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1 Summary 

Neutrophil granulocytes form the body’s first line of antibacterial defense, but also 

contribute to tissue injury and non-infectious, chronic inflammation. Proteinase 3 

(PR3) and neutrophil elastase (NE) are two abundant neutrophil serine proteases 

(NSPs) with overlapping and potentially redundant substrate specificity, which are 

mainly implicated in anti-microbial defense. In the first part of my Ph. D. thesis, I 

unravelled a novel, cooperative role of PR3 and NE in neutrophil activation and non-

infectious inflammation in vivo. PR3/NE double-deficient mice demonstrated strongly 

diminished immune complex (IC)-mediated neutrophil infiltration in vivo as well as 

reduced activation of isolated neutrophils by ICs in vitro. In contrast, neutrophil 

recruitment to ICs was only marginally impaired in NE single-deficient mice. The 

defects in PR3/NE-lacking mice were found to be directly linked to the accumulation 

of anti-inflammatory progranulin (PGRN). I found that both PR3 and NE cleaved 

PGRN during neutrophil activation in vitro and inflammation in vivo. Local 

administration of recombinant PGRN potently inhibited neutrophilic inflammation in 

vivo showing that PGRN represents a crucial inflammation-suppressing mediator. 

Taken together, I concluded that PR3 and NE enhance neutrophil-dependent 

inflammation by eliminating the local anti-inflammatory activity of PGRN. These 

data support the use of serine protease inhibitors as anti-inflammatory agents. 

In the second part of this work, I examined whether a recently discovered alternative 

form of neutrophil cell death, namely NETosis, may play a role in autoimmune small-

vessel vasculitis (SVV). SVV is a chronic auto-inflammatory condition strongly 

associated with circulating antineutrophil cytoplasmic autoantibodies (ANCA) 

directed against the neutrophil granulocyte components proteinase 3 (PR3) or 

myeloperoxidase (MPO). These ANCAs were previously shown to exert a pathogenic 

effect by binding to PR3 and MPO on the neutrophil cell surface and thus activate the 

cells to perform an oxidative burst, i.e. the production of reactive oxygen species 

(ROS). Here, I found that ANCA-mediated activation leads to an alternative cell death 

program in neutrophils called NETosis, which was previously found to be distinct 

from apoptosis and necrosis. NETosis involves the active and substantial release of 
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nuclear DNA to form neutrophil extracellular traps (NETs), which are chromatin 

fibers decorated with a number of granular proteins. I found that these chromatin 

fibers display large amounts of the targeted autoantigens PR3 and MPO, indicating 

that NETosis might be a pathogenic source of autoantigens to nourish the chronic 

autoimmune response against PR3 and MPO. In support of this view, I found 

prominent deposition of NETs displaying the autoantigens in the glomeruli of 

inflamed kidneys of SVV patients. Furthermore, I established a capture ELISA assay, 

with which I detected circulating complexes consisting of nucleosomes and neutrophil 

granular components, namely MPO, which are most likely derived from NETs. These 

chromatin-autoantigen complexes were especially abundant in SVV patients with 

active disease, while absent in sera from healthy control individuals and multiple 

sclerosis patients. These findings suggest that NET formation plays an essential 

pathogenic role in the perpetuation of the humoral autoimmune response in SVV.  
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2 Introduction 

2.1 Neutrophil granulocytes 

Neutrophil granulocytes, generally referred to as neutrophils, belong to the body’s 

first line of cellular defense and respond quickly to tissue injury and invading 

microorganisms (Nathan, 2006). They were discovered by Ilya Metchnikoff, who 

inserted rose thorns into starfish larvae and then described the infiltrating phagocytic 

cells as macrophages and microphagocytes. The latter cell type was then called 

neutrophil granulocyte by Paul Ehrlich, who had already encompassed the functional 

significance of neutrophils in the inflammatory process. Exactly one hundred years 

ago, in 1908, the Nobel Prize in Medicine was awarded jointly to Metchnikoff and 

Ehrlich for their work that, as many scientists claim today, founded the basis for 

modern immunology (Kaufmann, 2008).  

The name “neutrophil granulocyte” derives from their characteristic staining pattern 

in hematoxylin and eosin (H&E)-stained blood smears, where neutrophils are easily 

identified by their light pink staining of cytoplasmic compartments. As myeloid cells, 

neutrophils mature in the bone marrow and differentiate from myeloblasts through 

pro-myeloblasts to neutrophilic myelocytes. Fully differentiated neutrophils are 

characterized by their lobulated nucleus, hence they are also called 

polymorphonuclear cells (PMNs). Neutrophil granulocytes are constantly generated in 

the bone marrow and released into the blood stream, where they make up about 40-

70% of all peripheral blood leukocytes and patrol the body to sense infection or tissue 

injury.  

2.1.1 Neutrophils in inflammation 

The function of the immune system is to protect the host from infiltration and damage 

by foreign genomes (Nathan, 2002). The ability to kill invading organisms is essential 

to this function. Since neutrophils constitute one of the major players for the 
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destruction of microorganisms, it is no surprise that the activation of neutrophils can 

also damage the host´s own cells and tissues (Weiss, 1989). In fact, neutrophil-

mediated tissue damage at sites of infection constitutes a main mediator of 

inflammation and is important to initiate the immune reaction of the host (Nathan, 

2006). 

Once wounding or infection occurs in the peripheral tissue, neutrophils are rapidly 

recruited to the site of inflammation (Figure 2.1). Their emigration out of the blood 

stream follows a multi-step paradigm involving attachment and rolling along the 

endothelium, activation, adhesion and ultimately transendothelial extravasation into 

the interstitium (Springer, 1994). The average half-life of neutrophil granulocytes in 

the peripheral blood is only about 12 hours. But once they have left the bloodstream 

and extravasated into the interstitium, neutrophils can survive for up to two days by 

integrin-dependent activation (Mayadas and Cullere, 2005).  

 

 

Figure 2.1 – Neutrophil extravasation. (A) The emigration of neutrophils from the blood stream to 

inflamed or infected peripheral tissue is guided by chemokines produced at the danger site and follows 

a multi-step paradigm of rolling, adhesion and transmigration. (B) Once stable adhesion is achieved, 

the neutrophil granulocyte transmigrates across the dense cellular layer of the endothelium. 

Electronmicroscopical picture of neutrophil transmigrating across the endothelium. Scale bar 

respresents 5 µm. 
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The key function of neutrophils is certainly antimicrobial defense, which is mainly 

fulfilled by the engulfment of invading pathogens into phagolysosomes, and their 

degradation thereafter by reactive oxygen species (ROS) and by anti-microbial 

proteases prestored in cytoplasmic granules (Segal, 2005). In these so-called primary 

or azurophilic granules of neutrophils another important anti-bacterial enzyme is 

stored, namely myeloperoxidase (MPO), a di-haem protein composed of two identical 

heterodimers, which can kill bacteria by halogenation (Klebanoff, 2005). The 

destruction of microbes, is also essential for the wound healing process, since 

neutrophils swiftly sterilize the injured tissue from pathogens and therefore allow the 

efficient regeneration of the wound (Singer and Clark, 1999).  

However, neutrophils can also contribute to chronic inflammation in a variety of 

human diseases such as autoimmune disorders or hypersensitivity reactions. In many 

of these conditions, the underlying pathogenic mechanism is the formation of antigen-

antibody complexes, or so called immune complexes (ICs), which trigger an 

inflammatory response by inducing the infiltration of neutrophils as depicted in 

Figure 2.2 (Jancar and Sanchez, 2005). The subsequent stimulation of neutrophils by 

C3bi-opsonized ICs results in the generation ROS and the release of intracellularly 

stored proteases leading to tissue damage and inflammation (Ravetch, 1994).  
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Figure 2.2 – Immune complex mediated inflammation. The formation of antigen-antibody structures 

(i), so called immune complexes (ICs), initiates a complex inflammatory reaction involving Fcγ and 

Mac-1 receptor-mediated recognition of ICs by mast cells and neutrophils (ii), which leads to 

substantial release of inflammatory cyto- and chemokines (e.g. platelet activating factor, PAF) and 

recruitment of neutrophils into the perivascular tissue (iii), where the cells release a number of 

inflammatory mediators such as ROS and cytokines to fully establish an inflammatory milieu including 

edema formation and hemorrhage, i.e. red blood cell release into the interstitium (iv).  

Source: (Jancar and Sanchez, 2005) 

 

The classic view of neutrophils as “nonspecific” killing machines has started to 

change in the recent years. Rather, the neutrophil granulocyte is increasingly seen as a 

“decision shaper” that specifically initiates and coordinates the immune response of 

the host (Nathan, 2006). Indeed, neutrophils can influence the function of a variety of 

cell types including monocytes, dendritic cells as well as T and B cells in a 

bidirectional manner and release cytokines and other modulators of the immune 
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reaction. Hence, neutrophils help the organism to decide whether to initiate and 

maintain an immune response. 

2.1.2 Neutrophil serine proteases (NSPs) 

Serine proteases are a class of proteases that have a serine residue in the active site of 

the enzyme. The enzymatic mechanism of serine proteases is based on the catalytic 

triad consisting of three amino acids in the active center, in which the hydroxyl group 

of the serine starts the reaction cascade by exerting a nucleophilic attack on the 

carbonyl carbon of the scissile peptide bond. This finally leads to the cleavage of the 

substrate polypeptide chain. The specificity of the proteases mainly depends on the 

amino acid residues neighboring the active center, since these residues govern the 

recognition and proper alignment of the substrate prior to the hydrolysis of the peptide 

bond.  

Neutrophils abundantly express a cell-type specific set of neutrophil serine proteases 

(NSPs), namely cathepsin G (CG), proteinase 3 (PR3) and neutrophil elastase (NE), 

which are stored in the cytoplasmic, azurophilic granules. PR3 and NE are two closely 

related enzymes with overlapping and potentially redundant substrate specificities, 

which are different from that of CG. All three NSPs are implicated in anti-microbial 

defense by degrading engulfed microorganisms inside the phagolysosomes of 

neutrophils (Belaaouaj et al., 1998; Belaaouaj et al., 2000; Reeves et al., 2002; Segal, 

2005; Weinrauch et al., 2002). Among many other functions ascribed to these 

enzymes, PR3 and NE were also suggested to play a fundamental role in granulocyte 

development in the bone marrow (El Ouriaghli et al., 2003; Skold et al., 1999; Bories 

et al., 1989). 

2.1.2.1 NSPs as triggers of inflammation 

While the vast majority of the enzymes is stored intracellularly in cytoplasmic 

granules, minor quantities of PR3 and NE are externalized early during neutrophil 

activation and remain bound to the cell surface, where they seem to be protected 

against protease inhibitors (Campbell et al., 2000; Owen et al., 1995). These 

membrane presented proteases were suggested to act as “path clearers” for neutrophil 
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migration by degrading components of the endothelial basement membrane (EBM) or 

the extracellular matrix to open the way for cell movement through the interstitium 

during inflammation (Shapiro, 2002). This notion has been addressed in a number of 

studies, which have, however, yielded conflicting results (Carden and Korthuis, 1996; 

Hirche et al., 2004; Young et al., 2004). Thus, the role of PR3 and NE in leukocyte 

extravasation and interstitial migration still remains controversial.  

Emerging data suggest that externalized NSPs can contribute to the inflammatory 

response in a more complex way than by simple proteolytic tissue degradation, 

namely as specific regulators of inflammation (Pham, 2006). For instance, recent 

observations using CG/NE double-deficient mice indicated that CG directly regulated 

the receptor-mediated interaction of neutrophils with ICs (Adkison et al., 2002; Raptis 

et al., 2005). Neutrophils recognize ICs via Fcγ receptors (FcγR) binding to the Fc 

part of the antibody and integrin CD11b/CD18 (Mac-1) interacting with C3bi (Figure 

2.3). This leads to neutrophil activation and integrin clustering on the outer membrane 

as well as ROS production and rearrangement of the actin cytoskeleton inside the cell 

(Yamada and Miyamoto, 1995). More recently, Raptis et al. have now shown that CG 

enhanced IC-mediated neutrophil activation and inflammation by modulating integrin 

clustering on the neutrophil cell surface (Raptis et al., 2005). Yet, the substrate(s) 

cleaved by CG in this reaction could not be identified. 

 

 

Figure 2.3 – Receptor-mediated recognition of ICs. ICs 

consist of antigens bound by IgG antibodies and C3bi 

opsonization. Neutrophils recognize ICs via surface receptors 

FcγR (binding to IgG antibody) and integrin CD11b/CD18 

(binding to C3bi). This initiates a complex outside-in signaling 

cascade, which involves intracellular signaling via 

immunoreceptor tyrosine-based activation motif (ITAM), focal 

adhesion kinase (FAK), spleen tyrosine kinase (Syk) leading to 

neutrophil activation involving integrin clustering on the cell 

surface and cytoskeletal rearrangement and ROS production 

intracellularly. 

Source: (Jancar and Sanchez, 2005) 
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The role of the other two NSPs in IC-mediated inflammation has not yet been 

addressed. Since PR3-deficient mice have not been analyzed in this context, the role 

of PR3 in inflammatory processes remains to be deciphered. Also, important NE-

dependent effects, which can be compensated by the highly similar enzyme PR3 in 

NE single-deficient animals, are still elusive. Based on in vitro studies many potential 

substrates have been suggested for NSPs (Pham, 2006) but, until now, the relevance 

of these candidates could not be clarified in vivo. 

2.1.2.1.1 Progranulin - an important substrate for NSPs? 

A mechanism by which NSPs could up-regulate the inflammatory response has 

recently been suggested. The ubiquitously expressed progranulin (PGRN) is a growth 

factor implicated in tissue regeneration, tumorigenesis and inflammation (He et al., 

2003; He and Bateman, 2003; Zhu et al., 2002). PGRN was shown to directly inhibit 

adhesion-dependent neutrophil activation by suppressing the production of ROS and 

the release of neutrophil proteases in vitro (Zhu et al., 2002). This anti-inflammatory 

activity was degraded by the NE-mediated proteolysis of PGRN to granulin (GRN) 

peptides (Zhu et al., 2002). Conversely, the resulting GRN fragments are thought to 

enhance inflammation (Zhu et al., 2002) and have been detected in neutrophil-rich 

peritoneal exudates (Bateman et al., 1990). In short, recent studies proposed PGRN as 

a regulator of the innate immune response, but the factors that control PGRN function 

are still poorly defined and its relevance to inflammation needs to be elucidated in 

vivo.  

2.1.2.2 NSPs as targets in autoimmunity 

The function of the immune system is to fight infections using multiple mechanisms 

that evolved to recognize and neutralize pathogens. Therefore, the immune system 

needs to detect a variety of different structures and – at the same time – differentiate 

between self and non-self. Autoimmunity occurs when the organism fails to recognize 

its self constituents and thus raises an immune response against its own cells and 

tissues. 

Surprisingly, all three NSPs present in azurophilic granules have been reported as 

targets of autoantibodies in certain pathological situations. While the occurrence of 
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autoantibodies against NE and CG appears to be a concomitant phenomenon of 

diseases such as cocaine-induced midline lesions (Wiesner et al., 2004) and ulcerative 

colitis (Halbwachs-Mecarelli, 1994), respectively, the development of anti-PR3 

autoantibodies represents a characteristic feature for a systemic, autoimmune 

vasculitis called Wegener´s granulomatosis (Jenne et al., 1990). Interestingly, 

myeloperoxidase, which is stored together with the NSPs in the azurophilic granula, is 

the principal autoantigen of a related autotimmune vasculitis called microscopic 

polyangiitis.  

2.1.2.2.1 Small-vessel vasculitis 

Wegeners´ granulomatosis (WG) and microscopic polyangiitis (MPA) are systemic 

autoimmune conditions leading to strong inflammation of small blood vessels, hence 

they are termed small-vessel vasculitides or shortly SVV (Kallenberg et al., 2006). 

Both WG and MPA are strictly associated with the development of anti-neutrophil 

cytoplasm autoantibodies (ANCAs), which are directed against abundant intracellular 

proteins in the cytoplasmic, azurophilic granules of neutrophils. As already mentioned 

above, ANCAs against PR3 represent a hallmark for WG, while MPA is directly 

associated with the occurrence of anti-MPO ANCAs (Bosch et al., 2006; Kallenberg 

et al., 2006). 

Wegener´s disease typically starts with disease symptoms in the upper airway, such as 

the nose and lungs. In later the stages of the disease, the symptoms become more 

systemic with affection of the kidneys (glomerulonephritis) as well as the skin and the 

nervous system. Glomerulonephritis is a common feature of both WG and MPA. In 

severe cases, the patients develop rapidly progressing, necrotizing glomerulonephritis 

that may lead to death due to renal failure (Figure 2.4).  
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Figure 2.4 – Affected organs in small-vessel vasculitides. WG is a systemic autoimmune disease that 

mostly starts with chronic inflammation with perivascular infiltrates in the small and medium-sized 

blood vessels in the upper respiratory tract (Sinuses, Larynx and trachea). Advanced stages of the 

disease are characterized by increased involvement of the lungs. The cellular infiltrates can form large 

clusters, also called nodules, for instance in the lungs. At later stages, the patients suffer from multiple 

and systemic symptoms such as strong affection of the kidneys (glomerulonephritis), but also the heart 

and the skin can be affected.  

Source: www.clevelandclinics.org 

 

Recent findings indicate that ANCAs are not only a useful serological marker for the 

diagnosis of small-vessel vasculitides, but are also main players in the pathogenesis of 

these diseases. For instance, recently established animal models of the diseases 

support a pathogenic effect of these autoantibodies (Pfister et al., 2004; Xiao et al., 

2002). The pathogenicity of ANCAs was linked with their potential to activate tumor 

necrosis factor α (TNFα)-primed neutrophils to produce ROS and release granular 

proteases (Falk et al., 1990). Subsequent studies showed that this effect was 

dependent on Fcγ receptor (FcγR) RIIa and RIIIb function (Kocher et al., 1998; 

Porges et al., 1994). According to the current view (displayed in Figure 2.5), ANCA-

activated neutrophils readily extravasate, damage endothelial cells and thus cause 

perivascular inflammation (Heeringa et al., 2005). Despite this knowledge, the 

mechanisms that drive the development and the perpetuation of the chronic 
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autoimmune response against the neutrophil autoantigens MPO and PR3 remain 

largely unknown. 

 

Figure 2.5 – Current view of pathogenis of ANCA-mediated disease. During infections the human 

body reacts with production of pro-inflammatory cytokines such as TNFα (A), which “primes” 

neutrophils and leads to increased surface expression of the autoantigens PR3 and MPO on the 

neutrophil cell surface (B). Anti-PR3 and –MPO ANCAs, present in the sera of patients with small-

vessel vasculitides, bind to “primed” neutrophils and trigger neutrophil activation and ROS formation 

(C). This leads to increased adhesiveness and transmigration of neutrophils across the endothelium into 

the perivascular tissue, where the neutrophils finally cause strong inflammation of the blood vessel (D).  

Source: (Kallenberg et al., 2006)  

2.1.2.2.2 Neutrophil extracellular traps (NETs) 

Recently, it has been found that neutrophils not only kill pathogens intracellulary in 

the phagolysosome after receptor-mediated engulfment, but are also able spill out 

their own DNA into the extracellular space to trap and kill bacteria outside the cell. 
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These structures were termed Neutrophil Extracellular Traps (NETs) and are 

composed of chromatin attached with specific bactericidal proteins from neutrophilic 

granules (Brinkmann et al., 2004).  

 

Figure 2.6 – NETs trapping bacteria. (A) NETs are the product of an unusual cell death pathway of 

neutrophils. Activation of neutrophils (1) leads to an oxidative burst and the production of reactive 

oxagen species. Then the nuclear membrane disintegrates (2) and cytoplasmic granula components are 

fused with nuclear chromatin inside the cell (3). Finally, the cell membrane opens and the chromatin 

fibers of NETs decorated with anti-microbial granular proteins is released into the extracellular space 

(4). (B) Colored electronmicroscopic picture of extracellular chromatin fibers of NETs (yellow) 

trapping shigella bacteria (red), depicting the extracellular trapping and killing of pathogens by NETs. 

Source: Max Planck Institute of Infection Biology 

 

NETs are complex structures of smooth “threads”, approximately 15 nm in diameter, 

which are likely to represent a chain of nucleosomes from unfolded chromatin. Upon 

activation by interleukin (IL)-8, lipopolysaccharide (LPS) or phorbol-esters, 

neutrophils initiate an alternative cell death program that leads to the formation of 

NETs. This novel form of cell death was found to be distinct from apoptosis and 

necrosis, and consequently it was called NETosis (Fuchs et al., 2007). In a first step of 

this process, the nuclear membrane begins to disintegrate so that the nuclear material 

fills the whole cytoplasm. At this stage, the granular components are mixed and fused 

with the chromatin inside the cell. Finally, the cells release the chromatin fibers fused 
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with granular proteins to produce NETs. Interestingly, Fuchs et al. have provided 

evidence that NETosis is critically dependent on ROS formation by the phagocyte 

oxidase (phox), since both treatment with ROS scavengers as well as genetic 

deficiency of phox in patients with chronic granulomatous disease (CGD) rendered 

the neutrophils unable to form NETs (Fuchs et al., 2007). This cellular suicide of 

neutrophils has been clearly shown to be beneficial during microbial infections 

(Brinkmann and Zychlinsky, 2007), but it remains unclear whether NET formation 

can also play a role in the pathogenesis, for instance, of autoimmune disorders. 

2.1.2.2.3 Self DNA as an adjuvans in autoimmunity 

Proteins that form complexes with nucleic acids are remarkably frequent targets of 

autoantibodies in a variety of autoimmune diseases such as systemic lupus 

erythematosus (SLE). In the recent years, it has become increasingly evident that this 

observation is linked to the potential of nucleic acids to activate toll-like receptors 

(TLRs) in immune cells such as B cells or dendritic cells (Marshak-Rothstein and 

Rifkin, 2007). TLRs are innate pattern recognition receptors that normally sense the 

presence of microbial or viral components, including their lipopolysacchararide 

(LPS), RNA or DNA (Janeway and Medzhitov, 2002). However, also self 

DNA/chromatin was recently found to activate the TLR9 pathway leading to the 

activation of autoreactive B cells (Leadbetter et al., 2002). Therefore, the release of 

substantial amounts of chromatin, in the form of NETs, could be a highly 

immunostimulatory process.  

Interestingly, LL37, a 37 amino acid long antimicrobial peptide expressed by 

neutrophils, was recently shown to be the key factor in converting self-DNA into an 

activator of immune cells in an autoimmune disease of the skin called psoriasis 

(Lande et al., 2007). The authors showed that LL37 directly interacts with DNA and 

enables its entry into dendritic cells, therefore allowing activation of the TLR9 

pathway by self-DNA. As LL37 is produced by PR3-mediated processing of its 

precursor CAP-18 (Sorensen et al., 2001), it would be interesting to test if LL-37 is 

also a component of NETs. 
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2.2 Aim of the project 

In the first part of this Ph.D. thesis, my aim was to clarify the role of the highly related 

neutrophil serine proteases PR3 and NE in non-infectious inflammation. To this end, 

the in vivo function of PR3 and NE was studied using mutant mice that lack both PR3 

and NE (PR3/NE-/-). In these mice, I induced different models of neutrophilic 

inflammation in the absence of infection, for instance by applying phorbol-esters or 

inducing immune complex formation in the skin. I then compared the function of 

neutrophil granulocytes during the inflammatory response between PR3/NE double-

deficient, NE single-deficient and wildtype (WT) mice. Furthermore, I employed cell 

based in vitro assays using isolated murine neutrophils to examine the role of PR3 and 

NE on the cellular level. These assays included neutrophil chemotaxis analysis by live 

microscopic imaging, neutrophil activation by immune complexes, but also bio-

imaging of cytoskeletal rearrangements and integrin-clustering of activated 

neutrophils. Moreover, I analyzed the proteolytic cleavage of PGRN by PR3 and NE 

on the molecular level using recombinant, purified proteins and evaluated the role of 

PGRN as a crucial substrate for both PR3 and NE during non-infectious 

inflammation. These studies provided further insight in the regulation of neutrophil 

function during inflammatory processes and may provide the rationale basis for the 

development of novel anti-inflammatory drugs. 

In the second part of my work, I analyzed the role of a recently discovered, alternative 

form of neutrophil cell death (NETosis) in the autoimmune response against PR3 and 

MPO. It was previously shown that autoantibodies, so called ANCAs, can bind to 

PR3 and MPO on the neutrophil cell surface and trigger an oxidative burst. Since the 

oxidative burst appears to be crucial for the formation of NETs, I examined whether 

neutrophils undergo NETosis when stimulated with anti-PR3 and –MPO ANCAs 

isolated from autoimmune vasculitis patients. Furthermore, I determined by 

immunofluorescence if the targeted autoantigens PR3 and MPO are components of 

the extracellular chromatin fibers of NETs. As the immunostimulatory peptide LL37 

is known to be produced by neutrophils, I also tested if LL37 is found on NETs. 

Kidney biopsies from patients with autoimmune vasculitis and renal involvement 
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were dissected by in situ immunofluorescence to determine whether NET formation 

actually occurs in the patients. As extracellular is swiftly degraded to nucleosomes by 

DNAses in the body, I also measured nucleosome levels in serum and urine samples 

from SVV patients and analyzed whether neutrophil granular marker proteins were 

attached to circulating nucleosomes. These studies shed more light on the 

development of autoimmunity towards neutrophil components in ANCA-associated 

vasculitis. 
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3 Methods 

3.1 General Methods 

3.1.1 Cloning in plasmid vectors 

3.1.1.1 Plasmid DNA purification 

DNA from E. coli was purified using the Qiagen mini and maxiprep systems to 

prepare up to 20/500 μg of plasmid DNA from 5/500 ml bacterial overnight cultures 

of in Luria-Bertani (LB) medium (Bacto trypone 10 g, yeast extract 5 g, NaCl 5 g and 

deionized H2O, 1 litre) containing the appropriate selective antibiotic. The desired 

plasmids were isolated using the appropriate Qiagen kits, mentioned above, according 

to the provided protocols. The resulting plasmid DNA was then used for sequence 

verification or for further cloning procedures after transformation into the E. coli host 

strain DH5α (Birnboim, 1983; Birnboim and Doly, 1979).  

3.1.1.2 Polermerase chain reaction (PCR) 

The PCR was performed using a thermocycler (“Trio-Thermobloc”; Biometra) to 

amplify short target sequences (100-500 bp) of a longer DNA molecule. A typical 

amplification reaction includes the sample of template DNA, two oligonucleotide 

primers, deoxynucleotide triphosphates (dNTPs), reaction buffer, magnesium and a 

thermostable DNA polymerase, here the PfuTurbo-DNA polymerase (Stratagene Kit 

with supplied 10x Pfu-buffer). All PCR reactions were started with a pre-incubation 

step termed “Hot Start”, which denatures the template DNA at 95-100°C so that the 

primers can anneal after cooling. The second step, otherwise referred to as 

“touchdown”, allows the oligonucleotide primers to anneal to the denatured template 

by lowering the temperature to 37-65°C depending on the annealing temperature of 

the primers. The reaction proceeds with the extension, or elongation of the primers at 

72°C, the optimal temperature for PfuTurbo-DNA polymerase. The duration of the 
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extension steps can be increased if longer templates are being amplified. Usually, the 

elongation time of the final cycle is longer (up to 10 minutes) to ensure that all 

product molecules are fully extended. Steps 1-3 constitute one cycle of the PCR. The 

whole PCR reaction is usually carried out in 25-30 cycles. Higher cycle numbers may 

result in an increase of unwanted artifacts, while no increase in the desired product is 

achieved.  

 

Typical amplification reaction:  50 ng Template DNA  

5 μl 10x Pfu-buffer (Stratagen kit)  

5 μl 2 mM dNTP-Mix  

10 μM forward primer  

10 μM reverse primer  

2.5 U PfuTurbo-DNA polymerase (Stratagen kit)  

Add H
2
O to 50 μl 

3.1.1.3 DNA restriction digestion 

Restriction digestion of plasmid DNA was performed following a standardized 

protocol for the use of one or more endonucleases. The definition of 1 Unit (U) of 

restriction enzyme activity is the amount needed to completely digest one microgram 

of substrate DNA (often Lambda DNA) in one hour at the optimal temperature 

(usually 37°C). Additionally, each reaction is carried out with a buffer that ensures 

100% activity of the respective endonuclease. As a rule of thumb, the total volume of 

restriction enzyme in the digest should not exceed 10% of the total digest volume, 

which also ensures that the glycerol concentration in the reaction mixture remains 

below 5%. Once all the components, DNA, H2O and buffer, have been added to the 

reaction mix, the endonulease is applied, so it enters optimal reaction conditions. 

Under non-standard conditions, restriction endonucleases are capable of cleaving 

sequences, which are similar but not identical to their defined recognition sequence. 

This process is termed “star” activity, and is completely controllable in the vast 

majority of cases when the enzymes are used under the recommended conditions. 

Cleaving plasmid DNA with two restriction endonucleases simultaneously (double 

digestion) is achieved by selecting a buffer that provides reaction conditions that are 

amenable to both restriction endonucleases. Choosing the optimal buffer for both 
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enzymes should be done carefully under the guidelines supplied by the manufacturer 

(New England Biolabs). Alternatively, if no single buffer is available to satisfy the 

buffer requirements of both enzymes, the reactions should be done sequentially; the 

salt conditions adjusted in between digestions using a small volume of a concentrated 

salt solution to approximate the reaction conditions of the second restriction 

endonuclease. Reactions were stopped by thermal inactivation or by the addition of 

loading-buffer in preparation for gel electrophoresis.  

3.1.1.4 Agarose gel electrophoresis 

Agarose gel electrophoresis enables the user to monitor restriction digestion or PCR 

procedures, but also to size fractionate DNA molecules in order to purify these from 

the gel. Prior to gel casting, dried agarose is dissolved in buffer by heating and is then 

poured into a self assembled mold, into which a comb is fitted while the mixture is 

still wet. The percentage of agarose in the gel varies. In this work, 0.8% agarose was 

used, 1% agarose gels being necessary for the accurate size fractionation of DNA 

molecules smaller than 1 kb. Ethidium bromide (EtBr) (end concentration: 1 μg/ml) 

was included in the gel matrix to enable fluorescent visualization of the DNA 

fragments under UV light. The gels were then submerged in electrophoresis buffer 

(TAE) in a horizontal electrophoresis apparatus. After the samples were mixed with 

gel loading dye and loaded into the sample wells, the electrophoresis was initiated by 

applying 60 mV for 30 minutes to 1 hour at RT. Size markers are co-electrophoresed 

with DNA samples for fragment size determination. Two size markers, 1 kb and 50 

bp, were used from Peqlab. After electrophoresis, the gel was placed on a UV light 

box and the fluorescent ethidium bromide-stained DNA pictured using the thermal 

imaging system FTI-500 from Pharmacia Biotech.  

 

TAE buffer (10 fold):     242 g Tris  

57.1 ml Acetic acid  

100 ml 0.5 M EDTA, pH 8.0  

Add H2O to 1 litre 
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3.1.1.5 DNA purification from agarose gels 

After electrophoresis, DNA fragments were visualized on a UV light box before being 

removed from the gels by the use of scalpels. Once captured, the DNA was eluted 

from the jellified agarose following the instructions of the “QIAquick Gel Extraction 

Kits” from Qiagen.  

3.1.1.6 Determination of DNA concentration 

DNA concentration and purity was determined by using the Eppendorf 

spectrophotometer “BioPhotometer”. The concentration was determined by measuring 

the absorbance at 260 nm and purity was measured by calculating the ratio of 

absorbance at 260 versus 280 nm.  

3.1.1.7 DNA ligation 

Purified and restriction enzyme-treated DNA fragments (PCR product) were cloned 

into the desired plasmid vectors, which also have been treated with the respective 

endonucleases producing compatible overhangs. After the vector and insert DNA 

have been prepared and their concentration determined, various vector to insert DNA 

ratios were tested in order to determine the optimum ligation ratio. In most cases a 1 

to 3 molar ratio of vector and insert proved successful. All ligations were performed 

with ATP-dependent T4 DNA ligase and the provided buffer (Boehringer) overnight 

at 16°C or for 3 hours at RT. Following the reaction, the ligated DNA was 

transformed into an appropriate host strain, here the E. coli stain DH5α.  

3.1.1.8 DNA sequencing 

The sequencing of plasmids and PCR products was performed by Toplab 

(Martinsried, Germany) using fluorescently labeled nucleotides as described by 

Sanger and colleagues (Sanger et al., 1977).  



  Material & Methods 

 

- 21 - 

3.1.2 Protein separation and analysis 

3.1.2.1 SDS-PAGE 

Gel electrophoresis is a useful method to separate and identify proteins. In sodium 

dodecyl sulphate (SDS) polyacrylamide gel electrophoresis (PAGE) or SDS-PAGE, 

proteins are separated on the basis of polypeptide length, therefore allowing their 

molecular weight to be estimated. Our protocol uses Laemmli buffer (a denaturing 

buffer) and a discontinuous gel system composed of both a stacking and separating 

gel. The stacking gel is slightly acidic (pH 6.8) and has a low acrylamide 

concentration to make a porous gel. Under these conditions, proteins separate poorly 

but form thin, sharply defined, bands. The separating gel is more basic (pH 8.8) and 

has a higher polyacrylamide content (in our case mostly 15%), which causes the gel to 

have narrower channels. As the protein of interest travels through the separating gel, 

the narrower pores have a sieving effect on the proteins, allowing smaller proteins to 

travel more easily and hence rapidly through the matrix (Laemmli, 1970).  

 
SDS polyacrylamide gels (15%): Eight-gel assembly  

 
Stacking Gel (20 ml) Separating Gel (40 ml) 

d H2O  13.6 ml 9.4 ml 

30% acrylamide  3.32 ml 20 ml 

1 M Tris HCl, pH 6.8  2.56 ml - 

1.5 M Tris HCl, pH 8.8 -  10 ml 

20% SDS  100 μl  200 μl 

10% APS  200 μl  400 μl 

TEMED  20 μl  16 μl 

Bromophenol blue  5 μl  - 

 
Once polymerized, the polyacrylamide gels were next mounted in a Mini-protean II 

apparatus (Bio-Rad) and covered with 1x running buffer based on glycine (10x 

running buffer: 250 mM Tris, 1.92 M glycine and 1% SDS in an aqueous solution). 

The low molecular weight protein marker, Roti-Mark prestained (Roth) was loaded (3 

μl for silver staining and 5 μl for coomassie staining) in one of twelve wells during 

sample preparation. Concentrated Laemmli buffer ((4x denaturing buffer: 200 mM 
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Tris HCl, pH 6.8, 40% Glycerol (denser than water, makes the sample fall to the 

bottom of the well), 30% β-mercaptoethanol (disulphide bridge reduction), 10% SDS 

(confers negative charge) and 0.2% bromophenol blue (visualisation)) was added to 

the samples which were then boiled (95°C, 5 minutes) and loaded. For the best results 

all samples should be in identical, low ionic strength buffers and should be loaded in 

equal volumes. The protein amount per well should not exceed 30-40 μg. Finally, gels 

were run at a constant voltage (200 mV/s) using a Bio-Rad electrophoresis apparatus. 

3.1.2.1.1 Silver nitrate staining 

After the separation of proteins comes their detection. One of the most popular 

detection methods is silver staining, which can detect as little as 3-10 ng of loaded 

protein. In fact, while a 100 fold more sensitive than Coomassie blue staining, silver 

staining comes close to the sensitivity provided by Western Blot analysis. Following 

electrophoresis, polyacrylamide gel plates were disassembled and briefly washed in 

H2O. Next, the gels are soaked, while shaking, in a fixing solution composed of 50% 

Methanol, 12% acetic acid and 0.5 ml 37% formaldehyde (topped up to 1 litre with 

H2O) for 1 hour after which 3 baths of 10 minutes in 50% ethanol are required. 

Thereafter, the gels were introduced into a sodium thiosulphate solution (0.2 g 

Na2S2O3 
x 5 H2O per litre) for 1 minute before being washed 3 times for 20 seconds in 

H2O. A freshly made silver nitrate solution (2 g AgNO3 
and 750 μl 37% formaldehyde 

per litre) was then exposed to the gels. After 30 minutes the staining solution was 

removed by several washing steps in H2O. A developing solution (60 g/L Na2CO3, 4 

mg/L Na2S2O3 
x 5 H2O, 0.5 ml 37% formaldehyde per litre) was then applied and 

eventually stopped by thorough washing with H2O. Two methanol based washes 

follow, first 10 minutes incubation in 50% methanol, 12% acetic acid and then 20 

minutes bath in 50% methanol. Both solutions were brought to 1 litre with H2O. The 

gels were finally stored in H2O.  

3.1.2.1.2 Coomaassie blue staining 

Coomassie blue staining is much less sensitive than silver staining as described above. 

Following SDS-PAGE, the gel was incubated for 1 hour in Coomassie blue solution 

(25% isopropanol, 10% acetic acid and 0.05% Coomassie Brilliant Blue G per litre), 

after which it was heated to 60°C, with lid, for 1 minute in a microwave oven. After 

careful removal, the gel was left to shake in the solution for 5-10 minutes. The 
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Coomassie solution was then removed (back into original bottle) and the gel was 

bathed in de-staining solution (10% ethanol, 10% acetic acid) until bands appear. For 

the efficient removal of excess coomassie staining, absorbing paper can be used along 

with the exchange of destaining solution. If proteins bands take time to appear, further 

heating in a microwave can help accelerate development (Meyer and Lamberts, 1965).  

3.1.2.2 Western Blot 

Western Blot analysis is a very sensitive technique used for the identification of 

specific proteins in a mixture of different proteins, but also for the determination of 

relative amounts of proteins from different samples, which have been previously 

separated by SDS-PAGE and thereafter blotted onto a “Hybond ECL” (nitrocellulose) 

membrane (Amersham-Pharmacia) again by electrophoresis. These membranes can 

then be probed with a specific primary antibody following incubation with a labeled 

secondary antibody directed against the species immunoglobulins of the specific first 

antibody. An often used label of the secondary antibody is the enzyme horseradish 

peroxidase (HRP), which can be visualized by enhanced chemiluminescence (ECL) 

using a peroxidase substrate.  

In this work, both Wet-Transfer (Bio-Rad apparatus) and Semi-Dry (Biometra) 

Western blotting (WB) was performed. As a rule of thumb, Semi-Dry WB was used 

for low molecular weight proteins up to 30-35 kDa. Wet-Transfer WB on the other 

hand was chosen for proteins exceeding 35 kDa in size. Fresh transfer buffer was 

made before both procedures and although the Wet Transfer WB also worked well for 

proteins of low molecular weight, Semi-Dry WB was often the method of choice as 

much less transfer buffer (25 mM Tris HCl, 200 mM glycine, 20% methanol, 0.1% 

SDS) is needed along with less Whatman 3 mm paper.  

Before the Wet Transfer run was carried out, the SDS polyacrylamide gel and both 

Whatman and membrane of choice were equilibrated in transfer buffer. Then, after 

assembly and correct set up of the Bio-Rad Protean apparatus (filled with transfer 

buffer and containing an ice pack) the transfer was initiated and run for 1 hour at 100 

V. Constant stirring was applied during the transfer.  

The Semi-Dry procedure differs in a number of aspects. Apart form being preferred 

for low molecular weight proteins, as noted above, the quantity of buffer is largely 
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reduced. Secondly, the sandwich assembly is horizontal, the bottom surface being the 

cathode. Further differences include the use of fewer Whatman sheets (3 each side as 

opposed to 5 in Wet-Transfer WB) and importantly, depending on the surface area 

with the membrane, an increasing surface requires a higher voltage applied. 

Once the run of choice was through, the transfer was verified by checking the 

presence of a similarly sized pre-stained marker bands (Roth). Thereafter, the 

membrane was washed three times in PBS-T (1x PBS, 0.05% Tween) and blocked in 

a milk solution (PBS-T, 5% non-fat-powered-milk (NFPM)) for 1 h at RT (shaking). 

The membrane was then washed three times in PBS-T with shaking before being 

exposed overnight to the desired primary antibody, diluted appropriately in PBS-T 

containing 5% NFPM, at 4°C with rotation. To save antibody, the membrane was 

sealed within a tight, special plastic poach. Again, the membrane was washed three 

times, with shaking in PBS-T. The PBS-T was then drained off before the ECL 

substrate solution (Amersham Pharmacia), 1 ml of both solutions mixed for a 

membrane of 5x10 cm in size, was added for 1 min. Finally, the membrane was 

exposed to light-sensitive ECL film (Amersham Pharmacia) for 20 seconds to 30 

minutes until the expected bands developed.  

3.2 Antibody list 

3.2.1 Primary antibodies 

Antigen (species) Species Clonality Provider Cat. No. 

Actin Mouse m Calbiochem (clone JLA-20) CP01 

Cathepsin G (mouse) Rabbit p A. Belaaouaj, France - 

CD11b (mouse) Rat m BD Pharmingen 553310 

Elastase (mouse) Rabbit p A. Belaaouaj, France - 

Gr-1 / Ly-6G (mouse) Rat m BD Pharmingen RB6-8C5 

Histone (Pan) Mouse m Chemicon International MAB3422 

Laminin (mouse) Rabbit p Sigma L9393 

LL37 (human) Mouse m HyCult Biotech HM-2070 
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Myeloperoxidase (human) Mouse m ABD Serotec 0400-0002 

Myeloperoxidase (mouse) Rabbit p A. Belaaouaj, France - 

Ovalbumin Rabbit p Sigma C6534 

Progranulin (human) Rabbit p A. Bateman, Canada - 

Progranulin (mouse) Sheep p R&D Systems MAB2420 

Proteinase 3 (human) Mouse m Wieslab Clone 4A5 

Proteinase 3 (mouse) Rabbit p A. Belaaouaj, France - 

 

 

3.2.2 Secondary antibodies 

Antigen Species label Provider Cat. No. 

Human IgG goat AP Sigma A-3188 

Mouse IgG rat FITC BD Pharmingen 553443 

Mouse IgG+M goat HRP BD Pharmingen 555988 

Rabbit IgG donkey HRP JacksonImmuno 731-035-152 

Rabbit IgG goat FITC JacksonImmuno 111-095-045 

Rabbit IgG goat Alexa-488 Molecular Probes A11008 

Rat IgG goat biotin Biogenex GP220-OT 

Rat IgG goat PE JacksonImmuno 112-116-071 

Rat IgG goat Cy3 Dianova 112-165-003 

Sheep IgG donkey HRP JacksonImmuno 713-035-003 
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3.3 Analysis of PR3 and NE as triggers of inflammation 

3.3.1 Recombinant and purified proteins 

Recombinant mouse PR3 was produced and expressed in E. coli and purified from 

inclusion bodies as previously described (Pfister et al., 2004).  

Human NE was purchased from Elastin products (Owensville, Missouri, USA). 

Recombinant human PGRN was a kind gift from Prof. Andrew Bateman (McGill 

University, Montreal, Canada) and was prepared as previously reported (He et al., 

2003).  

Recombinant mouse PGRN (aa18-589) was produced with an N-terminal S-tag by 

transient expression in H5 insect cells using a modified pIEx-5 vector 

(Novagen/Merck). The mouse PGRN expressing pIEx-5 vector was kindly prepared 

by Miriam Urscher in our lab. Secretion of recombinant PGRN was driven by the 

secretion signal of the adipokinetic hormone (AKH). Transfection of H5 insect cells 

cultured in TC-100 medium (Gibco/Invitrogen) was done using the Fugene HD 

transfection reagent (Roche) according to the manufacturer´s instuctions, and positive 

transfection was controlled using a pIEx-5 vector expressing green-fluorescent 

protein. Six days upon transfection, the supernatant was harvested and recombinant 

mouse PGRN was purified using S-protein agarose column (Novagen/Merck). 

Following extensive washing of the column with phosphate-buffered saline (PBS), the 

bound protein was eluted by 3 M magnesium chloride. Immediately thereafter, 

fractions were dialyzed against PBS and analyzed by silver-stained SDS-PAGE. Pure 

fractions were pooled and dialyzed against 20 mM ammonium bicarbonate, 

lyophilized and stored at -80°C until use. For experiments, lyophilized protein was 

reconstituted in sterile PBS (Gibco/Invitrogen). 

3.3.2 Measurement of PR3/NE enzyme activity 

Enzymatic activity of the proteases PR3 and NE in lysates from WT, NE-/- and 

PR3/NE-/- neutrophils was determined using Boc-Ala-Pro-Nva p-

chlorothiobenzylester (BAPN-TBE; Sigma), a chromogenic substrate widely used to 
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monitor both NE and PR3 activity due to their similar specificity. Lysates of 

neutrophils purified from the casein-inflamed peritoneum were prepared as described 

in 3.3.3.3 and PR3/NE activity in the lysate of 8 x 104 neutrophils was measured in 50 

mM Hepes, 0.75 M NaCl, 0.05% Nonidet containing 1 mM BAPN-TBE and 0.5 mM 

DTNB. The OD405 was measured at 37°C over time using FLUOstar Optima (BMG 

Labtech). 

3.3.3 Mouse experiments 

3.3.3.1 Mice 

Simultaneous deficiency of the PR3/NE gene cluster in 129S6/SvEv mice was 

generated by homologous recombination in embryonic stem cells as detailed in the 

Ph. D. thesis written by Dr. Leopold Fröhlich in our laboratory (2001). NE-/- mice on 

the 129S6/SvEv genetic background were previously generated (Tkalcevic et al., 

2000) and were obtained as frozen embryos from the Medical Research Council 

(Harwell, Oxford, UK). These and WT control mice were kept under pathogen-free 

conditions at the GSF Neuherberg (Munich, Germany). For most experiments mice at 

the age of 5 to 8 weeks of age were used. All animal experiments were performed 

with approval by the Institutional Animal Care and Use Committee.  

To control normal neutrophil differentiation in PR3/NE-deficient mice, peripheral 

blood neutrophils were characterized by flow cytometry using fluorescently-labeled 

Gr-1 and CD11b specific antibodies (Pharmingen/BD Bioscience) as previously 

described (Fleming et al., 1993; Hestdal et al., 1991). Moreover, blood smears were 

prepared and stained on glass slides according to the “Diff-Quick” protocol (Dade-

Behring) to monitor the cellular morphology of PR3/NE-lacking neutrophils, which 

were analyzed by light microscopy. Differential blood leukocytes were identified by 

morphology and counted under the microscope to determine the percentage of each 

population. The cell count per milliliter blood of each leukocyte population was 

determined using a hemocytometer (improved Neubauer chamber). 
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3.3.3.2 Skin inflammation models 

3.3.3.2.1 Croton oil-induced inflammation 

Croton oil (Sigma; C6719) was diluted to 1% in acetone and each 20 µl of this 

dilution was topically applied to the ventral and the dorsal side of the ear of WT (n = 

4) and PR3/NE-/- mice (n = 4). After 4 hours, mice were sacrificed by CO2 inhalation. 

The earlap was split into two halves by carefully separating the dorsal and ventral 

skin. For histological analysis dorsal and ventral halves of ears were subjected to 

whole mount immunostaining. After fixation in 3% paraformaldehyde (PFA), ear 

halves were blocked with 1% bovine serum albumin (BSA; PAA, Pasching, Austria) 

in PBS for 1 hour at room temperature (RT), probed with biotin labelled anti-Gr-1 

(RB6-8C5, Pharmingen) to identify neutrophil granulocytes and anti-pan-laminin 

(Sigma; L9393) to visualize the EBM diluted in 1% BSA in PBS overnight at 4°C 

(while shaking) and washed with 1% BSA in PBS. Antibodies were detected with a 

repeated cycle of staining with anti-rabbit Alexa-488 (Molecular Probes) and anti-rat 

Cy3 (Dianova; Hamburg, Germany) before tissue was embedded in elvanol and 

representative images taken with a Zeiss Axio Imager (Zeiss, Jena, Germany) 

equipped with the Apotome®. Location of neutrophils was analyzed in detail for 

potential accumulation at the basement membrane. For quantification of neutrophil 

influx, at least three pictures of the inflamed skin were taken using a 10x objective to 

quantify total neutrophil infiltrates as the percentage of Gr-1 signal per microscopic 

field using Metamorph software (Molecular devices), while intravascular signal was 

excluded.  

3.3.3.2.2 Immune complex-mediated inflammation 

The reverse passive Arthus reaction (RPA), a widely used model of IC-mediated 

inflammation, was induced in the skin of mice using ovalbumin grade-V (OVA; 

Sigma) as the antigen and purified rabbit anti-OVA antibodies of the IgG class 

(Rockland Immunochemicals Inc) as depicted in Figure 3.1. Initially, the hair was 

removed from the ventral skin and the area was cleaned with 70% alcohol. Anti-OVA 

IgG (2 µg/µl) was deposited intradermally in a volume of 30 µl using a 27-gauge 

needle. Intradermal injection of 30 µl unspecific polyclonal rabbit IgG (2 µg/µl; 

Sigma) served as a negative control in the same animal. Without delay, the antigen 
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(20 mg OVA per kg body weight diluted in 100 µl sterile PBS) solution was injected 

intravenously (i.v.). After 4 hours, mice were sacrificed by CO2 asphyxiation and the 

inflammatory response was assessed by histology. Paraffin-sections of the specimens 

were processed for H&E staining and analyzed by light microscopy for inflammatory 

cellular infiltrates. Neutrophils were additionally identified using Gr-1 

immunohistochemistry. Briefly, deparaffinized tissue sections were incubated with a 

rat anti–Ly-6G antibody (BD PharMingen, Heidelberg, Germany) followed by a 

biotinylated goat anti-rat antibody (BioGenex, San Ramon, CA). Bound antibodies 

were labeled with streptavidin-alkaline phosphatase and visualized with fast red 

(BioGenex). Sections were counterstained with Mayer hematoxylin solution (Merck 

Eurolab, Darmstadt, Germany). Random high power fields (HPF) of the respective 

lesion were photographed using a Leica DFC320 CCD camera (Leica, Wetzlar, 

Germany) attached to a Zeiss Axioplan 2 microscope (Zeiss, Jena, Germany) with a 

10x objective. Digitized images were used to enumerate neutrophils as average per 

HPF in lesions from WT (n = 12), NE-/- (n = 13) and PR3/NE-/- mice (n = 12). 

 

Figure 3.1 – Immune complex-mediated inflammation. Cutaneous inflammation mediated 

by the formation of immune complexes, i.e. the reverse, passive Arthus reaction (RPA), was 

induced in mice. After removing the hair at the ventro-lateral skin area, rabbit anti-OVA 

antibodies were deposited intradermally and, immediately afterwards, the RPA was started by 

systemically applying the antigen OVA i.v. via the tail vein.  
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3.3.3.2.2.1 Administration of PGRN to immune complex inflammation 

To study the inhibitory capacity of PGRN on IC-stimulated inflammation, I deposited 

2 µg recombinant mouse PGRN by intradermal injection together with 30 µl anti-

OVA solution as detailed above. In the same mouse at different sites of the ventral 

skin, I intradermally applied anti-OVA alone and control rabbit IgG as a positive and 

negative control, respectively. The RPA was started by i.v. administration of OVA. 

Four hours after initiation, mice were sacrificed and biopsies were taken to 

histologically quantify neutrophil infiltrates per HPF in PGRN-treated and non-treated 

lesions from WT (n = 5) and PR3/NE-/- mice (n = 5). 

3.3.3.3 Isolation of mouse neutrophils 

Mouse neutrophils were purified from the bone marrow using a discontinuous 

percoll® gradient (Amersham Bioscience) as previously described (Lowell et al., 

1996). In brief, the bone marrow was flushed out of the tibiae bones using RPMI 

medium, rinsed through cell strainer (40 µm; BD Bioscience) to get rid of large cell 

aggregations. Red blood cells were lysed using ammonium chloride. Finally, 

neutrophils were separated using a discontinuous percoll gradient (81/62/50/45%; 

Amersham Bioscience) centrifuged at 1200 g at RT without break for 30 min and 

harvested from the 81/62% interface. Neutrophil preparations were characterized by 

Gr-1 and CD11b (Mac-1) double immunostaining using flow cytometry and were 

found at least 80% pure.  

To isolate murine neutrophils ex vivo from an inflammatory environment, I injected 1 

ml of a 9% sterile casein solution in PBS to induce peritonitis. Four hours after 

injection, cells were harvested by peritoneal lavage using sterile PBS without 

Ca2+/Mg2+ (Gibco). Peritoneal cells were layered on a discontinuous histopaque® 

1119-1077 gradient (Sigma) and after centrifugation for 30 min at 700 g, neutrophils 

were isolated from the 1.119-1.077 kg/L interphase. For anti-PGRN Western blots 

and PR3/NE activity assays, neutrophil lysates were prepared. In brief, neutrophils 

were lysed in 50 mM Tris/HCl (pH 7.4), 150 mM NaCl, 0.5 mM EDTA and 0.5% 

nonidet by mechanical disruption using syringes with 27-gauge needles. Cell debris 

was pelleted by centrifugation. All steps were carried out at 4°C and supernatant was 

frozen until used. 
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3.3.3.4 Neutrophil 3D collagen chemotaxis assay 

For migration assays, PureColTM (INAMED, Fremont, USA) in 1x minimum essential 

medium eagle (MEM, Sigma) and 0.4% sodium bicarbonate (Sigma) was mixed with 

cells in RPMI (Invitrogen), 10% fetal calf serum (FCS, Invitrogen) at a 2:1 ratio, 

resulting in gels with a collagen concentration of 1.6 mg/ml. Neutrophils were 

“primed” by 10 ng/ml mouse TNFα (Biosource; PMC3016) for 15 min at 37°C. Final 

cell concentrations in the assay were 1.6 Mio granulocytes per ml gel. Collagen-cell 

mixtures were cast in custom-made migration chambers with a thickness of 0.5-1.0 

mm. Thirty minutes after the assembly of the collagen fibres at 37°C, the gel surface 

was covered with 50 μl of 0.1 µg/ml C5a (R&D Systems) solution. Pictures of 

migrating cells were taken every 20 sec using a Zeiss Axioplan 2 lightfield 

microscope (Zeiss, Jena, Germany) and stacks of images were used to generate time-

lapse movies in avi-format using Metamorph (Molecular devices). Chemotactic 

parameters were calculated and visualized as plots by analyzing the acquired data 

with a Chemotaxis and Migration Tool plug-in 

(http://www.ibidi.de/applications/ap_chemo.html).  

3.3.3.5 Neutrophil oxidative burst in vitro 

To test neutrophil activation by ICs in vitro, I prepared immobilized IC using a 

OVA/anti-OVA system as described previously (Raptis et al., 2005). Isolated 

neutrophils were resuspended at a density of 2 x 106 cells/ml in phenol red free RPMI 

(Gibco) containing 10 ng/ml recombinant mouse TNFα (Biosource; PMC3016) and 

added to immobilized ICs in 96-well microtiter plates. Activation by 25 nM PMA 

(Sigma; P1585) without TNFα served as a positive control. I also determined the 

oxidative burst of neutrophils as a function of increasing PMA concentrations (0.1 nM 

to 50 nM) in order to define the concentrations that yielded submaximal responses in 

mouse neutrophils. ROS production as the read-out for neutrophil activation was 

detected using dihydrorhodamine 6G (Molecular Probes; D633) according to the 

manufacturer´s instructions and the increase in fluorescence was measured over time 

with the fluorometer FLUOstar OPTIMA (BMG Labtech, Offenburg, Germany) at 

37°C. For each time point, the IC-specific oxidative burst was determined by 

subtracting the mean fluorescence read on negative control coating from that on IC 
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coating. To compare independent experiments, I calculated the relative oxidative burst 

as ratio vs. maximum ROS production by WT neutrophils. 

3.3.3.5.1 Administration of PGRN to neutrophil oxidative burst 

To examine the effect of PGRN on the neutrophil activation in vitro, I first 

approximated the concentration of cell-associated and secreted PGRN in the absence 

of PR3/NE during IC-mediated neutrophil stimulation by comparison with the 

positive control band in anti-PGRN Western blot to be ~100 nM (data shown in 

Figure 4.12). I then added recombinant PGRN at a final concentration of 100 nM to 

isolated WT stimulated by ICs or PMA. I compared the oxidative burst between 

PGRN-treated and non-treated cells as detailed above. 

3.3.3.6 Neutrophil adhesion assay to ICs 

Isolated neutrophils were labeled with Calcein AM (Molecular Probes) according to 

the manufacturer´s instructions and plated on ICs in microtiter plates (96 well) in the 

presence of 10 ng/ml TNFα as previously described (Raptis et al., 2005). In brief, 

wells were three times washed with PBS at indicated time points, adhering cells were 

determined using a fluorescence reader (BMG Fluostar Optima) and the percentage 

was calculated. 

3.3.3.7 Immunofluorescence of neutrophils interacting with ICs 

Bone marrow-derived mouse neutrophils from WT and PR3/NE-deficient mice were 

allowed to settle on IC-coated glass slides in the presence of 10 ng/ml TNFα for one 

hour at 37°C in a 5% CO2 incubator. ICs on glass slides were prepared as described 

above for microtiter plates (3.3.3.5). Immediately thereafter, the cells were fixed using 

4% PFA for 15 min and, after extensive washing in PBS, unspecific binding sites 

were blocked using PBS containing 5% goat serum and 5% fetal calf serum (= 

blocking buffer; BB) for one hour. The specimens were stained for Mac-1 using anti-

mouse CD11b antibody (Pharmingen) or stained for F-actin using fluorescently-

labeled phalloidin (Molecular Probes) according to the manufacturer´s instructions. 

Immunofluorescence microscopy was done using a Zeiss Axioplan fluorescence 

microscope (Zeiss Microimaging GmbH).  



  Material & Methods 

 

- 33 - 

3.3.3.8 Analysis of PGRN degradation in vitro and in vivo 

PGRN processing activity was tested with recombinant mouse PR3 and human NE 

each at a molar enzyme to substrate ratio of 1:10 according to the buffer conditions 

described by Zhu et al. (Zhu et al., 2002). 2.5 µg of recombinant human PGRN (kind 

gift from Andrew Bateman, Montreal, Canada) was added to enzymes and incubated 

at 37°C. At the time points indicated in the figures, samples were placed on ice and 

the pattern of cleavage products was analyzed by reducing SDS-PAGE and 

subsequent silver nitrate staining carried out as detailed above. 

To test if other PGRN-degrading enzymes besides PR3 and NE existed in neutrophils, 

I incubated recombinant mouse PGRN with lysates from 3 x 104 WT, NE-/- and 

PR3/NE-/- neutrophils for one hour at 37°C. Samples were separated by SDS-PAGE 

and transferred onto nitrocellulose membranes. After incubation for two hours in 

blocking buffer (BB; 5% fat-free dry milk in PBS/0.2% TWEEN-20), recombinant 

mouse PGRN was detected by Western blotting with sheep anti-mouse PGRN 

antibody (R&D Systems) at a concentration of 0.4 µg/ml and unspecific sheep IgG as 

a negative control (1 µg/ml; Sigma I5131), respectively. Bound antibodies were 

visualized using peroxidase-conjugated donkey anti–sheep immunoglobulins 

(1:10,000; JacksonImmuno) and enhanced chemiluminescence (ECL) reagents 

(Amersham/Pharmacia). For actin detection the membranes were incubated in a 

1:5,000 dilution of anti-actin mouse monoclonal antibody (clone JLA-20; 

Calbiochem) followed by peroxidase conjugated goat anti-mouse IgG+M incubation 

(1:10,000; Pierce) and subsequent ECL detection. 

For detection of PGRN from neutrophils activated by ICs in vitro, I harvested the 

supernatant as well as the cellular pellet of isolated TNFα-primed neutrophils after 3 

hours of IC-stimulation. The concentrated supernatant and the cellular pellet of 2 x 

105 IC-activated neutrophils was separated by reducing SDS-PAGE and subjected to 

anti-PGRN Western blotting as described above. 

To analyze if PGRN was cleaved by PR3/NE during inflammation in vivo, I harvested 

neutrophils from the inflamed peritoneum of WT and PR3/NE-/- mice. Lysates were 

prepared from these cells as described above, but in the presence of 75 µg/ml PMSF 

and protease inhibitor cocktail (Calbiochem; 218739). Total lysates from 8 x 105 cells 
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were subjected to anti-PGRN Western blotting, which was carried out as detailed 

before. 

 

3.4 Analysis of PR3 as target in autoimmunity 

3.4.1 Isolation of human neutrophils 

Human peripheral blood neutrophils were isolated by density centrifugation using a 

Pancoll® gradient. Briefly, 10 ml blood containing EDTA was diluted in 10 ml 

phosphate buffered saline (PBS) and layered on 10 ml Pancoll (PAN Biotech GmbH, 

Cat.No: P04-60500). After 30 min centrifugation at 500 g at RT without brake, 

granulocytes were further purified from the cellular pellet by dextran sedimentation 

(Dextran T500, Pharmacia Biotech, Cat.No: 17-0320-01). Residual erythrocytes were 

removed by hypertonic lysis in 0.2% and 1.6% NaCl each for one min on ice and, 

after washing, neutrophil granulocytes were resuspended in RPMI (Gibco, Cat.No: 

61870). Neutrophil purity as assessed by forward and side scatter with flow cytometry 

was routinely ~95%. Human granulocytes were subjected to autoantibody and PMA 

activation to subsequently determine NET formation.  

3.4.2 NETs immunofluorescence 

NET release by isolated neutrophils seeded on lysinated glass slides was triggered by 

25 nM PMA as described elsewhere (Brinkmann et al., 2004). After two hours, the 

cells were fixed using 4% PFA. Unspecific binding sites were blocked in PBS 

containing 5% goat serum and 1% BSA (Blocking buffer; BB). To test whether PR3 

is a component of NETs, the specimens were incubated with anti-PR3 mouse mAb 

(clone 4A5; Wieslab) in BB. LL37 on NETs was identified using mouse mAb anti-

LL37 (HBT biotechnology). Positive mAb binding was visualized using FITC labeled 

rat anti-mouse IgG (Pharmingen). DNA was stained using Hoechst 33352.  
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3.4.2.1 Autoantibody-mediated NET formation 

To test if autoantibodies, so called ANCAs, from patients with small-vessel vasculitis 

(SVV) trigger the formation of NETs, isolated neutrophils were primed for 30 min 

with 10 ng/ml TNFα, seeded on lysinated glass slides and treated with purified IgG 

from SVV patients (microscopic polyangiitis: n = 2; Wegener´s granulomatosis: n = 

2) and from healthy control individuals (n = 2), and with 25 nM PMA as a positive 

control. After 90 and 180 min time points, cells were fixed with 4% PFA and DNA 

was stained using Hoechst 33352. The percentage of neutrophils releasing DNA fibers 

in random microscopic fields (20x objective) was determined.  

3.4.3 DNA binding ELISA 

Human DNA was purified from peripheral blood cells of a healthy donor using human 

DNA extraction Kit (Quiagen) according to the manufactur´s instructions. DNA was 

coated to 96 well microtiter plates (NUNC) at 2.5 µg/ml over night at 4°C. The plate 

was washed with PBS and blocked with BSA for four hrs at 4°C. After another 

washing step, the coated surfaces were incubated with a dilution series of purified 

PR3 ranging from 0.5 to 0.0625 µg/ml in PBS for two hrs at RT. Subsequently, PR3 

binding after stringent washing with PBS was detected using an immunoassay. 

Briefly, the surfaces were probed with 1:500 dilution of mouse mAb anti-human PR3 

(clone 4A5; Wieslab) following incubation with HRP-labeled anti-mouse IgG rabbit 

antibody 1:2000 both in PBS. Binding was finally quantified by incubation of the 

samples with the TMB substrate and colorimetric measurement, after stopping the 

development by adding 10 µl 1 M HCl, at 405 nm wavelength in an ELISA-reader 

(FluoOptima). DNA binding was determined by direct comparison of DNA-BSA to 

only BSA coated wells in triplicates. 

3.4.4 In situ immunofluorescence analysis of kidney biopsies 

Kidney needle biopsies from SVV patients with glomerulonephritis (kindly provided 

by Dr. Walter Back) were fixed and embedded in paraffin. Five µm sections were 

prepared and mounted on glass slides. After antigen retrieval with citrate buffer, 

sections were treated with blocking buffer and reacted with primary antibodies 
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followed by species-specific secondary antibodies. Specimens were analyzed on a 

Leica SP5 confocal microscope and confocal stacks were modelled using Volocity 

software. Wide field images were recorded using a Nikon DXM 1200 camera on a 

Leica DMR microscope equipped with band pass filters. These analyzes were carried 

out at the Max Planck Institute for Infectious Biology in Berlin, Germany, in 

collaboration with Dr. Volker Brinkmann.  

3.4.5 Measuring nucleosome levels in the urine 

The chromatin fibers of NETs would be swiftly degraded to nucleosomes by DNAses 

present in the kidney tissues. Interestingly, a previous study showed increased 

nucleosome concentrations in the sera from patients with SVV (Holdenrieder et al., 

2006). In collaboration with Prof. Samtleben from the Klinikum Großhadern in 

Munich, I collected urine and sera from patients suffering from Wegener´s 

granulomatosis with active disease (n = 2) and compared to patients in remission (n = 

6). To test for nucleosomes in these specimens, the commercially available cell death 

detection ELISAPLUS (Roche, Cat. No: 11774425001) was used. This test is based on 

the “sandwhich ELISA” principle using two different mouse monoclonal antibodies 

directed against histones and DNA, respectively. The test was carried out according to 

the manufacturer´s instructions.  

3.4.6 Measuring MPO-nucleosome complexes in the serum 

To show that the increased levels of circulating nucleosomes in patients suffering 

from SVV are – at least in part – derived from NETosis, I sought to identify granular 

components of neutrophils in association with circulating nucleosomes. As MPO was 

found to be a prominent constituent of NETs, I chose to test for MPO attached to 

nucleosomes. To this end, I established two different assays.  

In the first assay, I identified MPO via its enzymatic activity. 5 µg/ml anti-histone 

monoclonal antibody (Chemicon International) was coated to microtiter plates (75 µl 

per well) overnight at 4°C. After blocking with 1% BSA (125 µl per well), wells were 

washed with PBS, and incubated with 40 µl per well of patient and control sera, 

supernatants from PMA-activated neutrophils as the positive control for NETs, and 

supernatant from non-activated neutrophils as the negative control. Samples were 
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diluted in incubation buffer (component of the cell death detection ELISA, Roche) to 

100 µl final volume per well, incubated for 2 hours at RT while shaking (320 rpm) 

and washed for three times in 200 µl PBS per well. To identify MPO, I added TMB as 

widely used chromogenic substrate for MPO that can be measured via absorbance at 

620 nM wavelength, and, after stopping the reaction by the addition of 20 µl 1 M HCl 

per well, at 450 nm.  

In the second assay, MPO-DNA complexes were identified using a capture ELISA. 

As the capturing antibody, 5 µg/ml anti-MPO monoclonal antibody was coated to 

microtiter plates (75 µl per well) overnight at 4°C. After blocking in 1% BSA (125 

µl), the specimens were added as described above, but this time in combination with 

the peroxidase-labeled anti-DNA monoclonal antibody (component No.2 of the 

commercial cell death detection ELISA kit; Roche, Cat. No: 11774425001) according 

to the manufacturer´s instructions. After two hours of incubation at RT on a shaking 

device (320 rpm), the samples were washed with 200 µl PBS per well and the 

peroxidase substrate (ABTS) of the kit (Roche) was added. The increase in 

absorbance was measured over time at 405 nm wavelength using Fluostar Optima 

(BMG Labtech). 

 

3.5 Statistics 

All results are given as the average with standard error of the mean (SEM) for data 

derived from different in vivo experiments or as the mean with standard deviation 

(SD) for data resulting from triplicate in vitro assays using isolated cells or cell 

lysates. Normal distribution of datasets was determined by the Kolmogorov-Smirnov 

test before I applied an unpaired t-test to compare two groups. I regarded p<0.05 as 

statistically significant. Calculations were done using GraphPad Prism software. 
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4 Results 

4.1 PR3 and NE as triggers of inflammation 

4.1.1 Characterization of PR3/NE double-deficient mice 

To study the function of the highly similar serine proteases PR3 and NE in vivo, I 

used a previously generated mouse strain that lacks both PR3 and NE (Fröhlich, Ph.D 

thesis). The PR3/NE double-deficient mouse line was established by targeted gene 

disruption in embryonic stem cells as depicted in Figure 4.1. Previous 

characterization experiments proved the positive recombination of the PR3/NE locus 

by Southern blotting of embryonic stem cell clones (Fröhlich, Ph.D. thesis): PR3/NE-

depleted mice showed no expression of mRNA for PR3 and NE in bone marrow cells 

as assessed by RT-PCR.  
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Figure 4.1 – Gene-targeting approach for the generation of PR3/NE double-deficient mice. 

Schematic representation of the wildtype PR3/NE locus, gene-targeting vector, targeted allele and the 

correctly recombined PR3/NE knockout allele. Gene-targeting results in deletion of exons 2-5 of the 

PR3 gene as well as exons 1-3 of the NE gene leaving the neighbored adipsin (ADN; also called 

complement factor D) gene unchanged. 

Figure adapted from Leopold Fröhlich, Ph.D thesis (2001) 

 

In my work, the simultaneous knockout of both serine proteases PR3 and NE was 

further substantiated at the level of proteolytic activity in neutrophil lysates using the 

PR3/NE-specific chromogenic substrate AAPV-pNA (Figure 4.2). This was in unison 

with subsequent Western blot analyses of neutrophil granule components using 

specific polyclonal rabbit sera (kind gift from Azzaq Belaaouaj, Reims, France), 

which revealed that PR3/NE-deficient neutrophils showed normal levels of CG and 

MPO expression, while they totally lacked PR3 and NE (Figure 4.3A). This clearly 

confirmed the successful and selective knockout of PR3 and NE in these mutant mice. 
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Figure 4.2 – PR3/NE-null neutrophils completely lack PR3/NE enzymatic activity. PR3/NE 

enzyme activity of the neutrophil lysates was measured in triplicates using a PR3/NE specific 

chromogenic substrate (BAPN-TBE) after 15 min incubation. The measured OD values were 

normalized by the average OD produced by WT neutrophil lysates. Data is shown as mean +/- SD of 

triplicates. Compared to WT lysates, NE-/- neutrophils show ~50% residual activity. No activity was 

observed in PR3/NE-negative neutrophils. 

 

A number of previous studies suggested that PR3 and NE may play an important role 

in neutrophil development in the bone marrow (El Ouriaghli et al., 2003; Skold et al., 

1999; Bories et al., 1989), hence I further evaluated neutrophil maturation in PR3/NE-

deficient mice. In contradiction to these reports, I found unchanged neutrophil 

morphology with normally lobulated nuclei in the absence of PR3/NE (Figure 4.3B). 

Moreover, regular CD11b+/Gr-1hi neutrophil populations were revealed by flow 

cytometry in the peripheral blood of the mutant mice (Figure 4.3C). Hence, the 

proteases are not crucially involved in granulopoiesis and ablating PR3 and NE in the 

germ line represents a valid approach to assess their biological significance in vivo. 
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Figure 4.3 – Normal neutrophil maturation in the absence of PR3 and NE. (A) Neutrophils 

isolated from WT (+/+) and PR3/NE-deficient mice (-/-) were lysed and subjected to Western blot 

analysis. While no band was detected for PR3 or NE in the mutant mice, normal expression of CG and 

MPO was found in PR3/NE -/- mice. Molecular weight marker sizes are indicated in kDa on the left 

side. (B) Blood smears were prepared from WT and PR3/NE-deficient mice and analyzed by light 

microscopy using a 20x objective. Normal neutrophil morphology (lobulated nucleus) was observed in 

PR3/NE-deficient mice. (C) Neutrophil maturation was evaluated by flowcytometry of peripheral 

blood leukocytes by double staining of the Gr-1 marker in combination with CD11b. Neutrophil locate 

to the CD11b+/Gr1hi population (red box). No difference was observed between WT and mutant mice 

regarding the percentage of the CD11b+/Gr1hi population. 

4.1.2 Normal extravasation of PR3/NE-deficient neutrophils 

To examine neutrophil infiltration into the perivascular tissue, I applied croton oil, a 

natural source of phorbol-esters, to the mouse ears of WT (n = 4) and PR3/NE-

depleted (n = 4) mice. Phorbol-esters are strong activators of the protein kinase C 

(PKC) pathway in, for example, immune cells, which trigger rapid recruitment of 

neutrophils to the site of application. Four hours post croton oil application, the mouse 

ear tissue was subjected to a whole mount immunofluorescence staining for laminin 

(LN) as a major component of the endothelial basement membrane (EBM), and Gr-1 

to identify neutrophils. I assessed the neutrophil distribution in relation to the EBM by 

immunofluorescence microscopy of fixed whole mount specimens (Figure 4.4A). If 

PR3 and NE were necessary to open the EBM for extravasation, I would have 
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expected an accumulation of neutrophils (red) inside the EBM (green) of the blood 

vessels. However, I found that PR3/NE-deficient neutrophils had transmigrated into 

the interstitium without retention at the EBM (Figure 4.4B) resulting in quantitatively 

normal and widespread neutrophil influx compared to WT mice (Figure 4.4C). Based 

on this observation, I concluded that PR3 and NE are dispensable for the 

extravasation of neutrophils. 

 

Figure 4.4 – PR3 and NE are dispensable for neutrophil extravasation. Inflammation was triggered 

in the ears of WT (n = 4) and PR3/NE-deficient mice (n = 4) using croton oil (phorbol-esters). After 

four hours, the ear tissue was subjected to immunofluorescence staining for laminin (LN; green) to 

stain EBM and for Gr-1 (red) to identify neutrophils. Both genotypes developed strong and widespread 

neutrophilic inflammation. Scale bar represent 200 µm (A). No retention of neutrophils inside the EBM 

was observed in PR3/NE-deficient mice when analyzed in higher magnification; scale bar = 25 µm (B). 

Overall neutrophil infiltrates were quantified as percentage of Gr-1 positive cells per microscopic field, 

while the intravascular signal was excluded. Data are mean +/- SEM. No difference was found between 

WT and PR3/NE-deficient mice (C). 
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4.1.3 Neutrophil chemotaxis is independent from PR3 and NE 

The data presented in Figure 4.4 showed widespread neutrophil infiltrations at the site 

of inflammation even in the absence of PR3 and NE suggesting that the proteases 

were not required for interstitial cellular migration. I further addressed this suggestion 

and analyzed a potential role of PR3 and NE in neutrophil chemotaxis and migration 

through the extracellular matrix of the interstitium using an in vitro approach. 

Therefore, isolated neutrophils were embedded in three dimensional collagen 

matrices. To induce chemotaxis, I placed C5a on top of the matrix and analyzed 

neutrophil chemotaxis by light microscopy. Neutrophils from both WT and PR3/NE-

null mice readily migrated towards the C5a gradient (Figure 4.5A). I observed 

unhampered chemotactic migration of isolated PR3/NE-negative neutrophils through 

a three-dimensional collagen meshwork in vitro regarding directionality (Figure 

4.5B) as well as velocity (Figure 4.5C) of the cells. These findings indicated that PR3 

and NE are not principally required for interstitial migration. 
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Figure 4.5 – Normal neutrophil chemotaxis in the absence of PR3 and NE. (A) Scheme depicts 

experimental procedure: neutrophils were embedded in three-dimensional collagen gel and chemotactic 

C5a was applied in solution on top of the matrix. In vitro migration of WT and PR3/NE-deficient 

neutrophils directed by C5a through collagen matrices was analyzed by time-lapse video microscopy 

and migrating neutrophils (arrow) were tracked (D) The tracks of WT (n = 41) and PR3/NE-deficient 

(n = 42) neutrophils are shown, and the factor for directionality +/- SEM is indicated. No impairment 

was observed regarding chemotactic directionality of PR3/NE-deficient versus WT neutrophils (P = 

0.19). (E) Velocities of single cells (individual points) were calculated and averaged (red bar). 

PR3/NE-/- neutrophils showed no significant difference versus WT cells (P = 0.30). 

4.1.4 Impaired IC-mediated inflammation in PR3/NE-null mice 

The formation of immune complexes (ICs) represents an important trigger of 

neutrophil-dependent inflammation in many human diseases (Jancar and Sanchez, 

2005). To determine the role of PR3 and NE in this context, a classical model of 
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subcutaneous IC-mediated inflammation, namely the reverse passive Arthus reaction 

(RPA; see (Arthus and Breton, 1903), was induced in WT and PR3/NE-deficient 

mice. To this end, anti-ovalbumin (OVA) antibodies were deposited intradermally and 

subsequently the antigen OVA was applied systemically via the tail vein. At the site 

of antibody deposition in the skin, ICs are formed and the inflammatory reaction 

occurs.  

Four hours after RPA induction by applying the OVA solution, I assessed the cellular 

inflammatory infiltrates by histology using H&E-stained skin sections (Figure 4.6A; 

upper panel). Neutrophils, which were additionally identified by Gr-1 

immunohistochemistry, made up the vast majority of all cellular infiltrates at the 

relatively early four hours time point (Figure 4.6A; lower panel). However, I found 

that neutrophil infiltration to the sites of IC-formation was severely diminished in 

PR3/NE-null mice. Histological quantification revealed a significantly reduced 

neutrophil influx in PR3/NE double-deficient mice compared with WT mice, while 

NE single-deficient mice showed only marginally reduced neutrophil counts (Figure 

4.6B). Together, these results indicate that PR3 and NE fulfill an important pro-

inflammatory function during IC-mediated inflammation.  
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Figure 4.6 – Reduced neutrophil infiltration to the sites of IC-deposition in PR3/NE-deficient 

mice. (A) Representative photomicrographs of inflamed skin sections 4 hours after IC formation. 

Neutrophils were identified morphologically (polymorphic nucleus) in H&E stainings and by Gr-1 

staining (red). The cellular infiltrates were located to the adipose tissue next to the panniculus carnosus 

muscle (asterisks) and were primarily composed of neutrophil granulocytes. Scale bars: 200 μm. (B) 

Neutrophil infiltrates in lesions from PR3/NE-deficient mice were significantly diminished compared 

with NE single-deficient and WT mice. Neutrophil influx in NE-deficient mice was marginally, but not 

significantly diminished compared with WT mice. Results are mean +/- SEM infiltrated neutrophils per 

high power field (HPF). *P < 0.05. 
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4.1.5 PR3 and NE enhance neutrophil activation by ICs in vitro 

As I found in my work, PR3 and NE were required for the inflammatory response to 

ICs (Figure 4.6), but not to phorbol esters (Figure 4.4). Hence, I considered the 

enzymes as direct regulators of the neutrophil response to ICs. To test this 

consideration, the oxidative burst as a read-out for cellular activation was determined 

using dihydrorhodamine (DHR), a dye that becomes fluorescent upon oxidation. 

Based on a previously described procedure (Raptis et al., 2005), I set up an in vitro 

assay for the activation of neutrophils by ICs. To this end, ovalbumin (OVA) was 

coated on microtiter plates and treated with anti-OVA rabbit serum. Neutrophils 

recognize ICs via specific surface receptors (Figure 2.3) leading to activation of 

phagocyte oxidase (phox) as the downstream effect of a signal transduction cascade. 

Therefore, the activity of the phagocyte oxidase, i.e. oxidative burst, was measured 

over time by detecting ROS using the DHR dye. I measured the ROS production of 

isolated, TNFα-primed neutrophils in the presence of ICs in vitro. The IC-specific 

burst was determined by subtracting the background response of TNFα-stimulated 

neutrophils on only OVA-coated surfaces from the oxidative burst exhibited on 

Ova/anti-Ova ICs (Figure 4.7).  
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Figure 4.7 – Measurement of the IC-specific oxidative burst of neutrophils. Neutrophils isolated 

from the mouse bone marrow were TNFα-primed and subjected to ICs (dark blue curve) and only Ova 

(light blue curve) as a negative control. The IC-specific burst was determined by subtracting the 

fluorescence on ICs from the fluorescence on only Ova for each time point. This results in an oxidative 

burst curve (lower graph) that shows an initial lag phase of ~20 min until the burst commences.  

 

Using this setup, the oxidative burst was compared between WT and PR3/NE-

deficient neutrophils. While both WT and PR3/NE-deficient neutrophils showed a 

similar lag phase before the oxidative burst commenced (~20 min), the ROS 

production over time was markedly reduced by 30-40% in the absence of PR3 and NE 

(Figure 4.8A). By contrast, oxidative burst triggered by 25 nM phorbol-ester (PMA) 

was unhindered in PR3/NE-/- neutrophils (Figure 4.8B), indicating that there was no 

general defect in producing ROS. I also performed a titration series ranging from 0.1 

to 50 nM PMA and found no reduction in oxidative burst activity in PR3/NE-deficient 

neutrophils irrespective of the PMA concentration used (Figure 4.8C). These data are 

consistent with our in vivo experiments showing that neutrophil influx to ICs was 

impaired (Figure 4.6), whereas the inflammatory response to phorbol esters was 

normal in PR3/NE-null mice (Figure 4.4).  
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Figure 4.8 - Impaired oxidative burst by IC-activated PR3/NE-deficient neutrophils. Oxidative 

burst as the readout for neutrophil activation by ICs was measured over time. (A) While no difference 

was observed during the initial 20-min lag phase of the oxidative burst, PR3/NE–/– neutrophils 

exhibited diminished ROS production over time compared with WT neutrophils. (B) Bypassing 

receptor-mediated activation using 25 nM PMA restored the diminished oxidative burst of PR3/NE–/– 

neutrophils. Results are presented as normalized fluorescence in AU (arbitrary units relative to 

maximum fluorescence produced by WT cells). Data (mean ± SD) are representative of 3 independent 

experiments each conducted in triplicate. (C) Neutrophils were activated by PMA at concentrations 

ranging from 0.1 to 50 nM. After one hour of stimulation, no difference of ROS production was 

detected between WT and PR3/NE-deficient neutrophils. Data is representative of 3 independent 

experiments and SD of triplicates is shown.  

 

4.1.6 PR3 and NE are not involved in neutrophil priming or 

adhesion to ICs 

One explanation for the reduced oxidative burst in the presence of ICs could be that 

TNFα priming of neutrophils was defective when PR3 and NE are lacking. TNFα  

triggers the rapid transport of Mac-1 (CD11b/CD18) receptor from secretory granules 

to the cell surface, where it then recognizes the C3bi part of the ICs (Figure 2.3). To 

compare neutrophil priming in WT and PR3/NE-deficient neutrophils, the cell surface 

expression of CD11b after 30 min of incubations at various concentrations of TNFα 

was analyzed. No difference was observed between WT and PR3/NE-null neutrophils 

(Figure 4.9A) indicating that TNFα-mediated priming is independent from PR3/NE 

function. I also considered impaired adhesion of neutrophils to IC-coated surfaces in 

the absence of PR3 and NE. Therefore, Calcein AM-labeled neutrophils were 

incubated on IC-coated microtiter plates and stringently washed after several time 

points and the residual fluorescence was determined using a fluorescence reader. I 



  Results 

50 

observed normal neutrophil adhesion to IC-coated surfaces (Figure 4.9B) showing 

that the initial interaction and binding of neutrophils to ICs is not influenced by 

PR3/NE. 

 

Figure 4.9 – Unaltered TNFα-priming and neutrophil adhesion to ICs of PR3/NE-deficient 

neutrophils. (A) Neutrophils were incubated with increasing concentrations of TNFα and the 

“priming” response was measured via the surface upregulation of CD11b using FACS. Both WT and 

PR3/NE-depleted neutrophils displayed a comparable upregulation of CD11b on the cell surface after 

30 min indicating a normal “priming” response in the absence of PR3 and NE. (A) Calcein AM-labeled 

neutrophils were incubated on ICs in the presence of TNFα and the percentage of adherent cells was 

measured after washing at indicated time points. PR3/NE-/- neutrophils adhered normally to ICs. Data 

is representative of three independent experiments. 

4.1.7 Integrin clustering and cytoskeletal reorganization 

Neutrophil activation by ICs rapidly triggers integrin clustering on the cell surface as 

well as cytoskeletal reorganization inside the cells. Hence, I next dissected the IC-

triggered Mac-1 integrin (CD11b/CD18) clustering on the cell surface as well as 

reorganization of the actin cytoskeleton by immunofluorescence microscopy and 

compared between WT and PR3/NE-deficient neutrophils. Indeed, the pattern of 

CD11b at the interface between neutrophils and IC-coated surfaces was found to be 

less clustered in PR3/NE-lacking neutrophils (Figure 4.10A). In addition, the actin 

cytoskeleton was analyzed using phalloidin-TRITC, which binds to filamentous (F)-
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actin with high affinity and therefore allows to visualize the cytoskeleton in fixed 

cells. The actin cytoskeleton showed altered reorganization in response to IC 

encounter, when PR3 and NE were lacking (Figure 4.10B).  

 

Figure 4.10 – Integrin clustering and actin reorganization on ICs is altered in the absence of PR3 

and NE. Isolated, bone marrow-derived neutrophils from WT and PR3/NE-lacking mice were primed 

with TNFα, fixed after one hour incubation on IC-coated glass and immunostained for CD11b (A) and 

F-actin (B). Representative pictures were taken with 40x objective and show defective integrin 

clustering (A) and altered cytoskeletal reorganization (B) in PR3/NE-/- neutrophils. Scale bar 

represents 5 µm. 

   

These observations support the hypothesis that PR3 and NE enhance early events of 

adhesion-dependent neutrophil activation that occur after TNFα priming and binding 

of ICs but before or during integrin clustering and cytoskeletal reorganization events. 

It is important to note, that NE single-deficient neutrophils were previously shown to 

react normally in the same setup (Raptis et al., 2005). Regarding the highly similar 

cleavage specificities of both proteases, I expected that PR3 and NE complemented 

each other during the process of neutrophil activation and inflammation.  

4.1.8 PGRN is a crucial substrate of PR3 and NE 

This reasoning prompted me to search for substrates that are processed by both PR3 

and NE and, thereby, are able to enhance neutrophilic activation. In a previous study, 

PGRN has been described as a potent inhibitor of the adhesion-dependent oxidative 
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burst of human, TNFα-primed neutrophils in vitro, which can be inactivated by NE 

(Zhu et al., 2002). In the following paragraphs, I addressed the question whether 

PGRN may be a critical substrate of both PR3 and NE during neutrophil activation 

and inflammation.  

4.1.8.1 Production of recombinant mouse PGRN 

In these studies, I used both human PGRN (kindly provided by Prof. Andrew 

Bateman, Canada) as well as mouse PGRN. The murine variant of PGRN was 

produced recombinantly by transient expression in H5 insect cells (kind gift from Dr. 

M. Sixt, Max Planck Institute of Biochemistry) as detailed in the methods section 

(3.3.1). The transfection efficiency was controlled by the co-transfection of the same 

vector (pIEx5) expressing GFP (Figure 4.11A). FACS analysis of tranfected insect 

cells revealed an approximate transfection rate of 50% (data not shown). Using 

peroxidase-coupled S-protein, which specifically interacts with the N-terminal S-tag 

of recombinant mouse PGRN, I detected substantial amounts of mouse PGRN in the 

supernatant of transfected, but not of untransfected cells or supernatant after S-protein 

treatment (Figure 4.11B). By silver nitrate-stained SDS-PAGE, I found only albumin 

contamination (~60 kD) in the PGRN purification using the S-protein column (Figure 

4.11C). Albumin is a very abundant protein in all serum-containing cell media. In the 

following PGRN reconstitution experiments, I used serum-containing RPMI medium. 

Thus the albumin contamination in the PGRN preparation can be completely 

tolerated. By Western blot analysis using a sheep anti-mouse PGRN antibody, a 

prominent band was readily detected in the supernatant (SN) of transfected insect 

cells, while no signal was obtained in the SN of untransfected cells (Figure 4.11D). 

Western blot with control antibody, unspecific sheep IgG, yielded no signal, showing 

that the anti-mouse PGRN detection antibody was specific. 
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Figure 4.11 – Recombinant mouse PGRN production in H5 insect cells. (A) Transfection efficiency 

was monitored by positive control transfection of the same vector containing a GFP-expressing gene 

resulting in approximately 50% of green fluorescent insect cells. (B) Mouse PGRN expression was 

controlled using S-Protein-HRP detection by Western blot resulting in a clear band at ~80 kD 

equivalent with the calculated molecular weight of mouse PGRN. (C) Silver-stained SDS-PAGE 

showed enrichment of a band at around 80 kD most likely depicting recombinant mouse PGRN. (D) 

Mouse PGRN expression was proven using anti-mouse PGRN Western blot of cell culture 

supernatants, which revealed a positive signal only in the samples harvested from transfected cells. 

4.1.8.2 PGRN degradation is defective during IC-activation in PR3/NE-

null neutrophils 

Since I observed a significant reduction of oxidative burst activity in PR3/NE-

deficient neutrophils compared to WT cells (Figure 4.8), I evaluated a potential link 

between PGRN cleavage and oxidative burst of neutrophils activated by ICs. To 

corroborate this, I analyzed the culture supernatant (SN) as well as the cellular pellet 

of IC-activated neutrophils for the presence of PGRN by Western blot (Figure 4.12). 

Indeed, the inhibitory, intact form of PGRN was detected only in the SN of PR3/NE-/- 

neutrophils. I also found a cellular pool of PGRN in all genotypes, which was more 

abundant in PR3/NE-/- cells than in WT and NE-/- neutrophils. This led me to 

conclude that PGRN was released and degraded by PR3 and NE during neutrophil 

activation in WT neutrophils, while this process was defective when PR3 and NE 

were both lacking. 
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Figure 4.12 – PGRN-degradation is defective during IC-activation, when both PR3 and NE are 

absent. Isolated mouse neutrophils were activated by ICs in vitro and tested for PGRN degradation by 

Western blot. In the cellular fraction, the PGRN (~80 kDa) signal was markedly increased in PR3/NE-

lacking cells compared with WT and NE single-deficient neutrophils. Intact PGRN was present in the 

supernatant (SN) of IC-activated PR3/NE-/- neutrophils only, not of WT or NE-/- cells. 

4.1.8.3 PGRN inhibits neutrophil activation by ICs in vitro 

To test if the reduced oxidative burst of PR3/NE-negative neutrophils can be caused 

by defective PGRN-degradation, I approximated the amount of cell-associated and 

secreted PGRN detected by Western blot (Figure 4.12). I tested whether these 

concentrations inhibited the IC-mediated oxidative burst of WT neutrophils, when 

added exogenously to the cells in vitro. Indeed, when 100 nM PGRN was applied to 

WT granulocytes activated by ICs, the ROS response was markedly decreased 

(Figure 4.13A). In positive control experiments, neutrophil activation was unaffected 

by PGRN-application when stimulated with PMA (Figure 4.13B). These data endorse 

the inhibitory effect of intact PGRN on innate immune cell activation and prove that 

defective PGRN-degradation can cause the reduced activation of PR3/NE-deficient 

neutrophils by ICs.  
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Figure 4.13 – PGRN inhibits neutrophil activation by ICs, but not by PMA. Exogenous 

administration of 100 nM PGRN significantly reduced ROS production of neutrophils activated by ICs 

(A), but not when activated by PMA (B). Data (mean ± SD) are representative of 3 independent 

experiments each conducted in triplicates. 

4.1.8.4 Both PR3 and NE cleave PGRN in vitro 

In previous studies, NE was proposed as the principle PGRN-converting protease. My 

experiments revealed an equally important role of PR3 in this pathway, since NE 

single-deficient neutrophils were not impaired to degrade PGRN (Figure 4.12). I 

further substantiated this concept by incubating recombinant PGRN with the purified 

proteases in vitro. Indeed, both enzymes completely degraded PGRN as early as 5 min 

after incubation, although the pattern of lower molecular cleavage products analyzed 

by silver-stained SDS-PAGE was not completely identical for both proteases (Figure 

4.14). Hence, both PR3 and NE represent potent converters of PGRN indicating 

biological redundancy of the proteases in this process. 
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Figure 4.14 – Both PR3 and NE are PGRN-converting enzymes. Silver-stained SDS-PAGE analysis 

of recombinant human PGRN incubated at a 1:10 enzyme/substrate ratio with purified human NE and 

recombinant mouse PR3. Both NE and PR3 completely cleaved ~80-kDa PGRN to smaller molecular 

GRN peptides within 5 min of incubation. 

4.1.8.5 PR3 and NE are the major PGRN-degrading enzymes of 

neutrophils 

To evaluate the significance of PR3 and NE as PGRN-degrading enzymes, I next 

incubated recombinant mouse PGRN with neutrophil lysates from WT and protease-

deficient mice. Anti-PGRN Western blot revealed that PGRN-degradation was only 

minimally reduced in the absence of NE, but strongly impaired when both PR3 and 

NE were lacking (Figure 4.15). This demonstrated that PR3 and NE are the major 

PGRN-converting enzymes of neutrophils, which is supported by previous 

experiments showing that CG, the third NSP of primary granules, does not cleave 

PGRN (Zhu et al., 2002). 



  Results 

57 

 

 

Figure 4.15 – PR3 and NE are the major PGRN degrading enzymes of neutrophils. Recombinant 

mouse PGRN was incubated with neutrophil lysates from WT, NE-/- and PR3/NE-/- mice for one hour 

at 37°C and analyzed by anti-mouse PGRN Western blot. Compared with untreated PGRN (control), 

WT neutrophils completely degraded PGRN. In NE-null neutrophils, a faint band of intact PGRN was 

detected, while in PR3/NE-deficient neutrophils, a distinct PGRN band remained, comparable to 

control. 

4.1.8.6 PGRN inhibits IC-mediated inflammation in vivo 

In search for in vivo evidence for the relevance of PGRN as an anti-inflammatory 

mediator, I exogenously administered 2 µg recombinant PGRN to the reverse, passive 

Arthus reaction. PGRN-treated lesions were directly compared to non-treated lesions 

in the same mouse (Figure 4.16). In both WT and PR3/NE-/- mice, neutrophil 

accumulation was significantly diminished at the PGRN-treated sites of IC-mediated 

inflammation, demonstrating that PGRN is a crucial inhibitory factor for neutrophilic 

inflammation. Neutrophil infiltration was reduced by a greater extent in the PR3/NE-

deficient animals (by 40%; p<0.01; Figure 4.16C) than in WT mice (by 25%; p<0.05; 

Figure 4.16B), which likely reflected the impact of the PGRN-degrading proteases in 

this pathway. 
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Figure 4.16 – PGRN is a potent inhibitor of IC-mediated inflammation in vivo. Recombinant 

mouse PGRN (2 μg) was intradermally applied with anti-OVA IgG, and the RPA was started in WT 

and PR3/NE-null mice (n = 5 per group). (A) After four hours, the effect of PGRN application was 

evaluated by histological analyses. Representative images show neutrophil infiltrates at the panniculus 

carnosus muscle (asterisks). Scale bars: 200 μm. (B and C) Effect of PGRN administration on 

neutrophil influx. In both WT (B) and PR3/NE-deficient (C) mice, neutrophil infiltration was 

significantly diminished at PGRN-treated sites compared with untreated sites. This effect appeared to 

be more pronounced in the protease-deficient mice. Data are mean ± SEM infiltrated neutrophils per 

HPF. *P < 0.05; **P < 0.01. 

4.1.8.7 PR3 and NE cleave PGRN during inflammation in vivo 

Finally, I aimed to analyze PGRN-degradation in PR3/NE-null mice during 

neutrophilic inflammation in vivo. For practical reasons, I harvested infiltrated 

neutrophils from the inflamed peritoneum four hours after casein injection and 

subjected the lysates of these cells to anti-PGRN Western blot. Intact, inhibitory 

PGRN was only found in PR3/NE-/- neutrophils, while it was not detectable in WT 

cells (Figure 4.17). These data proved that neutrophilic inflammation was 

accompanied by proteolytic removal of anti-inflammatory PGRN and that the process 

of PGRN-degradation is essentially impaired in vivo in the absence of PR3 and NE. 
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Figure 4.17 – PGRN-degradation is defective in PR3/NE-deficient mice during inflammation in 

vivo. Peritoneal inflammation was induced by i.p. injection of 9% casein in PBS and, after four hours, 

neutrophils isolated ex vivo from inflamed peritoneum of WT and PR3/NE-/- mice were analyzed by 

anti-mouse PGRN Western blot of concentrated neutrophil lysates. Intact PGRN was found abundantly 

in PR/NE-deficient, but not in WT neutrophils. Loading was controlled using anti-actin Western blot. 
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4.2 Autoimmunity against PR3 in small-vessel vasculitis 

The small-vessel vasculitides (SVV) Wegener´s granulomatosis (WG) and 

microscopic polyangiitis (MPA) are autoimmune diseases associated with 

autoantibodies, so called ANCAs, directed against the neutrophil antigens PR3 and 

MPO, respectively. Although known for many decades, the chronic autoimmune 

response against these neutrophil components is puzzling to the many scientists 

working on autoimmunity. In my studies, I analyzed whether a recently discovered, 

alternative cell death program of neutrophils, namely NETosis (Brinkmann et al., 

2004), might be implicated in the development and perpetuation of the humoral 

autoimmune response against PR3 and MPO. 

4.2.1 Autoantibodies from SVV patients trigger NETosis 

ANCAs can bind to PR3 or MPO on the neutrophil cell surface and trigger profound 

ROS formation in neutrophils (Falk et al., 1990). As ROS production was shown to be 

necessary for NET formation by activated neutrophils (Fuchs et al., 2007), I asked 

whether ANCA-activation of neutrophils may result in NETosis. To this end, isolated 

human neutrophils from the peripheral blood of healthy donors were primed with 

TNFα and were incubated with purified IgG from WG patients and from healthy 

donors as a negative control according to a widely used procedure established 

previously (Falk et al., 1990). After several time points, NET formation was 

determined by fluorescence microscopy analysis on the basis of morphological 

criteria such as faint and enlarged nuclei, colocalization of granular markers with 

nuclear DNA as well as extracellular DNA fiber production (Brinkmann et al., 2004; 

Fuchs et al., 2007). Using a DNA staining approach, I observed robust NET formation 

in ANCA-treated (Figure 4.18A), but not in control IgG-treated specimen, where the 

most of the nuclei still showed lobulated shape (Figure 4.18B), after 180 min of 

incubation. Quantitative analyzes of the samples revealed that ~13% of ANCA-treated 

neutrophils underwent NETosis, while in control IgG-treated specimen DNA release 

could only be detected in ~6% of neutrophils (Figure 4.18C). When immunostained 

for PR3, I observed the typical colocalization of granular proteins with the DNA of 
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NETs, but also inside the cell before NETs are released (Figure 4.19D). The effect 

was comparable between PR3 and MPO specific ANCAs. These observations are in 

line with previous reports of ANCA-induced neutrophil cell death, which was at that 

time interpreted as a dysregulated form of apoptosis (Harper et al., 2000). These 

findings that ANCAs actually trigger NETosis are consistent with previous studies 

showing increased levels of circulating nucleosomes in ANCA-associated SVV 

(Holdenrieder et al., 2006) and suggested that NETs may play a role in SVV.  

  

 

Figure 4.18 – ANCA-IgG trigger the formation of NETs. Isolated TNF-primed neutrophils analyzed 

by fluorescence microscopy for NET formation by DNA staining with Hoechst 33352 after treatment 

with IgG purified from patients with ANCA-associated SVV (n = 2; A) and from healthy individuals (n 

= 2; B). Scale bars represent 50 µm. The number of cells producing extracellular DNA fibers were 

quantified per microscopic field. ANCA-treated cells demonstrated robust NET formation after 180 

min incubation while control treatment only caused background levels of cells externalizing DNA (C). 

4.2.2 NETs display the autoantigens PR3 and MPO 

It has already been shown that the anti-microbial serine protease neutrophil elastase 

(NE), which is stored together with and PR3 and MPO in the primary granules of 

neutrophils, are associated with NETs (Brinkmann et al., 2004). Indeed, by in vitro 

immunofluorescence analysis of PMA-induced NETs, I detected substantial amounts 

of both PR3 and MPO on the extracellular chromatin fibers (Figure 4.19A-B). This 

indicates that both autoantigens PR3 and MPO are components of NETs and that 
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ANCA-induced NETosis results in the release of even more of the targeted 

autoantigens into the extracellular environment. 

Just recently, LL37 was shown to be the key factor in the autoimmune skin disease 

psoriasis that binds to self DNA and converts it into a dendritic cell stimulating 

mediator (Lande et al., 2007). Since LL37 also belongs to the neutrophilic arsenal of 

anti-microbial peptides and is stored in cytoplasmic granules that are known to fuse 

with the chromatin during NET formatin, I next tested whether LL37 is also present 

on NETs. By immunofluorescence, I found that LL37 is released during the process of 

NET formation and remains bound to the chromatin fibers (Figure 4.19C). However, 

the LL37 immunostaining revealed a punctual, rather than a homegenous, co-

localization with NETs suggesting that LL37 may bind to NETs after the release of 

the chromatin fibers.  
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Figure 4.19 – NETs display autoantigens PR3 and MPO as well as immunostimulatory LL37. 

NET formation by isolated neutrophils was induced using PMA (A-C) or using TNFα plus PR3-ANCA 

(D). Specimens were fixed and PR3 (A), MPO (B) and LL37 (C) were identified by 

immunofluorescence. PR3 (green) was found abundantly and strongly colocalized with the chromatin 

of NETs as identified using histone H2a:H2b:DNA immunostaining (red) (A). Large amounts of MPO 

(red) were found in strict colocalization with extracellular DNA fibers (blue) of NETs (B). LL37 

immunostaining (green) revealed a more punctual colocalization pattern with extracellular DNA (blue) 

of NETs (C). Co-localization of the granular marker PR3 with DNA. After 3 hours of ANCA exposure 

in the presence of TNFα, typical NETs were formed by neutrophils. Granular markers, here PR3 

(green) as detected using the mouse anti-PR3 monoclonal antibody 4A5, colocalized with the 

extracellular DNA (blue) of NETs (white arrow), but also inside the cells that did not undergo NETosis 

(white triangle) (D). Scale bar equals 10 µm. 

 

Moreover, using an ELISA approach I found that PR3 significantly bound to DNA 

coated but not to control protein (BSA) coated wells (Figure 4.20), indicating that 

PR3 on NETs can directly interact with DNA. This is in unison with previous results 

demonstrating that also NE and MPO can bind to DNA (Belorgey and Bieth, 1995; 

Murao et al., 1988). Hence, the granule proteins seem to associate with NETs by 

direct interaction with the high DNA content.  
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Figure 4.20 – PR3 binds to DNA. DNA was coated to microtiterplates and incubated with increasing 

PR3 concentrations to test DNA binding capacity of PR3. After washing, bound PR3 was identified by 

a specific immunoassay. PR3 demonstrated significant binding to DNA-containing wells, but not to 

only bovine serum albumin (BSA) coated wells, indicating that PR3 directly binds to DNA.  

4.2.3 ANCAs bind to NETs 

The experiments presented above clearly indicated that the autoantigens PR3 and 

MPO are constituents of NETs. The next question was whether the epitopes targeted 

by ANCAs were still accessible to autoantibodies when PR3 is bound to the DNA of 

NETs. Therefore, I prepared NETs in vitro using isolated human neutrophils 

stimulated by 25 nM PMA, fixed the specimen and performed an 

immunofluorescence staining using anti-PR3 monoclonal antibodies, a rabbit serum 

raised against PR3 as well as anti-PR3 containing ANCA sera from patients with 

Wegener´s disease. A DNA counterstaining identified the extracellular DNA fibers of 

the NETs. As depicted in Figure 4.21, all antibodies used in this assay showed 

reactivity with the extracellular DNA fibers, while no reactivity was observed when 

control sera from healthy individuals or mouse IgG isotype controls were used as the 

first antibody (data not shown). This indicated that the targeted epitopes are accessible 

to ANCAs when PR3 was bound to NETs. 
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Figure 4.21 – Anti-PR3 monoclonal antibodies, rabbit sera and ANCAs bind to NETs. 

Immunofluorescence analysis of NETs using rabbit anti-PR3 serum (A), anti-PR3 mouse mAbs clones 

6A6 (B), 3A6 (C) and 4A5 (D) as well as the ANCA sera from two WG patients (E-F) bind to PR3 on 

PMA-induced NETs to a comparable degree. Scale bar represents 25 µm. 

 

4.2.4 Identification of NETs displaying autoantigens in patients with 

autoimmune SVV 

To find evidence that NETosis actually occurs in autoimmune vasculitis patients, I 

next analyzed kidney biopsies from SVV patients that suffer from glomerulonephritis, 

i.e. non-infectious inflammation of the kidneys with profound neutrophil infiltration, 
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which is a common hallmark of both WG and MPA (Kallenberg et al., 2006). Needle 

biopsies from affected kidneys of five patients with WG and two patients with MPA 

(kindly provided by Dr. Walter Back, Pathology Department of the Klinikum 

Mannheim) were analyzed by in situ immunofluorescence microscopy at the Max 

Planck Institute of Infectious Biology in Berlin in collaboration with Dr. Volker 

Brinkmann. NETs were defined by co-localization of histone protein, DNA and 

granular markers using antibodies for histone protein, MPO or NE and DNA dyes. 

This allows for differentiating NETs from extracellular DNA formed by necrotic 

cells, which would not display granular markers. Indeed, NET structures were found 

both in patients with WG and MPO (Fig. 4.22A-B). The chromatin fibers co-

localizing with granular markers were mostly present in close proximity to infiltrated 

neutrophils inside the glomeruli of the kidney. NETs displaying the targeted 

autoantigens were especially abundant in cases with severe glomerulonephritis lesions 

and were located inside glomeruli with strong neutrophil infiltration (Figure 4.22C-

D).  
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Figure 4.22 - NETs deposition in the inflamed kidney of patients with autoimmune SVV. Biopsies 

from the inflamed kidneys of SVV patients were subjected to immunofluorescence analysis. (A) NETs 

were identified by colocalization of DNA (blue), histone (red) and the granular marker neutrophil 

elastase (NE; green). Tissue structure was visualized by differential interference contrast (DIC). (B) 

Higher magnification of boxed area revealed co-localization of all three markers (white arrows) 

indicating the formation of NETs in the inflamed kidney. (C) Immunostaining of MPO (green) as one 

of the principle autoantigens in SVV on NETs in situ. An extented area showing colocalization of 

DNA, histone and MPO (white dotted area) indicating that NETs display the targeted autoantigen 

extracellularly in the inflamed kidneys of patients suffering from SVV. Colocalization of MPO (red), 

PR3 (green) and DNA (blue) identifies these antigen deposits as components of NET structures inside 

the glomerulus (D). Scale bars equal 25 µm. 
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As depicted in Figure 4.19C, I found that LL37 partially co-localized with NETs in 

vitro. Importantly, the immunostimulatory peptide LL37 was also found by in situ 

immunofluorescence in the inflamed kidney, where it was located to neutrophil-

enriched sites and partially colocalized with NETs (Figure 4.23).  

 
Figure 4.23 – LL37 is present on NETs in the affected kidney. Immunostaining in situ revealed the 

presence of LL37 (green) in the affected glomeruli of SVV patients (A). Blow up of boxed area shows 

extracellular colocalization of LL37 (green), DNA (blue) and NE (red) indicating NET (white arrow) 

that are coated with LL37 and other granular components (B). Scale bar equals 25 µm. 

 

4.2.5 Increased levels of nucleosomes in urine during active disease 

In a previous study, strongly increased levels of circulating nucleosomes were 

detected in sera from patients with ANCA-associated vasculitis (Holdenrieder et al., 

2006). As I observed NET formation in the affected kidney, I assumed that some of 

the NET-derived nucleosomes may locate into the urine due to leakiness of the 

inflamed kidney. I detected NET formation especially in association with strong 

neutrophil infiltration in the kidney. Therefore, I presumed that nucleosomes might be 

detectable also in the urine of patients with active disease rather than during 

remission. In collaboration with Prof. Samtleben from the Klinikum Großhadern in 

Munich, urine and serum samples from one patient suffering from Wegener´s 

granulomatosis with active disease and one with partial remission and compared to 

patients in remission (n = 6) were collected. In support of my hypothesis, nucleosome 

levels were increased in the urine from an untreated patient with active disease and a 

patient in partial remission, while normal levels nucleosomes were found in the urine 
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of six patients in remission (Figure 4.24A). However, it was not evident whether 

these nucleosomes actually derive from NETs, as they may also be produced by 

inflammation associated necrosis of tissue cells. Therefore, I applied a nucleosome-

capturing approach using an anti-histone antibody and tested for MPO activity 

associated with the nucleosomes using the TMB substrate. I found nucleome-

associated MPO activity only in the plasma from one untreated patient with active 

WG (Figure 4.24.B). This was the first prove of principle that nucleosomes attached 

with granular proteins can circulate during the active phase of the disease. These 

complexes may be derived from NETs that were digested by DNAses present in the 

blood and tissue. 

 
 
Figure 4.24 – Nucleosome levels in the urine of patients with ANCA-associated vasculitis. 

Nucleosomes were measured using the cell death detection ELISA (Roche) in urine samples of 

Wegener´s granulomatosis patients in remission (Rem; n = 6), in partial remission (n = 1) and an 

untreated patient with active disease (n = 1). Samples from healthy donors are below the cut-off (red 

line). In the urine, all six samples from patients in remission yielded negative results (below cut-off), 

while both samples from an untreated patient and a patient in partial remission showed increased 

nucleosome levels (A). In the plasma samples, some of the remissioned patients showed increased 

nucleosomes, but the highest values were found in the samples from the untreated patient and the 

patient in partial remission (B). When MPO activity was measured in the whole plasma using TMB 

substrate, all of the sera showed comparable levels of peroxidase activity, while only in plasma from an 

untreated patient, nucleosome-associated MPO activity was found (B). 
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4.2.6 Circulating MPO-DNA complexes are increased during active 

disease 

The half-life of the activity of MPO in the serum is difficult to estimate, and I 

reasoned that measurement of MPO enzymatic activity attached to nucleosomes may 

not be a procedure that yields optimal sensitivity. Therefore, I applied another capture 

ELISA approach, which immobilizes MPO from patient sera using an anti-MPO 

monoclonal antibody as the capture antibody and subsequently, after stringent 

washing of the wells, identifies DNA bound to MPO using a peroxidase-labeled anti-

DNA monoclonal antibody. Indeed, using this procedure, I found a number of SVV 

patient sera that were positive for circulating MPO-DNA complexes. The sera from 

healthy donors (n = 3) and the sera from multiple sclerosis (MS) patients (n = 5) were 

completely negative in this assay. While the sera from SVV patients in remission (n = 

9) only showed slight reactivity in this set-up, sera from patients in partial remission 

(n = 5) showed medium reactivity and from patients with active disease (n = 5) were 

highly positive (Figure 4.25). This showed that circulating nucleosomes in SVV 

patients were derived – at least in part – from NETs, since they displayed neutrophil 

granular markers, in these case the autoantigen MPO, attached to them.  
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Figure 4.25 – MPO-DNA complexes circulating in the sera of SVV patients. Sera were incubated 

on anti-MPO coated microtiter plates and DNA attached to MPO was identified using peroxidase-

labeled anti-DNA monoclonal antibody. Averaged values from duplicate measurements at OD at 405 

nm are shown. Red horizontal bars represent the average OD of each group. Sera from healthy donors 

(n = 3) and from multiple sclerosis (MS) patients (n = 5) were negative, while patients with SVV with 

remission (n = 9) were marginally positive, with partial remission (n = 5) showed medium reactivity 

and with active disease (n = 5) were highly positive. 
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5 Discussion 

5.1 Proteolytic control of inflammation by PR3 and NE  

Chronic inflammatory and autoimmune diseases are often perpetuated by continuous 

neutrophil infiltration and activation. According to the current view, the role of 

neutrophil serine proteases (NSPs) in these diseases is mainly associated with 

proteolytic tissue degradation after their release from activated or dying neutrophils. 

However, recent observations suggest that NSPs such as CG may contribute to non-

infectious diseases in a more complex manner, namely as specific regulators of 

inflammation (Pham, 2006). In the present study, I demonstrated that PR3 and NE 

cooperatively fulfill an important pro-inflammatory role during neutrophilic 

inflammation. PR3 and NE directly enhanced neutrophil activation by degrading 

oxidative-burst suppressing PGRN. These findings support the use of specific serine 

protease inhibitors as anti-inflammatory agents (Kessenbrock et al., 2008). 

Much attention has been paid to the degradation of extracellular matrix components 

by NSPs. Therefore, I expected that ablation of both PR3 and NE would potentially 

cause impaired neutrophil extravasation and interstitial migration. Surprisingly, I 

found that the proteases are principally dispensable for these processes, as PR3/NE-

depleted neutrophils migrated normally through a dense, three-dimensional collagen 

matrix in vitro (Figure 4.4) and demonstrated regular extravasation in vivo when 

phorbol-esters (croton oil) were applied (Figure 4.3). This agrees with recent findings 

that neutrophils preferentially and readily cross the barrier of the endothelial basement 

membrane through regions of low matrix density in the absence of NE (Wang et al., 

2006).  

Regarding these data, it was striking to find that PR3 and NE were required for the 

inflammatory response to locally formed ICs in the skin (Figure 4.5 and 4.6). This 

suggested that the enzymes may be specifically involved in the response of 

neutrophils to ICs. Indeed, it turned out in the following experiments that even 

isolated PR3/NE-deficient neutrophils were significantly hampered to perform an 

oxidative burst after IC-stimulation in vitro (Figure 4.8A), showing that the proteases 
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directly enhanced the activation of neutrophils also in the absence of extracellular 

matrix. However, when receptor-mediated signal transduction was “bypassed” by 

means of phorbol ester (PMA), neutrophils from PR3/NE-deficient mice performed a 

normal oxidative burst (Figure 4.8B) indicating that the function of the phagocyte 

oxidase (phox) complex was not altered in the absence of PR3 and NE. These findings 

substantiated a novel paradigm that all three serine proteases of azurophilic granules 

(CG, PR3 and NE) potentiate a positive autocrine feedback on neutrophil activation, 

e.g. after their release in response to IC encounter.  

In contrast to CG, the highly related proteases PR3 and NE cooperated in the 

effacement of anti-inflammatory progranulin (PGRN) leading to enhanced neutrophil 

activation. Previous studies already demonstrated that PGRN can be a potent inhibitor 

of the adhesion-dependent oxidative burst of neutrophils in vitro, which can be 

degraded by NE (Zhu et al., 2002). Here, I showed that PR3 and NE play an equally 

important role in the regulation of PGRN function. NE single-deficient neutrophils 

were sufficiently able to degrade PGRN. Only in the absence of both PR3 and NE, 

PGRN-degradation was significantly impaired resulting in the accumulation of anti-

inflammatory PGRN during neutrophil activation in vitro (Figure 4.15) and 

neutrophilic inflammation in vivo (Figure 4.17). This clearly showed that PR3 has to 

be regarded as an important PGRN-degrading enzyme and it also highlighted the 

similarity and – in this case even – redundancy of PR3 and NE in their physiological 

functions.  

PGRN was previously demonstrated to be a crucial modulator of inflammation and 

the wound healing process (He et al., 2003; Zhu et al., 2002), but role of PGRN in 

non-infectious inflammatory models in vivo was still unclear. In my work, I firstly 

provided in vivo evidence for the crucial function of PGRN as an inflammation-

suppressing mediator, since administration of recombinant PGRN potently inhibited 

the neutrophil influx to sites of IC formation (Figure 4.16). Hence, the cooperative 

degradation of PGRN by PR3 and NE appears to be a decisive step for the 

establishment of neutrophilic inflammation. 

The molecular mechanism of PGRN function is not yet completely understood, but it 

seems to interfere with integrin (CD11b/CD18) outside-in signaling by blocking the 

function of pyk2 and thus dampens adhesion-related oxidative burst even when added 

after the initial lag phase of oxidase activation (Zhu et al., 2002). PGRN is produced 
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by neutrophils and pre-stored in highly mobile secretory granules (Lin et al., 2007). It 

was recently shown that PGRN can bind to heparan-sulfated proteoglycans (Gonzalez 

et al., 2003), which are abundant components of the endothelial basement membrane 

(EBM) and various cell surfaces including those of neutrophils. Also PR3 and NE are 

known to interact with heparan-sulfates on the outer membrane of neutrophils, where 

the enzymes seem to be protected against protease inhibitors (Campbell et al., 2000; 

Owen et al., 1995; Campbell and Owen, 2007). These circumstantial observations 

support the notion that PGRN cleavage by PR3/NE takes place at the pericellular 

microenvironment of the neutrophil cell surface.  

Impaired outside-in signaling most likely reduced the oxidative burst in PR3/NE-

deficient neutrophils adhering to ICs. In support of this hypothesis, I excluded an 

altered response to TNFα priming and reduced adhesion to immobilized ICs (Figure 

4.9). MPO content and processing was not changed either in PR3/NE-null neutrophils 

(Figure 4.2A) and hence the inhibitory effect of MPO on phox activity as previously 

discussed (Locksley et al., 1983; Rosen and Klebanoff, 1976) does not appear to be 

stronger in neutrophils that are lacking PR3/NE. As there was no difference in the 

“lag phase” of the oxidative burst, initial IC-triggered receptor activation was 

probably not affected by either PRGN or PR3/NE. My concept is consistent with all 

these observations and takes into account that PGRN unfolds its suppressing effects in 

the second phase, when additional membrane receptors, endogenous PGRN and some 

PR3/NE from highly mobile intracellular pools are translocated to the cellular surface. 

The decline and cessation of ROS production suggested that outside-in signaling was 

not sustained and that active oxidase complexes were no longer replenished in the 

absence of PR3 and NE. The current state of findings, however, does not permit to 

exclude other potential mechanisms like an accelerated disassembly of the active 

oxidase complex.  

During cutaneous inflammation, PGRN is provided by multiple sources including skin 

cells and neutrophils themselves, which produce and release PGRN as they infiltrate 

the tissue (He et al., 2003; Lin et al., 2007). Thus, PGRN represents a prominent 

factor to control extravascular neutrophil function during skin inflammation. 

Proteolytic processing of PGRN was previously shown to generate granulin (GRN) 

peptides that accumulated in inflammatory exudates, e.g. during casein-induced 

peritonitis (Couto et al., 1992). In contrast to the precursor PGRN, these GRN 
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peptides might be pro-inflammatory and induce the release of neutrophil attracting IL-

8 from epithelial cells (Zhu et al., 2002). In the absence of PR3 and NE, neutrophils 

are no longer able to provide the switch from inflammation-suppressing PGRN to pro-

inflammatory GRN peptides. The activation of neutrophils by ICs is a decisive event 

in the cascade of reactions during the reverse, passive Arthus reaction. IC-activated 

neutrophils are known to release cytokines and chemokines and thus establish an 

inflammatory milieu. I hypothesize that the local persistence of PGRN dampens 

neutrophil activation and release of ROS as well as other inflammatory mediators in 

response to ICs, which results in diminished recruitment of further neutrophils as 

observed in PR3/NE-lacking mice. Hence, defective PGRN-degradation can account 

for the impaired inflammation in the absence of PR3 and NE (illustrated in Figure 

5.1).  
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Figure 5.1 – Proposed function of PR3 and NE in IC-mediated inflammation. TNF-α–primed 

neutrophils extravasate from blood vessels, translocate PR3/NE to the cellular surface, and discharge 

PGRN to the pericellular environment (1). During transmigration of interstitial tissues (2), neutrophil 

activation is initially suppressed by relatively high pericellular levels of antiinflammatory PGRN (green 

shading), which is also produced locally by keratinocytes and epithelial cells of the skin. Until IC 

depots are reached, neutrophil activation is inhibited by PGRN. Surface receptors (e.g., Mac-1) 

recognize ICs, which results in signal transduction (black dotted arrow) and activation of the phox. The 

molecular pathway of PGRN-mediated inhibition is not completely understood, but it may interfere 

with integrin signaling after IC encounter (green dotted line inside the cell). Adherence of neutrophils 

to ICs (3) further increases pericellular PR3 and NE activity. PR3 and NE cooperatively degrade PGRN 

in the early stage of neutrophilic activation to facilitate optimal neutrophil activation (red shading), 

resulting in sustained integrin signaling (red arrow) and robust production of ROS by the phox system. 

Subsequently, neutrophils release ROS together with other proinflammatory mediators and chemotactic 

agents, thereby enhancing the recruitment of further neutrophils and establishing inflammation (4). In 

the absence of PR3/NE, the switch from inflammation-suppressing (2) to inflammation-enhancing (3) 

conditions is substantially delayed, resulting in diminished inflammation in response to ICs (4). 
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Interestingly, PGRN was recently identified as a key factor in dementia. Mutations in 

the PGRN gene on chromosome 17 and the associated haploinsufficiency of PGRN in 

the brain was linked with the development of a frontotemporal form of dementia in 

humans (Baker et al., 2006; Cruts et al., 2006). These findings were mainly explained 

by PGRN working as a neuronal survival factor (Baker et al., 2006). However, since 

PGRN is an important suppressor of inflammation in the periphery, the role of PGRN 

in dementia may also be linked with neuroinflammation (Ahmed et al., 2007). 

Hypothetically, lowered levels of the anti-inflammatory factor PGRN in the brain may 

cause subtle but chronic inflammatory conditions that lead to dementia as a long-term 

consequence. In this context, my findings of PR3/NE-mediated shedding of PGRN 

might also be important for dementia and certain neuroinflammatory conditions.  

NSPs are strongly implicated as effector molecules in a large number of destructive 

diseases such as lung emphysema or the autoimmune blistering skin disease bullous 

pemphigoid (Liu et al., 2000a; Liu et al., 2000b; Shapiro, 2002; Shapiro et al., 2003). 

Normally, PR3/NE activity is tightly controlled by high plasma levels of α1-

antitrypsin. This balance between proteases and protease-inhibitors is disrupted in 

patients with genetic α1-antitrypsin deficiency, which represents a high risk factor for 

the development of lung emphysema and certain autoimmune disorders (Stoller and 

Aboussouan, 2005). The pathogenic effects of NSPs in these diseases have so far been 

associated with tissue destruction by the proteases after their release from dying 

neutrophils. Our findings show that PR3 and NE are already involved in much earlier 

events of the inflammatory process, since the enzymes directly regulate cellular 

activation of infiltrating neutrophils by degrading inflammation-suppressing PGRN. 

This concept is further supported by previous studies showing increased inflammation 

in mice lacking serine protease inhibitors such as SERPINB1 or SLPI (Benarafa et al., 

2007; Ashcroft et al., 2000). Blocking PR3/NE activity using specific inhibitors 

therefore represents a promising therapeutic strategy to treat chronic, non-infectious 

inflammation. Serine protease inhibitors as anti-inflammatory agents can interfere 

with the disease process at two different stages, since they attenuate both early events 

of neutrophil activation as well as the proteolytic tissue injury caused by released 

NSPs. 
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5.2 Autoimmunity against PR3 in small-vessel vasculitis 

Autoimmune diseases are one of the leading causes of death among young and middle 

aged women in the United States (Cooper and Stroehla, 2003). In many of these 

diseases, self-reactive antibodies are directly associated with the autoinflammatory 

disorder. For instance, anti-neutrophil cytoplasm autoantibodies (ANCAs) specifically 

occur in patients with small-vessel vasculitis (SVV), where they are directed against 

granular proteins of neutrophil granulocytes, namely against PR3 in Wegener´s 

granulomatosis (WG) and MPO in microscopic polyangiitis (MPA) (Bosch et al., 

2006). The levels of circulating ANCAs are most prominent in the generalized stage 

of the disease, which mostly affects the glomeruli of the kidneys (glomerulonephritis). 

If left untreated in patients, SVV rapidly progresses and is lethal within months. The 

pathogenic effect of ANCAs was recently supported by animal models of the diseases 

(Pfister et al., 2004; Xiao et al., 2002). The widely accepted concept that ANCAs 

activate tumor necrosis factor α (TNFα)-primed neutrophils relates to their 

pathogenicity (Falk et al., 1990), however, it does not explain the mechanism that 

drives the sustained and progressive autoimmune response against the two neutrophil 

antigens PR3 and MPO. 

Here, I investigated whether a recently discovered, alternative cell death program of 

neutrophils, called NETosis (Brinkmann et al., 2004), is implicated in ANCA-

associated autoimmunity. In this work, I found several lines of evidence that support a 

role of NETs, which consist of extracellular chromatin fibers displaying the 

autoantigens PR3 and MPO, in the autoimmunity against self proteins of neutrophil 

granulocytes. 

NETosis appears to be distinct from apoptosis and necrosis and was recently shown to 

depend critically on the production of ROS (Fuchs et al., 2007). As ANCAs are 

known to bind to PR3 or MPO on the neutrophil cell surface and thereby trigger 

profound ROS formation in neutrophils (Falk et al., 1990), I wondered whether 

ANCA-activation of neutrophils may result in NETosis. To this end, isolated human 

neutrophils from the peripheral blood of healthy donors were primed with TNFα and 

were incubated with purified IgG from SVV patients and from healthy donors as 
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negative controls according to a widely used procedure established previously (Falk et 

al., 1990). As shown in Figure 4.18, I indeed observed that ANCA, but not IgG from 

healthy individuals, trigger the formation of NETs by TNFα-primed neutrophils. This 

strongly suggested that NETosis might play a role in ANCA-associated vasculitis.  

In their seminal study in 2004, Brinkmann and colleagues have found that neutrophil 

elastase (NE) is an abundant component of the extracellular chromatin fibers of NETs 

(Brinkmann et al., 2004). Since both autoantigens MPO and PR3 are stored in the 

same cytoplasmic compartments of neutrophils as NE, namely the azurophilic 

granula, I next asked whether PR3 and MPO were also components of NETs. By 

immunofluorescence, large amounts of both PR3 and MPO were detected clearly co-

localizing with the extracellular chromatin/DNA of NETs (Figure 4.19). Importantly, 

the targeted epitopes were readily accessible also when PR3 was bound on NETs 

(Figure 4.21). These data strongly support the notion that NETosis may be an 

adequate source of antigen to nourish the autoimmune response against these – 

normally intracellular – self proteins.  

A strikingly high proportion of autoantibodies developed in autoimmune diseases 

such as systemic lupus erythematosus (SLE) are directed against nucleic acid-binding 

proteins (Marshak-Rothstein, 2006). A number of subsequent studies linked this 

observation with the capacity of RNA and DNA to activate toll-like receptors (TLRs) 

in B cells, dendritic cells or macrophages (Lau et al., 2005; Leadbetter et al., 2002; 

Means et al., 2005; Vollmer et al., 2005). Therefore, the high amount of extracellular 

DNA present in NETs is potentially immunostimulatory, as it may activate the TLR9 

pathway in immune cells and thereby drive the immune response against the NET-

associated autoantigens PR3 and MPO.  

In support of this view, I also found that an antimicrobial peptide of neutrophils, 

called LL37, was formed and released during NET formation and was enriched 

around chromatin fibers (Figure 4.19). LL37 was recently shown to be the key factor 

in converting self-DNA into an activator of dendritic cells in psoriasis, an 

autoimmune disease of the skin (Lande et al., 2007). Consequently, I suggest that the 

self-chromatin of NETs in conjunction with LL37 acts similarly on dendritic cells and 

B cells in SVV. Clearly, the combination of ANCA, the respective autoantigens 

attached with TLR-activating chromatin must be regarded as a potentially 

immunogenic composition. 
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Most importantly, I sought to find in vivo evidence for the occurrence of NETosis in 

patients with autoimmune vasculitis. I focused my attention to patients with non-

infectious ANCA-associated glomerulonephritis, a clinical manifestation of both 

forms of the disease Wegener´s granulomatosis and microscopic polyangiitis. In 

collaboration with Dr. Volker Brinkmann from the Max Planck Institute of Infectious 

Biology in Berlin, we analyzed needle biopsies from affected kidneys of five patients 

with Wegener´s disease and two patients with microscopic polyangiitis by in situ 

immunofluorescence microscopy. Using a combination of antibodies for histone 

protein, MPO or NE and DNA dyes, we were able to discriminate NETs from DNA 

released in the course of necrosis. Indeed, structures of different sizes composed of 

extracellular chromatin and granular proteins were found in the kidney biopsies 

(Figure 4.21). These NETs displaying the targeted autoantigens were especially 

abundant in cases with severe glomerulonephritis lesions and strong neutrophil 

infiltration. Importantly, also the immunostimulatory peptide LL37 was present in the 

inflamed kidney, where it was located to neutrophil-enriched sites and partially 

colocalized with NETs (Figure 4.23). Chromatin fibers of NETs in conjunction with 

disease specific autoantigens were mainly localized in close proximity to infiltrated 

neutrophils in affected glomeruli. These findings showed that NETosis indeed occurs 

in SVV patients even in the absence of infection, as glomerulonephritis is known as a 

non-infectious inflammation of the kidney. My in vitro data strongly suggests that the 

anti-PR3 and anti-MPO ANCAs actually stimulated the neutrophils to form NETs in 

these patients. 

In the kidney tissue, a number of DNAses are expressed that swiftly degrade 

extracellular DNA depositions that derive from NETs or necrotic cells during 

inflammation. Therefore, it was surprising to find – in some areas – abundant NET 

deposition in the inflamed kidney. Presumably, much larger amounts of NETs are 

produced and immediately degraded by DNAses present in the kidney and are thus 

not detectable anymore. The degradation of chromatin by DNAses results in 

production of smaller nucleosomes consisting of DNA and histone proteins. 

Strikingly, in a previous study, strongly increased levels of circulating nucleosomes 

were detected in sera from patients with ANCA-associated vasculitis (Holdenrieder et 

al., 2006). My results suggest that the circulating nucleosomes may – at least in part – 

derive from ANCA-induced NETs. As I observed NET formation in the affected 

kidney, I assumed that some of the NET-derived nucleosomes may locate into the 
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urine due to leakiness of the inflamed kidney. I detected NET formation especially in 

association with strong neutrophil infiltration, which happens particularly during the 

active phase of the disease. In line with this notion, I found increased nucleosome 

levels in the urine samples from one untreated patient with active disease and one 

patient in partial remission, in remission (n = 6) were negative (Figure 4.24). I also 

found MPO activity attached to circulating nucleosomes in an untreated SVV patient 

(Figure 4.24B) and increased MPO:DNA complexes circulating in the sera of SVV 

patients especially during active disease (Figure 4.25). These observations showed 

that the circulating nucleosomes in SVV patients were most likely derived from 

NETosis, since they displayed granular markers attached to them.  

I hypothesize that ANCAs stimulate neutrophils during the active phase of disease to 

release NETs. These NETs display large amounts of the targeted autoantigens PR3 

and MPO in connection with TLR9 activating chromatin. The uptake of these 

immunostimulatory complexes by immune cells such as B cells or dendritic cells 

might be mediated by LL37 (Lande et al., 2007). Somwhere in the patient body, 

autoreactive B cells are activated by the circulating autoantigen:DNA complexes in an 

TLR-dependent manner and therefore produce more of the pathogenic autoantibodies. 

This results in a vicious circle driving the autoimmune response in patients with SVV 

(Figure 5.2). 
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Figure 5.2 – Hypothetical scheme depicting the proposed circulus vitiosus in patients with small-

vessel vasculitits. (1) ANCA bind to MPO/PR3 on the cell surface to induce neutrophil activation. (2) 

This leads to oxidative burst, local adhesion and extravasation of neutrophils within capillary loops of 

glomeruli, which subsequently results in perivascular inflammation in the kidney. (3) Inside the 

glomerulus, ANCA-activated neutrophils release NETs decorated with the target autoantigens (red 

circles) and with immunostimulatory LL37 (green diamonds) (4) Renal inflammation causes leakiness 

of the glomerulus resulting in dissemination of ANCA-NET immune complexes to the regional lymph 

nodes and the blood stream. (5) Small amounts of ANCA-NET immune complexes may suffice to 

drive autoantibody production by autoreactive B cells via FcR involvement plus chromatin-TLR9 

activation. (6) Further production of circulating ANCAs closes the vicious circle in patients with SVV 

(1). 
 

In summary, these studies showed for the first time that NETs occur in an 

autoinflammatory disorder in the absence of microbial infection, namely triggered by 

autoreactive antibodies that activate neutrophils. NETs are the result of an unusual 

cell death program and are suited to enhance and perpetuate the pre-existing 

autoimmune response and may also contribute to the initial break of tolerance against 

neutrophil autoantigens. It would be interesting to analyze the current in vivo mouse 

models of the diseases for the production of NETs. According to my hypothesis, 

pattern recognition of self DNA by toll-like receptors might be a crucial event in the 

disease course of SVV. Thus, another interesting experiment would be to interfere 
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with TLR9 signaling genetically or pharmacologically in the established mouse 

models of SVV. Further study is required to find out whether suppression of NET 

formation, for instance using ROS scavengers (Fuchs et al., 2007), can abrogate 

chronic, humoral autoimmunity versus PR3 and MPO and, therefore, may be suitable 

for therapy to help patients suffering from ANCA-associated SVV.  
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7 Abbreviations and Initialisms 

 

AAPV-pNa Alanine-alanine-proline-valine-p-nitroanilide 

ABTS 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) 

ADN Adipsin (also known as complement factor D) 

AKH Adipokinetic hormone 

ANCA Anti-neutrophil cytoplasm autoantibodies 

ATP Adenosinetriphosphate 

BB Blocking buffer 

bp basepair 

BSA Bovine serum albumin 

CD Cluster of differentiation 

CG Cathepsin G 

CGD Chronic granulomatous disease 

DHR Dihydrorhodamine 

DIC Differential interference contrast 

DNA Desoxyribonucleic acid 

dNTP Desoxy-nucleotide-triphosphate 

DTNB 5-5′-Dithiobis-2-nitrobenzoic acid 

EBM Endothelial basement membrane 

ECL Enhanced chemiluminescence 

EDTA Ethylen-diamine-tetra-acetate 

ELISA Enzyme linked immunosorbent assay 

EtBr Ethidiumbromide 

FACS Fluorescence activated cell sorting 

F-actin Filamentous actin 

FcγR Fc gamma receptor 

FITC Fluorescein-5-isothiocyanate 

GRN Granulin 

H&E Hematoxylin and eosin 

HPF High power field 

hr hour 
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HRP Horseradish peroxidase 

i.p. Intra-peritoneal 

i.v. intravenous 

IC Immune complex 

Ig Immunoglobulin 

IL Interleukin 

kb Kilobase 

kD Kilo Dalton 

LN Laminin 

LPS Lipopolysaccharide 

M Molar 

MPA Microscopic polyangiitis 

MPO Myeloperoxidase 

NE Neutrophil elastase 

NET Neutrophil extracellular trap 

nm Nanometer 

NSP Neutrophil serine protease 

OD Optical density 

OVA Ovalbumin 

PBS Phosphate buffered saline 

PCR Polymerase chain reaction 

PFA Para-formaldehyde 

PGRN Progranulin 

Phox Phagocyte oxidase 

PKC Protein kinase C 

PMA Phorbol 12-myristate 13-acetate 

PMN Polymorphonuclear cell 

PMSF phenylmethanesulphonylfluoride 

PR3 Proteinase 3 

RNA Ribonucleinic acid 

ROS Reactive oxygen species 

RPA Reverse, passive Arthus reaction 

rpm Rounds per minute 

RT Room temperature 

SD Standard deviation 
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SDS-PAGE sodium dodecyl sulphate polyacrylamide gel electrophoresis 

SEM Standard error of the mean 

SN supernatant 

SVV Small-vessel vasculitis 

TLR Toll-like receptor 

TMB 3.3’, 5.5’-tetramethylbenzidine 

TNFα Tumor necrosis factor alpha 

U Unit 

UV Ultraviolett 

WB Western blot 

WG Wegener´s granulomatosis 

WT wildtype 
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