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1. Introduction 

1.1. The NO/cGMP signaling cascade 

The Nitric Oxide (NO)/cyclic guanosine-3’, 5’-monophosphate (cGMP) signaling cascade 

plays an important role in the regulation of a variety of physiological responses such as smooth 

muscle relaxation, inhibition of platelet aggregation and synaptic plasticity.  

The messenger molecule NO is produced by NO-synthases (NOS) which catalyze the oxidation 

of the terminal nitrogen of the guanidino group of the amino acid arginine (Lloyd-Jones and 

Bloch, 1996; Loscalzo and Welch, 1995). Three different isoforms can be distinguished. Two 

constitutively Ca2+/Calmodulin-dependent isoforms are expressed in neurons (nNOS, NOS-1) 

and in endothelial cells (eNOS, NOS-3). A third isoform is found in many cell types, e.g. in 

macrophages, vascular smooth muscle cells and endothelial cells. Due to its activation by 

cytokines and lipopolysaccharides this isoform is called inducible NOS (iNOS, NOS-2). 

Activated iNOS is independently from the Ca2+-concentration and produces NO over longer 

periods and at greater amounts. NO diffuses through the membrane into the target cell where it 

activates the NO-sensitive or soluble guanylyl cyclase (sGC). sGC catalyzes the formation of 

the second messenger cGMP from guanosine-5’-triphosphate (GTP) (Furchgott and Vanhoutte, 

1989). cGMP can also be generated by the membrane bound, particulate guanylyl cyclases 

(GC-A, GC-B, GC-C), which are stimulated by natriuretic peptides, like atrial natriuretic 

peptide (ANP) (Garbers and Lowe, 1994). 

Most of the known NO effects are mediated by cGMP (Schmidt and Walter, 1994). Mammalian 

cells have three major types of cGMP receptors: cGMP-regulated ion channels (cyclic 

nucleotide-gated channels, CNG channels) (Biel et al., 1999), cGMP-dependent 

phosphodiesterases (PDEs) (Sonnenburg and Beavo, 1994) and cGMP-dependent protein 

kinases (PKGs) (Figure 1). The increase in cGMP is terminated by the action of cGMP-

degrading PDEs.  
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Figure 1.  The NO/cGMP signaling cascade and the three major cGMP receptors.  
 

1.2. Structure, expression and function of PKGs 

Important mediators of cGMP are the cGMP-dependent protein kinases or PKGs. They belong 

to the family of serine/threonine kinases and are present in a variety of species. In mammals 

two PKG genes, prkg1 and prkg2 that encode PKGI and PKGII are found. PGKI and PGKII are 

structurally similar but differ in their subcellular localization, tissue distribution and function 

(Hofmann et al., 1992).  

PGKI is a soluble 75 – 77 kDa protein. The first 100 amino acids of the N-terminus of PKGI 

are encoded by two alternatively spliced exons that produce the isoforms PKGIα and PKGIβ, 

which are differentially expressed (see also Table 1). The enzymes are activated at 

submicromolar to micromolar concentrations of cGMP (Gamm and Uhler, 1995; Ruth et al., 

1997). Due to the distinct N-terminus to PKGIβ, PKGIα has a higher affinity to cGMP at one of 

the binding pockets. 

PKGs are structurally related to cAMP-dependent protein kinase (PKA), the best characterized 

member of the serine/threonine kinase family (Su et al., 1995). While the regulatory and 

catalytic units of both kinases are highly conserved, their quaternary structures are distinct. The 

regulatory and catalytic units of PKG are contained within the same polypeptide chain and the 

holoenzyme is a homodimer. In contrast, PKA forms a tetrameric holoenzyme complex, 

composed of separate catalytic and regulatory subunits. cAMP-binding to the regulatory 

subunits leads to the dissociation and activation of the catalytic subunits. 
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PKGs are composed of three functional domains: a N-terminal (A) domain, a regulatory (R) 

domain, and a catalytic (C) domain (Figure 2). The regulatory domain contains two binding 

pockets for cGMP. The catalytic domain contains a Mg-ATP and a substrate peptide-binding 

pocket, and is responsible for the transfer of the γ-phosphate residue of ATP to the 

serine/threonine residues of the substrate protein. In the absence of cGMP, the catalytic domain 

of PKGI is blocked by a N-terminal autoinhibitory domain which is located between the 

dimerization domain and the cGMP-binding sites. After binding of 2 moles cGMP/1 mole of 

enzyme, PGKIα is autophosphorylated at Thr59 and PKGIβ at Ser64 and Ser80, respectively. 

This induces a conformational change of PGKI and the substrate can interact with the substrate-

binding site and the catalytic domain leading to the phosphorylation of the substrate. (Hofmann 

et al., 2000; Pfeifer et al., 1999). 

 

 
 
Figure 2. Structure of the PKGs.  
PKG consist of three domains. The N-terminus (A) is responsible for dimerization and autoinhibiton. The 
regulatory domain (R) leads to the activation of the kinase by cGMP-binding and the catalytic domain (C) is 
responsible for substrate binding and catalysis. 
 
Initially, PKGI was found in invertebrates (Kuo and Greengard, 1970). Two years later cGMP-

induced kinase activity was detected in cell extracts of the cerebellum of rats (Hofmann and 

Sold, 1972) and was then further found in a variety of tissues of mammals. The highest amount 

of PKGI was found in the Purkinje cells of the cerebellum (Lohmann et al., 1981), in smooth 

muscles (Keilbach et al., 1992) and in thrombocytes (Waldmann et al., 1986). Furthermore, 

PGKI is expressed in the hippocampus (Kleppisch et al., 1999), endothelial cells of blood 

vessels (Draijer et al., 1995), heart (Kumar et al., 1999), kidney (Joyce et al., 1986), spinal 

ganglions (Qian et al., 1996), the neuromuscular end-plate (Chao et al., 1997) and in 

neutrophile granulocytes and macrophages (Pryzwansky et al., 1995).  
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Table 1. Expression of PKGI and its isoforms in tissues. 
 
Tissue Isoform Reference 

heart, lung PKGIα >> PKGIβ Kumar et al., 1999 

immune cells PKGIα >> PKGIβ Pryzwansky et al., 1995, Werner et al., 2005 

cerebellum PKGIα > PKGIβ Lohmann et al., 1981 

aorta, trachea, uterus PKGIα << PKGIβ Keilbach et al., 1992, Geiselhoringer et al., 2004 

thrombocytes PKGIα << PKGIβ Waldmann et al., 1986 

smooth muscle PKGIα = PKGIβ Keilbach et al., 1992 

neurons PKGIα = PKGIβ Qian et al., 1996, Chao et al., 1997 

hippocampus PKGIα = PKGIβ Kleppisch et al., 1999 

kidney PKGIα = PKGIβ Joyce et al., 1986 
 
PGKII is also a homodimeric protein of a molecular mass of 87 kDa. Due to myristoylation at 

the N-terminus PGKII is membrane bound and is found in brain, bone, kidney and the intestinal 

mucosa (Hofmann et al., 2000; Pfeifer et al., 1999). 

 

1.2.1. Physiological role of PKGI  

PKGI regulates a broad spectrum of physiological functions. Thus far, PKGI function was most 

intensively studied in the cardiovascular and neuronal systems. 

The smooth muscle tone in blood vessels and blood pressure are influenced by a variety of 

factors including NO  and natriuretic peptides (Palmer et al., 1987). Both reduce smooth muscle 

tone by stimulating the cGMP production via the activation of sGC or pGC, respectively. PKGI 

reduces smooth muscle tone by two major mechanisms. cGMP/PKGI decreases vascular tone 

by lowering cytosolic calcium (Ca2+)-levels or by regulation of the contractile filament via 

Ca2+-independent mechanisms. The liberation of Ca2+ from the sarcoplasmatic reticulum can be 

inhibited by the phosphorylation of the inositol-1,4,5-triphosphate receptor (IP3R) (Komalavilas 

and Lincoln, 1996) and/or the inhibition of the agonist-induced generation of IP3. It has been 

shown that the thrombin-induced IP3 synthesis and the liberation of Ca2+ from the 

sarcoplasmatic reticulum are inhibited by PKGI (Ruth et al., 1993). Furthermore, PKGIβ 

phosphorylates the IP3 receptor-associated cGMP kinase substrate (IRAG) (Schlossmann et al., 

2000), thereby inhibiting IP3-dependent Ca2+-release. In addition, Ca2+-dependent high-

conductance potassium channels (BKCa channels), which are involved in the generation of the 

membrane potential in vascular smooth muscle cell (VSMCs), are activated by PKGI (Fukao et 

al., 1999; Taniguchi et al., 1993). Phosphorylation of the BKCa channels leads to a 
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hyperpolarization causing a reduction of the Ca2+-influx by closing voltage-dependent Ca2+-

channels (Alioua et al., 1998). Thus, activation of PKGI leads to a reduction of the Ca2+-

concentration in VSMCs, which in turn, leads to relaxation of the smooth muscle and 

vasodilatation. Furthermore, Ca2+-independent mechanisms have been identified. PKGIα causes 

the dephosphorylation of the myosin light chain (MLC) through the myosin-phosphatase 1 

(MLCP) by phosphorylating the regulatory myosin-binding subunit (MBS) of the MLCP (Surks 

et al., 1999). PKGI-dependent phosphorylation of MBS at Ser695 increases MLCP activity 

(Wooldridge et al., 2004). This mechanism would allow a reduction in MLC phosphorylation 

and smooth muscle relaxation at constant Ca2+-concentrations. Another mechanism of PKGI-

dependent smooth muscle relaxation is mediated via the small GTPase RhoA. PKGI 

phosphorylation of RhoA at Ser188 induces translocation from the membrane to the cytosol 

whereby RhoA is inactivated. Thus, PKGI inhibits the downstream RhoA effector Rho kinase 

(ROCK) and consequently activates MLCP to dephosphorylate MLC (Etter et al., 2001; 

Sauzeau et al., 2000).  

In addition to smooth muscle relaxation, PKGI has also a pivotal role in thrombocyte 

aggregation. Platelets express high amounts of PKGIβ (Table 1), which is activated in response 

to NO and has an anti-aggregatory function (Gambaryan et al., 2004; Marshall et al., 2004; 

Massberg et al., 1999). Destruction of the endothelial cell layer leads to platelet adhesion and 

aggregation. Endothelial cells release prostacyclin and NO, which increase cAMP and cGMP 

levels in platelets and, thereby, inhibit clot formation. In PKGI-deficient mice, collagen-

induced platelet aggregation was not inhibited by NO or cGMP analogs, whereas aggregation 

was prevented by cAMP-elevating agents (Massberg et al., 1999), demonstrating that PKGI is 

essential for NO/cGMP effects in platelets. Two PKGI substrates have been identified in 

platelets: vasodilator–stimulated–phospho–protein (VASP) and IRAG. In VASP-deficient 

mice, cAMP and cGMP-dependent inhibition of platelet aggregation was reduced. Other cAMP 

and cGMP-dependent effects in platelets, such as inhibition of agonist-induced increases in 

cytosolic Ca2+-concentrations and granule secretion, were not dependent on the presence of 

VASP (Aszodi et al., 1999; Hauser et al., 1999). In addition, the interaction of platelets with the 

endothelium in vivo has been found to be increased (Massberg et al., 2004). Platelets from 

IRAG-deficient mice (Geiselhoringer et al., 2004) have a severe defect in the cGMP-mediated 

prevention of aggregation, indicating that IRAG is also an essential component of this pathway.  

 

PKGI also has important physiological function in the neuronal system. The analysis of the 

trajectories of sensory axons in the spinal cord of mouse embryos revealed that axons lacking 
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PKGI extended predominantly into a single direction (Schmidt et al., 2002). This branching 

defect resulted in a reduced number of sensory axons in the spinal cord of newborn PKGI 

mutants and a substantial impairment of the nociceptive flexion reflexes compared with their 

wild type littermates. These findings indicate that PKGI is required for the correct guidance and 

connectivity of axons originating from dorsal root ganglia sensory neurons. 

Changes in the strength of the synaptic transduction are potential mechanisms for learning and 

memory (Carey and Lisberger, 2002; Chen and Tonegawa, 1997). Two important phenomena 

of synaptic plasticity are long term potentiation (LTP) and long term depression (LTD). Both 

are involved in synaptic transmission, which can be induced in vivo and in vitro through 

activation of pre-synaptic fibers. PKGI has been implicated in the generation of LTP in cultured 

hippocampal pyramidal cells and hippocampal slices (Arancio et al., 1995; Zhuo et al., 1994). 

In contrast to these findings, hippocampal LTP was normal in PKGI-deficient mice (Kleppisch 

et al., 1999). Additionally, hippocampus-specific PKGI knock out mice showed normal basal 

synaptic transmission and normal early phase of LTP within the first hour after a single tetanus 

in the hippocampus (Kleppisch et al., 2003). However, protein synthesis-dependent late phase 

of LTP was impaired after multiple episodes of strong theta burst stimulation in adult 

hippocampus-specific PKGI knock out mice (Kleppisch et al., 2003). NO has also been 

proposed to be involved in the induction of LTD (Shibuki and Okada, 1991) and Purkinje cells 

contain high levels of PKGIα (Table 1). Purkinje cell-specific disruption of the PKGI gene 

caused a nearly complete loss of cerebellar LTD (Feil et al., 2003), identifying PKGI as an 

essential component in the signaling pathway underlying the induction of LTD at parallel fibers 

signaling to Purkinje cell synapses. 

 

1.2.2. Brown adipose tissue – BAT  

Adipose tissue plays an important role in energy storage and has great influence on whole-body 

homoeostasis. Two types of adipose tissue exist in mammals: White adipose tissue (WAT) and 

brown adipose tissue (BAT). WAT stores energy in the form of lipids whereas BAT can 

dissipate energy through adaptive thermogenesis (Barnard, 1977; Rothwell and Stock, 1979). 

WAT and BAT are normally localized in anatomically distinct areas in mammals. BAT is 

mainly found in the interscapular neck region and in supraclavicular regions of new born 

mammals. BAT is also histologically different from WAT. Whereas white fat cells usually 

contain one major - unilocular - lipid droplet filling up almost the whole cytoplasm, brown fat 

cells contain several small - multilocular - lipid droplets (Cinti, 2005). In addition, brown 
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adipocytes contain high numbers of mitochondria containing cristae. BAT is highly 

vascularized and highly innervated by the sympathetic nervous system. The differences in lipid 

content and mitochondrial abundance in white and brown fat cells, as well as in vascularization 

of the tissues, are the reasons for the color differences between WAT and BAT. The 

thermogenic capacity of BAT is due to expression of UCP-1 exclusively in brown adipocytes. 

UCP-1 is a facultative proton transporter localized at the mitochondrial inner membrane, where 

it uncouples the oxidation of fuel substrates from the production of ATP, thereby generating 

heat (Figure 3).  
 

heat

NO

cGMP
heat

NO

cGMP

 
Figure 3. Uncoupling of mitochondrial ATP synthesis by UCP-1 (modified after Cannon and Nedergaard, 
2004).  
NE, noradrenalin; HSL, hormone-sensitive lipase; TG, triglycerides; FFA, free fatty acids; β-ox, β-oxidation; 
CAC, citric acid cycle.  
 
In rodents, expression of UCP-1 is highly responsive to external stimuli such as food intake and 

changes in temperature. Food intake and exposure to cold induce sympathetic activation and the 

release of noradrenalin (NA) which in turn activates adrenergic receptors of brown fat cells. 

Recently, NO has been demonstrated to induce mitochondrial biogenesis in brown adipose 

tissue through activation of cGMP-dependent mechanisms (Nisoli et al., 2003; Nisoli et al., 

1998). In addition, calorie restriction induces eNOS expression in a variety of tissues including 

white fat (Nisoli et al., 2005).  

Although BAT content decreases after birth, recent studies using positron emission tomography 

indicate that adult humans posses metabolically active BAT (Nedergaard et al., 2007). 
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1.2.2.1. Insulin signaling in BAT 

Insulin induces diverse biological actions by binding to and activating its tyrosine kinase 

receptors (Kasuga et al., 1982; Ullrich et al., 1985). Brown fat cells express a high number of 

insulin and IGF-I receptors (Lorenzo et al., 1993; Teruel et al., 1996). These receptors 

transduce signals by phosphorylation of several cellular substrates, especially insulin receptor 

substrate (IRS) proteins 1, 2, 3 and 4 (White, 2003; White and Kahn, 1994). Following insulin 

stimulation, IRS proteins are phosphorylated at multiple tyrosine residues, resulting in the 

interaction with SH2 domain-containing proteins such as the p85 subunit of phospoinositide 3-

kinase (PI3K), the protein tyrosine phosphatase SHPTP2, and the growth factor receptor-

bound-2 (Grb-2/Sem5). These events lead to activation of various downstream signaling 

pathways (Backer et al., 1992; Skolnik et al., 1993; Sun et al., 1993; Sun et al., 1995). 

 
Figure 4. Insulin signaling pathways in brown adipocytes (modified after Valverde et al., 2005). 
IRS-1/PI3K/Akt pathway is essential for insulin-induced lipid synthesis, mitochondrial biogenesis and UCP-1 
expression in brown adipocytes. MitoTracker staining of BAT-MSCs (2.4.4), mitochondria are stained green 
(bottom, left); Oil Red O staining (2.5.4.1) of differentiated brown adipocytes, lipids are stained red (bottom right). 
 
Insulin promotes both adipogenic and thermogenic differentiation. The main pathway involved 

in insulin induction of adipogenic differentiation is the IRS-1/PI3K/Akt (PKB) cascade, which 

up-regulates the expression of adipogenic-related genes at the transcriptional level (Teruel et 

al., 1996; Valverde et al., 1992). In addition, the IRS-1/PI3K pathway activates the UCP-1 

promoter leading to increased UCP-1 expression (Lorenzo et al., 1993) in BAT. 
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1.2.3. Adipogenic differentiation - Mesenchymal stem cells 

Stem cells can be divided in three groups depending on their differentiation potential: 1) 

Totipotent stem cells which are found in zygotes and give rise to the embryo and the 

trophoblast (embryonic stem cells). 2) Pluripotent stem cells derive from the blastocyst and can 

differentiate into all three germ layers (embryonic stem cells). 3) Multipotent stem cells 

differentiate in cells of different tissues and are responsible for building up and self-renewal of 

the tissue (adult stem cells). 

Mesenchymal stem cells (MSCs) are multipotent adult stem cells, which can give rise to a 

variety of lineages of mesenchymal origin including the adipogenic, osteogenic, chondrogenic, 

myogenic, endothelial and hematopoietic lineages (depending on the in vitro culture conditions) 

(Guilak et al., 2004; Hattori et al., 2004; Safford et al., 2004; Zuk et al., 2002). They are found 

in bone marrow (BM) (Pittenger et al., 1999), scalp tissue (Shih et al., 2005), placenta (In 't 

Anker et al., 2004), umbilical cord blood (UCB) (Bieback et al., 2004) and in various fetal 

tissues (Campagnoli et al., 2001) as well as in adipose tissue (AT) (Zuk et al., 2001).  

 

 
Figure 5.  Schematic model of mesenchymal stem cell differentiation (modified after Baksh et al., 2004).  
 
Adipose tissue-derived mesenchymal stem cells (AT-MSCs), are considered to be the 

multipotent fraction of adherent cells, which, after isolation of the adipose stromal vascular 

fraction (SVF), attach to plastic culture dishes and remain there as a heterogeneous population 

of fibroblast-like cells. They can be isolated from either white or brown adipose tissue with 

similar differentiation potentials (Prunet-Marcassus et al., 2006). 
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Figure 6.  White and brown adipocytes derive from the same mesenchymal precursor cells (modified after 
Junqueira and Carneiro, 2002). 
 

MSCs used in this study were derived from brown adipose tissue (brown adipose tissue-

derived mesenchymal stem cells, BAT-MSCs) (2.5.2) and were differentiated into brown 

adipocytes and osteoblasts, depending on the culture conditions (2.5.4 and 2.5.5). 
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1.3. Aim of the PhD thesis 

The NO/cGMP signaling cascade has been implicated in regulating mitochondrial biogenesis in 

BAT (Nisoli et al., 2003; Nisoli et al., 1998). However, the mechanism underlying cGMP-

induced mitochondrial biogenesis is unclear. In addition, brown fat thermogenesis and brown 

fat differentiation (adipogenesis) can be differentially regulated (Uldry et al., 2006).  

 

cGMP can signal via three major receptors including PDEs, CNG channels and PKGs. The 

overall goal of this study was to investigate which of the cGMP receptors is/are responsible for 

NO/cGMP induced mitochondrial biogenesis. Therefore, the following questions were raised: 

 

1) Which components of the NO/cGMP signaling cascade are expressed in BAT? 

2) Which cGMP receptor(s) regulate mitochondrial biogenesis in BAT? 

3) What role plays PKG in BAT? 

4)  Does the cGMP signaling pathway regulate BAT differentiation? 

 

In order to determine the role of PKGI in BAT mitochondrial biogenesis and differentiation in 

vitro, PKGI knock out and PKGI floxed mice were used to establish brown adipocyte cell lines, 

which could further be modified by using lenti- and retroviral vectors to overexpress target 

proteins. To further investigate the role of PKGI in BAT in vivo, the consequences of PKGI-

deletion in BAT were analyzed. 
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2. Materials and Methods 

2.1. Common chemicals 

All chemicals used in this study, if not further specified were purchased from the following 

companies: Carl Roth GmbH (Karlsruhe), Merck, Calbiochem (Darmstadt), Sigma-Aldrich 

(München) and VWR (Darmstadt). Water used in this study was purified and distilled with an 

EASYpure UV/UF system (WeteA, Wilhelm Werner GmbH, Leverkusen). 

 

2.2. Animals 

All mouse strains were maintained and bred in the animal facilities of the Department 

Pharmazie, Ludwig-Maximilians-Univeristät, München and the Institut für Pharmakologie 

und Toxikologie, Bonn. The mice had free access to standard rodent diets and water. The light 

cycle was set for 12 h. For breeding mice at age of 8 weeks were used. At an age of 3 weeks 

after birth, mice were separated by sex, marked with ear tags and housed in separate cages. 

PKGI knock out mice (Pfeifer et al., 1998) were kept in the heterozygous state on a 

C57BL/6N background. PKGI floxed mice were kindly provided by Prof. Reinhard Fässler, 

MPI für Biochemie, Martinsried and kept in the homozygous state on a C57BL/6N 

background. 

 

2.3. Histological analysis 

Equipment 

Fluorescence microscope, Axioskop 2 with an Atto Arc light source, HBO-lamp (100W), 

AxioCam camera and AxioVision software, Zeiss, Jena 

Light microscope, DMIL, Leica, Wetzlar 

Microtome, HM335E, Microm, Walldorf 

Stereo microscope, Advance ICD, Bresser, Rhede 

Mounting media 

Roti®-Histokitt, Roth (Cat. No. 6638.1) 

PermaFluor®, Beckman Coulter, Krefeld (Cat. No. PN IM 0752) 
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2.3.1. Preparation of paraffin sections 

Paraffin wax is the most widely used embedding medium since it is solid enough to support 

the tissue but yet soft enough to enable rather thin sections to be cut. The most widely used 

fixatives are paraformaldehyde (PFA) and glutharaldehyde (GA) which react with basic 

amino acid residues thereby cross-linking neighboring proteins. 

Mice of different ages were sacrificed and dissected under a stereo light microscope (Bresser). 

The isolated brown adipose tissue was collected in PBS and transferred to PFA solution (4% 

PFA/PBS) and incubated for 30 min at room temperature (RT). Next, tissue samples were 

dehydrated by subsequent washes in ethanol of ascending concentrations (50%, 70%, 80%, 

90%, and 100%) for 1 h each incubated 2 times in xylol for 30 min and placed in paraffin 

solution 3 times for 1 h at 55° C. The tissue was placed in embedding forms and was 

embedded with fluid paraffin. Paraffin blocks were stored until cutting at 4° C. Paraffin 

blocks were cut in 4 µm thick sections using a microtome (Microm). Quality and orientation 

of the tissue was frequently checked under a light microscope (Leica). Slides were dried at RT 

for 1 - 2 h and finally stored at 4° C. 

  

 PBS 

 NaCl .................................................................. 8 g 

 Na2HPO4 ...................................................... 1.44 g 

 KH2PO4........................................................ 0.24 g 

 KH2PO4........................................................ 0.24 g 

 KCl................................................................. 0.2 g 

 filled up to 1000 ml with H2O and adjusted to pH 7.4 with HCl  

  

 Paraformaldehyde solution 

 Paraformaldehyde (PFA).................................. 4 g 

 dissolved in PBS pH 7.4, boiled for 1 min and cooled on ice 

 

2.3.2. Hematoxylin/Eosin staining 

This technique is a widespread histological stain, which can demonstrate a large number of 

different tissue structures. The major oxidization product of hematoxylin is hematin which is 

responsible for the color properties. It stains cell nuclei with good intranuclear detail in blue, 
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while eosin stains the cytoplasm and connective tissue in varying shades and intensities with a 

pink color. 

In order to perform a hematoxylin/eosin  stain, paraffin sections were treated 2 times for 2 

min in xylol (deparaffinization) followed by incubation in 100%, 90%, 80%, 70%, 50% and 

PBS for 2 min (rehydration). Slides were then treated for 1 min with hematoxylin (Mayers 

hemalaun) and blued in tap water. Subsequently, slides were stained with eosin for 1 min and 

washed again in tap water. Sections were dehydrated in 50%, 70%, 80%, 90%, 100%, ethanol 

for 2 min each, washed 2 times 5 min in xylol and finally mounted with Roti®-Histokitt. 

 

 Mayers hemalaun, Merck (Cat.No. 1.09249) 

 Eosin G, Merck (Cat.No. 1.09844) 

 

2.4. Immunological methods 

2.4.1. Materials immunological analysis 

Flow cytometer, FACSCalibur® with CellQuest® software, Becton Dickinson, USA 

VECTASTAIN® ABC Kit, Vector Laboratories, UK (Cat. No. PK-4000) 

ACLAR transparencies, Plano, Wetzlar (Cat. No. 10501-10) 

Glass coverslips, VWR (Cat. No. 0111520) 

Antibodies, see below: 

 

Name .................................... Manufacturer........... Cat. No.......... WB .......... IF.......... IP 

Actin...................................... Sigma……………..... A-5441........... 1:5000….. ---.......... --- 

Akt......................................... Cell Signaling............ 9272…........... 1:1000...... --- .......... --- 

Akt pSer473 .......................... Cell Signaling............ 9271............... 1:1000...... --- .......... --- 

aP2......................................... Santa Cruz ................. sc-18661 ........ 1:1000...... --- .......... --- 

C/EBPβ.................................. Santa Cruz ................. sc-150 ............ 1:1000...... --- .......... --- 

CD11b-PE ............................. BD Pharmingen ......... 553311........... --- ............. 1:800..... --- 

CD44-PE ............................... BD Pharmingen ......... 553134........... --- ............. 1:200..... --- 

CD45-PE ............................... BD Pharmingen ......... 553081........... --- ............. 1:400..... --- 

CD49e-PE ............................. BD Pharmingen ......... 557447........... --- ............. 1:200..... --- 

CD73-PE ............................... BD Pharmingen ......... 550741........... --- ............. 1:200..... --- 

CD105-PE ............................. Santa Cruz ................. sc-18838 PE... --- ............. 1:200..... --- 

CD106-PE ............................. Santa Cruz ................. sc-19982 PE... --- ............. 1:200..... --- 
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Name .................................... Manufacturer........... Cat. No.......... WB .......... IF.......... IP 

CREB .................................... Cell Signaling............ 9192............... 1:1000...... --- .......... --- 

CREB pSer133...................... Cell Signaling ........... 9191............... 1:1000...... --- .......... --- 

goat-HRP............................... Chemicon .................. AP309P.......... 1:5000...... --- .......... --- 

IRS-1 ..................................... Santa Cruz ................. sc-7200 .......... 1:1000...... --- .......... 1µg 

IRS-1 pSer636/639................ Cell Signaling............ 2388............... 1:1000...... --- .......... --- 

MitoTracker®GreenFM........ Molecular Probes....... M-7514 .......... --- ............. 1:20000. --- 

mouse-HRP ........................... Dianova…… ............. 115-035-146 .. 1:10000.... --- .......... --- 

Myc-tag (9B11)..................... Cell Signaling ........... 2276............... 1:1000...... --- .......... --- 

PI3K p85α............................. Cell Signaling ........... 4257............... 1:1000...... --- .......... --- 

PPARγ ................................... Santa Cruz ................. sc-7273 .......... 1:1000...... --- .......... --- 

PKGI ..................................... self made ................... MPI (Ussar) ... 1:2000...... 1:600..... --- 

p38......................................... Cell Signaling............ 9212............... 1:1000...... --- .......... --- 

p38 pThr180/Tyr182 ............. Cell Signaling............ 9215............... 1:1000...... --- .......... --- 

pTyr (Y-20) ........................... Santa Cruz ................. sc-508 ............ 1:1000...... --- .......... --- 

rabbit-biotin........................... Dianova ..................... --- ................... 1:10000.... --- .......... --- 

rabbit-HRP…… .................... Cell Signaling............ 7074............... 1:10000.... --- .......... --- 

phalloidin Alexa 546............. Molecular Probes....... A22283 .......... --- ............. 1:40....... --- 

RhoA ..................................... Santa Cruz ................. sc-418 ............ 1:1000...... --- .......... --- 

Sca-1-PE................................ BD Pharmingen ......... 553336........... --- ............. 1:200..... --- 

Tubulin .................................. Dianova ..................... DLN-09992 ... 1:1000...... --- .......... --- 

UCP-1.................................... Santa Cruz ................. sc-6529 .......... 1:500........ --- .......... --- 

 

2.4.2. Immunostaining of brown adipose tissue sections 

Immunostaining on brown adipose tissue was carried out on 4 µm dewaxed and rehydrated 

paraffin sections as described before (2.3.2). To quench endogenous peroxidases, sections 

were treated with peroxidase solution for 30 min, blocked with blocking solution for 30 min 

at RT and washed three times with washing solution. The primary antibody against PGKI was 

diluted in blocking solution (1:600) and sections were incubated overnight (o/n) at RT. After 

subsequent washing with washing solution, the secondary anti-rabbit-biotin antibody was 

applied for 1 h at RT. After washing again with TBS the VECTASTAIN® ABC Kit (Vector 

Laboratories) was applied according to the manufactures instructions for 30 min and was 

developed with 3-3’ diaminobenzidine (DAB). After reaction with oxidizing reagents like 
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peroxidases DAB produces an intense brownish color. Finally, sections were dehydrated as 

described above (2.3.2) and mounted in Roti®-Histokitt.  

 

TBS 

 NaCl ..........................................................150 mM 

 Tris-HCl ......................................................50 mM 

filled up to 1000 ml with H2O and adjusted to pH 7.4 with HCl 

  

 Peroxidase solution 

 30% H2O2 .......................................................... 8 g 

 Methanol..........................................................40% 

  

 Blocking solution 

 Normal chicken serum (NCS)............................2% VectorLaboratories (Cat.No.S300) 

 dissolved in TBS pH 7.4   

 

 Washing solution (1% BSA) 

 Bovine serum albumin (BSA) ......................... 1 mg 

 TBS .................................................................. 1 ml 

 

2.4.3. F-Actin staining of adherent cells in culture 

Phallotoxins, isolated from the deadly Amanita phalloides mushroom, are bicyclic peptides 

that differ by two amino acid residues. They can be used interchangeably in most applications 

and bind competitively to the same sites in F-actin. Phalloidin and phallacidin contain an 

unusual thioether bridge between a cysteine and tryptophan residue that forms an inner ring 

structure. Fluorescent and biotinylated phallotoxins stain F-actin at nanomolar concentrations. 

Glass coverslips placed in 6-well plates were coated o/n at 4° C with fibronectin (FN) (10 

µg/ml). The next day wells were placed at 37° C for 1 h, washed with PBS and cells were 

plated at a density of 1.8 x 105 cells/well. The next day cells were serum starved for 24 h, pre-

incubated with 200 µM 8-pCPT-cGMP (2.5.4) for 2 h and induced with 10% FBS for 30 min 

as indicated. After one wash with PBS cells were fixed with 4% PFA, permeabelized with 

0.1% Triton-X 100, blocked with 1% BSA/PBS for 30 min and stained with phalloidin-Alexa 

546 for 20 min at RT. After washing with PBS and nuclear staining with 4’, 6-diamidino-2-
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phenylindole (DAPI) for 5 min, coverslips were mounted on glass slides using PermaFluor® 

mounting medium. 

 

 Fibronectin (FN) solution, Sigma (Cat. No. F-1141) 

 

2.4.4. Staining of mitochondria by MitoTracker fluorescence 

In order to stain the mitochondria of the cells a mitochondria selective dye (MitoTracker® 

GreenFM) was used. The cell permeant MitoTracker® probe passively diffuses across the 

plasma membrane and accumulates in active mitochondria. It contains a mildly thiolreactive 

chloromethyl moiety that appears to be responsible for keeping the dye associated with the 

mitochondria.  

Cells were incubated in their culture media containing 50 nM MitoTracker®GreenFM 

working solution for 30 - 45 min at 37° C. They were then washed with PBS, trypsinized, 

washed once with PBS and were finally resuspended in PBS. The MitoTracker fluorescence 

was analyzed by flow cytometry on a FACSCalibur® using CellQuest® software (Becton 

Dickinson). Data are expressed as relative fluorescence intensity of the geometric mean 

fluorescent signal versus unstained sample. 

 

 MitoTracker® GreenFM working solution (50 nM) 

 MitoTracker® Green FM stock solution..........1 µl 

 Growth medium............................................. 20 ml 

 

 MitoTracker® GreenFM stock solution (1 mM) 

 MitoTracker® Green FM..............................50 µg 

 DMSO..........................................................74.4 µl 

 dissolved and stored at -20° C 

 

 FACS buffer 

 NaCl ............................................................. 8.12 g 

 KH2PO4 ........................................................ 0.26 g 

 Na2HPO4 ...................................................... 2.35 g 

 KCl ............................................................... 0.28 g 

 Na2EDTA...................................................... 0.36 g 
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 LiCl............................................................... 0.43 g 

 NaN3 ............................................................... 0.2 g 

 filled up to 1000 ml with H2O and adjusted to pH 7.37 

 

2.4.5. Microscopy 

2.4.5.1. Fluorescence microscopy 

Fluorescence images were collected by using a fluorescence microscope (Axioskop 2, Zeiss) 

with a camera (AxioCam, Zeiss) using filter sets described in Table 2. AxioVision software 

(Zeiss) was used for image acquisition and evaluation. 

 
Table 2.  Filter sets used at the Axioskop 2 microscope 
 

Name # Excitation Emission Fluorochrome 

Filter set 01 (488001-0000) BP 365/12 LP 397 DAPI 

Filter set 10 (488010-0000) BP 450-490 LP 515-565 eGFP 

Filter set 38 (1031-350) BP 470/40  BP 525/50 eGFP 

Filter set 15 (488015-0000) BP 546/12 LP 590 TRITC 

Filter set 31 (1031-350) BP 565/30 LP 620/60 TRITC 

 
 
 
2.4.5.2. Electron microscopy 

Cells were differentiated on ACLAR transparencies (Plano), fixed in 2% GA and 2% PFA in 

0.1 M cacodylate buffer pH 7.4 and subsequently rinsed in 0.1 M PBS. Further processing 

was done by Prof. Wilhelm Bloch at the Abteilung für Molekulare und Zelluläre and 

Sportmedizin , Deutsche Sporthochschule, Köln according to the following protocol:  

Preparations were postfixed with 2% osmium tetraoxide in 0.1 M PBS for 2 h at 4° C. Before 

embedding in araldite (Ciba-Geigy, Switzerland) the cells were dehydrated in a graded series 

of ethanol. Ultrathin sections (60 nm) were mounted on formvar-coated copper grids, stained 

with 0.2% uranyl acetate and leadcitrate, and then examined with a EM 902 A electron 

microscope (Zeiss). Single cross sectional areas of at least 50 mitochondria per group were 

measured on EM pictures photographed with a high-speed TEM camera (Mega View III; SIS, 

Münster) using the morphometric software iTEM 5.0 (SIS, Münster). 
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2.5. Cell culture methods 

2.5.1. Materials cell culture 

Centrifuge, Biofuge Primo, Heraeus, Hanau 

Incubator, HeraCell 150, Heraeus, Hanau 

Laminar air flow, HeraSafe, Heraeus, Hanau 

5 ml pipette, Sarstedt, Nümbrecht (Cat. No. 86.1253.001) 

10 ml pipette, Sarstedt, Nümbrecht (Cat. No. 86.1254.001) 

25 ml pipette, Sarstedt, Nümbrecht (Cat. No. 86.1685.001) 

24-well plate, Sarstedt, Nümbrecht (Cat. No. 83.1839.001) 

6-well plate, Sarstedt, Nümbrecht (Cat. No. 86.1836.001) 

100 mm dish, Sarstedt, Nümbrecht (Cat. No. 83.1802.001) 

140 mm dish, Sarstedt, Nümbrecht (Cat. No. 83.1803.001) 

15 ml Falcon tube, Sarstedt, Nümbrecht (Cat. No. 62.554.001) 

50 ml Falcon tube, Sarstedt, Nümbrecht (Cat. No. 62.548.004) 

Cryogenic vials, Sarstedt, Nümbrecht (Cat. No. 72.379.992) 

DMEM Glutamax + 4500 mg/l Glucose, Gibco, Karlsruhe (Cat. No. 61965059) 

Foetal bovine serum, Biochrom AG, Berlin (Cat. No. S0115)  

Neubauer counting chamber, Labomedic, Giessen 

Nylon meshes, Millipore, Schwalbach  

Sterile filter 0.22 µm, VWR (Cat. No. 514-0061) 

Trypan blue 0.4% solution, Sigma (Cat. No. T-8154)  

Trypsin, Biochrom AG, Berlin (Cat. No. 25300096) 

Penicillin, Streptomycin (P/S), Biochrom AG, Berlin (Cat. No. A2213) 

 

2.5.2. Isolation and culture of primary BAT-derived mesenchymal stem 

cells 

BAT-MSCs were isolated from interscapular brown fat of new born mice (Nechad, 1983). 

The interscapular brown adipose tissue was dissected out and placed into collagenase 

digestion buffer. After 30 min at 37° C in a shaking water bath, tissue remnants were removed 

by filtration through a 100 µm nylon mesh and placed on ice for 30 min. The infranatant 

containing the BAT-MSCs was filtered through a 30 µm nylon mesh and centrifuged at 700 x 

g for 10 min. The pellet was resuspended in dissection/differentiation medium. Cells were 
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counted with trypan blue (1:1) in a Neubauer counting chamber and 5.7 x 105 cells were 

seeded on 6-well plates (day 0) and grown at 37° C, 5% CO2 and 95% H2O. For 

differentiation, the medium was exchanged every 24 h until day 7.  

 

 
figure 7.  Isolation scheme of BAT-MSCs from interscapular BAT of new born mice. 
 

 Collagenase digestion buffer  

 NaCl ............................................................. 0.72 g 

 KCl ............................................................ 37.3 mg 

 Ca2Cl ......................................................... 19.1 mg 

 Glucose...................................................... 99.1 mg 

 HEPES.......................................................... 2.38 g 

 dissolved in 100 ml H2O adjusted to pH 7.4, sterile filtered and stored at 4° C 

the following substances were added before use: 

 BSA .................................................................1.5% 

 Collagenase II ........................................... 2 mg/ml  Worthington, UK (Cat. No. CLS2) 

 sterile filtered 

  
 Dissection/differentiation medium (DMEM) 

 FBS ..................................................................10% 

 P/S .....................................................................1% 

 Insulin.............................................................4 nM  Sigma (Cat. No. I-9278) 

 Triiodothyronine-Na.......................................4 nM  Sigma (Cat. No. T-6397) 

 HEPES.........................................................10 mM 

 Sodium ascorbate .....................................25 µg/ml 

  

2.5.2.1. Immortalization of primary BAT-MSCs  

For immortalization, the primary BAT-MSCs (passage 0, p 0) were infected as described 

(2.7.7.3) with a lentivirus containing the SV40 large T antigen one day after isolation (day 1) 

and expanded in growth medium at 37° C, 5% CO2 and 95% H2O. Cells were used for 

experiments between p 1 and p 5. 
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 Growth medium (DMEM) 

 FBS ..................................................................10% 

 P/S .....................................................................1% 

 

2.5.3. Cell culture and trypsinization of cell lines 

Cells were maintained in growth medium as described (2.5.2.1). In order to take cells into 

suspension cells were washed once in pre-warmed PBS and detached from the wells by 

incubation with trypsinization solution for approximately 5 min at 37° C. Detached cells were 

resuspended in growth medium. 

 

 Trypsinization solution (1 x trypsin) 

 10 x Trypsin/EDTA........................................ 10 ml 

 PBS ................................................................ 90 ml 

 

2.5.3.1. Cryo-preservation of cells 

In order to store cell lines for a longer period of time cells were trypsinized and resuspended 

in pre-warmed growth medium (2.5.3.). The cell suspension was centrifuged for 5 min at 160 

x g. The pellet was resuspended in growth medium and 500 µl of cell suspension was mixed 

with 500 µl freezing medium in cryogenic vials (10% DMSO final), put on ice for 15 min and 

were finally stored at -80° C. After one day cryo-cultures were transferred to liquid nitrogen 

(-196° C). 

 

 Freezing medium (20% DMSO)  

 Growth medium............................................... 8 ml 

 DMSO.............................................................. 2 ml 

 

2.5.3.2. Thawing of cryo-preserved cells 

Frozen cells were quickly placed in a water bath at 37° C until the freezing medium was 

thawed. Cells were than added to pre-warmed growth medium (approximately 10 times the 

volume of the cryo-culture) and centrifuged for 5 min at 160 x g. The cell pellet was 

resuspended in growth medium and seeded in a well of appropriate size. 
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2.5.4. Adipogenic differentiation of immortalized brown adipocytes 

To differentiate the immortalized cells into brown adipocytes, 1.8 x 105 cells were seeded on 

6-wells or 3.8 x 104 cells on 24-wells (day -4) and after 48 h the medium was exchanged with 

differentiation medium (day -2). Adipogenesis was induced by treating confluent cultures 

(day 0) with induction medium for 48 h. After this induction phase (day 2) the cells were 

returned to differentiation medium, which was replenished every second day until day 7 when 

cells were considered brown adipocytes (Figure 9B). 
 
 Differentiation medium (DMEM) 

 FBS ..................................................................10% 

 P/S .....................................................................1% 

 Insulin...........................................................20 nM 

 Triiodothyronine-Na.......................................1 nM 

  

 Induction medium (DMEM) 

 FBS ..................................................................10% 

 P/S .....................................................................1% 

 Insulin...........................................................20 nM 

 Triiodothyronine-Na.......................................1 nM 

 Dexamethason ................................................1 µM  Sigma (Cat. No. D-4902) 

 Isobutylmethylxanthine...............................0.5 mM  Sigma (Cat. No. I-5879) 

 

The following substances were included into the media as indicated: 

  

 PKG activation: 8-pCPT-cGMP, Biolog, Bremen (Cat. No. C009-10E) 

 ROCK inhibition: Y-27632, Calbiochem (Cat. No. 688000) 

 

2.5.4.1. Oil Red O staining of differentiated adipocytes 

Oil Red O is a widely used dye to visualize lipids in tissues or cells. After accumulation in fat 

droplets the lipids appear red. 

Differentiated adipocytes were washed once with PBS and fixed with 4% PFA for 15 min at 

RT. After two additional washes with PBS cells were then stained with Oil Red O working 

solution for 4 h at RT and were washed three times with water. 
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 Oil Red O stock solution (5 mg/ml) 

 Oil Red O........................................................ 0.5 g  Sigma (Cat. No. O-9755) 

 Isopropyl alcohol 99% ................................ 100 ml 

 dissolved with a magnetic stir bar o/n, stored at RT 

 

 Oil Red O working solution (3 mg/ml) 

 Oil Red O stock solution.................................. 6 ml 

 H2O.................................................................. 4 ml 

 mixed one day before use, filtered the next day through  a paper filter 

  

2.5.4.2. Triglyceride determination of differentiated adipocytes 

Triglycerides (TGs) are esters of fatty acids and glycerol. Methods for TG determination 

generally involve enzymatic or alkaline hydrolysis of triglycerides to glycerol and free fatty 

acids followed by either chemical or enzymatic measurement of the glycerol released. The 

procedure involves hydrolysis of the triglycerides to glycerol and free fatty acids. The 

glycerol produced is then measured by coupled enzyme reactions:     

 
                                                
 
 
 

 

 

 

 

ATP  adenosine-5’-triphosphate  

G-1-P  glycerol-1-phosphate  

ADP   adenosine-5’-diphosphate   

GK   glycerol kinase 

GPO  glycerol phosphate oxidase  

DAP   dihydroxyacetone phosphate  

H2O2  hydrogen peroxide   

POD   peroxidase  

4-AAP   4-aminoantipyrine  

ESPA   sodium N-ethyl-N-(3-sulfopropyl) m-anisidine  

 

                                GK 
Glycerol + ATP    G-1-P + ADP 
 
                   GPO 
G-1-P + O2    DAP + H2O2 
                                         
                                              POD                   
H2O2 + 4-AAP + ESPA    Quinoneimine Dye + H2O 



Materials and Methods 
 

   24

The increase in absorbance at 540 nm is directly proportional to the free glycerol 

concentration of the sample. 

Differentiated adipocytes growing on 6-well plates were washed once with PBS and after 

addition of 100 µl TG-Tx-lysis buffer to the cells, wells were immediately frozen at -80° C. 

Wells were thawed on ice and cells were resuspended and sonicated to hydrolyse TGs to 

glycerol and free fatty acids. After centrifugation for 10 min, 15000 x g, 4° C, 2 µl were used 

for protein content determination using the Bradford method (2.6.4). 800 µl free glycerol 

reagent was added to the remaining part, a blank (100 µl TG-Tx-lysis buffer) and a glycerol 

standard (10 µl glycerol standard in 90 µl TG-Tx-lysis buffer). After incubation for 5 min at 

37° C, absorbtion at 450 nm was measured against water. The TG content was calculated 

from the resulting values and normalized to the protein content of the sample: 

 

Glycerol content  =  (Asample – Ablank) / (Astandard – Ablank) x concentration of  standard (mg/ml) 

 

 TG-Tx-lysis buffer 

 NaCl ..........................................................150 mM 

 Tris-HCl ......................................................10 mM  pH 8.0 

 Triton-X 100 .................................................0.05% 

 sterile filtered and stored at 4° C 

 40 µl/ml Complete® protease inhibitor cocktail (2.6) was added before use 

 

 Glycerol standard (0.26 mg/ml) 

 Glycerol........................................................ 26 mg 

 H2O.............................................................. 100 ml 

  

 Free glycerol reagent, Sigma (Cat. No.  F-6428) 

 

2.5.5. Osteogenic differentiation of immortalized brown adipocytes 

For osteogenic differentiation of immortalized brown adipocytes 1.8 x 105 cells were seeded 

on 6 wells (day -2) and after 48 h the medium was exchanged with osteoblast differentiation 

medium. The cells were differentiated until day 7 or day 14 exchanging the medium every 

second day (Figure 9C). 
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 Osteoblast differentiation medium (DMEM) 

 FBS ..................................................................10% 

 P/S .....................................................................1% 

 Ascorbate-2-phosphate...............................250 µM 

 β-glycero-phosphate....................................10 mM 

  All-trans retinoic acid .................................2.5 µM        Calbiochem (Cat No.5547258) 

 

2.5.5.1. Alkaline phosphatase staining of osteoblasts 

Alkaline phosphatases are a group of enzymes predominantly found in the liver and in the 

bone. Osteoblasts express high amounts of alkaline phosphatases and can therefore be 

identified by the use of the NBT/BCIP reporter system. At regions of high phosphatase 

activity NBT (Nitro blue tetrazolium chloride) and BCIP (5-bromo-4-chloro-3-indolyl 

phosphate) form a complex resulting in blue precipitates. 

Cells were washed once with PBS and fixed with 4% PFA for 15 min at RT. After two 

additional washes with PBS cells were incubated with BCIP/NCIB solution in DIG III buffer 

for 1 h at 37° C. The reaction was stopped by the addition of TE buffer pH 8.0 for 10 min. 

After 3 additional washes with water cells were visualized. 

 

 DIG III buffer 

 Tris-HCl ....................................................100 mM  pH 9.5 

 NaCl ..........................................................100 mM 

 MgCl2 ..........................................................50 mM 

 

 NBT/BCIP solution 

 NBT/BCIP stock solution .............................200 µl  Sigma (Cat. No. 72091)

 DIG III buffer ................................................ 10 ml 

  

 TE  buffer 

 Tris-HCl ......................................................10 mM  pH 8.0 

 EDTA.............................................................1 mM  pH 8.0 

 

2.5.6. Luciferase reporter assays 

Luciferase reporter assays were performed by Dr. Stephan Herzig, Deutsches 

Krebsforschungszentrum, Heidelberg. The following protocol was applied: Cells from the 
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brown preadipocyte cell line HIB1B were transiently transfected with caPKGI or cntr (2.7.6.3 

and 2.7.6.4) together with the promoter reporter constructs by lipofectamine according to the 

manufacturer’s instructions. 24 h after transfection, cells were exposed to insulin (500 nM) for 

18 h. Cell extracts were prepared 48 h after transfection, and luciferase assays were performed 

as described (Herzig et al., 2001), normalizing to activity from cotransfected beta-

galactosidase expression plasmid.  

 

2.6. Biochemical Methods 

2.6.1. Materials biochemistry 

Centrifuges: Biofuge Primo, Heraeus, Hanau 

          5415R, Eppendorf, Hamburg 

          Sigma 8k with 12510-H rotor, Sartorius, Göttingen 

Film processor, CP100, Agfa, Köln 

ECL-reagent, ECL, Amersham Bisociences, UK (Cat. No. 1059250/243) 

Electrophoresis/Blotting system, Mini Trans Blot System, BioRad, München 

Thermomixer, 5350, Eppendorf , Hamburg 

Power supply, Consort E835, Peqlab, Erlangen 

Photometer, Biophotometer, Eppendorf, Hamburg 

Chemiluminescence films, Hyperfilm®, Amersham Biosciences, UK (Cat. No. 28906837) 

Protease inhibitor cocktails:  Complete®, Roche, Mannheim (Cat. No. 11697498) 

  Complete® EDTA-free, Roche, Mannheim (Cat. No. 11873580) 

Protein standard, Precision plus All Blue Standard, BioRad, München (Cat. No. 161-0373) 

PVDF membranes, Immobilon®P 0.45µm, Millipore, Schwalbach (Cat. No. IPVH 00010) 

Ultra-Turrax®, T8, IKA, Staufen 

 

2.6.2. Preparation of total protein lysates from adherent cells 

Before cell lysis, cells were washed in ice-cold PBS. The appropriate amount of ice-cold cell 

lysis buffer (RIPA) was added to the wells and cells were scraped with a cell scraper. Cell 

lysates were centrifuged at 15000 x g for 15 min at 4° C and the protein concentration of the 

supernatant was determined using the Bradford protein assay (2.6.4). After the protein 

concentrations were adjusted, the appropriate amount of 6 x Laemmli buffer (Laemmli, 1970) 
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was added and samples incubated for 5 min at 97° C. Samples were either frozen at -20° C or 

directly subjected to SDS PAGE (2.6.7). 

 

 Cell lysis buffer (RIPA) 

 Tris-HCl ......................................................10 mM  pH 7.4 

 NaCl ..........................................................150 mM 

 NP-40 ................................................................1% 

 Desoxy-cholic acid-Na ......................................1% 

 SDS .................................................................0.1% 

 sterile filtered and stored at 4° C 

 before use the following substances were added: 

 Complete® EDTA-free ............................. 40 µl/ml   

 NaF..............................................................10 mM 

 Na3VO4 ..........................................................1 mM 

 

 6 x Laemmli buffer 

 0.5 M Tris-HCl ................................................ 7 ml  pH 6.8 

 87% Glycerol................................................... 3 ml 

 DTT............................................................... 0.93 g 

 SDS ..................................................................10% 

 Bromphenol blue ......................................... 1.2 mg 

 

 The following volumes of cell lysis buffer were used: 

 24-well plate......................................... 50 - 100 µl 

 6-well plate........................................... 70 - 200 µl 

 100 mm dish ............................................0.3 - 1 ml 

 14 mm dish .............................................0. 5 - 2 ml 

 

2.6.3. Preparation of total protein lysates from tissues 

Mice were sacrificed and tissues were dissected out and either snap-frozen in liquid nitrogen 

for longer storage or directly processed. Therefore, tissues were placed in ice-cold Tx-lysis 

buffer and disrupted using an Ultra-Turrax®. The protein was further isolated as described 

above (2.6.2).  
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 Tx-lysis buffer  

 Tris-HCl ......................................................50 mM  pH 7.4 

 NaCl ..........................................................150 mM 

 CaCl2 x 2 H2O................................................2 mM 

 Triton-X 100 ...................................................0.5% 

 sterile filtered and stored at 4° C 

 before use the following substances were added: 

 Complete®................................................ 40 µl/ml   

 NaF..............................................................10 mM 

 Na3VO4 ..........................................................1 mM 

 

2.6.4. Quantification of proteins with the Bradford protein assay 

The Bradford assay is based on the Coomassie brilliant blue G-250 dye which specifically 

interacts with arginine, tryptophan, tyrosine, histidine and phenylalanine residues (Bradford, 

1976). While the free dye displays an absorbance maximum at 470 nm the bound dye has an 

absorbance maximum at 595 nm. The protein content is determined using a BSA standard 

ranging from 1 to 30 µg as a reference. 2 µl - 5 µl of protein lysates were diluted to 100 µl 

with 0.15 M NaCl solution. 1 ml Coomassie solution was added, incubated for 2 min and the 

absorbance was measured at 595 nm. 

 

 Coomassie solution  

 Coomassie brilliant blue G-250 ................... 50 mg       Merck (Cat. No. 1.15444.0025)

 EtOH 95% ..................................................... 25 ml 

 Phosphoric acid 85% .................................... 50 ml 

 filled up to 500 ml with H2O, stored at 4° C protected from light 

 

2.6.5. Immunoprecipitation 

Before cell lysis, cells were washed once in ice-cold PBS. Cell lysis buffer (2.6.2) was added, 

cells were scraped with a cell scraper, vortexed and centrifuged at 15000 x g for 10 min at 4° 

C. The protein concentration of the supernatant was determined using the Bradford protein 

assay (2.6.4). Typically lysates with a concentration of 0.5 - 1.5 mg/ml were used. For 

immunoprecipitation (IP) of endogenous proteins lysates were incubated with rabbit 

polyclonal antibodies and protein A sepharose beads by incubating for 2 h at 4° C (1 - 4 µg 
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antibody per IP). After binding, beads were washed 3 times with lysis buffer and once with 

PBS. Beads were resuspended in 40 µl 2 x Laemmli buffer (2.6.2) and boiled for 5 min at  

97° C. 

 

 Protein A sepharose CL-4B, Amersham Biosciences, UK (Cat. No. 17-0780-01) 

 

2.6.6. Rhotekin pull down assay 

As in contrast to a normal Western blot, which detects the total (GTP- and GDP-bound) 

amount of the respective Rho-GTPase, the pull down assay only measures the amount of 

active (GTP-bound) Rho-GTPase. This is accomplished by utilizing the GTPase binding 

domain (GBD) of a specific effector molecule, which recognizes the active, but not the 

inactive form of its GTPase. This GBD is expressed as a fusion protein with glutathion-S-

transferase to allow immobilization on glutathion coated sepharose beads. The ‘loaded’ beads 

are subsequently incubated with the cell extracts of interest, washed, and directly submitted to 

SDS-PAGE. The bound (active) GTPases are finally detected by Western blot (2.6.7). 

 

2.6.6.1. Preparation of GBP-GTP fusion proteins 

For measuring active RhoA the GTPase binding domain of rhotekin (aa 7 - 89) is used (Reid 

et al., 1999; Ren et al., 1999). This domain is fused to the C-terminus of GST (~26 kDa) and 

expressed from a pGEX-2T vector in E. coli BL21-Gold. 3 ml pre-culture (LBamp, 37° C) 

(2.7.3) of BL21 bacteria containing the GST-rhotekin-GBD pGEX-2T vector were inoculated 

o/n. The next morning 2 ml of o/n pre-culture were diluted in 100 ml LBamp and were grown 

at 37° C for ~2 h, until OD600 was 0.5 - 0.6. 

The culture was allowed to cool to RT and protein synthesis was induced by adding 100 µl 1 

M Isopropyl-β-D-thiogalactopyranoside (IPTG) solution (final 1 mM IPTG). After growing at 

26° C for 6 h (reducing the temperature helps to keep protein soluble and avoids protein 

aggregation; general: temperature can be reduced to 18° C with o/n expression) bacteria were 

spun down in two 50 ml Falcon tubes at 5000 rpm for 10 min at 4° C. Pellets were washed in 

20 ml Buffer A (ice cold) and were combined into one Falcon tube. The pellet was frozen in 

liquid nitrogen and stored at -80° C. To extract the proteins the pellet was thawed at 37° C, 5 

ml of ice-cold Buffer A+ was added and sonicated 4 x 15 sec with ~30 sec on ice in between. 

50 µl Triton-X 100 (1% final) was added and tumbled 20 min at 4° C. 550 µl (10% final) 

glycerol was added, distributed into Eppendorf tubes and centrifuged at 15000 x g for 15 min 

at 4° C. Supernatants were pooled and 20 µl aliquots were taken for SDS-PAGE check (12%; 
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Coomassie stain 2.6.9). The bacterial extracts were frozen in 500 µl aliquots in liquid nitrogen 

and stored at -80° C for up to 3 months. 

 

 IPTG solution (1 M) 

 IPTG............................................................. 2.38 g    

 dissolved in 10 ml H2O ,sterile filtered and stored in aliquots at - 20° C  

 

 Buffer A 

 Tris-HCl ......................................................50 mM  pH 7.4    

 MgCl2 ............................................................5 mM 

 NaCl ............................................................50 mM 

 autoclaved and  stored at RT  

  

  

 Buffer A+ 

 Buffer A ......................................................... 10 ml 

 PMSF.............................................................1 mM 

 DTT................................................................1 mM 

 Complete® EDTA-free .................................400 µl 

 

pGEX-2T vector, Amersham Biosciences, UK  

E. coli BL21-Gold, Stratagene, USA (Cat. No. 230130) 

 

2.6.6.2. Loading of glutathione beads and pull down 

Subconfluent cultures of BAT-MSCs (day -2) were serum starved for 24 h, washed in ice-

cold PBS and lysed with NP-40 lysis buffer. Lysates were cleared by centrifugation at 15000 

x g for 10 min at 4° C and incubated (0.5 – 2 mg) with GST-rhotekin and glutathione 

sepharose beads for 1 h at 4° C to capture GTP bound Rho proteins. After three washes with 

NP-40 lysis buffer, beads were boiled in 2 x reducing sample buffer and were subjected to 

Western blot analysis (2.6.7) with anti-RhoA antibody. Whole-cell lysates (5% of input) were 

analyzed in parallel.  

 

 NP-40 lysis buffer 

 Tris-HCl ......................................................50 mM  pH 7.4    

 MgCl2 ............................................................5 mM 
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 NaCl ..........................................................200 mM 

 NP-40 ................................................................1% 

 Glycerol...........................................................10% 

 sterile filtered and stored at 4° C 

 before use the following substances were added: 

 Complete® EDTA-free ............................. 40 µl/ml   

 NaF................................................................1 mM 

 Na3VO4 ..........................................................1 mM 

  

 2 x reducing sample buffer 

 0.5 M Tris-HCl ................................................ 7 ml  pH 6.8 

 87% Glycerol................................................... 3 ml 

 SDS ..................................................................10% 

 Bromphenol blue ......................................... 1.2 mg 

 filled up to 30 ml with H2O 

 before use, β-mercaptoethanol was added to a final concentration of 4%  

 

 Glutathione sepharose 4 fast flow, Amersham Biosciences, UK (Cat. No. 17-5132-01)  

 

2.6.7. One-dimensional SDS-polyacrylamid-gelectrophoresis (SDS-

PAGE) 

SDS-PAGE under denaturating conditions is the most widely used method for separation of 

proteins, which can be subsequently visualized by silverstaining, protein dyes like Coomassie 

or Western blotting. After proteins are solubilized by boiling in the presence of sodium 

dodecyl sulphate (SDS) the individual proteins are separated electrophoretically. β-

mercaptoethanol or dithiothreitol (DTT) is added during solubilization to reduce disulfide 

bonds. 

To perform discontiniuos gel electrophoresis differentially buffered separating and stacking 

gels are poured on top of each other. The proteins that pass first through a stacking gel get 

concentrated at the stacking/separating gel interface. In the separating gel the proteins are 

separated according to molecular size in denaturating gel (containing SDS). 

Proteins were separated in the Minigel format (7.3 mm x 8.3 mm x 1.5 mm) by means of the 

Mini Trans Blot system (BioRad). After polymerization of the polyacrylamid gel and 
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assembly of the electrophoresis module, cooked protein samples (2.6.2; 2.6.3; 2.6.5; 2.6.6.2) 

were collected by centrifugation and loaded on the stacking gel. Finally, the electrophoresis 

was performed in SDS-PAGE running buffer at 100 V at RT.   

 

 Separating gel (10 ml) .....6%...............8%................10%................12% 

 H2O.............................. 5.3 ml.......... 4.6 ml............. 4.0 ml............. 3.3 ml 

 Rotiphorese®Gel 30.... 2.0 ml.......... 2.7 ml............. 3.3 ml............. 4.0 ml 

 1.5 M Tris-HCl ............ 2.5 ml.......... 2.5 ml............. 2.5 ml............. 2.5 ml pH 8.8

 10% SDS...................... 0.1 ml.......... 0.1 ml............. 0.1 ml............. 0.1 ml 

 20% APS.................... 0.05 ml........ 0.05 ml........... 0.05 ml........... 0.05 ml 

 TEMED.................... 0.008 ml...... 0.006 ml......... 0.004 ml......... 0.004 ml 

 

 Stacking gel (5 ml)...........5% 

 H2O.............................. 3.4 ml 

 Rotiphorese®Gel 30.. 0.83 ml 

 1.0 M Tris-HCl .......... 0.63 ml  pH 6.8         

 10% SDS.................... 0.04 ml 

 20% APS.................... 0.02 ml 

 TEMED.................... 0.008 ml 
 

 
 10 x SDS PAGE running buffer 

  Tris .............................................................. 30.3 g      

 Glycine .......................................................... 144 g 

 SDS .................................................................. 10 g 

 dissolved in 1000 ml H2O, stored at RT 

 

 Rotiphorese®Gel 30 (37.5:1), Roth (Cat. No. 3029.1) 

 

2.6.8. Western blotting and immunodetection 

Western blotting is used to identify specific proteins by polyclonal or monoclonal antibodies. 

Proteins are first separated by SDS-PAGE and then electrically transferred onto a 

polyvinylidenfluoride (PVDF) membrane. Proteins bound to the surface of this membrane can 

be visualized by immunodetection reagents. 
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After separation of proteins by SDS-PAGE (2.6.7) the stacking gel was removed while the 

separating gel was placed in transfer buffer. After short equilibration of the polyacrylamid gel 

and a methanol activated PVDF membrane in transfer buffer a transfer sandwich was 

assembled. 

Proteins were then electrically transferred with different currents, times and temperatures 

depending on the protein size to be transferred. 

 

 Protein size............ Voltage.......... Current..................Time........Temperature 

 15 - 30 kDa................100 V ..........225 mA............... 45 min......................4° C 

 30 - 50 kDa................100 V...........250 mA............... 60 min.....................4 ° C 

 50 - 75 kDa................100 V...........300 mA............... 60 min..............4° C - RT 

 75 - 250 kDa.. ...........100 V...........300 mA......90 - 120 min..............4° C - RT 

 

After disassembly of the transfer sandwich, membranes were washed for 15 sec in methanol 

and dried for 15 min or longer at RT. After drying, membranes were washed again for 15 sec 

in methanol and blocked for 1 h at RT in blocking buffer I or II. Blocked membranes were 

washed 3 times with TBS-T and incubated with the primary antibody either for 1 h at RT or 

o/n at 4° C in blocking buffer depending on the instructions of the antibody manufacturer. 

After three washes with TBS-T, the appropriated horseradish peroxidase (HRP)-coupled 

secondary antibody was applied for 1 h at RT. Finally, the membrane was washed another 3 

times with TBS-T and was subjected to chemiluminescence based detection with an enhanced 

chemiluminescence (ECL) reagent and chemiluminescent films which were developed in an 

automatic film processor (CP100, Agfa). 

 

 Transfer buffer  

 10 x SDS PAGE running buffer................... 100 ml 

 Methanol...................................................... 200 ml   

 H2O.............................................................. 700 ml 

  

 10 x TBS 

 Tris ............................................................... 24.3 g 

 NaCl ................................................................ 80 g 

 dissolved in 1000 ml H2O, adjusted to pH 8.0  with HCl 

 

 



Materials and Methods 
 

   34

 TBS-T (0.1%) 

 Tween-20 ......................................................... 1 ml 

 10 x TBS ...................................................... 100 ml  

 H2O.............................................................. 900 ml  

 

 Blocking buffer I (5%)  

 skimmed milk powder ........................................ 5 g 

 TBS-T........................................................... 100 ml   

 

 Blocking buffer II (5%)  

 BSA.................................................................... 5 g 

 TBS-T........................................................... 100 ml   

 

2.6.9. Coomassie staining of SDS-PAGE gels 

The Coomassie Blue dye can be used to stain proteins separated by SDS-PAGE gel 

electrophoresis. 

After electrophoresis (2.6.7) the stacking gel was removed and the gel was placed in 

Coomassie solution for 30 min under agitation. The gel was destained o/n with three changes 

of destaining solution.  

 

 Coomassie solution   

 Coomassie G-250 ...........................................0.5% 

 Methanol..........................................................40%  

 Acetic acid 100%.............................................10% 

 

 Destaining solution 

 Methanol..........................................................40% 

 Acetic acid 100%.............................................10%   
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2.7. Molecular Biological Methods 

2.7.1. Materials molecular biology 

Autoclave, Varioklav 135 T, Faust, Meckenheim 

Ultra Centrifuge, Optima LE-80K with SW28 rotor and SW55 rotor, Beckman & Coulter, 

USA 

Electrophoresis chamber, Peqlab, Erlangen 

Incubator, Certomat IS, Sartorius, Göttingen 

Microwave, Severin, Sundern 

Real-time PCR machine, LightCycler®480, Roche, Mannheim 

Thermocycler, T1, Biometra, Göttingen 

UV light transilluminator, GelDoc®XR, BioRad, München 

 

2.7.2. Phenol/Chloroform extraction of tail DNA 

For genotyping of mice, a small biopsy of the mouse tail was digested with 500 µl proteinase 

K buffer in an Eppendorf tube at 55° C at 300 rpm in a thermomixer o/n. The next day, 500 µl 

phenol/chloroform (1:1, Rothi®-Phenol) was added, the DNA solution was mixed and 

centrifuged for 5 min at 15000 x g. The upper layer was taken off and added to 500 µl 

chloroform/isoamylalcohol solution (24:1), mixed and centrifuged again for 5 min at 15000 x 

g. The upper DNA-rich layer was taken off and DNA was precipitated by addition of 500 µl 

isopropyl alcohol. The white DNA precipitates were pelleted by centrifugation for 1 min at 

15000 x g. Pellets were air-dried and subsequently dissolved in 50 - 100 µl H2O.  

 

 Proteinase K buffer 

 Tris-HCl ....................................................100 mM  pH 7.6 

 NaCl ..........................................................200 mM 

 EDTA.............................................................5 mM 

 SDS .................................................................0.2% 

 Proteinase K........................................... 0.1 mg/ml             Roche (Cat. No. 03115828) 

 

 Rothi®-Phenol, Roth (Cat. No. 0038.2) 
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2.7.3. Bacteriological tools 

Escherichia coli (E. coli) cultures were cultured in lysogeny broth (LB) rich medium. Media 

were prepared and autoclaved for 20 min at 120° C. Antibiotics were added after the solutions 

were cooled below 50° C.  

 

 LB+ medium 

 NaCl .................................................................. 5 g 

 Pepton.............................................................. 10 g 

 Yeast extract ...................................................... 5 g 

 Glucose.............................................................. 1 g  

 filled up to 1000 ml with H2O, adjusted to pH 7.5, autoclaved and stored at 4° C 

 

 LB+ plates 

 LB+ medium.............................................. 1000 ml 

 Agar-Agar........................................................ 15 g 

 autoclaved, poured into 100 mm Petri dishes and stored at 4 °C 

 Additives 

 Ampicillin .................................................50 µg/ml 

 Kanamycin................................................25 µg/ml 

 Tetracyclin............................................ 12.5 mg/ml 

 

2.7.3.1. Preparation of competent bacteria 

An E. coli (XL-1 Blue) bacterial culture was grown o/n in 10 ml LB+ with tetracycline (2.7.3) 

at 37° C shaking at 225 rpm in an incubator. The next morning, 100 ml of LB+ with 

tetracycline was inoculated with 2 ml o/n culture and grown until an OD550 of 0.5 was 

reached. The bacterial culture was placed on ice for 10 min and then centrifuged at 1000 x g 

for 15 min at 4° C. The pellet was resuspended in 10 ml TSS and 2.9 ml glycerol (87%) was 

added. This bacterial suspension was aliquoted in volumes of 100 µl and immediately frozen 

in liquid nitrogen. Competent cells were stored at -80° C. 

  

 TSS 

 Polyethylene glycol ......................................... 50 g 

 Pepton................................................................ 5 g 

 Yeast extract ................................................... 2.5 g 
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 NaCl ............................................................... 2.5 g 

 DMSO............................................................ 25 ml 

 1M MgCl2 ...................................................... 25 ml 

 sterile filtered and stored at 4° C 

 

2.7.3.2. Transformation of competent bacteria 

100 µl of competent bacteria were thawed on ice, DNA was added and incubated on ice for 30 

min. Cells were then placed on 42° C for 45 sec (heat shock) in a water bath and subsequently 

placed on ice for 2 min. 900 µl pre-warmed LB+ medium (w/o antibiotics) was added and 

cells were incubated for 1 h at 37° C shaking at 225 rpm. Next, bacteria were pelleted by 

centrifugation at 3500 rpm for 5 min, resuspendend in 100 µl LB+ medium and spreaded on 

LB plates with the appropriate antibiotics. Plates were incubated o/n at 37° C. Colonies 

appeared within 8 - 12 h depending on the transformed DNA construct.  

 

2.7.3.3. Cryo-preservation of bacteria 

In order to freeze bacterial cultures 250 µl glycerol (87%) was added to 750 µl bacterial o/n 

culture. Cryo-cultures were stored at -80° C. 

 

2.7.3.4. Preparation of plasmid DNA from bacterial cultures - Mini Preparation 

Bacterial colonies were inoculated with 7 ml LB+ medium containing the appropriate 

antibiotics o/n at 37° C and 225 rpm. To check the transformed plasmid DNA a protocol from 

Sambrook and Russel for alkaline lysis was used. This method allows a rapid isolation of 

plasmid DNA with a sufficient degree of purity for further restriction check cuts and 

sequencing. 

 

2.7.3.5. Preparation of plasmid DNA from bacterial cultures - Maxi Preparation 

Bacterial colonies were inoculated with 100 - 200 ml LB+ medium containing the appropriate 

antibiotics o/n at 37° C and 225 rpm. The next day, cultures were spun down at 5000 rpm for 

20 min at 4° C (Sigma 8k, Sartorius). The DNA was extracted with either NucleoBond® PC 

500 Kit (MACHERY-Nagel) or for endotoxin-free DNA preparations with the NucleoBond® 

PC 500 EF Kit (MACHEREY-Nagel). 

 

 NucleoBond® PC 500 Kit, MACHEREY-Nagel, Düren (Cat. No. 740574.25) 

 NucleoBond® PC 500 EF Kit, MACHEREY-Nagel, Düren (Cat. No. 740550) 
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2.7.4. Enzymatic manipulation of DNA 

Restriction enzymes are widely used in molecular biology in order to cleave DNA at specific 

sites. They can be divided into three groups. The type I restriction enzymes are complex multi 

subunit enzymes that cut the DNA randomly far from their recognition sequence. The type II 

enzymes bind to specific DNA sequences and cut the DNA within or close to this binding 

motif. The type III restriction enzymes are complex and cleave the DNA outside of their 

recognition sequence. Type II restriction enzymes are widely used as a molecular tool. 

 

2.7.4.1. Digestion of DNA with restriction enzymes 

All restriction and DNA-modifying enzymes used in this study were purchased from New 

England Biolabs (NEB), Schwalbach. Digestion was performed according to the instructions 

of the manufacturer using restriction buffers from Roche, Mannheim. In general the following 

reaction conditions were used:  

 

 DNA digestion 

 DNA............................................................1 - 4 µg 

 Roche 10 x buffer (A - H) .................................3 µl   

 Restriction enzyme.....................................5 - 20 U 

 filled up to 30 µl with H2O, incubated for 1 - 3 h or o/n  at 37° C 

 

2.7.4.2. Dephosphorylation of plasmid DNA 

Digestion of DNA with restriction enzymes generates a reactive 5’-phosphate group and a 3’-

hydroxyl group. In order to prevent self-ligation of digested plasmids, the 5’-phosphate group 

was removed by the use of calf intestinal phosphatase (CIP). Digestion enzymes were heat-

inactivated and the DNA subsequently incubated with CIP. 

 

 Dephosphorylation of DNA 

 DNA............................................................1 - 4 µg 

 Roche 10 x buffer H..........................................3 µl  

 CIP ...................................................................1 µl 

 filled up to 30 µl with H2O, incubated for 1 h at 37° C 
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2.7.4.3. Phosphorylation of DNA fragments 

T4 polynucleotide kinase (PNK) was used in order to generate reactive 5’-phosphate ends for 

subsequent ligation. PNK catalyzes the transfer of the γ-phosphate from ATP to 5’-hydroxyl-

termini of polynucleotides.  

 

 Phosphorylation of DNA 

 DNA fragment ............................................1 - 4 µg 

 NEB 10 x ligation buffer...................................3 µl  containing 1 mM ATP

 PNK ..................................................................1 µl 

 filled up to 30 µl with H2O, incubated for 45 min  at 37° C 

 

2.7.4.4. Blunting of DNA fragments 

To generate blunt-ends of digestion products DNA was treated with T4 polymerase. The T4 

polymerase fills in 5’-overhangs thereby generating blunt-ends.  

 

 Blunting of DNA 

 DNA fragment ............................................1 - 4 µg 

 NEB 10 x buffer 3 .............................................3 µl   

 dNTPs ...........................................................10 µM 

 T4-polymerase..................................................1 µl 

 filled up to 30 µl with H2O, incubated for 45 min  at 37° C 

 

2.7.4.5. Ligation of DNA fragments 

For DNA ligation, the generation of a phosphodiester bond between a 3’-hydroxyl group and 

a 5’-phosphate group, the following protocol was used. 

 

 DNA ligation 

 DNA backbone (vector)..........................20 - 50 ng  dephosphorylated 

 DNA insert............................................60 - 150 ng   digested DNA 

 NEB 10 x ligation buffer ...............................1.5 µl 

 T4 DNA ligase ..................................................1 µl 

 filled up to 15 µl with H2O, incubated for 60 min  at 25° C or o/n at 16° C, 10 µl of the 

ligation products were used for transformation as described before (2.7.3.2) 
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2.7.5. Agarose gel electrophoresis 

Agarose gel electrophoresis is a simple method for separating, identifying, or purifying DNA 

fragments. For gel preparation, the desired amount (between 0.7 and 2%) of agarose was 

added to 1x TBE buffer and boiled in the microwave. For 100 ml agarose solution, 8 µl 

ethidium bromide (800 ng/ml final) was added. The melted agarose was poured into casting 

platforms, allowed to harden at RT and placed into an electrophoresis chamber containing 1 x 

TBE buffer. Next, DNA was mixed with 6 x loading buffer and loaded on the agarose gel. 

Electrophoresis was performed at 80 - 120 V at RT. DNA bands were visualized under an UV 

light transilluminator (GelDoc®XR, BioRad) at 366 nm using QuantityOne® software 

(BioRad). 

 

 10 x TBE 

 Tris-HCl ........................................................0.9 M  

 Boric acid ......................................................0.9 M   

 EDTA ..........................................................20 mM  pH 8.0 

 filled up to 1000 ml with H2O, stored at RT 

 

 6 x loading buffer 

 10 x TBE..........................................................60%  

 Ficoll type 400.................................................18%  

 EDTA .......................................................0.12 mM  pH 8.0 

 Bromphenol blue ..........................................0.15% 

 Xylencyanol FF ............................................0.15% 

 

 Ethidium bromide 10 mg/ml, Roth (Cat. No. 2218.1) 

 

2.7.5.1. Extraction of DNA from agarose gels 

Extraction of DNA fragments from agarose gels was done by using the GFX®-Kit (GE 

Health Care) according to the manufacturer’s instructions. 

 

 GFX®-Kit Illustra®, GE Health Care, UK (Cat. No. 28-9034-71) 
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2.7.6. Generation of lentiviral expression constructs 

In order to stably express the protein of interest in cell lines, lentiviral expression constructs 

were generated which all uses the pRRL.SIN-18 vector system. This construct contains 

sequences from human immune deficiency virus-1 (HIV-1) and the expression cassette for the 

transgene. It represents a part of a lentiviral gene transfer system which integrates in the 

genome of the targeting cell. It contains no wild type copies of the HIV-long terminal repeats 

(LTRs): the 5’ LTR is chimeric and contains an enhancer and promoter of the respiratory 

syncital virus (RSV) instead of the U3-region of the wild type HIV (RRL). In the 3’ LTR-

region the U3-region was nearly completely deleted, including the TATA-box (nucleotide -

418 to - 18, relative to the U3/R border). Because the 3’ U3-region is used as a template for 

the generation of both copies of the LTRs in the life cycle of the virus, this deletion in the U3-

region leads to a transcriptional inactivation of both LTRs (self-inactivating (SIN)-vector) 

(Dull et al., 1998). 

The original virus plasmids were provided by Inder Verma (The Salk Institute for Biological 

Studies, Laboratory of Genetics, La Jolla, CA, USA).  

 

2.7.6.1. Plasmids and cDNAs 

 cDNA ..................... Backbone ............... Provided by ................. Reference 
 caPKGI (bovine) ........... pBluescript KS ..............A. Pfeifer.............................. (Heil et al., 1987) 

 Myc-RhoL63 ................ pCLMFG .......................J. Collard .............................. --- 

 Myc-RhoN19 ................ pCLMFG .......................J. Collard .............................. --- 

 Myr-Flag-Akt................ pBABE ..........................Addgene ............................... (Boehm et al., 2007) 

 Cre-SD.......................... pRRL.SIN18..................A. Pfeifer.............................. (Pfeifer et al., 2001) 

 TAg............................... PKGpRRL.SIN18..........A. Pfeifer.............................. (Salmon et al., 2000) 

 GST-rhotekin-GBD ...... pGEX-2T.......................R. Fässler.............................. --- 

 

2.7.6.2. Expression vectors 

 Name...................... Approach............... Resistance.................... Source 
 pBluescript KS.............. cloning...........................ampicillin .............................Stratagene  

 pGEX-2T ...................... expression......................ampicillin .............................Amersham Biosciences 

 pCLMFG ...................... expression......................ampicillin .............................A. Pfeifer 

 pBABE.......................... expression......................ampicillin/puromycin ...........Addgene 

 CMVpRRL.SIN18 ........ expression/cloning.........ampicillin .............................A. Pfeifer/I. Verma 
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2.7.6.3. Generation of caPKGI expression construct 

CMVpRRL.SIN18-caPKGI (LV-caPKGI): Constitutively active PKGI (caPKGI) cDNA was 

released from caPKGI in pBluescript KS by digestion with PstI and NotI, blunt ended 

(2.7.4.4) and insertet into EcoRV digested pBluescript KS. Correct insertion was checked by 

EcoRI digestion. From there caPKGI cDNA was released again by digestion with BamHI and 

SalI and inserted into BamHI/SalI digested CMVpRRL.SIN18. Insertion was checked by 

EcoRI digestion. 

 

2.7.6.4. Generation of control expression construct 

pRRL.SIN18 (LV-cntr): CMVpRRL.SIN18-caPKGI was digested with ClaI to excise the 

CMV promoter and caPKGI cDNA. The purified vector was religated. 

2.7.7. Generation of lenti-/retrovirus  

In order to produce lentiviral or retroviral VSV-G pseudotyped vectors, human embryonic 

kidney cells (HEK293T) were transiently transfected by a calcium phosphate method with the 

retroviral (pCLMFG/pBABE) or lentiviral constructs (pRRL.SIN18) and packaging plasmids: 

pMDLg/pRRE (gag, pol, polyA signal of β-globin, lentivirus only), RSV-Rev (rev, lentivirus 

only), pMD.G (CMV-VSV-G, lenti- and retrovirus) or CMVgagpol (gag, pol, retrovirus only). 

The supernatant containing the virus was harvested, enriched by centrifugation, and directly 

used for infection of cells. 

 

2.7.7.1. Calcium phosphate transfection of HEK293-T cells 

HEK293-T cells were expanded in growth medium at 37° C and 10% CO2 in a humidified 

atmosphere. Cells were grown on 140 mm plates until a confluence of approximately 60% 

was reached. 2.3 ml of transfection mix was added and cells were incubated o/n at 37° C in 

3% CO2. The next day, the medium was changed and cells were further cultured in growth 

medium at 37° C and 10% CO2. 

 

 2 x BBS 

 BES ............................................................... 4.26 g  pH 6.95  

 NaCl ............................................................. 6.54 g  

 Na2HPO4 .................................................... 0.085 g   

 filled up to 400 ml with H2O, sterile filtered 

 

 



Materials and Methods 
 

   43

 Transfection mix retrovirus (for 1 x 140 mm plate)  

 Viral plasmid .................................................25 µg 

 CMVgagpol ...................................................25 µg 

 CMV-VSV-G ..............................................12.5 µg  

  

 Transfection mix lentivirus (for 1 x 140 mm plate) 

 Viral plasmid ..............................................22.5 µg 

 pMDL .........................................................14.6 µg 

 REV...............................................................5.7 µg 

 CMV-VSV-G ................................................7.9 µg  

 

 filled up to 1.17 ml with sterile H2O, addition of 

 CaCl2 (2.5 M) ...............................................117 µl 

 vortexed, addition of 

 2 x BBS ....................................................... 1.17 ml 

 inverted and  incubated 10 - 15 min at RT 

 

2.7.7.2. Harvest of viral supernatant 

First harvest: 24 h after transfection the supernatant was taken off and filtered through a 0.45 

µm filter. 16 ml growth medium was added to the cells which were incubated for additional 

24 h at 37° C in 10% CO2. The filtrate was centrifuged at 50000 x g (SW28 rotor) for 2 h at 

17° C and pellets were resuspended in HBSS, vortexed and stored at 4° C. 

Second harvest: 48 h after transfection the viral supernatant was taken off and treated as 

above. For concentration of the virus, pellets of the first and second harvest were combined, 

mixed with 2 ml of 20% sucrose and centrifuged at 42000 x g (SW55 rotor) for 2 h at 17° C. 

Pellets were resuspended in HBSS, mixed at 1400 rpm for 45 min at 17° C and spun down. 

Supernatant was taken off, aliquoted and stored at -80° C. 

 

 Hank’s Balanced Salt solution (HBSS), Gibco, Karslruhe (Cat. No. 14175-046)  

  

2.7.7.3. Infection of cells with lenti-/retroviral vectors 

The day before infection, 1.5 - 2 x 105 cells were seeded in a 6-well plate and cultured o/n. 

The next day in the afternoon, 800 µl growth medium containing 0.5 - 10 µl of the virus 

supernatant (2.7.7.2) was added to the cells. The next day, the medium was filled up to 2 ml 
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and grown again o/n. Cells were either directly subjected to experiments or trypsinized and 

seeded again on 6-well plates or 100 mm dishes. 

 

2.7.8. Isolation of RNA from cells and tissues and reverse transcription 

(RT) 

Total RNA from cultured cells and tissues was isolated with the TriFast® reagent (Peqlab) 

and 4 µg RNA were reverse transcribed with the SuperScript®II (Invitrogen) reverse 

transcriptase using random hexamer primers. RT-PCR analysis was performed using two 

specific primer combinations (2.7.9.1) and the PCR products were resolved on 2.0% agarose 

gels. 

For Real-time PCR analysis (2.7.9.4) 0.5 µg RNA were reverse transcribed with the 

Transcriptor First Strand Synthesis Kit (Roche) using random hexamer primers.  

 

 PeqGOLD TriFast®, Peqlab, Erlangen (Cat. No. 30-2020) 

 SuperScript®II First-Strand Synthesis Kit, Invitrogen, Karlsruhe (Cat. No. 12371019) 

 Transcriptor First Strand Synthesis Kit, Roche, Mannheim (Cat. No. 4896866) 

 

2.7.9. Polymerase chain reaction (PCR) 

PCR is a widely used method for enzymatic DNA amplification (Saiki et al., 1988). The 

reaction is carried out in the presence of three nucleic acid segments (DNA template, primer 

1, primer 2), DNA polymerase (Taq polymerase) and dNTPs. The amplification occurs in 

three different steps: denaturation (95° C), annealing of the primers to the DNA template (52 - 

65° C, depending on the primer) and DNA synthesis (72° C). For specific primer 

combinations refer to 2.7.9.1. 
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2.7.9.1. Primers PCR 

All primers were synthesized and purified by MWG, Ebersberg.  

 

Name Primer sequence Application 

C2f 5’ - GTG AAA ATA CTA CTA GGT ATC ATG G - 3’ 
 

genotyping 

PKGIfloxed 

C2r 5’ - CAT GTA CTA AAC ATT AAG GGT AGA G - 3’ 
genotyping 

PKGIfloxed 

C1f 5’- CTA AAT GAG CAA ACA GAA ACT ATG - 3’ 
genotyping 

PKGIfloxed 

NeoPA 5’ - GCC TGC TCT TTA CTG AAG GCT CT - 3’ 
genotyping 

PKGI k.o. 

KISAX 
5’ - GCC GCT CGA GTA AGG GAA ACT AAT GAG 

AAA CTG CT - 3’ 

genotyping 

PKGI k.o. 

Ap-18 5’ - GCT CTA CTC GTC CGA AAC CT - 3’ 
genotyping 

PKGI k.o. 

UCP-1 forward 5’ - GTG AAC CCG ACA ACT TCC GAA GTG - 3’ RT-PCR 

UCP-1 reverse 5’ - CAT GAG GTC ATA TGT CAC CAG CTC - 3’ RT-PCR 

PPARγ forward 5’ - ATG CCA TTCTGG CCC ACC AAC TTC - 3’ RT-PCR 

PPARγ reverse 5’ - CAT AAA TAA GCT TCA ATC GGA TGG - 3’ RT-PCR 

Runx2 forward 5’ - CAG GAA GAC TGC AAG AAG GCT CTG G - 3’ RT-PCR 

Runx2 reverse 5’ - ACA CGG TGT CAC TGC GCT GAA GA - 3’ RT-PCR 

Ocn forward 5’ - AGG ACC CTC TCT CTG CTC AC - 3’ RT-PCR 

Ocn reverse 5’ - AAC GGT GGT GCC ATA GAT GC - 3’ RT-PCR 

PKGI forward 5’ - ACT GTA TGT ACC CCG TGG AAT - 3’ RT-PCR 

PKGI reverse 5’ - TTG GTG AGT CTT CTC GAG TAA - 3’ RT-PCR 

GC-A forward 5’ - ATC GGG GTG AAG GAT GAG TAC G - 3’ RT-PCR 

GC-A reverse 5’ - AGT ACT CAG GAT TAT CGG GTT C - 3’ RT-PCR 

GC-B forward 5’ - CAT GGC AGG ACA ATC GAA CC - 3’ RT-PCR 

GC-B reverse 5’ - TGC CTG CAC CCT TGT GAT AG - 3’ RT-PCR 

GC-C forward 5’ - TCC AGG TGG CCT ACG AAG AC - 3’ RT-PCR 

GC-C reverse 5’ - GAT TCT CCG AAT GGT GTC AC - 3’ RT-PCR 
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Name Primer sequence Application 

sGC forward 5’ - TCA CTC TGG CTA ACA AAT TTG AAT C - 3’ RT-PCR 

sGC reverse 5’ - ACA ATG TGC TGG ATT TTG AGT GCA G - 3’ RT-PCR 

PDE3B forward 5’ - CAG GAA GGA TTC TCA GTC AG - 3’ RT-PCR 

PDE3B reverse 5’ - GTA CTC TGG GCG AGA AAG AT - 3’ RT-PCR 

nNOS forward 5’ - CAA ACG CAA AGT GGG AGG TC - 3’ RT-PCR 

nNOS reverse 5’ - TTG CCG TCG AGG TCT CTG TC - 3’ RT-PCR 

iNOS forward 5’ - GTT CTC AGC CCA ACA ATA CA - 3’ RT-PCR 

iNOS reverse 5’ - AGG CAG TGC ATA CCA CTT CA - 3’ RT-PCR 

eNOS forward 5’ - CTG GCA AGA CAG ACT ACA CGA - 3’ RT-PCR 

eNOS reverse 5’ - CGC AAT GTG AGT CCG AAA ATG T - 3’ RT-PCR 

GAPDH forward 5’ - CGG CAA ATT CAA CGG CAC AGT CA - 3’ RT-PCR 

GAPDH reverse 5’ - GGT TTC TCC AGG CGG CAC GTC A - 3’ RT-PCR 

 
 
2.7.9.2. PCR reactions 

PCR reactions with two different templates were performed. 1) PCR for genotyping, using 

genomic tail DNA (2.7.2), 2) RT-PCR, using cDNA reverse-transcribed from RNA (2.7.8). 

All PCR reactions were carried out using the TaqCORE kit (Qbiogen). 

 

 Genotyping PCR 

 Isolated tail DNA..............................................1 µl    

 Primer 1 (10 pmol)......................................1.25 µl 

 Primer 2 (10 pmol)......................................1.25 µl  

 Primer 3 (10 pmol)......................................1.25 µl 

 dNTPs (10 mM) ................................................4 µl 

 10 x PCR buffer .............................................2.5 µl  with MgCl2 

 Taq polymerase ...........................................0.25 µl 

 filled up with H2O to 25 µl, subjected to PCR (2.7.9.3) 

 

 RT-PCR 

 cDNA ................................................................1 µl    

 Primer 1 (10 pmol)......................................1.25 µl 

 Primer 2 (10 pmol)......................................1.25 µl  
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 dNTPs (10 mM) ................................................4 µl 

 10 x PCR buffer .............................................2.5 µl  with MgCl2 

 Taq polymerase ...........................................0.25 µl 

 filled up with H2O to 25 µl, subjected to PCR (2.7.9.3) 

 

 TaqCORE Kit, Qbiogen, (Cat. No. EPTQK109) 

 

2.7.9.3. PCR programs 

The following PCR programs were used in this study: 

 

Genotyping PKGI floxed PCR   Genotyping PKGI k.o. PCR 

Step ...... Time (sec) ..Temp (° C) Step .... Time (sec) .....Temp (° C)   

1............... 120............... 95 1................ 120............... 95 

2................ 30................ 94 2................. 40................ 94 

3................ 30................ 55 (-1° C/cycle) 3................. 30................ 65 (-1° C/cycle) 

4................ 30................ 72 4................. 40................ 72 

steps 2 - 4 were repeated 10 times steps 2 - 4 were repeated 10 times 

5................ 30................ 94 5................. 40................ 94 

6................ 30................ 45 6................. 30................ 55 

7................ 30................ 72 7................. 40................ 72 

steps 5 - 7 were repeated 35 times steps 5 - 7 were repeated 40 times 

8............... 600............... 72 8................ 600............... 72 

9.................∞ ................. 4 9..................∞ ................. 4 

 

RT-PCR (cDNA) 

Step ...... Time (sec) ..Temp (° C)   

1............... 120............... 94 

2................ 30................ 94 

3................ 30............ 52 - 62 depending on the primer annealing temperatures 

4............. 20-60 ............. 72  depending on the product size of the amplicon 

steps 2 - 4 were repeated 35 times 

5............... 600............... 72 

6.................∞ ................. 4 
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2.7.9.4. Real-time PCR (SYBR Green) 

SYBR Green I dye intercalates into double-stranded DNA and produces a fluorescent signal. 

The intensity of the signal is proportional to the amount of dsDNA present in the reaction. 

Therefore, at each step of the PCR reaction, the signal intensity increases as the amount of 

product increases. This provides a very simple and reliable method to monitor PCR reactions 

in real time. 

SYBR Green Real-time PCR was performed using the LightCycler® SYBR Green I Master 

mix (Roche) on a Roche LightCycler®480 instrument (96-well format). For specific primer 

combinations refer to 2.7.9.5. 

 

 LightCycler® SYBR Green I Master, Roche, Mannheim (Cat. No. 4887352) 

 

2.7.9.5.   Primers Real-time PCR 

 
Name Primer sequence 

UCP-1 forward 5’ - GGT GAA CCC GAC AAC TTC CGA AGT G - 3’ 

UCP-1 reverse 5’ - GGG TCG TCC CTT TCC AAA GTG TTG A - 3’ 

PPARγ forward 5’ - TCC GTA GAA GCC GTG CAA GAG ATC A - 3’ 

PPARγ reverse 
 

5’ - CAG CAG GTT GTC TTG GAT GTC CTC G - 3’ 

PGC-1α forward 5’ - GCA CAC ACC GCA ATT CTC CCT TGT A - 3’ 

PGC-1α reverse 5’ - ACG CTG TCC CAT GAG GTA TTG ACC A - 3’ 

HSL forward 5’ - GAG GCT CAG ACG AGA GGG AGA A - 3’ 

HSL reverse 5’ - CTA CGG GAA GGA CAG GAC AGC AAG G - 3’ 

Plin forward 5’ - CTC TGG GAA GCA TCG AGA AGG TGG T - 3’ 

Plin reverse 5’ - CCT TCA GGG CAT CGG ATA GGG ACA T - 3’ 

Gpd1 forward 5’ - TGT TAA ATA CCT GCC AGG GCA CAA GC - 3’ 

Gpd1 reverse 5’ - AGT TGG GTG TCT GCA TCA GGT CCT TC - 3’ 

Cidea forward 5’ - ATT TAA GAG ACG CGG CTT TGG GAC A - 3’ 

Cidea reverse 5’ - TTT GGT TGC TTG CAG ACT GGG ACA T - 3’ 
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Name Primer sequence 

aP2 forward 5’ - TGA AAG AAG TGG GAG TGG GCT TTG C - 3’ 

aP2 reverse 5’ - CAC CAC CAG CTT GTC ACC ATC TCG T - 3’ 

HPRT forward 5’ - ACA TTG TGG CCC TCT GTG TGC TCA - 3’ 

HPRT reverse 5’ - CTG GCA ACA TCA ACA GGA CTC CTC GT - 3’ 

 
  
2.7.9.6.   Real-time PCR reactions 

 
 SYBR® Green PCR 

 cDNA ................................................................3 µl    

 Primer 1 (5 pmol)........................................1.25 µl 

 Primer 2 (5 pmol)........................................1.25 µl  

 2 x Master mix ..................................................4 µl 

 subjected to Real-time PCR (2.7.9.7) 

 
2.7.9.7.   Real-time PCR program 

 

Real-time PCR (cDNA) 

Step ... Time (sec) ..Temp (° C)   

1............... 600............... 95 

2................ 10................ 95 

3................ 15................ 72  

4................ 90................ 72   

5................. 1................. 82 single acquisition 

steps 2 - 5 were repeated 40 times 

melting curve: 

6................. 1................. 95 

7................ 15................ 65   

8................ --- ................ 95 20 acquisitions per ° C from 65° C to 95° C 
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2.7.9.8. Quantification of Real-time PCR data 

Relative quantification of mRNA levels was performed based on the crossing point (CP) 

values of the amplification curves, determined by the second derivative maximum method. 

HPRT (hypoxanthine-guanine-phosphoribosyltransferase) served as an internal control. Fold 

changes were derived from the ΔCP values. 

 

2.7.10. DNA chip hybridization 

For the linear T7-based amplification step of sample RNA, 0.5 µg of each total RNA (2.7.8)  

sample was used as starting material (RNA from wt and PKGI-/- brown adipocytes 

differentiated in the presence of 200 µM cGMP). The further steps were carried out by 

Milteny Biotec (Gladbach): to produce Cy3- and Cy5-labelled cRNA, the samples were 

amplified and labelled using Low RNA Input Linear Amp Kit (Agilent Technologies, USA) 

following the manufacturer’s protocol. Yields of cRNA and dye incorporation rate were 

measured with a ND-1000 spectrophotometer (NanoDrop®Technologies, Thermo Scientific, 

USA). Samples from PKGI-/- mice were labelled with Cy5 and samples from wild type mice 

with Cy3. DNA chip hybridization was performed on Agilent Whole Mouse Genome Oligo 

(60-mer) 4x44K microarrays according to the 60-mer oligo microarray processing protocol of 

the Gene Expression Hybridization Kit (Agilent, USA). Agilent’s Feature Extraction Software 

was used to read out and process the microarray image files. The software determined feature 

intensities and ratios after background subtraction and normalization to equal average 

intensity. Output data consisted of gene lists with the complete raw data sets including 

absolute intensities, Cy5/Cy3 ratios and fold changes. Grouping of genes was performed by 

Gene Ontology (GO) annotation. 

 

2.8. Statistical analysis 

All values are presented as means ± standard error of the mean (s.e.m.). Statistical differences 

were determined using Student’s t test. p-values < 0.05 were considered significant. The 

following definitions were used and are described in the figure legends: * p < 0.05; ** p < 

0.01; *** p < 0.001 
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3. Results 

3.1. Characterization of BAT-derived mesenchymal stem cells 

Adipocytes originate from multipotent mesenchymal stem cells that among others (1.2.3) 

differentiate into preadipocytes/lipoblasts, which give rise to either unilocular, white or 

multiocular, brown adipocytes (Figure 6). To isolate BAT-MSCs from BAT, interscapular 

brown fat pads were harvested from new born wild type (wt) mice and fractionated into 

mature adipocytes and stroma-vascular fractions (Nechad, 1983). The cells of the stroma-

vascular fraction were immortalized by lentiviral transduction with a vector expressing the 

SV40 large T antigen. These cells exhibited a fibroblast-like morphology (Figure 8) and flow 

cytometer analysis using a panel of antibodies against stem cell surface markers (Figure 9A) 

demonstrated that BAT-MSCs exhibit a phenotype similar to bone marrow-derived MSCs 

(BM-MSCs) (Breitbach et al., 2007).  

 

 

 
Figure 8.  BAT-MSCs and BM-MSCs exhibit a fibroblast-like morphology.  
Bright field pictures of undifferentiated BAT-MSCs and BM-MSCs (provided by Prof. Bernd Fleischmann, 
Universität Bonn); magnification 20 x. 
 
BAT-MSCs were positive for Sca-1, CD44, CD49e, CD105, CD106, but negative for the 

hematopoietic markers CD45 and CD11b. The multipotent nature and functional integrity of 

BAT-MSCs was further confirmed by in vitro differentiation to (brown) adipogenic and 

osteoblastic lineages (Figure 9B, C). 
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Figure 9. Characterization of BAT-MSCs.  
(A) Flow cytometry analysis of BAT-MSCs; note the expression of MSC markers (positive for Sca-1, CD44, 
CD49e, CD105, CD106) and the lack of the haematopoietic cell markers CD45 and CD11b. (B) The protocol for 
adipogenic differentiation of BAT-MSCs is depicted indicating the different stages of differentiation (day -4 – 
day 7) and the media (DM, differentiation medium; IM, induction medium; IBMX, isobutylmethylxanthine; T3, 
triiodothyronine; Dexa, dexamethason) used at the different time points (bottom left). Adipogenic differentiation 
was confirmed by Oil Red O staining (top left and right) and the expression of UCP-1 and PPARγ by RT-PCR 
(bottom right). (C) The stages of the osteogenic differentiation of BAT-MSCs (day 0 – day 14) are shown 
(bottom left; Asc.phosph., ascorbate-2-phosphate; β-Glyc.phosph., β-glycero-phosphate). To confirm osteogenic 
differentiation, alkaline phosphatase staining (top left and right) and RT-PCR of the osteogenic markers Runx2 
and osteocalcin (Ocn) were performed (bottom right).  
 



Results 
 

   53

3.1.1. Expression of the NO/cGMP signaling cascade in BAT-MSCs 

First, the expression of components of the NO/cGMP signaling cascade in BAT-MSCs was 

analyzed. RT-PCR analysis showed that endothelial NO synthase (eNOS), soluble and 

particulate guanylylcyclases (sGC, GC-B, respectively, cGMP generating enzymes) and two 

major cGMP receptors PKGI and PDE3B were expressed in BAT-MSCs (Figure 10A). 

Western blot analysis corroborated high levels of PKGI in BAT-MSCs, which further 

increased during adipocyte differentiation reaching a peak at day 4 (Figure 10B). 

 

 

Figure 10. Expression of the NO/cGMP signaling cascade in BAT-MSCs.  
(A) Expression analysis (RT-PCR) of the NO-dependent signaling cascade in undifferentiated BAT-MSCs. 
NOS, NO-synthase; GC, guanylycyclase; PKGI, protein kinase GI; PDE3B, phosphodiesterase 3B. (B) Western 
blot analysis of PKGI expression (top) and Oil Red O staining (bottom) during brown fat differentiation. 
 

3.2. PKGI mediates cGMP-induced mitochondrial biogenesis in 

BAT-MSCs 

Mitochondrial content increases during the differentiation process of brown adipocytes and 

NO has been shown to induce mitochondrial biogenesis via generation of cGMP (Nisoli et al., 

2003; Nisoli et al., 1998). However, the mechanism of cGMP-induced mitochondrial 

biogenesis is unclear. Therefore, mitochondrial content was measured by MitoTracker 

fluorescence in differentiated cells isolated from wt and PKGI-deficient (PKGI-/-) mice 

(Pfeifer et al., 1998). Consistent with previous studies (Nisoli et al., 2003), treatment of BAT-

MSCs with 200 µM 8-pCPT-cGMP (cGMP) during differentiation increased mitochondrial 

content by 23 ± 5% as compared to control wt cells (Figure 11A). In PKGI-/- cells, the basal 

MitoTracker fluorescence signal was reduced by 33 ± 10% of wt levels, and cGMP had no 

effect on mitochondrial biogenesis. Lentiviral expression of a constitutively active mutant of 

PKGI (caPKGI, LV-caPKGI) (Heil et al., 1987) in wt BAT-MSCs significantly increased the 

MitoTracker fluorescence signal over wt cells transduced with a control virus (Figure 11A), 
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demonstrating that activation of PKGI induces mitochondrial biogenesis. Quantitative 

morphometry revealed that the area of mitochondria of PKGI-/- cells was significantly reduced 

as compared to wt cells (Figure 11B), explaining the distinct decrease of mitochondrial 

volume as observed with MitoTracker fluorescence. 

 

 
 

 
 

 

Figure 11. PKGI mediates cGMP-induced mitochondrial biogenesis.  
(A) Analysis of MitoTracker fluorescence in wt and PKGI-/- cells differentiated (day 4) in the presence of 200 
µM 8-pCPT-cGMP (cGMP) (n=4) and cells transduced with a lentiviral vector containing a constitutively active 
PKGI (LV-caPKGI) or a control virus (n=3) containing no transgene (LV-cntr) as indicated. Untreated wt and 
LV-cntr were set as one. Data are given as mean ± s.e.m.; * p < 0.05; ** p < 0.01 compared to untreated wt or 
LV-cntr. (B) Representative transmission electron microscopy micrographs of wt (upper left) and PKGI-/- brown 
adipocytes (upper right); magnification 30000 x; scalebar = 450 nm; white arrows indicate mitochondria, black 
arrows indicate lipid droplets. Table showing mitochondrial areas of wt and PKGI-/- cells (lower panel); p < 
0.001 compared to wt. 
 

The transcriptional coactivator peroxisome proliferator-activated receptor γ (PPARγ) 

coactivator-1α (PGC-1α) is a key regulator of mitochondrial biogenesis and is known to 

activate UCP-1 expression and mitochondrial respiration (Lehman et al., 2000; Puigserver et 

al., 1998; Wu et al., 1999). Therefore, I analyzed if PKGI triggers the expression of PGC-1α 

and UCP-1 in differentiated brown adipocytes. Quantitative real-time PCR (RQ-PCR) 

revealed that treatment of wt cells with cGMP induced expression of UCP-1 (to 235 ± 38%) 

 N 
mean mitochondrial 

area 
standard 
deviation s.e.m. 

PKGI-/- 90 0.0759 µm² 0.04871 0.00513 
wt 65 0.2192 µm² 0.17004 0.02109 
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and PGC-1α (to 180 ± 41%). In sharp contrast, UCP-1 was barely detectable in PKGI-/- cells 

and PGC-1α expression was reduced by 23 ± 7.5% of wt levels, and cGMP treatment had no 

effect on UCP-1 and PGC-1α expression in PKGI-/- cells (Figure 12A). Western blot analysis 

corroborated reduced UCP-1 protein levels and the loss of cGMP effects in PKGI-/- cells 

(Figure 12B). Lentiviral expression of caPKGI in wt cells increased UCP-1 and PPARγ 

mRNA-levels during the differentiation process (Figure 12C). These data indicate that PKGI 

mediates the NO/cGMP-dependent induction of mitochondrial biogenesis in brown 

adipocytes.  

 

 

 
Figure 12. Mitochondrial marker gene expression.  
(A) Quantitative real-time PCR (RQ-PCR) analysis of UCP-1 and PGC-1α of differentiated brown adipocytes 
(day 7) of wt or PKGI-/- mice treated with 200 µM cGMP from day -2 to day 7 as indicated (n=5). HPRT was 
used as an internal control and values are expressed as fold change, untreated wt was set as one. Data are given 
as mean ± s.e.m.; * p < 0.05; ** p < 0.01; *** p < 0.001 compared to untreated wt. (B) Western blot of UCP-1 of 
differentiated brown adipocytes from wt or PKGI-/- mice treated with cGMP as indicated. (C) Time course of 
UCP-1 and PPARγ expression (RT-PCR) during differentiation. RNA was isolated at the indicated time points 
from cells transduced with LV-cntr, LV-caPKGI or PKG-/- cells. 
 

3.3. PKGI regulates accumulation of fat and expression of 

adipogenic makers during fat cell differentiation 

Given the importance of PGC-1α and UCP-1 for brown fat energy expenditure (Puigserver et 

al., 1998), the effect of PKGI on the accumulation of lipids was analyzed in brown adipocytes 

by Oil Red O staining and quantification of triglycerides (TG). It was speculated that because 
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of the reduced UCP-1 and mitochondrial contents less fat should be utilized for energy 

dissipation and that fat storage should be increased in PKGI-/- cells. Surprisingly, less lipid 

droplets were observed in PKGI-/- cells after 7 days of adipogenic differentiation as compared 

to wt cells (Figure 13A). The basal TG content was significantly reduced by 56 ± 4% in 

PKGI-/- cells (Figure 13B). Furthermore, adipogenic differentiation of wt BAT-MSCs for 7 

days in the presence of cGMP resulted in a significantly increased accumulation of lipid 

droplets and TG content increased by 50 ± 18%. In contrast, cGMP had no significant effect 

on TG content in PKGI-/- cells (Figure 13A, B).  

 

 
 

Figure 13. PKGI mediates cGMP-induced lipid accumulation.  
(A) Oil Red O staining of differentiated wt and PKGI-/- brown adipocytes treated with 200 µM cGMP as 
indicated. (B) Triglyceride (TG) content normalized to the protein content of the sample of differentiated brown 
adipocytes of wt and PKGI-/- mice (n=6) treated with 200 µM cGMP or cells infected with LV-cntr and LV-
caPKGI (n=4) as indicated, untreated wt and LV-cntr were set as one. Data are given as mean ± s.e.m.; ** p < 
0.01; *** p < 0.001 compared to untreated wt or LV-cntr. 
 

Since constitutive knock out of PKGI might induce compensatory changes in other signaling 

pathways, conditional PKGI knockout mice (PKGIfl/fl) were generated at the MPI für 

Biochemie, Martinsried in the laboratory of Prof. Reinhard Fässler. Transduction of BAT-

MSCs isolated from PKGIfl/fl mice with a self deleting Cre lentivirus (LV-CreSD) efficiently 

disrupted the prkgI gene (PKGI0/0 cells) (Figure 14A). PKGI0/0 cells accumulated significantly 

less fat (Figure 14B, C). Moreover, expression of caPKGI in wt BAT-MSCs resulted in a 

significant increase in TG content as compared to control (by 39 ± 12%) (Figure 13B). These 

data indicate that PKGI controls distinct aspects of BAT biology, i.e. (i) normal thermogenic 

capacity (i.e. UCP-1 expression, high mitochondrial content), and (ii) brown fat cell 

differentiation. 
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Figure 14. Lipid accumulation is reduced in PKGI0/0 cells.  
(A) Anti-PKGI Western blot of cells isolated from PKGIfl/fl mice infected with (PKGI0/0) or without (PKGIfl/fl) 
the Cre-expressing lentivirus LV-CreSD. Actin Western blot was performed to control for loading. (B) Oil Red 
O staining of differentiated brown adipocytes of PKGIfl/fl and PKGI0/0 mice. (C) TG content of differentiated 
brown adipocytes of PKGIfl/fl and PKGI0/0 mice treated with 200 µM cGMP as indicated was measured and 
normalized to the protein content of the sample (n=4). Untreated PKGIfl/fl was set as one. Data are given as mean 
± s.e.m.; * p < 0.05; *** p < 0.001 compared to untreated PKGIfl/fl. 
 

3.3.1. Microarray (CHIP) analysis of differentiated brown fat cells 

To assess the requirement of PKGI in the global and metabolic transcriptional response to 

cGMP, microarray analysis was performed of RNA isolated from differentiated wt and  

PKGI-/- brown adipocytes treated with cGMP. The top 30 genes up and down-regulated more 

than 3-fold are displayed in Table 3 and Table 4 (6. Appendix) respectively, sorted according 

to function and magnitude of induction. Differentially expressed genes were grouped 

according to the gene ontology (GO) annotation. In total, 2199 annotations could be ascribed 

to the genes that were changed at least 3-fold, of which 857 were up-regulated and 1342 

down-regulated in PKGI-/- cells as compared to wt cells. The largest differences between 

PKGI-/- and wt cells were found in transcripts related to signaling (160 up-regulated, 289 

down-regulated in PKGI-/- versus wt cells) and metabolism (93 up-regulated, 278 down-

regulated in PKGI-/- versus wt cells). Expression of genes involved in lipid, energy, 

carbohydrate and other metabolism were down-regulated by 87%, 82%, 80% and 64%, 

respectively (Figure 15).  
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Figure 15. Gene expression analysis.  
Microarray analysis of differentiated wt and PKGI-/- brown adipocytes treated with cGMP. Grouping was 
performed by GO annotation. 
 
To further confirm these findings, RQ-PCR expression analysis in differentiated brown 

adipocytes was performed of a panel of adipogenic genes, including glycerol-3-phosphate 

dehydrogenase (Gpd1), perilipin (Plin), PPARγ, hormone sensitive lipase (HSL), fatty acid 

binding protein 4 (aP2), and cell death-inducing DNA fragmentation factor α subunit-like 

effector A (Cidea). Incubation of wt cells with cGMP caused an increase in the levels of Gpd1 

(to 209 ± 45%), perilipin (to 162 ± 22%), PPARγ (to 153 ± 26%), HSL (to 161 ± 19%), aP2 

(to 282 ± 185%) and Cidea (to 328 ± 152%). Conversely, the mRNAs of these adipogenic 

marker genes were suppressed in PKGI-/- cells (Figure 16).  

 

 

 

 

 



Results 
 

   59

 

Figure 16. RQ-PCR quantification of fat cell markers.  
RQ-PCR of Gpd1, Plin, HSL, PPARγ, aP2 and Cidea was performed in brown adipocytes of wt and PKGI-/- mice 
treated with 200 µM cGMP as indicated (n=5). HPRT was used as an internal control and values are expressed 
as fold change, untreated wt was set as one. Data are given as mean ± s.e.m.; * p < 0.05; ** p < 0.01; *** p < 
0.001 compared to untreated wt. 
 
In addition, also early and late adipogenic markers were analyzed by Western blotting: 

CCAAT/enhancer-binding protein β (C/EBPβ) is a crucial factor during early stages of fat 

differentiation (Hamm et al., 2001). Induction of C/EBPβ protein expression with induction 

medium (IM) at day 0 of differentiation was significantly reduced in PKGI-/- cells (by 19 ± 

1.6%) (Figure 17A) and PKGI0/0 cells (Figure 17B). In addition, caPKGI increased C/EBPβ 

protein content (Figure 17C). According to the microarray and RQ-PCR data, reduced PPARγ 

and aP2 protein levels were found in PKGI-/- cells and treatment with cGMP caused only an 

increase of the respective protein levels in wt cells (Figure 17D). Reduced UCP-1 and PPARγ 

mRNA levels could be confirmed in differentiated PKGI0/0 cells (Figure 17E). Thus, the 

microarray, RQ-PCR and Western blot data further point to a pivotal role of PKGI not only 

for brown fat mitochondrial biogenesis but also for brown fat cell differentiation. 

 
 
 
  
 
 
 
 
 
 



Results 
 

   60

 
 
 
Figure 17. Expression of early and late adipogenic markers.  
(A) Western blot analysis showing the induction of C/EBPβ expression in wt and PKGI-/- cells after treatment 
with induction medium (IM) for 6 h at day 0 as indicated (left). Densitometric analysis of C/EBPβ expression 
after 6 h of treatment with IM in wt versus PKGI-/- cells (n=3, right). Data are given as mean ± s.e.m.; ** p < 
0.01 compared to wt. (B) Western blot showing the induction of C/EBPβ expression in PKGIfl/fl and PKGI0/0 
cells after treatment with induction medium (IM) for 6 h at day 0 as indicated. (C) Western blot showing the 
expression of C/EBPβ and caPKGI 72 h post infection with LV-caPKGI. (D) Western blots of PPARγ and aP2 
of differentiated brown adipocytes of wt and PKGI-/- mice treated with cGMP as indicated. (E) Expression of 
UCP-1 and PPARγ in differentiated PKGIfl/fl and PKGI0/0 brown adipocytes as assessed by RT-PCR. 
 

3.4. PKGI effects on adipogenic differentiation are mediated via 

the RhoA/ROCK pathway 

To gain insight into the molecular mechanisms of PKGI-mediated cGMP effects on BAT 

differentiation, I focused on the signaling cascade downstream of PKGI. I hypothesized that 

the small GTPase RhoA might be involved in the cGMP/PKGI-dependent differentiation of 

brown adipocytes, as RhoA was shown to play a role in mesenchymal stem cell lineage 

commitment as well as adipogenic differentiation of 3T3-L1 cells and mouse embryonic 

fibroblasts (MEFs) (McBeath et al., 2004; Sordella et al., 2003), and as RhoA activity can be 

negatively regulated by PKGI in vascular smooth muscle cells (VSMCs) (Begum et al., 2002; 

Rolli-Derkinderen et al., 2005; Sauzeau et al., 2000). To test this hypothesis, RhoA-GTP 

levels were measured and were found to be elevated in PKGI-/- as compared to wt BAT-MSCs 

before and even more pronounced after serum treatment (Figure 18A). In addition, RhoA 

mutants were used to enhance or suppress RhoA signaling. Retroviral expression of the 

dominant-negative mutant Myc-RhoN19 increased TG levels in wt cells by 20 ± 5.4% as 

compared to untreated cells. Expression of Myc-RhoN19 in PKGI-/- cells (Figure 18C) 

rescued lipid droplet accumulation and induced an increase in TG content to 81 ± 4.7% of wt 
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levels, while expression of a constitutively active Myc-RhoL63 mutant (Figure 18C) reduced 

TG accumulation by 66 ± 3.8% in wt but had no significant effect in PKGI-/- cells (Figure 

18B).  

 

 

Figure 18. Effects of PKGI on RhoA signaling.  
(A) Anti-RhoA immunoblot of total cell lysates (RhoA) and GST-Rhotekin pull-downs (RhoA-GTP) from 
serum starved wt and PKGI-/- BAT-MSCs stimulated with serum for 3 min as indicated. (B) Differentiated wt 
and PKGI-/- brown adipocytes expressing RhoA mutants as indicated were analyzed for their TG levels 
normalized to the protein content of the sample (n=3). Data are given as mean ± s.e.m.; * p < 0.05; ** p < 0.01; 
*** p < 0.001 compared to untreated wt or PKGI-/-. (C) Expression analysis of RhoA mutants 72 h post infection 
of wt or PKGI-/- cells with the myc-tagged RhoA mutants RhoN19 and RhoL63. Western blots with an anti-myc 
antibody were performed. Tubulin Western blot was performed to control for loading. 
 
Rho-kinases (ROCKs) are serine/threonine kinases and important RhoA downstream effector 

proteins that mediate a broad spectrum of RhoA effects including the formation of actin stress 

fibers in adherent cells (Ridley and Hall, 1992). Serum-induced stress fiber formation was 

inhibited by treatment of wt BAT-MSCs with cGMP. PKGI-/- cells already showed more 

stress fibers in the serum starved state and stress fiber formation was not reduced by pre-

incubation of PKGI-/- cells with cGMP (Figure 19A), indicating that loss of PKGI is indeed 

leading to increased RhoA and ROCK activation in BAT-MSCs. Interestingly, 

pharmacological inhibition of ROCK with 30 µM Y-27632 during differentiation resulted in a 

strong increase of TG accumulation (Figure 19B) and induction of fat specific and 

mitochondrial marker gene expression in wt cells (Figure 19 C, D). Furthermore, Y-27632 

treatment rescued TG accumulation, adipogenic and mitochondrial marker gene expression in 

PKGI-/- cells (Figure 19 B-D). Altogether, the data suggest that the effects of PKGI on brown 

adipocyte differentiation and mitochondrial biogenesis are mediated through inhibition of 

RhoA/ROCK signaling.    
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Figure 19. PKGI inhibits RhoA/ROCK signaling.  
(A) Phalloidin staining of F-Actin stress fibers in wt (A, B, C) and PKGI-/- (D, E, F) BAT-MSCs plated on 
fibronectin-coated glass coverslips. (B) TG content normalized to the protein content of the sample of 
differentiated brown adipocytes of wt and PKGI-/- mice treated with 30 µM of the ROCK inhibitor Y-27632 as 
indicated (n=3). (C) Western blot analysis of UCP-1, PPARγ and aP2 expression in differentiated brown 
adipocytes of wt and PKGI-/- mice treated with 30 µM Y-27632 as indicated. (D) RQ-PCR analysis of UCP-1 
and PGC-1α expression in differentiated brown adipocytes of wt and PKGI-/- mice treated with 30 µM Y-27632 
as indicated (n=3). HPRT was used as an internal control and values are expressed as fold change, untreated wt 
was set as one. Data are given as mean ± s.e.m.; * p < 0.05; *** p < 0.001 compared to untreated wt or PKGI-/-. 
 

3.5. Insulin signaling is impaired in PKGI-/- brown adipocytes 

To explore potential downstream targets of the cGMP/PKGI/RhoA/ROCK pathway, the time 

course of cGMP effects during BAT differentiation was analyzed. cGMP treatment from days 

-2 to +2 was sufficient to enhance lipid accumulation, whereas no major effect was observed 

during days 2 to 4 and 4 to 7 (Figure 20A). Incubation with cGMP for only two days starting 

at day -2 enhanced lipid accumulation almost to the same extend as incubation for 4 days 

(days -2 to 2) (Figure 20B). Interestingly, this time point coincided with the first addition of 

insulin (Figure 9B, bottom left), pointing to a potential involvement of PKGI in insulin 

signaling in brown fat cells.  
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Figure 20. Effect of cGMP on brown adipocytes lipid accumulation. 
(A) Red O staining of wt cells at 7 days of differentiation after treatment with 200 µM cGMP for the indicated 
periods between day -2 and day 7. (B) Analysis of cGMP effects on lipid accumulation during insulin induction 
of differentiation (day -2 to 2). Oil Red O staining after 7 days of differentiation of wt cells treated with 200 µM 
cGMP for the indicated periods. Note the effect of cGMP coincides with the insulin treatment starting at day -2. 
 
Insulin positively regulates brown adipogenesis (Teruel et al., 1996) and activates the 

thermogenic program through induction of UCP-1 expression (Lorenzo et al., 1993). 

Interestingly, it has previously been shown in muscle cells that ROCK directly associates with 

insulin receptor substrate-1 (IRS-1) and phosphorylates serine residues  (Begum et al., 2002; 

Furukawa et al., 2005) leading to reduced insulin-induced tyrosine phosphorylation of IRS-1 

and phosphoinositide 3-kinase (PI3K) activation (Begum et al., 2002). Similar results were 

obtained with 3T3-L1 white adipocytes (Noguchi et al., 2007). To directly investigate whether 

RhoA/ROCK links cGMP/PKGI with insulin signaling in brown fat cells, the phosphorylation 

status of IRS-1 was analyzed. Insulin stimulation of BAT-MSCs led to enhanced 

phosphorylation of the inhibitory serine residues 636/639 of IRS-1 in PKGI-/- cells (44 ± 21% 

increase in insulin-treated PKGI-/- as compared to insulin-treated wt cells) (Figure 21A) and 

PKGI0/0 cells (Figure 21B).  
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Figure 21. Analysis of the phosphorylation status of IRS-1.  
(A) Serum starved wt and PKGI-/- BAT-MSCs were treated with 100 nM insulin for 15 min as indicated and 
subjected to Western blotting using a phospho-specific (Ser636/639) antibody. The same membrane was probed 
with an IRS-1 antibody (left). Densitometric analysis of phospho-IRS-1 Ser636/639 phosphorylation after 15 
min of treatment with 100 nM insulin in wt versus PKGI-/- cells (n=3, right). Data are given as mean ± s.e.m.; * p 
< 0.05 compared to wt. (B) The same experiment as in (A, left) was repeated with PKGIfl/fl and PKGI0/0 cells. 
 
Consistently, tyrosine phosphorylation and PI3K p85α subunit association to IRS-1 were 

reduced in PKGI-/- cells after insulin treatment (Figure 22A). Similar results were obtained 

with PKGI0/0 cells (Figure 22B).  

 

 
 
Figure 22. IRS-1 activation and p85α association is reduced in PKGI-/- BAT-MSCs.  
(A) IRS-1 was immunoprecipitated from protein lysates of wt and PKG-/- BAT-MSCs treated with 100 nM 
insulin for 15 min as indicated and probed with phospho-tyrosine and p85α antibodies. IRS-1 Western blot was 
performed to control for loading. (B) The same experiment as in (A) was repeated with PKGIfl/fl and PKGI0/0 
cells. 
 
Reduced IRS-1 tyrosine phosphorylation and p85α association should lead to diminished 

insulin/IRS-1 signaling in PKGI-/- cells. To confirm this hypothesis, insulin-induced activation 

of Akt/protein kinase B, an important downstream target of the IRS-1/PI3K signaling cascade 

(White and Kahn, 1994) was studied. Insulin treatment of BAT-MSCs induced a 
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phosphorylation of Akt that was reduced in PKGI-/- (Figure 23A) and PKGI0/0 cells (Figure 

23B), indicating that PKGI exerts a permissive effect on insulin signaling. Importantly, Y-

27632 induced Akt phosphorylation in wt cells and enhanced phosphorylation of the kinase in 

PKGI-/- cells (Figure 23A). The IRS-1 phosphorylation data and the effect of the ROCK 

inhibitor on Akt activation indicate that RhoA/ROCK links cGMP/PKGI with the insulin 

pathway.  

 

 
 
Figure 23. Insulin induced Akt activation.  
(A) Insulin-induced Akt (Ser473) phosphorylation after 15 min incubation with 100 nM insulin as revealed by 
immunoblotting of wt and PKGI-/- BAT-MSCs. Prior to insulin stimulation, cells were serum starved and pre-
incubated with 30 µM Y-27632 for 15 min as indicated. The same membrane was probed with an Akt antibody 
to control for loading. (B) Phospho-Akt (Ser473) immunoblot after 15 min incubation with 100 nM insulin as 
indicated of serum starved PKGIfl/fl and PKGI0/0 BAT-MSCs. The same membrane was probed with an Akt 
antibody to control for loading. 
 

To further corroborate that the effects of cGMP/PKGI are indeed mediated through IRS-

1/PI3K/Akt, a constitutively active, myristoylated Akt (Myr-Akt) (Boehm et al., 2007) was 

expressed in PKGI-/- cells using retrovirus. Expression of Myr-Akt induced a 2.58 ± 4.2 fold 

increase in TG content (Figure 24A) and increased aP2 and PPARγ protein levels (Figure 

24B). In addition, mitochondrial biogenesis and UCP-1 and PGC-1α gene expression were 

enhanced by Myr-Akt in wt cells (Figure 24C, D). Importantly, Myr-Akt expression rescued 

TG accumulation, adipogenic marker gene expression, mitochondrial biogenesis and at least 

in part mitochondrial marker gene expression in PKGI-/- cells (Figure 24 A-D). 
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Figure 24. Myristoylated Akt rescues the PKGI-/- phenotype.  
(A) TG content normalized to the protein content of the sample of differentiated brown adipocytes of wt and 
PKGI-/- mice transduced with a viral vector expressing myristoylated Akt (Myr-Akt) as indicated (n=3), 
untreated wt was set as one. (B) Western blots of PPARγ and aP2 of differentiated brown adipocytes of wt and 
PKGI-/- mice transduced with Myr-Akt virus as indicated.  (C) Analysis of MitoTracker fluorescence in wt and 
PKGI-/- cells expressing Myr-Akt as indicated at day 4 of differentiation (n=3), untreated wt was set as one. (D) 
RQ-PCR analysis of UCP-1 and PGC-1α expression of differentiated wt and PKGI-/- brown adipocytes infected 
with Myr-Akt virus as indicated (n=3). HPRT was used as an internal control and values are expressed as fold 
change, untreated wt was set as one. Data are given as mean ± s.e.m.; * p < 0.05; ** p < 0.01; *** p < 0.001 
compared to untreated wt or PKGI-/-. 
 

3.6. Akt downstream signaling is impaired in PKGI-/- brown 

adipocytes 

Since p38 MAPK and cAMP response element-binding protein (CREB) represent important 

downstream targets of the insulin/Akt signaling pathway (Valverde et al., 2005) and are 

known to be required for adipogenesis, mitochondrial biogenesis and UCP-1 expression (Cao 

et al., 2004; Engelman et al., 1999; Engelman et al., 1998), it was tested whether PKGI also 

regulates insulin-triggered p38 MAPK and CREB activation. Consistent with a link between 

PKGI, p38 MAPK and CREB activation, it was found that insulin treatment induced p38 

MAPK and CREB phosphorylation to a lesser extend in PKGI-/- cells as compared to wt cells 

(Figure 25). 
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Figure 25. Insulin-induced Akt downstream signaling is impaired in PKGI-/- cells.  
Time course of insulin (100 nM) induced p38 MAPK (Thr180/Tyr182) and CREB (Ser133) phosphorylation in 
serum starved wt and PKGI-/- BAT-MSCs as revealed by immunoblotting with phospho-p38 MAPK and 
phospho-CREB antibodies. p38 MAPK and CREB immunoblots were performed to control for loading. 
 
p38 MAPK regulates UCP-1 gene transcription through a coordinated activation of nuclear 

factors on two separate elements (PPRE and CRE2) of the UCP-1 enhancer region (Cao et al., 

2004). Expression of caPKGI activated a 3.1 kb UCP-1 promoter fragment by 3 - 4-fold in 

transient transfection assays in HIB1B preadipocytes and this effect was even more 

pronounced after insulin treatment (Figure 26A). Additionally, an induction of the PGC-1α 

and the PPARγ2 promoters by caPKGI was found while the PPARγ1 promoter remained 

unaffected (Figure 26B, C). 
 

 
 
Figure 26. Luciferase reporter assays.  
(A) Relative luciferase activity of the UCP-1 promoter (3.1 Kb) in HIB1B preadipocytes transiently transfected 
with a lentiviral expression vector containing either caPKGI or a control vector containing no transgene (cntr) 
(n=9), cntr was set as one. After serum starvation cells were incubated with or without 500 nM insulin for 18 
hours prior to the assay. (B-C) Relative luciferase activity of the PGC-1α and PPARγ promoter in HIB1B 
preadipocytes transiently transfected with an expression vector containing either caPKGI or cntr (n=6), cntr was 
set as one. Data are given as mean ± s.e.m.; * p < 0.05; ** p < 0.01; *** p < 0.001 compared to untreated cntr or 
caPKGI. 
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3.7. Brown adipose tissue of PKGI-/- mice exhibits reduced fat 

accumulation and expression of fat specific markers 

Finally, it was analyzed whether PKGI also affects brown fat in vivo. Similarly like in 

cultured BAT-MSCs (Figure 10A) all components of the NO/cGMP signaling cascade were 

found to be expressed in interscapular BAT of newborn mice (Figure 27A). The expression of 

PKGI in BAT was further confirmed by Western blot (Figure 27B) and 

immunohistochemistry (Figure 27C). Importantly, a significantly reduced fat accumulation 

was observed in interscapular BAT of 1 week old PKGI-deficient mice. Lipid droplets were 

reduced and smaller in size (Figure 27D). 

 

 

 

Figure 27. Expression of the NO/cGMP signaling cascade in BAT. 
(A) Expression analysis (RT-PCR) of NO-synthases (eNOS, iNOS, nNOS), guanylycyclases (sGC, GC-A, GC-
B, GC-C) and cGMP receptors (PKGI and PDE3B) in interscapular BAT from new born wt mice. (B) Western 
blot analysis of the expression of PKGI in BAT as compared to lung, uterus and intestine of wt mice. (C) 
Immunohistochemical analysis of PKGI expression in BAT isolated from new born wild type mice. Detection of 
PKGI by immunohistochemistry (polyclonal anti-PKGI staining, brown). Control (right) was incubated with 
secondary antibody alone; scalebar = 20 µm. (D) Hematoxylin-eosin staining of paraffin embedded sections (4 
µm) of BAT from one week old wt and PKGI-/- littermates; scalebar = 50 µm. Note the reduced size and number 
of lipid droplets in BAT from PKGI-/- mice. 
 

Since loss of PKGI causes insulin resistance with reduced Akt activation in isolated brown 

adipocytes, also the phosphorylation status of Akt in BAT of PKGI-/- mice and their wt 

littermates was analyzed. Consistent with the in vitro data, reduced levels of phosphorylated 

Akt were found in BAT of PKGI-/- mice (Figure 28A). Next, adipogenic gene expression in 

BAT was investigated. PPARγ protein levels were reduced by 19 ± 11.2% in BAT of PKGI-/- 

mice suggesting that PKGI regulates brown fat cell differentiation also in vivo. Furthermore, 

the expression of UCP-1 was significantly lower in BAT of PKGI-/- mice demonstrating that 
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PKGI also regulates thermogenic gene expression in BAT (Figure 28B). In addition, 

expression of aP2 and perilipin were reduced by 27 ± 17% and 64 ± 21% in BAT of PKGI-/- 

mice (Figure 28C). 

 

 
 
Figure 28.  Analysis of PKGI signaling in BAT of PKGI-/- mice. 
(A) Western blot analysis of phosphorylation of Akt (Ser473) in wt and PKGI-/- BAT of new born mice. The 
same membrane was probed with an Akt antibody to control for loading. (B) Western blots showing the 
expression of UCP-1 and PPARγ protein levels (left) in BAT isolated from newborn wt and PKGI-/- mice (lane 1 
and 2 wt mice, lane 3 and 4 PKGI-/- mice, littermates). Tubulin Western blot was performed to control for 
loading. Densitometric analysis of the expression of UCP-1 and PPARγ  protein levels (right) normalized to the 
expression of tubulin (n=7 wt and PKGI-/- mice). (C) RQ-PCR analysis of aP2 and perilipin in BAT of wt and 
PKGI-/- mice (n=7 wt and PKGI-/- mice). HPRT was used as an internal control and values are expressed as fold 
change, wt was set as one. Data are given as mean ± s.e.m.; * p < 0.05; ** p < 0.01 compared to wt.  
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4. Discussion 

4.1. NO/cGMP effects on mitochondrial biogenesis and 

thermogenesis 

The recent finding that NO/cGMP can regulate mitochondrial biogenesis (Nisoli et al., 2003) 

raised the question about the downstream signaling cascade activated by cGMP. The 

cAMP/PKA signaling pathway in BAT is well characterized and is a major regulator of BAT 

thermogenesis. The cAMP pathway is activated by the sympathetic nervous system (Cannon 

and Nedergaard, 2004). A major mediator of cAMP effects is PKA, the prototypic 

serine/threonine protein kinase (Su et al., 1995). Through phosphorylation of various target 

enzymes, the activated PKA mediates adrenergic effects (also see Figure 3): 1) PKA 

phosphorylates and activates the transcription factor CREB in BAT (Thonberg et al., 2002). 

CREB then binds to cAMP-response elements (CREs) on the UCP-1 promoter and activates 

its expression (Cao et al., 2004). 2) HSL activity can be positively regulated by adrenergic 

stimulation via PKA leading to lipolysis and the release of free fatty acids (Shih and Taberner, 

1995), which in turn promote UCP-1 activation (Matthias et al., 2000). 3) p38 MAPK is 

activated by PKA subsequently leading to the  activation and phosphorylation of  PGC-1α  

and CREB (Cao et al., 2004), the main transcription factors involved in regulation of 

mitochondrial biogenesis and UCP-1 expression.  

NO and cGMP have been shown to increase PGC-1α and UCP-1 expression in isolated brown 

adipocytes (Nisoli et al., 2003; Nisoli et al., 1998). In vivo experiments on eNOS-deficient 

mice showed that these mice, when fed at normal chow diet, exhibited increased body weight 

as compared to their wt littermates (Nisoli et al., 2003). These findings implicate that eNOS-

deficient mice have reduced energy expenditure that can lead to obesity. However, the 

underlying mechanisms of NO/cGMP-induced thermogenesis remain still unclear.  

 

4.2. Potential cGMP-activated signaling pathways 

The analysis of the cGMP signaling molecules in BAT clearly showed that PKGI and PDE3B 

are expressed in murine brown adipocytes. Given the recent findings and the important role of 

the cAMP signaling cascade in BAT, three scenarios for cGMP signaling in brown adipocytes 

were possible (Figure 29):  
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1) cGMP cross activates PKA what would lead to the above described effects on 

thermogenesis and lipolysis. In vitro studies in muscle cells (Chao et al., 1994; Jiang 

et al., 1992; Lincoln et al., 1990) led to the hypothesis of a cross-talk between the 

cGMP and cAMP signaling cascades at the level of cyclic nucleotide-dependent 

protein kinases, i.e. cross-activation of PKGI by cAMP, or vice versa. Thus, high 

cGMP levels in BAT might directly activate PKA. This hypothesis was further 

supported by biochemical analyses which showed that autophosphorylation of PKGI 

lowers cyclic nucleotide concentrations needed for activation (Landgraf et al., 1986; 

Smith et al., 1996). 

 

2) cGMP regulates PDE3B leading to indirect activation of the cAMP/PKA cascade. 

PDE3B has high affinities to both cAMP and cGMP (Km values between 0.1 - 0.8 

µM). However, the Vmax for cAMP is 4 -10 times higher then that for cGMP which is 

hydrolyzed poorly by PDE3B (Conti et al., 1995; Manganiello et al., 1995). As cAMP 

and cGMP are competitive substrates, high cGMP concentrations lead to inhibition of 

cAMP hydrolysis by PDE3B. PDE3B is the predominant isoform expressed in white 

and brown fat and activation of PDE3B is a major mechanism by which insulin 

antagonizes cAMP-induced lipolysis (Degerman et al., 1997). Inhibition of PDE3B by 

cGMP could result in increased cAMP levels and activation of PKA, which on one 

hand could lead to enhanced mitochondrial biogenesis and on the other hand to 

increased lipolysis. 

 

3) cGMP directly activates PKGI. PKGI has been shown to be the mediator of 

NO/cGMP effects in the cardiovascular system including vascular smooth muscles 

and platelets (Pfeifer et al., 1998; Pfeifer et al., 1999). So far, not much was known 

about potential roles of PKGI in metabolism and fat cells. A recent study by 

(Sengenes et al., 2003) indicated that in WAT the ANP-induced lipolysis is mediated 

by PKGI. 
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Figure 29.  Possible scenarios for cGMP signaling in BAT. 
 
 

4.3. cGMP effects on mitochondrial biogenesis and UCP-1 

expression are mediated by PKGI 

This study clearly establishes a cGMP/PKGI signaling pathway in BAT that controls brown 

adipocyte mitochondrial biogenesis and thermogenesis. Using constitutive and conditional 

PKGI knock out mice as well as lentiviral vectors to overexpress PKGI in brown adipocytes, 

it could be demonstrated that NO/cGMP effects in BAT are indeed mediated by PKGI. PKGI-

deficient cells had lower mitochondrial contents and mitochondria were smaller in size. 

Additionally, incubation with cGMP only increased mitochondrial biogenesis in wt cells, but 

had no effect in the mutant cells. Similarly, RQ-PCR and Western blot analysis of PGC-1α 

and UCP-1 expression demonstrated that both are induced by cGMP only in the presence 

PKGI. Expression of constitutively active PKGI in wt cells increased mitochondrial 

biogenesis to a similar extend as cGMP treatment, emphasizing the role of PKGI in mediating 

cGMP effects in brown adipocytes. These data underline the unique role for PKGI in 

mediating NO/cGMP effects in BAT. Taken together my findings could rule out other, 

indirect cGMP signaling mechanisms that are based on cross activation of the cAMP/PKA 

pathway as discussed under 4.2 points 1) and 2). 
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So far the major focus of the analysis of the physiological role of PKGI was on the 

cardiovascular and neuronal system. In the present work, a novel function of PKGI in the 

regulation of mitochondrial biogenesis and function was identified. Preliminary experiments 

using Hela and HEK293-T cells indicate that this function of PKGI might not be restricted to 

brown adipocytes. 

 

4.4. PKGI is necessary for brown fat cell differentiation 

An important question addressed in the present thesis was whether the effects of PKGI in 

brown adipocytes are restricted to regulation of mitochondrial biogenesis and UCP-1 

expression. Recent studies on PGC-1α-deficient cells demonstrated that thermogenesis and 

brown fat differentiation (adipogenesis) can be differentially regulated (Uldry et al., 2006). 

Despite the lack of PGC-1α, the mutant cells differentiated normally and accumulated fat, 

indicating that two independent programs driving mitochondrial biogenesis and adipogenesis 

in BAT exist. Given these findings, differentiation of PKGI-deficient cells was analyzed. 

Surprisingly, despite low mitochondrial contents and UCP-1 levels of PKGI-deficient cells, 

reduced lipid accumulation and TG contents during differentiation were observed. For a 

detailed characterization of the PKGI-null phenotype the global and metabolic transcriptional 

response to cGMP was analyzed. To this end, microarray analysis was performed of RNA 

isolated from differentiated wt and PKGI-/- brown adipocytes. This CHIP analysis revealed a 

strong down-regulation of metabolic and differentiation-related genes pointing to a pivotal 

role of PKGI not only on mitochondrial biogenesis but also on BAT differentiation. 

Expression of genes involved in lipid, energy, carbohydrate and other metabolism were down-

regulated by 87%, 82%, 80% and 64%, respectively in PKGI-deficient cells. To complement 

the CHIP data, further experiments were performed to analyze the differentiation defect of 

PKGI-deficient cells. Using RQ-PCR and Western blotting, the down-regulation of a large 

number of adipogenic and metabolic genes was confirmed. Among these were such important 

regulators of adipogenesis like PPARγ, aP2, Cidea or HSL. Thus, the cGMP effects on PKGI 

are not only restricted to induction of the thermogenic but also to the regulation of the 

adipogenic program. 

 



Discussion 
 

   74

4.5. PKGI at the cross-roads of three signaling pathways 

The search for the signaling pathway downstream of PKGI discovered an interaction of the 

cGMP/PKGI pathway with the insulin signaling cascade. Insulin has an outstanding 

importance for normal development of fat cells. The main pathway involved in adipogenesis 

and thermogenesis is the insulin IRS-1/PI3K/Akt cascade (Valverde et al., 2005).  

In the present study, I identified a crosstalk between the NO/cGMP/PKGI signaling cascade, 

the RhoA/ROCK pathway and insulin signaling in brown adipocytes, which controls both cell 

differentiation and the thermogenic program. Several lines of evidence presented herein 

suggest that PKGI enhances insulin signaling in brown adipocytes through antagonizing the 

inhibitory effects of the RhoA/ROCK pathway. Previous work in smooth muscle cells 

provides evidence that phosphorylation of RhoA at Ser188 by PKGI induces translocation 

from membranes to the cytosol, enhances Rho GDP-dissociation inhibitor (RhoGDI) binding 

and, thereby, inactivates RhoA (Sawada et al., 2001). Analysis of RhoA-GTP levels using 

rhotekin pull down assays for the detection of active GTP-bound RhoA revealed that PKGI-

deficient cells exhibited increased RhoA activity. Furthermore, expression of a dominant 

negative RhoA mutant as well as inhibition of ROCK, which is a major downstream effector 

of RhoA (Wojciak-Stothard and Ridley, 2003), rescued both the adipogenic differentiation as 

well as the thermogenic program in PKGI-deficient cells. ROCK has been shown to 

negatively regulate insulin signaling in 3T3-L1 white adipocytes and mouse embryonic 

fibroblasts (Noguchi et al., 2007; Sordella et al., 2003) by increasing phosphorylation of IRS-

1 at serine residues (Furukawa et al., 2005). Studies on IRS-1-deficient cells have shown that 

the IRS-1/PI3K/Akt pathway plays an important role in brown fat cell differentiation and 

thermogenic gene expression. IRS-1 is upstream of PPARγ and C/EBPα (Valverde et al., 

2005). Interestingly, IRS-1 has been suggested to be also the major mediator of insulin effects 

in human WAT, because its expression is reduced in patients with type-2 diabetes mellitus 

(Rondinone et al., 1997). Type-2 diabetes is a complex metabolic disease that occurs when 

insulin secretion can no longer compensate insulin resistance in peripheral tissues (DeFronzo, 

1997). At the molecular level, insulin resistance correlates with impaired insulin signaling. 

Increased IRS-1 serine phosphorylation is one of the major mechanisms thought to be 

responsible for insulin resistance (Hotamisligil et al., 1996; Sykiotis and Papavassiliou, 2001). 

However, conflicting results have been published on the effect of RhoA/ROCK on IRS-1 

signaling. Both ROCK-dependent inhibition (Noguchi et al., 2007; Sordella et al., 2003) via 

IRS-1 serine phosphorylation as well as activation of the IRS-1/PI3K/Akt cascade via ROCK 

have been described for 3T3-L1 white adipocytes (Furukawa et al., 2005).  
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In PKGI-deficient BAT-MSCs, we found increased ser636/639 phosphorylation of IRS-1, and 

IRS-1 was found to be less tyrosine phosphorylated after insulin treatment as compared to wt 

controls. Importantly, immunoprecipitation assays of IRS-1 demonstrated a diminished 

association of the regulatory subunit p85α of PI3K to IRS-1. Reduced p85α association leads 

to reduced PI3K activity and, therefore, to diminished downstream substrate activation. One 

of the major PI3K downstream targets is the kinase Akt/PKB. I found reduced activation of 

Akt, i.e. reduced levels of Ser473 phosphorylated Akt after insulin treatment in the mutant 

cells. Furthermore, treatment with the ROCK inhibitor Y-27632 rescued Insulin-induced Akt 

activation showing that RhoA/ROCK signaling is linked to the insulin pathway in brown 

adipocytes. In addition, PKGI-deficient cells had reduced levels of phosphorylated p38 

MAPK and CREB, two important downstream targets of IRS-1/PI3K/Akt, which are 

regulators of PGC-1α and UCP-1 expression as well as inducers of adipogenic differentiation 

(Cao et al., 2004; Engelman et al., 1999; Engelman et al., 1998). Most importantly, 

myristoylated Akt that is constitutively active rescued the brown fat cell differentiation defect, 

as measured by TG content and marker gene expression, as well as the thermogenic 

phenotype of PKGI-deficient cells. Luciferase reporter assays in the HIB1B brown 

preadipocyte cell line revealed a significant enhancement of UCP-1 promoter activity by 

insulin after cotransfection with constitutively active PKGI. Thus, showing that PKGI effects 

are not only restricted to one cell line. 

Taken together my data show that the NO/cGMP signaling cascade is linked to the insulin 

signaling pathway through RhoA/ROCK, thereby, placing PKGI functions at the cross-roads 

of three signaling systems: The NO/cGMP signal activates PKGI, which in turn inhibits the 

small GTPase RhoA and the RhoA downstream effector ROCK. ROCK inhibits the insulin 

signaling cascade in brown adipocytes. Thus, inhibition of RhoA/ROCK by PKGI leads to 

enhanced insulin-dependent activation of PI3K and Akt/PKB (Figure 30). Consequently, loss 

of PKGI leads to insulin resistance and prohibits expression of a genetic program finally 

resulting in normal brown fat cell differentiation. 

 

4.6. Role of PKGI in BAT in vivo 

PKGI-deficient mice were crucial for the analysis of the cardiovascular functions of PKGI. 

PKGI-deficient mice display a severe cardiovascular and intestinal phenotype due to impaired 

smooth muscle relaxation (Pfeifer et al., 1998). In addition, PKGI has also been implicated in 

regulation of platelet aggregation (Gambaryan et al., 2004; Marshall et al., 2004; Massberg et 
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al., 1999). The PKG-deficient mice were also valuable for analysis of the function of PKGI in 

BAT. 

I analyzed the NO/cGMP signaling cascade expressed in BAT. Histological analysis of 

PKGI-deficient BAT revealed reduced lipid accumulation and lipid droplets were smaller in 

size. More detailed analysis of PKGI-deficient BAT showed that, according to the cell culture 

findings, UCP-1 and adipogenic marker expression was significantly reduced. Given the 

finding of insulin resistance of PKGI-deficient brown adipocytes (4.5) the Akt 

phosphorylation status in BAT was investigated. Akt phosphorylation (Ser473) was barely 

detectable in BAT of PKGI-deficient mice, which is in sharp contrast to wt mice, leading to 

the conclusion that insulin signaling is also disturbed in vivo. 

 

An important point for the in vivo studies is the plethora of phenotypes including intestinal 

dysfunction, because of disturbed motility, observed in PKGI-deficient mice. Therefore, the 

conditional PKGI knock out mice are a valuable tool that will be used in future studies. Using 

transgenic mice carrying an UCP-1 driven Cre-recombinase, one could obtain mice with a 

BAT-specific ablation of PKGI. Our group already obtained UCP-1 Cre-deleter mice 

however, the transgenic UCP-1-Cre/PKGIfl/fl mouse line did not express Cre-recombinase in 

BAT.
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5. Summary 

A hallmark of BAT is its ability to increase energy expenditure through thermogenesis, which 

is mediated by the expression of UCP-1. Induction of UCP-1 expression via the 

transcriptional coactivator PGC-1α is stimulated by external stimuli such as food intake and 

changes in temperature. Food intake and exposure to cold induce sympathetic activation and 

the release of NA which, in turn, activates adrenergic receptors on brown fat cells. Another 

pathway leading to mitochondrial biogenesis and thermogenesis has recently been identified; 

NO has been demonstrated to induce mitochondrial biogenesis in brown adipose tissue 

through cGMP-dependent mechanisms (Nisoli et al., 2003; Nisoli et al., 1998). In addition, 

calorie restriction induces eNOS expression in a variety of tissues including fat (Nisoli et al., 

2005). 

The data presented in this study identify the role of PKGI in NO/cGMP-induced regulation of 

mitochondrial biogenesis and differentiation of BAT. Initially, several signaling molecules 

that form the NO/cGMP signaling cascades including PDE3B and PKGI were identified in 

BAT-MSCs. Differentiation of BAT-MSCs into brown adipocytes showed that PKGI-

deficient cells had reduced mitochondrial contents. Furthermore, levels of PGC-1α and UCP-

1 were significantly reduced in PKGI-deficient cells. Conversely, expression of a 

constitutively active PKGI during differentiation in wt BAT-MSCs and pharmacological 

treatment with cGMP had the opposite effects. Thus far, it was not clear whether cGMP 

regulates brown adipocyte differentiation. Low UCP-1 levels and mitochondrial content 

should lead to reduced energy expenditure, however, differentiated PKGI-deficient cells 

accumulated less lipids and had reduced TG contents. Therefore, the signaling molecules 

downstream of PKGI were analyzed. Loss of PKGI in BAT-MSCs led to increased RhoA 

activity. PKGI-deficient cells exhibited increased levels of active GTP-bound RhoA, due to 

loss of RhoA inhibition by PKGI. Expression of a dominant-negative version of RhoA as well 

as pharmacological inhibition with Y-27632 of the RhoA downstream effector ROCK rescued 

brown adipogenesis and brown adipogenic marker expression during differentiation of PKGI-

deficient BAT-MSCs. I addressed the question how RhoA can regulate BAT mitochondrial 

biogenesis and differentiation. Loss of PKGI led to reduced insulin-induced activation of the 

IRS-1/PI3K/Akt signaling cascade, a major pathway involved in brown adipogenesis 

(Lorenzo et al., 1993; Teruel et al., 1996), which has been shown to be modulated by 

RhoA/ROCK in 3T3-L1 cells and MEFs (McBeath et al., 2004; Sordella et al., 2003). 

Analysis of the phosphorylation status of IRS-1 revealed that inhibitory serine residues 
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(ser636/639) were hyperphosphorylated in BAT-MSCs of PKGI-deficient mice. As a 

consequence, insulin-induced activation of IRS-1 by tyrosine phosphorylation and PI3K p85α 

subunit association were diminished. The PI3K downstream target Akt was found to be less 

activated after insulin stimulation in BAT-MSCs of PKGI-deficient mice. Importantly, 

treatment with the ROCK inhibitor Y-27632 reduced the loss of activation of the kinase. 

Further analysis showed that expression of a constitutively active myristoylated Akt restored 

brown fat cell differentiation, mitochondrial biogenesis and brown fat specific marker 

expression in PKGI-deficient BAT-MSCs. In addition, the Akt downstream effectors p38 

MAPK and CREB, which are known to be required for adipogenesis and mitochondrial 

biogenesis (Cao et al., 2004; Engelman et al., 1999), were less activated in PKGI-deficient 

BAT-MSCs after insulin treatment. Consistently with these findings, luciferase reporter 

assays with brown preadipocytes transiently transfected with caPKGI showed increased UCP-

1, PGC-1α and PPARγ2 promoter activations. 

Finally, the role of PKGI was analyzed in vivo. Similar to cultured BAT-MSCs, all 

components of the NO/cGMP signaling cascade were expressed in interscapular BAT of 

newborn mice. Analysis of BAT revealed that Akt phosphorylation was barely detectable in 

BAT of PKGI-deficient mice, which is in sharp contrast to wt mice. Consistent with the in 

vitro data, lipid accumulation, expression of UCP-1 and adipogenic markers was reduced in 

PKGI-deficient BAT. 

In summary these data show, that PKGI is essential for brown fat thermogenesis as well as 

brown adipocyte differentiation and plays a permissive role in insulin signaling in vitro and in 

vivo (Figure 30).  

The cGMP/PKGI pathway plays an outstanding role in cardiovascular physiology and 

pharmacology (Ignarro et al., 2002; Munzel et al., 2003; Murad, 2006; Pfeifer et al., 1998; 

Pfeifer et al., 1999) including blood pressure regulation and thrombocyte aggregation. Given 

the recent finding that adult humans possess metabolically active BAT (Nedergaard et al., 

2007), the cGMP/PKGI pathway might, thereby, serve as a novel therapeutic target in 

obesity-related cardiovascular and metabolic disorders like type-2 diabetes. 
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Figure 30.  Scheme depicting the cross talk of PKGI with the RhoA and insulin pathways in brown fat 
cells. 
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6. Appendix 
Table 3.  Whole genome DNA chip results. Top 30 genes up-regulated in wt vs PKGI-/- mice (+cGMP), sorted according to (putative) function and magnitude of induction. 
Gene function was derived from information in the CoreNucleotide or OMIM database (www.ncbi.nlm.nih.gov) unless otherwise indicated. 
 
Nr Abbrev Sequence Name Accession Fold 

Change 
Description 

Genes with a specific function in adipocytes and/or metabolism 
1 Acvr1c activin A receptor, type 1C NM_001033

369
86.58459 receptor for activin A and activin B; known as a marker for adipocyte 

differentiation; Activins are pleiotropic growth factors with a broad tissue 
distribution 

2 Fabp4 fatty acid binding protein 4, adipocyte  NM_024406 78.40028 also called aP2; known to be induced during adipocyte differentiation  
3 Cfd complement factor D (adipsin)  NM_013459 78.24822 adipsin is a serine protease that is secreted by adipocytes into the bloodstream. It 

is deficient in several animal models of obesity 
4 Cidec cell death-inducing DFFA-like effector c  NM_178373 48.84889 closely related to Cidea (see below); Cidec is an adipocyte lipid droplet protein 

that negatively regulates lipolysis and promotes triglyceride accumulation. 
5 Gpd1 glycerol-3-phosphate dehydrogenase 1 (soluble) NM_010271 40.47907 metabolic enzyme 
6 S3-12 plasma membrane associated protein, S3-12  NM_020568 37.2589 coat protein for newly synthesized triacylglycerol vesicles 
7 Adipoq adiponectin, C1Q and collagen domain containing  NM_009605 35.00502 hormone secreted by adipocytes that regulates energy homeostasis and glucose 

and lipid metabolism; shares significant similarity to collagens X and VIII 
8 Pnpla3 patatin-like phospholipase domain containing 3  NM_054088 30.67456 also called adiponutrin, a transmembrane protein corresponding to a dietary- and 

obesity-linked mRNA 
9 Rbp4 retinol binding protein 4, plasma  NM_011255 26.87439 experiments suggest that RBP4 causes insulin resistance, the underlying 

mechanisms is not fully understood 
10 Pck1 phosphoenolpyruvate carboxykinase 1, cytosolic NM_011044 25.043 Pck1 is a main target for regulation of gluconeogenesis 
11 Lep leptin NM_008493 24.88337 hormone regulating energy homeostasis 
12 Slc36a2 solute carrier family 36 (proton/amino acid 

symporter), member 2  
NM_153170 24.53498 transporter that actively exports neutral amino acids from lysosomes 

13 Lgals12 lectin, galactose binding, soluble 12  NM_019516 24.37544 lectin, galactose binding, required for adipogenic signaling and adipocyte 
differentiation 

14 Ucp1 uncoupling protein-1 (mitochondrial, proton carrier)  NM_009463 21.99985 enables thermogenesis in BAT 
15 Plin perilipin  NM_175640 21.75883 results of studies with Plin KO mice demonstrate a role in reining basal HSL 

activity and regulating lipolysis and energy balance 
16 Acsl1 acyl-CoA synthetase long-chain family member 1  NM_007981 19.57816 metabolic enzyme 
17 Apoc1 apolipoprotein C-I  NM_007469 19.11507 thought to be involved in atherogenesis like apolipoprotein E 
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18 Klb klotho beta  NM_031180 19.06122 co-factor required for FGF (fibroblast growth factor)-21 and -23 binding to FGF 
receptors; Klb also regulates bile acid secretion 

19 Tshr thyroid stimulating hormone receptor  NM_011648 18.27109 hormone receptor 
20 Cidea cell death-inducing DNA fragmentation factor, alpha 

subunit-like effector A  
NM_007702 18.00561 highly expressed in BAT; Cidea-null mice have higher metabolic rates, lipolysis, 

and core body temperature during cold treatment. They are lean and resistant to 
diet-induced obesity/diabetes 

Other genes 
1 Xist Mouse nuclear-localized inactive X-specific transcript L04961 64.26028 involved in X chromosome inactivation; no specific role in adipocytes known 
2 Aqp7 aquaporin 7 AB010100 43.25714 no specific function in adipocytes known 
3 Car3 carbonic anhydrase 3  NM_007606 38.48983 enzyme involved in CO2/carbonate handling; Car3 is mainly expressed in 

skeletal muscle and has lower enzyme activity than the other isoforms; no 
specific function in adipocytes known 

4 Otop1 otopetrin 1 NM_172709 36.17683 membrane protein; expressed in the developing inner ear; function in adipocytes 
not known 

5 Orm1 orosomucoid 1 NM_008768 26.87725 loss leads to deafness; role in adipocytes unknown 
6 Mrap melanocortin 2 receptor accessory protein  NM_029844 23.77011 mutations cause familial glucocorticoid deficiency  
7 H60 histocompatibility 60 NM_010400 22.87177 immunologic functions; no specific role in adipocytes described 
8 Orm2 orosomucoid 2  NM_011016 17.9898 no specific function in adipocytes known 
9 Mup1 major urinary protein 1 NM_031188 17.53765 no specific function in adipocytes known 
10 Fgf10 fibroblast growth factor 10  NM_008002 17.17731 ligand of FGF receptor 2b; mutations of FGF receptor 2 cause Apert syndrome 

(disturbed limb development, craniofacial abnormalities) 
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Table 4.  Whole genome DNA chip results. Top 30 genes down-regulated in wt vs PKGI-/- mice (+cGMP), sorted according to (putative) function and magnitude of 
induction. Gene function was derived from information in the CoreNucleotide or OMIM database (www.ncbi.nlm.nih.gov) unless otherwise indicated. 
 
Nr Abbrev Sequence Name Accession Fold 

Change 
Description 

Genes (putatively) involved in cartilage / bone development 
1 C1qtnf3 C1q and tumor necrosis factor related protein 3  NM_030888 -21.80621 also called cartducin; structurally similar to adiponectin; reported to play a role 

in chondrogenic differentiation  
2 Cart1 cartilage homeo protein 1  NM_172553 -18.18627 involved in chondrogenesis during embryonic development  
3 Cpxm2 carboxypeptidase X 2 (M14 family)  NM_018867 -15.89631 specific function unknown; a closely related protein (carboxypeptidase 1) was 

reported to be highly expressed in fetal primordial cartilage and skeletal 
structures  

4 Hoxa11 homeo box A11 NM_010450 -14.58918 required to globally pattern the mammalian skeleton  
5 Myf5 myogenic factor 5  NM_008656 -11.47078 targeted inactivation Myf-5 results in abnormal rib development  
6 Barx1 BarH-like homeobox 1  NM_007526 -11.26572 involved in the development of head and neck 
7 Col8a1 procollagen, type VIII, alpha 1  NM_007739 -10.47507 expressed in skin, endothelium, eye lens and in mesenchymal cells surrounding 

cartilage and calvarial bone 
8 Ctgf connective tissue growth factor  NM_010217 -10.03685 involved in secondary ossification  

Other developmental genes 
1 Pax6 paired box gene 6 BC036957 -11.9885 involved in eye development 
2 Dppa3 developmental pluripotency-associated 3  NM_139218 -10.53046 involved in germ cell development 
3 Isl1 ISL1 transcription factor, LIM/homeodomain  NM_021459 -9.00521 involved in the development of endocrine cells, heart and retina 

Signaling 
1 Prkg2 protein kinase, cGMP-dependent, type II (PKGII) NM_008926 -21.80695 PKGII is highly concentrated in brain, lung, and intestinal mucosa and mediates 

intestinal water and electrolyte secretion; up-regulated in  
PKGI-/- mice to partly compensate the loss of PKGI 

2 Asb5 ankyrin repeat and SOCs box-containing protein 5  NM_029569 -18.13529 Asb proteins function as suppressors of cytokine signaling  
3 Jakmip2 janus kinase and microtubule interacting protein 2, 

transcript variant 1 
XM_129010 -13.09763 involved in intracelluluar signaling; specific function not known 

4 Iqsec3 IQ motif and Sec7 domain 3  NM_001033
354

-11.6672 function not known, probably involved in intracellular signaling since it contains 
a Sec7 domain (found in guanine-nucleotide-exchange factors) and a PH domain 
(found on many cellular signaling proteins) 

5 Il5ra interleukin 5 receptor, alpha  NM_008370 -10.0924 cytokine receptor; no specific function in adipocytes known 
6 Npy6r neuropeptide Y receptor Y6  NM_010935 -9.68283 receptor for intestinal peptides 
7 ORF63 open reading frame 63  NM_144854 -8.20289 structurally similar to TGF-beta-activated kinase  
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Other genes 
1 Msln mesothelin  NM_018857 -9.84161 may play a role in cellular adhesion 
2 Perp TP53 apoptosis effector  NM_022032 -9.69898 target of the tumour suppressor gene p53; no specific function in adipocytes 

known 
3 Slc1a6 solute carrier family 1 (high affinity 

aspartate/glutamate transporter), member 6  
NM_009200 -9.35135 no specific function in adipocytes known 

4 Glrb glycine receptor, beta subunit  NM_010298 -9.18247 neurotransmitter receptor in the CNS; no specific function in adipocytes known 
5 Rab27b RAB27b, member RAS oncogene family  NM_030554 -8.93891 involved in exocytosis; no specific function in adipocytes known 
6 Tcra SJL-7A5 T cell receptor alpha chain  U07662 -8.82356 immunologic function; no specific function in adipocytes known 
7 C85627 expressed sequence C85627  NM_001033

794
-8.60155 function not known 

8 Car8 carbonic anhydrase 8  NM_007592 -8.51432 seems to play an important role in the cerebellum; no specific function in 
adipocytes known 

9 Ccdc68 coiled-coil domain containing 68  NM_201362 -8.30616 function not known 
10 Grik1 glutamate receptor, ionotropic, kainate 1  NM_146072 -8.14363 neurotransmitter receptor in the CNS; no specific function in adipocytes known 
11 Gjb2 gap junction membrane channel protein beta 2  NM_008125 -8.00103 no specific function in adipocytes known 
12 Olr1 oxidized low density lipoprotein (lectin-like) receptor 

1 
NM_138648 -7.64712 role in atherogenesis if expressed on vascular cells; no specific function in 

adipocytes known 
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