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moderno – Monografia – Tesi e dissertazioni – UBO2782561; [2005?]. - VII, 238 p. :

ill. ; 30 cm. Tesi ds. di laurea in Astronomia, Università degli studi di Bologna,
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Zusammenfassung

Sternentstehung (SE) ist ein noch ungelöstes Problem in der Astrophysik. Die Kühlung

des Gases ist der hauptsächliche Mechanismus, der zur Kondensation des Gases und

danach zur Stern- und Strukturentstehung führt. In einem metallfreien Raum sind H,

He, H2 und HD die wichtigsten verfügbaren Atome und Moleküle, die zur Kühlung

beitragen können; Von dem Zeitpunkt an, ab dem das Gas mit Metallen angereichert

ist, tragen diese am meisten zur Kühlung bei. Um die SE im frühem Universum zu

bestimmen, haben wir in dieser Doktorarbeit die Kühlung durch Feinstrukturübergänge

in Metallen berechnet und zusammen mit einem Reaktionsnetzwerk implementiert.

Außerdem haben wir die Entwicklung der SE im frühen Universum mit Hilfe von hoch

auflösenden, 3D, N-body/Hydrodynamik Simulationen erforscht, unter Berücksichtigung

von nichtgleichgewichts- Atom- und Molekülchemie, SE-Vorschriften und Feedbackeffekte.

Wir untersuchten auch wie sich die frühe SE verändert, gemäß verschiedener semi-

analytischer Ansätze, Kosmologischer Parameter, Anfangsbedingungen und kritischer

Metallizitäten (Zkrit) für den Übergang von SE aus Gas primordialer, bis hin zu

einer mit Metallen angereicherten Zusammensetzung. Unsere wichtigsten Ergebnisse

sind: Das H2-Molekül trägt am meisten zur Kühlung im frühen Universum bei; Eine

zusätzliche Kühlung von ∼ 10% − 20% resultiert von HD-Molekülen in den dichtesten

Gebieten des Gases; Kühlung durch Metalle hat speziell bei niederen Temperaturen einen

bedeutenden Einfluß auf die Entstehung und Entwicklung von ersten Strukturen; Typische

numerische “sub-grid” Modelle liefern nicht die korrekte Kühlung des frühen Gases und

sagen vorzeitige SE (z ∼ 30) vorher; Unter Einbeziehung des Reaktionsnetzwerk finden

wir, ausgehend von den gleichen Anfangsbedingungen, ein späteres Einsetzes der SE-

Epoche (z ∼ 15); In seltenen, stark verdichteten Gebieten kann SE sogar ab z & 40

einsetzen; Aufgrund des sehr kurzen Lebens der ersten Sterne ist die metallfreie SE

sogar vernachlässigbar im Vergleich zur gesamten SE-Rate; Sie ist nur für ∆z ≃ 1 (bei

z ∼ 16) relevant; Verunreinigung durch primordiale Metalle bis zu ∼ 10−3Z⊙
1 oder

höher verläuft äußerst schnell und ermöglicht einen sehr raschen Übergang zur Standard-

SE; Die verschiedenen SE-Raten und Metallanreichungen für verschiedene Zkrit sind gut

unterscheidbar und überdecken etwa eine Größenordnung für Zkrit/Z⊙ ∈ [10−6, 10−3].

Wegen der Relevanz der Ursprünglichen Massenfunktion wird zusätzlich ein analytisches

Modell präsentiert, das ihre mögliche Herkunft aus turbulenter Dissipation beschreibt.

1 Die solare Metallizität ist Z⊙ ≃ 0.02.
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Abstract

Star formation (SF) is still an unsolved problem in astrophysics. Gas cooling is the

principal mechanism leading to the condensation of gas and consequently to star and

structure formation. In a metal-free environment, the main available coolants are H,

He, H2 and HD; once the gas is enriched with metals, these also become important. In

this work, in order to properly determine the SF in the early Universe, we compute fine-

structure transition metal cooling and implement and test molecular chemistry. Moreover,

we investigate its redshift (z) evolution and compare different modeling running very

high-resolution, three-dimensional, N-body/hydrodynamic simulations including non-

equilibrium, atomic and molecular chemistry, SF prescriptions and feedback effects.

We also study how the primordial SF changes accordingly to different semi-analytical

approaches, cosmological parameters, initial set-ups and critical metallicity (Zcrit) for the

transition from a metal-free SF regime to a standard enriched one.

Our main findings are: the H2 molecule is the most relevant coolant in early times;

inclusion of HD cooling results in a ∼ 10% − 20% higher gas clumping; metal cooling at

low temperatures can have a significant impact on the formation and evolution of first

objects; typical numerical “sub-grid” models fail in following the cooling of primordial

gas and predict too early SF (z ∼ 30); considering molecular cooling, we get a postponed

epoch (z ∼ 15) for the same initial conditions; rare, high-density peak can host SF even

at z & 40; metal-free SF regime is completely negligible with respect to the global SF

rate, because of the very short first star life-times; it has some relevance only for ∆z ≃ 1

(at z ∼ 16); primordial pollution up to ∼ 10−3 Z⊙
1, or higher, is extremely rapid and

allows for a very fast transition to standard SF regimes; the different SF rates and metal

enrichment got for different Zcrit are well distinguishable and span about one order of

magnitude for Zcrit/Z⊙ ∈ [10−6, 10−3]. Given the importance of the initial stellar mass

distribution function, an analytical model describing its possible derivation from turbulent

dissipation is presented.

1 The solar metallicity is Z⊙ ≃ 0.02.
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Riassunto

La formazione stellare (FS) è ancora un problema irrisolto dell’astrofisica. Il

raffreddamento del gas è il meccanismo principale che conduce alla condensazione ed,

in seguito, alla formazione di stelle e strutture. In assenza di metalli, le specie che

raffreddano più efficientemente sono H, He, H2 e HD; una volta che il gas è stato arricchito

di metalli, anch’essi diventano importanti. Nel presente lavoro, al fine di determinare la FS

nell’Universo primordiale, calcoliamo il raffreddamento dovuto a transizioni metalliche di

struttura fine ed implementiamo e testiamo la chimica molecolare. Inoltre, investighiamo

la sua evoluzione in redshift (z) e confrontiamo diversi modelli eseguendo simulazioni N-

corpi/idrodinamiche, tridimensionali, ad alta risoluzione che includono chimica al non-

equilibrio atomica e molecolare, prescrizioni per la FS ed effetti di auto-regolazione.

Studiamo anche il cambiamento della FS a seconda di diversi approcci semianalitici,

parametri cosmologici, impostazioni iniziali e metallicità critiche (Zcrit) per la transizione

da un regime di FS in assenza di metalli ad uno arricchito e standard.

Principalmente, troviamo che: la molecola H2 rappresenta il modo più rilevante per

raffreddare il gas in tempi primordiali; l’inclusione di raffreddamento da HD risulta in

una concentrazione di gas più alta del 10% − 20%; il raffreddamento metallico a basse

temperature può avere un impatto significativo per la formazione ed evoluzione dei primi

oggetti; i tipici modelli numerici “sotto griglia” falliscono nel seguire il raffreddamento di

gas primordiale e predicono FS troppo anticipata (z ∼ 30); considerando il raffreddamento

molecolare, otteniamo un’epoca di FS postposta (z ∼ 15) per le stesse condizioni iniziali;

rari picchi ad alta densità possono ospitare FS anche a z & 40; il regime di FS in

assenza di metalli è del tutto trascurabile rispetto al tasso complessivo, a causa dei

cortissimi tempi di vita delle prime stelle; esso ha una certa rilevanza solo per ∆z ≃ 1

(a z ∼ 16); un inquinamento metallico primordiale fino a ∼ 10−3 Z⊙
1, o più, avviene in

modo estremamente rapido e permette una transizione molto veloce ad un regime di FS

standard; i vari tassi di FS e arricchimento metallico per diversi Zcrit sono ben distinguibili

e ricoprono circa un ordine di grandezza per Zcrit/Z⊙ ∈ [10−6, 10−3]. Data l’importanza

della funzione di distribuzione di massa stellare iniziale, viene presentato un modello per

una sua possibile derivazione a partire da dissipazione turbolenta.

1 La metallicità solare è Z⊙ ≃ 0.02.
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Introduction

Panditur interea domus omnipotentis Olympi

Vergilius, Aen., X, 1

One of the greatest challenges for the human mind is the understanding of the cosmos

we are in. In History, there have been philosophers and scientists who tried to give an

explanation of the observable things in many possible ways. Historically, such “world

views” (or Weltanschauungen) have often influenced the common conception of the

Universe, starting from the geocentric Aristotelic-Ptolemaic system (Aristoteles, IVbC;

Ptolemy, 150) until the establishment of the heliocentric system (Copernicus, 1543; Galilei,

1610; Kepler, 1619; Galilei, 1623, 1632) and the birth of modern physics based on scientific

principles and mathematical description (Newton, 1687; Bernoulli, 1738; D’Alembert,

1743; Kant, 1755; Lagrange, 1788; Poincaré, 1892; Maxwell, 1873; Lamb, 1879; Planck,

1900; Jeans, 1902; Einstein, 1916; Fermi, 1956, etc.).

And sometimes, the very dominant “world view” has influenced the success of certain

scientifical theories: this is the case for the ancient, Pithagoric, heliocentric vision,

overtaken by the Aristotelic one, or, in more recent times, for the very first conception

of the Universe as an infinite, evolving system, dating back to the “erethical” monk

and philosopher Giordano Bruno (Bruno, 1584), indirectly rehabilitated only in the XX

century, with full mathematical support, by the physicist A. Friedmann (Friedmann, 1922)

and the astronomer G. Lemâıtre (Lemâıtre, 1927).

Nowadays, the emerging picture of an infinite, expanding Universe is accompanied by

numerous, complicated, unsolved issues. One of these is the formation and evolution of

all the cosmic structures we see today. Indeed, they present an extremely high level of

complexity and, in order to address them, it is fundamental to rely on several branches of

physics and perform detailed, numerical analyses of the involved variables, with powerful
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a) b) c)

Figure 1: a) Ptolemaic system (Ptolemy, 150) with the Earth in the center and the Moon, the Sun and the planets
orbiting around it in circular motion (in order, Earth, Moon, Mercury, Venus, Sun, Mars, Jupiter, Saturn). b)
Copernicus’s order of the celestial orbits (Copernicus, 1543, Lib. I, Cap. X). The Sun is in the center; going
outwards the circular orbits of the planets (Mercury, Venus, Earth with Moon, Mars, Jupiter, Saturn, Motionless
Sphere of Fixed Stars) are traced. c) Bidimensional projective map of the cosmic background temperature
fluctuations (Spergel et al., 2007). They correspond to the infinite seeds that grew to become the present-day
structures.

means of calculation.

A schematic summary of the different, dominant conceptions of the Universe is given in

Figure 1, from the oldest (left panel) to the modern one (right panel).

It efficiently shows how the cosmological scenario has changed during the centuries.

In the present work we will try to stand on the “shoulders” of our great ancestors, but,

“looking a bit further” than them, we will also try to give modern justifications to some

of the cosmological enigmas we do not understand, yet.

In particular, we will study the main features of cosmic gas and the processes which

allow it to condense and form stars, dealing with molecular abundance evolution schemes,

calculations of fine-structure transition cooling functions, density threshold models and

their implementation in cosmological codes. Such mechanisms, given the amount of

computational costs, must necessarily be followed with the help of numerical simulations.

Moreover, we will stress the role of chemistry in leading primordial gas cooling and its

importance for the formation of the very first objects. Formation of successive generations

will be characterized by completely different features, due to the presence of metals spread

by previous structures. Therefore, we will also check for the effects of metallicity and its

impacts on star formation focusing on the transition from a primordial metal-free regime

to a subsequent metal-enriched regime.



21

The thesis is organized as follows.

After defining our mathematical conventions, we will give a general overview (part I) about

the standard approaches to study cosmology (chapter 1), structure formation (chapter 2)

and star formation in the Universe (chapter 3).

Then, we will focus on more practical applications in cosmological simulations (part II):

we describe the code we have used and the numerical implementation we have done

(chapter 4); we discuss the tests we performed in order to test it (chapter 5); we show

the resulting implications for the onset of star formation (chapter 6) and the role of

metallicity (chapter 7). We conclude presenting a possible derivation of the stellar initial

mass function (chapter 8), one of the main observables in astrophysics and one of the

fundamental ingredients of our research.

At the end of the work, it is possible to find some appendices (part III) about cooling

function (appendix A), star formation rate indicators (appendix B), molecular and atomic

data (appendix C), clarifying observations on the definition of entropy (appendix D) and

analysis of gravitational instability in viscous environments (appendix E). To finish we

give some bibliographic references (part IV).
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Conventions, abbreviations and
relevant physical quantities

Quelli che s’innamoran di pratica sanza scienza
son come ’l nocchiere ch’entra in navilio sanza

timone o bussola, che mai ha certezza dove si vada.

Leonardo Da Vinci, Scritti letterari

We assume (+,−,−,−) for the the signature of the metric gµν ; the components of the

Riemann tensor are defined as follows: Rα
βγδ = Γα

βδ,γ−Γα
βγ,δ+Γα

sγΓ
s
βδ−Γα

sδΓ
s
βγ, where

the Γs are the Christoffel symbols; in the Einstein equations, the cosmological constant Λ

is taken positive, therefore it contributes positively to the energy density and negatively

to the pressure.

The speed of light in vacuum is denoted with c; the sound speed with cs or vs; the

expansion parameter, or scale factor, in the FLRW metric and in the Friedmann equations,

is indicated with a, the redshift with z.

Regarding the chemical symbols, X stands for the hydrogen mass fraction, Y for the

helium mass fraction and Z for the sum of all the mass fractions of the other elements,

“metallicity”. As a reference, the solar metallicity, Z⊙, is about 2%.

All the quantities referring to the Sun have the suffix ⊙.

Typical distances we deal with are of the order of thousands of parsec, kiloparsec, kpc,

(1 kpc = 103 pc), or of millions of parsec, megaparsec, Mpc, (1 Mpc = 106 pc); 1

parsec, pc, is defined as the distance at which an observer would see the length Earth-

Sun (astronomical unit, AU) under the “parallax” angle of one second of arc (1′′). As

1AU ≃ 1.49 · 1013 cm and one radiant 1 rad = 206265′′, then 1 pc ≃ 3, 08567 · 1018 cm.

An important quantity is the present-day critical density of the Universe:

ρ0,cr = 1.878 · 10−29 h2 g/cm3 = 2.774 · 1011 h2 M⊙/Mpc3 = 277.4 h2 M⊙/kpc3,

corresponding to a number density of n0,cr = ρ0,cr/(µmH) = 1.12 · 10−5µ−1 h2 cm−3,
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where h is the present-day normalized expansion rate of the Universe (about 0.72) and

µ the mean molecular weight (about 1.2 for a standard, cosmological, neutral chemical

composition having X = 0.76, Y = 0.24, Z = 0).

In the text we have adopted the following mathematical notations for the different kinds

of derivatives
∂f
∂xµ or ∂µf or f,µ partial derivative of f

with respect to the variable xµ

∇µf or f;µ covariant derivative of f

with respect to the variable xµ

ḟ temporal derivative of f

and the following symbols

≃ about equal
∼ estimate of the magnitude

asymptotic behaviour
≈ approximated
≡ equal by definition
∝ proportional
→ react(s) to give
∀ for all
∈ belong(s)

We remind some important physical and astronomical quantities, in c.g.s. units:

G gravitational constant 6.67323 · 10−8 dyn cm2 g−2

c speed of light in vacuum 2.99792 · 1010 cm s−1

~ reduced Planck constant 1.05457 · 10−27 erg s
h Planck constant 2π~

kB Boltzmann constant 1.38065 · 10−16 erg K−1

NA Avogadro number 6.02214 · 1023 mol−1

R perfect gas constant kBNA

σ Stefan − Boltzmann constant 5.67040 · 10−5 erg cm−2 s−1 K−4

σr radiation constant 4σ/c
mH proton mass 1.67262 · 10−24 g
me electron mass 9.10938 · 10−28 g
σT Tomson cross − section 6.65246 · 10−25 cm2

M⊙ solar mass 1.9892 · 1033 g
R⊙ solar radius 6.9599 · 1010 cm
L⊙ solar luminosity 3.826 · 1033 erg s−1

Z⊙ solar metallicity 0.02



Part I

General overview





Chapter 1

Mathematical description of the
Universe

È dunque l’universo uno, infinito...

Bruno, De la causa, principio et uno

We will begin our work discussing the problem of studying the Universe as a whole, in

a physical-mathematical context. In particular, we will pay our attention to the principal

methods that allow us to describe

I – the space-time on very large (cosmological) scales;

II – the birth and evolution of the cosmic structures “contained” in it.

Gravity will be the main character of such investigations, as it is the only fundamental

force dominating the scenario. Therefore, the first issue (discussed in this chapter) will be

addressed using Einstein’s theory of General Relativity and the additional assumption

of isotropy and homogeneity of the Universe, the cosmological principle (Einstein,

1916, 1917), while the second one will require an approach based on Jeans’s theory of

gravitational instability (Jeans, 1902) and on numerical simulations.

For any reference, see Weinberg (1972), Misner et al. (1973), Peebles (1993),

Coles and Lucchin (1995), Peacock (1999).

1.1 The approach of General Relativity

The basic idea of Einstein’s theory of gravitation is to look at the interaction among

bodies in a geometrical way: each massive body modifies the space-time around it, so that

any test particle (either massive or massless) travels along the geodesics in the modified
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geometry. In a renowned summarizing motto, matter tells the space-time how to change

and the space-time tells the matter how to move (Misner et al., 1973).

In this view, the determination of the motion of a test particle in a gravitational field

becomes the determination of the metric describing the space-time in which the test

particle is moving along the geodesics. The steps to be performed are then:

• given a mass distribution, to determine the metric tensor of the modified space-time

geometry;

• computed the metric tensor, to write the equations of motion of a test particle in

that geometry.

In the following sections we will address these two points using the standard relativistic

formalism. We will adopt Einstein’s summation convention, and denote the components

of a metric tensor with gij . By definition, the space-time interval ds will be

ds2 = gijdx
idxj (1.1)

with gij = gji (symmetry condition of any metric tensor) and gij the components of the

inverse of the metric.

In a 4-dimensional space-time (3-dimensional space plus 1-dimensional time), the number

of independent components is 10; often, Roman letters are used for the spatial indices

running between 1 and 3 and Greek indices in general when including also the temporal

0th-component. The metrics we deal with are the usual relativistic metrics, so the spatial

coordinates have a different sign than the time coordinate and the signature is (+,–,–,–).

1.1.1 The field equations

In order to determine the metric tensor, Einstein proposed the following field equations

(Einstein, 1916)

Gµν = κTµν (1.2)

where Tµν are the components of the stress-energy tensor describing the distribution of

matter, or, better, of the sources of the gravitational field and Gµν are the components of

the so-called Einstein tensor, related to the geometry of the space-time.

The stress-energy tensor in 4 dimensions has 16 components, but it is symmetric under

reflection of coordinate system (energy does not depend on the sign of the axes), Tµν = Tνµ,
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therefore the independent components are only 10. They are given by the variation of

the action S with respect to the metric tensor, times a factor dependent on the speed of

light c and on the determinant of the metric g (Landau and Lifshitz, 1975)

Tµν =
2c√−g

δS

δgµν
or T µν = − 2c√−g

δS

δgµν
(1.3)

from which the symmetry is clear. The transition from covariant to contravariant

components is done via gµσgσν = δµ
ν , implying δgµν = −gµρgνσδgρσ. The expression

for Gµν is a combination of the Ricci tensor Rµν and the Ricci scalar R = gµνRµν :

Gµν ≡ Rµν −
1

2
gµνR. (1.4)

The Ricci tensor is defined as

Rµν = Rλ
µλν (1.5)

obtained contracting the contravariant component of the Riemann tensor with its second

covariant component1. The components of the Riemann tensor depend on the convention

adopted; we define them as:

Rλ
µνρ = Γλ

µρ,ν − Γλ
µν,ρ + Γλ

σνΓ
σ
µρ − Γλ

σρΓ
σ
µν (1.6)

being

Γλ
µν =

1

2
gλσ (gσµ,ν + gνσ,µ − gµν,σ) (1.7)

the Christoffel coefficients and having used the comma for simple derivatives and the

semicolon for covariant derivatives2. Given these relations, Rµν and Gµν result to be

symmetric as well.

The expression (1.2) represents 16 equations of which only 10 are independent, because

of the previous symmetry reasons. In virtue of Bianchi’s identities (Gµν
;ν = 0) and the

conservation rules (T µν
;ν = 0), taking the quadri-divergence of (1.2), we get four identities

0 = 0, meaning that the problem is well posed.

The constant κ appearing in the field equations (1.2) is calibrated on the Poisson equation

1 There is only one possible independent contraction.
2 For any vector with components V i, the covariant derivative with respect to the j-th coordinate is

V i
;j = V i

,j + Γi
kjV k (1.8)

and if we consider the covariant derivative for Vi = gijV j , the plus sign is replaced by a minus sign. For a generic tensor

T i1i2...
j1j2... similar rules apply:

T i1i2...
j1j2... ;k = T i1i2...

j1j2... ,k +Γi1
lkT li2...

j1j2...+Γi2
lkT i1l...

j1j2...+ ...−Γl
j1kT i1i2...

lj2...−Γl
j2kT i1i2...

j1l...− ... . (1.9)
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in the classical “static”, “non-relativistic”, “weak field” limit, so that the right Newtonian

behaviour at low energies is retried. In practice, relations (1.2) are expanded at the first

order, and reduced to the only significative relation

G00 = κT00. (1.10)

If we imposes that (1.10) coincides with the Poisson equation

△φ(x) = 4πGρ(x) (1.11)

where φ(x) is the gravitational potential and ρ(x) the density distribution at the spatial

position x, this procedure leads to3 κ = 8πG/c4 and the field equations can be rewritten

as

Rµν −
1

2
gµνR =

8πG

c4
Tµν . (1.12)

It is now possible to determine gµν from (1.12), once T µν is assigned. The addition of

a constant term like Λgµν does not change the conservation laws, as (Λgµν);ν = 0. The

constant Λ is called cosmological constant and was first introduced by Einstein in 1917:

long discussions followed and still exist about its physical meaning.

1.1.2 The geodesics equations

The second step is to write down the equations of motion for a test particle moving in a

space-time specified by the metric gµν . This is a relatively simple problem, because a test

particle falling in a gravitational potential will travel along the geodesics, so the equations

of motions are just the equations of the geodesics:

d2xλ

dτ 2
+ Γλ

µν

dxµ

dτ

dxν

dτ
= 0 (1.13)

where xλ are the space-time components of the particle and τ is the variable

parameterizing the geodesics, alias the proper time. The first term can be seen as the

kinematic term, the second one as the potential term arising from the metric hidden in

the Christoffel coefficients.

Also these equations lead to the correct classical limit

ẍi = −∂φ(x)

∂xi
(1.14)

3 The expression for κ depends on the conventions: sometimes a c2 is included in the stress-energy tensor obtaining
κ = 8πG/c2, or the Riemann tensor is defined with the opposite sign getting κ = −8πG/c4. The value κ = −8πG/c2 is
obtained if the c2 is included in Tµν and the Riemann tensor is defined with a different sign. In his original work, Einstein
used κ = 8πG/c2 ≃ 1.87 · 10−27 dyn s2 g−2 (Einstein, 1916). Anyway, for possible notations see also Weinberg (1972);
Misner et al. (1973); Landau and Lifshitz (1975).
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if we identify the gravitational potential with the perturbation h00 of the temporal

component of the Minkowskian metric, ηµν = diag(1,−1,−1,−1),

φ(x) =
c2

2
h00(x) + constant (1.15)

with the “static”,“non-relativistic”, “weak field” conditions

gµν = ηµν + hµν and |hµν | ≪ 1. (1.16)

In practice, in equations (1.13) one expands all the terms up to the first order in hµν ,

finds three equations binding the accelerations ẍi with the gradient of h00 and imposes

(1.15), in order to get (1.14). The “weak field” condition |hµν | ≪ 1 reads then

2|δφ|
c2

≡ 2|φ(x2) − φ(x1)|
c2

≪ 1 (1.17)

being δφ the difference of potential at two different points x1 and x2.

The geodesics equations (1.13) justify the weak equivalence principle on the equality of

inertial and gravitational mass, according to which, the motion of a test particle in a

gravitational field does not depend on its mass.

Conceptually, the problem is solved: one takes the stress-energy tensor T µν of the

system studied, solves for the metric gµν in the field equations (1.12) and eventually

computes the Γλ
µν and determines the motion of a test particle xλ via (1.13).

Nonetheless, in reality there are a lot of complications due to the fact that it is not

always possible to give appropriate stress-energy tensors to any system, or to solve the

field equations and deduce gµν . Even if some exact solutions are known, often further

hypotheses or approximations must be introduced. In cosmology we will manage to get a

metric tensor adding a cosmological principle that will allow us to establish the evolution

of the Universe from the field equations themselves.

1.2 Relativistic cosmology

We have seen the two steps on which Einstein’s Relativity is based. We will now apply

such concepts to cosmology and build a mathematical model of the Universe. The goal

will be reached introducing the

• cosmological principle
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from which it will be possible to extract a form for the metric. The first attempts in

this regard, trace back to the early decades of the XX century, to Einstein, Friedmann,

Lemâitre, Robertson and Walker.

1.2.1 The metric of the Universe from the cosmological principle

General Relativity is a classical field theory and therefore it deals with continuous

distributions of gravitational sources. On the other hand, we know well that matter

is not distributed in a continuous way, so it is fundamental to point out that the

main approximation is to consider the Universe as filled with a “fluid of matter” whose

description is feasible in terms of the stress-energy tensor. In addition, it is not possible

to know such tensor at each point of the Universe, simply because the Universe is infinite.

So, to determine the metric, it is necessary to introduce some additional hypotheses.

The basic assumption is then that the cosmic fluid is spatially isotropic and homogeneous.

More precisely,

– isotropic with respect to a given point means that its properties are the same in each

direction, at that given point;

– homogeneous means that it is isotropic with respect to any point.

These two statements constitute the so-called cosmological principle or principle of

homogeneity and isotropy of the Universe and allow a determination of the metric avoiding

the field equations.

Let’s consider a reference frame comoving with a locally inertial observer; the coordinates

of any event measured by this observer will be called comoving coordinates and the generic

space-time interval satisfying the cosmological principle can be written as

ds2 = (cdt)2 − a2(t)dl2, (1.18)

being a(t) a scale factor, which takes into account a possible evolution of the metric

with time, t (this does not violate the spatial isotropy and homogeneity of the Universe),

and dl the infinitesimal, comoving line element, whose form depends on the geometry.

Mathematically, it is possible to prove that there are only three forms for the comoving

line element satisfying the cosmological principle, corresponding to the only three possible
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homogeneous spaces. Namely,

ds2 = (cdt)2 − a2(t)

[

dr2

1 − Kr2
+ r2(dθ2 + sin2 θdϕ2)

]

(1.19)

where






K = 0 for flat spaces (Euclidean geometry);
K > 0 for closed spaces (hyper − spheric geometry);
K < 0 for open spaces (hyperbolic geometry).

(1.20)

The quadratic form (1.19) is known as the “Friedmann-Lemâitre-Robertson-Walker”

(FLRW) metric.

It is always possible to re-define simultaneously K and a(t) to reduce the values of the

geometric parameter K to k = 0,+1,−1, respectively. Moreover, the FLRW metric (1.19)

is conformally flat for K = 0 and is enough to introduce the conformal time

dτ =
dt

a(t)
, (1.21)

to get immediately, from equation (1.19),

ds2 = a2(τ)

[

(cdτ)2 − dr2

1 −Kr2
− r2(dθ2 + sin2 θdϕ2)

]

(1.22)

and, for null spatial curvature,

ds2 = a2(τ)
[

(cdτ)2 − dr2 − r2(dθ2 + sin2 θdϕ2)
]

. (1.23)

So far, we have not yet used the field equations, but we have got a metric from the

cosmological principle only.

1.2.2 The Friedmann equations

To know how the metric evolves in time we can now use the field equations substituting

the expression (1.19) in (1.12) and using the perfect fluid tensor in curved spaces

Tµν = (P + ρc2)UµUν − Pgµν . (1.24)

Here, ρ is the energy density, P the pressure, Uµ the components of the four-velocity, gµν

the components of the metric tensor.

As we said, the relations (1.2) or (1.12) represent 10 independent equations, but we need

to know only the evolution of a(t) and, indeed, one finds that

1. the equation relative to the temporal indices

G00 = κT00
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gives (“dynamic equation”)

ä = −4

3
πG

(

ρ+
3P

c2

)

a (1.25)

2. the three equations relative to the spatial indices

Gii = κTii

reduce to (“energy equation”)

ȧ2 + Kc2 =
8

3
πGρa2 (1.26)

3. the six (independent) equations relative to the mixed indices

Gµν = κTµν , (µ 6= ν)

are identically zero.

The equations (1.25) and (1.26) are called “Friedmann equations” and describe the

dynamical evolution of an isotropic and homogeneous Universe, via a(t): they can be

bound to each other adding the usual adiabaticity condition

d(ρc2a3) + Pda3 = 0. (1.27)

Therefore, the three equations (1.25), (1.26) and (1.27) form a set of equations of which

only two are independent.

In the presence of a cosmological constant, the Friedmann equations result slightly

modified as one has to consider an additional term in the field equations

Gµν − Λgµν =
8πG

c4
Tµν (1.28)

or formally to substitute

T̃µν = Tµν +
c4

8πG
Λgµν ≡ Tµν + TΛ

µν , (1.29)

ρ̃ = ρ+
Λc2

8πG
≡ ρ+ ρΛ , (1.30)

P̃ = P − Λc4

8πG
≡ P + PΛ (1.31)

so the following Friedmann equations are obtained:

ä = −4

3
πG

(

ρ+
3P

c2

)

a +
Λ

3
c2a (1.32)

ȧ2 + Kc2 =
8

3
πGρa2 +

Λ

3
c2a2. (1.33)
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These results are extremely important, because they show that the Universe is expanding

with an acceleration different from zero (1.32). In the absence of a cosmological constant

the Universe decelerates, but the presence of Λ can make it accelerate or pass from a

decelerated phase to an accelerated phase. It is interesting to stress that the geometry of

the universe is involved only in the (1.33).

An interesting particular case is the Einstein-de Sitter cosmological model: it is a flat,

matter only model, without cosmological constant, Λ = 0.

1.2.3 Equation of state, density evolution and temperature evolution

To completely close the system and determine the thermodynamical evolution of the

Universe we still need an equation of state, a relation between pressure and density.

Usually it is parametrized as

P = wρc2 (1.34)

with w equation of state parameter, related to the cosmic fluid considered. For matter

only, a suitable modeling is based on the “dust fluid”, i.e. a perfect, non-relativistic gas

of non-interacting particles. Such a fluid has

P = nkBT = ρc2
(

kBT

mc2

)

≃ 0 (1.35)

where n is the gas number density, kB the Boltzmann constant, T the temperature and

m the particle mass. Equation (1.35) implies w = 0.

For radiation, we know that

P =
1

3
ρc2 (1.36)

with ρc2 energy density; therefore w = 1/3.

The cosmological constant has instead

P = −ρc2 (1.37)

and w = −1, because of the relations (1.30) and (1.31).

Given the equation of state for a certain fluid, the resulting sound speed in that fluid is

c2s =

(

∂P

∂ρ

)

S

= wc2; (1.38)

the suffix S indicates constant entropy.
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The equation of state written as in (1.34) allows us to express in an easy way the

evolution of the different components of the cosmic fluid: substituting it in the adiabatic

condition (1.27), we obtain

ρ(a) = ρ0

(

a

a0

)−3(1+w)

(1.39)

where ρ0 and a0 are the value of the density and of the expansion parameter at the present

day. For this scaling, it is common to find the normalization a0 ≡ 1.

Relation (1.39) leads to ρ(a) ∼ a−3 for matter, ρ(a) ∼ a−4 for radiation and

ρ(a) ∼ constant for Λ.

Furthermore, simple thermodynamical considerations for the energy density and the

equation of state in the adiabatic condition (1.27) lead, for perfect gas, to

d

(

3

2
nkBTma

3

)

+ nkBTmda3 = 0 (1.40)

with n number density evolving as ∼ a−3, according to (1.39), kB Boltzmann constant and

Tm matter temperature. For radiation at temperature Tr with a black-body spectrum,

the differential equation

d
(

σrT
4
r a

3
)

+
1

3
σrT

4
r da3 = 0 (1.41)

holds. In fact, the energy density is the integral over the frequency ν of the spectral

energy density

u(Tr, ν) =
8π

c3
hν3

ehν/kBTr − 1
(1.42)

and it is given by σrT
4
r , being σr the black-body constant, while the radiation pressure

is 1/3 the energy density. A two-fluid – matter and radiation in thermodynamical

equilibrium – universe is described by

d

[(

3

2
nkBTm + σrT

4
r

)

a3

]

+

(

nkBTm +
1

3
σrT

4
r

)

da3 = 0. (1.43)

Integrating relations (1.40), (1.41) and (1.43), it is easy to retrieve the evolution of matter

and radiation temperatures. Indeed, relations (1.40) and (1.41) give

Tm = T0,m

(

a

a0

)−2

(1.44)

Tr = T0,r

(

a

a0

)−1

(1.45)
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respectively. In the early phases, radiation and matter are “hot”, therefore, only in this

regime the hypothesis of thermodynamical equilibrium between these two components is

reasonable and the equilibrium temperature T ≡ Tm = Tr in (1.43) has a behaviour ruled

by
dT

T
= −

(

σrad + 1

σrad + 1/2

)

da

a
(1.46)

with σrad radiation entropy per baryon4

σrad =
4σrT

3
r

3nkB

=
4σrT

3
0,r

3n0kB

, (1.47)

where n0 is the matter number density at the present time. As the constant σrad ≫ 1,

the solution is T ∼ a−1 ∼ Tr: the plasma is radiation dominated.

1.3 Frequently used cosmological quantities

In this section we will define some important quantities, which are commonly used in

cosmology. The most relevant is without any doubt the expansion parameter

H ≡ ȧ

a
(1.48)

because it describes the evolution of the Universe, as it is directly related to (1.32) and

(1.33). The local value of H is typically referred to as H0. Often it is convenient to define

the additional adimensional parameter h normalized via H0 ≡ 100 h km/s/Mpc. In the

following, we will define some more handy quantities.

1.3.1 Redshift

A very useful quantity is the redshift, z, because it is easily measured by observers. It is

defined as:

z ≡ ∆λ

λem
=
λobs − λem

λem
=
λobs

λem
− 1 =

νem

νobs
− 1 (1.49)

where λobs and λem are the wavelengths of the radiation observed on Earth and emitted by

a certain source, respectively; similarly, νobs and νem are the frequencies observed on Earth

and emitted by the same source, respectively. Using the standard relativistic relations,

the chain of formulæ (1.49) is equivalent to

1 + z =
λobs

λem
=
νem

νobs
=

√

c+ v

c− v

v≪c∼ 1 +
v

c
+ O

(

v2

c2

)

(1.50)

4 This adimensional quantity is basically the entropy of radiation per unit volume, ∼ 4σrT 3
r /3, divided by the entropy

of gas per unit volume, ∼ nkB.
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where v is the velocity of the source and c the velocity of the electromagnetic waves. From

the latter steps,
v

c
=

(1 + z)2 − 1

(1 + z)2 + 1
(1.51)

and it follows

1 + z12 =
1 + z2
1 + z1

(z1 < z2) (1.52)

where z12 is the redshift difference between two points at redshifts z1 and z2.

Differentiating relations (1.50), one gets

dz

1 + z
=

dv

c

(

1 − v2

c2

)−1
v≪c∼ dv

c
+ O

(

v2

c2

)

(1.53)

and can interpret dv as the peculiar velocity if dz is the shift from the cosmological redshift

due to the peculiar motion (zmeasured − zcosmological).

The variable z is moreover bound to the scale factor a. In fact, according to the line

element (1.19) we can define the function

f(r) ≡
∫ r

0

dr′√
1 − kr′2

(r > 0) (1.54)

and solving the integral

f(r) =







arcsinr k = 1
r k = 0
arcsinhr k = −1

. (1.55)

Because (1.19), for any light signal connecting the origin with a certain point at the

coordinate r and at the instant t, along the geodesics (ds2 = 0):
∫ r

0

dr′√
1 − kr′2

=

∫ t0

t

cdt′

a(t′)
(t 6 t0) (1.56)

where t0 is the arrival time and t0 − t is the time spent to cover the path [0, r].

In particular, let’s consider two different instants tem and tem + δtem > tem, during which

the space-time experiences expansion, while f(r) does not change because it is a function

of the comoving coordinate. In this case,

f(r) =

∫ tobs

tem

cdt′

a(t′)
=

∫ tobs+δtobs

tem+δtem

cdt′

a(t′)
(1.57)

where tobs and tobs + δtobs are the respective arrival times. From (1.57), for small

time intervals, it follows that δtem/aem = δtobs/aobs and therefore, in frequencies and

wavelengths:

νemaem = νobsaobs and aem/λem = aobs/λobs, (1.58)
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respectively. From a comparison with (1.50), we have

1 + z =
aobs

aem

. (1.59)

In virtue of this relation, all the previous equations (Friedmann equations, adiabaticity

condition, density or temperature evolution etc.) can be read as a function of z, instead

of a.

1.3.2 Density parameters and Friedmann equations

The density for which, in the case Λ = 0, the Universe is always flat (spatial curvature

K = 0) is called the critical density:

ρcr(t) ≡
3H2(t)

8πG
, (1.60)

as one may easily see from equations (1.33) and (1.48). The density parameter for the

generic component of cosmic fluid with equation of state parameter w is defined as:

Ωw(t) ≡ ρw(t)

ρcr(t)
, (1.61)

and the redshift dependence is given, through equations (1.39) and (1.59), by

ρw(z) = ρ0,w(1 + z)3(1+w). (1.62)

The cosmological constant parameter computed at the present time is:

Ω0Λ =
Λc2

3H2
0

, (1.63)

because of (1.30).

By differentiating the definition (1.48), the Friedmann equation for ä (1.25) is related

to H via ä = a(Ḣ +H2).

With the previous definitions and (1.59), the Friedmann equation (1.26) can be written

as

H2(z) =H2
0

[

(1− Ω0,tot)(1 + z)2 + Ω0,m(1 + z)3 + Ω0,r(1 + z)4 + Ω0,Λ

]

≡ H2
0E

2(z) (1.64)

being Ω0,tot, Ω0,m, Ω0,r the present-day total, matter and radiation density parameter,

respectively.

The quantity H(z) evolves as a power law, according to the dominant component and it is
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a b c

Figure 1.1: Evolution of density parameters in a closed (a), flat (b) and open (c) matter only model with
Ω0,tot = Ω0,m = 1.5, 1, 0.5, respectively. Contributions from radiation and cosmological constant are null.

straightforward to see that, in a matter dominated universe at high redshift, it converges

to the Einstein-de Sitter case.

The evolution of ρcr as a function of z is, by definition,

ρcr(z) =
3H2

0E
2(z)

8πG
≡ ρ0,crE

2(z). (1.65)

For (1.60), (1.61) and (1.65),

Ωw(z) =
ρ0,w(1 + z)3(1+w)

ρ0,crE2(z)
=

Ω0,w(1 + z)3(1+w)

E2(z)
(1.66)

and, consistently with relation (1.62), we can write

ρw(z) = Ωw(z)ρcr(z) = Ω0,wρ0,cr(1 + z)3(1+w). (1.67)

For flat cosmologies, indicating with i the different fluid components,

E2(z) =
∑

i Ω0,wi
(1 + z)3(1+wi) and

∑

i

Ωwi
(z) = 1 =

∑

i

Ω0,wi
∀ z > 0. (1.68)

The behaviour of the different density parameters in different cosmologies is shown in

Figure 1.1 and in Figure 1.2. In Figure 1.1, we show the evolution of density parameters in

a closed (a), flat (b) and open (c) model, with Ω0,tot = Ω0,m = 1.5, 1 and 0.5, respectively.

In Figure 1.2, we plot the same quantities in a cosmological constant dominated scenario

with Ω0,tot = 1, Ω0,m = 0.3, Ω0,Λ = 0.7, Ω0,r = 0 (left panel), Ω0,r = 10−4 (right panel).
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Figure 1.2: Left panel: evolution of density parameters for a cosmological model with Ω0,tot = 1, Ω0,m = 0.3,
Ω0,Λ = 0.7. Contribution from radiation, Ω0,r, is null. Right panel: as in the left panel, but with a contribution
from radiation of 10−4.

1.3.3 Time-redshift relation

Differentiating the definition of redshift (1.59), one gets

ż

1 + z
= − ȧ

a
= −H (1.69)

and

dt = − dz

(1 + z)H(z)
= − 1

H0

dz

(1 + z)E(z)
= −tH

dz

(1 + z)E(z)
(1.70)

where we have defined

tH ≡ 1

H0

≃ 3.0857 · 1017 h−1 s ≃ 9.7958 h−1 Gyr. (1.71)

The time elapsed between the Big Bang (z → +∞) and redshift z is

t(z) =

∫ +∞

z

dz′

(1 + z′)H(z′)
= tH

∫ +∞

z

dz′

(1 + z′)E(z′)
. (1.72)

This formula is the time-redshift relation and allows us to link the main observable,

z, with the time, t, it corresponds to. The age of the Universe, tage, is obtained by

integrating (1.72) from z = 0. The look-back time (from ‘now’ up to redshift z) is instead

tLB(z) ≡ tage − t(z):

tLB(z) =

∫ +∞

0

dz′

(1 + z′)H(z′)
−
∫ +∞

z

dz′

(1 + z′)H(z′)
=

∫ z

0

dz′

(1 + z′)H(z′)
(1.73)
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and allows us to link the redshift z where a given object is situated with the time needed

to a light ray emitted from a source in the origin of coordinates to reach it.

In a flat, matter only cosmology (Einstein-de Sitter model), relation (1.64) for H becomes

H(z) = H0

√

Ω0,m(1 + z)3/2 (1.74)

with Ω0,m = Ω0,tot = 1. Therefore,

t(z) =
2

3H0

√

Ω0,m

(1 + z)−3/2 =
2

3
tH(1 + z)−3/2 (1.75)

and

tage =
2

3H0

√

Ω0,m

=
2

3
tH ≃ 9.3

(

h

0.7

)−1

Gyr. (1.76)

Because of what discussed in the previous section, it is obvious that any matter dominated

cosmology at high redshift behaves as an Einstein-de Sitter model.

In Figure 1.3, the age of the Universe according to different models is shown. The

asymptotic convergence to the Einstein-de Sitter case, at large z, is clearly seen.

1.3.4 Distances and expansion of the Universe

The line element (1.19) allows us to define different types of distances. Using the definition

for f(r) in (1.54), we can express it in the following way:

f(r) =

∫ t0

t

cdt′

a(t′)
=

∫ a0

a

c

a′
da′

ȧ′
=

∫ a0

a

c

a′2
da′

H(a′)
=

c

a0

∫ z

0

dz′

H(z′)
(1.77)

with a 6 a0 and z > 0. It is found then

r = f−1

(
∫ r

0

dr′√
1 − kr′2

)

= f−1

(

c

a0

∫ z

0

dz′

H(z′)

)

. (1.78)

This has a simple analytical solution for matter only universes, w = 0, for any Ω0 =

Ω0,m = Ω0,tot (Mattig’s formula):

r =
2c

a0H0

Ω0z + (Ω0 − 2)
(√

Ω0z + 1 − 1
)

Ω2
0(1 + z)

. (1.79)

There exist also non simple, analytical expressions for universes made of matter, radiation

and Λ, too (Dabrowski and Stelmach, 1987, and references therein), but we will not go

into details.



1.3 Frequently used cosmological quantities 43

Figure 1.3: The age of the Universe according to different cosmological models, as indicated from the labels, is
shown. All the predictions have the same asymptotic behaviour at high z coinciding with the Einstein-de Sitter
model (dotted-dashed purple line). The inset is a zoom of t(z) [Gyr], for 1 + z ∈ [9, 200].
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The proper distance of a point whose radial coordinate with respect to the origin is r

(and corresponds to redshift z) is:

dPR(r) ≡ a

∫ r

0

dr′√
1 − kr′2

= af(r) =

(

a

a0

)

a0f(r) (1.80)

(basically it is the radial distance according to the FLRW metric). Defining

DH ≡ c

H0

≃ 9.25 · 1027h−1 cm ≃ 2997.9 h−1Mpc (1.81)

where c is the speed of light, one has also

dPR(z) =
c

1 + z

∫ z

0

dz′

H(z′)
=

DH

(1 + z)

∫ z

0

dz′

E(z′)
(1.82)

or, as a function of a,

dPR(a) = ac

∫ a0

a

da′

ȧ′2H(a′)
= aDH

∫ a0

a

da′

ȧ′2E(a′)
. (1.83)

By definition of proper distance, equation (1.80), and by differentiating with respect to

time, one easily finds the velocity-distance relation

v = ȧf(r) =
ȧ

a
af(r) = HdPR (1.84)

relating the distance of a point with its recession velocity from the observer. This is a clear

evidence of the expansion of the Universe, with a rate H0 which is about 70 km/s/Mpc

(h ≃ 0.7). Observational determinations of H0 are quoted in Figure 1.4. The very first

data suggested H0 ≃ 500 km/s/Mpc (h ≃ 5), more recent data H0 ≃ 72 km/s/Mpc

(h ≃ 0.72).

The comoving distance is instead defined as the proper distance computed at the

present day:

dcom ≡ dPR(a0) = a0f(r) = c

∫ z

0

dz′

H(z′)
= DH

∫ z

0

dz′

E(z′)
. (1.85)

By comparing equations (1.82) and (5.4), it is found

dPR =
dcom

1 + z
(1.86)

In a flat, matter only universe,

dcom = a0r = 2DH

Ω0z + (Ω0 − 2)
(√

Ω0z + 1 − 1
)

Ω2
0(1 + z)

(1.87)
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Figure 1.4: Left panel: first measurement of the H0 parameter using Cepheid method for 24 Nebulæ within 2 Mpc
distance from Earth; the plot reproduces the data quoted by Hubble (1929); Hubble and Humason (1931): the
solid straight line has a slope of 500 km/s/Mpc. The very large scatter due to peculiar motions which dominates
over the cosmic expansion over such small distances is evident. It is also clear the presence of blue-shifted points
(negative/approaching velocities). Right panel: measures of the local expansion rate H0 (Freedman et al., 2001)
up to 400 Mpc using different techniques (quoted in the labels). Points below ∼ 25 Mpc are seriously affected by
peculiar motions.

having used Mattig’s formula (1.79) and the definition (1.81).

The angular diameter distance is the distance of an object deduced from its transversal

dimension (via the transverse part of the FLRW metric). If D is the proper diameter of

the source and dθ the viewing angle, then the (angular diameter) distance is

dA =
D

dθ
= ar =

(

a

a0

)

a0r. (1.88)

For flat universes, it holds

dA = dPR =
dcom

1 + z
. (1.89)

The luminosity distance is built to preserve the Euclidean inverse-square law for the

flux and is probably one of the most important because this is what very often astronomers

measure. The emitted flux of a source radiating an energy dE, in the time interval dt,

located at a distance dL (i.e. at redshift z > 0), is

f =
dE

4πd2
Ldt

. (1.90)

The observed flux (a = a0, z = 0) is

f0 =
dE0

4π(a0r)2dt0
, (1.91)
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Figure 1.5: Left panel: distances as function of redshift z in a flat universe with cosmological parameters
Ω0,m = 0.3, Ω0,Λ = 0.7, Ω0,r = 0.0, h = 0.7. We show: the proper distance, coinciding with the angular diameter
distance (dashed line), the comoving distance (solid line) and the luminosity distance (dotted line). Right panel:
comoving distance for different cosmological models, as indicated by the labels.

being r the comoving coordinate of the source in a frame centered with the observer.

Including redshift effects, as, for (1.58), aν = constant, dE ∼ ν ∼ 1/a ∼ (1 + z) and

dt ∼ 1/ν ∼ a ∼ 1/(1 + z). Imposing f = f0, it follows

dE

4πd2
Ldt

=
dE0

4π(a0r)2dt0
=

dE

4π(a0r)2dt

(

a

a0

)2

(1.92)

and

dL =
a2

0

a
r. (1.93)

For flat universes,

dL = (1 + z)dcom = (1 + z)2dPR. (1.94)

A plot showing the behaviour of the different definitions of distances for a flat, standard

cosmology with Ω0,m = 0.3, Ω0Λ = 0.7, Ω0r = 0.0, h = 0.7 is in Figure 1.5 (left panel). The

results for the comoving distance in different cosmological models as function of redshift

are also plotted (right panel). We stress that the proper (and angular diameter) distance

is decreasing with redshift, while the comoving and the luminosity distance are always

increasing with z. At low redshift, there is no distinction between the different definitions

and the different cosmologies adopted.



Chapter 2

Mathematical description of cosmic
structure formation

Fiat lux

Genesis

In this chapter, we will address the main astrophysical problem concerning the

“content” of the Universe: structure birth, formation and evolution. We will also give

an overview of how it is possible to describe mathematically such processes using linear,

perturbative analysis and numerical, non-linear simulations.

The bulk of such investigations will produce results about the cosmological evolution of

cosmic structures which are valid in a statistical sense.

2.1 The global scenario: hot big bang

Given the basic equations for cosmic expansion, it is possible to recover the whole history

of the expanding Universe and to build the so-called standard cosmological model: the

hot big bang. In this scenario, the main constituents are radiation and matter that, during

the primordial phases, were in thermodynamical equilibrium with a black-body energy

spectrum (1.42) and a temperature behaviour dominated by radiation (1.46). Because of

such equilibrium, statistically, each atom interacts with one photon and therefore the

plasma results ionised: only when the temperature becomes low enough, due to the

expansion, recombination will be possible and matter will become neutral.

The radiation spectrum, better known as cosmic microwave background (CMB), is still

observable at the present-day at an effective temperature of about 2.725 K.

During the evolution of the Universe, a transition from a radiation dominated to a matter



48 Mathematical description of cosmic structure formation

dominated epoch is expected. More generally, three specific “instants” can be identified:

the equivalence, decoupling and recombination time or more commonly redshift.

The equivalence redshift, zeq, is the redshift at which the energy density of matter and

radiation are equivalent, ρm(zeq) = ρr(zeq). This is given by

1 + zeq =
Ω0,m

Ω0,r
(2.1)

because of the scalings (1.34) and (1.59). At z > zeq the energy density is dominated by

radiation, which scales ∝ (1 + z)4; at smaller redshift, instead, matter density dominates,

as it is ∝ (1 + z)3, (1.39).

The decoupling redshift, zdec, corresponds to the epoch when the temperature of matter

equals the temperature of radiation, Tm(zdec) = Tr(zdec). According to (1.44), (1.45) and

(1.59), it is found

1 + zdec =
T0,r

T0,m
. (2.2)

Physically, we expect a decoupling between matter and radiation because, during the

cosmic expansion, density and temperature decrease and with them also the interactions

between particles and photons are rarer and rarer, until they become irrelevant.

At early times, the behaviour is ruled by radiation and there is the same scaling for the

two temperatures, evolving as (1 + z), in virtue of (1.46); later on, at z < zdec, statistical

equilibrium between the two components is broken and the radiation temperature

continues decreasing as (1 + z), while matter temperature goes as (1 + z)2. So, after

the decoupling, matter and radiation evolve independently.

The recombination redshift is defined by the recombination of 50% of hydrogen atoms,

when the global temperature drops below 104 K (more likely some thousands Kelvin), as

a consequence of the cosmic expansion, and is expected to happen between equivalence

and decoupling (when matter and radiation do not interact any more).

Recent data (Hinshaw et al., 2008, five-year WMAP satellite data) suggest that the

Universe is flat with a contribution from cosmological constant dominant over the other

components: Ω0,tot ≃ 1.0, Ω0,Λ ≃ 0.74 Ω0,m ≃ 0.26. Baryonic matter seems to be a

negligible part of the whole matter content (Ω0,b ≃ 0.04), which is instead dominated

by dark matter (matter interacting only gravitationally). The expansion parameter is

estimated h ≃ 0.72, matter-radiation equality is expected at zeq ≃ 3176 and decoupling

at zdec ≃ 1090.51 (Hinshaw et al., 2008). These values rule out the flat matter only
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Einstein-de Sitter cosmology and are consistent with the so-called ΛCDM standard model,

which is defined by the set of parameters Ω0,tot = 1.0, Ω0,Λ = 0.7, Ω0,m = 0.3 and h = 0.7.

The non-zero Ω0,Λ term is probably related to the cosmological constant (Einstein,

1917), but, as proposed by many authors (Ratra and Peebles, 1988; Brax and Martin,

1999; Peebles and Ratra, 2003), can also be connected to other types of unknown “dark

energies”, whose effects on structure formation history have been firstly studied by

Maio et al. (2006), via numerical simulations, and by Crociani et al. (2008), via analytical

calculations.

The existence of non-baryonic matter has been suggested several decades ago and structure

formation models based on the growth of primordial gravitational instabilities (Peebles,

1974) were developed since the early works by Gunn and Gott (1972).

2.2 From primordial fluctuations to structure formation

The presence of density/energy disomogeneities capable of growing under gravitational

instability is fundamental for structure formation. Nowadays the presence of primordial

fluctuations of the order of 10−5 the mean density is well established and evident for

example in the temperature map of the CMB (Figure 2.1). Probably they were originated

in the very early phases of the Universe undergoing an exponential expansion (“inflation”).

Afterward quantum fluctuations would have been growing, becoming the actual seeds

of structure formation. These original seeds are random events for which a Gaussian

probability distribution function (PDF) is usually assumed. In more quantitative terms,

one can define the density contrast δ(x, t), as a function of the cosmic time and spatial

position

δ(x, t) ≡ ρ(x, t) − ρb(t)

ρb(t)
, (2.3)

being ρ(x, t) the density at point x and instant t and ρb(t) the background mean density

of the Universe at the same cosmic time. Assuming a Gaussian PDF p for the primordial

fluctuations δ means imposing

p(δ)dδ =
1√

2πσ2
exp

(

− δ2

2σ2

)

dδ. (2.4)

The mean value 〈δ〉 is null by definition and the variance σ2 ≡ 〈δ2〉. We notice that,

according to (2.4), δ can assume values between −∞ and +∞, but in practice it must be
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Figure 2.1: Bidimensional projective map {(θ, φ) ∈ [−π/2, π/2]× [−π, π]}, where φ is the galactic longitude and θ
the galactic latitude, of the cosmic background temperature fluctuations (from the observations of WMAP NASA
satellite Spergel et al., 2007)). The image reveals 13.7 billion year old temperature fluctuations shown as color
differences: red warmer, blue colder than the mean temperature of 2.725 Kelvin, in the range ± 200 micro-Kelvin.
They correspond to the seeds that grew to become the present-day structures.

δ > −1, because of (2.3). The regime of the perturbations is said linear if |δ| ≪ 1 and

non-linear if δ > 1.

When over-densities are present, they can grow only if the gravitational forces are

stronger than pressure or dispersion forces. The growth of perturbations is a problem

mathematically treated integrating the equations governing the behaviour of the cosmic

fluid.

2.2.1 Linear evolution

The classical approach to gravitational instability is to write the equations governing the

evolution of a fluid in a gravitational field φ, and to expand them in perturbative series

assuming that the perturbations are “small” and the change of entropy is negligible.

A fluid is described by its density ρ, pressure P and velocity field u. The equations ruling

its behaviour, in a static space-time, are

• the continuity equation

∂ρ

∂t
+ ∇ · (ρu) = 0 (2.5)



2.2 From primordial fluctuations to structure formation 51

• the Euler equations
∂u

∂t
+ (u · ∇)u = −∇P

ρ
−∇φ (2.6)

• the Poisson equation

∇2φ = 4πGρ. (2.7)

The different quantities can be decomposed in a background average value and a

perturbation term as follows














ρ = ρb + δρ ≡ ρb(1 + δ)
P = Pb + δP
u = δu
φ = φb + δφ

(2.8)

with |δ| = |δρ/ρb| ≪ 1, |δP/Pb| ≪ 1, |δφ/φb| ≪ 1 and the velocity identified with the

perturbation velocity because we assume the reference frame of the fluid. The linearization

of the system leads to the linearized

• continuity equation
∂δρ

∂t
+ ρb∇ · (δu) = 0 (2.9)

• Euler equations
∂δu

∂t
= −c

2
s

ρb

∇δρ−∇δφ (2.10)

• Poisson equation

∇2δφ = 4πGδρ (2.11)

where the sound speed, cs, at constant entropy S is

c2s =

(

∂P

∂ρ

)

S

=
δP

δρ
. (2.12)

In Fourier space, the system reads











ωδ̂ − k · ˆ(δu) = 0

ω ˆ(δu) = k
[

c2sδ̂ + ˆ(δφ)
]

−k2 ˆ(δφ) = 4πGρbδ̂

(2.13)

where we have used as kernel of the transformation1 eiωt−ik·x, with ω angular frequency,

k wave-number vector with modulus k and x position vector. The hat-sign denotes the

1 The particular kernel used is irrelevant to the final result.
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Fourier transformation and δ̂ = δ̂ρ/ρb. Expliciting the 5 × 5 matrix associated to this

system we obtain




ω −kT 0
−kc2s ωI −k
4πGρb 0T k2









δ̂

δ̂u

δ̂φ



 =





0
0
0



 . (2.14)

In the previous matrix (A.4), kT is the transposed of the vector k, 0T the transposed of

the null vector 0 and I = IT the 3 × 3 unity matrix. In 1D (spherical symmetry), the

matrix becomes 3 × 3 and non trivial solutions exist for

ω2k2 − c2sk
4 + 4πGρbk

2 = 0. (2.15)

This represents the dispersion relation between the Fourier variables ω and k.

For k 6= 0, it reduces to

ω2 − c2sk
2 + 4πGρb = 0, (2.16)

whereas, for k = 0 any ω satisfies the condition (2.15). Growing, exponentially unstable

modes exist only for imaginary ω:

ω2 = c2sk
2 − 4πGρb < 0 (2.17)

which means

k < 2

√
πGρb

cs
≡ kJ . (2.18)

The value kJ is the Jeans wave-number for the stability of spherical nebulæ and it leads

naturally to the Jeans length λJ ≈ cs/
√
Gρb and to the condition for gravitational

instability, λ > λJ , for nebulæ with size λ.

The expected time-scale for collapse is called free-fall time and from a dimensional

analysis, it is

tff ∼ 1√
Gρb

(2.19)

from which follows λJ ≈ cstff . The size of a collapsing object is given by the typical

propagation velocity of a perturbation multiplied by the typical time during which it

propagates and collapses. It is possible to define the corresponding Jeans mass as2

MJ ≡ 4

3
πρb

(

λJ

2

)3

. (2.20)

For an expanding universe, the previous equations must be slightly modified and the

exponential behaviour of the growth corrected with a power-law behaviour. In particular,
2We point out that the definitions of Jeans mass and Jeans length are note unique and depend on the convention adopted.
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the Fourier Transform for the density contrast in a matter dominated universe satisfies

(in physical coordinates3)

¨̂
δ + 2

ȧ

a
˙̂
δ +

(

c2sk
2 − 4πGρb

)

δ̂ = 0 (2.21)

where the “friction” term due to the change in time of the scale factor, a, is evident. In

a universe dominated by radiation, the analogous of (2.21) is

¨̂
δ + 2

ȧ

a
˙̂
δ +

(

c2sk
2 − 32

3
πGρb

)

δ̂ = 0 (2.22)

with

cs =
c√
3
.

The differential equations (2.21) and (2.22) have solutions which are linear combinations

of two power laws (or “modes”): one is growing, D+, and one is decaying, D−, so δ ≃ D+.

The behaviour depends both on the kind of fluid and on the cosmology, but, as the latter

dependence is quite weak, we quote as a reference the growing mode or growth factor,

D+(a), for the Einstein-de Sitter model:

• for a < aeq, radiation dominates:

D+(a) ∼ a2 and D+(t) ∼ t (2.23)

• for a > aeq, matter dominates:

D+(a) ∼ a and D+(t) ∼ t2/3. (2.24)

For an arbitrary cold dark matter scenario, with matter parameter Ωm, the density

contrast evolution is much less trivial to express analytically and it is given implicitely by

(Heath, 1977; Carroll et al., 1992)

D+(a) =
5Ωm

2a

da

dτ

∫ a

0

(

da′

dτ

)−3

da′ =
5

2
ΩmH

3
0E(a)

∫ a

0

da′

[a′H(a′)]3
(2.25)

where τ ≡ H0t. This formula is normalized to the Einstein-de Sitter behaviour, so for

Ωm = 1 and ΩΛ = 0, one gets D(a) = a.

A useful fit for plausible values of Ωm and ΩΛ is the following:

D+(a) = a
g(a)

g(0)
(2.26)

3Remind the substitution k → k/a to pass to comoving wave-numbers.
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Figure 2.2: On the left, we show the density contrast δ normalized to the present-day value for a standard ΛCDM
model with Ω0,m = 0.3, Ω0,Λ = 0.7, Ω0,tot = 1. At high redshift the Einstein-de Sitter behaviour is recovered, as
emphasized by the plot of δ/a on the right side.

with

g(a) =
5

2
Ωm

[

Ω4/7
m − ΩΛ + (1 + Ωm/2) (1 + ΩΛ/70)

]−1
(2.27)

Ωm = Ωm(a) and ΩΛ = ΩΛ(a). We plot the growth factor of (2.25), normalized to the

present-day, for the ΛCDM case in Figure 2.2.

From analyses of the CMB radiation, it is found that, at the “surface of last scattering”

(decoupling time), when the scale factor is about 10−3, the perturbations are of the

order of 10−5. Therefore a simple linear evolution would predict present-day structures

with density contrast δ ∼ 10−2, because of relation (2.24). Nevertheless, we observe

over-densities with δ ≫ 1 which means that their evolution must have been strongly non-

linear. In addition, a precise calculation of the Jeans mass relies on the particular cosmic

fluid considered and also on the kind of matter considered: standard baryonic matter,

dark matter acting only gravitationally, either hot (relativistic at the decoupling) and

cold (non-relativistic at the decoupling), etc. Typically though it is found that the Jeans

mass increases up to the equivalence and then decreases due to micro-physics dissipation

effects. The values reached are:

– for baryonic matter, MJ,eq ∼ 1016 M⊙;

– for hot dark matter, MJ,eq >∼ 1012 M⊙;
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– for cold dark matter, MJ,eq ∼ 105 M⊙.

The most reliable model seems to be the cold dark matter one, in which dark matter

dominates over the baryons and leads a kind of “bottom-up” scenario: small dark matter

haloes are the first to collapse and then merge together to form more massive structures4.

The main problem in models dominated by baryons or by hot dark matter is that they

rely on fragmentation processes by which structures form. In these “top-down” scenarios,

massive objects – like galaxy clusters – should always be older than smaller objects – like

globular cluster – which is false, because Galactic globular clusters are among the oldest

objects observed and galaxy clusters the youngest and biggest virialized ones.

2.2.2 Non-linear evolution

Once structure growth proceeds and enters an advanced stage, it becomes a highly non-

linear problem (δ > 1) and therefore the main viable mean to address it is via numerical

approaches. The commonly adopted model is based on the “spherical top-hat” collapse

(Coles and Lucchin, 1995, for example). It assumes that the overdensity is spherical and

evolves according to the Friedmann equations on a flat background with density ρb. This

shows a first phase during which the perturbation expands with the Universe and then a

contraction and subsequent virialization of the system (a simple scheme is in Figure 2.3).

The maximum radius, rmax, is reached at the instant tmax and the corresponding density

of the perturbation is

ρp(tmax) =

(

3π

4

)2

ρb(tmax). (2.28)

The collapse and the virialization process stop respectively at tc = 2tmax and tvir = 3tmax.

From the virial theorem it follows that the virialization radius is

rvir =
rmax

2
(2.29)

and the corresponding over-densities, for and Einstein-de Sitter cosmology, are

∆max ≡ ρp(tmax)

ρcr(tmax)
=

(

3π

4

)2

≃ 5.6:δmax ≃ 4.6 (2.30)

∆c ≡
ρp(tc)

ρcr(tc)
=

(

3π

4

)2

22 · 8 = 18π2 ≃ 178:δc ≃ 177 (2.31)

∆vir ≡
ρp(tvir)

ρcr(tvir)
=

(

3π

4

)2

32 · 8 =
81π2

2
≃ 400:δvir ≃ 399. (2.32)

4This consideration is strictly valid only for dark matter, not for the baryons which feel the gravitational force of dark
matter but also additional hydro-dynamical effects.
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Figure 2.3: Scheme of the spherical “top-hat” model. The radius of the spherical perturbation, r, as a function
of time, t, is plotted (in arbitrary units). The labels refer to the maximum radius, rmax, the virialization radius,
rvir, the time at which the maximum radius is reached, tmax, the collapse time, tc, and the virialization time,
tvir.

This means that the total mass density of a virializing object is ∆cρcr = 18π2ρ0crE
2(z) and

the corresponding number density is 18π2ρ0crE
2(z)/(µmH) ∼ 0.002(1 + z)3µ−1 h2 cm−3.

In a flat ΛCDM cosmology, there is a weak dependence on z and the over-density at the

end of the collapse is ∆c(z) = 18π2+82 [Ωm(z) − 1]−39 [Ωm(z) − 1]2 (Bryan and Norman,

1998). For non-linear growth in cosmologies with early dark energy see Bartelmann et al.

(2006).

From linear theory (2.24) one would expect:

δmax ≃ 3

5

(

3π

4

)2/3

≃ 1.07 (2.33)

δc ≃ 3

5

(

3π

4

)2/3

22/3 ≃ 1.68 (2.34)

δvir ≃ 3

5

(

3π

4

)2/3

32/3 ≃ 2.20. (2.35)

These quantities are much smaller than the values estimated from non-linear theory.

The spherical top-hat is only a simple approach which can help our understanding of the

general phenomenology, but, nonetheless, more detailed studies must rely on numerical

simulations.
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2.3 Statistics of structure formation

When information must be extracted from many processes or data it is useful to perform a

statistical analysis of the sample. Similarly, it makes sense to describe structure formation

in terms of statistical quantities which can tell us something about the global behaviour

of the whole sample: e.g., which structures are the most typical ones, how rare or frequent

are objects of a given mass, if small objects are more numerous than big objects, etc.

The statistical analysis of perturbations relies on two hypotheses: the usual cosmological

principle and the ergodic hypothesis5. For Gaussian probability distribution functions the

ergodic hypothesis is proven to be always true (therefore it is not an additional hypothesis

but a consequence).

When such assumptions are met, a sample is considered to be a fair sample and in

cosmology we will talk about fair samples of the Universe.

In the Fourier space we have defined the density contrast δ̂; let’s define now the power

spectrum P (k):

(2π)3P (k)δ(3)(k − k′) ≡ 〈δ̂(k)δ̂∗(k′)〉 (2.36)

where δ(3) is the three-dimensional Dirac delta. For a primordial power spectrum, in

virtue of homogeneity and isotropy, we can write

P (k) = Akn (2.37)

with A empirical normalization constant and n spectral index. A spectrum with n = 1

is said Harrison-Zeldovic power spectrum; recent observational data suggest n = 0.96

(Hinshaw et al., 2008).

We can also define the variance

σ2 ≡ 〈δ2(r)〉 (2.38)

to get

σ2 =
1

2π2

∫

dkk2P (k). (2.39)

The mass variance is defined as

σ2
M ≡ 〈(M − 〈M〉)2〉

〈M〉2 =
1

2π2

∫

P (k)Ŵ 2(kR)k2dk, (2.40)

5 This states that the averages taken over all the possible realizations of an ensemble (population) are equal to the
averages done over a sample of that population.
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Figure 2.4: Power spectrum (left panel) computed using the Bardeen transfer function (right panel), for
h = 0.7, Ω0,m = 0.3 and σ8 = 0.9.

where the last passage holds for homogeneity and isotropy and Ŵ is the so-called window

function in the Fourier space

Ŵ (kR) ≡ 3
sin(kR) − (kR) cos(kR)

(kR)3
(2.41)

whose behaviour is

Ŵ (x) ∼
{

1 for x≪ 1
x−2 for x≫ 1

. (2.42)

Because of relations (2.39) and (2.40), σM < σ.

The suppression of growth before equivalence is parametrized by a transfer function, T ,

obtained via numerical simulations, so the primordial power spectrum results modified

according to

P (k) = AknT 2(k, aeq) (2.43)

where, e.g., for cold dark matter fluctuations, the following fit is often used (Bardeen et al.,

1986):

T (k, aeq) =
ln(1 + 2.34q)

2.34q

[

1 + 3.89q + (16.1q)2 + (5.46q)3 + (6.71q)4
]−1/4

(2.44)

with

q =
kθ1/2

ΩCDMh2Mpc−1
and θ = 1.
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Figure 2.5: Left panel: mass variance as a function of the size. The cosmology adopted has h = 0.7, Ω0,m = 0.3,
Ω0,Λ = 0.7 and σ8 = 0.9. The value of σM is 0.9, for objects with size 8 Mpc/h. Right panel: the scale lnl at
which σMD+(z) reaches a minimum critical value of 1 (solid line), 0.1 (dotted line) and 0.01 (dashed line), as
indicated by the labels, is plotted as a function of redshift, z.

Plots of the power spectrum and the transfer functions are presented in Figure 2.4. The

qualitative behaviour of P (k), for n = 1, is

P (k) ∼
{

kn ∼ k for k ≪ keq

kn−4 ∼ k−3 for k ≫ keq
. (2.45)

Its peak is determined by the Γ shape-parameter

Γ = Ω0,mh (2.46)

which holds for CDM only, but, if we consider also baryons, a better formula is (Sugiyama,

1995):

Γ = Ω0,mh exp

[

−Ω0,b

(

1 +

√
2h

Ω0,m

)]

. (2.47)

We stress the importance of the mass variance, as, being directly related to the power

spectrum via (2.40), it is used as normalization: normally, the mass variance in a 8Mpch−1

sphere, σ8, is given instead of A. In Figure 2.5, we show the mass variance for objects

with different sizes at the mean density of the Universe and the scale at which it reaches

a minimum critical value of 1 as a function of the redshift. This is interesting, because

the scale at which σM ∼ 1 is basically the scale below which non-linearities are important

and the linear regime breaks down. For comparison, we also plot the same quantity for
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minimum critical values of 0.1 and 0.01.

One last statistically interesting quantity is the mass function: it predicts the number

of collapsed object per unit mass and per unit volume. Imposing that structures form

statistically when the overdensity is above the minimum threshold δc and integrating

the probability distribution function under such hypothesis, for spherical collapse it is

(Press and Schechter, 1974; Bond et al., 1991)

dN

dMdV
≡ dn(M, z)

dM
=
ρb

M

df

dM
=

√

2

π

ρb

M2

δc(z)

σ

∣

∣

∣

∣

d ln σ

d lnM

∣

∣

∣

∣

exp

{

−δ
2
c (z)

2σ2

}

. (2.48)

Calling df/dM the fraction of collapsed mass and defining ν ≡ δc(z)/σM , expression

(2.48) becomes

df

dν
=

√

2

π
exp

(

−ν
2

2

)

, (2.49)

being

dn

dM
=
ρb

M

∣

∣

∣

∣

dν

dM

∣

∣

∣

∣

df

dν
. (2.50)

A different description, suggested by ellipsoidal collapse models, predicts for the mass

function Sheth and Tormen (1999),Sheth et al. (2001):

df

dν
= C

√

2A

π

{

1 +
1

(Aν2)q

}

exp

(

−Aν
2

2

)

, (2.51)

where C = 0.3222, A = 0.707 and q = 0.3. The Press & Schechter mass function is

reproduced for C = 1/2, A = 1 and q = 0.

From direct comparisons with numerical simulations it was possible to give better fits,

in particular at the high mass-end (Jenkins et al., 2001): the Jenkins mass function has

the same shape as the Sheth & Tormen, but the parameter A is 0.75 causing a steeper

exponential decay.

Examples and comparisons of mass functions are given in Figure 2.6 for a standard ΛCDM

cosmology (Ω0,m = 0.3, Ω0,Λ = 0.7, h = 0.7), an open cosmology (Ω0,m = 0.3, Ω0,Λ = 0.0,

h = 0.7) and an Einstein-de Sitter cosmology (Ω0,m = 1.0, Ω0,Λ = 0.0, h = 0.7), at

redshifts z = 10 and z = 0. The shift of the Einstein-de Sitter mass function in the

power-law regime, both at z = 10 and more evidently at z = 0, is due to the higher Ω0,m.
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Figure 2.6: Left panels: Press & Schechter (solid line), Sheth & Tormen (dashed line), Jenkins et al. (dotted
line) mass functions for the standard ΛCDM model. Right panels: Press & Schechter mass functions for the
following models: standard ΛCDM cosmology (solid line), Einstein-de Sitter model (dotted line), open cosmology
(dashed line). The upper row refers to redshift z = 10, the lower row to z = 0.

2.4 Dark matter haloes and baryonic structure formation

As dark matter is the dominant matter component, it is commonly believed that luminous

objects should be formed by in-fall of gas into dark matter potential wells. During the

in-fall, the gas is shock heated at the virial temperature of the halo, atoms and molecules

get excited and, when they get de-excited, emit radiation. This process allows for

cooling, condensation and fragmentation of gaseous systems and leads baryonic structure
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formation details and references can be found e.g. in (details and references can be found

e.g. in Barkana and Loeb, 2001; Ciardi and Ferrara, 2005).

2.4.1 Gas and halo properties

The basic properties a halo with massM , at redshift z, are its virial radius, rvir, its circular

velocity, vcirc =
√

GM/rvir, its virial temperature, Tvir = µmHv
2
circ/2kB, being µ the mean

molecular weight and mH the hydrogen mass, and its binding energy, Eb = GM2/2rvir.

The expected virial radius is computed from the definition of mass enclosed in a spherical

collapsed perturbation with density ρp(z) = ∆cρcr(z), where ρcr(z) = ρ0,crE
2(z) is the

cosmological critical density – evolving according to (1.65), – ρ0,cr is the critical density

of the Universe at the present time, ρ0,cr ≃ 1.9 · 10−29 h2 g cm−3 ≃ 277.5 h2 M⊙ kpc−3 and

∆c is the collapsing over-density defined in equation (2.31):

rvir ≡
(

3M

4πρp

)1/3

=

[

3M

4π∆cρ0,cr

]1/3

E−2/3(z). (2.52)

Expliciting the cosmological dependencies in rvir and using (1.66) for E2(z)

rvir(M, z) =

[

3MΩm(z)

4π∆cρ0,crΩ0,m

]1/3

(1 + z)−1 (2.53)

vcirc(M, z) =

√

GM

rvir(M, z)
= G1/2M1/3

[

4π∆cρ0,crΩ0,m

3Ωm(z)

]1/6

(1 + z)1/2 (2.54)

Tvir(M, z) =
µmHv

2
circ(M, z)

2kB

=
µmH

kB

GM2/3

[

π∆cρ0,crΩ0,m

6Ωm(z)

]1/3

(1 + z) (2.55)

Eb(M, z) =
GM2

2rvir(M, z)
= GM5/3

[

π∆cρ0,crΩ0,m

6Ωm(z)

]1/3

(1 + z). (2.56)

For M = 108h−1M⊙, ∆c = 178, Ω0,m = 0.25, Ω0,Λ = 0.75, z = 0 and assuming µ = 1, it is

found rvir ≃ 7.848 kpc/h, vcirc ≃ 7.4 km/s, Tvir ≃ 3.3 · 103 K and Eb ≃ 5.4 · 1052 erg/h.

The typical time-scales involved in the structure formation process are the free-fall time,

tff , and the cooling time, tcool. The free-fall time is defined as

tff =

√

3π

32Gρ
(2.57)

where G is the universal gravitational constant and ρ the density of the medium; the

numeric factor (3π/32)1/2 holds rigorously for spherical symmetry only. The cooling time

is defined as

tcool =
3

2

nkBT

Λ(T, ni)
(2.58)
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where n is the number density of the gas, kB the Boltzmann constant, T the temperature

and Λ(T, ni) the cooling function (energy emitted per unit time and volume) dependent

both on temperature and number densities, ni, of the constituting species. This quantum-

Figure 2.7: Cooling function (red solid line) for gas made of hydrogen and helium in primordial ratio. The
different contributions from several processes are shown: excitations (green short-dashed lines), ionizations (blue
long-dashed lines), recombinations (cyan dotted short-dashed lines), Compton scattering (magenta dotted long-
dashed lines) and Bremsstrahlung (black long-dashed short-dashed lines). A gas number density of 1 cm−3 was
assumed.

mechanical quantity (see Figure 2.7) takes into account all the possible atomic and/or

molecular transitions of any given species and quantifies the associated radiative losses
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(further details on the determination of the cooling function are found in appendix A).

The process of gas condensation happens if tcool ≪ tff , so only bound objects with a

certain minimum mass can collapse and form structures (e.g. Tegmark et al., 1997, and

discussion in the next section).

In the cooling function of Figure 2.7, we plot all the contributions coming from different

processes for primordial gas, consisting of hydrogen and helium only.

As in the Universe hydrogen has the largest chemical abundance (about 76% in mass

fraction or 93% in number fraction), it is the most relevant coolant for many astrophysical

purposes (more exactly, for all the systems whose metallicity is Z . 10−2Z⊙
6, at

temperatures T & 104 K) and the cooling function is dominated by H-H collisions.

2.4.2 Protogalaxies

In the commonly adopted scenario of structure formation the first haloes to collapse have

low masses and virial temperatures below ∼ 2 · 104 K (µ = 0.59), according to equation

(2.55). In fact, at redshift z & 10 or so, the most numerous structures are smaller than

∼ 108 h−1M⊙, as expected by (2.48), (2.51) and as shown in Figure 2.6. From Figure 2.7, it

is clear that, in the absence of additional coolants, it is not possible to reach temperatures

below ∼ 104K. During cosmic evolution, though, molecules derived by hydrogen, e.g. H2,

HD, are formed. With their ro-vibrational transitions, they can emit energy and cool the

plasma even at T < 104 K. This means that the very first objects require the presence of

molecules as leading cooling agent in order to form.

As hydrogen is largely the dominant element in the Universe, we expect that the

derived molecules will play a fundamental role in the cosmological gas chemistry.

The first studies in this direction were made by Saslaw and Zipoy (1967) followed

by Peebles and Dicke (1968); Hollenbach and McKee (1979); Lepp and Shull (1984);

Shapiro and Kang (1987); Puy et al. (1993); Abel et al. (1997); Galli and Palla (1998);

Stancil et al. (1998); Yoshida et al. (2003a) and many others, who highlighted the

importance of H2 in cooling gas down to temperatures of about 103 K.

In addition, one should also consider that, besides hydrogen, nucleosynthesis calculations

predict the existence of primordial deuterium and lithium. Measurements and

6 We remind the value of the solar metallicity: Z⊙ ≃ 0.02.
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observations give Log[D/H] = −4.5 (Burles and Tytler, 1998; Pettini and Bowen,

2001; O’Meara et al., 2006), while the abundance of Li (around 10−10) is not very well

determined and can vary by a factor of two or three when compared to the measurements

in the atmospheres of old stars (Korn et al., 2006; Yong et al., 2006). Other Li-derived

molecules (e.g. LiH and LiH+) have much lower abundances (Lepp and Shull, 1984;

Puy et al., 1993; Galli and Palla, 1998).

Another potentially interesting molecule is HD. Due to its permanent electric dipole

moment7, HD has higher rotational transition probabilities and smaller rotational energy

separations compared to H2 and thus, despite its lower abundance (Lepp and Shull, 1984;

Puy et al., 1993; Galli and Palla, 1998), HD can be an efficient coolant (Flower, 2000;

Galli and Palla, 2002; Lipovka et al., 2005; Abgrall and Roueff, 2006) and bring the gas

in primordial haloes to temperatures of the order of 102 K. This results into a smaller

Jeans mass and a more efficient fragmentation process. For haloes with virial temperatures

in the range 103 K − 104 K, HD cooling can be as relevant as H2.

The basic reactions ruling H2 production are (Saslaw and Zipoy, 1967; Tegmark et al.,

1997, for example):

• the H− channel (effective at z . 200)
{

H + e− → H− + hν
H− + H → H2 + e−

(2.59)

• the H+
2 channel (effective at z ≫ 200)

{

H+ + H → H+
2 + hν

H+
2 + H → H2 + H+ (2.60)

• three-body interactions (effective at densities higher than ∼ 108 cm−3)

H + H + H → H2 + H. (2.61)

In the previous reactions, h is the Planck constant and ν the frequency of the radiation

emitted. The maximum efficiency is reached at about T ∼ 2000÷3000 K. The path (2.60)

is limited by the necessity of free protons, which are rarer and rarer at low T , as they

7 Values of the permanent HD electric dipole moment range between D = 8.3 · 10−4 debye (Abgrall et al., 1982) and
D = 8.51 · 10−4 debye (Thorson et al., 1985). The first data date back to McKellar et al. (1976); for a theoretical, ab initio,
non relativistic, perturbative treatment, via radial Schroedinger equation, see also Ford and Browne (1977) and references
therein.
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Figure 2.8: Contributions to the cooling function from hydrogen and helium (solid line) in primordial ratio, with
a fraction of H2 (long-dashed line) xH2 = 10−5 and of HD (dotted line) xHD = 10−8. A hydrogen number density
of 1 cm−3 was assumed.

easily recombine with free electrons, and (2.61) is important only at very high densities

(at least ∼ 108 cm−3).

The production of HD molecules from primordial deuterium D and H2 mainly follows

from
{

D + H2 → HD + H
D+ + H2 → HD + H+ . (2.62)
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Also these reactions are significant for T < 104 K and are strongly dependent on H2

formation. A comparison between the primordial cooling function of Figure 2.7 and

the molecular cooling functions is shown in Figure 2.8 for typical values of H2 and HD

fractions.

When the cooling time due to H2 and/or HD in such pristine environments is shorter

than the free-fall time, a protogalaxy is formed and we call it population III object.
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Chapter 3

Star formation, initial mass function
and feedback

The heavens themselves, the planets, and this centre
Observe degree, priority, and place,

Insisture, course, proportion, season, form,
Office, and custom, in all line of order.

Shakespeare, Troilus and Cressida

According to the general picture of structure formation, galaxies and stars form from

in-fall of gas into dark matter haloes and subsequent fragmentation. In the following, we

will deal with the main properties of stellar populations and in particular of first stars,

paying our attention to their mass, statistical distribution, time evolution and physical

features.

3.1 First stars and subsequent generations

In primordial conditions, no metals are present and the only viable coolants are hydrogen

and helium, effective in rare, massive haloes, and some derived molecules (H2, HD),

effective in more common, small haloes. As firstly suggested by Saslaw and Zipoy (1967),

it is believed that the very first structures should be originated in the small primordial

haloes, through molecular cooling (protogalaxies), where metal-free star formation is

hosted and population III stars will be born. Considering only H2 cooling, the Jeans

mass for such stars is expected to be between 102 M⊙ and 103 M⊙ (Abel et al., 2002;

Omukai and Palla, 2003; Yoshida et al., 2003a, 2006b; Gao et al., 2007, etc.). The first

stars affect unavoidably the neighboring environment and the subsequent star formation.

For example, they can re-ionise the nearby regions and, in presence of HD cooling, induce
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star formation down to scales of ∼ 40 M⊙ (Yoshida et al., 2007). In addition, their

natural evolution brings to the production of new elements in their inner core. These are

eventually expelled, by SNe and stellar winds, into the surrounding medium and are able to

enhance cooling at low temperatures (Bromm and Loeb, 2003; Santoro and Shull, 2006).

With their hundred Kelvin fine-structure transitions they represent a much more efficient

coolant with respect to molecules and have significant impact on structure formation. In

fact, the higher the cooling, the lower the gas temperature and the Jeans mass: therefore,

objects formed in polluted media are expected to have smaller typical masses. This class

of structures is generally classified as population II (or even population I in metal-rich

regimes) stars.

The reasons why one invokes the formation of population III stars is related to

observational issues which cannot be explained with the known stellar population. Some

of the most striking are (Ciardi and Ferrara, 2005, and references therein):

• The enhancement of α-elements1 in galactic metal-poor stars and the existence of

extremely metal-poor stars containing s-process elements2 in their envelopes.

• The reionisation of the Universe due to first structure formation.

• The metal pollution of intergalactic medium, inferred from Lyman-α absorption lines.

• The formation of massive stellar black holes.

Population III stars could easily explain such problems, as they would be massive,

as mentioned before, rapidly evolving towards their final state of explosive supernova

(accompanied by spreading of material, like α-elements and/or s-process elements) or

massive black hole. Their strong radiation could also re-ionise the early Universe, when

its age is only some tenths of Gyr.

The existence of population III stars is merely speculative and not yet proven. The

observability is highly unprobable, considering their short typical life-times (less than

107 yr). So one must rely on indirect probes of their existence: for example, presence of

enhanced heavy elements like Mg, C, N on stellar surface could imply metal enrichment

from hypothetic previous population III stars (Christlieb et al., 2004; Bessell et al., 2004).

1Elements formed via α-particle-capture-processes in the late evolutionary stages of massive stars.
2Heavy elements formed in slow-neutron-capture-processes, via β− decay, in the interior of evolved stars (rapid-neutron-

capture-processes allow the formation of different isotopes of the same element, but not the formation of new elements, as
these processes dominate over the β− decay).



3.2 Stellar system properties 71

According to galactic evolution models, it is not possible to prove or to disprove the past

existence of such stars, as the galactic abundances would not be affected significantly by

population III star formation (Ballero et al., 2006). As an alternative, one can look for

very massive stars (∼ 102 M⊙) born in pristine medium and still alive today (Figer et al.,

1998) or check for the galaxy emission lines, like Lyα luminosity, which could have been

boosted by population III stellar clusters (Tumlinson et al., 2001; Scannapieco et al.,

2003; Nagao et al., 2008). More effects due to population III stars could derive from

their emission in the near infra-red (Matsumoto et al., 2005; Salvaterra and Ferrara, 2006;

Aharonian et al., 2006), their final evolution into gamma-ray bursts (Bromm and Loeb,

2006), or from the presence of black hole remnants and gravitational waves at frequencies

∼ 10−3 Hz (Schneider et al., 2000).

3.2 Stellar system properties

The most used parameterization of the star formation history of a stellar system is the

stellar birthrate function: the number density of stars formed per unit time and mass,

B(M⋆, t) ≡
d2n

dM⋆dt
. (3.1)

Usually, B(M⋆, t) is factorized according to the Ansatz

B(M⋆, t)dM⋆dt ≡ ξ(M⋆)dM⋆ ψ(t)dt (3.2)

where ξ is the initial mass function (IMF) of the stellar population,

ξ(M⋆) ≡
dn

dM⋆

(3.3)

while ψ is the star formation rate (SFR) at a given time t

ψ(t) ≡ dn

dt
. (3.4)

The IMF is the number fraction of stars formed, df , per mass interval [M,M+dM ]; it

is normally denoted by φ(M). Salpeter (1955) performed its first empirical determination

in the mass range [0.5 M⊙, 10 M⊙] and he suggested the following power law fit:

φ(M) ≡ df

dM
∼M−2.35. (3.5)

Over the years, many other different fitting formulæ have been proposed by, for example,

Miller and Scalo (1979), Kennicutt (1983), Scalo (1986), Rana (1991), Kroupa et al.
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Figure 3.1: A comparison of popular stellar initial mass functions (Courtesy of Ivan Baldry in Ellis, 2008). The
functional forms plotted (see labels in order from top to bottom) are the one suggested over several years by:
Salpeter (1955), Miller and Scalo (1979), Kennicutt (1983), Scalo (1986), Kroupa et al. (1993), Kroupa (2001),
Baldry and Glazebrook (2003), Chabrier (2003).

(1993), Kroupa (2001), Baldry and Glazebrook (2003), Chabrier (2003). The mass range

has been extended down to about 0.01 M⊙ and up to more than 100 M⊙, but the Salpeter

power law trend is in general preserved, although the IMF seems to flatten at the low-mass

end (M < 0.5 M⊙) and there is a significant fall-off and paucity of brown dwarves at

masses lower than 0.1 M⊙ (Basri and Marcy, 1997). The behaviour in this mass regime is

quite uncertain because the mass-luminosity relation for faint stars is not very well known

and the mass distribution is dominated by binary systems.

A comparison between some of the most popular IMF fits is found in Figure 3.1.

The behaviour at high redshift is not know3, but presumably the first stars should have

an IMF shifted toward high masses, as their Jeans mass is higher. A suggested trend is

(Larson, 1998):

M⋆ξ(M⋆) ∼
(

1 +
M⋆

Mc

)−1.35

(3.6)

where Mc is a critical mass related to the Jeans mass Mc ∼ MJ ∼ T 3/2ρ−1/2, for (2.18)

and (2.20). Relation (3.6) reproduces the Salpeter’s shape for M⋆/Mc ≫ 1.

3Some recent studies (van Dokkum, 2007) try to constraint the IMF as a function of the redshift, but the results are
still unclear and contradictory.
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As Mc increases with redshift, ξ(M) has a power slope decrement around M ∼ 102 M⊙,

while, for z → 0, the local Salpeter IMF is recovered, with a critical mass of the order of

∼ M⊙.

The main, elementary, physical reason for the transition from a high-redshift Larson IMF

to a low-redshift Salpeter IMF is the presence of different cooling agents, which determine

different values for the Jeans mass. When, like in the primordial case, the cooling is led by

molecules only (H2 and/or HD, as said before), MJ ∼ 10 M⊙ − 102 M⊙; when also metals

are present cooling is much stronger and more efficient, so one can reach MJ ∼ M⊙.

Regarding the SFR, we have indirect informations from related physical indicators, like

luminosities in different bands – basically far-infrared and ultraviolet – and recombination

or forbidden line – mainly Hα, [OII]λ3727 (see Appendix B for further details on SFR

indicators). In this way, one can get easy empirical relations to obtain estimates of ψ

from LFIR, LUV, LHα , LOII (Kennicutt, 1998, and references therein). Nowadays, it seems

that the cosmological SFR peaks at redshift z ∼ 2 − 3 (when the Universe was few Gyr

old) and then decreases at lower and higher z. There are no observational constraints at

high redshift (z & 6) even if it is supposed to decrease, as, at those early times, there

were fewer and fewer structures (see observed data points in Figure 3.2).

3.3 Features of primordial stars

Population III stars are quite different from standard population II or I star. Their mass

is much higher (some tens or hundreds M⊙) and the surface temperature can reach some

105 K, emitting at the Eddington limit. The spectrum is shifted to higher frequencies and

peaks in the UV, with typical helium – HeI and HeII – absorption lines (helium lines do

not show up in usual population II or I stars). Nonetheless, the fast evolution towards

late stages does not allow these features to last long, as they are supposed to vanish in a

life-time of some 107 yr, or less.

As they are made only of hydrogen and helium, their core is basically formed by a plasma

of electrons, protons and α particles with a temperature of about 107 K. The only nuclear

reactions which can be ignited and can sustain the whole star are proton-proton chains;

3α-processes (3 4
2He −→ 12

6C + γ) can contribute only once the contraction of the core
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Figure 3.2: Observational determinations of the cosmological star formation rate as a function of redshift in the
ultraviolet (UV) band (blue circles and pentagons) and infra-red (IR) band (red squares). See Reddy et al. (2008)
and appendix B for further details.

due to the rapid exhaustion of proton nuclear burning raises temperatures to some 108 K.

Afterwards, more heavy elements are produced in the interiors of the star and eventually

ejected into the surrounding medium. Stellar evolution numerical models show several

possible final fates, from the helium-burning-phase on, depending on the mass of the star,

M⋆:

– 10 M⊙ . M⋆ . 40 M⊙: all the elements up to iron are synthesized. When

the nucleus exceeds the Chandrasekhar mass, 1.4 M⊙, it collapses and causes a

supernova explosion (SNII) which pollutes the surrounding ambient. If the mass

is 30 M⊙ . M⋆ . 40 M⊙, the star explodes and eventually degenerates into a black

hole (Woosley and Weaver, 1995);

– 40 M⊙ . M⋆ . 100 M⊙: there is a formation of a black hole, accompanied either by

complete collapse or by jets/γ-ray bursts (Fryer, 1999).

– 100 M⊙ . M⋆ . 260 M⊙: the helium burning core reaches T ≃ 5 · 108 K, when

electron-pair-creation-processes become possible (γ −→ e+e−). The pairs increase

the gravitational potential and make the nucleus collapse. Oxygen and Silicon
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burning is ignited explosively and a pair instability supernova (PISN) is generated

(Zeldovich and Novikov, 1971), by which the star would be partially or completely

disrupted (Portinari et al., 1998; Fryer et al., 2001; Meynet et al., 2006a). The

amount of kinetic energy released is of the order of ∼ 1051 erg-1053 erg per explosion

(standard supernova explosions produce energies of ∼ 1051 erg).

– M⋆ & 260 M⊙: there is photo-disintegration of the core and formation of a massive

black hole, accompanied either by complete collapse or by jets (Fuller et al., 1986).

A schematic summary of the possible fates of primordial stars with different initial masses

is sketched in Figure 3.3 together with the mechanisms leading to the final stages.

3.4 Feedback processes

Once the first stars have formed and evolved, they can affect the subsequent structure

and star formation process by a number of “feedback” effects.

Feedback effects are all those mechanisms whose effects act upon the starting causes,

enhancing or inhibiting them. Taking into account their presence is fundamental,

because they can seriously affect the properties and evolution of cosmic structures

(star clusters, galaxies, galaxy clusters) and their environment (interstellar medium,

intergalactic medium).

According to the particular phenomena involved, one distinguishes mechanical feedback,

radiative feedback and chemical feedback. In the following we give a brief description of

the main feedback processes; for a complete review see Ciardi and Ferrara (2005).

3.4.1 Mechanical feedback

They are purely mechanical effects, involving forces and displacements acting on a given

body.

In astrophysics, a typical example is the ejection of mass or energy from evolved

objects, like stars, during SN or PISN explosions. Such events can partially

(blowout) or completely (blowaway) remove the ambient gas (Mac Low and Ferrara, 1999;

Bromm et al., 2003; Whalen et al., 2008), decrease its density and halt the possible cooling

mechanisms which were going on (negative feedback).

Also galactic structures are often characterized by winds and outflows (Sigward et al.,
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Figure 3.3: Scheme of the possible final fates of primordial population III stars (Heger and Woosley, 2002): the
final/remnant mass (thick blue line) is plotted versus the initial stellar mass. In addition, the mass of the star
at the beginning of the final stages is shown (thick grey line), with the helium core mass (dashed-double-dotted
thin line) and the details relative to the physical process involved at each mass-scale (see labels).

2005) of gas not retained by the gravitational potential and generated during stellar

evolution (e.g. still SN and/or PISN).

At the same time shocks can be originated (Vishniac, 1983) and boost molecule formation

in the cold shells behind them (positive feedback). The rise of shocks or blast-waves during

gas in-fall, instead, stops (temporarily) star formation (negative feedback).

A last process which might happen is the interaction between galaxies with the possible
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stripping of gas due to tidal effects (negative feedback).

3.4.2 Radiative feedback

They are related to ionization or dissociation of atoms and molecules.

Radiation produced by stars or quasars – mostly the one in UV – can determine

(Thoul and Weinberg, 1996; Haiman et al., 1997) photo-ionization of hydrogen and photo-

dissociation of molecules limiting the cooling capabilities of the gas (negative feedback).

On the other hand, molecule formation is enhanced in presence of X-rays, which accelerate

free electrons, or in HII regions, where there is plenty of free electrons (Ricotti et al.,

2001) – see reactions (2.59), (2.60) and (2.62) – (positive feedback).

Photons from evolved structures can make the temperature of the IGM increase

(preheating) and the Jeans mass, as well, so small structure formation can be inhibited

or postponed (negative feedback).

A side effect is the particle evaporation caused by heating of radiation (negative feedback)

(Haiman et al., 2001).

3.4.3 Chemical feedback

Chemical feedback effects involve the influence of the chemical composition of the medium

on structure formation. The main astrophysical problem related to this issue is the

pollution of the intergalactic medium. This is basically due to the spreading of metals

by stars in their late evolutionary stages. In fact, the first stars form from pristine gas

but, when they explode as SN or PISN, contaminate the surrounding regions altering

the global chemical composition. In particular, they cause an increase in the amount of

metals enhancing the cooling capabilities of the medium (positive feedback).

The next generations of stars will be born in a medium with different properties and

larger varieties of coolants, even though it is believed that the behaviour of gas collapse

and fragmentation does not change much until metallicities of ∼ 10−4Z⊙ are reached

(Yoshii and Sabano, 1980). This is the reason for the remarkable speculations on the

dependence of the IMF on the metallicity of the ambient medium.

The topic is very controversial, but one believes that at a critical metallicity Zcrit the

IMF should switch from a top-heavy to a Salpeter-like (see section 3.2), as metal and

dust cooling becomes efficient in fragmenting gas clouds down to sub-solar masses. The



78 Star formation, initial mass function and feedback

Figure 3.4: Total star formation rate (solid line), average metallicity (dotted-dashed line) and population III star
formation rate (dashed line) plotted as a function of the redshift for a 10Mpc box side simulation (Tornatore et al.,
2007b). The left vertical axis refers to the decimal logarithm of the star formation rate in M⊙ yr−1 Mpc−3, the
right one to the decimal logarithm of the average metallicity in solar units; the circular points are measured values
of the star formation rate.

exact value of Zcrit is quite uncertain and many debates have been done about it.

Definitely, the role of dust seems to be extremely important, as according to some recent

estimates (Schneider et al., 2003) metals depleted onto dust grains allow to reach sub-

solar scales already at Z ∼ 10−6 Z⊙, while in absence of dust formation the same scales

are not even reached for Z ∼ 10−2Z⊙.

Considering metal fine-structure transition cooling, one expect a critical metallicity of the

order Zcrit ∼ 10−4 Z⊙ − 10−3 Z⊙ (Bromm and Loeb, 2003; Santoro and Shull, 2006).

From this discussions, it is evident that the metal enrichment of the first stars is very

important to determine the features of the following structures and the duration of a

population III star formation regime.

We point out that the chemical feedback process is not strictly cosmological, because

metal pollution is prominent around star formation sites. It is rather a local, patchy

and inhomogeneous effect, therefore, mostly at high z, regions already enriched will

necessarily co-exist with regions preserving still a primordial chemical composition. This

also means that the presence of population III or population II/I stars can easily be

simultaneous and both of them can contribute to the global star formation rate. Recent
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works (Tornatore et al., 2007b; Wyithe and Cen, 2007) suggest, anyway, that population

III SFR should be negligible, at least at low redshift (z . 10 − 15) - see Figure 3.4.

Moreover, metal yields from primordial metal free stars can locally bring the metallicity

up to Z ∼ 10−5 − 10−4 (equal to Z ∼ 10−3Z⊙ − 10−2Z⊙) already in the very first bursts.

In a standard ΛCDM model (Ω0m = 0.3, Ω0Λ = 0.7, h = 0.7, σ8 = 0.9, n = 1), the

Universe could have been endowed with a metallicity floor, Zmin > 10−4Z⊙, since z ∼ 15

(Bromm et al., 2003) and the transition to population II/I objects should have been very

rapid.

3.5 Final remark

In this work, we will be focused mainly on the chemical feedback issues in numerical

simulations of structure formation, studying how the scenario changes adopting different

numerical approaches and different critical metallicity.
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Part II

Cosmological simulations





Chapter 4

Numerical simulations of early
structure formation

Omnium rerum simulatio vitiosa est –
tollit enim iudicium veri idque adulterat –

delet enim veritatem.

Cicero, De amicitia

Numerical simulation codes have been, since long time, a powerful mean of studying

the N-body problem in astrophysics (van Albada, 1968; Hénon, 1971; Ahmad and Cohen,

1973; White, 1976; Lucy, 1977; Gingold and Monaghan, 1977; Fall, 1978; Larson,

1978; White, 1978; Aarseth et al., 1979; Giuricin et al., 1984; Efstathiou et al., 1985;

Barnes and Hut, 1986) and, joined with Hydrodynamics, in cosmology (Evrard, 1988;

Hernquist and Katz, 1989; Cen and Ostriker, 1992; Katz et al., 1996; Bryan and Norman,

1997; Springel et al., 2001). Computational limitations, though, have always requested

plausible sub-grid models to take into account star formation events (Cen and Ostriker,

1992; Katz et al., 1996; Springel and Hernquist, 2003). To this goal, typically semi-

empirical relations are adopted even though their intrinsic physical meaning is actually

lacking.

On one side this is not satisfying, as one would like to really model the underlying physics,

on the other hand, this approach can be very helpful to investigate other different physical

properties of cosmic structures.

In the next sections, we will give a brief overview of the techniques used to perform

numerical simulations and we will describe the implementation we have done to predict

the high-redshift physical state of the Universe.
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4.1 Numerical techniques

The basic numerical techniques to follow structure formation also in non-linear regimes

consist in finding an approximate, but accurate, solution for the potential of N particles

under the reciprocal gravitational attraction (N-body problem). For baryonic matter one

has to solve also the fluido-dynamic equations.

Briefly speaking, one calls collisionless those systems (like galaxies) ruled by gravity only

and for which other interactions among particles are negligible; collisional those systems

(like gases) for which the collisions among particles are relevant and determine their overall

behaviour.

4.1.1 Treatment of gravitation

The gravitational (collisionless) interactions are described basically by the following

dynamic system:
{

ẋ = v
mv̇ = −∇φ (4.1)

where v is the particle velocity, x the position, φ the gravitational potential, m the point

mass and the dot denotes the time-derivative. The gradient of the gravitational potential

gives by definition the force acting upon any point, F = −∇φ, and φ must satisfy the

Poisson equation:

△φ = 4πGρ (4.2)

with ρ density of the mass distribution. Once the initial conditions and the time-step ∆t

are fixed, it is easy to get iteratively the new position and velocity, of each particle.

There are several methods to integrate the system (4.1). We summarize them below.

— The simple particle-particle (PP) approach consists in the direct summation of the

gravitational forces acting on each particle. The total force acting on any particle i,

with mass mi, is then given by

Fi = −
∑

i6=j

Gmimj(ri − rj)

(‖ ri − rj ‖2 +ε2
s)

3/2
(4.3)

where the sum is done over all the other particles with mass mj and position xj ; ε
2
s is

a positive, numerical parameter called softening length and needed to avoid possible
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force divergences1. This method is precise and accurate, but extremely slow, as the

number of numerical iterations scales as 1
2
N(N − 1) ∼ O(N2), being N the number

of particles.

— In order to increase the performance it is possible to use a particle-mesh (PM)

method. This consists in smoothing the mass distribution over a grid, where the

gravitational potential and the resulting force can be easily and fastly computed

from the Poisson equation (4.2) in the Fourier space,

φ̂(k) = −4πGρ̂(k)

k2
(4.5)

F̂(k) = −ikφ̂(k). (4.6)

This method is faster than the PP one, as it scales like O(N logN), but is resolution

limited by the presence of the grid.

— The problem can be avoided with the particle-particle-particle-mesh (P3M) method.

In this approach, the particles close to or under the grid resolution limit are treated

with the PP method, while the PM method is applied to resolved particles.

— Tree codes are probably the fastest and most efficient way to solve gravity

problems (Barnes and Hut, 1986). They are based on a tree-structured, hierarchical,

decomposition of space. At each time-step, the region considered is divided into eight

cubic cells, each of which is recursively subdivided into eight sub-cells whenever more

than one particle is found to occupy the same cell. At the end, one gets a tree of

cells from the root, containing the whole particle sample, down to the daughter cells,

containing either one particle or none. The force on any particle x is approximated

by a recursive calculation starting from the root cell and considering the subsequent

sub-cells. In this way, particles very “close” to x are actually treated according to the

PP method, “distant” particles according to the first order gravitational multipole

expansion2 (see Figure 4.1). The time scaling to build the tree is O(N logN).

1 For “close” pairs (i.e. r ≡‖ ri − rj ‖< εs), the force is computed assuming a particular density profile (Plummer) for
the particle mass mj :

ρPlummer(r) =
3mj

4ε2
s

“

1 + r2

ε2
s

”5/2
. (4.4)

2 Let’s call

– l the dimension of the current cell;
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Figure 4.1: Examples of domain decomposition in 2 dimensions. In the left panel, a system of particles is shown
and the recursive subdivision of the space induced by these particles, until each of them gets isolated. In the right
panel, it is shown how force on particle x is calculated: fitted cells contain particles (whose number is indicated)
that are lumped together by the “opening angle” criterion θ = 1 (i.e. cell size over cell distance l/D < θ = 1).
Each such cell represents a single term in the force summation. Taken from Barnes and Hut (1986).

4.1.2 Treatment of fluido-dynamics

For a collisional fluid, in order to know the variables parameterizing the hydrodynamical

interactions, one must solve numerically the

- continuity equation
dρ

dt
+ ρ∇ · v = 0 (4.8)

- Euler equations
dv

dt
= −∇P

ρ
−∇φ (4.9)

- energy equation
du

dt
= −P

ρ
∇ · v − Λ

ρ
(4.10)

- equation of state

P = (γ − 1)ρu (4.11)

– D the distance of the center of mass of the current cell from x;
– θ the accuracy parameter or “opening angle”.

If the condition
l

D
< θ (4.7)

is satisfied (i.e for “far” particles within “small” size cells and at “large” distance D), then the interaction between the
particle x and the whole cell is included, otherwise the current cell is resolved into its sub-cells. Usually, values of θ ∼ 1
gives accuracies on the force computation of ∼ 1%. Smaller θ’s give even better results.
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with Lagrangian derivative
d

dt
=

∂

∂t
+ v · ∇, (4.12)

ρ, P , v and u mass density, pressure, velocity field and internal energy per unit mass of

the fluid, γ adiabatic index, Λ ≡ Λ(u, ρ) cooling function.

In computational fluidodynamics such equations are solved with two main techniques:

Eulerian and Lagrangian methods.

— Eulerian (grid) methods: the fluid is smoothed on a grid, with spatial resolution

∆x, and its temporal evolution is computed for successive time-steps, ∆t, discretizing

equations (4.8 – 4.10). All of them can be put in the form

∂g(x, t)

∂t
=
∂f(x, t)

∂x
(4.13)

with f and g suitable scalar functions. The recursive solution for the i-th grid point

at the (n+ 1)-th time-step is (Lax scheme)

gn+1
i =

gn
i+1 + gn

i−1

2
+
fn

i+1 − fn
i−1

2∆x
∆t (4.14)

where n denotes the former time-step and i + 1 and i − 1 are the indices for the

adjacent grid points. In equation (4.14), we have substituted gn
i with the spatial

average on the two nearest points
(

gn
i+1 + gn

i−1

)

/2, for stability reasons.

— Lagrangian (SPH) methods: the fluid is represented by particles and there is no use

of grids. The relevant hydrodynamic quantities are computed from the surrounding

particles, within a typical smoothing length h, weighted with a suitable smoothing

kernel3, W (see Figure 4.2). The average value of a variable, f, for a given particle

of interest, at position x, is obtained via convolution with W :

〈f(x)〉 = (f ⋆ W )(x) =

∫

f(x′)W (x − x′; h)d3x′. (4.15)

If we call r ≡ x′ − x, with x′ any arbitrary position in space, the kernel is normalized

by
∫

W (r; h)d3r = 1 (4.16)

3 Often Gaussian or polynomial functions defined over a compact support.
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Figure 4.2: The left plot is a simplified pattern of SPH kernel for a bi-dimensional point distribution. The
particle of interest, one neighbour particle and their distance, r, are indicated. The shaded area covers all the
particles in the kernel with darker nuance at the center, where the region contributing most is located, and lighter
one toward the borders where the contribution is minor. The right panel shows, as an example, contour levels for
the density calculation of a bi-dimensional point distribution (xy plane) using the SPH method (arbitrary units).

and must reduce to a three-dimensional Dirac delta distribution, δ3
D, in the limit

h→ 0+. Numerically, one just sums up over the closest particles weighted according

to the kernel and writes the above integral (4.15) as

〈f(x)〉 =
∑

j

fj W (x − xj ; h)
mj

ρj
(4.17)

where fj, mj and ρj indicate, respectively, the quantity of interest, mass and density

of the particle at the position xj ; the ratio mj/ρj is used as volume element.

Analogous relations can be written for any hydrodynamic quantity (see also Figure

4.2).

4.2 The code Gadget

The simulations we have done were performed using the basic tree-construction (as

explained in section 4.1.1) and hydrodynamic SPH solver (as described in section 4.1.2)

present in the publicly available, parallel code Gadget2 (Springel, 2005).

In the following we will give its main features and describe the changes implemented to

study early structure formation and metal pollution.
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Figure 4.3: Top row: example of space-filling Peano-Hilbert curve. The basic structure in the left panel is
replicated arbitrarily. The central panel and the right panel show the first and second replication level, respectively.
Bottom row: a simplified 2D representation of the “U” shaped Peano-Hilbert curve is shown (Springel, 2005).

4.2.1 Overview

Gadget is a tree/SPH code which conserves energy and entropy. It computes

all the different quantities using the closest neighbour particles located within

the smoothing length h and the spherically symmetric, spline smoothing kernel

(Monaghan and Lattanzio, 1985, equations (19) and (21) with the v variable replaced

by 2r/h)

W (r/h) =
8

πh3







1 − 6 (r/h)2 + 6 (r/h)3 0 6 r/h < 1/2
2 (1 − r/h)3 1/2 6 r/h < 1
0 r/h > 1

(4.18)

where r is the inter-particle distance (r 6 h). We notice that such kernel is correctly

normalized over the volume element 4πr2dr (according to 4.16), is continuous and

differentiable, has a maximum in W (0) = 8/πh3, decreases down to W (1/2) = 2/πh3,

where it becomes convex, and reaches its minimum at W (1) = 0.

The peculiarity of the “entropy” formulation of the code is that the smoothing length for

each particle, hi, is not fixed, but is computed assuming a constant mass content inside a
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sphere with radius hi. So hi is defined as:

4

3
πρih

3
i ≡ mNSPH (4.19)

where ρi is the estimated density, m the average particle mass, NSPH the number of

neighbors used and mNSPH the total mass inside the kernel. Such treatment, including

the ∇hi term in the fluid equations, conserves by construction energy and entropy4 (Lucy,

1977; Benz and Hills, 1987).

The implementation of dynamics and hydrodynamics follows the distcretization of

Newton’s law and fluid laws, respectively.

Time integration is performed by a symplectic leapfrog scheme, via drift and kick

operators (Quinn et al., 1997), which advances alternatively space coordinates and

velocity coordinates at each half time-step.

The parallelization strategy uses a space-filling, fractal curve, the Peano-Hilbert

curve (Mandelbrot, 1982, and references therein), to map 3D space into a 1D space

(Warren and Salmon, 1995) – see Figure 4.3 – and to reduce the communication

costs. The curve is then chopped off into segments defining the individual domains (see

Figure 4.4), particles are allocated on their target processor and density estimation, tree

construction and force computation are executed.

Once the initial conditions are fixed, the code follows the gravitational evolution of dark

and baryonic matter and the fluid evolution of gas particles only. This is done using a

heating recipe for UV background (Haardt and Madau, 1996), H and He radiative cooling,

multi-phase “sub-grid” model for star formation based on thermal instability criterion

(Field, 1965), and a phenomenological approach for feedback from winds (with typical

velocities ∼ 500 km/s) powered by supernova explosions (Katz et al., 1996).

4.2.2 Star formation

The general structure of the effective “sub-grid” star formation model (Katz et al., 1996;

Springel and Hernquist, 2003) is briefly described here. Each particle is assumed to be

formed by an ambient hot gas, which might contain a cold phase and stars, when the

density is high enough (the hydrogen number density for the onset of star formation is

4 SPH implementations neglecting the ∇hi term can conserve energy fairly well, but do not conserve entropy.
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Figure 4.4: The top row relates the space-filling Peano-Hilbert curve (left side) with the simulation tree (right
side). The simulation volume is cut into domains by segmenting the curve, so its branches reside entirely on single
processors, as shown in the last row (Springel, 2005).

nH,th ≃ 0.1 cm−3).

Basically, at any given time, the rate of star forming mass, ṁ⋆, of a multi-phase gas

particle with mass m is computed using

ṁ⋆ =
xm

t⋆
(4.20)

where x is the fraction of gas in cold clouds providing the reservoir for star formation and

t⋆ is the star formation time-scale given by

t⋆(ρ) = t0⋆

(

ρth

ρ

)1/2

(4.21)

being ρ the mass density of the particle, ρth the star formation mass density threshold

and t0⋆ a free parameter calibrated on the observed data in order to reproduce the known

behaviour of the disc-averaged star formation rate as a function of the surface gas density

(see Schmidt law in Appendix B).

The star formation rate of the unstable, converging flux, ρ̇, is easily computed from
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equation (4.20) and (4.21)

ρ̇ =
ρ

t0⋆ (ρth/ρ)
1/2
. (4.22)

Star particles are spawned, within a time-step ∆t and for gas densities ρ > ρth only,

according to a stochastic approximation with exponential probability (Katz et al., 1996,

section 4.2):

p = 1 − e−x∆t/t⋆ . (4.23)

The number of stars produced per each gas particle is fixed by another free parameter,

N⋆ (generations), so that at each time-step the global amount of stars is pN⋆. Their mass

distribution is known from the assumed IMF, which determines the fraction of stars per

mass interval.

4.2.3 Metal enrichment

The primitive underlying star formation sub-grid model is extended including metal

enrichment at each time-step (Tornatore et al., 2007a). This process is followed tracing

ejecta and yields from SNIa (Thielemann et al., 2003), SNII (Woosley and Weaver,

1995), AGB (van den Hoek and Groenewegen, 1997), according to stellar masses and

lifetimes (Padovani and Matteucci, 1993); metallicities are spread on the neighbour

particles and weighted by the SPH kernel to derive the corresponding tabulated

(Sutherland and Dopita, 1993) cooling term; stellar mass distribution is ruled by the

possibility of choosing different initial mass functions, depending or not on the particle

metallicity.

Similar works are also discussed, for example, by Raiteri et al. (1996); Gnedin (1998);

Mosconi et al. (2001); Lia et al. (2002a,b); Kawata and Gibson (2003);

Ricotti and Ostriker (2004); Kobayashi (2004); Scannapieco et al. (2005).

4.3 Implementation of molecule and metal chemistry

We have conveniently changed the code in order to follow also chemical (molecule and

metal) evolution (Maio et al., 2007; Tornatore et al., 2007a) of forming structures and/or

of the intergalactic medium.
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Table 4.1: Set of reactions

Reactions References for the rate coefficients
H + e− −→ H+ + 2e− A97 / Y06
H+ + e− −→ H + γ A97 / Y06
He + e− −→ He+ + 2e− A97 / Y06
He+ + e− −→ He + γ A97 / Y06
He+ + e− −→ He++ + 2e− A97 / Y06
He++ + e− −→ He+ + γ A97 / Y06
H + e− −→ H− + γ A97 / Y06
H− + H −→ H2 + e− A97 / Y06
H + H+ −→ H2

+ + γ A97 / Y06
H2

+ + H −→ H2 + H+ A97 / Y06
H2 + H −→ 3H A97
H2 + H+ −→ H2

+ + H S04 / Y06
H2 + e− −→ 2H + e− ST99 / GB03 / Y06
H− + e− −→ H + 2e− A97 / Y06
H− + H −→ 2H + e− A97 / Y06
H− + H+ −→ 2H P71 / GP98 / Y06
H− + H+ −→ H2

+ + e− SK87 / Y06
H2

+ + e− −→ 2H GP98 / Y06
H2

+ + H− −→ H + H2 A97 / Y06
D + H2 −→ HD + H WS02
D+ + H2 −→ HD + H+ WS02
HD + H −→ D + H2 SLP98
HD + H+ −→ D+ + H2 SLP98
H+ + D −→ H + D+ S02
H + D+ −→ H+ + D S02
He + H+ −→ HeH+ + γ RD82, GP98
HeH+ + H −→ He + H+

2 KAH79, GP98
HeH+ + γ −→ He + H+ RD82, GP98

Notes: P71=Peterson et al.
(1971); KAH79=Karpas et al. (1979); RD82=Roberge and Dalgarno (1982); SK87=Shapiro and Kang (1987);
A97=Abel et al. (1997); GP98=Galli and Palla (1998); SLP98=Stancil et al. (1998); ST99=Stibbe and Tennyson
(1999); WS02=Wang and Stancil (2002); S02=Savin (2002); GB03=Glover and Brand (2003); S04=Savin et al.
(2004); Y06=Yoshida et al. (2006a).

***
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4.3.1 Molecules

In order to follow early structure formation in a detailed way, we implement molecular

chemistry and cooling (Maio et al., 2007) in non-equilibrium regime.

For molecule evolution, we base our implementation on the work by Yoshida et al. (2003b),

which adopts the chemical rates from Abel et al. (1997). The network of reactions we

implement allows us to follow the following species: e−, H, H+, He, He+, He++, H2, H+
2 ,

H−, D, D+, HD, HeH+ (a complete list of the collisional and radiative reactions included

is given in Table 4.1).

Standard atomic processes (ionization, recombination, Bremsstrahlung, Compton

scattering) are implemented together with H2, HD and HeH+ molecule evolution.

The reactions for molecular hydrogen, H2, considered are the H− channel

H2, 1) H + e− −→ H− + hν (4.24)

H2, 2) H− + H −→ H2 + e− (4.25)

and the H+
2 channel

H2, 3) H+ + H −→ H+
2 + hν (4.26)

H2, 4) H+
2 + H −→ H2 + H+. (4.27)

We neglect three-body processes, as the densities required to make them effective are

extremely high with respect to the typical densities resolved in cosmological simulations.

The HD molecule primarily forms through reactions between primordial deuterium

and hydrogen atoms or molecules: a complete model for its evolution involves at least

18 reactions (Nakamura and Umemura, 2002), but, as their solution becomes quite

computationally expensive when implemented in cosmological simulations, we use only

the set of most relevant reactions (Galli and Palla, 2002):

HD, 1) H2 + D −→ HD + H (4.28)

HD, 2) H2 + D+ −→ HD + H+ (4.29)
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Figure 4.5: Temperature evolution of the reaction rates for molecular chemistry: left panel, H2, central panel,
HD, right panel HeH+. The subscripts refer to the labels of the corresponding reactions in the text.

which lead to HD formation;

HD, 3) HD + H −→ D + H2 (4.30)

HD, 4) HD + H+ −→ D+ + H2 (4.31)

for HD dissociation and H2 formation; and

HD, 5) H+ + D −→ H + D+ (4.32)

HD, 6) H + D+ −→ H+ + D (4.33)

for charge exchange reactions.

From reactions (4.28 - 4.33), we see that HD abundance primarily depends on the amount

of deuterium and on the H2 fraction.

The molecule HeH+ is created by

HeH+, 1) He + H+ −→ HeH+ + γ (4.34)

and destroyed by

HeH+, 2) HeH+ + H −→ He + H+
2 (4.35)

HeH+, 3) HeH+ + γ −→ He + H+ (4.36)

where γ indicates the photons.
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For each species i, the variation in time of its number density ni is

dni

dt
=
∑

p

∑

q

kpq,inpnq − ni

∑

l

kilnl, (4.37)

where kpq,i in the first term on the right-hand side is the creation rate from species p and

q, and kil is the destruction rate from interactions of the species i with the species l. The

rats are temperature dependent and are expressed in [cm3 s−1] for collisional events and

[s−1] for radiative interactions (see Appendix A.2.1, A.2.2 and A.2.3).

Plots are given in Figure 4.5, and the exact expressions and references in Appendix

C.1.

From the figures, it is clear that H2 formation is highly favored from reactions (4.25) and

(4.27).

For deuterium chemistry, the most important reactions in the relevant range of

temperatures are (4.32) and (4.33), and the HD creation rates of reactions (4.28) and

(4.29) are always higher than the corresponding destruction rates of reactions (4.30) and

(4.31), respectively.

The creation of HeH+ molecule (4.34) instead is always disfavored with respect to its

destruction in He and H+
2 and in He and H+ at T & 500 K. We expect therefore, that the

interactions (4.35) and (4.36) will slightly enhance H2, because of (4.26) and (4.27).

Numerically, the set of differential equations (4.37) is evaluated via simple linearization,

according to a backward difference formula: given the time step ∆t, at each time t and

for each species i, equation (4.37) can be re-written as

nt+∆t
i − nt

i

∆t
= Ct+∆t

i −Dt+∆t
i nt+∆t

i (4.38)

where we have introduced the creation coefficient for the species i, in [cm−3s−1], as

Ci =
∑

p

∑

q

kpq,inpnq (4.39)

and the destruction coefficient, in [s−1], as

Di =
∑

l

kilnl. (4.40)
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The number density, nt
i, is then updated from equation (4.38):

nt+∆t
i =

Ct+∆t
i ∆t+ nt

i

1 +Dt+∆t
i ∆t

. (4.41)

We apply this treatment to all chemical species.

4.3.2 Metals

When the first objects have led star formation, metals are produced and ejected into

the surrounding medium. Their presence is extremely important, as they dominate the

radiative losses. Thence, we consider their cooling contribution for T 6 104 K. At

higher temperatures they are already tracked, via existing tables (Sutherland and Dopita,

1993). We explicitelly follow oxygen, carbon, silicon and iron, because they are the most

abundant heavy atoms released during stellar evolution and, therefore, they play the

most important role in chemical enrichment and cooling. Indeed, supernovae type II

(SNII) expel mostly oxygen and carbon, while supernovae type Ia (SNIa) silicon and iron

(Thielemann et al., 2001; Park et al., 2003; Borkowski et al., 2004; Meynet et al., 2006b).

We make the common assumption that carbon, silicon and iron are completely ionised,

while oxygen is neutral. This is justified because, in a cosmological context, UV radiation

below 13.6 eV (from various astrophysical sources, like quasars, stars, etc.) can escape

absorption by neutral hydrogen and generate a UV background that can ionise atoms

with first ionization potential lower than 13.6 eV (like carbon, silicon and iron), while

oxygen remains predominantly neutral since its first ionization potential is 13.62 eV

(Bromm and Loeb, 2003; Santoro and Shull, 2006).

As in the low-density regime of interest here thermodynamic equilibrium is never

reached (see discussion of eq. 4.46), the Boltzmann distribution for the population of

atomic levels can not be used. Thus, we will use the detailed balancing principle instead.

For each level i of a given species, we impose that the number of transitions to that level

(which populate it), per unit time and volume equals the number of transitions from the

same level i to other levels (which de− populate it), per unit time and volume:

ni

∑

j

Pij =
∑

j

njPji (i 6= j). (4.42)

In formula (4.42), Pij is the probability per unit time of the transition i → j and ni

and nj are the number densities of atoms in the i-th and j-th (with i 6= j) level. The
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left-hand side of the previous equation refers to de-populations of the i-th level, while the

right-hand side refers to the transitions which can populate it.

The probability of a given transition can be easily computed once the Einstein coefficients

and the collisional rates are known.

The further constraint which must be satisfied is the number particle conservation:

∑

j

nj = ntot (4.43)

where ntot is the total number density of the species considered and nj the population of

the generic level j.

In case of collisional events, the rate at which the transition i→ j occurs is by definition

(see also Appendix A):

ninxγij ≡ ninx〈uσij〉 = ninx

∫

uσijf(u)d3u (4.44)

where σij is the cross section of the process, f(u)d3u is the velocity distribution function

of the particles (typically a Maxwellian), γij is the collisional rate, ni the number density

of the particles in the i-th level and nx is the colliding particle number density. The

integral is done over the whole velocity space.

The relation between γij and γji is:

giγij = gjγjie
−β∆Eji, (4.45)

where gi and gj are the level multiplicities, β = (kBT )−1, ∆Eji is the energy level

separation and i < j.

In addition to collisionally induced transitions, spontaneous transitions can take place

with an emission rate given by the Einstein A coefficient.

It is convenient to define the critical number density for the transition i→ j as

ncr,ij =
Aij

γij

. (4.46)

This determines the minimum density above which thermal equilibrium can be assumed

and low-density deviations from the Boltzmann distribution become irrelevant. At

densities below ncr,ij, we expect values of the excited level populations lower than in

the thermodynamic limit, because of the reduced number of interactions5.
5The critical number density depends on the particular line transition considered; typical values for the fine structure

transitions we are mostly interested in are of the order ∼ 105cm−3.
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For a two-level system, the low-density level populations arising from electron and

hydrogen impact excitations can be found by solving the system of equations resulting

from conditions (4.43) and (4.42):







n1 + n2 = ntot

n1nHγ
H
12+n1neγ

e
12−n2nHγ

H
21−n2neγ

e
21−n2A21 =0

(4.47)

where nH and ne are the hydrogen and electron number density, while γH
12 and γe

12 are the

H-impact and e-impact excitation rate.

The solution of (4.47) is:

n1

ntot
=

γH
21 + γe

21ne/nH + A21/nH

γH
12 + γH

21 + (γe
12 + γe

21)ne/nH + A21/nH

(4.48)

n2

ntot
=

γH
12 + γe

12ne/nH

γH
12 + γH

21 + (γe
12 + γe

21)ne/nH + A21/nH

. (4.49)

The ratio between the two level populations

n2

n1

=
γH

12 + γe
12ne/nH

γH
21 + γe

21ne/nH + A21/nH

(4.50)

ne≪nH∼ γH
12

γH
21 + A21/nH

(4.51)

will in general deviate from the Boltzmann statistic, because the spontaneous emission

term dominates over the collisional term at low densities. In a neutral dense gas,

instead, the level population saturates and simply reduces to a Boltzmann distribution,

independently from the colliding particle number density.

In case of n−level systems, one must solve the n×n population matrix consisting of n−1

independent balancing equations (4.42) and the constraint of particle conservation (4.43).

In the modeling, we approximate CII and SiII as a two-level system, and OI and FeII as

a five-level system (Santoro and Shull, 2006).

Further details on the atomic data and structures are reported in Appendix C.2.

4.3.3 Cooling

In addition to calculating the chemical evolution of the gas, we need to evaluate the

cooling induced by different species. Therefore, atomic hydrogen and helium cooling from
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collisional ionization, excitation and recombination (Hui and Gnedin, 1997), Compton

cooling/heating and Bremsstrahlung (Black, 1981) are evaluated.

For the H2 and H+
2 cooling, the rates quoted in Galli and Palla (1998) and

Hollenbach and McKee (1979) are adopted (see Appendix C.1 for the exact expression).

We take the HD cooling function from Lipovka et al. (2005), who consider the HD ro-

vibrational structure and perform calculations for J 6 8 rotational levels and v = 0, 1, 2, 3

vibrational levels (see Appendix C.1 for the exact expression). Their results are somehow

more accurate than other approximations (Flower, 2000; Galli and Palla, 2002) and valid

for a wide range of number densities (up to 104 cm−3) and temperatures (102 K−2·104 K).

In Figure 4.6 (left panel), we show cooling functions for H2, HD, H+
2 molecules; for the

latter case we distinguish between neutral hydrogen impact and electron impact cooling;

we have assumed fractions xHD = 10−8, xH2 = 10−5, xH+
2

= 10−13, xe− = 10−4 and a total

hydrogen number density nH = 1 cm−3. Due to its very low abundance, H+
2 is less effective

than neutral H2 and HD, which remain the only relevant coolants over the plotted range

of temperature.

The cooling for metal line transitions is computed as follows.

In case of two-level systems, we define

Λ ≡ n2A21∆E21 (4.52)

where n2 is the atomic excited state number density, A21 is the probability per unit time

of the transition 2 → 1 and ∆E21 is the energy separation of the levels. Combining (4.52)

and (4.49) one can write the previous equation as a function only of the total number

density of the species

Λ =
γH

12 + γe
12ne/nH

γH
12 + γH

21 + (γe
12 + γe

21)ne/nH + A21/nH
ntotA21∆E21. (4.53)

For ne ≪ nH , the previous formula is consistent with the one quoted in Santoro and Shull

(2006), who do not consider electron impact excitation effects. Using equations (4.50) and

(4.46), Λ can also be written as a function of the fundamental level population

Λ =
n1nHγ

H
12 + n1neγ

e
12

nH/nH
cr,21 + ne/ne

cr,21 + 1
∆E21

ne≪nH∼ n1nHγ
H
12

nH/nH
cr,21 + 1

∆E21 (4.54)
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Figure 4.6: Left panel: cooling functions for a primordial gas with a hydrogen number density of 1 cm−3 and the
following fractions for the different species: xHD = 10−8, xH2 = 10−5, x

H
+
2

= 10−13, xe− = 10−4. The H2 cooling

function (long-dashed line) is plotted together with the HD (solid), H-impact H+
2 (dotted line) and e-impact H+

2

(short-dashed line) cooling functions. Right panel: cooling due to metals as a function of temperature. The
computations are done for a gas with total number density of 1 cm−3; for each metal species we assume a number
density of 10−6 cm−3 and we set the free electron over hydrogen fraction to a value of 10−4.

where nH
cr,21 and ne

cr,21 are the critical densities for the transition 2 → 1 due to H- and

e-impact excitations.

In particular, in the low-density limit (nH,e ≪ ncr), the above equation becomes

Λ ≃
[

n1nHγ
H
12 + n1neγ

e
12

]

∆E21 (4.55)

ne≪nH∼ n1nHγ
H
12∆E21. (4.56)

In this regime, each excitation - see formulae (4.55) and (4.56) - is statistically followed

by emission of radiation - see the general definition (4.52).

In the high-density limit, one finds the expected thermodynamic equilibrium cooling rate

Λ ≃ g2

g1

e−β∆E21n1
A21∆E21

1 + neγe
21/nHγH

21

+
g2

g1

e−β∆E21n1
A21∆E21

1 + nHγH
21/neγe

21

(4.57)

ne≪nH∼ g2

g1

e−β∆E21n1A21∆E21. (4.58)

In the right-hand side, it is easy to recognize the Boltzmann distribution of populations

for n2. It is interesting to note that the cooling function does not depend any more on the

number density of the colliding particles, but only on the species abundance, in contrast

with the low-density regime, where there is a linear dependence on both densities.



102 Numerical simulations of early structure formation

These arguments ensure that it is safe to use formula (4.53) to compute the gas cooling

for two-level atoms.

For n−level systems, the cooling function is simply the sum of all the contributions from

each transition

Λ ≡
∑

i>1

∑

06j<i

niAij∆Eij . (4.59)

In general, once the number density of the cooling species is fixed, we expect the cooling

function to grow linearly with the colliding particle number density and eventually to

saturate, converging to the Boltzmann statistic, when the critical densities are reached.

We notice (see the atomic data in Appendix C.2) that CII, SiII, FeII saturate when the

colliding particle number density achieves values around 104 cm−3 − 105 cm−3, while for

OI we will have a double phase of saturation: the first one at ∼ 105 cm−3 involving the

lower three states and the second one at ∼ 1011 cm−3 involving the higher two states.

As an example, in Figure 4.6 (right panel), we show the cooling functions for a total

number density 1 cm−3 and for each metal species 10−6 cm−3; the ratio between free

electrons and hydrogen is chosen to be 10−4. With these values, the presence of electrons

can affect the results up to 10% with respect to the zero electron fraction case. We also

notice that all the metals contribute with similar importance to the total cooling function

and the main difference in the cooling properties of the gas will depend on their detailed

chemical composition.

We also plot the cooling functions for all the temperature regime we are interested

in: at temperatures higher than 104 K, we interpolate the Sutherland and Dopita tables

(Sutherland and Dopita, 1993), at lower temperatures, we include metals and molecules

as discussed previously. Figure 4.7 shows the cooling function for different individual

metal number fractions with abundances in the range 10−6 − 10−3 and H2 and HD

fractions of 10−5 and 10−8, respectively. These values for H2 and HD are fairly typical

for the IGM gas at the mean density (Galli and Palla, 1998). In the temperature range

104 K−105 K, the double peak due to hydrogen and helium collisional excitations is evident

at low metallicity, while it is washed out by the contribution of different metal ionization

processes as the metallicity increases. For example, complete collisional ionization of
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Figure 4.7: Total cooling due to hydrogen, helium, metals, H2 and HD molecules as function of temperature,
for gas having a hydrogen number density of 1 cm−3. The fraction of H2 and HD are fixed to 10−5 and 10−8,
respectively. The labels in the plot refer to different amount of metals, for individual metal number fractions of
10−3 (solid line), 10−4 (long-dashed line), 10−5 (short-dashed line) and 10−6 (dotted line).
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carbon and oxygen produces the twin peak at 105 K, while complete ionization of iron is

evident at about 107 K. At temperatures lower than 104 K and metal fractions lower than

∼ 10−6, the dominant cooling is given by molecules; instead, for larger metal fractions

the effects of metals became dominant.

The general conclusion is that at very high redshift, when metals are not present, only

H2 and HD can be useful to cool the gas down to some 102 K, while after the first stars

explode, ejecting heavy elements into the surrounding medium, metals quickly become

the most efficient coolants.

4.4 Summary

In this chapter we have seen the main schemes of numerical codes in astrophysics and

have shown our numerical implementation.

• Molecular chemistry is included according to an essential chemistry reaction network,

in order to follow molecule formation and evolution (mainly H2, HD, HeH+).

• We have performed computations of fine-structure transition metal cooling functions,

which extend the standard cooling functions in the range ∼ 2.7 K − 109 K.

• We have included such cooling in star formation recipes, in order to study the effects

on structure formation.

• We have concluded that for very first objects, molecules are the leading cooling

agents, while, as soon as the medium is polluted, metals give a more efficient

contribution.



Chapter 5

Tests for star formation, molecule
and metal chemistry

Rex sedet in vertice - caveat ruinam!
nam sub axe legimus Hecubam reginam.

Carmina Burana, Fortune plango vulnera

In the previous chapter, we have presented an implementation of time dependent

calculations of the cooling properties of gas also in a “low-temperature” regime, using

the contributions of several chemical species.

Hydrogen derived molecules are effective in cooling metal-free gas below a temperature of

∼ 104 K, the typical temperature range of primordial objects. On the other hand, when

the medium is polluted by material expelled from stars (via SN explosions, mass losses in

AGB phase and winds), metals are expected to become the main coolants.

On the whole, we follow the evolution of e−, H, H+, He, He+, He++, H2, H+
2 , H−, D, D+,

HD, HeH+, O, C+, Si+, Fe+; so, the code is suitable to deal both with primordial and

metal enriched gas.

In this chapter, we are going to test our implementation using different kind of simulations.

In particular, we focus on the analysis of wind feedback (section 5.1), abundance redshift

evolution (section 5.2), cosmic structure formation (section 5.3), and clusters (section

5.4).

5.1 Star formation and wind feedback

We check the effects of wind feedback running simulations of an isolated galaxy quiescently

forming stars.
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Therefore, we set-up a homogeneous gas distribution and put it in a dark matter potential

halo. The dark matter distribution is set according to the density profile1 (Navarro et al.,

1997):
ρ(r)

ρcrit
=

δc
(r/rs)(1 + r/rs)2

(5.1)

where ρ(r) is the density at radius r, ρcrit is the critical density of the Universe, given

by formula (1.60), rs the scale radius of the particular system considered and δc is an

adimensional parameter related to the abundance of matter in the halo.

A suitable way to fix the parameters is to define r200. We will refer to this quantity

as the distance from the center of the halo where the mass over-density is equal to 200

(see also chapter 2, in particular the non-linear evolution issue discussed in section 2.2.2):

ρ(r200) ≡ 200 ρcrit. The halo mass included in r 6 r200 is approximatively considered as

the virialization mass, Mvir, because of (2.31).

In this way, from the definition of (spherical) virial mass, having the density profile (5.1),

Mvir ≃M200 ≡
4π

3
(200 ρcrit) r

3
200 = 4π

∫ r200

0

ρ(r)r2dr (5.2)

= 4πρcritδc

∫ r200

0

r2dr

(r/rs)(1 + r/rs)2
(5.3)

performing the integral calculation, one easily shows that

δc =
200

3

c3

ln(1 + c) − c/(1 + c)
(5.4)

where we have defined the concentration parameter c ≡ r200/rs.

So, c (or equivalently δc) is the only free parameter, for any given mass distribution

specified by M200 or r200. Indeed, from c and M200, one can compute r200 using definition

(5.2), rs = r200/c and fully determine ρ(r) in relation (5.1).

In our tests, we use a concentration parameter c = 20 and we run simulations for

Mvir ≃ M200 equal to (1012, 1011.5, 1011, 1010) h−1 M⊙, respectively. In each of them, the

gas is sampled with 48461 SPH particles and the dark halo is set assuming a dark matter

fraction of 0.9 (i.e. the baryon fraction is 0.1). The cooling included is the standard

atomic cooling from hydrogen and helium (effective at T & 104 K – see Figure 2.7), with

no molecule contributions. We switch the wind feedback on and off (in total we perform

1 Spatial or surface density of stellar populations can practically always be expressed by a generalized exponential law
(Einasto, 1970, 1974).
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Figure 5.1: Star formation density as a function of the gas surface density (Schmidt law) for star forming quiescent
galaxy, according to the multi-phase model. The vertical line refers approximatively to the lower observational
limit (see also Kennicutt, 1998, or Figure B.2, in appendix B).

8 simulations: 4 with wind feedback and 4 without) and compute the resulting star

formation rate. The recipe adopted (see chapter 4) reproduces well the Schmidt law (see

details in Appendix B). The star formation surface density obtained by the underlying

multi-phase model is plotted in Figure 5.1 as a function of the gas surface density.

The calculations are stopped after 3 Gyr simulation time.

In Figure 5.2, we show a two-dimensional (left panel) and a three-dimensional (right

panel) projection of the particle distribution for the Mvir = 1012 h−1 M⊙ case. As

expected, due to the power-law decrement of the density profile, the most of the particles

clump in the center of the dark matter halo within some tens of parsecs.

This is very well seen in Figure 5.3, where we plot some number count statistics: in the left

panel there is the number count as a function of the distance to the center, in the right

panel, their cumulative distribution (normalized to 1). The sharp peak of the number

counts covers a dimension of ∼ 10 kpc, in which about one third of the particles is found.

In correspondence, there is a steep increase of the cumulative distribution function, which

passes from ∼ 0 to ∼ 1 in the close neighbourood of the center, at distances . 102 kpc.
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Figure 5.2: Two-dimensional (left panel) and a three-dimensional (right panel) projection of the particle
distribution for the simulation discussed in section 5.1.

Figure 5.3: Left panel: number count as function from the distance to the center. Right panel: corresponding
cumulative distribution function. The data correspond to the simulation discussed in section 5.1.



5.1 Star formation and wind feedback 109

Figure 5.4: Phase diagrams at different times for the Mvir = 1012 h−1 M⊙ case. The data correspond to density,
ρ, and temperature, T , at the beginning of the run (top-left) and after about 0.15 Gyr (top-right), 0.45 Gyr
(center-left), 1 Gyr (center-right), 1.5 Gyr (bottom-left), 3 Gyr (bottom-right).
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In order to understand the dynamics of the system, we plot phase diagrams (density,

ρ, versus temperature, T ) at different times, in Figure 5.4.

We limit our discussion to the Mvir = 1012 h−1 M⊙ case, as the global picture is similar

also for the other cases.

We see that at the beginning, the gas distribution – led by the dark matter profile – is

quite simple, with cold particles in the outer regions and hot, shock-heated particles in

the central regions. Then, after ∼ 108 yr, cooling is able to bring gas temperature down

to ∼ 104 K. The lack of any further coolant prevents to reach lower values. At the same

time, the densest particles start undergoing star formation processes, as evident from

the increasing straight edge located at T ∼ 104 K and ρ ∼ (10−23 − 10−24) g cm−3. Star

formation is the main event taking place for the first ∼ Gyr of life in the inner part of

the system. In the external regions the physical properties are left basically unaffected.

At later times, when the gas reservoir diminishes, star formation is not effective any more,

as seen from the lack of the edge in the last panel (bottom-left). Never the less, we notice

that meanwhile also cold, low-density particles have had enough time to cool slowly and

therefore a sort of minimal cooling branch is formed in the last ∼ 1.5 Gyr at T ∼ 104 K,

over the whole range of densities.

To conclude and to stress the effect of wind feedback, we show the star formation rates

obtained from the different simulations.

The obvious behaviour which one might immediately notice is the reduced star formation

rate when winds are present. Indeed, the inclusion of winds determines a removal of

particles from the star forming regions, because of which the amount of cooling gas which

goes into star formation regime is reduced.

The peak of star formation rate is strongly dependent on the mass of the system, as smaller

objects can gravitationally retain minor quantities of gas. However, in almost all the

situations, the peak is attained within 1 Gyr. In the limiting case of Mvir = 1010 h−1 M⊙,

star formation is almost completely suppressed and only after ∼ 2 Gyr the gas manages

to cool and undergo little star formation. This happens because, given the characteristics

of the system, gas does not condense rapidly and remains too rare to promptly cool down.

In general, we notice a sort of self-regulated regime in which the fundamental processes are

cooling and heating: dense gas cools down and forms stars, after typical stellar evolution
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Figure 5.5: Star formation rate as a function of the time for different runs. The plots correspond the cases
Mvir = 1012 (top-left), 1011.5 (top-right), 1011 (bottom-left), 1010 h−1 M⊙ (bottom-right), respectively. Solid
lines refer to star formation rates computed without wind prescriptions, dashed lines to the ones with stellar
winds, as indicated by the legend.



112 Tests for star formation, molecule and metal chemistry

time-scales the surrounding medium is heated by supernova explosions and cooling is

inhibited.

The main role of winds is to bring hot gas particles away from the star formation sites

towards the thin, colder neighbouring regions. In this way, one gets a mixture of hot and

cold gas (“multi-phase” gas), in which the two components coexist together at the same

times.

Moreover, the presence of winds will be highly relevant for metal pollution. Indeed,

without particle spreading it would not be possible to locate metals outside the dense

environments in which they are originated.

5.2 Redshift evolution of primordial chemical species

We investigate the behaviour of a plasma of primordial chemical composition (i.e. with

no metals) looking at the redshift evolution of the single abundances. Our goal is to

reproduce the results from Galli and Palla (1998), who calculate the redshift evolution

of a metal-free gas at the mean density by following a detailed chemical network. For

this reason, here, we perform our non-equilibrium computations on isolated particles,

including the following chemical species: e−, H, H+, He, He+, He++, H2, H+
2 , H−, D, D+,

HD, HeH+ and assuming a flat cosmology with no dark energy content (matter density

parameter Ω0m = 1), baryon density parameter Ω0b = 0.037, h = 0.67 and initial gas

temperature of 1000 K.

Our evolution of the number fractions for the different species is plotted in the left

panel of Figure 5.6; the electron abundance is given from charge conservation of neutral

plasma and is normally very close to the H+ value, this being the dominant ion. These

results are in very good agreement with those of Galli and Palla (1998), plotted on the

right panel, also considering the fact that we have used different rates.

In our set of reactions, due to the low initial gas temperature, the collisions are inefficient

to ionise helium. The inclusion of HeH+ creation

He + H+ −→ HeH+ + γ (5.5)

contributes to rise H+
2 abundance mainly via reaction

HeH+ + H −→ He + H+
2 (5.6)
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Figure 5.6: Abundances as a function of redshift for our implementation (left side) and Galli and Palla (1998)’s
implementation. In both panels, the solid lines refer to the abundance evolution in a flat cold dark matter universe
with h = 0.67, Ω0m = 1, Ω0b = 0.037. In the left panel, the dotted lines refers to H2 and HD evolution in a
ΛCDM model with h = 0.73, Ω0m = 0.237, Ω0Λ = 0.763, Ω0b = 0.041. In the right panel, the dashed lines
correspond to a H+

2 photodissociation rate from v = 0 (short-dashed line) and from v = 9 (long-dashed line)
vibrational levels, respectively.

and weakly decrease the H− number fraction via

HeH+ + γ −→ He + H+ (5.7)

H+ + H− −→ 2H (5.8)

where γ indicates the photons.

Because of the very low HeH+ abundance reached, there is no substantial He atom

abundance evolution. A caveat to take into account is the lack of reactions between D+

and free electrons which would destroy the deuterium ions more efficiently, but without

altering significantly the global amount of HD formed. We notice also the exponential

decay of D+ due to the rate coefficient of equation (4.32) and the freezing out of H+, H2,

D and HD number fractions.

As a comparison, we also plot (dotted lines) the H2 and HD abundance evolution in a flat

ΛCDM model having h = 0.73, Ω0m = 0.237, Ω0Λ = 0.763,Ω0b = 0.041 (Spergel et al.,

2007). The slight increase observed is due to the fact that in the cold dark matter

cosmology the baryon fraction is about 4%, making the interactions among different

species rarer than in the ΛCDM model, for which the baryon fraction is about 17%. In

addition, the cosmological constant is dominant only at redshift below one. The evolution

of the other species is similar in both cosmologies.



114 Tests for star formation, molecule and metal chemistry

The evolution of H+
2 and H2 depends crucially on the adopted photodissociation rate,

because this affects the H+
2 channel via reaction (4.26) and its reverse process. This is

clearly shown in the right panel, where the fractional abundances of H+
2 and H2 are showed

with photodissociation of H+
2 from v = 0 (short-dashed line) and from v = 9 (long-dashed

line), vibrational levels. An enhancement of a factor ∼ 200 of the final H2 abundance in

the former case is found. The asymptotic abundance of H+
2 is instead left unchanged.

5.3 Cosmic structure formation from homogeneous initial

conditions

To test the behaviour of the code in simulations of structure formation and evolution

and the impact of HD, we run a cosmological simulation within the ΛCDM concordance

model2. We sample the cosmological field (in a periodic box of 1 Mpc comoving side

length) with 3243 dark matter particles and the same number of gas particles, having

a mass of about 1040 M⊙ and 160 M⊙, respectively, at redshift z = 100. The comoving

Plummer-equivalent gravitational softening length is fixed to 0.143 kpc. This allows us to

resolve haloes with mass of about 105 M⊙.

The results are compared with those of Maio et al. (2006), whose ΛCDM simulation has

the same features, but the chemical set does not follow the evolution of D, D+ and HD

and does not include H+
2 cooling (see also Figure 4.6 and discussion).

A simple visualization of the simulations is given in the temperature maps of figure 5.7,

from which one can easily infer the cosmic evolution of structure formation.

The change in chemical composition does not alter the underlying dark matter “web”,

so the number densities (see Figure 5.8) are basically unaffected. From a theoretical

point of view, different relations are available to predict their redshift evolution, once the

cosmological model is fixed (see section 2.3). However, the theoretical mass functions

have not yet been extensively tested in the regime of very low masses and very high

redshifts which we are mainly interested in, where their predictions differ by orders of

magnitude. This is due to the difficulty of combining sufficient resolution in space and

mass with regions large enough to be considered a fair sample of our Universe. Moreover,

the existing studies yield contradictory results.

2 We remind that such cosmology is defined by the following set of parameters: h = 0.7, Ω0m = 0.3, Ω0b = 0.04,
Ω0Λ = 0.7; the power spectrum is normalized assuming a mass variance in a 8Mpc/h radius sphere σ8 = 0.9 and the
spectral index is equal to 1.
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Figure 5.7: Temperature maps at different redshifts. The color scale refers to the decimal logarithm of the
temperature in Kelvin.

Figure 5.8: Number of haloes found in the simulation described in section 5.3 with mass exceeding 7 ·105 M⊙ per
unit comoving volume as function of redshift (filled circles and dotted lines), in the standard ΛCDM cosmology.
Theoretical predictions based on the Press & Schechter (PS74, solid line), Sheth & Tormen (ST99, dashed line)
and the Warren et al. (W06, dot-dashed line) relations are shown as well. See also (Maio et al., 2006).
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We identify dark matter haloes in our simulations by running a friends-of-friends algorithm

on the dark matter particles only and setting the linking length to 20% of the mean

inter-particle separation. The resulting mass of each halo is then corrected by the factor

(1040 + 160)/1040 ≈ 1.15 to account for the (average) additional contribution by the gas

particles. Figure 5.8 displays the redshift evolution of the number of haloes with masses

exceeding 7 × 105 M⊙ for our simulations (Maio et al., 2006, 2007). The figure compares

the results with the predictions of the Press & Schechter (PS74, hereafter), the Sheth &

Tormen (ST99, hereafter) and the Warren et al. (W06, hereafter) models, indicated by

solid, dashed and dot-dashed lines, respectively. Note that we do not consider the relation

found by Jenkins et al. (2001), because it cannot be extrapolated to the mass and redshift

ranges considered here.

The results indicate that the W06 formula agrees better with the simulations than the

ST99 and PS74 formulae. Some small deviations are seen at very high redshifts where,

however, counts are low and the statistical uncertainty is high. The ST99 mass function

tends to slightly overestimate the simulation results, again mainly at high redshift, where

the discrepancies with W06 are more evident. On the contrary, the PS74 mass function

always underestimates the halo abundances, with differences up to a factor ∼ 3. Thus,

our results agree with the previous analyses by Reed et al. (2003), Springel et al. (2005)

and Heitmann et al. (2006). However, this conclusion is in conflict with other former

studies (Jang-Condell and Hernquist, 2001; Yoshida et al., 003b,c).

To quantify the differences between the two runs with different chemistry and the

efficiency of the HD cooling we focus on the gas and calculate the clumping factor, C, in

the simulation box, as follows

C =

∑

imiρi

∑

j mjρ
−1
j

(
∑

k mk)
2 (5.9)

where for each SPH particle, i, we indicate with mi its mass and with ρi its mass density;

the indices i, j and k run over all the gas particles. We calculate C using only particles

with density below a given overdensity3, δM , and we make δM vary in the range [100, 500].

The results are plotted in Figure 5.9 for both simulations. We see that the inclusion

of HD makes the clumping factor increase at all redshifts, quite independently from the

3 This because we want to compute C for the IGM densities only, excluding the collapsing objects.
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Figure 5.9: Gas clumping factor as a function of redshift for two ΛCDM models with different chemistry set.
The squares refer to the clumping factor computed with standard atomic line cooling and H2 cooling, while the
triangles refer to a case which includes also HD cooling. The shaded regions correspond to the variation of the
maximum overdensity between 100 (lower line in both cases) and 500 (upper line in both cases).

density threshold. This means that the gas is, on average, denser and more clumped, with

an increment of about 10% at z ∼22 and about 20% at z ∼ 17.

5.4 Formation and evolution of a cluster

So far, we have considered primordial gas with no metal pollution. Now, we are going

to couple our cooling function with a model for chemical enrichment and test this

implementation within a simulation that follows the formation of a cluster. In addition

to testing the validity of our implementation, it is of interest to check whether there are

regions inside the simulations where the polluted medium is cooling below 104 K due to

its metal content.

The “zoomed initial condition technique” (Tormen et al., 1997) is used to extract from

a dark matter-only simulation with box size of 479 Mpc/h, within a standard ΛCDM

cosmology, a smaller region and to re-simulate it at higher resolution introducing also

gas particles. The cluster evolution is simulated with about 2 · 105 particles. The

comoving Plummer-equivalent gravitational softening length is 5 kpc/h. At redshift zero,
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the selected cluster has a virial mass of about 1014M⊙/h, a virial radius of about 1Mpc/h

and a virial temperature of 2 · 107 K (Dolag et al., 2004).

We start the simulation with no metallicity content. Then, the metal abundances are

consistently derived following the star formation history of the system, according to a

Salpeter IMF and adopting appropriate stellar yields (see details in section 4.2.3). Once

the medium gets polluted with metals, their contribution is added (see Figure 4.7).

We will discuss the effect of metal fine-structure cooling (only) in the next section

5.4.1 and we will add also molecules in section 5.4.2. In section 5.4.3 we will focus on the

cluster star formation and metal pollution history.

5.4.1 Metal fine-structure cooling

As first step, we include in our simulation metal fine-structure cooling only and do not

follow molecule evolution. This means that the only coolant available are H, He and

metals when produced from star formation episodes.

A projection of the particle distribution at z = 0 of the cluster is presented in Figure

5.10. Dark matter particles are black; hot (T > 104 K) gas particles are red; cold

(T < 104 K) and diffuse gas particles are blue; hot (T > 104 K) star particles are yellow;

cold (T < 104 K) star particles are cyan.

The different particles types arise simply from the star formation sub-grid model,

according to which particles denser than nH = 0.1 cm−3 produce stars (see section 4.2.1).

From the plot one notices the overlap between gas and dark matter structures and finds the

sites of star formation in the deep, dense potential wells where the gas can efficiently cool.

Dark matter filaments are populated by hot gas which is shock-heated (with temperature

reaching up to ∼ 107 K − 108 K), but has not yet cooled down (at such temperatures the

main cooling mechanism is the emission of Bremsstrahlung radiation). The diffuse gas

instead remains cold.

The left panel of Figure 5.11 shows the cooling diagram of our simulation at redshift

z = 0; each SPH particle is represented by a point. In the plot, different areas can be

identified. The one at high temperatures (bottom right) represents the hot intra-cluster
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Figure 5.10: Projection of the particle distribution on the xy plane: dark matter particles are black; hot
(T > 104 K) gas particles are red; cold (T < 104 K) and diffuse gas particles are blue; hot (T > 104 K) star
particles are yellow; cold (T < 104 K) star particles are cyan.

Figure 5.11: Left panel: distribution of particles of the cluster simulation described in section 5.4.1 in the T −Λ
space. Right panel: Distribution of particles in the phase diagram. The three-pointed star symbols correspond
to particles which are located within twice the virial radius of the cluster and have a temperature lower than
8000 K. We remind that the critical density of the Universe at the present time is ρ0,cr ≃ 1.9 · 10−29 h2 g cm−3.
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medium (ICM). When the ICM starts to get denser, cooling gets more efficient: the

corresponding gas particles are represented by the points belonging to the upper branch

of the cooling function and they are brought to lower and lower temperatures. Feedback

from star formation partially pushes some of them away from the cooling curve to slightly

higher temperatures. Below 104 K, only particles which are metal enriched can further

cool down to about 300 K, while gas particles with primordial composition are stacked

at ∼ 104 K. The three-pointed stars refer to particles within twice the virial radius and

with a temperature below 8000 K, indicating that this region of the T − Λ space is also

populated by gas associated with the galaxy cluster.

The sharp cut-off in the bottom-right is relative to the hot and thin ICM whose cooling

efficiency is limited by the CMB Compton heating (see Figure 2.7), proportional to

(T − TCMB). The spread is due to the different particle number densities.

The corresponding phase diagram is shown in the right panel of Figure 5.11. The hot and

thin intra-cluster medium populates the central-left area of the plot, while the dense and

cool regions occupy the lower-right part. Particles heated by feedback are represented by

points in the central-right side (ρ & 10−24 h2g cm−3, T ∼ 105 K ). The main effect of our

metal cooling implementation is to lower the temperature of the dense medium, generating

the sharp triangular area visible in the ρ -T space, at T < 104 K and ρ > 10−26 g cm−3.

The points at very low densities are associated with diffuse metal free gas; this suggests

that the spread in the cooling diagram of Figure 5.11 at temperature lower than 104 K is

mainly due to different fractional metal enrichment of the particles, rather then to their

different densities.

The standard case, without metal-fine structure transition contributions would lead to

cooling and phase diagrams limited to T & 104 K and lacking of the areas covered by

three-pointed star symbols.

Global properties of the ICM and star formation are not significantly changed compared

to the reference run without the metal line cooling from fine structure transitions. This

happens because the simulation was merely meant to be a test case of the implementation

of metal line cooling below 104 K under realistic conditions, but the haloes resolved

are large enough to cool and form stars without the aid of such cooling. In order to

investigate in more detail the effects of the additional cooling by molecules and metals at
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low temperatures on the ICM and the star formation, higher resolution simulations are

needed. However, this opens interesting grounds for further investigations on the interplay

between formation of small objects, with virial temperatures in the range of interest for

our extended cooling function, and metal pollution from first stars.

5.4.2 Adding molecules

The next step is to run the same cluster with the whole chemistry and metal pollution

schemes, in order to take into account also primordial molecular cooling.

Derived maps of temperature, density, “entropy”4 kBT/ρ
γ−1 (γ ≃ 5/3) – see also

Appendix D – Jeans mass, molecular fraction and metallicity are shown in Figure 5.12

and a zoom of the central region in Figure 5.13.

The presence of a central, hot, star forming region with a high density, cool core (well

visible in the “entropy” and Jeans mass maps) is evident. The presence of star formation

events makes the temperature raise and dissociate molecules. Therefore, the molecular

fraction steeply decreases in correspondence of the central hot region. Thanks to winds,

metal pollution shows up, as we find enriched areas also in places remote from the cluster

center.

The maximum average temperature (upper-left panel) is some tens of million Kelvin and

is reached in correspondence of the highest densities in the simulations (the central spot

and few neighbouring regions). The presence of the central core is not visible, as it is

surrounded by very hot gas. On the density map (upper-right panel) instead, it is easier

to recognize the substructures of the cluster.

The central row displays the two main physical quantities derived from temperature

and density: “entropy” (central-left) and Jeans mass (central-right). The entropy is

particularly useful to better define the thermodynamic structure of the system. Indeed,

because of its definition, ∼ T/ργ−1 (γ ≃ 5/3), it allows us to highlight the presence of the

cold regions surrounded by hot gas: that is clearly seen in the drop at the very center of

the main hot spot, for example. The average Jeans mass, MJ , reveals some further details

on the dynamical state: local hot gas makes MJ increase up to ∼ 1015 M⊙ − 1016 M⊙ and

4 The quantity which we call entropy, kBT/ργ−1, is not exactly the entropy S of a particle of perfect gas, according
to the Sackur-Tetrode formula, but can be related to it, as S ∼ kB ln (C P/ργ), with C constant, P pressure, ρ density, γ
adiabatic index. See also Appendix D.
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Figure 5.12: Upper-left panel: projected temperature distribution, T . Upper-right panel: average gas density
distribution, ρ. Central-left panel: projected distribution of kBT/ργ−1, with γ = 5/3 (“entropy”). Central-
right panel: Jeans mass. Bottom-left panel: projected total molecular fraction, xmolecules. Bottom-right panel:
projected metallicity distribution over hydrogen mass, Z/H .
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Figure 5.13: Central region of the cluster. The different quantities are as in the Figure 5.12.
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allows the system to be partly gravitationally unbound. This means that such gas cannot

be retained and could be lost by the system, generating outflows.

The last row gives the complete chemical information. The molecule distribution map is

shown in the bottom-left panel and the metallicity in the bottom right one. We highlight

that the molecule abundance is fully dominated by H2 by some order of magnitudes. In

fact, the thin regions not affected by star formation events still maintain abundances close

to the initial ones (see section 5.2 and Figure 5.6), while the ones which experienced star

formation are characterized by hot temperature and consequent molecule dissociation.

Metallicity, on the other hand, is strongly ruled by star formation and winds. Therefore,

even though metals are produced in high-density regions, we easily find polluted areas

located far from those sites.

The phase diagram and the density distribution of molecules and metals are presented

in Figure 5.14.

The phase diagram is color coded according to metallicity (upper-left panel) and molecular

abundance (upper- right panel). The metal and molecular density distributions (bottom

row, left and right panel respectively) are color coded by temperature. The metals are

spread randomly, with no particular correlation. In the molecule distribution, instead, a

double tail related to the hot (lower tail) and cold (higher tail) phases of the thin IGM is

present.

With respect to the previous case (section 5.4.1), the phase diagram presents some

differences. The addition of molecular cooling makes the gas colder since the beginning of

the in-fall process. Also the subsequent condensation process is affected, as, in the former

case, Hydrogen and Helium atoms are the only relevant primordial coolants, while, in the

latter case, H2 and HD enhance the cooling process at any evolutionary stage, together

with metals. So, the fraction of gas with temperature below ∼ 104 K is higher.

5.4.3 Star formation and metal pollution history

In Figure 5.15, redshift evolution of the star formation rate (left) and metallicity (right)

are plotted.

Between the two different runs there is not much difference, as the underlying star
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Figure 5.14: Upper row: phase diagram ρ − T for the cluster at redshift z = 0, color coded according to
metallicity (left panel) and molecular abundance (right panel). Bottom row: metallicity (left panel) and molecule
(right panel) distribution as a function of the density and color coded according to temperature in Kelvin.
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Figure 5.15: Left panel: total star formation rate. Right panel: redshift evolution for the total metallicity
(solid line) and the different metals (dashed lines) averaged over the whole simulation box: carbon (blue), oxygen
(green), magnesium (red), Sulphur (purple), silicon (pink), iron (yellow), other metals (cyan). The dotted line
denotes the maximum of the metallicity reached (locally) in the cluster averaged over the whole simulation box.

formation sub-grid model is almost insensitive to the chemical composition of the medium

and depends only on the gas total number density. This is a crucial lack in the commonly

adopted standard recipes, which do not really follow and resolve the gas in-fall, but

somehow “assume” it. For such motivations, the onset of star formation is basically

unaltered, as well as the metal enrichment characteristics.

The star formation rate starts getting significant at z ≃ 25, when first objects are

assembling and their density becomes higher than the threshold for star formation. Later

the star formation rate increases until it reaches a peak at z ≃ 2 − 4 and eventually

decreases. This behaviour is due to the transition to an accelerated Λ-dominated

expansion.

Of course, simultaneously, metallicity increases as well. The right panel shows the

evolution of the mean metallicities for the different metal components (dashed lines) and

of the total metallicity (solid line). The dotted line refers to the maximum metallicity

reached locally in the simulation. We highlight that, while at high redshift α elements

expelled by short-lived stars via SNII explosions are predominant (e.g. oxygen - green

dotted line), at lower redshift long-lived stars SNIa’s produce more and more iron and

other heavy elements enhancing their abundances and filling the gap with oxygen.
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5.5 Summary

In conclusion, we summarize the main outcomes of our implementation and tests.

• We have successfully tested the implementation of the most relevant features of

gas cooling, in both pristine and polluted environments, for the temperature range

2.7 K − 109 K (see chapter 4).

• We have seen that HD cooling has some influence on the high-redshift gas clumping

properties, while low-temperature metal cooling has a significant impact on the

formation and evolution of cold objects.

• In addition to investigate the above topics, this implementation can now be used to

study the detailed enrichment history of the IGM and its possible interplay with the

transition between a primordial, massive star formation mode and a more standard

one.
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Chapter 6

On the onset of star formation

Well do I know that I am mortal, a creature of one day.
But if my mind follows the winding paths of the stars
Then my feet no longer rest on earth, but standing by

Zeus himself I take my fill of ambrosia, the divine dish.

Ptolemy’s epigram, Almagest

The next step to study early structure formation is to establish when the very first

onset happens and to find star formation criteria to follow stellar evolution in cosmological,

numerical simulations. These, indeed, usually lack of resolution to properly account for

star formation, so a sub-grid or semi-analytic argumentation needs to be implemented in

simulation codes.

Inspired by such concerns and supported by the discussions in the previous chapters, in

the following we will give an overview of how it is possible to proceed and we will show

our method to account for star formation events.

6.1 On the onset of star formation events

For sake of clarity, we remind that, in chapter 4, we have seen how hydrodynamical

simulation codes have been a powerful tool in astrophysics (Evrard, 1988, for example),

but we have also alluded to the fact that computational limitations have always required

plausible sub-grid models to take into account star formation (Cen and Ostriker, 1992;

Katz et al., 1996; Springel and Hernquist, 2003, e.g.).

Such simulations follow the converging gas in-fall into dark matter potential wells: during

this process gas is shock heated and subsequently cools via energy level transitions. The

typical time-scales involved in the process (see chapter 2) are the free-fall time, tff , and
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the cooling time, tcool. Gas condensation is expected to take place only if tcool < tff .

We remind also that the free-fall time is defined as (2.57):

tff =

√

3π

32Gρ
(6.1)

where G is the universal gravitational constant and ρ the density of the medium; the

numeric factor (3π/32)1/2 is exact for spherical symmetry only. The cooling time is

defined as (2.58)

tcool =
3

2

nkBT

Λ(T, ni)
(6.2)

where n is the number density of the gas, kB the Boltzmann constant, T the temperature

and Λ(T, ni) the cooling function (energy emitted per unit time and volume) dependent

both on temperature and number densities, ni, of the species constituting the gas. In the

low-density limit1, for two-body interactions, between e.g. particle x and particle y, Λ

can be written as (see also 4.3 and Appendix A)

Λ(T, nx, ny) = L(T )nxny (6.3)

with L quantum-mechanical function (accounting for energy level gaps, collisional and

spontaneous decay coefficients, atomic level fractional population) depending on the

temperature of the species considered, nx and ny. At T > 104 K, the cooling is dominated

by collisions of hydrogen atoms, which is the most abundant species in nature – about

93% in number fraction – and Λ scales approximatively as n2
H (we indicate with nH the

hydrogen number density).

The physical conditions in which the first structures form are characterized by a primordial

chemical composition: mostly hydrogen, deuterium, helium and some simple molecules,

e.g. H2 and HD.

In order to follow the whole process of structure and star formation in numerical

simulations, one should implement the entire set of chemical reactions and hydrodynamical

equations (see chapter 4) and from those calculate the abundance evolution and the

corresponding cooling terms. In practice, to perform such computations is very expensive

and time consuming and it becomes extremely challenging to follow the formation of

structures from the initial gas in-fall into the dark matter potential wells to the final birth
1 This widely-used approximation is appropriate as, according to the classical spherical “top-hat” model, a virialized

object has a total mass density of 18π2 times the critical density, which corresponds, on average, to a total number density
of ∼ 2 h2 cm−3 at z ∼ 15, for a WMAP5 cosmology and a mean molecular weight µ ≃ 1. The transition to a high-density
statistical equilibrium regime happens at critical number densities of ∼ 104 cm−3.
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of stars. Nevertheless, efforts are being made in this direction (Abel et al., 2000, 2002;

Bromm and Larson, 2004; Yoshida et al., 2007; Whalen et al., 2008, for example).

For this reason, more practical, even if sometimes coarse, approximations are adopted.

In brief, star formation relies on semi-empirical and numerical recipes based on chosen

criteria to convert gas into stars and obtain the star formation rate, carefully normalized

to fit observational data at the present day. The standard method used is to assume

that once the gas has reached a given density threshold it automatically forms stars

(e.g. Katz et al., 1996), regardless of the time between the moment when the threshold

is reached and the effective run-away collapse which typically takes place at densities

∼ 102 cm−3 − 104 cm−3.

While this might be a reasonable approximation at low redshift, at high redshift this

interval occupies a large fraction of the cosmological time and thus this assumption can

induce large artificial off-sets on the onset of star formation and influence the evolution

of the derived star formation rate. Thus, extrapolations to high redshifts of the low-

density thresholds (few 0.1 cm−3) used to model the star formation rate in the low-redshift

Universe, may not always be justifiable. For this reason, high-redshift applications require

larger resolutions and a higher density threshold.

In the following, we will discuss the importance of the choice of the density threshold

in simulations of early structure formation and the first stars. We propose a criterion to

choose such threshold (section 6.2) and present some interesting cases and results from

high-resolution simulations (section 6.3 and 6.4). Then, we discuss our results (section

6.5).

6.2 Threshold for star formation

According to the usual scenario of structure formation, the Jeans mass (Jeans, 1902) is

the fundamental quantity which allows one to distinguish collapsing from non-collapsing

objects, under gravitational instability. For a perfect, isothermal gas it is given by: (2.20):

MJ =
π

6

(

kBT

µmHG

)3/2

ρ−1/2 (6.4)

where mH is the mass of the hydrogen atom and T and ρ the temperature and density of

the gas, respectively. At very high redshift (z ∼ 30 − 20), typical haloes have masses of
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∼ 105 M⊙ − 106 M⊙ which can grow up to ∼ 108 M⊙ − 109 M⊙ at z ∼ 10.

As mentioned in section 6.1, in numerical simulations the density threshold for star

formation is usually fixed to some constant value, irrespectively of the resolution of the

simulation. It would be desirable instead to have a star formation criterion that allows

one to reach scales that resolve the Jeans mass.

If Mres is the gas mass resolution of a given simulation, we can require that:

MJ = NMres (6.5)

with N > 1 and impose that the critical threshold is

ρth =
π2

36N2M2
res

(

kBT

µmHG

)3

(6.6)

≃ 1.31 · 10−13

N2

(

Mres

M⊙

)−2(
T

103 K

)3(
1

µ

)3

[g cm−3]. (6.7)

For Mres = 102 M⊙, T = 103 K, µ = 1 and using N = 102 gas particles, one has

ρth ∼ 10−21 g cm−3, corresponding to a number density of ∼ 102 cm−3. Commonly adopted

density thresholds are of the order of ∼ 10−1 cm−3.

To investigate the effects of different choices of star formation threshold on structure

formation at high redshift, we implement the above model in numerical simulations. In

the next, we describe the simulations performed and discuss the results obtained.

6.3 Simulation set-up

In order to study the effect of different threshold prescriptions on the onset of star

formation we run high-resolution, three-dimensional, hydrodynamic simulations including

non-equilibrium atomic and molecular chemistry, star formation and wind feedback.

We use the code Gadget-2 (Springel, 2005) in the modified version which includes (see

details in chapter 4) stellar evolution and metal pollution (Tornatore et al., 2007a),

primordial molecular chemistry (following the evolution of e−, H, H+, He, He+, He++,

H2, H+
2 , H−, D, D+, HD, HeH+) and fine structure metal transition cooling (O, C+, Si+,

Fe+) at temperatures lower than 104 K (Maio et al., 2007, 2008) (see also section 5.3).

The simulations have a comoving box size of L = 1 Mpc and sample the cosmological

medium with a uniform realization of 3203 particles for both gas and dark matter species
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(for a total number of 2 × 3203). The initial conditions (set at redshift z = 100) are

generated2 with a fast Fourier transform grid with Nmesh = 320 meshes and a maximum

wave-number (Nyquist frequency)

kNyquist =
2πNmesh

2L
≃ 1 kpc−1

(i.e. a minimum wavelength of 2L/Nmesh ≃ 6.25 kpc) so that, for each wave-number,

‖k‖ < kNyquist.

We will refer to such sampling with the term “mean region”.

For our studies we consider two different sets of cosmological parameters:

• standard model: Ω0,m = 0.3, Ω0,Λ = 0.7, Ω0,b = 0.04, h = 0.7, σ8 = 0.9 and n = 1,

where the symbols have the usual meanings. The corresponding dark matter and gas

particle masses are ∼ 755 M⊙/h and ∼ 116 M⊙/h, respectively.

• WMAP5 model: recent data from 5-year WMAP (WMAP5) satellite (Hinshaw et al.,

2008) suggest: Ω0,m = 0.258, Ω0,Λ = 0.742, Ω0,b = 0.0441, h = 0.72, σ8 = 0.796 and

n = 0.96. In this case, the corresponding dark matter and gas particle masses are

∼ 621 M⊙/h and ∼ 128 M⊙/h, respectively.

Following the discussion in the previous sections, we also consider two different models

for the star formation density threshold:

• a low-density threshold of 0.2 h2cm−3 (physical), compatible with the one adopted

in Gadget code and the ones widely used in the literature (Katz et al., 1996;

Springel and Hernquist, 2003; Tornatore et al., 2007b; Pawlik et al., 2008, for

example);

• a high-density threshold of 135 h2cm−3 (physical), as computed from equations (6.6)

and (6.7). This value is adequate to follow atomic processes even in small ∼ 105 M⊙

haloes at z ∼ 20. Moreover, typically this threshold falls in density regimes

where cooling dominates over heating and thus allows us to properly resolve gas

condensation down to the bottom of the cooling branch.

A summary with all the features of the simulations is given in Table 6.1 and Table

6.2. We denote with the labels “std” and “wmap5” the runs with standard and WMAP5
2 We use the code N-GenIC.
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Table 6.1: Cosmological parameters adopted for the simulations. The columns (from left to right) specify: name
of the run, Ω0M , Ω0Λ, Ω0b, h, σ8, spectral index.

Model Ω0M Ω0Λ Ω0b h σ8 n
wmap5-ht 0.258 0.742 0.0441 0.72 0.8 0.96
wmap5-lt 0.258 0.742 0.0441 0.72 0.8 0.96
std-ht 0.300 0.700 0.0400 0.70 0.9 1.00
std-lt 0.300 0.700 0.0400 0.70 0.9 1.00
zoom-std-ht 0.300 0.700 0.0400 0.70 0.9 1.00

***

Table 6.2: Parameters adopted for the simulations. The columns (from left to right) refer to: name of the run,
number of particles used, gas particle mass, dark matter particle mass, star formation density threshold.

Model number of Mgas Mdm SF density threshold
gas+dm particles [M⊙/h] [M⊙/h] [h2cm−3]

wmap5-ht 2 × 32768000 128 621 135
wmap5-lt 2 × 32768000 128 621 0.2
std-ht 2 × 32768000 116 755 135
std-lt 2 × 32768000 116 755 0.2
zoom-std-ht 2 × 41226712 3.9 25.6 135

***
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cosmology, respectively; with “lt” and “ht” the runs with low- and high-density thresholds,

respectively.

Finally, to investigate primordial star formation events in local high-density regions,

we perform a very high-resolution numerical simulation of a rare high-sigma peak with

comoving radius ∼ 140 kpc/h. Such a region is selected using the zoomed initial condition

technique on a ∼ 109 M⊙ halo formed in a dark-matter-only simulation (Gao et al., 2007)3.

We split each particle in gas and dark matter component, according to the standard model

parameters. The resulting gas particle mass is ∼ 4 M⊙/h while dark matter particles have

a mass of ∼ 26 M⊙/h. In Table 6.1 and Table 6.2 this simulation is labelled by “zoom-

std-ht”.

6.4 Results

In this section we present results from simulations with the sets of parameters described

above. We discuss first the mean region of the Universe (section 6.4.1) and then the

high-density region (section 6.4.2). Simple visualizations for the two cases are presented

in Figure 6.1.

6.4.1 Mean-region simulation

Our reference run is the wmap5-ht model with initial composition given by the values

quoted in Galli and Palla (1998) at z = 100. We assume a primordial neutral gas with

residual electron and H+ fractions xe− ≃ xH+ ≃ 4 · 10−4, H2 fraction xH2 = 10−6, H+
2

fraction xH+
2

= 3 · 10−21, D fraction xD = 3.5 · 10−5, HD fraction xHD = 7 · 10−10, D+

fraction xD+ = 4 · 10−9, HeH+ fraction xHeH+ = 10−14.

We show some evolutionary stages in Figure 6.1 (upper set of panels). In the maps, the

first column refers to temperature, the second to gas density and the third to molecular

fraction at z = 30.16 and z = 12.17, respectively. The creation of new molecules is

evident, together with the related growth of structure. More specifically, as time passes,

one can see the heating undergone by the gas in dense regions, due to structure formation

shocks. The temperature increases from a few hundreds Kelvin in the low-density regions,

to ∼ 104 K in the denser regions. In the meantime, also the molecular fraction increases

3 We use the “R4” initial conditions presented there.
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Mean-region maps

Log10( T/K ) Log10( ρcom/h2 g cm−3 ) Log10( xmolecules )

High-density region maps

Log10( T/K ) Log10( ρcom/h2 g cm−3 ) Log10( xmolecules )

Figure 6.1: First, second and third column are respectively temperature, density and molecule maps. The first
two rows refer to the mean-region simulation at redshift 12.17 (top) and 30.16 (bottom). The box size is 1 Mpc
comoving. The last two rows refer to the high-density region at redshift 50 (top) and 70 (bottom). The region
size is ∼ 140 kpc/h comoving. All quantities are smoothed on a 276 pixel side grid.
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Figure 6.2: Upper panel: phase diagram at redshift z = 12.17 (just before the onset of star formation) for the
wmap5-ht simulation. The vertical straight lines indicate of a low physical critical-density threshold of 0.2 h2cm−3

(dashed line) and a higher physical critical-density threshold of 135 h2cm−3 (solid line). Lower panel: average
effective index computed over the whole range of densities. The three horizontal dotted lines show values of 5/3,
1 and 1/3, respectively from top to bottom. The solid line shows α and the dashed line shows γ (see text for
definitions).

to values larger than 10−4. Soon after, the production of molecules increases rapidly (up

to ∼ 10−2) aiding the star formation process which, for this simulation, starts at z ∼ 12.

In Figure 6.2, we show the phase diagram (comoving density versus temperature) at

redshift z ∼ 12, i.e. just before the onset of star formation.

The low-density gas which is shock heated by the collapse of the first primordial haloes is

seen on the left side of the panel. Starting from values for the temperature of ∼ 102 K, the

gas is progressively heated to ∼ 104 K and moves along the rising branch. At this stage,

collisions become more frequent due to the higher temperature. The upper energy levels

of particles get excitated and the subsequent de-excitation is accompanied by emission

of radiation. This effect is negligible at low densities, because collisions are rare and the

fraction of energy converted into radiation is small. When the densities increase, the

cooling becomes comparable to the heating and an isothermal regime with no significant
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net change in the temperature is reached. This appears at the tip of the phase diagram

(and in the behaviour of the effective index, as discussed below), at T ∼ 104 K, where the

cooling is dominated by atomic Lyα transitions and accompanied by fragmentation, as

the Jeans mass becomes proportional to ρ−1/2.

At higher densities, radiative losses overtake heating and induce a fast cooling phase

(dominated by molecules, mostly H2). This eventually halts the fragmentation process

freezing the minimum mass of gas clouds and enhancing star formation.

The solid vertical line corresponds to the physical high-density star formation threshold

(135 h2 cm−3) and, for comparison, we plot also the dashed line for a physical number

density of 0.2 h2 cm−3.

We stress that by adopting a low-density threshold for star formation one completely

misses the isothermal and cooling part of the phase diagram, and thus a correct modeling

of the cooling regions within the simulations. This can affect the onset of star formation,

particularly at high redshift, when the time needed for the gas to evolve from the low-

density threshold to the high-density threshold (∼ 2 · 108 yr) can be a substantial fraction

of the cosmological time (∼ 4 · 108 yr at z ∼ 12). Note that the time elapsed between

the attainment of the isothermal peak in the phase diagram and the end of the cooling

branch is ∼ 6 · 107 yr. This problem is less severe at lower redshift, when it becomes of

the order of several Gyr.

As a consequence, the onset of star formation can happen much earlier in models adopting

a low-density threshold (as we will show in the following).

The evolution that follows the end of the cooling branch is characterized by the formation

of a dense core which accrets gas on the free-fall time-scales (Yoshida et al., 2006b). This

phase is pretty fast (∼ 106 − 107 yr) and rapidly raises central densities to ∼ 1016 cm−3.

In addition, density and temperature behaviour can also be described by an effective

index4 which depends on the physical conditions of the gas regime considered. In the

lower panel of Figure 6.2 we plot the effective index as a function of density. Its expression

is easily derived from the perfect gas equation of state.

The solid line refers to the value α ≡ 1+ (dT/T )/(dρ/ρ), which takes into account changes

in the sign of the temperature derivative distinguishing the heating regime (α > 1) from

4 By effective index of the gas, γ, we mean P ∝ ργ , with P pressure and ρ density. This is simply related to the politropic
index.
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Figure 6.3: Evolution of the ten most massive haloes in the wmap5-ht cosmological simulation (dotted lines).
The halo mass range where stars are formed is marked by solid red lines. The redshift at which the first star
forms in each halo is indicated by the filled star symbols. After that, star formation continues along the solid
lines.

the cooling regime (α < 1). The dashed line refers to γ ≡ 1 + |(dT/T )/(dρ/ρ)|, so that

γ is always > 1. Dotted horizontal straight lines show values of 5/3, 1 and 1/3.

In correspondence of the isothermal peak in the T − ρ plane, it is α = γ = 1, which

marks the transition from the heating to the cooling regime. At this stage we expect the

gas run-away collapse to begin and last for the following cooling regime, at which point

α oscillates around the value 1/3 and the process is halted. Indeed, gas condensation

and accretion act against furher cooling, heating up the whole system. When central

temperatures raise to ∼ 107 K, the proton-proton chain becomes efficient and sustains a

H nuclear burning stellar core (Yoshida et al., 2006b, 2007).

Figure 6.3 displays the evolution of the ten most massive haloes found in the simulation.

We also show the redshift when stars are produced (filled star symbols) in each object.

The haloes are found using a friend-of-friend algorithm with a linking length equal to 20%

of the mean inter-particle separation. Typical halo masses at redshift z ∼ 12, when star
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Figure 6.4: Star formation rate as a function of redshift for the different models, from left to right: WMAP5
cosmological parameters and high-density threshold (solid red line), standard cosmological parameters and high-
density threshold (dotted blue line), WMAP5 cosmological parameters and low-density threshold (dot-dashed
black line), standard cosmological and low-density threshold (long-dashed-short-dashed magenta line). The green
short-dashed line refers to the simulation of the high-density region with standard parameters and high-density
threshold.

formation starts, are of the order of 107 M⊙ and reach densities of ∼ 102 cm−3.

For comparison, we have run the same simulation using standard cosmological parameters

(std-ht run). In this case we expect a faster evolution, with earlier structure formation.

The first star formation events are detected at redshift z ∼ 15− 16 in haloes with masses

∼ 107 M⊙.

This can be clearly seen in Figure 6.4, where we plot the star formation rate as a function

of redshift for the different simulations. In order to compute the star formation rate, we

adopt the implementation described by (Springel and Hernquist, 2003).

The onset of star formation in the wmap5-ht model (red solid line) is delayed compared

to the std-ht model (blue dotted line). For the wmap5-lt (black dashed line) and std-

lt (magenta short-long-dashed line) models, star formation starts at z ∼ 25 and 31,

respectively. Thus, at such high redshifts, even small changes in the cosmology can be
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significant for the onset of star formation. This is easily understood in terms of spectral

parameters: the standard cosmology has higher spectral index and higher normalization,

therefore, assigning more power on all scales with respect to WMAP5 values, leads to

structure formation much earlier.

The choice of the density threshold makes an even larger difference in the onset of star

formation. The star formation rates corresponding to the wmap5-lt (black dot-dashed

line) and wmap5-ht (red solid line) show that star formation starts at z ∼ 25 and 12,

respectively. The major difference between low- and high-density threshold models is due

to the fact that in the former, the gas reaches the critical density much earlier. So, the

redshift difference in the onset corresponds to the time that the gas needs to move from

the low- to the high-density threshold (see Figure 6.2).

In addition, as expected, the simulations adopting the high-density thresholds slightly

overtake the respective low-threshold cases. This happens because the former did not

remove the gas at higher redshifts, it accumulated and ended in delayed bursts of star

formation. Later, the star formation rates are restored at the same level.

As already mentioned, the low-density threshold model is very widely used both in

numerical and semi-analytical works, because it does not require the incorporation

molecular chemistry (as the threshold is lower than the typical densities at which molecules

become efficient coolants) and therefore it is easier to implement and allows for faster

simulations. However, it can compromise the whole picture if the results are extrapolated

to high redshift, when molecules are the main coolants and the time delay occupies a

significant fraction of the age of the Universe.

6.4.2 High-density region simulation

In this section we show results for the high-density region described in section 6.3 and

initialized at redshift z = 399.

In this case, the physical number densities at the beginning of the simulation (z ∼ 200)

are in the range ∼ [0.5 h2 cm−3, 50 h2 cm−3], with an average of ∼ 4 h2 cm−3, higher than

the typical value adopted for the low-density threshold for star formation. Therefore, the

conventional low-density model would result in unreasonable star formation at z ∼ 200.

In order to avoid this, it is common to add a further, additional, ad hoc constraint, which

permits star formation only if the over-densities are higher than a given minimum value –
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usually between ∼ 50 and ∼ 100 – (Katz et al., 1996, in section 4.2, suggest 55.7, for

example), but, in this situation, it is the additional constraint which determines when the

onset of star formation occurs, rather than the low-density threshold.

So, we run a simulation only with a high-density threshold. For the sake of comparison,

we still use the value of 135 h2 cm−3, although rigorously, following (6.6) and (6.7), one

should adopt a value ∼ 9 · 104 h2 cm−3 for a 3.9 M⊙/h gas particle mass. Nonetheless, we

have checked that this choice does not affect our conclusions, as we are already beyond

the isothermal peak, in the fast cooling regime, where the time-scales are extremely short

(∼ 106 yr).

All the initial abundances are set according to the values suggested by Galli and Palla

(1998), consistent with a primordial neutral gas having residual electron and H+ fractions

of xe− ≃ xH+ = 10−3, H2 fraction xH2 = 10−10, H+
2 fraction xH+

2
= 3 · 10−15, D fraction

xD = 3 · 10−5, D+ fraction xD+ = 3 · 10−8, HD fraction xHD = 10−14, HeH+ fraction

xHeH+ = 5.6 · 10−18. The simulation maps are shown in Figure 6.1 (lower panels).

In Figure 6.5, we show the phase diagram and the behaviour of the effective index

as a function of the comoving gas density at redshift z ≃ 45. Physical critical-density

thresholds of 0.2 h2cm−3 (dashed line), 135 h2cm−3 (solid line) and ∼ 9 · 104 h2cm−3 (dot-

dashed line) are marked in the figure. While the first two are the same as for the mean-

density region simulation, the last one corresponds to the value obtained using equations

(6.6) and (6.7). To emphasize the different characteristics of the phase diagram compared

to the one obtained for the mean-density region, we plot in addition the particles that lay

above the density threshold in a purely non-equilibrium chemistry run (i.e. without star

formation).

The isothermal peak is reached at redshift z ∼ 50. Dislike the mean-density simulation,

the gas does not spend time on the isothermal plateau, but cools very rapidly (in less

than 7 · 106 yr) from ∼ 103.5 K to ∼ 102 K and condenses into comoving densities of

ρcom ∼ 10−21 h2 g/cm3. The rapidity of these events is reflected in the lack of particles in

the intermediate stages of the cooling branch.

As before, we also plot the effective gas index. The usual initial shock-heating behaviour

and the following cooling is recovered up to much higher densities. At the bottom of the

cooling branch we find values of γ oscillating around 5/3 and 1. As the last stages are

quite fast, the low number of particles present introduces some statistical noise which is
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Figure 6.5: Upper panel: phase diagram at redshift z ∼ 45.41 for the high-density region simulation. The vertical
straight lines are drawn in correspondence of a physical critical-density threshold of 0.2 h2cm−3 (dashed line),
135 h2cm−3 (solid line) and 8.9 · 104 h2cm−3 (dot-dashed line). Lower panel: average effective index computed
over the whole range of densities. The three horizontal dotted lines are drawn in correspondence of the values
5/3, 1 and 1/3, respectively, from top to bottom. The solid line refers to α and the dashed line to γ (see text for
the definitions).

evident in the plot.

With our choice of the threshold, star formation sets in at z ∼ 48 (see Figure 6.4). The

additional time needed to reach the highest densities at the bottom of the cooling branch

is extremely short (∼ 106 yr), so our choice assures that the onset of star formation is

correctly estimated. As there is no obvious, standard way of quantifying the star formation

rate in these simulations, we do it dividing the stellar mass formed at each time-step by

the volume of the gas contained in the high-density region (a sphere of about 140 kpc/h

radius).
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6.5 Discussion

We have studied the effect of different choices of the density threshold for the creation of

stellar particles on the onset of star formation in numerical SPH simulations (Maio et al.,

2007; Tornatore et al., 2007a, for technical details). We have run simulations using initial

conditions appropriate for both a region of the Universe with mean density and, using

the zoom technique, a high-density peak.

The basic process which leads to star formation, i.e. gas shock heating up to

∼ 103 K − 104 K by in-fall to dark matter haloes followed by radiative losses due mainly

to molecular collisional excitations, is common to both scenarios. The main difference

is associated with the global dynamics and time-scales of the process. In fact, following

the rare high-sigma peak we see that, because of the higher densities, chemical reactions

are faster and much more efficient with respect to the simulations with mean-density

initial conditions. Therefore, the molecular abundance increases more rapidly, reaching a

number fraction of ∼ 10−4 by z ∼ 50 − 40 (compared to z ∼ 20, for the corresponding

mean-density case). Such values are enough to make collisional cooling dominant over

heating and to induce star formation episodes.

For all the simulations, we have checked the effect of altering the initial molecular

fractions of some orders of magnitude and found no significant change in structure

formation. Indeed, only the very thin, rare regions keep memory of the initial composition,

as chemical reactions are not effective there. In denser environments, instead, the

abundances are quite independent from the starting values. This is clearly seen, e.g.,

in Figure 6.6, where, for each SPH particle of the pure non-equilibrium chemistry run

of the zoom simulation, we plot the H2 number fractions as function a of the comoving

density, at different redshift. The presence of an asymptotic trend determined by the

chemical-reaction network is well recognizable at higher densities and independent from

the initial conditions.

Density and temperature behaviour can be described with an effective index which

depends on the physical conditions of the gas considered. Roughly, it is isothermal during
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Figure 6.6: Molecular hydrogen fractions xH2 as function of the comoving density ρcom, for redshift z = 45.41
(top row), z = 50.00 (middle row), z = 70.00 (bottom row). The left column refers to the initial abundances
inferred from RecFast code, the right column to the ones we have adopted.
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the transition from the heating to the cooling regime, then α ≃ 1/3 (see the effective

index computed in the lower panel of Figure 6.2) until the bottom of the cooling branch

is reached. At that point isothermality is recovered, as gas condensation and accretion

act against furher cooling, thereby heating the system. When central temperatures raise

to ∼ 107 K, the proton-proton chain becomes efficient and sustains a H nuclear burning

stellar core.

More quantitatively, when cooling is dominated by H2, the cooling time (2.58, 6.2) can

be approximated as

tcool ≃
3

2

kBT

ΛH2(T ) xH2nH

(6.8)

where xH2 is the H2 number fraction, ΛH2(T ) is the H2 cooling function at temperature

T and the other symbols have their usual meanings.

For gas at the beginning of the cooling branch, T ∼ 103.5 K and xH2 ∼ 10−4, giving

tcool ∼ 7 · 106 n−1
H yr (nH in cm−3). In the mean-density case (see phase diagram in

Fig. 6.2), nH ≃ 0.3 cm−3, while in the high-density region (see phase diagram in Fig. 6.5),

nH ≃ 6 cm−3. This translates into a characteristic cooling time of ∼ 2 · 107 yr for the

former case and ∼ 106 yr for the latter.

Such rough estimates show the relevance of following the full cooling branch when

simulating star formation at high redshift in regions of mean density, because the

characteristic cooling time occupies a substantial fraction of the cosmological time. This

problem is less severe for simulations of high-density peaks, in which the time-scales are

much shorter.

For this reason it is important to use a high-density threshold for star formation, rather

than imposing star formation even before the isothermal peak is reached. Otherwise an

artificially high redshift for the onset of star formation could result.

For the test cases presented in this paper, the value adopted for the high-density

threshold is 135 h2cm−3, well beyond the isothermal peak of the gas. This allows for a

correct estimate of the relevant time-scales, as the gas spends most of the time in the

isothermal phase. In addition, following the evolution of the gas to higher densities allows

for a better resolution of, e.g., the morphology and disk galaxy structure (Saitoh et al.,

2008), the clumpiness of the gas (see also the next Figure 6.7) and the features of the

interstellar or intergalactic medium. On the other hand, running high-density threshold
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Figure 6.7: Global clumping factor for the different simulations as a function of redshift.

simulations down to the present age (z = 0) is computationally very challenging because of

the extremely short time-scales involved in the calculations. Only simulations performed

with a low-density threshold are currently run to z = 0 and fine-tuned to reproduce the

observed low-redshift evolution of the star formation density.

A possible approach to correctly model the star formation process at all redshifts would

be to smoothly scale the density threshold with z. This would allow one to properly

follow the gas cooling in the early stages of structure formation (adopting a high-density

threshold) and at the same time to recover the expected behaviour at low redshift (via a

low-density threshold).

The density threshold used in simulations strongly affects the clumpiness of the gas,

preventing reliable estimates of the recombination times. In Figure 6.7 we compare, for

the different simulations, the global clumping factors, C, defined as

C ≡
∑

imiρ
−1
i

∑

j mjρj

(
∑

k mk)
2 (6.9)

where the indices i, j and k run over the total number of gas particles. At high z, the
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clumping factor remains quite flat with C ∼ 1 until z ∼ 30 − 20, for the mean-density

simulations, and z ∼ 70 − 60, for the high-density region. Afterward, there is a steep

increase due to gas cooling and subsequent condensation.

As expected, the low-threshold models underestimate C. The difference can be up to

several orders of magnitude: in the low-threshold simulations C is only ∼ 10 − 20 at

z ≃ 10, but in the high-threshold ones, we get C ∼ 103 at the same redshift.

The clumpiness of the high-density region is C(z ≃ 33) ∼ 200 and C(z ≃ 31) ∼ 103.

The difference in clumping factors occurs since in the low-density threshold model high-

density gas particles are turned into stars and then removed by winds relatively early,

while in the high-density threshold case they are allowed to reach values which are about

three orders of magnitude larger.

6.6 Summary

In summary, we have performed high-resolution, three-dimensional, N-body/SPH

simulations including non-equilibrium atomic and molecular chemistry, star formation

prescriptions and feedback effects to investigate the onset of primordial star formation.

We have studied how the primordial star formation rate changes according to different

gas-density threshold, different cosmological parameters and different simulation set-ups.

Our main findings are summarized in the following.

• The typical low-density thresholds (below ∼ 1 cm−3) are inadequate to describe star

formation episodes in mean regions of the Universe at high redshift. To correctly

estimate the onset of star formation high-density thresholds are necessary.

• In rare, high-density peaks, the density can already be higher than the usual low-

density thresholds since very early times. Therefore, density thresholds lying beyond

the isothermal peak (several particles per cm3, in our case) are still required, but

given the faster evolution in the phase diagram of the cooling particles in dense

environments, the exact value of the threshold is not crucial, as long as it is larger

than ∼ 102 cm−3 (physical).

• Different values of the threshold and the cosmological parameters can lead the onset

of star formation at very different epochs: with a low-density threshold (0.2 h2 cm−3)
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star formation starts at z ∼ 25−31 (depending on the cosmology), while high-density

threshold models (135 h2 cm−3) predict a much later onset, z ∼ 12 − 16 (depending

on the cosmology).

• Performing primordial, rare, high-density region simulations within the high-density

threshold model, we find that the local star formation can set in as early as z ∼ 48.
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Chapter 7

Early structure formation and
critical metallicity

Ita res accendent lumina rebus.

Lucretius, De rerum natura

An interesting topic related to the possible existence of a critical metallicity at which

the IMF changes from a top-heavy to a standard Salpeter one (see also sections 3.2 and

3.4.3) is how structure formation results affected.

In fact, for different Zcrit we expect different epochs for the onset of the population

II-I regime. Moreover, also the abundance of population III structures will be highly

connected to the critical metallicity, as a lower value of Zcrit implies an earlier transition

to population II-I and earlier decay of population III birth. This has an impact on their

observability.

In order to address such issues, we perform several numerical simulations of early structure

formation adopting different values for Zcrit.

The details on the simulation set-up are given in the next section 7.1 and the main results

about the effects on star formation are presented in the following sections 7.2, 7.3.

7.1 Simulation set-up

The simulations were performed in the frame of the standard ΛCDM cosmological model

(with geometrical parameters Ω0,m = 0.3, Ω0,Λ = 0.7, Ω0,b = 0.04, h = 0.7, and spectral

parameters n = 1, σ8 = 0.9). The initial conditions (see section 6.3) were generated

sampling 1 Mpc3 of the cosmic fluid at redshift z = 100, with 3203 particles per gas and

dark matter species, having masses of 116 M⊙/h and 755 M⊙/h, respectively.
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In order to properly constrain the onset of primordial structure formation, we include the

whole set of chemistry equations leading molecule (H2, HD, HeH+) creation and cooling

(see section 4.3, Table 4.1, Figure 4.6 and Figure 4.7). As in section 6.4.1, we assume a

primordial neutral plasma with residual electron and H+ fractions xe− ≃ xH+ ≃ 4 · 10−4,

H2 fraction xH2 = 10−6, H+
2 fraction xH+

2
= 3 · 10−21, D fraction xD = 3.5 · 10−5, HD

fraction xHD = 7 · 10−10, D+ fraction xD+ = 4 · 10−9, HeH+ fraction xHeH+ = 10−14.

We set the star formation threshold at the bottom of the cooling branch, as discussed in

section 6.2.

For the very first bursts, we adopt a top-heavy IMF, according to which massive stars in

the range [100, 500] M⊙ are formed (population III stars). The stellar life-times lie between

about 3 · 106 yr, for the 100 M⊙ stars, and ∼ 0 yr (instantaneous death), for the 500 M⊙

stars. The relevant mass range for metal pollution is approximatively [140, 260] M⊙

(see section 3.3 and Figure 3.3, for details), because of the formation of pair-instability

supernovæ. They spread around the first metals which will pollute the neighbouring areas

and will also increase the cooling capabilities of the medium (see Figure 4.6 and Figure

4.7).

Once the particle metallicity reaches the critical value, Zcrit, population II-I star formation

is assumed to set in, in place of population III, and subsequent stars will have masses in

the range [0.1, 100] M⊙, distributed accordingly to a Salpeter IMF. Population II-I stellar

life-times are usually much larger than population III, ranging between about 2 · 1010 yr,

for the 0.1 M⊙ stars, and 3 · 106 yr, for the 100 M⊙.

We perform four numerical simulations considering critical metallicities of Zcrit/Z⊙ =

10−3, 10−4, 10−5, 10−6, respectively, in order to study how and if structure formation is

influenced. In Figure 7.1 and in Figure 7.2, we present simulation maps at redshift

z = 11 for temperature, gas density and molecular abundance (Figure 7.1) and metallicity

distribution for all the cases considered (Figure 7.2). We note that the differences in the

metallicities are only due to the value of Zcrit adopted. In particular, the metal enrichment

is higher for the Zcrit = 10−3Z⊙ case than for the other cases. This is due to the longer

time needed to reach the critical level, Zcrit. Once this happens, population II-I star

formation sets in and delays further metal pollution.
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Figure 7.1: Temperature (left panel), density (central panel) and molecules (right panel) maps at redshift z = 11
(for the Zcrit = 10−3 Z⊙ case: in the other cases the maps are very similar, with differences of only ∼ 1%, or
less). The different quantities are smoothed over a 276 pixel grid. Each slice has a thickness of 1/14 the boxsize.

Figure 7.2: Line-of-sight average metallicity maps at redshift z = 11 for Zcrit = 10−3 Z⊙ (top-left panel),
Zcrit = 10−4 Z⊙ (top-right panel), Zcrit = 10−5 Z⊙ (bottom-left panel), Zcrit = 10−6 Z⊙ (bottom-right panel).
The different quantities are smoothed over a 276 pixel grid, projecting the whole simulation box.
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Figure 7.3: The plots refer to the star formation rates derived from the simulations described in the text for
Zcrit = 10−3 Z⊙ (black), Zcrit = 10−4 Z⊙ (red), Zcrit = 10−5 Z⊙ (blue), Zcrit = 10−6 Z⊙ (green), respectively, as
indicated by the legends. In the left panel, the solid lines refer to the total star formation rate, while the shaded
areas to the population III regime. In the right panel, we plot the ratio between population III (SFRIII) and
population II-I (SFRII−I) star formation rate.

7.2 Effects of Zcrit on SFR

For all the simulations the onset of star formation is at z ≃ 16.33, when the Universe

has about 2.3 · 108 yr, independently from Zcrit, which plays a role only in the following

epochs (see Figure 7.3).

A metallicity of 10−6Z⊙ is locally reached after only ∼ 105 yr (∆z ∼ 5 · 10−3) and

metallicities of the order of 10−5Z⊙ are reached after about 2 · 105 yr (∆z ∼ 10−2).

In approximatively ∼ 5 · 106 yr (∆z ∼ 10−1) it is possible to get Z ≃ 10−4 Z⊙ or even

Z ≃ 10−3 Z⊙. An average enrichment of Z ∼ Zcrit is always reached in less than ∆z ∼ 1

after the onset of star formation (see also Figure 7.4). Once the critical metallicity is

reached, population II-I star formation sets in and contributes as well to metal enrichment.

We also notice that the enrichment process is very local and therefore also the transition

to a different regime. So, we will find the coexistence of population III and population II-I

structures. The global star formation rate and population III star formation rate derived

from the different simulations are plotted in Figure 7.3 (left panel). At the very beginning

population III contribution is dominant, but rapidly fades away and the population II-I

regime is established. The noise in the plots is just due to the small time-steps induced
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by the chemical and numerical network, when high densities are reached, and the net star

formation can be null.

We see that the total star formation rate is only mildly influenced by the value adopted

for Zcrit, meaning that population III star formation does not affect the global behaviour

significantly and the bulk of star formation is mainly led by population II-I objects.

The reason for that is simply understood in terms of time-scales, as population III objects

have a short lifetime (at most ∼ 106 yr) and rapidly pollute the medium up to the critical

Z. Therefore, after the very first bursts, it is much easier to match the condition for

standard population II-I star formation, rather than for metal free, population III star

formation (see also Figure 7.6).

This is very well seen in Figure 7.4, where we display the metal evolution in the

simulations. First metals spread during the final stages of stellar evolution have typical

Z ∼ (10−5 − 10−4)Z⊙ and they immediately reach values of Z ∼ (10−4 − 10−3)Z⊙

between redshift z ∼ 16 and z ∼ 15. Therefore, the critical metallicity Zcrit is easily

reached, despite its precise, actual value. The leading element is always oxygen, as it is

the most abundant one produced by supernova explosions.

We point out that for higher Zcrit the population III regime lasts longer, so one has more

massive star explosions which can pollute the medium up to higher metallicities, before

population II-I star formation regime sets in. This results in a quicker Z increase in

the very early stages, but, on average, the differences between the two extremes are not

exagerately big.

In addition, for what said in the beginning of this section, the simultaneous presence

of different star formation regimes is naturally expected since soon after the onset. We

check this, plotting the ratio between population III star formation rate, SFRIII, and

population II-I star formation, SFRII−I in the right panel of Figure 7.3. The presence

of spikes is due to divergencies arising when there is no standard star formation (i.e.

SFRII−I ∼ 0 M⊙yr−1Mpc−3) and it is, obviously, particularly strong in the high-z tail.

None the less, residual, isolated population III bursts are still ongoing at lower redshifts,

where on average this regime becomes negligible.

In Figure 7.5, for sake of clarity, we consider only those redshifts at which population III

and population II-I star formation are non-zero. In this way we just avoid the divergencies
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Figure 7.4: The plots show metal evolution as function of redshift for the Zcrit = 10−3 (upper-left panel), 10−4

(upper-right panel), 10−5 (bottom-left panel), and 10−6 Z⊙ (bottom-right panel) case. The magenta horizontal
dot-dot-dot-dashed line indicates, in each panel, the critical metallicity; the dotted line is the maximum metallicity;
the dot-dashed line is the average metallicity of the spread metals; the solid line is the total metallicity averaged
over the whole simulation box and the dashed lines the corresponding individual metallicities: carbon (blue),
oxygen (green), magnesium (red), sulphur (purple), silicon (pink), iron (yellow), other metals (cyan).
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Figure 7.5: The plots are similar to Figure 7.3, but here the ratio between population III star formation rate
(SFRIII) and population II-I star formation rate (SFRII−I) is shown. The critical metallicity for the transition
from population III regime to population II-I regime is assumed to be Zcrit = 10−3 Z⊙ (top-left), Zcrit = 10−4 Z⊙

(top-right), Zcrit = 10−5 Z⊙ (bottom-left), Zcrit = 10−6 Z⊙ (bottom-right).
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Figure 7.6: The plots show the quantity Log10(SFRIII/SFRTOT) (left panel) and Log10(SFRIII/SFRII−I) (right
panel) as function of redshift for Zcrit = 10−3 Z⊙ (solid line), Zcrit = 10−4 Z⊙ (dotted line), Zcrit = 10−5 Z⊙

(dashed line), Zcrit = 10−6 Z⊙ (dot-dashed line), as indicated by the legend. The data are the same as in Figure
7.5, averaged and plotted in decimal logarithmic scale.

in the early epochs, where population III star formation is the only regime and SFRII−I is

zero. We see that the contribution from population III star formation is relevant only in

the very early phases, when star formation sets in. In this period (corresponding to a ratio

greater or equal to unity) star formation is lead by metal-free star formation, according to

a top-heavy IMF (see section 7.1). In the four different panels, we see that the main effect

of changing Zcrit is altering the duration of population III regime. Indeed, this is slightly

longer in the Zcrit = 10−3 Z⊙ case and decreses gradually with Zcrit. For Zcrit = 10−3 Z⊙

(top-left panel), population III is relevant for ∆z ≃ 1 (a time interval of ∼ 2 · 107 yr

at z ≃ 16), while for Zcrit = 10−6 Z⊙ (bottom-right panel), there is a sudden drop at

z ≃ 16, immediately after the onset of star formation. This behaviour, the smaller Zcrit,

the earlier the transition from population III to population II-I dominated star formation,

is expected, because the time needed to pollute the IGM is shorter.

We also highlight that population III contributions are about 2 or 3 orders of magnitude

smaller than population II-I already at redshift z ∼ 12, so the effect on large-scale

structure formation can be neglected.

In Figure 7.6, we summarize the discussion showing, for the different critical metallicities

adopted, a plot of the average ratio of simultaneous population III and population II-I

star formation, SFRIII/SFRII−I (left panel), and a plot of the average ratio of population

III and total star formation rate, SFRIII/SFRTOT (right panel).
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In both cases, the trends for different critical metallicities are distinguishable and the

differences span a range of roughly one order of magnitude.

7.3 Filling factor and Zcrit

Another interesting quantity is the filling factor of metals. We define it as

f ≡ N (0 < Z < Zcrit)

N (Z > 0)
(7.1)

i.e., f is the ratio between the number of particles enriched up to the critical level,

N (0 < Z < Zcrit), and the total number of polluted particles N (Z > 0).

We stress that a global filling factor – defined as equation 7.1, but with N (Z > 0)

replaced by the total number of particles N – would be simply a rescaling of the number

of enriched particles found in the simulations.

It is again evident the dominance of population III star formation in the very first bursts

at z ≃ 16, for all Zcrit. Later, the filling factor decreases steeply, as N (0 < Z < Zcrit)

becomes smaller and smaller than N (Z > 0). In other words, the medium is rapidly

enriched above the critical level, Zcrit, and the population III regime becomes negligible.

Depending on Zcrit, the filling factor at z ≃ 11 ranges between 0.065, for Zcrit = 10−6 Z⊙,

0.21, for Zcrit = 10−5Z⊙, 0.34, for Zcrit = 10−4Z⊙, 0.48, for Zcrit = 10−3 Z⊙. These values

span a factor of 7 or 8 among the four cases.

7.4 Remarks

Before concluding, it is worthwhile stressing that in order to better understand the topics

we have discussed here, we plan to perform more simulations to study numerical effects

of box dimension, resolution, IMF.

In addition, even if in our study it is seems that population III star formation is not very

relevant, we will check such issue analyzing what happens changing feedback prescriptions

or adding more detailed treatments of beck-reaction from star formation episodes.

In fact, in principle these could still change the overall picture.

Moreover, metal pollution is quite a patchy phenomenon, therefore, the fact that

primordial population III star formation is negligible does not mean that in rare, isolated
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Figure 7.7: The plot shows the filling factor relative to population III star formation. The x-axis is redshift and
the y-axis is the number fraction of enriched particles with metallicity 0 < Z < Zcrit, undergoing star formation.
The critical metallicities are Zcrit = 10−3 Z⊙ (solid line), Zcrit = 10−4 Z⊙ (dotted line), Zcrit = 10−5 Z⊙ (dashed
line), Zcrit = 10−6 Z⊙ (dot-dashed line), as indicated by the legend.

regions pristine environments cannot exist at later times. In such regions, we expect to

find population III objects also at lower redshift.

7.5 Summary

In the present chapter, we have seen the main results from numerical simulations of early

structure formation, including primordial, molecular evolution, star formation treatment,

metal enrichment and the switch for a double IMF regime, below and above a critical

metallicity Zcrit.

We have performed four relevant simulations differing by Zcrit, only. We choose Zcrit/Z⊙ =

10−3, 10−4, 10−5, 10−6. This parameter rules the IMF used for each particle: in unpolluted

environments, for Z < Zcrit (population III regime), the IMF adopted is top-heavy in the

range [100, 500] M⊙; for Z > Zcrit (population II-I regime) a standard Salpeter IMF is

assumed.
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We summarize here our findings.

• The effect of the population III regime on the global star formation rate is negligible.

• The critical metallicity in star forming particles is reached relatively soon, so the

transition from population III to population II-I regime happens in a very short

period, after the onset of star formation (∼ 106 yr), because of the population III

stellar life-times.

• Population III regime is dominant only for a very short duration, immediately

after the onset of star formation; later on, almost irrespectively from the threshold

metallicity, population II-I sets in, giving contributions to the SFR of 2 or 3 orders

of magnitude higher than the population III one.

• Given the very local character of metal pollution, it is highly probable that population

III stars can be formed in isolated regions also at lower redshift.

• The average contribution to the SFR for different Zcrit is, anyway, distinguishable

with differences reaching about one order of magnitude.

• The filling factors for different Zcrit are very different and span more than a factor

7, among the four cases.
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Chapter 8

A model for the IMF

“Da quel punto
depende il cielo e tutta la natura.

Mira quel cerchio che più li è congiunto,
e sappi che ’l suo muovere è s̀ı tosto

per l’affocato amore ond’elli è punto.”

Dante, Paradiso

The IMF is a crucial quantity for any stellar system, as it describes the mass

distribution of its components. It can be regarded as sort of “initial conditions” of a

stellar system, determining its overall properties and time evolution (luminosity, colour,

chemical enrichment, etc.).

As we already said (see section 3.2), we do not know its exact form at high redshift, but

we have much clearer information at low redshift, in the local Universe, because of the

many observational evidences (see Figure 3.1).

In this chapter, a model describing the determination of the observed initial mass function

from turbulent cloud fragmentation will be presented. Our model relies on the assumption

that star formation is triggered by turbulent dissipation which allows for fragmentation

below the Jeans mass.

An analytic expression relating the energy spectrum of turbulence, E(k) ∝ k−α, to the

resulting shape of the IMF, φ(M), will be found: the high mass end has a predicted

behaviour φ(M) ∝ M−3+α/3, while the peak position depends on dissipation decay at

small masses.

Adopting a Kolmogorov spectrum corrected for intermittency effects, E(k) ∝ k−1.83, the

tail of the IMF goes like φ(M) ∝ M−2.39, with a peak arising at about 0.4 M⊙. A pure

shock spectrum implies the scaling φ(M) ∝ M−2.33, instead a magnetic field dominated

spectrum gives the scaling φ(M) ∝ M−2.5.
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8.1 Properties of the star forming regions

Given its relevance for our aims, in this section we will deal more in detail with the role

of the IMF, previously only mentioned (section 3.2).

Many different studies give nice overviews of the IMF and its connection with other

physical processes, but a true understanding remains still elusive. Some directions

of research have involved probabilistic or geometrical approaches (Auluck and Kothari,

1954; Larson, 1992; Elmegreen, 1997), fragmentation models based on temperature,

density, opacity and molecular weight variations (Takebe et al., 1962; Yoshii and Saio,

1985; Kanjilal and Basu, 1992), cloud internal motions (Arny, 1971), with or without

magnetic fields (Padoan, 1995), heat balance (Silk, 1977), Lagrangian formalism joined

to space parameter explorations (Ferrini et al., 1983, 1990), semi-empirical calculations

(Adams and Fatuzzo, 1996), random supersonic flows (Kolesnik and Ogul’Chanskii, 1990;

Padoan and Nordlund, 2002), accretion (Bate and Bonnell, 2005).

Broadly speaking, the process of star formation is commonly supposed to happen in

dense and cold regions of the interstellar medium, like molecular clouds. These sites are

rich in molecules (e.g., H2, CO, H2O, NH3, et cetera), have sizes between few parsecs and

hundreds of parsecs (giant molecular clouds), typical number densities of ∼ 103−105 cm−3

and temperatures T ∼ 10 K − 50 K. Smaller fragments within molecular clouds are

detected and their dimensions are inferred to be of the order of 10−2 pc, with masses of

∼ 0.1 M⊙. There are even smaller substructures reaching ∼ 0.01 M⊙, but they appear

to be completely gravitationally unbound (Langer et al., 1995). Velocity gradients are

observed (Pety and Falgarone, 2003) and they are interpreted as shear flows (as in the

dissipative regions of subsonic turbulence) or as low Mach number supersonic shocks

(Smith et al., 2000; Elmegreen and Scalo, 2004).

Analyses of spatial clustering properties of pre-main sequence stars exhibit self-similar or

fractal clustering on the largest scales, but there is a clear break at a scale of ∼ 0.04 pc,

corresponding to a mass-scale of ∼ 0.5 M⊙ (Gomez et al., 1993; Larson, 1995; Simon,

1997). This has been interpreted as a transition from a large-scale chaotic, turbulent

regime to a more regular coherent regime.

Indeed, the ISM seems to be very turbulent, also in locations not associated with stellar

activity.
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The first empirical evidences of a turbulent ISM date back to Scheuer (1968), who realized

how every small fluctuation of the ISM mean density can cause diffraction of radio waves

at scales of 0.01 − 0.1 pc and frequencies of 100 MHz. In this way he justified the

scintillation features observed in pulsar signals. For a statistical description of the ISM,

Lee and Jokipii (1976) proposed to adopt a turbulent Kolmogorov spectrum. Later, more

indirect probes of turbulence were found.

Studies of cosmic ray transport established the existence of ISM irregularities on scales

much smaller than 1 pc (up to some AU). However, it is not clear yet whether the

turbulence that scatters cosmic rays is part of an energy cascade from larger scales or is

only local (Scalo and Elmegreen, 2004, and references therein).

Different analyses are based on studies of abundance variations of field stars, cluster stars

and diffuse interstellar medium. These usually suggest very small metallicity fluctuations,

as the metallicity gradients are washed out by efficient turbulent mixing, at scales ranging

between 1 pc and 100 pc (Edmunds, 1975; Friel and Boesgaard, 1992, for example), or by

intermittency effects (Elmegreen and Scalo, 2004).

The last indirect way to probe interstellar turbulence is through its effects on chemistry,

like molecule formation and destruction. From such investigations, it seems that turbulent

diffusion can heavily affect many chemical species produced in molecular clouds, mainly

carbon-bearing species and H2-based intermediaries (Xie et al., 1995). With the help

of hydrodynamical turbulence simulations, including the relevant chemical network

(Pavlovski et al., 2002), it has been possible to recover the pattern of shells, filaments,

clumps and diffuse gas typical of the ISM and at the same time to give estimates for the

mixing time of abundances: they turned out to be fairly uniform after only 100 years.

An example of observed turbulence in the interstellar medium is given in Figure 8.1,

where a map of the Large Magellanic Cloud (LMC) with its evident turbulent patterns is

showed.

The global picture emerging from these numerous studies is that of an interstellar

medium (including molecular clouds and their substructures) whose behaviour is strongly

dominated by dynamical turbulent motions. Thus, star formation seems to happen in

clumpy, turbulent regions which are just transient objects forming, stretching, distorting

and dissolving in the large turbulent flow. Quasi-hydrostatic configurations cannot be
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Figure 8.1: Left panel: peak 21 cm neutral H surface brightness map (green) with overlaid Hα image (the
continuum subtracted) of the Large Magellanic Cloud (red). Right panel: position of supergiant shells (diameter
larger than 360 pc) overlaid as ellipses on peak 21 cm neutral H surface brightness map. Many smaller arcs,
bubbles and shells are evident. Pictures taken from Kim et al. (1999).

produced from turbulent fluctuations and pressure equilibrium is irrelevant for cloud

confinement or for their substructures, up to scale ∼ 10−2 pc (Ballesteros-Paredes et al.,

1999). The loss of turbulent energy and density substructure may trigger star formation

(Elmegreen, 1999) and may lead to the idea that the stellar initial mass function reflects

the state of the turbulent medium from which it originates.

In the next, we will show how it is possible to link the observed IMF with the features

of the ambient medium and how the turbulent initial state leaves its imprint on the final

outcome. In fact, we will present a statistical prediction whose main characteristic is

the dependence on the energy spectral distribution of turbulent motions in star forming

regions and we will write an easy analytical formula which is in very good agreement with

the current observational data.

In particular, in section 8.2, we discuss the interplay between turbulence and gravitational

instability; in section 8.3, we overview the statistical properties of turbulence (section

8.3.1) and show its connections with the IMF (section 8.3.2). We conclude discussing our

findings in section 8.4.

In appendix E, we revisit Jeans’s theory considering viscosity effects and their impact on
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the fragmentation of gas clouds.

8.2 Turbulence and fragmentation processes

The presence of turbulence as the probably dominant process in the ISM

(Elmegreen and Scalo, 2004; Scalo and Elmegreen, 2004; Mac Low and Klessen, 2004;

Burkert, 2006) introduces hard complications in the study of structure formation, because

of the lack of a satisfying basic understanding of this phenomenon in connection to

gravitational instability. This topic and its impact on structure formation and cloud

fragmentation has been commonly discussed since the 1940s (see the early works

by Weizsäcker, 1943; Chandrasekhar, 1949; Weizsäcker, 1951; Chandrasekhar, 1951a,b;

Sasao, 1973), but the very first study on the gravitational instability of gas nebulæ was

made by Jeans (1902). According to his arguments (see also section 2.2.1), a spherical

nebula can be gravitationally stable only if its dimensions do not exceed a critical value,

denoted as Jeans length λJ ≈ cs/
√
Gρ, with cs sound speed, G gravitational constant and

ρ average density of the medium. The collapsing wave-numbers k are only those whose

modulus k is below (2.18)

kJ ≡ 2

√
πGρ

cs
. (8.1)

In correspondence of the Jeans length, it is possible to define the Jeans mass as (2.20)

MJ =
4

3
πρ

(

λJ

2

)3

≈ π

6

c3s
G3/2ρ1/2

. (8.2)

When the mass is larger than the above critical value the gravitational force is stronger

than the gas pressure force and the nebula collapses. Jeans’s treatment considers only

gravity and gas pressure, but also other physical phenomena can be involved in the process.

Mestel (1965), Mouschovias (1976a,b), and Mouschovias and Spitzer (1976) calculated the

equivalent of MJ in the presence of a magentic field

Mcrit,B =
c315

3/2

48π2

B3

G3/2ρ2
(8.3)

where c1 ≃ 0.53, and B is the strength of the magnetic field.

Nowadays it seems that star forming regions in the local Universe are dominated by

turbulence, while at high redshift its role, as well as the one of magnetic fields, is

still unclear. So, it is worth exploring what the critical wave-number in the presence
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of viscosity, ν, is. Also in this case it is possible,via the Navier-Stokes equations (see

appendix E), to find a critical dissipation wave-number (and an equivalent length with

the same meaning as the Jeans length) given by

kd ≡ 2

(

πGρ

ν2

)1/4

(8.4)

and to define the corresponding “collapsing dissipation mass”, Md, as the minimum mass

needed for the gas to collapse, in the presence of viscosity. This means that turbulent gas

fragments with masses smaller that Md are expected to be gravitationally unbound.

For number densities of ∼ 103 − 104 cm−3 and an average, global viscosity of the cloud

ν ∼ 1016 cm2s−1 (Elmegreen and Scalo, 2004), it is found kd ∼ (2 − 4) · 10−15 cm−1.

The scales associated with kd (of the order of ∼ 1015 cm, the size of accretion disks

around protostars) are much smaller than the Jeans length (for the same densities and

temperatures, one gets cs ∼ 105 cm/s and λJ ∼ 1018 − 1019 cm, typical sizes of molecular

clouds), but the dissipation time is comparable to the free-fall time (see appendix E).

This means that, if turbulence is the leading process of the ISM dynamics, we expect

to find – and they are found – gas clouds hosting much smaller fragments, because the

limiting scale due to viscous dissipation is well below the usual Jeans length (by three to

four orders of magnitude).

Such considerations are extremely helpful for our general understanding of the

fragmentation process and will lead our investigations in the next sections.

8.3 Turbulence and IMF

Strictly speaking, turbulence arises from the non-linear, advection term, (u ·∇)u, and the

dissipative term, ν∇2u, in the equations of motion (Navier-Stokes equations) for a fluid

medium whose velocity field is u and viscosity is ν.

The (adimensional) Reynolds number quantifies the effects of viscosity with respect to

the ”inertia forces” and can be estimated as:

R ≡ ‖ (u · ∇)u ‖
‖ ν∇2u ‖ ∼ ul

ν
, (8.5)

where l is the scale and u the modulus of turbulent velocity at that scale. The

characteristic dimension of the system will be denoted by l0 and the initial (large-scale)

Reynolds number will be R0 = u0l0/ν. When R tends to zero the system is viscosity
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Figure 8.2: Schematic representation of the energy cascade process: energy is transferred from the largest (l0)
to the smallest (η, in the scheme correspond to ld in the text) scales cascading through the intermediate scales.
At each step, n, the typical scale rnl0 is smaller than the previous one by a fraction r. After Frisch (1996).

dominated, while when R≫ 1 the advection term dominates and the influence of viscous

forces is negligible. The scale for which R = 1 is called dissipation scale, ld, and kd ≡ 1/ld

is the dissipation wave-number in the Fourier space.

In the cool ISM, it is now well established that the Reynolds number assumes values

between 105 and 107 and that the injection scale l0 is ∼ 102 pc, ranging from several tens

of parsecs (Armstrong et al., 1995) up to 500 pc (Cordes et al., 1985).

We expect that, if a statistical equilibrium among the different turbulent modes exists,

it will be at scales ld ≪ l ≪ l0, or k0 ≪ k ≪ kd (inertial range) and the transport

of energy will become independent of the exact details of viscosity forces. According to

Kolmogorov’s hypotheses of similarity (Kolmogorov, 1941a,b), the viscous dissipation at

small scales is fed by inertial transfer of energy at larger scales. This is often referred to as

“disorder hypothesis” (Weizsäcker, 1948). The whole process is called “cascade process”

(Onsager, 1945) and a schematic view is presented in Figure 8.2.

In the Fourier space, this means requiring that different Fourier modes are independent.

From the above hypothesis it follows that du2/dt is constant and l ∝ u3. Thus equation
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(8.5) gives

R =

(

l

ld

)4/3

=

(

k

kd

)−4/3

. (8.6)

From dimensional analyses, it follows that ld ≈ (ν3/ǫ)1/4, where ν is viscosity and ǫ is

the energy transfer rate, i.e. the energy transferred from large scales to smaller scales

per unit time and divided by the total mass of the system; its dimensions are [L2T−3].

A quantitative analysis for a typical cloud having R ∼ 107 and l0 ∼ 102 pc leads to

ld ∼ 1015 cm, similar to what we expect from equation (8.4). Such apparent “coincidence”

suggests that the interplay between gravity and viscosity is very tight, as the structures

collapsing because of gravitational instability in viscous media (see again appendix E)

turn out to be also the most dissipative structures.

Despite these idealizations, in reality turbulence is not uniformly distributed, but shows

clear spatial and temporal intermittency effects: regions particularly active coexist with

regions completely inactive. In the following, we will consider also this problem and show

how to deal with it, statistically.

We will clarify the basics of the statistical treatment of turbulence in section 8.3.1 and

we will show the connections with the IMF in section 8.3.2.

8.3.1 Treatment of turbulence

Studies of turbulence based on a statistical approach started with Taylor (1921) Taylor

(1935), von Kármán (1937), von Kármán and T. Howarth (1938), Millionshtchikov

(1939), Obukhov (1941), Kolmogorov (1941a,b). These authors put the bases for the

standard mathematical formalism which is commonly adopted.

Let us define the velocity correlation tensor and the energy tensor.

The velocity correlation tensor correlates different turbulent velocity components – say

the i-th and the j-th – at two different points x and x + r according to

Rij(r) ≡ ui(x)uj(x + r), (8.7)

where i and j assume values from 1 to 3 and the over-line indicates the time1 average.

The energy tensor is the tensor whose components are the Fourier transforms of Rij(r):

Φij(k) ≡ 1

(2π)3

∫

Rij(r)e
−ik·rd3r, (8.8)

1 In virtue of the ergodic hypothesis, time averages are equivalent to space averages.
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the integral being extended over the whole space.

To specify the two tensors, further assumptions are required: we will assume homogeneity

and isotropy of turbulence.

Mathematically, homogeneity and isotropy of the tensorial components Rij(r) and Φij(k)

means that, at each point of the turbulent field, they must not depend on any direction,

or, in other words, they can take, as only argument, r = ‖ r ‖ and k = ‖ k ‖, respectively.

Under this assumption, they can be written in the following way

(von Kármán and T. Howarth, 1938):

Rij(r) = u2

[

f(r) − g(r)

r2
rirj + g(r)δij

]

(8.9)

Φij(r) =
E(k)

4πk4

(

k2δij − kikj

)

(8.10)

with δij Kronecker’s delta, u2 mean square velocity, g(r) = f(r) + 1
2
rf ′(r) because of

the continuity equation, f(r) and E(k) scalar functions. The former function is related

to the correlation component parallel to the motion of the fluid and must be determined

from experiments; the latter is related to the turbulent kinetic energy at any given point

x. Taking the trace of Rij(r) and Φij(k),

3

2
u2 =

1

2
ui(x)ui(x)=

1

2
Rii(0)=

1

2

∫

Φii(k)d
3k=

∫

E(k)dk. (8.11)

Because of this relation, E(k) is called energy spectrum. We stress that homogeneity

allows us to specify the two tensors with only one scalar function in real space and Fourier

space, respectively. In addition, for the evolution of statistical properties of turbulence,

the general dynamics of decay predicts a change of total energy described by (Batchelor,

1953):
d

dt

3

2
u2 =

d

dt

1

2
ui(x)ui(x) = −2ν

∫

E(k)k2dk (8.12)

and implies an energy loss proportional to the viscosity and dependent on the energy

spectrum. Relation (8.12) does not rely upon any particular assumption, it just follows

from homogeneity and the Navier-Stokes equations. It tells us that viscosity is the main

source of dissipation, while pressure and inertia forces redistribute energy, but conserve

it. We also notice that E(k) is defined in the unidimensional wave-space – see equation

(8.11) – so, a fortiori, in relation (8.12), the k2 has a physically very relevant meaning,

since it reflects the Laplacian of the viscosity term in the Navier-Stokes equations. The
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energy dissipated per unit time and per wave-number interval is

ε(k) ≡ − d2

dtdk

3

2
u2 = 2νE(k)k2. (8.13)

This means that the dissipation is overall determined by the energy dispersion (flux)

around the origin of wave-numbers and this process is faster and more efficient for small

scales than for large scales, when the energy spectrum E(k) has a slope greater than −2.

Other useful quantities are the structure functions defined as

Sp(r) ≡ ‖ u(x) − u(x + r) ‖p . (8.14)

For homogeneous turbulence, it is typically assumed

Sp(r) ∼ rζp (8.15)

where the scaling ζp depends on the order p of the structure function considered. In

particular, S2 has an important physical meaning, as it is directly connected to the energy

spectrum by

S2(r) = 4

∫

E(k)

(

1 − sin kr

kr

)

dk ∼ rζ2. (8.16)

If the spectrum can be written as E(k) ∝ k−α,

α = 1 + ζ2. (8.17)

Kolmogorov’s model (Kolmogorov, 1941a,b) predicts the energy spectrum to be E(k) =

C (ǫ)2/3 k−5/3, where C is a constant of the order of unity2 and ǫ the energy transfer

rate; the corresponding energy dissipation per unit time and wave-number interval, ε(k),

is proportional to k1/3. The scaling for the structure functions is ζp = p/3. The

measured values are consistent with the expectations for low p and with the exact

result ζ3 = 1 (von Kármán and T. Howarth, 1938; Frisch, 1996), but exhibit non simple

scaling at p > 3. That is due to intermittency effects, which determine departures

from homogeneity and isotropy (Falgarone and Phillips, 1990; Rickett and Coles, 2004;

Falgarone et al., 2005), so appropriate corrections must be taken into account. In case of

shocks (which can easily arise in a supersonic medium), E(k) ∝ k−2 and ε(k) is constant,

independently of the wave-number.

In the ISM and in molecular clouds, supersonic events are detected, but, globally, the

2 Normalization: C = 3/2 (Kolmogorov, 1941b) (nowadays estimated C ≃1.4).
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Table 8.1: Power spectrum slope, β, and derived energy spectrum slope, α = β/2, according to measurements
by different authors. In the header, P (k) is the power spectrum and E(k) is the energy spectrum. A Kolmogorov
energy spectrum predicts α = 5/3 ≃ 1.67.

References P (k) ∝ k−β E(k) ∝ k−α

Lovelace et al. (1970) β ≃ 4 α ≃ 2
Pynzar et al. (1975) 3.4 6 β 6 4.0 1.7 6 α 6 2
Rickett (1977) β > 3.5 α > 1.75
Armstrong and Rickett (1981) 3.6 6 β 6 3.9 1.8 6 α 6 1.95
Armstrong et al. (1981) β = 3.7 ± 0.6 α = 1.9 ± 0.3
Cordes et al. (1985) β = 3.63 ± 0.20 α = 1.82 ± 0.10
Wilkinson et al. (1988) β = 3.88 ± 0.05 α = 1.94 ± 0.03
Spangler and Gwinn (1990) 11/3 6 β 6 4 5/3 6 α 6 2
Bhat et al. (1999) 11/3 6 β 6 3.8 5/3 6 α 6 1.9
Stinebring et al. (2000) 3.5 < β < 3.7 1.75 < α < 1.85
Shishov et al. (2003) β = 3.5 ± 0.05 α = 1.75 ± 0.03

***

observed power spectrum (squared modulus of the energy spectrum) seems to be much

more compatible with a Kolmogorov one: some observational values for the slope of the

power and energy spectra are summarized in Table 8.1. The values commonly obtained

are in agreement with a cascade slope accounting for intermittency effects.

Indeed, fractal energy cascade models in fully developed homogeneous turbulence

(She and Lévêque, 1994; She and Waymire, 1995) correct the Kolmogorov spectrum

by some percents, according to a formula which, maintaining the same formalism as

She and Lévêque (1994)’s, we re-write as

ζp =
p

9
+ C0

[

1 −
(

1 − 2

3C0

)p/3
]

(8.18)

being C0 = 3−D the co-dimension, and D the fractal dimension3 of the most dissipative

structures. It refers to a cascade model based on a 2-possibility Poisson distribution for

the intermittent transfer of turbulent energy as a function of the scale. In our scenario,

star formation events in clouds are rare, random phenomena triggered by turbulence.

Therefore the Poisson statistics seems particularly well suited to describe them.

For singular, point-like dissipation, D = 0, C0 = 3, and, using equation (8.17), α ≃ 1.685,

3 The fractal dimension, D, of a set of replicable, self-similar structures (also called similarity dimension) is defined via
the limiting process

D ≡
ln N

ln(1/r)
= lim

k→∞

lnNk

ln(1/r)k
(8.19)

where N is the number of substructures at each replication level, 1/r is the similarity ratio and k is the number of replications.
The fractal dimension is always larger or equal to the usual topological dimension (Mandelbrot, 1982, chapter 6).
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very close to Komogorov’s 5/3. Dissipation happening in filamentary vortices, D = 1,

would lead to C0 = 2, and α ≃ 1.696, less than 2% larger than Kolmogorov’s expectations.

For ribbon or sheet-like dissipative structures, D = 2, C0 = 1, and α ≃ 1.741, i.e. 4%

larger than in the Kolmogorov case.

For the diffuse ISM, D ≃ 1.4 and α ≃ 1.705. Conversely, detailed measurements

in the most dissipative regions suggest D ≃ 2.3 (Elmegreen and Elmegreen, 2001;

Chappell and Scalo, 2001) and α ≃ 1.830. This fractal dimension implies a slope almost

10% bigger than 5/3 and corresponds to roughly disordered, sheet-like (“flake”) processes

(Mandelbrot, 1982, chapters 2, 28, 32, for example).

Such formalism allows for a description of statistical properties of turbulence and a link

to observable quantities, namely the energy spectrum, its slope and the fractal dimension

of the turbulent system considered.

8.3.2 Connection to the IMF

What we want to do, now, is to consider the effects of turbulence on the scenario of

structure formation and check their impact on the shaping of the initial mass function.

According to equation (8.13), viscosity is the main source of energy dissipation in a

turbulent environment. In order to form any object, it is fundamental that the gas

condenses and this happens only if its kinetic energy is lost. In fact, star formation is

supposed to take place through collapse of overdense gas and accretion disks, where the

energy is dissipated by friction and viscosity. This partially heats up the surrounding

regions, partially allows for condensation towards the central part of the disk. So, the

more energy gets dissipated the higher the probability to form stars. Therefore, it is

possible to assume that structure formation is regulated by the energy dissipation in the

turbulent flow. In a mathematical form this translates into the assumption that the total

mass of forming stars, m⋆, follows

dm⋆ ∝ ε(k)dk. (8.20)

This is consistent with observational and numerical studies of the ISM which point out

the importance of the loss of turbulent energy and its probable connection with the IMF

(Ballesteros-Paredes et al., 1999; Elmegreen, 1999) .

In this picture, turbulence rules the collapse produced in the dense and dissipative regions,
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which are supposed to be transient entities, neither confined by thermal or inter-cloud

pressure, nor resulting from gravitational instabilities. The ability of non-gravitating

turbulence to fragment the ISM and the giant molecular clouds down to stellar masses (or

below) introduces the concept of “turbulent fragmentation” (Kolesnik and Ogul’Chanskii,

1990). Then, lumps and clouds are supposed to be formed, distorted, dissolved or

disrupted by turbulent activities and the hierarchy of structures.

Hereafter, we derive an expression for the initial mass distribution assuming the validity

of equation (8.20).

The number fraction of objects formed at a given mass scale (∼ k−3) can be written as

df ∝ ε(k)

k−3
dk (8.21)

and normalized via
df

dk
=

ε(k)k3

∫

ε(k)k3dk
=

E(k)k5

∫

E(k)k5dk
. (8.22)

The calculation of this quantity requires a specification of an energy power spectrum

E(k). To generalize, we will write E(k) ∝ k−α, defined in the range between k0 = 1/l0

and kd = 1/ld, usually with kd ≫ k0. Integrating the denominator in equation (8.22), one

gets

df

dk
=

−α + 6

kd

(

k

kd

)−α+5
1

1 − (ko/kd)−α+6
(8.23)

with the asymptotic relation

df

dk

kd≫k0∼ −α + 6

kd

(

k

kd

)−α+5

(8.24)

valid for (−α + 6) > 0. The ratio k0/kd is related to the Reynolds number trough (8.6).

To derive φ(M), equations (8.23) and (8.24) need to be written as a function of the mass.

This can be done by differentiating the usual relation

M = sρk−3, (8.25)

with s a numeric factor depending on the shape of the fragments and the exact definition

for the length-scale, l (e.g., for l ≡ 1/k and spherical symmetry, it holds s = 4π/3) and

ρ the mean mass density of the medium. We get

df

dM
=

1

| − 3sρk−4|
df

dk
(8.26)
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and

φ(M) =
−α + 6

3Md

(

M

Md

)−3+α/3
1

1 − (M0/Md)−2+α/3
(8.27)

with M0 and Md the masses at the scales l0 and ld, respectively. Exploiting relations (8.5)

and (8.6), we obtain

φ(M) =
−α + 6

3Md

(

M

Md

)−3+α/3
1

1 −R
−3(6−α)/4
0

. (8.28)

and, asymptotically,

φ(M)
R0≫1∼ −α + 6

3Md

(

M

Md

)−3+α/3

. (8.29)

In these formulæ, the factors 3 at the denominator and 1/3 in the exponent come from

the scaling of M as the cube of length, while Md is the reference mass. In the ISM

there is evidence for small clumps down to scales of (2 − 3) · 10−2 pc, containing

typical masses between about 0.1 M⊙ and 0.3 M⊙ (Gomez et al., 1993; Langer et al.,

1995; Elmegreen and Scalo, 2004). As already mentioned, much smaller fragments exist,

but they are gravitationally unbound by a large factor (Langer et al., 1995). In light

of our considerations on formula (8.4), the minimum mass for collapse, in the presence

of viscosity (the collapsing dissipation mass), must be of the same order of the smallest

bound clumps, therefore, we guess Md ∼ 0.2 M⊙.

So far, we have not considered the decay of the energy spectrum while the star formation

process takes place, but this can affect the resulting IMF. In the following, we will discuss

this issue. For large wave-numbers (k ≈ kd) leading the global decay, the equations of

motion are determined by viscous dissipation:

∂u

∂t
≃ ν∇2u. (8.30)

Solving in the Fourier space, equation (8.30) implies an exponential time decay of the

velocity field ∼ e−νk2t and of the power spectrum

E(k, t) = E(k, 0)e−2νk2t (8.31)

because of the relations (8.8 - 8.11). The time t is the life-time of the turbulent

system and E(k, 0) is the initial energy spectrum (Kolmogorov spectrum, shock spectrum,

intermittent spectrum etc., depending on the particular situation).

Equation (8.22) assumes the form

df

dk
=

E(k, 0)k5e−2νk2t

∫

E(k, 0)k5e−2νk2tdk
(8.32)
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and, as a consequence,

φ(M) =
(M/Md)

−3+α/3e−2νk2
dt(M/Md)−2/3

Md

∫

x−3+α/3e−2νk2
dtx−2/3

dx
(8.33)

with x = M/Md integration variable. The exponential cut-off influences small mass-scales

and generates a peak proportional to Md,

Mpeak =

(

4νk2
dt

9 − α

)3/2

Md. (8.34)

In the limit of large mass-scales (M ≫ Mpeak), the exponential factor approaches unity

asymptotically and the foreseen power law tail −3 + α/3 of equations (8.27) and (8.28)

is recovered.

In our calculations we use α = 1.83, because this is the value obtained including

intermittency corrections to the Kolmogorov energy spectrum, for the typical fractal

dimension observed in dissipative regions of molecular clouds (D = 2.3). The value

adopted for viscosity is ν = 1016 cm2s−1 (Elmegreen and Scalo, 2004), compatible with

a cloud of temperature ∼ 50 K and average number density ∼ 104 cm−3. The most

clumpy and dissipating regions are suggested to be at scales of order of several tens of

AU (Armstrong et al., 1995). Moreover, it seems that formation of protostars happens on

very viscous accretion disks, whose size is comparable with the one of our Solar System.

This is consistent with the outcome of gravitational instability in dissipative media – see

equation (8.4) and appendix E – as well, so kd = 3 · 10−15 cm−1 and Md = 0.2 M⊙. The

turbulence life-time is assumed to be t = 106 yr, as in the solar neighborhood almost all

the molecular clouds appear to host star formation activity and to have an age smaller

than few Myrs (Burkert, 2006).

A plot showing the behaviour of φ(M) is presented in Figure 8.3. The peak is located

at Mpeak ≃ 1.989 Md ≃ 0.398 M⊙. The power-law trend of the tail is φ(M) ∼ M−2.39

and it is followed down to about 1 M⊙, where the curve starts deviating towards the peak.

The overall behaviour is φ(M) ∝ M−2.39e−5.67(M/Md)−2/3
. In the smaller inset, we also plot

the predictions for an IMF computed with a shock index, α = 2, and a pure Kolmogorov

index, α = 5/3, which are very similar.

The results are fully consistent with the observed flattening at the low mass end and the

observed fall-off below 0.1 M⊙ (Basri and Marcy, 1997).
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Figure 8.3: Predicted initial mass function, normalized to its peak value, for a turbulent cloud having α = 1.83,
ν = 1016 cm2s−1, kd = 3 · 10−15 cm−1, Md = 0.2 M⊙ and t = 106 yr. The peak is located at

Mpeak ≃ 1.989 Md ≃ 0.398 M⊙ and the overall behaviour of the curve is φ(M) ∝ M−2.39e−5.67(M/Md)−2/3

.
In the inset, a zoom of the high mass end is plotted for the three cases: α = 1.83 and φ(M) ∼ M−2.39 (solid
line); α = 2 and φ(M) ∼ M−2.33 (dashed line); α = 5/3 and φ(M) ∼ M−2.44 (dotted line).

8.4 Discussion

The derivation of (8.27), (8.28) and (8.29) holds for (−α+ 6) > 0 and relies on equations

(8.12) and (8.13), representing the amount of energy dissipated by viscosity under quite

general conditions (the only hypothesis is homogeneity). The derivation of (8.33) extends

the same treatment in order to consider also the time decay of small scales during the

turbulent process.

There is no dependence of φ(M) on the exact shape of the fragments and weak dependence

on the global dimension of the turbulent system, as l0 appears only via M0 or R0

in equations (8.27) and (8.28). Nonetheless, the IMF keeps memory of the triggering

turbulent medium from which it is originated through α, the turbulence energy spectral

index, which regulates the power law behaviour of the mass distribution. On the low mass

end, the relevant physical quantity is the dissipation scale: lengths comparable to ld get

dissipated and decay, so do not have time to host star formation and at the same time

the energy spectrum is suppressed (see appendix E). This produces a cut in the mass

distribution due to the fact that after some million years (observed typical time-scales of
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star forming regions) “small” scales are rarer and rarer.

We notice the peak scale, given by Md, is a function of the environment, so, for star

formation happening in molecular clouds with similar physical conditions, we expect

to find the same IMF (and indeed it is what observations find locally). However, star

formation episodes in extremely different situations will be described by a different IMF.

For instance, in much denser regions (like in the high redshift Universe), where Md is

probably larger (assuming that ld is roughly the same), we will expect to find an IMF

shifted to higher masses: that would hidden a possible change of φ(M) with redshift.

As α is a sensitive quantity in our modeling, it is worth commenting on its determination.

Kolmogorov’s classical value of 5/3 provides a good description of turbulence in the inertial

regime, under the hypothesis of incompressibility, so it has some problems in describing

its intermittent character or the presence of shocks. In order to account for them, several

models have been developed proposing corrections (like β-models, fractal models, random

cascade models) and the value 5/3 is substituted with slightly higher values between

roughly ∼ 1.7 and 2. The pure Kolmogorov spectrum leads to φ(M) ∼ M−2.44, at

M > Mpeak, but different possible values for α suggest:

• α = 5/3 : φ(M) ∼M−2.44

• α ≃ 1.7 : φ(M) ∼M−2.43

• α ≃ 1.8 : φ(M) ∼M−2.40

• α ≃ 1.9 : φ(M) ∼M−2.36

• α ≃ 2.0 : φ(M) ∼M−2.33.

Among the many sofisticated intermittency models, we have considered the one by

She and Lévêque (1994): it is a cascade model based on a 2-possibility Poisson distribution

for the intermittent transfer of turbulent energy as a function of the scale. In our scenario,

star formation events in clouds are rare, random phenomena triggered by turbulence.

Therefore the Poisson statistics is particularly well suited to describe them. The expected

energy spectral index is α = 1.83, which implies φ(M) ∼ M−2.39, for the power law tail.

A pure shock spectrum, α = 2, would instead imply φ(M) ∼M−2.33.

Finally, we notice that often magnetic fields are observed: if they dominate the energetics,

the power slope would be α = 3/2 (Iroshnikov, 1963; Kraichnan, 1965) and the predicted
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IMF would scale as M−5/2.

The peak of the distribution is very weakly dependent on α, but depends linearly on

Md. We have estimated this value from the mass of the smallest observed gravitationally

bound structures which are supposed to undergo star formation through an accretion disk.

It has values of order of fractions of M⊙.

8.5 Summary

To summarize, we have shown how it is possible to bind baryonic structure formation

with the turbulent environment from which it is originated.

• Inclusion of viscosity – the source of turbulence – in the analysis of gravitational

instability (detailed calculations are in appendix E) clarifies why fragmentation of gas

clouds happens down to scales smaller than the usual Jeans length (which consider

only gravity and gas pressure).

• Relying on that, we have derived analytical predictions for the shape of the IMF

which are well in agreement with the observational data. Our modeling is based on

the assumption that star formation is triggered by viscous dissipation and it links

the turbulent energy spectrum of the medium with the slope of the IMF.

• In particular, we find that the spectral slope leads the behaviour of the mass function

at the high mass end, while at the low mass end there is a cut-off due to the decay of

small scales which have not got enough time to trigger star formation. The transition

between the two regimes is marked by the “collapsing dissipation mass”, Md: the

minimum mass able to collapse in viscous environments.

• The final formula we get is

φ(M) ∼ (M/Md)
−3+α/3e−2νk2

dt(M/Md)−2/3

(8.35)

where α, ν, kd and t are respectively the energy spectral slope, the viscosity, the

dissipation wave-number and the life-time of the turbulent cloud.
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• Using reasonable numbers and intermittency corrections for the most dissipative

regions, the energy spectrum scales like E(k) ∝ k−1.83 and the resulting IMF reads

φ(M) ∝ (M/Md)
−2.39e−5.67(M/Md)−2/3

, whose peak is at about twice the value of Md.
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Chapter 9

Conclusions

E quinci uscimmo a riveder le stelle

Dante, Inferno

In the present work a study of cosmological evolution of the Universe at very early times

has been presented. We have investigated the main features of high-redshift structure

formation and the transition from a primordial metal-free star formation regime to a

more standard, metal-enriched one.

In order to do that, we have implemented non-equilibrium molecule formation, which is

the only viable cooling mechanism in the early phases of the Universe, and metal fine-

structure transition effects, as, once the medium is polluted, metals are a more efficient

coolant (chapter 4).

The main results of our implementation are that H2 molecule is the most relevant one in

primordial environment. Other species, like HD, can influence high-redshift cosmic-gas

clumping properties at level of 10% − 20%, while low-temperature metal cooling has a

significant impact on the formation and evolution of cold objects (chapter 5).

We have applied our treatment to investigate the onset epoch of the cosmological star

formation, the enrichment history of the intergalactic medium and its possible interplay

with the transition from a primordial, massive star formation mode to a more standard

one, performing high-resolution, three-dimensional, N-body/SPH simulations. Star

formation prescriptions and feedback effects are considered – as “sub-grid” modeling –

above a given gas density threshold.

For a correct estimate of the onset of star formation, high-density thresholds are

necessary to follow the whole molecular cooling process, consisting of initial shock-heating,
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subsequent isothermal phase and final cooling branch (chapter 6). Different values of

the threshold and of the cosmological parameters can produce very different epochs of

the onset of star formation: with a low-density threshold (0.2 h2 cm−3) star formation

starts at z ∼ 25− 31 (depending on the cosmology), while high-density threshold models

(135 h2 cm−3) predict a much later onset, z ∼ 12 − 16 (depending on the cosmology).

Performing primordial, rare, high-density region simulations within the high-density

threshold model, we find that the local star formation can set in as early as z ∼ 48.

In addition, we have performed numerical simulations with the switch for a double initial

mass function, below and above a fixed critical metallicity Zcrit (chapter 7). We have

chosen Zcrit/Z⊙ = 10−3, 10−4, 10−5, 10−6. In unpolluted environments, for Z < Zcrit

(population III regime), the stellar mass function adopted is top-heavy, in the range

[100, 500] M⊙; for Z > Zcrit (population II-I regime) a standard Salpeter one is assumed.

We have found that the effect of population III regime on the global star formation rate is

negligible. The critical metallicity in star forming particles is reached relatively soon, so

the transition from population III to population II-I regime happens in a very short period,

after the onset of star formation (∼ 106 yr), because of the fast population III stellar life-

times. Population III regime is dominant only for such short period, immediately after

the onset of star formation; later on, almost irrespectively from the threshold metallicity,

population II-I sets in, giving contributions of 2 or 3 orders of magnitude higher than

the population III one. However, for the very local character of metal pollution, it

is probable that population III stars can be formed in isolated regions also at lower

redshift. The average contribution to the star formation rate for different Zcrit is, anyway,

distinguishable with differences reaching about one order of magnitude. The filling factors

for different Zcrit span a factor of about 7 or 8, among the different cases.

We have shown how it is possible to bind baryonic structure formation with the turbulent

environment from which it is originated developing an analytical model for the initial mass

function (chapter 8). We have derived analytical predictions which are well in agreement

with the observational data. In particular, our modeling is based on the assumption

that star formation is triggered by viscous dissipation and it links the turbulent energy

spectrum of the medium with the slope of the mass distribution. We find that the spectral

slope leads the behaviour of the mass function at the high-mass end, while at the low-mass

end there is a cut-off due to the decay of small scales which have not got enough time to
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trigger star formation. The final result is a Salpeter shape.
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Appendices





Appendix A

Cooling function

A.1 Definition of cooling function

Given a plasma made of different species, the cooling function of each species is defined

as

Λ =
∑

i>1

∑

06j<i

niAij∆Eij (A.1)

where ni is the energy level population (number density), the indices i and j run over

all the energy levels, Aij is the Einstein coefficient for the transition i → j and ∆Eij its

line emission. The cooling function of the plasma is just the sum of the cooling functions

relative to each species.

The hardest part in the calculations is the determination of the level populations, as often

the atomic or molecular data are not available (because unknown or badly determined)

and this can affect strongly the results, mostly at low densities.

In the following we will show how to properly compute Λ.

A.2 Statistical equilibrium of atoms and molecules

The first task here is the calculation of the level populations of particles, given the

temperature and the density. As in cosmic environments media are usually very rarefied

and the number of particles is extremely “low”, we cannot safely rely on the Boltzmann

distribution, but we must follow the detailed balancing principle. For each level i-th of

a given species, we impose that the probability per unit time per unit volume of the

transitions to that level (which populate it) equals the probability per unit time per unit
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volume of transitions from the same i-th level to other levels (which de− populate it):

∑

j

njPji = ni

∑

j

Pij (i 6= j) (A.2)

respectively. In formula (A.2), Pij is the probability of the transition i → j and ni and

nj are the number densities of atoms in the i-th and j-th (with i 6= j) level. A further

constraint which has to be satisfied is the number particle conservation:

∑

j

nj = ntot (A.3)

where ntot is the total number density of the species considered. In the general case of

N−level particles, one must solve the N × N system consisting of N − 1 independent

balancing equations (A.2) and the constraint of particle conservation (A.3):








1 1 . . . 1
p21 p22 . . . p2N
...

...
. . .

...
pN1 pN2 . . . pNN

















n1

n2
...
nN









=









ntot

0
...
0









(A.4)

with i, j = 1, 2, 3, . . . , N and the matrix elements pij related the probability per unit time

of the transition i− j. In (A.4), the first line is the constraint of particle conservation and

the rest the balancing equations. The elements with i < j describe the de-excitations,

the diagonal elements (i = j) all the possible transitions from the level i to the other

levels and the elements with i > j describe the excitations of the levels.

The next step is to calculate the transition probabilities to substitute in (A.2) and (A.4).

A.2.1 Collisional rates

Let us consider two-body interactions: σijudt is the probability over volume V to have

collisional events leading to the level transition i → j, experienced in a time interval dt

by one particle, a, moving with a relative velocity u against a colliding particle, x. Here

σij is the cross section for the process.

If Nx is the number of colliding particles in V , then the total number of events experienced

by one particle a in the interval dt is NxdPij , with

dPij =
〈σiju〉dt

V
, (A.5)

where the collision probability has been averaged over the particle velocity distribution1.

When we consider Ni particles of type a in the atomic state i interacting with Nx particles,
1 We remind that the cross section is typically energy (velocity) dependent.
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the total number of events per unit time and volume is simply

NiNx

V

dPij

dt
= ninxV

dPij

dt
= ninx〈σijv〉, (A.6)

being ni and nx the particle number densities of species a in the level i and of species x,

respectively.

At any temperature T , the collisional rate for the atomic transition i → j, with i < j

(excitation), caused by two-body scattering is defined as

γij ≡ 〈uσij〉 =

∫

uσijf(u)d3u, (A.7)

where the integral is done over all the velocity space and f(u)d3u is the velocity

distribution function of the particles. The quantity γij is the probability per unit time of

one given process multiplied by the volume. It is independent from the number density of

the particles considered, but depends on the temperature of the medium (via the velocity

distribution). If we assume a Maxwellian velocity distribution,

f(u)d3u =

(

m

2πkBT

)3/2

e
− mu2

2kBT 4πu2du, (A.8)

and define

σij ≡
π

gi

(

h

2πmu

)2

Ωij =
π

gi

(

~

mu

)2

Ωij , (A.9)

where m is the mass of the colliding particles and gi the multiplicity of the i-th level,

substituting the previous two relations in (A.7) and integrating, it is obtained

γij =
h2

gi(2πm)3/2
√
kBT

Ωij =
~

2

gim3/2

√

2π

kBT
Ωij . (A.10)

Via definition (A.9), the rate coefficients are related to a dimensionless parameter (the

collision strength Ωij) accounting for the deviations of the cross section from a section

having a radius approximatively equal to the De Broglie wavelength. For many common

transitions, it is of the order of unity. In case of electron impacts, a typical number for

the rate is

γij ≃ 8.629 · 10−6 Ωij

gi

√
T

cm3s−1 (A.11)

with some temperature dependence for Ωij .

Once γij is known, it is also possible to compute the reverse process rates γji using the

thermodynamic limit: this means that if we write the steady state collisional equilibrium
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Figure A.1: Fractional level populations as a function of temperature T resulting from collisions between CII
atoms (2 level system) and hydrogen atoms. Left panel: the two fractional level populations are plotted assuming a
Boltzmann distribution (dashed line) and the low-density limit (solid line). The first and second level populations
expected by the Boltzmann predictions are denoted by 1B and 2B, respectively, while the ones expected in the
low-density regime are denoted by 1ld and 2ld, respectively. The colliding hydrogen number density is 0.6 cm−3.
Right panel: fractional level population ratio, n2/n1, as a function of temperature T . The CII number density is
kept constant at 1 cm−3 and colliding particle number densities ranging from 10−3 cm−3 up to 105 cm−3, with a
one order of magnitude step, are assumed. The dashed line is the Boltzmann prediction.

including excitations and spontaneous decay between levels i and j, with i < j and Aji

probability per unit time of the decay (Einstein A coefficient), it is found

ninxγij = njnxγji + njAji. (A.12)

In the high-density limit, njnxγji ≫ njAji, or, equivalently, nx ≫ Aji/γji ≡ ncr,ji,

equation (A.12) becomes
γij

γji
=
nj

ni
. (A.13)

As, in the high-density limit, the level population follows a Boltzmann distribution:

γijgi = γjigje
−β∆Eji (A.14)

where β = (kBT )−1 and ∆Eji is the energy level separation. The previous relation is

supposed to be valid in any density regime (transition probabilities do not depend on the

densities - see definition) and is only temperature dependent. Therefore, we can use the

relation (A.14) in (A.12) and get

nj

ni
=
gj

gi
e−β∆Eji

1

1 + ncr,ji/nx
. (A.15)
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This shows that in low-density environments (nx 6 ncr,ji or in general nx ∼ ncr,ji) the

levels are less populated than in the Boltzmann case of a factor depending on the critical

density (i.e. the particular atomic properties) of the individual atoms.

Figure A.1 shows, as an example, the deviations from the Boltzmann distribution (dashed

line in the plot) of the level populations of CII interacting with H-atoms and the

transition from a low-density regime to a collisional regime when the level populations

become independent from the colliding particle number density and are simply ruled by

the Boltzmann distribution. In this case, the transition occurs at densities of about

104 − 105 cm−3, as the critical density is ncr = 3 · 104(T/100K)−0.07 cm−3.

A.2.2 Radiative rates

A very similar problem is the rate calculations when we consider ionization and

recombination of atoms or, in general, photon interactions, like H2+γ → 2H, where γ

denotes the photon and H and H2 the hydrogen atom and molecule, respectively. Similar

processes are ionizations and recombinations of atoms or molecules and effects of radiation

in the presence of radiative fields. The simplest and most general case is of type

a + γ → b. (A.16)

We want to write an equation equivalent to (A.6) and to compute the corresponding

rate, as in (A.7), considering that the photon number density and the cross section are

frequency dependent. So, we consider the number of events for each photon frequency

and eventually integrate over the whole spectrum.

Let us indicate with J(ν) the spectral distribution of the photons – in

[erg cm−2 s−1 Hz−1 sr−1]; the energy density is given by the integral over the solid angle

according to

u(ν) =

∫

dΩ

c
J(ν,Ω) [erg cm−3Hz−1] (A.17)

with dΩ differential of the solid angle. The number of photons of a given frequency ν per

second, per unit frequency, per solid angle, passing through a surface orthogonal to the

beam, Σ, is then

nΣ(ν,Ω) =
J(ν,Ω)

hν
Σ [s−1 Hz−1 sr−1]. (A.18)

The probability of each photon having frequency ν to interact with the species a is

σaγ(ν)/Σ, being σaγ(ν) the cross section for the process as a function of ν. This means
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that at that frequency the number of photons interacting with one particle a per unit

time, per unit frequency, per solid angle is

nint(ν,Ω) = nΣ(ν,Ω)
σaγ(ν)

Σ
[s−1 Hz−1 sr−1]. (A.19)

The radiative rate kaγ is obtained integrating nint(ν,Ω) over all frequencies and directions.

From (A.19), it results

kaγ =

∫ ∫

nΣ(ν,Ω)
σaγ(ν)

Σ
dνdΩ [s−1]. (A.20)

Assuming that σaγ does not depend on Ω and using (A.18) and (A.17), the above equation

becomes

kaγ =

∫ ∫

J(ν,Ω)

hν
σaγ(ν)dνdΩ = c

∫

u(ν)

hν
σaγ(ν)dν. (A.21)

If all the quantities in the integral are orientation independent

kaγ = 4π

∫

J(ν)

hν
σaγ(ν)dν [s−1]. (A.22)

The number of interactions per unit time per unit volume with na atoms is

nakaγ [cm−3 s−1] (A.23)

being na the number density of the species a. This last expression (A.23) is equivalent to

the expression (A.6), valid for collisional events.

A.2.3 General expressions

We define the average value of a generical physical quantity f(ν) over the photon spectral

distribution as follows:

〈f〉 ≡
∫ ∫

dΩ

c

J(ν,Ω)

hν
f(ν)dν =

∫

u(ν)

hν
f(ν)dν. (A.24)

We notice that the ratio between the energy density u(ν) and the energetic quantum hν

nγ(ν) =
u(ν)

hν
(A.25)

simply gives the photon number density. Averaging the quantity σaγc, the radiative rate

kaγ of (A.21) becomes

kaγ = 〈cnγσaγ〉. (A.26)
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Formally, there is a similarity for the number of collisional interactions per unit time and

unit volume (A.6)

ni〈nxσijv〉 = ninx〈σijv〉 (A.27)

and the number of radiative absorptions per unit time and unit volume

na〈nγσaγc〉 = na〈nγσaγ〉c (A.28)

obtained from equations (A.21), (A.23) and (A.26), being the weight functions the velocity

distribution of the colliding particles, in the former case, and the spectral number density

distribution of the photons, in the latter case.
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Appendix B

Star formation rate indicators

B.1 Stellar luminosities and star formation

The main indicators for galactic star formation rate are the UV continuum, far-infrared

continuum, Hα Balmer 3 − 2 recombination line and [OII]λ3727 forbidden line. We

indicate the respective luminosities with LUV,LFIR,LHα,LOII. Their connection to the

star formation rate (SFR) is summarized by the following classical relations (Kennicutt,

1998):

• SFR [M⊙ yr−1] = 1.4 · 10−28LUV [erg s−1 Hz−1]

• SFR [M⊙ yr−1] = 4.5 · 10−44LFIR [erg s−1] (starbusts)

• SFR [M⊙ yr−1] = 7.9 · 10−42LHα [erg s−1]

• SFR [M⊙ yr−1] = (1.4 ± 0.4) · 10−41 LOII [erg s−1]

They are qualitatively understood in terms of the impact of star formation on the

surroundings and calibrated using stellar population synthesis models with a Salpeter

IMF.

The SFR − LUV relation is justified by the fact that usually massive stars evolve very

rapidly and emit in the UV. Therefore LUV is a measure of the number of massive, young

stars formed and is related, via the assumed IMF, to the total amount of stars formed.

The UV emission from other low-mass stars is negligible, as their contribution peaks in

the visible. Uncertainties derive from dust extinction which causes underestimations of

LUV.

The SFR − LFIR relation is still related to massive, young stars, whose UV-visible
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luminosity is easily absorbed from dust and re-emitted, via photoelectric effect, in the

far-infrared (8 − 1000µm, though for starbust most of the emission falls in the range

10 − 120µm). The scatter of this relation is essentially due to the contamination from

low-mass stars, as they can emit in the same wavelength. Non the less, this is probably

the best relation to quantify the SFR.

The SFR − LHα relation is another way to probe young, massive stellar populations.

In fact, the integrated stellar luminosity is re-emitted by many nebular lines (not only

Balmer Hα, but also Hβ, Pα, Pβ, Brα, Brβ). The contribution to the ionizing flux arising

during star formation is strongly dominated by massive (M > 10M⊙), young stars, so

recombination lines provide a nearly instantaneous measure of the SFR.

The SFR − LOII relation is important to estimate SFR of distant (redshift z > 0.5)

galaxies, as the OII forbidden-line doublet gives the strongest emission in the blue and

can be observed in the visible out to z ∼ 1.6 (where the wavelength is redshifted to about

9690Å). The calibration of the SFR from LOII is done using Hα emission, therefore, the

SFR − LOII relation inherits the same IMF dependence as SFR − LHα relation.

Additional indicators can be molecules, like CO, which are easily created in cool,

star forming regions: in these cases the situation is much more complicated, as the

ratio R between luminosity and star formation depends on the molecular rotational level

considered. An example is shown in Figure B.1, where the distribution of R ratios is

plotted against the upper rotational quantum number, as inferred for many astrophysical

sources (Righi et al., 2008).

B.2 Schmidt law

In disk galaxies, the surface star formation rate is best-fitted by a power law of the surface

gas density (Schmidt law):

ΣSFR = (2.5 ± 0.7) · 10−4

(

Σgas

M⊙ pc−2

)1.4±0.15

[M⊙ yr−1 kpc−2].

Detailed theoretical explanations of this relation are still missing. Some observational data

are showed in Figure B.2. The straight line on the left panel is the best-fit to the data,

the one on the right panel shows the correlation between SFR and Σgas/τdyn, where τdyn

is the average orbital time in the disk. The fact that these quantities correlate relatively
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Figure B.1: Distribution of R ratios (ordinate) plotted against the upper rotational quantum number of the CO
transitions J → J − 1 (abscis), as inferred for the astrophysical objects listed in the labels. The scale on the top
refers to the corresponding frequency in GHz. Dashed lines around the shaded area represent the lower and upper
limits for R in the sample (Righi et al., 2008, and references therein).

Figure B.2: Left panel: the global Schmidt law in galaxies. The samples consider normal spirals (solid points)
and circumnuclear starbusts (squared). The open circles refer to central regions of normal disks. Right panel:
correlation of SFR and the ratio between the surface gas density and average orbital time in the disk for the same
data as left panel. Plots from Kennicutt (1998).
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well must hidden some link between star formation and gas activity in the disk.



Appendix C

Molecular and atomic data

In the following sections we quote molecular rates (C.1) and atomic data (C.2) used

in our calculations.

C.1 Molecular rates

The reactions involving molecular hydrogen are:

H2, 1) H + e− −→ H− + hν (C.1)

H2, 2) H− + H −→ H2 + e− (C.2)

H2, 3) H+ + H −→ H+
2 + hν (C.3)

H2, 4) H+
2 + H −→ H2 + H+ (C.4)

The respective rates are (Abel et al., 1997; Galli and Palla, 1998):

kH2,1 = 6.77 · 10−15T 0.8779
eV cm3 s−1 (C.5)

kH2,2 =























1.43 · 10−9 cm3 s−1, TeV 6 0.1

e−20.069138+0.22898006 ln TeV +0.035998377 ln2 TeV ×
e−0.004555120 ln3 TeV −0.00031051154 ln4 TeV +0.00010732940 ln5 TeV ×
e−8.366719·10−6 ln6 TeV 2.2383062·10−7 ln7 TeV cm3 s−1, TeV > 0.1

(C.6)

kH2,3 =







1.85 · 10−23T 1.8 cm3 s−1, T 6 6.7 · 103 K

5.81 · 10−16
(

T
56200

)−0.6657Log10(T/56200)
cm3 s−1, T > 6.7 · 103 K

(C.7)

kH2,4 = 6.0 · 10−10 cm3 s−1 (C.8)
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where TeV = T/11605 K is the temperature expressed in eV1.

The fit for the cooling rate arising from H2 and neutral H atom interactions is:

ΛH2,H(T ) =
ΛHDL(T )

1 + [ΛHDL(T )/ΛLDL(T )]
. (C.9)

The (local thermodynamic equilibrium) high-density limit is (Hollenbach and McKee,

1979):

ΛHDL = (ΛHDLR + ΛHDLV)/nH erg cm3 s−1 (C.10)

where the rotational and vibrational contributions are, respectively,

ΛHDLR =
9.5 · 10−22T 3.76

3

(1 + 0.12T 2.1
3 )e−(0.13/T3)3

+ 3 · 10−24e−0.51/T3 erg s−1 (C.11)

ΛHDLV = 6.7 · 10−19e−5.86/T3 + 1.6 · 10−18e−11.7/T3 erg s−1 (C.12)

T3 ≡ T [K] / 1000 K and nH is the neutral hydrogen number density2.

The low-density limit contribution is (Galli and Palla, 1998):

ΛLDL = 10−103.0+97.59t−48.05t2+10.80t3−0.9032t4 erg cm3 s−1 (C.13)

where t ≡ Log10( T / [K] ), for the relevant temperature range 10 K . T . 105 K.

We consider the following set of equations involving HD creation and destruction:

HD, 1) H2 + D −→ HD + H (C.14)

HD, 2) H2 + D+ −→ HD + H+ (C.15)

HD, 3) HD + H −→ D + H2 (C.16)

HD, 4) HD + H+ −→ D+ + H2 (C.17)

HD, 5) H+ + D −→ H + D+ (C.18)

HD, 6) H + D+ −→ H+ + D. (C.19)

We use the temperature dependent rate coefficients from Wang and Stancil (2002):

kHD,1 = 9.0 · 10−11e−3876/T cm3 s−1 (C.20)

kHD,2 = 1.6 · 10−9cm3s−1 (C.21)

1 1 eV corresponds to ∼ 11605 K, as 1eV = 1.60217646 · 10−19 C · 1V = 1.60217646 · 10−19 J = 1.60217646 · 10−12 erg,
therefore T (1 eV ) ≡ 1 eV/kB ≃ 11605 K.

2 We point out that the numerical values in the exponentials correspond to the dominant energy level transitions.
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from Stancil et al. (1998):

kHD,3 = 3.2 · 10−11e−3624/T cm3 s−1 (C.22)

kHD,4 = 10−9e−464/T cm3s−1 (C.23)

and from Savin (2002):

kHD,5 = 2 · 10−10T 0.402e−37.1/T − 3.31 · 10−17T 1.48 cm3s−1 (C.24)

kHD,6 = 2.06 · 10−10T 0.396e−33.0/T + 2.03 · 10−9T−0.332 cm3 s−1. (C.25)

The fit for the cooling rate due to H atom impacts is (Lipovka et al., 2005):

ΛHD,H(T ) = 10−42.45906+21.90083t−10.1954t2+2.19788t3−0.17286t4 erg cm3 s−1 (C.26)

with t ≡ Log10( T / [K] ).

We consider the main equations for HeH+ formation and evolution (Galli and Palla,

1998), namely:

HeH+, 1) He + H+ −→ HeH+ + γ (C.27)

HeH+, 2) HeH+ + H −→ He + H+
2 (C.28)

HeH+, 3) HeH+ + γ −→ He + H+ (C.29)

and the rates from Roberge and Dalgarno (1982):

kHeH+,1 =







7.6 · 10−18T−0.5 cm3 s−1, T 6 103 K

3.45 · 10−16T−1.06 cm3 s−1, T > 103 K
(C.30)

from Karpas et al. (1979):

kHeH+,2 = 9.1 · 10−10 cm3 s−1 (C.31)

and from Roberge and Dalgarno (1982):

kHeH+,3 = 6.8 · 10−1T 1.5
r e−22750/Tr s−1. (C.32)

In the previous expressions, T stands for the gas temperature and Tr for the radiation

temperature.
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C.2 Metal atomic data

In the following, the atomic data adopted are provided (Osterbrock, 1989;

Hollenbach and McKee, 1989; Santoro and Shull, 2006). We will use the usual

spectroscopic notation for many electron atoms: S is the total electronic spin quantum

operator, L the total electronic orbital angular momentum operator and J = L + S

the sum operator; S, L, J are the respective quantum numbers. With X we indicate

the orbitals S, P, D, F, ..., according to L=0, 1, 2, 3, ..., respectively; then 2S+1XJ will

indicate the atomic orbital X, with spin quantum number S and total angular momentum

quantum number J; its multiplicity is equal to 2J + 1.

In the following, we are going to discuss the models adopted for each species and the lines

considered in a more detailed way.

We will often use the notation T100 = T/100 K and Texc for the excitation temperature.

* CII: we model CII as a two-level system considering the fine structure transition

(2p)[2P3/2 − 2P1/2] between the quantum number J = 3/2 and J = 1/2 states. The

data are (Hollenbach and McKee, 1989):

γH
21 = 8 · 10−10T 0.07

100 cm3 s−1;

γe
21 = 2.8 · 10−7T−0.5

100 cm3 s−1;

A21 = 2.4 · 10−6 s−1;

∆E21 = 1.259 · 10−14 erg (Texc = 91.2 K, λ = 157.74µm).

* SiII: we model SiII as a two-level system with the fine structure transition

(3p)[2P3/2 − 2P1/2]. Data were taken from Hollenbach and McKee (1989):

γH
21 = 8 · 10−10T−0.07

100 cm3 s−1;

γe
21 = 1.7 · 10−6T−0.5

100 cm3 s−1;

A21 = 2.1 · 10−4 s−1;

∆E21 = 5.71 · 10−14 erg (Texc = 413.6 K, λ = 34.8µm).

* OI: neutral oxygen is a metastable system formed by the (S=1, L=1) triplet and

(S=0, L=0,2) doublet, (2p)[3P2 − 3P1 − 3P0 − 1D2 − 1S0], in order of increasing level,
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with the following excitations rates (Hollenbach and McKee, 1989):

γH
21 = 9.2 · 10−11T 0.67

100 cm3 s−1;

γH
31 = 4.3 · 10−11T 0.80

100 cm3 s−1;

γH
32 = 1.1 · 10−10T 0.44

100 cm3 s−1;

γH
41 = γH

42 = γH
43 = 10−12 cm3 s−1;

γH
51 = γH

52 = γH
53 = 10−12 cm3 s−1;

γe
21 = 1.4 · 10−8 cm3 s−1;

γe
31 = 1.4 · 10−8 cm3 s−1;

γe
32 = 5.0 · 10−9 cm3 s−1;

γe
41 = γe

42 = γe
43 = 10−10 cm3 s−1;

γe
51 = γe

52 = γe
53 = 10−10 cm3 s−1.

Radiative A coefficients (Osterbrock, 1989; Hollenbach and McKee, 1989):

A21 = 8.9 · 10−5 s−1;

A31 = 1.0 · 10−10 s−1;

A32 = 1.7 · 10−5 s−1;

A41 = 6.3 · 10−3 s−1;

A42 = 2.1 · 10−3 s−1;

A43 = 7.3 · 10−7 s−1;

A51 = 2.9 · 10−4 s−1;

A52 = 7.3 · 10−2 s−1;

A54 = 1.2 s−1;

energy separations are derived from Hollenbach and McKee (1989):

∆E21 = 3.144 · 10−14 erg (Texc = 227.7 K, λ = 63.18µm);

∆E32 = 1.365 · 10−14 erg (Texc = 98.8 K, λ = 145.5µm);

∆E43 = 3.14 · 10−12 erg (Texc = 2.283 · 104 K, λ = 6300 Å);

∆E53 = 3.56 · 10−12 erg (Texc = 2.578 · 104 K, λ = 5577 Å).

* FeII: we adopt a model for a five-level system including the transitions (3d)[6D9/2 −
6D7/2 − 6D5/2 − 6D3/2 − 6D1/2] in order of increasing level. For the data see also

Santoro and Shull (2006) and references therein:

γH
21 = 9.5 · 10−10 cm3 s−1;
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γH
32 = 4.7 · 10−10 cm3 s−1;

γH
43 = 5. · 10−10 cm3 s−1;

γH
54 = 5 · 10−10 cm3 s−1;

γH
31 = 5.7 · 10−10 cm3 s−1;

γH
41 = 5 · 10−10 cm3 s−1;

γH
51 = 5 · 10−10 cm3 s−1;

γH
42 = 5 · 10−10 cm3 s−1;

γH
52 = 5 · 10−10 cm3 s−1;

γH
53 = 5 · 10−10 cm3 s−1;

γe
21 = 1.8 · 10−6T−0.5

100 cm3 s−1;

γe
32 = 8.7 · 10−7T−0.5

100 cm3 s−1;

γe
43 = 10−5T−0.5 cm3 s−1;

γe
54 = 10−5T−0.5 cm3 s−1;

γe
31 = 1.8 · 10−6T−0.5

100 cm3 s−1;

γe
41 = 10−5T−0.5 cm3 s−1;

γe
51 = 10−5T−0.5 cm3 s−1;

γe
42 = 10−5T−0.5 cm3 s−1;

γe
52 = 10−5T−0.5 cm3 s−1;

γe
53 = 10−5T−0.5 cm3 s−1;

we assume a fiducial normalization of 10−5 for missing data on e-impact rates. We

have checked that the level populations are almost insensitive to the adopted values.

Radiative transition probabilities:

A21 = 2.13 · 10−3 s−1;

A32 = 1.57 · 10−3 s−1;

A31 = 1.50 · 10−9 s−1;

A43 = 7.18 · 10−4 s−1;

A54 = 1.88 · 10−4 s−1;

Energy separations:

∆E21 = 7.64 · 10−14 erg (Texc = 553.58 K, λ = 25.99µm);

∆E32 = 5.62 · 10−14 erg (Texc = 407.01 K, λ = 35.35µm);

∆E43 = 3.87 · 10−14 erg (Texc = 280.57 K, λ = 51.28µm);

∆E54 = 2.27 · 10−14 erg (Texc = 164.60 K, λ = 87.41µm).
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Figure C.1: Scheme of the level models adopted for the different atoms with respective line transition data.

A scheme of the atomic states, with wavelengths of the transitions between different

levels, is given in Figure C.1.
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Appendix D

Entropy

The well known Sackur-Tetrode formula for mono-atomic, non-degenerate, perfect, free

gas is:

S = NkB ln

[

ΣV

h3N
(2πmkBT )3/2e5/2

]

(D.1)

where S is the entropy, kB is the Boltzmann constant, h is the Planck constant, N the

number of particles, Σ the particle state degeneracy, V the volume, T the temperature, m

the mass of the particles. If mH is the hydrogen mass and µ the mean molecular weight

of the gas, the total mass of the system is M = mN = (µmH)N .

As N/V ≡ n = ρ/µmH ,

S = NkB ln

[

Σ(µmH)5/2

h3ρ
(2πkBT )3/2e5/2

]

=
3

2
NkB ln

(

C1
kBT

ρ2/3

)

, (D.2)

where C1 is the constant factor in the logarithm.

More generally, calling γ the adiabatic index, one gets

S = NkB ln

[

Σ(µmH)γ/(γ−1)

h3ρ
(2πkBT )1/(γ−1)eγ/(γ−1)

]

=
1

γ − 1
NkB ln

(

C
kBT

ργ−1

)

(D.3)

with C constant determined by the kind of gas considered.

Because of formulæ (D.1), (D.2), and (D.3), the entropy is related to the logarithm of the

ratio between the pressure of the gas, P = nkBT , and the adiabatic scaling ργ by

S =
1

γ − 1
NkB ln

(

CµmH
P

ργ

)

, (D.4)

that is why the quantities P/ργ or kBT/ρ
γ−1 are often called (maybe improperly)

“entropy” or “entropic function”.
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Appendix E

Gravitational instability and viscous
dissipation

The classical approach to gravitational instability is to write the equations governing

the evolution of a fluid in a gravitational field φ, and to expand them in perturbative series

assuming that the perturbations are “small” and the change of entropy is negligible.

E.1 Perturbative treatment

A fluid is described by its density ρ, pressure P and velocity field u. The equations ruling

its behaviour are

• the continuity equation
∂ρ

∂t
+ ∇ · (ρu) = 0 (E.1)

• the Navier-Stokes equations including viscosity ν

∂u

∂t
+ (u · ∇)u = −∇P

ρ
−∇φ+ ν∇2u (E.2)

• the Poisson equation

∇2φ = 4πGρ. (E.3)

The different quantities can be decomposed in a background average value and a

perturbation as follows














ρ = ρb + δρ ≡ ρb(1 + δ)
P = Pb + δP
u = δu
φ = φb + δφ

(E.4)



212 Gravitational instability and viscous dissipation

with |δ| = |δρ/ρb| ≪ 1, |δP/Pb| ≪ 1, |δφ/φb| ≪ 1 and the velocity identified with the

perturbation because we assume the reference frame of the fluid. The sound speed at

constant entropy S is

c2s =

(

∂P

∂ρ

)

S

=
δP

δρ
. (E.5)

The linearization of the system leads to the linearized

• continuity equation
∂δρ

∂t
+ ρb∇ · (δu) = 0 (E.6)

• Navier-Stokes equations

∂δu

∂t
= −c

2
s

ρb

∇δρ−∇δφ+ ν∇2δu (E.7)

• Poisson equation

∇2δφ = 4πGδρ. (E.8)

In Fourier space, the system reads










ωδ̂ − k · ˆ(δu) = 0

ω ˆ(δu) = k
[

c2sδ̂ + ˆ(δφ)
]

− νk2 ˆ(δu)

−k2 ˆ(δφ) = 4πGρbδ̂

(E.9)

where we have used as kernel of the transformation1 eiωt−ik·x, with ω angular frequency,

k wave-number vector with modulus k and x position vector. The hat-sign denotes the

Fourier transformation and δ̂ = δ̂ρ/ρb. Expliciting the 5 × 5 matrix associated to this

system leads to




ω −kT 0
−kc2s (ω + νk2)I −k
4πGρb 0T k2









δ̂

δ̂u

δ̂φ



 =





0
0
0



 . (E.10)

In the previous matrix (E.10), kT is the transposed of the vector k, 0T the transposed of

the null vector 0 and I = IT the 3× 3 unity matrix. In 1D, the matrix becomes 3× 3 and

non trivial solutions exist for

ω2k2 + ωνk4 − c2sk
4 + 4πGρbk

2 = 0. (E.11)

This represents the dispersion relation between the Fourier variables ω and k.

For k 6= 0, it reduces to

ω2 + ωνk2 − c2sk
2 + 4πGρb = 0, (E.12)

1 The particular kernel used is irrelevant to the final result.
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whereas, for k = 0 any ω satisfies the condition (E.11).

In the simple case of no-viscosity dissipation,

ω2 − c2sk
2 + 4πGρb = 0 (E.13)

which admits growing, unstable modes for imaginary ω:

ω2 = c2sk
2 − 4πGρb < 0. (E.14)

Being k a positive quantity and k = 0 the condition for which the original dispersion

relation (E.11) is identically always satisfied by any value of ω and the relation (E.14) has

always imaginary solutions, one obtains

0 6 k < 2

√
πGρb

cs
≡ kJ . (E.15)

The value kJ is the usual Jeans wave-number for the stability of spherical nebulæ and it

leads naturally to the Jeans length λJ ≈ cs/
√
Gρb and to the condition for gravitational

instability, λ > λJ , for nebulæ with size λ.

In the more interesting case of gravitational instability in the presence of viscosity

dissipation, we must look for the complex solutions of ω, i.e., a negative discriminant

of (E.12)

ν2k4 + 4c2sk
2 − 16πGρb < 0. (E.16)

This bi-quadratic disequation has as solutions

0 6 k <

√

−2c2s
ν2

+

√

4c4s
ν4

+
16πGρb

ν2
(E.17)

or also

0 6 k <

√
2cs
ν

√

√

√

√−1 +

√

1 +
k2

Jν
2

c2s
. (E.18)

When the viscosity term dominates (for examples at small scales we expect ν2k2 ≫ 4c2s),

we have

0 6 k < 2

(

πGρb

ν2

)1/4

≡ kd. (E.19)

For the definitions in (E.15) and (E.19), kd and kJ satisfy the relation

kd =

√

2cskJ

ν
. (E.20)
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For ν ∼ 1016 cm2s−1 and a number density of ∼ 103 − 104 cm−3, at low temperatures, it

is found kd ∼ (2− 4) · 10−15 cm−1 and kJ ∼ 10−19 − 10−18 cm−1. The fragmenting scales

associated to kd (∼ 1015 cm) are much smaller than the corresponding scales associated

to kJ (∼ 1018 − 1019 cm).

This is easily understood from the Navier-Stokes equations (E.2), where the viscous term

has a sign opposite to the pressure term. So, viscosity acts against gas pressure and causes

losses of the kinetic support of the cloud against gravitational collapse. Objects of Jeans

size (which would be otherwise stable), can therefore collapse down to smaller scales.

E.2 Time-scales

One last comment on the typical time-scales. From (E.15) and (E.19) we can re-write:

kd = 2

(

πGρ

ν2

)1/4

and kJ = 2

(

πGρ

c2s

)1/2

(E.21)

and the corresponding length-scales are

ld ≈
(

ν2

Gρ

)1/4

and λJ ≈
(

c2s
Gρ

)1/2

(E.22)

From a dimensional analysis, ǫ ∼ Gρν is the average energy transfer rate, with dimensions

[L2T−3]. This allows us to write ld ≈ (ν3/ǫ)
1/4

, as stated in section 8.3, and to estimate

the time during which the energy, ǫ, will be dissipated: td = ǫ/ǫ.

The naturally arising time-scales are then the dissipation time and the free-fall time,

respectively:

td ∼ l2d
ν

∼ 1

k2
dν

and tff ∼ λJ

cs
∼ 1

kJcs
. (E.23)

A comparison between (E.23) and (E.22) immediately shows that, independently from ν

and cs,

td ∼ tff ∼ 1√
Gρ

. (E.24)

We notice that, for cascade turbulence, td rules the whole dissipation process at scales

larger than ∼ ld (see section 8.3). Therefore, these scales have a typical dissipation time

comparable with the free-fall time. This means that while a cloud collapses, it dissipates

energy because of viscosity and gets fragmented.

Scales l below ld (l ≪ ld) get dissipated much faster (in a typical time ∼ l2/ν) and have

not got time to collapse.
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