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Chapter 0 
 

Summary 

 

Electrophilicity Parameters of 5-Benzylidene-2,2-dimethyl-[1,3]dioxane-4,6-

diones (Benzylidene Meldrum’s Acids) 

Kinetics of the reactions of acceptor stabilized carbanions 2.2, e.g., anions of nitro ethane, 

diethyl malonate, acetylacetone, dimedone or Meldrum’s acid (13.9 < N < 21.6) with 

benzylidene Meldrum’s acids 2.1a–d have been investigated in dimethyl sulfoxide at 20 °C 

(Scheme 0.1). 1H and 13C NMR spectroscopy revealed the formation of the anionic products 

2.3, which gave the neutral compounds 2.4 after acidification with dilute acid, indicating that 

the nucleophilic attack of the carbon nucleophiles proceeds at the double bonds of the 

Michael acceptors 2.1a–d. 

 

Scheme 0.1. Reactions of Carbanions 2.2 with the Benzylidene Meldrum’s Acids 2.1a–d in 

DMSO. 
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The second-order rate constants k2 for the reactions of the Michael acceptors 2.1a–d and the 

carbanions 2.2 followed the linear free-energy relationship 0.1 (Figure 0.1), in which N and s 

are nucleophile-specific parameters and E is an electrophile-specific parameter. 

 

log k2 (20 °C) = s(N + E)  (0.1) 
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Figure 0.1. Logarithmic rate constants k2 for the reactions of carbanions 2.2 with the 

benzylidene Meldrum’s acids 2.1a–d (open symbols) and with the reference electrophiles 

2.1f–m (filled symbols) in DMSO. 

The second-order rate constants k2 have been used to derive the electrophilicity parameters E 

for the Michael acceptors 2.1a–d according to Equation (0.1). With –14.0 < E < –9.2, the 

electrophilicities of 2.1a–d are comparable to the least reactive benzhydrylium ions and the 

most reactive quinone methides previously characterized by us (Figure 0.2). 
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Figure 0.2. Comparison of the electrophilicity parameters E of the benzylidene Meldrum’s 

acids 2.1a–d (left), quinone methides, and benzhydrylium ions (right). 

 

Reactivities of Benzylidene Meldrum’s Acids in Methanol  

The reactions of the Michael acceptors 3.1a–c with carbanions, amines, and methoxide have 

been studied photometrically in methanol at 20 °C.  The isolated products from the reactions 

of 3.1a–c with the amines (3.5) and with methoxide (3.6) have been characterized by 1H 

NMR spectroscopy (Scheme 0.2). 

 

Scheme 0.2. Benzylidene Meldrum’s acids 3.1a–c and the Products of their Reactions with 

Amines (3.5) and Methoxide (3.6). 
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The second-order rate constants k2 for the reactions of 3.1a–c with the carbanions 3.2 have 

been used to derive the electrophilicity parameters E of the Michael acceptors 3.1a–c in 

MeOH according to Equation (0.1). The electrophilicities E of 3.1a–c are only slightly larger 

in MeOH than in DMSO, indicating that the influence of the solvent polarity on the 

electrophilicities of typical Michael acceptors is rather small (Figure 0.3). 
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Figure 0.3. Comparison of the electrophilicity parameters E of the Michael acceptors 3.1a–c 

in DMSO and MeOH. 

  

The reactions of 3.1a–c with amines proceed considerably faster that the analogous reactions 

of 3.1a–c with carbanions of comparable nucleophilicity (Figure 0.4). The second-order rate 

constants k2 for the reactions of 3.1a–c with methoxide are located on the correlation lines for 

carbanions and not on those for amines. 
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Figure 0.4. Correlation of (log k2)/s for the reactions of carbanions (filled symbols), 

methoxide (filled symbols), and amines (open symbols) with benzylidene Meldrum’s acids 

3.1a–c in MeOH versus the nucleophilicity parameter N of the nucleophiles. 
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Determination of the Electrophilicity Parameters of Diethyl 

Benzylidenemalonates in DMSO: Reference Electrophiles for Characterizing 

Strong Nucleophiles 

The reactions of nine benzylidenemalonates 4.1a–i (Figure 0.5) with acceptor stabilized 

carbanions 4.2 have been studied photometrically in DMSO at 20 °C. 1H and 13C NMR 

analysis of the addition products 4.4 and 4.5 confirmed the reaction course depicted in Figure 

0.5. 

CO2EtEtO2C

R2R1
+

CO2EtEtO2C

R1

R2

k2, DMSO

4.1a–i 4.2

R R

CO2EtEtO2C

R1

R2 R

4.3

4.5

H+

CO2EtEtO2C

R1

R2 R

4.4

k–
R = pNO2 4.1a

= pCN 4.1b

= mCl 4.1c

= 4.1dH
= pMe 4.1e

= pOMe 4.1f

= pNMe2 4.1g

4.1h

Ar =

N

Ar =
N

4.1i
(Ar = jul)

(Ar = thq)
Ar

 

Figure 0.5. Addition of the carbanions 4.2a–f to the benzylidenemalonates 4.1a–i and 

possible subsequent protonation, elimination or cyclization paths.  

Figure 0.6 reveals that the logarithmic second-order rate constants k2 for the reactions of the 

carbanions 4.2 with 4.1a–i follow Equation (0.1) and are on the same correlation line as the 

second-order rate constants for the reactions of 4.2 with the quinone methides 4.6a–f. 
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The linear correlations of the second-order rate constants k2 for the reactions of the carbanions 

4.2 with the benzylidenemalonates 4.1a–i and the analogous reactions of 4.2 with the quinone 

methides (Figure 0.6) allow us to determine the electrophilicity parameters E for compounds 

4.1a–i according to Equation 0.1 (Figure 0.7). 
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Figure 0.6. Logarithmic second-order rate constants for the reactions of the carbanions            

4.2a–d with the electrophiles 4.1a–i (open symbols) compared with the reactivities of the 

reference electrophiles 4.6a–f (filled symbols) in DMSO. 

The benzylidenemalonates 4.1a–i are more than 1010 times less reactive than the analogously 

substituted benzylidene Meldrum’s acids 4.10a–d, their cyclic counterparts. They extend the 

electrophilicity scale at the low-reactivity end by more than six orders of magnitude from              

–17.7 > E > –23.8 (Figure 0.7) and can, therefore, be used for determining nucleophilicities of 

highly reactive nucleophiles with N values of 16 < N < 30. 
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Figure 0.7. Comparison of the E parameters of the benzylidenemalonates 4.1a–i with those of 

the reference electrophiles 4.6a–f and analogously substituted benzylidene Meldrum’s acids. 

 

Nucleophilicities of the Anions of Arylacetonitriles and Arylpropionitriles in 

Dimethyl Sulfoxide 

The kinetics of the reactions of the anions of the arylacetonitriles 5.1a–c and the 

arylpropionitriles 5.2a–c (Figure 0.8) with quinone methides and other classes of Michael 

acceptors have been studied in DMSO at 20 °C. 
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Figure 0.8. Characterized anions of arylacetonitriles 5.1a–c and arylpropionitriles 5.2a–c and 

their pKaH values in DMSO. 
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1H and 13C NMR analysis of the products from the reactions of 5.1a–c and 5.2a–c with 

Michael acceptors 5.3 showed the formation of the addition products as exemplarily depicted 

in Scheme 0.3 for the reaction of the anion 5.1a with the methoxy substituted quinone 

methide (5.3d). From the reactions of the benzylidenemalonates 5.3m–u with the 

arylacetonitrile 5.1b, the substituted α-cyano stilbenes 5.6 were formed via retro-Michael 

addition as shown in Scheme 0.3 for the formation of compound 5.6bm. Consecutive Michael 

additions, proton transfer and retro-Michael additions account for their formations. 

Scheme 0.3. Reactions of Some Arylacetonitriles 5.1a–c with the Quinone Methide 5.3d and 

the Benzylidenemalonate 5.3m with Formation of 5.4ad and the Retro-Michael Product 

5.6bm. 
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The second-order rate constants k2 for the reactions of 5.1a–c and 5.2a–c with the Michael 

acceptors 5.3 have been used to derive the nucleophilicity parameters N and s for compounds 

5.1a–c and 5.2a–c using Equation (0.1) (Figure 0.9). 
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Figure 0.9.  Comparison of the nucleophilicity parameters N of the arylacetonitrile anions 

5.1a–c and the arylpropionitrile anions 5.2a–c with those for α-nitro- and trifluoromethyl 

sulfonyl stabilized carbanions in DMSO. 

 

The anions of the arylacetonitriles 5.1a–c and the arylpropionitriles 5.2a–c are several orders 

of magnitude more nucleophilic than α-SO2CF3 and α-NO2 substituted benzyl anions (Figure 

0.9). As colored species of high nucleophilicity, these carbanions complement the series of 

reference nucleophiles, which can be employed for the photometric determination of the 

electrophilic reactivities of weak, colorless electrophiles.  
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Electrophilicities of Acceptor-Substituted Dienes 

The reactions of nine acceptor substituted dienes 6.1–3 with carbanions and amines have been 

studied photometrically in DMSO at 20 °C. 1H and 13C NMR analysis of the products of the 

reactions of 6.1–3 with carbanions showed the formation of two regioisomers in varying 

ratios (Scheme 0.4.), indicating parallel 1,4- and 1,6-additions of the carbanions to the 

Michael acceptors. 

Scheme 0.4. Reactions of the Dienes 6.1–3 with the Carbanions 6.4c and 6.4f in [d6]-DMSO 

under Formation of Isomeric Products. 
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For some reactions of the dienes 6.1–3 with carbanions 6.4, Michael additions and subsequent 

formation of the retro-Michael adducts could be followed photometrically as exemplarily 

depicted in Figure 0.10 for the reaction of the amino substituted Michael acceptor 6.1c with 

the anion of dimedone (6.4g). 
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Figure 0.10. Reactions of 6.1c (c0 = 1.89 × 10–5 mol L–1) with different amounts of the anion 

of dimedone (6.4g) in dimethyl sulfoxide at 20 °C. 

The second-order rate constants k1 for the reactions of the dienes 6.1–3 with the carbanions 

(Scheme 0.5.) can be estimated by Equation (0.1).  

 

Scheme 0.5. Possible Reaction Pathways for the Addition of the Anion of Dimedone (6.4g) to 

the Michael Acceptor 6.1c in Dimethyl Sulfoxide at 20 °C. 
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The rate constants have been employed to derive the electrophilicity parameters E for dienes 

6.1–3. With electrophilicities in a range of –8.7 > E > –16.6, their reactivities are comparable 

to their benzylidene (thio)barbituric acid analogs (Figure 0.11). 

-14

-13

-12

-11

-10

-9

-8

O

O

N

N

O

OO

N

N

O

OS R

6.1a (R = H)
6.1b (R =OMe)
6.1c (R = NMe2)

R
6.3a (R = H)
6.3b (R =OMe)
6.3c (R = NMe2)

R

6.2a (R = H)
6.2b (R =OMe)
6.2c (R = NMe2)

6.1a
6.1b

6.1c
6.2a

6.2b

6.2c

6.3a

6.3b

6.3c

N

N

O

OO OMe

N

N

O

OS NMe2

N

N

O

OS N

N

N

O

OO NMe2

N

N

O

OO N

E

N

N

O

OX R

Ar = Jul (see below)X = S a6.14-R
X = O ii6.15-R

6.15-OMe

6.14-NMe2

6.14-Jul

6.15-NMe2

6.15-Jul  

Figure 0.11. Comparison of the electrophilicity parameters E of the Michael acceptors 6.1–3 

with those of some benzylidene(thio)barbituric acids 6.14 and 6.15. 

 

Hydride Affinities of Michael Acceptors in Acetonitrile 

The hydride affinities ΔHH-A (Figure 0.12) of several Michael acceptors (e.g., benzylidene 

Meldrum’s acids, benzylidene barbituric acids, and quinone methides, 7.1g–q) have been 

determined in acetonitrile using isothermal titration calorimetry. 
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Y

7.1a–f (7.2a–f)–  

Figure 0.12 Hydride affinity ΔHH-A for the reaction of an olefin 7.1 with a hydride ion under 

formation of the corresponding anion 7.2–. 

 

From the heats of reactions of the anions 7.2– with the hydride acceptors (7.3a–c)+, ΔHH-A 

was calculated (determination of ΔHH-A exemplarily depicted in Figure 0.13 for the reaction 

of carbanion 2– with the N-methylacridinium ion 7.3a+). 

N

ΔHr
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Y
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7.17.2– 7.3a+

N
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Figure 0.13. Reaction of a carbanion 7.2– with the hydride acceptor 7.3a+ under formation of 

the olefin 7.1 and the reduced compound 7.3a. 

 

The anions (7.2g–q)– have been generated in situ by treating the reduced Michael acceptors  

7.2g–q with potassium hydride in acetonitrile as depicted exemplarily in Scheme 0.6 for the 

formation of the carbanions (7.2g–m)–. 

Scheme 0.6. Reduction of the Olefins 7.1g–m and Subsequent Deprotonation of 7.2g–m with 

KH under Formation of the Carbanions (7.2g–m)–.  
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In contrast to the good agreement between E and ΔHH-A for ten benzhydrylium ions 7.4+, the 

electrophilicity parameters E of the Michael acceptors 7.1a–q do not correlate well with their 

hydride affinities in acetonitrile (Figure 0.14). 
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Figure 0.14. Plot of the electrophilicity parameter E of the benzhydrylium ions (7.4a–j)+ and 

the Michael acceptors 7.1a–q versus their hydride affinities ΔHH-A [kcal/mol] in acetonitrile 

at 25 °C. 
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Chapter 1 

Introduction 

 Predicting whether a reaction between two compounds will take place under certain 

conditions is of fundamental importance for the planning of syntheses. 

 In the 1920s Ingold started to systemize organic reactivity and realized that most reactions in 

organic chemistry take place between electron-rich and electron-deficient compounds, which 

he named nucleophiles and electrophiles.1 From that time on, many chemists tried to organize 

organic reactivity by studying the rates of reactions of nucleophiles with specific 

electrophiles. Swain and Scott reported on the rate constants of SN2 reactions of methyl 

halides and derived the first nucleophilicity scale based on Equation (1.1), in which n 

characterizes the nucleophiles and the electrophiles are characterized by two parameters, s and 

log kwater.2 

 

log (k/kwater) = sn      (1.1) 

 

After several attempts to construct further nucleophilicity scales, Pearson claimed that general 

nucleophilicity scales cannot exist because he found that the relative nucleophilic reactivities 

towards methyl halides did not correlate with those towards Pt-complexes.3 

Only four years later, Ritchie reported about a relationship of astonishing simplicity, which 

claims that the reactivities of a variety of carbenium ions and diazonium ions towards various 

nucleophiles can be described by a single, electrophile-independent nucleophilicity parameter 

N+ and by only one parameter for the electrophiles (log k0).4 
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log (k/k0) = N+      (1.2) 

 

Using this equation, it was for the first time possible to predict the rates of reactions, which 

covered more than 10 orders of magnitude. 

 The impact of this so-called constant selectivity relationship has significantly been extended 

by Kane-Maguire and Sweigart, who investigated the rates for the reactions of cationic          

π-complexes with different nucleophiles.5,6 

The most extensive nucleophilicity scale presently available has been derived from the rate 

constants of the reactions of benzhydrylium ions with alkenes, arenes, enol ethers, ketene 

acetals,7 enamines,8 transition-metal π-complexes,9 amines,10 alcohols,11 alkoxides,12 

phosphanes,13 carbanions,14 and hydrides.15 

So far, over 400 nucleophiles and 100 electrophiles have been characterized by the linear-

free-energy relationship (1.3) introduced in 1994 by Mayr and Patz, in which the Ritchie 

correlation was extended by the nucleophile-specific slope parameter s. 

 

log k2 (20 °C) = s(N + E) (1.3) 

 

This equation allows the prediction of the second-order rate constants k2 at 20 °C for 

electrophile-nucleophile combinations from the nucleophile-specific N and s parameters and 

the nucleophile-independent, but electrophile-specific electrophilicity parameter E. 

Benzhydrylium ions and structurally related quinone methides, which have commonly been 

used as reference electrophiles cover only a limited range of reactivity. It was the goal of this 

work to characterize other types of Michael acceptors as novel reference electrophiles in order 

to extend the electrophilicity scale at the low-reactivity end and to add more electrophiles in 

the range of –10 > E > –15, where only few reference compounds had been available. On the 
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other side, highly reactive carbanions should be identified as new reference nucleophiles for 

the extension of the nucleophilicity scale at the high-reactivity end. 

As some parts of this thesis have already been published or submitted for publication, 

individual introductions will be given separately for each topic at the beginning of each 

chapter. In order to identify my contributions to multi-author publications (Chapters 4 and 5), 

the Experimental Sections exclusively contain those experiments, which have been performed 

by me. 
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Chapter 2 

Electrophilicity Parameters of 5-Benzylidene-2,2-

dimethyl-[1,3]dioxane-4,6-diones (Benzylidene 

Meldrum’s Acids) 

O. Kaumanns, H. Mayr, J. Org. Chem. 2008, 73, 2738-2745. 

Introduction 

Numerous kinetic investigations have shown that the rate constants for the reactions of 

carbocations with carbanions and neutral π-nucleophiles can be described by Equation (2.1), 

wherein s and N are nucleophile dependent parameters and E is an electrophile dependent 

parameter.1,2 

 

log k2 (20 °C) = s(N + E)    (2.1) 

 

In order to assign nucleophilicity parameters for strong nucleophiles, such as carbanions,3–5 

amines,6–8 enamines,9 silyl enol ethers,10 and ketene acetals11 amino-substituted 

diarylcarbenium ions and structurally related quinone methides have been used as reference 

electrophiles. It has been shown that Equation (2.1) also holds for the reactions of ordinary 

Michael acceptors and electron deficient arenes with carbanions12–14 and other strong 

nucleophiles.15,16 

The nucleophilic attack at the electron deficient double bond of Michael acceptors has long 

been a field of great interest in physical organic chemistry. Bernasconi studied the kinetics of 

the reactions of numerous amines, carbanions, and alkoxides towards Michael acceptors, e.g., 
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benzylidene indandiones and benzylidene Meldrum’s acids in DMSO/H2O mixtures.17–21 

Rappoport investigated nucleophilic vinylic substitutions22 on chloro-substituted benzylidene 

Meldrum’s acids which follow the addition-elimination mechanism.21,23 In recent years, Oh 

and Lee24 reported mechanistic studies and rate constants of the reactions of benzylamines 

with benzylidene Meldrum’s acids and other Michael acceptors in acetonitrile. 

Benzylidene Meldrum’s acids 1 are usually prepared by condensation of an aldehyde with 

Meldrum’s acid in the presence of catalytic amounts of acid25 or base in benzene or 

chloroform solutions,26 but in some cases subsequent cyclizations occur.26c Improved yields 

have been obtained under solvent-free conditions by grinding the reactants,27 by DMAP-

catalysis,28 or by using water29 or ionic liquids30 as solvents. Compounds 1 are useful 

reactants for the synthesis of pharmacologically active heterocyclic compounds.31  

In 1964, benzylidene Meldrum’s acids have been termed “electronically neutral Lewis 

acids” by Swoboda and Wessely.25 Schuster, Polansky and Wessely reported equilibrium 

constants for the addition of methoxide to a variety of neutral organic Lewis acids, including 

benzylidene Meldrum’s acids.32 The formation of zwitterionic addition products from neutral 

organic Lewis acids and amines or phosphanes was reported by Margaretha.33 

Rate and equilibrium constants for the additions of amines to the electrophilic double-bond 

of these Michael acceptors were determined34a,b and the kinetics of their hydrolytic cleavage 

was investigated in 10% aqueous methanol.34b Regio- and stereoselective Cu-catalyzed 

additions of alkynes35 and R2Zn to benzylidene Meldrum’s acids have recently been reported 

by Carreira36 and Fillion.37 

The higher electrophilic reactivity of benzylidene Meldrum’s acids compared to 

benzylidene malonic esters, their open-chain analogs, is related to the unusually high acidity 

of the Meldrum’s acid, which was attributed to the fixed bis-anti conformation of the ester 

groups.38 Recently, Nakamura employed the “reactive hybrid orbital (RHO) theory” to 

rationalize the high acidity of Meldrum’s acid.39  
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Scheme 2.1. Reactions of the Carbanions 2a–i (K+ salts) with the Benzylidene Meldrum’s 

Acids 1a–d. 
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As part of our program of developing comprehensive nucleophilicity and electrophilicity 

scales, we have now studied the kinetics of the reactions of the carbanions 2a–i (Table 2.1) 

with the benzylidene Meldrum’s acids 1a–d in DMSO (Scheme 2.1). We will show that 

Equation (2.1) can be used to describe the rates of these reactions and report on the 

determination of the electrophilicity parameters E for the Michael acceptors 1a–d. We will 

furthermore present correlations between the E parameters of these and related electrophiles 

with Hammett’s substituent constants σp and thus provide data to predict absolute rate 

constants for a manifold of Michael additions. 
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Table 2.1. N and s Parameters of the Carbanions 2a–i in DMSO. 

 Nucleophile N s 

2a 21.54a 0.62a

 
NO2    

2b 20.22b 0.65b

 

O O

OEtEtO    

2c 19.62b 0.67b

 OEtNC
O

   

2d 19.36b 0.67b

 
NC CN

   

2e 18.82b 0.69b

 

O

OEt

O

   

2f 18.29a 0.71a

 
NO2Ph    

2g 17.64b 0.73b

 

OO

   

2h 16.27b 0.77b

 O O   

2i 13.91b 0.86b

 
O O

O O   
a From ref. 5. b From ref. 4. 

 

Results and Discussion 

Reaction Products. When equimolar amounts of 1 and 2-K+ were combined in DMSO, the 

potassium salts 3-K+ were formed and characterized by 1H and 13C NMR spectroscopy 

without further workup (Scheme 2.1, Table 2.2). Compounds 4 were synthesized from 

equimolar amounts of 1 and 2-K+ in DMSO or 1,2-dimethoxyethane solution and subsequent 

treatment with hydrochloric acid. Since analogous products can be expected for different 

combinations of the electrophiles 1a–d with the carbanions 2a–i, product studies have not 

been performed for all combinations which were studied kinetically. In all cases quantitative 

product formation was indicated by the complete decolorization of the solutions and the fact 
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that the NMR spectra obtained after mixing 1 and 2-K+ showed the signals of 3-K+ 

exclusively. The differences in the isolated yields reported in Table 2.2 are due to non-

optimized workup procedures. 

 

Table 2.2. Characterized Michael Adducts and Some Characteristic 1H NMR Chemical 

Shifts.a 

Electrophile Nucleophile Product  

(yield / %) 

δ (Ha) / 

ppm 

δ (Hb) / 

ppm 

δ (Hc) / 

ppm 

Ja,b / 

Hz 

Jb,c / 

Hz 

1a (X = H) 2h 3ahb,c -- 5.76c -- -- -- 
1b (X = OMe) 2b 3bbb -- 4.38 4.89 -- 12.4 

1b 2b 4bb (41) 4.43–4.47 4.43–4.47 4.78 -- 12.4 

1b 2d 4bd (48) 3.94 4.22 5.10 3.6 12.6 

1b 2e 4be (66)d -- 4.96 -- -- -- 

1b 2g 4bg (85) 4.06 4.44 5.19 4.0 12.0 

1b 2h 3bh (64)c,e,f -- 5.68c -- -- -- 

1c (X = NMe2) 2b 3cbb -- 4.33 4.87 -- 12.6 

1c 2b 4cb 4.33–4.43 4.33–4.43 4.70 -- 12.0 

1c 2d 3cd (66)e -- 4.28 5.75 -- 12.4 

1c 2g 3cgb -- 4.46 5.24 -- 12.4 

1c 2h 3ch (46)c,e,f -- 5.64c -- -- -- 

1d (X = jul) 2a 3dab,g -- 3.94/3.88g 5.71/5.85g -- -- 

1d 2b 3dbb -- 4.20 4.80 -- 12.6 

1d 2b 4db 4.26–4.30 4.26–4.20 4.65 -- 12.0 

1d 2d 3ddb -- 4.12 5.68 -- 12.0 

1d 2d 4dde 4.01 4.18 5.12 3.3 12.5 

1d 2g 3dgb -- 4.33 5.24 - 12.8 
a Anionic products 3 were characterized in d6-DMSO, neutral products 4 were characterized 

in CDCl3, for numbering see Scheme 2.1. b Analysis of the crude reaction mixture. c Enol 
form of the dimedone moiety. d Diastereomers in a ratio of 58:42. e The given yield refers to 
the reaction in 1,2-dimethoxyethane. f Thermally instable, NMR spectra were taken from the 
crude reaction mixture in DMSO. g Diastereomers in a ratio of 52:48. 
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Generally, the Michael adducts 3 and 4 show 1H NMR spectra with resonances Ha, Hb and 

Hc in the range of δ = 3.8–5.9 ppm with small coupling constants of 3.3–4.0 Hz between Ha 

and Hb, and large coupling constants of approximately 12.5 Hz between Hb and Hc. Only the 

dimedone adducts 3ah, 3bh, and 3ch do not show the absorption of Hc around δ = 5 ppm. 

Instead, a signal at δ = 13.5 ppm was observed due to the enol form of the dimedone 

fragment.40 As a consequence, Hb absorbs as a singlet at δ = 5.7 ppm in the anions 3ah, 3bh, 

and 3ch.  

 

Kinetic Investigations with Carbanions. The kinetic investigations were performed at 

20 °C in DMSO as solvent. Because the benzylidene Meldrum’s acids 1a–d show absorption 

bands at 325, 366, 460, and 484 nm, respectively, and neither the products 3 nor the 

carbanions 2a–i absorb at these wavelengths, the progress of the reactions can be monitored 

photometrically at the absorption maxima of these electrophiles. Due to the high rates of these 

reactions, the stopped-flow technique was generally employed. All reactions described in this 

paper proceed quantitatively. The carbanions were either used as preformed potassium salts, 

or the corresponding CH acids were deprotonated with 1.05 equivalents of potassium tert-

butoxide before use. UV-Vis spectroscopic monitoring of the titration showed that complete 

deprotonation of 2f-H was obtained with 1.05 equivalents of KOtBu. In order to confirm that 

the slight excess of KOtBu did not affect the observed rate constants, we have also generated 

the carbanion 2f by treating 2f-H with 0.27 equivalents of KOtBu. In this case, the 

concentration of the carbanion 2f is given by the quantity of KOtBu, and the second-order 

rate constant was found to be the same as that obtained with the slight excess of KOtBu           

(Experimental Section, Tables S7a and S7b). In order to obtain pseudo-first order kinetics, the 

carbanions were used in large excess (10 to 100 equivalents) over the electrophiles. In all 

cases reported in Table 2.3, an exponential decay of the concentration of the electrophiles    

1a–d was observed (Equation (2.2)). 



Chapter 2: Electrophilicity Parameters of 5-Benzylidene-2,2-dimethyl-[1,3]dioxane-4,6-
diones (Benzylidene Meldrum’s Acids) 

26 

–d[1]/dt = k1ψ[1]  (2.2) 

The first-order rate constants k1ψ were obtained by least-squares fitting of the time-

dependent absorbances At of the electrophiles to the exponential function At = A0 exp(–k1ψt) + 

C. Plots of k1ψ versus the carbanion concentration [2] resulted in linear correlations with 

almost zero intercepts, the slopes of which gave the second-order rate constants k2 (Table 

2.3). 

 

Table 2.3. Second-Order Rate Constants k2 for the Reactions of the Potassium Salts of 

Carbanions 2a–i with the Electrophiles 1a–d in DMSO at 20 °C. 

Electrophile Ea Nucleophile k2 / L mol–1 s–1 
1a (X = H) –9.15b 2h 2.93 × 105 

  2i 1.16 × 104 
1b (X = OMe) –10.28 2b 1.15 × 106 

  2c 1.96 × 106 
  2d 2.51 × 106 

  2e 7.42 × 105 

  2f  2.23 × 105 

  2g 1.89 × 105 

  2h 6.00 × 104 
  2i 2.39 × 103 

1c (X = NMe2) –12.76 2b 2.89 × 104 

  2c 4.76 × 104 

  2d 7.21 × 104 

  2e 1.27 × 104 
  2f  3.87 × 103 

  2g 3.50 × 103 

  2h 9.82 × 102 

1d (X = jul) –13.97 2ac 2.12 × 104 
  2b 6.08 × 103 

  2c 7.98 × 103 

  2d 1.48 × 104 

  2e 2.83 × 103 
  2f 4.93 × 102 

  2g 3.84 × 102 

  2h 1.08 × 102 
a The E parameters for 1a–d result from a least-squares minimization of Δ2 = Σ(log k2 − s(N 

+ E))2 which uses the second-order rate constants k2 (this Table) and the N and s parameters 
of the carbanions 2a–i given in Table 2.1. Details of the calculation of E are discussed below.        
b A value of –9.5 is expected if the same set of reference nucleophiles would be employed as 
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for compounds 1b–d. c The tetra-n-butyl ammonium salt of 2a was used for the kinetic 
measurements. 

 

Correlation analysis. If Equation (2.1) holds for the reactions of the benzylidene 

Meldrum’s acids 1a–d with carbanions, the plots of (log k2)/s versus the nucleophilicity 

parameter N should have slopes of 1.0. Figure 2.1 shows that this is approximately the case. 

However, small systematic deviations of some of the nucleophiles are obvious. The dimedone 

anion (2h) and the malononitrile anion (2d) react two to four times faster with each of the 

electrophiles 1b–d than expected from the correlations, whereas the nitroethyl anion (2a), the 

malonate anion (2b), and the phenyl nitronate (2f) are about two times less reactive than 

expected. 
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Figure 2.1. Correlation of (log k2)/s versus the nucleophilicity parameters N of the carbanions 

2a–i for the reactions of the benzylidene Meldrum’s acids 1a–d with the carbanions 2a–i in 

DMSO at 20 °C.  

Though the correlations are only of moderate quality, one can conclude that the relative 

electrophilicities of the benzylidene Meldrum’s acids 1a–d are almost independent of the 
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nature of the carbanions. Therefore we have calculated the E parameters for 1a–d by least-

squares minimization of Δ2 = ∑(log k – s(N + E))2 using the second-order rate constants k2 

given in Table 2.3 and the N and s parameters of 2a–i from Table 2.1. With the E parameters 

thus determined, a different illustration of the reactivities of the carbanions 2a–i towards the 

electrophiles 1a–d and the reference electrophiles 1e–m becomes possible (Figure 2.2). The 

plots of log k2 against the electrophilicity parameters E show that in general, the reactivities of 

the carbanions 2a–i toward 1a–d correlate well with the electrophilicity parameter E, but the 

previously mentioned deviations are, again, evident. While, for the sake of clarity, the poorly 

correlating carbanions 2d and 2f are not included in Figure 2.2, one can see that the 

reactivities of 1b–d with the anion of diethyl malonate (2b) are below the correlation line 

defined by the reference electrophiles 1e–m. On the other hand the dimedone anion (2h) 

generally reacts faster with electrophiles 1b–d than expected from the rates of its reactions 

with the reference electrophiles 1e–m. 

The different behavior of the dimedone anion (2h) towards the Michael acceptors 1a–d and 

the reference electrophiles 1e–m reminds of the previously reported behavior of 2h towards 

electrophiles 5-X,13 6-X,13 and 7-X,14 but the reason for these deviations is presently not 

understood. 
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O O
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Figure 2.3 shows that there are clearly two distinct correlation lines for the different types 

of electrophiles, one for the reactions of 2h with the quinone methides 1h–m and the 

benzhydrylium ions 1e–g and another one for the structurally related Michael acceptors 1-X, 

5-X, 6-X, and 7-X. Despite this clear separation, one should note that all deviations from the 

lower (reference) line are much less than one order of magnitude. One can, therefore, 
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conclude that the reactivity order of the carbanions 2a–i derived from the rates of the 

reactions with the reference electrophiles 1e–m also holds roughly for the Michael acceptors 

1a–d and that the E parameters derived in Table 2.1 can be employed for the general 

prediction of rate constants for the reactions of 1a–d with nucleophiles. 
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Figure 2.2. Rate constants for the reaction of the carbanions 2a–i with the electrophiles 1a–d 

(open symbols) and with the reference electrophiles 1e–m (filled symbols) in DMSO.  
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Figure 2.3. Rate constants for the reaction of the dimedone anion (2h) with the electrophiles 

1a–d and 5–7 (open symbols, log k2 = 0.73E + 12.4) and reference electrophiles 1e–m (filled 

symbols, log k2 = 0.77E + 12.5) in DMSO.  

The positioning of the combination of dimedone 2h with 1a on the “wrong” correlation line 

of Figure 2.3 is due to the fact that the electrophilicity parameter of 1a has been derived from 

the reactions of 1a with 2i and 2h (Figure 2.1), i.e., two carbanions which react faster with 

1b–c than expected from their N parameters. If all carbanions 2a–i had been used for the 

determination of E(1a), and 1a followed the same pattern as shown for compounds 1b–d in 

Figure 2.1 one would expect the slightly smaller electrophilicity parameter E(1a) ≈ –9.5. An 

experimental test for this hypothesis was not possible because the reactions of 1a with 2a–g 

are too fast to be followed with conventional stopped-flow instruments. 

Scheme 2.2 compares the electrophilicities of the benzylidene Meldrum’s acids 1a–d with 

those of some reference electrophiles and shows that their electrophilic reactivities cover a 

range of almost five orders of magnitude. 

According to Figure 2.4, the electrophilicity parameters E of 1a–c, 6-X, 7-X, and 8-X 

correlate well with Hammett’s σp-values for H, OMe, and NMe2. The corresponding plots of 

E versus σp
+ show larger scatter. From the slopes of these correlations (5.20 – 5.74, Table 2.1) 

one can derive reaction constants of ρ ≈ 3.8 ± 0.3 for reactions with nucleophiles of s = 0.7 
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(Table 2.4), indicating that in all four reaction series electron-donating substituents in                 

p-position exert comparable retarding effects. 

 

Scheme 2.2. Comparison of the Electrophilicity Parameters E of Benzylidene Meldrum’s 

Acids 1a–d with Those of Some Reference Electrophiles. – a E (1a) has been calculated from 

the rate constants of the reactions of 1a with only two nucleophiles (see text). Depending on 

the choice of other reaction partners, the electrophilicity E may be lower by 0.3 to 0.4 units. 
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Figure 2.4. Correlation between the electrophilicity parameters E of the electrophiles 1a–d 

(open symbols), and 5–8 (closed symbols) in DMSO with Hammett’s σp-values41 – σp for 

“jul” calculated as described in the text. 

 

Table 2.4. Correlation Between Electrophilicity Parameters E for Various Series of 

Electrophiles and Hammett’s Substituent Constants σp. 

Electrophile Correlation R2 

6-X E = 5.71σ – 8.83 1.00 

1a–c E = 5.37σ – 9.08 0.99 

8-X E = 5.74σ – 9.34 0.99 

7-X E = 5.20σ – 10.0 0.99 
 

Substitution of the E parameters for 1d, 6-jul, and 7-jul into the correlation equations listed 

in Table 2.4 yields σp(jul) = –0.91, –0.86, and –0.92, respectively. When the average of these 

values, σp(jul) = –0.89, is used to locate 5-jul in Figure 2.4, a correlation with a similar slope 

(ρ = 3.5) results for the reactions of compounds 5-X. A considerably more negative value for 

σp
+ = (–2.03) of the julolidyl substituent has recently been derived from the electrophilicities 

of benzhydrylium ions.42 From the similar slopes of the correlation lines for the different 

series of electrophiles in Figure 2.4 one can derive the general validity of the electrophilicity 

order  5-X >> 6-X ≈ 1-X > 8-X > 7-X. 
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Reactions with Other Nucleophiles. In order to check the applicability of the 

electrophilicity parameters E of the benzylidene Meldrum´s acids 1a–d (Scheme 2.2) for 

predicting the rates of reactions with other types of nucleophiles, we compared predicted and 

experimental rate constants for the addition reactions of amines to the electrophilic double 

bonds of 1a–d. 
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Table 2.5. Comparison of Calculated and Experimental Second-Order Rate Constants for the 

Additions of Amines to Benzylidene Meldrum’s Acids 1a–d in Different Solvents (20 °C). 

Entry Nucleophile N / s (solvent) Electrophile k2 / L mol–1 s–1

    calcda experimental (solvent) 
1 piperidine 17.19/0.71 (DMSO) 1a 5.11 × 105b 2.09 × 106 (DMSO/H2O = 90/10)c

2     1.40 × 106 (DMSO/H2O = 70/30)c

3     6.69 × 105 (DMSO/H2O = 50/50)c 
4  18.13/0.44 (H2O)  8.94 × 103 1.70 × 105 (H2O)c 

5     2.70 × 105 (H2O, 25 °C)c

6     2.30 × 106 (CH3CN, 25 °C)d

7     1.20 × 106 (CHCl3, 25 °C)d

8  17.19/0.71 (DMSO) 1b 8.06 × 104 1.93 × 106 (DMSO)e 

9     2.89 × 105 (DMSO/H2O = 50/50)e

10     2.67 × 105 (DMSO/H2O = 50/50)c

11  18.13/0.44 (H2O)  2.84 × 103 1.70 × 105 (H2O, 25 °C)c 
12     9.50 × 105 (CH3CN, 25 °C)d 
13  17.19/0.71 (DMSO) 1c 1.40 × 103 1.71 × 105 (DMSO)e 

14     3.76 × 104 (DMSO/H2O = 50/50)e

15     3.96 × 104 (DMSO/H2O = 50/50)c

16  18.13/0.44 (H2O)  2.31 × 102 2.10 × 104 (H2O, 25 °C)c 
17     1.10 × 105 (CH3CN, 25 °C)d 
18  17.19/0.71 (DMSO) 1d 1.93 × 102 1.80 × 104 (DMSO)e 

19     6.23 × 103 (DMSO/H2O = 50/50)e

20 morpholine 16.96/0.67 (DMSO) 1a (1.71 × 105)b 8.88 × 105 (DMSO/H2O = 90/10)c

21     7.33 × 105 (DMSO/H2O = 70/30)c 
22     3.19 × 105 (DMSO/H2O = 50/50)c

23  15.62/0.54 (H2O)  3.12 × 103 1.47 × 105 (H2O)c 
24     1.75 × 105 (H2O, 25 °C)c 
25       4.0 × 105 (CH3CN, 25 °C)d

26       1.0 × 105 (CHCl3, 25 °C)d

27  16.96/0.67 (DMSO) 1b (2.99 × 104)b 1.56 × 105 (DMSO/H2O = 50/50)c

28  15.62/0.54 (H2O)  6.64 × 102 9.90 × 104 (H2O, 25 °C)c 
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Table 2.5. Continued. 

Entry Nucleophile N / s (solvent) Electrophile k2 / L mol–1 s–1

    calcda experimental (solvent) 
29  16.96/0.67 (DMSO) 1c 6.51 × 102 3.78 × 105 (DMSO)e,f

30     1.11 × 104 (DMSO/H2O = 50/50)e

31     1.46 × 104 (DMSO/H2O = 50/50)c 
32  15.62/0.54 (H2O)  3.50 × 101 1.00 × 104 (H2O, 25 °C)c 
33 glycinamide 12.29/0.58 (H2O)g 1a 6.63 × 101 1.34 × 104 (H2O)h 

34 semicarbazid 11.05/0.52 (H2O)i 1a 9.73 1.64 × 103 (H2O)h 
a Calculated according to Equation (2.1) by using the E parameters for 1a–d from Table 2.3 
and the N and s parameters for amines from refs 7, 8, and 43. b For neat DMSO. c From ref. 
17. d From ref. 34. e This work. f Fast kinetics, complete decay of the monitored absorbance 
within 6 ms. g From ref. 7. h From ref. 18. i From ref. 8. 

 

Kinetics of the reactions of piperidine and morpholine with compounds 1b–d have been 

determined in DMSO, using the same methodology as described above for the reactions with 

carbanions. The second-order rate constants for the reactions with piperidine in DMSO (Table 

2.5, entries 8, 13, 18) were found to be 3–6 times greater than those in DMSO/H2O (50/50) 

which have previously been determined by Bernasconi (entries 10, 15)17 and confirmed by us 

(entries 9, 14). The reactions are roughly one order of magnitude faster in neat DMSO than in 

water (cf entries 8/11 and 13/16). Solvent effects of similar magnitude have been observed for 

the corresponding additions of morpholine (Table 2.5, entries 20–32). Though variations of 

the solvent can be expected to affect nucleophilicities as well as electrophilicities, in the 

derivation of the parameters for Equation (2.1), solvent effects were exclusively considered in 

the nucleophile specific parameters N and s.4 Though this procedure was reported to cause 

some problems for the reactions with 7-X,14 differential solvent effects on the 

electrophilicities of 1a–d have not been considered.  

Table 2.5 furthermore shows that the experimental rate constants are generally 20–120 

times greater than the calculated values. The reaction of morpholine with 1c in DMSO is even 

580 times faster than calculated (entry 29). Though deviations from experimental values by 

two-orders of magnitude are still within the confidence limit of Equation (2.1),2,42 the 
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constantly higher experimental rate constants for the additions of secondary amines to 1a–d 

may be indicative of a change of mechanism. Schuster,34 Bernasconi,20,44 and Oh24 presented 

evidence that the transition states of amine additions to 1 are stabilized by hydrogen bridging 

from NH to the carbonyl group (six-membered transition state TS6) or from NH to the 

carbanionic center (four-membered ring TS4). Analogous hydrogen bridging may account for 

the finding that glycinamide and semicarbazide react 200 times faster with 1a than predicted 

by Equation (2.1) (Table 2.5, entries 33, 34). 
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R R
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This type of transition state stabilization by hydrogen bridging is not possible in additions 

of carbanions to 1a–d, the rates of which have been used to derive the E parameters of these 

electrophiles (Table 2.3). A related study has recently shown that additions of secondary 

amines to benzylidene indandiones 7-X are only three times faster than predicted by Equation 

(2.1).14 It has, therefore, been concluded that H-bridging as indicated in TS6 and TS4 cannot 

have a large effect on the transition states of the additions of secondary amines to 7-X. 

 

Conclusion 

Benzylidene Meldrum’s acids are another group of electrophiles, the reactivities of which 

can be described by the correlation equation (2.1). While the reactivities with carbanions can 

be reproduced with an accuracy of better than a factor of 5, primary and secondary amines 

react approximately 102 times faster than predicted by Equation (2.1). In line with previous 

work, these deviations are explained by additional stabilizing effect in the transition states 

(hydrogen bridging). 
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Accordingly, calculated and experimental rate constants for the reactions of 1 with tertiary 

amines, which cannot be accelerated by hydrogen bridging, differ by only one order of 

magnitude.45 It is, therefore, concluded that the E parameters for 1a–d in this work can be 

used to characterize the electrophilic potential of the title compounds. 

 

General Remarks 

Benzylidene Meldrum’s Acids 1a–c. Benzylidene Meldrum’s acids 1a–c were prepared by 

following a procedure for the synthesis of structurally related benzylidene barbituric acids:46 

Equimolar amounts of p-substituted benzaldehyde and Meldrum’s acid were stirred in EtOH 

under reflux for 2 h. The products precipitate immediately after cooling the reaction mixtures 

to room temperature. After filtration and recrystallization from EtOH, the electrophiles 1a–c 

were obtained as colored crystals. 1H and 13C NMR spectra for 1a–c agreed with those 

described in the literature.26, 47 UV-Vis spectra of 1a–d in DMSO are shown in Figure S2 of 

the Experimental Section. 

 

2,2-Dimethyl-5-(julolidin-9-ylmethylene)-1,3-dioxane-4,6-dione (1d). Meldrum’s acid 

(716 mg, 4.97 mmol) and 9-formyl-julolidine (1.00 g, 4.97 mmol) were added to EtOH (25 

mL). The solution turned purple immediately. After 10 min under reflux, the solution was 

allowed to cool to room temperature. The product precipitated from the solution, was filtered 

and recrystallized from EtOH. The product 1d (900 mg, 2.75 mmol, 55 %) was obtained as 

purple crystals; mp 138.0–138.4 °C. Further attempts to optimize the yield have not been 

made. 1H NMR (300 MHz, CDCl3): δ = 1.73 (s, 6 H, C(CH3)2), 1.96 (quint, J = 5.7 Hz, 4 H, 2 

× CH2), 2.74 (t, J = 5.7 Hz, 4 H, 2 × CH2), 3.36 (t, J = 5.7 Hz, 4 H, 2 × CH2), 7.85 (s, 2 H, 

ArH), 8.15 ppm (s, 1 H). 13C NMR (75.5 MHz, CDCl3): δ = 21.0 (t, CH2), 27.2 (q, CH3), 27.5 

(t, CH2), 50.4 (t, CH2), 102.6 (s), 103.0 (s), 119.4 (s), 120.5 (s), 136.6 (d, Car), 149.3 (s), 157.5 

(d, =C-H), 161.8 (s), 165.6 ppm (s). Signal assignments are based on additional gHSQC 
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experiments. MS (ESI, positive): m/z (%): 328 (7) [M + H]+, 270 (100). C19H21NO4 (327.38): 

Calcd N 4.28, C 69.71, H 6.47. Found N 4.27, C 69.45, H 6.36. 

 

5-[2-Acetyl-1-(4-methoxyphenyl)-3-oxo-butyl]-2,2-dimethyl-1,3-dioxane-4,6-dione (4bg). 

A mixture of 1b (365 mg, 1.39 mmol) and 2g-K+ (202 mg, 1.46 mmol) in dry DMSO (2 mL) 

was stirred until the color of the solution disappeared. Then the reaction mixture was poured 

on cold water (5 mL) and acidified with 2 M aq HCl. The precipitate was filtered and 

dissolved in CH2Cl2. After removal of the traces of water by filtering the solution over a hot 

cotton batting, the solvent was evaporated and the residue was dried in vacuum: 4bg (400 mg, 

85 %), colorless solid; mp 116.6–116.9 °C. 1H NMR (300 MHz, CDCl3): δ = 1.27, 1.62 (2 s, 2 

× 3 H, C(CH3)2), 1.95 (s, 3 H, COCH3), 2.32 (s, COCH3), 3.74 (s, 3 H, OMe), 4.06 (d, 3J = 

4.0 Hz, 1 H, Ha), 4.44 (d, d, 3J = 4.0 Hz, 12.0 Hz, 1 H, Hb), 5.19 (d, 3J = 12 Hz, 1 H, Hc), 6.79 

(d, 3J = 9.0 Hz, 2 H, ArH), 7.19 ppm (d, 3J = 9.0 Hz, 2 H, ArH). 13C NMR (75.5 MHz, 

CDCl3): δ = 28.3 (q, C(CH3)2), 28.5 (q, C(CH3)2), 29.9 (q, COCH3), 30.6 (q, COCH3), 43.2 (d, 

Cb), 48.2 (d, Ca), 55.4 (q, OCH3), 71.0 (d, Cc), 105.8 (s, C(CH3)2), 114.7 (d, Ar), 128.5 (s), 

130.8 (d, Ar), 159.7 (s), 165.0 (s, CO2), 165.9 (s, CO2), 202.4 (s, COCH3), 203.5 ppm (s, 

COCH3). Signal assignments are based on additional DEPT and gHSQC experiments. ESI-

MS (negative): m/z (%): 361 (100) [M – H+]–. HR-MS: calcd 362.1366 (C19H22O7), found 

362.1327. 

 

Reaction of 4-Dimethylaminobenzylidene Meldrum’s Acid (1c) with Potassium 

Dicyanomethanide (2d-K+). A mixture of 1c (71.5 mg, 0.260 mmol) and 2d-K+ (27.1 mg, 

0.260 mol) was stirred in DME (2 mL) at room temperature. After decolorization of the 

solution, stirring was continued for 5 min. A yellow solid precipitated and hexane was added 

to support the precipitation. The precipitate was washed with diethyl ether/hexane: 3cd (65 

mg, 66 %), yellow solid; mp 129.1–129.5 °C. 1H NMR (400 MHz, d6-DMSO): δ = 1.46 (s, 6 
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H, C(CH3)2), 2.85 (s, 6 H, NMe2), 4.28 (d, 3J = 12.4 Hz, 1 H, Hb), 5.75 (d, 3J = 12.0 Hz, 1 H, 

Hc), 6.61 (d, 3J = 8.8 Hz, 2 H, ArH), 7.29 ppm (d, 3J = 8.8 Hz, 2 H, ArH). 13C NMR (100.5 

MHz, d6-DMSO): δ = 25.7 (q, C(CH3)2), 26.6 (d, Cc), 40.1 (q, NMe2), 43.2 (d, Cb), 73.2 (s, 

Ca), 99.7 (s, C(CH3)2), 111.8 (d, Ar), 115.1 (s, CN), 128.4 (d, Ar), 129.8 (s), 149.2 (s), 164.6 

ppm (s, CO2). Signal assignments are based on additional gHSQC experiments. ESI-MS 

(negative): m/z (%): 340 (100) [M – K+]–, 300 (63), 212 (23). 

 

Kinetics. For the kinetic experiments, standard stopped-flow UV-Vis-spectrophotometer 

systems were used in their single mixing mode. Solutions of the electrophiles 1 in DMSO 

were mixed with solutions of the carbanions 2 in DMSO (either generated by deprotonation 

of 2-H with 1.05 equiv. KOtBu in DMSO or by dissolving 2-K+ in DMSO). In order to obtain 

first-order kinetics, the carbanions were used in large excess (10 to 100 equivalents) over the 

electrophiles. The temperature of the solutions was kept constant (20 ± 0.1 °C) by using 

circulating bath thermostats. 

Rate constants k1ψ (s–1) were obtained by fitting the single exponential At = A0 exp(–k1ψt) + 

C to the observed time-dependent electrophile absorbance (the monitored wavelenghts are 

given in the Experimental Section). As depicted in the Experimental Section, the second-

order rate constants k2 (Table 2.3) were obtained from the slopes of the linear plots of k1ψ 

versus the carbanion concentrations [2]. 
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Experimental Section 

Electrophilicity Parameters of 5-Benzylidene-2,2-

dimethyl-[1,3]dioxane-4,6-diones (Benzylidene 

Meldrum’s Acids) 

O. Kaumanns, H. Mayr, J. Org. Chem. 2008, 73, 2738-2745. 

 
2.1. Materials 
 
General. Commercially available DMSO (H2O content < 50 ppm) was used without further 

purification. Stock solutions of KOtBu in DMSO were prepared under a nitrogen atmosphere. 

NMR spectroscopy. In the 1H and 13C NMR spectra chemical shifts are given in ppm and refer 

to d6-DMSO (δH = 2.49 ppm, δC = 39.7 ppm) or to CDCl3 (δH = 7.26 ppm, δC = 77.00 ppm) as 

internal standards. The coupling constants are given in Hz. 

Potassium Salts of Carbanions 2. The potassium salts of 2b–i were generated by mixing a 

solution of KOtBu in dry EtOH with a solution of the corresponding CH acid in dry EtOH 

under nitrogen atmosphere. Because of the low solubility of (2b–i)-K+ in EtOH, the 

precipitates were filtered and dried to obtain (2b–i)-K+ as colorless solids.S1 

In some cases 2-K+ was generated by mixing the corresponding CH acid 2-H with 1.05 equiv. 

of KOtBu in DMSO. For 2f-H it was shown that the deprotonation by 1.05. equiv. KOtBu 

(DMSO, 20 °C) is quantitative by following the increase of the absorption of 2f-K+ at λ = 365 

nm (Figure S1). The addition of a second equivalent of base does not result in a further 

increase of the absorption. 

 

 

 

                                                 
S1 R. Lucius, Thesis, Ludwig-Maximilians-Universität München, 2001. 
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Figure S2. UV spectra of the benzylidene Meldrums’s acids 1a–d in DMSO (λmax in nm). 
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2.2. Product Studies 

Reactions of Electrophile 1a  

 

3ah: A mixture of benzylidene Meldrum’s acid 1a (64.5 mg, 0.278 mmol) and 2h-K+ (50.3 

mg, 0.282 mmol) in dry d6-DMSO (2 mL) was stirred for 5 min. Then a sample was 

transferred to an NMR tube and analyzed by NMR spectroscopy. 

OO

O O O O

OO

O O

OH

O

K
+ K

+

a

bc

 
      232.17      178.27    410.50 

   C13H12O4     C8H11KO2    C21H23KO6 

        1a        2h-K+       3ah 

 
1H-NMR (400 MHz, d6-DMSO): δ = 1.03 (s, 6 H, dim-C(CH3)2), 1.52 (s, 6 H, C(CH3)2), 2.20-

2.23 (m, 4 H, 2 × CH2), 5.76 (s, 1 H, CH, Hb), 6.98-7.15 (m, 5 H, Ph), 13.49 ppm (s, br, 1 H, 

OH). 13C-NMR (100.5 MHz, CDCl3): δ = 25.3 (q, dim-C(CH3)2), 27.2, 28.3 (2 q, C(CH3)2), 

31.7 (d, CH), 44.1, 50.1 (2 × t, CH2), 77.7 (s), 99.5 (s), 115.8 (s), 123.6 (d, Ph), 126.5 (d, Ph), 

126.8 (d, Ph), 144.6 (s), 172.4 (s), 195.7 ppm (s). Signal assignments are based on additional 

gHSQC experiments. 
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Reactions of Electrophile 1b  

 

3bb/4bb: A mixture of 1b (195 mg, 0.743 mmol) and 2b-K+ (148 mg, 0.746 mmol) in dry 

DMSO (1 mL) was stirred until the solution was colorless (5 min). Then a sample was taken 

to analyze 3bb by NMR spectroscopy. The remaining reaction mixture was poured on water 

(5 mL) and acidified with 2 M aq HCl (2 mL). The resulting precipitate was filtered and dried 

in vacuum (8 × 10-3 mbar) to yield 4bb (130 mg, 0.308 mmol, 41 %). 

O O

O O

O

O O

O O

O
CO2Et

EtO2C

O O

OEtEtO
O O

O O

O
CO2Et

EtO2C
H

+

K
+

K
+

a

bc

a

bc

 
262.26           198.26      460.52          422.43   

C14H14O5            C7H11KO4   C21H25KO9        C21H26O9 

        1b             2b-K+        3bb             4bb 

 

3bb: 1H-NMR (400 MHz, d6-DMSO): δ = 0.89 (t, 3J = 7.2 Hz, 3 H, CH2CH3), 1.13 (t, 3J = 

7.2 Hz, 3 H, CH2CH3), 1.35 (s, 6 H, C(CH3)2), 3.66 (s, 3 H, OMe), 3.75-3.85 (m, 2 H, 

CH2CH3), 3.95-4.05 (m, 2 H, CH2CH3), 4.38 (d, 3J = 12.4 Hz, 1 H, Hb), 4.89 (d, 3J = 12.4 Hz, 

1 H, Hc), 6.66 (d, 3J = 8.4 Hz, 2 H, ArH), 7.29 ppm (d, 3J = 8.4 Hz, 2 H, ArH). 13C-NMR 

(100.5 MHz, d6-DMSO): δ = 13.6 (q, CH2CH3), 13.9 (q, CH2CH3), 25.6 (q, C(CH3)2), 40.5 

(d, Cb), 54.2 (d, Cc), 54.8 (q, OCH3), 59.8 (t, CH2CH3), 60.0 (t, CH2CH3), 74.6 (s, Ca), 98.8 (s, 

C(CH3)2), 112.3 (d, Ar), 128.9 (d, Ar), 137.5 (s), 156.7 (s), 164.4 (s), 168.4 (s, CO2Et), 168.7 

ppm (s, CO2Et). Signal assignments are based on additional DEPT and gHSQC experiments. 

For the ESI-MS, a mixture of equimolar amounts of 1b and 2b-K+ in dry EtOH was analyzed. 

MS: (ESI, negative) m/z: 421 (100) [M - K]–, (ESI, positive) m/z: 461  (100) [M + H]+, 423 

(5) [M + 2H]+. 

 

4bb: 1H-NMR (400 MHz, CDCl3): δ = 0.97 (t, 3J = 7.2 Hz, 3 H, CH2CH3), 1.27 (t, 3J = 7.2 

Hz, 3 H, CH2CH3), 1.38, 1.66 (2 s, 2 × 3 H, C(CH3)2), 3.75 (s, 3 H, OMe), 3.88-3.96 (m, 2 H, 

CH2CH3), 4.17-4.27 (m, 2 H, CH2CH3), 4.43-4.47 (m, 2 H, Ha, Hb), 4.78 (d, 3J = 12.4 Hz, 1 

H, Hc), 6.78 (d, 3J = 8.8 Hz, 2 H, ArH), 7.29 ppm (d, 3J = 8.8 Hz, 2 H, ArH). 13C-NMR (100.5 

MHz, CDCl3): δ = 13.7 (q, CH2CH3), 13.9 (q, CH2CH3), 27.7 (q, C(CH3)2), 28.2 (q, 



Chapter 2: Experimental Section 

48 

C(CH3)2), 42.7 (d, Cb), 48.9 (d, Ca), 53.3 (d, Cc), 55.2 (q, OMe), 61.3 (t, CH2CH3), 62.0 (t, 

CH2CH3), 105.3 (s, C(CH3)2), 113.9 (d, Ar), 129.0 (s), 130.7 (d, Ar), 159.2 (s), 164.8 (s), 

165.4 (s), 167.6 (s), 170.0 ppm (s). Signal assignments are based on additional DEPT, 

gHSQC, gHMBC and gDQCOSY experiments. MS: (ESI, negative) m/z: 421 (100) [M - H]–, 

(ESI, positive) m/z: 440 (100), 423 (25) [M + H]+.HR-MS: calcd 422.1577 (C21H26O9), found 

422.1535 . 

 

 

 

4bd: A mixture of 1b (276 mg, 1.05 mmol) and 2d-K+ (117 mg, 1.12 mmol) in dry DMSO (5 

mL) was stirred at room temperature until the color of the electrophile disappeared. The 

colorless solution was poured on cold water (5 mL) and acidified with 2 M aq HCl (2 mL). 

The colorless precipitate was filtered and dried to give 4bd (160 mg, 0.487 mmol, 48 %) as a 

colorless solid which decomposed quickly at room temperature. 

CNNCO O

O O

O

O O

O O

O

NC

CN
H

+

K
+ a

b 
c

1.

2.
 

  262.26        104.16          328.32 

C14H14O5          C3HKN2       C17H16N2O5 

      1b           2d-K+            4bd 

 
1H-NMR (600 MHz, CDCl3): δ = 1.30, 1.62 (2 s, 2 × 3 H, C(CH3)2), 3.67 (s, 3 H, OMe), 3.94 

(d, 3J = 3.6 Hz, 1 H, Ha), 4.22 (dd, 3J = 3.6 Hz, 3J = 12.6 Hz, 1 H, Hb), 5.10 (d, 3J = 12.6 Hz, 1 

H, Hc), 6.76 (d, 3J = 9.0 Hz, 2 H, ArH), 7.13 ppm (d, 3J = 9.0 Hz, 2 H, ArH). 13C-NMR (150 

MHz, CDCl3): δ = 27.3 (d, Cc), 27.9, 28.1 (2 q, C(CH3)2), 45.1 (d, Cb), 47.9 (d, Ca), 55.3 (q, 

OMe), 106.5 (s, C(CH3)2), 111.3 (s, CN), 112.1 (s, CN), 114.9 (d, Ar), 124.0 (s), 130.3 (d, 

Ar), 160.6 (s, C=O), 162.9 (s, C=O), 164.3 ppm (s). Signal assignments are based on 

additional gHSQC experiments. 

 

 

4be: A mixture of 1b (186 mg, 0.709 mmol) and 2e-K+ (143 mg, 0.850 mmol) in dry DMSO 

(2 mL) was stirred. After decolorization the solution was poured on cold water and acidified 

with 2 M aq HCl (2 mL). The colorless precipitate was filtered and dissolved in CH2Cl2. After 
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removal of water traces by filtering the solution over a hot cotton batting, the solvent was 

removed and the residue was dried in vacuum to yield 4be (200 mg, 0.51 mmol, 72 %) as a 

58/42 mixture of diastereomers. 

O O

OEt

O O

O O

O

O O

O O

O

O

O OEt
H

+

K
+

a

b 
c

 
  262.26         168.24   392.41 

C14H14O5         C6H9KO3           C20H24O8 

      1b          2e-K+                         4be 

 
1H-NMR (300 MHz, CDCl3): δ = 0.98 (t, 3J = 7.2 Hz, 3 H, CH2CH3 (A)), 1.26 (t, 3J = 7.2 Hz, 

3 H, CH2CH3 (B)), 1.29 (s, 3 H, C(CH3)2 (A)), 1.37 (s, 3 H, C(CH3)2 (B)), 1.63 (s, 3 H, 

C(CH3)2 (A)), 1.66 (s, 3 H, C(CH3)2 (B)), 2.02 (s, 3 H, CH3 (B)), 2.35 (s, 3 H, CH3 (A)), 3.74 

(s, 3 H. OCH3 (A+B)), 3.88–3.92 (m, 1.5 H), 4.12–4.24 (m, 1.5 H), 4.38–4.48 (m, 2 H), 4.94 

(m, 1 H, Hb), 6.77 (d, 3J = 9.1 Hz, 2 H, C-Har), 7.22 ppm (d, 3J = 9.1 Hz, 2 H, C-Har). (A) and 

(B) denote the major and the minor product, respectively. The assignment of the multiplets 

was not possible because of the overlapping proton signals of the ester groups with the 

methine protons. 13C-NMR (75.5 MHz, CDCl3): δ = 13.7 (q), 13.9 (q), 27.7 (q), 28.0 (q), 28.1 

(q), 29.6, (q), 31.3 (q), 40.9 (q), 42.2 (d), 42.3 (d), 47.9 (t), 48.7 (t), 55.1 (q, OMe), 59.8 (d), 

61.6 (d), 61.8 (d), 62.0 (d), 105.2 (s), 105.4 (s), 113.9 (d, Ar), 114.2 (d, Ar), 129.1 (d, Ar), 

130.5 (d, Ar), 159.2 (s), 164.7 (s), 165.6 (s), 165.8 (s), 167.3 (s), 168.7 (s), 201.8 (s), 202.9 

ppm (s). Signal assignments are based on additional DEPT and gHSQC experiments. 

 

 

3bh: A suspension of 1b (285 mg, 1.09 mmol) and 2h-K+ (178 mg, 0.998 mmol) in DME (2 

mL) was stirred at room temperature. After 2 min, the suspension became more viscous and a 

colorless solid precipitated. After filtering under nitrogen atmosphere and washing with 

benzene, 3bh (280 mg, 0.636 mmol, 64 %) was obtained as a colorless solid; mp 219.3–     

219.6 °C. 

Due to fast decomposition of 3bh at room temperature, 1b (143 mg, 0.545 mmol) and 2h-K+ 

(89 mg, 0.499 mmol) were mixed in 2 mL dry d6-DMSO and analyzed after complete 

conversion. 
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O O

O O

O O

O

O O

O O

OOH

O

K
+

K
+

a

b 

 
  262.26           178.27           440.54 

C14H14O5          C8H11KO2            C22H25KO7 

      1b              2h-K+       3bh 

 
1H-NMR (400 MHz, d6-DMSO): δ = 1.00, 1.04 (2 s, 2 × 3 H, dim-C(CH3)2), 1.52 (s, 6 H, 

C(CH3)2), 2.09-2.28 (m, 4 H, 2 × CH2), 3.68 (s, 3 H, OMe), 5.68 (s, 1 H, Hb), 6.71 (d, 3J = 8.8 

Hz, 2 H, ArH), 6.96 (d, 3J = 8.8 Hz, 2 H, ArH), 13.50 ppm (s, 1 H, OH). 13C-NMR (100.5 

MHz, d6-DMSO): δ = 25.6 (q, C(CH3)2), 27.4 (q, dim-C(CH3)2), 28.7 (q, dim-C(CH3)2), 31.0 

(d, Cb), 44.4 (t, CH2), 50.4 (t, CH2), 54.7 (q, OMe), 78.1 (s), 99.7 (s), 112.6 (d, Ar), 114.1 (s), 

116.4 (s), 127.6 (d, Ar), 136.9 (s), 156.1 (s), 158.1 (s), 165.9 (s), 166.4 (s), 172.6 (s), 196.0 

ppm (s). Signal assignments are based on additional gHSQC experiments. Due to the fast 

decomposition of 3bh some signals in the 13C-NMR spectrum belong to decomposition 

products and cannot be assigned. MS (ESI, negative) m/z: 401 (100) [M - K]–, (ESI, positive) 

m/z: 441 (100) [M + H]+. 
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Reactions of Electrophile 1c  

 

3cb/4cb: A mixture of equimolar amounts of 1c and 2b-K+ were stirred in dry d6-DMSO (5 

mL) until the color disappeared. Then a sample was taken to analyze 3cb by NMR 

spectroscopy. After pouring the remaining solution on cold water (5 mL) and addition of 2 M 

aq HCl (2 mL), a colorless solid precipitated which was filtered and dried unter reduced 

pressure to give compound 4cb. 

O O

O O

NMe2

O O

O O

CO2Et

EtO2C

NMe2

K
+O O

OEtEtO
O O

O O

CO2Et

EtO2C

NMe2

H
+

K
+

a

b 
c

a

b c

 
  275.31   198.27         473.57             435.48 

C15H17NO4  C7H11KO4        C22H28KNO8                       C22H29NO8 

      1c       2b-K+   3cb     4cb 

 

3cb: 1H-NMR (600 MHz, d6-DMSO): δ = 0.90 (t, 3J = 6.6 Hz, 3 H, CH2CH3), 1.12 (t, 3J = 6.6 

Hz, 3 H, CH2CH3), 1.34 (s, 6 H, C(CH3)2), 2.77 (s, 6 H, NMe2), 3.76-3.82 (m, 2 H, CH2CH3), 

3.94-4.04 (m, 2 H, CH2CH3), 4.33 (d, 3J = 12.6 Hz, 1 H, Hb), 4.87 (d, 3J = 12.6 Hz, 1 H, Hc), 

6.49 (d, 3J = 9.0 Hz, 2 H, ArH), 7.20 ppm (d, 3J = 9.0 Hz, 2 H, ArH). 13C-NMR (100.5 MHz, 

d6-DMSO): δ = 13.6 (q, CH2CH3), 13.9 (q, CH2CH3), 25.7 (q, C(CH3)2), 39.4 (d, Cb), 40.5 (q, 

NMe2), 54.4 (d, Cc), 59.7 (t, CH2CH3), 59.9, (t, CH2CH3), 74.8 (s, Ca), 98.6 (s, C(CH3)2), 

111.7 (d, Ar), 128.4 (d, Ar), 133.8 (s), 148.2 (s), 164.4 (s, CO2), 168.5 (s, CO2Et), 168.8 ppm 

(s, CO2Et). Signal assignments are based on additional DEPT, gHSQC, and gHMBC 

experiments. For the ESI-MS, a mixture of equimolar amounts of 1c and 2b-K+ in dry EtOH 

was analyzed. MS: (ESI, negative) m/z: 434 (100) [M - K]–, (ESI, positive) m/z: 436 (100) [M 

- K + 2H]+. 

 

4cb: 1H NMR (300 MHz, CDCl3): δ = 0.91 (t, 3J = 7.2 Hz, 3 H, CH2CH3), 1.21 (t, 3J = 7.2 

Hz, 3 H, CH2CH3), 1.30, 1.60 (2 s, 2 × 3 H, C(CH3)2), 2.85 (s, 6 H, NMe2), 3.83-3.90 (m, 2 H, 

CH2CH3,), 4.09-4.21 (m, 2 H, CH2CH3), 4.32-4.39 (m, 2 H, Ha and Hb), 4.70 (d, 3J = 12.0 Hz, 

2 H, Hc), 6.65 (d, 3J = 8.7 Hz, 2 H, ArH), 7.17 ppm (d, 3J = 8.7 Hz, 2 H, ArH). 13C-NMR 

(75.5 MHz, CDCl3): δ = 13.6 (q, CH2CH3), 13.8 (q, CH2CH3), 27.6 (q, C(CH3)2), 28.0 (q, 



Chapter 2: Experimental Section 

52 

C(CH3)2), 40.7 (q, NMe2), 42.5 (d, Cb), 48.9 (d, Ca), 53.1 (d, Cc), 61.1 (t, CH2CH3), 61.7 (t, 

CH2CH3), 105.1 (s, C(CH3)2), 113.3 (d, Ar), 130.1 (d, Ar), 164.7 (s), 165.2 (s), 167.5 (s), 

168.8 ppm (s). Signal assignments are based on additional DEPT, gHSQC, and gHMBC 

experiments. MS: (ESI, negative) m/z: 434 (100) [M - H]–, (ESI, positive) m/z: 436 (100) [M 

+ H]+. HR-MS: calcd 435.1893 (C22H29NO8), found 435.1859. 

 

 

3cg: A mixture of 1c (260 mg, 0.944 mmol) and 2g-K+ (179 mg, 1.30 mmol) was stirred in 

dry d6-DMSO (2 mL) at room temperature until decolorization was observed. Samples from 

this solution were analyzed by NMR and MS without further workup. 

O OO O

O O

NMe2

O O

O O

O

O

NMe2

K
+

K
+

a

b c

 
 275.31  138.21                  413.52 

C15H17NO4               C5H7KO2   C20H24KNO6 

      1c      2g-K+         3cg 

 
1H-NMR (400 MHz, d6-DMSO): δ = 1.32 (s, 6 H, C(CH3)2), 1.89 (s, 3 H, COCH3), 2.11 (s, 3 

H, COCH3), 2.79 (s, 6 H, NMe2), 4.46 (d, 3J = 12.4 Hz, 1 H, Hb), 5.24 (d, 3J = 12.4 Hz, 1 H, 

Hc), 6.52 (d, 3J = 8.8 Hz, 2 H, ArH), 7.20 ppm (d, 3J = 8.8 Hz, 2 H, ArH). 13C-NMR (100 

MHz, d6-DMSO): δ = 25.7 (q, C(CH3)2), 28.4 (q, COCH3), 30.4 (q, COCH3), 40.3 (q, NMe2), 

40.6 (d, Cb), 70.4 (d, Cc), 75.0 (s, Ca), 98.8 (s, C(CH3)2), 111.9 (d, Ar), 128.2 (d, Ar), 133.7 (s, 

Ar), 148.2 (s, Ar), 164.6 (s, CO2), 204.0 (s, COCH3), 204.8 ppm (s, COCH3). Signal 

assignments are based on additional gHSQC experiments. MS (ESI, negative): m/z (%): 374 

(100) [M - K]–, (ESI, positive): m/z (%): 414 (46) [M - K + H]+, 376 (55), 207 (63). 

 

 

3ch: A mixture of 1c (295 mg, 1.07 mmol) and 2h-K+ (177 mg, 0.993 mmol) was stirred in 

dry DME (2 mL) at room temperature until the color intensity of the solution remained 

constant. When the solvent was removed under reduced pressure, a solid precipitated. After 

washing the solid with a mixture of benzene/hexane it was dried to yield 3ch (205 mg, 0.452 

mmol, 46 %), orange solid; mp 193.3–193.6 °C. 
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Because compound 3ch decomposed slowly at room temperature, 1c (95 mg, 0.35 mmol) was 

mixed with 2h-K+ (60 mg, 0.34 mmol) in d6-DMSO until the solution was colorless. For the 

characterization by NMR spectroscopy samples from this solution were analyzed without 

further workup. 

O O

O O

O O

NMe2

O O

O O

OH

O

NMe2

K
+

K
+

a

b 

 
       275.31                       178.27                 453.58 

    C15H17NO4             C8H11KO2                C23H28KNO6 

1c               2h-K+         3ch 

 
1H-NMR (400 MHz, d6-DMSO): δ = 1.01, 1.04 (2 s, 2 × 3 H, dim-C(CH3)2), 1.52 (s, 6 H, 2 × 

C(CH3)2), 2.09-2.28 (m, 4 H, 2 × CH2), 2.80 (s, 6 H, NMe2), 5.64 (s, 1 H, Hb), 6.56 (d, 3J = 

8.8 Hz, 2 H, ArH), 6.89 (d, 3J = 8.8 Hz, 2 H, ArH), 13.53 ppm (s, 1 H, OH). 1H- and 13C-

NMR spectra taken after 1 h shows fast decomposition of 3ch. Therefore an unambiguous 

assignment of the signals in the 13C NMR spectra was not possible. 
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Reactions of Electrophile 1d  

 

3da: A mixture of 1d (61.4 mg, 0.188 mmol) and 2a-K+ (23.6 mg, 0.208 mmol) was stirred in 

dry d6-DMSO (5 mL) until the color intensity of the solution remained constant. Samples 

from this solution were analyzed by NMR and MS without further workup and showed the 

formation of 3da, mixture of diastereomers in a ratio of 52:48. 

N

OO

O O NO2

N

OO

O O

NO2

K
+ K

+

a

b c

 
        327.38                   113.16       440.55 

      C19H21NO4                     C2H4KNO2                C21H25KN2O6 

            1d   2a-K+                      3da 

 

Major diastereomer: 1H-NMR (600 MHz, d6-DMSO): δ = 1.39 (s, 6 H, C(CH3)2), 1.40 (d, 3J = 

6.6 Hz, 3 H, CH3CH), 1.83 (m, 4 H, 2 × CH2), 2.55 (t, 3J = 6.6 Hz, 4 H, 2 × CH2), 3.00 (m, 4 

H, 2 × CH2), 3.94 (d, 3J = 12.0 Hz, 1 H, Hb), 5.71 (m, 1 H, Hc), 6.69 ppm (s, 2 H, ArH). 13C-

NMR (75.5 MHz, d6-DMSO): δ = 19.0 (q, CH3CH), 21.8 (t, CH2), 25.9 (q, C(CH3)2), 27.2 (t, 

CH2), 45.5 (d, Cb), 49.4 (t, CH2), 73.8 (s), 87.1 (d, Cc), 98.7 (s, C(CH3)2), 119.7 (s), 126.2 (d, 

Ar), 130.9 (s), 140.6 (s), 164.3 ppm (s, CO2). 

Minor diastereomer: 1H-NMR (600 MHz, d6-DMSO): δ = 1.19 (d, 3J = 6.6 Hz, 3 H, CH3CH), 

1.31 (s, 6 H, C(CH3)2), 1.83 (m, 4 H, 2 × CH2), 2.60 (t, 3J = 6.6 Hz, 4 H, 2 × CH2), 3.00 (m, 4 

H, 2 × CH2), 3.88 (d, 3J = 12.0 Hz, 1 H, Hb), 5.84-5.87 (m, 1 H, Hc), 6.83 ppm (s, 2 H, ArH). 
13C-NMR (75.5 MHz, d6-DMSO): δ = 19.4 (q, CH3CH), 21.8 (t, CH2), 25.6 (q, C(CH3)2), 

27.2 (t, CH2), 46.2 (d, Cb), 49.4 (t, CH2), 73.9 (s), 84.3 (d, Cc), 99.0 (s, C(CH3)2), 119.7 (s), 

127.1 (d, Ar), 131.4 (s), 131.7 (s), 140.6 (s), 164.3 ppm (s, CO2). Signal assignments are 

based on additional DEPT, gHSQC, and gHMBC experiments. 
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3db/4db: A mixture of equimolar amounts of 1d and 2b-K+ in dry d6-DMSO was stirred until 

decolorization was observed. Then a sample was taken to analyze 3db by NMR spectroscopy. 

After acidifying the remaining solution with 2 M aq HCl, a solid (4db) precipitated which 

was filtered and dried. 

O O

O O

N

O O

O O

CO2Et

EtO2C

N
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+

O O

OEtEtO

O O

O O

CO2Et

EtO2C

N

H
+

K
+

a

b 
c

a
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        327.38               198.27         525.65            487.55 

      C19H21NO4                C7H11KO4       C26H32KNO8          C26H33NO8 

            1d    2b-K+            3db    4db 

 

3db: 1H-NMR (600 MHz, d6-DMSO): δ = 0.96 (t, 3J = 7.2 Hz, 3 H, CH2CH3), 1.11 (t, 3J = 7.2 

Hz, 3 H, CH2CH3), 1.34 (s, 6 H, C(CH3)2), 1.83 (quint, t, 3J = 5.4 Hz, 4 H, 2 × CH2), 2.56 (t, 
3J = 5.4 Hz, 4 H, 2 × CH2), 2.97 (t, 3J = 5.4 Hz, 4 H, 2 × CH2), 3.80-3.88 (m, 2 H, CH2CH3), 

3.92-4.00 (m, 2 H, CH2CH3), 4.20 (d, 3J = 12.6 Hz, 1 H, Hb), 4.80 (d, 3J = 12.6 Hz, 1 H, Hc), 

6.70 ppm (s, 2 H, ArH). 13C-NMR (75.5 MHz, d6-DMSO): δ = 13.7 (q, CH2CH3), 13.9 (q, 

CH2CH3), 22.0 (t, CH2), 25.7 (q, C(CH3)2), 27.2 (t, CH2), 40.3 (d, Cb), 49.5 (t, CH2), 54.3 (d, 

Cc), 59.6 (t, CH2CH3), 59.8 (t, CH2CH3), 74.8 (s, Ca), 98.5 (s, C(CH3)2), 119.4 (s, Ar), 126.4 

(d, Ar), 133.0 (s), 140.1 (s), 164.3 (s, CO2), 168.5 (s, CO2Et), 168.9 ppm (s, CO2Et). Signal 

assignments are based on additional DEPT, gHSQC, and gHMBC experiments. For the ESI-

MS, a mixture of equimolar amounts of 1d and 2b-K+ in dry EtOH was analyzed. MS: (ESI, 

negative) m/z: 486 (100) [M – K]–. 

 

4db: 1H-NMR (300 MHz, CDCl3): δ = 0.99 (t, 3J = 7.2 Hz, 3 H, CH2CH3), 1.24 (t, 3J = 7.2 

Hz, 3 H, CH2CH3), 1.33, 1.63 (2 s, 2 × 3 H, C(CH3)2), 1.87 (quint, 3J = 5.7 Hz, 4 H, 2 × CH2), 

2.60 (t, 3J = 5.7 Hz, 4 H, 2 × CH2), 3.04 (t, 3J = 5.7 Hz, 4 H, 2 × CH2), 3.95 (q, 3J = 7.2 Hz, 2 

H, CH2CH3), 4.13-4.22 (m, 2 H, CH2CH3), 4.26-4.30 (m, 2 H, Ha and Hb), 4.65 (d, 3J = 12.0 

Hz, 1 H, Hc), 6.69 ppm (s, 2 H, ArH). 13C-NMR (75.5 MHz, CDCl3): δ = 13.7 (q, CH2CH3), 

21.9 (t, CH2), 27.5 (t, CH2), 28.8, 28.2 (2 q, C(CH3)2), 42.8 (d, Cb), 49.3 (d, Ca), 49.9 (t, CH2), 

53.3 (d, Cc), 61.0 (t, CH2CH3), 61.7 (t, CH2CH3), 105.2 (s, C(CH3)2), 121.4 (s), 127.6 (d, Ar), 

142.3 (s), 164.9 (s), 165.5 (s), 167.7 (s, C=O), 169.1 ppm (s, C=O). Signal assignments are 

based on additional DEPT, gHSQC, and gHMBC experiments. 
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3dd/4dd: A mixture of equimolar amounts of 1d and 2d-K+ in dry d6-DMSO was stirred. The 

resulting solution of 3dd was analyzed by NMR spectroscopy without further workup. 

CNNCO O

O O

N

O O

O O

N
CN
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+

K
+

O O

O O

N
CN

NC
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+
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a
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      327.38      104.16       431.54          393.45        

  C19H21NO4            C3HKN2    C22H22KN3O4    C22H23N3O4 

      1d                 2d-K+          3dd           4dd 

 
1H-NMR (400 MHz, d6-DMSO): δ = 1.46 (s, 6 H, C(CH3)2), 1.85 (quint, 3J = 5.6 Hz, 4 H, 2 × 

CH2), 2.61 (t, 3J = 5.6 Hz, 4 H, 2 × CH2), 3.04 (t, 3J = 5.6 Hz, 4 H, 2 × CH2), 4.12 (d, 3J = 

12.0 Hz, 1 H, Hb), 5.68 (d, 3J = 12.0 Hz, 1 H, Hc), 6.81 ppm (s, 2 H, ArH). 13C-NMR (100 

MHz, d6-DMSO): δ = 21.7 (t, CH2), 25.8 (q, C(CH3)2), 26.6 (d, Cc), 27.2 (t, CH2), 43.3 (d, 

Cb), 49.3 (d, CH2), 73.2 (s, Ca), 99.7 (s, C(CH3)2), 115.2 (s, CN), 120.1 (d), 126.2 (s), 129.0 

(s), 141.4 (s), 164.5 ppm (s, CO2). Signal assignments are based on additional gHSQC 

experiments. MS (ESI, negative): m/z (%): 392 (100) [M - K]–, 212 (35), (ESI, positive): m/z 

(%): 394 (100) [M - K + 2H]+, 336 (17). 

 

A mixture of 1d (251 mg, 0.767 mmol) and 2d-K+ (88 mg, 0.85 mmol) in dry DME (2 mL) 

was stirred for 30 min at room temperature. A slight change of the color from purple to dark 

red indicated the beginning of the reaction. The reaction mixture was poured on cold water, 

acidified and after 10 min at 8 °C, a dark solid started to separate from the solution. Filtration 

and drying delivered 4dd (175 mg), red solid; mp 124.7–124.9 °C (dec). 
1H-NMR (200 MHz, CDCl3): δ  = 1.40, 1.73 (2 s, 2 × 3 H, C(CH3)2), 1.96 (quint, 3J = 6 Hz, 4 

H, 2 × CH2), 2.69 (t, 3J = 6 Hz, 4 H, 2 × CH2), 3.15 (t, 3J = 6 Hz, 4 H, 2 × CH2), 4.01 (d, 3J = 

3.3 Hz, 1 H, Ha), 4.21 (dd, 3J = 3.3 Hz, 3J = 12.5 Hz, 1 H, Hb), 5.12 (d, 3J = 12.5 Hz, 1 H, Hc), 

6.68 ppm (s, 2 H, Ar-H). MS (ESI, negative): m/z (%): 392 (100) [M - H]–, (ESI, positive): 

m/z (%): 394 (100) [M + H]+. HR-MS: calcd. 393.1689 (C22H23N3O4), found 393.1657. 
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3dg: A mixture of equimolar amounts of 1d (332 mg, 1.02 mmol) and 2g-K+ (138 mg, 0.998 

mmol) in dry d6-DMSO was stirred. The resulting solution of 3dg was analyzed by NMR 

spectroscopy without further workup. 

O OO O

O O

N

O O

O O

NO

O

K
+

K
+

a

b c

 
    327.38   138.21         465.60 

C19H21NO4                                   C5H7KO2        C24H28KNO6 

       1d               2g-K+                        3dg 

 
1H-NMR (400 MHz, d6-DMSO): δ  = 1.32 (s, 6 H, C(CH3)2), 1.83 (quint, 3J = 5.2 Hz, 4 H, 2 

× CH2), 1.92 (s, 3 H, COCH3), 2.08 (s, 3 H, COCH3), 2.57 (t, 3J = 5.2 Hz, 4 H, 2 × CH2), 2.98 

(t, 3J = 5.2 Hz, 4 H, 2 × CH2), 4.33 (d, 3J = 12.8 Hz, 1 H, Hb), 5.17 (d, 3J = 12.8 Hz, 1 H, Hc), 

6.71 ppm (s, 2 H, ArH). 13C-NMR (75.5 MHz, d6-DMSO): δ = 21.9 (t, CH2), 25.6 (q, 

C(CH3)2), 27.2 (t, CH2), 28.3 (q, COCH3), 30.4 (q, COCH3), 40.5 (d, Cb), 49.5 (t, CH2), 70.2 

(d, Cc), 75.0 (d, Ca), 98.7 (s, C(CH3)2), 119.7 (s), 126.1 (s), 132.9 (s), 140.2 (d, Ar), 164.6 (s, 

CO2), 204.0 (s, COCH3), 204.8 ppm (s, COCH3). Signal assignments are based on additional 

DEPT and gHSQC experiments. MS (ESI, negative): m/z (%): 426 (100) [M - K]–, (ESI, 

positive): m/z (%): 466 (62) [M + H]+, 428 (60), 207 (35). 
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3.3. Reactivities of Benzylidene Meldrum’s Acids 1a–d 
 

3.1 Reactions of Electrophiles 1a–d with Carbanions 2 
 
Reactions of Electrophile 1a 
 
Table S1:  Kinetics of the reaction of 1a with the dimedone anion 2h (K+ salt) in DMSO 

at 20 °C (stopped-flow UV-Vis spectrometer, λ = 322 nm). 
 

No. [E]0 / M [C-]0 / M kobs / s−1 

F5-2 1.81 × 10−5 1.77 × 10−4 5.76 × 101 

F5-3 1.81 × 10−5 2.53 × 10−4 7.31 × 101 

F5-1 1.81 × 10−5 3.65 × 10−4 1.10 × 102 

F5-4 1.81 × 10−5 5.51 × 10−4 1.67 × 102 

F5-5 1.81 × 10−5 7.38 × 10−4 2.19 × 102 
k2 = 2.93 × 105 M–1 s–1 

 
 
Table S2: Kinetics of the reaction of 1a with the Meldrum’s acid anion 2i (K+ salt) in 

DMSO at 20 °C (stopped-flow UV-Vis spectrometer, λ = 322 nm). 
 

No. [E]0 / M [C-]0 / M kobs / s−1 

F4-1 3.62 × 10−5 2.27 × 10−4 3.38 

F4-2 3.62 × 10−5 4.72 × 10−4 5.89 

F4-3 3.62 × 10−5 7.17 × 10−4 8.74 

F4-4 3.62 × 10−5 9.62 × 10−4 1.16 × 101 

F4-5 3.62 × 10−5 1.21 × 10−3 1.47 × 101 
k2 = 1.16 × 104 M–1 s–1 
 
Reactions of Electrophile 1b  
 
Table S3:  Kinetics of the reaction of 1b with the anion of diethyl malonate 2b (K+ salt) in 

DMSO at 20 °C (stopped-flow UV-Vis spectrometer, λ = 369 nm). 
 

No. [E]0 / M [C-]0 / M kobs / s−1 

331-1 1.06 × 10−5 1.08 × 10−4 1.08 × 102 

331-2 1.06 × 10−5 1.64 × 10−4 1.71 × 102 

331-3 1.06 × 10−5 2.21 × 10−4 2.41 × 102 

331-5 1.06 × 10−5 3.33 × 10−4 3.65 × 102 

k2 = 1.15 × 106 M–1 s–1 

y = 293628.778x + 2.852
R2 = 0.999
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y = 1146765.990x - 15.713
R2 = 1.000

0.0
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[2b-K] / M
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Table S4: Kinetics of the reaction of 1b with the anion of ethyl cyano acetate 2c (K+ salt) 
in DMSO at 20 °C (stopped-flow UV-Vis spectrometer, λ = 369 nm). 

 

No. [E]0 / M [C-]0 / M kobs / s−1 

288-1 9.15 × 10−6 9.47 × 10−5 1.59 × 102 

288-5 9.15 × 10−6 1.44 × 10−4 2.51 × 102 

288-2 9.15 × 10−6 1.94 × 10−4 3.54 × 102 

288-4 9.15 × 10−6 2.45 × 10−4 4.48 × 102 

k2 = 1.96 × 106 M–1 s–1 
 
 
Table S5: Kinetics of the reaction of 1b with the anion of malononitrile 2d (generated by 

deprotonation of 2d-H with 1.05 equiv. KOtBu) in DMSO at 20 °C (stopped-
flow UV-Vis spectrometer, λ = 369 nm). 

 
 

k2 = 2.51× 106 M–1 s–1 
 
 
Table S6: Kinetics of the reaction of 1b with ethyl acetoacetate 2e (K+ salt) in DMSO at 

20 °C (stopped-flow UV-Vis spectrometer, λ = 369 nm). 
 

 

k2 = 7.42 × 105 M–1 s–1 
 
 
 

No. [E]0 / M [C-]0 / M kobs / s−1 

84-1 1.98 × 10−5 9.16 × 10−5 2.06 × 102 

84-2 1.98 × 10−5 1.93 × 10−4 4.78 × 102 
84-3 1.98 × 10−5 3.96 × 10−4 9.74 × 102 

No. [E]0 / M [C-]0 / M kobs / s−1 

273-3 2.40 × 10−5 1.02 × 10−4 9.18 × 101 

273-1 2.40 × 10−5 2.16 × 10−4 1.80 × 102 

273-4 2.40 × 10−5 3.30 × 10−4 2.59 × 102 

273-2 2.40 × 10−5 4.44 × 10−4 3.47 × 102 

y = 1956500.2667x - 28.1478
R2 = 0.9994
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Table S7a:  Kinetics of the reaction of 1b with the phenyl nitromethyl anion 2f (generated 
by deprotonation of 2f-H with 1.05 equiv. KOtBu) in DMSO at 20 °C 
(stopped-flow UV-Vis spectrometer, λ = 400 nm). 

 

No. [E]0 / M [C-]0 / M kobs / s−1 

348c-1 1.95 × 10−5 2.00 × 10−4 3.39 × 101 

348c-4 1.95 × 10−5 3.05 × 10−4 5.54 × 101 

348c-2 1.95 × 10−5 4.09 × 10−4 7.79 × 101 

348c-5 1.95 × 10−5 6.20 × 10−4 1.25 × 102 

348c-3 1.95 × 10−5 8.29 × 10−4 1.74 × 102 
k2 = 2.23 × 105 M–1 s–1 
 
 
Table S7b: Kinetics of the reaction of 1b with the phenyl nitromethyl anion 2f (generated 

by deprotonation of 2f-H with 0.27 equiv. KOtBu) in DMSO at 20 °C 
(stopped-flow UV-Vis spectrometer, λ = 400 nm). 

 

No. [E]0 / M [C-]0 / M kobs / s−1 

348b-1 2.44 × 10−5 2.65 × 10−4 5.13 × 101 

348b-4 2.44 × 10−5 4.03 × 10−4 8.21 × 101 

348b-2 2.44 × 10−5 5.42 × 10−4 1.10 × 102 

348b-5 2.44 × 10−5 6.81 × 10−4 1.45 × 102 

348b-3 2.44 × 10−5 8.20 × 10−4 1.73 × 102 
k2 = 2.21 × 105 M–1 s–1 
 
Table S8: Kinetics of the reaction of 1b with the acetylacetone anion 2g (K+ salt) in 

DMSO at 20 °C (stopped-flow UV-Vis spectrometer, λ = 369 nm). 
 

No. [E]0 / M [C-]0 / M kobs / s−1 

80-1 1.98 × 10−5 8.95 × 10−5 1.49 × 101 

80-2 1.98 × 10−5 1.89 × 10−4 3.27 × 101 

80-3 1.98 × 10−5 3.88 × 10−4 6.95 × 101 

80-4 1.98 × 10−5 5.87 × 10−4 1.07 × 102 

80-5 1.98 × 10−5 8.14 × 10−4 1.52 × 102 
k2 = 1.89 × 105 M–1 s–1 
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Table S9:  Kinetics of the reaction of 1b with the dimedone anion 2h (K+ salt) in DMSO 
at 20 °C (stopped-flow UV-Vis spectrometer, λ = 369 nm). 

 

No. [E]0 / M [C-]0 / M kobs / s−1 

82-1 1.98 × 10−5 8.75 × 10−5 5.11 × 100 

82-2 1.98 × 10−5 1.85 × 10−4 1.11 × 101 

82-3 1.98 × 10−5 3.80 × 10−4 2.28 × 101 

82-4 1.98 × 10−5 5.75 × 10−4 3.51 × 101 

82-5 1.98 × 10−5 7.70 × 10−4 4.58 × 101 
k2 = 6.00 × 104 M–1 s–1 
 
 
Table S10: Kinetics of the reaction of 1b with the Meldrum’s acid anion 2i (generated by 

deprotonation of 2i-H with 1.05 equiv. KOtBu, 1 equiv. 18-crown-6) in DMSO 
at 20 °C (stopped-flow UV-Vis spectrometer, λ = 369 nm). 

 

No. [E]0 / M [C-]0 / M kobs / s−1 

328-3 2.35 × 10−5 6.81 × 10−4 1.81 

328-4 2.35 × 10−5 9.12 × 10−4 2.32 

328-7 2.35 × 10−5 1.14 × 10−3 2.98 

328-2 2.35 × 10−5 1.38 × 10−3 3.37 

328-1 2.35 × 10−5 1.61 × 10−3 4.05 
k2 = 2.39 × 103 M–1 s–1 
 
Reactions of Electrophile 1c  
 
Table S11: Kinetics of the reaction of 1c with the diethyl malonate anion 2b (K+ salt) in 

DMSO at 20 °C (stopped-flow UV-Vis spectrometer, λ = 459 nm). 
 

No. [E]0 / M [C-]0 / M kobs / s−1 

330-1 1.59 × 10−5 5.56 × 10−4 1.96 × 101 

330-2 1.59 × 10−5 1.12 × 10−3 3.66 × 101 

330-3 1.59 × 10−5 1.68 × 10−3 5.31 × 101 

330-4 1.59 × 10−5 2.25 × 10−3 6.81 × 101 

330-5 1.59 × 10−5 2.81 × 10−3 8.54 × 101 
k2 = 2.89 × 104 M–1 s–1 
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Table S12: Kinetics of the reaction of 1c with the anion of ethyl cyano acetate 2c 
(generated by deprotonation of 2c-H with 1.05 equiv. KOtBu) in DMSO at          
20 °C (stopped-flow UV-Vis spectrometer, λ = 459 nm). 

 
No. [E]0 / M [C-]0 / M kobs / s−1 

73-1 2.00 × 10−5 1.78 × 10−4 6.24 × 100 

73-2 2.00 × 10−5 4.12 × 10−4 1.81 × 101 

73-3 2.00 × 10−5 7.87 × 10−4 3.55 × 101 

73-4 2.00 × 10−5 1.16 × 10−3 5.33 × 101 

73-5 2.00 × 10−5 1.63 × 10−3 7.57 × 101 

k2 = 4.76 × 104 M–1 s–1 

 
 
Table S13: Kinetics of the reaction of 1c with the anion of malonitrile 2d (K+ salt) in 

DMSO at 20 °C (stopped-flow UV-Vis spectrometer, λ = 459 nm). 
 

No. [E]0 / M [C-]0 / M kobs / s−1 

83-1 1.00 × 10−5 9.65 × 10−5 5.92 × 100 

83-2 1.00 × 10−5 1.98 × 10−4 1.45 × 101 

83-3 1.00 × 10−5 4.01 × 10−4 3.03 × 101 

83-4 1.00 × 10−5 6.47 × 10−4 4.75 × 101 

83-5 1.00 × 10−5 7.92 × 10−4 5.59 × 101 
k2 = 7.21 × 104 M–1 s–1 
 
 
Table S14: Kinetics of the reaction of 1c with the anion of ethyl acetoacetate 2e (K+ salt) 

in DMSO at 20 °C (stopped-flow UV-Vis spectrometer, λ = 459 nm). 
 

No. [E]0 / M [C-]0 / M kobs / s−1 

271-1 1.99 × 10−5 4.46 × 10−4 4.91 × 100 

271-2 1.99 × 10−5 9.02 × 10−4 1.16 × 101 

271-3 1.99 × 10−5 1.36 × 10−3 1.73 × 101 

271-4 1.99 × 10−5 1.82 × 10−3 2.27 × 101 

271-5 1.99 × 10−5 2.27 × 10−3 2.83 × 101 

k2 = 1.27 × 104 M–1 s–1 
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Table S15: Kinetics of the reaction of 1c with the phenyl nitromethyl anion 2f (K+ salt) in 
DMSO at 20 °C (stopped-flow UV-Vis spectrometer, λ = 460 nm). 

 

No. [E]0 / M [C-]0 / M kobs / s−1 

a347-4 2.25 × 10−5 2.59 × 10−4 9.20 × 10-1 

a347-1 2.25 × 10−5 5.28 × 10−4 1.85 

a347-2 2.25 × 10−5 7.98 × 10−4 2.94 

a347-3 2.25 × 10−5 1.33 × 10−3 5.07 
k2 = 3.87 × 103 M–1 s–1 
 
 
Table S16: Kinetics of the reaction of 1c with the acetylacetone anion 2g (K+ salt) in 

DMSO at 20 °C (stopped-flow UV-Vis spectrometer, λ = 459 nm). 
 

No. [E]0 / M [C-]0 / M kobs / s−1 

79-1 1.00 × 10−5 9.44 × 10−5 2.96 × 10-1 

79-2 1.00 × 10−5 1.94 × 10−4 6.30 × 10-1 

79-3 1.00 × 10−5 3.93 × 10−4 1.32 

79-4 1.00 × 10−5 5.91 × 10−4 2.03 

79-5 1.00 × 10−5 8.19 × 10−4 2.82 
k2 = 3.50 × 103 M–1 s–1 
 
 
Table S17: Kinetics of the reaction of 1c with the dimedone anion 2h (K+ salt) in DMSO at 

20 °C (stopped-flow UV-Vis spectrometer, λ = 459 nm). 
 

No. [E]0 / M [C-]0 / M kobs / s−1 

81-1 1.00 × 10−5 9.25 × 10−5 9.10 × 10-2 

81-2 1.00 × 10−5 1.90 × 10−4 1.91 × 10-1 

81-3 1.00 × 10−5 3.85 × 10−4 3.81 × 10-1 

81-4 1.00 × 10−5 5.80 × 10−4 5.87 × 10-1 

81-5 1.00 × 10−5 7.75 × 10−4 7.55 × 10-1 

k2 = 9.82 × 102 M–1 s–1 

y = 3873.80788x - 0.13552
R2 = 0.99922
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Reactions of Electrophile 1d 
 
Table S18: Kinetics of the reaction of 1d with the nitroethyl anion 2a (nBu4N+ salt) in 

DMSO at 20 °C (stopped-flow UV-Vis spectrometer, λ = 487 nm). 
 

No. [E]0 / M [C-]0 / M kobs / s−1 

275-1 1.33 × 10−5 1.63 × 10−4 3.79 

275-2 1.33 × 10−5 4.17 × 10−4 8.32 

275-3 1.33 × 10−5 6.28 × 10−4 1.30 × 101 

275-4 1.33 × 10−5 8.40 × 10−4 1.78 × 101 

275-5 1.33 × 10−5 1.05 × 10−3 2.24 × 101 

k2 = 2.12 × 104 M–1 s–1 
 
 
Table S19: Kinetics of the reaction of 1d with the diethyl malonate anion 2b (K+ salt) in 

DMSO at 20 °C (stopped-flow UV-Vis spectrometer, λ = 483 nm). 
 

No. [E]0 / M [C-]0 / M kobs / s−1 

329-1 2.41 × 10−5 5.52 × 10−4 4.04 

329-2 2.41 × 10−5 1.12 × 10−3 7.55 

329-3 2.41 × 10−5 1.68 × 10−3 1.12 × 101 

329-4 2.41 × 10−5 2.24 × 10−3 1.44 × 101 

329-5 2.41 × 10−5 2.81 × 10−3 1.78 × 101 
k2 = 6.08 × 103 M–1 s–1 
 
 
Table S20: Kinetics of the reaction of 1d with the ethyl cyano acetate anion 2c (K+ salt) in 

DMSO at 20 °C (stopped-flow UV-Vis spectrometer, λ = 487 nm). 
 

 

k2 = 7.98 × 103 M–1 s–1 
 

No. [E]0 / M [C-]0 / M kobs / s−1 

274-1 1.33 × 10−5 3.65 × 10−4 2.69 

274-2 1.33 × 10−5 7.36 × 10−4 5.63 

274-3 1.33 × 10−5 1.11 × 10−3 8.51 

274-4 1.33 × 10−5 1.48 × 10−3 1.15 × 101 

274-5 1.33 × 10−5 1.85 × 10−3 1.46 × 101 

y = 21164.0490x - 0.0677
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Table S21: Kinetics of the reaction of 1d with the malonitrile anion 2d (K+ salt) in DMSO 
at 20 °C (stopped-flow UV-Vis spectrometer, λ = 487 nm). 

 

No. [E]0 / M [C-]0 / M kobs / s−1 

276-1 1.33 × 10−5 2.33 × 10−4 3.13 

276-2 1.33 × 10−5 4.72 × 10−4 6.66 

276-5 1.33 × 10−5 1.19 × 10−3 1.73 × 101 

k2 = 1.48 × 104 M–1 s–1 
 
 
Table S22: Kinetics of the reaction of 1d with the ethyl acetoacetate anion 2e (K+ salt) in 

DMSO at 20 °C (stopped-flow UV-Vis spectrometer, λ = 487 nm). 
 

No. [E]0 / M [C-]0 / M kobs / s−1 

272-5 1.33 × 10−5 4.50 × 10−4 1.51 

272-4 1.33 × 10−5 9.06 × 10−4 2.87 

272-3 1.33 × 10−5 1.36 × 10−3 4.21 

272-2 1.33 × 10−5 1.82 × 10−3 5.49 

272-1 1.33 × 10−5 2.27 × 10−3 6.65 
k2 = 2.83 × 103 M–1 s–1 
 
 
Table S23: Kinetics of the reaction of 1d with the phenyl nitromethyl anion 2f (generated 

by deprotonation of 2f-H with 1.05 equiv. KOtBu) in DMSO at 20 °C 
(stopped-flow UV-Vis spectrometer, λ = 480 nm). 

 

No. [E]0 / M [C-]0 / M kobs / s−1 

f2-1 1.89 × 10−5 4.12 × 10−4 2.22 × 10-1 

f2-2 1.89 × 10−5 8.47 × 10−4 4.24 × 10-1 

f2-3 1.89 × 10−5 1.28 × 10−3 6.40 × 10-1 

f2-4 1.89 × 10−5 1.70 × 10−3 8.62 × 10-1 

f2-5 1.89 × 10−5 2.13 × 10−3 1.06 
k2 = 4.93 × 102 M–1 s–1

y = 14824.6120x - 0.3477
R2 = 1.0000
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Table S24: Kinetics of the reaction of 1d with the acetylacetone anion 2g (K+ salt) in  
DMSO at 20 °C (stopped-flow UV-Vis spectrometer, λ = 487 nm). 

 

No. [E]0 / M [C-]0 / M kobs / s−1 

SB38-1 1.53 × 10−5 4.63 × 10−4 2.63 × 10-1 

SB38-2 1.53 × 10−5 9.26 × 10−4 4.06 × 10-1 

SB38-3 1.53 × 10−5 1.85 × 10−3 7.51 × 10-1 

SB38-4 1.53 × 10−5 2.32 × 10−3 9.82 × 10-1 
k2 = 3.84 × 102 M–1 s–1 
 
 
 
Table S25: Kinetics of the reaction of 1d with the dimedone anion 2h (K+ salt) in DMSO 

at 20 °C (stopped-flow UV-Vis spectrometer, λ = 487 nm). 
 

No. [E]0 / M [C-]0 / M kobs / s−1 

SB39-1 1.53 × 10−5 4.32 × 10−4 1.00 × 10-1 

SB39-2 1.53 × 10−5 8.64 × 10−4 1.39 × 10-1 

SB39-3 1.53 × 10−5 1.83 × 10−3 2.50 × 10-1 

SB39-4 1.53 × 10−5 2.16 × 10−3 2.84 × 10-1 
k2 = 1.08 × 102 M–1 s–1 
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3.2 Reactions of Electrophiles 1b–d with Amines in Different Solvents 
 
Table S26: Kinetics of the reaction of 1b with piperidine in DMSO at 20 °C (stopped-flow 

UV-Vis spectrometer, λ = 369 nm). 
 

No. [E]0 / M [C-]0 / M kobs / s−1 

283-1 1.14 × 10−5 9.35 × 10−5 1.97 × 102 

283-3 1.14 × 10−5 1.87 × 10−4 3.65 × 102 

283-2 1.14 × 10−5 2.34 × 10−4 4.71 × 102 

k2 = 1.93 × 106 M–1 s–1 
 
 
Table S27: Kinetics of the reaction of 1b with piperidine in DMSO/H2O (50:50, v/v) at       

20 °C (stopped-flow UV-Vis spectrometer, λ = 369 nm). 
 

No. [E]0 / M [C-]0 / M kobs / s−1 

282-1 9.15 × 10−6 1.17 × 10−4 3.63 × 101 

282-2 9.15 × 10−6 2.34 × 10−4 7.23 × 101 

282-3 9.15 × 10−6 4.67 × 10−4 1.40 × 102 

282-4 9.15 × 10−6 6.54 × 10−4 1.92 × 102 

k2 = 2.89 × 105 M–1 s–1 
 
 
Table S28: Kinetics of the reaction of 1c with piperidine in DMSO at 20 °C (stopped-flow 

UV-Vis spectrometer, λ = 459 nm). 
 

 

k2 = 1.71 × 105 M–1 s–1 
 
 
 

No. [E]0 / M [C-]0 / M kobs / s−1 

278b-5 2.50 × 10−5 3.21 × 10−4 2.16 × 102 

278b-3 2.50 × 10−5 6.41 × 10−4 2.70 × 102 

278b-4 2.50 × 10−5 1.03 × 10−3 3.31 × 102 

278b-1 2.50 × 10−5 1.28 × 10−3 3.82 × 102 

y = 1932684.943x + 13.336
R2 = 0.997
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Table S29: Kinetics of the reaction of 1c with piperidine in DMSO/H2O (50:50, v/v) at         
20 °C (stopped-flow UV-Vis spectrometer, λ = 459 nm). 

 
 

k2 = 3.76 × 104 M–1 s–1 
 
 
 
Table S30: Kinetics of the reaction of 1c with morpholine in DMSO at 20 °C (stopped-

flow UV-Vis spectrometer, λ = 459 nm). 
 

 

k2 = 3.78 × 105 M–1 s–1 
 
 
 
 
Table S31:  Kinetics of the reaction of 1c with morpholine in DMSO/H2O (50:50, v/v) at 

20 °C (stopped-flow UV-Vis spectrometer, λ = 459 nm). 
 

No. [E]0 / M [C-]0 / M kobs / s−1 

287-1 1.99 × 10−5 1.01 × 10−3 7.37 × 101 

287-2 1.99 × 10−5 1.51 × 10−3 7.73 × 101 

287-3 1.99 × 10−5 2.02 × 10−3 8.41 × 101 

287-4 1.99 × 10−5 2.44 × 10−3 8.77 × 101 

287-5 1.99 × 10−5 3.02 × 10−3 9.60 × 101 

k2 = 1.11 × 104 M–1 s–1 
 

No. [E]0 / M [C-]0 / M kobs / s−1 

279-2 1.25 × 10−5 2.56 × 10−4 1.39 × 101 

279-3 1.25 × 10−5 5.12 × 10−4 2.28 × 101 

279-4 1.25 × 10−5 7.68 × 10−4 3.17 × 101 

279-5 1.25 × 10−5 1.02 × 10−3 4.30 × 101 

No. [E]0 / M [C-]0 / M kobs / s−1 

284b-4 2.86 × 10−5 4.80 × 10−4 2.21 × 102 

284b-1 2.86 × 10−5 7.20 × 10−4 2.90 × 102 

284b-3 2.86 × 10−5 9.60 × 10−4 4.01 × 102 

284b-2 2.86 × 10−5 1.20 × 10−3 4.86 × 102 

y = 37575.367x + 3.800
R2 = 0.996
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Table S32:  Kinetics of the reaction of 1d with piperidine in DMSO at 20 °C (stopped-flow 
UV-Vis spectrometer, λ = 487 nm). 

 
 

k2 = 1.80 × 104 M–1 s–1 
 
 
 
Table S33: Kinetics of the reaction of 1d with piperidine in DMSO/H2O (50:50, v/v) at         

20 °C (stopped-flow UV-Vis spectrometer, λ = 487 nm). 
 

No. [E]0 / M [C-]0 / M kobs / s−1 

281-1 1.05 × 10−5 7.68 × 10−4 1.69 × 101 

281-2 1.05 × 10−5 2.05 × 10−3 2.57 × 101 

281-4 1.05 × 10−5 2.56 × 10−3 2.79 × 101 

281-3 1.05 × 10−5 3.07 × 10−3 3.14 × 101 
k2 = 6.23 × 103 M–1 s–1 

 

No. [E]0 / M [C-]0 / M kobs / s−1 

280-3 1.05 ×10−5 1.02 × 10−3 2.17 × 102 

280-2 1.05 ×10−5 1.54 × 10−3 2.27 × 102 

280-5 1.05 ×10−5 1.79 × 10−3 2.31 × 102 

280-4 1.05 ×10−5 2.05 × 10−3 2.35 × 102 

280-1 1.05 ×10−5 2.56 × 10−3 2.45 × 102 

y = 17967.431x + 198.800
R2 = 0.998
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Chapter 3 

Reactivities of Benzylidene Meldrum’s Acids in 

Methanol 

Introduction 

For our understanding of polar organic reacticity, the knowledge about the reactivities of 

nucleophiles is essential. Many kinetic investigations of the rates for nucleophile-electrophile 

combinations revealed that, in general, the nucleophilic reactivities of many classes of 

nucleophiles are highly solvent-dependent. The nucleophilicities of neutral molecules, such as 

primary and secondary amines1,2 or pyridines,3 have previously been reported to be 

considerably lower in water than in dimethyl sulfoxide (DMSO). Analogous behavior has also 

been found for various classes of carbanions.4-6 In contrast, triflinate stabilized benzyl anions 

showed the opposite behavior and turned out to be more reactive in protic solvents than in 

DMSO.7 However, systematic investigations of the solvent-dependence of typically employed 

electrophiles (benzyhydylium ions and quinone methides) have not been carried out, as the 

solvent-dependence was reported to be small and negligible compared to those of most 

nucleophiles.8 

Recent kinetic studies of the rates of reactions of benzhydrylium ions and benzylidene 

indandiones with carbanions and amines in DMSO and DMSO-water mixtures indicated that 

solvation affects the electrophilicities of benzylidene indandiones to a considerably larger 

degree than those of benzhydrylium ions.9 As a consequence, it has been recommended to use 

the electrophilicity parameters E of ordinary Michael acceptors exclusively for the prediction 

of rate constants for their reactions with nucleophiles in aprotic solvents like dimethyl 

sulfoxide. The recently reported nucleophilicities N of carbanions in MeOH4 allow us to 
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investigate these solvent effects in more detail and to quantify the electrophilicities E of 

Michael acceptors towards carbanions in MeOH by using Equation (3.1), in which s and N are 

nucleophile-specific parameters and E is an electrophile-specific parameter. 

 

log k2 (20 °C) = s(N + E)      (3.1) 

 

We chose benzylidene Meldrum’s acids 1a–c (Scheme 3.1), as model compounds to 

investigate their reactions with nucleophiles in MeOH and to derive their electrophilicities E. 

O O

O O

R

Ar

1a R = OMe
1b R = NMe2
1c Ar = jul

jul =
N

 

Scheme 3.1. Employed benzylidene Meldrum’s acids 1a–c. 

 

We now report on the rates of the addition reactions of the stabilized carbanions 2a–i, amines 

3a–c, and methoxide (4a) (Table 3.1) to the benzylidene Meldrum’s acids 1a–c and show that 

the kinetics generally follow Equation (3.1). The second-order rate constants k2 are 

subsequently employed to derive the electrophilicity parameters E for the Michael acceptors 

1a–c in MeOH and are compared with those for 1a–c in DMSO. 
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Table 3.1. N- and s Parameters of the Carbanions 2a–i, Amines 3a–f, and Methoxide (4a) in 

91%Methanol/9%Acetonitrile (v/v). 

Nucleophile  N s 

2a 
NO2

12.51a 0.66a 

2b 
NO2  

13.41a 0.67a

2c 
NO2

13.58a 0.63a

2d NO2

NC
13.92a 0.73a

2e H2C
NO2  

14.02a 0.60a

2f NO2

NO2

14.75a 0.71a

2g CNNC 18.21a 0.68a

2h 

MeO

O

OMe

O 18.24a 0.64a

2i 
C OMe

O
N 18.59a 0.65a

3a 
HO

NH2  13.23b 0.65b

3b NH2  13.41b 0.66b

3c NH2 13.46b 0.62b

3d 

O
NH 15.40b 0.64b

3e NH 15.63b 0.64b

3f 
NH  

15.97b 0.62b

4a 
MeO  

14.51c 0.68c

a From ref. 4, b from refs. 2, 10, c from ref. 11. 
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Results and Discussion 

The Michael acceptors 1a–c were synthesized by Knoevenagel condensation from the 

corresponding aldehydes and Meldrum’s acid as described previously12 and the covalent CH 

acids (2a–i)-H were commercial available or synthesized according to ref. 5. 

 

Product Studies. General. As reported in Chapter 2, compounds 1a–c react with the 

carbanions 2b and 2g–i under formation of the ordinary Michael addition products.12 

Representative product studies for the reactions of 1a–c with amines 3d–f and methoxide 

4a show the formation of the corresponding adducts 5 and 6 (Figure 3.1). 

O O

O O

ArMeO

O O

O O

ArN
R2

Na

65

H

 

Figure 3.1. Products 5 and 6 from the reactions of amines 3d–f and methoxide (4a) with the 

Michael acceptors 1a–c. 

 

Table 3.2. Characterized Products 5 and 6. 

Electrophile Nucleophile Product Yield / [%] 
1a 3d 5ad 77 
1a 3e 5ae 72 
1a 3f 5af 75 
1b 3f 5bf a

1a 4a 6aa a

1b 4a 6ba 60 
1c 4a 6ca a

a Products identified by 1H NMR experiments in the crude reaction mixtures. 
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Product Studies. Methoxide. 

 

Figure 3.2. 1H NMR spectra (200 MHz, [d4]-methanol) for the electrophile 1a (below) and 

for the product 6aa (above) from the reaction of electrophile 1a with one equivalent of 

methoxide (4a) in [d4]-methanol. 

The reactions of 1a–c with methoxide (4a) were carried out in [d4]-methanol following a 

procedure described by Wessely et al.13 As depicted in Figure 3.2, the signal for the olefin 

proton of 1a at δ = 8.36 ppm disappeared completely when 1a was combined with one 

equivalent of sodium methoxide (4a). In the spectrum of 6aa a signal at δ = 5.40 ppm 

indicates the formation of a sp3-hybridized carbon atom. Due to fast proton transfer between 

NaOCH3 and DOCD3 maily –OCD3 will react with 1a, and hence no additional signals for the 

methoxy group are found within the spectrum. Analogously, the reactions of 1b,c with 

sodium methoxide (4a) yielded the addition products 6ba and 6ca, from which compound 

6ba was isolated in substance (Table 3.2). After several hours, additional signals in the 1H 

NMR spectrum of the crude reaction mixture of 6aa-6ca in [d4]-methanol turned up, 

indicating slow decomposition of the addition products. 
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Product studies. Amines. Representative product studies for the reactions of the Michael 

acceptors 1a–c with amines have mainly been carried out with electrophile 1a, because of 

favorable equilibrium constants which account for almost quantitative conversion when 1a 

was combined with equimolar amounts of the amines 3d–f. The combinations of electrophile 

1a with the secondary amines 3d–f were carried out in benzene due to the relatively low 

solubility of the benzylidene Meldrum’s acids in MeOH. The resulting pale yellow 

precipitates were isolated in good yields and identified as products 5ad–af (Table 3.2). 

Typically, the zwitterionic adducts 5 do not dissolve readily in common solvents. Product 5ae 

was insoluble in D2O, CDCl3, [d]6-DMSO or [d]4-methanol and CD3CN. Its 1H NMR spectra 

could only be obtained by dissolving 5ae in warm [d]6-DMSO resulting in a relatively poor 

quality of the obtained spectrum. 

The 1H NMR spectra of compounds 5 show broadened N-H signals and additionally, the 1H 

NMR spectra of 5ad and 5af also reveal broadened signals for the aromatic ortho-protons. 

These broadened signals are indicative for intramolecular hydrogen bridging between the 

nitrogen atom of the amine moiety and the negativly charged oxygen or carbon atom of the 

Meldrum’s acid. IR spectroscopy of the compounds 5ad–5af showed signals around         

3430 cm–1 also indicating intramolecular hydrogen bridging as illustrated below.  

ArN
R2

OO

O O
H

ArN
R2

OO

O O
H

 

Kinetics. Due to their extended conjugated π-system, electrophiles 1a–c show absorption 

maxima in the visible part of the electromagnetic spectrum offering the possibility to follow 

their reactions with nucleophiles photometrically as exemplarily depicted in Figure 3.3 for the 

reaction of the benzylidene Meldrum’s acid 1a with the anion of ethyl cyanoacetate 2i in 

MeOH.  
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Figure 3.3. Reaction of the benzylidene Meldrum’s acid 1a (c0 = 1.68 × 10−5 mol L−1) with 

the anion of ethyl cyano acetate (2i, c0 = 8.50 × 10−4 mol L−1) in MeOH at λ = 380 nm. 

 

Determination of the second-order rate constants k2,C- for the reactions of 1a–c with 

carbanions. 

As illustrated in Scheme 3.2 and expressed by Equations (3.2) and (3.3), the pseudo first-

order rate constants kobs for the consumption of the electrophiles 1a–c reflect the sum of the 

reactions of 1a–c with the carbanions, methoxide, and methanol present in solution. The 

carbanions 2a–i were freshly generated from the corresponding CH acidic compounds          

(2a–i)-H by treatment with sodium methoxide. The concentrations of the carbanion [C–] and 

of methoxide [MeO–] were almost constant because in all experiments a large excess of the 

carbanion over the electrophile was chosen (at least 10 equivalents). 
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Scheme 3.2. Competing reactions of the benzylidene Meldrum’s acids 1a–c with carbanions, 

methoxide, and methanol in MeOH. 

][Ek
dt
dE

obs−=       (3.2) 

kobs = k2,C-[C −] + k2,MeO-[MeO–] + k1,MeOH   (3.3) 

Knowledge of the previously reported equilibrium constants KCH for the deprotonation 

reactions of the CH acids (2a–i)-H with methoxide4 and the total base concentrations makes it 

possible to calculate the equilibrium concentrations of the carbanion [C–] and of methoxide 

[MeO–] from Equations (3.4)–(3.7).  

 

        (3.4) 

KCH = [C−] / [CH][MeO−]     (3.5) 

pKMeOH = –log ([MeO–] [H+]) = 16.92 (at 20 °C)  (3.6) 

pKaH = –log ([C–][H+]/[CH])     (3.7) 

In general, the competing reactions of methoxide 4a with the electrophiles 1a–c cannot be 

neglected. Therefore, k2,MeO-[MeO–] has to be subtracted from the observed rate constant kobs, 

CH + MeO– C– + MeOH
KCH
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resulting in k1ψ  (as will be discussed below k2,MeO- was obtained from independent kinetic 

experiments). Rearrangement of Equation (3.3) leads to Equation (3.8). 

 

k1ψ = kobs − k2,MeO- [MeO–] = k2,C- [C −] + k1,MeOH (3.8) 

 

The second-order rate constants k2,C- are obtained from plots of k1ψ versus the carbanion 

concentration [C–] as shown in Figure 3.4 for the reaction of electrophile 1a with the anion of 

nitro methane (2e). The intercepts of these straight lines corresponds to the rates of the 

reactions of 1a–c with the solvent (k1ψ = k1, MeOH for [C–] = 0).  As they are much smaller than 

the corresponding reaction rates of 1a–c with methoxide (k1,MeOH << k2,MeO-) they can be 

neglected.  

Figure 3.4 illustrates that the contribution of the reactions of 1a with methoxide is rather 

small (8 %) in comparison to the one for the reactions of 1a with the anion of nitro methane 

(2e). This is in line with the previously reported error limits for reactions of carbanions in 

MeOH.4 
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kobs = 1110.7[C–] + 0.0269

k1ψ = kobs – k2, MeO–[MeO–]
= 1010.4 [C–] + 0.0294

 

Figure 3.4. Determination of the second-order rate constant k2,C- (1.01 × 103 L mol–1 s–1) for 

the reaction of 1a with the anion of nitro methane (2e) in MeOH at 20 °C (•). Observed first-

order rate constant kobs (□) and first-order rate constants k1ψ (•), for which the contribution of 

the reaction of 1a with 4a has been subtracted. 
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Determination of the second-order rate constants k2 for the reactions of 1a–c with 

amines and methoxide. Plots of kobs versus the concentrations of methoxide or the amines 

resulted in straight lines with the second-order rate constant k2 as slopes. For those reactions 

which proceeded incompletely, the rates for the reverse reactions k– could be derived from the 

intercepts.14 

Table 3.3 and Table 3.4 summarize the second-order rate constants k2,C- and k2
 for the 

reactions of 1a–c with the carbanions 2a–i, and with methoxide (4a), and the amines 3a–f, 

respectively. The rates of the reactions of electrophile 1a with the carbanions 2d and 2f could 

not be determined due to overlapping absorption bands. Because of small equilibrium 

constants, the rates of the reaction between electrophile 1b and morpholine (3d), as well as 

the reactions between electrophile 1c and amines 3c,d could not be determined. 

 

Table 3.3. Second-Order Rate Constants k2,C- for the Reactions of the Electrophiles 1a–c with 

the Carbanions 2a–i in MeOH at 20 °C. 

 Ea Carbanion k2, C- / L mol–1s–1

1a –10.28 2a 1.14 × 102 
  2b 8.52 × 101 
  2c 6.67 × 101 
  2e 4.74 × 102

  2g 1.49 × 106 
  2h 1.02 × 105 
  2i 4.11 × 105 

1b –12.76 2a 3.44  
  2b 8.24  
  2c 1.47  
  2d 9.19  
  2e 3.09 × 101 
  2f 1.88 × 101 
  2g 8.17 × 104 
  2h 4.49 × 103 
  2i 1.88 × 104 
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Table 3.3. Continued. 

 Ea Carbanion k2, C- / L mol–1s–1

1c –13.97 2a 7.84 × 10–1 
  2b 1.24  
  2c 4.88 × 10–1 
  2d 2.85  
  2e 4.30  
  2f 7.38  
  2g 1.97 × 104 
  2h 1.06 × 103 
  2i 4.30 × 103 

a Electrophilicity parameters E for 1a–c in DMSO as defined in ref. 12 

Table 3.4. Second-Order Rate Constants k2 for the Reactions of the Electrophiles 1a–c with 

the Amines 3a–f and with Methoxide (4a) in MeOH at 20 °C. 

 E a Nucleophile k2 / L mol–1s–1

1a –10.28 3a 4.30 × 103 
  3b 6.73 × 103 
  3c 4.60 × 103 
  3d 6.90 × 104 
  3e 8.93 × 104 
  3f 1.64 × 105

  4a 1.86 × 103 
1b –12.76 3a 3.08 × 102 

  3b 5.65 × 102 
  3c 2.98 × 102 
  3e 1.19 × 104 
  3f 1.55 × 104 
  4a 7.38 × 101 

1c –13.97 3a 6.72 × 101 
  3b 1.68 × 102 
  3e 2.69 × 103 
  3f 5.08 × 103 
  4a 1.42 × 101 

a Electrophilicity parameters E for 1a–c in DMSO as defined in ref. 12 
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Correlation Analysis. In Figure 3.5, (log k2)/s for the reactions of electrophiles 1a–c with 

carbanions 2a–i are plotted versus the corresponding nucleophilicity parameters N of the 

carbanions in MeOH. If Equation (3.1) holds for the reactions of benzylidene Meldrum’s 

acids 1a–c with carbanions in MeOH, the plot of (log k2)/s versus N should result in linear 

correlations with slopes of 1.0. Figure 3.5 shows that some systematic deviations from 

linearity are obvious. On one hand, the rates of the reactions of the p-tolylnitronate anion 2c 

with the electrophiles 1a–c are five times smaller than expected from Equation (3.1). On the 

other hand, the anion of malononitrile (2g) reacts approximately 4 times faster than predicted 

by Equation (3.1). Similar deviations of the overall correlations for the reactions of 

electrophiles 1a–c with carbanions in DMSO have recently been reported.12 It has to be noted, 

that the error limit for Equation (3.1) of 10 – 100 in a reactivity range of more than 30 orders 

of magnitude is never exceeded. 

The electrophilicity parameters E for the benzylidene Meldrum’s acids 1a–c in MeOH have 

been calculated based on the second-order rate constants k2,C- given in Table 3.3 and the N 

and s parameters for the carbanions in MeOH as defined in Table 3.1 by least–squares 

minimization of Δ2 = ∑(log k – s(N + E))2. 
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Figure 3.5. Plot of (log k2,C-)/s for the reactions of carbanions 2a–i with the benzylidene 

Meldrum’s acids 1a–c in MeOH versus the nucleophilicity parameter N of the employed 

carbanions. 

Although the correlation lines are only of moderate quality, the derived electrophilicity 

parameters E can be used for a comparison with the E values for compounds 1a–c in DMSO. 

As Figure 3.6 reveals, the electrophilicities E for the benzylidene Meldrum’s acid 1a–c, 

derived from their reactions with carbanions, are less than one order of magnitude larger in 

MeOH than in DMSO. Although the electrophilicity E has been regarded as almost solvent-

independent, similar results have already been reported for the reactions of benzylidene 

indandiones with carbanions by changing the solvent from neat DMSO to DMSO/water 

mixtures (50/50 v/v).9 The results presented in this chapter sustain these findings by more 

detailed and systematic investigations.  

Figure 3.6 indicates that the electrophilicities of benzylidene Meldrum’s acids 1a–c 

increase approximately by the same extent when going from DMSO to MeOH. The small 

differences may reflect the different solvation of 1a–c in MeOH, i.e., electrophile 1a is 

somewhat better solvated in MeOH than its less reactive analogs 1b and 1c. The relative 
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change of their electrophilicities E is therefore represented by the relative solvation of 1a–c in 

MeOH. 

-15

-14

-13

-12

-11

-10

-9
DMSO MeOHE

1a
1a

1b

1c

1c

1b

–9.95

–12.19

–13.14

–10.28

–12.76

–13.97

 

Figure 3.6. Comparison of the electrophilicity E of benzylidene Meldrum’s acids 1a–c in 

DMSO and MeOH. 

The Hammett plot (Figure 3.7) emphasizes that the electrophilicities E of the benzylidene 

Meldrum’s acids 1a–c are larger in MeOH than in DMSO. For common nucleophiles with        

s = 0.7, a reaction constant of ρ = 3.87 results from the correlation equation for 1a–c in 

MeOH given in Figure 3.7. 
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Figure 3.7. Plots of the electrophilicity parameters E of benzylidene Meldrum’s acids 1a–c in 

MeOH (• E = 5.26σ – 8.51) and DMSO (○ E = 5.37σ – 9.08) versus Hammett´s σp values.15 
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The plots of (log k2)/s for the reactions of electrophiles 1a–c with the amines 3a–f versus 

their nucleophilicity parameters N show linear correlations (Figure 3.8) of good qualities. 

Except for the reaction of electrophile 2b with benzylamine (3c), which is faster than 

expected, only small deviations from linearity can be observed for the rates of the 

electrophile-nucleophile combinations. 
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Figure 3.8. Plot of (log k2)/s for the reactions of amines 3a–f with benzylidene Meldrum’s 

acids 1a–c in MeOH versus the nucleophilicity parameters N of the amines 3a–f. 

When the rate constants for the reactions of 1a–c with the carbanions (Figure 3.5) and with 

the amines (Figure 3.8) are summarized in one graph (Figure 3.9), one can see that the 

reactions of the electrophiles with amines are approximately 2 orders of magnitude faster than 

the corresponding reactions with the carbanions 2a–i. These observations are in line with 

those previously reported for the analogous reactions of carbanions and amines with 

benzylidene Meldrum’s acids in DMSO.12 

The higher rates of additions of amines to benzylidene Meldrum’s acids 1a–c compared to 

the corresponding additions of carbanions have previously been attributed to the formation of 



Chapter 3: Reactivities of Benzylidene Meldrum’s Acids in Methanol 

85 

cyclic four- or six-membered structures, which profit from O–H interactions in the transition 

states.16  
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Figure 3.9. Correlation of (log k2)/s for the reactions of carbanions 2a–i, amines 3a–f, and 

methoxide (4a) with benzylidene Meldrum’s acids 1a–c in MeOH versus the nucleophilicity 

parameter N of the employed nucleophiles. For the sake of clarity some nucleophile 

assignments have been omitted. 

Figure 3.9 also indicates that the second-order rate constants k2 for the reactions of MeO– 

with the electrophiles 1a–c fall on the correlation lines for carbanions and not on that for 

amines.  
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Figure 3.10. Plot of log k(DMSO) for the reactions of 1a–c with the carbanions 2 versus log 

k(MeOH) for the corresponding reactions in methanol. (Please note that 2h represents the 

reactions of 1a–c with the anion of dimethylmalonate in MeOH and the reactions of 1a–c with 

the anion of diethylmalonate in DMSO). 

 

Figure 3.10 compares the logarithmic second-order rate constants k2 for the reactions of the 

Michael acceptors 1a–c with carbanions in dimethyl sulfoxide with the rates for the analogous 

reactions in methanol. It shows that the reactions of 1a–c with the carbanions 2 are faster in 

DMSO than in MeOH.  The linear correlations also reveal that systematic deviations of the 

rates, which were found for example for the reactions of the carbanion 2g with 1a–c in 

methanol (compare Figure 3.5), are comparable with the rates of the analogous reactions in 

DMSO. The slopes of the correlation lines, which vary from 0.26 to 0.33, reveal that variation 

of the carbanions affects the second-order rate constants k2 of the reactions with the Michael 

acceptors 1a–c in DMSO to a smaller extent than in MeOH. It has to be emphasized, 

however, that the linear correlations shown in Figure 3.10 must be accidental because other 

types of carbanions follow completely different orders of nucleophilicity in these two 

solvents.4 On the other hand, as discussed above, variation of 1a–c has a slightly larger effect 
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in DMSO than in MeOH as indicated by the slopes of the correlation lines for 2a and 2g–h in 

Figure 3.10.  

 

Equilibrium constants K in MeOH. While the Michael additions of the carbanions 2a–i 

with the electrophiles 1a–c (Table 3.3) proceed quantitatively in MeOH (indicated by 

negligible end absorptions of the solutions at the absorption maxima of the benzylidene 

Meldrum’s acids 1a–c), most of the reactions with the amines 2a–f (Table 3.4) turned out to 

be highly reversible as illustrated in Figure 3.11 for the reactions of electrophile 1c with        

n-propylamine (3b). 
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Figure 3.11. Plot of A versus time for the reversible reaction of electrophile 1c (c0 = 2.02 × 

10–5 mol L–1) with n-propylamine (3b) in MeOH at 20 °C (λ = 480 nm). 

The equilibria observed in Figure 3.11 may reflect the reactions of the electrophiles 1a–c 

with the amines or with MeOH as depicted in Figure 3.12. 
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Figure 3.12. Determination of the equilibrium constant K for the reactions of the electrophiles 

1a–c with the amines in methanol, and possible side reactions. 

The equilibrium constants K were determined directly from titration experiments using 

Equation (3.9), i.e., the nucleophiles were added stepwise to solutions of the electrophiles         

1a–c in MeOH, and from the decrease of the electrophile’s absorptions, the equilibrium 

constant K could be calculated. 
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However, as shown in Tables S44–S54 in the Experimental Section, the derived 

equilibrium constants K show small systematic trends within a series of measurements. 

Usually, this effect is small (factor of 2), but becomes significant for the determination of the 

equilibrium constants K for the reactions of electrophile 1a with morpholine (3d) and 

methoxide (4a), which show deviations by a factor of 7 between single measurements. The 

reasons for these observations are unknown and may be attributed to competing side reactions 

of the electrophiles 1a–c with methanol, as depicted in Figure 3.12. The assumption of a 

reversible reaction of 1a–c with methanol could explain the increasing equilibrium constants 

K within some series of measurements, because the observed absorbances A of 1a–c after the 

reactions with the amines were lower than expected. On the other side, the reaction of 

methanol with 1a–c cannot explain our findings that for some equilibrium situations, smaller 

K values than expected were found. Moreover, Equation (3.9) is only valid if the reactions of 

1a–c with the amines follow 1:1 equilibrium situations, i.e., one molecule of the amine reacts 

with one molecule of the electrophiles 1a–c. We cannot exclude that a second amine molecule 

subsequently deprotonates the formed zwitterionic product as assumed in Figure 3.12, which 

would have an influence on the concentration of the amines used for the calculation of the 

equilibrium constants. The pKaH values for pyrrolidine (11.3)17 and Me-pyrrolidine (10.5)18 in 

water indicate that pyrrolidine is the stronger base and can subsequently deprotonate the 
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zwitterionic adduct with formation of the conjugate acid and the anionic product as depicted 

in Figure 3.12. 

This approach to determine the equlibrium constants K is therefore limited and contains 

some uncertainties. However, equilibrium constants have only been evaluated if the 

deviations within one series of measuremts were smaller than a factor of 2 and consequently 

used to derive intrinsic barriers for their comparison with literature data. 

As indicated by entries 3 and 5 in Table 3.5, the equilibrium constants K increase for 

reactions of a given amine with stronger electrophiles, e.g., the equilibrium constant K for the 

reaction of electrophile 1c with pyrrolidine (3f) equals K = 4.78 × 102 L mol–1 whereas the 

analogous reaction of 3f with the stronger electrophile 1b resulted in K = 4.06 × 103 L mol–1. 

The analog result is also encounterd for the reactions of electrophiles 1a–c with methoxide 

(4a) (entries 6, 7). 

From the equilibrium constants K based on titration experiments and the second–order rate 

constants k2 (from Table 3.4) one can calculate (Equation 3.10) the rates for the reverse 

reactions k– which are listed in the seventh column of Table 3.5. 

If no side reactions affect the reaction of the amines and 1a–c, it is possible to calculate the 

equilibrium constants K for these reactions as the ratio of the forward over the reverse 

reaction using Equation (3.10). 

–

2

k
kK =       (3.10) 

The values for the reverse reactions k– derived from the titration experiments (column 7) are 

considered to be more accurate than those obtained from the intercepts (column 6), although 

some small systematic trends (factor of 2) were observed in some cases while determinating 

the equilibrium constants K. 
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Table 3.5. Rate and Equilibrium Constants for the Reactions of the Electrophiles 1a–c with 

the Amines 3 and Methoxide (4a) in MeOH at 20 °C. 

Entry Electro- 

phile 

Nucleo- 

phile 

K / 

L mol–1a 

k2 / 

L mol–1s–1b 

k– / 

s–1c 

k– / 

s–1d 
ΔG0 / 

kJ mol–1  

ΔG‡ / 

kJ mol–1  

ΔG0
‡ / 

kJ mol–1e 
1 1b 3c 6.65 × 102 2.98 × 102 2.1 3.9 × 10–1 –15.4 57.9 65.4 
2  3e 1.63 × 103 1.19 × 104 3.9 × 101 7.3 –18.0 48.9 57.5 
3  3e        59.8f 
4  3f 4.06 × 103 1.55 × 104 9.4 3.8 –20.3 48.2 57.9 
5 1c 3b 2.83 × 102 1.68 × 102 1.0 5.9 × 10–1 –13.8 59.3 66.0 
6  3f 4.78 × 102 5.08 × 103 1.5 × 101 1.1 × 101 –15.0 51.0 58.3 
7 1b 4a 2.47 × 104 7.38 × 101 – 3.0 × 10–3 –24.7 61.3 73.1 
8 1c 4a 2.93 × 103 1.42 × 101 4.0 × 10–3 4.8 × 10–3 –19.5 65.3 74.7 

a From individual titration measurements. b k2 values from Table 3.4. c k– estimated from the 

intercepts from plots of kobs versus [Nu]. d Calculation based on Equation (3.10). e Based on 

the Marcus equation (3.11). f ΔG0
‡ in H2O from ref. 19 

Insertion of ΔG‡ and ΔG0 calculated from the second-order rate constants k2 and the 

equilibrium constants K for the reactions of 1a–c with the amines 3 and methoxide (4a), in the 

Marcus equation (3.11), in which the work term has been omitted, yields intrinsic barriers 

ΔG0
‡ varying from 57–75 kJ mol–1 (Table 3.5). 

 

ΔG‡ = ΔG0
‡ + 0.5ΔG0 + (ΔG0)2 / 16 ΔG0

‡     (3.11) 

 

The intrinsic barriers for the reactions of 1b with piperidine (2e) in MeOH were found to be 

comparable with those previously published for their analog reactions in water.19 
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Table 3.5 demonstrates that the intrinsic barriers ΔG0
‡ for the reactions of electrophiles               

1a–c with secondary amines (3d–f) are approximately 6–8 kJ mol–1 smaller than those for the 

analogous reactions with the primary amines (3b,c). 

Table 3.5 reveals that the intrinsic barriers for the reactions of electrophiles 1b,c with 

methoxide are significantly higher (ΔG0
‡ ≈ 74 kJ mol–1) than those of the reactions of 1a–c 

with amines. The intrinsic barriers are therefore smaller than those found for the reactions of 

benzylidenemalonates with carbanions,20 comparable with those reported for the additions of 

pyridines,3 but higher for the addition of tertiary amines21 to structurally related Michael 

acceptors. 

 

Conclusion 

The electrophilicities E of benzylidene Meldrum’s acids in methanol are comparable to 

those in dimethyl sulfoxide and are, therefore, only slightly affected by the nature of the 

solvent. The increase of their electrophilicities E by less than one order of magnitude in 

MeOH can be attributed to the poor solvation of compounds 1a–c in MeOH. The reactions of 

compounds 1a–c with primary and secondary amines in MeOH are faster by approximately 2 

orders of magnitude than the corresponding reactions of 1a–c with carbanions of similar 

nucleophilicity. Intrinsic barriers were found to vary between 55.8–74.7 kJ mol–1, indicating 

larger barriers for the reactions of 1a–c with methoxide than with primary and secondary 

amines. 
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Experimental Section 

Reactivities of Benzylidene Meldrum’s Acids in 

Methanol 

3.1. Materials 

General. Commercially available MeOH (HPLC grade > 99.8 %) was used without further 

purification. Stock solutions of NaOMe in DMSO were prepared under nitrogen atmosphere. 

The employed carbanions 2a–i were prepared directly before use by dissolving the 

corresponding CH acid (2a–i)-H in dry MeOH and subsequent addition of NaOMe solution. 

The amines 3a–f have been distilled prior to use.  

3.2. Instruments  
1H and 13C NMR spectra were recorded on Varian Inova 400 (400 MHz, 100.6 MHz), Bruker 

ARX 300 (300 MHz, 75.5 MHz), or Varian Mercury 200 (200 MHz) NMR spectrometers. 

Chemical shifts are expressed in ppm and refer to DMSO–d6 (δH 2.49, δC 39.7), CDCl3 (δH 

7.26, δH 77.0), and MeOH–d4 (δH 3.31, δH 49.05). The coupling constants are in Hz. 

Abbreviations used are s (singlet), d (doublet), t (triplet), q (quartet), quint (quintet), m 

(multiplet). 

3.3. Determination of Rate Constants 

The temperature of the solutions was kept constant (20 ± 0.1 °C) during all kinetic 

experiments by using a circulating bath thermostat.  

For evaluation of fast kinetic experiments commercial stopped-flow UV-vis spectrometer 

systems were used (Hi-Tech SF-61 SX2). UV-Vis kinetics of slow reactions were determined 

by using a diode array spectrophotometer, which was connected to a quartz suprasil 

immersion probe (5 mm light path). 

Rate constants kobs (s–1) were obtained by fitting the single exponential function At = A0          

exp(–k1ψt) + C to the observed time-dependent electrophile absorbance. Plotting kobs for the 

reactions of electrophiles 1a–c with amines 3a–f or the k1ψ values for the reactions of 
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electrophiles 1a–c with carbanions 2a–i, respectively, against the concentrations of the 

corresponding nucleophiles resulted in linear correlations whose slopes correspond to the 

second-order rate constants k2 (L mol–1 s–1). In order to obtain pseudo-first order kinetics the 

nucleophile has always been used in large excess over the electrophile concentrations (> 10 

equiv.). For those reactions which show significant end absorptions and thus reversible 

reactions, the rates of the backward reactions k– can either be obtained by calculation using 

the equilibrium constant K and Equation (S2), or by using the value for the intercept of the 

slope k2 for plots of kobs versus the nucleophile concentration.  

For kinetic experiments stock solutions were prepared as follows: 

The carbanions were generated by deprotonation of the corresponding CH acid (2a–i)-H with 

NaOMe in situ directly before the kinetic experiments, whereas solutions of the electrophiles 

1a–i, the amines 3a–f, and methoxide (4a) were obtained by dissolving the compounds in 

MeOH.  

 

The equilibrium concentrations of the carbanions and of methoxide were calculated on the 

basis of the KCH values of the CH acidic compounds 2–H.  

CH + MeO- C- + MeOH
KCH

     (S1) 

KCH = KaH/KMeOH         (S2) 

KCH = [C−]/[CH][MeO−]          (S3) 

 

When the initial concentrations of the CH acids and methoxide are known, their equilibrium 

concentrations are:  

[CH] = [CH]0 – [C–] and [MeO–] = [MeO–]0 – [C–]    (S4) 

With the known concentrations of CH acid and methoxide, based on Equations (S2–S4), one 

can calculate [C–] and [MeO–], which will be used for the determination of the rate constants 

for the reactions of the carbanions with the electrophiles 1a–c.  

))][][4)1][](([1][]([5.0][ 2
1

0
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0
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00
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0 MeOCH
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MeOCH
K
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3.4. Determination of Equilibrium Constants in MeOH 

The equilibrium constants K are based on the Equation (S6) by using the initial absorptions A 

from the electrophiles and the equilibrium absorptions after subsequent addition of 

nucleophile at 20 °C in MeOH. The titration experiments were carried out at least two times 

for every electrophile-nucleophile combination in order to reduce the error of measurement. 
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Figure S1: UV-Vis spectrum for the reaction of electrophile 1b by subsequent addition of 

nucleophile 3a in MeOH at 20 °C. 
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3.5. Product Studies 

Product studies of electrophiles 1a–c with amines 

1a (96 mg, 3.7 × 10–4 mol) and morpholine (3d) (0.2 mL, 2.3 × 10–3 mol) were dissolved in 

dry benzene (3 mL). The solution turns colorless and the precipitating solid was filtered, 

washed with Et2O and dried under reduced vacuum. 5ad (100 mg, 2.9 × 10–4 mol, 77.4 %) 

was obtained as colorless solid, mp 145.6–146.0 °C.  

5ad:1H-NMR (d6-DMSO, 200 MHz): δ = 1.49 (s, C(CH3)2), 2.93 (br. s, 4 H, -NH+-CH2CH2), 

3.77 (br, s, 7 H, -NH+-CH2CH2, -OCH3), 5.13 (br. s, 1 H, CH), 6.93 (d, 3J = 8.4 Hz, 2 H, 

CHar), 7.64 (br. s, 2 H, CHar), 8.51 ppm (br. s, 1 H, NH+). IR (ATR, cm–1): 3434 (-H 

bridging), 3040, 3005, 2853, 1653, 1598, 1515, 1407, 1258. 

O O

OO

N

OO

H

 

1a (100 mg, 3.8 × 10–4 mol) and 3e (0.15 mL, 1.5 × 10–4 mol) were stirred in dry benzene (3 

mL). The resulting precipitate was filtered, washed with Et2O and dries under reduced 

pressure to yield product 5ae (95 mg, 2.7 × 10–4 mol, 72.0 %) as colorless solid; mp 172.2–

173.0 °C. 5ae is not soluble in [d6]-DMSO, CDCl3, D2O and [d4]-MeOD at room temperature. 

The 1H NMR spectrum could be obtained by gentle heating of the product 5ae in d6-DMSO 

with formation of a slightly yellow solution.  

5ae: 1H-NMR (d6-DMSO, 200 Hz): δ = 1.29–1.82 (m, 12 H, C(CH3)2, -NH+-CH2CH2CH2, -

NH+-CH2CH2CH2), 2.88 (br. m, 4 H, -NH+-CH2CH2CH2), 3.75 (s, 3 H, OCH3), 5.06 (br. s, 1 

H, CH), 6.91 (d, 3J = 8,0 Hz, 2 H, CHar), 7.52 (br. s, 2 H, CHar), 8.66 ppm (br. s, 1 H, NH+). 

IR (ATR, cm–1): 3434 (-H bridging), 3047, 2998, 2954, 2940, 2842, 1677, 1616, 1516, 1402, 

1244, 1244, 780.  

O O

OO

N

O

H
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1a (95 mg, 3.6 × 10–4 mol) and pyrrolidine (3f) (0.15 mL, 1.8 × 10–3 mol) were stirred in 

benzene (3 mL) until the color of the electrophile disappeared and a solid started to separate 

from the solution. After filtration, the precipitate was washed with Et2O and dried under 

reduced pressure to yield product 5af (90 mg, 2.7 × 10–4 mol, 75.0 %) as colorless solid; mp 

147.3–147.5 °C.  

5af: 1H-NMR (d6-DMSO, 200 Hz): δ = 1.41 (s, 3 H, C(CH3)2), 1.91 (br. s, 2 × 2 H, -

NCH2CH2), 3.08 (br. s, 4 H, N-CH2), 3.74 (s, 3 H, -OCH3), 4.98 (br. s, 1 H, CH), 6.88 (d, 3J = 

8,8 Hz, 2 H, CHar), 7.51 (d, 3J = 8.2 Hz, 2 H, CHar), 9.32 ppm (br. s, 1 H, -NH+).                       

IR (ATR, cm–1): 3446 (-H bridging), 3056, 2989, 2879, 1680, 1601, 1517, 1404, 1242, 782. 

O O

OO

O

N
H

 

1b (10 mg, 3.6 × 10–5 mol) was dissolved in d6-DMSO (0.6 mL) when pyrrolidin dissolved in 

d6-DMSO (100 μL, 0.37 M, 3.7 × 10–5 mol) was added. 

5bf: 1H-NMR (d6-DMSO, 200 MHz): δ = 1.43 (br. s, 6 H, C(CH3)2), 1.90 (br. s, 2 × 2 H, -

NCH2CH2), 2.91 (s, 6 H, N(CH3)2), 3.06 (br. s, 2 × 2 H, -NCH2CH2), 4.91 (br. s, 1 H, CH), 

6.67 (d, 3J = 8.4 Hz, 2 H, CHar), 7.43 (br. s, 2 H, CHar), 9.18 ppm (br. s, 1 H, -NH+). 

O O

OO

N

N
H
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Product studies of electrophiles 1a–c with methoxide  

1a (13.8 mg, 5.26 × 10–5 mol) was suspended in d4–methanol (700 μl) and a solution of 

NaOMe (107 μl of a 0.49 M solution, 5.26 × 10–5 mol) was added in an NMR tube. After 

vigorous shaking, the color of the electrophile 1a disappeared and the solution was 

homogenous. 

6aa: 1H-NMR (CD3OD, 400 MHz): δ = 1.62 (s, 6 H, -C(CH3)2), 3.75 (s, 3 H, -OCH3 (ar)), 5.40 

(s, 1 H, CH), 6.80 (d, 3J = 8,8 Hz, 2 H, CHar), 7.36 ppm (d, 3J = 8,4 Hz, 2 H, CHar). 13C-NMR 

(CD3OD, 100 MHz): δ = 26.2 (2 × q, C(CH3)2), 55.7 (q, OCH3 (ar)), 77.6 (s, C–), 79.1 (d, CH), 

102.7 (s, -C(CH3)2), 114.0 (2 × t, -CHar), 128.7 (2 × t, -CHar), 137.0 (s,), 160.0 (s), 169.4 ppm 

(s). 

O O

OO

D3CO

O  
1b (86 mg, 3.12 × 10–4 mol) was dissolved in Et2O (50 mL) and NaOMe (660 μl of a 0.47 M 

solution, 3.12 × 10–4 mol) was added. Stirring was continued at room temperature until an 

orange solid precipitated from the solution, which was separated, washed with Et2O and dried 

under reduced pressure to yield product 6ba (61.7 mg, 1.87 × 10–4 mol, 60 %); orange solid.  

6ba: 1H-NMR (CD3OD, 400 MHz): δ = 1.62 (s, 6 H, C(CH3)2), 2.86 (s, 6 H, -N(CH3)2), 5.39 

(s, 1 H, CH), 6.73 (d, 3J = 8.8 Hz, 2 H, CHar), 7.31 ppm (d, 3J = 8.0 Hz, 2 H, CHar). 

O O

OO

D3CO

N
 

1c (10 mg, 3.05 × 10-5 mol) was suspended in d4–methanol (700 μl) and NaOMe (63 μl, of a 

0.49 M solution, 3.05 × 10–5 mol) were added. The color of the electrophile 1c disappeared 

after vigorous shaking of the NMR tube. Due to the formation of small amounts of side-

products, the assignment for the carbon spectrum is not complete. 
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6ca: 1H-NMR (CD3OD, 400 MHz): δ = 1.63 (s, 6 H, C(CH3)2), 1.95 (quint., 3J = 6.6 Hz, 4 H, 

-NCH2CH2CH2), 2.71 (t, 3J = 6.6 Hz, 4 H, -NCH2CH2CH2), 3.04 (t, 3J = 6.6 Hz, 4 H, -

NCH2CH2CH2), 5.28 (s, 1 H, CH), 6.84 ppm (s, 2 H, CHar). 13C-NMR (CD3OD, 100 MHz):          

δ = 23.0, 23.6 (2 × t, -NCH2CH2CH2), 26.2 (2 × q, C(CH3)2), 28.8 (2 × t, -NCH2CH2CH2), 

51.6 (2 × t, -NCH2CH2CH2), 77.5 (s, C–), 79.4 (d, CH), 102.8 (s, C(CH3)2), 122.6 (s), 126.4 

(d, CHar), 132.6 (s), 142.6 (s), 169.5 ppm (s). 

O O

OO

D3CO
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3.6. Reactivities of electrophiles 1a–c  

Kinetics for the reactions of the electrophiles 1a–c with carbanions 

Kinetics of electrophile 1a 

Table S1: Reaction of electrophile 1a with the anion of (nitromethyl)benzene (2a) in MeOH 
      at 20 °C, stopped flow, 380 nm. 

concentrations[a] (mol L–1) rate constants  

stock solution cell  

[CH]0 [MeO–]0 [C–] [MeO–] kobs (s–1) k1Ψ (s–1) 

8.54 × 10–3 3.47 × 10–4 3.44 × 10–4 2.10 × 10–5 1.29 × 10–1 1.25 × 10–1

8.54 × 10–3 6.93 × 10–4 6.89 × 10–4 4.39 × 10–5 1.70 × 10–1 1.62 × 10–1

8.54 × 10–3 1.04 × 10–3 1.03 × 10–3 6.88 × 10–5 2.13 × 10–1 2.00 × 10–1

8.54 × 10–3 1.39 × 10–3 1.38 × 10–3 9.61 × 10–5 2.58 × 10–1 2.40 × 10–1

8.54 × 10–3 1.73 × 10–3 1.72 × 10–3 1.26 × 10–5 3.06 × 10–1 2.83 × 10–1

[a] [1a]cell = 2.40 × 10–5 mol L–1, the calculations of [C–] and [MeO–] based on KCH (2a) = 2.00 × 104 L mol–1. 

k2,C– = 1.14 × 102 M–1s–1. 

  

Table S2: Reaction of electrophile 1a with the anion of nitroethane (2b) in MeOH at 20 °C, 
      stopped flow, 380 nm.  

 concentrations[a] (mol L–1) rate constants  

stock solution cell  

[CH]0 [MeO–]0 [C–] [MeO–] kobs (s–1) k1Ψ (s–1) 

2.91 × 10–2 4.82 × 10–4 4.51 × 10–4 3.15 × 10–5 1.43× 10–1 8.44 × 10–2

2.91 × 10–2 9.65 × 10–4 9.01 × 10–4 6.40 × 10–5 2.30× 10–1 1.11 × 10–1

2.91 × 10–2 1.45 × 10–3 1.35 × 10–3 9.74 × 10–5 3.37× 10–1 1.56 × 10–1

2.91 × 10–2 1.93 × 10–3 1.80 × 10–3 1.32 × 10–4 4.45× 10–1 2.00 × 10–1

2.91 × 10–2 2.41 × 10–3 2.24 × 10–3 1.67 × 10–4 5.42× 10–1 2.31 × 10–1

[a] [1a]cell = 3.66 × 10–5 mol L–1, the calculations of [C–] and [MeO–] based on KCH (2b)= 5.00 × 102 L mol–1. 

k2,C– = 8.52 × 101 M–1s–1 

y = 114.36x + 0.0839
R2 = 0.9992
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Table S3: Reaction of electrophile 1a with the anion of 1-methyl-4-(nitromethyl)benzene (2c) 

      in MeOH at 20 °C, stopped flow, 380 nm. 

 concentrations[a] (mol L–1) rate constants  

stock solution cell  

[CH]0 [MeO–]0 [C–] [MeO–] kobs (s–1) k1Ψ (s–1) 

1.02 × 10–2 1.57 × 10–3 1.55 × 10–3 2.23 × 10–5 2.43× 10–1 2.02 × 10–1

1.02 × 10–2 1.89 × 10–3 1.86 × 10–3 2.78 × 10–5 2.70× 10–1 2.18 × 10–1

1.02 × 10–2 2.20 × 10–3 2.17 × 10–3 3.36 × 10–5 3.02× 10–1 2.40 × 10–1

1.02 × 10–2 2.52 × 10–3 2.48 × 10–3 3.99 × 10–5 3.37× 10–1 2.63 × 10–1

1.02 × 10–2 2.83 × 10–3 2.78 × 10–3 4.67 × 10–5 3.69× 10–1 2.82 × 10–1

[a] [1a]cell = 2.40 × 10–5mol L–1, the calculations of [C–] and [MeO–] based on KCH (2c) =  8.01 × 103 L mol–1. 

k2,C– = 6.67 × 101 M–1s–1 

 

Table S4: Reaction of electrophile 1a with the anion of nitromethane (2e) in MeOH at 20 °C, 

     stopped-flow, 380 nm. 

 concentrations[a] (mol L–1) rate constants  

stock solution cell  

[CH]0 [MeO–]0 [C–] [MeO–] kobs (s–1) k1Ψ (s–1) 

3.74 × 10–1 5.45 × 10–4 4.86 × 10–4 5.92 × 10–5 3.98× 10–1 2.88 × 10–1

3.74 × 10–1 1.09 × 10–3 9.72 × 10–4 1.18 × 10–4 7.34 × 10–1 5.14 × 10–1

3.74 × 10–1 1.64 × 10–3 1.46 × 10–3 1.78 × 10–4 1.08  7.45 × 10–1

3.74 × 10–1 2.18 × 10–3 1.94 × 10–3 2.37 × 10–4 1.42  9.79 × 10–1

3.74 × 10–1 2.73 × 10–3 2.43 × 10–3 2.97 × 10–4 1.76  1.21  
[a] [1a]cell =  3.32 × 10–5mol L–1, the calculations of [C–] and [MeO–] based on KCH (2e) =  2.20 × 104 L mol–1. 

k2,C– = 4.74 × 102 M–1s–1 

 

Table S5: Reaction of electrophile 1a with the anion of malononitrile (2g) in MeOH at 20 °C, 

     stopped-flow, 380 nm. 

 concentrations[a] (mol L–1) rate constants  

stock solution cell  

[CH]o [MeO]o [C–] [MeO] kobs k1Ψ 

2.15 ×10–2 1.48 ×10–4 1.37 ×10–4 1.07 ×10–5 1.77 ×102 1.62 ×102

2.15 ×10–2 2.21 ×10–4 2.05 ×10–4 1.61 ×10–5 2.84 ×102 2.84 ×102

2.15 ×10–2 2.95 ×10–4 2.74 ×10–4 2.15 ×10–5 3.81 ×102 3.81 ×102

[a] [1a]cell = 1.46 × 10–5 mol L–1, the calculations of [C–] and [MeO–] based on KCH (2g) =  6.00 × 102 L mol–1. 

k2,C– = 1.49 × 106 M–1s–1 

y = 66.7x + 0.0963
R2 = 0.9975
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Table S6: Reaction of electrophile 1a with the anion of dimethyl malonate (2h) in MeOH at 

      20 °C, stopped-flow, 380 nm. 

concentrations[a] (mol L–1) rate constants  

stock solution cell  

[CH]0 [MeO–]0 [C–] [MeO–] kobs (s–1) k1Ψ (s–1) 

6.85 × 10–1 8.18 × 10–4 1.93 × 10–4 6.25 × 10–4 1.49 × 101 1.38 × 101

6.85 × 10–1 1.09 × 10–3 2.57 × 10–4 8.34 × 10–4 2.11 × 101 1.96 × 101

6.85 × 10–1 1.36 × 10–3 3.21 × 10–4 1.04 × 10–3 2.77 × 101 2.58 × 101

6.85 × 10–1 1.64 × 10–3 3.85 × 10–4 1.25 × 10–3 3.50 × 101 3.27 × 101

6.85 × 10–1 1.91 × 10–3 4.49 × 10–4 1.46 × 10–3 4.25 × 101 3.98 × 101

[a] [1a]cell = 2.14 × 10–5 mol L–1, the calculations of [C–] and [MeO–] based on KCH (2h) = 4.50 × 10–1 L mol–1. 

k2,C– = 1.02 × 105 M–1s–1 

 

Table S7: Reaction of electrophile 1a with the anion of ethyl 2-cyano acetate (2i) in MeOH at 

     20 °C, stopped-flow, 380 nm. 

concentrations[a] (mol L–1) rate constants  

stock solution cell  

[CH]0 [MeO–]0 [C–] [MeO–] kobs (s–1) k1Ψ (s–1) 

3.08 × 10–1 3.22 × 10–4 2.83 × 10–4 3.84 × 10–5 9.18 × 101 9.17 × 101

3.08 × 10–1 4.82 × 10–4 4.25 × 10–4 5.76 × 10–5 1.50 × 102 1.51 × 102

3.08 × 10–1 6.43 × 10–4 5.66 × 10–4 7.68 × 10–5 2.10 × 102 2.11 × 102

3.08 × 10–1 8.04 × 10–4 7.08 × 10–4 9.60 × 10–5 2.64 × 102 2.64 × 102

3.08 × 10–1 9.65 × 10–4 8.49 × 10–4 1.15 × 10–4 3.27 × 102 3.26 × 102

[a] [1a]cell = 2.56 × 10–5 mol L–1, the calculations of [C–] and [MeO–] based on KCH (2i) =  2.40 × 101 L mol–1. 

k2,C– = 4.11 × 105 M–1s–1 

y = 101552x - 6.2702
R2 = 0.9982
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Kinetics of electrophile 1b 

Table S8: Reaction of electrophile 1b with the anion of (nitromethyl)benzene (2a) in MeOH 

      at 20 °C, J & M, 452 nm. 

concentrations[a] (mol L–1) rate constants  

stock solution cell  

[CH]0 [MeO–]0 [C–] [MeO–] kobs (s–1) k1Ψ (s–1) 

2.13 × 10–2 1.73 × 10–3 1.73 × 10–3 4.42 × 10–6 5.57 × 10–3 5.27 × 10–3

2.10 × 10–2 2.89 × 10–3 2.88 × 10–3 7.95 × 10–6 9.80 × 10–3 9.21 × 10–3

2.09 × 10–2 3.47 × 10–3 3.46 × 10–3 9.88 × 10–6 1.17 × 10–3 1.10 × 10–2

2.07 × 10–2 4.04 × 10–3 4.03 × 10–3 1.21 × 10–5 1.39 × 10–3 1.30 × 10–2

2.13 × 10–2 4.62 × 10–3 4.61 × 10–3 1.38 × 10–5 1.65 × 10–3 1.55 × 10–2

[a] [1b]cell = 3.49 × 10–5 mol L–1, the calculations of [C–] and [MeO–] based on KCH (2a) = 2.00 × 104 L mol–1. 

k2,C– = 3.44 M–1s–1 

Table S9: Reaction of electrophile 1b with the anion of nitroethane (2b) in MeOH at 20 °C,  

      J & M, 452 nm. 

 concentrations[a] (mol L–1) rate constants  

stock solution cell  

[CH]0 [MeO–]0 [C–] [MeO–] kobs (s–1) k1Ψ (s–1) 

6.22 × 10–2 8.36 × 10–4 8.10 × 10–4 2.64 × 10–5 9.96 × 10–3 8.01 × 10–3

6.32 × 10–2 1.42 × 10–3 1.37 × 10–3 4.44 × 10–5 1.58 × 10–2 1.25 × 10–2

5.88 × 10–2 1.58 × 10–3 1.53 × 10–3 5.34 × 10–5 1.79 × 10–2 1.40 × 10–2

5.52 × 10–2 1.73 × 10–3 1.67 × 10–3 6.24 × 10–5 1.97 × 10–2 1.51 × 10–2

[a] [1b]cell = 3.21 × 10–5 mol L–1, the calculations of [C–] and [MeO–] based on KCH (2b)= 5.00 × 102 L mol–1. 

k2,C– = 8.24 M–1s–1 

 

Table S10: Reaction of electrophile 1b with the anion of 1–methyl–4–(nitromethyl)benzene 

       (2c) in MeOH at 20 °C, J & M, 452 nm. 

 concentrations[a] (mol L–1) rate constants  

stock solution cell  

[CH]0 [MeO–]0 [C–] [MeO–] kobs (s–1) k1Ψ (s–1) 

9.62 × 10–3 3.35 × 10–4 3.30 × 10–4 4.44 × 10–5 7.65 × 10–4 4.37 × 10–4

9.49 × 10–3 6.61 × 10–4 6.51 × 10–4 9.20 × 10–5 1.62 × 10–4 9.41 × 10–4

9.52 × 10–3 9.94 × 10–4 9.80 × 10–4 1.43 × 10–5 2.32 × 10–3 1.27 × 10–3

9.55 × 10–3 1.33 × 10–3 1.31 × 10–3 1.98 × 10–5 3.35 × 10–3 1.88 × 10–3

9.56 × 10–3 1.66 × 10–3 1.64 × 10–3 2.58 × 10–5 4.28 × 10–3 2.37 × 10–3

[a] [1b]cell = 3.38 × 10–5mol L–1, the calculations of [C–] and [MeO–] based on KCH (2c) =  8.01 × 103 L mol–1. 

k2,C– = 1.47 M–1s–1 

y = 3.4375x - 0.0007
R2 = 0.9963
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Table S11: Reaction of electrophile 1b with the anion of 4-(nitromethyl)benzonitrile (2d) in 

       MeOH at 20 °C, J & M, 452 nm. 

 

[a] [1b]cell =   3.93 × 10–5mol L–1, the calculations of [C–] and [MeO–] based on KCH (2d) =  8.61 × 104 L mol–1. 

k2,C– = 9.18 M–1s–1 

Table S12: Reaction of electrophile 1b with the anion of nitromethane (2e) in MeOH at  

       20 °C, stopped-flow, 452 nm. 

 concentrations[a] (mol L–1) rate constants  

stock solution cell  

[CH]0 [MeO–]0 [C–] [MeO–] kobs (s–1) k1Ψ (s–1) 

8.48 × 10–2 1.80 × 10–3 1.17 × 10–3 6.35 × 10–4 8.50 × 10–2 3.81 × 10–2

8.48 × 10–2 2.16 × 10–3 1.40 × 10–3 7.63 × 10–4 9.95 × 10–2 4.31 × 10–2

8.48 × 10–2 2.53 × 10–3 1.63 × 10–3 8.92 × 10–4 1.19 × 10–2 5.31 × 10–2

8.48 × 10–2 2.89 × 10–3 1.86 × 10–3 1.02 × 10–3 1.35 × 10–2 5.96 × 10–2

8.48 × 10–2 3.25 × 10–3 2.10 × 10–3 1.15 × 10–3 1.51 × 10–2 6.57 × 10–2

[a] [1b]cell = 2.40 × 10–5 mol L–1, the calculations of [C–] and [MeO–] based on KCH (2e) =  2.20 × 104 L mol–1. 

k2,C– = 3.09 × 101 M–1s–1 

 

Table S13: Reaction of electrophile 1b with the anion of 1-nitro-3-(nitromethyl)benzene (2f) 

       in MeOH at 20 °C, J & M, 452 nm. 

 concentrations[a] (mol L–1) rate constants  

stock solution cell  

[CH]0 [MeO–]0 [C–] [MeO–] kobs (s–1) k1Ψ (s–1) 

2.51 × 10–3 2.85 × 10–4 2.85 × 10–4 1.22 ×10–7 5.27 × 10–3 5.26 × 10–3

2.45 × 10–3 5.58 × 10–4 5.58 × 10–4 2.81 ×10–7 1.01 × 10–2 1.01 × 10–2

2.46 × 10–3 7.92 × 10–4 7.92 × 10–4 4.53 ×10–7 1.46 × 10–2 1.46 × 10–2

2.44 × 10–3 1.06 × 10–3 1.06 × 10–3 7.26 ×10–7 1.98 × 10–2 1.97 × 10–2

[a] [1b]cell =5.23 × 10–5 mol L–1, the calculations of [C–] and [MeO–] based on KCH (2f) =  1.05 × 106 L mol–1. 

k2,C– = 1.88 × 101 M–1s–1 

 concentrations[a] (mol L–1) rate constants  

stock solution cell  

[CH]0 [MeO–]0 [C–] [MeO–] kobs (s–1) k1Ψ (s–1) 

5.69 × 10–3 2.12 × 10–4 2.12 × 10–4 4.48 ×10–7 2.09 × 10–3 2.06 × 10–3

5.59 × 10–3 4.17 × 10–4 4.16 × 10–4 9.34 ×10–7 3.93 × 10–3 3.86 × 10–3

5.59 × 10–3 6.25 × 10–4 6.24 × 10–4 1.46 ×10–6 5.84 × 10–3 5.73 × 10–3

5.59 × 10–3 8.33 × 10–4 8.31 × 10–4 2.03 ×10–6 7.78 × 10–3 7.63 × 10–3

5.59 × 10–3 1.04 × 10–3 1.04 × 10–3 2.65 ×10–6 9.87 × 10–3 9.67 × 10–3
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Table S14: Reaction of electrophile 1b with the anion of malononitrile (2g) in MeOH at  

       20 °C, stopped-flow, 452 nm.  

 concentrations[a] (mol L–1) rate constants  

stock solution cell  

[CH]o [MeO]o [C–] [MeO–] kobs k1Ψ 

2.13 × 10–2 5.03 × 10–4 4.66 × 10–4 3.74× 10–5 3.12 ×101 3.12 ×101

2.13 × 10–2 7.55 × 10–4 6.99 × 10–4 5.67× 10–5 5.04 ×101 5.04 ×101

2.13 × 10–2 1.00 ×10–3 9.31 × 10–4 7.64 × 10–5 6.88 ×101 6.88 ×101

2.13 × 10–2 1.26 ×10–3 1.16 ×10–3 9.65 ×10–5 8.72 ×101 8.72 ×101

2.13 × 10–2 1.51 × 10–3 1.39 × 10–3 1.17 × 10–4 1.08 × 102 1.08 ×102

[a] [1b]cell = 2.10 × 10–5 mol L–1, the calculations of [C–] and [MeO–] based on KCH (2g) =  6.00 × 102 L mol–1. 

k2,C– = 8.17 × 104 M–1s–1 

 

Table S15: Reaction of electrophile 1b with the anion of dimethyl malonate (2h) in MeOH at 

       20 °C, stopped-flow, 452 nm. 

concentrations[a] (mol L–1) rate constants  

stock solution cell  

[CH]0 [MeO–]0 [C–] [MeO–] kobs (s–1) k1Ψ (s–1) 

6.85 × 10–1 8.18 × 10–4 1.93 × 10–4 6.25 × 10–4 5.99 × 10–1 5.53 × 10–1

6.85 × 10–1 1.09 × 10–3 2.57 × 10–4 8.34 × 10–4 8.50 × 10–1 7.88 × 10–1

6.85 × 10–1 1.36 × 10–3 3.21 × 10–4 1.04 × 10–3 1.15 1.07  

6.85 × 10–1 1.64 × 10–3 3.85 × 10–4 1.25 × 10–3 1.49 1.40  

6.85 × 10–1 1.91 × 10–3 4.49 × 10–4 1.46 × 10–3 1.80 1.69  
[a] [1b]cell = 1.61 × 10–5 mol L–1, the calculations of [C–] and [MeO–] based on KCH (2h) =  4.50 × 10–1 L mol–1. 

k2,C– = 4.49 × 103 M–1s–1 

 

Table S16: Reaction of electrophile 1b with the anion of ethyl 2-cyano acetate (2i) in MeOH 

       at 20 °C, stopped-flow, 452 nm. 

concentrations[a] (mol L–1) rate constants  

stock solution cell  

[CH]0 [MeO–]0 [C–] [MeO–] kobs (s–1) k1Ψ (s–1) 

3.08 × 10–1 3.22 × 10–4 2.83 × 10–4 3.84 × 10–5 4.19 4.20  

3.08 × 10–1 4.82 × 10–4 4.25 × 10–4 5.76 × 10–5 6.88 6.88  

3.08 × 10–1 6.43 × 10–4 5.66 × 10–4 7.68 × 10–5 9.43 9.43 

3.08 × 10–1 8.04 × 10–4 7.08 × 10–4 9.60 × 10–5 1.22 × 101 1.22 × 101

3.08 × 10–1 9.65 × 10–4 8.49 × 10–4 1.15 × 10–4 1.48 × 101 1.48 × 101

[a] [1b]cell = 1.68 × 10–5 mol L–1, the calculations of [C–] and [MeO–] based on KCH (2i) =  2.40 × 101 L mol–1. 

k2,C– = 1.88 × 104 M–1s–1 

y = 4488.8x - 0.3407
R2 = 0.9972
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Table S17: Reaction of electrophile 1c with the anion of (nitromethyl)benzene (2a) in MeOH 

       at 20 °C,  J & M, 480 nm. 

 concentrations[a] (mol L–1) rate constants  

stock solution cell  

[CH]0 [MeO–]0 [C–] [MeO–] kobs (s–1) k1Ψ (s–1) 

1.82 × 10–2 2.27 × 10–3 2.27 × 10–3 7.11 × 10–6 2.8 × 10–3 2.08 × 10–3

1.63 × 10–2 2.54 × 10–3 2.53 × 10–3 9.21 × 10–6 2.38 × 10–3 2.25 × 10–3

1.78 × 10–2 3.33 × 10–3 3.32 × 10–3 1.15 × 10–5 3.10 × 10–3 2.93 × 10–3

1.79 × 10–2 4.46 × 10–3 4.45 × 10–3 1.66 × 10–5 4.00 × 10–3 3.76 × 10–3

[a] [1c]cell = 2.61 × 10–5 mol L–1, the calculations of [C–] and [MeO–] based on KCH (2a) = 2.00 × 104 L mol–1. 

k2,C– = 7.84 × 10–1 M–1s–1 

Table S18: Reaction of electrophile 1c with the anion of nitroethane (2b) in MeOH at 20 °C, 

        J & M, 480 nm. 

concentrations[a] (mol L–1) rate constants 

stock solution cell  

[CH]0 [MeO–]0 [C–] [MeO–] kobs (s–1) k1Ψ (s–1) 

8.69 × 10–2 2.29 × 10–3 2.24 × 10–3 5.30 × 10–5 2.87 × 10–3 2.12 × 10–3

8.30 × 10–2 2.74 × 10–3 2.67 × 10–3 6.65 × 10–5 3.50 × 10–3 2.55 × 10–3

8.56 × 10–2 3.39 × 10–3 3.31 × 10–3 8.04 × 10–5 4.64 × 10–3 3.50 × 10–3

8.51 × 10–2 3.93 × 10–3 3.84 × 10–3 9.44 × 10–5 5.44 × 10–3 4.10 × 10–3

8.69 × 10–2 4.59 × 10–3 4.48 × 10–3 1.09 × 10–4 6.39 × 10–3 4.84 × 10–3

[a] [1c]cell = 2.29 × 10–5mol L–1, the calculations of [C–] and [MeO–] based on KCH (2b)= 5.00 × 102 L mol–1. 

k2,C– = 1.24 M–1s–1 

Table S19: Reaction of electrophile 1c with the anion of 1-methyl-4-(nitromethyl)benzene 

       (2c) in MeOH at 20 °C, J & M, 480 nm. 

 concentrations[a] (mol L–1) rate constants  

stock solution cell  

[CH]0 [MeO–]0 [C–] [MeO–] kobs (s–1) k1Ψ (s–1) 

8.72 × 10–3 1.33 × 10–3 1.31 × 10–3 2.21 × 10–5 1.07 × 10–3 7.56 × 10–4

8.82 × 10–3 1.67 × 10–3 1.66 × 10–3 2.89 × 10–5 1.35 × 10–3 9.39 × 10–4

8.64 × 10–3 1.95 × 10–3 1.93 × 10–3 3.58 × 10–5 1.55 × 10–3 1.04 × 10–3

8.70 × 10–3 2.20 × 10–3 2.16 × 10–3 4.12 × 10–5 1.78 × 10–3 1.19 × 10–3

8.79 × 10–3 2.70 × 10–3 2.64 × 10–3 5.34 × 10–5 2.16 × 10–3 1.40 × 10–3

[a] [1c]cell =  2.34 × 10–5mol L–1, the calculations of [C–] and [MeO–] based on KCH (2c) =  8.01 × 103 L mol–1. 

k2,C– = 4.88 × 10–1 M–1s–1 

y = 0.7839x + 0.0003
R2 = 0.9985
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Table S20: Reaction of electrophile 1c with the anion of 4-(nitromethyl)benzonitrile (2d) in 

        MeOH at 20 °C, J & M, 480 nm. 

 concentrations[a] (mol L–1) rate constants  

stock solution cell  

[CH]0 [MeO–]0 [C–] [MeO–] kobs (s–1) k1Ψ (s–1) 

1.14 × 10–2 2.38 × 10–4 2.37 × 10–4 2.48 ×10–7 8.37 × 10–4 8.33 × 10–4

1.14 × 10–2 5.94 × 10–4 5.94 × 10–4 6.39 ×10–7 1.79 × 10–3 1.78 × 10–3

1.14 × 10–2 9.51 × 10–4 9.50 × 10–4 1.06 ×10–6 2.85 × 10–3 2.84 × 10–3

1.14 × 10–2 1.31 × 10–3 1.31 × 10–3 1.51 ×10–6 3.90 × 10–3 3.87 × 10–3

1.14 × 10–2 1.66 × 10–3 1.66 × 10–3 1.99 ×10–6 4.89 × 10–3 4.86 × 10–3

[a] [1c]cell = 1.13 × 10–5mol L–1, the calculations of [C–] and [MeO–] based on KCH (2d) =  8.61 × 104 L mol–1. 

k2,C– = 2.85 M–1s–1 

 

Table S21: Reaction of electrophile 1c with the anion of nitromethane (2e) in MeOH at  

       20 °C, J & M, 480 nm. 

 concentrations[a] (mol L–1) rate constants  

stock solution cell  

[CH]0 [MeO–]0 [C–] [MeO–] kobs (s–1) k1Ψ (s–1) 

2.93 × 10–1 4.87 × 10–4 4.22 × 10–4 6.55 × 10–5 3.30 × 10–3 2.37 × 10–3

2.93 × 10–1 9.74 × 10–4 8.43 × 10–4 1.31 × 10–4 4.81 × 10–3 3.40 × 10–3

2.93 × 10–1 1.22 × 10–3 1.05 × 10–3 1.64 × 10–4 7.54 × 10–3 5.20 × 10–3

2.93 × 10–1 1.70 × 10–3 1.47 × 10–3 2.30 × 10–4 1.03 × 10–2 6.93 × 10–3

[a] [1c]cell = 2.61 × 10–5 mol L–1, the calculations of [C–] and [MeO–] based on KCH (2e) =  2.20 × 104 L mol–1. 

k2,C– = 4.30 M–1s–1 

Table S22: Reaction of electrophile 1c with the anion of 1-nitro-3-(nitromethyl)benzene (2f) 

        in MeOH at 20 °C, J & M, 480 nm. 

 concentrations[a] (mol L–1) rate constants  

stock solution cell  

[CH]0 [MeO–]0 [C–] [MeO–] kobs (s–1) k1Ψ (s–1) 

3.19 × 10–3 3.51 × 10–4 3.51 × 10–4 1.18 ×10–7 2.85 × 10–3 2.84 × 10–3

2.71 × 10–3 5.96 × 10–4 5.96 × 10–4 2.68 ×10–7 4.45 × 10–3 4.47 × 10–3

2.80 × 10–3 9.22 × 10–4 9.22 × 10–4 4.68 ×10–7 6.88 × 10–3 6.87 × 10–3

2.75 × 10–3 1.21 × 10–3 1.21 × 10–3 7.47 ×10–7 8.85 × 10–3 8.84 × 10–3

2.91 × 10–3 1.60 × 10–3 1.60 × 10–3 1.16 ×10–6 1.21 × 10–3 1.21 × 10–2

[a] [1c]cell = 2.26 × 10–5 mol L–1, the calculations of [C–] and [MeO–] based on KCH (2f) =  1.05 × 106 L mol–1. 

k2,C– = 7.38 M–1s–1 

y = 2.849x + 0.0001
R2 = 0.9997
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Table S23: Reaction of electrophile 1c with the anion of malononitrile (2g) in MeOH  

       at 20 °C, stopped-flow, 480 nm. 
 

[a] [1c]cell = 1.76 × 10–5 mol L–1, the calculations of [C–] and [MeO–] based on KCH (2g) =  6.00 × 102 L mol–1. 

k2,C– = 1.97 × 104 M–1s–1 

Table S24: Reaction of electrophile 1c with the anion of dimethyl malonate (2h) in MeOH at 

       20 °C, stopped-flow, 480 nm. 

concentrations[a] (mol L–1) rate constants  

stock solution cell  

[CH]0 [MeO–]0 [C–] [MeO–] kobs (s–1) k1Ψ (s–1) 

6.85 × 10–1 8.18 × 10–4 1.93 × 10–4 6.25 × 10–4 0.136 1.27 × 10–1

6.85 × 10–1 1.09 × 10–3 2.57 × 10–4 8.34 × 10–4 0.1974 1.86 × 10–1

6.85 × 10–1 1.36 × 10–3 3.21 × 10–4 1.04 × 10–3 0.265 2.50 × 10–1

6.85 × 10–1 1.64 × 10–3 3.85 × 10–4 1.25 × 10–3 0.345 3.27 × 10–1

6.85 × 10–1 1.91 × 10–3 4.49 × 10–4 1.46 × 10–3 0.418 3.97 × 10–1

[a] [1c]cell = 2.14 × 10–5 mol L–1, the calculations of [C–] and [MeO–] based on KCH (2h) =  4.50 × 10–1 L mol–1. 

k2,C– = 1.06 × 103 M–1s–1 

Table S25: Reaction of electrophile 1c with the anion of ethyl 2-cyano acetate (2i) in MeOH 

       at 20 °C, stopped-flow, 480 nm. 

concentrations[a] (mol L–1) rate constants  

stock solution cell  

[CH]0 [MeO–]0 [C–] [MeO–] kobs (s–1) k1Ψ (s–1) 

3.08 × 10–1 3.22 × 10–4 2.83 × 10–4 3.84 × 10–5 9.08 × 10–1 9.09 × 10–1

3.08 × 10–1 4.82 × 10–4 4.25 × 10–4 5.76 × 10–5 1.51 1.50  

3.08 × 10–1 6.43 × 10–4 5.66 × 10–4 7.68 × 10–5 2.11 2.10  

3.08 × 10–1 8.04 × 10–4 7.08 × 10–4 9.60 × 10–5 2.69 2.69  

3.08 × 10–1 9.65 × 10–4 8.49 × 10–4 1.15 × 10–4 3.36 3.36  
[a] [1c]cell = 1.41 × 10–5 mol L–1, the calculations of [C–] and [MeO–] based on KCH (2i) = 2.40 × 101 L mol–1. 

k2,C– = 4.30 × 103 M–1s–1 

concentrations[a] (mol L–1) rate constants  

stock solution cell  

[CH]o [MeO]o [C] [MeO] kobs k1Ψ 

2.15 ×10–2 5.53 ×10–4 5.12 ×10–4 4.08 × 10–5 9.01 9.00  

2.15 ×10–2 7.38 ×10–4 6.83 ×10–4 5.48 × 10–5 1.25 ×101 1.25 ×101

2.15 ×10–2 9.22 ×10–4 8.53 ×10–4 6.90 × 10–5 1.58 ×101 1.58 ×101

2.15 ×10–2 1.11 ×10–3 1.02 ×10–3 8.34 × 10–5 1.94 ×101 1.94 ×101

2.15 ×10–2 1.29 ×10–3 1.19 ×10–3 9.81 × 10–5 2.23 ×101 2.23 ×101

y = 19715x - 1.012
R2 = 0.9991
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Kinetics of the reactions of the electrophiles 1a–c with amines 

Kinetics of electrophile 1a 

 

Table S26: Reaction of electrophile 1a with ethanolamine (3a) in MeOH at 20 °C, 

       stopped-flow, 380 nm. 

concentration (mol L–1) rate constant 

[1a]  [Nu]0  kobs (s–1) 

3.20 × 10–5  1.52 × 10–3  6.58  

3.20 × 10–5  2.27 × 10–3  9.97  

3.20 × 10–5  3.03 × 10–3  1.35 × 101  

3.20 × 10–5  3.79 × 10–3  1.65 × 101  

3.20 × 10–5  5.69 × 10–3  2.46 × 101  

k2 = 4.30 × 103 M–1s–1 

 

Table S27: Reaction of electrophile 1a with n-propylamine (3b) in MeOH at 20 °C,  

        stopped-flow, 380 nm. 

concentration (mol L–1) rate constant 

[1a]  [Nu]0  kobs (s–1) 

2.52 × 10–5  5.45 × 10–4  3.92  

2.52 × 10–5  1.09 × 10–3  7.76  

2.52 × 10–5  1.64 × 10–3  1.13 × 101  

2.52 × 10–5  2.18 × 10–3  1.50 × 101  

2.52 × 10–5  2.73 × 10–3  1.87 × 101  

k2 = 6.73 × 103 M–1s–1 

 

Table S28: Reaction of electrophile 1a with benzylamine (3c) in MeOH at 20 °C,  

       stopped-flow, 380 nm. 

 

k2 = 4.60 × 103 M–1s–1 

concentration (mol L–1) rate constant 

[1a]  [Nu]0  kobs (s–1) 

3.66 × 10–5  9.00 × 10–4  4.18  

3.66 × 10–5  1.80 × 10–3  8.27  

3.66 × 10–5  2.70 × 10–3  1.24 × 101  

3.66 × 10–5  3.60 × 10–3  1.64 × 101  

3.66 × 10–5  4.50 × 10–3  2.08 × 101  

y = 4303.48x + 0.20
R2 = 1.00
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Table S29: Reaction of electrophile 1a with morpholine (3d) in MeOH at 20 °C,  

        stopped-flow, 380 nm. 

concentration (mol L–1) rate constant 

[1b]  [Nu]0  kobs (s–1) 

4.50 × 10–5  7.51 × 10–4  1.27 × 102  

4.50 × 10–5  1.13 × 10–3  1.56 × 102  

4.50 × 10–5  1.50 × 10–3  1.81 × 102  

4.50 × 10–5  1.88 × 10–3  2.05 × 102  

k2 = 6.90 × 104 M–1s–1 

 

Table S30: Reaction of electrophile 1a with piperidine (3e) in MeOH at 20 °C, 

         stopped-flow, 380 nm. 

concentration (mol L–1) rate constant 

[1a]  [Nu]0  kobs (s–1) 

5.26 × 10–5  5.33 × 10–4  4.52 × 101  

5.26 × 10–5  8.00 × 10–4  7.06 × 101  

5.26 × 10–5  1.07 × 10–3  9.36 × 101  

5.26 × 10–5  1.33 × 10–3  1.17 × 102  

k2 = 8.93 × 104 M–1s–1 

 

Table S31: Reaction of electrophile 1a with pyrrolidine (3f) in MeOH at 20 °C,  

       stopped-flow, 380 nm. 

concentration (mol L–1) rate constant 

[1a]  [Nu]0  kobs (s–1) 

3.66 × 10–5  5.40 × 10–4  7.06 × 101  

3.66 × 10–5  8.10 × 10–4  1.13 × 102  

3.66 × 10–5  1.08 × 10–3  1.66 × 102  

3.66 × 10–5  1.35 × 10–3  2.05 × 102  

3.66 × 10–5  1.62 × 10–3  2.47 × 102  

k2 = 1.64 × 105 M–1s–1 

y = 89317.4736x - 1.7610
R2 = 0.9995
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Kinetics of electrophile 1b 

 

Table S32: Reaction of electrophile 1b with ethanolamine (3a) in MeOH at 20 °C,  

        stopped-flow, 452 nm. 

concentration (mol L–1) rate constant 

[1b]  [Nu]0  kobs (s–1) 

3.05 × 10–5  1.52 × 10–3  2.14  

3.05 × 10–5  2.27 × 10–3  2.38  

3.05 × 10–5  3.03 × 10–3  2.63  

3.05 × 10–5  3.79 × 10–3  2.83  

3.05 × 10–5  5.69 × 10–3  3.43  

k2 = 3.08 × 102 M–1s–1 

 

Table S33: Reaction of electrophile 1b with n-propylamine (3b) in MeOH at 20 °C,  

        stopped-flow, 452 nm. 

concentration (mol L–1) rate constant 

[1b]  [Nu]0  kobs (s–1) 

2.40 × 10–5  1.09 × 10–3  1.07  

2.40 × 10–5  2.18 × 10–3  1.68  

2.40 × 10–5  2.73 × 10–3  1.99  

2.40 × 10–5  4.09 × 10–3  2.77  

2.40 × 10–5  5.45 × 10–3  3.56  

k2 = 5.69 × 102 M–1s–1 

  

Table S34: Reaction of electrophile 1b with benzylamine (3c) in MeOH at 20 °C,  

        stopped-flow, 452 nm. 

concentration (mol L–1) rate constant 

[1b]  [Nu]0  kobs (s–1) 

2.40 × 10–5  1.80 × 10–3  2.67  

2.40 × 10–5  2.70 × 10–3  2.90  

2.40 × 10–5  3.60 × 10–3  3.16  

2.40 × 10–5  4.50 × 10–3  3.43  

2.40 × 10–5  5.40 × 10–3  3.74  

k2 = 2.98 × 102 M–1s–1 

y = 308.46089x + 1.67457
R2 = 0.99946
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Table S35: Reaction of electrophile 1b with piperidine (3e) in MeOH at 20 °C, 

        stopped-flow, 452 nm. 

 

k2 = 1.19 × 104 M–1s–1 

 

Table S36: Reaction of electrophile 1b with pyrrolidine (3f) in MeOH at 20 °C,  

        stopped-flow, 452 nm. 

concentration (mol L–1) rate constant 

[1b] [Nu]0 kobs (s–1) 

3.76 × 10–5 4.06 × 10–4 1.59 × 101 

3.76 × 10–5 8.13 × 10–4 2.19 × 101 

3.76 × 10–5 1.22 × 10–3 2.83 × 101 

3.76 × 10–5 1.63 × 10–3 3.40 × 101 

3.76 × 10–5 2.03 × 10–3 4.15 × 101 

k2 = 1.55 × 104 M–1s–1 

 

Kinetics of electrophile 1c 

 

Table S37: Reaction of electrophile 1c with ethanolamine (3a) in MeOH at 20 °C,  

       stopped-flow, 480 nm. 

concentration (mol L–1) rate constant 

[1c]  [Nu]0  kobs (s–1) 

2.20 × 10–5  2.62 × 10–3  3.66  

2.20 × 10–5  5.24 × 10–3  3.86  

2.20 × 10–5  7.86 × 10–3  3.96  

2.20 × 10–5  1.05 × 10–2  4.21  

2.20 × 10–5  1.31 × 10–2  4.37  

k2 = 6.72 × 101 M–1s–1 

 

 

concentration (mol L–1) rate constant 

[1b]  [Nu]0  kobs (s–1) 

3.76 × 10–5  1.33 × 10–3  5.59 × 101  

3.76 × 10–5  2.67 × 10–3  6.75 × 101  

3.76 × 10–5  4.00 × 10–3  8.91 × 101  

3.76 × 10–5  5.33 × 10–3  1.05 × 102  

3.76 × 10–5  6.66 × 10–3  1.16 × 102  
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R2 = 0.98808

0
1
2
3
4
5

0.000 0.005 0.010 0.015

[Nu ] / M

k
ob

s /
 s

-1

y = 11868.48x + 39.28
R2 = 0.99

0

50

100

150

0.000 0.002 0.004 0.006 0.008

[Nu ] / M

k
ob

s /
 s

-1
y = 15523.84720x + 9.38100

R2 = 0.99805

0

10

20

30

40

50

0.0000 0.0005 0.0010 0.0015 0.0020 0.0025

[Nu ] / M

k
ob

s /
 s

-1



Chapter 3: Experimental Section 
 

114 
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Table S38: Reaction of electrophile 1c with n-propylamine (3b) in MeOH at 20 °C,  

        stopped-flow, 480 nm. 

concentration (mol L–1) rate constant 

[1c]  [Nu]0  kobs (s–1) 

2.02 × 10–5  2.42 × 10–3  1.43  

2.02 × 10–5  4.83 × 10–3  1.84  

2.02 × 10–5  7.25 × 10–3  2.23  

2.02 × 10–5  9.67 × 10–3  2.66  

2.02 × 10–5  1.21 × 10–2  3.05  

k2 = 1.68 × 102 M–1s–1 

 

Table S39: Reaction of electrophile 1c with piperidine (3e) in MeOH at 20 °C,  

        stopped-flow, 480 nm.  

concentration (mol L–1) rate constant 

[1c]  [Nu]0  kobs (s–1) 

2.20 × 10–5  3.52 × 10–3  9.38 × 101  

2.20 × 10–5  4.69 × 10–3  9.45 × 101  

2.20 × 10–5  5.86 × 10–3  9.86 × 101  

2.20 × 10–5  8.79 × 10–3  1.07 × 102  

k2 = 2.69 × 103 M–1s–1 

 

Table S40: Reaction of electrophile 1c with pyrrolidine (3f) in MeOH at 20 °C,  

        stopped-flow, 480 nm. 

concentration (mol L–1) rate constant 

[1c]  [Nu]0  kobs (s–1) 

3.16 × 10–5  1.63 × 10–3  2.33 × 101  

3.16 × 10–5  2.03 × 10–3  2.50 × 101  

3.16 × 10–5  3.05 × 10–3  3.15 × 101  

3.16 × 10–5  4.06 × 10–3  3.58 × 101  

3.16 × 10–5  4.88 × 10–3  3.95 × 101  

k2 = 5.08 × 103 M–1s–1 

y = 2688.696x + 83.147
R2 = 0.972
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Kinetics for the reactions of the electrophiles 1a–c with sodium methoxide  

 

Table S41: Reaction of electrophile 1a with methoxide (4a) in MeOH at 20 °C,  

        stopped-flow, 380 nm. 

concentration (mol L–1) rate constant 

[1c] [4a]0 kobs (s–1) 

1.91 × 10–5 1.17 × 10–3 3.97 

1.91 × 10–5 1.75 × 10–3 5.07 

1.91 × 10–5 2.33 × 10–3 6.11 

1.91 × 10–5 2.92 × 10–3 7.21 

1.91 × 10–5 3.50 × 10–3 8.32 

k2 = 1.86 × 103 M–1s–1 

 

Table S42: Reaction of electrophile 1b with methoxide (4a) in MeOH at 20 °C,  

       stopped-flow, 452 nm. 

concentration (mol L–1) rate constant 

[1b]  [4a]0  kobs (s–1) 

1.86 × 10–5 1.59 × 10–4  1.19 × 10–2 

1.86 × 10–5 3.18 × 10–4  2.40 × 10–2 

1.86 × 10–5 5.30 × 10–4  4.01 × 10–2 

1.86 × 10–5 6.36 × 10–4  5.04 × 10–2 

1.86 × 10–5 9.01 × 10–4  6.91 × 10–2 

k2 = 7.38 × 101 M–1s–1 

 

Table S43: Reaction of electrophile 1c with methoxide (4a) in MeOH at 20 °C,  

        stopped-flow, 480 nm. 

concentration (mol L–1) rate constant 

[1c]  [4a]0  kobs (s–1) 

2.02 × 10–5 5.30 × 10–4  1.32 × 10–2 

2.02 × 10–5 1.06 × 10–3  2.06 × 10–2 

2.02 × 10–5 1.59 × 10–3  2.87 × 10–2 

2.02 × 10–5 2.12 × 10–3  3.68 × 10–2 

k2 = 1.42 × 101 M–1s–1 

y = 14.23421x + 0.00408
R2 = 0.99786
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3.7. Determination of Equilibrium Constants 

All equilibrium measurements have been performed at 20 °C in MeOH using J&M 
instruments with d = 0.5 cm. 

Table S44: Equilibrium constant for the reaction of electrophile 1a with benzylamine (3c) at 

380 nm. 

Measurement 1 Measurement 2 

[1a]0 [1a]eq [3c]0 K [1a]0 [1a]eq [3c]0 K 

1.531 × 10–4 8.290 × 10–5 1.872 × 10–4 7.24 × 103 1.554 × 10–4 1.257 × 10–4 9.381 × 10–5 3.69 × 103 
1.530 × 10–4 4.052 × 10–5 3.742 × 10–4 1.06 × 104 1.553 × 10–4 8.773 × 10–5 1.876 × 10–4 6.42 × 103 
1.529 × 10–4 2.379 × 10–5 5.610 × 10–4 1.26 × 104 1.553 × 10–4 6.152 × 10–5 2.813 × 10–4 8.13 × 103 
1.529 × 10–4 1.599 × 10–5 7.477 × 10–4 1.40 × 104 1.552 × 10–4 3.178 × 10–5 4.686 × 10–4 1.12 × 104 
1.527 × 10–4 8.550 × 10–6 1.213 × 10–3 1.58 × 104 1.551 × 10–4 1.989 × 10–5 6.557 × 10–4 1.31 × 104 

    1.549 × 10–4 8.922 × 10–6 1.216 × 10–3 1.53 × 104 
    

Measurement 3 

[1a]0 [1a]eq [3c]0 K 

1.560 × 10–4 1.217 × 10–4 9.419 × 10–5 4.69 × 103 
1.559 × 10–4 9.424 × 10–5 1.883 × 10–4 5.17 × 103 
1.559 × 10–4 6.970 × 10–5 2.824 × 10–4 6.30 × 103 
1.558 × 10–4 3.494 × 10–5 4.705 × 10–4 9.89 × 103 
1.557 × 10–4 2.082 × 10–5 6.583 × 10–4 1.24 × 104 
1.555 × 10–4 8.550 × 10–6 1.221 × 10–3 1.60 × 104 

 

Table S45: Equilibrium constant for the reaction of electrophile 1a with morpholine (3d) at 
380 nm. 

Measurement 1 Measurement 2 

[1a]0 [1a]eq [3d]0 K [1a]0 [1a]eq [3d]0 K 

1.298 × 10–4 1.070 × 10–4 2.835 × 10–5 3.84 × 104 1.632 × 10–4 1.393 × 10–4 2.738 × 10–5 4.88 × 104 
1.297 × 10–4 9.191 × 10–5 5.666 × 10–5 2.18 × 104 1.631 × 10–4 1.204 × 10–4 5.474 × 10–5 2.97 × 104 
1.296 × 10–4 7.247 × 10–5 1.132 × 10–4 1.41 × 104 1.630 × 10–4 9.642 × 10–5 1.094 × 10–4 1.61 × 104 
1.295 × 10–4 6.019 × 10–5 1.696 × 10–4 1.15 × 104 1.628 × 10–4 8.040 × 10–5 1.639 × 10–4 1.26 × 104 
1.292 × 10–4 4.541 × 10–5 2.822 × 10–4 9.30 × 103 1.625 × 10–4 6.159 × 10–5 2.726 × 10–4 9.54 × 103 
1.287 × 10–4 3.126 × 10–5 5.059 × 10–4 7.63 × 103 1.619 × 10–4 4.215 × 10–5 4.888 × 10–4 7.70 × 103 
1.280 × 10–4 2.286 × 10–5 7.830 × 10–4 6.79 × 103 1.611 × 10–4 3.064 × 10–6 7.567 × 10–4 6.80 × 103 

    1.599 × 10–4 2.193 × 10–5 1.154 × 10–3 6.20 × 103 
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Table S46: Equilibrium constant for the reaction of electrophile 1b with ethanolamine (3a) at 

452 nm. 

Measurement 1 Measurement 2 

[1b]0 [1b]eq [3a]0 K [1b]0 [1b]eq [3a]0 K 

3.739 × 10–5 3.364 × 10–5 1.087 × 10–4 1.06 × 103 3.121 × 10–5 2.742 × 10–5 1.033 × 10–4 1.36 × 103 
3.737 × 10–5 3.103 × 10–5 2.173 × 10–4 9.69 × 102 3.120 × 10–5 2.504 × 10–5 2.065 × 10–4 1.23 × 103 
3.733 × 10–5 2.730 × 10–5 4.341 × 10–4 8.66 × 102 3.117 × 10–5 2.187 × 10–5 4.127 × 10–4 1.05 × 103 
3.729 × 10–5 2.477 × 10–5 6.505 × 10–4 7.93 × 102 3.113 × 10–5 1.966 × 10–5 6.184 × 10–4 9.62 × 102 
3.722 × 10–5 2.132 × 10–5 1.082 × 10–3 6.99 × 102 3.107 × 10–5 1.660 × 10–5 1.029 × 10–3 8.59 × 102 
3.714 × 10–5 1.894 × 10–5 1.512 × 10–3 6.43 × 102 3.101 × 10–5 1.458 × 10–5 1.437 × 10–3 7.93 × 102 
3.695 × 10–5 1.530 × 10–5 2.578 × 10–3 5.54 × 102 3.086 × 10–5 1.117 × 10–5 2.452 × 10–3 7.24 × 102 
3.676 × 10–5 1.308 × 10–5 3.634 × 10–3 5.02 × 102 3.071 × 10–5 8.506 × 10–5 3.457 × 10–3 7.54 × 102 

    3.049 × 10–5 7.093 × 10–5 4.946 × 10–3 6.70 × 102 

 

Table S47: Equilibrium constant for the reaction of electrophile 1b with benzylamine (3c) at 

452 nm. 

Measurement 1 Measurement 2 

[1b]0 [1b]eq [3c]0 K [1b]0 [1b]eq [3c]0 K 

3.382 × 10–5 2.932 × 10–5 1.902 × 10–4 8.26 × 102 3.497 × 10–5 2.825 × 10–5 1.822 × 10–4 1.36 × 103 
3.381 × 10–5 2.671 × 10–5 3.802 × 10–4 7.12 × 102 3.496 × 10–5 2.572 × 10–5 3.642 × 10–4 1.01 × 103 
3.377 × 10–5 2.255 × 10–5 7.596 × 10–4 6.65 × 102 3.492 × 10–5 2.191 × 10–5 7.277 × 10–4 8.31 × 102 
3.372 × 10–5 1.857 × 10–5 1.327 × 10–3 6.22 × 102 3.487 × 10–5 1.807 × 10–5 1.272 × 10–3 7.41 × 102 
3.364 × 10–5 1.438 × 10–5 2.270 × 10–3 5.95 × 102 3.479 × 10–5 1.399 × 10–5 2.175 × 10–3 6.90 × 102 
3.352 × 10–5 1.058 × 10–5 3.581 × 10–3 6.09 × 102 3.467 × 10–5 1.026 × 10–5 3.431 × 10–3 6.98 × 102 
3.335 × 10–5 7.608 × 10–6 4.438 × 10–3 6.25 × 102 3.450 × 10–5 6.776 × 10–6 4.212 × 10–3 7.89 × 102 

K1 = 6.65 (± 0.75) × 102 L mol–1  
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Table S48: Equilibrium constant for the reaction of electrophile 1b with piperidine (3e) at 
452 nm. 

Measurement 1 Measurement 2 

[1b]0 [1b]eq [3e]0 K [1b]0 [1b]eq [3e]0 K 

3.719 × 10–4 3.380 × 10–5 5.075 × 10–5 2.12 × 103 3.026 × 10–5 2.738 × 10–5 4.992 × 10–5 2.23 × 103 
3.717 × 10–4 3.111 × 10–5 1.015 × 10–4 2.04 × 103 3.024 × 10–5 2.497 × 10–5 9.978 × 10–5 2.24 × 103 
3.711 × 10–4 2.524 × 10–5 2.532 × 10–4 1.95 × 103 3.021 × 10–5 2.199 × 10–5 1.994 × 10–4 1.96 × 103 
3.705 × 10–4 2.183 × 10–5 4.046 × 10–4 1.79 × 103 3.017 × 10–5 1.914 × 10–5 3.483 × 10–4 1.71 × 103 
3.696 × 10–4 1.819 × 10–5 6.557 × 10–4 1.62 × 103 3.007 × 10–5 1.573 × 10–5 6.449 × 10–4 1.45 × 103 
3.680 × 10–4 1.470 × 10–5 1.055 × 10–3 1.46 × 103 2.998 × 10–5 1.371 × 10–5 9.396 × 10–4 1.29 × 103 
3.661 × 10–4 1.209 × 10–5 1.549 × 10–3 1.33 × 103 2.983 × 10–5 1.141 × 10–5 1.427 × 10–3 1.15 × 103 
3.633 × 10–4 9.748 × 10–6 2.281 × 10–3 1.21 × 103 2.968 × 10–5 9.947 × 10–6 1.909 × 10–3 1.05 × 103 
3.587 × 10–4 7.450 × 10–6 3.476 × 10–3 1.21 × 103   

K1 = 1.62 (± 0.35) × 103 L mol–1         K2 = 1.63 (± 0.44) × 103 L mol–1  

K∅ = 1.63 (± 0.00) × 103 L mol–1 

 

Table S49: Equilibrium constant for the reaction of electrophile 1b with pyrrolidine (3f) at 

452 nm. 

Measurement 1 Measurement 2 

[1b]0 [1b]eq [3f]0 K [1b]0 [1b]eq [3f]0 K 

3.382 × 10–5 2.774 × 10–5 5.975 × 10–5 4.09 × 103 3.326 × 10–5 2.786 × 10–5 5.939 × 10–5 3.59 × 103 
3.381 × 10–5 2.294 × 10–5 1.194 × 10–4 4.36 × 103 3.325 × 10–5 2.294 × 10–5 1.187 × 10–4 4.14 × 103 
3.377 × 10–5 1.700 × 10–5 2.387 × 10–4 4.45 × 103 3.321 × 10–5 1.744 × 10–5 2.372 × 10–4 4.09 × 103 
3.374 × 10–5 1.375 × 10–5 3.576 × 10–4 4.31 × 103 3.318 × 10–5 1.403 × 10–5 3.554 × 10–4 4.06 × 103 
3.367 × 10–5 1.003 × 10–5 5.948 × 10–4 4.13 × 103 3.311 × 10–5 1.014 × 10–5 5.912 × 10–4 3.98 × 103 
3.360 × 10–5 7.886 × 10–6 8.310 × 10–4 4.05 × 103 3.305 × 10–5 7.846 × 10–6 8.260 × 10–4 4.01 × 103 
3.353 × 10–5 6.539 × 10–6 1.066 × 10–3 3.97 × 103 3.298 × 10–5 6.261 × 10–6 1.060 × 10–3 4.13 × 103 

3.346 × 10–5 5.429 × 10–6 1.301 × 10–3 4.06 × 103 3.285 × 10–5 5.706 × 10–6 1.525 × 10–3 3.18 × 103 
3.333 × 10–5 4.082 × 10–6 1.766 × 10–3 4.13 × 103 3.268 × 10–5 3.249 × 10–6 2.101 × 10–3 4.37 × 103 

K1 = 4.17 (± 0.15) × 103 L mol–1      K2 = 3.95 (± 0.33) × 103 L mol–1 

K∅ = 4.06 (± 0.11) × 103 L mol–1
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Table S50: Equilibrium constant for the reaction of electrophile 1c with propylamine (3b) at 

480 nm. 

Measurement 1 Measurement 2 

[1c]0 [1c]eq [3b]0 K [1c]0 [1c]eq [3b]0 K 

3.812 × 10–5 3.691 × 10–5 1.263 × 10–4 2.61 × 102 3.922 × 10–5 3.030 × 10–5 6.485 × 10–4 4.60 × 102 
3.810 × 10–5 3.538 × 10–5 2.525 × 10–4 3.08 × 102 3.912 × 10–5 2.767 × 10–5 1.294 × 10–3 3.23 × 102 
3.795 × 10–5 2.758 × 10–5 1.195 × 10–3 3.17 × 102 3.897 × 10–5 2.417 × 10–5 2.256 × 10–3 2.73 × 102 
3.781 × 10–5 2.677 × 10–5 2.130 × 10–3 2.79 × 102 3.882 × 10–5 2.172 × 10–5 3.210 × 10–3 2.47 × 102 
3.758 × 10–5 1.940 × 10–5 3.674 × 10–3 2.56 × 102 3.863 × 10–5 1.835 × 10–5 4.471 × 10–3 2.48 × 102 
3.730 × 10–5 1.581 × 10–5 5.501 × 10–3 2.48 × 102 3.838 × 10–5 1.611 × 10–5 6.030 × 10–3 2.30 × 102 
3.698 × 10–5 1.287 × 10–5 7.599 × 10–3 2.47 × 102 3.810 × 10–5 1.235 × 10–5 7.876 × 10–3 2.66 × 102 

    3.772 × 10–5 9.457 × 10–6 1.029 × 10–2 2.99 × 102 

K1 = 2.74 (± 0.26) × 102 L mol–1            K2 = 2.92 (± 0.70) × 102 L mol–1 

K∅ = 2.83 (± 0.09) × 102 L mol–1 

 

Table S51: Equilibrium constant for the reaction of electrophile 1c with pyrrolidine (3f) at 

480 nm. 

Measurement 1 Measurement 2 

[1c]0 [1c]eq [3f]0 K [1c]0 [1c]eq [3f]0 K 

2.375 × 10–5 2.211 × 10–5 1.143 × 10–4 6.59 × 102 4.661 × 10–5 4.413 × 10–5 1.209 × 10–5 4.73 × 102 
2.368 × 10–5 1.874 × 10–5 4.559 × 10–4 5.85 × 102 4.651 × 10–5 3.634 × 10–5 6.034 × 10–4 4.72 × 102 
2.354 × 10–5 1.480 × 10–5 1.161 × 10–3 5.12 × 102 4.642 × 10–5 3.130 × 10–5 1.084 × 10–4 4.52 × 102 
2.344 × 10–5 1.151 × 10–5 2.134 × 10–3 4.84 × 102 4.628 × 10–5 2.601 × 10–5 1.801 × 10–4 4.38 × 102 
2.306 × 10–5 8.713 × 10–6 3.496 × 10–3 4.73 × 102 4.614 × 10–5 2.224 × 10–5 2.514 × 10–4 4.31 × 102 
2.279 × 10–5 7.093 × 10–6 4.826 × 10–3 4.60 × 102 4.596 × 10–5 1.870 × 10–5 3.458 × 10–4 4.25 × 102 
2.253 × 10–5 5.954 × 10–6 6.125 × 10–3 4.56 × 102 4.573 × 10–5 1.541 × 10–5 4.628 × 10–4 4.28 × 102 

    4.540 × 10–5 1.243 × 10–5 6.360 × 10–3 4.19 × 102 
    4.485 × 10–5 9.326 × 10–6 9.192 × 10–3 4.16 × 102 
    4.431 × 10–5 7.356 × 10–6 1.196 × 10–2 4.21 × 102 

K1 = 5.18 (± 0.70) × 102 L mol–1         K2 = 4.37 (± 0.20) × 102 L mol–1 

K∅ = 4.78 (± 0.40) × 102 L mol–1 
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Table S52: Equilibrium constant for the reaction of electrophile 1a with methoxide (4a) at 

380 nm. 

Measurement 1 Measurement 2 

[1a]0 [1a]eq [4a]0 K [1a]0 [1a]eq [4a]0 K 

2.389× 10–5 2.212 × 10–5 5.201 × 10–6 2.32 × 104 2.466× 10–5 2.183 × 10–5 7.814 × 10–6 2.61 × 104 
2.387× 10–5 2.022 × 10–5 1.040 × 10–6 2.68 × 104 2.465× 10–5 1.894 × 10–5 1.562 × 10–5 3.04 × 104

2.385× 10–5 1.650 × 10–5 2.077 × 10–5 3.32 × 104 2.462× 10–5 1.493 × 10–5 2.600 × 10–5 3.98 × 104

2.381× 10–5 1.091 × 10–5 3.630 × 10–5 5.05 × 104 2.460× 10–5 1.112 × 10–5 3.637 × 10–5 5.29 × 104

2.378 × 10–5 6.078 × 10–6 5.178 × 10–5 8.55 × 104 2.456× 10–5 6.160 × 10–6 5.188 × 10–5 8.92 × 104

2.374 × 10–5 2.729 × 10–6 6.721 × 10–5 1.67 × 105 2.452 × 10–5 2.729 × 10–6 6.734 × 10–5 1.75 × 105

 

Table S53: Equilibrium constant for the reaction of electrophile 1b with methoxide (4a) at 

452 nm.  

Measurement 1 Measurement 2 

[1b]0 [1b]eq [4a]0 K [1b]0 [1b]eq [4a]0 K 

2.937 × 10–5 1.934 × 10–5 4.531 × 10–5 1.47 × 104 3.056 × 10–5 2.088 × 10–5 4.463 × 10–5 1.33 × 104 
2.934 × 10–5 1.117 × 10–5 9.052 × 10–5 2.25 × 104 3.053 × 10–5 1.228 × 10–5 8.917 × 10–5 2.09 × 104 
2.931 × 10–5 7.490 × 10–5 1.356 × 10–4 2.56 × 104 3.050 × 10–5 8.005 × 10–6 1.336 × 10–4 2.53 × 104 
2.928 × 10–5 5.548 × 10–5 1.806 × 10–4 2.73 × 104 3.046 × 10–5 5.984 × 10–6 1.780 × 10–4 2.67 × 104 
2.920 × 10–5 3.368 × 10–5 2.928 × 10–4 2.87 × 104 3.038 × 10–5 3.487 × 10–6 2.884 × 10–4 2.95 × 104 
2.912 × 10–5 2.417 × 10–6 4.043 × 10–4 2.93 × 104 3.030 × 10–5 2.497 × 10–6 3.983 × 10–4 3.01 × 104 

    3.022 × 10–5 2.021 × 10–6 5.076 × 10–4 2.91 × 104 

K1 = 2.47 (± 0.49) × 104 L mol–1         K2 = 2.50 (± 0.56) × L mol–1 

Measurement 3 

[1b]0 [1b]eq [4a]0 K 

3.199 × 10–5 2.144 × 10–5 4.672× 10–5 1.36 × 104 
3.195 × 10–5 1.236 × 10–5 9.333 × 10–5 2.15 × 104 
3.192 × 10–5 8.243 × 10–6 1.398 × 10–4 2.47 × 104 
3.188 × 10–5 6.063 × 10–6 1.863 × 10–4 2.65 × 104 
3.179 × 10–5 3.685 × 10–6 3.018 × 10–4 2.79 × 104 
3.171 × 10–5 2.615 × 10–6 4.168 × 10–4 2.87 × 104 
3.162 × 10–5 2.061 × 10–6 5.311 × 10–4 2.86 × 104 

K3 = 2.45 (± 0.50) × 104 L mol–1         K∅ = 2.47 (± 0.02) × 104 L mol–1 
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Table S54: Equilibrium constant for the reaction of electrophile 1c with methoxide (4a) at 

480 nm. 

Measurement 1 Measurement 2 

[1c]0 [1c]eq [4a]0 K [1c]0 [1c]eq [4a]0 K 

3.898 × 10–5 3.468 × 10–5 8.325 × 10–5 1.57 × 103 4.090 × 10–5 3.551 × 10–5 8.325× 10–5 1.95 × 103 
3.894 × 10–5 2.636 × 10–5 1.663 × 10–4 3.10 × 103 4.084 × 10–5 2.693 × 10–5 2.078 × 10–4 2.66 × 103 
3.888 × 10–5 2.119 × 10–5 2.907 × 10–4 3.06 × 103 4.078 × 10–5 2.141 × 10–5 3.320 × 10–4 2.89 × 103 
3.882 × 10–5 1.738 × 10–5 4.146 × 10–4 3.14 × 103 4.071 × 10–5 1.756 × 10–5 4.558 × 10–4 3.05 × 103 
3.873 × 10–5 1.331 × 10–5 6.204 × 10–4 3.21 × 103 4.061 × 10–5 1.344 × 10–5 6.614 × 10–4 3.19 × 103 
3.863 × 10–5 1.099 × 10–5 8.251 × 10–4 3.15 × 103 4.051 × 10–5 1.060 × 10–5 8.660 × 10–4 3.38 × 103 
3.844 × 10–5 7.750 × 10–6 1.232 × 10–3 3.30 × 103 4.032 × 10–5 7.531 × 10–6 1.272 × 10–3 3.51 × 103 

    4.012 × 10–5 5.648 × 10–6 1.674 × 10–3 3.72 × 103 

K1 = 2.93 (± 0.56) × 103 L mol–1          
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3.8. Copies of NMR spectra, Product 5ad, 1H NMR: 

 

Product 5ae, 1H NMR: 
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Product 5af, 1H NMR: 

 

Product 5bf, 1H NMR: 
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Product 6aa, 1H NMR: 

 

13C NMR: 
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Product 6ba, 1H NMR: 
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Product 6ca, 1H NMR: 

 

13C NMR:  
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Chapter 4 

Determination of the Electrophilicity Parameters of 

Diethyl Benzylidenemalonates in DMSO: 

Reference Electrophiles for Characterizing Strong 

Nucleophiles 

O. Kaumanns, R. Lucius, and H. Mayr, Chem. Eur. J. 2008, 14, 9675-9682. 

 

Introduction 

In recent years, large efforts were made to develop nucleophilicity scales for comparing the 

reactivities of structurally different nucleophiles, such as alkenes and arenes,1-3 alcohols and 

amines,4-6 carbanions7,8 and organometallics1,9 or hydride donors.1,10 In order to characterize 

the nucleophilicities of these compounds, kinetics of their reactions with benzhydrylium ions 

(Ar2CH+) and structurally related quinone methides have been investigated and evaluated by 

using the linear free-energy relationship (4.1), 

 

log k (20 °C) = s(N + E)  (4.1) 

 

where N and s are nucleophile-dependent parameters and E is an electrophile-dependent 

parameter. With the set of colored reference electrophiles defined in refs. 1, 2, and 8 it 

became possible to determine the reactivity parameters N for nucleophiles up to N ≈ 22. 
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The characterization of more reactive nucleophiles has been problematic so far, because the 

least reactive electrophile, parametrized until now, had an electrophilicity parameter of                     

E = –17.9, i.e., its reactions with nucleophiles of N > 22 are very fast and cannot easily be 

determined. 

Recently we demonstrated that Equation (4.1) also holds for the reactions of carbanions 

with ordinary Michael acceptors, such as benzylidene malononitriles,11 benzylidene 

indandiones,12 benzylidene barbituric acids,13 and benzylidene Meldrum’s acids.14 We now 

report on the reactivities of diethyl benzylidenemalonates, which are less electrophilic than 

benzylidene Meldrum’s acids, their cyclic analogues, and therefore may be suitable for 

extending the scale of reference electrophiles on the low-reactivity end. 

Oh and Lee showed that the reactions of substituted benzyl amines with 2-benzylidene-1,3-

diketones,15 and diethyl benzylidenemalonates16 are much slower than the analogous reactions 

with benzylidene malononitriles,17 benzylidene Meldrum’s acids,18 and benzylidene 

indandiones.19 The unusual high CH-acidity of Meldrum’s acid compared to that of acyclic 

esters, such as dimethyl malonate, has been ascribed to the fixed (E)-conformation of the ester 

linkage in the bislactone structure of Meldrum’s acid.20 This rationalization has been 

supported by quantum chemical calculations by Houk and Wiberg, who showed that the 

deprotonation of methyl acetate requires approximately 20 kJ mol–1 less energy than 

deprotonation of the (Z)-conformer.21 

Benzylidenemalonates 1 have found synthetic applications as Michael acceptors in the 

reactions with propargyl alkoxides to create a variety of heterocycles such as highly 

substituted tetrahydrofurans under mild reaction conditions,22 and in diastereoselective oxy-

Michael additions of 6-methyl δ lactol to yield protected β-hydroxy ester derivatives.23 

Organocatalytic enantioselective additions of ketones to benzylidenemalonates24 and copper-

catalyzed nucleophilic additions of indoles with formation of enantiomerically enriched        

3-substituted indoles were reported.25 
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Benzylidene dimalonates, which have been claimed to serve as bone affinity agents have 

previously been synthesized by tandem-Michael additions of aryl sulfonimines with diethyl 

malonate.26 

We now report on the kinetics of the additions of carbanions towards electrophiles 1a–i in 

DMSO and show that the second-order rate constants of these reactions can be described by 

Equation (4.1). 

 

Results and Discussion 

The previously reported compounds 1a–g and the novel substrates 1h–i (Scheme 4.1) were 

prepared by Knoevenagel condensation from diethyl malonate (2b-H) and the corresponding 

aldehyde in boiling toluene following a modified protocol of Zabicky.27 

 

Scheme 4.1. Synthesis of Diethyl Benzylidenemalonates 1a–i via Knoevenagel 

Condensation. 

1a–i2b-H

R = pNO2 1a
= pCN 1b
= mCl 1c
= 1dH
= pMe 1e

= pOMe 1f

= pNMe2 1g

1h
Ar =

N

Ar =

N
1i

Ar

toluene
piperidine

CO2Et

CO2Et

O
R

Ar

R
CO2Et

CO2Et

(Ar = jul)

(Ar = thq)

 

 

The electrophiles 1a–f are colorless compounds with absorption maxima between 277 and 

316 nm, while their amino-substituted analogues 1g–i are yellow with absorption maxima 

between 383 and 407 nm (Figure 4.1). The molar decadic absorption coefficients ε in DMSO 



Chapter 4: Determination of the Electrophilicity Parameters of Diethyl Benzylidenemalonates 
in DMSO: Reference Electrophiles for Characterizing Strong Nucleophiles 

130 

were found to be similar to those previously reported for some of these compounds in 

dioxane.28 
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Figure 4.1. UV-Vis spectra of the electrophiles 1a–i in DMSO, λmax in parentheses. Molar 

decadic absorption coefficient ε for 1a: 17200, 1b: 22500, 1c: 17300, 1d: 16500, 1e: 20700, 

1f: 25100, 1g: 32800, 1h: 33700, and 1i: 32400 L mol–1 cm–1 (for ε values for 1a, 1d, 1f, and 

1g in dioxane see ref. 28). 

In order to characterize the electrophilic reactivities of compounds 1a–i, the kinetics of their 

reactions with the carbanions 2a–e (Table 4.1) have been investigated. 

Table 4.1. Nucleophilicity Parameters of the Carbanions 2a–f in DMSO. 

 Nucleophile Na sa 
2a 

NO2
21.54 0.62 

2b 20.22 0.65 
 OEt

O

EtO

O

  
2c 19.62 0.67 
 C OEt

O
N

  
2d 18.82 0.69 
 OEt

OO

  
2e 19.92 0.67
 

NO2O2N

  
2f 19.36 0.67 
 

CCN N

   
a For N and s parameters of 2a see ref. 11, for 2b–d,f see ref. 8, for 2e see ref. 29. 
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Product studies. In order to confirm the course of the investigated Michael additions 

(Scheme 4.2), the products of representative combinations of the arylidene malonates 1a–i 

with the carbanions 2a–f have been studied by NMR spectroscopy (Table 4.2). 

 

Scheme 4.2. Addition of the Carbanions 2a–f to the Benzylidenemalonates 1a–i and Possible 

Subsequent Protonation, Elimination or Cyclization Paths. 

CO2EtEtO2C

R2R1
+

CO2EtEtO2C

R1

R2

k2, DMSO

1a–i 2a–f

R R

CO2EtEtO2C

R1

R2 R

3

5

H+

CO2EtEtO2C

R1

R2 R

4

for R, R2 = CN
R1 = CO2Et

glyme/DMSO
K2CO3

NC

CO2Et

CN

k–

CO2EtEtO2C

EtO2C

OEtO NO2

R1, R2 = CO2Et
R = 4-NO2

 

 

As depicted in Scheme 4.2, the nucleophilic additions of the carbanions 2a–f to the diethyl 

benzylidenemalonates 1a–i initially yield the anionic adducts 3, which may undergo a proton 

transfer with formation of the isomeric carbanions 4. Acidic workup of 4 then yields 

compounds 5. 

Thus, mixing the Michael acceptors 1c–f with two equivalents of 2b-K+ in dry DMSO, 

subsequent workup with aqueous HCl solution and distillation gave products 5cb–5fb in 

moderate to good yields (Table 4.2, entries 1–4). The NMR spectra of 5db–5fb                       
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(Experimental Section) agree with those previously described in ref. 26. The reactions of 1a–f 

with the anion of ethyl cyanoacetate 2c, which were studied in NMR experiments, showed the 

predominant formation of anions 4ac–4fc (Table 4.2, entries 5, 6, and 8–11), in accordance 

with the higher acidity of ethyl cyanoacetate (pKa(DMSO) = 13.1)30 compared to diethyl 

malonate (pKa(DMSO) = 16.4).31 Additional signals (< 10 %) indicate the presence of a 

second compound, potentially the corresponding anions 3. Electrophile 1b and ethyl 

cyanoacetate 2c-H reacted in the presence of K2CO3 in a dimethoxyethane/DMSO mixture to 

yield the retro-Michael product shown at the bottom of Scheme 4.2 (Table 4.2, entry 7). The 

reaction of 1a with 2d and subsequent acidic workup as described for entries 1–4 in Table 4.2 

yielded the product 5ad as a mixture of diastereoisomers in a ratio of 2:1 in good quantity. 

The malononitrile anion 2f reacted with electrophile 1a to yield 4af, which was converted 

into 5af during acidic workup (Table 4.2, entries 13 and 14). Michael additions of the 

nitroethyl anion 2a13,14 and the dinitrobenzhydryl anion 2e29 to similar electrophiles have 

recently been shown to proceed analogously, and the corresponding adducts to the  

benzylidenemalonates 1a–i have not been identified. 

 

Table 4.2. Characterized Michael Adducts 4 and 5. 

Entry Electrophil Nucleophil Product Yield [%] 
1 1c 2b 5cb 47 
2 1d 2b 5db 83 
3 1e 2b 5eb 47 
4 1f 2b 5fb 78 
5 1a 2c 4ac a

6 1b 2c 4bc a

7 1b 2c b 25 
8 1c 2c 4cc a

9 1d 2c 4dc a

10 1e 2c 4ec a
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Table 4.2. Continued. 

Entry Electrophil Nucleophil Product Yield [%] 
11 1f 2c 4fc a

12 1a 2d 5ad 71c 
13 1a 2f 4af a 
14 1a 2f 5af 35 

a Adducts 4 were not isolated, but identified in the crude reaction mixture by 1H and 13C 
NMR spectroscopy. b Retro-Michael adduct (Scheme 4.2 bottom, see text and Experimental 
Section). c The yield of the isolated major diastereomer is 47 %. 

 

Kinetic Measurements. In order to obtain pseudo-first order kinetics, solutions of the 

electrophiles 1a–i (1.0 × 10–5 – 1.0 × 10–3 mol L–1) were mixed with more than ten 

equivalents of the compounds 2a–d. The decay of the absorptions of the electrophiles was 

then followed spectrophotometrically† either with stopped-flow instruments or, for reactions 

with half-lives of more than ≈ 15 s, with conventional UV-Vis diode-array spectrometers 

equipped with fiber optics and a submersible probe. From the fit of the absorbance At to the 

exponential function At = A0 exp(–kobst) + C, the first-order rate constants kobs were derived. 

Since the UV-absorption maxima of the electrophiles 1a–f are close to those of the carbanions 

2a–d, the combinations of these substrates were not followed at the absorption maxima of the 

electrophiles, but at shoulders of the absorption bands of the electrophiles at which neither the 

carbanions 2 nor the resulting products showed significant absorptions. 

Figure S1 (Experimental Section) furthermore shows the development of a weak absorption 

band at λmax ≈ 360 nm during the reaction of 1b with 2c, which may be specific for this 

electrophile because a comparable weak band (λmax ≈ 350 nm) was formed during the reaction 

of the p-cyano substituted benzylidenemalonate 1b with 2a. 

                                                 
† For the reactions of 1a–c with the green dinitrobenzhydryl anion 2e the first-order rate 

constants kobs were determined with 2e as the minor component. 
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Similar observations were made, when the p-nitro substituted benzylidenemalonate 1a was 

combined with the nucleophiles 2a–d. Orange products with weak absorptions at λmax = 455 

to 470 nm were formed, and for the reaction of 1a with the anion of diethyl malonate the rate 

of the formation of the 455 nm band was found to equal the rate of the decay of the absorption 

band of 1a at λ = 325 nm. Though the nature of these colored side products is not clear, it is 

conceivable that in the resence of p-NO2 or p-CN groups (i.e. in the reactions with 1a and 1b) 

the initially formed adducts 4 undergo cyclization with formation of intra-molecular 

Meisenheimer-Jackson complexes32 as shown for the adduct of 2b and 1a on bottom left of 

Scheme 4.2. 

Generally, plots of the first-order rate constants (kobs) against the concentrations of the 

carbanions were linear with the slopes k2 and negligible intercepts (Figure 4.2, Table 4.3). 
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Figure 4.2. Determination of the second-order rate constant for the reaction of 1a with 2b-K 

in DMSO at 20 °C (k2 = 43.0 L mol–1 s–1). 
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Table 4.3. Second-Order Rate Constants k2 for the Reactions of the Electrophiles 1a–i with 

the Nucleophiles 2a–e in DMSO at 20 °C. 

Electrophil E Nucleophil k2 / L mol–1 s–1

1a –17.67 2a 2.41 × 102 
  2ba 4.29 × 101 
  2c 2.12 × 101 
  2cb 2.24 × 101 
  2db 6.58 
  2e 1.09 × 101 
1b –18.06 2a 1.45 × 102 
  2bb 2.86 × 101 
  2c 9.77 
  2e 5.94 
  2eb 6.03 
1c –18.98 2a 3.71 × 101 
  2bb 6.81 
  2c 2.68 
  2cb 2.51 
  2e 1.67 
1d –20.55 2bb 5.93 × 10–1 
  2c 2.43 × 10–1 
1e –21.11 2a 2.99 
  2bb 2.37 × 10–1 
  2bc 2.33 × 10–1 
  2c 1.11 × 10–1 
1f –21.47 2a 1.70 
  2bb 1.41 × 10–1 
  2c 4.27 × 10–2 
1g –23.1 2a 1.68 × 10–1 
  2bc 8.85 × 10–3 
1h –23.4 2a 6.96 × 10–2 
1i –23.8 2a 3.94 × 10–2 

a From the increase of the absorbance at λ = 425 nm one derives k2 = 42.6 L mol–1 s–1.           
b In presence of 18-crown-6. c Reaction in the presence of the conjugate CH acid 2b-H. 
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Equilibrium Constants. While most of the Michael additions listed in Table 4.3 proceeded 

quantitatively as indicated by negligible end absorptions of the solutions at the absorption 

maxima of the benzylidenemalonates 1, several reactions of the malonate anion 2b turned out 

to be reversible. 

Thus, the p-dimethylamino substituted benzylidenemalonate 1g did not react at all when 

combined with the carbanion 2b-K+. In the presence of 3–5 equivalents of the conjugate acid 

2b-H (c0 ≈ 2 × 10–2 mol L–1) almost quantitative conversion of 1g was achieved, however, and 

the k2 value listed in Table 4.3 refers to these conditions. A similar behaviour was expected 

for other additions of the carbanions 2b–f to the amino substituted benzylidenemalonates        

1g–i. Because of the expected low reaction rates, these additions have not been investigated, 

however. 

The reactions of 2b-K+ with 1e,f also proceeded incompletely as indicated by significant 

end absorptions of the mixtures at the absorption maxima of the electrophiles. In line with the 

assumption of a reversible Michael addition, the linear plot of kobs vs. [2b] had a positive 

intercept (Figure 4.3, upper graph) which equals the rate constant of the reverse reaction.33 

Complete consumption of 1e was achieved when the reaction of 1e with 2b-K+ was 

performed in the presence of two equivalents of the conjugate CH acid 2b-H. The linear plot 

of kobs vs. [2b] obtained under these conditions had almost the same slope (Figure 4.3, lower 

graph) as the one obtained in the absence of 2b-H, indicating that the rate-determining step is 

the same in both cases, i.e., the proton transfer from 2b-H to 3 (= 4 for R1, R2 = CO2Et) is a 

fast subsequent reaction. Analogously, the linear plot of kobs vs. [2b] for the reaction of 2b 

with 1f showed a positive intercept. 
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Figure 4.3. Reaction of the electrophile 1e with the carbanion 2b without addition of 2b-H  

(•, kobs = 0.237 [2b] + 0.0004) and in the presence of 2 equivalents of 2b-H (○, kobs = 0.233 

[2b] – 0.0001) in DMSO at 20 °C. 

By theory,33 it is now possible to calculate the equilibrium constants K for the reactions of 

2b with 1e and 1f as the ratio of the forward (k2, slope of kobs vs. [2b] plot) over backward    

(k–, intercept of kobs vs. [2b] plot) rate constants [eq. (4.2)]. However, because of the 

uncertainty in the determination of k– as the intercept, the equilibrium constants K have 

directly been determined from the absorbances of 1e and 2f in the presence of variable 

concentrations of 2b using Equation (4.3). 
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The equilibrium constants K derived from Equation (4.3) which are listed in Table 4.4 can 

then be combined with the rate constants k2 from Table 4.3 to give the values of k– which are 

listed in the fourth line of Table 4.4. The values for the reverse reactions derived in the two 

different ways differ by factors of 1.1 and 1.7, and we consider the values in the fourth line of 

Table 4.4 to be more reliable. 
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Table 4.4. Equilibrium and Rate Constants for the Reactions of Carbanion 2b with the 

Electrophiles 1e,f in DMSO at 20 °C. 

 1e 1f 
k–  / s–1 4 × 10–4 a 1 × 10–3 a 
K / L mol–1 5.3 × 102 b 2.3 × 102 b 
k– / s–1 4.5 × 10–4 c 6.0 × 10–4 c 
ΔG0 / kJ mol–1 –15.3 d –13.3 d

ΔG‡ / kJ mol–1 75.3 e 76.5 e

ΔG0
‡ / kJ mol–1 82.7 f 83.0 f

a Intercept on the Y-axis for the plot of kobs vs [2b] (as shown in Tables S20 and S23,                  
Experimental Section). b From Equation (4.3) using the initial absorptions of the electrophiles 
1e and 1f and the equilibrium absorptions after addition of carbanion 2b (see Tables S1 and 
S2, Experimental Section).  c Calculated on the basis of Equation (4.2) and the second-order 
rate constants listed in Table 4.3. d Calculated from the equilibrium constants K. e Forward 
reaction; from second-order rate constants k2 in Table 4.3. f Calculated on the basis of 
Equation (4.4) and ΔG0 and ΔG‡ from this Table. 

 

Substitution of ΔG‡ and ΔG0 for these reactions into the Marcus Equation34 (4.4) where the 

work term has been neglected, yields intrinsic barriers of ΔG0
‡ = 83 kJ mol–1. 

 

ΔG‡ = ΔG0
‡ + 0.5 ΔG0 + (ΔG0)2/(16ΔG0

‡)  (4.4) 

 

This value is considerably higher than those previously reported for the additions of 

pyridines5 and tertiary alkyl amines6 to structurally related Michael acceptors. 

Interestingly, the addition reactions of the carbanion 2c to the electrophiles 1e,f proceed 

quantitatively, although 2c reacts more slowly (N = 19.62) than the reversibly reacting 

carbanion 2b (N = 20.22). How can this behavior be explained? 

Scheme 4.2 shows that ΔG0 for the reaction of 1 with 2 to give 4 includes the difference in 

“carbanion stabilization” of anions 2 and 4. Because pKa values for the Michael adducts 5, the 

conjugate acids of 4, are not available, we have estimated the influence of alkyl groups on the 
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CH acidities of these compounds from a comparison of carbanions 2 with their methyl 

analogues as illustrated in Table 4.5. 

 

Table 4.5. Influence of Methyl Groups on the Basicities of Carbanions (DMSO). 

Carbanion pKaH (R = H) pKaH (R = CH3) 
16.7a (2a) 16.8a

H3C NO2

R

   
16.4b (2b)  18.7c

EtO2C CO2Et

R

  
11.1d (2f) 12.4d

NC CN

R

   
a From ref. 35. b From ref. 31. c From ref. 36. d From ref. 37 

 

Though pKaH values are not available for all methyl analogues of carbanions 2a–f, the 

examples shown in Table 4.5 indicate that introduction of a methyl group leads to a 

particularly large decrease in carbanion stabilization in the case of malonate 2b. This effect 

may account for the observation that the Michael additions of 2b are less exergonic than the 

analogous reactions of the other carbanions of Table 4.1. 

 

Correlation analysis. In Figure 4.4, the logarithmic second-order rate constants (log k2) for 

the reactions of the carbanions 2a–d with the arylidene malonates 1a–i and the reference 

electrophiles 6a–f (quinone methides) are plotted against the corresponding electrophilicity 

parameters E. The E parameters of 6a–f were taken from ref. 8, and those for 1a–i were 

calculated from the rate constants for their reactions with the carbanions 2a–d (reference 

nucleophiles). For that purpose, the nonlinear solver “What´s Best!” was used to minimize the 

square of the deviations (Δ2) between calculated and experimental rate constants Δ2 = ∑(log 

k2 – s(N+E))2. Because N and s of the carbanions are given in Table 4.1 and the corresponding 
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rate constants k2 are listed in Table 4.3, the electrophilicity parameters E for 1a–i could thus 

be obtained. 
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Figure 4.4. Plot of log k2 for the reactions of carbanions 2a–d with electrophiles 1a–i (open 

symbols) and with reference electrophiles 6a–f (filled symbols) in DMSO versus the 

electrophilicity parameter E of the employed electrophiles. 

Figure 4.5 illustrates that the rate constants of the reactions of the dinitrobenzhydryl anion 

2e with various classes of electrophiles follow separate log k vs. E correlations. The upper 

correlation line for the reactions of 2e with the quinone methides 6a–e was used for the 

calculation of the N and s parameters of 2e.29 The benzylidenemalonates 1a–c are on the 

same, somewhat lower correlation line as the indandiones 7-X and the barbiturates 8-X (for 

structures see Scheme 4.3).  
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Scheme 4.3. Michael Acceptors (7–9)-X. 
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As a consequence, the log k2 values for the reactions of 2e with 1a–c, 7-X, and 8-X which 

are calculated by Equation (4.1) are 2–4 times higher than the experimental values for their 

reactions with 2e. The benzylidene malononitriles 9-X (Scheme 4.3) deviate even more, and 

the observed rate constants are approximately one order of magnitude smaller than calculated 

by Equation (4.1). Though a similar split up of the correlation lines for different classes of 

electrophiles has been reported earlier,14 we resist the temptation to improve the reliability of 

the correlations by the addition of correction terms. We rather keep the correlation simple and 

unambiguous and emphasize that the use of Equation (4.1) implies errors up to a factor of         

10–100, which we consider acceptable in a reactivity range of more than thirty orders of 

magnitude. 
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Figure 4.5. Correlation of log k2 versus E for the reactions of carbanion 2e with different 

Michael acceptors in DMSO – Structures of 1a–c in Scheme 4.1; structures of 6a–e in Figure 

4.4; structures of (7–9)-X in Scheme 4.3; for “jul”–substituent see 1i in Scheme 4.1. 
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Figure 4.6 shows that the electrophilicities of the benzylidenemalonates 1a–i cover a range 

of more than six orders of magnitude from –17.7 > E > –23.8 and are roughly ten to eleven 

orders of magnitude less reactive than their cyclic analogues 10a–d. Thus, fixation of the two 

ester groups of 1 in a six-membered ring formation has an enormous effect on the reactivity of 

these Michael acceptors. 
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Figure 4.6. Comparison of the electrophilicity parameters E of diethyl benzylidenemalonates 

1a–i with those of some reference electrophiles 6a–f and benzylidene Meldrum’s acids 10a–

d. For “jul”-substituent see 1i in Scheme 4.1. 

According to Figure 4.7, the electrophilicity parameters E for the benzylidenemalonates  

1a–i correlate excellently with Hammett’s σp-values.38 Comparison with the corresponding 

Hammett plot for benzylidene Meldrum’s acids shows that the electrophilicities of the acyclic 

Michael acceptors 1a–i are less affected by substituent variation than the electrophilicities of 

their cyclic analogues 10a–d. For reactions with typical amines and carbanions (s ≈ 0.65, 

Table 4.1) the slopes given in Figure 4.7 correspond to Hammett reaction constants of ρ ≈ 2.4 

(for 1) and ρ ≈ 3.5 (for 10). 
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Figure 4.7. Correlation between the electrophilicity parameters E of electrophiles 1a–i and 

10a–d in DMSO with Hammett’s σp-values (for 1a–i: E = 3.68σp – 20.57; for 10a–d:                    

E = 5.37σp – 9.08). σp for “thq” in 1h has not been reported but is derived from this 

correlation. 

 

The fact that compound 1i with the “julolidyl” substituent (definition see Scheme 4.1) fits 

nicely on this correlation line confirms the validity of the Hammett substituent constant 

σp(jul) = –0.89, which has recently been derived from related experiments.14 Analogously, 

σp(thq) = –0.77 can be derived by substituting the E parameter for 1h into the correlation 

equation given in Figure 4.7. 

 

Conclusion 

Diethyl benzylidenemalonates 1a–i are more than 1010 times less reactive than benzylidene 

Meldrum’s acids 10, their cyclic counterparts. They extend our electrophilicity scale on the 

low-reactivity end by more than six orders of magnitude from –17.7 > E > –23.8 and are, 

therefore, recommended as reference electrophiles for determining nucleophilicities of highly 

reactive nucleophiles with N values of 16 < N < 30. A report on the use of 1a–i for the 

characterization of the anions of arylacetonitriles and arylpropionitriles is in preparation. 
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General Remarks 

Diethyl benzylidenemalonates 1a–i. Diethyl benzylidenemalonates 1a–i were prepared 

following a modified method of Zabicky.27 Diethyl malonate and the corresponding 

benzaldehyde (1 equiv.) were stirred under reflux in toluene for 3–4 h using piperidine       

(≈10 mol %) as a catalyst. The product formation was followed by TLC. The reaction mixture 

was consecutively washed with aqueous HCl, aqueous NaHCO3 solution, and water. After 

drying the solution, the solvent was evaporated. The residue was either distilled or 

recrystallized from ethanol to obtain the diethyl benzylidenemalonates. 1H NMR spectra and 

melting points for the thus obtained compounds 1a–g were in agreement with literature 

reports (see Experimental Section). 

 

Diethyl 2-(1-methyl-1,2,3,4-tetrahydroquinoline-6-ylmethylene)malonate (1h). Diethyl 

malonate (1.15 g, 7.18 mmol), 6-formyl-1-methyl-1,2,3,4-tetrahydroquinoline (1.26 g, 7.19 

mmol) and piperidine (300 μL) gave a crude product which was washed as described in the 

general procedure (Experimental Section) and further purified via MPLC (SiO2, 

dichloromethane/isohexane = 1/1). The fractions were combined, the solvents evaporated in 

vacuum, and the residue was crystallized from ethanol/isohexane at –5 °C: 1h (1.50 g, 4.7 

mmol, 65 %), yellow solid; mp 56.2–56.7 °C. 1H NMR (DMSO-d6, 400 MHz): δ = 1.22 (t, J 

= 7.1 Hz, 3 H, CH3), 1.26 (t, J = 7.1 Hz, 3 H, CH3), 1.85 (quint, J = 6.3 Hz, 2 H, CH2), 2.64 (t, 

J = 6.3 Hz, 2 H, CH2), 2.92 (s, 3 H, NMe), 3.31 (t, J = 6.3 Hz, 2 H, NCH2), 4.17 (q, J = 7.1 

Hz, 2 H, OCH2), 4.27 (q, J = 7.1 Hz, 2 H, OCH2), 6.57 (d, J = 8.7 Hz, 1 H, ArH), 7.02 (s, 1 H, 

ArH), 7.18 (dd, J = 8.8 Hz, 2.3 Hz, 1 H, ArH), 7.45 ppm (s, 1 H, C=CH). 13C NMR (DMSO-

d6, 100.6 MHz): δ  = 13.7 (q), 14.0 (q), 21.1 (t), 27.0 (t), 38.2 (q, NCH3), 50.2 (t, NCH2), 60.5 

(t, OCH2), 60.9 (t, OCH2), 110.0 (d), 118.1 (s), 118.5 (s), 121.7 (s), 130.1 (d), 130.5 (d), 141.7 

(d, =CH), 148.6 (s), 164.2 (s), 167.1 ppm (s). HR-MS: Calcd for C18H23O4N: 317.1627; 
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Found 317.1610. Elemental analysis (C18H23O4N): Calcd: C 68.12 %; H 7.30 %; N 4.41 %. 

Found C 67.96 %; H 7.28 %; N 4.38 %. 

Diethyl 2-((1,2,3,5,6,7-hexahydropyrido[3,2,1-ij]quinolin-9-yl)methylene)malonate (1i). 

A mixture of 1,2,3,5,6,7-hexahydropyrido[3.2.1-ij]quinoline-9-carbaldehyde (1.00 g, 4.98 

mmol), diethyl malonate (0.79 g, 4.93 mmol) and piperidine (350 μL) was stirred in toluene 

under reflux until TLC indicated full conversion (3 h). After washing the crude reaction 

mixture as described in the general procedure (Experimental Section), the resulting oily 

residue was crystalized from EtOAc/isohexane (1:3). The solid was filtered and washed with 

isohexane: 1i (1.1 g, 65 %), yellow solid; mp 83.2–83.4 °C. 1H NMR (CDCl3, 600 MHz): δ = 

1.30 (t, J = 6.2 Hz, 3 H, CH3), 1.35 (t, J = 6.2 Hz, 3 H, CH3), 1.93 (quint, J = 6.2 Hz, 2 × 2 H, 

CH2), 2.69 (t, 3J = 5.6 Hz, 2 × 2 H, CH2), 3.23 (t, J = 5.6 Hz, 2 × 2 H, NCH2), 4.25 (q, J = 7.2 

Hz, 2 H, OCH2), 4.35 (q, J = 7.2 Hz, 2 H, OCH2), 6.91 (s, 2 H, ArH), 7.52 ppm (s, 1 H, 1 H, 

C=CH). 13C NMR (CDCl3, 150 MHz): δ = 14.0 (q), 14.2 (q), 21.4 (t), 27.6 (t), 49.9 (t, NCH2), 

60.9 (t, OCH2), 61.2 (t, OCH2), 118.5 (s), 119.0 (s), 120.6 (s), 129.7 (d), 143.0 (d, =CH), 

145.2 (s), 165.3 (s), 168.2 ppm (s). HR-MS: Calcd for C20H25O4N: 343.1784; Found 

343.1775. Elemental analysis (C20H25O4N): Calcd: C 69.95 %; H 7.34 %; N 4.08 %. Found C 

69.66 %; H 7.35 %; N 4.09 %. 

 

Procedure for the reactions of electrophiles 1 with nucleophile 2b. 2b-K+ (4.0–7.5 mmol) 

was dissolved in dry DMSO (20 mL), and a solution of 1a–f (2.0–2.5 mmol) in dry DMSO 

was added under nitrogen atmosphere. Stirring was continued for 5 h at room temperature, 

and the solution was diluted with diethyl ether (25 mL). The reaction mixture was then 

poured on water (50 mL), cooled with ice, and acidified with acetic acid. After extraction 

with diethyl ether, the combined organic fractions were washed with water and dried over 

Na2SO4. After removal of the solvent under reduced pressure, the crude product was purified 

by distillation. 
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Tetraethyl 2-(4-methoxyphenyl)propane-1,1,3,3-tetracarboxylate (5fb). From 1f (0.56 

g, 2.0 mmol) and 2b-K (0.79 g, 4.0 mmol): 5fb (0.68 g, 78%), colorless oil; bp 210–220 °C 

(1.3 × 10–2 bar). 1H NMR (300 MHz, CDCl3): δ  = 1.04 (t, J = 7.1 Hz, 2 × 3 H, CH3), 1.23 (t, 

J = 7.1 Hz, 2 × 3 H, CH3), 3.75 (s, 3 H, OCH3), 3.95 (q, J = 7.1 Hz, 2 × 2 H, OCH2), 4.04–

4.18 (m, 7 H), 6.76–6.79 ppm (m, 2 H, ArH), 7.24–7.27 (m, 2 H, ArH). 13C NMR (75.5 MHz, 

CDCl3): δ = 13.6 (q), 13.8 (q), 43.0 (d, Cb), 54.9 (q, OCH3), 55.1 (d, Ca), 61.1 (t), 61.4 (t), 

113.1 (d), 129.0 (s), 130.4 (d), 158.7 (s), 167.4 (s), 167.9 ppm (s); the NMR chemical shifts 

are in agreement with the data reported in ref. 26 

 

Kinetics. For fast kinetic experiments (τ½ < 15 s), standard stopped-flow UV-Vis-

spectrophotometer systems were used in their single mixing mode. Solutions of the 

electrophiles 1 in DMSO were mixed with solutions of the carbanions 2 in DMSO (either 

generated by deprotonation of 2-H with 1.05 equiv. KOtBu in DMSO or by dissolving 2-K+ 

in DMSO). CAUTION: Because of explosion hazards, the isolation of 2a-K+ should be 

avoided.39 We therefore recommend generating 2a in situ from the corresponding CH acid 

2a-H. Kinetics of slow reactions (τ½ > 15 s) were determined by UV-Vis spectrometry using a 

J&M TIDAS diode array spectrophotometer. In order to obtain pseudo-first order kinetics, the 

carbanions 2 were used in large excess (10 to 100 equivalents) over the electrophiles (except 

for kinetics with nucleophile 2e, which was used as minor component, see footnote on page 

3). The temperature of the solutions was kept constant (20 ± 0.1 °C) by using circulating bath 

thermostats. Rate constants kobs (s–1) were obtained by fitting the single exponential At = A0 

exp(–kobst) + C to the observed time-dependent electrophile absorbance (the evaluated 

wavelengths are given in the Experimental Section). As depicted in the Experimental Section, 

the second-order rate constants k2 (Table 4.3) were obtained from the slopes of the linear plots 

of kobs versus the carbanion concentrations [2]. 
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Experimental Section 

Determination of the Electrophilicity Parameters of 

Diethyl Benzylidenemalonates in DMSO: 

Reference Electrophiles for Characterizing Strong 

Nucleophiles 

O. Kaumanns, R. Lucius, and H. Mayr, Chem. Eur. J. 2008, 14, 9675-9682. 

 

 

4.1. Materials 
General. Commercially available DMSO (content of H2O < 50 ppm) was used without further 

purification. Stock solutions of KOtBu in DMSO were prepared under nitrogen atmosphere. 

The employed potassium salts 2a–d and 2f were prepared by dissolving the corresponding 

CH-acid in dry ethanol and subsequent addition of 0.9 equiv. of potassium KOtBu dissolved 

in dry ethanol. The potassium salts 2a–d and 2f precipitated from the reaction mixture. After 

filtration, they were dried under reduced pressure. The anion of bis(p-nitrophenyl)methane 

(2e) was prepared following the procedure described in Ref. 29 

CAUTION: Because of explosion hazards the isolation of 2a–K should be avoided! 

 

4.2. Instruments  
1H and 13C NMR spectra were recorded on Varian Inova 400 (400 MHz, 100.6 MHz), Bruker 

ARX 300 (300 MHz, 75.5 MHz), or Varian Mercury 200 (200 MHz) NMR spectrometers. 

Chemical shifts are expressed in ppm and refer to DMSO-d6 (δH 2.49, δC 39.7) or to CDCl3 

(δH 7.26, δC 77.0). The coupling constants are in Hz. Abbreviations used are s (singlet), d 

(doublet), t (triplet), q (quartet), quint (quintet), m (multiplet). 
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4.3. Determination of Rate Constants 
The general method for the determination of the rate constants is described in the 

experimental part of the paper. 

The temperature of the solutions was kept constant (20 ± 0.1 °C) during all kinetic 

experiments by using a circulating bath thermostat.  

For evaluation of fast kinetic experiments commercial stopped-flow UV-Vis spectrometer 

systems were used. UV-Vis kinetics of slow reactions were determined by using a diode array 

spectrophotometer, which was connected to a quartz suprasil immersion probe (5 mm light 

path). Rate constants kobs (s–1) were obtained by fitting the single exponential function              

At = A0exp(–k1ψt) + C to the observed time-dependent electrophile absorbance. (For the 

reactions of 1a–c with the green dinitrobenzhydryl anion 2e-K+ the first-order rate constants 

kobs were determined with 2e-K+ as the minor component). Plotting the kobs against the 

concentrations of the nucleophiles resulted in linear correlations whose slopes correspond to 

the second-order rate constants k2 (L mol–1 s–1). For stopped-flow experiments two stock 

solutions were used: A solution of electrophiles 1a–i in DMSO and a solution of the 

carbanion 2, which was either generated by deprotonation of the corresponding parent 

compound 2–H with 1.05 equiv. KOtBu in DMSO in situ directly before use, or by using the 

preformed carbanion 2 (potassium salt) in DMSO.  

 

As the kinetic measurements performed by Dr. Roland Lucius are of significant importance 

for the understanding of the main text, his contributions are stated in italics. 

 

Figure S1 shows that the reaction of electrophile 1b with the carbanion 2c was followed at         

λ = 290 nm. The decay of the absorption of 1b was accompanied by a development of an 

absorption band at λ ≈ 360 nm.  
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Figure S1: UV-Vis spectra during the reaction of electrophile 1b (c0 = 4.12 × 10–5 mol L–1) 

with the carbanion 2c (c0 = 3.57 × 10–5 mol L–1) in DMSO at 20 °C from an individual 

measurement. 
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4.4.1 Determination of Equilibrium Constants 
 

The equilibrium constants K are based on the Equation (S1) by using the initial absorptions A 

from the electrophiles 1e and 1f and the equilibrium absorptions after addition of carbanion 

2b at 20 °C in DMSO. It has to be mentioned that the employed values are derived from the 

kinetic measurements and are not the result from individual titration experiments.  

From the initial concentrations, [E]0 and [C–]0, and the absorbance of the electrophile                  

(A = ε[E]d), the equilibrium concentrations [E]eq, and [C–]eq were calculated. Substitution into 

Equation (S1) yielded the equilibrium constants K listed in Table S1 and S2. The equilibrium 

constants K presented herein are based only on the kinetic measurements and have not been 

repeated. 
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Table S1: Equilibrium constant for the reaction of 1e with 2b (DMSO, 20 °C) 

No. [1e]0 / M [2b–K]0 / M A0 Aeq [1e]eq / M [2b–K]eq / M K / M–1 

1 9.98 × 10–5  1.79 × 10–3 0.788 0.377 4.78 × 10–5 1.74 × 10–3 6.26 × 102 

2 9.71 × 10–5 2.52 × 10–3 0.768 0.309 3.99 × 10–5 2.46 × 10–3 5.83 × 102 

3 1.06 × 10–4 4.13 × 10–3 0.851 0.268 3.42 × 10–5 4.06 × 10–3 5.15 × 102 

4 1.06 × 10–4 4.72 × 10–3 0.857 0.250 3.19 × 10–5 4.65 × 10–3 4.98 × 102 

5 1.12 × 10–4 6.61 × 10–3 0.902 0.227 2.95 × 10–5 6.52 × 10–3 4.31 × 102 

K = 5.31 × 102 M–1  

log K = (2.72 ± 0.09)  

 

Table S2: Equilibrium constant for the reaction of 1f with 2b (DMSO, 20 °C) 

No. [1f]0 / M [2b–K]0 / M A0 Aeq [1f]eq / M [2b–K]eq / M K / M–1 

1 7.95 × 10–5  1.53 × 10–3 0.95 0.67 5.60 × 10–5 1.51 × 10–3 2.77 × 102 

2 9.64 × 10–5 3.98 × 10–3 1.14 0.59 4.98 × 10–5 3.93 × 10–3 2.38 × 102 

3 9.52 × 10–5 5.51 × 10–3 1.13 0.50 4.21 × 10–5 5.46 × 10–3 2.31 × 102 

4 9.20 × 10–5 7.42 × 10–3 1.13 0.43 3.47 × 10–5 7.36 × 10–3 2.25 × 102 

5 9.04 × 10–5 9.23 × 10–3 1.07 0.38 3.20 × 10–5 9.17 × 10–3 1.99 × 102 

K = 2.34 × 102 M–1 

log K = (2.37 ±0.08)  
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4.4.2 Determination of the Molar Decadic Absorption Coefficients ε in 
DMSO 
 

In order to determine the molar decadic absorption coefficients ε of electrophiles 1a–i in 

DMSO, the absorption coefficients ε of the electrophiles 1a–i were calculated at the 

absorption maximum on the basis of the Lambert–Beer law Amax = ε c d (Table S3). UV–Vis 

spectra were recorded on a JASCO V–630 spectrometer using a cell of d = 1 cm. 

 

Table S3: Molar decadic absorption coefficients ε (L mol–1 cm–1) of 1a–i (DMSO, 20 °C). 

electrophile [1] / mol L–1 Amax 

(λ max / nm) 

εmax 

[L mol–1 cm–1] 

1a 3.66 × 10–5 0.63 (302) 1.72 × 104 
1b 5.98 × 10–5 1.35 (283) 2.25 × 104 
1c 2.93 × 10–5 0.51 (277) 1.73 × 104 
1d 5.65 × 10–5 0.93 (283) 1.65 × 104 
1e 4.52 × 10–5 0.94 (295) 2.07 × 104 
1f 4.53 × 10–5 1.14 (316) 2.51 × 104 
1g 3.05 × 10–5 1.05 (383) 3.28 × 104 
1h 3.64 × 10–5 1.23 (395) 3.37 × 104 
1i 2.93 × 10–5 0.95 (407) 3.24 × 104 
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4.5. Synthesis of Diethyl Benzylidenemalonates 
 

Diethyl benzylidenemalonates 1a–i were prepared according to the protocol by Zabicky 

(Scheme S1, ref. S6). 

O O
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Scheme S1: Synthesis of electrophiles 1a–i from diethyl malonate and the corresponding 

aldehyde via Knoevenagel condensation in toluene. 

 

General Procedure. Diethyl malonate and the corresponding arylaldehyde (1 equiv.) were 

stirred under reflux in toluene for several hours using piperidine (≈ 10 mol-%) as catalyst. The 

product formation was followed by TLC. The reaction mixture was consecutively washed 

with aqueous HCl, aqueous NaHCO3 solution, and water. After drying the solution, the 

solvent was evaporated. The residue was either distilled (when liquid) or recrystallized from 

ethanol (when solid) to obtain the purified diethyl benzylidenemalonates. NMR spectra and 

melting points for the thus obtained compounds 1a–g were in agreement with literature 

values. 

 

Diethyl 2-(4-nitro-benzylidene)malonate (1a). From diethyl malonate (16 mmol) and 4-

nitrobenzaldehyde: 1a (3.61 g, 77 %), colorless needles; mp 89.3-89.8 °C (88 °C, ref. S1) 1H 

NMR (CDCl3, 200 MHz): δ = 1.28 (t, J = 7.1 Hz, 3 H, CH3), 1.35 (t, J = 7.1 Hz, 3 H, CH3), 

4.33 (q, J = 7.1 Hz, 4 H, OCH2), 7.60 (d, J = 8.4 Hz, 2 H, ArH), 7.75 ppm (s, 1 H, =CH), 8.23 

(d, J = 8.4 Hz, 2 H, ArH); in agreement with ref. S1. 

 

                                                 
S1 F. Delgado, J. Tamariz, G. Zepeda, M. Landa, R. Miranda, J. Garcia, Synth. Commun. 1995, 25, 753-759. 
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Diethyl 2-(4-cyano-benzylidene)malonate (1b). From diethyl malonate (39 mmol) and 4-

cyanobenzaldehyde: 1b (6.82 g, 64 %), yellow needles; mp 72-73 °C (73°C, ref. S2). 1H 

NMR (CDCl3, 200 MHz): δ = 1.27 (t, J = 7.1 Hz, 3 H, CH3), 1.33 (t, J = 7.1 Hz, 3 H, CH3), 

4.31 (q, J = 7.1 Hz, 4 H, OCH2), 7.53 (d, J = 8.2 Hz, 2 H, ArH), 7.66 (d, J = 8.2 Hz, 2 H, 

ArH), 7.70 ppm (s, 1 H, =CH). 

 

Diethyl 2-(3-chloro-benzylidene)malonate (1c). From diethyl malonate (39 mmol) and 3-

chlorobenzaldehyde: 1c (5.42 g, 50 %), colorless oil; bp 130–134 °C, (8 × 10–3 mbar). 1H 

NMR (CDCl3, 200 MHz): δ = 1.26 (t, J = 7.0 Hz, 3 H, CH3), 1.33 (t, J = 7.0 Hz, 3 H, CH3), 

4.30 (q, J = 7.0 Hz, 2 H, OCH2), 4.34 (q, J = 7.0 Hz, 2 H, OCH2), 7.30–7.65 (m, 4 H, ArH), 

7.65 ppm (s, 1 H, =CH); in agreement with ref. S3.  

 

Diethyl 2-benzylidenemalonate (1d). From diethyl malonate (58 mmol) and benzaldehyde: 

1d (11.2 g, 78 %), colorless oil which crystallized slowly; mp: 31.0-31.2 °C; 1H-NMR 

(CDCl3, 200 MHz): δ = 1.26 (t, J = 7.2 Hz, 3 H, CH3), 1.31 (t, J = 7.2 Hz, 3 H, CH3), 4.26 (q, 

J = 7.2 Hz, 2 H, OCH2), 4.32 (q, J = 7.2 Hz, 2 H, OCH2), 7.26–7.46 (m, 5 H, ArH), 7.72 ppm 

(s, 1 H, =CH), in agreement with ref. S1.  

 

Diethyl 2-(4-methyl-benzylidene)malonate (1e). From diethyl malonate (68 mmol) and 4-

methylbenzaldehyde after crystallization of the crude product from ethyl acetate/petrol ether 

(2/8) at –32 °C: 1e (6.91 g, 39 %), colorless solid; mp 47 °C (49–50°C, ref.[S2]). 1H NMR 

(CDCl3, 200 MHz): δ  = 1.29 (t, J = 7.1 Hz, 3 H, CH3), 1.34 (t, J = 7.1 Hz, 3 H, CH3), 2.36 (s, 

3 H, 4-CH3), 4.29, 4.34 (2q, J = 7.1 Hz, 2 × 2 H, OCH2CH3), 7.17 (d, J = 7.9 Hz, 2 H, ArH), 

7.35 (d, J = 7.9 Hz, 2 H, ArH), 7.70 ppm (s, 1 H, =CH); in agreement with ref. S4. 

 

Diethyl 2-(4-methoxybenzylidene)malonate (1f). Diethyl malonate (84 mmol) and 4-

methoxybenzaldehyde produced a crude product which after distillation (130 °C / 4 × 10–3 

mbar) slowly crystallized: 1f (12.5 g, 53%), solid; mp 38-39 °C (38-40°C, ref S5). 1H NMR 

(CDCl3, 200 MHz): δ = 1.29–1.36 (m, 6 H, 2 × CH3), 3.84 (s, OCH3), 4.27, 4.38 (2q, J = 7.2 

Hz, 2 × 2 H, OCH2CH3), 6.89 (d, J = 8.8 Hz, 2 H, ArH), 7.42 (d, J = 8.8 Hz, 2 H, ArCH), 7.67 

ppm (s, 1 H, =CH); in agreement with ref. S1. 

                                                 
S2 G. Deng, J. Yu, X. Yang, H. Xu, Tetrahedron, 1990, 46, 5967-5974. 
S3 W. M. Phillips, D. J. Currie, Can. J. Chem., 1969, 47, 3137-3146.  
S4 J. K. Kim, P. S. Kwon, T. W. Kwon, S. K. Chung, J. W. Lee, Synth. Commun., 1996, 26, 535-542. 
S5  P. E. Papadakis, L. M. Hall, R. L. Augustine, J. Org. Chem., 1958, 23, 123. 
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Diethyl 2-(4-dimethylamino-benzylidene)malonate (1g). From diethyl malonate (34 mmol) 

and 4-(dimethylamino)benzaldehyde: 1g (3.90 g, 39 %), yellow plates; mp 112.1-112.5 °C 

(from EtOH), in agreement with ref. S6. 1H NMR (CDCl3, 200 MHz): δ = 1.30 (t, J = 7.0 Hz, 

3 H, CH3), 1.34 (t, J= 7.0 Hz, 3 H, CH3), 3.01 (s, 6 H, NMe2), 4.26 (q, J = 7.0 Hz, 2 H, 

OCH2), 4.37 (q, J = 7.0 Hz, 2 H, OCH2), 6.62 (d,  J = 9.0 Hz, 2 H, ArH), 7.48 (d, J = 9.0 Hz, 

2 H, ArH), 7.62 ppm (s, 1 H, =CH); in agreement with ref. S1  

 

Diethyl 2-(1-methyl-1,2,3,4-tetrahydroquinoline-6-ylmethylene)malonate (1h). Diethyl 

malonate (1.15 g, 7.18 mmol), 6-formyl-1-methyl-1,2,3,4-tetrahydroquinoline (1.26 g, 7.19 

mmol) and piperidine (300 µL) gave a crude product which was washed as described in the 

general procedure (Experimental Section) and further purified via MPLC (silica gel, 

dichloromethane/isohexane = 1/1). The fractions were combined, the solvents evaporated in 

vacuum, and the residue was crystallized from ethanol/isohexane at –5°C: 1h (1.50 g, 4.7 

mmol,  65 %), yellow solid; mp 56.2–56.7 °C. 1H NMR (DMSO-d6, 400 MHz): δ  = 1.22 (t, J 

= 7.1 Hz, 3 H, CH3), 1.26 (t, J = 7.1 Hz, 3 H, CH3), 1.85 (quint, J = 6.3 Hz, 2 H, CH2), 2.64 (t, 

J = 6.3 Hz, 2 H, CH2), 2.92 (s, 3 H, NMe), 3.31 (t, J = 6.3 Hz, 2 H, NCH2), 4.17 (q, J = 7.1 

Hz, 2 H, OCH2), 4.27 (q, J = 7.1 Hz, 2 H, OCH2), 6.57 (d, J = 8.7 Hz, 1 H, ArH), 7.02 (s, 1 H, 

ArH), 7.18 (dd, J = 8.8 Hz, 2.3 Hz, 1 H, ArH), 7.45 ppm (s, 1 H, C=CH). 13C NMR (DMSO-

d6, 100.6 MHz): δ  = 13.7 (q), 14.0 (q), 21.1 (t), 27.0 (t), 38.2 (q, NCH3), 50.2 (t, NCH2), 60.5 

(t, OCH2), 60.9 (t, OCH2), 110.0 (d), 118.1 (s), 118.5 (s), 121.7 (s), 130.1 (d), 130.5 (d), 141.7 

(d, =CH), 148.6 (s), 164.2 (s), 167.1 ppm (s). HR-MS: Calcd for C18H23O4N: 317.1627; 

Found 317.1610. Elemental analysis (C18H23O4N): Calcd: C 68.12 %; H 7.30 %; N 4.41 %. 

Found C 67.96 %; H 7.28 %; N 4.38 %. 

 

Diethyl 2-((1,2,3,5,6,7-hexahydropyrido[3,2,1-ij]quinolin-9-yl)methylene)malonate (1i). 

A mixture of 1,2,3,5,6,7-hexahydropyrido[3.2.1-ij]quinoline-9-carbaldehyde (1.00 g, 4.98 

mmol), diethyl malonate (0.79 g, 4.93 mmol) and piperidine (350 µL) was stirred in toluene 

under reflux until TLC indicated full conversion (3 h). After washing the crude reaction 

mixture as described in the general procedure (Experimental Section), the resulting oily 

residue was crystalized from EtOAc/isohexane (1:3). The solid was filtered and washed with 

isohexane: 1i (1.1 g, 65 %), yellow solid; mp 83.2–83.4 °C. 1H NMR (CDCl3, 600 MHz): δ  = 

1.30 (t, J = 6.2 Hz, 3 H, CH3), 1.35 (t, J = 6.2 Hz, 3 H, CH3), 1.93 (quint, J = 6.2 Hz, 2 × 2 H, 

                                                 
S6 J. Zabicky, J. Chem. Soc. 1961, 683-687.  
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CH2), 2.69 (t, 3J = 5.6 Hz, 2 × 2 H, CH2), 3.23 (t, J = 5.6 Hz, 2 × 2 H, NCH2), 4.25 (q, J = 7.2 

Hz, 2 H, OCH2), 4.35 (q, J = 7.2 Hz, 2 H, OCH2), 6.91 (s, 2 H, ArH), 7.52 ppm (s, 1 H, 1 H, 

C=CH). 13C NMR (CDCl3, 150 MHz): δ = 14.0 (q), 14.2 (q), 21.4 (t), 27.6 (t), 49.9 (t, NCH2), 

60.9 (t, OCH2), 61.2 (t, OCH2), 118.5 (s), 119.0 (s), 120.6 (s), 129.7 (d), 143.0 (d, =CH), 

145.2 (s), 165.3 (s), 168.2 ppm (s). HR-MS: Calcd for C20H25O4N: 343.1784; Found 

343.1775. Elemental analysis (C20H25O4N): Calcd: C 69.95 %; H 7.34 %; N 4.08 %. Found C 

69.66 %; H 7.35 %; N 4.09 %. 
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4.6. Product Studies 
 

Reactions of 2c-K with Diethyl Benzylidenemalonates 1  

 

General Procedure. Equimolar amounts of 2c-K and an electrophile 1 were mixed and stirred 

in dry DMSO-d6 (3–5 mL). After 5 min samples were taken and analyzed by NMR 

spectrocopy. Samples for MS were obtained by mixing equimolar amounts (0.2-0.5 mmol) of 

2c-K and 1 in dry EtOH (2 mL). 

 

2-Cyano-1,5-diethoxy-4-(ethoxycarbonyl)-3-(4-nitrophenyl)-1,5-dioxopentan-2-yl) 

potassium (4ac). 

Mixture of two tautomers (3:1)  

Major tautomer 
1H NMR (DMSO-d6, 400 MHz): δ = 0.87 (t, J = 7.1 Hz, 3 H, CH3), 0.99 (t, J = 7.1 Hz, 3 H, 

CH3) 1.16 (t, J = 7.1 Hz, 3 H, CH3), 3.67–3.87 (m, 2 × 2 H, OCH2), 4.05 (d, J = 12.3 Hz, 1 H, 

CHb), 4.12–4.24 (m, 2 H, OCH2), 4.22 (d, J = 12.4 Hz, 1 H, CH), 7.40 (d, J = 8.8 Hz, 2 H, 

ArH), 8.08 ppm (d, J = 8.8 Hz, 2 H, ArH). 13C NMR (DMSO-d6, 100 MHz): δ = 13.5 (q), 

13.7 (q), 15.3 (q), 42.6 (d, Cb), 47.4 (s, C–), 55.4 (d, Cc), 55.7 (t), 60.3 (t), 60.4 (t), 122.9 (d), 

127.5 (d), 128.6 (s), 145.0 (s), 153.6 (s), 167.1 (s), 167.7 (s), 168.5 (s). MS (ESI, negative) 

m/z (%): 406.13 (15), 405.13 (100), 191.12 (7), 257.08 ppm (10).  

Peak assignment in analogy to the neutral compound 4ac-H from ref. S7  

O2N

EtO2C CN

CO2Et

CO2Et

Hb

Hc

 
 

2-Cyano-3-(4-cyanophenyl)-1,5-diethoxy-4-(ethoxycarbonyl)-1,5-dioxopentan-2-yl) 

potassium (4bc). 

Mixture of two tautomers (3:1) 

NMR spectra refer to the major tautomer 
1H NMR (DMSO-d6, 400 MHz): δ = 0.86–0.89 (m, 3 H, CH3), 0.98–1.01 (m, 3 H, CH3), 

1.15–1.18 (m, 3 H, CH3), 3.72–3.82 (m, 2 × 2 H, OCH2), 4.02–4.18 (m, 4 H), 7.35 (d, J = 8.0 

Hz, 2 H, ArH), 7.63–7.65 ppm (m, 2 H, ArH). 13C NMR (DMSO-d6, 100 MHz): δ  = 13.3 (q), 

13.5 (q), 15.1 (q), 42.6 (d, Cb), 47.2 (s, C–), 55.4 (d, Cc), 55.5 (t), 60.1 (t), 60.2 (t), 107.4 (s, 
                                                 
S7 G. Manickam, G. Sundararajan, Tetrahedron, 1999, 55, 2721-2736.  
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Ar-CN), 118.9 (s), 127.4 (d), 128.6 (s, Ca-CN), 131.3 (d), 151.1 (s), 166.9 (s), 167.5 (s), 168.3 

ppm (s). MS (ESI, negative) m/z (%): 385.14 (100, C20H21O6N2). 

NC

EtO2C CN

CO2Et

CO2Et

Hb

Hc

 
 

3-(3-Chlorophenyl)-2-cyano-1,5-diethoxy-4-(ethoxycarbonyl)-1,5-dioxopentan-2-yl) 

potassium (4cc). 

Mixture of two tautomers  

NMR spectra refer to the major tautomer 
1H NMR (DMSO-d6, 400 MHz): δ = 0.87 (t, J = 7.1 Hz, 3 H, CH3), 1.01 (t, J = 7.1 Hz, 3 H, 

CH3), 1.15 (t, J = 7.1 Hz, 3 H, CH3), 3.69–3.85 (m, 2 × 2 H, OCH2), 3.96 (d, J = 12.3 Hz, 1 H, 

CHc), 4.04-4.12 (m, 3 H, OCH2 and CHb), 7.10–7.22 ppm (m, 2 × 2 H, ArH). 13C NMR 

(DMSO-d6, 100 MHz): δ = 13.2 (q), 13.5 (q), 15.1 (q), 42.2 (d, Cb), 47.3 (s, C–), 55.4 (t), 55.9 

(d, Cc), 59.9 (t), 60.1 (t), 124.7 (d), 125.2 (d), 126.5 (d), 129.0 (d), 131.7 (s), 147.9 (s), 166.9 

(s), 167.5 (s), 168.3 ppm (s). MS (ESI, negative) m/z (%): 394.11 (100). 

EtO2C CN

CO2Et

CO2Et

K

Cl
Hb

Hc

 
 

2-Cyano-1,5-diethoxy-4-(ethoxycarbonyl)-1,5-dioxo-3-phenylpentan-2-yl) potassium 

4dc). 

Mixture of two tautomers 

NMR spectra refer to the major tautomer 
1H NMR (DMSO-d6, 400 MHz): δ = 0.83 (t, J = 7.1 Hz, 3 H, CH3), 0.99 (t, J = 7.1 Hz, 3 H, 

CH3), 1.15 (t, J = 7.1 Hz, 3 H, CH3), 3.70–3.78 (m, 2 × 2 H, OCH2), 3.95 (d, J = 12.4 Hz, 1 H, 

CHc), 4.05–4.13 (m, 3 H, OCH2 and CHb), 7.03–7.19 ppm (m, 5 H, ArH). 13C NMR (DMSO-

d6, 100 MHz): δ = 13.4 (q), 13.8 (q), 15.4 (q), 42.5 (d, Cb), 47.8 (s, C–), 55.5 (t), 56.6 (d, Cc), 

59.9 (t), 60.1 (t), 125.0 (d), 126.9 (d), 127.2 (d), 129.5 (s), 145.7 (s), 167.4 (s), 167.9 (s), 

168.5 ppm (s). MS (ESI, negative) m/z (%): 360.15 (100, C19H22NO6). 

EtO2C CN

CO2Et

CO2Et
Hc

Hb
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2-Cyano-1,5-diethoxy-4-(ethoxycarbonyl)-1,5-dioxo-3-p-tolylpentan-2-yl) potassium 

 (4ec). 

Mixture of two tautomers  

NMR spectra refer to the major tautomer 
1H NMR (DMSO-d6, 400 MHz): δ = 0.86 (t, J = 7.1 Hz, 3 H,CH3), 0.99 (t, J = 7.1 Hz, 3 H, 

CH3), 1.15 (t, J = 7.1 Hz, 3 H, CH3), 2.21 (s, CH3), 3.67–3.80 (m, 2 × 2 H, OCH2), 3.91 (d, J 

= 12.3 Hz, 1 H, CHc), 4.04–4.09 (m, 3 H, OCH2 and CHb), 6.95 (d, J = 8.0 Hz, ArH), 7.06 

ppm (d, J = 8.0 Hz, ArH). 13C NMR (DMSO-d6, 100 MHz): δ = 13.5 (q), 13.8 (q), 15.4 (q), 

20.5 (q), 42.1 (d, Cb), 47.9 (s, C–), 55.4 (t), 56.7 (d, Cc), 59.9 (t), 60.1 (t), 126.8 (d), 127.8 (d), 

129.6 (s), 133.7 (s), 142.7 (s), 167.5 (s), 167.9 (s), 168.5 ppm (s). MS (ESI, positive) m/z (%): 

414.13 (100, C20H25O6N39K), 461.16 (80). MS (ESI, negative) m/z (%): 241.09 (100), 374.16 

(8), 386.14 (20). 
EtO2C CN

CO2Et

CO2Et
Hc

Hb

 
2-Cyano-1,5-diethoxy-4-(ethoxycarbonyl)-3-(4-methoxyphenyl)-1,5-dioxopentan-2-yl) 

potassium (4fc) 

Mixture of two tautomers 

NMR spectra refer to the major tautomer 
1H NMR (DMSO-d6, 400 MHz): δ = 0.86 (t, J = 7.1 Hz, 3 H, CH3), 0.99 (t, J = 7.1 Hz, 3 H, 

CH3), 1.14 (t, J = 7.1 Hz, 3 H, CH3), 3.67 (s, OCH3), 3.70–3.78 (m, 2 × 2 H, OCH2), 3.90 (d, 

J = 12.3 Hz, 1 H, CHc), 4.02–4.07 (m, 3 H, OCH2 and CHb), 6.71 (d, J = 8.6 Hz, 2 H, ArH), 

7.10 ppm (d, J = 8.6 Hz, 2 H, ArH). 13C NMR (DMSO-d6, 100 MHz): δ = 13.5 (q), 13.8 (q), 

15.4 (q), 41.8 (d, Cb), 48.0 (s, C–), 54.8 (q, OCH3), 55.4 (t), 57.0 (d, Cc), 59.9 (t), 60.1 (t), 

112.7 (d), 127.7 (s, CN) 127.9 (d), 129.7 (s), 137.9 (s), 156.9 (s), 167.4 (s), 167.9 (s), 168.5 

ppm (s). MS (ESI, negative) m/z (%): 390.16 (15), 257.09 (100). 
EtO2C CN

CO2Et

CO2Et
O

Hb

Hc

 
 

Ethyl-(E)-2-cyano-3-(4-cyanophenyl)acrylic acid ethyl ester (retro-Michael product). 

After addition of 1b (302 mg, 1.11 mmol) to a mixture of 2c-H (510 µl, 4 mmol) and K2CO3 

(1.2 g, 19 mmol) in DME/DMSO as solvent mixture the solution was stirred for 1 h at room 
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temperature. The solution turned yellow and after the excess K2CO3 was filtered off, and the 

solution was concentrated under reduced pressure. After extraction with ethyl acetate the 

solution was washed with sat. aqueous NaCl solution and dried over MgSO4. After 

evaporation of the solvent, the crude product was crystallized from ethanol: retro-Michael 

product (60 mg, 24 %), yellow needles; mp 172.0–172.5 °C (from EtOH), (168.5.-169.0 °C, 

ref. S8).  

CO2Et
H

CN
NC

retro-Michael product  
 

1H NMR (CDCl3, 300 MHz): δ = 1.41 (t, J = 7.1 Hz, 3 H, CH3), 4.41 (q, J = 7.1 Hz, 2 H, 

OCH2), 7.79 (d, J = 8.3 Hz, 2 H, ArH), 8.06 (d, J = 8.3 Hz, 2 H, ArH), 8.24 ppm (s, 1 H, 

=CH), in agreement with ref. S9. 13C NMR (CDCl3, 75 MHz): δ = 14.1 (q), 63.3 (t), 106.8 (s), 

114.6 (s), 116.0 (s), 117.7 (s), 131.0 (d), 132.8 (d), 135.3 (s), 152.2 (d, =CH), 161.5 ppm (s). 

HR-MS: Calcd. for (C13H10N2O2) 226.0742; Found 226.0424 

                                                 
S8 D. T. Mowry, J. Am. Chem. Soc. 1949, 65, 992. 
S9 C. N. Robinson, C. D. Slater, J. S. Covington, C. R. Chang et. al, J. Magn. Reson. 1980, 41, 293-301. 
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Reaction of 2d with Diethyl Benzylidenemalonate 1a 

 

2-Acetyl-4-ethoxycarbonyl-3-(4-nitrophenyl)-pentanedioic acid diethyl ester (5ad). 

Potassium carbonate (1.38 g, 10 mmol) was added to a mixture of 1a (293 mg, 1.00 mmol) 

and 2d-H (510 μl, 4 mmol) in DMSO (4 mL) at room temperature. After stirring for 2 h, the 

reaction mixture was diluted with ethyl acetate (40 mL) and poured into 5 % of hydrochloric 

acid with ice. After extraction with ethyl acetate, the combined organic layers were washed 

with water and brine and dried (Na2SO4). Removal of the solvents in the vacuum gave a 

residue, which was purified by column chromatography (SiO2, hexane/ethyl acetate). The 

crude product (420 mg, 2:1-mixture of diastereomers) was crystallized to yield the major 

diastereomer: 5ad (200 mg, 47 %); mp 72 °C (from EtOH). 

O2N

CO2Et

CO2Et

CO2Et
O

5ad  
1H NMR (CDCl3, 300 MHz): δ = 1.00 (t, J  = 7.2, 3 H), 1.08, (t, J = 7.2 Hz, 3 H), 1.21 (t, J = 

7.2 Hz, 3 H), 2.27 (s, 3 H), 3.88 (m, 1 H), 3.91 (q, J = 7.2 Hz, 2 H), 4.00 (q, J = 7.2 Hz, 2 H), 

4.11 (q, J = 7.2 Hz, 2 H), 4.39 (m, 2 H), 7.51 (d, J = 8.8 Hz, 2 H), 8.11 ppm (d, J = 8.8 Hz, 2 

H). 13C NMR (CDCl3, 75 MHz): δ = 13.7, 13.8, 13.9, 29.7, 42.6, 54.5, 61.7, 61.8, 61.9, 62.3, 

123.1, 130.5, 145.6, 147.2, 167.1, 167.3, 167.6, 200.6 ppm. MS (EI, 70 eV) m/z (%): 423 (M+, 

< 1), 380 (2), 377 (5), 364 (12), 334 (14), 304 (8), 288 (21), 248 (90), 218 (30), 203 (20), 176 

(50), 160 (58), 133 (33), 115 (54), 102 (21), 43 (100). Elemental analysis (C20H25NO9) Calcd. 

C 56.73 H 5.95 N 3.31. Found: C 56.68 H 5.84 N 3.26. 
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Reactions of 2f–K with Diethyl Benzylidenemalonates 1a 

 
Diethyl 2-(2,2-dicyano-1-(4-nitrophenyl)ethyl)malonate (5af). 

After addition of 1a (283 mg, 0.965 mmol) to the potassium salt of malononitrile 2f-K (103 

mg, 0.983 mmol) dissolved in dry DMSO-d6 (5 mL) the solution turned from pale yellow to 

orange-red. Stirring was continued for 5 min at room temperature. For the NMR spectroscopic 

characterization of 4af, a sample of the crude reaction mixture was used. The reaction mixture 

was poured on cold water and acidified with conc. hydrochloric acid (2 mL). The solution 

turned yellow and a fine solid precipitated. Since the formed precipitate was too fine to be 

filtered, it was dissolved in CH2Cl2, filtered over a warm cotton batting and evaporated under 

reduced pressure: 5af (120 mg, 35 %), pale yellow oil. 

CNNC

O2N

CO2Et

CO2Et

CNNC

O2N

CO2Et

CO2Et

K+

4af–K 5af  
4af-K: 1H NMR (DMSO-d6, 400 MHz): δ = 0.87 (t, J = 7.1 Hz, 3 H, CH3), 1.25 (t, J = 7.1 Hz, 

3 H, CH3), 3.66 (d, J = 12.0 Hz, 1 H, CH), 3.78–3.85 (m, 3 H, OCH2 and CH), 4.19 (q, J = 7.1 

Hz, 4 H, OCH2), 7.39 (d, J = 8.1 Hz, 2 H, ArH), 8.13 ppm (d, J = 8.1 Hz, 2 H, ArH).  
13C NMR (DMSO-d6, 100 MHz): δ = 13.4 (q), 13.9 (q), 17.2 (s, C–), 44.1 (d), 56.7 (d), 60.7 

(t), 60.9 (t), 123.3 (d), 127.5 (d), 129.3 (s, CN), 145.5 (s), 152.3 (s), 166.8 (s), 167.0 ppm (s). 

 

5af: 1H-NMR (CDCl3, 300 MHz): δ = 0.97 (t, J = 7.1 Hz, 3 H, CH3), 1.26 (t, J = 7.1 Hz, 3 H, 

CH3), 3.90–3.96 (m, 2 H, OCH2), 4.07 (m, 2 H, 2 × CH), 4.24–4.27 (m, 2 H, OCH2), 4.95–

4.97 (m, 1 H, Hb), 7.60 (d, J = 8.8 Hz, 2 H, ArH), 8.24 ppm (d, J = 8.8 Hz, 2 H, ArH). 13C 

NMR (CDCl3, 75.5 MHz): δ = 13.7 (q), 27.1 (d), 44.2 (d), 52.9 (d), 62.3 (t), 63.1 (t), 110.7 

(s), 110.8 (s), 124.1 (d), 129.7 (d), 140.5 (s) 148.4 (s), 165.3 (s), 166.7 ppm (s). 
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y = 42.812x + 0.003
R2 = 0.997

0.00

0.05

0.10

0.15

0.000 0.001 0.002 0.003
[2b-K] / M

kobs / s-1

4.7. Reactivities of Diethyl Benzylidenemalonates 1a–i  

Reactions of electrophile 1a  

Table S1: Kinetics of the reaction of 1a with the nitro ethyl anion 2a (K+ salt, DMSO, 20 °C, 

 stopped-flow UV-Vis spectrometer, decrease at λ = 305 nm). 

 

No. [E]0 / M [Nu–]0 / M kobs / s−1 

a370-1 2.83 × 10−5 9.61 × 10−4 1.94 × 10−1 

a370-2 2.83 × 10−5 1.92 × 10−3 4.56 × 10−1 

a370-3 2.83 × 10−5 2.88 × 10−3 6.74 × 10−1 

a370-4 2.83 × 10−5 3.77 × 10−3 8.74 × 10−1 

k2 = 2.41 × 102 L mol−1 s−1 

 

Table S2: Kinetics of the reaction of 1a with the diethyl malonate anion 2b (K+ salt, DMSO, 

     20 °C, diode array UV-Vis spectrometer) 

 

 

y = 42.864x + 0.004
R2 = 0.998

0.0

0.1

0.1

0.2

0.000 0.001 0.002 0.003

[2b-K] / M

k obs / s
-1

 
k2 = 4.29 × 101 L mol−1 s−1    k2 = 4.28 × 101 L mol−1 s−1 

(from decrease at  λ = 325 nm)   (from increase at λ = 425 nm) 

 

No. [E]0 / M [Nu–]0 / M kobs / s−1 
(decrease at  λ = 325 nm) 

kobs / s−1 
(increase at  λ = 425 nm) 

a338-6 4.09 × 10−5 5.06 × 10−4 2.38 × 10−2 2.43 × 10−2 

a338-2 4.09 × 10−5 9.99 × 10−4 4.55 × 10−2 4.88 × 10−2 

a338-3 4.09 × 10−5 1.51 × 10−3 7.10 × 10−2 6.83 × 10−2 

a338-4 4.09 × 10−5 2.00 × 10−3 9.02 × 10−2 9.04 × 10−2 

a338-5 4.09 × 10−5 2.47 × 10−3 1.07 × 10−1 1.09 × 10−1 

y = 240.7656x - 0.0244
R2 = 0.9977

0.0

0.2

0.4

0.6

0.8

1.0

0.0000 0.0010 0.0020 0.0030 0.0040

[2a-K] / M

k obs / s-1
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Table S3: Kinetics of the reaction of 1a with the anion of ethyl cyano acetate 2c (K+ salt, 

                 DMSO, 20 °C, diode array UV-Vis spectrometer, decrease at λ = 310 nm). 

 
No. [E]0 / M [Nu–]0 / M kobs / s−1 

a320-6 4.94 × 10−5 1.14 × 10−3 2.62 × 10−2 

a320-1 a 4.94 × 10−5 1.14 × 10−3 2.58 × 10−2 

a320-3 4.94 × 10−5 1.70 × 10−3 3.70 × 10−2 

a320-5 4.94 × 10−5 2.13 × 10−3 4.72 × 10−2 
a in the presence of 1 equiv. 18-crown-6. 

k2 = 2.12 × 101 L mol−1 s−1 

y = 21.16636x + 0.00174
R2 = 0.99674

0.00

0.02

0.03

0.05

0.000 0.001 0.002 0.003

[2c-K ] / M

k obs / s
-1

 
 

Table S4:   Kinetics of the reaction of 1a with the anion of ethyl cyano acetate 2c (K+ salt, in 

 the presence of 1 equiv. of 18-crown-6, DMSO, 20 °C, diode array UV-Vis                

spectrometer, decrease at λ = 302 nm). 

 
No. [E]0 / M [Nu–]0 / M kobs / s−1 

72-1 1.29 × 10−4 9.92 × 10−4 1.64 × 10−2 

72-2 1.38 × 10−4 1.97 × 10−3 3.94 × 10−2 

72-3 1.38 × 10−4 3.07 × 10−3 6.52 × 10−2 

72-4 1.37 × 10−4 4.05 × 10−3 8.62 × 10−2 

72-5 1.36 × 10−4 5.05 × 10−3 1.07 × 10−1 

k2 = 2.22 × 101 L mol−1 s−1 

y = 22.167x - 0.0049
R2 = 0.9992

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.000 0.002 0.004 0.006

[2c-K] / M

k obs / s-1
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Table S5: Kinetics of the reaction of 1a with the anion of ethyl aceto acetate 2d (K+ salt) in 

                 presence of 18-crown-6 (1 equiv.) and the corresponding CH acid 2d-H  (DMSO, 

                 20 °C, diode array UV-Vis spectrometer, decrease at λ = 310 nm). 

 
No. [E]0 / M [Nu–]0 / M [2b-H]0 / M kobs / s−1 

102-1 7.03 × 10−5 5.30 × 10−4 7.03 × 10−5 4.27 × 10−3 

102-2 6.93 × 10−5 1.04 × 10−3 6.93 × 10−5 7.26 × 10−3 

102-3 6.91 × 10−5 1.56 × 10−3 6.91 × 10−5 1.10 × 10−2 

102-4 6.86 × 10−5 2.07 × 10−3 6.86 × 10−5 1.42 × 10−2 

102-5 6.85 × 10−5 2.58 × 10−3 6.85 × 10−5 1.77 × 10−2 

k2 = 6.58 L mol−1 s−1 

 y = 6.5763x + 0.0006
R2 = 0.9993

0.0000

0.0050

0.0100

0.0150

0.0200

0.000 0.001 0.002 0.003

[2d-K] / M

k  obs / s-1

 
Table S6: Kinetics of the reaction of 1a with the bis(4-nitrophenyl)methyl anion 2 (K+ salt, 

                 DMSO, 20 °C, diode array UV-Vis spectrometer, decrease at λ = 700 nm).  

 
No. [Nu–]0 / M [E]0 / M kobs / s−1 

a294b-1 2.31 × 10−5 2.31 × 10−4 3.02 × 10−3 

a294b-2 2.31 × 10−5 4.63 × 10−4 5.34 × 10−3 

a294b-3b 2.31 × 10−5 9.43 × 10−4 1.09 × 10−2 

a294b-5 2.31 × 10−5 1.16 × 10−3 1.30 × 10−2 

k2 = 1.09 × 101 L mol−1 s−1 

y = 10.9226x + 0.0004
R2 = 0.9988

0.000
0.005
0.010
0.015
0.020

0.0000 0.0005 0.0010 0.0015

[1a] / M

k obs / s-1
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Reactions of electrophile 1b  

Table S7: Kinetics of the reaction 1b with the nitroethyl anion 2a (K+ salt, DMSO, 20 °C,  

                 diode array UV-Vis spectrometer, decrease at λ = 305 nm). 

 
No. [E]0 / M [Nu–]0 / M kobs / s−1 

a342b 1.55 × 10−5 1.88 × 10−4 2.64 × 10−2 

a342b-2 1.55 × 10−5 3.74 × 10−4 5.49 × 10−2 

a342b-3 1.55 × 10−5 5.59 × 10−4 8.15 × 10−2 

a342b-4 1.55 × 10−5 7.41 × 10−4 1.03 × 10−1 

a342b-5 1.55 × 10−5 9.67 × 10−4 1.42 × 10−1 

k2 = 1.45 × 102 L mol−1 s−1 

 

Table S8: Kinetics of the reaction of 1b with the diethyl malonate anion 2b (K+ salt) in the 

                 presence of 1.5 to 2.0 equiv. 18-crown-6 (DMSO, 20 °C, diode array UV-Vis 

                spectrometer, decrease at λ = 300 nm). 

 
No. [E]0 / M [Nu–]0 / M kobs / s−1 

40-5 6.01 × 10−5 2.44 × 10−4 7.01 × 10−3 

40-4 6.00 × 10−5 4.25 × 10−4 1.25 × 10−2 

49-3 5.98 × 10−5 5.43 × 10−4 1.54 × 10−2 

49-2 6.02 × 10−5 9.00 × 10−4 2.54 × 10−2 

49-1 6.04 × 10−5 1.13 × 10−3 3.26 × 10−2 

k2 = 2.86 × 101 L mol−1 s−1 

 

Table S9: Kinetics of the reaction of 1b with the anion of ethyl cyano acetate 2c (K+ salt, 

                 DMSO, 20 °C, diode array UV-Vis spectrometer, decrease at λ = 290 nm). 

No. [E]0 / M [Nu–]0 / M kobs / s−1 

a291b-1 4.32 × 10−5 1.86 × 10−4 1.73 × 10−3 

a291b-2 4.32 × 10−5 3.72 × 10−4 3.64 × 10−3 

a291b-3 4.32 × 10−5 5.54 × 10−4 5.38 × 10−3 

a291b-4 4.32 × 10−5 7.56 × 10−4 7.41 × 10−3 

a291b-5 4.32 × 10−5 9.45 × 10−4 9.14 × 10−3 

k2 = 9.78 L mol−1 s−1 

y = 145.352x - 0.001
R2 = 0.997

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14

0.0000 0.0003 0.0006 0.0009
[2a-K] / M

k obs / s
-1

y = 9.7765x - 0.0001
R2 = 0.9995

0.000

0.002

0.004

0.006

0.008

0.010

0.0000 0.0003 0.0006 0.0009 0.0012
[2c-K] / M

k obs / s
-1

y = 28.567x + 5E-05
R2 = 0.9993

0.00

0.01

0.02

0.03

0.04

0.0000 0.0005 0.0010 0.0015

[2b-K] / M

k  obs / s-1
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Table S10: Kinetics of the reaction of 1b with the bis(4-nitrophenyl)methyl anion 2e (K+ salt, 

                  (DMSO, 20 °C, diode array UV-Vis spectrometer, decrease at λ = 620 nm). 

 

No. [Nu–]0 / M [E]0 / M kobs / s−1 

a295-1 2.30 × 10−5 2.28 × 10−4 1.75 × 10−3 

a295-2 2.30 × 10−5 4.56 × 10−4 2.89 × 10−3 

a295-3 2.30 × 10−5 7.02 × 10−4 4.81 × 10−3 

a295-4 2.30 × 10−5 8.96 × 10−4 5.69 × 10−3 

a295-5 2.30 × 10−5 1.08 × 10−3 6.70 × 10−3 

k2 = 5.94 L mol−1 s−1 

 

Table S11: Kinetics of the reaction of 1b with the bis(4-nitrophenyl)methyl anion 2e (K+ salt) 

                   in the presence of 1 equiv. 18-crown-6 (DMSO, 20 °C, diode array UV-Vis  

                   spectrometer, decrease at λ = 620 nm). 

No. [Nu–]0 / M [E]0 / M kobs / s−1 

a323-1 4.98 × 10−5 5.97 × 10−4 3.38 × 10−3 

a323-2 4.98 × 10−5 1.18 × 10−3 6.77 × 10−3 

a323-3 4.98 × 10−5 1.81 × 10−3 1.15 × 10−2 

a323-4 4.98 × 10−5 2.35 × 10−3 1.36 × 10−2 

k2 = 6.03 L mol−1 s−1 

Reactions of electrophile 1c  

Table S12: Kinetics of the reaction of 1c with the nitro ethyl anion 2a (K+ salt, DMSO, 

                   20 °C, diode array UV-Vis spectrometer, decrease at λ = 305 nm). 

No. [E]0 / M [Nu–] 0 / M kobs / s−1 

a343-1 3.76 × 10−5 2.89 × 10−4 1.70 × 10−2 

a343-4 3.76 × 10−5 4.19 × 10−4 2.14 × 10−2 

a343-2 3.76 × 10−5 5.71 × 10−4 2.70 × 10−2 

a343-6 3.76 × 10−5 7.18 × 10−4 3.35 × 10−2 

a343-5 3.76 × 10−5 8.49 × 10−4 3.72 × 10−2 

k2 = 3.71 × 101 L mol−1 s−1 

y = 6.0283x - 0.0002
R2 = 0.9903

0.000
0.005
0.010
0.015
0.020

0.0000 0.0005 0.0010 0.0015 0.0020 0.0025

[2e-K] / M

k obs / s-1

y = 37.1461x + 0.0060
R2 = 0.9964

0.00
0.01
0.02
0.03
0.04
0.05
0.06

0.0000 0.0002 0.0004 0.0006 0.0008 0.0010

[2a-K] / M

k obs / s-1

y = 5.9447x + 0.0004
R2 = 0.9930

0.000
0.002
0.004

0.006
0.008

0.0000 0.0005 0.0010 0.0015

[1b] / M

k obs / s-1
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Table S13: Kinetics of the reaction of 1c with the diethyl malonate anion 2b (K+ salt) in the 

  presence of 1.5 equiv. 18-crown-6 (DMSO, 20 °C, diode array UV-Vis 

                   spectrometer, decrease at λ = 303 nm). 

 
No. [E]0 / M [Nu–]0 / M kobs / s−1 

56-1 2.26 × 10−4 1.47 × 10−3 1.02 × 10−2 

56-2 2.26 × 10−4 1.95 × 10−3 1.29 × 10−2 

56-3 2.40 × 10−4 3.06 × 10−3 2.14 × 10−2 

56-4 2.53 × 10−4 5.60 × 10−3 3.81 × 10−2 

k2 = 6.81 L mol−1 s−1 

 

Table S14: Kinetics of the reaction of 1c with the anion of ethyl cyano acetate 2c (K+ salt, 

  DMSO, 20 °C, diode array UV-Vis spectrometer, decrease at λ = 305 nm). 

No. [E]0 / M [Nu–] 0 / M kobs / s−1 

a292-1 3.85 × 10−5 4.69 × 10−4 1.46 × 10−3 

a292-2 3.85 × 10−5 7.85 × 10−4 2.11 × 10−3 

a292-3 3.85 × 10−5 1.16 × 10−3 3.21 × 10−3 

a292-4 3.85 × 10−5 1.56 × 10−3 4.16 × 10−3 

a292-5 3.85 × 10−5 2.27 × 10−3 6.26 × 10−3 

k2 = 2.68 L mol−1 s−1 

 

 

Table S15: Kinetics of the reaction of 1c with the anion of ethyl cyano acetate 2c (K+ salt) in 

 the presence of 1 equiv. 18-crown-6 (DMSO, 20 °C, diode array UV-Vis 

 spectrometer, decrease at λ = 290 nm). 

No. [E]0 / M [Nu–] 0 / M kobs / s−1 

a318b-2 3.89 × 10−5 1.22 × 10−3 3.31 × 10−3 

a318b-3 3.89 × 10−5 1.84 × 10−3 4.80 × 10−3 

a318b-4 3.89 × 10−5 2.44 × 10−3 6.26 × 10−3 

a318b-5 3.89 × 10−5 3.15 × 10−3 8.16 × 10−3 

 k2 = 2.51 L mol−1 s−1 

 

 

y = 2.6821x + 0.0001
R2 = 0.9972

0.000

0.002

0.004

0.006

0.008

0.0000 0.0005 0.0010 0.0015 0.0020 0.0025

[2c-K] / M

k obs / s
-1

y = 6.8143x + 8E-05
R2 = 0.999

0.00
0.01
0.02
0.03
0.04
0.05

0.000 0.002 0.004 0.006

[2b-K] / M

k  obs / s-1

y = 2.5085x + 0.0002
R2 = 0.9994

0.000

0.002

0.004

0.006

0.008

0.010

0.000 0.001 0.002 0.003 0.004
[2c-K] / M

k obs / s
-1
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Table S16: Kinetics of the reaction of 1c with the bis(4-nitrophenyl)methyl anion 2e (K+ salt, 

  DMSO, 20 °C, diode array UV-Vis spectrometer, decrease at λ = 785 nm). 

No. [Nu–]0 / M [E]0 / M kobs / s−1 

a297b-1 3.56 × 10−5 4.12 × 10−4 6.72 × 10−4 

a297b-2 3.56 × 10−5 8.33 × 10−4 1.58 × 10−3 

a297b-3 3.56 × 10−5 1.24 × 10−3 2.23 × 10−3 

a297b-4 3.56 × 10−5 1.60 × 10−3 2.79 × 10−3 

a297b-5 3.56 × 10−5 2.04 × 10−3 3.43 × 10−3 

k2 = 1.67 L mol−1 s−1 

Reactions of electrophile 1d  

Table S17: Kinetics of the reaction of 1d with the diethyl malonate anion 2b (K+ salt) in the 

  presence of 1.6 equiv. 18-crown-6 (DMSO, 20 °C, diode array UV-Vis 

  spectrometer, decrease at λ = 303 nm). 

No. [E]0 / M [Nu–]0 / M kobs / s−1 

41-1 2.04 × 10−4 4.18 × 10−3 2.36 × 10−3 

40-3 1.97 × 10−4 5.15 × 10−3 3.04 × 10−3 

40-2 3.00 × 10−4 5.24 × 10−3 3.05 × 10−3 

40-4 1.98 × 10−4 6.83 × 10−3 3.95 × 10−3 

k2 = 5.93 × 10−1 L mol−1 s−1 

 

 

Table S18: Kinetics of the reaction of 1d with the ethyl cyano acetate anion 2c (K+ salt, 

  DMSO, 20 °C, diode array UV-Vis spectrometer, decrease at λ = 303 nm). 

No. [E]0 / M [Nu–]0 / M kobs / s−1 

a304c-1 4.80 × 10−5 3.17 × 10−3 7.87 × 10−4 

a304c-2 4.80 × 10−5 4.62 × 10−3 1.17 × 10−3 

a304c-3 4.80 × 10−5 5.64 × 10−3 1.42 × 10−3 

a304c-4 4.80 × 10−5 7.77 × 10−3 1.91 × 10−3 

k2 = 2.43 × 10−1 L mol−1 s−1 

y = 1.6722x + 0.0001
R2 = 0.9935

0.000

0.002

0.004

0.0000 0.0005 0.0010 0.0015 0.0020 0.0025

[1c] / M

k o bs / s-1

y = 0.5932x - 7E-05
R2 = 0.9951

0.000
0.001
0.002
0.003
0.004
0.005

0.000 0.002 0.004 0.006 0.008

[2b-K] / M

k  obs / s-1

y = 0.2433x + 0.0000
R2 = 0.9989

0.0000

0.0010

0.0020

0.000 0.002 0.004 0.006 0.008 0.010

[2c-K] / M

k obs / s-1
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Reactions of electrophile 1e  

Table S19: Kinetics of the reaction of 1e with the nitro ethyl anion 2a (K+ salt, DMSO,  

 20 °C, diode array UV-Vis spectrometer, decrease at λ = 316 nm). 

No. [E] 0 / M [Nu–]0 / M kobs / s−1 

a339-1 4.79 × 10−5 4.91 × 10−4 1.34 × 10−3 

a339-2 4.79 × 10−5 9.71 × 10−4 2.74 × 10−3 

a339-3 4.79 × 10−5 1.49 × 10−3 4.27 × 10−3 

a339-4 4.79 × 10−5 1.92 × 10−3 5.56 × 10−3 

a339-5 4.79 × 10−5 2.42 × 10−3 7.12 × 10−3 

k2 = 2.99 L mol−1 s−1 

 

Table S20: Kinetics of the reaction of 1e with the diethyl malonate anion 2b (K+ salt) in the 

  presence of 1.6 equiv. 18-crown-6 (DMSO, 20 °C, diode array UV-Vis 

  spectrometer, decrease at λ = 310 nm). 

No. [E]0 / M [Nu–]0 / M kobs / s−1 

50-1 9.98 × 10-5  1.79 × 10−3 8.06 × 10−4 

50-2 9.71 × 10-5 2.52 × 10−3 9.90 × 10−4 

50-3 1.06 × 10-4 4.13 × 10−3 1.38 × 10−3 

50-4 1.06 × 10-4 4.72 × 10−3 1.52 × 10−3 

50-5 1.12 × 10-4 6.61 × 10−3 1.95 × 10−3 

k2 = 2.37 × 10−1 L mol−1 s−1;  k- = 4 × 10−4 s–1 

 

Table S21: Kinetics of the reaction of 1e with the ethyl cyano acetate anion 2c (K+ salt,  

  DMSO, 20 °C, diode array UV-Vis spectrometer, decrease at λ = 305 nm). 

No. [E] 0 / M [Nu–]0 / M kobs / s−1 

a315-4 2.91 × 10−5 2.47 × 10−3 2.82 × 10−4 

a315-5 2.91 × 10−5 3.23 × 10−3 3.51 × 10−4 

a315-3 2.91 × 10−5 3.98 × 10−3 4.29 × 10−4 

a315-2 2.91 × 10−5 5.25 × 10−3 5.82 × 10−4 

a315-1 2.91 × 10−5 6.17 × 10−3 6.87 × 10−4 

k2 = 1.11 × 10−1 L mol−1 s−1 

y = 2.99357x - 0.00016
R2 = 0.99980

0.000
0.002
0.004
0.006
0.008
0.010

0.000 0.001 0.002 0.003

[2a-K] / M

k obs / s-1

y = 0.23741x + 0.00039
R2 = 0.99964

0.0000
0.0005
0.0010

0.0015
0.0020
0.0025

0.000 0.002 0.004 0.006 0.008

[2b-K] / M

k  obs / s-1

y = 0.11121x - 0.00000
R2 = 0.99720

0.0000
0.0002
0.0004
0.0006
0.0008
0.0010

0.000 0.002 0.004 0.006 0.008
[2c-K] / M

k obs / s-1
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Reactions of electrophile 1f  

 
Table S22: Kinetics of the reaction of 1f with the nitro ethyl anion 2a (K+ salt, DMSO, 20 °C,

  diode array UV-Vis spectrometer, decrease at λ = 316 nm). 

 

No. [E]0 / M [Nu–]0 / M kobs / s−1 

a336-1 2.60 × 10−5 5.84 × 10−4 1.04 × 10−3 

a336-2 2.60 × 10−5 1.16 × 10−3 2.02 × 10−3 

a336-3 2.60 × 10−5 1.72 × 10−3 2.95 × 10−3 

a336-4 2.60 × 10−5 2.28 × 10−3 4.03 × 10−3 

a336-5 2.60 × 10−5 2.85 × 10−3 4.83 × 10−3 

k2 = 1.70 L mol−1 s−1 

 

Table S23: Kinetics of the reaction of 1f with the diethyl malonate anion 2b (K+ salt) in the 

       presence of 1.5 equiv. 18-crown-6 (DMSO, 20 °C, diode array UV-Vis 

       spectrometer, decrease at λ = 316 nm). 

No. [E]0 / M [Nu–]0 / M kobs / s−1 

45-1 7.95 × 10-5  1.53 × 10−3 1.23 × 10−3 

45-2 9.64 × 10-5 3.98 × 10−3 1.58 × 10−3 

45-3 9.52 × 10-5 5.51 × 10−3 1.82 × 10−3 

45-4 9.20 × 10-5 7.42 × 10−3 2.08 × 10−3 

45-5 9.04 × 10-5 9.23 × 10−3 2.31 × 10−3 

k2 = 1.41 × 10−1 L mol−1 s−1 

k- = 1 × 10−3 s–1 

y = 0.1414x + 0.0010
R2 = 0.9990

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.000 0.003 0.006 0.009 0.012
[2b-K] / M

k  obs / s-1

y = 1.69626x + 0.00006
R2 = 0.99853

0.000

0.002

0.004

0.006

0.008

0.010

0.000 0.001 0.002 0.003

[2a-K] / M

k obs / s-1
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Tabelle S24: Kinetics of the reaction of 1f with the ethyl cyano acetate anion 2c (K+ salt, 

          DMSO, 20 °C, diode array UV-Vis spectrometer, decrease at λ = 315 nm). 

 

No. [E]0 / M [Nu–]0 / M kobs / s−1 

a316-1 3.98 × 10−5 3.24 × 10−3 1.44 × 10−4 

a316-2 3.98 × 10−5 4.85 × 10−3 2.20 × 10−4 

a316-3 3.98 × 10−5 6.33 × 10−3 2.81 × 10−4 

a316-4 3.98 × 10−5 7.77 × 10−3 3.39 × 10−4 

a316-5 3.98 × 10−5 9.44 × 10−3 4.11 × 10−4 

k2 = 4.27 × 10−2 L mol−1 s−1 

 

 

Reactions of electrophile 1g  

Table S25: Kinetics for the reaction of 1g with the nitro ethyl anion 2a (K+ salt, DMSO, 

  20 °C, diode array UV-Vis spectrometer, decrease at λ = 383 nm). 

 
No. [E]0 / M [Nu–]0 / M kobs / s−1 

a333-1 4.20 × 10−5 1.39 × 10−3 2.62 × 10−4 

a333-2 4.20 × 10−5 2.56 × 10−3 4.60 × 10−4 

a333-3 4.20 × 10−5 3.43 × 10−3 6.13 × 10−4 

a333-4 4.20 × 10−5 4.21 × 10−3 7.49 × 10−4 

a333-5 4.20 × 10−5 4.73 × 10−3 8.13 × 10−4 

k2 = 1.68 × 10−1 L mol−1 s−1 

 

y = 0.04265x + 0.00001
R2 = 0.99932

0.0000

0.0002

0.0004

0.0006

0.000 0.002 0.004 0.006 0.008 0.010

[2c-K] / M

k obs / s
-1

y = 0.1676x + 0.0000
R2 = 0.9986

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0000 0.0015 0.0030 0.0045

[2a-K] / M

k obs / s-1
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Table S26: Kinetics for the reaction of 1g with the diethyl malonate anion 2b (K+ salt, 

  DMSO, 20 °C, diode array UV-Vis spectrometer, decrease at λ = 380 nm). 

No. [E]0 / M [Nu–]0 / M [2b-H] / M kobs / s−1 

a371b-1 4.41 × 10−5 4.35 × 10−3 2.13 × 10−2 5.29 × 10−5 

a371b-2 4.41 × 10−5 5.55 × 10−3 1.77 × 10−2 6.33 × 10−5 

a371b-3 4.41 × 10−5 6.22 × 10−3 1.82 × 10−2 6.96 × 10−5 

a371b-4 4.41 × 10−5 8.07 × 10−3 2.23 × 10−2 8.58 × 10−5 

k2 = 8.85 × 10−3 L mol−1 s−1 

 

y = 0.008846x + 0.000014
R2 = 0.999881

0.00000
0.00002
0.00004
0.00006
0.00008
0.00010

0.000 0.002 0.004 0.006 0.008 0.010

[2b-K] / M

k obs / s
-1

 

Reactions of electrophile 1h  

 

Table S27: Kinetics for the reaction of 1h with the nitro ethyl anion 2a (K+ salt, DMSO,  

 20 °C, diode array UV-Vis spectrometer, decrease at λ = 395 nm). 

 

No. [E]0 / M [Nu–]0 / M kobs / s−1 

a348-1 3.59 × 10−5 9.18 × 10−4 1.25 × 10−4 

a348-2 3.59 × 10−5 1.89 × 10−3 2.03 × 10−4 

a348-3 3.59 × 10−5 2.72 × 10−3 2.58 × 10−4 

a348-4 3.59 × 10−5 3.65 × 10−3 3.15 × 10−4 

a348-5 3.59 × 10−5 4.60 × 10−3 3.91 × 10−4 

a348b* 4.00 × 10−5 1.12 × 10−2 8.24 × 10−4 

a348b-8** 4.00 × 10−5 1.21 × 10−2 9.27 × 10−4 

k2 = 6.96 × 10−2 L mol−1 s−1 
**Addition of 1.00 equiv. CH-acid, * 0.05 equiv. CH-acid  



Chapter 4: Experimental Section 

177 

 

 

 

 

 

Reactions of electrophile 1i  

 

Table S28: Kinetics for the reaction of 1i with the nitro ethyl anion 2a (K+ salt, DMSO, 

 20 °C, diode array UV-Vis spectrometer, decrease at λ = 409 nm). 

No. [E]0 / M [Nu–]0 / M kobs / s−1 

a340-1 2.33 × 10−5 4.77 × 10−3 1.84 × 10−4 

a340-2 2.33 × 10−5 6.66 × 10−3 2.51 × 10−4 

a340-3 2.33 × 10−5 9.13 × 10−3 3.51 × 10−4 

a340-5 2.33 × 10−5 1.11 × 10−2 4.39 × 10−4 

a340-5 2.33 × 10−5 1.58 × 10−2 6.13 × 10−4 

k2 = 3.94 × 10−2 L mol−1 s−1 

 

y = 0.03943x - 0.00001
R2 = 0.99895

0.0000
0.0002
0.0004
0.0006
0.0008

0.000 0.005 0.010 0.015 0.020

[2a-K] / M

k obs / s-1

 
y = 0.069597x + 0.000066

R2 = 0.998673

0.0000

0.0004

0.0008

0.0012

0.000 0.004 0.008 0.012

[2a-K] / M

k obs / s-1
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Chapter 5 

Nucleophilicities of the Anions of 

Arylacetonitriles and Arylpropionitriles in 

Dimethyl Sulfoxide 

O. Kaumanns, R. Appel, T. Lemek, F. Seeliger, and H. Mayr, J. Org. Chem. 2008, accepted. 

 

Introduction 

The comparison of the nucleophilicities of different classes of compounds is of 

considerable importance for our understanding of organic reactivity. The most comprehensive 

nucleophilicity scale presently available is based on the reactions of benzhydrylium ions and 

structurally related quinone methides with different nucleophiles.1 With this method, we have 

been able to directly compare n-nucleophiles (amines, alcohols, phosphanes), π-nucleophiles 

(alkenes, arenes, organometallics), and  σ-nucleophiles (hydride donors) with each other.1-4 

Recently, we investigated the reactivities of different carbanions5–10 including 

trifluoromethylsulfonyl stabilized carbanions,6 phenylsulfonyl stabilized carbanions,7 

nitronates,8,9 as well as the bis(4-nitrophenyl)methyl anion10 and demonstrated that their 

additions to benzhydryl cations and structurally related quinone methides can be described by 

Equation (5.1), where E is an electrophile-specific parameter, and N and s are nucleophile-

specific parameters. 

 

log k2 (20 °C) = s(N + E) (5.1) 
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Vice versa, the second-order rate constants k2 for the reactions of carbanions with Michael 

acceptors11-13 have been used to determine the electrophilicities of these electron-deficient      

π-systems.  

Because UV-Vis spectroscopy is an efficient method to determine reaction rates, we have 

selected a set of colored benzhydrylium ions,2 quinone methides,4 and 

benzylidenemalonates14 as reference electrophiles for characterizing the reactivities of a large 

variety of nucleophiles. On the other hand, we do presently not yet have a comprehensive set 

of colored nucleophiles, which might be employed for the systematic investigation of the 

reactivities of electrophiles. So far, only colored carbanions of relatively low nucleophilicity 

(N < 20) have been characterized.6,8,10 

 

In view of the frequent use of cyano substituted carbanions in organic synthesis, we have 

selected the carbanions 1a–c and 2a–c for systematic studies of the relationship between 

structure and nucleophilic reactivity of highly reactive carbanions.15  

Although the correlations between nucleophilicity (N) and basicity (pKaH) of carbanions are 

not of high quality,6 the pKaH values of the phenylacetonitrile anions (1a–c) and that of the 

phenylpropionitrile anion 2a (Scheme 5.1) suggested that these carbanions have considerably 

higher reactivities than α-nitro- and α-trifluoromethylsulfonyl-stabilized benzyl anions. 

 

Scheme 5.1. Phenylacetonitrile Anions 1a–c, Phenylpropionitrile Anions 2a–c, and their pKaH 

Values in DMSO. 

CN

R

CN

R

1a CF3 18.1a

1b CN 16.0b

1c NO2 12.3b

2a H 23.0b

2b CN c

2c NO2
c

R pKaHpKaH R
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a From ref. 16a, b from ref. 16b, c pKaH values in DMSO not available. 

Relative nucleophilicities of carbanions derived from α-substituted phenylacetonitriles 2 

towards methyl iodide and other alkyl halides in liquid ammonia have previously been 

investigated by competition experiments.17 Recent studies of the oxidative nucleophilic 

substitution of hydrogen revealed that the phenylpropionitrile anion 2a and its derivatives add 

to nitrobenzene and some nitrobenzene derivatives in liquid ammonia to form persistent σH-

adducts, from which hydride was abstracted when treated subsequently with KMnO4.18 When 

these σH-adducts were combined with dimethyldioxirane, replacement of the nitro group by 

hydroxyl took place prior to rearomatization, and the corresponding phenols were isolated as 

major products.19 

 We will now report on the kinetics of the reactions of the phenylacetonitrile anions 1a–c 

and the phenylpropionitrile anions 2a–c with the electrophiles 3a–u (Table 5.1) in DMSO at 

20 °C. The second-order rate constants k2 will subsequently be used to derive the nucleophile-

specific parameters N and s of the carbanions 1a–c and 2a–c. 

 

Table 5.1. Michael Acceptors 3a–u and their Electrophilicity Parameters E. 

Electrophile  R Ea

3a OMe –12.18
3b NMe2 –13.39

O

Ph

Ph
R

    
3c Me –15.83
3d OMe –16.11
3e NMe2 –17.29O R

3f julb –17.90
    

3g H –10.11

3h OMe –11.32

3i NMe2 –13.56

O

O R
 

3j julb –14.68
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Table 5.1. Continued. 

Electrophile  R Ea

3k OMe –10.37
3l NMe2 –12.76N

N

O

OO R
    

3m NO2 –17.67

3n CN –18.06
EtO2C

EtO2C
R R  3o mCl –18.98

 3p H –20.55

 3q Me –21.11

 3r OMe –21.47

 3s NMe2 –23.1

 3t thqc –23.4

 3u julb –23.8
a Electrophilicity parameters E of 3a–f were taken from ref. 4, of 3g–j from ref. 13, of 3k,l 

from ref. 12, and of 3m–u from ref. 14 

NN RR ==
b) c)

 

 

Results and Discussion 

 

Product studies. Products of representative combinations of nucleophiles with 

electrophiles have been characterized. The phenylacetonitrile anions 1a–c, which were 

generated from   (1a–c)-H with KOtBu in DMSO or DMSO/MeOH mixtures, reacted with the 

quinone methides 3c–f to give the addition products 4ad–4cd (Equation 5.2) in good yields. 

Their 1H NMR spectra showed doublets for Ha and Hb at δ = 4.11–4.54 ppm and a signal for 

the hydroxy group. Generally, two sets of signals in the 1H NMR spectra of the products 4 

indicated the formation of almost equal amounts of two diastereomers. 
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HO R1

NC

R
Hb

Ha

1) KOtBu or NaOMe
DMSO/MeOH

2) H+
(5.2)

NC

R

O R1

1a-H (R = CF3) 3d 4ad (73 %)
3e
3f
3e
3f
3c
3d

4ae (80 %)
4af (71 %)
4be (77 %)
4bf (50 %)
4cc (87 %)
4cd (95 %)

1b-H (R = CN)

1c-H (R = NO2)

 

The reactions of carbanions 1b,c with the benzylidene indandiones 3h–j and of 1c with the 

benzylidene barbituric acid 3l showed the analogous formation of the addition products as a 

mixture of two diastereomers (≈ 1:1, Equations (5.3) and (5.4)). 

NC

NO2

N

NO O

O

O

O R1

O

O R1

NC

R

NC

R

NMe2

NC

NO2

4cl (85 %)1c–H 3l

Hb

Ha

Hb

Ha

N

NO O

O

NMe2

(5.3)

(5.4)

1) KOtBu
DMSO
2) H+

1) KOtBu
DMSO
2) H+

3i
3j
3h

4bi (70 %)
4bj (87 %)
4ch (71 %)

1b-H (R = CN)

1c-H (R = NO2)

 

The reaction of the phenylpropionitrile anion 2c with the quinone methide 3c yielded 5cc as 

a 1:1 pair of diastereomers, indicated by two singlets for Ha at δ = 3.95 and 4.04 ppm, and for 

the hydroxy group at δ = 5.04 and 5.20 ppm (Equation (5.5)). 
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NC

NO2

HO

5cc (44 %)3c

HaO (5.5)NC

NO2

2c–H

1) KOtBu
DMSO
2) H+

 

The reaction of carbanion 2c with 3k was investigated by 1H NMR spectroscopy, which 

shows the formation of equal amounts of diastereomers of the anionic adduct 5ck (Equation 

(5.6)). 

NC

NO2

N

NO O

O

OMe

NC

NO2

5ck
2c 3k

Ha

N

NO O

O

OMe
(5.6)

DMSO

K

K

 

In contrast, the reactions of the benzylidenemalonates 3m–u with the carbanions 1b,c in 

methanol resulted in the formation of α-cyano stilbenes 6bm–6cu via Michael addition, 

proton shift, and retro-Michael addition (Equation (5.7)). Compounds 6 were previously 

employed for the determination of HR-acidity scales.20 

 

EtO2C

NC

R

CN

R

EtO2C R
R1

R1

NaOMe
MeOH (5.7)

3m
3n

3m
3n

6bm (41 %)
6bn (75 %)

1b-H (R = CN)

1c-H (R = NO2)

3o
3p
3q
3r
3s
3u

6bo (45 %)
6bp (38 %)
6bq (62 %)
6br (45 %)
6bs (80 %)
6bu (80 %)

3r
3s
3u

6cm (30 %)

6cs (68 %)
6cr (45 %)
6cn (59 %)

6cu (47 %)  
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Kinetics. The rates of the reactions of the carbanions 1a–c and 2b–c with the electrophiles 

3a–u were determined photometrically under first-order conditions by using either the 

nucleophile or the electrophile in high excess as specified in Table 5.2. 

Because of the large pKa value of tBuOH in DMSO (29.421 or 32.222), all carbanions listed 

in Scheme 5.1 (pKa < 23.0) should be generated quantitatively when the corresponding CH 

acids were treated with one equivalent of KOtBu. Analogously, the deprotonation of (1a–c)-H 

and (2a–c)-H should also be quantitative with one equivalent of the phosphazene base P4-tBu 

(pKBH+
 = 30.2).23 In order to verify the complete deprotonation of the CH acids (1a–c)-H, 

KOtBu was added stepwise to solutions of (1a–c)-H and 2a-H in DMSO. UV-Vis 

spectroscopy showed that in all cases, the limiting absorbances of the corresponding 

carbanions were achieved after the addition of one equivalent of KOtBu, indicating 

quantitative deprotonation of these CH acids. While the absorbance of 1c was persistent under 

these conditions, the absorbances of the carbanions 1a and 1b decreased slowly, when only 

one equivalent of KOtBu was added (Fig. S1–S3; Experimental Section). Persistent 

absorbances of the carbanions 1a,b could be observed, when they were generated from their 

conjugate acids (1a,b)-H with 2 equivalents of KOtBu. The unsubstituted phenylpropionitrile 

anion 2a, which was also formed quantitatively with 1 equivalent of KOtBu or P4-tBu was not 

even persistent when generated with an excess (2–3 equivalents) of base (Fig. S4,                       

Experimental Section).  

The kinetic experiments with the nitro-substituted carbanions 1c and 2c were 

unproblematic: Because of their stability, stock solutions of 1c–K and 2c–K have been 

employed. On the other hand, solutions of the reactive carbanions 1a,b and 2a,b were 

generated immediately before the kinetic experiments, and the kinetic investigations were 

restricted to reactions with active electrophiles, which proceeded faster than the 

decomposition of the carbanions.  
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For all reactions described in Table 5.2, first-order rate constants kobs (s–1) were obtained by 

least-squares fittings of the mono-exponential function At = A0 exp(–kobst) + C to the time-

dependent absorbances A of the minor components. Plots of kobs versus the concentrations of 

the compounds used in excess were generally linear with negligible intercepts and the second-

order rate constants k2 (L mol–1 s–1) as slopes (Figure 5.1, Table 5.2). Some exceptions are 

discussed below. 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0000 0.0005 0.0010 0.0015 0.0020 0.0025

[3p] / mol L-1

k o
bs

/s
-1

kobs = 2.80 × 102 [3p]0 - 0.001

R2 = 0.999

 

Figure 5.1. Determination of the second-order rate constant k2 = 2.80 × 102 L mol–1 s–1 for 

the reaction of the p-cyanophenylacetonitrile anion (1b) with the Michael acceptor 3p in 

DMSO at 20 °C. 

 

As mentioned above, we were not able to obtain persistent solutions of the carbanion 2a. 

When its reactions with 3s (used as the minor component) were followed photometrically, 

exponential decays of the electrophile (3s) absorbance were observed. Plots of kobs vs. the 

concentration of 2a (calculated from [2a-H] assuming complete deprotonation) were linear, 

and the slopes, which equal the second-order rate constants k2 were almost identical (Table 

5.2) independent of the quantity of the base (1.05 equivalents of P4-tBu or 1, 2, or 3 

equivalents of KOtBu) used for the deprotonation of 2a. However, significant negative 

intercepts of variable magnitude were observed in all cases (Tables S15-20, Experimental 

Section), indicating fast and irreversible consumption of certain fractions of the carbanion 2a. 

Similar observations, i.e., negative intercepts of variable magnitude and slopes, corresponding 

to second-order rate constants, which are almost independent of the nature and quantity of 
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base used for the deprotonation of 2a–H, were made for the analogous reactions of the 

carbanion 2a with the electrophiles 3t,u (see Tables S21–S26). 

 

 

Table 5.2. Second-Order Rate Constants k2 for the Reactions of the Phenylacetonitrile Anions 

1a–c and the Phenylpropionitrile Anions 2a–c with the Michael Acceptors 3a–u in DMSO at 

20 °C. 

Nucleophile Electrophile λ / nm a  k2 / M–1 s–1 b 

3d 3d / 440 4.04 × 105 
3e 3e / 486 8.24 × 104 
3f 3f / 521 5.45 × 104 F3C

CN

N = 27.28; s = 0.50
1a

    
3e 3e / 486 1.10 × 104 
3f 3f / 521 6.59 × 103 
3i 3i / 490 1.61 × 106 NC

CN

N = 25.11; s = 0.54
1b

 3j 3j / 523 3.94 × 105 
 3j 3j / 523 4.09 × 105 c 

 3m 1b / 394 1.70 × 104  
 3m 1b / 398 1.64 × 104 c 
 3m 1b / 398 1.60 × 104 c, d 

 3m 1b / 398 1.86 × 104 c, e 
 3n 1b / 394 8.87 × 103 
 3o 1b / 397 2.81 × 103 
 3p 1b / 397 2.80 × 102 
 3q 1b / 394 1.54 × 102 

 3r 1b / 394 6.50 × 101 
    

3a 3a / 400 1.29 × 105 c 
3c 3c / 380 4.19 × 102 
3c 3c / 400 4.43 × 102 c O2N

CN

N = 19.67; s = 0.68
1c

3d 3d / 400 3.43 × 102 
 3d 3d / 400 3.26 × 102 c 
 3h 3h / 388 5.23 × 105 
 3l 3l / 560 4.17 × 104 
 3m 1c / 537 2.51 × 101 f 
 3n 1c / 537 9.98 g 
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Table 5.2.  Continued. 

Nucleophile Electrophile λ / nm a  k2 / M–1 s–1 b 

3f 3f / 524 2.50 × 106 g 
3s 3s / 405 3.05 × 103 g 

3s 3s / 410 2.87 × 103 g 
CN

N = 28.95; s = 0.58
2a

3s 3s / 400 3.12 × 103  

 3s 3s / 400 3.09 × 103 h 

 3s 3s / 400 3.15 × 103 i 

 3t 3t / 405 1.86 × 103 g 
 3t 3t / 405 1.69 × 103 h 
 3t 3t / 405 1.50 × 103  
 3u 3u / 405 9.90 × 102 g 
 3u 3u / 405 8.54 × 102  
 3u 3u / 405 9.82 × 102 h 
    

3b 3b / 533 7.73 × 106 j 
3e 3e / 488 4.54 × 104 j 
3e 3e / 488 3.20 × 104 
3f 3f / 524 2.51 × 104 j 

NC

CN

N = 25.35; s = 0.56
2b

 
3m 2b / 403 1.08 × 104  

 3m 2b / 403 1.15 × 104  
 3n 2b / 403 5.68 × 103  
 3o 2b / 403 2.44 × 103  
 3p 2b / 403 1.19 × 103  
    

3a 3a / 410 7.95 × 104 k 
3c 3c / 375 2.04 × 102 k 
3d 2c / 590 9.61 × 101 k O2N

CN

N = 19.61 s = 0.60
2c 3g 2c / 590 5.22 × 105  

 3h 2c / 590 1.15 × 105 
 3k 2c / 590 1.88 × 105 
 3l 2c / 590 9.12 × 103  

a Minor component in the pseudo-first order kinetics and monitored wavelength. b In the 
presence of 1 equiv. KOtBu. c In the presence of 18-crown-6. d In the presence of 3 equiv. of 
1b-H. e Measurement at 25 °C.  f Reversible reactions, see text and Experimental Section. g 

Deprotonation of 2a-H acid with P4-tBu phosphazene base. h In the presence of 2 equiv. of 
KOtBu. i In the presence of 3 equiv. of KOtBu. j Deprotonation of 2b-H with P2-tBu 
phosphazene base. k In the presence of 2c-H. 

 

On the other hand, significant positive intercepts in plots of the first-order rate constants 

(kobs) against the concentrations of the major component were observed for the reactions of 

the p-nitrophenylacetonitrile anion (1c) with the benzylidenemalonates 3m and 3n. Positive 
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intercepts are indicative of reversible reactions, and by theory, reflect the rate constants of the 

reverse reactions.24 However, as discussed above, the intercepts are also affected by side 

reactions that we refrain to employ the intercepts of these plots for calculating the rates of the 

reverse reactions and the equilibrium constants K. 

As shown in Table 5.2, the addition of 18-crown-6 caused only insignificant changes of the 

second-order rate constants k2 for the reactions of 1b with 3j and 3m and of 1c with 3c and 

3d. These results confirm that ion-pairing is negligible in dilute DMSO solution, in 

accordance with literature reports25 and earlier findings of our group.6,8,26 

 

Nucleophilicity of tert.-Butoxide. As discussed above, persistent solutions of the more 

basic carbanions have only been obtained when more than one equivalent of KOtBu was used 

for the deprotonation of the corresponding CH acids. In order to elucidate the influence of 

excess KOtBu on the kinetics, we have studied the reaction of 2b with the quinone methide 3e 

in the presence of variable excess of KOtBu. As shown in Figure 5.2, the slope of the plot of 

kobs vs. [KOtBu] was higher when [KOtBu] > [2b-H] and from the different slopes in the 

range of [KOtBu] < [2b-H] and [KOtBu] > [2b-H] one can derive that KOtBu is 

approximately two times more nucleophilic than 2b. As a consequence, KOtBu cannot be 

used in excess when nucleophiles with N ≤ 27 are investigated. On the other hand, an excess 

of KOtBu used for the deprotonation of 2a-H will hardly affect the first order rate constant 

because 2a reacts considerably faster than KOtBu (Figure S6, Experimental Section).  
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Figure 5.2. Plot of the observed first-order rate constants kobs for the reactions of electrophile 

3e (c0 = 2.00 × 10–5 mol L–1) with the nucleophile 2b against the concentration of KOtBu 

used for the deprotonation of 2b–H (c0 = 4.69 × 10–4 mol L–1) in DMSO at 20 °C. 

 

Correlation Analysis. In order to determine the nucleophile-specific parameters N and s 

for the phenylacetonitrile anions 1a–c (Figure 5.3) and the phenylpropionitrile anions 2a–c 

(Figure 5.4), the logarithmic second-order rate constants log k2 of their reactions with 

electrophiles 3a–u were plotted against the electrophilicity parameters E of 3a–u. 

The linear correlations for the reactions of the phenylacetonitrile anions 1a–c (R2 > 0.98, 

Figure 5.3) allow us to determine the nucleophile-specific parameters N and s for these 

carbanions. 
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Figure 5.3. Plot of log k2 for the reactions of the nucleophiles 1a–c with the electrophiles 3 in 

DMSO versus their electrophilicity parameters E. 

The correlations for the reactions of the phenylpropionitrile anions 2a–c (R2 ≥ 0.95, Figure 

5.4) show larger deviations from linearity than those of the phenylacetonitrile anions 1a–c. In 

particular, the reactions of the carbanion 2b with benzylidenemalonate 3p, as well as the 

reaction of carbanion 2c with quinone methide 3a are two times faster than expected. On the 

other hand, the reactions of 2b with the benzylidenemalonates 3m,n are approximately two 

times slower than expected. Taking into account that many different classes of Michael 

acceptors have been used as electrophiles, these deviations can be considered as rather small, 

and the correlation lines in Figure 5.6 were employed to determine the nucleophile-specific 

parameters N and s for the phenylpropionitriles 2a–c. 
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Figure 5.4. Plot of log k2 for the reactions of the nucleophiles 2a–c with the electrophiles 3 in 

DMSO versus their electrophilicity parameters E. 

As expected, electron-withdrawing groups at the p-position of the aromatic ring decrease 

the nucleophilicities N of the carbanions 1a–c and 2a–c. A comparison between the 

reactivities of the phenylacetonitrile anions 1a–c and the phenylpropionitrile anions 2a–c 

(Table 5.2 and Figure 5.5) shows that replacement of one hydrogen by a methyl group at the 

α-carbon of phenylacetonitrile anions does not significantly affect the nucleophilicities. The 

inductive effect of the methyl group and its steric demand obviously compensate each other 

resulting in similar reactivities of the analogously substituted carbanions 1b/2b and 1c/2c.  

In order to determine reliable nucleophilicity or electrophilicity parameters, reaction 

partners should be employed, which differ by several orders of magnitude. The correlation 

lines for compounds 2a–c fulfill this condition. However, it should be noted that the slopes of 

the correlation lines for compounds 2a and 2b are largely controlled by the reactions with the 

electrophiles 3f and 3b, respectively. The situation for compounds 1b,c is much better, 

because their N and s parameters can be derived from a balanced series of rate constants 

(Figure 5.3). Because the parameters N and s for carbanion 1a have only been derived from 

three rate constants, which differ by less than one order of magnitude, the nucleophilicity 

parameters N and s for 1a should be regarded with caution. 
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Figure 5.5. Comparison of the nucleophilicity parameters N of the phenylacetonitrile anions 

1a–c and the phenylpropionitrile anions 2a–c with those for α-nitro- and trifluoromethyl 

sulfonyl stabilized carbanions in DMSO. a λmax in DMSO, b λmax in MeOH, c λmax in 

DMSO/H2O 10:90 (v/v), d λmax in DMSO/H20 30:70 (v/v), e this work, f see ref. 9, g see ref. 27 

Figure 5.5 compares the colored α-acceptor substituted benzyl anions whose 

nucleophilicity parameters N have so far been determined. They cover a reactivity range of 

almost 15 orders of magnitude. It is obvious that the phenylacetonitrile anions 1a–c are much 

stronger nucleophiles than the analogously substituted α-triflinate and α-nitro substituted 
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benzyl anions, whose reactivities have recently been determined.6,8 Because of the paucity of 

available data, Hammett-plots for the differently substituted phenylacetonitrile anions 1a–c 

and phenylpropionitrile anions 2a–c are not informative. Figure 5.5 reveals, however, that 

variation of the p-substituents in both series 1a–c and 2a–c have considerably larger effects 

on the nucleophilic reactivities than in the series of α-triflinate and much more than in the 

series of α-nitro substituted carbanions. Obviously more negative charge is localized in the 

aromatic rings of carbanions 1a–c and 2a–c than in the corresponding α-triflinate and nitro 

substituted benzyl anions. 

pKa values are generally considered to be a useful tool for estimating the nucleophilic 

reactivities of many compounds. We have already shown that this assumption only holds 

within groups of structurally closely related nucleophiles.6,28 For example, the correlation 

between nucleophilicities of primary and secondary amines versus their pKaH values in water 

is very poor.28c Figure 5.6 shows a moderate correlation between the nucleophilicity 

parameters N of carbanions and the pKa values of their conjugate CH acids (cf. Scheme 5.1) 

in DMSO. It is obvious that the phenylacetonitrile anions 1a–c and carbanion 2a are 

considerably more nucleophilic than expected from the pKa values of the corresponding CH 

acids,29 indicating the limitation of pKa for predicting nucleophilic reactivities. In accordance 

with earlier reports,5,8,30 the positive deviations of the cyano substituted carbanions are 

indicative of lower intrinsic barriers of their reactions. 
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Figure 5.6. Correlation of the nucleophilicity parameters N of different carbanions versus the 

pKa values of their corresponding CH acids in DMSO. Overall correlation equation:                  

N = 0.802pKaH + 8.278, R2 = 0.750. (Nucleophilicity parameters N and pKaH values used for 

this diagram are compiled in the Experimental Section). 

 

Conclusions 

α-Cyano substituted benzyl anions are several orders of magnitude more nucleophilic than 

α-SO2CF3 and α-NO2 substituted benzyl anions. The high reactivities of the cyano substituted 

species 1a–c and 2a–c are only partially caused by their higher basicities (pKaH). Lower 

intrinsic barriers for the reactions of these carbanions are indicated by positive deviations 

from the Brønsted plots and also contribute to their high nucleophilicities. Variation of the          

p-substituent in the aromatic ring has a considerably larger effect on the nucleophilicities of 

1a–c and 2a–c than in the corresponding α-SO2CF3 and α-NO2 substituted counterparts, 
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indicating a larger delocalization of the negative charge in the aromatic ring of carbanions  

1a–c and 2a–c. As colored species of high nucleophilicities, these carbanions complement our 

series of reference nucleophiles, which can be employed for the photometric determination of 

electrophilic reactivities.  

 

General Remarks 

Phenylacetonitriles (1a–c)–H and Phenylpropionitriles (2a–c)–H. Phenylacetonitriles 1 are 

commercially available compounds and have been recrystallized from n-pentane/MeOH prior 

to use. Compounds (2a–c)–H have been prepared by methylation of the corresponding 

phenylacetonitriles by using methyl iodide as described in the literature.31 

 

3-(3,5-Di-tert-butyl-4-hydroxyphenyl)-3-(4-methoxyphenyl)-2-(4-nitrophenyl)-

propanenitrile (4cd). A mixture of 1c–H (25.0 mg, 154 µmol), NaOMe (8.30 mg, 170 µmol) 

and 3d (50.0 mg, 154 µmol) was stirred in MeOH (10 mL) for 1 h under N2 atmosphere. After 

work-up with diluted acetic acid and chromatography on silica gel (ihex/EtOAc 4:1, Rf = 

0.38), the product was obtained as a yellow foam (71.0 mg, 146 µmol, 95 % as a mixture of 

diastereomers in a ratio of 1:1.2). 1H-NMR (CDCl3, 300 MHz): δ = 1.32, 1.38 (2s, 18 H, CH3 

(tBu)), 3.76, 3.80 (2s, 3 H, OCH3), 4.19-4.24 (m, 1 H, CH), 4.51 (d, 3J = 8.4 Hz, 0.50 H, CH), 

4.57 (d, 3J = 8.1 Hz, 0.47 H, CH), 5.13, 5.17 (2s, 1 H, OH), 6.78-6.81 (m, 1 H, CHar), 6.85-

6.89 (m, 2.20 H, CHar), 6.97 (s, 1 H, CHar), 7.10-7.13 (m, 1 H, CHar), 7.19-7.27 (m, 3 H, CHar) 

8.07-8.11 ppm (m, 2 H, CHar). 13C-NMR (CDCl3, 75.5 MHz): δ = 30.15, 30.23 (2q, CH3), 

34.32, 34.35 (2s), 43.64, 43.73 (2d, CH), 55.22, 55.23 (2q, CH3), 55.82, 56.07 (2d, CH), 

114.07, 114.12 (2d, CHar), 119.13, 119.20 (2s, CN), 123.61, 123.66 (2d, CHar), 124.55, 

125.10 (2d, CHar), 128.95, 129.32, 129.43 (3d, CHar, peak for the other diastereomer 

superimposed), 129.35, 130.08 (s), 131.30, 132.00 (2s), 135.93, 136.12 (2s), 142.44, 142.47 
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(2s), 147.48, 147.50 (2s), 152.96, 153.26 (2s), 158.69, 158.99 ppm (2d). HR-MS (ESI)               

[M-H]-: calcd 485.2446; found 485.2440. 

4,4´-(Cyanoethene-1,2-diyl)-dibenzonitrile (6bn). Equimolar amounts of 1b–H (81 mg, 

0.57 mmol) and NaOMe were stirred in MeOH, when electrophile 3n was added 

subsequently. The resulting precipitate was filtered, washed and dried to yield the pure 

product 6bn as colorless solid (109 mg, 0.43 mmol, 75 %). 1H-NMR (d6-DMSO, 400 MHz): 

δ = 7.98-8.06 (m, 6 H, CHar), 8.09-8.12 (m, 2 H, CHar), 8.34 ppm (s, 1 H, C=CH). 13C-NMR 

(d6-DMSO, 100 MHz): δ = 111.9 (s), 112.8 (s), 116.6 (s), 118.2 (s), 126.8 (d, CHar), 129.8 (d, 

CHar), 132.7 (d, CHar), 133.0 (d, CHar), 137.5 (s), 143.8 ppm (d, C=CH). MS (EI) m/z (%) = 

256 (33) [M + H+], 255 (100) [M], 254 (82), 228 (39), 215 (63), 200 (14). HR-MS: calcd 

255.0796, found 255.0786 (C17H9N3), mp 303–304 °C (dec., ref.32 302–303 °C). 

 

Kinetics. The reactions of carbanions 1a–c and 2a–c were studied in DMSO at 20 °C. The 

rates of the reactions of carbanions 1a–c and 2a–c with the Michael acceptors 3a–u were 

determined photometrically under first-order conditions using either a large excess of the 

electrophiles 3a–u or of the carbanions 1a–c and 2a–c (for details see text and Experimental 

Section), which were generated by deprotonation of the corresponding CH acid (1a–c)-H and 

(2a–c)-H by using potassium tert.-butoxide or Schwesinger’s phosphazene bases P2-tBu and 

P4-tBu. 

The reactions were studied with conventional stopped-flow instruments as described earlier. 

The experiments were initiated by mixing equal volumes of solutions of the base and the CH 

acidic compounds (1a–c)-H and (2a–c)-H to generate the corresponding carbanions. After a 

delay time of t = 1 s the resulting solutions of the carbanions were mixed with equal volumes 

of solutions of the electrophiles. From the exponential decay of the absorptions of the minor 

components, first-order rate constants were obtained by least-squares fittings of the mono-

exponential function At = A0 exp(-kobs) + C to the absorbance data. 
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Experimental Section 

Nucleophilicities of the Anions of Arylacetonitriles 

and Arylpropionitriles in Dimethyl Sulfoxide 

O. Kaumanns, R. Appel, T. Lemek, F. Seeliger, and H. Mayr, J. Org. Chem. 2008, accepted.  

 
 
5.1. General 

Materials. Commercially available DMSO (content of H2O < 50 ppm) was used without further 

purification. Stock solutions of KOtBu in DMSO were prepared under nitrogen atmosphere. 

Phenylacetonitriles are commercially available compounds and have been used without further 

purification. Compounds 2a–c were prepared by methylation of the corresponding phenylacetonitriles 

by using methyl iodide as described in ref. S1 

NMR spectroscopy. In the 1H and 13C NMR spectra chemical shifts are expressed in ppm and refer to 

DMSO-d6 (δH 2.50, δC 39.4) or to CDCl3 (δH 7.26, δC 77.0) as internal standard. The coupling 

constants are in Hz. Abbreviations used are s (singlet), d (doublet), t (triplet), q (quartet), quint 

(quintet), m (multiplet). 

5.2. Determination of Rate Constants 

The general method for the determination of the rate constants is described in the experimental part of 

the paper. The temperature of the solutions was kept constant (20 ± 0.1 °C) during all kinetic 

experiments by using a circulating bath thermostat.  

                                                 
 
S1 Bailey, W. F.; Jiang, X.-L.; McLeod, C. E. J. Org. Chem. 1995, 60, 7791-7795. 
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For fast kinetic experiments (τ½ < 15 s), standard stopped-flow UV-vis-spectrophotometer systems 

were used in their double mixing mode. Kinetics of slow reactions (τ½ > 15 s) were determined by 

UV-Vis spectrometry using a diode array spectrophotometer which was connected to an insertion 

probe via fibre optic cables. 

Rate constants kobs (s–1) were obtained by fitting the single exponential function At = A0 exp(–kobst) + C 

to the observed time-dependent absorbance of the minor component. Plotting kobs against the 

concentrations of the nucleophiles resulted in linear correlations whose slopes correspond to the 

second-order rate constants k2 (L mol–1 s–1). For stopped-flow experiments with 1c and 2c two stock 

solutions were used: A solution of electrophiles 3a–u in DMSO and a solution of the carbanions 1c 

and 2c in DMSO generated by deprotonation of the corresponding CH acid with KOtBu, P2-tBu, or P4-

tBu or, in case of 2c, by dissolving the corresponding preformed potassium salt (2c-K). Due to their 

high reactivities and slow decomposition in DMSO solution, the carbanions 1a,b and 2a,b were 

generated by using a double-mixing mode of conventional stopped-flow instruments. In the first step, 

the CH acids (1a,b)-H and (2a,b)-H were mixed with the base to generate the corresponding 

carbanions directly in the sample cell. After a short remaining time of the carbanion solution in the 

mixing cell (age time), the electrophile solutions were added in a second step. Conditions different 

from those mentioned here, will be described explicitly in the corresponding tables. 
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5.3. Nucleophilicities for Different Carbanions and The Acidities of Their 

Conjugate CH Acids in DMSO 
 

Table S1: Nucleophilicities N for Different Types of Carbanions and the Aciditiy Constants 
pKa of their Conjugate CH Acids in DMSO. 

Compound N pKa Compound N pKa 

CN
 

29.14 23.00[Bor88] 
CO2Et

O
 18.82 14.20[Bor81] 

CN
F3C  

27.29 18.10[Bor86] SO2CF3
 18.67 14.62[Gou03] 

CN
NC  

25.11 16.00[Bor88] SO2Ph
O2N  

18.50 15.80[Bor88a] 

SO2Ph
F3C  

24.30 20.20[Bor88a] O O

 
18.38 15.07[Olm80] 

SO2Ph
NC  

22.60 18.50[Bor88a] NO2
 18.31 12.33[Kee79] 

NO2  21.54 16.70[Bor94] NO2
 18.29 12.20[Bor94] 

EtO2C CO2Et
 21.13 18.70[Bor88d] NO2

O2N

 
18.06 10.04[Kee79] 

NO2  20.71 17.20[Olm80] O O
 17.64 13.33[Olm80] 

NO2
 20.61 16.80[Bor94] SO2CF3

F3C  
17.33 11.95[Gou03] 

EtO2C CO2Et  20.22 16.37[Olm80] NO2

NC  
16.96 9.31[Kee79] 

O2N NO2  
19.92 15.10[Bor88b] NO2

O2N  
16.29 8.62[Kee79] 

CN
O2N  

19.68 12.30[Bor88] SO2CF3

NC  
16.28 10.70[Bor88] 

NC CO2Et  19.62 13.10[Bor88c] 

O O  
16.27 11.16[Olm80] 

NC CN  19.36 11.10[Bor89] SO2CF3

O2N
14.49 9.46[Gou03] 

SO2CF3
 

19.35 15.40[Bor88] O O
O O  

13.91 7.33[Arn87] 

 
 
[Arn87] Arnett, E. M.; Harrelson, J. A., Jr. J. Am. Chem. Soc. 1987, 109, 809-812. 
[Bor81] Bordwell, F. G.; Fried, H. E. J. Org. Chem. 1981, 46, 4327-4331. 
[Bor86] Bordwell, F. G.; Bausch, M. J. J. Am. Chem. Soc. 1986, 108, 1979-1985. 
  
[Bor88] Bordwell, F. G.; Cheng, J. P.; Bausch, M. J.; Bares, J. E. J. Phys. Org. Chem. 1988, 

1, 209-223. 
[Bor88a] Bordwell, F. G.; Bausch, M. J.; Branca, J. C.; Harrelson, J. A., Jr. J. Phys. Org. 

Chem. 1988, 1, 225-239. 
[Bor88b] Bordwell, F. G.; Algrim, D. J. J. Am. Chem. Soc. 1988, 110, 2964-2968. 
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[Bor88c] Bordwell, F. G.; Branca, J. C.; Bares, J. E.; Filler, R. J. Org. Chem. 1988, 53, 780-
782. 

[Bor88d] Bordwell, F. G. Acc. Chem. Res. 1988, 21, 456-463. 
[Bor89] Bordwell, F. G.; Harrelson, J. A., Jr.; Satish, A. V. J. Org. Chem. 1989, 54, 3101-

3105. 
[Bor94] Bordwell, F. G.; Satish, A. V. J. Am. Chem. Soc. 1994, 116, 8885-8889. 
[Gou03] Goumont, R.; Kizilian, E.; Buncel, E.; Terrier, F. Org. Biomol. Chem. 2003, 1, 

1741-1748. 
[Kee79] Keeffe, J. R.; Morey, J.; Palmer, C. A.; Lee, J. C. J. Am. Chem. Soc. 1979, 101, 

1295-1297. 
[Olm80] Olmstead, W. N.; Bordwell, F. G. J. Org. Chem. 1980, 45, 3299-3305. 
 
 

Please note that the product studies carried out by Roland Appel have been omitted from this 

Experimental Section, as well as the kinetic experiments he performed. This data and the 

kinetic experiments carried out by Florian Seeliger for compound 2c can be found in the 

Supporting Information of the published article. 

Other contributions and those from Tadeusz Lemek are stated in italics. 
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5.4. Product Studies 

 
Products 5 from the reactions of the nucleophile 2c 
 

3-(3,5-Di-tert.butyl-4-hydroxyphenyl)-2-methyl-2-(4-nitrophenyl)-3-p-tolylpropionitrile 

(5cc). After mixing 2c-H (63.0 mg, 0.36 mmol) with KOtBu (42.0 mg, 0.37 mmol) in DMSO 

(5 mL) and subsequent addition of 3c (122 mg, 0.40 mmol), the reaction mixture was stirred 

for 30 min at ambient temperature. Then the reaction mixture was poured into cold aqueous 

acetic acid (1 %) and extracted with CH2Cl2. The combined organic layers were washed with 

water and dried (Na2SO4). Evaporation of the solvent under reduced pressure yielded the 

crude product, which was purified by chromatography (SiO2, hexane/EtOAc 15:1, Rf = 0.5): 

75 mg (0.15 mmol, 42 %; colorless solid (dr 1:1.1). 

Major diastereomer: 1H NMR (CDCl3, 400 MHz): δ = 1.45 (s, 18 H, tbutyl), 1.72 (s, 3 H, 

CH3), 2.02 (s, 3 H, CH3), 4.04 (s, 1 H, CH), 5.20 (s, 1 H, OH), 6.85 (s, 2 H, CHar), 6.93 (d, 3J 

= 8.0 H, 2 H, CHar), 7.10 (d, 3J = 8.0 H, 2 H, CHar), 7.55 (d, 3J = 8.8 H, 2 H, CHar), 8.10 ppm 

(d, 3J = 8.8 H, 2 H, CHar). 13C NMR (CDCl3, 100 MHz): δ = 20.9 (q, CH3), 26.8 (q, CH3), 

30.3 (s, C(CH3)3), 34.5 (s, C(CH3)3), 47.7 (s, CR4), 61.9 (d, CH), 122.5 (s, CN), 123.6 (d, 

CHar),  125.6 (d, CHar), 127.5 (d, CHar), 128.5 (d, CHar), 129.1 (d, CHar), 135.9 (s, CHar), 

136.4 (s), 136.7 (s), 147.0 (s), 147.6 (s), 152.8 ppm (s).  

Minor diastereomer: 1H-NMR (CDCl3, 400 MHz): δ = 1.26 (s, 18 H, tbutyl), 1.75 (s, 3 H, 

CH3), 2.36 (s, 3 H, CH3), 3.95 (s, 1 H, CH), 5.04 (s, 1 H, OH), 7.21 (d, 3J = 8.0 H, 2 H, CHar), 

7.40 (s, 2 H, CHar),7.43 (d, 3J = 8.8 H, 2 H, CHar), 7.58 (d, 3J = 8.0 H, 2 H, CHar), 8.11 ppm 

(d, 3J = 8.8 H, 2 H, CHar). 13C NMR (CDCl3, 100 MHz): δ = 21.0 (q, CH3), 28.1 (q, CH3), 

30.1 (s, C(CH3)3), 34.2 (s, C(CH3)3), 47.9 (s, CR4), 62.6 (d, CH), 122.4 (s, CN), 123.3 (d, 

CHar),  125.9 (d, CHar), 127.4 (d, CHar), 128.5 (d, CHar), 129.6 (d, CHar), 136.3 (s, CHar), 

137.4 (s), 137.4 (s), 147.0 (s), 147.9 (s), 153.3 ppm (s). HR-MS (EI) [M]+: calcd 484.2798; 

found 485.2928 [C31H37N2O3]. 

HO

NC

NO2
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3-(1,3-Dimethyl-2,4,6-trioxohexahydropyrimidin-5-yl)-3-(4-methoxyphenyl)-2-methyl-2-

(4-nitrophenyl)propionitrile anion (5ck). In an NMR tube 2c-K (10.0 mg, 46.7 μmol) was 

dissolved in d6-DMSO (0.7 mL). After the addition of 3k (10.6 mg, 38.6 μmol) the products 

were analyzed by NMR spectroscopy without further work up: 5ck as a mixture of 

diastereomers (7:4). 
1H NMR (CDCl3, 200 MHz), major diastereomer: δ = 1.63 (s, 3 H, CH3), 2.87 (s, 6 H, NCH3), 

3.72 (s, 3 H, OCH3), 4.59 (s, 1 H, CH), 6.79 (d, 3J = 8.8 Hz, 2  H, Ar-H), 7.64 (d, 3J = 8.8 Hz, 

2 H, Ar-H), 7.73 (d, 3J = 8.8 Hz, 2 H, Ar-H) 8.09 ppm (d, 3J = 8.8 Hz, 2 H, Ar-H). 

Minor diastereomer: δ = 1.70 (s, 3 H, CH3), 3.02 (s , br., 3 H, NCH3), 3.08 (s, br., 3 H, 

NCH3), 3.64 (s, 3 H, OCH3), 4.64 (s, 1 H, CH), 6.60 (d, 3J = 8.8 Hz, 2 H, Ar-H), 7.20 (d, 3J = 

8.8 Hz, 2 H, Ar-H), 7.57 (d, 3J = 8.8 Hz, 2 H, Ar-H) 8.17 ppm (d, 3J = 8.8 Hz, 2 H, Ar-H). 

N

NO O

O

OMe

NC

NO2
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Products 6 from reactions of nucleophiles 1b,c with electrophile 3m–u 

 
General. Equimolar amounts of NaOMe and CH-acids (1b,c)-H were dissolved in dry MeOH 

(5 mL). Subsequently electrophiles 3 (1 equiv.) were added. After stirring for 5–10 min at 

ambient temperature the resulting precipitates were isolated by filtration, washed with MeOH, 

and dried under reduced pressure to yield the products 6. NMR signal assignments were based 

on additional DEPT, gHMBC and gHSQC experiments. 

 

4-(1-Cyano-2-(4-nitrophenyl)-vinyl)benzonitrile (6bm). From 1b-H (114 mg, 0.80 mmol) 

and 3m (234 mg, 0.80 mmol): 91 mg (0.33 mmol, 41 %); colorless solid; mp 212.9-213.7 °C 

(ref.S2: mp 212 °C). 1H NMR (d6-DMSO, 400 MHz): δ = 7.99-8.05 (m, 4 H, CHar), 8.17 (d, 3J 

= 8.8 Hz, 2 H, CHar), 8.39-8.42 ppm (m, 3 H, CHar and C=CH). 13C NMR (d6-DMSO, 100 

MHz): δ = 112.1 (s), 112.6 (s), 116.5 (s), 118.2 (s), 124.0 (d, CHar), 126.9 (d, CHar), 130.4 (d, 

CHar), 132.1 (d, CHar), 133.1 (d, CHar), 137.4 (s), 139.4 (s), 143.3 (d, C=CH), 148.1 ppm (s). 

MS (EI) m/z (%) = 276 (16), 275 (100) [M+], 229 (28), 228 (26), 202 (14), 190 (20), 175 (10). 

HR-MS: calcd 275.0689; found 275.0692 [C16H9N3O2]. 

CN
O2N

CN

 
 

4, 4´-(1-Cyanoethene-1,2-diyl)dibenzonitrile (6bn). From 1b-H (81 mg, 0.57 mmol) and 3n 

(170 mg, 0.62 mmol): 109 mg (0.43 mmol, 75 %); colorless solid; mp 303–304 °C (dec.) 

(ref.S3: mp 302-303 °C). 1H NMR (d6-DMSO, 400 MHz): δ = 7.98-8.06 (m, 6 H, CHar), 8.09-

8.12 (m, 2 H, CHar), 8.35 ppm (s, 1 H, C=CH). 13C NMR (d6-DMSO, 100 MHz): δ = 112.0 

(s), 112.8 (s), 116.6 (s), 118.2 (s), 126.8 (d, CHar), 129.8 (d, CHar), 132.8 (d, CHar), 133.0 (d, 

CHar), 137.6 (s), 143.8 ppm (d, C=CH). MS (EI) m/z (%) = 256 (33), 255 (100) [M+], 254 

(82), 228 (39), 215 (63), 200 (14). HR-MS: calcd 255.0796, found 255.0791 [C17H9N3]. 

CN
NC

CN

 
 

 

                                                 
 
S2 Kroeger, D. J.; Stewart, R. Can. J. Chem. 1967, 45, 2163-2171. 
S3 Bell, F.; Waring, D. H. J. Chem. Soc. 1948, 1024-1026. 



Chapter 5: Experimental Section 

207 

4-(2-(3-Chloro-phenyl)-1-cyanovinyl)benzonitrile (6bo). From 1b-H (146 mg, 1.03 mmol) 

and 3o (291 mg, 1.03 mmol): 121 mg (0.46 mmol, 45 %); colorless solid; mp 196.9-197.5 °C 

(Lit. ref.S2: mp 195-195.5 °C). 1H NMR (d6-DMSO, 400 MHz): δ = 7.60-7.62 (m, 2 H, CHar), 

7.95-8.02 (m, 6 H, CHar), 8.25 ppm (s, C=CH). 13C NMR (d6-DMSO, 100 MHz): δ = 110.2 

(s), 111.5 (s), 116.6 (s), 118.0 (s), 126.4 (d, CHar), 127.5 (d CHar), 128.8 (d, CHar), 130.6 (d, 2 

× CHar), 132.8 (d, CHar), 133.3 (s), 135.0 (s), 137.5 (s), 143.8 ppm (d, C=CH). MS (EI), m/z 

(%): 266 (24), 264 (73) [M+], 229 (100), 202 (18), 201 (18), 100 (15). HR-MS: calcd 

264.0448; found 264.0436 [C16H9
35ClN2]. 

 

CN

Cl

CN

 
 

4-(1-Cyano-2-phenylvinyl)benzonitrile (6bp). From 1b-H (99 mg, 0.70 mmol) and 3p (172 

mg, 0.69 mmol): 61 mg (0.26 mmol, 38 %); colorless solid; mp 146.0-146.5 °C (ref.S2: mp 

144.5-145.5 °C). 1H NMR (d6-DMSO, 400 MHz): δ = 7.56-7.58 (m, 3 H, CHar), 7.96-8.01 (m, 

6 H, CHar), 8.26 ppm (s, 1 H, C=CH). 13C NMR (d6-DMSO, 100 MHz): δ = 108.7 (s), 111.4 

(s), 117.2 (s), 118.3 (s), 126.5 (d, CHar), 129.0 (d, CHar), 129.4 (d, CHar), 131.2 (s), 133.0 (d, 

CHar), 133.2 (d, CHar), 138.1 (s), 145.8 ppm (s, C=CH). MS (EI), m/z (%): 231 (15), 230 

(100) [M+], 229 (55) [M - H+], 215 (18), 202 (11), 190 (16). 

CN

CN

 
 

4-(1-Cyano-2-p-tolylvinyl)benzonitrile (6bq). From 1b-H (98 mg, 0.69 mmol) and 3q (182 

mg, 0.69 mmol): 105 mg (0.43 mmol, 62 %); colorless solid; mp 172.8-173.8 °C. 1H NMR 

(d6-DMSO, 400 MHz): δ = 2.39 (s, CH3), 7.38 (d, 3J = 8.2 Hz, 2 H, CHar), 7.89 (d, 3J = 8.2 

Hz, 2 H, CHar), 7.93-7.99 (m, 4 H, CHar), 8.20 ppm (s, C=CH). 13C NMR (d6-DMSO, 100 

MHz): δ = 21.1 (q, CH3), 107.4 (s), 111.1 (s), 117.4 (s), 118.3 (s), 126.3 (d, 2 × CHar), 129.5 

(d, 2 × CHar), 130.5 (s), 132.9 (d, CHar), 138.3 (s), 141.7 (s), 145.7 ppm (d, C=CH). MS (EI), 

m/z (%): 245 (15), 244 (100) [M+], 229 (69). HR-MS: calcd 244.0995, found 244.0999 

[C17H12N2]. 

CN

CN
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4-(1-Cyano-2-(4-methoxyphenyl)vinyl)benzonitrile (6br). From 1b-H (72 mg, 0.51 mmol) 

and 3r (141 mg, 0.51 mmol): 60 mg (0.23 mmol, 45 %); yellow solid; mp 161.8-162.6 C 

(ref.S4: 161-162 °C). 1H NMR (d6-DMSO, 400 MHz): δ = 3.86 (OCH3), 7.14 (d, 3J = 8.9 Hz, 2 

H, CHar), 7.91-8.01 (m, 6 H, CHar), 8.17 ppm (s, C=CH). 13C NMR (d6-DMSO, 100 MHz): δ 

= 55.4 (q, OCH3), 105.2 (s), 110.6 (s), 114.6 (d, CHar), 117.7 (s), 118.4 (s), 125.7 (s), 126.1 

(d, CHar), 131.6 (d, CHar), 132.9 (d, CHar), 138.6 (s), 145.2 (d, C=CH), 161.7 ppm (s). MS 

(EI), m/z (%): 261 (24), 260 (100) [M+], 215 (12), 190 (41). HR-MS: calcd 260.0945; found 

260.0937 [C17H12N2O]. 

CN

CN

O  
 

4-(1-Cyano-2-(4-(dimethylamino)phenyl)vinyl)benzonitrile (6bs). From 1b-H (142 mg, 

1.00 mmol) and 3s (253 mg, 0.87 mmol): 191 mg (0.70 mmol, 80 %); yellow solid; mp 208.5-

209.1 °C (ref.S5 205 °C). 1H NMR (d6-DMSO, 400 MHz): δ = 3.05 (s, 6 H, N(CH3)2), 6.83 (d, 
3J = 9.2  Hz, 2 H,), 7.84-7.94 (m, 6 H, C-Har), 8.02 ppm (s, HC=C). 13C NMR (d6-DMSO, 100 

MHz): δ = 40.0 (t, N(CH3)2), 100.5 (s), 110.1 (s), 112.1 (d, CHar), 119.1 (s), 119.2 (s), 120.8 

(s), 125.9 (d, CHar), 132.3 (d, CHar), 133.3 (d, CHar), 140.0 (s), 145.9 (d, CHar, HC=C), 152.7 

ppm (s). MS (EI), m/z (%): 274 (15), 273 (100) [M+], 272 (61), 229 (9). HR-MS: calcd 

273.1261; found 273.1254 [C18H15N3]. 

CN

CN

N
 

 

4-(1-Cyano-2-(1,2,3,5,6,7-hexahydropyrido[3,2,1-ij]quinolin-9-yl)vinyl)benzonitrile 

(6bu). From 1b-H (123 mg, 0.87 mmol) and 3u (343 mg, 1.00 mmol): 255 mg (0.78 mmol, 

90 %); orange solid; mp 164.0-164.5 °C. 1H NMR (d6-DMSO, 400 MHz): δ = 1.88 (quint, 3J 

= 6.0 Hz, 4 H, NCH2CH2CH2), 2.69 (t, 3J = 6.0 Hz, 4 H, NCH2CH2CH2), 3.29 (t, 3J = 6.0 Hz, 

4 H, NCH2CH2CH2), 7.50 (s, 2 H, Car(jul)), 7.79-7.90 ppm (m, 5 H, Car). 13C NMR (d6-DMSO, 

100 MHz): δ = 20.7 (t, NCH2CH2CH2), 27.1 (t, NCH2CH2CH2), 49.2 (t, NCH2CH2CH2), 98.0 

(s), 109.1 (s), 119.1 (s), 120.2. (s), 125.0 (d, CHar), 129.4 (d, CHar), 132.7 (d, CHar), 139.8 (s), 

                                                 
 
S4 Ichimura, K.; Watanabe, S. Bull. Chem. Soc. Jpn. 1976, 49, 2224-2229. 
S5 Pfeiffer, P. Justus Liebigs Annalen der Chemie 1928, 20-52. 
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145.2 (d, HC=C), 145.6 ppm (s). MS (EI), m/z (%): 326 (22), 325 (100) [M+], 322 (10). HR-

MS: calcd 325.1574; found 325.1561 [C22H19N3]. 

CN

CN

N

 
2,3-Bis-(4-nitrophenyl)acrylonitrile (6cm). From 1c-H (144 mg, 0.89 mmol) and 3m (260 

mg, 0.89 mmol): 80 mg (0.27 mmol, 30 %); brown solid; mp 214.2-214.9 °C (ref.S2: 214-215 

°C). 1H NMR (d6-DMSO, 400 MHz): δ = 8.09 (d, 3J = 9.0 Hz, 2 H, CHar), 8.19 (d, 3J = 8.8 

Hz, 2 H, CHar), 8.38 (d, 3J = 9.0 Hz, 2 H, CHar), 8.41 (d, 3J = 8.8 Hz, 2 H, CHar), 8.46 ppm (s, 

1 H, C=CH). 13C NMR (d6-DMSO, 100 MHz): δ = 112.2 (s), 116.6 (s), 124.0 (d, 2 × CHar), 

124.3 d, 2 × CHar), 127.4 (d, 2 × CHar), 130.5 (d, 2 × CHar), 139.2, 139.3 (2 × s), 144.0 (d, 

C=CH), 147.8 (s), 148.2 ppm (s). MS (EI), m/z (%): 296 (18), 295 (100) [M+], 203 (26), 190 

(25); HR-MS: calcd 295.0588; found 295.0580 [C15H9N3O4]. 

 

O2N

NO2

CN
 

 
4-(2-Cyano-2-(4-nitrophenyl)vinyl)benzonitrile (6cn). From 1c-H (124 mg, 0.76 mmol) 

and 3n (204 mg, 0.75 mmol): 120 mg (0.44 mmol, 59 %); green solid; mp 134.0-135.1 °C. 1H 

NMR (d6-DMSO, 400 MHz): δ = 8.04-8.13 (m, 6 H, CHar), 8.37-8.40 ppm (m, 3 H, CHar, 

C=CH). 13C NMR (d6-DMSO, 100 MHz): δ = 111.6 (s), 112.9 (s), 116.6 (s), 118.2 (s), 124.3 

(d, CHar), 127.3 (d, CHar), 129.9 (d, CHar), 132.8 (d, CHar), 137.5 (s), 139.3 (s), 144.4 (d, 

C=CH), 147.7 ppm (s). MS (EI), m/z (%): 276 (15), 275 (100) [M+], 228 (27), 201 (15). HR-

MS: calcd 275.0689; found 275.0675 [C16H9N3O2]. 

 
NO2

CN
NC  

3-(4-Methyoxyphenyl)-2-(4-nitrophenyl)acrylonitrile (6cr). From 1c-H (150 mg, 0.93 

mmol) and 3r (257 mg, 0.92 mmol): 116 mg (0.41 mmol, 45 %); yellow solid; mp 160.8-

161.4 C (ref.S2: 162-163 °C). 1H NMR (d6-DMSO, 400 MHz): δ = 3.86 (s, 3 H, OCH3); 7.14 

(d, 3J = 9.0 Hz, 2 H, CHar), 7.98-8.03 (m, 3 H, CHar), 8.22 (s, 1 H, HC=C), 8.33 ppm (d, 3J = 

9.0 Hz, 2 H, CHar). 13C NMR (d6-DMSO, 100 MHz): δ = 55.5 (q, OCH3), 104.8 (s), 114.6 (d, 
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CHar), 117.7 (s), 124.2 (d, CHar), 125.7 (s), 126.4 (d, CHar), 131.8 (d, CHar ), 140.5 (s), 145.9 

(s), 146.9 (d, HC=C), 161.8 ppm (s). MS (EI), m/z (%): 281 (17), 280 (100) [M+], 189 (24). 

HR-MS: calcd 280.0843; found 280.0848 [C16H12N2O3]. 

CN
O

NO2

 
3-(4-(Dimethylamino)phenyl)-2-(4-nitrophenyl)acrylonitrile (6cs). From 1c-H (162 mg, 

1.00 mmol) and 3s (291 mg, 1.00 mmol): 200 mg (0.68 mmol, 68 %); dark red solid; mp 

250.7-251.5 °C ( ref.S6: 245-246 °C). 1H NMR (d6-DMSO, 400 MHz): δ = 3.06 (s, 6 H, 

NMe2), 6.85 (d, 3J = 9.0 Hz, 2 H, CHar), 7.94 (d, 3J = 7.2 Hz, 2 H, CHar), 7.96 (d, 3J = 7.2 Hz, 

2 H, CHar), 8.09 (s, HC=C), 8.30 (d, 3J = 8.9 Hz, 2 H, CHar) (in agreement with ref.S7). 13C 

NMR (d6-DMSO, 100 MHz): δ = 39.8 (q, N(CH3)2), 99.5 (s), 111.6 (d, CHar), 118.7 (s), 120.2 

(s), 124.2 (d, CHar), 125.6 (d, CHar), 132.0 (d, CHar), 141.6 (s), 146.1 (s), 146.1 (d, CHar, 

HC=C), 152.3 (s). HR-MS (EI): calcd 293.1159; found 293.1157 [C17H15N3O2]. 

CN
N

NO2

 
3-(1,2,3,5,6,7-Hexahydropyrido[3,2,1-ij]quinolin-9-yl)-2-(4-nitrophenyl)acrylonitrile 

(6cu). From 1c-H (108 mg, 0.67 mmol) and 3u (228 mg, 0.66 mmol): 108 mg (0.41 mmol,  

62 %); purple solid; mp 235.3 °C (dec). 
1H NMR (d6-DMSO, 400 MHz): δ = 1.89 (quint, 3J = 6.2 Hz, 4 H, NCH2CH2CH2), 2.70 (t, 3J 

= 6.2 Hz, 4 H, NCH2CH2CH2), 3.31 (t, 3J = 6.2 Hz, 4 H, NCH2CH2CH2), 7.54 (s, 2 H, 

CHar(jul)), 7.87-7.92 (m, 3 H, HC=C, 17-H, 21-H), 8.26 (d, 3J = 9.1 Hz, 2 H, 18-H, 20-H). 13C 

NMR (d6-DMSO, 100 MHz): δ = 20.7 (t, NCH2CH2CH2), 27.1 (t, NCH2CH2CH2), 49.2 (t, 

NCH2CH2CH2), 97.4 (s), 119.1 (s), 120.3 (d, Car(Jul)), 124.2 (d, CHar), 125.1 (d, CHar), 129.6 

(s), 142.0 (s), 145.6 (s), 145.9 (d, HC=C). HR-MS: calcd 345.1477; found 345.1472 

[C21H19N3O2]. 

CN
N

NO2

 

                                                 
 
S6 Schwenker, G. Arch. Pharm. Ber. Dtsch. Pharm. Ges. 1966, 299, 131-139. 
S7 Al-Shihry, S. S. Molecules 2004, 9, 658-665. 
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5.5. Deprotonation experiments 
 

The formation of the carbanions 1a–c and 2a from their conjugate CH acids (1a–c)-H and  

2a-H, respectively, were recorded by using diode array UV-Vis spectrometers. The 

temperature during all experiments was kept constant by using a circulating bath (20.0 ± 0.02 

°C). The CH acids (1a–c)-H and 2a-H were dissolved in DMSO and subsequently treated 

with various amounts of KOtBu or phosphazene base P4-tBu (dissolved in DMSO). 

0

0.1

0.2

0.3

0.4

0.5

0.6

0 1 2 3 4 5 6

t / min

ab
so

rb
an

ce

= + 1 eq KOt Bu

 
Figure S1:  Deprotonation experiment with p-(trifluoromethyl)-phenyl-acetonitrile 1a-H     

(n  = 1.35 × 10–6 mol) in DMSO at 20°C (deprotonated with KOtBu, λ = 360 

nm). 
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Figure S2:  Deprotonation experiment with p-cyano-phenyl-acetonitrile 1b-H (n = 1.31                

× 10–6 mol) in DMSO at 20 °C (deprotonated with KOtBu, λ = 390 nm). 
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Figure S3:  Deprotonation experiment with p-nitro-phenyl-acetonitrile 1c-H ( n = 1.52 × 10–6 

mol) in DMSO at 20 °C (deprotonated with KOtBu, λ = 540 nm). 
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Figure S4:  Deprotonation experiment of phenyl propionitrile 2a-H in DMSO (with 

phosphazene base P4-tBu, λ = 354 nm, c0 (2a-H) = 5.3 × 10–5 mol L–1). 

 

The influence of KOtBu on the first order rate constanst kobs for the reactions of electrophiles 

3e with carbanion 2b and of 3s with 2a was investigated in DMSO at 20 °C. The 

concentrations for the electrophiles 3e, 3s, and for the CH acids 2b-H and 2a-H were kept 

constant throughout the reactions. The influence of KOtBu was investigated by changing the 

concentration of base, which is necessary for the generation of the carbanions 2a and 2b.  
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Figure S5:  Plot of the first-order rate constants kobs for the reactions of electrophile 3e            

(c0 = 2.00 × 10–5 mol L–1) with the nucleophile 2b against the concentration of 

KOtBu used for the deprotonation of 2b–H (c0 = 4.69 × 10–3 mol L–1). 

 

Table S2:  First Order Rate Constants for the Reaction of the Electrophile 3s (c0 = 2.00 × 

10–5 mol L–1) with Carbanion 2b, Generated from 2b–H (c0 = 4.69 × 10–3 mol  

L–1) with Various Amounts of KOtBu in DMSO at 20 °C.  

 
kobs / s–1 

Entry [KOtBu] / 

mol L–1

Equivalents 

[KOtBu]/[2b–H] 1 sa

1 2.35 × 10–4 0.50 5.78 
2 4.93 × 10–4 1.05 11.00 
3 7.04 × 10–4 1.50 15.97 
4 8.68 × 10–4 1.85 23.70 
5 1.17 × 10–3 2.50 42.93 
6 1.41 × 10–3 3.00 58.10 

 

 



Chapter 5: Experimental Section 

214 

0.0

0.5

1.0

1.5

2.0

2.5

0 0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035

[KOtBu] / mol-1

k o
bs

/s
-1

CN

2a

[KOtBu] / [2a–H] = 1.0

[2a–H] = 1.03 × 10-3 mol L-1

 

Figure S6:  Plot of the first order rate constant kobs for the reactions of electrophile 3s              

(c0 = 3.23 × 10–5 mol L–1) with carbanion 2a versus the concentration of KOtBu 

which has been used to generate 2a from its corresponding CH acid 2a–H (c0 = 

1.03 × 10–3 mol L–1) in DMSO at 20 °C.  

 

Table S3:  First Order Rate Constants for the Reaction of the Electrophile 3s (c0 = 3.23 × 

10–5 mol L–1) with Carbanion 2a, Generated from 2a-H (c0 = 1.03 × 10–3 mol       

L–1) with Various Amounts of KOtBu in DMSO at 20 °C.  

 
Entry [KOtBu] / mol L–1 

Equivalents 

[KOtBu]/[2a–H] 
kobs / s–1 

1 7.39 × 10–4 0.72 0.32 
2 1.08 × 10–3 1.05 1.90 
3 1.21 × 10–3 1.17 2.02 
4 1.48 × 10–3 1.43 2.02 
5 1.75 × 10–3 1.69 2.28 
6 2.08 × 10–3 2.02 2.32 
7 3.09 × 10–3 3.00 2.29 
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5.6. KINETICS  
 
 

Table S4: Kinetics of the reaction of electrophile 3m with the anion of (p-cyano-

phenyl)acetonitrile (1b) in DMSO at 20 °C (deprotonated with 2 equiv. KOtBu, 

stopped-flow UV-Vis spectrometer, λ = 394 nm). 

 

Nr. [Nu–]0 / M [E]0 / M kobs / s−1 

a313-1 4.08 × 10−5 5.00 × 10−4 7.60 

a313-2 4.08 × 10−5 1.00 × 10−3 1.61 × 101 

a313-3 4.08 × 10−5 1.50 × 10−3 2.53 × 101 

a313-4 4.08 × 10−5 2.00 × 10−3 3.36 × 101 

a313-5 4.08 × 10−5 2.50 × 10−3 4.13 × 101 

k2 = 1.70 × 104 L mol–1 s–1 

 

Table S5: Kinetics of the reaction of electrophile 3m with the anion of (p-cyano 

phenyl)acetonitrile (1b) in DMSO at 20 °C (deprotonated with 2 equiv. KOtBu, 

in the presence of 18-crown-6, stopped-flow UV-Vis spectrometer, λ = 398 nm). 

 

Nr. [Nu–]0 / M 
[18-crown-6] 

/ M 
[E]0 / M kobs / s−1 

a325-1 4.18 × 10−5 4.39 × 10−5 7.21 × 10−4 1.22 × 101 

a325-2 4.18 × 10−5 4.39 × 10−5 1.44 × 10−3 2.51 × 101 

a325-3 4.18 × 10−5 4.39 × 10−5 2.16 × 10−3 3.79 × 101 

a325-4 4.18 × 10−5 4.39 × 10−5 2.88 × 10−3 4.83 × 101 

a325-5 4.18 × 10−5 4.39 × 10−5 3.60 × 10−3 5.97 × 101 

k2 = 1.64 × 104 L mol–1 s–1 

y = 16410.3586x + 1.1520
R2 = 0.9981
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0.0000 0.0010 0.0020 0.0030 0.0040

[3m ] / M

kobs / s-1

 
 

y = 16980x - 0.690
R2 = 0.9991
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Table S6: Kinetics of the reaction of electrophile 3m with the anion of (p-cyano-

phenyl)acetonitrile (1b) in DMSO at 20 °C (deprotonated with 2 equiv. KOtBu, 

addition 18-crown-6, addition of CH acid, stopped-flow UV-Vis spectrometer,         

λ = 398 nm). 

Nr. [Nu]0 / M [18-crown-6] / M [1b-H] / M [E]0 / M kobs / s−1 

a325b-1 4.18 × 10−5 4.39 × 10−5 1.25 × 10−4 7.21 × 10−4 1.37 × 101 

a325b-2 4.18 × 10−5 4.39 × 10−5 1.25 × 10−4 1.44 × 10−3 2.50 × 101 

a325b-3 4.18 × 10−5 4.39 × 10−5 1.25 × 10−4 2.16 × 10−3 3.59 × 101 

a325b-5 4.18 × 10−5 4.39 × 10−5 1.25 × 10−4 2.88 × 10−3 4.84 × 101 

k2 = 1.60 × 104 L mol–1 s–1 

y = 15952.4338x + 1.9850
R2 = 0.9992
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50
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80

0.0000 0.0010 0.0020 0.0030

[3m ] / M

k obs / s-1

 
Table S7: Kinetics of the reaction of electrophile 3m with the anion of (p-cyano-

phenyl)acetonitrile (1b) in DMSO at 25 °C (deprotonated with 2 equiv. KOtBu, 

addition of 18-crown-6, stopped-flow UV-Vis spectrometer, λ = 398 nm). 

Nr. [Nu–]0 / M [18-crown-6] / M [E]0 / M kobs / s−1 

a324-5 4.43 × 10−5 4.65 × 10−5 7.11 × 10−4 1.72 × 101 

a324-2 4.43 × 10−5 4.65 × 10−5 1.42 × 10−3 3.03 × 101 

a324-3 4.43 × 10−5 4.65 × 10−5 2.13 × 10−3 4.35 × 101 

a324-4 4.43 × 10−5 4.65 × 10−5 2.84 × 10−3 5.75 × 101 

a324-6 4.43 × 10−5 4.65 × 10−5 3.56 × 10−3 6.97 × 101 

k2 = 1.86 × 104 L mol–1 s–1 

y = 18606.47x + 3.95
R2 = 1.00

0
20
40
60
80

100

0.0000 0.0010 0.0020 0.0030 0.0040

[3m] / M

k obs / s
-1
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y = 8874.3x - 0.482
R2 = 0.9997

0.0

10.0

20.0

30.0

0.000 0.001 0.002 0.003 0.004

[3n] / M

k obs / s
-1

y = 2807x - 0.115
R2 = 0.999

0.00
3.00
6.00
9.00

12.00

0.0000 0.0010 0.0020 0.0030 0.0040

[3o]  M

k obs / s-1

 

Table S8: Kinetics of the reaction of electrophile 3n with the anion of (p-cyano-

phenyl)acetonitrile (1b) in DMSO at 20 °C (deprotonated with 2 equiv. KOtBu, 

stopped-flow UV-Vis spectrometer, λ = 394 nm). 

 

Nr. [Nu–]0 / M [E]0 / M kobs / s−1 

a312-5 4.08 × 10−5 9.35 × 10−4 7.89 

a312-1 4.08 × 10−5 1.40 × 10−3 1.18 × 101 

a312-2 4.08 × 10−5 1.87 × 10−3 1.61 × 101 

a312-3 4.08 × 10−5 2.34 × 10−3 2.04 × 101 

a312-4 4.08 × 10−5 3.27 × 10−3 2.85 × 101 

k2 = 8.87 × 103 L mol–1 s–1 

 

Table S9: Kinetics of the reaction of electrophile 3o with the anion of (p-cyano-

phenyl)acetonitrile (1b) in DMSO at 20 °C (deprotonated with KOtBu, stopped-

flow UV-Vis spectrometer, λ = 397 nm). 

 

Nr. [Nu–]0 / M [E]0 / M kobs / s−1 

a309-1 3.10 × 10−5 6.59 × 10−4 1.84 

a309-3 3.10 × 10−5 1.32 × 10−3 3.55 

a309-4 3.10 × 10−5 1.98 × 10−3 5.33 

a309-4 3.10 × 10−5 2.64 × 10−3 7.24 

a309-5 3.10 × 10−5 3.30 × 10−3 9.26 

k2 = 2.81 × 103 L mol–1 s–1 
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Table S10: Kinetics of the reaction of electrophile 3p with the anion of (p-cyano-

phenyl)acetonitrile (1b) in DMSO at 20 °C (deprotonated with KOtBu, 

stopped-flow UV-Vis spectrometer, λ = 397 nm). 

 

Nr. [Nu–]0 / M [E]0 / M kobs / s−1 

a307b-1 2.12 × 10−5 4.08 × 10−4 1.07 × 10–1 

a307b-2 2.12 × 10−5 8.16 × 10−4 2.36 × 10–1 

a307b-3 2.12 × 10−5 1.22 × 10−3 3.42 × 10–1 

a307b-4 2.12 × 10−5 1.63 × 10−3 4.57 × 10–1 

a307b-5 2.12 × 10−5 2.04 × 10−3 5.68 × 10–1 

k2 = 2.80 × 102 L mol–1 s–1 

 

Table S11: Kinetics of the reaction of electrophile 3q with the anion of (p-cyano-

phenyl)acetonitrile (1b) in DMSO at 20 °C (deprotonated with KOtBu, stopped-

flow UV-Vis spectrometer, λ = 394 nm). 

 
Nr. [Nu–]0 / M [E]0 / M kobs / s−1 

a311-2 8.27 × 10−5 1.43 × 10−3 2.58 × 10–1 

a311-1 8.27 × 10−5 2.86 × 10−3 4.99 × 10–1 

a311-4 8.27 × 10−5 4.29 × 10−3 7.12 × 10–1 

a311-5 8.27 × 10−5 5.72 × 10−3 9.23 × 10–1 

k2 = 1.54 × 102 L mol–1 s–1 

 

Table S12: Kinetics of the reaction of electrophile 3r with the anion of (p-cyano-

phenyl)acetonitrile (1b) in DMSO at 20 °C (deprotonated with KOtBu, J&M 

UV-Vis spectrometer, λ = 394 nm). 

 

Nr. [E] 0 / M [Nu–]0 / M kobs / s−1 

c310-1 4.33 × 10−5 4.72 × 10−4 5.26 × 10–2 

c310-2 4.33 × 10−5 9.31 × 10−4 8.83 × 10–2 

c310-3 4.33 × 10−5 1.40 × 10−3 1.10 × 10–1 

c310-4 4.33 × 10−5 1.83 × 10−3 1.45 × 10–1 

k2 = 6.50 × 101 L mol–1 s–1 

y = 154.39x + 0.0464
R2 = 0.999
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Kinetics for the anion of (p-nitro-phenyl)acetonitrile (1c)  
 

 

Table S13: Kinetics of the reaction of electrophile 3m with the anion of (p-nitro-

phenyl)acetonitrile (1c) in DMSO at 20 °C (deprotonated with 1.05 equiv. 

KOtBu, J&M UV-Vis spectrometer, λ = 537 nm). 

 

Nr. [Nu–]0 / M [E]0 / M kobs / s−1 

c305-2 2.66 × 10−5 5.57 × 10−4 2.82 × 10–2 

c305-3 2.66 × 10−5 8.44 × 10−4 3.50 × 10–2 

c305-4 2.66 × 10−5 1.12 × 10−3 4.26 × 10–2 

c305-5 2.66 × 10−5 1.42 × 10−3 4.96 × 10–2 

k2 = 2.51 × 101 L mol–1 s–1 

 

Table S14: Kinetics of the reaction of electrophile 3n with the anion of (p-nitro-

phenyl)acetonitrile (1c) in DMSO at 20 °C (deprotonated with KOtBu, J&M 

UV-Vis spectrometer, λ = 537 nm). 

 

Nr. [Nu–]0 / M [E]0 / M kobs / s−1 

c306-1 4.69 × 10−5 5.70 × 10−4 4.62 × 10–2 

c306-2 4.69 × 10−5 1.13 × 10−3 5.03 × 10–2 

c306-6 4.69 × 10−5 1.65 × 10−3 5.55 × 10–2 

c306-4 4.69 × 10−5 2.83 × 10−3 6.84 × 10–2 

k2 = 9.98 L mol–1 s–1 

y = 25.050x + 0.0142
R2 = 0.9990
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[C - ] / M
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y = 3053.3x - 0.7563
R2 = 0.9974

0.0
0.5
1.0
1.5
2.0
2.5

0.0000 0.0002 0.0004 0.0006 0.0008 0.0010

[2a] / M 

k obs / s-1

Kinetics for the anion of 2-phenyl-propionitrile (2a)  
 
Table S15:  Kinetics of the reaction of 3f with the anion of 2-phenyl-propionitrile (2a) in 

DMSO at 20 °C (deprotonated with 1.05 eq. phosphazene base P4-tBu, stopped-

flow UV-Vis spectrometer, λ = 524 nm). 

Nr. [E]0 / M [Nu–] 0 / M kobs / s−1 

265-1 2.01 × 10−5 3.62 × 10−4 5.79 × 102 

265-2 2.01 × 10−5 5.07 × 10−4 9.40 × 102 

265-3 2.01 × 10−5 6.52 × 10−4 1.49 × 103 

265-4 2.01 × 10−5 7.97 × 10−4 2.54 × 103 

k2 = 2.50 × 106 L mol–1 s–1 

 

Table S16:  Kinetics of the reaction of electrophile 3s with the anion of 2-phenyl-

propionitrile (2a) in DMSO at 20 °C (deprotonated with phosphazene base             

P4-tBu, stopped-flow UV-Vis spectrometer, λ = 405 nm). 

 
Nr. [E]0 / M [Nu–] 0 / M kobs / s−1 

a369-1 1.92 × 10−5 3.62 × 10−4 3.85 × 10–1 

a369-2 1.92 × 10−5 5.07 × 10−4 7.72 

a369-3 1.92 × 10−5 6.52 × 10−4 1.28 

a369-4 1.92 × 10−5 7.97 × 10−4 1.66 

k2 = 3.05 × 103 L mol–1 s–1 

 
Table S17:  Kinetics of the reaction of electrophile 3s with the anion of 2-phenyl-

propionitrile (2a) in DMSO at 20 °C (deprotonated with 1.05 eq. phosphazene 

base P4-tBu, stopped-flow UV-Vis spectrometer, λ = 410 nm). 

 
Nr. [E]0 / M [Nu–] 0 / M kobs / s−1 

a373-2 1.85 × 10−5 5.25 × 10−4 4.34 × 10–1 

a373-3 1.85 × 10−5 6.75 × 10−4 8.81 × 10–1 

a373-4 1.85 × 10−5 8.25 × 10−4 1.31 

a373-5 1.85 × 10−5 9.75 × 10−4 1.73 

k2 = 2.87 × 103 L mol–1 s–1 

 

y = 2499571.43x - 486.43
R2 = 1.00
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y = 3150.3x - 0.8816
R2 = 1

0.0

0.5

1.0
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2.5

0.0000 0.0002 0.0004 0.0006 0.0008 0.0010 0.0012
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k 1ψ s-1

Table S18: Kinetics of the reaction of electrophile 3s with the anion of2-phenyl-propionitrile 

(2a) in DMSO at 20 °C (deprotonated with 1.05 equiv. KOtBu, stopped-flow 

UV-Vis spectrometer, λ = 400 nm). 

 

Nr. [E]0 / M [Nu–]0 / M kobs / s−1 

a368c-2 1.92 × 10−5 5.75 × 10−4 3.93 × 10–1 

a368c-3 1.92 × 10−5 7.67 × 10−4 9.47 × 10–1 

a368c-4 1.92 × 10−5 9.58 × 10−4 1.55 

a368c-5 1.92 × 10−5 1.12 × 10−3 2.11 

k2 = 3.12 × 103 L mol–1 s–1 

 

Table S19: Kinetics of the reaction of electrophile 3s with the anion of 2-phenyl-

propionitrile (2a) in DMSO at 20 °C (deprotonated with 2.00 equiv. KOtBu, 

stopped-flow UV-Vis spectrometer, λ = 400 nm). 

 

Nr. [E]0 / M [Nu–]0 / M kobs / s−1 

a368b-2 1.92 × 10−5 4.38 × 10−4 4.22 × 10–1 

a368b-3 1.92 × 10−5 5.75 × 10−4 7.72 × 10–1 

a368b-4 1.92 × 10−5 7.67 × 10−4 1.43 

a368b-5 1.92 × 10−5 9.31 × 10−3 1.92 

k2 = 3.09 × 103 L mol–1 s–1 

 

Table S20: Kinetics of the reaction of electrophile 3s with the anion of 2-phenyl-

propionitrile (2a) in DMSO at 20 °C (deprotonated with 3.00 equiv. KOtBu, 

stopped-flow UV-Vis spectrometer, λ = 400 nm). 

 

Nr. [E]0 / M [Nu–]0 / M kobs / s−1 

a368a-2 1.92 × 10−5 4.38 × 10−4 5.01 × 10–1 

a368a-3 1.92 × 10−5 5.75 × 10−4 9.29 × 10–1 

a368a-4 1.92 × 10−5 7.67 × 10−4 1.54 

a368a-5 1.92 × 10−5 9.58 × 10−3 2.14 

k2 = 3.15 × 103 L mol–1 s–1 

y = 3123.5x - 1.4225
R2 = 0.9989
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Table S21:  Kinetics of the reaction of electrophile 3t with the anion of 2-phenyl-

propionitrile (2a) in DMSO at 20 °C (deprotonated with P4-tBu phosphazene 

base, stopped-flow UV-Vis spectrometer, λ = 405 nm). 

 
Nr. [E]0 / M [Nu–] 0 / M kobs / s−1 

a369b-1 1.66 × 10−5 3.62 × 10−4 3.50 × 10–1  

a369b-2 1.66 × 10−5 5.07 × 10−4 5.95 × 10–1 

a369b-3 1.66 × 10−5 6.52 × 10−4 8.86 × 10–1 

a369b-4 1.66 × 10−5 7.97 × 10−4 1.15 

k2 = 1.86 × 103 L mol–1 s–1 

 

Table S22: Kinetics of the reaction of electrophile 3t with the anion of 2-phenyl-

propionitrile (2a) in DMSO at 20 °C (deprotonated with 2.00 equiv. KOtBu, 

stopped-flow UV-Vis spectrometer, λ = 405 nm). 

 

Nr. [E]0 / M [Nu–]0 / M kobs / s−1 

a366-1 2.02 × 10−5 3.18 × 10−4 3.00 × 10–1 

a366-5 2.02 × 10−5 3.98 × 10−4 4.24 × 10–1 

a366-2 2.02 × 10−5 6.36 × 10−4 8.22 × 10–1 

a366-3 2.02 × 10−5 8.35 × 10−4 1.17 

a366-4 2.02 × 10−5 9.94 × 10−4 1.44 

k2 = 1.69 × 103 L mol–1 s–1 

 

Table S23: Kinetics of the reaction of electrophile 3t with the anion of 2-phenyl-

propionitrile (2a) in DMSO at 20 °C (deprotonated with 1.05 equiv. KOtBu, 

stopped-flow UV-Vis spectrometer, λ = 405 nm). 

Nr. [E]0 / M [Nu–]0 / M kobs / s−1 

a354-1 3.27 × 10−5 6.04 × 10−4 2.98 × 10–1 

a354-2 3.27 × 10−5 9.05 × 10−4 7.58 × 10–1 

a354-4 3.27 × 10−5 1.21 × 10−3 1.19 

a354-5 3.27 × 10−5 1.51 × 10−3 1.67 

k2 = 1.50 × 103 L mol–1 s–1 

 

y = 1692.5x - 0.2458
R2 = 0.9998

0.0
0.3
0.6
0.9
1.2
1.5

0.0000 0.0005 0.0010 0.0015

[Nu] / M 

k 1ψ s-1

y = 1504.3x - 0.6113
R2 = 0.9995

0.0
0.5
1.0
1.5
2.0
2.5

0.0000 0.0005 0.0010 0.0015 0.0020

[Nu] / M
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Table S24:  Kinetics of the reaction of electrophile 3u with the anion of 2-phenyl-

propionitrile (2a) in DMSO at 20 °C (deprotonated with P4-tBu phosphazene 

base, stopped-flow UV-Vis spectrometer, λ = 405 nm). 

 
Nr. [E]0 / M [Nu–] 0 / M kobs / s−1 

a369c-1 1.63 × 10−5 3.82 × 10−4 2.86 × 10–1  

a369c-2 1.63 × 10−5 5.35 × 10−4 4.34 × 10–1 

a369c-3 1.63 × 10−5 6.88 × 10−4 5.88 × 10–1 

a369c-4 1.63 × 10−5 8.41 × 10−3 7.34 × 10–1 

k2 = 9.90 × 102 L mol–1 s–1 

 

Table S25: Kinetics of the reaction of electrophile 3u with the anion of 2-phenyl-

propionitrile (2a) in DMSO at 20 °C (deprotonated with 1.05 equiv. KOtBu, 

stopped-flow UV-Vis spectrometer, λ = 405 nm). 

 

Nr. [E]0 / M [Nu–]0 / M kobs / s−1 

a352-2 2.88 × 10−5 5.53 × 10−4 1.58 × 10–1 

a352-3 2.88 × 10−5 8.30 × 10−4 4.29 × 10–1 

a352-4 2.88 × 10−5 1.11 × 10−3 6.37 × 10–1 

a352-5 2.88 × 10−5 1.38 × 10−3 8.77 × 10–1 

k2 = 8.54 × 102 L mol–1 s–1 

 

Table S26: Kinetics of the reaction of electrophile 3u with the anion of 2-phenyl-

propionitrile (2a) in DMSO at 20 °C (deprotonated with 2.00 equiv. KOtBu, 

stopped-flow UV-Vis spectrometer, λ = 405 nm). 

 

Nr. [E]0 / M [Nu–]0 / M kobs / s−1 

a365-1 1.96 × 10−5 3.06 × 10−4 2.34 × 10–1 

a365-6 1.96 × 10−5 5.57 × 10−4 4.50 × 10–1 

a365-5 1.96 × 10−5 7.37 × 10−4 6.57 × 10–1 

a365-3 1.96 × 10−5 9.17 × 10−4 8.27 × 10–1 

k2 = 9.82 × 102 L mol–1 s–1 

y = 990.91x - 0.0863
R2 = 0.9999
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Kinetics for the anion of 2-(p-cyanophenyl)-propionitrile (2b)  
 

Table S27: Kinetics of the reaction of 3b with the anion of 2-(p-cyanophenyl)-propionitrile 

(2b) in DMSO at 20 °C (deprotonated with phosphazene base P2-tBu, UV-Vis 

spectrometer, λ = 533 nm). 

 
Nr. [E]0 / M [Nu–]0 / M kobs / s−1 

270-1 8.00 × 10−6 5.72 × 10−5 4.04 × 102 

270-2 8.00 × 10−6 1.24 × 10−4 9.22 × 102 

270-3 8.00 × 10−6 1.86 × 10−4 1.42 × 103 

270-4 8.00 × 10−6 2.49 × 10−4 1.87 × 103 

270-5 8.00 × 10−6 3.11 × 10−4 2.37 × 103 

k2 = 7.73 × 106 L mol–1 s–1 

 
 
Table S28: Kinetics of the reaction of 3e with the anion of 2-(p-cyanophenyl)-propionitrile 

(2b) in DMSO at 20 °C (deprotonated with phosphazene base P2-tBu, stopped-

flow UV-Vis spectrometer, λ = 488 nm). 

 
Nr. [E]0 / M [Nu–]0 / M kobs / s−1 

T-271-1 3.78 × 10−5 2.49 × 10−4 1.04 × 101 

T-271-2 3.78 × 10−5 3.73 × 10−4 1.60 × 101 

T-271-3 3.78 × 10−5 4.97 × 10−4 2.12 × 101 

T-271-4 3.78 × 10−5 7.46 × 10−4 3.22 × 101 

T-271-5 3.78 × 10−5 9.94 × 10−4 4.39 × 101 

T-271-6 3.78 × 10−5 1.24 × 10−3 5.55 × 101 

k2 = 4.54 × 104 L mol–1 s–1 

y = 7726988.18x - 34.09
R2 = 1.00

0
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Table S29: Kinetics of the reaction of 3e with the anion of 2-(p-cyanophenyl)-propionitrile 

(2b) in DMSO at 20 °C (deprotonated with 1.00 equiv. KOtBu, stopped-flow 

UV-Vis spectrometer, λ = 488 nm). 

 
Nr. [E]0 / M [Nu–]0 / M kobs / s−1 

T-141-1 2.02 × 10−5 2.61 × 10−4 4.93 

T-141-2 2.02 × 10−5 5.00 × 10−4 1.28 × 101 

T-141-3 2.02 × 10−5 7.51 × 10−4 1.96 × 101 

T-141-4 2.02 × 10−5 1.00 × 10−3 2.64 × 101 

T-141-5 2.02 × 10−5 1.25 × 10−3 3.65 × 101 

T-141-6 2.02 × 10−5 1.50 × 10−3 4.49 × 101 

k2 = 3.20 × 104 L mol–1 s–1 

 

 
Table S30: Kinetics of the reaction of electrophile 3f with the anion of 2-(p-cyanophenyl)-

propionitrile (2b) in DMSO at 20 °C (deprotonated with phosphazene base            

P2-tBu, stopped-flow UV-Vis spectrometer, λ = 524 nm). 

 
Nr. [E]0 / M [Nu–]0 / M kobs / s−1 

272-1 2.48 × 10−5 2.49 × 10−4 9.71  

272-2 2.48 × 10−5 4.97 × 10−4 1.51 × 101 

272-3 2.48 × 10−5 7.46 × 10−4 2.15 × 101 

272-4 2.48 × 10−5 1.24 × 10−3 3.30 × 101 

272-5 2.48 × 10−5 1.74 × 10−3 4.72 × 101 

k2 = 2.51 × 104 L mol–1 s–1 

y = 25059.20x + 2.89
R2 = 1.00
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Table S31:  Kinetics of the reaction of electrophile 3m with the anion of 2-(p-cyanophenyl)-

propionitrile (2b) in DMSO at 20 °C (deprotonated with 2 eq. of KOtBu, 

stopped-flow UV-Vis spectrometer, λ = 403 nm). 

 
Nr. [Nu–]0 / M [E]0 / M kobs / s−1 

a357-1 5.54 × 10−5 5.29 × 10−4 9.63 

a357-2 5.54 × 10−5 1.06 × 10−3 1.52 × 101 

a357-3 5.54 × 10−5 1.59 × 10−3 2.06 × 101 

a357-4 5.54 × 10−5 2.12 × 10−3 2.65 × 101 

a357-5 5.54 × 10−5 2.29 × 10−3 2.85 × 101 

a357-6 5.54 × 10−5 2.64 × 10−3 3.26 × 101 

k2 = 1.08 × 104 L mol–1 s–1 

 

Table S32:  Kinetics of the reaction of electrophile 3m with the anion of 2-(p-cyanophenyl)-

propionitrile (2b) in DMSO at 20 °C under Ar atmosphere (deprotonated with 2 

eq. of KOtBu, stopped-flow UV-Vis spectrometer, λ = 403 nm). 

 

Nr. [Nu–]0 / M [E]0 / M kobs / s−1 

a357b-1 5.91 × 10−5 4.06 × 10−4 7.09 

a357b-2 5.91 × 10−5 8.12 × 10−4 1.14 × 101 

a357b-3 5.91 × 10−5 1.22 × 10−3 1.72 × 101 

a357b-4 5.91 × 10−5 1.62 × 10−3 2.13 × 101 

a357b-5 5.91 × 10−5 2.03 × 10−3 2.55 × 101 

k2 = 1.15 × 104 L mol–1 s–1 

y = 10797x + 3.753
R2 = 0.9994
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Table S33:  Kinetics of the reaction of electrophile 3n with the anion of 2-(p-cyanophenyl)-

propionitrile (2b) in DMSO at 20 °C (deprotonated with KOtBu, stopped-flow 

 UV-Vis spectrometer, λ = 403 nm). 

Nr. [Nu–]0 / M [E]0 / M kobs / s−1 

a355d-1 5.54 × 10−5 1.95 × 10−3 1.37 × 101 

a355d-2 5.54 × 10−5 3.89 × 10−3 2.43 × 101 

a355d-3 5.54 × 10−5 5.84 × 10−3 3.53 × 101 

a355d-5 5.54 × 10−5 9.73 × 10−3 5.78 × 101 

k2 = 5.68 × 103 L mol–1 s–1 

 

Table S34:  Kinetics of the reaction of electrophile 3o with the anion of 2-(p-cyanophenyl)-

propionitrile (2b) in DMSO at 20 °C (deprotonated with 2 eq. of KOtBu, 

stopped-flow UV-Vis spectrometer, λ = 403 nm). 

 
Nr. [Nu–]0 / M [E]0 / M kobs / s−1 

a356-1 8.31 × 10−5 8.30 × 10−4 3.80 

a356-2 8.31 × 10−5 1.66 × 10−3 5.59 

a356-3 8.31 × 10−5 2.49 × 10−3 7.49 

a356-4 8.31 × 10−5 3.32 × 10−3 9.34 

a356-5 8.31 × 10−5 4.98 × 10−3 1.39 × 101 

k2 = 2.44 × 103 L mol–1 s–1 

 
 
Table S35: Kinetics of the reaction of electrophile 3p with the anion of 2-(p-cyanophenyl)-

propionitrile (2b) in DMSO at 20 °C (stopped-flow UV-Vis spectrometer, λ = 403 nm). 

 
Nr. [Nu–]0 / M [E]0 / M kobs / s−1 

148-1 1.00 × 10−4 5.00 × 10−3 6.86 

148-2 1.00 × 10−4 1.00 × 10−2 1.20 × 101 

148-3 1.00 × 10−4 1.50 × 10−2 1.85 × 101 

148-4 1.00 × 10−4 2.50 × 10−2 3.05 × 101 

148-5 1.00 × 10−4 4.00 × 10−2 4.84 × 101 

k2 = 1.19 × 103 L mol–1 s–1 
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Appendix 

 

Figure A1 shows a correlation between the nucleophilicity parameter N of 30 carbanions from 

different classes versus their slope parameter s in dimethyl sulfoxide. Though the quality of 

the correlation is only of moderate quality (R2 = 0.82), a clear trend is obvious: The 

correlation line depicted in Figure A1 reveals that the s parameter becomes smaller when the 

nucleophilicity of the carbanions increases. This effect is becomes significant when the 

complete reactivity range of almost 16 orders of magnitude from 14 > N > 29 is considered.  

The slope parameters of the anion of Meldrum’s acid, as well as the nitro substituted 

trifluoromethylsulfonyl stabilized benzyl anion, and the anion of phenylpropionitrile deviate 

positively from the correlation. On the other hand, the s parameters for the anions of 

nitromethane, and of some phenylsulfonyl stabilized carbanions are significantly smaller than 

expected from the correlation.  

Typically, the absolute number of electrophile-nucleophile combinations used for the 

determination of the nucleophile-specific parameters N and s is large. However, for some 

carbanions, e.g., the anion of phenylpropionitrile, this deviation might be attributed to the 

small number of rate constants, which have been used to derive their nucleophilicity and slope 

parameters. 

One reason for the decrease of the slope parameters for the carbanions with increasing N 

(Figure A1) could be attributed to the different sets of electrophiles which have been used to 

characterize the nucleophilicities of the carbanions. On one hand, benzhydrylium ions were 

used for the characterization of the less nucleophilic carbanions, whereas on the other hand, 

the quinone methides and Michael acceptors (benzylidene Meldrum’s acids, benzylidene 

barbituric acids, benzylidene indandiones, and benzylidenemalonates) were employed to 

characterize some of the more reactive nucleophiles. 
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Figure A1. Plot of the slope parameters s of carbanions versus their nucleophilicity parameter 

N in DMSO. Overall correlation equation: s = –0.023N + 1.134,   R2 = 0.818. 

 

Statistical errors due to the fact that more recently determined rate constants have not been 

used for reparametrizing the reactivity parameters E, N, and s of reference compounds may be 

responsible for the trend shown in Figure A1. A reparametrization of the full set of rate 

constants now available is necessary to examine whether this trend is real. 
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Chapter 6 

Electrophilicities of Acceptor-Substituted Dienes 

 

Introduction 

Numerous kinetic investigations showed that the rate constants for the reactions of 

benzhydrylium ions and structurally related quinone methides with carbanions can be 

described by Equation (6.1),1-4 in which N and s are nucleophile-specific parameters, and E is 

an electrophile-specific parameter. 

 

log k1 (20 °C) = s(N + E)   (6.1) 

 

Recently, we have shown that Equation (6.1) can also be employed for the determination of 

the electrophilicity parameters E of different types of Michael acceptors, such as benzylidene 

indandiones,5 benzylidene barbituric acids,6 benzylidene Meldrum’s acids,7 and 

benzylidenemalonates.8  

We have now studied the kinetics of the reactions of the acceptor-substituted dienes 1–3 

(Scheme 6.1) with the carbanions 4a–h in DMSO in order to derive the electrophilicity 

parameters E for the Michael acceptors 1–3. 

Recently, amines were reported to react significantly faster with Michael acceptors in 

DMSO and methanol than carbanions of similar N-values,5-7 which is in line with 

observations of Oh and Lee, who reported on reactions of Michael acceptors with amines in 

acetonitrile to profit from 4- or 6-membered cyclic transition states.9 We will therefore, report 

on the second-order rate constants for the reactions of amines and compounds 1–3 as well.  
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Scheme 6.1. Studied Acceptor-Substituted Michael Acceptors 1–3.  
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We report that Equation (6.1) holds for the prediction of the second-order rate constants of 

the reactions of electrophiles 1–3 with the carbanions 4a–h in dimethyl sulfoxide at 20 °C.  

 

Table 6.1. N- and s Parameters of the Carbanions 4a–h and the Amines 5a–d in DMSO. 

 Nucleophile N s 

4a 
NO2  21.54a 0.62a 

4b 
OEt

ON
 

19.62b 0.67b 

4c NN
 

19.36b 0.67b 

4d O
OEt

O
18.82b 0.69b 

4e 
O O

 
18.38c 0.72c 

4f 
O O

17.64b 0.63b 

4g 
O O  

16.27b 0.77b 

4h O O
O O  

13.91b 0.86b 

5a NH
 

17.19c 0.71c 

5b O
NH

 
16.96c 0.67c 

5c HO NH2  16.07c 0.61c 

5d NH2  15.70d 0.64d 

a From ref. 3. b From ref . 1. c From ref . 10. d From ref. 11. 
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Results and Discussion 

Synthesis. The Michael acceptors 1–3 were synthesized by Knoevenagel condensation from 

equimolar amounts of substituted cinnamaldehydes with 1,3-dimethylbarbituric- or 1,3-

dimethyl-2-thiobarbituric acid in ethanol (compounds 1a–c and 2a–c),12 and from reactions of 

substituted cinnamaldehydes with dimedone in the presence of catalytic amounts of 

piperidine, respectively (compounds 3a–c).13 

During their preparation, compounds 3a,b were accompanied by small amounts (15 %) of 

perhydrochromanes 6a–c (Scheme 6.2), which have previously been reported to be products 

from the reactions of substituted cinnamaldehydes with two equivalents of dimedone (4g-H) 

in the presence of catalytic amounts of piperidine.13 The formation of the perhydrochromanes 

has been attributed to the predominant enol structure of dimedone, facilitating the cyclization 

process. As the prevalent structure of 1,3-dimethyl(thio)barbituric acid is mainly based on its 

keto form, cyclization products were not encountered during the synthesis of compounds 1a–c 

and 2a–c. 

 

Scheme 6.2. Formation of Perhydrochromanes 6a–c via Cyclization of the Products 11.  
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Product Studies. Representative product studies for the reactions of the Michael acceptors 

1–3 with the carbanions 4c and 4f were carried out by mixing equimolar amounts of the 

electrophiles and the carbanions in [d6]-DMSO in NMR tubes. NMR analysis of the resulting 

colorless mixtures obtained from 1b and 2c with the anion of malononitrile 4c showed the 

formation of almost equimolar amounts of the two regioisomers 7bc/8bc and 9cc/10cc via 

1,4-addition and 1,6-addition, respectively (Scheme 6.3). Mixing the Michael acceptor 1b 

with equimolar amounts of the anion of acetylacetone 4f yielded the 1,6-adduct 8bf and the 

1,4-adduct 7bf in a ratio of 3:1.  

In contrast, only the 1,4-addition product 11bc was found, when electrophile 3b was 

combined with the anion of malononitrile 4c under analogous conditions. †1  

Scheme 6.3. Product Studies for the Reactions of the Electrophiles 1–3 with the Carbanions 

4c and 4f in [d6]-DMSO. 
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†1 The determination of the product ratio and the assignment of the carbon and hydrogen 

atoms were based on additional 2D-NMR experiments. 
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Analysis of the product mixtures after several hours indicated a slow subsequent further 

reaction or decomposition. Therefore, we cannot decide whether the 1,4-/1,6-adduct ratio 

reflects the result of  kinetic or thermodynamic control.  

 

The combinations of equimolar amounts of 4f–K with 3a–c in dimethoxyethane (DME) 

followed by acidification with diluted acetic acid yielded a ≈ 1:1 mixture of 3a–c and 13a–c 

(Scheme 6.4). The mixtures were identified by GC-MS using the independently synthesized 

retro-Michael adducts 13a–c as reference compounds. 

  The formation of the retro-Michael products in the studied electrophile-nucleophile 

combinations indicates an attack of the carbanions at C-7 of the electrophiles. However, a fast 

reversible attack of the nucleophile at C-9 cannot be excluded from these findings. 

Scheme 6.4. Competing Pathways for the Reaction of the Anion of Acetylacetone 4f with the 

Michael Acceptors 3a–c. 
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Scheme 6.4 rationalizes the formation of 13a–c from the reaction of Michael acceptor 3a–c 

with the anion of acetylacetone (4f). 
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In a first reversible step, the carbanion 4f can attack either at C-7 (1,4-addition) or at C-9 (1,6-

addition) of the electrophile forming the colorless regioisomers 11 and 12. Compound 11 may 

subsequently undergo a retro-Michael addition with formation of the colored diene 13 and the 

anion of dimedone (4g). The equilibrium of this reaction cascade can expected to be on the 

side of the compounds 4g and 13, because 4g (pKHa = 11.16) is considerably less basic than 

carbanion 4f (pKHa = 13.33), and one can expect that the Lewis basicities of the these 

carbanions mirror their Brønsted basicities.  

 

Kinetics. Due to the large π-systems, the Michael acceptors 1–3 show strong absorption 

bands in the UV-Vis spectra. By nucleophilic attack at C-7 or C-9 (Scheme 6.4), the 

chromophor will be destroyed and the progress of the reaction can be followed by the 

decrease of the electrophile´s absorbance. From the exponential decays of the UV-Vis 

absorbances of the electrophiles, the pseudo-first order rate constants kobs were obtained. 
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Figure 6.1. Exponential decay of the absorbance at λ = 413 nm for the reaction of 3b              

(c0 = 2.64 × 10–5 mol L–1) with the carbanion 4f (c0 = 2.28 × 10–5 mol L–1) in DMSO at 20 °C. 
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All kinetic experiments were performed under pseudo-first order conditions using 10–100 

equivalents of the nucleophiles. Generally, plots of kobs versus the nucleophile concentration 

[Nu] resulted in straight lines (Figure 6.1) with the second-order rate constants k1 (Table 6.2) 

as slopes. Previously, we have already demonstrated that ion pairing in dilute DMSO 

solutions is negligible under the conditions for our kinetic experiments;3,4,14 therefore the k1 

values can be considered to reflect the reactivities of the free carbanions. 

In some of the reactions of compounds 1–3 with carbanions 4a–h the subsequent formation 

of colored products has been observed, as exemplarily discussed for two cases.†2  

As depicted in Figure 6.2, the progress of the reaction of the Michael acceptor 1c with the 

anion of Meldrum’s acid 4h in DMSO has been followed by UV-Vis spectroscopy at λ = 583 

nm, whereas the formation of a colored product was followed at λ ≈ 530 nm. The maximum 

wavelength of the formed colored product was found to be identical with λmax of the retro-

Michael product 16c (assumed structure see Figure 6.2), which has been confirmed by 

independent synthesis of 16c. The presence of two isosbestic points reveals that 

concentrations of the intermediate Michael adducts are negligible. Proton transfer reactions 

and retro-Michael addition are, therefore, not rate-determining. 

                                                 
†2 Please note that the formation of colored products can only be observed photometrically 

using the diode array mode of the stopped flow systems. As this has not generally been the 

case, the formation of colored products was not observed for all studied electrophile-

nucleophile combinations. 
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Figure 6.2. Reaction of 1c (c0 = 1.89 × 10–5 mol L–1) with the anion of Meldrum’s acid 4h       

(c0 = 6.87 × 10–4 mol L–1) in dimethyl sulfoxide at 20 °C. 

The reaction of the electrophile 1c with the anion of dimedone (4g) was followed at λ = 570 

nm (Figure 6.3). From the initial fast decrease of the absorbance of 1c (insert in Figure 6.3) 

the second-order rate constant k1 = 6.4 × 104 M–1s–1 was determined. However, Figure 6.3 also 

reveals the slow subsequent formation of a colored product. From the absorbances A of the 

formed colored product after 40 s, one can conclude that its concentration is reciprocally 

dependent on the initial concentration of 4g, i.e., A increases with smaller amounts of 4g.  

These findings can be explained by the proposed reaction mechanism depicted in Figure 

6.4. The observed fast decolorization of the solution can be attributed to the addition of the 

carbanion 4g to C-7 (1,4-addition) or C-9 (1,6-addition) of the electrophilic double bonds of 

the Michael acceptor 1c with formation of the colorless products 7cg or 8cg. As 8cg cannot 

undergo a retro-Michael addition, only 7cg can react forward via proton transfer and retro-
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Michael addition to yield the colored Michael acceptor 3c and the anion of 1,3-dimethyl-2-

thiobarbituric acid (SBA–). 
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Figure 6.3. Reactions of 1c (c0 = 1.89 × 10–5 mol L–1) with different amounts of the anion of 

dimedone 4g in dimethyl sulfoxide at 20 °C. 

3c subsequently reacts with the free carbanion 4g (from the excess used for the kinetic 

experiments) to form the colorless products 11cg or 12cg. The reverse reaction of SBA– with 

3c forming 7cg´ is less likely, because the concentration of SBA– is small compared to the 

concentration of the dimedone anion 4g, which was used in excess. Furthermore, SBA– is 

expected to be less nucleophilic than 4g, as thiobarbituric acid is known to be significantly 

more acidic than dimedone and therefore its conjugated anion should be less nucleophilic than 

4g, though deviations from nucleophilicity/basicity correlations have also been observed in 

this work.  
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Figure 6.4. Possible reaction pathways for the addition of the anion of dimedone 4g to 

Michael acceptor 1c in dimethyl sulfoxide at 20 °C. 

As already mentioned, the second-order rate constant k1 = 6.4 × 104 M–1s–1 (Figure 6.4) has 

been determined from the decrease of the absorbance of 1c (Figure 6.3). One can see that the 

end absorbance reached in the second stage of the reaction is reciprocally dependent on the 

carbanion concentration [4g] and that the maximum absorbances are reached earlier when 

larger concentrations of 4g are present. As shown in (Figure 6.5), the plot of kobs for the 

formation of 3c versus the concentration of [4g] was linear.  

How can one explain the fact that kobs for the retro-Michael addition of 7cq increases with the 

concentration of 4g? Because the subsequent reaction of 4g with 3c is reversible, the observed 
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pseudo-first order rate constant equals the sum of the forward and the backwards reactions 

(Equation 6.2).15 

kobs = k–2 + (k2 + k–2)[4g]  (6.2) 

Independent kinetic investigations of the reaction of electrophile 3c with the carbanion 4g 

(measuring the consumption of 3c) resulted in a second-order rate constant (k2 + k–2) =              

1.9 × 102 M–1s–1, which is comparable to (k2 + k–2) derived from the slope of Figure 6.5. 
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kobs = 2.30 × 102[4g] + 6.19 × 10–2

 

Figure 6.5. First-order rate constants for the reactions of 1c with 4g in DMSO at 20 °C. 
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Table 6.2. Second-Order Rate Constants k1 for the Reactions of the Michael Acceptors 1–3 

with the Carbanions 4a–f and the Amines 5a–d in DMSO at 20 °C. 

Electrophile E Nucleophile k1 / M–1s–1 
1a   –7.94a 4h 3.35 × 104 

1b –8.79 4f 2.39 × 106 
  4g 7.02 × 105 
  4h 6.99 × 103 
  5c 2.73 × 104 
  5d 3.56 × 104 

1c –10.17 4f 2.19 × 105 
  4g 6.87 × 104 
  4g  6.38 × 104b 

  4g  2.30 × 102c 
  4h 3.59 × 102 
  5a 1.09 × 105 
  5c 4.04 × 103 
  5d 4.92 × 103 

2a –10.19 4f 2.18 × 105 
  4g 6.18 × 104 
  4h 2.30 × 101 
  5b 8.41 × 102 
  5c 5.38 × 103 
  5d 8.04 × 103 

2b –10.76 4d 3.72 × 105 
  4f 8.57 × 104 
  4g 2.17 × 104 
  4h 1.01 × 101 
  5b 8.30 × 102 
  5c 2.85 × 103 
  5d 3.42 × 103 

2c –12.17 4b 6.38 × 104 
  4d 4.76 × 104 
  4e 4.40 × 104 
  4f 8.64 × 103 
  4g 2.95 × 103 
  5d 5.10 × 102 

3a –11.51 4b 1.96 × 105 
  4d 1.37 × 105 
  4f 2.35 × 104 
  4g 6.97 × 103 

3b –12.26 4b 6.58 × 104 
  4c 5.48 × 104 
  4d 3.77 × 104 
  4f 6.86 × 103 
  4g 1.96 × 103 
  5c 7.72 × 102 
  5d 1.49 × 103 



Chapter 6: Electrophilicities of Acceptor-Substituted Dienes 

242 

Table 6.2. Continued. 

Electrophile E Nucleophile k1 / M–1s–1 
3c –13.61 4a 6.96 × 104 
  4b 8.31 × 103 
  4c 7.75 × 103 
  4d 4.03 × 103 
  4f 7.45 × 102 
  4g 1.92 × 102 

a The calculated value –8.65 (from 1a + 4h) has been corrected by –0.7, corresponding to 

the deviations of 4h from the correlation lines in Figure 6.7. b From an independent 

experiment, decrease at λ = 483 nm, c increase at λ = 570 nm. 

 

Equilibrium Constants. While most of the Michael additions of the electrophiles 1–3 with 

the carbanions 4 proceed quantitatively as indicated by negligible end absorptions of the 

solutions at the absorption maxima of the electrophiles, many reactions of the electrophiles  

1–3 with the amines 5a–d and with the anion of Meldrum’s acid (4h) turned out to be 

reversible. As a consequence, the linear plots of kobs versus [Nu] had positive intercepts (see                       

Experimental Section).  

While the reactions of the electrophiles 1b,c with primary amines, such as ethanolamine 

(5c) and n-propyl amine (5d), and of 2a with 5d were found to be irreversible, the reactions of 

the electrophile 2a with 5c, and the reactions of the weaker electrophiles 2b,c and 3b with 

ethanolamine (5c) and n-propyl amine (5d) turned out to be reversible. Furthermore, all 

reactions of the secondary amines piperidine (5a) and morpholine (5b) with electrophiles 1c, 

2a and 2b were reversible.   
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Table 6.3. Equilibrium Constants for the Reactions of the Electrophiles 1–3 with the 

Carbanions 4a–f and the Amines 5a–d in DMSO at 20 °C. 

Electrophil
e 

Nucleophil
e k– / s–1 K / L mol–1 

1c 5a 8.0 × 101 1.4 × 103 

2a 4h 1.5 × 10–2 1.5 × 103 
 5b 2.9 2.9 × 102 
 5c 5.8 9.3 × 102 

2b 4h 1.6 × 10–2 6.5 × 102 
 5b 3.6 2.5 × 102 
 5c 8.3 3.4 × 102 
 5d 5.0 6.9 × 102 

2c 5d 6.0 8.4 × 101 
3b 5c 6.0 × 10–2 1.2 × 102 

 5d 2.3 6.4 × 102 
 

If no parallel reactions complicate the evaluation of the rate constants, it is possible to 

calculate the equilibrium constants K for these reversible reactions as the ratio of the forward 

(k1) over the backward reaction16 (k–, intercept of kobs vs. [Nu] plot, Equation (6.3)), though 

we do not know the side of the nucleophilic attack of the carbanions. Because we have 

previously noted that equilibrium constants derived from the intercepts of kobs versus [Nu] 

plots are not very reliable (see Chapter 5), we will not derive intrinsic barriers from these 

data. One can see, however, that the equilibrium constants for the additions of primary amines 

are generally larger than those for analogous additions of secondary amines (Table 6.3). 

−

=
k
kK 1    (6.3) 

 

Correlation Analysis. By substituting the second-order rate constants k1 (Table 6.2) and 

the previously published N- and s parameters for the carbanions 4a–g (Table 6.1) into 

Equation (6.1), the electrophilicity parameters E of the Michael acceptors 1–3 were 

determined. Minimization of Δ2 = ∑(log k – s(N + E))2 with the non-linear solver 
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What’sBest!, where k corresponds to the experimental rate constants for the reactions of 1–3 

with the carbanions yields the optimized values for E. Please note, that the correlation lines 

are exclusively based on the reactions of the Michael acceptors 1–3 with the carbanions 4a–g 

(filled symbols) and the slopes were fixed to 1.0, as required by Equation (6.1). 

Due to their relatively high reactivities, electrophiles 1b and 1c could only be studied with 

three carbanions of which the anion of Meldrum’s acid 4h deviates strongly. As the 

correlation lines are based exclusively on the reactions of 1b,c with carbanions (except 4h) 

their experimental basis is poor. However, it is obvious that the second-order rates k1 for the 

reactions of 1b,c with the amines 5a, 5c, and 5d beautifully match the correlation lines 

described by Equation (6.1). Acceleration of the amine additions by hydrogen bonding, as 

observed in the additions of amines to structurally related Michael acceptors7 is obviously 

absent in these reactions. 
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Figure 6.6. Plot of (log k1)/s versus N for the reactions of 1a,b with different carbanions 

(filled symbols) and amines (open symbols) in DMSO at 20 °C.  
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The correlations for the addition of carbanions and amines to the less reactive Michael 

acceptors 2a–c (Figure 6.7) also show some deviations. On one hand, the anion of ethyl cyano 

acetate 4b reacts more slowly with 2c than predicted by Equation (6.1), and on the other hand, 

4g reacts faster with Michael acceptors 2a–c than expected. This is in line with previous 

findings for the reaction of 4g with different Michael acceptors.7 The reactions of 2a,b with 

4h are almost 70 times slower than calculated by Equation 6.1. As depicted in Figure 6.7, the 

reactions of 2a–c with the amines 5c,d were found to be up to five times faster than calculated 

from Equation (6.1) and their N- and s parameters in dimethyl sulfoxide. These deviations are 

smaller than those reported in Chapter 2 for the reactions of amines with benzylidene 

Meldrum’s acids. 
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Figure 6.7. Plot of (log k1)/s versus N for the reactions of 2a–c with different carbanions 

(filled symbols) and amines (open symbols) in DMSO at 20 °C.  

Due to a significantly larger number of investigated electrophile-nucleophile combinations, 

the basis of the correlation lines for compounds 3a–c in Figure 6.8 is significantly better than 

those for 1a–c and 2a–c. Figure 6.8 reveals that the anion of dimedone 4g is the only 
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carbanion, which deviates noticeable from the correlation lines for the reactions of 3a–c. As 

discussed above for the reactions of 2a–c with amines 5c,d, the second-order rate constants k1 

for the reactions of Michael acceptor 3b with amines 5c and 5d are significantly larger than 

calculated by Equation 6.1.  
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Figure 6.8. Plot of (log k1)/s versus N for the reactions of 3a–c with different carbanions 

(filled symbols) and amines (open symbols) in DMSO at 20 °C.  

The different deviations of the rate constants for the reactions of amines with 1a–c, 2a–c, and 

3a–c, from the correlation lines defined by the reactions of 1a–c, 2a–c, and 3a–c with 

carbanions, may be indicative of the influence of hydrogen bridges on the transition state 

depicted below. Obviously, hydrogen bridges do not play a significant role for the additions 

of amines to 1a–c and 2a–c (TS1 and TS2) in contrast to the analogous reactions with 3b 

(TS3).   

If the rate constants for the reactions of the amines to 1 and 2 follow 1,6-additions, transition 

state TS4 would be likely.  The longer distance between the nitrogen and the negatively 

charged oxygen or carbon would then prevent a strong stabilizing hydrogen bridge.  
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Product studies, which would allow to decide whether this observation is due to 1,6-addition 

of the amines have not been performed.  

From Equation (6.1) and the second-order rate constants k1 in Table 6.2, electrophilicity 

parameters E have consequently been derived for all Michael acceptors 1–3. However, the 

correlations are sometimes based only on a small number of measurements and some 

deviations from linearity are evident. 

The comparison of the electrophilicity parameters E for different Michael acceptors (Figure 

6.9) shows that the acceptor-substituted dienes 1–3 cover a range of almost 5 orders on our 

electrophilicity scale. Their reactivities are comparable to those of the 

benzylidene(thio)barbituric acids, published recently.6 Figure 6.9 also reveals that substitution 

of the oxygen in the barbituric acid by sulfur increases the reactivities of the Michael 

acceptors by almost 2 orders of magnitude. This observation is in line with the 

electrophilicities found for benzylidenebarbituric acids and benzylidene(thio)barbituric acids.6  

This may be surprising because sulfur has an electronegativity comparable to carbon, but it 

has been reported that the dipole moments of thiocarbonyl compounds are larger than those 

for the corresponding carbonyl compounds, and that thiolactames possess larger dipole 

moments than lactames.17 Furthermore, the larger rotational barrier for amides have been 

attributed to the different resonance effects in amides and thioamides.18 In addition, quantum 

chemical calculations of rotational barriers by Wiberg showed that amide resonance is more 

important in thiolactames than in lactames.19 
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 The electrophiles 3a–c are roughly 2 orders of magnitude less reactive than the analogously 

substituted Michael acceptors 2a–c. This is in line with the fact that dimedone (pKa (H2O) = 

5.2)20 is a weaker acid than barbituric- and thiobarbituric acids (pKa (H2O) = 4.0).21  
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Figure 6.9. Comparison of the electrophilicity parameters E of Michael acceptors 1–3 with 

those of some benzylidene(thio)barbituric acids 14 and 15. 

 

Interestingly, the electrophilicity parameters of the dimethyl amino substituted dienes 1c 

and 2c are larger than those of their benzylidene counterparts 14-NMe2 and 15-NMe2, 

respectively, whereas we find the opposite behavior for the methoxy substituted diene 2b and 

its counterpart 15-OMe. These findings reflect the different slopes of the correlation lines in 

the Hammett plot of Figure 6.10. Due to the larger slope for compounds 14 and 15 we find 
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higher electrophilicities for the methoxy substituted dienes and smaller values for the 

dimethyl amino substituted ones.  
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Figure 6.10. Correlations between the electrophilicity parameters E of Michael acceptors 1–3 

(filled symbols) and of benzylidene (thio)barbituric acids 14 and 15 (open symbols) versus 

Hammett’s σp values.7,22 

The slopes in the Hammett plots reflect the influence of the para substituent on the 

electrophilicity of the Michael acceptors 1–3 and 14 and 15. From these slopes (5.52 – 5.73 

for 14 and 15; 2.95–3.30 for 1–3) one can derive reaction constants of ρ ≈ 3.9 and 2.2, 

respectively, for reactions with nucleophiles of s = 0.7 (Table 6.2), indicating that the 

substituent effects in the dienes 1–3 are considerably smaller than in the 

benzylidene(thio)barbituric acids 14 and 15. The larger distance between the variable 

substituents and the reaction center in the dienes 1a–c, 2a–c, and 4a–c than in 14 and 15 

reduces the interactions between substituents and reactive site.  

 

Conclusion 

The linear free-energy relationship log k1 (20 °C) = s(N + E) (6.1) has been found to be 

applicable to the reactions of the Michael acceptors 1–3 with the carbanions 4a–h. The rate 

constants for the reactions of 3a–c with amines were 5–10 times larger than expected from 
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Equation (6.1), while the analogous reactions of 1 and 2 deviate much less. Compounds 1–3 

cover almost 5 orders of magnitude on our electrophilicity scale (–13.6 < E < –7.9) and 

substitution of the oxygen in the 1,3-dimethylbarbituric acid by sulfur was found to increase 

the electrophilicity of the Michael acceptors by almost 2 orders of magnitude. It has also been 

found that the substituent effect for dienes 1–3 is considerably smaller than for 

benzylidene(thio)barbituric acids 14 and 15 indicated by reaction constants of ρ ≈ 2.2 
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Experimental Section 

Electrophilicities of Acceptor Substituted Dienes 

6.1. Materials 
General. Commercially available DMSO (content of H2O < 50 ppm) was used without 

further purification. Stock solutions of KOtBu in DMSO were prepared under nitrogen 

atmosphere. The carbanions were prepared as described previously.S1 The amines were 

distilled before use.  

 

6.2. Instruments 
NMR spectroscopy. In the 1H and 13C NMR spectra chemical shifts are expressed in ppm 

and refer to CDCl3 (δH 7.26, δC 77.0) as internal standard. The coupling constants are in Hz. 

Abbreviations used are s (singlet), d (doublet), t (triplet), q (quartet), quint (quintet), m 

(multiplet). 

 

6.3. Determination of the Second-Order Rate Constants 
The general method for the determination of the rate constants is described in the 

experimental part of the paper. The temperature of the solutions was kept constant                    

(20 ± 0.1 °C) during all kinetic experiments by using a circulating bath thermostat. For 

evaluation of the kinetic experiments commercial stopped-flow UV-Vis spectrometer systems 

were used. Rate constants kobs (s–1) were obtained by fitting the single exponential function At 

= A0 exp(–k1ψt) + C to the observed time-dependent absorbance of the minor component. 

Plotting kobs against the concentrations of the nucleophiles resulted in linear correlations, the 

slopes, which correspond to the second-order rate constants k1 (L mol–1 s–1). For stopped-flow 

experiments two stock solutions were used: A solution of electrophiles 1–3 in DMSO and a 

solution of the carbanions 4a–h in DMSO generated by deprotonation of the corresponding 

CH acid with KOtBu, or by dissolving the corresponding preformed potassium salt (4a–h)-K+ 

in DMSO.  

                                                 
S1 Lucius, R.; Mayr, H. Angew. Chem., Int. Ed. 2000, 39, 1995-1997. 
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6.4. Synthesis of the Michael acceptors 1–3 
General. Equimolar amounts of the CH acidic compounds (1,3-dimethylbarbituric acid or 

1,3-dimethyl-2-thiobarbituric acid) and the cinnamaldehydes were refluxed in ethanol as 

described in ref. S2 to yield compounds 1a–c and 2a–c. Compounds 3a–c were synthesized 

following a protocol of NagarajanS3 by refluxing equimolar amounts of dimedone and 

cinnamaldehydes in the presence of 10 mol% piperidine in toluene for 90 min. After 

removing the solvent under reduced pressure, the crude reaction mixture was dissolved in 

methylene chloride and extracted from aqueous hydrochloric acid, saturated NaHCO3 solution 

and NaCl solution. After drying of the organic phase over MgSO4 the solvent was removed 

and the crude reaction mixture was recrystalized from n-hexane to yield compounds 3a–c. 

Insoluble residue was washed with diethyl ether to yield compounds 6a–c. 

 

5,5-Dimethyl-2-(3-phenylallylidene)cyclohexane-1,3-dione (3a) 

From cinnamaldehyde (2.53 g, 19.2 mmol), dimedone (2.74 g, 19.5 mmol), and piperidine 

(0.24 mg, 2.87 mmol) in toluene (40 mL). 3a (1.87 g, 7.36 mmol, 38 %). Yellow solid; mp 

90-92 °C (100-102 °C ref.S3) 
1H-NMR (CDCl3, 300 MHz): δ = 1.08 (s, 6 H, 2 ×CH3), 2.55 (s, 4 H, 2 × CH2), 7.35 (d, 3J = 

15.6 Hz, 1 H, 9-H), 7.39 (m, 3 H, CHar), 7.62 (m, 2 H, CHar), 7.79 (d,  3J = 12.0 Hz, 1 H, 7-

H), 8.37 ppm (dd, 3J = 15.6 Hz, 8-H). 13C-NMR (CDCl3, 75.5 MHz): δ = 28.5 (q, 2 × CH3), 

30.1 (s, C(CH3)2), 52.4 (t, CH2), 54.1 (t, CH2), 125.6 (d, C-8), 128.7 (d, CHar), 129.0 (d, 

CHar), 130.9 (d, CHar), 135.7 (s), 151.2 (d, C-7), 153.3 (d. C-9), 197.8 (s), 198.9 ppm (s). MS 

(EI) m/z (%) = 255 (17), 254 (100) [M+], 253 (22), 239 (16), 198 (24), 177 (18), 179 (31), 142 

(11), 141 (13), 128 (20), 127 (13). 
O

O  
 

 

 

 

                                                 
S2 Jursic, B. S.; Stevens, E. D. Tetrahedron Lett. 2003, 44, 2203-2210. 

S3 Nagarajan, K.; Shenoy, S. J. Indian J. Chem., Sect. B 1992, 31B, 73-87. 
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4-(2-Hydroxy-4.4-dimethyl-6-oxocyclohex-1-enyl)-7,7-dimethyl-2-phenyl-3,4,7,8-

tetrahydro-2H-chromen-5-(6H)-one (6a). (0.51 g, 1.27 mmol, 13 %). Yellow solid; mp 

198-200 °C (220-222 °C ref.S3). 
1H-NMR (CDCl3, 300 MHz): δ = 0.94 (s, 6 H, 2 × CH3), 1.03, 1.09 (s, 6 H, 2 × CH3), 1.54 

(d, 3J = 13.6 Hz, 1 H, CH2 (H-8)), 2.00-2.50 (m, 8 H, 4 × CH2), 2.84 (td, 3J = 13.4 Hz, 5.6 Hz, 

1 H, H-8), 3.90 (d, 3J = 4,8 Hz, 1 H, 7-H, CH), 5.02 (dd, 3J = 12.3 Hz, 3J = 2.0 Hz, 1 H, CH 

(9-H)), 7.15 (m, 3 H, CHar), 7.27 ppm (m, 2 H, CHar). 13C-NMR (CDCl3, 100.5 MHz): δ = 

27.7 (q, 2 × CH3), 27.8, 28.2 (q, 2 × CH3), 31.2 (s, C(CH3)3), 31.8 (s, C(CH3)3), 32.4 (t, CH2), 

33.8 (s, CH), 41.8 (t, 2 × CH2), 50.2 (t, 2 × CH2), 66.8 (d, CH), 109.6, 110.7 (s), 125.7 (d, 

CHar), 127.6 (d, 2 × CHar), 128.0 (d, 2 × CHar), 145.5, 171.3, 195.5 ppm (s). MS (EI) m/z (%) 

= 394 (18) [M+], 393 (100) [M-H+]. 

O

O OHO

 
 

2-(3-(4-Methoxyphenyl)allylidene)-5,5-dimethylcyclohexane-1,3-dione (3b) 

From methoxycinnamaldehyde (2.05 g, 12.7 mmol), dimedone (1.76 g, 12.6 mmol), and 

piperidine (0.18 mg, 2.06 mmol) in toluene (40 mL). 3b (1.97 g, 6.93 mmol, 55 %). Red 

solid; mp 128-130 °C. 
1H-NMR: (CDCl3, 400 MHz): δ = 1.08 (s, 6 H, 2 × CH3), 2.52 (s, 4 H, 2 × CH2), 3.84 (s, 3 

H, OCH3), 6.91 (d, 3J = 8.8 Hz, 2 H, CHar), 7.32 (d, 3J = 15.3 Hz, 1 H, 9-H), 7.59 (d, 3J = 8.8 

Hz, 2 H, CHar), 7.80 (d, 3J = 12.1 Hz, 1 H, 7-H), 8.29 ppm (dd, 3J = 12.1 Hz, 3J = 15.3 Hz, 1 

H, 8-H). 13C-NMR: (CDCl3, 100.5 MHz): δ = 28.5 (q, 2 × CH3), 30.1 (s, C(CH3)2), 52.3 (t, 

CH2), 54.0 (t, CH2), 55.4 (q, OCH3), 114.5 (d, CHar), 123.6 (d, C-8), 127.7 (s), 128.6 (s), 

130.8 (d, CHar), 152.1 (d, C-7), 153.9 (d, C-9), 162.2 (s), 197.9, 198.9 ppm (s). MS (EI) m/z 

(%) = 285 (15), 284 (100) [M+], 283 (19), 269 (16), 200 (14). 
O

O O  
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4-(2-Hydroxy-4.4-dimethyl-6-oxocyclohex-1-enyl)-2-4(-methoxyphenyl)-7,7-dimethyl-

3,4,7,8-tetrahydro-2H-chromen-5-(6H)-one (6b). (0.49 g, 1.16 mmol, 18 %). Yellow solid; 

mp 171-173 °C (multipl. mp see ref. S3) 
1H-NMR (CDCl3, 400 MHz): δ = 0.94 (s, 6 H, 2 × CH3), 1.02, 1.08 (2 s, 6 H, 2 × CH3),  

1.50 (d, 3J = 13.5 Hz, 1 H, CH), 2.00 - 2.40 (m, 8 H, 4 × CH2), 2.78 (td, 3J = 13.4 Hz, 3J = 5.5 

Hz, 1 H, 8-H), 3.71 (s, 3 H, OCH3), 3.84 (d, 3J = 4.9 Hz 1 H, CH), 5.02 (dd, 3J = 12.4 Hz, 3J = 

2.2 Hz, 1 H, CH), 6.83 (d, 3J = 8.6 Hz 2 H, CHar), 7.02 ppm (d, 3J = 8.6 Hz 2 H, CHar). 13C-

NMR (CDCl3, 100.5 MHz): δ = 27.7 (2 C, q, 2 × CH3), 27.8, 28.2 (2 q, 2 × CH3), 31.3 (s, 

C(CH3)2), 31.7 (s), 32.6 (t, CH2), 32.7 (d, CH), 41.8 (t, 2 × CH2), 50.3 (2 C, t, 2 × CH2), 54.9 

(q, OCH3), 66.8 (d, CH), 110.0, 110.9 (s), 113.4 (d, CHar), 128.5 (2 C, d, CHar), 137.3, 157.3, 

171.1, 195.4 ppm (s). EI-MS: m/z (%) = 424 (26) [M+], 423 (100) [M-H+], 283 (7), 165 (12). 

O

O OHO

O  
 

2-(3-(4-Dimethylamino)phenyl)allylidene)-5,5-dimethylcyclohexane-1,3-dione (3c). 

From methoxycinnamaldehyde (2.58 g, 14.7 mmol), dimedone (2.06 g, 14.7 mmol), and 

piperidine (0.18 mg, 2.06 mmol) in toluene (40 mL). 3b (2.87 g, 9.66 mmol, 66 %). purple 

crystals; mp 182-184 °C (174-176 °C ref.S3). 
1H-NMR (CDCl3, 400 MHz): δ = 1.07 (s, 6 H, 2 × CH3), 2.49 (s, 4 H, × CH2), 3.05 (s, 6 H, 

N(CH3)2), 6.65 (d, 3J = 8.9 Hz, 2 H, CHar), 7.33 (d, 3J = 14.9 Hz, 1 H, 9-H), 7.54 (d, 3J = 8.9 

Hz, 2 H, CHar), 7.85 (d, 3J = 12.4 Hz, 1 H, 7-H), 8.29 ppm (dd, 3J = 12.4 Hz, 3J = 14.9 Hz, 1 

H, 8-H). 13C-NMR (CDCl3, 100.5 MHz): δ = 28.5 (2 C, q, 2 × CH3), 30.2 (s, C(CH3)2), 40.0 

(2 C, q, N(CH3)2), 52.2 (t, CH2), 53.9 (t, CH2), 111.7 (d, CHar), 121.1 (d, C-8), 123.7 (s), 

125.3 (s), 131.5 (d, CHar), 152.6 (s), 153.4 (d, C-7), 156.5 (d, C-9), 197.9, 198.8 ppm (s). EI-

MS: m/z (%) = 298 (19), 297 (100) [M+], 296 (31), 282 (13), 280 (11), 213 (16), 185 (13). 
O

O N
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6.5. Product Studies (NMR) 

 
The electrophile 1c (20.1 mg, 6.35 × 10–5 mol) was allowed to react with the anion of 

malonitrile 4c (7.0 mg, 6.72 × 10–5 mol) in d6-DMSO in an NMR tube. After 2 min of 

vigorous shaking, the solution was colorless and resulted in the formation of an almost 

equimolar mixture of two regioisomers.   

 

7bc: 1,4 addition product (5-(1,1-dicyano-4-(4-methoxyphenyl)but-3-en-2-yl)-1,3-

dimethyl-2,6-dioxo-2-thiohexahydropyrimidin-5-yl)potassium 
1H NMR (d6-DMSO, 400 MHz) δ = 3.55 (s, 6 H, 2 × NCH3), 3.75 (s, 3 H, OCH3, 4.24 (dd, 3J 

= 10.8, 9.2 Hz, 1 H, CH), 5.52 (d, 3J = 10.8 Hz, 1H, CH(CN)2), 6.32 (dd, 3J = 9.2, 15.8 Hz, 1 

H, C=CH),  6.50 (d, 3J = 16.0 Hz, 1 H, C=CH), 6.94 (d, 3J = 8.8 Hz, 2 H, CHar), 7.33 ppm (d, 
3J = 8.8 Hz, 2 H, CHar). 13C NMR (d6-DMSO, 100 MHz) δ = 25.6 (d, CH(CN)2), 34.4 (q, 2 × 

NCH3), 50.0 (d, CH), 55.0 (q, OCH3), 86.2 (C–), 113.9 (d, CHar), 114.9 (s, CN), 124.0 (d, 

C=CH), 128.7 (d, CHar), 131.1 (d, C=CH), 132.0 (s, Car), 158.4 (s, C=O), 160.2 (s, C=S), 

175.1 ppm (C=O). 

O

NN

O O

S

NC

CN

K

 
8bc: 1,6 addition product (5-(4,4-dicyano-3-(4-methoxyphenyl)but-1-enyl)-1,3-dimethyl-

2,6-dioxo-2-thiohexahydropyrimidin-5-yl)potassium 
1H NMR (d6-DMSO, 400 MHz) δ = 3.54 (s, 6 H, 2 × NCH3), 3.74 (s, 3 H, OCH3, 4.02 (m, 1 

H, CH), 5.23 (m, 1H, CH(CN)2), 6.70 (d, 3J = 15.2 Hz, 1 H, C=CH), 6.77 (dd, 3J = 8.4, 15.2 

Hz, 1 H, C=CH), 6.87 (d, 3J = 8.8 Hz, 2 H, CHar), 7.31 ppm (d, 3J = 8.8 Hz, 2 H, CHar). 13C 

NMR (d6-DMSO, 100 MHz) δ = 30.0 (d, CH(CN)2), 34.3 (q, 2 × NCH3), 42.7 (d, CH), 55.0 

(q, OCH3), 89.7 (C–), 113.9 (d, CHar), 114.2 (s, CN), 116.7 (d, C=CH), 127.4 (d, CHar), 129.0 

(d, C=CH), 131.9 (s, Car), 158.7 (s, C=O), 160.2 (s, C=S), 175.9 ppm (C=O). 
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The electrophile 1b (21.6 mg, 6.83 × 10–5 mol) was allowed to react with the anion of 

acetylacetone 4f (11.0 mg, 7.96 × 10–5 mol) in d6-DMSO in an NMR tube. After 2 min of 

vigorous shaking, the solution was colorless and resulted in the formation of a 1:3 mixture of 

two regioisomers. 

 

8bf: (major compound) (5-(4-acetyl-3-(4-methoxyphenyl)-5-oxohex-1-enyl)-1,3-dimethyl-

4,6-dioxo-2-thiohexahydropyrimidin-5-yl)potassium 
1H NMR (d6-DMSO, 400 MHz) δ = 1.90 (s, 3 H, CH3), 2.18 (s, 3 H, CH3), 3.51 (s, 6 H, 2 × 

NCH3), 3.70 (s, 3 H, OCH3), 3.89 (dd, J = 8.8, 8.8 Hz, 1 H, CH), 4.43 (d, J = 11.6 Hz, 1 H, 

CH), 6.38 (d, J = 16 Hz ,1 H, C=CH), 6.50 (dd, J = 8.4, 15.4 Hz, 1 H, C=CH),  6.28 (d, J = 8.8 

Hz, CHar), 7.14 ppm (d, J = 8.8 Hz, CHar). 13C NMR (d6-DMSO, 100 MHz) δ = 30.3 (q, CH3), 

31.0 (q, CH3), 34.4 (s, C(CH3)2), 50.5 (d, CH), 54.9 (q, OCH3), 73.1 (d, CH), 89.8 (C–), 113.7 

(d, CHar), 121.8 (d, C=CH), 125.1 (C=CH), 128.5 (d, CHar), 135.0 (s, Car), 157.4 (s, C=O), 

160.0 (s, C=O), 174.6 (s, C=S), 202.9 (s, COCH3), 202.9 ppm (s, COCH3).     

Due to some uncertainties in the 13C NMR spectrum, assignments were only made for peaks 

of the major compound.  
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The electrophile 2c (12.6 mg, 4.05 × 10–5 mol) was allowed to react with the anion of 

malonitrile 4c (5.3 mg, 5.09 × 10–5 mol) in d6-DMSO in an NMR tube. After 2 min of 

vigorous shaking, the solution was colorless and resulted in the formation of almost equimolar 

amounts of two regioisomers.   
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9cc: 1,4 addition product (5-(1,1-dicyano-4-(4-(dimethylamino)phenyl)but-3-en-2-yl)-1,3-

dimethyl-2,4,6-trioxohexahydropyrimidin-5-yl)potassium 
1H NMR (d6-DMSO, 400 MHz) δ = 2.88 (s, 6 H, 2 × NCH3), 3.06 (s, 6 H, N(CH3)2, 4.17 (dd, 
3J = 10.4, 9.2 Hz, 1 H, CH), 5.51 (d, 3J = 11.2 Hz, 1H, CH(CN)2), 6.20 (dd, 3J = 9.2, 16 Hz, 1 

H, C=CH),  6.36 (d, 3J = 15.6 Hz, 1 H, C=CH), 6.70 (d, 3J = 8.8 Hz, 2 H, CHar), 7.19 ppm (d, 
3J = 8.8 Hz, 2 H, CHar). 13C NMR (d6-DMSO, 100 MHz) δ = 25.8 (d, CH(CN)2), 26.7 (q, 2 × 

NCH3), 40.0 (q, N(CH3)2), 43.0 (d, CH), 81.4 (C–), 112.1 (d, CHar), 114.5 (s, CN), 122.5 (d, 

C=CH), 124.5 (s, Car), 126.9 (d, CHar), 131.0 (d, C=CH), 149.7 (s, Car), 152.7 (s, C=O), 

161.4, 161.6 ppm (C=O). 
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10cc: 1,6 addition product (5-(4,4-dicyano-3-(4-(dimethylamino)phenyl)but-1-enyl)-1,3-

dimethyl-2,4,6-trioxohexahydropyrimidin-5-yl)potassium 
1H NMR (d6-DMSO, 400 MHz) δ = 2.88 (s, 6 H, 2 × NCH3), 3.06 (s, 6 H, N(CH3)2, 3.84 (m, 

1 H, CH), 5.08 (d, 3J = 7.2 Hz, 1H, CH(CN)2), 6.55-6.64 (m, 2 H, 2 × C=CH),  6.65 (d, 3J = 

9.2 Hz, 2 H, CHar), 7.17 ppm (d, 3J = 8.8 Hz, 2 H, CHar). 13C NMR (d6-DMSO, 100 MHz) δ = 

26.7 (q, 2 × NCH3), 30.4 (d, CH(CN)2), 40.0 (q, N(CH3)2), 50.4 (d, CH), 85.7 (C–), 112.2 (d, 

CHar), 113.5 (d, C=CH),  115.2 (s, CN), 127.6 (s, Car), 128.1 (d, CHar), 129.5 (d, C=CH), 

149.5 (s, Car), 152.2 (s, C=O), 161.4, 161.6 ppm (C=O). 
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The electrophile 3a (26.2 mg, 9.20 × 10–5 mol) was allowed to react with the anion of 

malonitrile 4c (9.6 mg, 9.2 × 10–5 mol) in d6-DMSO in an NMR tube. After 2 min of vigorous 

shaking, the solution was colorless and resulted in the formation of compound 11bc. 
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11bf: (1,1-dicyano-4-(4-methoxyphenyl)but-3-en-2-yl)-4,4-dimethyl-2,6-dioxocylohexyl)- 

potassium 
1H NMR (d6-DMSO, 400 MHz) δ = 0.94 (s, 6 H, 2 × CH3), 1.92 (s, 4 H, 2 × CH2), 3.73 (s, 3 

H, OMe), 4.27 (dd, 1 H, 3J = 11.0 Hz, 8.6 Hz, CH), 5.82 (d, J = 11.0 Hz, CH(CN)2), 6.30 (dd, 

J = 8 Hz, 1 H, C=CH), 6.35 (d, 1 H , J = 16 Hz, C=CH), 6.86 (d, J = 8.8 Hz, 1 H, CHar), 7.25 

ppm (d, J = 8.8 Hz, 1 H, CHar).  
13C NMR (d6-DMSO, 100 MHz) δ = 24.9 (s, CH(CN)2), 28.8 (q, CH3), 31.3 (C(CH3)2), 41.5 

(d, CH), 50.6 (t, CH2), 55.0 (q, OCH3),  103.1 (s, C–), 113.9 (d, CHar), 126.3 (d, C=CH), 127.0 

(d, CHar), 129.6 (d, C=CH), 129.6 (s), 158.4 (s), 187.7 (s, C=O).  
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6.6. Reactivities of the Acceptor Substituted Dienes 1–3 
 

Reactions of electrophile 1a 

 
Table S1: Kinetics of the reaction of 1a with the anion of Meldrum´s acid 4h in DMSO at 

20 °C (stopped–flow UV–Vis spectrometer, decrease at λ = 412 nm). 

 

 

k1 = 3.35 × 104 L mol–1 s–1 

 
 
 
Reactions of electrophile 1b 
 
Table S2: Kinetics of the reaction of 1b with the anion of acetylacetone 4f in DMSO at  

   20 °C (stopped–flow UV–Vis spectrometer, decrease at λ = 445 nm). 

 

 

k1 = 2.39 × 106 L mol–1 s–1 

Nr. [E]0 / M [Nu–]0 / M kobs. / s−1 

241–1 1.84 × 10−5 3.29 × 10−4 1.08 × 101 

241–2 1.84 × 10−5 5.69 × 10−3 2.16 × 101 

241–3 1.84 × 10−5 1.32 × 10−3 4.29 × 101 

241–4 1.84 × 10−5 1.65 × 10−3 5.54 × 101 

241–5 1.84 × 10−5 2.31 × 10−3 7.68 × 101 

Nr. [E]0 / M [Nu–]0 / M kobs. / s−1 

225–1 5.22 × 10−6 5.51 × 10–4 1.36 × 101 

225–2 5.22 × 10−6 7.31 × 10−4 1.80 × 101 

225–3 5.22 × 10−6 1.10 × 10−4 2.67 × 101 

225–5 5.22 × 10−6 1.84 × 10−4 4.43 × 101 
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Table S3: Kinetics of the reaction of 1b with the anion of dimedone 4g in DMSO at 20 °C 

   (stopped–flow UV–Vis spectrometer, decrease at λ = 446 nm). 

 

 

k1 = 7.02 × 105 L mol–1 s–1  

 
Table S4: Kinetics of the reaction of 1b with the anion of Meldrum´s acid 4h in DMSO at 

20 °C (stopped–flow UV–Vis spectrometer, decrease at λ = 460 nm). 

 

 

k1 = 6.99 × 103 L mol–1 s–1 

 
Table S5: Kinetics of the reaction of 1b with ethanolamine 5c in DMSO at 20 °C (stopped–

flow UV–Vis spectrometer, decrease at λ = 450 nm). 

 

 

k1 = 2.73 × 104 L mol–1 s–1 

Nr. [E]0 / M [Nu–]0 / M kobs. / s−1 

227–3 9.80 × 10−6 8.76 × 10−5 8.46 × 101 

227–4 9.80 × 10−6 1.75 × 10−4 1.56 × 102 

227–1 9.80 × 10−6 2.19 × 10−4 1.83 × 102 

227–5 9.80 × 10−6 3.07 × 10−4 2.50 × 102 

227–2 9.80 × 10−6 4.38 × 10−4 3.33 × 102 

Nr. [E]0 / M [Nu–]0 / M kobs. / s−1 

238–1 1.98 × 10−5 3.44 × 10−4 3.41 

238–2 1.98 × 10−5 6.87 × 10−4 6.05 

238–3 1.98 × 10−5 1.38 × 10−3 1.01 × 101 

238–4 1.98 × 10−5 2.06 × 10−3 1.44 × 101 

238–5 1.98 × 10−5 3.44 × 10−3 2.54 × 101 

Nr. [E]0 / M [Nu–]0 / M kobs. / s−1 

261–1 2.78 × 10−5 5.68 × 10−4 1.59 × 101 

261–2 2.78 × 10−5 1.14 × 10−3 3.30 × 101 

261–3 2.78 × 10−5 1.70 × 10−3 4.70 × 101 

261–4 2.78 × 10−5 2.27 × 10−3 6.29 × 101 

261–5 2.78 × 10−5 2.84 × 10−3 7.84 × 101 
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Table S6: Kinetics of the reaction of 1b with n–propylamine 5d in DMSO at 20 °C 

(stopped–flow UV–Vis spectrometer, decrease at λ = 450 nm). 

 

 

k1 = 3.55 × 104 L mol–1 s–1 

 
Reactions of electrophile 1c 
 
Table S7: Kinetics of the reaction of 1c with the anion of acetylacetone 4f in DMSO at  

   20 °C (stopped–flow UV–Vis spectrometer, decrease at λ = 593 nm). 

 

 

k1 = 2.19 × 105 L mol–1 s–1 

 
Table S8: Kinetics of the reaction of 1c with the anion of dimedone 4g in DMSO at 20 °C 

(stopped–flow UV–Vis spectrometer, decrease at λ = 470 nm). 

 

Nr. [E]0 / M [Nu–]0 / M kobs. / s−1 

233–1 1.57 × 10−5 1.52 × 10−4 1.18 × 101 

233–2 1.57 × 10−5 3.04 × 10−4 2.36 × 101 

233–3 1.57 × 10−5 6.07 × 10−4 4.50 × 101 

233–4 1.57 × 10−5 1.21 × 10−3 8.64 × 101 

233–5 1.57 × 10−5 1.52 × 10−3 1.06 × 102 

k1 = 6.87 × 104 L mol–1 s–1 

Nr. [E]0 / M [Nu–]0 / M kobs. / s−1 

254–1 2.30 × 10−5 5.77 × 10−4 2.08 × 101 

254–2 2.30 × 10−5 1.15 × 10−3 3.99 × 101 

254–3 2.30 × 10−5 1.73 × 10−3 6.14 × 101 

254–4 2.30 × 10−5 2.31 × 10−3 8.21 × 101 

254–5 2.30 × 10−5 2.88 × 10−3 1.02 × 102 

Nr. [E]0 / M [Nu–]0 / M kobs. / s−1 

223–1 1.65 × 10−5 1.84 × 10−4 4.50 × 101 

223–2 1.65 × 10−5 4.04 × 10−4 9.85 × 101 

223–3 1.65 × 10−5 6.62 × 10−4 1.59 × 101 

223–4 1.65 × 10−5 1.10 × 10−3 2.55 × 101 

223–5 1.65 × 10−5 1.65 × 10−3 3.68 × 102 
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Table S9a: Kinetics of the reaction of 1c with the anion of dimedone 4g in DMSO at 20 °C 

(stopped–flow UV–Vis spectrometer, decrease at λ = 483 nm). 

 

 

k1 = 6.38 × 104 L mol–1 s–1 

 
Table S9b: Kinetics of the reaction of 1c with the anion of dimedone 4g in DMSO at 20 °C 

(stopped–flow UV–Vis spectrometer, increase at λ = 570 nm). 

 

 

k1 = 2.30 × 102 L mol–1 s–1 

 
Table S10: Kinetics of the reaction of 1c with the anion of Meldrum´s acid 4h in DMSO at 

20 °C (stopped–flow UV–Vis spectrometer, decrease at λ = 582 nm). 

 

Nr. [E]0 / M [Nu–]0 / M kobs. / s−1 

239–1 1.89 × 10−5 3.44 × 10−4 1.25 × 10–1 

239–2 1.89 × 10−5 6.87 × 10−4 2.44 × 10–1 

239–3 1.89 × 10−5 1.38 × 10−3 4.78 × 10–1 

239–4 1.89 × 10−5 2.06 × 10−3 7.30 × 10–1 

239–5 1.89 × 10−5 3.44 × 10−3 1.24  

k1 = 3.59 × 102 L mol–1 s–1 

 

Nr. [E]0 / M [Nu–]0 / M kobs. / s−1 

229–1 1.88 × 10−5 2.07 × 10−4 1.49 × 101 

229–2 1.88 × 10−5 4.14 × 10−4 2.92 × 101 

229–3 1.88 × 10−5 8.27 × 10−4 5.69 × 101 

229–4 1.88 × 10−5 1.45 × 10−3 9.55 × 101 

229–5 1.88 × 10−5 2.07 × 10−3 1.34 × 102 

Nr. [E]0 / M [Nu–]0 / M kobs. / s−1 

229–1 1.88 × 10−5 2.07 × 10−4 1.07 × 10–1 

229–2 1.88 × 10−5 4.14 × 10−4 1.56 × 10–1 

229–4 1.88 × 10−5 1.45 × 10−3 4.07 × 10–1 

229–5 1.88 × 10−5 2.07 × 10−3 5.29 × 10–1 
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Table S11: Kinetics of the reaction of 1c with piperidine 5a in DMSO at 20 °C (stopped–

flow UV–Vis spectrometer, decrease at λ = 583 nm). 

 

 

k1 = 1.09 × 105 L mol–1 s–1 

k– = 8.0 × 101s–1, K = 1.4 × 103 L mol–1 

 
Table S12: Kinetics of the reaction of 1c with ethanolamine 5c in DMSO at 20 °C (stopped–

flow UV–Vis spectrometer, decrease at λ = 583 nm). 

 

 

k1 = 4.04 × 103 L mol–1 s–1 

 
Table S13: Kinetics of the reaction of 1c with n–propylamine 5d in DMSO at 20 °C 

(stopped–flow UV–Vis spectrometer, decrease at λ = 583 nm). 

  

 

k1 = 4.92 × 103 L mol–1 s–1 

Nr. [E]0 / M [Nu–]0 / M kobs. / s−1 

259–1 2.34 × 10−5 3.09 × 10−4 2.14 × 102 

259–3 2.34 × 10−5 1.33 × 10−4 2.83 × 102 

259–4 2.34 × 10−5 1.77 × 10−3 3.12 × 102 

239–5 2.34 × 10−5 2.21 × 10−3 4.12 × 102 

Nr. [E]0 / M [Nu–]0 / M kobs. / s−1 

262–2 1.55 × 10−5 1.14 × 10−3 5.03  

262–3 1.55 × 10−5 1.70 × 10−3 7.30  

262–4 1.55 × 10−5 2.27 × 10−3 9.51  

262–5 1.55 × 10−5 2.84 × 10−3 1.22 × 101 

262–1 1.55 × 10−5 4.55 × 10−3 1.87 × 101 

Nr. [E]0 / M [Nu–]0 / M kobs. / s−1 

253–1 2.34 × 10−5 5.77 × 10−4 3.45  

253–2 2.34 × 10−5 1.15 × 10−3 6.33  

253–3 2.34 × 10−5 1.73 × 10−3 9.09  

253–4 2.34 × 10−5 2.31 × 10−3 1.20 × 101 

253–5 2.34 × 10−5 2.88 × 10−3 1.48 × 101 
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Table S14: Kinetics of the reaction of 2a with the anion of acetylacetone 4f in DMSO at  

   20 °C (stopped–flow UV–Vis spectrometer, decrease at λ = 375 nm). 

  

 

k1 = 2.18 × 105 L mol–1 s–1 

 
 
Table S15: Kinetics of the reaction of 2a with the anion of dimedone 4g in DMSO at 20 °C 

(stopped–flow UV–Vis spectrometer, decrease at λ = 375 nm). 

  

 

k2 = 6.18 × 104 L mol–1 s–1 

 
Table S16: Kinetics of the reaction of 2a with the anion of Meldrum´s acid 4h in DMSO at 

20 °C (J&M, decrease at λ = 375 nm). 

 

k1 = 2.3 × 101 L mol–1 s–1 

k– = 1.5 × 10–2 s–1, K = 1.5 × 103 L mol–1 

Nr. [E]0 / M [Nu–]0 / M kobs. / s−1 

237–1 1.04 × 10−5 1.13 × 10−4 2.67 × 101 

237–2 1.04 × 10−5 2.27 × 10−4 5.10 × 101 

237–3 1.04 × 10−5 3.78 × 10−4 8.41 × 101 

237–5 1.04 × 10−5 7.55 × 10−4 1.67 × 102 

Nr. [E]0 / M [Nu–]0 / M kobs. / s−1 

231–1 1.84 × 10−5 2.07 × 10−4 1.62 × 101 

231–2 1.84 × 10−5 4.14 × 10−4 2.93 × 101 

231–3 1.84 × 10−5 8.27 × 10−4 5.84 × 101 

231–4 1.84 × 10−5 1.45 × 10−3 9.84 × 101 

231–5 1.84 × 10−5 2.07 × 10−3 1.30 × 102 

Nr. [E]0 / M [Nu–]0 / M kobs. / s−1 

240–1 3.73 × 10−5 3.95 × 10−4 2.48 × 10–2 

240–2 3.73 × 10−5 1.07 × 10−3 3.95 × 10–2 

240–3 3.73 × 10−5 1.87 × 10−3 5.87 × 10–2 

240–4 3.73 × 10−5 2.50 × 10−3 7.29 × 10–2 
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Table S17: Kinetics of the reaction of 2a with morpholine 5b in DMSO at 20 °C (stopped–

flow UV–Vis spectrometer, decrease at λ = 375 nm). 

  

 

k1 = 8.41 × 102 L mol–1 s–1 

k– = 2.9 s–1, K = 2.9 × 102 L mol–1 

 

Table S18: Kinetics of the reaction of 2a with ethanolamine 5c in DMSO at 20 °C (stopped–

flow UV–Vis spectrometer, decrease at λ = 374 nm). 

  

 

k1 = 5.38 × 103 L mol–1 s–1 

k– = 5.8 s–1, K = 9.3 × 102 L mol–1 

 
Table S19: Kinetics of the reaction of 2a with n–propylamine 5d in DMSO at 20 °C 

(stopped–flow UV–Vis spectrometer, decrease at λ = 375 nm). 

  

 

k1 = 8.04 × 103 L mol–1 s–1 

Nr. [E]0 / M [Nu–]0 / M kobs. / s−1 

252–3 3.04 × 10−5 3.13 × 10−4 5.43 

252–4 3.04 × 10−5 4.38 × 10−3 6.70 

252–5 3.04 × 10−5 6.26 × 10−3 8.09 

Nr. [E]0 / M [Nu–]0 / M kobs. / s−1 

265–1 1.89 × 10−5 5.68 × 10−4 9.00 

265–2 1.89 × 10−5 1.14 × 10−3 1.19 × 101 

265–3 1.89 × 10−5 1.70 × 10−3 1.46 × 101 

265–4 1.89 × 10−5 2.27 × 10−3 1.80 × 101 

265–5 1.89 × 10−5 2.84 × 10−3 2.12 × 101 

Nr. [E]0 / M [Nu–]0 / M kobs. / s−1 

256–3 3.40 × 10−5 1.73 × 10−3 1.70 × 101 

256–2 3.40 × 10−5 2.31 × 10−3 2.12 × 101 

256–1 3.40 × 10−5 2.88 × 10−3 2.53 × 101 

256–4 3.40 × 10−5 4.33 × 10−3 3.78 × 101 

256–5 3.40 × 10−5 4.91 × 10−3 4.91 × 101 



Chapter 6: Experimental Section 

267 

y = 371673.9650x - 0.5714
R2 = 0.9999

0
100
200
300
400
500

0.0000 0.0005 0.0010 0.0015

[C– ] / M

k
ob

s /
 s

-1

y = 85722.0725x + 2.9902
R2 = 0.9983

0

30

60

90

120

150

0.0000 0.0005 0.0010 0.0015 0.0020

[C– ] / M

k
ob

s /
 s

-1

y = 21716x + 0.9156
R2 = 0.9998

0
10
20
30
40
50
60

0.0000 0.0005 0.0010 0.0015 0.0020 0.0025

[C– ] / M

k
ob

s  
/ s

-1

Reactions of electrophile 2b 

 

Table S20: Kinetics of the reaction of 2b with the anion of ethyl aceto acetate 4d in DMSO 

at 20 °C (stopped–flow UV–Vis spectrometer, decrease at λ = 416 nm). 

  

 

k1 = 3.72 × 105 L mol–1 s–1 

 

Table S21: Kinetics of the reaction of 2b with the anion of acetylacetone 4f in DMSO at  

   20 °C (stopped–flow UV–Vis spectrometer, decrease at λ = 412 nm).  

 

k1 = 8.57 × 104 L mol–1 s–1 

 
Table S22: Kinetics of the reaction of 2b with the anion of dimedone 4g in DMSO at 20 °C 

(stopped–flow UV–Vis spectrometer, decrease at λ = 418 nm). 

  

 

k1 = 2.17 × 104 L mol–1 s–1 

Nr. [E]0 / M [Nu–]0 / M kobs. / s−1 

250–1 3.60 × 10−5 3.70 × 10−4 1.37 × 102 

250–4 3.60 × 10−5 5.54 × 10−4 2.04 × 102 

250–3 3.60 × 10−5 7.39 × 10−4 2.76 × 102 

250–2 3.60 × 10−5 1.11 × 10−3 4.11 × 102 

Nr. [E]0 / M [Nu–]0 / M kobs. / s−1 

224–1 1.55 × 10−5 1.84 × 10−4 1.68 × 101 

224–2 1.55 × 10−5 4.04 × 10−4 3.72 × 101 

224–3 1.55 × 10−5 6.62 × 10−4 6.19 × 101 

224–4 1.55 × 10−5 1.10 × 10−3 9.97 × 101 

224–5 1.55 × 10−5 1.65 × 10−3 1.43 × 102 

Nr. [E]0 / M [Nu–]0 / M kobs. / s−1 

235–1 2.00 × 10−5 2.99 × 10−4 7.53 

235–2 2.00 × 10−5 5.98 × 10−4 1.36 × 101 

235–3 2.00 × 10−5 1.20 × 10−4 2.70 × 101 

235–4 2.00 × 10−5 1.79 × 10−3 4.02 × 101 

235–5 2.00 × 10−5 2.39 × 10−3 5.27 × 102 
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Table S23: Kinetics of the reaction of 2b with the anion of Meldrum´s acid 4h in DMSO at 

20 °C (J&M, decrease at λ = 418 nm). 

 

 

k1 = 1.01 × 101 L mol–1 s–1 

k– = 1.6 × 10–2 s–1, K = 6.5 × 102 L mol–1 

 

Table S24: Kinetics of the reaction of 2b with morpholine 5b in DMSO at 20 °C (stopped–

flow UV–Vis spectrometer, decrease at λ = 416 nm). 

  

 

k1 = 8.30 × 102 L mol–1 s–1 

k– = 3.6 s–1, K = 2.5 × 102 L mol–1 

Nr. [E]0 / M [Nu–]0 / M kobs. / s−1 

243–1 3.66 × 10−5 5.59 × 10−4 2.14 × 10–2 

243–2 3.66 × 10−5 1.06 × 10−3 2.57 × 10–2 

243–3 3.66 × 10−5 1.86 × 10−3 3.57 × 10–2 

243–4 3.66 × 10−5 2.54 × 10−3 4.01 × 10–2 

243–5 3.66 × 10−5 3.31 × 10−3 4.94 × 10–2 

Nr. [E]0 / M [Nu–]0 / M kobs. / s−1 

251–2 3.60 × 10−5 1.57 × 10−3 4.65  

251–3 3.60 × 10−5 3.13 × 10−3 5.93  

251–4 3.60 × 10−5 4.70 × 10−3 7.31  

251–5 3.60 × 10−5 6.26 × 10−3 8.52  
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Table S25: Kinetics of the reaction of 2b with ethanolamine 5c in DMSO at 20 °C 

(stopped–flow UV–Vis spectrometer, decrease at λ = 416 nm). 

  

 

k1 = 2.85 × 103 L mol–1 s–1 

k– = 8.3 s–1, K = 3.4 × 102 L mol–1 

 
Table S26: Kinetics of the reaction of 2b with n–propylamine 5d in DMSO at 20 °C 

(stopped–flow UV–Vis spectrometer, decrease at λ = 416 nm). 

  

 

k1 = 3.42 × 103 L mol–1 s–1 

k– = 5.0 s–1, K = 6.9 × 102 L mol–1 

 

Nr. [E]0 / M [Nu–]0 / M kobs. / s−1 

262–3 3.13 × 10−5 1.70 × 10−3 1.33 × 101 

262–4 3.13 × 10−5 2.27 × 10−3 1.44 × 101 

262–5 3.13 × 10−5 2.84 × 10−3 1.65 × 101 

262–7 3.13 × 10−5 3.41 × 10−3 1.80 × 101 

262–6 3.13 × 10−5 3.98 × 10−3 1.96 × 101 

Nr. [E]0 / M [Nu–]0 / M kobs. / s−1 

255–3 3.60 × 10−5 5.77 × 10−4 6.68 

255–4 3.60 × 10−5 1.73 × 10−3 1.11 × 101 

255–5 3.60 × 10−5 2.88 × 10−3 1.49 × 101 

255–7 3.60 × 10−5 4.33 × 10−3 1.98 × 101 

255–6 3.60 × 10−5 5.77 × 10−3 2.54 × 101 
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Table S27: Kinetics of the reaction of 2c with the anion of ethyl cyano acetate 4b in DMSO 

at 20 °C (stopped–flow UV–Vis spectrometer, decrease at λ = 535 nm). 

  

 

k1 = 6.38 × 104 L mol–1 s–1 

 
Table S28: Kinetics of the reaction of 2c with the anion of ethyl aceto acetate 4d in DMSO 

at 20 °C (stopped–flow UV–Vis spectrometer, decrease at λ = 535 nm). 

  

 

k1 = 4.76 × 104 L mol–1 s–1 

 
Table S29: Kinetics of the reaction of 2c with the anion of 2–methyl acetylacetone 4e in 

DMSO at 20 °C (stopped–flow UV–Vis spectrometer, decrease at λ = 535 nm). 

 

 

k1 = 4.40 × 104 L mol–1 s–1 

 

Nr. [E]0 / M [Nu–]0 / M kobs. / s−1 

247–1 1.44 × 10−5 3.36 × 10−4 1.98 × 101 

247–2 1.44 × 10−5 6.72 × 10−3 4.20 × 101 

247–3 1.44 × 10−5 1.01 × 10−3 6.50 × 101 

247–4 1.44 × 10−5 1.34 × 10−3 8.40 × 101 

Nr. [E]0 / M [Nu–]0 / M kobs. / s−1 

248–1 1.44 × 10−5 2.95 × 10−4 1.26 × 101 

248–2 1.44 × 10−5 5.90 × 10−4 2.82 × 101 

248–3 1.44 × 10−5 8.84 × 10−4 4.21 × 101 

248–4 1.44 × 10−5 1.18 × 10−3 5.52 × 101 

248–5 1.44 × 10−5 1.47 × 10−3 6.92 × 101 

Nr. [E]0 / M [Nu–]0 / M kobs. / s−1 

249–1 1.44 × 10−5 3.26 × 10−4 9.65  

249–2 1.44 × 10−5 6.53 × 10−4 2.59 × 101 

249–3 1.44 × 10−5 9.79 × 10−4 4.02 × 101 

249–4 1.44 × 10−5 1.47 × 10−3 6.12 × 101 

249–5 1.44 × 10−5 1.80 × 10−3 7.47 × 101 
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Table S30: Kinetics of the reaction of 2c with the anion of acetylacetone 4f in DMSO at               

20 °C (stopped–flow UV–Vis spectrometer, decrease at λ = 535 nm). 

 

k1 = 8.64 × 103 L mol–1 s–1 

 
Table S31: Kinetics of the reaction of 2c with the anion of dimedone 4g in DMSO at 20 °C 

(stopped–flow UV–Vis spectrometer, decrease at λ = 535 nm).  

 

k1 = 2.95 × 103 L mol–1 s–1 

 

Table S32: Kinetics of the reaction of 2c with n–propylamine 5d in DMSO at 20 °C 

 (stopped–flow UV–Vis spectrometer, decrease at λ = 535 nm). 

  

 

k1 = 5.10 × 102 L mol–1 s–1 

k– = 6.0 s–1, K = 8.4 × 101 L mol–1 

Nr. [E]0 / M [Nu–]0 / M kobs. / s−1 

222–1 1.37 × 10−5 1.10 × 10−4 1.01 

222–2 1.37 × 10−5 2.21 × 10−4 2.02 

222–3 1.37 × 10−5 4.04 × 10−4 3.70 

222–4 1.37 × 10−5 7.35 × 10−4 6.51 

222–5 1.37 × 10−5 1.10 × 10−3 9.60 

Nr. [E]0 / M [Nu–]0 / M kobs. / s−1 

235–1 1.58 × 10−5 2.99 × 10−4 1.54 

235–2 1.58 × 10−5 5.98 × 10−4 2.77 

235–3 1.58 × 10−5 1.20 × 10−3 4.45 

235–4 1.58 × 10−5 1.79 × 10−4 6.16 

235–5 1.58 × 10−5 2.39 × 10−3 7.83 

Nr. [E]0 / M [Nu–]0 / M kobs. / s−1 

257–1 2.94 × 10−5 5.09 × 10−3 8.79 

257–2 2.94 × 10−5 8.48 × 10−3 1.03 × 101 

257–3 2.94 × 10−5 1.19 × 10−2 1.20 × 101 

257–4 2.94 × 10−5 1.70 × 10−2 1.47 × 101 

257–5 2.94 × 10−5 2.54 × 10−2 1.91 × 101 
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Table S33: Kinetics of the reaction of 3a with the anion of ethyl cyano acetate 4b in DMSO 

at 20 °C (stopped–flow UV–Vis spectrometer, decrease at λ = 374 nm). 

  

Nr. [E]0 / M [Nu–]0 / M kobs. / s−1 

M03–04–4 2.97 × 10−5 1.42 × 10−4 2.53 × 101 

M03–04–2 2.97 × 10−5 2.84 × 10−4 5.07 × 101 

M03–04–5 2.97 × 10−5 4.27 × 10−4 7.94 × 101 

M03–04–1 2.97 × 10−5 5.69 × 10−4 1.08 × 102 

M03–04–3 2.97 × 10−5 8.53 × 10−4 1.64 × 102 

k1 = 1.96 × 105 L mol–1 s–1 

 
Table S34: Kinetics of the reaction of 3a with the anion of ethyl aceto acetate 4d in DMSO 

at 20 °C (stopped–flow UV–Vis spectrometer, decrease at λ = 374 nm).  

 

k1 = 1.37 × 105 L mol–1 s–1 

 
Table S35: Kinetics of the reaction of 3a with the anion of acetylacetone 4f in DMSO at  

   20 °C (stopped–flow UV–Vis spectrometer, decrease at λ = 374 nm). 

  

 

k1 = 2.35 × 104 L mol–1 s–1 

 

Nr. [E]0 / M [Nu–]0 / M kobs. / s−1 

M03–03–4 2.83 × 10−5 1.24 × 10−4 1.42 × 101 

M03–03–3 2.83 × 10−5 2.47 × 10−4 3.16 × 101 

M03–03–5 2.83 × 10−5 6.18 × 10−4 8.28 × 101 

M03–03–2 2.83 × 10−5 9.89 × 10−4 1.34 × 102 

M03–03–1 2.83 × 10−5 1.24 × 10−3 1.67 × 102 

Nr. [E]0 / M [Nu–]0 / M kobs. / s−1 

M03–02–1 1.91 × 10−5 3.15 × 10−4 7.18 

M03–02–2 1.91 × 10−5 6.31 × 10−4 1.48 × 101 

M03–02–3 1.91 × 10−5 9.46 × 10−4 2.20 × 101 

M03–03–4 1.91 × 10−5 1.26 × 10−4 2.91 × 102 

M03–03–5 1.91 × 10−5 1.58 × 10−3 3.71 × 102 
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Table S36: Kinetics of the reaction of 3a with the anion of dimedone 4g in DMSO at 20 °C 

(stopped–flow UV–Vis spectrometer, decrease at λ = 374 nm). 

  

 

k1 = 6.97 × 103 L mol–1 s–1 

 

Reactions of electrophile 3b  

 

Table S37: Kinetics of the reaction of 3b with the anion of ethyl cyano acetate 4b in DMSO 

at 20 °C (stopped–flow UV–Vis spectrometer, decrease at λ = 413 nm). 

 

k1 = 6.58 × 104 L mol–1 s–1 

 
Table S38: Kinetics of the reaction of 3b with the anion of malononitrile 4c in DMSO at         

20 °C (stopped–flow UV–Vis spectrometer, decrease at λ = 413 nm). 

 

k1 = 5.48 × 104 L mol–1 s–1 

 

Nr. [E]0 / M [Nu–]0 / M kobs. / s−1 

M03–01–1 1.91 × 10−5 4.55 × 10−4 3.05 

M03–01–2 1.91 × 10−5 9.11 × 10−4 6.36  

M03–01–3 1.91 × 10−5 1.37 × 10−3 9.50  

M03–01–4 1.91 × 10−5 1.82 × 10−3 1.25 × 101 

M03–01–5 1.91 × 10−5 2.28 × 10−3 1.59 × 101 

Nr. [E]0 / M [Nu–]0 / M kobs. / s−1 

M02–06–1 1.76 × 10−5 3.00 × 10−4 1.80 × 101 

M02–06–2 1.76 × 10−5 5.99 × 10−4 3.77 × 101  

M02–06–3 1.76 × 10−5 8.99 × 10−4 5.78 × 101 

M02–06–4 1.76 × 10−5 1.20 × 10−3 7.80 × 101 

M02–06–5 1.76 × 10−5 1.45 × 10−3 9.64 × 101 

Nr. [E]0 / M [Nu–]0 / M kobs. / s−1 

M02–05–1 1.76 × 10−5 2.14 × 10−4 1.09 × 101 

M02–05–2 1.76 × 10−5 4.28 × 10−4 2.33 × 101  

M02–05–3 1.76 × 10−5 6.42 × 10−4 3.48 × 101 

M02–05–4 1.76 × 10−5 4.56 × 10−4 4.63 × 101 

M02–05–5 1.76 × 10−5 1.07 × 10−3 5.81 × 101 
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Table S39: Kinetics of the reaction of 3b with the anion of ethyl aceto acetate 4d in DMSO 

at 20 °C (stopped–flow UV–Vis spectrometer, decrease at λ = 413 nm). 

  

Nr. [E]0 / M [Nu–]0 / M kobs. / s−1 

M02–03–1 2.64 × 10−5 2.56 × 10−4 9.35 

M02–03–2 2.64 × 10−5 5.11 × 10−4 1.99 × 101  

M02–03–3 2.64 × 10−5 7.67 × 10−4 2.93 × 101 

M02–03–4 2.64 × 10−5 1.02 × 10−4 3.77 × 101 

M02–03–5 2.64 × 10−5 1.28 × 10−3 4.86 × 101 

k1 = 3.77 × 104 L mol–1 s–1 

 

Table S40: Kinetics of the reaction of 3b with the anion of acetylacetone 4f in DMSO at 

20 °C (stopped–flow UV–Vis spectrometer, decrease at λ = 413 nm). 

 

 

k1 = 6.86 × 103 L mol–1 s–1 

 
Table S41: Kinetics of the reaction of 3b with the anion of dimedone 4g in DMSO at 20 °C 

(stopped–flow UV–Vis spectrometer, decrease at λ = 413 nm). 

   

 

k1 = 1.96 × 103 L mol–1 s–1 

 

Nr. [E]0 / M [Nu–]0 / M kobs. / s−1 

M02–01–1 2.64 × 10−5 4.55 × 10−4 2.86 

M02–01–2 2.64 × 10−5 9.10 × 10−4 6.22  

M02–01–3 2.64 × 10−5 1.37 × 10−3 9.29 

M02–01–4 2.64 × 10−5 1.82 × 10−3 1.26 × 101 

M02–01–5 2.64 × 10−5 2.28 × 10−3 1.50 × 101 

Nr. [E]0 / M [Nu–]0 / M kobs. / s−1 

M02–02–1 2.64 × 10−5 4.82 × 10−4 8.75 × 10–1 

M02–02–2 2.64 × 10−5 9.65 × 10−4 1.82  

M02–02–3 2.64 × 10−5 1.45 × 10−3 2.81 

M02–02–4 2.64 × 10−5 1.93 × 10−3 3.66 

M02–02–5 2.64 × 10−5 2.41 × 10−3 4.69 
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Table S42: Kinetics of the reaction of 3b with ethanolamine 5c in DMSO at 20 °C (stopped–

flow UV–Vis spectrometer, decrease at λ = 413 nm).  

 

k1 = 7.72 × 102 L mol–1 s–1 

k– = 6.0 × 10–2 s–1, K = 1.3 × 102 L mol–1 

 
Table S43: Kinetics of the reaction of 3b with n–propylamine 5d in DMSO at 20 °C 

(stopped–flow UV–Vis spectrometer, decrease at λ = 413 nm). 

   

 

k1 = 1.49 × 103 L mol–1 s–1 

k– = 2.3 s–1, K = 6.4 × 102 L mol–1 

 
Reactions of electrophile 3c 
 
Table S44: Kinetics of the reaction of 3c with the anion of nitro ethane 4a in DMSO at        

20 °C (stopped–flow UV–Vis spectrometer, decrease at λ = 521 nm). 

   

 

k1 = 6.96 × 104 L mol–1 s–1 

Nr. [E]0 / M [Nu–]0 / M kobs. / s−1 

M02–07–1 2.64 × 10−5 2.21 × 10−4 7.75  

M02–07–2 2.64 × 10−5 2.94 × 10−4 8.25  

M02–07–3 2.64 × 10−5 3.68 × 10−3 9.01 

M02–07–4 2.64 × 10−5 4.41 × 10−3 9.39 

Nr. [E]0 / M [Nu–]0 / M kobs. / s−1 

M02–07–1 2.64 × 10−5 9.00 × 10−4 3.66  

M02–07–2 2.64 × 10−5 1.80 × 10−4 5.04  

M02–07–3 2.64 × 10−5 2.70 × 10−4 6.26  

M02–07–4 2.64 × 10−5 3.60 × 10−3 7.67 

M02–07–5 2.64 × 10−5 4.50 × 10−3 9.05 

Nr. [E]0 / M [Nu–]0 / M kobs. / s−1 

M01–06–1 1.14 × 10−5 1.65 × 10−4 1.00 × 101 

M01–06–2 1.14 × 10−5 3.30 × 10−4 2.06 × 101 

M01–06–3 1.14 × 10−5 6.61 × 10−4 4.44 × 101 

M01–06–4 1.14 × 10−5 9.91 × 10−4 6.76 × 101 

M01–06–5 1.14 × 10−5 1.32 × 10−3 8.99 × 101 
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Table S45: Kinetics of the reaction of 3c with the anion of ethyl cyano acetate 4b in DMSO 

at 20 °C (stopped–flow UV–Vis spectrometer, decrease at λ = 521 nm).  

 

k1 = 8.31 × 103 L mol–1 s–1 

 
Table S46: Kinetics of the reaction of 3c with the anion of malononitrile 4c in DMSO at           

20 °C (stopped–flow UV–Vis spectrometer, decrease at λ = 521 nm). 

   

 

k1 = 7.75 × 103 L mol–1 s–1 

 

Table S47: Kinetics of the reaction of 3c with the anion of ethyl aceto acetate 4d in DMSO 

at 20 °C (stopped–flow UV–Vis spectrometer, decrease at λ = 521 nm). 

   

 

k1 = 4.03 × 103 L mol–1 s–1 

 

Nr. [E]0 / M [Nu–]0 / M kobs. / s−1 

M01–04–1 1.14 × 10−5 3.15 × 10−4 2.45  

M01–04–2 1.14 × 10−5 6.30 × 10−4 4.99  

M01–04–3 1.14 × 10−5 9.44 × 10−4 7.63  

M01–04–4 1.14 × 10−5 1.26 × 10−4 1.04 × 101 

M01–04–5 1.14 × 10−5 1.57 × 10−3 1.28 × 101 

Nr. [E]0 / M [Nu–]0 / M kobs. / s−1 

M01–03–1 1.68 × 10−5 2.72 × 10−4 2.05  

M01–03–2 1.68 × 10−5 5.43 × 10−4 4.32  

M01–03–3 1.68 × 10−5 8.15 × 10−4 6.43  

M01–03–4 1.68 × 10−5 1.09 × 10−3 8.47 

M01–03–5 1.68 × 10−5 1.36 × 10−3 1.05 × 101 

Nr. [E]0 / M [Nu–]0 / M kobs. / s−1 

M01–05–1 1.14 × 10−5 3.39 × 10−4 1.30  

M01–05–2 1.14 × 10−5 6.78 × 10−4 2.72  

M01–05–3 1.14 × 10−5 1.02 × 10−3 4.11  

M01–05–4 1.14 × 10−5 1.36 × 10−3 5.46 

M01–05–5 1.14 × 10−5 1.69 × 10−3 6.76 
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Table S48: Kinetics of the reaction of 3c with the anion of acetylacetone 4f in DMSO at          

20 °C (stopped–flow UV–Vis spectrometer, decrease at λ = 521 nm). 

   

Nr. [E]0 / M [Nu–]0 / M kobs. / s−1 

M01–02–2 1.68 × 10−5 1.35 × 10−4 1.20  

M01–02–1 1.68 × 10−5 1.69 × 10−4 1.45  

M01–02–3 1.68 × 10−5 2.02 × 10−3 1.74  

M01–02–4 1.68 × 10−5 2.70 × 10−3 2.23 

M01–02–5 1.68 × 10−5 3.37 × 10−3 2.71 

k1 = 7.45 × 102 L mol–1 s–1 

 
Table S49: Kinetics of the reaction of 3c with the anion of dimedone 4g in DMSO at 20 °C 

(stopped–flow UV–Vis spectrometer, decrease at λ = 528 nm).   

 

k1 = 1.92 × 102 L mol–1 s–1 

Nr. [E]0 / M [Nu–]0 / M kobs. / s−1 

a267–1 2.82 × 10−5 7.56 × 10−4 1.91 × 10–1 

a267–2 2.82 × 10−5 1.51 × 10−4 3.27 × 10–1 

a267–3 2.82 × 10−5 2.27 × 10−3 4.77 × 10–1 

a267–4 2.82 × 10−5 3.03 × 10−3 6.24 × 10–1 

a267–5 2.82 × 10−5 5.67 × 10−3 1.13 
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6.7. Copies of NMR Spectra 
Compounds 7bc and 8bc 1H NMR 

 
13C NMR 
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Compounds 7bf and 8bf  1H NMR 

 

13C NMR 
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Compounds 9cc and 10cc 1H NMR 

 
13C NMR 
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Compound 11bc 1H NMR 

 
13C NMR: 
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Chapter 7 

Hydride Affinities of Michael Acceptors in 

Acetonitrile 

Introduction 

Hydride transfer reactions play a significant role in living organisms. The reduced form of 

nicotinamide adenine dinucleotide coenzyme (NAD(P)H), which bears a 1,4-dihydropyridine 

ring as the reactive center, is known to transfer a hydride ion or an electron to the surrounding 

substrates. In analogy to NADH, hydride abstractions from various types of dihydropyridines 

have found numerous applications in organic synthesis, most recently also in organocatalytic 

reductions of α,ß-unsaturated compounds.1 Hence, recent investigations in our group focused 

on the determination of the hydride donating abilities of 1,4-dihydropyridines and their 

comparison to borohydrides.2,3 

Our nucleophilicity scales could be extended significantly by integration of the 

borohydrides and 1,4-dihydropyridines as hydride donors. The linear-free energy relationship 

(7.1), which has previously been employed to compare the π-nucleophilicities of alkenes, 

allyl silanes, and enol ethers can also be employed for a comparison with the σ-

nucleophilicities of hydride donors, such as organosilanes and organostannanes.4,5 

 

log k2 (20 °C) = s(N + E)     (7.1) 

E = electrophilicity parameter, N = nucleophilicity parameter, s = nucleophile-specific slope 

parameter 
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Recently, quantum chemical calculations of the methyl anion- and the hydride affinities of 

benzhydrylium ions showed, that these thermodynamic terms correlate linearly with the 

electrophilicity parameters E of benzhydrylium ions and can therefore be employed for the 

prediction of E parameters of benzhydrylium ions.6 

In contrast, the rate constants log krel of the reactions of nitro(hetero)arenes with the anion 

of chloromethyl phenyl sulfone correlate poorly with their methyl anion affinities. Therefore, 

it was concluded that the methyl anion affinities of heteroarenes are not suitable for the 

prediction of the relative electrophilicities of the studied arenes.7 

Recently, Zhu et al. reported about a new method for the determination of hydride affinities 

of the polarized olefins 1a–f (Table 7.1) in acetonitrile.8 

 

Table 7.1. Electrophilicity Parameters E of the Michael Acceptors 1a–q. 

 Michael acceptors R E 
1a OMe –21.47a 

1b Me –21.11a 
1c H –20.55a 
1d 

R

EtO2C
EtO2C  

NO2 –17.67a 
1e OMe –10.80b 

1f R

NC
NC  H –9.42b 

a See ref. 9, b see ref. 10 

 

As discussed by Zhu, the hydride affinity of olefins can be expressed as the change of 

enthalpy during the reaction of an olefin with a free hydride ion under formation of the 

corresponding carbanion (Equation 7.2). 

H
ΔHH-A (1)

ΔHhet (2–)R

X

Y R

X

Y

1a–f (2a–f)–

(7.2)

 

Due to the unknown enthalpy of the hydride ion in solution, the direct determination of the 

hydride affinities ΔHH-A is problematic (Equation (7.3)). 

ΔHH-A (1) = H(2–) – [H(H–) + H(1)]                (7.3) 
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Equation (7.2) shows, that the hydride affinities of olefins 1 equal the negative values of the 

reverse reactions, i.e., the enthalpies of the heterolytic cleavage of the C-H σ-bond of 

compounds 2–. 

By using this relationship, the relative hydride affinities of the olefins 1 can be determined 

by measuring the enthalpy change ΔHr of the reaction of the carbanion 2– and a hydride 

acceptor (exemplarily depicted in Figure 7.1 for the reaction of 2– with the                       

N-methylacridinium ion (3a+)) under formation of the corresponding olefin 1 and the reduced 

compound 3a. 

N

ΔHr

CH3CN R

X

Y
R

X

Y

H

12– 3a+

N

3a  

Figure 7.1. Reaction of a carbanion 2– with the hydride acceptor 3a+ under formation of the 

olefin 1 and the reduced hydride acceptor 3a. 

 

In Equation (7.4), ΔHr is the enthalpy change of the reaction in Figure 7.1, which can be 

obtained by titration calorimetry. By using Equation (7.5), the hydride affinity ΔHH-A can be 

calculated from ΔHr and ΔHhet (3a), which is the previously reported heterolytic C9-H bond 

dissociation energy of the 9,10-dihydroacridine (3a) in solution.11 

 

ΔHr = ΔHhet (2–) – ΔHhet(3a)       (7.4) 

ΔHH-A (1) = –ΔHhet (2–) = –[ΔHr  + ΔHhet (3a)]     (7.5) 
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In analogy to this new approach, it is now possible to systematically investigate the hydride 

affinities of further Michael acceptors 1g–q (benzylidene Meldrum’s acids, benzylidene 

indandiones, benzylidene barbituric acids, and quinone methides, Table 7.2). 

 

Table 7.2. Electrophilicity Parameters E of the Michael Acceptors 1g–q. 

 Michael acceptors R E 
1g Jula –13.79b 

1h NMe2 –12.76b 
1i R

O
O

O

O  OMe –10.28b 

    
1j Jula –13.84c 

1k NMe2 –12.76c 
1l R

N
N

O

OO  OMe –10.37c 
   

1m OMe –11.32d 

 
R

O

O    
1n Jula –17.90e 

1o NMe2 –17.29e 
1p OMe –16.11e 
1q 

RO
 

Me –15.86e 
a For the structure of the julolidyl substituent see Figure 7.2.; b see ref.12, c see ref. 13, d see 

ref. 14, e see ref. 15 

 

Table 7.3 gives the bond dissociation energies ΔHhet of the hydride donors yielding the 

cations (3a–c)+. Due to the large differences of the hydride affinities of 1g–q, three different 

hydride acceptors had to be employed: the N-methylacridinium ion (3a+), the                       

9-phenylxanthylium ion (3b+), and the 4-acetamido-2,2,6,6-tetramethyl-1-oxopiperidinium 

ion (3c+). The hydride affinity of 3b+ had been confirmed independently by studying the 

enthalpy of its reaction with N-benzyl-1,4-dihydronicotinamide (BNAH) as reference using 

ITC experiments (second entry for 3b+ −ΔHhet = 96.4 kcal/mol in Table 7.3). 

Table 7.3. Bond Dissociation Energies ΔHhet of the Hydride Donors Yielding the Hydride 

Acceptors (3a–c)+ in Acetonitrile. 
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 Hydride acceptors −ΔHhet  
[kcal/mol]

3a+ 81.1a 

 N I   

3b+ 96.8b 

 O

Ph

ClO4
96.4c 

3c+ 99.2d 

  

 ClO4
N
O

NHAc

  
a From ref. 11, b from ref. 16, c differences result from an independent determination of 

ΔHhet for 3b+ by four ITC measurements with BNAH and the published value, d unpublished 

results from Zhu et al. 

 

Results and Discussion 

Preparation of the Carbanions (2g–m)– and of the Phenolates (2n–q)–. The Michael 

acceptors 1g–m (Table 7.2) and the quinone methides 1n–q (Table 7.2) were prepared by 

condensation of the corresponding aldehydes with Meldrum’s acid, dimethylbarbituric acid, 

indandione, and 2,6-di-tert-butylphenol respectively, as described earlier.9,10,12-15 Subsequent 

reduction of 1g–q with sodium borohydride in MeOH/EtOH17 (Figure 7.2) or with zinc in 

acetic acid18 yielded compounds 2g–q. The carbanions (2g–m)– and the phenolates (2n–q)– 

were obtained by treating the compounds 2g–q with potassium hydride in dry acetonitrile 

directly before the ITC measurements (Figure 7.2). 
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Figure 7.2. Reduction of the Michael acceptors 1g–m and the quinone methides 1n–q with 

NaBH4/EtOH or Zn/CH3CO2H under formation of the corresponding reduced compounds  

2n–q, and subsequent treatment with KH under formation of the anions (2a–q)–. 

 

Isothermal Titration Calorimeter Experiments. Isothermal titration calorimeter 

experiments were performed in dry acetonitrile solutions at 25 °C on a CSC 4200 isothermal 

titration calorimeter. Prior to use, the instrument was calibrated against an internal heat pulse. 

Data points were collected every 2 s. The heats of the reactions of the anions (2g–q)– with the 

hydride acceptors (3a–c)+ were determined by injecting 5–15 µL of the hydride acceptors   

(3a–c)+ (∼2.5 mM)  into the reaction cell (1.00 mL) containing the compounds (2g–q)– (∼75 

mM) and measuring the heat flow. As illustrated in Figure 7.3, this injection was repeated 

nine to twelve times after delay times of 300–500 s, and the heats of reactions were obtained 

by averaging the integrals of the areas of the peaks except the first one or two. 
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Figure 7.3. Isothermal titration calorimetry (ITC) for the reaction heat of the phenolate 2q– 

with the hydride acceptor 3c+ in acetonitrile at 25 °C. The heat of reaction was conducted by 

adding 10 μL of 3c+ (2.16 mM) every 300 s into the acetonitrile solution containing the 

carbanion 2q– (∼75 mM). 

 

Product Studies. Product studies for the reactions of the benzhydrylium tetrafluoroborates 

(4a–j)+ (structures see Table 7.5) with borohydrides and dihydropyridines showed the 

exclusive formation of the corresponding diarylmethanes 4a–j.2 When the phenolate ion 2q– 

and the strong hydride acceptor 3c+ were combined in dry acetonitrile and stirred for 10 min, 

45 % of the quinone methide 1q was isolated after chromatographic workup (Figure 7.4). 

N ON OH
CH3CN, KH

K

N

NHAc

O

CH3CN

N ON

NHAc

OH

2q 2q–

1q3c

3c+

ClO4

KClO4

 

Figure 7.4. Reaction of the phenolate 2q– with the hydride acceptor 3c+ in dry acetonitrile. 
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 Analogous results were obtained for the reaction of the phenolate ion 2p– with 3c+. TLC 

indicated the formation of a mixture of 1p and 3c, along with the starting material 2p. The 

incomplete conversions may be due to the fact that equimolar amounts of the hydride acceptor 

3c+ were not sufficient for a complete oxidation of the phenolate ion 2p–. This is unlike the 

conditions used for the ITC experiments, in which typically large excesses of carbanions were 

used. In contrast, Zhu reported that reactions of (2a–f)– with the weaker hydride acceptor 3a+ 

resulted in quantitative formation of the corresponding olefins 1a–f and of 3a (Figure 7.5).8 

 

R

Acc

Acc N N
R

Acc

Acc

(2a–f)– 3a+ 1a–f 3a

CH3CN

 

Figure 7.5. Reaction of the carbanions (2a–f)– with the hydride acceptor 3a+ in dry 

acetonitrile. 

 

The hydride affinities ΔHH-A of the Michael acceptors 1a–q derived from reactions with 

different hydride acceptors are listed in Table 7.4. Please note that the hydride affinities of 

compounds 1a–f have previously been reported by Zhu,8 whereas the hydride affinities of 

compounds 1g–q were determined in this work from more than 60 single experimental ITC 

measurements.   
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Table 7.4. Hydride Affinities ΔHH-A of the Michael Acceptors 1a–q in Acetonitrile at 25 °C. 

 R  ΔHH-A 
[kcal/mol]a 

Hydride  
acceptor 

OMe 1a –52.8b 3a+ 

Me 1b –53.1b 3a+ 

H 1c –53.7b 3a+ 

R

EtO2C
EtO2C  

NO2 1d –55.7b 3a+ 

OMe 1e –60.4b 3a+ 

R

NC
NC  H 1f –61.0b 3a+ 

Jul 1g –72.4 3c+ 

NMe2 1h –76.0 3b+ 
R

O
O

O

O  
OMe 1i –77.5 3b+ 

Jula 1j –69.1 3c+ 

NMe2 1k –67.4 3a+ 
R

N
N

O

OO  
OMe 1l –68.7 3a+ 

OMe 1m –75.0 3b+ 

R

O

O      

Jula 1n –70.1 3c+ 

NMe2 1o –69.7 3c+ 

OMe 1p –70.2 3c+ 
RO

 

Me 1q –70.2 3c+ 

a Calculated from Equation 7.5 by using the averages of at least three individually 

determined heats of reactions ΔHr (see Experimental Section), b from ref. 8 

 

The hydride affinities ΔHH-A for 1g–q (Table 7.4) result from at least three individual ITC 

measurements (for further details please see Experimental Section) of the compounds (2g–q)– 

with the hydride acceptors listed in the last column of Table 7.4. Please note that a direct 

comparison of the hydride affinities of compounds 1a–q is problematic because they were 

determined from reactions with a single hydride acceptor only, and no cross-checks have been 

carried out to verify the internal consistency of the results. The hydride acceptor 3c+ was used 

because the carbanions of the julolidyl-substituted Michael acceptors 2g– and 2j–, as well as 
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the phenolates (2n–q)– did not show quantitative reactions with the less reactive hydride 

acceptors  3a+ and 3b+. 

However, from the results listed in Table 7.4, one can conclude that the hydride affinities 

ΔHH-A of the olefins 1a–q are much smaller than those of primary benzyl cations ions in 

acetonitrile (compare ΔGH-A = –106 to –123 kcal/mol for 4-MeOC6H4CH2
+ and                      

4-NCC6H4CH2
+, respectively)19 and also considerably smaller than ΔHH-A of most of the 

benzhydrylium ions listed in Table 7.5. The hydride affinities of compounds 1g–q are 

comparable to those of NAD+ models (NADH = nicotinamide adenine dinucleotide) in 

acetonitrile, e.g. ΔHH-A = –64.2 kcal/mol for BNA+,11 which indicates that the olefins are no 

strong hydride acceptors of Table 7.4. Among the Michael acceptors, the methoxy substituted 

benzylidene Meldrum’s acid 1i (ΔHH-A = –77.5 kcal/mol) is the strongest oxidant and easiest 

to reduce, whereas the donor substituted benzylidene malonate 1a (ΔHH-A = –52.8 kcal/mol) 

is the weakest oxidant and the most difficult to reduce. Furthermore, Table 7.4 indicates that 

the para-substituent of the quinone methides 1n–q (ΔHH-A = –69.7 to –70.2 kcal/mol) does 

not have a large influence on the thermodynamic stability of the phenolate ions, as the 

hydride affinities of compounds 1n–q are almost constant. Thus, if the Michael acceptors 1a–

f are to be reduced efficiently, relatively strong hydride donors such as NaBH3(CN) (ΔHhet 

(B–H) = 45.0 kcal/mol)20 should be chosen. Weaker reducing agents, such as N-benzyl-1,4-

dihydronicotinamide can only be used for the reduction of the stronger oxidants 1g–q. 

The reduction of the olefins 1a–q by a hydride donor involves the formation of a new C–H 

σ-bond to and the breaking of a C=C π-bond to consume energy. It has, therefore, been 

concluded that the hydride affinities of olefins 1a–q equal the heterolytic dissociation energy 

of the newly formed C–H σ-bond minus the heterolytic dissociation energy of the broken 

C=C π-bond.8 
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Unpublished results from Zhu and co-workers revealed a linear correlation of the hydride 

affinities ΔHH-A of ten benzhydrylium ions 4+ with their electrophilicity parameters E (Table 

7.5, Figure 7.6). As the quinone methides 1n–q are structurally closely related to the 

benzhydrylium ions, it is of interest to know whether their electrophilicities and those of other 

Michael acceptors also correlate linearly with their hydride affinities in acetonitrile. 

 

Table 7.5. Electrophilicity Parameters E and Hydride Affinities ΔHH-A of the Benzhydrylium 

Ions (4a–j)+ in Acetonitrile. 

 Benzhydrylium Ion ΔHH-A/[kcal/mol]a Eb 

4a+ –103.4 0.00 
 MeO OMe    

4b+ –102.1 –1.36 
 O O    

4c+ –94.0 –4.72 
 Ph2N NPh2    

4d+ –90.1 –5.53 

 NN
OO    

4e+ –91.3 –7.02 
 Me2N NMe2    

4f+ –87.1 –7.69 

 N N
   

4g+ –86.3 –8.22 

 NN
Me Me  

  

4h+ –86.0 –8.76 

 N N
Me Me    

4i+ –81.8 –9.45 
 NN   

4j+ –79.0 –10.04 

 NN
 

  
a Hydride affinities determined from the reactions of 4+ with N-benzyl-1,4-dihydronicotine- 

amide in CH3CN (unpublished results from Zhu). b Electrophilicity parameters E from ref. 4 
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Except for the dimethylamino substituted benzhydrylium ion (4e+) no significant deviations 

from linearity for the ΔHH-A vs. E plot are observed (Figure 7.6). 

-12
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-8

-6

-4

-2

0

-105 -100 -95 -90 -85 -80 -75
ΔHH-A [kcal/mol]

E

Ar Ar

H
4a+

4b+

4c+

4d+

4e+
4f+

4g+

4h+
4i+ 4j+

R2 = 0.96
E = –0.42ΔHH-A –43.84

 

Figure 7.6. Plot of the electrophilicity parameters E of the benzhydrylium ions (4a–j)+ versus 

their hydride affinities ΔHH-A [kcal/mol] in acetonitrile at 25 °C. 

 

Figure 7.7 shows a plot of the electrophilicity parameters E of the benzhydrylium ions        

(4a–j)+ and the Michael acceptors 1a–q versus their hydride affinities ΔHH-A. The correlation 

line is based exclusively on the hydride affinities of the benzhydrylium ions (4a–j)+ in 

acetonitrile. Figure 7.7 shows that the hydride affinities of the Michael acceptors 1a–q in 

acetonitrile do not correlate well with their electrophilicity parameters E. The benzylidene 

barbituric acids 1k,l (◊) for example, show electrophilicities which are larger than expected 

from their hydride affinities, whereas the quinone methides 1n–q (○) are less electrophilic 

than expected from their hydride affinities. The strongest deviation from the E vs. ΔHH-A 

correlation are found for the benzylidenemalonates and the benzylidene malonodinitriles, 

which react faster than expected from ΔHH-A as reported by Zhu et al.8  
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Figure 7.7. Plot of the electrophilicity parameters E of the benzhydrylium ions (4a–j)+ and 

the Michael acceptors 1a–q versus their hydride affinities ΔHH-A [kcal/mol] in acetonitrile at         

25 °C. The symbols correspond to the different hydride acceptors used for the determinations 

of ΔHH-A: 3a+ (◊), 3b+ (�), 3c+ (○), N-benzyl-1,4-dihydronicotinamide (Δ), filled symbols: 

unpublished results from Zhu et al. or from ref. 8, open symbols: determined in this work. 

 

Figure 7.7 reveals that the hydride affinities of the benzylidene Meldrum’s acids 1h and 1i 

were determined using the hydride acceptor 3b+ (symbol �), whereas the hydride affinity of 

the julolidyl-substituted benzylidene Meldrum’s acid 1g has been determined using the 

stronger hydride acceptor 3c+ (○). According to Table 7.4 the hydride affinities of compounds 

1i–l increase in the series 1k < 1l < 1j, i.e., a different order than expected from Hammett’s 

substituent constants σ or σ+. This inconsistency may be due to systematic errors caused by 

the fact that the hydride affinities of 1j was derived from reactions with the hydride acceptor 

3c+ while the other hydride affinities of 1k and 1l were derived from reactions with 3a+.  
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However, it has to be emphasized that the error limit of the determined hydride affinities 

ΔHH-A for 1g–q is ± 1.7 kcal/mol. This is much less accurate than the error limit reported by 

Zhu for the determination of hydride affinities of the olefins 1a–f (±0.5 kcal/mol). 

  However, in order to exclude systematic errors for certain hydride acceptors the hydride 

affinities ΔHH-A of the Michael acceptors 1g–q, have to be confirmed by additional ITC 

measurements with more than only one of the hydride acceptors (3a–c)+. 

The reproducibility for the reactions of the neutral BNAH with the hydride acceptor 3b+ 

was significantly better (±0.4 kcal/mol). It also has to be mentioned that the hydride affinity 

of 3c+ is still preliminary and has so far not been published. 

 

Conclusion 

The hydride affinities of typical Michael acceptors 1g–q were found to be slightly larger than 

those previously reported by Zhu et. al for benzylidenemalonates and benzylidene 

malononitriles 1a–f but they are considerably smaller than the hydride affinities of primary 

benzyl cations. The strongest oxidant, the methoxy substituted benzylidene Meldrum’s acid 

(1i) shows a hydride affinity which is comparable to that of the weakest benzhydrylium ion 

4j+. Furthermore, several of the Michael acceptors 1a–q deviate significantly from the linear 

correlation between electrophilicity and hydride affinity of benzhydrylium ions.  
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Experimental Section 

Hydride Affinities of Michael Acceptors in 

Acetonitrile 

7. 1. Materials 

Reagent grade acetonitrile was distilled twice over KMnO4/K2CO3 and twice over P2O5, in 

order to remove water and impurities. All other solvents were treated according to standard 

procedures. 

Preparation of the compounds 1g–q. The Michael acceptors 1g–q were already available 

from previous studies and can typically be synthesized by Knoevenagel condensation from 

the corresponding substituted aldehydes with Meldrum’s acid, indandione, and N,N-dimethyl 

barbituric acid, respectively. The quinone methides 1g–m can analogously be obtained from 

reactions of the substituted aldehydes with di-tert-butylphenol.  

 

Preparation of the compounds 2g–m. The corresponding saturated compounds 2g–m were 

obtained from the reduction of compounds 1g–m with NaBH4 in ethanol, or with Zn in acetic 

acid as described in ref. S1 

 

Preparation of the compounds 2n–q. General. The quinone methides 1n–q were dissolved 

in EtOH (20 mL), and NaBH4 was added subsequently in small portions. After complete 

decolorization of the solution (indicating the complete reduction of 1n–q), dilute aqueous 

hydrochloric acid was added to adjust a pH value of 7. The crude reaction mixtures were 

extracted with methylene chloride (2 × 20 mL), and dried over MgSO4. The solvent was 

                                                 
S1 a) Desai, U. V.; Pore, D. M.; Mane, R. B.; Solabannavar, S. B.; Wadgaonkar, P. P. Synth. Commun. 2004, 34, 

25-32; b) Jursic, B. S.; Stevens, E. D. Tetrahedron Lett. 2003, 44, 2203-2210. 
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removed under reduced pressure and the crude product was recrystallized from n-hexane to 

yield the solid products.  

 

2,6-di-tert-butyl-4-((1,2,3,5,6,7-hexahydropyrido[3,2,1-ij]quinolin-9-yl)methyl)phenol 

(2n). 

1n (350 mg, 0.89 mmol) was dissolved in ethanol when NaBH4 (300 mg, 7.89 mmol, 11 eq.) 

was added subsequently. 2n (240 mg, 0.61 mmol, 65 %) was obtained as colorless needles. 

1H-NMR (CDCl3, 300 MHz), δ = 1.42 (s, 18 H, tert.-butyl), 1.98 (m, 4 H, CH2), 2.73 (m, 4 H, 

CH2), 3.10 (m, 4 H, CH2), 3.71 (s, 2 H, CH2), 5.02 (s, 1 H, OH), 6.65 (s, 2 H, CHar), 7.01 ppm 

(s, 2 H, CHar). 

OHN

 

2,6-di-tert-butyl-4-(4-dimethylaminobenzyl)phenol (2o). 

1o (320 mg, 0.95 mmol) was dissolved in ethanol when NaBH4 (240 mg, 6.31 mmol, 6.6 eq.) 

was added subsequently. 2o (210 mg, (0.62 mmol, 65 %) was obtained as pale yellow 

needles. 

1H NMR (CDCl3, 300 MHz), δ  = 1.42 (s, 18 H, tert.-butyl), 2.92 (s, 6 H, N(CH3)2), 3.82 (s, 2 

H, CH2), 5.04 (s, 1 H, OH), 6.73 (d, J = 8.0 Hz, 2 H, CHar), 7.00 (s, 2 H, CHar), 7.09 ppm (d, J 

= 8.0 Hz, 2 H, CHar). In agreement with ref. S2 

N OH

 
2,6-di-tert-butyl-4-(4-methoxybenzyl)phenol (2p). 

1p (510 mg, 1.57 mmol) was dissolved in ethanol when NaBH4 (290 mg, 7.63 mmol, 5 eq.) 

was added subsequently. 2p (360 mg, 1.10 mmol, 70 %) was obtained as colorless crystals.  

                                                 
S2 Baik, W.; Lee, H. J.; Yoo, C. H.; Jung, J. W.; Kim, B. H. J. Chem. Soc., Perkin Trans. 1 1997, 587-589. 



Chapter 7: Experimental Section 

300 

1H NMR (CDCl3, 300 MHz), δ  = 1.42 (s, 18 H, tert.-butyl), 3.78 (s, 3 H, OCH3), 3.84 (s, 2 H, 

CH2), 5.06 (s, 1 H, OH), 6.83 (d, J = 8.4 Hz, 2 H, CHar), 6.98 (s, 2 H, CHar), 7.13 ppm (d, J = 

8.4 Hz, 2 H, CHar). In agreement with ref. S2 

O OH

 
 

2,6-di-tert-butyl-4-(4-methylbenzyl)phenol (2q).  

1q (500 mg, 1.61 mmol) was dissolved in ethanol when NaBH4 (190 mg, 5.03 mmol, 3 eq.) 

was added subsequently. 2q (300 mg, (0.97 mmol, 60 %) was obtained as a pale yellow solid.  

1H NMR (CDCl3, 300 MHz), δ  = 1.42 (s, 18 H, tert.-butyl), 2.33 (s, 3 H, CH3), 3.87 (s, 2 H, 

CH2), 5.06 (s, 1 H, OH), 7.00 (s, 2 H, CHar), 7.10 ppm (m, 4 H, CHar). In agreement with ref. 

S2 

OH

 
 

 The hydride acceptors (3a–c)+ were already available from previous studies. 10-methyl-

acridinium iodide (3a+) can be obtained from acridine by treatment with methyl iodide.S3                 

9-phenylxanthylium chlorate (3b+) can be obtained as precipitate from an aqueous solution of 

9-phenylxanthylium iodide and NaClO4 in water.  

                                                 
S3 Joseph, J.; Kuruvilla, E.; Achuthan, A. T.; Ramaiah, D.; Schuster, G. B. Bioconjugate Chem. 2004, 15, 1230-
1235. 
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7.2. Heat of reactions  

Table S1. Heat of Reactions –ΔHr and Hydride Affinities ΔHH-A for the Reactions of the 

Michael Acceptors 1g–q with the Hydride Acceptors (3a–c)+ in Acetonitrile at 25 °C.  

number Michael  
acceptor 

Hydride  
acceptor 

–ΔHr 
[kcal/mol] average ΔHH-A 

[kcal/mol] 
35-1 25.7   
35-2 26.9   

35-4 jul

O

O

O

O  N
O

NHAc

 27.9 26.8±1.1 –72.4 

 1g 3c+    
11-1 20.3   
11-2 20.7   
11-3 NMe2

O
O

O

O  
O  

19.9   
11-5 1h 3b+ 20.5 20.4±0.6 –76.0 
17-1 17.6   
17-2 18.7   
19-1 OMe

O
O

O

O  
O  

19.6   
19-2 1i 3b+ 19.5 18.9±1.3 –77.5 
48-1 28.5   
48-2 30.7   

48-4 jul

N
N

O

OO  
N
O

NHAc

 31.1 30.1±1.5 –69.1 

 1j 3c+    
8-1 13.5   
8-2 14.6   
8-3 NMe2

N

N

O

OO  
N  13.5   

8-4 1k 3a+ 13.7   
8-5   13.9   
8-6   13.0 13.7±0.9 –67.4 
6-1 12.9   
6-2 12.0   
6-4 OMe

N
N

O

OO  
N  11.4   

6-6 1l 3a+ 12.7   
6-7   12.8 12.4±1.0 –68.7 
17-5 20.6   
17-6 22.1   
18-5 OMe

O

O  
O  

21.4   
18-6 1m 3b+ 21.1   
18-7   21.0   
18-8   22.0 21.4±1.3 75.0 
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Table S1. Continued. 

number Michael  
acceptor 

Hydride 
acceptor 

–ΔHr 
[kcal/mol] average ΔHH-A 

[kcal/mol] 
28-1 31.4   
28-2 31.1   
28-3 

julO

But

tBu  28.2   
28-4  

N
O

NHAc

 28.4   
43-1 1n 3c+ 28.2   
43-2   27.3 29.1±1.7 –70.1 
29-1 28.0   
29-2 28.5   
29-3 

NMe2O

But

tBu  29.7   
39-1  

N
O

NHAc

 30.0   
39-4 1o 3c+ 31.0 29.5±1.0 –69.7 
27-1 28.2   
27-2 28.5   

27-3 
OMeO

But

tBu  N
O

NHAc

 29.5   

27-4 1p 3c+ 29.9 29.0±1.7 –70.2 
25-3 28.5   
25-4 28.4   

25-6 
MeO

But

tBu  N
O

NHAc

 28.7   

25-7 1q 3c+ 29.4   
28-8   29.4   
28-9   30.5   
42-1   28.3   
42-2   28.7 29.0±1.5 –70.2 
15-1 32.5   
15-2 31.8   

15-3 N
Bzl

NH2

O

 
O  

32.5   

15-4 BNAH 3b+ 31.8 32.2±0.4 –96.4 
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