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Einleitung 1 
 

1 EINLEITUNG 
 

1.1 Überblick 
 
Der menschliche Organismus ist der ständigen Bedrohung durch Mikroorganismen ausge-

setzt. Zu deren Abwehr steht ihm ein potentes Immunsystem zur Verfügung, das sich aus 

verschiedenen Mechanismen und Zellen zusammensetzt. Die effektive Unterscheidung 

von „normalem Selbst“ – also eigenen, endogenen Strukturen – und „gefährlichem Fremd“ 

– also körperfremden, eindringenden oder „abnormalen“ Strukturen, wozu auch veränderte 

Zellen wie Tumorzellen gehören, – ist dabei eine wesentliche Vorraussetzung, um die Aus-

lösung einer Immunantwort und den Erhalt körpereigener Toleranz zu ermöglichen. Dies 

ist von essentieller Bedeutung, um bei einer effektiven Immunantwort den Organismus vor 

einer Zerstörung durch das eigene Immunsystem zu bewahren.  

 

Der Körper bedient sich zur effektiven Immunantwort gegen eindringende Pathogene der 

konzertierten Aktion von angeborenem und adaptivem Immunsystem. Schlüsselfunktionen 

des angeborenen Systems beinhalten zum einen die Fähigkeit, Pathogene und Gewebe-

schäden rasch zu erkennen, vorhandene Gefahren an Zellen des adaptiven Immunsys-

tems zu melden und eine erste Abwehrlinie zu bilden (Matzinger, 1994). Die charakteristi-

schen Merkmale des adaptiven Immunsystems sind die Fähigkeit zur klonalen Expansion 

und zum immunologischen Gedächtnis (Janeway, 2001).  

 

Dendritische Zellen sind Antigen-präsentierende Zellen mit der einzigartigen Eigenschaft, 

primäre effektive und spezifische Immunantworten induzieren zu können (Banchereau, 

2000;  Banchereau, 1998), indem sie zwischen angeborenem und adaptivem Immunsys-

tem vermitteln. 

 

Dendritische Zellen sind andererseits auch in der Lage, eine tolerogene Antwort, d.h. eine 

Toleranz von Effektorzellen gegenüber einem Antigen zu induzieren (Steinman, 2003). 

Welcher Weg – immunogen oder tolerogen gegenüber einem Fremdstoff – weiter beschrit-

ten wird, hängt Ergebnissen aktueller Forschung nach entscheidend von bestimmten Ge-

fahrensignalen (danger signals) ab, deren Anwesenheit zu einer Aktivierung/Immunantwort 

beiträgt (Shortman, 2001). Zu diesen danger signals gehören zum einen körperfrem-

de/exogene Stimuli wie zum Beispiel Bakterien- und Virenbestandteile, zum anderen aber 

auch körpereigene/endogene danger signals wie beispielsweise Entzündungsmediatoren 

oder von geschädigten Zellen freigesetzte Substanzen. Diese Substanzen werden über 

spezielle Rezeptoren erkannt. Diese als danger model bezeichnete Hypothese hat die 
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Vorstellung abgelöst, dass das Immunsystem lediglich zwischen körpereigenen und frem-

den Mustern unterscheidet (Matzinger, 2002). Zu den endogenen Gefahrensignalen zählt 

man auch extrazelluläre Nukleotide (Gallucci, 1999). 

 

Effekte von extrazellulären Nukleotiden wurden initial bei der Thrombozyten-Aggregation, 

bei der Kontraktion von Herz- und glatter Muskulatur, der Zellproliferation und der Neuro-

transmission beobachtet (Burnstock, 1997). Erste Hinweise, dass das Adeninnukleotid 

Adenosin-5’-triphosphat (ATP) eine Mediatorfunktion auch im Immunsystem einnimmt, lie-

ferten 1967 Cohn und Mitarbeiter (Cohn, 1967) mit der Beschreibung der Nukleotid-

Wirkung auf die Vesikelbildung muriner Makrophagen. Gut zehn Jahre später zeigte eine 

andere Arbeitsgruppe, dass ATP bei Mastzellen eine Degranulation und Freisetzung von 

Histamin sowie die Permeabilisierung ihrer Membran bewirkt (Cockroft, 1979;  Cockroft, 

1979). Es folgten weitere Erkenntnisse über die Effekte extrazellulärer Nukleotide auch auf 

verschiedenste andere Zellen des Immunsystems (Di Virgilio, 2001). Die vorliegende Ar-

beit untersucht die Wirkungen von extrazellulärem ATP auf die Funktion einer Untergruppe 

von dendritischen Zellen, den so genannten plasmazytoiden dendritischen Zellen, und lie-

fert damit einen Beitrag zum Verständnis der Wirkung von ATP als endogenem Gefahren-

signal. 

 

 

1.2 Dendritische Zellen – Mittler im Immunsystem 
 
Dendritische Zellen wurden erstmals 1973 von Steinmann und Cohn in der Milz von Mäu-

sen beschrieben und nach ihrer mikroskopischen Morphologie mit zahlreichen astförmigen 

Zellausläufern (lat. dendria, -ae = der Ast) benannt (Steinman, 1973). Hundert Jahre zuvor 

wurden bereits so genannte Langerhans-Zellen in der Haut entdeckt (Langerhans, 1868), 

welche aber erst Mitte der 80er Jahre den dendritischen Zellen zugeordnet werden konn-

ten (Schuler, 1985). Anfang der 80er Jahre wurden dendritische Zellen auch in anderen 

lymphatischen und nicht-lymphatischen Geweben sowohl muriner (Hart, 1981) als auch 

humaner Herkunft (Daar, 1983) nachgewiesen. 

 

Dendritische Zellen nehmen eine zentrale Rolle im Immunsystem ein. Sie sind entschei-

dend bei der Abwehr eindringender Pathogene beteiligt, indem sie eine effektive und spe-

zifische Immunantwort induzieren. Dabei stellen sie ein Bindeglied (link) zwischen angebo-

renem und adaptivem Immunsystem her. 

 

Dendritische Zellen sind in nahezu allen peripheren Geweben zu finden. Dort können sie 

Antigene bzw. extrazelluläre Bestandteile durch Endo- oder Phagozytose aufnehmen, pro-
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zessieren und in so genannten MHC-Komplexen auf ihrer Oberfläche präsentieren, wes-

halb ihre Funktion auch mit der von Wächtern (engl. sentinels) verglichen wird. Zum einen 

sind sie nun in der Lage, mit pro-inflammatorischen und/oder antiviralen Zytokinen einge-

drungene Pathogene direkt zu schädigen, Effektorzellen des angeborenen Immunsystems 

zu aktivieren und andere Immunzellen an den Ort der Infektion zu rekrutieren 

(Banchereau, 2000). Zum anderen kommt es nun zu Vorgängen, die zu einer Aktivierung 

des adaptiven Immunsystems führen können. 

 

Der Kontakt mit bestimmten Gefahrensignalen veranlasst die dendritischen Zellen, aus 

dem Gewebe in die entsprechenden Lymphknoten zu wandern, wo sie in den T-Zell-

Arealen mit T-Zellen in Interaktion treten. Indem sie den T-Zellen das spezifische Antigen 

über den MHC-Komplex präsentieren (Signal I) und diese gleichzeitig über kostimulatori-

sche Moleküle aktivieren (Signal II), initiieren sie eine adaptive Immunantwort, an der ne-

ben T- auch B-Zellen beteiligt sind. Fehlt bei der Antigenpräsentation (Signal I) jedoch eine 

adäquate Kostimulation (Signal II) – die dendritische Zelle befindet sich im steady state – 

kann es zu einer Toleranz bzw. Anergie gegenüber diesem Antigen kommen (Chai, 1999;  

Hawiger, 2001;  Lutz, 2002). Das spielt für die Erhaltung der Toleranz gegenüber Selbst-

Antigenen eine wichtige Rolle und kann im gestörten Falle für die Pathogenese von Auto-

immunerkrankungen von Bedeutung sein (Steinman, 2003). Dabei spielen neben Zellkon-

takt-abhängigen Mechanismen auch Zytokine eine Rolle. Menges und Mitarbeiter zeigten, 

dass mit TNF-α inkubierte dendritische Zellen trotz eines reifen Phänotyps, d.h. trotz Ex-

pression kostimulatorischer Oberflächenmoleküle, über eine IL-10-Induktion tolerogen wir-

ken (Menges, 2002). Auf die Rolle der Gefahrensignale und der Kostimulation wird in den 

anschließenden Kapiteln eingegangen. 

 

 

1.2.1 Einteilung unterschiedlicher dendritischer Zelltypen 
 
Ausgehend von einer CD34-positiven (CD34+) Stammzelle führen, so die aktuelle Vorstel-

lung, verschiedene Differenzierungswege zu dendritischen Zellen (Ardavin, 2001). Man 

kennt im humanen System mittlerweile mindestens vier dendritische Zellpopulationen, die 

sich alle von CD34+ hämatopoetischen Stammzellen ableiten. Zu der Gruppe der so ge-

nannten konventionellen bzw. “myeloiden” dendritischen Zellen zählt man (1) CD11c+ und 

CD 14+ myeloide bzw. Monozyten-abgeleitete dendritische Zellen (MDC bzw. MonoDC), 

(2) dermale oder interstitielle dendritische Zellen (DDC-IDC) und (3) Langerhans-Zellen 

(LC). Eine eigene Gruppe mit vermutlich lymphoidem Ursprung bilden dagegen die plas-

mazytoiden dendritischen Zellen (PDC) (Rossi, 2005). 
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Im peripheren Blut finden sich die phänotypisch unterscheidbaren CD11c+ myeloiden DC 

(MDC) und die CD11c- plasmazytoiden DC (PDC) (O'Doherty, 1994). Ihrer leichteren Ver-

fügbarkeit wegen werden in vielen Untersuchungen Monozyten-abgeleitete DC (MonoDC) 

verwendet, die in vitro mittels eines Zytokin-Cocktails aus Monozyten generiert werden 

und als funktionelle Äquivalente und als Modell der myeloiden DC (MDC) des peripheren 

Blutes gelten (Romani, 1994;  Sallusto, 1994).  

 

Obgleich MonoDC nicht der primäre Gegenstand der vorliegenden Arbeit sind, sich aller-

dings ein Großteil der diskutierten Literatur mit diesen Zellen beschäftigt, sollte nicht uner-

wähnt bleiben, dass sich diese von den PDC in vielfacher Hinsicht unterscheiden. Abhän-

gig von der Stimulation weisen diese Populationen unter anderem Unterschiede im Phäno-

typ, im Profil der Zytokinproduktion, bei der Stimulation von T-Zellen und bei der Migration 

auf (Jefford, 2003). Einen Überblick über ausgewählte Unterschiede von PDC und Mo-

noDC gibt Tabelle 1. 

 

 PDC MonoDC 

Phänotyp Lin-, CD4+, CD123+, CD11c-, 
CD45RA+, BDCA2+, BDCA4+, 
HLADR+

CD11c+

Phagozytose kaum ausgeprägt 
MHC-Prozessierung  
und -Präsentation 

wenig ausgeprägt ausgeprägt 

Isolierung/Gewinnung aus dem peripheren Blut von Monozyten des peri-
pheren Blutes in vitro gene-
rierte DC 

Toll-like-Rezeptoren TLR7 und TLR9 TLR 1-8 
IFN-α Produktion viel wenig 

 

Tabelle 1: Überblick über ausgewählte Unterschiede von PDC und MonoDC 
 

 

1.2.2 Die plasmazytoide dendritische Zelle 
 

1.2.2.1 Historisches 
 
1958 beschrieben K. Lennert und W. Remmele erstmals einen Zelltyp, der in den T-Zell-

Arealen humaner Lymphknoten lokalisiert war und der zwar Plasmazellen ähnelte, aber 

nicht die typischen B- und Plasmazell-Marker trug (Lennert, 1958). Man gab ihnen deshalb 

den Namen „T-assoziierte Plasmazellen“, der Jahre später mit dem Nachweis der CD4-

Expression (bis dahin nur auf T-Zellen bekannt) zu „plasmazytoiden T-Zellen“ geändert 

wurde. Da diese Zellen zum Teil myelomonozytäre Oberflächenmarker besitzen, nannte 
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man sie auch „plasmazytoide Monozyten“. 1994 identifizierte eine Arbeitsgruppe neben 

CD11c+ eine CD11c- Subpopulation CD4+-dendritischer Zellen im humanen peripheren 

Blut (O'Doherty, 1994). Grouard und Mitarbeiter isolierten daraufhin CD11c-

CD4+CD45RA+-Zellen aus Tonsillengewebe und konnten zeigen, dass diese weitgehend 

gleiche Charakteristika wie die CD11c- Subpopulation des peripheren Blutes besitzen und 

den „plasmazytoiden T-Zellen“ bzw. „plasmazytoiden Monozyten“ sekundärer Lymphorga-

ne entsprechen (Grouard, 1997). Als ein spezifisches Merkmal dieser Zellen wurde die 

ausgeprägte Expression des CD123-Rezeptors (IL3-R) für Interleukin-3 (IL-3), eines – e-

benso wie CD40-Ligand (CD40L) – wichtigen Überlebensfaktors für diese Zellen ausge-

macht (Olweus, 1997;  Rissoan, 1999).  

 

Bei der Untersuchung der Reaktion des Immunsystems auf Virusinfektionen fand man, 

dass bei viraler Stimulation humanen peripheren Blutes nur eine kleine Zellgruppe für die 

Hauptproduktion von Interferon-α (IFN-α) verantwortlich ist (Trinchieri, 1978). Sekretion 

von Typ I Interferon (IFN-α/β) stellt eine der Hauptmechanismen antiviraler Aktivität des 

angeborenen Immunsystems dar (Pestka, 2004). Man bezeichnete diese Zellen als „natür-

liche Interferon produzierende Zellen“ (IPC). 1999 wiesen mehrere Gruppen nach, dass 

die plasmazytoiden dendritischen Zellen (PDC) mit den IPC identisch sind (Cella, 1999;  

Siegal, 1999). 

 

 

1.2.2.2 Phänotyp 
 
Auf der Zelloberfläche exprimierte Antigene werden in der Immunologie als Oberflächen-

marker zur Charakterisierung genutzt. 

 

Plasmazytoide dendritische Zellen gesunder Spender sind negativ für die so genannten li-

neage-spezifischen Marker CD19 sowie CD21 (B-Zellen), CD3 (T-Zellen), CD16 sowie 

CD56 (NK-Zellen), CD13, CD14 sowie CD33 (Myeloide Zellen) (McKenna, 2005). Typisch 

für die PDC ist die ausgeprägte Expression von CD123 (IL3-R), des Rezeptors für Inter-

leukin-3 (IL-3) (siehe oben). Zwei weitere Oberflächenantigene, BDCA-2 und BDCA-4, 

sind als Marker auf plasmazytoiden dendritischen Zellen im peripheren Blut und Kno-

chenmark beschrieben worden. BDCA-2 ist an der Antigenaufnahme zur T-Zell-

Präsentation beteiligt; Antikörper gegen BDCA-2 führen zu einer Inhibition der IFN-α-

Produktion dieser Zellen (Dzionek, 2001). BDCA-4 ist identisch mit dem Rezeptor Neuropi-

lin-1 (NP-1) und dem Ko-Rezeptor für den Wachstumsfaktor VEGF-A. Die Bindung eines 

spezifischen Antikörpers gegen BDCA-4 hat keine Wirkung auf PDC, die genaue Rolle des 

Rezeptors ist bislang noch ungeklärt (Dzionek, 2002). Weitere exprimierte Marker sind der 
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Fcγ-Rezeptor FcγRIIa (CD32) für Immunglobuline (Bave, 2003), CD45RA und CD4. Plas-

mazytoide dendritische Zellen unterscheiden sich phänotypisch von den myeloiden dendri-

tischen Zellen insbesondere durch die fehlende Expression von CD11c, CD11b, CD45RO, 

ILT1, DC-SIGN, Mannose-Rezeptoren und CD1a (Barchet, 2005). 

 

 

1.2.2.3 Lokalisation und Migration 
 
Humane plasmazytoide dendritische Zellen zirkulieren im Blut (O'Doherty, 1994), kommen 

aber auch im Lymphgewebe (Lymphknoten, Milz, Tonsillen, Thymus, Knochenmark und 

Peyer’s patches) vor (McKenna, 2005). Im Lymphknoten sind diese Zellen vor allem in den 

T-Zell-Arealen um die hochendothelialen Venolen (HEV), den Eintrittswegen zirkulierender 

Immunzellen, zu finden (Facchetti, 2003). 

 

Das Vorkommen von PDC in entzündlichen Geweben weist möglicherweise auf eine wich-

tige Rolle dieses Zelltyps bei Entzündungsreaktionen hin. So wurden vermehrt PDC in der 

Nasenschleimhaut bei allergischen Reaktionen (Jahnsen, 2000), in der Nasenschleimhaut 

nach Infekten des oberen Respirationstraktes (Hartmann, 2006), in Hautläsionen, die mit 

systemischen Lupus erythematodes (SLE), Psoriasis vulgaris und Kontaktdermatitis asso-

ziiert sind (Farkas, 2001;  Wollenberg, 2002), in der Umgebung von Tumoren (Hartmann, 

2003;  Salio, 2003;  Zou, 2001), in entzündeten Lymphknoten (Cella, 1999), in epitheloid-

zelligen Granulomen (De Vos, 1990), in der Synovia bei rheumatoider Arthritis (Cavanagh, 

2005) und in entzündlichem Liquor (Pashenkov, 2002) gefunden. 
 

Wie gelangen PDC in die Lymphknoten oder an Entzündungsorte? Eine wichtige Rolle bei 

der Lokalisation und Migration von Immunzellen spielen Chemokine und Chemokinrezep-

toren.  

 

Im unreifen Zustand wandern PDC in vitro – trotz Expression etlicher anderer Chemokin-

rezeptoren – nur auf das Chemokin CXCL12 (stromal-derived factor-1α [SDF-1α]) hin, den 

Liganden des Chemokinrezeptors CXCR4 (Penna, 2001). Migration zu einem CXCL12-

Gradienten hin kann durch CXCR3-Liganden verstärkt werden (Krug, 2002). Sowohl 

CXCR4- als auch CXCR3-Liganden werden in den hochendothelialen Venolen (HEV) 

exprimiert und führen zum Eintritt der PDC in die Lymphknoten (Krug, 2004;  Penna, 

2001). Im Gegensatz zu anderen dendritischen Zellen treten PDC über diese hochen-

dothelialen Venolen (HEV) über den Blutweg in die Lymphknoten ein. Die durch CXCR3-

Liganden verstärkte Migration auf CXCL12 (stromal-derived factor-1α [SDF-1α]) spielt 

möglicherweise auch eine Rolle bei der Rekrutierung von PDC in Entzündungsgebiete 
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oder in Tumore (Vanbervliet, 2003). Überdies exprimieren die PDC im unreifen Zustand die 

so genannten inflammatorischen Chemokinrezeptoren CCR5 und CXCR3, deren Expres-

sion nach Aktivierung stark abnimmt (Penna, 2001). 

 

Durch mikrobielle Stimuli oder CD40-Ligierung (einer positiven Rückkopplung durch T-

Zellen entsprechend, deren CD40-Ligand von APC erkannt wird) gereift, sind PDC hinge-

gen in der Lage, durch Hochregulation des funktionellen CCR7-Rezeptors auf die Chemo-

kine CCL19/ELC (macrophage inflammatory protein-3β [MIP-3β]) und CCL21/SLC 

(6Ckine) hin zu wandern (Cella, 1999;  Krug, 2002;  Penna, 2001;  Schnurr, 2003). Dies 

befähigt die PDC in vivo wahrscheinlich zum Einwandern in die Lymphknoten über 

Lymphgefäße und dort in die T-Zell-Areale (“lymph node homing”), wo die genannten 

Chemokine exprimiert werden. Daneben spielt vermutlich auch das auf PDC exprimierte L-

Selektin (CD62L), welches mit dem auf HEV exprimierten Liganden peripheral lymph node 

adressin (PNAd) bindet, die Interaktion von endothelialem vascular-cell- adhesion molecu-

le-1 (VCAM-1) und dessen – von PDC exprimierten – Liganden very late antigen (VLA)-5, 

sowie die Interaktion von dermal-endothelialem E-selectin und dessen ebenso auf PDC 

exprimiertem Liganden CLA eine Rolle (McKenna, 2005;  Zou, 2001). 
 

Abhängig von der Art des aktivierenden Stimulus produzieren PDC selbst Chemokine, wie 

zum Beispiel CCL3 (MIP-1α), CCL4 (MIP-1β), CCL5 (RANTES), CXCL8 (IL-8) und 

CXCL10 (IP-10) (Megjugorac, 2004;  Vissers, 2001). Das Chemokin CXCL10 lockt CXCR3 

tragende TH1-Zellen, CCL4 hingegen NK-Zellen an. Dadurch beeinflussen PDC auch das 

so genannte leucocyte homing anderer Immunzellen in Richtung ihrer unmittelbaren Um-

gebung. 
 

 

1.2.2.4 Erkennung von Pathogenen und Aktivierung 
 
Die Aktivierung von Zellen des angeborenen Immunsystems durch Pathogene hängt von 

der Erkennung von pathogen-associated molecular patterns (PAMP) ab. Dies sind konser-

vierte Strukturen von Bakterien, Pilzen und Viren, die im Wirtsorganismus nicht vorkom-

men. Zu diesen zählt das Lipopolysaccharid (LPS) Gram-negativer Bakterien, Mannane in 

Hefezellen sowie Lipoproteine und Peptidoglykane. Über spezielle, so genannte pattern-

recognition-Rezeptoren (PRR) können diese PAMP vom Immunsystem erkannt werden. 

Zu diesen PRR gehören unter anderem die von Antigen-präsentierenden Zellen (APC) 

exprimierten, so genannten Toll-like-Rezeptoren (TLR), deren Agonisten hauptsächlich 

mikrobiellen Ursprungs sind und von denen bis dato elf verschiedene Vertreter bekannt 

sind (Iwasaki, 2004). 
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Plasmazytoide dendritische Zellen unterscheiden sich im Profil der TLR-Expression von 

dem der MDC. MDC exprimieren TLR1-8 (wahrscheinlich jedoch kein TLR7) und können 

dadurch zum Beispiel virale doppelsträngige RNA (dsRNA) (Alexopoulou, 2001) oder bak-

terielles Lipopolysaccharid (Hoshino, 1999) erkennen, wozu PDC nicht in der Lage sind, 

da sie nur TLR7 und 9 exprimieren (Hornung, 2002). TLR7 dient wahrscheinlich der Er-

kennung von RNA-Viren (Diebold, 2004;  Heil, 2004;  Lund, 2004).  

 

Erste Beobachtungen von Tokunaga, dass DNA-Fraktionen von Mykobakterien eine starke 

immunstimulierende Wirkung auf Natürliche Killerzellen (NK-Zellen) haben (Tokunaga, 

1984), wurden von Krieg gut zehn Jahre später erweitert, als er den aktivierenden Effekt 

bakterieller DNA auf das Vorhandensein sequenzspezifischer CpG-Motive zurückführte 

und erste, solche CpG-Motive enthaltende, synthetische Oligonukleotide (CpG-ODN) ent-

wickelte (Krieg, 1995). 

 

CpG-Motive sind unmethylierte Cytidin-Guanosin-Dinukleotide mit bestimmten flankieren-

den Basensequenzen (p steht für Phosphodiester oder Phosphothioat), wie sie bei Bakte-

rien und Viren, hingegen kaum bei Wirbeltieren vorkommen (Krieg, 2002;  Krieg, 2002;  

Rothenfusser, 2002). CpG-Motive werden über den Toll-like-Rezeptor TLR9 erkannt, der 

ausschließlich von PDC und B-Zellen exprimiert wird (Hemmi, 2000) (Bauer, 2001). 

 

Ausgehend von der Fähigkeit, die Sekretion von Interferon-α (IFN-α) in PDC zu initiieren, 

werden nunmehr zwei Arten synthetischer CpG-Oligonukleotide (CpG-ODN) unterschie-

den, die CpG-A und CpG-B genannt werden (Krieg, 2002;  Krieg, 2002). CpG-A, dessen 

Prototyp ODN 2216 ist, wirkt primär auf die PDC als Zielzelle, wo es große Mengen an IFN 

Typ I induziert (Kadowaki, 2001;  Krug, 2001). Vergleichbar hohe Mengen werden nur 

durch virale Stimulation erreicht. CpG-B (Prototyp ODN 2006) induziert weitaus weniger 

IFN-α- und IFN-β-Produktion in PDC (Krug, 2001), aktiviert und reift diese Zellen hingegen 

potent aus und führt zu einer starken Aktivierung von B-Zellen, die im Gegensatz dazu 

kaum auf CpG-A reagieren (Hartmann, 2000;  Hartmann, 2000;  Krieg, 1995). Ferner wer-

den zur Einteilung in die CpG-Klassen strukturelle Eigenschaften herangezogen, die CpG-

Motiv, ODN-Rückgrat und Vorhandensein von Poly-G-Motiven berücksichtigen. 

 

CpG ODN und CD40L induzieren synergistisch die Produktion großer Mengen an IL-12 in 

PDC (Krug, 2001) und nehmen somit Einfluss auf die Art der Immunantwort (dazu später 

mehr). CD40L ist ein Mitglied der TNF-Familie und spielt eine wichtige Rolle für die Effek-

torfunktion der CD4 T-Zellen. CD40L wird auf TH1- und TH2-Zellen exprimiert und liefert 
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nach Bindung an den CD40-Rezeptor Aktivierungssignale für Antigen-präsentierende Zel-

len. 

 

Immunstimulatorische CpG-ODN haben durch TLR9-vermittelte Wirkungen auf PDC 

(Hartmann, 1999;  Rothenfusser, 2002) und B-Zellen (Hartmann, 2000) zusätzliche, indi-

rekte Effekte auf andere Immunzellen (Rothenfusser, 2003) und finden bereits therapeuti-

schen Einsatz bei der Behandlung von Tumoren und Asthma und bei Vakzinierungen 

(Klinman, 2004). Einen Überblick über die Charakteristika der CpG-ODN-

Klasseneinteilung zeigt Tabelle 2. 

 

 CpG-A CpG-B 
Prototyp ODN-2216 ODN-2006 
Primäre Zielzelle PDC B-Zelle 
strukturelle 
Charakteristika 

•  chimäres Phosphatdiester-/ 
   Phosphothioat-Rückgrat 
•  Poly-G-Enden 
•  zentrales Palindrom mit CG- 
   Dinukleotid 

•  vollständiges 
   Phosphothioat-Rückgrat 
•  enthält GTCGTT Motiv 

funktionelle 
Charakteristika 

•  Induktion großer Mengen 
   IFN Typ I in PDC 
•  geringe Aktivierung von 
   B-Zellen 

•  starke Aktivierung von B- 
   Zellen 
•  geringe Induktion von 
   IFN Typ I in PDC 

 

Tabelle 2: Überblick über die Charakteristika der CpG-Klassen (nach V. Hornung) 
 

Stimulation der PDC mit Pathogenen, TLR-Liganden (so zum Beispiel CpG ODN) 

und/oder CD40-Ligierung führt zur Aktivierung und Reifung, was sich in der Hochregulati-

on des MHC-Komplex II und der kostimulatorischen Moleküle CD80, CD86 und CD40 nie-

derschlägt (Asselin-Paturel, 2001;  Cella, 2000;  Grouard, 1997). Außerdem kommt es zu 

den oben beschriebenen Veränderungen der Chemokinrezeptor-Expression, der Chemo-

kin- und Zytokinproduktion (siehe Tabelle 3). Das besondere Charakteristikum der PDC ist 

dabei die hohe, TLR7/9 vermittelte Produktion von IFN-α auf virale Infektion oder Stimula-

tion mit CpG-ODN hin (Colonna, 2004). 
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Unreife DC Reife DC 
wenig MHC auf der Zelloberfläche viel MHC auf der Zelloberfläche 
wenig kostimulatorische Moleküle (CD80, 
CD86) 

viel kostimulatorische Moleküle (CD80, 
CD86) 

inflammatorische Chemokinrezeptoren 
(CCR5)  

lymphoide Chemokinrezeptoren (CCR7) 

kaum Reifemarker (CD83) viel Reifemarker (CD83) 
geringe Zytokinproduktion (IL12, IFN-α) viel Zytokinproduktion (IL12, IFN-α) 

 

Tabelle 3: Vereinfachte Übersicht über die unterschiedlichen Merkmale unreifer und 
reifer DC. 
 

 

1.2.2.5 Die PDC als Verbindungsglied zwischen angeborenem und adapti-
vem Immunsystem  

 
Durch die Sekretion von Zytokinen und durch direkte Zellkontakte beeinflussen PDC die 

Regulation und Aktivierung von Effektorzellen des angeborenen und adaptiven Immunsys-

tems (Marschner, 2005). So verstärken Typ I Interferone unter anderem die Zytotoxizität 

von NK-Zellen (Krug, 2004) und CD8+-T-Zellen (Dalod, 2003), inhibieren die Virus-

Replikation in infizierten Zellen (Isaacs, 1957), dienen als autokrine Überlebens- und Rei-

fungsfaktoren für dendritische Zellen (Kadowaki, 2000), erhalten aktivierte T-Zellen am 

Leben (Marrack, 1999) und fördern die Antikörperproduktion (Le Bon, 2001) und Plasma-

zell-Entwicklung von B-Zellen (Jego, 2003). 

 

Über die Sekretion von IL-12, aber auch von Typ I Interferonen (Kadowaki, 2000) nehmen 

PDC Einfluss auf die Polarisierung naiver CD4+-T-Zellen zu IFN-γ-produzierenden TH1-

Zellen (Guermonprez, 2002), was der Elimination intrazellulärer Pathogene dient. Aber 

auch TH2-Antworten können abhängig von Stimulationsart und -dosis von PDC induziert 

werden (Boonstra, 2003;  Liu, 2001), wodurch Antigen-spezifische B-Zellen zur Antikörper-

Produktion angeregt werden. Obgleich in geringerem Ausmaß als MDC sind PDC in der 

Lage, endo- (Krug, 2003) und exogene (Fonteneau, 2003) Antigene zu präsentieren und 

T-Zellen zu expandieren, was die Bezeichnung dieser Zellen als Antigen-präsentierende 

Zellen rechtfertigt.  

 

 

1.3 Extrazelluläre Nukleotide 
 
ATP wurde 1929 von dem deutschen Chemiker Karl Lohmann entdeckt. Gut zehn Jahre 

später wurde dieses Trinukleotid von dem späteren Nobelpreisträger Fritz Lipmann als ei-

ne Energie speichernde Substanz innerhalb der Zelle beschrieben und ist auch als solche 
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vornehmlich bekannt (Lipmann, 1941). Für Adenosin und Adenosin-5’-monophosphat 

(AMP) wurde früh eine Wirkung als Transmitter/Botenstoff im kardiovaskulären System 

beschrieben (Drury, 1929), in den Jahren darauf folgten Studien über vergleichbare Effekte 

von ATP (Green, 1950). Erkenntnisse aus dem Bereich der Signaltransduktion legten die 

Existenz spezieller Rezeptoren für diese Substanzgruppe nahe (Burnstock, 1972;  Sattin, 

1970). 

 

 

1.3.1 Einteilung und Charakterisierung der P2- Rezeptoren 
 
Unterschiedliche Wirkungen von ATP bzw. Adenosin gaben schon 1934 erste indirekte 

Hinweise auf verschiedenartige Rezeptoren (Gillespie, 1934), die nunmehr „Purinozepto-

ren“ genannt wurden. Eine erste Unterteilung dieser Rezeptoren in P1-Purinozeptoren, an 

denen hauptsächlich Adenosin als natürlicher Ligand auftritt, und P2-Purinozeptoren, wel-

che durch ATP und Adenosin-5´diphosphat (ADP) aktiviert werden, erfolgte 1978 

(Burnstock, 1978). 

 

Um der Erkenntnis gerecht zu werden, dass auch Pyrimidine wie UTP ihre Wirkung über 

diese Rezeptoren vermitteln (Communi, 1997;  Harden, 1997), folgte man der Empfeh-

lung, die „P1/P2-Purinozeptoren“ durch die Terminologie der P1-Rezeptoren (P1R) bzw. 

der P2-Rezeptoren (P2R) zu ersetzen (Fredholm, 1997;  Humphrey, 1998). 

 

Hier sei nur kurz auf Adenosin/P1-Rezeptoren eingegangen. Diese werden weiter in A1-, 

A2a-, A2b-, A3-Rezeptoren unterteilt. A1- und A3-Rezeptoren sind an Gi-, G0- und Gq-

Proteine gekoppelt und vermitteln eine Hemmung der Adenylatzyklase und eine Aktivie-

rung der Phospholipase C (Freissmuth, 1991;  Panther, 2001). A2a- und A2b-Rezeptoren 

interagieren mit Gs-Proteinen, welche die Adenylatzyklase aktivieren und somit zur Gene-

rierung des second messengers cAMP führen (Ralevic, 1998;  Wolberg, 1975). Adenosin 

beeinflusst die Expression von Oberflächenmolekülen, die Zytokin- und Chemokinproduk-

tion, Chemotaxis, T-Zell-stimulatorische Kapazität und die T-Zell-Polarisierung dendriti-

scher Zellen (Panther, 2003;  Schnurr, 2004). 

 

Die Charakterisierung und Differenzierung der P2-Rezeptoren basierte anfangs auf phar-

makologisch-funktionellen Kriterien und auf der unterschiedlichen Verteilung im Gewebe. 

Erst später verhalfen Erkenntnisse der Signaltransduktions-Mechanismen und letztendlich 

die Klonierung zu einer einheitlichen Klassifizierung (Ralevic, 1998). Leider erschwert bis-

lang das Fehlen hochselektiver Agonisten und Antagonisten Untersuchungen an P2-

Rezeptoren. Ein weiteres Problem bei der Verwendung von bestimmten Agonisten er-
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wächst daraus, dass auch durch Abbauprodukte (z.B. ADP, AMP, Adenosin) der eingesetz-

ten Stoffe (z.B. ATP) mit zum Teil anderem Wirkungsprofil oder einem anderen Rezeptor-

muster (z.B. auch P1R) die Diskriminierung der einzelnen Effekte und deren Zuordnung 

erschwert werden (Hunsucker, 2005) (siehe auch Abb.1). 

 

P2-Rezeptoren werden, basierend auf Unterschieden in den nachgeschalteten 

Signaltransduktions-Mechanismen und der molekularen Struktur, in zwei große Gruppen 

eingeteilt. Die aus Liganden-gesteuerten Ionenkanälen bestehenden (Benham, 1987) Re-

zeptoren werden als P2X-, die G-Protein-gekoppelten (Dubyak, 1991) als P2Y-Rezeptoren 

bezeichnet (Abbracchio, 1994;  Fredholm, 1994). 
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Abb. 1: Schematischer Überblick über den Weg des ATP. (a) ATP wird – durch ver-
schiedene Stimuli verursacht – aus Zellen freigesetzt und zum Teil von EctoATP/ADPase 
CD39 und 5’-Ecto-Nukleotidase CD73 über ADP und AMP zu Adenosin abgebaut. (b) ATP 
bindet extrazellulär an P2Y- und P2X-Rezeptoren, Adenosin nur an P1-Rezeptoren, die auf 
den Zielzellen exprimiert werden. (c) Über eine G-Protein-gekoppelte Signaltransduktion 
bei P2Y-Rezeptoren bzw. über integrierte Ionenkanäle bei P2X-Rezeptoren kommt es zu 
einer Erhöhung der intrazellulären Ca2+-Konzentration (aus intrazellulären Speichern sowie 
aus dem Extrazellulärraum) und zu einer Aktivierung diverser Enzym-gekoppelter Signal-
wege (DAG, Diacylglycerin; IP3, Inositoltriphosphat; ER, Endoplasmatisches Retikulum; Pi, 
Phosphatgruppe). Abbildung modifiziert nach Williams (Williams, 2000) 
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1.3.1.1 P2X-Rezeptoren 
 
P2X-Rezeptoren sind ligandengesteuerte Kationenkanäle mit nahezu gleicher, schneller 

Permeabilität für Na+- und K+-Ionen und einer signifikanten Permeabilität für Ca2+-Ionen 

(Evans, 1996). Sie werden besonders dicht in erregbaren Geweben (glatte Muskulatur, 

Neuronen und Neuroglia) exprimiert, sind aber auch in anderen Geweben wie Epithelien, 

Endothel, Knochen, Muskulatur und hämatopoetischen Zellen sehr weit verbreitet (North, 

2002). Bisher sind sieben P2X-Untereinheiten bekannt und kloniert worden (Ralevic, 

1998), deren Proteine zu 26 bis 47 % identisch sind (Khakh, 2001) und mit der Bezeich-

nung P2X1, P2X2,…, P2X7 benannt wurden. Jede dieser geklonten Untereinheiten besteht 

aus 379 bis 595 Aminosäuren und besitzt zwei hydrophobe transmembranöse Domänen, 

welche durch einen großen extrazellulären Abschnitt miteinander verbunden sind (siehe 

Abb.1). Amino- und Carboxyterminus liegen beide auf der zytoplasmatischen Seite der 

Membran (Brake, 1994;  Valera, 1994). 

 

Tertiärstruktur und Membrantopologie dieser Rezeptoren ähnelt denen anderer Ionenkanä-

le wie zum Beispiel der des epithelialen Amilorid-sensitiven Na+-Kanals (ENaC) und des 

inward rectifying K+-Kanals (North, 1996). Eine Untereinheit kann alleine keinen Ionenka-

nal für mono- und bivalente Kationen bilden, so dass man davon ausgeht, dass sich Mul-

timere aus den einzelnen Untereinheiten bilden. Durch Ko-Immunopräzipitation-Assays mit 

markierten P2-Rezeptor-Untereinheiten auf HEK293-Zellen konnte festgestellt werden, 

welche Rezeptoren miteinander Heteromere bilden (Torres, 1998;  Torres, 1999). Dabei 

treten nicht nur gleiche, sondern auch verschiedene Untereinheiten wie zum Beispiel P2X2 

und P2X3 zusammen, um einen funktionellen Kationenkanal zu bilden (Lewis, 1995;  Tor-

res, 1999). 

 

Die Signaltransduktion erfolgt durch schnellen Na+- und Ca2+- Einstrom bei gleichzeitigem 

K+-Ausstrom. Dies führt zu einer Depolarisation der Plasmamembran und einer Zunahme 

der intrazellulären Ca2+-Ionenkonzentration, die zur Ausbildung einer Reihe weiterer Sig-

nalkaskaden führt (Di Virgilio, 2001). Wichtig zu bemerken ist, dass die Ca2+-Ionen dabei 

aus dem extrazellulären Raum stammen und auf Grund der veränderten Membranperme-

abilität in die Zelle gelangen. In Folge einer Aktivierung von P2Y-Rezeptoren wird das Ca2+ 

hingegen aus intrazellulären Depots freigesetzt. 

 

P2X-Rezeptoren lassen sich in drei Gruppen einteilen (MacKenzie, 1999). Zu Gruppe 1 

gehören Rezeptoren wie P2X1 und P2X3 mit hoher Affinität für ATP sowie für das ATP-

Analogon α,β-methylen-Adenosin-5’-triphosphat (αβmeATP) und mit rascher (1a) bzw. ge-

ringer (1b) Aktivierung und Desensitation. Gruppe 2 beinhaltet αβmeATP-insensitive Re-
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zeptoren wie P2X2, P2X4, P2X5 und P2X6 mit langsamerer Desensitation. Die Aktivierung 

von Rezeptoren der Gruppe 3 kann zur Bildung unselektiver Ionenporen und einer Per-

meabilisierung der Zellmembran führen, wodurch in Lymphozyten Moleküle mit einer 

durchschnittlichen molekularen Masse von 200 bis 300 Dalton (Da) permeieren können 

(Ralevic, 1998). Diese Gruppe, vertreten durch den am besten untersuchten P2-Rezeptor 

P2X7, wird charakteristischerweise durch das synthetische Nukleotid 2’,3’-O-(4-

benzoylbenzoyl)-Adenosin-5’-triphosphat (BZ-ATP) stärker als durch ATP aktiviert. Als wei-

teres Merkmal führt eine Reduzierung der Konzentration extrazellulärer Ca2+- oder Mg2+-

Ionen zu einer verstärkten Wirkung der Agonisten an diesem Rezeptor (Virginio, 1997). 

Nach Stimulation des P2X7-Rezeptors bilden sich Membranporen, durch die Moleküle bis 

zu einer Masse von 900 Da (bei Lymphozyten auf 200 bis 300 Da beschränkt) nicht-

selektiv permeieren können (Di Virgilio, 1995)(Ralevic, 1998). 

 

 

1.3.1.2 P2Y-Rezeptoren 
 
Funktionelle P2Y-Rezeptoren sind aus Säugerzellen kloniert und mit P2Y1, P2Y2, P2Y4, 

P2Y6, P2Y11, P2Y12 und P2Y14 bezeichnet worden (Burnstock, 1997;  Communi, 2001;  

Hollopeter, 2001;  Ralevic, 1998;  Takasaki, 2001;  Zhang, 2001). Vor einigen Jahren wur-

de ein weiterer Rezeptor, SP174, auf humanen und murinen Geweben identifiziert, charak-

terisiert und der Nomenklatur folgend P2Y13 genannt (Zhang, 2002). Der lange Zeit als 

P2YADP oder P2Y2T bezeichnete und für die ADP-vermittelte Plättchenaggregation ver-

antwortliche Rezeptor konnte 2001 geklont und als P2Y12 in die Nomenklatur aufgenom-

men werden (s. oben). 

 

P2Y-Rezeptoren besitzen sieben transmembranäre Domänen mit insgesamt 328 bis 379 

Aminosäuren (Di Virgilio, 2001) und einer molekularen Masse von 41 bis 53 kDa, wobei 

der N-Terminus extrazellulär, der C-Terminus zytoplasmatisch gelegen ist (Lustig, 1993;  

Webb, 1993) (siehe Abb.1). 

 

Alle P2Y-Rezeptoren gehören der Familie der G-Protein-gekoppelten Proteine an, unter-

scheiden sich aber untereinander teilweise in der weiteren Signaltransduktion (Abbracchio, 

2006). Die Rezeptoren P2Y1, P2Y2, P2Y4 und P2Y6 sind an die Aktivierung von Phospholi-

pase C (PLC) gekoppelt (Ralevic, 1998). Der P2Y11-Rezeptor ist als einziger an die Aktivie-

rung von sowohl PLC als auch Adenylatzyklase gebunden (Communi, 1997). Die Rezepto-

ren P2Y12, P2Y13 und P2Y14 sind G-Protein-gekoppelte Rezeptoren, deren Aktivierung zu 

einer Inhibition der Adenylatzyklase führt (Chambers, 2000;  Communi, 2001;  Hollopeter, 

2001;  Zhang, 2002). Die (an der Membraninnenseite lokalisierte) Adenylatzyklase bildet 
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cAMP als second messenger, welches die Proteinkinase A (PKA) aktivieren kann. Die e-

benfalls G-Protein aktivierte PLC spaltet das in der Plasmamembran enthaltene Phospha-

tidylinositoldiphosphat in Inositoltriphosphat (IP3) und Diacylglycerin (DAG). DAG aktiviert 

die Proteinkinase C (PKC), während IP3 Ca2+ aus dem Endoplasmatischen Retikulum (ER) 

freisetzt, welches dann für verschiedene Prozesse verantwortlich ist (siehe Abb.1). Durch 

die Beteiligung dieses G-Protein-gekoppelten second-messenger Systems ist die respon-

se time, also die Antwort auf eine Stimulation hin, länger als bei den als Ionenkanal vorlie-

genden P2X-Rezeptoren. 

 

Auch in den Liganden unterscheiden sich die zwei P2-Gruppen. Während an P2X-

Rezeptoren ATP und ADP die einzigen bekannten physiologischen Liganden sind, gibt es 

bei P2Y-Rezeptoren eine größere Divergenz: An P2Y1, P2Y12, P2Y13 ist ADP der bevor-

zugte Ligand; an P2Y2 sind ATP und UTP gleichermaßen aktiv; an P2Y4 ist UTP, an P2Y6 

UDP der bevorzugte, an P2Y14 UDP-Glukose der ausschließliche Ligand, und als einziger 

P2Y-Rezeptor ist P2Y11 für ATP selektiv (Chambers, 2000;  Communi, 2001;  Communi, 

2000;  Hollopeter, 2001). 

 

Obgleich noch in begrenztem Umfang, sind in den letzten Jahren ein paar wenige anti-

P2X-Rezeptor Antikörper hergestellt worden (Di Virgilio, 2001). Für P2Y-Rezeptoren sind – 

soweit bekannt – lediglich Antikörper für humane P2Y1- (Jantzen, 1999;  Moran-Jimenez, 

2000) und P2Y2-Rezeptoren (Ray, 2002) beschrieben. 

 

 

1.3.2 P2-Agonisten 
 
An P2-Rezeptoren binden die physiologisch vorkommenden Liganden ATP, ADP, UTP, 

UDP und die Adenin-Dinukleotide/Diadenosin-Polyphosphate. Darüber hinaus werden in 

der Forschung chemisch modifizierte Derivate verwendet, die sich in der Regel durch eine 

höhere Abbau-Stabilität auszeichnen. Ausgewählte Strukturformeln sind in Abb. 2 darge-

stellt. 

 

Adenosin-5’-triphosphat (ATP) 
 
ATP besteht aus der Stickstoff-haltigen Base Adenin, dem Zucker Ribose und drei linear 

aneinander gereihten Phosphatresten und kann in bianionischer (ATP2-) oder tetra-

anionischer Form (ATP4-) vorliegen. In physiologischen Lösungen wird die freie Säure 

(ATP4-) an Magnesium (Mg2+), Kalzium (Ca2+) oder Wasserstoffionen (H+) komplex gebun-

den. Nur eine kleine Menge (1-10 %) liegt in der tetraanionischen, möglicherweise rezep-
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toraffinen, Form vor (Di Virgilio, 2001). ATP ist ein natürlicherweise vorkommender Agonist 

an allen P2-Rezeptoren (Ralevic, 1998). 

 

Uridin-5’-triphosphat (UTP) 
 
UTP besitzt die Base Uridin, gleicht ansonsten dem Aufbau von ATP. Die extrazelluläre 

Konzentration von UTP (gemessen in Zellkultur-Medium von ~ 3 x 105 Gewebezellen) ist 

unter Normalbedingungen mit 1-5 nM ungefähr ein Drittel niedriger als die von ATP 

(Lazarowski, 2001). Als relativ spezifisch für UTP und Uridin-5’-diphosphat (UDP) gelten 

die Rezeptoren P2Y4 und P2Y6 (Chang, 1995;  Charlton, 1996;  Communi, 1996). An P2Y2 

sind ATP und UTP gleichermaßen wirksam (Lustig, 1993). 

 

Adenin-Dinukleotide 
 
Adenin-Dinukleotide wirken als physiologische Agonisten an P2-Rezeptoren. Bekannte Di-

nukleotide sind P1,P4-Diadenosin-tetraphosphat (AP4A), P1,P5-Diadenosin-penta-

phosphat (AP5A), und P1,P6-Diadenosin-hexaphosphat (AP6A). Diadenosinpolyphospha-

te sind vornehmlich Liganden an P2X1-Rezeptoren (Ralevic, 1998). 

 

Chemisch modifizierte P2-Agonisten 
 
Es existiert eine Vielzahl solcher synthetischer Nukleotid-Derivate, die in der Regel eine 

verlängerte physiologische Halbwertszeit besitzen. In der vorliegenden Arbeit fanden β,γ-

methylen-Adenosin-5’-triphosphat (βγmATP) und 2-methylthio-Adenosin-5’-triphosphat 

(2MeSATP) Verwendung. βγmATP hat in β,γ-Stellung eine Methylengruppe, wodurch ein 

Abbau durch ATP-degradierende Nukleotidasen erschwert ist; an P2Y-Rezeptoren soll es 

allgemein inaktiv sein. Durch βγmATP ausgelöste Effekte sprechen für die Beteiligung von 

P2X1-und P2X3-Rezeptoren (Ralevic, 1998). 2MeSATP hat wohl durch die SH3C-Gruppe 

eine länger dauernde Wirkung, eine Spezifität für einen bestimmten Rezeptor ist nicht ein-

deutig belegt. An P2X2- (Brake, 1994) und an P2Y2- (Burnstock, 2000) Rezeptoren soll 

2MeSATP stärker als ATP sein. 
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Abb. 2: Strukturformeln ausgewählter Nukleotide, Nukleotidanaloga und Nukleotid-
antagonisten. 
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1.3.3 Quellen und Abbau extrazellulärer Nukleotide 
 
Unter physiologischen Bedingungen besteht ein deutlicher Gradient von intrazellulärer und 

extrazellulärer Nukleotid-Konzentration. ATP liegt im Zytosol von Säugerzellen in einem 

Konzentrationsbereich von 5-10 mM vor, extrazellulär im nanomolaren Bereich (la Sala, 

2003). Höhere Konzentrationen werden in sekretorischen Vesikeln von Neuronen gefun-

den, ebenso in bestimmten Granula des Nebennierenmarkes, der Thrombozyten und der 

Pankreas-β-Zellen (Novak, 2003). Es wurden verschiedene Auslöser der Nukleotid-

Freisetzung vorgeschlagen, doch noch ist es unklar, welche davon physiologische Bedeu-

tung haben: Endotoxin-Stimulation (Ferrari, 1997), bakterielle Infektion (Crane, 2005;  Fer-

rari, 1997), Scherstress und Dehnung (Grierson, 1995;  Mitchell, 1998;  Pedersen, 1999), 

Hypoxie (Bodin, 1995), Entzündung (Bodin, 1998), Zellschaden, Zelluntergang und osmo-

tischer Stress (Dubyak, 1991). 

 

Extrazelluläre Nukleotide werden rasch durch eine Vielzahl unterschiedlicher Ecto-

Nukleotidasen, Ecto-Apyrasen und unspezifischer Phosphatasen abgebaut und besitzen 

somit eine kurze Halbwertszeit (Marteau, 2004). Die Verteilung dieser Enzyme im Gewebe 

und auf Zellen ist unterschiedlich. CD39 Ecto-Nukleotidasen werden unter anderem auf 

PDC und Endothelzellen exprimiert, lösliche Formen finden sich im Serum (Hunsucker, 

2005). Ein und dasselbe Nukleotid kann durch verschiedene Enzym-Spezies hydrolysiert 

werden (Zimmermann, 2000). ATP wird über ADP und AMP letztlich zu Adenosin abge-

baut. Dabei ist zu beachten, dass die jeweiligen Abbauprodukte an P2- respektive P1-

Rezeptoren mit zum Teil gegensätzlichen Wirkungen selbst aktiv sind (Burnstock, 2000;  

Marteau, 2004). Die Aktivität der Nukleotid-abbauenden Enzyme hängt ferner von der 

Konzentration bivalenter Kationen (z.B. Ca2+, Mg2+) und dem pH-Wert ab (Zimmermann, 

2000). 

 

In Entzündungsgebieten wird die Aktivität von Nukleotidasen herunterreguliert, so dass es 

dort zu einer Akkumulation von extrazellulären Nukleotiden kommen kann (Robson, 1997). 

Dass Nukleotidasen und ATP eine wichtige Rolle im Immunsystem spielen, zeigte eine 

Studie mit CD39-defizienten Mäusen, deren dendritische Zellen eine eingeschränkte Funk-

tion und veränderte zelluläre Immunantworten aufwiesen (Mizumoto, 2002). 

 

 

1.3.4 P2-Antagonisten 
 
In der vorliegenden Arbeit wurden die P2-Rezeptor-Antagonisten Suramin und Pyridoxal-

5’-phosphat-6-azophenyl 2’,4’-disulfonsäure (PPADS) eingesetzt. Obgleich Suramin relativ 
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unspezifisch neben diesen Rezeptoren bei gleicher Konzentration auch noch Glutamat-, γ-

Amino-Buttersäure (GABA)-, 5-Hydroxytryptamin (5’HT)- und nikotinische Acetylcholin-

Rezeptoren blockiert und inhibierend auf einige Wachstumsfaktoren und Ecto-

Nukleotidasen wirkt, ist Suramin derzeit noch ein sehr gebräuchliches Mittel, um ATP-

Wirkungen zu inhibieren. PPADS interagiert zwar auch mit Ecto-Nukleotidasen, weist aber 

eine hohe Spezifität für einige P2-Rezeptoren (P2X1, P2X2, P2X3, P2X5 und P2Y1) auf 

(Lambrecht, 2000;  Ralevic, 1998). 

 

 

1.3.5 Extrazelluläre Nukleotide und Immunzellen 
 
Erste Hinweise, dass extrazelluläre Nukleotide auch bei der Regulation des Immunsys-

tems eine Rolle spielen, ergaben sich aus Untersuchungen an Makrophagen, bei denen 

diese Moleküle eine verstärkte Bildung pinozytischer Vesikel verursachten (Cohn, 1967), 

und an Mastzellen, an welchen ATP eine Degranulation und Freisetzung von Histamin so-

wie die Permeabilisierung ihrer Membran bewirkt hatte (Cockroft, 1979). Mittlerweile wur-

den funktionelle P2-Rezeptoren auf T- und B-Lymphozyten (Baricordi, 1996;  Koshiba, 

1997;  Padeh, 1991), Monozyten (Altieri, 1990;  Cowen, 1989), Makrophagen 

(Hagenlocker, 1990), Mastzellen (Bulanova, 2005), eosinophilen (Ferrari, 2005) und 

neutrophilen Granulozyten beschrieben (Kuhns, 1988;  Kuroki, 1989). 

 

Abhängig von Rezeptormuster und Lokalisation der Zellen zeigen Nukleotide mannigfalti-

ge Wirkungen. Bei Makrophagen führt ATP zu einer Freisetzung von IL-1β und IL-18 

(Hogquist, 1991;  Mehta, 2001), auch die Produktion von TNF-α und IL-12 sowie die multi-

nukleäre Riesenzellbildung (Fais, 1997) und die Aktivität der induzierbaren Stickstoffmo-

noxid-Synthetase (iNOS), einem Schlüsselenzym der bakteriziden Aktivität von Makropha-

gen, unterliegen einer Regulation durch extrazelluläre Nukleotide (Denlinger, 1996;  

Hasko, 2000;  Hu, 1998;  Proctor, 1994;  Tonetti, 1994). Bei Monozyten konnte ATP als ein 

potenter Stimulus für die Aktivierung der Caspase-1 und für die Externalisierung von 

Caspase-1-Untereinheiten identifiziert werden (Laliberte, 1999). ATP ist, abhängig von der 

Konzentration, auch als zytotoxischer Faktor für Makrophagen beschrieben worden 

(Steinberg, 1987). 

 

ATP und UTP führen in neutrophilen Granulozyten zur Bildung von Superoxid-Ionen und 

zur Exozytose zytoplasmatischer Granula (Balazovich, 1990;  Cockcroft, 1989). Auch Ad-

häsionsmoleküle werden nach Kontakt mit diesen Signalmolekülen hochreguliert (Cowen, 

1990;  Dichmann, 2000), was beispielsweise die Interaktion von Granulozyten mit Endo-

thelzellen verstärkt (Dawicki, 1995;  Rounds, 1999). Daneben wurden für eosinophile Gra-
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nulozyten (Burgers, 1993;  Saito, 1991) und Ratten-Mastzellen (McCloskey, 1999) chemo-

taktische Wirkungen von ATP und ADP beschrieben. 

 

Schon 1978 wurde berichtet, dass extrazelluläres ATP die Proliferation von murinen Thy-

mozyten stimuliert (Gregory, 1978). In B-Lymphozyten aus humanen Tonsillen führt ATP zu 

einer Aktivierung der Phospholipase C (Padeh, 1991), einem der Enzyme purinerger 

Signaltransduktion. In B-Lymphozyten von Patienten mit chronisch lymphatischer Leukä-

mie kann ATP die Konzentration des Signalstoffes cAMP erhöhen (Conigrave, 2001). Es 

gibt ferner Hinweise auf eine unterschiedliche Expression von Nukleotidrezeptoren ver-

schiedener hämatopoetischer Zellen in Abhängigkeit von deren Differenzierungsstufen und 

auf einen entsprechenden Einfluss auf deren weitere Differenzierung und Reifung (Sak, 

2003). 

 

 

1.3.6 Wirkung von P2-Agonisten auf dendritische Zellen 
 
Wie beschrieben, spielen dendritische Zellen eine Schlüsselrolle bei der Initiierung und 

Modulation von Immunantworten. Deshalb rückten Faktoren, welche diese Zellen beein-

flussen können, in den Fokus immunologischer Forschung. Erkenntnisse über die Wirkung 

extrazellulärer Nukleotide auf andere Zelltypen und das zunehmend Bestätigung findende 

Gefahrensignal-Modell (danger model) (Ibrahim, 1995;  Matzinger, 1994;  Matzinger, 2002) 

förderten dieses Interesse. Das danger model besagt, dass das Immunsystem nicht nur 

durch körperfremde, sondern auch durch Gefahren signalisierende, körpereigene Stoffe 

(danger signals) aktiviert werden kann (dazu Ausführlicheres in der Diskussion, Kapitel 
4.2.7). 

 

Seit längerer Zeit ist bekannt, dass epidermale Langerhans-Zellen eine Plasmamembran-

gebundene Ecto-ATPase exprimieren, die als histochemischer Marker verwendet worden 

ist, deren physiologische Rolle aber lange unverstanden blieb (Chaker, 1984). Auch auf 

anderen dendritischen Zellentypen wurde die Expression der Ecto-ATP/ADPase CD39 und 

der Ecto-5’-Nukleotidase CD73 (Berchtold, 1999;  Girolomoni, 1995) beschrieben. Zu-

sammen mit der Beschreibung, dass CD39-defiziente Mäuse funktionell beeinträchtigte 

Langerhans-Zellen haben und mit einer exazerbierten, Nukleotid-vermittelten Entzün-

dungsreaktion auf chemische Reizstoffe reagieren (Mizumoto, 2002), spricht dies für einen 

wichtigen Einfluss extrazellulärer Nukleotide auf dendritische Zellen. 
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Humane MonoDC exprimieren Messenger-RNA (mRNA) funktioneller P2X- (P2X1, P2X4, 

P2X5, P2X7) und P2Y-Rezeptoren (P2Y1, P2Y2, P2Y4, P2Y5, P2Y6, P2Y10, P2Y11, 

P2Y13/SP174) (Berchtold, 1999;  Idzko, 2002;  Liu, 1999;  Schnurr, 2003;  Zhang, 2002). 

 

Besondere Beachtung fand der P2X7-Rezeptor, der eine wichtige Rolle bei der Nukleotid-

vermittelten Apoptose von MonoDC spielt (Coutinho-Silva, 1999;  Nihei, 2000). 

 

Zahlreiche Studien weisen auf eine Rolle extrazellulärer Nukleotide respektive der P2-

Rezeptoren bei der phänotypischen und funktionellen Reifung von MonoDC hin. So wer-

den Antigenaufnahme (Schnurr, 2000), Aktivierung respektive Expression von Oberflä-

chenmolekülen und Zytokinproduktion durch extrazelluläre Nukleotide reguliert (Berchtold, 

1999;  Ferrari, 2000;  Idzko, 2002;  la Sala, 2001;  la Sala, 2002;  Marriott, 1999;  Marteau, 

2004;  Schnurr, 2000;  Schnurr, 2005;  Wilkin, 2001;  Wilkin, 2002). Darüber hinaus stehen 

auch Migration (Idzko, 2002;  la Sala, 2002;  Schnurr, 2003), Chemokinsekretion (la Sala, 

2002) und T-Zell-Interaktion bzw. Antigenpräsentation (la Sala, 2001;  la Sala, 2002;  

Schnurr, 2000) unter dem Einfluss von P2-Agonisten. Auch haben diese einen chemotakti-

schen Effekt auf MonoDC, welche ihre Ausläufer zu einem ATP-Gradienten hin ausrichten, 

was Liu et al. demonstrierten (Liu, 1999) und Idzko et al. mittels Chemotaxis-Assays quan-

tifizierten (Idzko, 2002). 

 

Dem P2X7- (Ferrari, 2000;  Mutini, 1999;  Sluyter, 2002) und dem P2Y11-Rezeptor 

(Schnurr, 2003;  Wilkin, 2001) misst man besondere Bedeutung bei diesen Effekten zu. 

 

 

1.3.7 Fragestellung der vorliegenden Arbeit 
 
Die oben erwähnten Effekte extrazellulärer Nukleotide sind nur für MonoDC beschrieben. 

Weitgehend ungeklärt sind bislang die Wirkungen auf PDC, einer Zellart, deren Bedeutung 

im Immunsystem in den letzten Jahren zunehmend aufgedeckt wird, und deren Eigen-

schaften sich mitunter signifikant von denen anderer dendritischer Zellen unterscheiden. 

 

Zu Beginn dieser Arbeit gab es keine Berichte darüber, welche P2-Rezeptoren von plas-

mazytoiden dendritischen Zellen exprimiert werden, ob diese funktionelle Bedeutung ha-

ben, und inwieweit ATP auf die Reifung, Aktivierung und das Migrationsverhalten plasma-

zytoider dendritischer Zellen Einfluss nimmt.  

 

Diese Fragen wurden daher in der vorliegenden Arbeit anhand eines in vitro-Modells mit 

humanen plasmazytoiden dendritischen Zellen bearbeitet. 
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2 MATERIAL UND METHODEN 
 

2.1 Chemikalien und Geräte 
 
2.1.1 Geräte 
 
Begasungsbrutschrank   Fa. Heraeus (Hanau) 

Eismaschine     Fa. Ziegra (Isernhagen) 

ELISA Reader     Fa. Dynatech  

(Guernsey, Channel Islands, GB) 

FACSCalibur     Fa. Becton Dickinson (Heidelberg) 

Flow Lamin Air 2472 S   Fa. Heraeus (Hanau) 

Macrovue 2011 LKB-Transilluminator Fa. Bromma (Schweden) 

MACS      Fa. Miltenyi Biotec (Bergisch Gladbach) 

Mikroskop     Fa. Zeiss (Jena) 

Model 200/2,0 Power Supply   Fa. Bio-Rad (München) 

pH-Meter     Fa. WTW (Weilheim) 

Polaroid MP-4 Land Camera   Fa. Polaroid (Cambridge, USA) 

Scanner Snapscan e50   Fa. AGFA (Mortsel, Belgien) 

Thermocycler Modell T3   Fa. Biometra (Göttingen) 

Vortexer     Fa. Janke & Kunkel (Staufen) 

Waage (LP 6209)    Fa. Sartoius (Göttingen) 

Waage (SBC 21)    Fa. Scaltec Instruments (Heiligenstadt) 

Wasser-Deionisierungsmaschine  Fa. SG Reinstwasser-Systeme (Hamburg) 

Wide Mini Sub Cell    Fa. Bio-Rad (München) 

Zentrifuge 5417R    Fa. Eppendorf (Hamburg) 

Zentrifuge Sepatech Omnifuge  Fa. Heraeus (München) 

 

 

2.1.2 Chemikalien, Reagenzien und Verbrauchsmaterial  
 
Aqua ad injectabile    Fa. Braun (Melsungen) 

dNTP      Fa. Promega (Heidelberg) 

DMSO      Fa. Sigma-Aldrich (Steinheim) 

DNA Molecular Weight Marker III  Fa. Boehringer (Mannheim) 

Polaroid Typ 665 Positive/Negative 

Black & White Instant Pack Film  Fa. Sigma-Aldrich (Steinheim) 

PBR 322 Hae III DIGEST   Fa. Sigma-Aldrich (Steinheim) 
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Geneticin g-418 Sulfat   Fa. GibcoBRL (Paisley, Schottland) 

Ortho-mune Lyse-Reagenz   Fa. Ortho-Clinical Diagnostics (Neckars- 

      gmünd) 

EDTA (kristallin)    Fa. Sigma-Aldrich (Steinheim) 

Heparin-Natrium    Fa. Ratiopharm (Ulm) 

HEPES Puffer (1M)    Fa. Sigma-Aldrich (Steinheim) 

Brefeldin A     Fa. Sigma-Aldrich (Steinheim) 

Fluo-3, AM     Fa. Molecular Probes (Eugene, USA) 

Fura Red, AM     Fa. Molecular Probes (Eugene, USA) 

Pluronic F-127 (20 % Lsg. in DMSO) Fa. Molecular Probes (Eugene, USA) 

To-Pro-3 Iodid     Fa. Molecular Probes (Leiden, NL) 

FACSFlow     Fa. Becton Dickinson (Heidelberg) 

FACSSafe     Fa. Becton Dickinson (Heidelberg) 

Tris-Borat-EDTA (TBE)-Puffer  Fa. Sigma-Aldrich (Steinheim) 

Trypan-Blau     Fa. Sigma-Aldrich (Steinheim) 

Tween 20     Fa. Sigma-Aldrich (Steinheim) 

Taq DNA-Polymerase    Fa. Boehringer (Mannheim) 

EDTA (0,02 % Solution)   Fa. Sigma-Aldrich (Steinheim) 

NaCl 0,9 %     Fa. Baxter (Lessines, Belgien) 

 

 

2.1.3 Reagenziensätze 
 
B Cell Isolation Kit    Fa. Miltenyi Biotec (Bergisch Gladbach) 

BDCA-4 Dendritic Cell Isolation Kit  Fa. Miltenyi Biotec (Bergisch Gladbach) 

CD45RO Microbeads    Fa. Miltenyi Biotec (Bergisch Gladbach) 

First-Strand-cDNA Synthesis Kit  Fa. Roche (Mannheim) 

Fix N Perm Kit    Fa. An der Grub (Kaumberg, Österreich) 

High Pure RNA Isolation Kit   Fa. Roche (Mannheim) 

IFN-alpha ELISA    Fa. Bender MedSystems (Wien, Österreich) 

IL-12 p40 ELISA Kit    Fa. Bender MedSystems (Wien, Österreich) 

Pan T Cell Isolation Kit   Fa. Miltenyi Biotec (Bergisch Gladbach) 

 

 

2.1.4 Materialien für die Zellkultur 
 
Biocoll Separationsmedium   Fa. Biochrom (Berlin) 

Fetales Kälberserum    Fa. GibcoBRL (Paisley, Schottland) 
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Humanes AB-Serum (HS)   Fa. BioWhittaker (Wakersville MD, USA) 

Humanes Serum Albumin   Fa. Grifols (Langen) 

Iscove’s Modified Dulbecco’s Medium 

(IMDM)     Fa. PAA (Linz, Österreich) 

L-Glutamin     Fa. PAA (Linz, Österreich) 

Penicillin     Fa. PAA (Linz, Österreich) 

Phosphate buffered saline (PBS)  Fa. PAA (Linz, Österreich) 

Streptomycin     Fa. PAA (Linz, Österreich) 

VLE RPMI 1640 Medium   Fa. Biochrom (Berlin) 

 

Plastikmaterialien für die Zellkultur wurden von den Firmen Greiner (Frickenhausen), 

Falcon (Heidelberg), Becton Dickinson (Le Pont de Claix, Frankreich), Bibby Sterrilin 

(Stone, Staffordshire, England) und Corning (Corning NY, USA) bezogen. 

 

 

2.1.5 Zytokine und Wachstumsstimulatoren  
 
Brefeldin A     Fa. Sigma-Aldrich (Steinheim) 

Calcium-Ionomycin    Fa. Sigma-Aldrich (Steinheim) 

Interferon-alpha    Fa. PBL Biomedical Laboratories  

(New Brunswick NJ, USA) 

Interleukin 2     Fa. R&D Systems (Wiesbaden) 

Interleukin-3     Fa. R&D Systems (Wiesbaden) 

PMA (Phorbol-12-Myristat-13-Acetat) Fa. Sigma-Aldrich (Steinheim) 

TNF-alpha     Fa. R&D Systems (Wiesbaden) 

 

 

2.1.6 Häufig verwendete Puffer, Lösungen und Medien 
 

Um unspezifische Stimulation zu vermeiden, wurden nur endotoxinarme Substanzen 

verwendet. Folgende Medien und Puffer wurden für die Zellkultur eingesetzt: 
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IMDM-Vollmedium:
IMDM-Medium 
8 Vol % Humanes AB-Serum 
100 IU/ml Penicillin 
100 µg/ml Streptomycin 
2 mM Glutamin 

DMEM-Selektionsmedium für CD40L-
Zellen: 
DMEM-Medium 
5 Vol % fetales Kälberserum (FCS) 
100 IU/ml Penicillin 
100 µg/ml Streptomycin 
2 mM Glutamin 
200 µg/ml Geneticin G-418 Sulfat 

 

 

Kryo-Medium (für CD40L-Zellen): 
40 Vol % RPMI Medium 
50 Vol % Humanes AB-Serum bzw. feta-
les Kälberserum 
10 Vol % DMSO 
 

RPMI-Vollmedium: 
100 IU/ml Penicillin 
100 µg/ml Streptomycin 
2 mM Glutamin 
10 Vol % fetales Kälberserum (FCS) 
10 mM HEPES 
VLE RPMI 1640-Medium 

 

 

MACS-Puffer: 
PBS 
0,5 Vol % Humanes Serum Albumin 
2mM EDTA 
pH=7,2 

TE-Puffer:
10 mM Tris Chlorid 
1 mM EDTA 
pH=8,0 

 

Wasser: 
Es wurde stets deionisiertes Wasser aus der Hausleitung benutzt. 

 

 

2.1.7 Antikörper 
 
Folgende Antikörper wurden in der vorliegenden Arbeit verwendet: 

 

Name Spezifität Klon Isotyp Fluoreszenz 
(bei FACS-
AK) 

Herkunft 

Anti-CD3 CD3 SK7 Maus 
IgG1

FITC Fa. BD 
PharMingen 

Anti-CD4 CD4   APC Fa. BD 
PharMingen 

Anti-CD8 CD8   FITC Fa. BD 
PharMingen 

Anti-CD19 CD19   APC, PE Fa. BD 
PharMingen 

Anti-CD45Ra CD45Ra L48 Maus 
IgG1

FITC Fa. BD 
PharMingen 

Anti-HLA-DR HLA-DR L243 Maus 
IgG2a

PerCP Fa. BD 
PharMingen 

Anti-IFN-gamma IFN-gamma 4SB3 Maus 
IgG1

PE Fa. BD 
PharMingen 
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Anti-Interleukin 4 Interleukin 4 8D4-8 Maus 

IgG1

PE Fa. BD 
PharMingen 

Anti-CD154 CD154 
(CD40L) 

TRAP1 Maus 
IgG1

FITC Fa. BD 
PharMingen 

Anti-CD40 CD40 FC3 Maus 
IgG1

FITC, PE Fa. BD 
PharMingen 

Anti-CD80 CD80 BB1 Maus 
IgGM

FITC, PE Fa. BD 
PharMingen 

Anti-CD83 CD83   PE Fa. BD 
PharMingen 

Anti-CD86 CD86 2331 Maus 
IgG1

APC,PE Fa. BD 
PharMingen 

Anti-CCR7 CCR7 3D12 Ratte 
IgG2a

 R. Förster, 
Erlangen-
Nürnberg 

Anti-CxCR4 CxCR4   PE Fa. RD Sys-
tems (Min-
neapolis, 
USA) 

Anti-rat IgG2a Ratte IgG2a RG7/1.30 Maus  Fa. BD 
PharMingen 

Streptavidin-APC Streptavidin - - APC Fa. BD 
PharMingen 

Anti-CD123 CD123   PE Fa. BD 
PharMingen 

Anti-lin 
(CD3,14,16,19,20,56) 

CD3,14,16, 
19,20,56 

  FITC Fa. BD 
PharMingen 

 

 

2.1.8 Oligodesoxynukleotide 
 
Alle immunstimulierenden Oligodesoxynukleotide, die in dieser Arbeit Verwendung fanden, 

wurden bezogen von der Fa. Coley Pharmaceutical Group (Wellesley MA, USA). Alle Oli-

godesoxynukleotide waren Endotoxin getestet (unter 0,03 EU/ml, LAL-Assay, Fa. BioWhit-

taker [Wakersville MD, USA]) und wurden, falls nicht ausdrücklich anders angegeben, in 

einer Konzentration von 3 µg/ml eingesetzt. Hier die Sequenzen der verwendeten Oligo-

desoxynukleotide: 

 

Name Typ Nukleotid-Sequenz (5’ → 
3’) 

Rückgrat Länge Referenz 

2006 Typ B 
Oligo 

tcg tcg ttt tgt cgt ttt gtc gtt S 24-mer (Hartmann, 2000) 

2216 Typ A 
Oligo 

ggg gga cga tcg tcg ggg g SOS 19-mer (Krug, 2001) 
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2.1.9 Primer für die Amplifikation der P2-Rezeptor kodierenden Gene 
 
Die Primer wurden bei Oligofactory PE Biosystems, Deutschland, bestellt. Die Sequenzen 

der Primer sind wie folgt gewählt worden: 

 

 forward primer (sense)  
(5’ → 3’) 

reverse primer (antisense) 
(5’ → 3’) 

Referenz 

P2X1 CTGTGAAGACGTGTGA-
GATCTTTGG 

TTGAA-
GAGGTGACGGTAGTTGG
TCC 

(Berchtold, 
1999) 

P2X4 GAGATTCCAGATGCGACC GACTTGAGGTAAG-
TAGTGG 

(Berchtold, 
1999) 

P2X5 TCGACTACAAGACCGAGAAG CTTGACGTCCATCA-
CATTG 

(Berchtold, 
1999) 

P2X7 AGATCGTGGAGAATGGAGTG TTCTCGTGGTGTAGTTG
TGG 

(Ferrari, 2000)

P2Y1 TGTGGTGTACCCCCTCAAGT
CCC 

ATCCGTAACAGCCCA-
GAATCAGCA 

(Ferrari, 2000)

P2Y2 CTCTACTTTGTCACCAC-
CAGCGCG 

TTCTGCTCCTA-
CAGCCGAATGTCC 

(Berchtold, 
1999) 

P2Y5 TGGTTAACTGTGATCGGAGG AGTCACTTCTCCTGACA
GACC 

(Berchtold, 
1999) 

P2Y6 CGCTTCCTCTTCTATGCCAA
CC 

CCATCCTGGCGGCGGC
ACAGGCGGC 

(Berchtold, 
1999) 

P2Y10 CATCAGTCTTCAAAGGTGC GGACAACTGCTAAT-
GATGG 

(Berchtold, 
1999) 

P2Y11 CAGCGTCATCTTCATCACC GCTA-
TACGCTCTGTAGGC 

(Berchtold, 
1999) 

P2Y12 CTGGGCATT-
CATGTTCTTACTC 

TGCCAGACTAGAC-
CGAACTCT 

(Zhang, 2002)

 

 

2.1.10 P2-Agonisten 
 
Kurzname Name Firma 
ATP Adenosin-5’triphosphat Fa. Sigma-Aldrich (Steinheim) 
βγmATP β,γ-methylen-Adenosin-5’-

triphosphat 
Fa. Sigma-Aldrich (Steinheim) 

2MeSATP 2-methylthio-Adenosin-5’-
triphosphat 

Fa. Sigma-Aldrich (Steinheim) 

AP5A P1,P5-Diadenosin-
pentaphosphat 

Fa. Sigma-Aldrich (Steinheim) 

UTP Uridin 5’-triphosphat Fa. Sigma-Aldrich (Steinheim) 
 

 

2.1.11 P2-Antagonisten 
 
PPADS Pyridoxal-5’-phosphat-6-

azophenyl 2’,4’-disulfonsäure 
Fa. Sigma-Aldrich (Steinheim) 

Suramin  Fa. Sigma-Aldrich (Steinheim)  
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2.2 Zellulär – Immunologische Methoden 
 

2.2.1 Bestimmung der Zellzahl und Vitalität 
 

Zur Bestimmung des Anteils der lebenden Zellen wurde der Trypanblau-Ausschlusstest 

durchgeführt. Hierbei färben sich tote im Gegensatz zu lebenden Zellen blau an. Die Zell-

zahl wurde nach geeigneter Verdünnung der Zellsuspension in einer Neubauer-

Zählkammer unter dem Lichtmikroskop ermittelt. 

 

 

2.2.2 Isolierung von peripheren Blutlymphozyten 
 
Zur Isolierung peripherer Blutlymphozyten (später auch PBMC genannt, Peripheral blood 

mononuclear cells) wurde, je nachdem ob Buffy Coats oder frisches Spenderblut von ge-

sunden Probanden aus der Kollegenschaft im Labor verwendet wurden, ein jeweils ange-

passtes Verfahren verwendet, jedoch immer über eine Ficollpräparation aufgetrennt. Buffy 

Coats sind bei der Zentrifugierung von Blutspenden entstehende Abfallprodukte, in denen 

Leukozyten angereichert sind und der Anteil an Erythrozyten deutlich geringer ist als im 

Vollblut. Im Falle von Buffy Coats wurde das Blut mit einer Perfusorspritze steril aus dem 

Plastikbeutel entnommen, im Verhältnis 1:2 mit PBS verdünnt und in einem 50 ml Po-

lypropylen-Röhrchen über 15 ml Biocoll (=Ficoll) aufgeschichtet, so dass zwei Phasen ent-

standen. Bei der Verwendung von frischem Spenderblut wurde ebenfalls im gleichen Ver-

hältnis mit PBS verdünnt, allerdings wurden zur Separation Leucosep-Röhrchen verwen-

det, in die ebenfalls zuvor 15 ml Biocoll bei Raumtemperatur eingebracht worden waren. 

Anschließend wurde in beiden Fällen 30 min bei 1000 g ohne Bremse zentrifugiert, die 

Zellen in der Interphase vorsichtig – in möglichst kleinem Volumen, um wenig Biocoll mit 

aufzunehmen – mit einer Pipette aspiriert. Danach wurden die Zellen dreimal in PBS ge-

waschen (Zentrifugation 10 min bei 300 g und 4 °C), bevor sie in 5 ml Ortholyse-Reagenz 

aufgenommen wurden, in dem sie 7 min inkubiert wurden. Nach der erfolgten Lyse der 

verbliebenen Erythrozyten wurde noch einmal gewaschen und schließlich die Zellzahl be-

stimmt. Biocoll besitzt aufgrund seiner spezifischen Dichte von 1.077 g/ml die Eigenschaft, 

in einer Dichte-Zentrifugation mononukleäre Zellen (Lymphozyten und Monozyten) an der 

Phasengrenze zwischen Blutserum und Biocoll anzureichern. Wegen ihrer höheren Dichte 

sedimentieren Erythrozyten und Granulozyten in bzw. unter die Biocollschicht. Thrombozy-

ten hingegen finden sich wegen ihrer geringeren Dichte in der Serumschicht oberhalb des 

Biocoll. 
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2.2.3 Isolierung von plasmazytoiden dendritischen Zellen aus PBMC 
 

Plasmazytoide dendritische Zellen wurden wegen ihrer geringen Frequenz im peripheren 

Blut aus PBMC aus Buffy Coats mit dem BDCA-4 Cell Isolation Kit (nach dem Prinzip des 

Magnetic-acticvated cell sorting [MACS]) isoliert. PBMC wurden zunächst durch einen 40 

µm Nylonfilter von Zellklumpen befreit und dann entsprechend dem Protokoll des Herstel-

lers 15 Minuten mit dem Anti-BDCA-4 Antikörper, der an paramagnetische Mikropartikel 

(Microbeads) mit einem Durchmesser von ca. 50 nm gekoppelt ist, bei 6-12 °C inkubiert. 

Nach einem Waschschritt wurde die Zellsuspension in eine in einem Magnetfeld stehende 

Selektionssäule appliziert. Durch die magnetische Markierung werden die plasmazytoiden 

dendritischen Zellen in der Matrix der Säule zurückgehalten. Nach mehrmaligem Waschen 

der Säule mit MACS-Puffer wurde die Selektionssäule aus dem Magnetfeld herausge-

nommen. Mit Druck wurden dann die positiv selektionierten plasmazytoiden dendritischen 

Zellen aus der Säule gespült. Nach einem Waschschritt wurde die Selektionsprozedur oh-

ne erneute Inkubation mit Antikörpern mit einer kleineren Säule wiederholt. Die Reinheit 

der auf diese Weise erhaltenen plasmazytoiden dendritischen Zellen lag zwischen 75 und 

90 %. 

 

 

2.2.4 Stimulation von plasmazytoiden dendritischen Zellen 
 

Um die Wirkungen der extrazellulären Nukleotide auf plasmazytoide dendritische Zellen zu 

untersuchen, wurden diese nach Isolierung (5 x 104 Zellen/200 µl) mit unterschiedlichen 

Konzentrationen von ATP, UTP, 2MeSATP, βγmATP und AP5A in 96-Well Rundboden-

Platten kultiviert. PPADS und Suramin dienten in einigen Ansätzen als P2-Antagonisten. 

Suramin wurde dabei dem Ansatz mit den isolierten Zellen 30 min vor Zugabe der P2-

Agonisten hinzu gegeben. Alle Reagenzien stammten von Sigma-Aldrich (Steinheim). Zur 

Stimulation wurden des Weiteren die Oligonukleotide CpG ODN 2006 und CpG ODN 2216 

(Coley Pharmaceutical Group, Wellesley, USA) verwendet. Die Oligonukleotide waren En-

dotoxin getestet (unter 0,03 EU/ml, LAL-Assay, BioWhittaker, Wakersville, USA) und wur-

den früheren Studien folgend in einer Endkonzentration von 3 µg/ml eingesetzt. Auch fand 

zum Teil TNF-α (R&D Systems, Wiesbaden) in einer Konzentration von 1000 U/ml Ver-

wendung. Um das Überleben der Zellen zu sichern, wurde jeweils 10 ng/ml IL-3 (R&D 

Systems, Wiesbaden) zugesetzt. Die Inkubationszeit betrug – soweit nicht anders erwähnt 

– 48 h. 
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2.2.5 Zellkulturen 
 

Die Zellkulturen wurden in einem Begasungsbrutschrank (HAREUS, Hanau) bei einer 

Temperatur von 37 °C, einer Luftfeuchtigkeit von 95 % und bei einem Anteil von 5 % CO2 

in der Atmosphäre vorgenommen. Als Kulturmedium wurde immer, wenn nicht explizit et-

was anderes angemerkt ist, Vollmedium verwendet. Sämtliche Experimente und Manipula-

tionen mit Zellen wurden ausschließlich unter sterilen Bedingungen in einem Laminar-Air-

Flow durchgeführt. 

 

 

2.2.6 Bestrahlung und Kultivierung von CD40 Ligand-transfizierten 
Fibroblasten und der Kontrollzell-Linie 

 

In einigen Versuchen wurden CD40 Ligand-transfizierte Fibroblasten (ATTC 79814, My-

koplasmen-negativ) als Stimulatorzellen sowie die untransfizierte Mutterzellinie als Kontrol-

le (BHK: baby hamster kidney) verwendet. Um zu verhindern, dass sich Stimulatorzellen 

(CD40 Ligand-transfizierte Fibroblasten) im Versuchsansatz in Kultur teilen, wurden diese 

in 5-10 ml Medium suspendiert und in einer Röntgenbestrahlungsanlage (Institut für Im-

munologie, München) mit 30 Gray für 30 min bestrahlt. Die bestrahlten CD40L-Zellen wur-

den den plasmazytoiden dendritischen Zellen in einem Verhältnis von 1:10 hinzugesetzt. 

 

 

2.2.7 Durchflusszytometrie (FACS-Analyse) 
 

2.2.7.1 Allgemeines Funktionsprinzip 
 

Die FACS-Analyse (Fluorescence-activated cell sorting) stellt eine Möglichkeit dar, Größe, 

Granularität und Oberflächenantigene von Zellen darzustellen und zu quantifizieren. Dazu 

werden die zu untersuchenden Zellen mit fluoreszierenden Antikörpern gegen das zu 

messende Oberflächenantigen markiert und in einem Flüssigkeitsstrom einzeln hinterein-

ander durch eine Messkammer geführt. Hier wird der Zellstrom in der Trägerflüssigkeit auf 

das Küvettenzentrum verengt und beschleunigt, so dass die Zellen einzeln in ausreichen-

dem Abstand voneinander am Messpunkt vorbeifließen. Am Messpunkt führen Zelleigen-

schaften wie Größe, Form, Membranoberfläche und intrazelluläre Granula zu einer Licht-

streuung des einfallenden Laserstrahls, die durch je einen Photodetektor in Verlaufsrich-

tung des Laserstrahls (Vorwärtsstreulicht) und einen im rechten Winkel dazu liegenden 

(Seitwärtsstreulicht) registriert und in elektrische Signale umgewandelt wird. Die Intensität 
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des Vorwärtsstreulichts wird im Wesentlichen durch die Zellgröße, die des Seitwärtsstreu-

lichts durch die intrazelluläre Granularität bestimmt. Der Laserstrahl regt weiterhin das 

Chromophor der für die Oberflächenmarkierung verwendeten Antikörper zur Emission von 

Lichtquanten an, die ebenfalls in Linsen gesammelt werden. Dabei trennen Filter das ge-

sammelte Licht und lenken es – nach Wellenlängenbereichen aufgetrennt – zu verschie-

denen Photodetektoren. So können Signale verschiedener Wellenlänge voneinander ge-

trennt aufgenommen und analysiert werden (Mehrfarbenanalyse). Die gemessene Intensi-

tät der Fluoreszenz ist dabei proportional zur Zahl der pro Zelle gebundenen Antikörper 

gegen das untersuchte Oberflächenantigen.  

 

 

2.2.7.2 Bestimmung von Oberflächen- und intrazellulären Molekülen 
 

Für die FACS-Analysen wurden 2 × 104 – 2 × 105 Zellen in FACS-Röhrchen abzentrifugiert, 

der Überstand abgegossen und die Zellen im rücklaufenden Tropfen resuspendiert. An-

schließend wurden die Zellen im Dunkeln bei 4 °C mit FITC (Fluorescin-Isocyanat), PE 

(Phycoerythin), PerCP (Peridin Chlorophyll Protein) oder APC (Allophyocyanin) gekoppel-

ten Antikörpern für 15-30 min inkubiert.  

 

Bei den Färbungen zum Nachweis des CCR7-Rezeptors auf der Zelloberfläche wurden 

die Zellen im ersten Schritt mit Anti-CCR7-Rattenantikörper inkubiert. Nach je einem 

Waschschritt erfolgte sodann die Inkubation mit einem biotinylierten Anti-Ratte-Antikörper, 

anschließend mit einem Farbstoff-gekoppelten Streptavidin. 

 

Bei den intrazellulären CCR7-Rezeptor-Färbungen wurde wie folgt vorgegangen: Nach 

dem Waschen wurden die Zellen mit dem Fix N Perm-Kit (An der Grub, Kaumberg, Öster-

reich) nach der Anleitung des Herstellers fixiert und permeabilisiert, wodurch eine Anfär-

bung von intrazellulären Zellbestandteilen ermöglicht wurde. Zunächst wurden die Zellen 

über 15 min bei Raumtemperatur fixiert und nach einmaligem Waschen mit PBS dann 15 

min lang permeabilisiert. Gleichzeitig mit dem Permeabilisationsvorgang erfolgten dann 

die Inkubation mit dem CCR7-Rattenantikörper und die weiteren soeben beschriebenen 

Schritte. Nach Waschen mit PBS wurden die Zellen auf einem Durchflusszytometer Modell 

FACSCalibur (Becton Dickinson, Heidelberg) mit der CellQuest-Software (BD Biosciences, 

Version 3.2.1) analysiert. 
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2.2.7.3 Intrazelluläre Kalziumionenmessungen 
 

Veränderungen der intrazellulären Kalziumionenkonzentrationen zum Rückschluss auf die 

Signaltransduktion purinerger Rezeptoren wurden mittels FACS-Messungen untersucht 

(Novak, 1994). Dazu wurden die plasmazytoiden dendritischen Zellen in Anwesenheit von 

10 ng/ml IL3 entweder für 24 h mit CpG ODN 2006 ausgereift oder ohne Reifestimulus in-

kubiert. Anschließend wurden die plasmazytoiden dendritischen Zellen (≤ 5x106 Zellen/ml) 

40 min lang bei 37 oC mit dem Ca2+-sensitiven Reagenzien Fluo-3 Acetoxymethylester 

(fluo-3/AM) (4 µg/ml) und Fura Red (Fura Red/AM) (10 µg/ml) zusammen mit dem Deter-

genz 0,02 % Pluronic F-127 (alle von Molecular Probe, Oregon) inkubiert.  

 

Die Zellen wurden nach 30 min Inkubation im Dunkeln zweimal gewaschen und nach Auf-

nahme in 37 oC warmes Medium mit dem Durchflusszytometer analysiert. Nach Erhalten 

einer stabilen Signallinie im FACS nach 10 bis 30 Sekunden wurden die Nukleotide hinzu-

gegeben, und dann unmittelbar die intrazellulären Kalziumionenkonzentrationen über die 

Zeit (Zeitauflösung 200 ms) mit dem FACS bestimmt. Für die Auswertung wurde das Ver-

hältnis der Fluoreszenz-Intensitäten von Fluo-3 (in Gegenwart von Ca2+ erhöhte Intensität) 

und von Fura Red (in Gegenwart von Ca2+ erniedrigte Intensität) berechnet. Zum Teil wur-

de lediglich die Kinetik des Farbstoffes Fluo-3 dargestellt. Zur Datenanalyse wurde FloJo 

Software (Version 3.4, Tree Star, San Carlos, CA) verwendet. Um die unterschiedlichen 

Spender vergleichen und die Wirkungen der einzelnen Stimuli quantifizieren zu können, 

wurden die Spitzenwerte (peak values) der Fluo-3/Fura Red Ratio nach Zugabe der Stimuli 

bestimmt. 

 

 

2.2.8 Zellmigrations-/Chemotaxis-Assay 
 
Mit Hilfe eines Zellmigration-Assays kann man die Wanderung von Zellen auf ein Agens 

hin sowohl qualitativ als auch quantitativ bestimmen. Hierfür verwendet wurden aus zwei 

Kammern bestehende Trans-well-Platten (5 µm Poren-Größe, 24 Wells, Fa. Corning, U-

SA). Die unteren Kammern der Platte wurden mit 500 µl RPMI/2 % HS gefüllt, dann die 

Nukleotide in den angegebenen Konzentrationen dazugegeben. 1 x 104 plasmazytoide 

dendritische Zellen, die nach Isolation über Nacht mit 10 ng/ml Interleukin-3 inkubiert wor-

den waren, wurden in 100 µl RPMI/2 % HS in die obere Kammer gegeben. Obere und un-

tere Kammer sind durch Poren-Filter voneinander getrennt. Nach 2 h Inkubation bei 37 oC 

wurden die Zellen aus der unteren Kammer geerntet, in Eppendorf-Reaktionsgefäßen auf 

ein Volumen von 50 µl gebracht und mit dem Durchflusszytometer gezählt. 
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2.2.9 Konzentrationsbestimmung von Zytokinen mittels ELISA 
 
Zur Bestimmung der Zytokin-Konzentrationen von Interferon-α und Interleukin-12 p40 

nach 48 h Inkubation wurden ELISA (enzyme-linked-immunosorbent-assay)-Kits zum 

Selbst-Beschichten verwendet (Bender MedSystems, Wien).  

 

Das Testprinzip besteht in der Bindung der im Überstand der Zellkultur gelösten Zytokine 

an spezifische Antikörper (coating antibodies), mit denen die Wells der Platte beschichtet 

sind. Dazu wurden eine Standardreihe mit bekannter Proteinmenge und die zu untersu-

chenden Proben in festgelegten Verdünnungen aufgetragen. An ein anderes Epitop des an 

der Platte gebundenen Zytokins bindet nun ein zweiter, biotinylierter Antikörper (detection 

antibody). Zwischen den einzelnen Arbeitsschritten wurde die Platte mehrfach mit einem 

Waschpuffer zum Entfernen nicht gebundener Antikörper und Zytokine gewaschen. Im 

nächsten Schritt wurden die Proben dann mit Meerrettichperoxidase-gekoppeltem Strepta-

vidin inkubiert. Die Streptavidin-Moleküle gehen eine feste Bindung mit den Biotin-

Molekülen ein. Die Meerrettichperoxidase katalysiert eine quantifizierbare Reaktion, die 

der Menge des in der Probe vorhandenen Zytokins entspricht, mit einem anschließend zu-

gegebenen Farbstoff. Nach Abstoppen der Reaktion mit Schwefelsäure wurde die Mes-

sung der durch den umgesetzten Farbstoff hervorgerufenen Absorption (die also proporti-

onal zur Proteinkonzentration der Probe ist) direkt im Anschluss in einem ELISA-Reader 

bei der in der Anleitung empfohlenen Wellenlänge vorgenommen. Die Auswertung erfolgte 

durch den Vergleich mit einer in Doppelwerten angefertigten Standardkurve mit bekannten 

Proteinmengen. 

 

 

2.3 Molekularbiologische Methoden 
 

2.3.1 Grundlagen der Polymerase-Ketten-Reaktion 
 
Die Polymerase-Ketten-Reaktion (PCR) ermöglicht es, ein bestimmtes DNA-Segment aus 

einem Gemisch unterschiedlicher Nukleinsäuren zu vermehren und damit kleinste Mengen 

einer gegebenen DNA-Sequenz nachzuweisen. Die Reaktion erfolgt mit Hilfe einer ther-

mostabilen DNA-Polymerase und eines Paares sequenzspezifischer Oligonukleotidprimer, 

das zu den Enden der zu amplifizierenden DNA komplementär ist. Die Reaktion besteht 

aus drei Schritten: Zuerst wird die Matrizen-DNA denaturiert, bei doppelsträngiger DNA 

werden gegebenenfalls die beiden Stränge aufgeschmolzen (Denaturierung). Danach fin-

det eine spezifische Hybridisierung der Primer an die komplementäre Zielsequenz auf der 

DNA statt (Anlagerung oder annealing). Schließlich geht von den Primern die DNA-
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Synthese aus (Elongation). In der darauf folgenden Amplifikationsrunde kann das so syn-

thetisierte DNA-Fragment als neue Matrize für die Primeranlagerung dienen. Auf diese 

Weise ist in mehreren aufeinander folgenden Zyklen eine exponentielle Anreicherung einer 

beliebigen DNA-Sequenz, die zwischen den beiden Primern liegt, möglich.  

 

 

2.3.2 Isolierung von Gesamt-RNA aus plasmazytoiden dendritischen Zel-
len 

 
Um auch Analysen von mRNA bzw. Gesamt-RNA mittels der RT-PCR-Technik durchführen 

zu können, muss RNA zuerst isoliert und dann in komplementäre DNA (cDNA) umge-

schrieben werden. Zur Isolierung von RNA aus plasmazytoiden dendritischen Zellen wurde 

der High Pure RNA Isolation Kit von Roche, Mannheim, verwendet.  

 

1,8 x 106 PDC wurden nach Inkubation mit oder ohne CpG Oligonukleotiden (und jeweils 

mit 10 ng/ml IL-3) für 24 h bei 37 °C gewaschen und in PBS resuspendiert. Nach Zugabe 

des speziellen Lyse-/Bindepuffers Ortho-mune (Fa. Ortho-Clinical Diagnostics, 

Neckarsgmünd), der innerhalb weniger Sekunden die Zellen lysiert und gleichzeitig die 

RNAsen inaktiviert, wurde die Probe in einem zweiteiligen Auffanggefäß zentrifugiert. Die 

RNA adsorbierte dabei an das Glasfaserflies des Filters im oberen Reservoir, während die 

anderen Zellbestandteile in das untere Reservoir durchliefen und anschließend verworfen 

wurden. Da am Glasfaserflies alle Nukleinsäuren spezifisch binden, wurde die Probe da-

nach mittels einer enzymatischen Verdauungsreaktion von kontaminierender DNA befreit, 

was durch Inkubation mit DNAse I für 15 min bei 15-25 °C geschieht. Nach drei Wasch-

schritten mit den mitgelieferten Waschpuffern und anschließendem Zentrifugieren konnte 

die RNA mit einem Elutionspuffer aus dem Filter eluiert werden. 

 

 

2.3.3 Reverse Transkription von Gesamt-RNA in cDNA 
 

Zur Amplifikation über PCR wird die RNA revers transkribiert und in einen cDNA-

Einzelstrang umgeschrieben. Dazu wurde der 1st Strand cDNA Synthesis Kit for RT-PCR 

(AMV) der Firma Roche, Mannheim verwendet. Hierfür wurde die RNA mit einem Reakti-

onsansatz (Master Mix) bestehend aus 5 mM MgCl2, 1 mM Deoxynukleotid-Mix, 1,6 

µg/Ansatz Oligo-p(dT)15 Primer, 50 units/Ansatz RNAse Inhibitor und ≥ 20 units/Ansatz 

Reverse Transkriptase kurz vor der Reaktion zusammenpipettiert, für 10 min bei 25 °C und 

anschließend für 60 min bei 42 °C inkubiert. In der ersten Inkubation binden dabei die Pri-

  



36 Material und Methoden 

mer an die RNA-Matrize und werden anschließend revers transkribiert, was zur cDNA-

Synthese in der zweiten Inkubation führt. Danach wurde die AMV Reverse Transkriptase 

durch fünfminütiges Erhitzen des Reaktionsgemischs auf 99 °C und anschließendes Ab-

kühlen auf 4 °C für weitere fünf Minuten denaturiert. 

 

 

2.3.4 Reverse Transkriptase Polymerase-Ketten-Reaktion (RT-PCR) 
 
Der Reaktionsansatz enthielt 1X Reaktions-Puffer, 1,5 mM MgCl2, 0,2 mM Deoxynukleotid-

Mix, jeweils 0,2 µM der Primerpaare, 1,25 units/Ansatz Taq DNA-Polymerase und 2 µl der 

zuvor synthetisierten cDNA. Um unspezifische Reaktionen zu vermeiden, wurde auf Eis 

pipettiert und die Taq DNA-Polymerase zuletzt zugegeben. Anschließend wurde die Reak-

tion auf einem vorgeheizten Thermocycler Modell T3 (Fa. Biometra, Göttingen) gestartet. 

Um eine unspezifische Anlagerung der Primer an das Genom zu vermindern, wurden so 

genannte touchdown Bedingungen, d.h. ein schrittweises Absenken der Anlagerungstem-

peratur (Annealing-Temperatur) über mehrere Zyklen bis zu einem optimalen, Primer spe-

zifischen Wert gewählt. Durch dieses Verfahren lässt sich die Spezifität der PCR deutlich 

verbessern. 
 

Die Reaktionsbedingungen wurden erst für die jeweiligen Primer mit cDNA von PBMC op-

timiert und so gewählt, dass die Primer möglichst spezifisch binden konnten. Die Expres-

sion des house-keeping Gens β-Actin wurde benutzt, um die Menge und Qualität der ein-

gesetzten cDNA zu kontrollieren. Als Negativkontrolle wurde immer ein kompletter Reakti-

onssatz ohne Template-DNA mitgeführt, um eine Kontamination mit fremder DNA auszu-

schließen: 

 

Zyklus Denaturierung Anlagerung Elongation 

0 95 °C 5 min - - - - 

1 - 15 94 °C 1 min 65 °C * 1 min 72 °C 1 min 

16 - 40 94 °C 1 min 50 °C  1 min 72 °C 1 min 

41 - - - - 72 °C 10 min 

* Zyklus 1 – 20: -1 °C pro Zyklus 
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Für die PCR mit P2X7-Rezeptor Primern wurden folgende, abweichende Bedingungen 

gewählt, um bei höherer Temperatur spezifischere Banden zu erhalten: 

 

Zyklus Denaturierung Anlagerung Elongation 

0 95 °C 5 min - - - - 

1 - 15 94 °C 1 min 69 °C * 1 min 72 °C 1 min 

16 - 40 94 °C 1 min 54 °C  1 min 72 °C 1 min 

41 - - - - 72 °C 10 min 

* Zyklus 1 – 20: -1 °C pro Zyklus 

 

Für die PCR mit P2Y1-Rezeptor Primern wurden aus demselben Grund folgende Bedin-

gungen gewählt: 

 

Zyklus Denaturierung Anlagerung Elongation 

0 95 °C 5 min - - - - 

1 - 8 94 °C 1 min 78 °C * 1 min 72 °C 1 min 

9 - 40 94 °C 1 min 70 °C  1 min 72 °C 1 min 

41 - - - - 72 °C 10 min 

* Zyklus 1 – 20: -1 °C pro Zyklus 

 

Die PCR Produkte wurden danach bei 4 °C gekühlt. Um eine Probenkontamination zu 

vermeiden, wurde stets mit Einmalhandschuhen auf ausgewiesenen, weitgehend sterilen 

Arbeitsflächen gearbeitet. Probenvorbereitung, die Durchführung der PCR und die Ergeb-

nisanalysen wurden an getrennten Arbeitsplätzen durchgeführt. Alle Arbeitsutensilien wa-

ren von den Herstellern als DNAse- und RNAse-frei ausgezeichnet. Die PCR-Produkte 

wurden dann gelelektrophoretisch aufgetrennt. 

 

 

2.3.5 Gelelektrophorese 
 

Für die Herstellung eines 1,5 %igen Elektrophorese-Gels wurden 130 ml TBE-Puffer, ver-

setzt mit 1,95 g Agarose Typ I und 5 µl Ethidiumbromid (Fa. Sigma-Aldrich, Steinheim), in 

einer Mikrowelle aufgekocht und in eine Gelkammer gegossen. Nach Ende des PCR-

Programms wurden 20 µl der Reaktionslösung mit 4 µl Ladepuffer versetzt (30 % Glycerol 

und 0,25 % Bromphenolblau, Fa. Sigma-Aldrich, Steinheim) in die Geltaschen gegeben 

und elektrophoretisch mit TBE-Laufpuffer aufgetrennt. Zur Größenbestimmung des ampli-

fizierten DNA-Segments dienten der DNA Molecular Weight Marker III (Fa. Roche, Mann-
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heim) für Fragmente von 0,12 bis 21,2 kbp und der PBR 322 Hae III DIGEST (Fa. Sigma-

Aldrich, Steinheim) für Fragmente von 100 bis 600 bp Länge. Zur Überprüfung der einge-

setzten cDNA-Menge diente die koamplifizierte β-Actin-cDNA. Nach einer Laufzeit von ca. 

70 min bei 100 V wurde das Gel unter UV-Licht mit einem Polaroid-Negativfilm mit Blende 

und, je nach Signalstärke, 10 bis 20 Sekunden Belichtungszeit fotografiert. 

 

 

2.4 Statistische Analyse 
 
Die Ergebnisse sind als arithmetisches Mittel ± SEM (Standard error of mean = Standard-

fehler des Mittels) angegeben. Falls in einem Versuchsansatz lediglich zwei unabhängige 

Experimente durchgeführt wurden, so sind die Ergebnisse als Mittelwert ± Reichweite dar-

gestellt. Dies ist jedoch explizit in der Beschreibung der Abbildung erwähnt. Bei einigen 

Experimenten wurde zum Vergleich der Mittelwerte ein zweiseitiger Student-t-Test für ge-

paarte Stichproben durchgeführt. Statistische Signifikanz wurde bei p<0,05 angenommen 

und ist durch Markierung mit einem * angezeigt. Die statistischen Untersuchungen wurden 

mit dem Programm Stat-View 512 von Abacus Concepts (Calabasas, USA) durchgeführt. 
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3 ERGEBNISSE 
 

3.1 Nachweis von P2-Rezeptoren auf plasmazytoiden dendritischen Zellen 
 
Extrazelluläre Nukleotide vermitteln eine Vielzahl biologischer Wirkungen, die daran betei-

ligten P2-Rezeptoren sind auf unterschiedlichen Zellen des Immunsystems beschrieben 

worden. Ziel war es, die Expression der P2-Rezeptoren auf plasmazytoiden dendritischen 

Zellen und ein durch Aktivierung dieser Zellen möglicherweise verändertes Rezeptormus-

ter auf mRNA-Ebene zu untersuchen. Dazu wurde Gesamt-RNA sowohl aus frisch isolier-

ten, als auch aus plasmazytoiden dendritischen Zellen, die zuvor 24 h lang mit dem Oligo-

nukleotid CpG ODN 2006 (3 µg/ml) inkubiert worden waren, gewonnen. CpG ODN 2006 

ist ein bekannter potenter Stimulus zu Aktivierung von PDC. Mit Hilfe rezeptorspezifischer 

Primer für P2X- und P2Y-Rezeptoren wurde sodann in einer semiquantitativen PCR die 

Anwesenheit von mRNA analysiert. Als Positivkontrolle und Vergleich wurden in den PCR-

Ansätzen gleiche Mengen an mRNA aus nicht weiter aufgetrennten PBMC eingesetzt. An-

hand des house-keeping Gens β-Actin wurde kontrolliert, dass vergleichbare Mengen RNA 

in den Proben eingesetzt wurden.  

 

Auf unstimulierten plasmazytoiden dendritischen Zellen konnte RNA aller untersuchten 

P2X-Rezeptoren (P2X1, P2X4, P2X5, P2X7) und P2Y-Rezeptoren (P2Y1, P2Y2, P2Y5, P2Y6, 

P2Y10, P2Y11, P2Y12) nachgewiesen werden (siehe Abb.3). In den mit CpG ODN 2006 sti-

mulierten Zellen war RNA aller P2-Rezeptoren bis auf die des G-Protein-gekoppelten 

P2Y2-Rezeptors nachweisbar. 
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Abb. 3: P2-Rezeptor-Expression 
humaner PDC. Zytoplasmatische 
RNA wurde aus frisch isolierten 
PBMC (linke Spalte), unstimulierten 
PDC und mit über 24 h mit CpG 
ODN 2006 (3 µg/ml) stimulierten
PDC (rechte Spalte) unterschiedli-
cher Spender gewonnen, mit re-
verser Transkriptase umgeschrieben 
und mit Hilfe der jeweiligen Primer 
(siehe Material und Methoden) die 
entsprechende cDNA in einer PCR 
amplifiziert. Als Negativkontrolle wur-
de jeweils eine PCR-Reaktion ohne 
cDNA Matrize mitgeführt. Die Reakti-
onsprodukte wurden mit einem 1,5 
%igen Agarosegel überprüft. (Bei 
P2Y10 kann druckbedingt die Bande 
bei PDC schlecht erkennbar sein.) 

 

 

3.2 Einfluss von Nukleotiden auf den intrazellulären Kalziumspiegel 
 
Binden Nukleotide an P2-Rezeptoren, kommt es zu einem Anstieg der intrazellulären Kal-

ziumionenkonzentration. Dabei stammen die Ca2+-Ionen entweder aus extrazellulären 

Speichern (im Falle der P2X-Rezeptoren) oder zusätzlich noch aus intrazellulären Spei-

chern, wie bei den P2Y-Rezeptoren der Fall. Um zu testen, ob der Reifezustand der PDC 

einen Einfluss hat auf ihre Fähigkeit oder Art auf Nukleotide zu reagieren, wurden die Zel-

len zuerst unstimuliert oder zusammen mit CpG ODN 2006 24 h lang inkubiert. Anschlie-

ßend wurden dann die Veränderungen der intrazellulären Kalziumionenkonzentrationen 

nach Zugabe von P2-Agonisten – wie im Methodenteil beschrieben – mit der Fluoreszenz-

zytometrie bestimmt. Dabei wurden P2-Agonisten und auch P2-Antagonisten verwendet, 

die unterschiedliche Rezeptoraffinitäten besitzen. Dies hatte zum Ziel, diejenigen P2-

Rezeptoren zu identifizieren, welche für die Aktivierung von PDC durch Nukleotide verant-

wortlich sind.  

 

In Konzentrationen von 100 µM führten die eingesetzten P2-Agonisten zu einem raschen 

Anstieg der Kalziumionenkonzentration in den Zellen (siehe Abb.4). UTP verursachte den 

größten Anstieg, gefolgt von dem modifizierten Derivat 2MeSATP und ATP. AP5A führte 
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lediglich zu einem minimalen Konzentrationsanstieg intrazellulärer Kalziumionen (siehe 

Abb.4B). Der Effekt des ATP ließ sich durch Vorinkubation mit den P2-Rezeptor-

Antagonisten Suramin (30 µM) und PPADS (500 µM) reduzieren (siehe Abb. 4C). ATP 

zeigte dosisabhängige Effekte, da bei höheren Konzentrationen dieses Nukleotids (500 

µM) ein höherer Anstieg beobachtet werden konnte (siehe Abb. 4A). Bemerkenswerter-

weise kam es bei den mit CpG ODN 2006 aktivierten Zellen zu einer vergleichsweise ge-

ringeren Erhöhung der Kalziumionenkonzentration nach Stimulation mit Nukleotiden, ins-

besondere bei 2MeSATP, ATP und UTP. Der Unterschied war am deutlichsten bei 

2MeSATP, bei ATP war er größer als bei UTP. Kein Effekt war bei AP5A zu beobachten. 
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Abb. 4: ATP erhöht die Konzentration intrazellulärer Kalziumionen in plasmazytoi-
den dendritischen Zellen. Der Effekt wird durch Vorinkubation mit CpG ODN 2006 redu-
ziert. A, PDC wurden für 24 h alleine mit IL-3 (10 ng/ml) oder mit IL-3 und CpG ODN 2006 
(3 µg/ml) inkubiert. Sofort nach Stimulation mit ATP (100 µM und 500 µM) wurde die intra-
zelluläre Kalziumionenkonzentration mittels Fluoreszenzzytometrie und Ca2+-sensiblen 
Farbstoffen bestimmt. Die Ergebnisse sind als Kinetik der Fluoreszenz-Quotienten der 
Farbstoffe Fluo-3 und Fura Red gezeigt. Dargestellt ist ein repräsentatives von drei Expe-
rimenten. B, Intrazelluläre Kalziumionenmessung. Es werden die Unterschiede der intra-
zellulär gemessenen Spitzenwerte (Peak-Werte) der Fluoreszenz-Quotienten von Fluo-3 
und Fura Red unreifer und reifer PDC nach Stimulation mit UTP, 2MeSATP, ATP und AP5A 
(jeweils 100 µM) dargestellt. Gezeigt sind die Ergebnisse von drei unabhängigen Experi-
menten + SEM. * p < 0,05 (Student t-test). C, Hemmung des ATP (1 mM und 100 µM) 
vermittelten intrazellulären Kalziumionenkonzentrations-Anstieges durch Vorinkubation mit 
Suramin 30 µM bzw. 500 µM PPADS jeweils 30 min vor Zugabe von ATP. Darstellung als 
lineare Kinetik der Fluo3-Fluoreszenz gegen die Zeit (n=1). 
 

 

3.3 ATP hat chemotaktische Wirkungen auf plasmazytoide dendritische 
Zellen 

 
Einem Gradienten aus speziellen chemotaktisch aktiven Substanzen folgend, wie zum 

Beispiel den inflammatorischen Chemokinen CCL4 und CCL5, gelangen Antigen-

präsentierende Zellen (APC) an Entzündungsorte. Um zu untersuchen, ob Nukleotide 

chemotaktische Wirkungen auf PDC haben, wurden die – nach Isolation über Nacht ohne 

Stimuli (lediglich mit IL-3 10 ng/ml) inkubierten – plasmazytoiden dendritischen Zellen in 

einem Chemotaxis-Assay untersucht. Wie in Abbildung 5 gezeigt, besitzt ATP einen dosis-

abhängigen, UTP im Gegensatz dazu keinen chemotaktischen Effekt auf unstimulierte 

plasmazytoide dendritische Zellen. 
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Abb. 5: ATP übt einen dosisabhängigen chemotaktischen Effekt auf PDC aus. 1 x 104 
der lediglich mit IL-3 (10 ng/ml) über Nacht inkubierten PDC wurden in die oberen Kam-
mern, die Nukleotide ATP respektive UTP in den angegebenen Konzentrationen in die 
durch eine Membran getrennten unteren Kammern einer Chemotaxis-Transwell-Platte ge-
geben. Nach 2 h bei 37 °C wurden die in die unteren Kammern gewanderten Zellen ge-
zählt. Gezeigt sind Mittelwerte aus drei unabhängigen Experimenten + SEM. 
 

 

3.4 ATP erhöht partiell kostimulatorische Moleküle auf plasmazytoiden 
dendritischen Zellen 

 
Die Stimulierung über den T-Zellrezeptor reicht alleine nicht aus, um naive T-Zellen zur 

Proliferation und Differenzierung anzuregen. Dazu werden zusätzliche kostimulatorische 

Signale benötigt. Die am besten charakterisierten kostimulatorischen Moleküle auf den An-

tigen-präsentierenden dendritischen Zellen sind CD80 (B7.1) und CD86 (B7.2). Die Ex-

pression dieser Moleküle entscheidet, ob es zu einer Immunreaktion oder zur Toleranz 

kommt. Diese kostimulatorischen Signale stehen unter der Kontrolle von Gefahr-

signalisierenden (danger signal) Rezeptoren wie z.B. den TLR. Daher wurde untersucht, 

wie diese kostimulatorischen Moleküle durch P2-Agonisten beeinflusst werden, und inwie-

fern der Reifezustand der PDC dabei eine Rolle spielt.  
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Ferner wurde mit dem Ziel, die auf PDC aktiven P2-Rezeptoren zu identifizieren, der Effekt 

von ATP mit dem von UTP und βγmATP auf die Expression von CD86 sowie der Reife-

marker HLA-DR (MHC II) und CD83 verglichen. UTP und βγmATP unterscheiden sich – 

wie in der Einleitung beschrieben – von ATP zum Teil in der Affinität zu den verschiedenen 

P2-Rezeptoren. Die PDC wurden zusammen mit Nukleotiden bzw. zusätzlich mit den Oli-

gonukleotiden CpG ODN 2006/2216 (3 µg/ml) inkubiert, anschließend wurde die Expressi-

on der Oberflächenmarker fluoreszenzzytometrisch bestimmt. 

 

ATP alleine führte zu einer Hochregulation von CD86 (siehe Abb. 6B). Hinsichtlich einer 

erhöhten Regulation des kostimulatorischen Moleküls CD 86 zeigte sich UTP am stärks-

ten, βγmATP am schwächsten (siehe Abb. 6A). Der Reifemarker CD83 wurde durch ATP 

vermehrt exprimiert. Eine Veränderung der HLA-DR Expression (MHC II) durch ATP oder 

βγmATP alleine ist nicht beobachtet worden; durch UTP wurde HLA-DR hochreguliert 

(siehe Abb. 6D). Auf CpG ODN 2006 bzw. 2216 aktivierten plasmazytoiden dendritischen 

Zellen kam es durch ATP – außer zu einer erhöhten CD83-Expression – zu keiner erkenn-

baren Veränderung. Anders als bei humanen Monozyten-abgeleiteten dendritischen Zellen 

(MonoDC) berichtet, wurde kein Synergismus von TNF-α und ATP hinsichtlich der Expres-

sion von CD86 und HLA-DR gefunden; bei CD86 fand sich lediglich ein leicht additiver Ef-

fekt (siehe Abb. 7).  
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Abb. 6: ATP beeinflusst die Expression der Aktivitätsmarker CD86, CD83 und HLA-
DR auf PDC. PDC wurden mit ATP, βγmATP, UTP (jeweils 250 µM), CpG ODN 2006, CpG 
ODN 2216 (jeweils 3 µg/ml) oder der Kombination aus ATP und CpG ODN 2006/2216 sti-
muliert. Nach 48 h wurde die Expression von CD86 (n=5) (A-B), CD83 (n=4) (C) und HLA-
DR (n=5) (D-E) durchflusszytometrisch bestimmt und als MFI-Werte bzw. als % positive 
Zellen + SEM dargestellt. * p < 0,05 (Student t-test). 
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Abb. 7: ATP zeigt keinen 
Synergismus von TNF-α
und ATP hinsichtlich der 
Expression von CD86 und 
HLA-DR. PDC wurden mit
ATP (250 µM), TNF-α
(1000 U/ml) oder der Kom-
bination aus ATP und TNF-
α stimuliert. Nach 48 h wur-
de die Expression von 
CD86 (n=3) (A) und HLA-
DR (n=3) (B) durchflusszy-
tometrisch bestimmt und als 
MFI-Werte + SEM darge-
stellt. 
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3.5 ATP erhöht die Expression des Chemokinrezeptors CCR7 auf stimu-
lierten plasmazytoiden dendritischen Zellen 

 
Nach Stimulation in peripheren Geweben regulieren Antigen-präsentierende Zellen, wie 

die dendritischen Zellen, Rezeptoren für lymphoide Chemokine hoch, um von peripheren 

Orten, an denen es zur Antigenaufnahme gekommen ist, in die Lymphknoten zu gelangen. 

Der Chemokinrezeptor CCR7, der die Chemokine CCL19/ELC (macrophage inflammatory 

protein-3β [MIP-3β]) und CCL21/SLC (6Ckine) erkennt, ist für diesen Vorgang essentiell. 

Er dient somit auch als Aktivierungsmarker für dendritische Zellen. Seine Expression wur-

de durchflusszytometrisch auf plasmazytoiden dendritischen Zellen untersucht, welche für 

24 h mit CpG ODN 2006, CpG ODN 2216 (jeweils 3 µg/ml) oder CD40L aktiviert worden 

waren (siehe Abb. 8). Das Oberflächenprotein CD40L wird von T-Helferzellen exprimiert 

und kann durch Bindung an den entsprechenden Rezeptor Antigen-präsentierende Zellen 

aktivieren. CD40L wird hier modellhaft für die Interaktion von T- und Antigen-

präsentierenden Zellen verwendet. 

 

Die Experimente zeigten, dass ATP alleine zu keinen Veränderungen der CCR7-

Expression führt. Allerdings wurde eine durch die Aktivierung mit CpG ODN 2006, CpG 

ODN 2216 oder CD40L erhöhte CCR7-Expression auf plasmazytoiden dendritischen Zel-

len nochmals zusätzlich durch ATP verstärkt. Um zu untersuchen, ob ATP (wie auch für 

andere Substanzen aus der Literatur bekannt) möglicherweise zu einer Oberflächenex-

pression bereits synthetisierter, noch intrazellulär lokalisierter CCR7-Rezeptorproteine 

führt, wurde auch eine intrazelluläre Messung dieser Rezeptorklasse durchgeführt. Dies 

zeigte ein zur extrazellulären Bestimmung analoges Muster. Interessanterweise verhielt 

sich die ATP-induzierte CCR7-Rezeptorexpression auf B-Zellen, die innerhalb von mono-

nukleären Zellen des peripheren Bluts (PBMC) in gleicher Weise stimuliert worden waren, 

entsprechend (siehe Abb. 9). 
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Abb. 8: Auf stimulierten PDC führt ATP zu einer zusätzlichen Erhöhung der Expres-
sion des Chemokinrezeptors CCR7. PDC wurden mit ATP (250 µM), CpG ODN 2006 (3 
µg/ml), CD40L (im Verhältnis 1:10) oder einer Kombination von ATP und CpG ODN 2006 
bzw. CD40L für 24 h inkubiert und anschließend durchflusszytometrisch auf die Expressi-
on des CCR7-Rezeptors hin sowohl extra- (A) als auch intrazellulär (B) untersucht. Ge-
zeigt sind die Mittelwerte von jeweils drei unabhängigen Experimenten + SEM. 
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Abb. 9: Die Expression des Chemokinrezeptors CCR7 auf stimulierten B-Zellen wird 
durch ATP verstärkt. Stimulation von mononukleären Zellen des peripheren Blutes 
(PBMC) mit ATP (250 µM) erhöht die Oberflächenexpression des Chemokinrezeptors 
CCR7 auf B-Zellen (CD19-positive Zellen) bei simultaner Aktivierung mit CpG ODN 2006, 
CpG ODN 2216 (jeweils 3 µg/ml) oder mit CD40L-transfizierten Zellen (im Verhältnis 1:10). 
Gezeigt sind die Mittelwerte von jeweils drei unabhängigen Experimenten + SEM. 
 

 

3.6 Die Sekretion von IFN-α und IL-12 aktivierter plasmazytoider dendriti-
scher Zellen wird durch ATP reduziert 

 
Plasmazytoide dendritische Zellen zeichnen sich durch die Eigenschaft aus, große Men-

gen an Typ I Interferonen als Reaktion auf pathogen-associated molecular patterns 

(PAMP) oder auf Infektionen hin zu produzieren. Werden diese Zellen mit CD40L und 
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CpG-ODN aktiviert, sezernieren sie als ein weiteres Merkmal IL-12, welches eine TH1-

Immunantwort induzieren kann. Demnach untersuchten wir den Einfluss von ATP auf un-

reife plasmazytoide dendritische Zellen und auf solche, die für 48 h mit CpG 2006, CpG 

2216 oder CD40L stimuliert worden waren. Der Gehalt der Zytokine IFN-α und IL-12 p40 

wurde im Zellüberstand mittels ELISA bestimmt. Die Sekretion sowohl von IFN-α (siehe 

Abb. 10) als auch von IL-12 p40 (siehe Abb. 11) durch aktivierte (CpG 2006 und CpG 

2216) Zellen wurde durch ATP reduziert. CD40L und CpG 2006 hatten zusammen einen 

leicht additiven Effekt auf die IL12 p40- Produktion von plasmazytoiden dendritischen Zel-

len, welcher durch ATP reduziert werden konnte. ATP führte zu einer minimalen Reduktion 

der basalen IFN-α-Produktion, die Sekretion von IL-12 p40 hingegen wurde im Vergleich 

zur Mediumkontrolle etwas gesteigert. 
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Abb. 10: Die IFN-α-Sekretion CpG-ODN aktivierter PDC wird durch ATP reduziert. 
PDC wurden mit ATP (250 µM), CpG 2006/2216 (3 µg/ml) oder der Kombination aus ATP 
und CpG 2006/2216 inkubiert. Nach 48 h wurde die Konzentration von IFN-α in den Über-
ständen bestimmt (A). In Abbildung B wurden die Konzentrationswerte der CpG ODN sti-
mulierten PDC auf 100 % normiert und die Inhibition durch ATP als Prozent vom Aus-
gangswert angegeben. Gezeigt sind die Mittelwerte aus fünf unabhängigen Experimenten 
+ SEM. 
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Abb. 11: Die IL-12 p40-Sekretion CpG-ODN- bzw. CpG-ODN und CD40L-aktivierter 
PDC wird durch ATP reduziert. PDC wurden mit ATP (250 µM), CpG 2006/2216(3 µg/ml) 
(A), CD40L-transfizierten Zellen (im Verhältnis 1:10) oder einer Kombination aus diesen 
(B) inkubiert. Nach 48 h wurde die Konzentration von IL-12 p40 in den Überständen be-
stimmt. Gezeigt sind die Mittelwerte aus vier unabhängigen Experimenten + SEM. 
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4 DISKUSSION 
 

4.1 Übersicht über die experimentellen Ergebnisse 
 
In dieser Arbeit wurden die Effekte von ATP, UTP und ATP-Derivaten auf humane plasma-

zytoide dendritische Zellen analysiert. Dazu wurden die Expression von P2-Rezeptoren 

auf diesen Zellen, deren Funktionalität sowie die Effekte der extrazellulären Nukleotide auf 

Phänotyp, Chemotaxis und Zytokinproduktion untersucht. 

 

Plasmazytoide dendritische Zellen exprimieren alle bislang bekannten P2-Rezeptoren. Le-

diglich der P2Y2–Rezeptor schien auf aktivierten plasmazytoiden dendritischen Zellen zu 

fehlen. Die Stimulation mit extrazellulären Nukleotiden induzierte eine Erhöhung der intra-

zellulären Kalziumionenkonzentration. Reife Zellen wiesen einen niedrigeren Anstieg der 

Kalziumionenkonzentration nach Stimulation mit ATP auf. Durch die Verwendung von Su-

ramin, eines P2-Rezeptor-Antagonisten, konnte der Effekt des ATP reduziert werden. Dies 

ist ein Hinweis darauf, dass die Wirkung von ATP in der Tat über P2-Rezeptoren vermittelt 

wird, und die beobachteten Effekte nicht unspezifischer Natur sind. Die Stimulierung plas-

mazytoider dendritischer Zellen mit extrazellulären Nukleotiden führte zu einer partiellen 

Hochregulation kostimulatorischer Moleküle, Reifemarker und MHC II-Moleküle. Sowohl 

auf aktivierten plasmazytoiden dendritischen Zellen als auch auf aktivierten B-Zellen in-

nerhalb von mononukleären Zellen des peripheren Blutes kam es durch ATP zu einer er-

höhten Expression des Chemokinrezeptors CCR7. ATP übte einen dosisabhängigen che-

motaktischen Effekt auf unstimulierte plasmazytoide dendritische Zellen aus. Des Weiteren 

reduzierte die Inkubation mit ATP die Synthese der Zytokine IL-12 und IFN-α durch akti-

vierte plasmazytoide dendritische Zellen. 

 

Die Ergebnisse der vorliegenden Arbeit deuten auf eine wichtige immunmodulierende Rol-

le der extrazellulären Nukleotide in Gebieten mit Zellschäden oder Entzündung hin: Sie 

„locken“ plasmazytoide dendritische Zellen an diese Orte, regulieren zum einen deren in-

flammatorisches Potential herunter, zum anderen deren T-Zell-aktivierende Fähigkeit hoch 

und fördern deren Migration in die sekundären Lymphknoten. 
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4.2 Ergebnisinterpretation vor dem Hintergrund aktueller Literatur 
 

4.2.1 Vorkommen von ATP 
 
ATP liegt im Zytosol lebender Zellen in einer Konzentration von 5-10 mM, in manchen Zell-

kompartimenten bis zu 100 mM vor, im extrazellulären Raum hingegen nur im nanomola-

ren Bereich. Unter anderem bei Zellmembranschäden und Zelluntergang verschiedener 

Ursachen kann die extrazelluläre Konzentration in den mikromolaren Bereich ansteigen 

(Di Virgilio, 2000;  la Sala, 2003). Die in der vorliegenden Arbeit eingesetzten Konzentrati-

onen zwischen 100 und 250 µM sind demnach als Modell einer solchen ATP-Exposition zu 

rechtfertigen und auch in vorhergehenden Untersuchungen in dieser Höhe eingesetzt 

worden (Hsu, 2001;  la Sala, 2002;  Schnurr, 2000;  Schnurr, 2003).  

 

 

4.2.2 Isolierung von plasmazytoiden dendritischen Zellen 
 
Zur Isolierung der PDC ist das BDCA-4-Kit eingesetzt worden. Die Bindung des dabei 

verwendeten Antikörpers gegen BDCA-4, einem spezifischen Marker auf PDC, hat keine 

bekannte Beeinflussung dieser Zellen zur Folge (Dzionek, 2002). PDC sind eine zahlen-

mäßig geringe Population der Blutzellen (weniger 0,1 % der PBMC). Bei der Isolierung 

dieser Zellen konnten Reinheiten von über 90 % erzielt werden, so dass man davon aus-

gehen kann, dass die beobachteten Effekte durch direkte Wirkung auf PDC verursacht 

wurden. 

 

 

4.2.3 Chemotaxis plasmazytoider dendritischer Zellen 
 
Dendritische Zellen nehmen eine wichtige Rolle bei der Interaktion von angeborenem und 

erworbenem Immunsystem ein. Sie zirkulieren in unreifer Form im Blut oder finden sich in 

peripheren Geweben, gelangen in Gebiete von Zellschäden, Entzündung oder Infektion, 

reifen dort durch verschiedene Stimuli induziert und wandern anschließend in das Lymph-

gewebe ein. Dort interagieren sie mit Zellen des adaptiven Immunsystems, wodurch eine 

spezifische Immunantwort induziert werden kann. Dabei ist die Steuerung der Migration 

und der Lokalisation in Blut und Gewebe sowie die Steuerung der Ko-Lokalisation mit an-

deren Zellen für die Funktionsfähigkeit dieser Antigen-präsentierenden Zellen von ent-

scheidender Bedeutung. 
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Der durch Reifung verursachte Wechsel der Expression von inflammatorischen (in das 

Entzündungsgebiet lockenden) zu lymphoiden (in das Lymphgewebe lockenden) Chemo-

kinrezeptoren ist auf PDC wie auch auf MonoDC beobachtet worden (Dieu, 1998;  Sal-

lusto, 1998;  Sozzani, 1998). Trotz der Expression mehrerer Chemokinrezeptoren (z.B. 

CCR2, CCR5, CXCR3) wandern unreife PDC allerdings nicht auf deren (zumeist inflam-

matorische) Liganden, sondern lediglich auf CXCL12 (SDF-1α) hin; jedoch ist auch ein 

Synergismus von SDF und inflammatorischen Chemokinen beschrieben worden (Penna, 

2001;  Vanbervliet, 2003). Diese Entkopplung von Expression der Chemokinrezeptoren ei-

nerseits und Migrationsverhalten andererseits, wie auch bei anderen Immunzellen beo-

bachtet, ist als immunmodulierender Mechanismus zur Limitierung entzündlicher Reaktio-

nen interpretiert worden (D'Amico, 2000;  Penna, 2002). Denkbar ist auch, dass es durch 

bestimmte Stimuli induziert, wieder zu einer Kopplung von (noch) nicht-funktionalen, in-

flammatorischen Chemokinrezeptoren an eine dann effektive Migration der PDC in ent-

zündliches Gewebe kommen könnte. Wie in der Einleitung erwähnt, wurde in der Literatur 

das Vorkommen von PDC in Entzündungsgebieten beschrieben (siehe Kapitel 1.2.2.3). 

 

Es stellt sich somit die Frage, durch welche anderen chemotaktisch aktiven Stoffe die PDC 

noch in die Lage gebracht werden könnten, in entzündliche Gebiete zu gelangen. Die Be-

obachtung, dass humane Monozyten-abgeleitete dendritische Zellen (MonoDC) ihre Dend-

riten und Zellform auf einen Gradienten von ATP hin ausrichten, lieferte erste Hinweise 

darauf, dass extrazelluläre Nukleotide einen chemotaktischen Effekt auf dendritische Zel-

len haben könnten (Liu, 1999). La Sala et al. zeigten dann, dass durch Inkubation mit ATP 

die Expression lymphoider Chemokinrezeptoren wie CXCR4 und CCR7 auf unreifen und 

reifen MonoDC hochreguliert, die des inflammatorischen Rezeptors CCR5 herunterregu-

liert wird, was mit einem dazu analogen Migrationsverhalten auf die entsprechenden Li-

ganden korrelierte (la Sala, 2002). ATP selbst hat nur auf unreife, nicht aber auf reife Mo-

noDC eine chemotaktische Wirkung – allerdings schon in 1000-fach niedrigeren Konzent-

rationen als für einen Reifungs-induzierenden Effekt benötigt werden (Idzko, 2002). Mo-

noDC, einem simultanen Gradienten aus ATP und den Chemokinen CXCL12, CCL19 und 

CC21 ausgesetzt, erfahren eine dosisabhängige Inhibition der Chemokin-gesteuerten Mig-

ration, anders als bei PDC, deren Migration dadurch unbehelligt blieb (Schnurr, 2003). Die 

Ergebnisse, die anhand von Untersuchungen an MonoDC gewonnen wurden, lassen sich 

nur begrenzt auf die PDC übertragen. 

 

Trotz des weitgehend ähnlichen Chemokinrezeptor-Musters auf mRNA-Ebene (in einem 

Vergleich von MDC und PDC) unterscheiden sich PDC und dendritische Zellen myeloiden 

Ursprungs sowohl im Muster der von ihnen sezernierten Chemokine als auch in ihrem 
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Migrationsverhalten. PDC produzieren vornehmlich inflammatorische, wandern aber fast 

ausschließlich auf lymphoide Chemokine hin. Bei der myeloiden Reihe ist dies mit deutli-

chem Ansprechen auf inflammatorische Chemokine genau umgekehrt (Penna, 2001;  

Penna, 2002). Darüber hinaus sind MonoDC, CD1a+ dermale DC und CD1c+ PBDC, drei 

Subtypen dendritischer Zellen mit myeloiden Markern, 50-100 Mal sensitiver auf ATP als 

IL3R+ PDC, gemessen an der Induktion von intrazellulären Ca2+-Konzentrations-Anstiegen 

(Schnurr, 2003). Des Weiteren bedürfen MonoDC – anders als PDC – noch einer zusätzli-

chen Stimulation (z.B. durch Prostaglandin E2 (PGE2)-enthaltene Stimuli oder auch durch 

ATP), um ihre volle Migrationsfähigkeit auf die Chemokine CXCL12 und CCL19 hin zu er-

halten (la Sala, 2002;  Luft, 2002;  Scandella, 2002;  Schnurr, 2003). 

 

Den hier vorliegenden und ferner in der Literatur beschriebenen Ergebnissen nach wirkt 

ATP allerdings sowohl auf unreife PDC als auch auf unreife MonoDC dosisabhängig che-

motaktisch, UTP hingegen scheint lediglich bei MonoDC eine, wenn auch schwächere 

Wirkung zu haben (Idzko, 2002). 

 

ATP kann indirekt auch über seine Abbauprodukte Einfluss auf dendritische Zellen – ins-

besondere auch auf deren Migrationsverhalten – nehmen. So kann Adenosin durch die 

Enzyme Ecto-Apyrase und 5`-Nukleotidase aus ATP, ADP und AMP entstehen (siehe Kapi-

tel 1.3.3). Adenosin besitzt ein breites „Wirkspektrum“ auf PDC (Panther, 2003;  Panther, 

2001). Schnurr et al. zeigten, dass Adenosin bereits im niedrigst-mikromolaren Bereich 

chemotaktisch auf unreife PDC wirkt (Schnurr, 2004).  

 

 

4.2.4 Expression von Oberflächenmarkern und Chemokinrezeptoren auf 
plasmazytoiden dendritischen Zellen 

 
Aktivierte PDC exprimieren verstärkt MHC-Moleküle der Klasse II (HLA-DR) und kostimu-

latorische Moleküle, welche zur effektiven Stimulierung von T-Zellen benötigt werden. 

 

In dieser Untersuchung erhöhte ATP die CD86 Expression, allerdings nicht zusätzlich auf 

bereits aktivierten PDC. Die Expression von HLA-DR/MHCII wurde durch ATP nicht verän-

dert. Bei vorbestehender Aktivierung führte ATP zu einer vermehrten Expression von 

CD83. Diese hier beschriebene partielle Hochregulation von kostimulatorischen Molekülen 

stimmt teilweise mit Beobachtungen bei MonoDC überein. Ein bei MonoDC beobachteter 

Synergismus von ATP und TNF-α bei der Aktivierung konnte hier für PDC bei nur geringer 

Wirkung von TNF-α nicht beobachtet werden. UTP scheint anders als bei MonoDC –

zumindest CD86 und MHCII betreffend – eine stärker aktivierende Wirkung als ATP auf 
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PDC zu haben (Berchtold, 1999;  la Sala, 2001;  la Sala, 2002;  Schnurr, 2000;  Wilkin, 

2002). Dies könnte auf unterschiedlich verantwortliche P2-Rezeptoren auf diesen zwei 

Zelltypen hinweisen (siehe Kapitel 4.2.8).  

 

Konsistent mit der vorhandenen Literatur ist die Beobachtung, dass ATP zu einer verstärk-

ten Expression des Chemokinrezeptors CCR7 auf reifen PDC führt. PGE2 und andere 

cAMP-erhöhende Stoffe, zu denen auch die Nukleotide (P2Y-Rezeptoren) gehören, regu-

lieren unter anderem die Expression der Chemokinrezeptoren (CCR7) und die Chemotaxis 

von MonoDC (la Sala, 2002;  Luft, 2002;  Scandella, 2002). Wir spekulierten, dass es über 

die Aktivierung der P2Y-Rezeptoren durch ATP und der damit verbundenen Erhöhung von 

cAMP (siehe Kapital 1.3.1.2) zu einer Externalisierung vorgefertigter, intrazellulär lokali-

sierter CCR7-Rezeptoren und deren Lokalisierung in die Zellmembran kommen könnte, 

wie für CXCR3 in T-Zellen vorbeschrieben (Gasser, 2006). Die Ergebnisse der intrazellulä-

ren CCR7-Bestimmung, die keine zur Erhöhung der CCR7-Expression an der Zelloberflä-

che reziproke intrazelluläre Abnahme gezeigt hatten, haben diese Hypothese nicht unter-

stützt. Es ist trotzdem denkbar, dass intrazellulär soviel CCR7-Rezeptoren „im Über-

schuss“ produziert werden, und somit möglicherweise eine „reziproke“ Abnahme der Re-

zeptoren intrazellulär (durch Lokalisation der Rezeptoren an die Zelloberfläche) nicht 

messbar ist. Der Transport der Rezeptoren an die Zelloberfläche bliebe somit der limitie-

rende Schritt. Welche Mechanismen nun genau dafür verantwortlich sind, dass ATP zwar 

nicht alleine, aber auf bereits aktivierten PDC diesen Chemokinrezeptor hochreguliert, ist 

nicht geklärt. Kürzlich wurde gezeigt, dass MonoDC für eine effektive Chemokin-induzierte 

Migration PGE2 benötigen, um den Rezeptor CCR7 an seine Signaltransduktions-Wege zu 

koppeln (Scandella, 2004). Dies gilt für PDC vermutlich nicht, da diese auch ohne PGE2 

oder andere cAMP-erhöhende Stoffe effektiv auf CCR7-Liganden hin wandern (Schnurr, 

2003). 

 

ATP führte zu einer Erhöhung der Expression von CCR7 auf simultan mit CpG ODN- bzw. 

CD40L-stimulierten B-Zellen innerhalb von PMBC. Vorläufige Experimente mit isolierten B-

Zellen haben jedoch keine Wirkung von ATP auf die CCR7-Expression von B-Zellen ge-

zeigt (Daten nicht gezeigt). Der beobachtete Effekt könnte daher durch direkte (Di Virgilio, 

2001), aber auch durch indirekte ATP-Effekte (Swennen, 2005) auf diese Lymphozytenpo-

pulation vermittelt sein. 
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4.2.5 IL-12-Zytokin-Produktion plasmazytoider dendritischer Zellen 
 
Die IL-12 Zytokinfamilie nimmt eine wichtige Rolle bei der Steuerung (orchestration) von 

angeborenem und erworbenem Immunsystem durch die dendritischen Zellen ein, insbe-

sondere bei der Abwehr intrazellulärer Pathogene (Gately, 1998). 

 

Die hier beschriebene Hemmung der IL-12 p40 Sekretion aktivierter PDC durch ATP könn-

te als Schutzmechanismus vor einer überschießenden Zytokinproduktion und dessen ne-

gativen Folgen (z.B. im Rahmen einer exzessiven T-Zell-Aktivierung) interpretiert werden 

und ferner eine Immunreaktion in Richtung TH2-Antwort fördern. Allerdings sollte erwähnt 

werden, dass durch CpG alleine ohne CD40L nur geringe Mengen an IL-12 p40 induziert 

werden und der auch in diesem Fall beobachtete inhibitorische Effekt von ATP einge-

schränkt beurteilbar ist. 

 

Bei MonoDC ist in der Literatur die Wirkung von ATP auf die IL-12-Sekretion initial kontro-

vers gesehen worden. So wurde dort zum einen ein Synergismus von TNF-α und ATP bei 

der Sekretion von IL-12 und der Reifung dieser Zellen beschrieben und somit eine Förde-

rung einer TH1-Immunantwort angenommen (Schnurr, 2000;  Wilkin, 2001). Eine andere 

Gruppe bestätigte zwar die Reifungsinduktion durch ATP, fand aber einen inhibitorischen 

Effekt dieses Nukleotids auf die IL-12-Produktion aktivierter MonoDC und schloss somit 

auf eine Förderung einer TH2-Immunantwort (la Sala, 2001). Diese Diskrepanz erklärt sich 

aus der jeweils unterschiedlichen Art der IL-12-Bestimmung und der Stimulationsstärke 

(Wilkin, 2002): In Synergismus mit TNF-α führt ATP zu einer Hochregulation der IL-12 p 

40-Expression/Sekretion, inhibiert aber die IL-12 p70-Produktion in LPS- oder CD40L-

aktivierten MonoDC. Bislang wurde dabei das Heterodimer IL-12 p70 – bestehend aus ei-

ner p35-Untereinheit (IL-12p35) und einer p40-Untereinheit (IL-12 p40) – als die biologisch 

aktive Form angesehen. 

 

Ferner spielen auch noch Art und Konzentration sowie die Kinetik der Stimulation eine ent-

scheidende Rolle: Werden MonoDC so durch LPS bzw. CD40L aktiviert, dass nur niedrige 

Mengen an IL-12 p40 produziert werden, dann hat ATP einen potenzierenden Effekt auf 

die Produktion und Expression dieses Zytokins. Umgekehrt hat ATP einen inhibierenden 

Effekt, wenn MonoDC so aktiviert werden, dass höhere Mengen an IL-12 p40 produziert 

werden (Wilkin, 2002).  

 

Wurde das abbaustabile ATP-Derivat Adenosin-5’-O-(3-thio)triphosphat (ATPγS) in niedri-

ger Konzentration (100 µM) eingesetzt, ist allerdings jüngsten Untersuchungen zu Folge – 

unabhängig von der LPS-Konzentration – immer eine Hemmung beobachtet worden 
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(Marteau, 2004). Nach Stimulation mit E. coli kam es zu einem initialen Anstieg, nach 48 h 

allerdings zu einem Rückgang auf die Ausgangswerte der Expression von IL-12 p40-

mRNA. Einen analogen Verlauf mit allerdings zusätzlich erhöhtem Anstieg zeigte sich bei 

gleichzeitiger Gabe von ATP und E. coli (Marteau, 2004;  Schnurr, 2005;  Wilkin, 2002). Zu 

erwähnen ist ferner, dass Nukleotid-Diphosphonate wie ADP die IL-12 p40-Produktion von 

MonoDC inhibieren (la Sala, 2001;  Marteau, 2004). 

 

Bei den PDC führte ATP zu einer Inhibition der IL-12 p40 Produktion aktivierter Zellen, bei 

der Gabe von ATP alleine jedoch zu einer Steigerung der Basis IL-12-Produktion. Analog 

zu den Beobachtungen bei den MonoDC könnte auch bei PDC die Wirkung des ATP von 

der Höhe der IL-12-Produktion aktivierter Zellen abhängig sein (dosisabhängig entweder 

potenzierend oder inhibierend). 

 

Eine womöglich entscheidendere Rolle als die Menge an IL-12 könnte der Stimulus bzw. 

der Signalweg spielen, durch den die dendritische Zelle aktiviert wird. LPS (via TLR4), 

CpG-ODN (via TLR9) und CD40L (via CD40) vermitteln ihre Wirkungen auf APC über je-

weils unterschiedliche Signalwege. So scheint die Art des Stimulus zumindest bei MonoDC 

einen Einfluss auf das Profil der Zytokinproduktion zu haben, wie Experimente mit kom-

pletten Bakterien und CD40L/TLR-Liganden gezeigt haben (Schnurr, 2005).  

 

Ferner könnten die unterschiedlichen Stimuli mit ihren jeweiligen, distinktiven Rezeptoren 

(in unserer Untersuchung CpG ODN und TLR 9), aber ebenso gut auch andere unter-

schiedliche Eigenschaften dieser zwei dendritischen Zellpopulationen Ursache für die teils 

gegensätzlichen Effekte des ATP sein. So sind abweichende Zytokinprofile selbst inner-

halb der MonoDC Zellpopulation beobachtet worden, abhängig davon, ob diese mit kom-

pletten Bakterien oder CD40L/TLR-Liganden stimuliert worden waren (Schnurr, 2005) 

(siehe auch Kapitel 4.2.3 und 4.2.8). 

 

Neben der Bildung von IL12 p70 durch Verbindung mit der Untereinheit p35 kann die p40-

Untereinheit auch mit einer anderen Untereinheit, nämlich mit p19 in Verbindung treten 

und somit das Interleukin IL-23 bilden (Cordoba-Rodriguez, 2003;  Oppmann, 2000). Die-

ses unterscheidet sich nicht nur im Aufbau, sondern auch in seiner Funktion von IL-12 p70 

(Schnurr, 2005;  Trinchieri, 2003). Unter anderem hat es keinen Effekt auf naive T-Zellen, 

aktiviert jedoch T-Gedächtniszellen (T-memory Zellen), IFN-γ zu sezernieren (Oppmann, 

2000). Veränderungen der IL-12 p40-Sekretion könnten so auch einen größeren Einfluss 

auf das Zytokinprofil der PDC ausüben, indem sie neben IL-12 auch IL-23 beeinflussen. 
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Unserer Hypothese nach führt die durch ATP reduzierte Menge des „Zytokinbausteins“ IL-

12 p40 eher zu einer geringeren Menge an IL-12 p70 sowie möglicherweise auch an IL-23 

und somit eventuell zu einer schwächeren TH1-Immunantwort.  

 

 

4.2.6 IFN-α-Zytokin-Produktion plasmazytoider dendritischer Zellen 
 
Ein Charakteristikum der PDC ist die Fähigkeit, schnell große Mengen an Typ I Interferon 

(IFN-α und IFN-β) als Antwort auf virale Stimuli zu synthetisieren. Neben Viren und Viren-

bestandteilen sind dabei bislang nur CpG ODN und TLR7-Liganden (wie Imiquimod) als 

synthetische Stimulatoren identifiziert worden, von denen das Oligonukleotid CpG 2216 

(auch als CpG-A ODN bezeichnet) die höchsten IFN-α-Werte induzieren kann (Krug, 

2001). 

 

IFN-α zeichnet sich aus durch ein breites Spektrum biologischer Wirkungen auf eine Viel-

zahl von Immunzellen wie T-Zellen, NK-Zellen, Monozyten, Makrophagen und dendriti-

schen Zellen. So besitzt es unter anderem antivirale, Zytotoxizitäts-verstärkende, zum Teil 

auch Apoptose-fördernde Eigenschaften und fördert die spezifische Antikörperproduktion 

(Pestka, 2004). Es ist ferner bekannt, dass IFN-α die Regulation einer TH1-Immunantwort 

beeinflussen kann (Luft, 1998). Es gibt eine Reihe von Erkrankungen, die mit einer ätio-

pathologischen Rolle des Interferon-I-Systems in Verbindung gebracht werden; dazu ge-

hören Krankheiten wie Diabetes mellitus Typ I, Psoriasis, systemischer Lupus erythemato-

des (SLE), rheumatoide Arthritis und juvenile Dermatomyositis (Ronnblom, 2002). Interfe-

rone werden auch in der Therapie viraler Erkrankungen wie Hepatitiden oder bei der Be-

handlung von Malignomen und Multipler Sklerose erfolgreich eingesetzt.  

 

Die von uns beobachtete Inhibition/Reduktion CpG ODN-induzierter Sekretion von IFN-α 

humaner plasmazytoider dendritischer Zellen durch ATP könnte man als eine immunmodu-

lierende Funktion dieses Nukleotids interpretieren. So könnte dies dazu dienen, über-

schießenden Immunreaktionen – wie sie zum Teil bei Zelluntergang im Rahmen von Auto-

immunprozessen bzw. bei Infektionen auftreten – entgegenzuwirken. Überschießend hohe 

IFN-Spiegel können schwerwiegende systemische Folgen haben, wie sie beispielsweise 

beim SLE zu beobachten sind (siehe auch Kapitel „Klinische Relevanz der Ergebnisse“). 

Inwiefern Nukleotide und P2-Rezeptoren bei den Krankheiten von Bedeutung sind, bei de-

nen das Interferon-I-System eine ätiopathologische Rolle spielt, ist bislang noch nicht aus-

reichend bekannt. 
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4.2.7 ATP: Gefahrensignal und Immunmodulator 
 
Lange Zeit galt in der Immunologie die Vorstellung, dass das Immunsystem lediglich zwi-

schen körpereigenen und fremden Mustern unterscheidet, Eigenes toleriert und Fremdes 

attackiert. Dieses so genannte self-nonself (SNS) model wurde 1989 durch das infectious-

nonself (INS) model von Janeway erweitert. Dieses besagt, dass Antigen-präsentierende 

Zellen pathogen-associated molecular patterns (PAMP) über spezielle, Pattern-

recognition-Rezeptoren erkennen können (Janeway, 1989;  Janeway, 1992). Zu den 

PAMP gehören Lipopolysaccharide (LPS), bakterielle DNA (CpG-DNA) und virale dop-

pelsträngige mRNA. 

 

Transplantat-Abstoßungsreaktionen sowie die Tolerierung des Feten im Mutterleib ließen 

sich allerdings auch durch dieses Modell nicht hinreichend erklären. 1994 und in den fol-

genden Jahren bildete sich das so genannte Gefahrenmodell (danger model) heraus. Die-

ses postuliert neben den oben erwähnten exogenen auch endogene Gefahrensignale, 

welche ruhende APC aktivieren und dadurch Immunreaktionen initiieren (Ibrahim, 1995;  

Matzinger, 1994;  Matzinger, 2002). 

 

Zellen, die durch normale, programmierte Prozesse sterben, werden in der Regel kontrol-

liert abgebaut und desintegrieren nicht. Zellen, die durch nekrotische Prozesse zugrunde 

gehen, setzen ihren Inhalt frei; die so freigesetzten intrazellulären Bestandteile können 

dann als potentielle Gefahrensignale dienen. Zu diesen endogenen Gefahrensignalen 

können Substanzen gezählt werden, die von „gestressten“ oder geschädigten Zellen frei-

gesetzt werden, nicht aber oder lediglich in minimalem Ausmaß von „gesunden“ oder phy-

siologisch (apoptotisch) sterbenden Zellen. 

 

So werden MonoDC durch Signale virusinfizierter, mechanisch gestresster oder nekroti-

scher Zellen in der Nachbarschaft aktiviert, nicht hingegen durch Signale gesunder oder 

apoptotischer Zellen (Gallucci, 1999;  Sauter, 2000). Zu konstitutiven endogenen Gefah-

rensignalen, also physiologisch in Zellen vorkommenden Bestandteilen, zählt man neben 

Nukleotiden auch einige Hitzeschock-Proteine (HSP). Hitzeschock-Proteine werden von 

nekrotischen, nicht aber von apoptotischen Zellen freigesetzt und können dendritische Zel-

len aktivieren (Asea, 2000;  Basu, 2000;  Singh-Jasuja, 2000). Induzierbare, d.h. während 

Entzündungsreaktionen hochregulierte, Signale werden repräsentiert durch Zytokine (IFN-

α, IFN-β, TNF-α, IL-1β), CD40-Ligand, Hitzeschock-Proteine (HSP) und andere. 
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Exo- und endogene Gefahrensignale müssen durch Antigen-präsentierende Zellen erkannt 

werden, wodurch es zur Aktivierung sowohl des angeborenen als auch des adaptiven Im-

munsystems kommen kann. 

 

Zwischen Rezeptoren des exo- und des endogenen Systems bestehen enge Verbindun-

gen. So ist beispielsweise TLR4 sowohl ein Rezeptor für das bakterielle LPS (Hoshino, 

1999) als auch für das endogene Hitzeschock-Protein Hsp60 (Ohashi, 2000) und für Ab-

bauprodukte des Hyaluronans (Taylor, 2004;  Termeer, 2002). 

 

Dendritische Zellen und andere Zellen des Immunsystems verfügen über Rezeptoren zur 

Erkennung von Nukleotiden (siehe Kapitel 1.3.6). Letztere liegen in hohen Konzentratio-

nen (5-10 mM) im Zytoplasma aller Zellen vor, im extrazellulären Raum hingegen bewe-

gen sich deren Konzentrationen lediglich im nanomolaren Bereich. Erhöhte extrazelluläre 

Nukleotid-Konzentrationen können durch Membran- oder Zellschäden im Rahmen von 

Entzündung, mechanischer Reizung oder unkontrolliertem Wachstum verursacht sein. 

Bemerkenswert ist, dass Nukleotide von verschiedenen Zellarten auch aktiv nach mecha-

nischem Stress, Stimulation mit Endotoxin und bei Plättchen-Aggregation auf nicht-lytische 

Weise sezerniert werden (Cotrina, 1998;  Ferrari, 1997;  Mitchell, 1998).  

 

Eine weitere Rolle bei der Konzentration von extrazellulären Nukleotiden in Entzündungs-

gebieten spielen die Ecto-Nukleotidasen. Während unter physiologischen Bedingungen 

ATP durch diese Enzyme rasch abgebaut wird (Hunsucker, 2005), kommt es in entzündli-

chen Gebieten zu deren Herunterregulierung, wodurch es dort zu einer Akkumulation von 

ATP kommen kann (Robson, 1997). Gleichwohl werden durch die Aktivität der Nukleotida-

sen die Wirkungen der Nukleotide differenziert reguliert. Die einzelnen Nukleotide und de-

ren jeweilige Hydrolyseprodukte haben zum Teil unterschiedliche Wirkungen. Beispiels-

weise unterscheiden sich – trotz weitgehend ähnlicher Effekte – ATP und ADP (in jeweils 

Hydrolyse-stabiler Form) in der Beeinflussung der IL-10-Produktion (verstärkt durch ATP, 

inhibiert durch ADP) und in der Stärke der IL-12-Inhibition durch MonoDC. 

 

Darüber hinaus gibt es Hinweise darauf, dass auch das Gewebe, in welchem es zu einer 

Immunreaktion kommt, einen starken Einfluss auf die Art der Immunantwort ausübt 

(Gallucci, 2001). So mag die unterschiedliche Verteilung distinkter Ecto-Nukleotidasen im 

Gewebe zu verschiedenen, abgeschwächten oder verstärkten Wirkungen der jeweiligen 

Nukleotide bzw. derer Hydrolyseprodukte führen. 
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ATP scheint keine rein aktivierende Rolle bei PDC-vermittelten Immunreaktionen einzu-

nehmen. Dabei zeigt es Ähnlichkeiten zu Ergebnissen von Untersuchungen von Adenosin 

auf PDC (Schnurr, 2004). Neben SDF-1α, CXCR3-Liganden und Adenosin ist ATP auch 

ein Kandidat, der unreife PDC aus dem Blut in Entzündungsgebiete lockt, aber zugleich 

deren Beteiligung an der entzündlichen Reaktion nach Aktivierung durch Viren, Bakterien 

oder aktivierte T-Zellen limitiert. 

 

Es kann nicht völlig ausgeschlossen werden, dass ein Teil der hier beschriebenen Effekte 

durch ADP (Marteau, 2004) oder Adenosin (Schnurr, 2004), die in dieser Reihenfolge aus 

ATP entstehen, vermittelt ist. Bei den Messungen des intrazellulären Kalziumionenanstie-

ges nach ATP-Zugabe spricht die rasche Kinetik zumindest bei diesen Versuchen gegen 

einen Effekt durch die ATP-Hydrolyseprodukte ADP und Adenosin. 

 

Zusätzlich wurde jüngst von Swennen et al. eine entscheidende Rolle von ATP bei der Li-

mitierung der Entzündungsreaktion in LPS-stimuliertem Vollblut durch Inhibition von TNF-α 

und Stimulation der IL-10-Freisetzung gezeigt und nachgewiesen, dass dieser Effekt 

hauptsächlich durch ATP und nicht etwa durch Adenosin vermittelt wird. Ferner stützt diese 

Studie die Annahme eines immunmodulierenden Effekts von ATP auch in vivo (Swennen, 

2005). In Abb. 12 ist ein hypothetisches Modell der Wirkung von ATP auf PDC schema-

tisch dargestellt. 
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Abb. 12: Hypothetisches Modell der ATP-Wirkung auf PDC. (a) ATP wird durch ver-
schiedene Stimuli verursacht aus Zellen freigesetzt und zum Teil von EctoATP/ADPase 
CD39 und 5’-Ecto-Nukleotidase CD73 über ADP und AMP zu Adenosin abgebaut. Die Ak-
tivität dieser ATP-abbauenden Enzyme ist in Entzündungsorten herunterreguliert, so dass 
mehr ATP zur Verfügung steht (Robson, 1997). (b) Die Wirkung von ATP auf PDC wird 
über P2-Rezeptoren vermittelt. Freigesetztes ATP wirkt chemotaktisch und zum Teil akti-
vierend auf PDC (CD86, CD83), fördert die Migration der PDC in die Lymphknoten (CCR7) 
und führt zu einer Reduktion der CpG ODN induzierten IFN-α- und IL-12-Sekretion. Da-
durch könnte die Art und das Ausmaß der Immunantwort beeinflusst werden (TH2 statt 
TH1). Im Kasten (c) wird die Wirkung von CpG DNA auf PDC dargestellt. Durch CpG indu-
ziert, kommt es zur Sekretion von IFN-α und IL-12. IL-12 fördert TH1-Immunantworten. 
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4.2.8 Beteiligte Rezeptortypen 
 
Das Fehlen spezifischer bzw. selektiver Agonisten, Antagonisten und verfügbarer mo-

noklonaler Antikörper gegen Rezeptoren, die Vielzahl an P2-Rezeptoren, die Heterogenität 

der Rezeptoren bei verschiedenen Spezies und die anzunehmende Existenz noch unbe-

kannter Rezeptoren erschweren es, beobachtete Effekte den einzelnen P2-Rezeptoren 

zuzuordnen. Man kann sich aber indirekte Hinweise zu Hilfe nehmen, um Rückschlüsse 

darauf ziehen zu können. 

 

Von der Expression der Rezeptoren – gemessen auf RNA-Ebene – auf deren Funktionali-

tät zu schließen ist nicht möglich. So unterscheiden sich vier verschiedene DC-

Populationen – trotz ähnlicher Rezeptor-Expression – in der Funktionalität dieser Rezepto-

ren (Schnurr, 2003). Übereinstimmend und zum Teil gegenseitig ergänzend mit den Er-

gebnissen dieser Studie von Schnurr et al. sind nun folgende P2-Rezeptoren auf PDC (auf 

RNA-Ebene) bestätigt worden: P2X1, P2X4, P2X5, P2X7, P2Y1, P2Y2, P2Y4*, P2Y5, P2Y6, 

P2Y10, P2Y11, P2Y12 und SP174/P2Y13* (mit * markierte Rezeptoren sind nur bei (Schnurr, 

2003) bestimmt worden. Siehe Tabelle 4). Obgleich PDC und MonoDC zumindestens auf 

mRNA-Ebene das gleiche Muster in der Expression der P2-Rezeptoren besitzen, kann 

man nicht ausschließen, dass es möglicherweise auf Proteinebene Unterschiede gibt. 

Analogien zu einer solchen Hypothese finden sich dazu bei den strukturell ähnlich aufge-

bauten Chemokinrezeptoren. So sind – trotz ebenso weitgehend ähnlichem mRNA-Muster 

von PDC und myeloiden DC – funktionelle Unterschiede im Migrationsverhalten dieser 

beiden Zelltypen beschrieben worden (Penna, 2001;  Penna, 2002). 

 

 PDC  MonoDC  
P2X1 Stuplich; (Schnurr, 2003) (Schnurr, 2003); (Berchtold, 1999); 

(Idzko, 2002) 
P2X4 Stuplich; (Schnurr, 2003) (Schnurr, 2003); (Berchtold, 1999); 

(Idzko, 2002) 
P2X5 Stuplich; (Schnurr, 2003) (Schnurr, 2003); (Berchtold, 1999) 
P2X7 Stuplich; (Schnurr, 2003) (Schnurr, 2003); (Berchtold, 1999); 

(Idzko, 2002) 
   
P2Y1 Stuplich; (Schnurr, 2003) (Schnurr, 2003); (Berchtold, 1999); 

(Idzko, 2002) 
P2Y2 Stuplich (Berchtold, 1999); (Idzko, 2002) 
P2Y4 (Schnurr, 2003) (Schnurr, 2003); (Berchtold, 1999); 

(Idzko, 2002) 
P2Y5 Stuplich; (Schnurr, 2003) (Schnurr, 2003); (Berchtold, 1999) 
P2Y6 Stuplich; (Schnurr, 2003) (Schnurr, 2003); (Berchtold, 1999); 

(Idzko, 2002) 
P2Y10 Stuplich; (Schnurr, 2003) (Schnurr, 2003); (Berchtold, 1999) 
P2Y11 Stuplich; (Schnurr, 2003) (Schnurr, 2003); (Berchtold, 1999); 

(Idzko, 2002) 
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P2Y12 Stuplich; (Schnurr, 2003) (Schnurr, 2003) 
P2Y13 
/SP174 

(Schnurr, 2003) (Schnurr, 2003) 

 
Tabelle 4: Expression der P2-Rezeptoren in PDC und MonoDC (Nachweis von Re-
zeptor-RNA unreifer PDC bzw. MonoDC). 
 

In der vorliegenden Arbeit wurde lediglich eine semiquantitative Bestimmung der P2-

Rezeptor-RNA durchgeführt, somit sind Aussagen über quantitative Unterschiede oder ge-

ringe Veränderungen nach Stimulation nicht möglich. Eine im weiteren Verlauf in der Ar-

beitsgruppe durchgeführte detailliertere Analyse der Expression von P2Y-Rezeptoren auf 

PDC mittels quantitativer Realtime-PCR ergab, dass durch Reifung mit IL-3 und CD40L 

die mRNA-Expression von P2Y12, P2Y13 und P2Y14 herunterreguliert wird, die von P2Y4 

und P2Y6 hingegen unverändert bleibt (Shin, 2007). 

 

Studien zum funktionellen Nachweis Ionenkanal-bildender P2X- als auch G-Protein-

gekoppelter P2Y-Rezeptoren anhand von Patch-clamp-Versuchen und Untersuchungen 

der Signaltransduktion liegen bei MonoDC vor (Idzko, 2002;  Liu, 1999;  Marteau, 2004). 

 

Die Konzentration intrazellulärer Kalziumionen wird, wie eingangs erläutert (siehe Kapitel 

1.3.1), durch Aktivierung der P2-Rezeptoren erhöht. Bei P2X-Rezeptoren kommt es zum 

Einstrom dieser bivalenten Ionen aus dem Extrazellulärraum, bei den G-Protein-

gekoppelten P2Y-Rezeptoren über eine Aktivierung von Phospholipase C und IP3 zu einer 

Freisetzung aus intrazellulären Speichern. Somit kann der Anstieg der intrazellulären Kal-

ziumionenkonzentration zum funktionellen Nachweis der P2-Rezeptoren herangezogen 

werden (Schnurr, 2003). 

 

Veränderungen der intrazellulären Kalziumionenkonzentrationen sind bei etlichen „Immun-

antworten“ dendritischer Zellen bekannt, wie beispielsweise bei der Aufnahme apoptoti-

scher Bestandteile und deren weiteren Prozessierung, bei der Chemotaxis, Reifung und 

Aktivierung sowie Apoptose dendritischer Zellen (Coutinho-Silva, 1999;  Czerniecki, 1997;  

Faries, 2001;  Hsu, 2001;  Penna, 2001;  Rubartelli, 1997). Auch durch Aktivierung von P2-

Rezeptoren kann es zu Erhöhung der intrazellulären Kalziumionenkonzentration in Mo-

noDC kommen (Coutinho-Silva, 1999;  Idzko, 2002;  Marriott, 1999;  Schnurr, 2003). So-

wohl strukturell als auch durch zum Teil gleiche Signalwege zeigen zumindest die P2Y-

Rezeptoren große Ähnlichkeiten mit den Chemokinrezeptoren (Baggiolini, 1997;  Ralevic, 

1998). Die bisher bekannten Daten bestärken daher auch die Vermutung, dass die P2Y-

vermittelte Signaltransduktion an der Chemotaxis mitbeteiligt ist. 
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ATP führte bei PDC zu einem Anstieg des intrazellulären Kalzium-Spiegels. Dieser wurde 

in einem einzelnen Ansatz durch Vorinkubation mit den P2-Antagonisten Suramin und 

PPADS minimiert, was auf eine Beteiligung der P2-Rezeptoren bei der Signaltransduktion 

hinweist. 

Inwieweit der vergleichsweise geringere Anstieg der intrazellulären Kalziumionenkon-

zentration bei mit CpG ODN voraktivierten PDC nach Stimulation mit ATP eine Rolle spielt, 

ist nicht geklärt. Denkbar ist, dass die unterschiedlichen Wirkungen der Nukleotid-

Rezeptor-Bindung auf PDC, wie zum Beispiel auf die Expression der Oberflächenmarker, 

die Zytokin-Hemmung, die Chemotaxis etc. jeweils durch verschiedene Signalkaskaden 

vermittelt werden. Studien mit Aktivatoren und Inhibitoren der Proteinkinase A haben Hin-

weise geliefert, dass der Nukleotid-induzierte Reifungseffekt bei MonoDC wahrscheinlich 

mit einem cAMP-abhängigen und somit weniger mit einem Kalziumfluss-abhängigen Sig-

nalweg verbunden ist (Wilkin, 2001). Man kann spekulieren, dass das nach Ausreifung mit 

CpG ODN reduzierte Kalziumionen-signaling auch zu einer geringeren chemotaktischen 

Wirkung des ATP auf PDC führt. So würden theoretisch bereits aktivierte Zellen nicht mehr 

in Bereiche erhöhter ATP-Konzentrationen (wie sie bei Entzündungen vorkommen) migrie-

ren, sondern über lymphoide Chemokine vermittelt in die Lymphknoten wandern.  

 

Da sich UTP bei unseren Versuchen hinsichtlich intrazellulärer Ca2+-Veränderungen, 

CD86- und HLA-DR-Expression am potentesten zeigte, kann das für einen verantwortli-

chen P2Y-Rezeptor (P2Y2, P2Y4, P2Y6), gegen einen P2Y11- und gegen einen P2X-

Rezeptor sprechen (Ralevic, 1998). Dieser Schluss gilt aber vermutlich nicht für die Che-

motaxis. Hier zeigten die vorliegenden Daten, dass UTP keine chemotaktische Wirkung 

auf PDC hat.  

 

Bei MonoDC geht man davon aus, dass der P2Y11-Rezeptor eine entscheidende Rolle bei 

der Reifung (Expression des Oberflächenmarkers CD 83, Zytokinprofil, Endozytose und T-

Zell-Stimulation), aber auch bei der Regulation der Chemotaxis durch ATP einnimmt; bei 

PDC hingegen spielt dieser Rezeptor eine untergeordnete Rolle: IL-3R+ PDC exprimieren 

keinen funktionellen P2Y11-Rezeptor (Schnurr, 2000;  Schnurr, 2003;  Wilkin, 2001;  Wilkin, 

2002). 

 

Ergebnisse aus der Literatur und die hier vorliegenden Daten legen nahe, dass ATP auf 

die verschiedenen dendritischen Subtypen unterschiedliche Wirkungen hat, und dass 

möglicherweise diese verschiedenen ATP-induzierten Effekte auch innerhalb einer Zellpo-

pulation von jeweils unterschiedlichen P2-Rezeptoren vermittelt werden.  
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4.3 Klinische Relevanz der Ergebnisse 
 
Den Ansätzen des danger model nach würden sich einerseits Transplantat-

Abstoßungsreaktionen durch die chirurgisch verursachte Gewebeschädigung und ande-

rerseits fehlende Immunität gegen Tumore und Feten durch das Vorhandensein intakten 

Gewebes erklären. Experimentell konnte durch die Gabe von Tumorantigen zusammen 

mit danger signals (Gefahrensignalen) wie ATP Immunität gegen Tumore erreicht bzw. 

verbessert werden (Schnurr, 2001). In vivo konnte bei Mäusen mit CT26-Kolonkarzinom 

durch tägliche intraperitoneale ATP-Injektionen Tumorwachstum und Kachexie reduziert 

und die Überlebenszeit verlängert werden (Rapaport, 1988;  Rapaport, 1990;  Rapaport, 

1989). Drei erste klinische Studien mit kleinen Patientenkollektiven zeigten den positiven 

Einfluss von ATP auf Überlebenszeit oder zumindest Lebensqualität bei Patienten mit fort-

geschrittenem nicht-kleinzelligem Bronchialkarzinom (Agteresch, 2003;  Agteresch, 2000) 

(Haskell, 1998;  Haskell, 1996). 

 

Die Expression verschiedener P2-Rezeptoren wurde bei einer Vielzahl unterschiedlicher 

Tumorarten sowohl in Tumorgewebe als auch in Tumor-Zellinien nachgewiesen. Es gibt 

Hinweise dafür, dass über die einzelnen P2-Rezeptoren jeweils Proliferation, Differenzie-

rung und Apoptose von Tumorzellen reguliert werden (White, 2006). Dabei scheint der je-

weilige P2-Rezeptor-vermittelte Effekt (d.h. Abnahme bzw. Zunahme der Proliferation) ab-

hängig zu sein einerseits von der ATP-Konzentration und andererseits von der Tumorart. 

Eine entscheidene Bedeutung wird ferner der jeweiligen Verteilung/Aktivierung der einzel-

nen P2-Rezeptoren beigemessen (White, 2006).Das targeting einzelner P2-Rezeptor-

Subtypen direkt auf Tumorzellen mit spezifischen (Ant-)agonisten ist daher ein möglicher 

neuer Therapieansatz in der Onkologie. 

 

Die Ergebnisse der vorliegenden Arbeit zeigen jedoch die zusätzliche Möglichkeit auf, P2-

Rezeptor-aktivierende bzw. hemmende Substanzen über ihre immunmodulierden Eigen-

schaften in therapeutische Konzepte gegen Tumoren und Autoimmunerkrankungen einzu-

binden. Eine Schwierigkeit in der Immuntherapie von Tumoren ist es, die immunsuppressi-

ve Wirkung von Tumorgewebe zu durchbrechen. Diese Arbeit belegt den P2-vermittelten 

immunsuppressiven Effekt von Nukleotiden auf PDC, der insbesondere in Tumorgewebe 

wegen des vermehrten Zellzerfalls und der dadurch anfallenden hohen Nukleotidkon-

zentrationen relevant werden könnte und zur immunsupressiven Wirkung des Tumorge-

webes beitragen wird. CpG-Oligonukleotide, deren Wirkungen wesentlich über PDC ver-

mittelt werden, haben sich in zahlreichen Tiermodellen als effektiv in der Immuntherapie 

von Tumoren erwiesen und werden in klinischen Studien derzeit auf ihre Wirksamkeit un-

tersucht. Die hier vorgestellten Ergebnisse lassen einen synergistischen Effekt von CpG-
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Oligonukleotiden mit P2-Rezeptorantagonisten postulieren. Insbesondere Therapiekon-

zepte, bei denen CpG-Oligonukleotide lokal in Tumorgewebe appliziert werden, könnten 

daher von der gleichzeitigen Blockade von P2-Rezeptoren auf PDC profitieren. Dieses 

Konzept wird nun in weiterführenden Arbeiten im Tiermodell getestet.  

 

Während in der Immuntherapie von Tumoren die Aktivierung des Immunsystems das ther-

peutische Ziel darstellt, erfordert die Behandlung von Autoimmunerkankungen wie des Lu-

pus erythematodes (SLE) eine Suppression bzw. Verhinderung von Immunantworten.  

 

Es gibt es zunehmend Hinweise, dass endogene Gefahrensignale, PDC und IFN-α beim 

SLE entscheidende pathogenetische Faktoren darstellen. Die Beobachtung, dass sich un-

ter IFN-α-Therapie ein SLE oder SLE-ähnliche Krankheitsbilder als Nebenwirkungen mani-

festieren können, und der Nachweis erhöhter Serumkonzentrationen von Typ I-

Interferonen bei SLE-Patienten wiesen erstmals auf eine Rolle von IFN-α beim SLE hin 

(Preble, 1982;  Ronnblom, 1990). Weitere Untersuchungen zeigten eine Korrelation von 

IFN-α-Serumkonzentration und Krankheitsaktivität sowie eine vermehrte Ansammlung ak-

tivierter und IFN-α-produzierender PDC in der Haut von SLE-Patienten (Farkas, 2001). 

PDC scheinen durch DNA apoptotischer Zellen und durch Immunkomplexe aus Antikör-

pern gegen doppelsträngige DNA aktiviert zu werden (Bave, 2001;  Dzionek, 2001). Die 

hohen IFN-α-Konzentrationen bei SLE-Patienten führten zu einer DC-getriggerten T-Zell-

vermittelten Autoimmunität (Blanco, 2001) und förderten die Autoantikörper-Produktion 

durch Plasmazellen (Colonna, 2004;  Jego, 2003).  

Somit kommt der PDC und dem IFN-System eine Schlüsselposition beim SLE zu.  

 

In der hier vorliegenden Arbeit wurden PDC mit CpG-Oligonukleotiden zur Produktion von 

IFN-α stimuliert. CpG-DNA und deren Signalwege spielen womöglich eine therapeutisch 

beeinflussbare Rolle beim SLE: Obwohl unmethylierte CpG-Sequenzen in der DNA von 

Wirbeltieren nur in geringer Frequenz zu finden sind, wurde gezeigt, dass Oligonukleotide, 

die basierend auf DNA-Sequenzen aus SLE-Immunkomplexen synthetisiert worden sind, 

die Expression von IL-12 und IFN-α in humanen PDC stimulieren können (Sato, 1999). 

Kürzlich wurde berichtet, dass SLE-Antikörper die Zytokin- und Chemokinproduktion von 

PDC zusammen mit dem Fcγ-Rezeptor CD32 über den Toll-like-Rezeptor TLR9, dem ein-

zigen Rezeptor für die Erkennung von CpG-ODN-Motiven, aktivieren. Dabei ähnelt das 

durch SLE-Immunkomplexe induzierte Zytokin- und Chemokinmuster dem durch CpG-A 

DNA induzierten Muster von PDC (Means, 2005). 
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Die Daten der vorliegenden Arbeit machen den Einsatz von P2-Rezeptor-Agonisten als In-

hibitoren der CpG-DNA-induzierten IFN-Produktion von PDC zu einem weiterverfolgbaren 

therapeutischen Konzept in der Behandlung des SLE. Hinweise auf eine Rolle von P2-

Rezeptoren beim SLE gibt es bereits. So zeigten Wang et al., dass der P2Y12-Rezeptor, 

der bei der Thrombozytenaggregation eine Rolle spielt, bei SLE-Patienten sowohl auf 

mRNA- als auch auf Protein-Ebene reduziert exprimiert wird (Wang, 2004). Ferner gibt es 

Hinweise dafür, dass der P2X7-Rezeptor zumindest im murinen Modell des SLE eine Rolle 

spielen könnte (Elliott, 2005). 

 

Zusammenfassend bilden somit Konzepte zum therapeutischen Einsatz von P2-(Ant-) a-

gonisten und zur Manipulation der P2-Signaltransduktion interessante Ansätze, um zum 

einen entzündliche und immunologisch vermittelte Prozesse zu beeinflussen und zum an-

deren Tumorerkrankungen zu behandeln. Bereits in der Klinik Verwendung finden als 

Thrombozyten-Aggregationshemmer der P2Y12-Rezeptor-Antagonist Clopidogrel und zur 

Behandlung trockener Augen der P2Y2-Rezeptor-Agonist Diquafosol. 
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5 ZUSAMMENFASSUNG 
 

Plasmazytoide dendritische Zellen (PDC) spielen eine wichtige regulatorische Rolle bei 

Immunantworten des angeborenen und adaptiven Immunsystems. Sie sind insbesondere 

die Hauptproduzenten von Interferon Typ I im Rahmen viraler Infektionen und der Autoim-

munerkrankung Lupus erythematodes (SLE). Sie werden daher auch als natürliche Interfe-

ron-produzierende Zellen bezeichnet und stehen bei der Entwicklung neuer Ansätze zur 

Behandlung von Virusinfektionen, Autoimmun- und Tumorerkrankungen im Fokus grund-

lagen- und klinisch orientierten wissenschaftlichen Interesses. 

 

Die Aktivierung dendritischer Zellen erfolgt durch exogene, Pathogen-assoziierte oder 

durch endogene, körpereigene Gefahrensignale (danger signals). Die Erkennung von 

mikrobieller CpG-DNA via Toll-like-Rezeptor (TLR)-9 durch PDC ist ein inzwischen gut 

charakterisiertes Beispiel für die Erkennung eines exogenen Gefahrensignals und führt zur 

Aktivierung der PDC und Produktion großer Mengen an IFN-α. Konstitutiv intrazellulär vor-

kommende Nukleotide wie ATP werden im Rahmen von Entzündungen, mechanischem 

Stress und Zelluntergang in den Extrazellulärraum freigesetzt, wo sie als Signalmoleküle 

über membrangebundene P2- und P1-Rezeptoren die Funktion zahlreicher Zellarten, ins-

besondere auch des Immunsystems modulieren und damit in nahezu klassischer Weise 

Vertreter endogener danger signals darstellen. 

 

In der vorliegenden Arbeit wurden die bisher nicht bekannten P2-Rezeptor-vermittelten 

Wirkungen extrazellulärer Nukleotide auf PDC anhand eines in vitro-Modells mit humanen 

plasmazytoiden dendritischen Zellen untersucht.  

 

Dabei zeigte sich, dass frisch isolierte PDC alle bekannten P2Y-Rezeptoren exprimieren 

und auf Stimulierung mit ATP und UTP mit der Mobilisierung intrazellulärer Kalziumionen 

reagieren; dieser Effekt ist durch P2Y-Rezeptorantagonisten hemmbar. Nach Ausreifung 

der PDC mit CpG DNA sinkt die Fähigkeit, auf Nukleotidstimulation hin Kalziumionen zu 

mobilisieren; die Expression der P2Y-Rezeptoren verändert sich jedoch nicht, mit Aus-

nahme des P2Y2-Rezeptors, der vermindert exprimiert wird. ATP, allerdings nicht UTP, be-

sitzt einen dosisabhängigen chemotaktischen Effekt auf unstimulierte PDC. Die Aktivierung 

mit extrazellulären Nukleotiden führt zu einer erhöhten Expression von kostimulatorischen 

Molekülen, Reifemarkern und MHC II-Molekülen auf unreifen PDC. Auf mit TLR-9 Ligan-

den und CD40L stimulierten Zellen führt ATP zu einer prozentual erhöhten Expression des 

Reifemarkers CD83 und zu einer erhöhten Expression des Chemokinrezeptors CCR7. Die 

Stimulierung mit ATP und UTP allein induziert kein Interferon-α oder IL-12 in PDC. Im Ge-
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gensatz dazu inhibiert ATP überraschenderweise die durch CpG-DNA induzierte Interfe-

ron- und IL-12 Produktion in PDC. 

 

Die Ergebnisse zeigen, dass ATP teils aktivierende, teils inhibierende Wirkungen auf hu-

mane PDC hat. Dadurch könnten in Entzündungsgebieten Immunreaktionen gefördert, 

gleichzeitig aber auch überschießende, möglicherweise schädliche Immunantworten be-

grenzt werden. Dem extrazellulären ATP können somit immunmodulierende Eigenschaften 

zugeordnet werden. 

 

Die Möglichkeit, die Funktion von PDC mit P2Y-Agonisten und -Antagonisten zu beeinflus-

sen, eröffnet neue therapeutische Strategien in der Immuntherapie von Tumorerkankun-

gen und des SLE, die in weiteren Studien getestet werden müssen.  
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Verzeichnis der Abkürzungen und Akronyme 
 

 
% vol    Volumenprozent 
2MeSATP   2-methylthio-Adenosin-5’-triphosphat 
Abb.    Abbildung 
ADP    Adenosin-5’-diphosphat 
AMP    Adenosin-5’-monophosphat 
AP4A    P1,P4-Diadenosin-tetraphosphat 
AP5A    P1,P5-Diadenosin-pentaphosphat 
AP6A    P1,P6-Diadenosin-hexaphosphat 
APC    Antigen-präsentierende Zellen 
ATP    Adenosin-5’-triphosphat 
ATPγS    Adenosin-5’-O-(3-thio)triphosphat 
BZ-ATP   2’,3’-O-(4-benzoylbenzoyl)-Adenosin-5’-triphosphat 
Ca2+    Kalziumionen 
cAMP    Zyklisches Adenosin-5’-monophosphat 
CD    Cluster of differentiation 
CD(x)+    positiv für einen gegebenes Oberflächenmolekül x 
CD40L    CD40-Ligand 
cDNA    Copy-Desoxyribonukleinsäure 
CO2    Kohlendioxid 
CpG    Cytosin-(phosphat)-Guanin-Dinukleotid 
CpG-ODN   CpG-Oligodeoxynukleotid 
Da    Dalton 
DAG    Diacylglycerin 
DDC    Dermale dendritische Zelle 
DNA    Desoxyribonukleinsäure 
ELISA    Enzyme-linked immunosorbent assay 
ER    Endoplasmatisches Retikulum 
FACS    Fluorescence-activated cell sorting 
FITC    Fluorescein-Isocyanat 
flt3-Ligand   fms-related tyrosine kinase 3 Ligand 
GM-CSF   Granulocyte-macrophage colony-stimulating factor 
H+    Wasserstoffionen 
HEV    Hochendotheliale Venolen 
I.E.    Internationale Einheit 
IDC    Interstitielle dendritische Zelle 
IFN-α/β/γ   Interferon-α/β/γ 
IL    Interleukin 
IP3    Inositoltriphosphat 
IPC    Interferon-produzierende Zelle 
K+    Kaliumionen 
LC    Langerhans-Zellen 
LPS    Lipopolysaccharide 
M    Molar 
MACS    Magnetic-acticvated cell sorting 
MDC    Myeloide dendritische Zelle 
Mg2+    Magnesiumionen 
MHC    Membran-histocompatibility-complex 
min    Minute 
MIP-3β   Macrophage inflammatory protein-3β 
MLR    Mixed lymphocyte reaction 
MonoDC    Monozyten-abgeleitete dendritische Zelle 
mRNA    Messenger-Ribonukleinsäure 
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Na+    Natriumionen 
NK-Zellen   Natürliche Killerzellen 
ODN    Oligodesoxynukleotid 
P2R/P1R   P2/P1-Rezeptoren 
PAMPs   Pathogen-associated molecular patterns 
PBMC    Peripher blood mononuclear cells 
PBS    Phosphate-buffered saline 
PCR    Polymerase-Ketten-Reaktion 
PDC    Plasmazytoide dendritische Zelle  
PE    Phycoerithrin 
PerCP    Peridin Chlorophyll Protein 
PGE2    Prostaglandin E2 
PI    Propidiumiodid 
PKA    Proteinkinase A 
PKC    Proteinkinase C 
PLC    Phospholipase C 
PPADS   Pyridoxal-5’-phosphat-6-azophenyl 2’,4’-disulfonsäure 
PRRs    Pattern-recognition-Rezeptoren 
RNA    Ribonukleinsäure 
RT-PCR   Reverse-Transkriptase-Polymerase-Ketten-Reaktion 
SDF-1α   Stromal-derived factor 1α 
SEM    Standard error of mean 
SLE    Systemischer Lupus erythematodes 
TH-Zellen   T-Helferzellen 
TLR    Toll-like-Rezeptoren 
TNF-α    Tumornekrosefaktor-α 
UDP    Uridin-5´diphosphat 
UTP    Uridin-5´triphosphat 
αβmeATP   α,β-methylen-Adenosin-5’-triphosphat 
βγmATP   β,γ-methylen-Adenosin-5’-triphosphat 
iNOS    Induzierbare Stickstoffmonoxid-Synthetase 
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