „Send „ M, K[Hotkey] 1.35 sec., 0.16 sec. 

Wait for server connection R 10.94 sec. 

Read instructions M 1.35 sec. 

Scroll down to read further K[Hotkey] 0.16 sec. 

Read instructions M 1.35 sec. 

Choose „single ticket‟ M, K[Hotkey] 1.35 sec., 0.16 sec. 

Select „single ticket‟ K[Hotkey] 0.16 sec. 

Choose „Options‟ M, K[Hotkey] 1.35 sec., 0.16 sec. 

Select „Send‟ M, K[Hotkey] 1.35 sec., 0.16 sec. 

Wait for server connection R 10.94 sec. 

Read instructions M 1.35 sec. 

Scroll down to read further K[Hotkey] 0.16 sec. 

Read instructions M 1.35 sec. 

Click to enter credit card number M, K[Hotkey] 1.35 sec., 0.16 sec. 

Enter four numbers M, 4K[Keypad] 1.35 sec., 4*0.36 sec. 

Attention shift from keypad to display and back SMicro 0.14 sec. 

Enter four numbers 4K[Keypad] 4*0.36 sec. 

Attention shift from keypad to display and back SMicro 0.14 sec. 

Enter four numbers 4K[Keypad] 4*0.36 sec. 

Attention shift from keypad to display and back SMicro 0.14 sec. 

Enter four numbers 4K[Keypad] 4*0.36 sec. 

Attention shift from keypad to display and back SMicro 0.14 sec. 

Press „OK‟ M, K[Hotkey] 1.35 sec., 0.16 sec. 

Scroll down M, K[Hotkey] 1.35 sec., 0.16 sec. 

Select „VISA‟ M, K[Hotkey] 1.35 sec., 0.16 sec. 

Select Options M, K[Hotkey] 1.35 sec., 0.16 sec. 

Select „Send‟ M, K[Hotkey] 1.35 sec., 0.16 sec. 

Wait for server connection R 10.94 sec. 

Read instructions M 1.35 sec. 

Scroll down to read further K[Hotkey] 0.16 sec. 

Read instructions M 1.35 sec. 

Exit program M, K[Hotkey] 1.35 sec., 0.16 sec. 

Wait till program shuts down R 4.63 sec. 

Exit to main screen M, K[Hotkey] 1.35 sec., 0.16 sec. 

Time for the whole Interaction  147.48 sec. ~ 2:27 min. 
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