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Abstract

Gauge-boson pair-production processes with an additional hadronic jet are of particular
interest as background to Higgs and new-physics searches at hadron colliders. Moreover,
they enable—besides genuine gauge-boson pair production—a direct analysis of the non-
Abelian gauge-boson self-interactions in the electroweak sector. In this work we provide
precision calculations for the processes pp/pp — VV + jet + X.

In detail, corrections to WW+jet, ZZ+jet, and WZ+jet production are evaluated at
next-to-leading-order in the strong coupling (NLO QCD). Particular care has to be taken
when treating the infrared singularities arising in the virtual and real corrections. The
ForMCALc/LooPTOOLS package is applied for the virtual corrections, where dimension-
ally regularized infrared-divergent integrals are added to the FF library which is used for
the regular ones. The real-emission matrix elements are evaluated in terms of helicity am-
plitudes in the Weyl-van-der-Waerden formalism. The Catani-Seymour dipole subtraction
formalism mediates the cancellation of infrared divergences between the two contributions.
To perform the numerical integration a multi-channel Monte Carlo integrator is written
in C++, which is designed to meet the requirements of integrating cross sections in the
dipole subtraction formalism.

For all gauge-boson assignments, the NLO QCD corrections significantly stabilize the
artificial dependence of the leading-order (LO) cross sections on renormalization and fac-
torization scales for Tevatron. For LHC, however, only a modest reduction of the scale
dependence results unless a veto on a second hard jet is applied.

Beyond investigating the production processes, leptonic decays of the gauge bosons are
considered. To this end, a full amplitude calculation including resonant and non-resonant
contributions to the leptonic final states, a simple narrow-width approximation (NWA),
and an improved version of the NWA that takes into account spin correlations are per-
formed at LO. Comparing these approaches the improved NWA turns out to deliver an
appropriate approximation to the decays at a reasonable level of accuracy. Thus, an NLO
QCD calculation to VV+jet including leptonic decays is performed in the framework of the
improved NWA. Several results on differential cross sections for quantities of the jet and
the decay leptons are presented. For WW+jet, we discuss both proton—proton collisions
at LHC and proton—antiproton collisions at Tevatron. For WZ+jet and ZZ+jet, however,
the cross sections at Tevatron are too small, so only results for LHC are presented.

The Monte Carlo generator developed in this thesis can be used as a tool in data
analysis at LHC and Tevatron.






Zusammenfassung

Eichbosonpaarerzeugung mit einem zusatzlichen hadronischen Jet ist an Hadron-Beschleu-
nigern ein bedeutender Untergrundprozess sowohl fiir die Suche nach dem Higgs-Boson
als auch nach neuer Physik. Dariiber hinaus ermoglicht diese Prozessklasse eine direkte
Analyse der Selbst-Wechselwirkung der Elektroschwachen Eichbosonen. In dieser Arbeit
werden Prézisionsrechnungen in néchstfithrender Ordnung der starken Kopplung (“next-
to-leading order QCD”) fiir die Prozesse pp/pp — VV + jet + X dargelegt.

Die Behandlung von Infrarotsingularititen, die in den virtuellen und den reellen Kor-
rekturen auftreten, erfordert besondere Sorgfalt. Das FOrRMCALC/LoorPTooLs-Paket
wird fiir die virtuellen Korrekturen verwendet, wobei dimensional regularisierte Integrale
in die FF-Bibliothek eingebunden werden, die wiederum fiir die Auswertung reguldrer
Integrale herangezogen wird. Die Berechnung der reellen Korrekturen erfolgt in Form
von Helizitatsamplituden im Weyl-van-der-Waerden-Formalismus. Die Authebung der Di-
vergenzen zwischen den virtuellen und reellen Beitrdgen vermittelt die Catani-Seymour-
Dipolsubtraktionsmethode. Die numerisch stabile Auswertung wird durch ein Mehrkanal-
Monte-Carlo-Integrationsprogramm in C++ gewahrleistet, das fiir die Integration von
Wirkungsquerschnitten im Dipolsubtraktionsformalismus optimiert ist.

Fiir alle betrachteten Prozesse stabilisieren die Korrekturen die kiinstliche Abhangigheit
der Wirkungsquerschnitte von Renormierungs- und Faktorisierungsskala am Tevatron er-
heblich. Am LHC wird eine wesentliche Verringerung der Skalenabhéngigkeit erst erreicht,
wenn Endzustande mit zwei harten Jets ausgeschlossen werden.

Um in den betrachteten Prozessen auch leptonische Zerfille der Eichbosonen einzu-
binden, werden in fiihrender Ordnung drei Verfahren angewandt: eine Berechnung unter
Verwendung vollstandiger Amplituden, also mit resonanten und nicht-resonanten Beitrigen
zu den leptonischen Endzustdnden, eine Ndherung iiber Verzweigungsverhéltnisse (“nar-
row-width approximation”, NWA) und eine verbesserte Variante der NWA | die Spin-Korre-
lationen miteinbezieht. Die verbesserte Version der NWA stellt sich als angemessene Nihe-
rung in der erforderlichen Genauigkeit heraus. Daher wird die Berechnung von Korrekturen
fiir die Produktionsprozesse mit leptonischen Zerfiallen unter Anwendung der verbesserten
NWA durchgefithrt, wobei differenzielle Wirkungsquerschnitte fiir verschiedene Obser-
vablen des Jets und der Leptonen prasentiert werden. Fir WW+jet werden Resultate
fir LHC und Tevatron diskutiert. Da fiir WZ+jet und ZZ-+jet die jeweiligen Wirkungs-
querschnitte am Tevatron sehr klein sind, beschréankt sich die Betrachtung hier auf LHC.

Das fiir diese Arbeit entwickelte Monte-Carlo-Programm kann einen Beitrag zur Daten-
analyse sowohl am LHC als auch am Tevatron liefern.






Chapter 1

Introduction and motivation

The constitutional aim of elementary particle physics is the description of the fundamental
building blocks of matter and the understanding of the interactions among them. Already
in the 1920s, the Quantum Electrodynamics (QED) was greatly successful particularly
in explaining electromagnetic low-energy phenomena, such as the anomalous magnetic
moment of the muon [1, 2, 3, 4]. In the 1930s, the Fermi model delivered an accurate
description of weak decays. With a unitarity-violating high-energy behaviour, its predictive
power was, however, limited to low energies. A great improvement in the direction of a
uniform theory of particle physics was achieved by the Glashow—Salam—Weinberg (GSW)
model [5, 6, 7]. Incorporating both QED and the Fermi model as low-energy limits, the
GSW succeeded in unifying electromagnetism and weak interaction into one theory of
electroweak interaction. Both renormalizability and a consistent high-energy behaviour
were obtained by postulating massive vector bosons, the neutral Z and the charged W+,
which could be discovered at the “Super Proton Synchrotron” (SPS) at CERN in 1983 [8, 9,
10, 11, 12]. Most relations predicted by the GSW model, in particular the relations between
the masses of the weak gauge bosons and the electroweak couplings that are determined
by the Higgs mechanism [13, 14, 15, 16, 17, 18], could be experimentally confirmed so
far. Thus, the GSW model delivers the electroweak sector of the Standard Model (SM) of
particle physics.

The sector of strong interactions is described by the Quantum Chromodynamics (QCD).
The postulate of three degrees of freedom for the quarks [19, 20, 21], which are later on
called colours after the formulation of QCD, yielded a first understanding of the A**
resonance. Its seemingly symmetric wave function contradicted the spin-statistics theorem
requiring antisymmetric wave functions for fermions. A solution to this contradiction was
delivered by an antisymmetric colour part leading to the antisymmetry for the whole wave
function [22, 23]. Besides, the decay width for 7% — v+ could be predicted by the inclusion
of colours. Moreover, the running of the strong coupling provided an explanation for
the feature of “asymptotic freedom” [24, 25]: The coloured particles are always confined
in colourless bound states, but behave as free particles in scattering processes with high
momentum transfer, which delivers an explanation for the validity of the naive parton
model [26, 27]. Finally, the massless gluon [24, 28] that mediates the strong interaction
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was discovered at DESY in 1979 [29]. Eventually, this discovery established the QCD as
the description of strong interactions in the SM. From the theoretical side, besides the
explanation of asymptotic freedom the proof of renormalizability of QCD [30] must be
seen as a decisive step.

The matter content of the SM consists of three generations of quarks and leptons with
only the quarks interacting strongly. Apart from increasing masses, the particles of the
274 and the 3" generation mirror the behaviour of the 1% generation particles with respect
to strong and electroweak interactions. Each generation consists of two leptons and two
quarks with different electric charges and masses. In 1995, the last one of the six quarks,
the top quark, could be detected experimentally at the Tevatron [31, 32|, the proton—
antiproton collider with a center-of-mass (CM) energy of about 2TeV at Fermilab. The
existence of the last missing SM lepton, the 7 neutrino, had been accepted from precision
measurements of the Z-boson decay width at the “Large Electron-Positron Collider” (LEP)
at CERN. Its direct proof, however, succeeded in 2000, again at Fermilab [33].

As the only SM particle that has not been discovered directly, the Higgs boson re-
mains. Its existence is fundamental for the generation of particle masses, both in the
sector of weak gauge bosons and of fermions. The mass of the Higgs boson is, however, a
free parameter in the SM, but upper and lower bounds can be derived: The lower bound
of My > 114.4GeV [34] is given from the fact that its discovery failed in all present ex-
periments. Upper bounds of My < 200 GeV [35] are provided by electroweak precision
measurements that depend on the Higgs mass by means of radiative corrections. The
whole range of allowed SM Higgs masses is expected to be covered by the “Large Hadron
Collider” (LHC) [36], a proton—proton collider with a CM energy of 14 TeV at CERN. First
collisions are planned for spring 2009. Precision measurements on mass and decay width
would, however, require further experiments, e.g., at an “International Linear Collider”
(ILC) [37].

Although the SM could be confirmed in all collider experiments performed so far, it
is assumed to be the low-energy limit of a more fundamental theory. First of all, grav-
itational interactions are not included in the SM. Moreover, the SM does not provide
explanations for the origin of dark matter and dark energy, which are, however, known
to exist from cosmological data [38]. A further drawback of the SM can be seen in the
fact that lots of parameters like masses and couplings cannot be predicted by the model,
but have to be extracted from experiment. Besides, the hierarchy problem arises that is
related to quadratic divergences in the loop corrections to the Higgs propagator. Some of
these problems could be solved by a supersymmetric extension of the SM. In such models,
supersymmetric partners are postulated for all fermions and bosons. The relations between
the partner particles would naturally cancel the quadratic divergences arising in the Higgs
propagator and, therefore, provide a solution to the hierarchy problem. Moreover, R-parity
conserving versions of supersymmetry (SUSY) even deliver dark-matter candidates. Aside
from SUSY, a large variety of models attempting to describe physics beyond the SM is
studied, e.g. universal extra dimensions, Little Higgs models, Higgs-less models, etc. For
the investigation of all of these models, however, an accurate knowledge of SM predictions
is needed in order to distinguish “new-physics” signals from SM background.



At hadron colliders, it is in general not enough to consider such background processes
only in a leading-order (LO) approximation, since QCD cross sections at LO suffer from
a strong artificial dependence on the factorization and renormalization scales. Thus, they
can only be seen as a rough estimate. At least next-to-leading-order (NLO) QCD calcula-
tions are in general required to evaluate results with sufficient accuracy to provide useful
predictions.

In this thesis, NLO QCD calculations are provided for the process classes pp/pp —
VV + jet + X. Their importance for the analysis of LHC and also Tevatron data can be
read off the fact that VV+jet production made it to the top of the so-called “experimenters’
wishlist for NLO calculations” of the Les Houches workshops 2005 [39] and 2007 [40]. This
list collects the most urgently required background processes whose NLO QCD calculations
are still missing. The main arguments for VV+jet to be such important shall be pointed
out in the following. In this thesis, all weak-gauge-boson assignments allowed from charge
conservation are discussed, namely WTW~+jet, ZZ+jet, and W*Z+jet.

Since the search for the Higgs boson may be seen as the primary objective of the LHC,
the relevance of VV+jet as background processes to Higgs searches is discussed first. In
this context we have to concentrate on WW+-jet and ZZ+jet, since only these processes
deliver relevant background. Depending on the value of the Higgs mass, both H - WW*
and H — ZZ* belong to the most promising channels in Higgs searches [41, 42, 43, 44,
45, 46, 47, 48]. Since additional jet activity might arise from the production processes,
not only the exclusive channels H — VV* are worth considering, but also those with one
or even more hard jets are relevant. The analysis of Ref. [49] makes clear that at least
WW-+jet production might also be useful as a background process for Higgs searches at
the Tevatron. Here, the case of both W bosons decaying leptonically is discussed, and the
emission of one or two hard hadronic jets is considered.

Moreover, the process classes involving outgoing W bosons, i.e. WW+jet and WZ-+jet
production, yield an important background for a variety of new-physics searches, especially
in SUSY scenarios [50, 51]. The signature of leptons and missing transverse momentum
arising from the decay neutrinos in these process classes mimics the signature of a number of
SUSY decay chains. In SUSY scenarios with R-parity conservation, the missing transverse
momentum is in general assigned to the lightest supersymmetric particle (LSP) that is
expected to be the endpoint of each SUSY decay chain. These LSPs that leave the detector
unseen would show up in pairs due to R-parity conservation. Additional jet activity could
arise either in the production processes of the SUSY particles or in their decay chains.

Apart from their meaning as potential background sources to Higgs or new-physics
searches, VV+jet processes are interesting in their own right because they enable a direct
precise analysis of the non-Abelian gauge-boson self-interactions. For this purpose, the
production of genuine gauge-boson pairs probably provides the best test ground. Since,
however, a large fraction of massive gauge-boson pairs will show additional jet activity
at the LHC, also VV+jet processes might be interesting here. Whereas no experimental
evidence for deviations from the SM predictions has been found yet, the LHC enables the
investigation of the three-gauge-boson interactions in the electroweak sector at much higher
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energies. To this end, WW+jet, WZ+jet, and ZZ+jet are worth analyzing. The processes
involving W bosons contain three-gauge-boson vertices with couplings determined by SM
predictions. No such vertices with two Z bosons attached exist in the SM, but also this
non-existence might be probed. Deviations from the SM predictions could provide an
indication of anomalous couplings, which arise in some theories beyond the SM.

Last but not least, VV-+jet also delivers the real-virtual contributions to the next-
to-next-to-leading-order (NNLO) calculation of massive gauge-boson pair production. In
this context, especially WW+jet production is interesting, since further building blocks for
WW production at NNLO have been presented in Refs. [52, 53].



Chapter 2

Theoretical preliminaries

2.1 Standard Model of particle physics

All calculations of this work are based on the SM of particle physics. Therefore, a brief
outline is given in this section. More details can be found, for instance, in Refs. [54, 55, 56].

The SM is a quantum field theory with the interactions therein governed by local
symmetries, which are in general called gauge symmetries. A convenient formulation is
delivered by the Lagrangian formalism, i.e. the ingredients of the theory such as kinetic,
mass and interaction terms of the fields are incorporated into a single local functional,
the Lagrangian density. The action of the theory is obtained by a space—time integration
over this Lagrangian density. Its actual form is prescribed by symmetry principles and the
requirement of renormalizability.

The feature of renormalizability is assigned to a quantum field theory if all ultraviolet
(UV) divergences can be absorbed by an appropriate redefinition of fields and parameters
of the Lagrangian. Such UV divergences arise in a perturbative evaluation of the theory,
namely in higher-order terms involving loop integrals over internal momenta that yield
divergences from the region of large integration momenta. A regularization of these di-
vergences can be obtained in different ways. In this work, dimensional regularization is
applied, i.e. the calculation of loop integrals is performed in D = 4—2¢ dimensions with the
UV divergences showing up as poles % In the process of renormalization of the Lagrangian
these divergences are absorbed into the bare parameters. After redefining the bare pa-
rameters, a part of the Lagrangian density can be extracted that has the same functional
dependence on the renormalized parameters as the bare Lagrangian on the bare parame-
ters. This part is called renormalized Lagrangian, and the remainder delivers the so-called
counterterms. These counterterms do not only guarantee the UV finiteness of the theory
at the considered perturbative order, but also the proper meaning of the input parameters,
e.g. the definition of a particle mass as the pole of its propagator. This finite part and
with it the precise meaning of the various quantities is defined by the applied renormaliza-
tion conditions defining different renormalization schemes. Details on particular schemes
are given, for example, in Ref. [54]. From power-counting, Lagrangian densities involving
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only operators with four or less mass dimensions turn out to be renormalizable, i.e. the
UV divergences can be cancelled by a finite number of counterterms in each perturbative
order. In addition, the underlying symmetries have to be obeyed by the Lagrangian den-
sity including counterterms. Nevertheless, non-Abelian gauge theories with spontaneous
symmetry breaking, and hence the SM, can be shown to be renormalizable [30, 57].

The symmetries that are obeyed by the SM are, on the one hand, space-time symme-
tries. Namely, it is invariant under Poincare transformations, excluding space and time
inversions. These transformations form the Poincare group containing Lorentz boosts, ro-
tations, and translations in the Minkowski space. All irreducible representations of the
Poincare group can be classified by a real positive number m and a half-integer s that
define mass and spin of the particular particle types.

On the other hand, there are symmetries among the fields at one and the same point
x, which are therefore called internal symmetries. The SM Lagrangian is invariant under
transformations of the group SU(3)c ® SU(2)w ® U(1)y, which can be written as

: apa : i) : Y
U(Bs,60w,0y) = exp {1gsT 0% +igo 'Oy, — 191503/} =U(0s5)U(Ow)U (by) . (2.1)

Here, O, Oy, and 6y are arbitrary real group parameters, and gs, g1, and g, the couplings
of the respective gauge groups. The generators of the groups SU(3)c, SU(2)w, and U(1)y
are denoted as 7% (a=1,...,8), I' (i=1,...,3), and Y, respectively. For these, the
fundamental representations can be used, i.e. T* = % with the Gell-Mann matrices A\*
and I* = % with the Pauli matrices 0. The quantum numbers of T are related to the
“colour”, which is a kind of a charge with respect to SU(3)c. The quantum numbers of
I define the weak isospin, and that of Y the weak hypercharge. The transformation of a
fermion field reads

U - U = U(es, OW,HY)\IJ . (22)

When going from global to local symmetries, i.e. when the group parameters get a space—
time dependence, new fields have to be introduced to keep the Lagrangian density invariant
under this local transformation of the fermion fields. This is due to the fact that derivatives
of fields appear in the Lagrangian density. These derivatives do not behave as the fields
themselves under local gauge transformations. Therefore, the usual space—time derivative
is substituted by a covariant derivative,

. Y
Oy = Dy = 0 — igsGyT" —igaW,I' +igiB,; . (2.3)

Here, the gauge fields G% (e =1,...,8), W! (i=1,...,3), and B, are introduced, which
represent the vector fields mediating the respective interaction. These transform in the
adjoint representation of their gauge groups for global transformations. For local ones, the
transformation reads

10 ra ara — 1 —
GUT* — G'\T* = U(05)G4T U (0s) " + g—S(auU(OS))U(OS) v
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15 gen. | 2" gen. | 3 gen. | T | I3 Y Q
1 1 1 2
quarks \IJI? (u) <C> <t> 2 2 3 3
d/y S/L b/ % _% % _%
UL | ug CR tR 0 0 | 5 | 2
UR | dg SR bp | 0| 0 | =3 | —3
1 1
leptons | W Ve Yu v 2 2 Lo
L =Ly -1] -1
€ /L IRV T/)L | 3 5
\I’E ERr MR TR 0 0 —2 —1

Table 2.1: Fermions of the SM and their quantum numbers weak isospin 7, its third
component I3, weak hypercharge Y, and electromagnetic charge Q).

iTi 1o iTi - i -
Wi — W I = UOw)W.I'U(Ow)™" + ;(a#U(ew))U(ew) L
B, — B, = B, — 0,0y . (2.4)

With the covariant derivative of Eq. (2.3), the kinetic terms for fermions can be formulated
in a gauge invariant way,

Liermions = »_ UPDUE + Y WD WY + Y TRIPTR
Q U D
+D DU+ > URIP TR (2.5)
L E

The fermionic particle content of the SM and, hence, the range of the sums in Eq. (2.5) is
provided in Table 2.1. With respect to SU(3)¢, the leptons transform trivially, since they do
not carry so-called colour charges, and the quarks in the fundamental representation of the
group. The sums over the three resulting colour charges are suppressed in Eq. (2.5). With
respect to SU(2)w, the fermions are left-chiral doublets Wy, and right-chiral singlets Ug. In
the case of vanishing fermion masses, which is used for all fermions but the third-generation
quarks in this work, they can be identified with left-handed and right-handed particles.
As a fundamental principle of gauge theories, the fermion—gauge-boson interactions are
already introduced in terms of the covariant derivatives. The hypercharge Y can be chosen
to reproduce the correct coupling to the photon, which is identified as a linear combination
of B, and W,i’, as explained below. The quantum numbers of all fermions with respect
to SU(2)w and U(1)y as well as the electric charge that is defined according to the Gell-
Mann—Nishijima relation,

Q:ﬁ+§, (2.6)

are collected in Table 2.1.
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Besides, kinetic terms for the gauge fields can be constructed in a gauge-invariant way
from the field-strength tensors,

G, = 0,Gs — 0,Gs — gs f GGy
mL:@W}4mm—@memﬁ
B,uu - a,uBu - aI/B,u ) (27)

where 2% and €% are the structure constants of SU(3)c and SU(2)w, respectively. Taking
the trace of the squared field-strength tensors yields a gauge-invariant contribution to the
Lagrangian density,

'Cgauge bosons — %GZVGG’MV - %WIL,WZ’IW — %BW,BMU . (28)
It contains kinetic terms for all the gauge bosons as well as three- and four-gauge-boson
interaction terms in case of the non-Abelian groups.

So far, both fermions and gauge bosons are massless because explicit mass terms would
violate gauge invariance. The Higgs mechanism for spontaneous symmetry breaking [13,
14, 15, 16, 17, 18] provides a solution by introducing the Higgs field,

@:(%), (2.9)

which transforms as a complex SU(2)w doublet and has a weak hypercharge Y = 1. In-
troducing a kinetic term and the most general form of renormalizable self-interactions, the
contribution to the Lagrangian density is

A
Lrggs = (D) (D"0) + p2(210) = S(BIB)2 120 >0. (2.10)

The signs of 4 and A are chosen to deliver a non-vanishing vacuum expectation value @
of the Higgs field,

22 2
B2 = 2 =2

92.11
A 9 (2.11)

which breaks the SU(2)w ® U(1)y symmetry spontaneously. In an expansion of the Higgs
field around its vacuum expectation value,

¢* _
¢=<%(U+H+m>, ¢~ =(o")', (2.12)
so-called would-be Goldstone bosons arise. The fields ¢*, ¢, and x turn out to be un-
physical degrees of freedom, which can be seen from the fact that they can be eliminated
by a suitable gauge transformation. However, they become manifest in the longitudinal
degrees of freedom of the massive weak gauge bosons. The field H describes the physical
Higgs boson.



2.1 Standard Model of particle physics 9

Inserting the expansion of the Higgs field (2.12) into its contribution to the Lagrangian
density (2.10) delivers mass terms for the electroweak gauge bosons arising from the vacuum
expectation value of the Higgs field. However, the mass eigenstates are linear combinations
of the fields WZ and B,. They are obtained by diagonalizing the mass matrix arising in
the Lagrangian density. For the W bosons, charge eigenstates are chosen. The following
eigenstates result,

1 Z cos Oy — sin O w3
W V2 (W“ T 1W“) ’ <A”> <sin Ow cos bw ) < B, > ’ (2.13)
where the weak mixing angle is defined in terms of the couplings ¢g; and gy as
cos By = 92 sin Oy = I (2.14)

Vi + g3 Vit g3

After spontaneous symmetry breaking a U(1) symmetry remains unbroken, and hence, one
gauge boson stays massless. As anticipated in Eq. (2.6), the generator of this unbroken
symmetry is the relative electric charge (), and the respective gauge boson A, is identified

with the photon. The elementary electric charge e and with it the fine-structure constant
a can be expressed in terms of the couplings,

e=Vira= 22 (2.15)
Vit 9,

To summarize, the four electroweak gauge bosons consist of three massive gauge bosons,
the charged W# and the neutral Z, which are often referred to as the weak gauge bosons,
and the neutral massless photon A. Their masses are

v ev v ev
My = —g, = , My =—\/¢?+9g5= , Mx=0. 2.16
W 92 2 sin Oy 279 9+ 9 2 sin Oyy cos O A ( )
Expressed by the masses of the weak gauge bosons, the weak mixing angle reads
My
Ow = —— . 2.17
cos Oy 1, ( )

The mechanism of spontaneous symmetry breaking also provides a way to implement
fermion masses into the Lagrangian. A naive construction of mass terms would fail due
to the fact that left- and right-handed fermions belong to different representations of the
gauge group SU(2)w®U(1)y and have different quantum numbers. Again, the introduction
of couplings of the fermions to the Higgs field yields mass terms due to its non-vanishing
vacuum expectation value. The corresponding contribution to the Lagrangian density is

Lviawa = Y_TUPGEPURG + > UPGFUHO + Y " UGE RS + hee. (2.18)

Q,D QU LE

where ‘h.c.” denotes the Hermitian conjugate of the prevenient expression, and P = io,d*
the charge-conjugate Higgs field. The matrices G, Gy, and G, which are 3 x 3 matrices in
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generation space, contain the so-called Yukawa couplings. The fermionic mass eigenstates
are obtained by diagonalizing these matrices via field transformations. For quarks, the
change from weak-interaction to mass eigenstates is described by the Cabibbo-Kobayashi—
Maskawa (CKM) matrix [58]. By convention, the rotation is applied to the down-type
sector, yielding

Vud Vus Vub \II%
P = Vekm Ve = | Vea Vis Vew il (2.19)
Via Vis Vib N2

for the left-handed quarks. This rotation in generation space affects only the couplings to
W bosons. Since the right-handed quarks are singlets under SU(2)y and, hence, do not
couple to W bosons, no rotation needs to be performed here. In the leptonic sector, the
assumption of vanishing neutrino masses simplifies the situation, since the diagonalization
matrices can be absorbed into the fields. This assumption is kept, although neutrino
oscillation experiments have shown that neutrino masses do not vanish. They are, however,
very small and can therefore be treated as zero for the purpose of this work.

The classical Lagrangian density of the SM is already completed by the contributions
given so far. However, in order to quantize the theory in the path-integral formalism, the
gauge must be fixed to avoid integrating over equivalent field configurations. To this end,
gauge-fixing terms are added to the Lagrangian. In an R; gauge, the respective functionals
for all gauge-boson fields are chosen as

1 1
FO= —onGs, PV = —— 0PWE F My /e o
NG NG, 20
1 1 '
FA = orA® F% = —— 0FZ, — Myz\/Ex ,
ver ot Vit
where £ are arbitrary gauge parameters. The case of £€9 = ¢4 = &)Y, = ¢f, = 1 is called
't Hooft-Feynman gauge. The corresponding contributions to the Lagrangian density read
1 «|2
Lox =5 S IR, (2.21)

where « = G, A, W+ W~ Z. By adding the gauge-fixing term (2.21), the path integral
measure is changed by the Fadeev—Popov determinant arising as a factor in the path
integral,

Det (%) | (2.22)

where 06 denotes an infinitesimal gauge transformation. This functional determinant can
be expressed as a functional integral over anticommuting fields u®(z), the so-called Fadeev—
Popov ghosts, leading to an additional contribution to the Lagrangian density,

'CFadeevaopov =—u" (.’L‘) 605 («T) u,B (x) ‘ (223)
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The Fadeev-Popov ghosts are scalar anticommuting fields and, thus, violate the spin-
statistics theorem. This is, however, unproblematic because they are unphysical degrees
of freedom and do not correspond to physical states, but occur only inside loops in pertur-
bative calculations.

With all contributions given in this section, the full Lagrangian density of the SM reads

£SM - »Cfermions + £gauge bosons T EHiggs + »CYukawa + Eﬁx + EFadeevaopov . (224)

The Feynman rules derived from this Lagrangian that are relevant for this work are col-
lected in Section 4.1. An exhaustive survey can, e.g., be found in Ref. [59] for the elec-
troweak part and in Ref. [60] for the strong part.

2.2 Parton model and Quantum Chromodynamics

The previous section introduces the elementary particles in the SM and the interactions
among them. Perturbation theory enables the calculation of cross sections for scattering
processes between these particles at in principle arbitrarily high accuracy. The applicability
of perturbation theory is based on the smallness of the involved couplings that are used as
ordering parameters. At low scales, however, this condition is no more true for QCD due
to confinement. In hadron-hadron scattering processes, this applies to the description of
the incoming partons that are bound in hadrons. These bound states are not accessible
perturbatively and, hence, their description has to be extracted from experiment so far. A
suitable way for calculating hadronic scattering processes is delivered by the parton model
that is briefly outlined in the following. More details and field-theoretical background can
be found in Ref. [60].

In the parton model, a hadron consists of point-like constituents, the so-called partons.
The hadron momentum is distributed to these partons. The valence particles, which are
e.g. uud for the proton and tud for the antiproton, determine the quantum numbers of the
hadron. Besides, the hadron consists of a sea of virtual particles which are gluons and light
quark-antiquark pairs. The “infinite momentum frame” is applied to the description of
the hadrons, i.e. the momenta are assumed to be large so that both hadron and constituent
masses can be neglected. Further on, the parton momenta are assumed to be collinear to the
hadron momentum. Only one parton from each hadron is involved into the hard scattering
process, whereas the remaining partons of the hadrons are considered as spectator partons.
For the hard scattering process, these incoming partons are treated as free particles. This
is justified by the fact that the scale given by the momentum transfers in the hard process
is much larger than the scale of the hadronic binding energies. Therefore, the partonic
cross sections can be evaluated perturbatively.

The hadron structure is described in terms of parton distribution functions (PDFs).
Hadronic cross sections are evaluated by convoluting the partonic cross sections & with the
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PDF's of the particular partons and summing over all partonic initial states,

1 1
Uhth(phpz) = E / dﬂﬁl/ dry fa(hl)(xla,ufact)fb(hg)(x%,ufact)6ab($1plax2p2;,ufact)7
0

(2.25)

where the explicit factorization-scale dependence of the partonic cross section only arises
at NLO and beyond. The PDFs fqn) (2, fitact) give the probability density for the parton a
to carry the momentum fraction x of the total momentum of the respective hadron h. The
factorization scale pif.; introduced here is an arbitrary parameter. It can be viewed as the
scale which separates the long- and short-distance parts of the cross-section calculation.
Thus, a parton that is emitted with a transverse momentum smaller than this factorization
scale is absorbed into the hadron structure. Since the factorization-scale dependence of the
hadronic cross section is actually artificial, it is expected to decrease when going to higher
orders in the perturbative expansion.

For LO cross sections, the partonic cross sections are evaluated in the same way as for
parton scattering processes. If going to higher orders in perturbation theory, the short-
distance scattering cross section is derived from the partonic cross section by removing the
long-distance parts. These parts must be factored out and are absorbed into the PDFs.
The resulting PDF redefinition in dimensional regularization with D = 4 — 2¢ space-time
dimensions reads

2\ €
f (.’L‘ .ufact) - fa Ty Hfact +Z/ _fa 7,ufact>Pa’a(Z) %F(l‘i‘i':) <47;M > ) (226)

2m € Mfact

where p denotes the reference mass of dimensional regularization. The sum over a’ runs over
all partons with non-vanishing Altarelli-Parisi splitting functions [61] P%%(z), which are
provided in App. A.2. The choice to absorb only the divergence—including the ubiquitous
In(47) — g contribution—into the PDFs defines the MS factorization scheme, which is
applied in the calculations of this thesis. In the deep inelastic scattering (DIS) scheme,
for instance, the finite part is chosen such that the structure function F, does not get
perturbative corrections.

At NLO, this absorption of divergences into the PDF's gives rise to so-called collinear-
subtraction counterterms. A convenient way how to perform this factorization is delivered
by the dipole subtraction formalism in Ref. [62]. It will be discussed in Chapter 5.



Chapter 3

VV+jet production at hadron
colliders

In the class of the hadronic processes pp/pp — VV + jet + X considered in this thesis, a
large number of partonic subprocesses contributes to the same final state. This is due to
the fact that in hadron-hadron scattering processes many combinations of initial-state
partons, which are all contained in the scattering hadrons, have to be taken into account.
Moreover, outgoing hard jets can result from each colour-charged parton, so both outgoing
gluons and light (anti-)quarks must be considered as sources of hadronic jets. In this
chapter, some preliminary remarks are made about the calculation of VV+jet production
at hadron colliders.

In Section 3.1, the influence of the approximations applied in the calculation is dis-
cussed—mnamely the neglect of light-quark masses and the approximation of the CKM
matrix, which is chosen to allow for mixing only between the two light generations of
quarks.

The role played by bottom (anti-)quarks in the VV+jet-production processes is con-
sidered in Section 3.2. In this context, a principal problem arises in the process class
pp/pp = WW + jet 4+ X from the fact that top resonances appear if bottom (anti-)quarks
are allowed as final-state particles. These resonances result in large contributions to the
cross section, but actually arise from a different class of processes, namely from the off-
shell continuations of tt, W*t, and W™t production. On the other hand, if the five-flavour
scheme is applied, the same subprocesses also contain infrared singularities that are needed
to cancel against those in the virtual corrections to non-resonant channels.

How this problem of top resonances and infrared finiteness is treated in this thesis is
described in Section 3.3.

In Section 3.4, a generic overview over the Feynman diagrams and the subprocesses
to be calculated is given. Finally, all subprocesses are listed for the four possible gauge-
boson-pair assignments in the generic process class pp/pp — VV + jet + X.
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3.1 CKM matrix dependence of the subprocesses

To limit the number of contributing subprocesses, the CKM matrix is used in a block-
diagonal form, where mixing is allowed only between the two light generations, namely

Via Vis 0 cosfc sinfe 0
Vekm = | Vea Vs 0 | = | —sinfc cosfc 0 |, (3.1)
0 01 0 0 1

where f¢ is the Cabibbo angle [63]. The approximation is justified by the fact that the
neglected off-diagonal matrix elements are very small. Since the masses of the light quarks
are neglected, one could argue that CKM-mixing between quarks with degenerate (zero)
masses is redundant. This is, however, only partially true, because the PDF's refer to mass
eigenstates, which still holds if masses are neglected to simplify the calculation of ampli-
tudes. The mass degeneracy, however, leads to simplifications, since the CKM dependence
of amplitudes drops out for a remarkable set of subprocesses.

WWHjet

For pp/pp — WW + jet + X, this happens if both W bosons couple to the same fermion
chain, as illustrated in Figure 3.1. Independent of gluonic couplings to this fermion chain,
which do not affect the electroweak structure, the unitarity of the CKM matrix leads to

> VeoVip = Y VeoViy =dve . > VipVun= Y ViuVip=dop, (32)

D=d,s D=d,s U=u,c U=u,c

with the nomenclature of Figure 3.1, when the intermediate quark state is summed over.
Diagrams with the W-boson pair coupling to the fermion chain by means of an intermediate
vector boson (see Figure 3.2) are independent of the CKM matrix, anyway. Therefore, a
remarkable set of subprocesses of pp/pp — WW + jet + X is not influenced by the explicit
entries of the CKM matrix due to its unitarity.

The only subprocesses contributing to pp/pp — WW + jet + X that depend on the
explicit entries of the CKM matrix, are those containing two fermion chains with the two
W bosons coupling to different fermion chains at least in some diagrams. These are the

W+ W~ W~ W+
UA._L_LU' DA._L_LD/
D=d,s U=u,c

Figure 3.1: Electroweak part of diagrams with two W bosons coupling directly to the same
fermion chain: With light-quark masses neglected, all contributions with U # U’ or D # D'
vanish in the block-diagonal approximation of the CKM matrix. Those contributions with
U ="U'"or D =D’ behave as in the case of a trivial (diagonal) CKM matrix.
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W+
Z,y W~
Q Q'

Figure 3.2: Electroweak part of diagrams with the two W bosons coupling to the fermion
chain by means of an intermediate vector boson: These contributions are independent of
the CKM matrix and contribute only if Q = Q'.

u d
u
W+
W-
=/
u’ d

Figure 3.3: A sample diagram with two W bosons coupling to different fermion chains:
Contributions of this kind explicitly depend on the CKM matrix elements.

subprocesses including both two external up- and two down-type (anti-)quarks. A sample
diagram is shown in Figure 3.3.

27+ jet

Since no W bosons appear in any of the subprocesses contributing to pp/pp — ZZ+jet + X
in LO and NLO QCD, no CKM matrix dependence arises.

WZ+jet

When considering the subprocesses contributing to pp/pp — WZ+jet + X, the dependence
on the CKM matrix does not drop out for any subprocess, at least if single partonic
subprocesses are considered. It is, however, possible to reduce the number of subprocesses
to be calculated by considering two partonic subprocesses together.

The two subprocesses to be combined differ from each other only in one outgoing parton
that is the only external up-(down-)type (anti-)quark in both cases, e.g. ui — W*Zdu and
uu — WTZsu. This example is illustrated on the left-hand side of Figure 3.4. Here,
the squared amplitudes with the outgoing d/s quark are proportional to |V 4[> and |V,
respectively. The sum over both squared amplitudes is proportional to |V q|>+|Vys|?, which
is equal to 1 due to the unitarity of the CKM matrix in the approximation of Eq. (3.1). In
this step, we make use of the fact that the initial states are identical and, correspondingly,
the PDFs are the same in both contributions.



16 3. VV+jet production at hadron colliders

u d/s u/c d
u u/c
W+ W+
7 Z ) Z
u
u i d d a

Figure 3.4: The two subprocesses depicted by the left diagram are summed over yielding
a CKM-independent result. The two subprocesses illustrated by the diagram on the right-
hand side are not combined due to the different PDF's involved.

d " d
u u/c u
W+ W+
i u/c g i g
i/c U ot

Figure 3.5: Two subprocesses that cannot be calculated simultaneously: The diagrams
with changed fermion-number flow (right-hand plot) only contribute for ut — W Zud.

If the external parton that makes the difference between the two subprocesses belongs
to the initial state, this procedure is not applied, since the PDF's are different for the two
subprocesses. The right-hand side of Figure 3.4 illustrates this situation. One could absorb
the CKM factors into the PDFs, and the remainders of the amplitudes of the two partonic
subprocesses would be identical again. This is, however, not done in the calculations of
this thesis.

If the external parton differing between the two subprocesses is not the only external
up-(down-)type (anti-)quark, the described procedure cannot be applied for general rea-
sons. This shall be made clear in the following on the basis of the sample subprocesses
uit — WZdi and ui -+ W+tZde. An illustration is provided in Figure 3.5. The diagrams
represented by the left-hand plot are relevant for both subprocesses. The decisive difference
is that the Feynman diagrams with a changed fermion-number flow, which are represented
by the right-hand plot, contribute only to the subprocess ui — W*Zdu. Such diagrams
are not present for uu — W+tZde. For WZ+jet, this situation can be generalized as fol-
lows: Two subprocesses do not have—up to CKM factors—identical matrix elements if the
differing parton is not the only external up-(down-)type (anti-)quark.

The same procedure can be applied for the gluonic processes. It is, however, much
simpler in this case, because only one fermion chain exists.
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3.2 Treatment of external bottom (anti-)quarks

The situation of a hard jet resulting from an outgoing bottom (anti-)quark has to be
considered with care: Since the weak decay of the bottom (anti-)quark is mediated only
by the small non-diagonal CKM matrix elements, its lifetime is long enough to result
in a resolvable second vertex that is significantly displaced from the primary interaction
point. Therefore, events containing outgoing bottom (anti-)quarks can be isolated from
such events with light hadronic jets by anti-b-tagging.

This is no more true in case of some real-emission subprocesses, because here only one
of the two outgoing jets must be detected: This can be the light jet as well, while the b-jet
leaves the detector unseen in direction of the beam axis. Moreover, the b-tagging efficiency
lies far below 100%, so that not all “b-jet events” can be isolated [64, 65, 66, 67, 68]. The
influence of incoming bottom (anti-)quarks on the hadronic cross section is suppressed by
the small bottom PDF's in the colliding hadrons.

In the process class pp/pp — WW + jet + X, however, the suppression of subprocesses
with external bottom (anti-)quarks is overcompensated by top resonances always showing
up along with final-state bottom (anti-)quarks. Moreover, outgoing bb pairs appearing
in real-emission subprocesses even contain two resonant top-quark propagators in some
diagrams without PDF suppression. These subprocesses should, however, in general not
be assigned to WW+jet production, since they are actually off-shell continuations to tt
production. From this point of view, the subprocesses with only one outgoing bottom
(anti-)quark can be seen as contributions to W™t production and Wt production, respec-
tively, with the off-shell decay of the top (anti-)quark implied.

In order to face this problem, all generic amplitudes that could contain external bot-
tom (anti-)quarks are evaluated with non-vanishing internal quark masses in the next
chapter. In this context, the only complication concerning the evaluation of amplitudes
is due to the appearance of massive top propagators in some diagrams contributing to
pp/pp = WW + jet + X. Whenever the top propagators can become resonant in any dia-
grams of a subprocess, the top (anti-)quarks have to be treated as unstable particles with a
non-vanishing width, e.g. by application of the complex-mass scheme [69, 70, 71]. If external
bottom (anti-)quarks are taken into account, they are treated as massless particles. There-
fore, no new types of amplitudes for pp/pp — ZZ + jet + X and pp/pp — WZ + jet + X
have to be evaluated, but only some new subprocesses with another massless quark are to
be added.

3.3 Strategy for the calculation of hadronic cross sec-
tions

For the calculation of the cross sections to pp/pp — VV +jet + X | two different strategies
regarding the treatment of bottom (anti-)quarks are applied:

In the first scenario, bottom (anti-)quarks are treated as massless particles, so five-
flavour PDF's and a five-flavour running of ag are applied. In this framework, the strategy is



18 3. VV+jet production at hadron colliders

to neglect all contributions containing external bottom (anti-)quarks. For the initial state,
this approach is justified by the smallness of their PDFs. Final-state bottom (anti-)quarks
are excluded by the assumption that their signal can be distinguished from that of a light-
quark jet by means of b-tagging.

For the process class pp/pp — WW + jet + X, an advantage of this procedure can
be seen in the fact that the influence of the off-shell continuations of tt, W t, and W't
production, which is explained in the foregoing passage, is simply left away. A drawback
arises from the fact that divergences from the g — bb splitting are contained in the vir-
tual corrections, but the respective subprocesses contributing to the real corrections, which
are essentially needed to cure these divergences, are left out. This problem of getting a
divergent cross section is solved by adding the integrated dipole terms to the virtual correc-
tions in the way described in Chapter 5. The corresponding real-correction contributions
and the subtracted dipoles are, however, neglected. This approach can also be described
as follows: All real-correction subprocesses containing external bottom (anti-)quarks are
approximated by the dipole terms which solely contain the divergences related to sub-
processes whose virtual corrections are taken into account. This procedure is justified by
the fact that the neglected contribution only delivers sizeable contributions from diagrams
including resonant top quarks. Exactly these contributions, however, are meant to be left
out, because they should actually be assigned to different process classes.

In the process classes pp/pp — ZZ+ jet + X and pp/pp — WZ +jet + X, no top-quark
resonances are to be treated, since, with no more than one flavour-changing coupling
appearing in these process classes, internal top quarks do not show up at all—except for
closed top loops. As for WW+jet, we perform the five-flavour-scheme calculation omitting
external bottom-(anti-)quark contributions, because these are expected to be small, which
will be proven in Section 8.3 on the LO level. The problem of divergences related to
external bottom (anti-)quarks is treated as explained above.

In the second scenario, the bottom (anti-)quarks are understood as massive parti-
cles. Consequently, four-flavour PDFs are used. The running of ag is driven only by
the four remaining light quarks with both bottom- and top-quark loops in the gluon self-
energies subtracted at zero momentum. In this context, no large corrections arise from
terms proportional to agInmy, because counterterms always contribute in the combina-
tion %5ZA + 0Z,,, which will be shown in Section 5.3.4. Thus, the aslnmy, term from the
renormalization of the strong coupling cancels against the corresponding term from the
wave-function renormalization of the gluon. In this four-flavour scheme, such a cancella-
tion always takes place if the number of external gluons is equal to the number of strong
couplings in the considered LO process.

Here, no top resonances show up, since no bottom-(anti-)quark densities exist in the
four-flavour scheme and no mixing between the two light and the third generation takes
place in the chosen approximation of the CKM matrix. No bb pairs are taken into ac-
count in final states—single outgoing bottom (anti-)quarks could only show up along
with initial-state ones—, which is justified by anti-b-tagging. In this framework, the
calculation is performed for all four gauge-boson-pair assignments in the process class
pp/pp — VV + jet + X.
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Vi Vi g
q1 q1 q1
q q q
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2 q q
q2 d2 d2
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Figure 3.6: Diagrams contributing to the LO subprocesses with both weak gauge bosons
coupling directly to the fermion chain.

Vi g
q1 Vv d1
2 Vs d Vi
d2 d2 Vv
g Vs

Figure 3.7: Diagrams contributing to the LO subprocesses with the two weak gauge bosons
coupling to the fermion chain by means of an intermediate gauge boson.

3.4 Overview of the contributing subprocesses

Two different groups of diagrams contribute to the LO subprocesses. These are, on the
one side, diagrams with both weak gauge bosons coupling directly to the fermion chain;
such graphs are illustrated in Figure 3.6. In the other group of diagrams, which is shown
in Figure 3.7, the weak-gauge-boson pair couples to the fermion chain by means of an
intermediate gauge boson and a three-vector-boson vertex. Of course, the latter diagrams
only contribute if a respective three-gauge-boson vertex exists. This is the case for all
process classes other than ZZ+jet production.

A list of all subprocesses contributing at LO-—and also in the virtual corrections which
agree in initial and final states with the LO subprocesses if only NLO contributions are
taken into account—is given in Table 3.1.

The real-emission subprocesses with two external gluons show a similar structure com-
pared to the LO subprocesses. The main differences are the appearance of three-gluon
vertices as a consequence of the non-Abelian structure of QCD and a larger number of
contributing diagrams, which is mainly due to combinatorics. The diagrams with the weak
gauge bosons coupling directly to the fermion chain are shown in Figure 3.8, those with
an intermediate electroweak gauge boson in Figure 3.9. Again, the latter diagrams do not
contribute to ZZ-+jet production. In the calculation of both groups of diagrams, every dia-
gram without a three-gluon-vertex has to be taken into account also with the two outgoing
gluons crossed. A list of all subprocesses with two external gluons is provided in Table 3.2.
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QQ — WHW-g QQ —~ZZg UD - WtZg DU - W~ Zg
dd - WrW—g dd - ZZg ud - WtZg di - W Zg
ss > WrwWg ss —»727g cs > WHZg sc > W Zg
uu - WHwg ua — 27¢g _ n _ _

- R ~ us - W7Zg dec =W Zg
cc = WrWrg c¢—ZZg cd = W*Zg si— W Zg
bb — WTW—g bb — ZZg
Qg — WTWQ Qe — 27Q Ug — WHZU Dg = W ZU
dg - WTW~=d dg - 7Z7d ug — W*Zd dg - W~Zu
sg > WHW-g sg =~ 7Z7Zs cg > WHZs sg > W Zc
ug - WrWu ug — Z7Zu n _

FYRT— ug -+ W"Zs dg - W Zc
cg — WrWre cg > ZZc cg - WTZd sg - W~Zu
bg — WHW b # bg — Z7Zb

gQ — WHrW—Q gQ = Z7ZG gD — W+ZU gU—- W=ZD
gd - WHW-d gd = 7Z7d gd - WtZu gu— W Zd
gs - WHWs gs -+ 7Z75%s gs - WtZe gt - W'Zs
gu— WHWu u—Z7Zu S Yo _ o

- = = - - gd - W'Zc gu— WZs
gt — Wrw~e gt~ Z17¢ 5 = WHZ i oc — WZd
gbh - WTW~b x gb —Z7Zb

Table 3.1: All partonic subprocesses contributing to pp/pp — VV+jet+X at LO. The sub-
processes collected in pairs contain identical matrix elements, since they are connected by
exchanging all first-generation (anti-)quarks by the respective second-generation particles
and vice versa. Subprocesses with external bottom (anti-)quarks contribute only in the
five-flavour scheme and are treated as described in the text. Those marked with an aster-
isk contain diagrams with top resonances. In case of WZ+jet production, vertical spacing
separates subprocesses suppressed by a non-diagonal CKM matrix factor (second section)
from those leading to non-zero contributions also in case of a trivial CKM matrix (first
section). Subprocesses with CKM-suppression are only present in WZ-jet production at
LO.
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Figure 3.8: Diagrams with two external gluons contributing to the real-emission subpro-
cesses with both weak gauge bosons coupling directly to the fermion chain.
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Figure 3.9: Diagrams with two external gluons contributing to the real-emission subpro-
cesses with the two weak gauge bosons coupling to the fermion chain by an intermediate
gauge boson.



22

3. VV+jet production at hadron colliders

QQ - WrWgg QQ = Z7Zgg UD - W*Zgg DU - W Zgg
dd - WTW-gg dd — ZZgg ud - WHZgg du - W Zgg
ss - WTW-gg ss —»7Z7gg cs > WtZgg sc > W Zgg
uiit > WW-gg ut — Z7Zgg _ n _ _

- R . us - WZgg dc - W Zgg
cc — W W-gg c¢—7ZZgg cd - WtZgg su— W Zgg
bb - WtW—gg bb — ZZgg
Qg - WTW Qg Qg — 7Z7Qg Ug —» W*ZUg Dg -+ W ZUg
dg - WTW-dg dg — Z7dg ug - W'Zdg dg - W Zug
sg - WTW-gsg sg >7Z7sg cg > WtZsg sg > W Zcg
ug - WrW-ug ug — Z7Zug n _

FIRAS ug - W7Zsg dg - W Zcg
cg — W Wreg cg —»ZZcg cg —» WtZdg sg > W Zug
bg — WTW~bg x bg — ZZbg
gQ — WHW-gQ gQ — 727ZgQ gD — WtZgU gU— W~ZgD
gd - WTW-gd gd = Z7Zgd gd - WTZgi gi— W Zgd
gs - WHW-gs gs — 7Z7¢s gs - WTZge gt > W~ Zgs
gl —» WHW-gi gl — ZZ gt = R _ Y

- IR C e . - gd - W™Zgct gi— W™Zgs
ge — WrWrge 8¢ = ZZge gs - WtZgu gc > W Zgd
gb - WHW-gb x gb = Z7Zgb
gg — WHW-QQ gg — 27QQ gg — WTZDU gg — W~ZUD
gg — WTW~-dd gg — Z7dd gg — WtZda gg — W~ Zud
gg — WHWss gg —7Z17Zss gg — WtZsec gg > W Zcs
gg — WHW-uu gg — ZZuu t7 1= o3

KT = ~ gg — WTZdc gg - W™ Zcd
gg =~ WrWree 88 = Z7cc gg — WtZsu gg =+ W Zus
gg — WHW~bb xx gg — Z7Zbb

Table 3.2: All partonic subprocesses containing two external gluons, which contribute to
pp/pp — VV-+jet+X at NLO QCD. Subprocesses with external bottom (anti-)quarks con-
tribute only in the five-flavour scheme. Details on the notation are explained in the caption
of Table 3.1. In addition, two asterisks denote subprocesses with two top resonances arising
simultaneously.
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DD — WtW-DD UU - WHW-UU DD — ZZDD UU = Z7ZUU
dd > WtW~-dd ua — WTWuu dd —» Z7dd uia — ZZuu
ss - WrW-ss cc - WHrW-cec s§ —7Z7s5§ cc > 7Z7cc
dd - WHtW-s5 ui — WrW-cec dd - ZZs5s ui — Z7Zcc
ss — WrW~-dd ce — WHWuu ss — Z7dd cc — Z7Zuu
ds - WtW-ds uc - WrWuc ds — ZZds uc — ZZuc
sd - WTW-sd ci— WHrW-ciu sd = Z7Zsd cli— Z7Zci
bb — WHW-bb xx bb — ZZbb

dd — WHW - bb #x dd = Z7bb

s — WTW~bb xx ss — Z7Zbb

bl:) — WHtW~dd bE) — 77.dd

bb - WTWss bb = ZZss

db — WHW-db db — ZZdb

sb - WTW=sb % sb —Z7Zsb

b(:i — WTW~bd * bd — ZZbd

bd - WTW~bs x bs — ZZbs

Table 3.3: Partonic subprocesses with quark—antiquark pairs in the initial and final states,
which contribute to pp/pp — WW++jet+X and pp/pp — ZZ+jet+X, respectively, at NLO
QCD. Here, only subprocesses with all external (anti-)quarks of the same type (up-
or down-type) are shown. Due to charge conservation no such subprocesses exist for
pp/pp — WZ+jet+X. Details on the notation are explained in the caption of Table 3.1.
Again, two asterisks denote subprocesses with two top resonances arising simultaneously.

The real-emission subprocesses with four external (anti-)quarks get contributions from
three different types of diagrams. A subset of diagrams with the two gauge bosons coupling
to the same fermion chain is presented in Figure 3.10. Explicitly, only diagrams with both
gauge bosons coupling to the fermion chain of the initial-state quark—antiquark pair are
depicted. Depending on the specific assignments of gauge bosons and (anti-)quarks, also
diagrams with the two gauge bosons coupling to a different fermion chain contribute, e.g.
the one of the final-state quark—antiquark pair. The corresponding diagrams are not shown
explicitly, but they can be obtained by applying crossing relations to one or two pairs of ex-
ternal (anti-)quarks. The same is true for the diagrams given in Figure 3.11, where contri-
butions with three-vector-boson vertex are depicted. Depending again on the gauge-boson
and (anti-)quark assignments, some diagrams contribute with the two gauge bosons cou-
pling to different fermion chains. These diagrams are presented in Figure 3.12. All subpro-
cesses with two fermion chains are collected in Tables 3.3 — 3.6 for pp/pp — WW + jet + X
and pp/pp — ZZ + jet + X. Those contributing to pp/pp — WZ + jet + X are given in
Tables 3.7 — 3.9.
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Figure 3.10: Diagrams with four external (anti-)quarks contributing to the real-emission
subprocesses at NLO QCD with the two weak gauge bosons coupling directly to the same

fermion chain.
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Figure 3.11: Diagrams with four external (anti-)quarks contributing to the real-emission
subprocesses at NLO QCD with the two weak gauge bosons coupling to the fermion chain

by an intermediate gauge boson.
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Figure 3.12: Diagrams with four external (anti-)quarks contributing to the real-emission
subprocesses at NLO QCD. Here, the diagrams with the two gauge bosons coupling to

different fermion chains are shown.
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DD - WTW-UU UU - WHfW DD DD - ZZUU UU — ZZDD
dd > WtWuu uia — WHw-dd dd — ZZuu uia — Z7dd
ss - WrW-cec cc - WHrW-ss ss - Z7Zcc cc = 77ss
dd - WtW-cec ui — WrW-ss dd - ZZcc ui — Z7Zss
ss — WrWuu ce — WHW-dd ss — ZZuu cc — 727dd
ds — WrWuec uc - WrW-ds

sd - WHW-ci ci — WHW-sd

dd - WtW-ue ui — WtW-ds

ss - WTW-cu cc — WHW-sd

dd - WHtW-cu ut — WHW-sd

ss - WrWuc cc — WTW-ds

ds - WtW-uu uc — WHw-dd

sd - WrW-ce¢ ci— WHW-ss

ds - WrW-cec uc - WrW-ss

sd = WTWuu cu — WHrwW~-dd

ds - WtW-cu uc - WHW-sd

sd - WrW—uec ci— WHW-ds

bl:) — WHtW-ui ui — W*W_bt:) ok bt:) — 7 7Zui ui — ZZbl:)
bb - WTW-ce¢ cc — WTW=bb xx bb —ZZcc cc —7Z7Zbb

Table 3.4: As in Table 3.3, but for subprocesses with an initial state consisting of a down-
type quark—antiquark pair and a final state consisting of an up-type quark—antiquark pair
(columns 1 and 3) and vice versa (columns 2 and 4). WW+jet subprocesses suppressed by
one (second section) or two (third section) non-diagonal CKM matrix factors are separated
from those giving non-zero contributions also in the case of a trivial CKM matrix (first
section) by vertical spacing.
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DU - WtW-DU UD - WtW-UD DU —» ZZDU UD — ZZUD
du - WtW-da ud - WHW-ud du —» ZZdu ud = ZZud
s¢c > WrW-sec ¢cs - WHW-c¢s s¢ —7Z7s¢ ¢S —77cs
dc — WtW-dc us - WrW-us dc — Z7Zdc us — Z7Zus
si — WTW-si cd - WHrW—cd st — Z7Zsi cd - ZZcd
di - WrW-sec ud > WtW-cs

sc - WTW-du cs - WrWud

du — WtW-de ud - WHW-us

s¢c - WTW-si cs - WHW-cd

di - WHW-siu ud - WtW-c¢d

sc - WTW-dec cs - WrWus

de - WtW-du us — WHW-ud

si — WTW-sec cd - WHW—cs

déc - WrW-sec us - WrW-cs

su — WTW-du cd - WHW—ud

de - WrW-su us - WtW-cd

si — WTW-dec cd - WHFW—us

bu — WtW bu ub - WHW-ub bu — ZZbu ub = ZZub
bc - WTW-be cb - WHW—¢b bec — Z7Zbec cb—=7%Z7Zcb

Table 3.5: As in Table 3.4, but for both initial and final states consisting of a down-type
quark and an up-type antiquark (column 1 and 3) and vice versa (column 2 and 4).
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DD - WTW DD DD — WTW DD DD —- Z7ZDD DD — ZZDD
dd - Wtw~-dd dd - Wtw~-dd dd — 7Z7Zdd dd - Z7Zdd
ss =+ WTW-ss §s - WHrW~—5ss ss = 7Z7Zss Ss -+ Z755s
ds - WHW-sd ds —» WtW-sd ds — Z7Zsd ds - 7Z7Zsd
bb — WTW~bb x bb — WtW~bb x bb — Z7Zbb bb — ZZbb
db - WTW~hd x (_ﬂ:) — W+W_E)(_i * db — Z7Zbd (_ﬂ:) — ZZl:)(_i
sb - WTW~bs x sb - WtW bs x sb — ZZbs sb—ZZbs
UU - WtW-UU UU - WTW-UU UU —-Z7Z7ZUU UU - ZZ7ZUU
uu - WTW-uu iia — WTW-1a uu — ZZuu it — ZZ1ui
cc - WtW-cec cc - WHrW-ce cc =>7Z7Zcc cc —~7Z7cc
uc - WTW-cu uc — WrW-uc uc — 7Z7Zcu uc — ZZcu
DU - WTW-UD DU - WTW-UD DU —-Z7ZUD DU — ZZUD
du - WHW-ud di —» WtW~-ad du — Z7Zud di —» ZZud
sc > W™W-cs sc - WHtW-¢cs sc = 7Z7Zcs sc > 7Z7cs
de - WHW~cd dec - Wtw-cd dec = ZZcd de > 7Z7Zcd
su— WrW-us su— WHW-us su— ZZus su— Z71us
de - WHW-su de - WHW-su

su— WTW-dc¢ si — WHW-dec

du - WTW~us di — WtW~—as

sc - WTW-cd sc - WrW-cd

du - WtW-cd du - WHtW-cd

sc - WTW-us sc - WHrW~—is

dec - WrW-e¢s dec - WtW-¢cs

su— WrW-ud su— WHW-ud

de - WHWud dec - WHwW-ud

su— WTW-cs si— WHW—¢s

du - WTW-cs di — WtW~—cs

sc — WrW-ud sc — WHW-ud

bu — WHW~ub x bu — WHW~ab bu — ZZub bu — ZZub
bec - WTW-cbh x bec - WTW~-¢cb % bec — ZZchb bc = ZZ¢ch

Table 3.6: Asin Table 3.4, but for all partonic subprocesses containing four external quarks
or four external antiquarks, which contribute to pp/pp — WW+jet or pp/pp — ZZ+jet,
respectively, at NLO QCD. The subprocesses of column 1 and 2 as well as those of column
3 and 4 are charge conjugated to each other.
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DD — W+ZDU UU - WtzZDU DD —- W-ZUD UU - W ZUD
dd - WtZda ua — WtzZdu dd - W Zud uia —» W Zud
ss - WTZsc cc - WtZse ss - W~Zcs cc > W~Zcs
dd - WtZse ui -+ WtZsec dd - W=Zcs ui -+ W—Zcs
ss - WtZdu cc — WtZdu ss — W~ Zud cec — W™ Zud
ds - WtZdec uc - WtZde sd > W~Zcd ci— W~ Zecd
sd - WrZsu cu— WtZsu ds — W Zus uc — W Zus
dd - Wtzde ui — WtZ st dd - W Zcd ui — W Zus
ss - WTZs1 cc - WtZde ss - W~Zus cc - W~ Zcd
dd - WtZsa ui — WtZde dd - W-Zus uii - W Zcd
ss — WtZde ce - WtZsu ss - W Zecd cc — W Zus
ds — WtZdu uc - WtZsec sd - W Zud ca— W~ Zcs
sd - WtZsec ci — WtZdi ds - W=Zcs uc - W=Zud
bl:) — WtZdi bl:) — W~ Zud
bb - WtZsc bb - W~ Zcs
bd - WtZba db - W~Zub
bs —- WtZbec sb - W~Zcb
bl:) — WtZde bl:) —~ W Zecd
bb = WTZsu bb - W~Zus
bd - WtZbe dl:) — W=Z Cl:)
bs — WT™Zbu sb — W~ Zub

Table 3.7: Partonic subprocesses with quark—antiquark both in initial and final states,
which contribute to pp/pp — WZ-+jet at NLO QCD. All subprocesses contain either one
down-type (anti-)quark and three up-type (anti-)quarks as external partons or vice versa
with a charge difference of +1 between initial and final states for W*Z+jet production,
respectively. This table shows all such subprocesses with two quarks of different types in
the final state. The subprocesses of column 1 and 3 as well as those of column 2 and 4 are
charge conjugated to each other. Vertical spacing separates subprocesses suppressed by a
non-diagonal CKM matrix factor (second section) from those giving non-zero contributions
also in case of a trivial CKM matrix (first section). Further details on the notation are
explained in the caption of Table 3.1.
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UD —» WTZDD UD —» WTZUU DU —- W-ZDD DU - W-ZUU
ud - W+Zdd ud > WtZua dua - W-Zdd du - W™ Zuu
cs - WtZss cs - WtZce st - W~Zs5s st - W~Zcc
ud - WtZss ud - WtZce di - W~-Zdd di - W~ Zcc
cs — W+tZdd cs - WtZuu s¢c - W Zss s¢c — W Zuu
us — W+tZds us — WtZuc dc - W~ Zss su— W Zcu
cd - WtZsd cd - WtZci st — W~Zdd dec - W~—Zue
cd - WtZdd us - WtZuu dec - W-Zdd st — W~ Zui
us - W*tZss cd - WtZce su— W Zss dée - W Zce
us — W+tzdd us — WtZce du - W~Zdd su— W™ Zcce
cd - WtZss cd = WHZui st - W~Zs5s de - W~ Zui
ud - WtZ sd ud - WtZue de - W~ Zdd di - W Zci
cs — WTZds cs - W'Zcu su— W™ Zss s¢c — W™ Zuec
ud — W+Zbl:) da — W_Zbl:)

cs - W*tZbb s¢c - W~Zbb

ub — W*Zdb b — W~ Zbd

cb - WtZsh b — W~Zbs

uS—>W+Zbl:) Sﬁ—>W_Zbl:)

cd = W*tZbb dec — W Zbb

ub — W*Zsb bu — W~ Zbs

cb - WtZdb b — W~Zbd

Table 3.8: As in Table 3.7, but for all the subprocesses with two (anti-)quarks of different
types in the initial state. The subprocesses of column 1 and 3 as well as those of column
2 and 4 are charge conjugated to each other.
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UU - WtZUD DD —- W+ZUD DD — W~ ZDU UU > W ZDU
uu — WTZud dd - WtZad dd - W~ Zdu aa — W-Zda
ce - WtZecs §5s - WtZ¢cs ss - W™ Zsc cc - W~Zsec
uc - WtZed ds - WtZed sd = W~ Zdc cu— W~ Zde
cu— WtZus sd - WtZus ds - W Zsu uc — W Zsu
uu — W*Zus dd - WtZed dd - W~ Zdc aa — W-Zsu
cc = WTZcd ss - WtZus ss - W™ Zsu cc — W-Zde
uc — WtZecs ds - WtZad sd = W~ Zdu cu— W-Zsc
cu — WtZud sd - WtZ¢cs ds - W=Zsc ic — W-Zdi

bd - W*Zib bd - W~ Zub

bs - WTZ¢b bs = W~Zcb

bd - W+tZ¢cb bd - W Zcb

bs — WTZib bs — W~Zub
UD - WtZDD UD - Wtz UU DU - W ZUU DU - W-ZDD
ud - WTZdd ud > WtZaa du - W~ Zuu dua > W~ Zdd
cs - WtZss cs - WtZce sc —+W™Zcc sc - W~Z5ss
us - WtZsd us - WtZcu su— W~ Zuc si— W-Zds
cd - WtZds cd - WtZue de = W™ Zcu dec - W~Zsd
us - WtZss us —» WtZuau su— W~ Zuu su— W Zss
cd - WtZdd cd - WtZce de = W Zcc dc - W~Zdd
ud - W*Zds id » WtZea du — W~ Zuc di - W~ Zsd
cs — WtZsd ¢s - WtZuc sc — W Zcu sc —- W Zds
ub - W*Zhd bu — W-Zdb
cb = W*tZbs bc - W~Z5sb
ub - W*Zbs bi — W~ Z5sb
cb - W*tZhbd bec - W~Zdb

Table 3.9: Asin Table 3.7, but for all partonic subprocesses containing four external quarks
or four external antiquarks, which contribute to pp/pp — WZ+jet at NLO QCD. The
subprocesses of column 1 and 4 as well as those of column 2 and 3 are charge conjugated
to each other.



Chapter 4

Evaluation of helicity amplitudes for
VV-+jet production

The evaluation of matrix elements for all subprocesses contributing to VV+jet production
at NLO QCD is performed in this chapter with the gauge bosons considered as stable
particles. The complete evaluation of the LO amplitudes and the real-emission amplitudes
is performed by application of the Weyl-van-der-Waerden (WvdW) spinor technique for
helicity amplitudes [72], which is briefly outlined in Section 4.1.

Since the number of contributing subprocesses is O(100) for each of the gauge-boson
assignments, the matrix elements must be built in a generic way. For this purpose, general
building blocks to construct the amplitudes are evaluated in Section 4.2 without specifying
the gauge bosons.

In Section 4.3, the building blocks are combined to subamplitudes representing the
minimal selections of diagrams which are gauge invariant with respect to SU(3)c. In
general, they do not describe full amplitudes yet.

The composition of these subamplitudes to full amplitudes for specific gauge-boson
pairs is performed in Section 4.4.

In Section 4.5, absolute squares of the matrix elements are taken. For this purpose, the
different colour structures in the amplitudes of the subprocesses are considered. Spins and
colours of outgoing particles are summed over, those of initial state particles are averaged.
Symmetry factors for identical final-state particles arising from the phase-space integration
are already included at this point.

4.1 Weyl-van-der-Waerden formalism for evaluating
helicity amplitudes

From the SM Lagrangian density presented in Section 2.1, Feynman rules can be derived
that are used to perform the perturbative calculation of the matrix elements for scatter-
ing processes. These Feynman rules are usually given in terms of the Dirac formalism
where fermionic wave functions are expressed in terms of four-component spinors, and the
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absolute-squared amplitudes are evaluated by making use of the completeness relations
for the external particles. One of the main drawbacks of this formalism is the quadratic
growth of the number of terms to be evaluated with the number of contributing Feynman
diagrams. Therefore, in the calculations of this thesis, the WvdW formalism in the form
presented in Ref. [72] is applied in order to calculate helicity amplitudes, which leads only
to a linear growth of complexity with the number of diagrams. This advantage is partially
compensated by the fact that the amplitudes have to be calculated for each helicity con-
figuration. In practice, this is not as problematic as squaring amplitudes, because discrete
symmetries between different helicity channels can be applied to reduce the number of
independent contributions to be evaluated.

The general idea of the WvdW formalism is to express particle momenta and wave
functions in terms of two-component spinors, which form fundamental representations of
the Lorentz group. A detailed introduction to the WvdW formalism and the relevant
derivations are given in Ref. [72]. Further details including the extensions for treating
QCD amplitudes can be found in the references therein. The formulae that are relevant
for this work are already presented in Ref. [73].

4.1.1 Basic definitions

At this point, only a brief overview of the most relevant definitions and a collection of all
Feynman rules needed in this thesis are given. All arising spinor and bispinor expressions
can be written in terms of the following two spinors,

e ¥ cos 2 sin £
— ‘ 2 — 2 4.1
1,4 < sin g > 24 < —e ™% cos g > ’ (4.1)
where ¢ and 6 are the polar angles of the respective momentum £* = (k°, |k|sin6 cos ¢,

|k|sinfsin ¢, |k|cosf). The spinors used in the description of the wave functions of all
massless particles are defined by

kA = Qko nyA - (42)

The spinors with dotted indices are obtained by complex conjugation. By the spinor metric,
which is defined for upper and lower, dotted and undotted indices as

iF 0 +1
€AB — GAB =¢ip = GAB = (_1 0 > ) (43)
an antisymmetric spinor product is defined for both types,
(p9) = pac P, (P0)" = ¢y . (4.4)

The momentum bispinor, which corresponds to a momentum translated to the WvdW
formalism, can be written as

KAB = Z ’ii,A’ii,B s where Ri,A =V )\z g A with /\172 = k'() + |k| . (45)

i=1,2
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Incoming fields Outgoing fields
Right-handed massless fermions (o0 = R)
A Pa A
— Uy — . " W) — (0,04)
Left-handed massless fermions (o = L)
A 0 A _
e ) | W) — (s00)
Right-handed massless antifermions (o' = L)
A .. () (yy 1A o A S 0
s () — <<z5 ,0> v — |
¢
Left-handed massless antifermions (¢’ = R)
/
A_._. \1;(—) N — "0 ._<_A \TJ(_) N —s A
() A () 0

Table 4.1: Translation rules from the Dirac to the WvdW formalism for the wave functions
of massless fermions.

In case of massless particles, the momentum bispinor factorizes to
Kip=kjiks . (4.6)

where again the definition of Eq. (4.2) is applied.

In Table 4.1, the wave functions for massless fermions are collected, using the definitions
for spinors derived from massless momenta. Massive fermions appear only as intermediate
states in the calculations of this thesis. Hence, no respective wave functions are needed.

The rules how to translate polarization vectors to the respective bispinors are collected
in Table 4.2 for all vector particles relevant in VV—+jet production.

The polarization bispinors of outgoing massive gauge bosons—incoming ones are nat-
urally not considered in this context—are given by

UZB(k= +) = ‘/5”1,/1”2,3 ) UZB(/?; —) = \/57127,4”1,3 ) (4.7)
1
vk, 0) = E(K/LAK/LB — /f?,A'HQ,B) , (4.8)

for the two transversal polarizations and the longitudinal one, where again the definitions
of Egs. (4.1) and (4.5) are used.
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Electroweak massive gauge bosons (A = =+, 0)

Wifvm valk, \) — v,k ) W%’i ik, A) — 0% (k)

Gluons (7 = =£)

a"%}go‘zs‘zrb‘i ek, m) — &4, (k) nsm%o]za ert(k,m)— & (k,7)

Table 4.2: Translation rules from the Dirac to the WvdW formalism for the wave functions
of all external vector particles appearing in the calculation of VV+jet production.

Propagators
B k A i(f + my) 1 medf K,
f — mg —mi \ KAB mfég
AB  CD —1G,u —2i€ ;€D
P _) [ —
YT o e
aMb 7_i6abg“” — —_2i6ab€AC€BD
wogov L2 k2

Table 4.3: Translation rules from the Dirac to the WyvdW formalism for propagators.

In case of massless vector particles like gluons, the longitudinal polarization does not
exist with the corresponding degree of freedom manifesting itself in the arbitrariness of
gauge for the remaining transversal polarizations. Therefore, an arbitrary spinor g+ 4 with
(9+k) # 0, the so-called gauge spinor, shows up in the definitions of polarization bispinors
for incoming and outgoing gluons, respectively,

' . \/§g+,AkB ) N \/EkAg—,B
6AB(k.7 +) - (g+k>* ’ 6AB(k.a ) - <g_/<:> ’ (49)
: _V2higes o V29 iks
ehiglk,+) = k) ehiglk,—) = by (4.10)

The translation rules for fermionic and bosonic propagators are collected in Table 4.3,
those for all relevant vertices in Table 4.4. In the following, the definitions of the couplings
listed in Table 4.4 are given, starting with the fermion—gauge-boson couplings,

Coe = —Qr (4.11)
cos O B cos Oy I?
Chle=-Qr—— - (4.12)

. = = —Qf — .
sin Oy Ztt sinfyw  sin by cos by
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Table 4.4: Translation rules from the Dirac to the WvdW formalism for all vertices relevant
in VV+jet production. The couplings are defined for all particles incoming.

+ _ - _ - - _ v -
Cwiﬁ-fj =0, Wtad; T dej CW ’ waajui - Vuidj OW ’
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\X]"'ﬂilj = 6”0\7\/ ? Ci *Ijlji = 57"70\7‘] ) C\TV = \/§ Sin HW )
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where f=u;,d;,1;, v, v, =u,c,t, di=d,s,;b, vy =ve, v, v, I =€, u,7 and 7,5 =1,2,3
corresponding to the three families of quarks and leptons. The quantities V),,q; denote the
entries of the CKM matrix given in Eq. (3.1) in the applied approximation. Q; and I} are
the electric charge and the third component of the weak isospin of the fermion f as given
in Table 2.1.

The remaining definitions refer to three-gauge-boson vertices, where the non-vanishing
couplings are, again with all particles incoming,

cos b

C,waw+ =—-1 ; OZW*W* == (414)

sin HW '

All cyclic permutations of the same gauge bosons in the vertex result in the identical
coupling, whereas anti-cyclic permutations lead to a relative minus sign, which can be
easily understood from the symmetry properties of the vertex definition.
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4.1.2 Discrete symmetries

To reduce the number of helicity amplitudes to be explicitly evaluated, discrete symmetries
can be applied to relate amplitudes or subamplitudes of different processes or of one and the
same process. The discrete symmetries used in the calculations of this thesis are crossing
symmetry, a modified parity transformation P, and the combined application of parity
transformation and charge conjugation CP, which is again a symmetry in the SM in the
used approximation for the CKM matrix. Details on the derivation of these transformations
can be found in Ref. [72]. Here, only the recipes to apply these transformations are given.

Crossing symmetry transforms an incoming particle into the corresponding outgoing an-
tiparticle and vice versa. The inversion of the respective momenta is—apart from irrelevant
phase factors—realized by inverting only the signs of the dotted spinors derived from this
momentum, but leaving the undotted ones unchanged. Since only 2 — n scattering pro-
cesses are considered, crossing symmetry is always applied to pairs of particles. The cross-
ing of an incoming/outgoing particle with momentum k; and an outgoing/incoming particle
with momentum ks is denoted by X [k <> ks]. In addition, the helicities of the crossed
partons are exchanged, i.e. an incoming left-handed fermion becomes a right-handed outgo-
ing antifermion, etc. Applying crossing symmetry to unpolarized squared matrix elements
means that the crossing has to be applied to all helicity amplitudes needed in the eval-
uation. The rearrangement of helicity channels due to particle crossing is irrelevant here
since all external helicities are summed over.

The amplitude for opposite helicities of all external particles and inverted spatial parts
of their momenta can be obtained—up to an irrelevant phase factor—by complex con-
jugation of an amplitude if in addition all chirality-dependent couplings are exchanged,
i.e. CT «» C'~. The corresponding transformation is denoted by P, although exchanging
chirality-dependent couplings is not included in the usual parity transformation. However,
since parity is not a symmetry in the SM, the P transformation is defined in this way in
order to relate amplitudes for different helicity channels of SM subprocesses.

The combined application of parity transformation and charge conjugation is a sym-
metry in the SM if phases in the CKM matrix are neglected as in the used approximation.
Therefore, taking the complex conjugate of a helicity amplitude reproduces an amplitude
to another subprocess up to an irrelevant sign factor, as if the amplitude was calculated
directly from the rules presented in this section. This subprocess involves the respective
antiparticles with the spatial parts of the momenta inverted and all external helicities re-
versed, but without interchanging chiral couplings. The transformation, which is indicated
by CP, is also applied to unpolarized squared matrix elements. This is meant in the sense
that all helicity amplitudes are obtained from the respective amplitudes by applying CP
symmetry, and the squared amplitudes are finally summed over all external spins. For
unpolarized matrix elements the rearrangement of helicity channels is again irrelevant.

The phase factors mentioned in this section are irrelevant for the evaluation of squared
tree-level matrix elements. When calculating dipole terms from helicity amplitudes as in
Section 5.2, the phase conventions have to be known in some constellations. The needed
phase conventions are taken from Ref. [72].
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4.2 Building blocks of VV+jet production amplitudes

The evaluation of matrix elements for all contributing subprocesses is performed by ap-
plication of the WvdW spinor technique for helicity amplitudes in the form presented in
Ref. [72], which is briefly outlined in the previous section. Making use of helicity ampli-
tudes is especially convenient in this case, since all external fermions are treated as massless
particles, which reduces the number of non-vanishing helicity channels significantly. A fur-
ther reduction of the number of channels results from the maximal parity violation of the
W boson.

The bispinors describing the polarizations of the outgoing massive gauge bosons are
not inserted analytically into the expressions given in this section, since no further simpli-
fications are expected from this step. Besides, the number of expressions to be evaluated
analytically is reduced by a factor of nine due to the two massive gauge bosons in the final
state. Furthermore, this approach is very useful for the implementation of leptonic decays
of the gauge bosons. To this end, the polarization bispinors are replaced by a gauge-boson
propagator and the leptonic current of the decay products in order to obtain resonant
diagrams. Details on this procedure will be given in Chapter 6.

The notation used in this chapter provides all relevant parameters for each particle: In
the brackets after the particle first its momentum is given. The upper entry is the colour
index for all colour-charged partons: The letters a,b,¢ = 1,...,8 are used for gluons,
1,7, k,l =1,2,3 for quarks and antiquarks. All other particles do not carry colour charges,
so the corresponding entry is omitted. The lower entry gives the polarization or helicity
of the corresponding particle: In case of (anti-)fermions, ‘L’ is used for left-handed and
‘R’ for right-handed particles. For vector bosons, the polarization is either given by ‘4’ or
‘—’. Otherwise, the entry is the polarization vector if the polarization of the particle is not
specified yet. For incoming massive vector particles, it is denoted by v, for outgoing ones
by v*. For incoming and outgoing gluons we use g and g*, respectively. In the construction
of amplitudes, “products” of production and decay building blocks for the same vector
boson are taken. This is understood in the sense that the polarization bispinor of the
outgoing particle, v*/g*, is omitted, which is additionally indicated by a hat over the
reduced building block. The bispinor-valued expression containing v/g is contracted with
the resulting open spinor indices of the reduced amplitude.

The spinor and bispinor expressions used in the building blocks and the (sub-)amplitudes
are in one-to-one correspondence to the particle momenta. This correspondence is declared
in Tables 4.5 and 4.6 for all particles appearing in the calculation. Only building blocks for
amplitudes with an incoming quark—antiquark pair are calculated, because all other am-
plitudes needed can be obtained from these by application of crossing symmetry—either
to full amplitudes or to subamplitudes.

4.2.1 Expressions with bispinor-like structure

We start with the calculation of building blocks with bispinor-like structure, i.e. with two
open spinor indices, which are used to replace polarization bispinors of outgoing bosons.
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(Anti-)quark momentum vector spinor momentum bispinor
incoming quark pH oy Pj
incoming antiquark p'* o P
outgoing quark qt i Qig
outgoing antiquark q" ' "B

Table 4.5: Notation for (anti-)quarks: momenta, spinors and bispinors.

Vector boson momentum momentum spinor polarization
vector bispinor bispinor
outgoing gluon K+ K ka g;T,AB
outgoing gluon s Lj;g la gl*T,’AB
outgoing gauge boson Kl K, ip — vl g
outgoing gauge boson kY K, ip — U;:AB

Table 4.6: Notation for vector particles: momenta, polarization and momentum bispinors.

The first building block is needed for all diagrams containing vertices of three elec-

troweak gauge bosons, which are shown in Figures 3.7, 3.9, and 3.11,

Vi
SV |k Vol ) = v A I (4.15)
o7 ) = T2V gy |
Vs
Vi, = UiUVU;UV(Kg — K1)y + 2v;,UVK1UVU>1k,KL - 21}?70‘/]{5]‘/2};,}@ : (4.16)

The intermediate gauge boson V can be either a photon or a Z boson in case of WW+jet
production. For W*Z+jet production, only diagrams with V. = W% contribute, respec-
tively. In ZZ+jet production, no diagrams with intermediate gauge bosons show up, since
all vertices with only neutral gauge bosons attached, namely vZZ and ZZZ, vanish.

In the real-emission subprocesses with two outgoing gluons, which are shown in the

diagrams in the last rows of Figures 3.8 and 3.9, respectively, the following building block
is needed due to the non-Abelian structure of QCD,

gi

A<g{k3l]_>g[gzz]g[g%*]> = = %gsf“bc % : (4.17)

Lk
* «UV * ) * * ) *
g(k7 Z)AB = gk,[jvgl (L - K)AB + 2917UVKUng7AB -2 gijVLUVgl,AB : (418)
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In the real-emission amplitudes with two different fermion chains, some diagrams con-
tribute where the intermediate gluon decays into a quark—antiquark pair with the gauge-
boson pair coupling to the other fermion chain. For these diagrams, which are shown in
Figures 3.10 and 3.11, one needs

k]
a k l
Al oladd) = #
g T T
Q4
o AT
-2 gsTklﬁ forr=L,7 =R,
- o (4.19)
1B
-2 gSTzl(qiT/)z forr=R,7"=L.

Diagrams with both weak gauge bosons coupling to the fermion chain of the outgoing
quark—antiquark pair do not have to be evaluated separately, since their amplitudes can
be obtained by application of crossing symmetry. Consequently, no such building blocks
need to be given here.

Some of the real-emission amplitudes with two fermion chains also contain diagrams
with the two gauge bosons coupling to different chains, which are presented in Figure 3.12.
If Vi = Z, q3 and @4 belong to the same flavour. For V; = W*, q3 is of up/down-type and
s of down/up-type according to charge conservation. In the latter case, only (anti-)quarks
of the two light generations contribute, since top (anti-)quarks are not taken into account as
final-state particles, and mixing between the first two and the third generation is neglected
in the applied approximation of the CKM matrix. Therefore, no internal quark masses
have to be taken into account, and the corresponding building blocks read

ds ds
4
a k l
AR - o .
’Ul T T
ds
o 1 da da
=2gT e Ul fp ?
. ~ . ) . _
C_ 7714(@ + K2)EV€VB77F . nlE(QI + KQ)UFCUA'T]B fOI‘ S L 7_, . R
V1dsqa (q 4 k2)2 (q’ 4 k2)2 T )
X i . , - (4.20)
Cy - n(Q + I5) T ey — nA(Q + )" ev i fort=R, 7" =L
V1d3q4 (q+ k2)2 (q’—l—k2)2 ’ '
\ L a
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4.2.2 Expressions with an initial-state quark—antiquark pair

To obtain the subamplitudes given in the following section, one needs to calculate building
blocks containing an initial-state quark—antiquark pair. For the vector bosons that couple
to this fermion chain, generic polarization bispinors are inserted in the first step. These
bispinors can be replaced either by polarization bispinors for specific outgoing particles or
by the expressions of the previous subsection if the respective boson is an intermediate
particle. Only one helicity configuration oo’ of the incoming quark—antiquark pair has
to be evaluated explicitly for all building blocks provided in this subsection. Whereas
the helicity combinations oo’ = RR, LL vanish for massless quarks, oo’ = LR, RL can be
obtained from each other by application of a P transformation. Thus, only building blocks
for oo’ = LR are calculated.

The first group of diagrams to be evaluated here contains one gluon and one electroweak
gauge boson attached to the fermion chain, where both possible orders have to be taken
into account. The resulting expression can also be obtained from Eq. (4.20) by crossing
the outgoing quark—antiquark pair into the initial state,

q1 V Q@ g

*

=
S
*
<

A<q1 ﬁ || = V| v |8k > - IQSTG eCVQZQI 9iVKr

. [¢/B K — P/)AL¢K N ¢A(P — K)KB¢IL] ' (4.21)

(k —p')? (p—k)?

Combining Eqs. (4.15) and (4.21) and summing over all possible intermediate gauge
bosons results in

o]l v

ﬁiﬁ

ZA qll; q2 p —)V Z A V|::|—>V1|:k1:|v2|:k2:|> ,
v 2

* g* 1
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¢IB(K _ P/)AL¢K ¢A(P _ K)KB¢/L
(k —p')? (p — k) ’

where Vj, is given in Eq. (4.16). Since W bosons couple only to left-handed fermions
and right-handed antifermions, the inverse helicity configuration delivers a non-vanishing
contribution only if the intermediate vector boson is not a W boson, but a Z boson or
a photon, which is the case for WW+jet production. The resulting expression with the
polarization bispinors for all outgoing vector bosons inserted already gives one of two sub-
amplitudes contributing at LO.

For the second subamplitude, the following group of diagrams is needed, where the two
weak gauge bosons couple directly to the fermion chain. Here, only the diagram group
for one order of the two weak gauge bosons is calculated, whereas the other order can be
obtained by interchanging V; and Vj,

Aol v

Vy Vy g
q1 q1 di1
q q q1
= Vo + g + Vi ’
q2 q q
do d2 q2
g Vo Vo

i J a . . ~
é(Ch [P] qQ[p ] —>VI[511} Ve {53] ng*D = gL € 9ipt] BrUsan Z Vaa2aCViaa

¢E(P _ Kl)AF(KQ B P/)GB¢/H ¢ (P B K)EB(K2 B P')GF¢'H
((p = k1)? = mg) (k2 — p)* — mg) (p — k)*((h2 — p')* = mg)
¢E(P _ Kl)GF(K _ P/)AH¢/B mé ¢E€AG6BF¢/H
(k= p")*((p — k1)* —mg) ((p = k1)? = mg)((k2 — p')?> = mg)

The diagram group with the inverse order of the two gauge bosons can be constructed
from this expression by interchanging their momenta and polarization bispinors, as well as
the respective couplings. Both orders contribute to the same subprocess only for ZZ+jet
and WZ+jet production. In case of WW+jet production, the order of the W bosons
is determined by charge conservation, since no intermediate quark state with an electric
charge of %e or —%e exists. The sum over the intermediate quark q runs over all quarks with
non-vanishing couplings for the respective weak-gauge-boson and external (anti-)quark

assignments.

X

+

(4.23)
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For ZZ+jet production, only q = q; = gy contributes because no flavour-changing neu-
tral currents exist in the SM. Since no external top-quark contributions are taken into
account, mg = 0 holds for all subprocesses, and thus the term proportional to mg always
vanishes.

The same is true for WZ+jet production, where non-vanishing contributions stem
from q =q; or ¢ = qy. The former holds if V; = Z, and the latter if V, = Z. However,
subprocesses that are suppressed by non-diagonal CKM matrix elements contribute to
pp/pp — WZ + jet + X.

The only process class with massive intermediate quarks is WW+jet production. In
the chosen approximation of the CKM matrix, this is the case for q; = q3 = b, where
only q =t contributes to the sum. As discussed in Section 3.1, for external quarks of
the two light generations the unitarity of the CKM matrix can be used for simplification.
Namely, all subprocesses with q; # g, vanish if the intermediate quark state is summed
over. For q; = qp, the CKM factors, which are hidden in Cy, . and Cy , for Vi, = W,
can be factorized off the rest of the amplitude. The sum over intermediate quarks yields
a factor 1 (see context of Eq. (3.2)), which is the same result as for a diagonal CKM matrix.

For the evaluation of the real-emission amplitudes with external gluons, the following
building block is needed,

oo LMD

A% g g
q1 qi q1
q2 q1 qd1
= g + vV + gk
q2 d2 q1
) d2 d2
8k 8k V
‘ - J a b : a — * * *
é(ql [i] qZ{%] _)vLy*} ng}J ngz*D B lgs[T Tb]ji 60V<‘12q1 I, i miNVE L
¢M(P _ L)AN(Y _ P/)KB¢IL N ¢K(P _ Y)ML(K _ PI)AN¢1B
(y—p)*p—1)? (p—y)*((k—p)?)
¢M(P _ L)KN(K _ PI)AL¢1B
(k—p")*p—1)*

(4.24)

The calculation needs to be performed only for one order of the two gluons; the other order
can be obtained by interchanging momenta, polarization bispinors and colour indices of
the two gluons.

By combining Eqs. (4.15) and (4.24), one part of the real-emission subamplitude includ-
ing a vertex of three weak gauge bosons results, namely the part describing the diagrams
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in the first row of Figure 3.9,
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The second part of this subamplitude can be constructed from already known results:
Replacing the polarization bispinor of the gluon in Eq. (4.22) by the expression (4.17)
delivers the remaining contributions including a three-gluon vertex (last row of Figure 3.9),
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Here, V;; is defined in Eq. (4.16) and G(k,1) i in Eq. (4.18).
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The building blocks that are still needed for the calculation of the amplitudes of the
real-emission subprocesses with two external gluons describe the diagrams with both weak
gauge bosons coupling directly to the fermion chain. These can again be subdivided into
diagrams with and without a three-gluon vertex, which are given in the first two rows and
the last row of Figure 3.8, respectively.

First, the contribution without three-boson vertices is calculated. Again, only one
specified order of the gauge bosons and the gluons is evaluated, because the others can be
obtained by interchanging momenta and polarization bispinors as well as couplings,
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The discussion of the contributing insertions for the intermediate quark q, which is summed
over, is not affected by the second gluon. The result is the same as given in succession of
Eq. (4.23) and shall not be repeated here. The same is also true for the possible orders of
the gauge bosons coupling to the fermion chain.

The argumentation also holds in the remaining case with the two gluons coupling to the
fermion chain by means of an intermediate gluon and a three-gluon vertex. This building
block can be constructed by inserting the expression (4.17) instead of the gluon polarization
bispinor into Eq. (4.23). The result is
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Replacing the polarization bispinor of the gluon by the expression (4.19) in the building
blocks of Eqs. (4.22) and (4.23) provides the expressions needed for the evaluation of the
real-emission subamplitudes with two fermion chains, which are shown in Figures 3.10 and
3.11. The contributions from the remaining diagrams, which are presented in Figure 3.12,
can be obtained by inserting the expression (4.20) into Eq. (4.21) instead of the gluon
polarization bispinor.
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4.3 Subamplitudes for VV+jet production

The building blocks calculated in the last section can be combined to subamplitudes.
These subamplitudes are, in general, no full amplitudes yet, but gauge-invariant groups
of diagrams with respect to SU(3)c. Thus, they have to be calculated together to de-
liver gauge-invariant results. The invariance under SU(3)¢ gauge transformations can be
checked analytically by keeping the generic gauge spinors in the polarization vectors of
the external gluons and showing the independence of this gauge spinor for the particular
subamplitude. This check has been performed for all helicity combinations in the LO sub-
amplitudes and for a selection of helicity combinations in the real-emission subamplitudes
with external gluons. For the remaining helicity channels, convenient choices of the gauge
spinors are made to simplify the resulting expressions as far as possible. The polarizations
of the outgoing weak gauge bosons remain unspecified.

Since the full amplitudes are sums of the subamplitudes given in this section or of
subamplitudes that can be obtained from these by crossing, the conventional factor (—i)
is already included here.

The formulae presented in this section refer to generic VV+jet-production processes.
Therefore, masses of intermediate quarks are kept, although they only appear in WW+jet
production subprocesses. Some of the given subamplitudes or at least some helicity chan-
nels do not contribute to subprocesses of all gauge-boson-pair assignments. All helicity
combinations with oo’ = RR,LL vanish, since all external (anti-)quarks are treated as
massless particles.

4.3.1 LO subprocesses

Starting with the LO subprocesses, two different subamplitudes have to be evaluated. The
one describes all diagrams with the two weak gauge bosons coupling to the fermion chain
by means of an intermediate gauge boson, which are shown in Figure 3.7. With Eq. (4.15),
the subamplitude is

B END - bl B

The subamplitudes for specified gluon polarizations and (anti-)quark helicities are cal-
culated from Eq. (4.29) by inserting the polarization bispinors defined in Eq. (4.10). After
simplifications, the resulting subamplitudes, which are independent of the gauge spinor ¢,
read

. , . C KV 1L
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where the shorthand y = ki + ko, Y,z = (K1 + K3) i is used. The arguments of the weak
gauge bosons are dropped. The remaining non-vanishing helicity channels are related to
the given subamplitudes by a P transformation,

S A R ) ST
ollobl v PGl )}

The subamplitudes with both weak gauge bosons coupling directly to the fermion chain
are obtained in the same way from Eq. (4.23),

sloflslf]ov ) - s aGfaf v el ). am

By inserting the gluon polarization bispinors (4.10) into Eq. (4.29), subamplitudes of
the following helicity channels are obtained,
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A P transformation again delivers the results for the remaining helicity combinations,
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4.3.2 Real-emission subprocesses
Contributions with two external gluons

As in the LO case discussed in the previous subsection, two different real-emission subam-
plitudes have to be evaluated. The first one again contains all diagrams with an interme-
diate gauge boson, which are presented in Figure 3.9. The corresponding subamplitude is
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calculated from Eqgs. (4.25) and (4.26) as follows,
(el ) e L)
ol bAR ) -l D]

The constellation with the two gluons interchanged is included by adding the contribution
of Eq. (4.25) for a second time with the two gluons interchanged. Precisely, the expres-
sion in the last contribution to Eq. (4.31) means an interchange of momenta, polarization
bispinors and colour indices of the two gluons.

The polarization bispinors of the two outgoing gluons are inserted into Eq. (4.31) ac-
cording to Eq. (4.10). After analytical simplifications, the resulting subamplitudes read
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The brace {Z: ZZ} in Egs. (4.31a) and (4.31b) means the whole preceding expression

with momenta and colour indices of the two gluons interchanged.

The subamplitudes with different polarizations of the two gluons are directly related to
each other. From the subamplitude for 77" = +— (4.31c) the subamplitude for 77/ = —+
is obtained by exchanging momenta and colour indices of the two gluons,
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The four remaining helicity channels are again delivered by a P transformation of the
subamplitudes in Eqgs. (4.31a) — (4.31d),

R N A ARG ) R

for the helicity combinations 77/ = ++, ——, +—, —+.

The second subamplitude with the two weak gauge bosons coupling directly to the
fermion chain, whose diagrams can be found in Figure 3.8, is calculated analogously to the
previous case. Eqgs. (4.27) and (4.28) deliver the generic subamplitude
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where again both orders of the two outgoing gluons have to be taken into account.
By inserting the gluon polarization bispinors (4.10) and performing analytical simplifi-
cations, the following results for the different helicity combinations are obtained,
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The brace { @b } in Eqs. (4.32a) and (4.32b) again means the whole preceding expres-

k<1
sion with momenta and colour indices of the two gluons interchanged.
The subamplitudes for 77/ = —+ can be obtained form that one for 77/ = +— by in-

terchanging momenta and colour indices, which leads to
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By applying a P transformation, the remaining amplitudes can be evaluated from those
given in Eqgs. (4.32a) — (4.32d),
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for the helicity combinations 77" = ++, ——, +—, —+.

Contributions with two fermion chains

The real-emission amplitudes without external gluons, but with two fermion chains con-
nected by an intermediate gluon, get contributions from three different kinds of subampli-
tudes. Two of them are similar to those in the gluonic case, with the gluon splitting into a
quark—antiquark pair here. Only subamplitudes for diagrams with both weak gauge bosons
coupling to the fermion chain of the initial-state quark—antiquark pair—directly or medi-
ated by a third gauge boson—are evaluated. All other contributions can be constructed
from these by the application of crossing. This means that, differing from the case with
external gluons, crossing is applied here already on the level of subamplitudes, not only for
full amplitudes. This step will be performed in the following section, where the particle
insertions for gauge bosons and (anti-)quarks are specified. These insertions determine the
selection of contributing diagrams.

One of the subamplitudes describes all diagrams with an intermediate gauge boson
coupling to the fermion chain of the initial-state quark—antiquark pair, which are shown in
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Figure 3.11. It is constructed from Eq. (4.22) by inserting (4.19) instead of the polarization
bispinor of the outgoing gluon,

ol o)
AL A ) e

The subamplitudes for the following helicity configurations result,
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The remaining helicity channels are obtained by means of a P transformation,
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The subamplitudes with the two weak gauge bosons coupling directly to the fermion
chain of the incoming quark—antiquark pair are constructed from Eq. (4.23) with the gluon
polarization bispinor replaced by (4.19),
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By specifying the (anti-)quark helicities, the subamplitudes for the following helicity con-
figurations result,
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Again, a P transformation yields the remaining helicity channels,
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The third subamplitude contains all diagrams with the two gauge bosons coupling to
different fermion chains, which are presented in Figure 3.12. For its construction, the gluon
polarization bispinor in Eq. (4.21) is replaced by (4.20),
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One obtains the subamplitudes for the following helicity channels,
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the remaining ones result from a P transformation,
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4.4 Construction of full amplitudes for specified gauge
bosons

In the previous section, subamplitudes for the generic process class pp/pp — VV +jet + X
are evaluated. These subamplitudes are groups of diagrams that are gauge invariant with
respect to SU(3)c. In order to construct full amplitudes out of these, the weak gauge
bosons must be specified. The different charges of the gauge bosons and the flavour-
changing property of the W boson have a strong influence on which initial- and final-
state (anti-)quarks deliver contributing subprocesses. In this section, we use the notation

Q=d,u,s,¢,b, U=u,c, and D =d,s,b.

4.4.1 Contributions with external gluons

Which subamplitudes and which helicity channels contribute, is determined only by the
electroweak structure of the subprocesses, i.e. the number of emitted gluons is not relevant
for this distinction. Therefore, the LO subprocesses with one emitted gluon and the real-
emission subprocesses with two emitted gluons can be treated simultaneously.

WWHjet

Considering the process class pp/pp — WW + jet + X, the order of the gauge bosons cou-
pling directly to the fermion chain is determined by the charge of the external (anti-)quarks:
A W™ boson only couples to incoming up-type quarks or down-type antiquarks, whereas a
W~ boson only couples to incoming down-type quarks and up-type antiquarks. Otherwise,
intermediate quark states with charges of +§e or —%e would have to exist, which is not
the case in the SM. Owing to the maximal parity violation of the W bosons, the helicity of
the fermion chain is restricted to left-handed quarks and right-handed antiquarks in case
of direct gauge-boson coupling. This is not the case for the subamplitude with an interme-
diate gauge boson, because photons and Z bosons couple to both possible helicity chains.
For this reason, the left-handed quark chain gets contributions from both subamplitudes,
which are given in Eqgs. (4.29) and (4.30) for the LO case and in Eqs. (4.31) and (4.32)

for the real-emission case. For the subprocesses with an external up-type quark—antiquark
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pair the corresponding amplitudes read
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The right-handed quark chain only gets contributions from the subamplitudes including
a three-gauge-boson vertex provided in Eqs. (4.29) and (4.31), respectively. They are
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For an external down-type quark—antiquark pair, the discussion of the helicity de-
pendence of contributing subamplitudes is identical to the up-type case. The respective
amplitudes can be obtained from those in Eq. (4.36) via
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i.e. by interchanging momenta and polarization bispinors of W and W~. Moreover, U and
D as well as W and W~ have to be interchanged in the respective couplings. The latter
exchange influences, of course, also the contributing flavours in the sum over intermediate
quark states, which appears in the subamplitudes with both W bosons coupling directly to
the fermion chain. However, only the CKM factors in the W-boson couplings are changed,
which give unity when summed over all intermediate quark states in any possible cases.
This point is discussed in the context of Eq. (4.23), where this situation shows up for the
first time. Consequently, all these subprocesses can be evaluated as in the situation of a
trivial (diagonal) CKM matrix.

, (4.37)

U<D,WHeW-—

27+ jet

In the process class pp/pp — ZZ + jet + X, only the subamplitudes with both Z bosons
coupling directly to the fermion chain contribute. Since the Z bosons are neutral, their
order can be exchanged, giving rise to a second contribution. Since no flavour-changing
neutral currents exist in the SM, only subprocesses initiated by a quark—antiquark pair of
the same flavour arise. The intermediate quark must belong to this flavour, too. With the
subamplitudes taken from Eqgs. (4.30) and (4.32), respectively, the amplitudes read
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where non-vanishing contributions stem from the helicity channels oo’ = LR, RL in the
relevant case of vanishing quark masses.
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WZ+jet

The subprocesses of pp/pp — WZ + jet + X get contributions from both subamplitudes
again. In the subamplitude with a three-gauge-boson vertex, a W boson shows up as an
intermediate particle, so this subamplitude contributes only in case of a left-handed quark
chain. In the second subamplitude with W and Z boson coupling directly to the fermion
chain, both orders of the gauge bosons contribute, but again only for a left-handed quark
chain. The flavour of the intermediate quark is given either by the flavour of the incoming
quark or antiquark, depending on the order of the weak gauge bosons. In case of WZ-+jet
production, charge conservation allows only initial states with an up-type quark and a
down-type antiquark in the considered process class. With the subamplitudes taken from
Eqs. (4.29) and (4.30) for the LO case and from Egs. (4.31) and (4.32) for the real-emission
case, the only contributing helicity amplitudes are
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The amplitudes for W~ Z+jet production are not needed explicitly, since they can be ob-
tained from the given ones by means of a CP-transformation. This transformation is
performed on the level of matrix elements in the following section.

4.4.2 Contributions with two fermion chains

In the real-emission subprocesses with two fermion chains, the number of different ampli-
tudes to be calculated is much larger. This is mainly due to the fact that the two weak
gauge bosons can couple to the same fermion chain or to different ones. Moreover, not
only subprocesses contribute with one fermion chain of the quark-antiquark pair in the
initial state and a second one of the pair in the final state. Also subprocesses with a
changed fermion-number flow exist: Here, one chain contains the external quarks and the
second one the external antiquarks. In some constellations of external (anti-)quarks, even
diagrams of both types contribute to the same subprocess.

WWHjet

To compactify the expressions appearing in the amplitudes of pp/pp — WW + jet + X
the following abbreviation is introduced for the situation that both W bosons couple—
directly or mediated by a third gauge boson—to the left-handed fermion chain connecting
the initial-state quark—antiquark pair,

R A ) TR O

The two subamplitudes used in this expression are given in Eqs. (4.33) and (4.34), respec-
tively.
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The first amplitude to be calculated contains four up-type (anti-)quarks of the same
generation as external particles. This enables four possibilities for the two W bosons
to couple to fermion chains, namely the chains of the initial- and the final-state quark—
antiquark pairs and those with the incoming and the outgoing (anti-)quark as endpoints.
Since—in the relevant case of massless external fermions—only (anti-)quarks with the same
helicity or a quark and an antiquark with opposite helicities can form a quark chain, not
all four possibilities contribute to each helicity channel. Just the helicity amplitudes with
only left-handed quarks and right-handed antiquarks or vice versa get contributions from
all four configurations. With the definitions of Eqgs. (4.33) and (4.40), they read
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The remaining non-vanishing helicity channels get only two contributions,
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The relative minus signs between the contributions with an odd and an even number of
particle crossings are Fermi signs and result from the change of the fermion-number flow.

The respective amplitudes for external down-type (anti-)quarks are obtained by inter-
changing W+ and W™, i.e. their momenta and polarization bispinors, and of W and W~
as well as U and D in all couplings,
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The treatment of intermediate quarks is performed analogously to the discussion in the
context of Eq. (4.37).

The subprocesses with only external up-type (anti-)quarks, but with different gener-
ations in the initial- and the final-state quark—antiquark pairs, do not get contributions
from diagrams with a changed fermion-number flow.

(4.42)
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The remaining contributions are identical to the subprocess class discussed before and
give, again with the subamplitudes from Eqs. (4.33) and (4.40),
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The analogous amplitudes for external down-type (anti-)quarks belonging to different
generations can again be obtained by interchanging the momenta and polarization bispinors
of the W bosons, accompanied by an exchange of W+ and W, U and D, and U" and D’
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in all couplings,
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The subprocesses with an up-type quark—antiquark pair in the initial state and a down-
type quark—antiquark pair in the final state are evaluated quite similarly to the previous
case. The main difference is that the subamplitude with the two W bosons coupling to
different fermion chains contributes here. Due to the maximal parity violation of the W
coupling to fermions, it only appears in the helicity configuration with only left-handed
quarks and right-handed antiquarks. Exactly these diagrams give the only dependence on
the explicit entries of the CKM matrix. In all other subamplitudes, the summation over
the intermediate quark state results in a Kronecker delta for the flavours of the external
quarks that build the endpoints of the fermion chain with the W bosons attached. With
the definitions of Eqs. (4.33), (4.35), and (4.40), the following amplitudes result,
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The amplitudes for the subprocesses with a down-type quark—antiquark pair in the
initial state and an up-type quark—antiquark pair in the final state could be constructed
by crossing from the results given before. It seems, however, convenient to define also
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these amplitudes for simplification of the expressions in later sections. As an alternative
to crossing symmetry, an exchange of W and W~ accompanied by interchanging U and
D in all couplings is performed like for the previous amplitudes, leading to
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for all contributing helicity channels.

The amplitude that remains to be calculated contains only external up-type quarks and
down-type antiquarks with in total more than two different flavours involved, i.e. either
U#U', D#D', or both. (If the up-type quarks and the down-type antiquarks belong
to the same flavour, respectively, the amplitude is calculated from the previous one via
crossing relations.) Here, only the subamplitude with both W bosons coupling to different
fermion chains contributes. Consequently, all helicity channels but the one containing only
left-handed quarks and right-handed antiquarks vanish. With Eq. (4.35), the amplitude is
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As before, it is not necessary but convenient to define also the corresponding amplitude
with only external down-type quarks and up-type-antiquarks,
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Again, momenta and polarization bispinors of Wt and W~ are exchanged. Additionally,
W* and W, U and D, and U’ and D’ are interchanged in all couplings.

The selection of amplitudes is neither unique nor minimal, but seems to be an appro-
priate choice for the calculation of squared amplitudes in Section 4.5.
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(4.48)

U«D,U'+D/ Wt W—

77+ jet

For the amplitudes of the process class pp/pp — ZZ + jet + X, the following two abbre-
viations are introduced for subamplitudes only differing by an interchange of the two Z
bosons. With the subamplitudes from Eqs. (4.34) and (4.35), these definitions are
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Since no flavour-changing couplings appear in ZZ+jet-production subprocesses, only
two different kinds of amplitudes are to be evaluated. The first one contains four (anti-)quarks
of the same flavour. With the definitions of Eqgs. (4.49) and (4.50) the amplitudes for the

following three helicity configurations are calculated,
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The relative minus signs between the contributions follow again from the changed fermion-
number flow. The remaining non-vanishing helicity channels are obtained from these am-
plitudes by application of a P transformation,

M(Qg Q_{'_ %z_z;_ Z-/zcg- Q-EJ QH) — P{M(QE] QE{}%Z[’S] z[fg] Q_g Qé) } |
R  (4514)

M(Qé Qfy |- 2w | 2 Q%]Q[%ZD ZP{M<QH Q{é}%z[ﬂz{?](@g{ Qs )}
N -  (4.51e)

BRI o L))

(4.51f)
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The second class of subprocesses contains a quark—antiquark pair in the initial state
and a quark—antiquark pair of a different flavour in the final state. With the definitions of
Eqgs. (4.49) and (4.50), the amplitudes for two helicity channels are given by

) - -+
oot A o))
) -0 )

Lol bl )

the remaining ones can again be obtained by a P transformation,
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WZ+jet

In the amplitude calculation for the process class pp/pp — WZ + jet + X, only the case
of WtZ+jet production has to be considered. All W~ Z+jet amplitudes can be obtained
from these by application of a CP transformation, as for the gluonic subprocesses.

The following abbreviation is useful for a compact notation of the amplitudes,

ol L) - o0+
A L) 4] o

Unlike in the cases of WW+jet or ZZ+jet production, where the gauge-boson pair is
neutral, the fermion chain at which the WZ pair is attached is already determined by the
charge of the W boson. Besides, the number of non-vanishing helicity channels is reduced
by the fact that a W boson always couples directly to one of the fermion chains.

In the amplitudes calculated explicitly, the incoming quark—antiquark pair always cou-
ples to the W' boson. Thus, it has to consist of an up-type quark and a down-type
antiquark. Since the final-state quark—antiquark pair has to belong to one flavour, three
different cases of the outgoing quark—antiquark pair are to be distinguished: It belongs
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either to the same flavour as the incoming quark, or as the incoming antiquark, or to a
different flavour.

In the first case, the W boson couples to the fermion chain that contains the initial-state
down-type antiquark and either the incoming up-type quark or the outgoing up-type anti-
quark. Only helicity channels with a right-handed down-type antiquark contribute, since
the W boson always couple to that chain. With the abbreviation (4.53), the amplitudes

M(U;%}DE’}—)W’L;&}Zlzcz}Um M) (1 Xqu}>{AA4<...—>...>}, (4.54a)
R )
Mool s ol

e R 85

where the the relative minus signs stem form the change in the fermion-number flow again.

In the case of an incoming up-type quark and three down-type (anti-)quarks of the same
flavour, the W boson always couples to the up-type quark whose fermion chain contains
either the incoming down-type antiquark or the outgoing down-type quark. Due to the
maximal parity violation of the W coupling, only helicity configurations with a left-handed
up-type quark contribute. With the abbreviation (4.53), the amplitudes are

e ofJof) = (ot o) () ) s

Jof) =aa( ) o

_ 7 T 1 [Tkl Tt
M(U p|Dlp | = W ki | Z]k2| D q} D|:CI':|>
_wf‘h z* _L L

e T S

The last case to be discussed is that of an outgoing quark—antiquark pair which belongs
neither to the flavour of the incoming quark nor of the antiquark. Here, only diagrams with
one fermion chain containing the initial-state quark—antiquark pair, whose helicity must
be left-handed due to the W coupling, and the other one containing the final-state quark—
antiquark pair contribute. With the abbreviation (4.53), the non-vanishing amplitudes
read
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el LD - )

From the amplitudes presented in this section, the matrix elements for all subprocesses
with two fermion chains that contribute to the real corrections of the process class pp/pp —
VV +jet + X —including quark—quark and antiquark—antiquark scattering subprocesses—
can be received either directly or by applying crossing symmetry.

4.5 Calculation of squared amplitudes

For the calculation of cross sections, the absolute squares of the amplitudes presented in the
previous section are used, which have to be averaged over spins and colours of the incoming
partons. For the investigated processes, no helicities of outgoing particles are observed, so
spins and colours of final-state particles are summed over. The explicit colour structure
of the amplitudes is not spelled out explicitly in the last section, since it is quite simple
with not more than four colour-charged external particles involved. It can be reconstructed
from the subamplitudes given in Section 4.3.

4.5.1 Colour structures of the amplitudes

In this subsection, all different colour structures of amplitudes arising in the subprocesses
contributing to pp/pp — VV + jet + X are explained. At LO, all subprocesses have the
same colour structure, whereas three different structures arise in the real corrections.

For all LO subprocesses (all subprocesses of Section 4.4.1 with the gluon in parentheses
omitted), the colour structure is trivial: All amplitudes can be written as

M = T% x M® (4.57)

by extracting the only SU(3)¢ generator T¢. Full amplitudes with colour are labelled by
M, M* is a colour-stripped amplitude. Taking the absolute square results in

DM = Te{T T} x M = 4| M. (4.58)
col

For all real-emission subprocesses containing two external gluons (all subprocesses of
Section 4.4.1 with the gluon in parentheses included), two different colour structures arise
due to the two possibilities of ordering the external gluons coupling to the only fermion
chain. An illustration is given in Figure 4.1. The amplitudes get the generic form

M = [T*T%];; x M* + [T°T%);; x MP (4.59)
by extracting all SU(3)¢ generators. Taking the absolute square now results in

> M = Te {T*TT' T} (IM*? + [MP?) + 2T {T*T"T*T"} Re (M M)

col

— ? (M + |MPP?) — %Re (MOM) | (4.60)
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Figure 4.1: Illustration of the two different ways how the fermion chains close in case of
two external gluons. As an example a subprocess with a quark—antiquark pair in the initial
state and two outgoing gluons in WW+jet production is taken. The upper plot shows a
squared diagram with the SU(3)¢ generators in the (cyclic) sequence T*T*T®T®. The lower
plot shows an interference term between two diagrams with the outgoing gluons ordered
differently, leading to the sequence T*T*T*T® of SU(3)¢ generators.

where the cyclic property of traces has been used.

For the real-emission amplitudes involving no external gluons (given in Section 4.4.2),
two different colour structures show up: If all contributing diagrams have the same fermion-
number flow, the colour structure always looks like

M = T4 T}, x M*, (4.61)

at least after renaming indices if necessary (namely in helicity channels getting only con-
tributions from crossed subamplitudes).

Taking the absolute square now results in the product of two traces over chains of
SU(3)¢ generators which are connected by colour indices,

D> M = Te {T°T} Tr {T°T"} x |M[* = 2|M*|” . (4.62)

col

For some classes of subprocesses with two fermion chains, the colour structure is a bit more
involved, namely for subprocesses containing three (in case of WZ+jet production) or four
(in case of WW+jet or ZZ+jet production) (anti-)quarks of the same flavour. In case of
WW-jet production, the same is true for the subprocesses given in Eq. (4.45), where the
two W bosons can couple either to the same or to two different fermion chains. In these
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Me? M)

MeMP?

Figure 4.2: Illustration of the two different possibilities how fermion chains close in the
case that diagrams with different colour structures contribute to the same subprocess. As
an example, a subprocess with all external (anti-)quarks belonging to the same flavour
in ZZ+jet or WW+jet production is taken. The upper plot shows a squared diagram,
resulting in a product of two fermion chains connected by colour indices. The lower one
shows the interference of two diagrams with different colour structures, resulting in only
one fermion chain in the squared amplitude.

situations, the amplitude involves two different colour structures arising along with two
different fermion-number flows contributing to the particular subprocesses. In these cases,
the amplitudes can—at least for some helicity channels (the others show the simpler colour
structure of Eq. (4.62))—be written as

M = T4 T}, x M* + Ty Ty x M” . (4.63)

Squaring this amplitude results in contributions with the squared diagram containing only
one fermion chain and others with two chains connected by colour indices, which is illus-
trated in Figure 4.2. Taking the absolute square yields

S OIMP? = Tr {TT} Te {T°T} (|MO + |MP|?) + 2 Te {T*T°T°T"} Re (M* M)

col

=2 (IM*P + M%) — %Re (MOMP). (4.64)
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4.5.2 Construction of squared amplitudes for all subprocesses

Using the amplitudes given in Section 4.4, the different colour structures from the previ-
ous subsection, and crossing symmetry, all matrix elements needed for the evaluation of
pp/pp — VV + jet + X cross sections can be obtained. In this subsection, the matrix ele-
ments are collected with all factors from averaging over spins and colours of the initial-state
particles included. The colour averaging factors are % for incoming (anti-)quarks and é for
incoming gluons. The factor from averaging over polarizations and helicities, respectively,
is % for each relevant incoming particle. Symmetry factors for identical outgoing particles
are also already included here, but are not combined with the averaging factors for the
sake of transparency. In the process class WZ+jet, only the matrix elements of WZ+jet
are explicitly given, because each subprocess has its W~Z+jet counterpart that can be
obtained by application of a CP transformation.

LO matrix elements

For all process classes of VV+jet production, the sum over external colours and spins reads

M (e ] )=V ] Va ] 2 )
- LR EEMalfaff] vl vl

o0’ T A2 1,7 a
The momentum assignment applied for each matrix element in this paragraph is understood
to be M (a[p]b[p'] —clki]d[k2]e[k]). In particular, all applications of particle crossings
refer to this notation. The colour structure is taken from Eq. (4.58), and the LO cross
sections get contributions from quark—antiquark, quark—gluon, and gluon—antiquark initial
states for all VV+jet process classes.

For WW+jet and ZZ+jet production, the external (anti-)quarks belong to the same
flavour, q; = q; = Q, for all subprocesses. For WW++jet production, the amplitudes for
Q =u,c are given in Eq. (4.36), and those for QQ =d,s,b in Eq. (4.37). Including the
averaging factors for the respective initial states, the following matrix elements result,

2

(4.65)

MQAWW g) P = - |M(QQ- W Wg)[*, (4.66)
MQe=WW Q) = 91_62([;9' o k{IM(@QQwrw g ) (4.67)
M (gQ=WW-Q) |2 = % X[p k}{w (QQ—=W"Wg) \2} . (4.68)

For ZZ+jet production, the amplitudes can be found in Eq. (4.38) for Q = d, u,s,c,b.
With averaging factors and the symmetry factor for the identical Z bosons in the final
state, the matrix elements read

2

IM (QQ—ZZg) | = % X~ M (QQ—ZZg)|, (4.69)

6
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IM(Qg—ZZQ) |2 = % X %X[p’ YRS k}{\M (QQ—>ZZg)\2}, (4.70)
M(EQ72Q) P = 5 x 5 X[ K]{|M(QQ77)| "} (4.71)

For WZ+jet production, the relevant amplitudes are given in Eq. (4.39). With averag-
ing factors included, the matrix elements for U =u,c and D = d, s are

— 1 _
(M (UD—WZg) [2 = o | M (UD— W+Zg) ‘) (4.72)
1 _
M{Us—WZD)P = o X[/ k]{\M (UD—>W+Zg)‘2} , (4.73)
_ _ 1 _
(M (ED>WZU) PP = o= x[p o k]{|M (UD—W*Zg) |} (4.74)
Real-emission matrix elements with two external gluons
For all process classes, the sum over external colours and spins reads
M (a1 [p) @ [p']—= Vi [k1] Vals) g [K] g [1]) [
2 j a b 2
S 2 S S5l fJaff] vl el ) s

o0’ 1,7 A1,A2 1,7 ab

Accordingly, the momentum assignment used for all matrix elements in this paragraph is
M (a[p]b[p'] = clki] d[k2] e[k]f[l]). All amplitudes of this kind of subprocesses are decom-
posed with respect to their colour structures as described in Eq. (4.59). The prefactors
for the particular terms resulting from the sum over colour indices are given in Eq. (4.60).
The contributing initial states are quark—antiquark, quark—gluon, gluon—antiquark, and—
in addition to the channels already present in LO-—gluon-gluon for all VV+jet process
classes. For all subprocesses with two gluons in the final state, a symmetry factor % arises.

As in the LO case, for all subprocesses of WW+jet and ZZ+jet production the external
(anti-)quarks belong to the same flavour, qu = q; = Q. For WW+jet production, the
amplitudes are given in Eq. (4.36) for QQ = u,c and in Eq. (4.37) for Q = d,s, b. Including
averaging factors and—if needed—symmetry factors, the matrix elements are

M(QQWHW gg) | = £ x = [M(QQW W gg)[”, (4.76)

M (Qg—>WHW-Qg) | = 91—6X[p' = k}{\M (QQ%W*W’gg)‘Q}, (4.77)

M (gQ=W+W-gQ) |2 = 91—62([;9 © z}{\M (QQ—>W+W_gg)‘2}, (4.78)
_ 1 z - _

M (g WHW QQ) P = %x[ﬁ - k]{w (QQ->WHwWgg) |} (4.79)
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The amplitudes of the ZZ+jet subprocesses for Q = d,u,s, ¢, b are given in Eq. (4.38).
With all averaging factors and symmetry factors for identical final-state particles, the
following matrix elements result,

M(QQ-22eg) F = 5 x 5 % = | M (QQ—229) " (4.80)

M (Qg—722Qg) | = % 9i [ ]{\M (QQ%ZZgg)\Z}, (4.81)

M(EQ—728Q) [ = 5 x o X[p & 1{|M (QQ-72788) [} (4.82)
11 z i

|IM (gg—)ZZQQ) 2 = 3 X %X[ﬁ : k]{‘./\/l (QQ—)ZZgg)‘Q}. (4.83)

The relevant amplitudes for WZ-+jet production are delivered in Eq. (4.39). With all
factors included, the matrix elements for U =u,c and D = d,s read

1

IM (UD— W+Zgg) |2 = 5% 36 \M UD—>W+Zgg)‘ , (4.84)

M (Ug—W+ZDg) |2 = 91—6X[p > k}{w (UD—>W+Zgg)\2}, (4.85)

IM (gD —W+ZgU) |> = 91—6 X[p < k}{\M (UD—>W+Zgg)\2} : (4.86)
= o 1 p(—)l = + 2

IM (gg— W+ZDU) |2 = ﬁx{p, “ k}{\M (UD—W*Zgg)| } (4.87)

Real-emission matrix elements without external gluons

For all VV+jet process classes, the sum over external colours and spins reads

M (a1 [p] Q2 [p'] = Vi [£1] Vg (k2] q; lq) s [q])]”
ST R ARAN NG}

o,0’ 7,7 A,A2 1,7,k

The momentum assignment for all matrix elements in this paragraph is understood to be
M (a[p]b[p']| = clki] d[k2] e[q] £]¢']). The colour structures of the amplitudes for this group
of subprocesses depend on the particular (anti-)quark assignments. In general, the following
rule can be applied: If the contributions to one helicity channel contain two different
fermion-number flows, the respective amplitude shows two different colour structures as
well. Thus, it has to be decomposed according to Eq. (4.63). The prefactors corresponding
to this decomposition are given in Eq. (4.64). For all other helicity channels and the
remaining subprocesses, only one colour structure appears, leading to the prefactor given
in Eq. (4.62). Crossing symmetry delivers the matrix elements for a set of subprocesses
from each amplitude, where in every case quark—antiquark, quark—quark, and antiquark—
antiquark initial states are involved. In the following, the matrix elements are given for
the various gauge-boson assignments.

2

(4.88)
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WWHjet

For subprocesses based on QQ — WTW~QQ, the amplitudes are provided in Eqs. (4.41)
and (4.42) for Q = u,c and Q =d,s, b, respectively. Including averaging factors and—in
the case of identical outgoing partons—symmetry factors, the matrix elements are

IM(QQ—=WTW-QQ) |> = % M (QQ%W*W*QQ)\Q, (4.89)
MQQ=WW-QQ) P = % x %X[p' o {IM@QQ-wrwQQ)'h, (190)
IM(QQoWW-QQ) 2 = % x %X[p o q}{w (QQ%W*W_QQ)\Z}. (4.91)

The amplitudes for subprocesses derived from QQ — WHW-Q'Q’ with Q # Q’, but
both Q and Q' either of up- or of down-type, are given in Eqs. (4.43) and (4.44). For
the particles insertions (Q, Q') = (u,¢), (c,u), (d,s), (s,d), (d,b), (s,b), (b,d), (b,s), the
matrix elements with averaging factors included read

MQQWAW-QQ) F = o [M(QQW W Q)| (4.92)
IM(QQ = W+W-QQ') |2 = % X[p q]{\M (QQ%W*W‘Q’Q’)\Z} : (4.93)
MQU=WIW QQ)F = %X[p' o ¢ M@ ww QQ)[}. (4.94)
IM(QQ—=W+W-QQ) 2 = % X[p+ q}{\M (QQ - WHW-QQ) \2} . (4.95)

For the subprocesses based on UU — WH*W~DD, the amplitudes can be found in
Eqs. (4.45) and (4.46). With the factors from averaging over colours and spins, the matrix
elements for the flavour insertions U = u,c and D = d, s, b are

IM (UU—W+W-DD) |2 = 31—6 |M (UU—W+W-DD)[*, (4.96)
IM (DD—W+W-UU) |2 = 31—6 M (DD—W*+W-UT)|*, (4.97)
M (UD>W+W-UD) |2 = 31—6 X[« q]{|M (UU-WW DD) [}, (4.98)
IM (DU—W+W-DU) |2 = 31—6 X[y q}{\M (DD—WTW~UU) \2} : (4.99)
M (DU W+W-UD) £ = 31—6 X[y o q'}{w (DD—W*W-UD) \2} , (4.100)
M (DU—WW-UD) [ = o ¥[p & ¢]{|M (VT W*W DD)['}. (4.101)

The remaining real-emission subprocesses are constructed from UU’ — WTW~DD’ with
either U # U’, D # D', or both. The amplitudes are taken from Eqs. (4.47) and (4.48).
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With averaging factors, the matrix elements for the flavour insertions U, U’ = u,c and
D, D’ = d, s that are not covered in the previous passage are

M (UD—W+W-UD) |2 = % M (UD—WHW-U'D)|*, (4.102)

M (DU WHW-D'U') |2 = % M (DU WHW-D'T)|?, (4.103)

M (UT'—WHW-DD') |2 = 3—162([;9 o ){|MUD->W W UD) [P} (4.104)

M (DD S WHW- U |2 = 3—162([;9 o a){|M (PU>WW DT)[*], (4.105)

M (DU SWIW-DU) P = % X[y o ¢ [{IMOU-WW DT (4.106)

M(DTHWAW-DO) = o2 Xp & g]{|M (DT WHW-DT) [}, (4.107)
Z7+jet

For subprocesses based on QQ — ZZQQ with Q = d, u, s, ¢, b, the amplitudes are provided
in Eq. (4.51). With all averaging factors for colours and spins and the symmetry factors for
the two identical Z bosons and, if existing, identical partons in the final state, the matrix
elements read

M(QQ-72QQ)F = 5 x o [M (QQ—2200) ", (4.108
MQQZZQQ) F = % 5% %X[p' o q']{\M (QQ—>ZZQQ)\2}, (4.109)
M@QQZZQQ) P = & x & x = X[p e a){ M (QQ-720Q) '} (4.110)

The remaining real-emission subprocesses are constructed from QQ — ZZQ'Q’ with
Q,Q =d,u,s,c,b, but Q # Q. The needed amplitudes can be taken from Eq. (4.52).
With averaging factors and the symmetry factor for the two outgoing Z bosons included,
the matrix elements are

MQQZ2QQ) F = 5 % 2 |M(QQ—22Q Q)| (4.111)
MQUZ2QQ)F = 5 5 X[p & ¢ |{| M (QQ-722QQ)[*}. (4.112)
IM(QQ —ZZQQ) > = % x 31—62([19 o q {\M (QQ%ZZQ’Q’)\Q}, (4.113)
M@QQZQQ) P = 5 x 5= Xp o }{|M(QQ - 2209)[*}. (1.114)
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WZ+jet

In the process class WZ+jet, only the real-emission matrix elements for WtZ+jet have
to be calculated. The subprocesses contributing to W~Z+jet can be received from the
previous ones by applying a CP transformation. The amplitudes for all subprocesses based
on UD — WHW~UU are provided in Eq. (4.54). With the average factors for colours and
spins as well as for identical partons in the final state if existent, the matrix elements for
the flavour assignments U = u,c and D = d, s are

IM (UD—W+ZUU) |2 = 31—6 M (UD—W*ZUU)|?, (4.115)
M(UTW2D0) F = o2 X4 & g]{|M (UD W zuD) [}, (4.116)
M (UU > WHZUD) |2 = %X[p & {\M (UD—>W+ZUI_J)\2}, (4.117)
M(UD—W200) F = J x oo X[p & aJ{|M (UD-wizuD) [}, (4.118)

The amplitudes for subprocesses derived from UD — W+W~DD can be taken from
Eq. (4.55). Including averaging factors and symmetry factors for identical outgoing par-
tons, the matrix elements for the flavour assignments U = u,c and D = d, s read

M (UD—W+ZDD) |2 = % | M (UD—W+*zDD)|* (4.119)
MDD W+ZDU) [ = o ¥[p e ¢ [{| M (UD—wzDD)['} (4.120)
M (UD—W+ZDD) |2 = % X 31—62\’[}9’ < q'}{\M (UD—>W+ZDD)\2}, (4.121)
M (DD—W+ZUD) |2 = % X[p+ q}{w (UD—>W+ZDD)\2} : (4.122)

The remaining real-emission subprocesses are based on UD — WTW~QQ, whose am-
plitudes are given in Eq. (4.56). With averaging factors, the matrix elements for the flavour
insertions U =u,c, D =d,s, and Q =d, u,s,c,b with the restrictions Q # U and Q # D
are

M (UD—-W+2QQ) |? = % M (UD—W*2QQ)|* (4.123)
— — 1 !

M (QQ—W+zDU) 2 = %X{quq]{w (UD—W*2QQ) \2} (4.124)

M (QD—>WZQU) |2 = —X [p ¢ ]{|M(UD->W ZQQ)[*} (4.125)

M (UQ—WZDQ) |2 = —X ey {\M (UD—W+ZQQ) \2} (4.126)

M (UQ S W+ZQD) 2 = —X [P & ¢ { (UD—W*ZQQ) \2} (4.127)
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IM (QD—WHZUQ) |2 = % X[p q}{\M (UD—WT'ZQQ) \2} : (4.128)

The matrix elements for W~Z+jet subprocesses are obtained from those presented for
WTZ-+jet by application of a CP transformation. For any possible insertion of the partons
pi» ¢ = 1,...,4, the matrix element reads

| M (p1[p1] P [p2] = W [k1] Z ko] ps [ks] Pa k)
=CP {‘M (p2[p2] Pr [p1] = W [k1] Z[ks] pa[ka] D3 [ks]) ‘2} ) (4.129)

where the interchanged order of the partons is just a convention. The LO matrix elements
are obtained by an analogous operation with the parton p, omitted.

‘ 2

4.5.3 Combination of subprocesses with equal matrix elements

With the matrix elements provided in the previous subsection, the contributions of all
processes listed in Tables 3.1 — 3.9 to the particular cross sections can be calculated. Due
to their large number especially in the real corrections, it makes sense to calculate as many
subprocesses as possible simultaneously in order to reduce the needed computational time.

A trivial way to reduce the number of subprocesses by nearly a factor 2 is provided by
the fact that two subprocesses with interchanged incoming partons are related to each other
point-wise, i.e. for related phase-space points. This relation is not a parity transformation,
which can be easily understood, since the electroweak interactions of the SM violate parity
symmetry. However, the invariance of the SM under proper Lorentz transformations and,
in particular, under rotations, delivers a way to relate two phase-space points with identical
matrix elements for exchanged initial states. Precisely, a rotation by 180° around an axis
perpendicular to the beam axis has to be performed: For all momenta, this means a sign
change of the components in beam direction and a second spatial component, but not in the
third. Whereas the matrix elements are identical, different contributions to the hadronic
cross sections arise from the related phase-space points in proton—antiproton collisions due
to the different PDFs. The rotated process may only be taken into account if the two
initial-state partons are not identical, since no new contribution results otherwise.

In Table 4.7, the initial states leading to subprocesses contributing to WW-jet and
Z7+jet production are collected. Initial states consisting of identical partons are denoted
by ‘1’, because the respective matrix-element calculation is used for one subprocess only.
The matrix elements for initial states denoted by ‘2" are used for the original and the
rotated subprocess. Those with a ’0’ do not have to be calculated separately, because they
are already contained in the previous case.

Another way to combine processes is based on the fact that—for massless quarks
and in the applied approximation of the CKM matrix—subprocesses are described by
the same matrix elements if each first-generation (anti-)quark is replaced by its second-
generation counterpart and vice versa. For instance, the matrix elements of the subpro-
cesses ud — WTW~cs and ¢s — W W ud are the same. Only the PDFs have to be cal-
culated separately for the subprocesses related by exchange of first- and second-generation
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gld|u|s|c|b|d|a|s]|c]|b
gl1]lojolofjoflof2)2]2|2]2
dl21]2]2|2|2]2]2|2]|2]2
ul2]ofj1]2)2|2]2]2|2]|2]2
sl2lo0loj1(2)2]2]2]2|2]2
cl2lo0lojo1]2]2]2]2]2]2
bl2lojojo|o|1]2]2|2]2]2
d{o|o]oO olof1]2|2]2]2
afofo]o ojlojo|1|2]2]2
slofolojolololojof1]2]2
clolofojojololojojo|1]2
blolojojojlofofo 01011

Table 4.7: All partonic initial states contributing to pp/pp — WW/ZZ+jet+X are col-
lected in this table. The entries of the tabular are explained in the text. The selection of
the subprocesses being evaluated is based on the matrix elements provided in Section 4.4.
For the given selection, the number of crossings of momenta to be applied is minimal. This
explains the deviations from the expected diagonal structure, which is ‘1’ on the diagonal,
‘27 top right, and ‘0’ left bottom.

(anti-)quarks. Initial states of subprocesses that can be obtained by this procedure are
labelled by gray numbers. Care has to be taken for subprocesses with the initial states ds,
uc, ds, and @c: For WW-jet and ZZ+jet, the described generation exchange reproduces
the subprocesses that are already obtained by exchanging the incoming partons. There-
fore, only the exchange of initial state partons is applied here to avoid double counting of
subprocesses. For the gg initial state, the exchange of the (anti-)quarks of the two light
generations can also be used. E.g. the subprocesses gg — WHW~dd and gg —+ W+Wss
can be calculated simultaneously. Since the PDF's are identical in the two cases, only one
of them has to evaluated, multiplied with a factor 2.

By applying these two symmetries, four subprocesses can be calculated with the same
matrix elements in general. The exceptions to this are discussed in the previous passages.
Finally, the procedure is illustrated by the following chart for a sample subprocess,

uwe — WHw-ds  £5  ca - WHWsd
112 112 (4.130)

cu— WHW-sd 55 ac— WHW-ds
The label ‘1 <+ 2’ denotes the interchanged parton assignments to the incoming hadrons,

and ‘gen.” the exchange of all first-generation (anti-)quarks by their second-generation
counterparts.
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dluls|c|b|d|al|ls]|c]|b
gl1|-(o|—-|o|-[2]-]2|-]2
dl-|[-[o|-|o|-|2|-1|2] ]2
ul2f2(12(22|2|2|2]2]2
s|l—|-1o]—[2-|2|-12]1]2
cl212l0l0|1]2]2]2]2]2]2
bl-|-lol-|o]-|2|-]2]| |2
dl{ofofloflojlo|lOo|l1|O0|2]0]2
a|l |00 -|2|-]2|-|2
slojlolojojofofjojol1|2]2
cl-1-lo]-J0]-12]-]0]-]2
blolololololo|lOolO|O]O]1

Table 4.8: As in Table 4.7, but for the initial states yielding subprocesses that contribute
to pp/pp — WHZ+jet+X.

For the subprocesses contributing to WZ+jet, the two described symmetries can also
be applied in order to reduce the number of subprocesses to be calculated. In addition,
we make use of the fact that pairs of subprocesses can be combined if the unitarity of
the CKM matrix is employed, as described in Section 3.1. In the way it is used in the
calculations of this thesis, this does not influence the contributing initial states and is
hence not spelled out here. In Tables 4.8 and 4.9, all initial states delivering subprocesses
contributing to WtZ+jet and W~Z+jet production, respectively, are collected. Due to
the charged gauge-boson pair in these process classes, some initial states do not contribute
at all. These are the initial states that do not contain at least one up-type quark or one
down-type antiquark for W*Z+jet, and vice versa for W~ Z+jet. These initial states are
denoted by ', while the remaining notation is given in the previous passages.

In contrast to WW+jet and ZZ+jet, no exception has to be made for the initial states
ds, uc, ds, and uc: In WZ+jet production, the exchange of the first-generation (anti-)quarks
with their counterparts of the second generation yields new subprocesses. This is due to
the fact only one of the two incoming partons in each subprocess belongs to the fermion
chain with the W boson attached.

To illustrate this situation, the following chart shows the eight subprocesses for the
sample initial state uc that can be calculated simultaneously,

i J ue = WtZed gen, cu — WTZus it
"] uc = WHZcs cu — WtZud '

|12 } 102 (4.131)

i cu— W+Zdce gen, uc — WtZsu it
"] cu = WHZsc uc — W*Zdu '
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gld|u|s|c|b|d|u|§8]|c]|Db
gl1|lo]—|o|-]o|-|2]-|2]|-
dl21]2]2|2|2]2]2|2]|2]2
ul -0 -|2|-|2]-]2|-|2]|-
sl2lo0loj1(2)2]2]2]2|2]2
cl-(ol—Jo|—(2]-12]-]|2]|-
bl2lojojo|o|1]2]2|2]2]2
df-lo]-|o|-|o|-|2|-]2]|
alolojojo|O]|O]|O|1|2]2]2
s|—(o]l-]ol-]o|-]0|-]2]|-
clolofojojololojojo|1]2
bl-l0o|-]0|-|0o|-]0|-]0]-

Table 4.9: As in Table 4.7, but for the initial states yielding subprocesses that contribute
to pp/pp — W™ Z+jet+X.

The labels ‘1 <» 2’ and ‘gen.” are explained in the context of Eq. (4.130). The subprocesses
in curly brackets, which are marked by ‘unit.’, can be combined by making use of the
unitarity relation |Viyg|? + |Vis|?> = 1, which is valid for the applied approximation of the
CKM matrix.



Chapter 5

Evaluation of NLO QCD cross
sections via dipole subtraction

For the treatment of infrared (soft and collinear) divergences, the dipole subtraction formal-
ism for massless partons, presented in Ref. [62], is used. The conception of this formalism
manifests in a rearrangement of divergences between the different NLO contributions, re-
sulting in separately finite contributions which can then be evaluated numerically. This
rearrangement is mediated by the so-called dipole terms that provide a process-independent
description of the singularities.

The definition of hadronic observables as infrared-safe jet quantities and the general
idea how the rearrangement of the NLO contributions and the dipole terms is actually
performed are reviewed in Section 5.1.

Section 5.2 shows how the dipole terms needed to compensate divergences in the real
corrections can be calculated from the LO matrix elements and further process-independent
constituents. Explicit results are given for all the dipoles needed in subprocesses of
pp/pp — VV + jet + X.

The second part of the NLO QCD calculation, the virtual corrections, are described in
Section 5.3. They involve the subprocesses already present at LO, to which diagrams with
an exchange of a virtual gluon and diagrams with closed fermion loops contribute. These
corrections contain integrals that are divergent both in the infrared and in the ultraviolet
region. To guarantee UV finiteness, the Lagrangian of the theory is renormalized. The
resulting counterterm Feynman rules also contribute at one-loop level and compensate
all UV divergences. The infrared divergences cancel against those contained in the real
corrections where the transfer of divergent terms between the two NLO contributions is
mediated by subtraction and re-addition of dipole terms. The integration over the one-
parton phase space is performed analytically for the re-added terms, leading to singularities
in terms of poles % and E%

In the presence of initial-state QCD partons, collinear divergences related to those
incoming particles are not cancelled between real and virtual corrections. Since they do
not depend on the specific process, they can be absorbed into the structure of the incoming
hadrons resulting in so-called collinear-subtraction counterterms. They can be understood



78 5. Evaluation of NLO QCD cross sections via dipole subtraction

as a redefinition of PDFs. Their combination with the remaining divergent terms which do
not cancel between real and virtual corrections can be performed in a process-independent
way. The result of this procedure is given in Section 5.4.

5.1 Controlling divergences in NLO calculations

In general, different kinds of singularities have to be handled when evaluating NLO QCD
cross sections. Both real-emission contributions with one additional QCD parton emit-
ted and virtual corrections containing loop diagrams have to be considered. Ultraviolet
singularities arising from high-momentum regions in some loop integrals of the virtual cor-
rections are removed by renormalization, which is considered in Section 5.3. The more
problematic divergences originate from either low-momentum (soft) partons or configura-
tions with small angles between two partons (collinear), which are summarized as infrared
singularities and show up both in real and virtual corrections. However, if the considered
observable is properly defined as a jet observable, i.e. its actual value is independent of the
number of soft and collinear final-state particles, a cancellation between these singularities
is guaranteed by factorization theorems [60, 74]. Left-over collinear singularities with re-
spect to the initial-state partons are process-independent and can therefore be absorbed
into the structure functions of the incoming partons in the respective hadrons, leading to
a well-defined finite NLO QCD cross section.

In the following, the definition of jet observables is discussed in more detail. Afterwards,
a brief overview of the dipole subtraction formalism used to perform the cancellations of
infrared divergences in an appropriate form for a numerical phase-space integration is given.

5.1.1 Definition of jet observables

Jet observables must be defined in such a way that their values are independent of the
number of soft and collinear partons in the final state. The general features these jet
functions have to obey are collected, for instance, in Ref. [62]. Here, only the situation
relevant for pp/pp — VV + jet + X with only one outgoing parton in the LO process is
discussed. Since the processes are calculated at NLO QCD, only one additional soft and/or
collinear parton has to be considered at this order of perturbation theory.

Jet observables are obtained by introducing so-called jet functions FJ(ET) into the general
definition of the partonic cross section on an m-particle phase space,

do (e ) = O™ (po, o) FLL (pas pyi - ) IM (Day pii .- )2 (5.1)

where d®(™ denotes the m-particle phase space including flux factors, as defined in more

detail in Chapter 7, and Mt(fbn) is the matrix element of the considered subprocess. The jet

functions in general contain the realization of experimental cuts in terms of #-functions.
The finiteness of the LLO cross section is guaranteed by the condition

ﬂi@(pa,pb;---,pi) — 0, i p;-pe—=00rp;-p—0, (5.2)
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where the upper index gives the number of final-state particles in the LO process. The dots
stand for the remaining (m — 1) non-QCD particles. These particles, which are massive
gauge bosons in the discussed process class, do not affect the structure of QCD singularities.
The jet function in Eq. (5.2) is realized in the gauge-boson pair production processes by
the requirement of a minimal transverse momentum of the outgoing parton.

The jet function applied for the real-emission subprocesses contributing at NLO QCD,
which contain one additional QCD parton in the final state, has to guarantee the soft and
collinear safety of the jet observable. This implies the property Fj(eTH) — FJ(ET) for any
kinematically degenerate configurations, i.e. soft and collinear limits, namely

Fjj(eT+1) (paapb; s 7pi7pj - )‘q) — E]E;T) (pa:pb; s 7pz) if A—0 ) (53)
FS D (paypyi o0 0i) = Bt (aspvi - - pig) i 0y — 2pigy 03 — (L= 2)pyy , - (5.4)

where ¢ stands for an arbitrary light-like momentum and z is a real number. Eq. (5.3)
also must hold, of course, if the roles of the partons + and j are interchanged. In the
limits 2 — 0, 1 soft and collinear regions overlap. These features of the jet functions are in
general realized by application of a jet algorithm; in this thesis, the successive combination
jet algorithm described in Ref. [77] is applied.
Moreover, the jet functions with the properties of Eqgs. (5.2) — (5.4) fulfill the property

of factorizability of initial-state collinear singularities, which implies

FOD (paypyi - 01 pi) — Fo (@paspvs - -op;) i pi = (1= 2)p, (5.5)
and the same for interchanged roles of the final-state partons i and j and/or the initial-state
partons a and b, respectively.

5.1.2 Definition of NLO QCD cross sections

Using the jet-function definition given in the previous subsection, finite cross sections can
be defined at LO and at NLO QCD.

The LO cross section is defined by
1 1
O-;I;;)/pp(plap2) = Z/ dxl/ ds faL(g)(xb/ifact)be(S/p)(ﬂczaMfact)&,1;1,0(351171@2292) ., (5.6)
o 0 0

where the PDF's of the partons a and b in the respective hadrons are denoted by f. The
upper index ‘LO’ prescribes that LO fits for the respective PDF's are to be used. All QCD
partons contained in each incoming hadron are summed over. The partonic momentum
fractions with respect to the hadrons, which are named z; and w9, are integrated over.
The label 61° stands for the partonic LO cross section with the incoming partons a and
b, which is defined as follows,

a-gbo(paapb) = / d6ﬁ;(pa;pb) . (57)

m
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The summation over all configurations with m final-state partons contributing to the ob-
served process class is contained in the definition of the tree-level cross section,

o5 (pas ) = D dO™ (pa, py) Ft” (pas vy - - p1) X IMG (oo p2) 2 . (5.8)
{m}

In general, dimensional regularization is used for treating the divergences showing up
in the NLO QCD calculations. Therefore, the definition in Eq. (5.8) and the following ones
are understood as defined in D = 4 — 2¢ dimensions with a D-dimensional phase space.
The generic derivations needed for the calculation of NLO QCD cross sections via dipole
subtraction formalism are presented in great detail in Ref. [62] and shall not be repeated
here. As demonstrated in the given reference, all tree-level matrix elements can—which
is a huge advantage of this approach—be evaluated in four dimensions, whereas the D-
dimensional definition is, of course, needed for the analytical integration of the dipole terms.
Using the formulae derived in Ref. [62], the remaining situation where explicit calculations
have to be performed in D space-time dimensions is the evaluation of loop integrals, which
will be referred to in Section 5.3 when the virtual corrections are discussed. However, since
the partonic cross section in Eq. (5.8) is finite in four dimensions, the limit ¢ — 0 can be
simply performed in the LO case.

The hadronic cross section at NLO QCD accuracy is defined in an analogous way,
namely by

UprL/(;p p1,p2) Z/ dﬂﬁl/ dﬂfzf $1;Mfact) fb (p/p) ($2,Mfact)

X(U,I{;,()(e’lflpb%pz) +0ab ($1p17x2p27,ufact)) ) (5-9)

where NLO PDFs are to be used. The partonic NLO cross section receives three different
contributions,

N (Das Pb; Hact) = /

m+1

63, (Pas po) + /da b(PasPp) + /da b (Pa> b) - (5.10)

The upper index 'R’ labels the real corrections containing one further QCD parton in the
final state. Its emission leads to soft or collinear singularities with respect to initial- and
final-state partons. The soft singularities and those arising from collinear final-state parti-
cles cancel against analogous divergences appearing in the loop integrals of the virtual cor-
rections, labelled by the index 'V’, which is guaranteed by factorization theorems [60, 74].
The remaining collinear initial-state singularities are independent of the specific process
considered and can therefore be absorbed into the description of the incoming hadron
leading to collinear-subtraction counterterms, which are marked by the label ’C’. The
whole NLO cross section is finite, but the separate parts are not, due to the cancella-
tions of singularities taking place between them. These cancellations cannot simply be
performed numerically, because the different contributions do not live on the same phase
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spaces. Therefore, a D-dimensional description is used to regularize the singularities. The
respective parts of Eq. (5.10) are

dU paapb Z dq) m+1 paa )F( )(paapba"'apzapj) |M (paapba"'apiapj)P )

{m+1}
(5.11)
dé d(I) m) . . M(m) . (2 5.12
Uab paapb Z paapb Jet (paapba s 7pz) ab,1_100p(pa7pb7 s 7pz)| ) ( . )
{m}
5000 = 5 3 [ (2 () ) ot
T4 a — Z —— z Oy Z1Pas
Pas Do 27r F 1_ 6 1 :ufact 1 b\~1Pas Db
drp?\©
dzy | —— pY Ao, (p 5.13
27-‘- F 1— 6 Z/ 22 < </'Lfact> (ZQ)> Oab (p 722pb) ) ( )

which leads to divergent contributions if the four-dimensional limit is taken. The basic idea
of the dipole subtraction formalism is now to add and subtract so-called dipole terms to the
cross section, which are defined in D dimensions on the (m+ 1)-parton phase space in such
a way that, on the one hand, all infrared singularities of the real corrections are cancelled.
On the other hand, these dipoles can be integrated analytically over the one-parton phase
spaces leading to divergences showing up as poles % and E% The resulting expressions
can be re-added to the other contributions cancelling the singularities there. How the
contributions from the integrated dipole terms are distributed between virtual corrections
and collinear-subtraction counterterms can be found in the detailed description of Ref. [62].

In case of VV+jet production where only one outgoing parton is present in the LO sub-
processes, the upper limit of contributing dipoles is ten for each real-correction subprocess,
namely

o2 (paspy) = Y d® V) (p,, py)

{m+1}
{ JQT< 5i5) D + FS (s -+ Big) DY
( ais Db - - - )D] +F )(paapbza-'wNJ)DiZi
0 (Bags s - - 91) Dy + & (pas Bogs -, i) D
T (Dai> Pos - - - ) azb+ Jet)(paapbw‘/—?/'? 57) Dia
F (Pags o s 52) Do+ A2 (s Pojs i) Doy} (5.14)

where the arguments of all dipoles are

D D (paapba"'apiapj) . (515)

Concrete definitions of these dipoles will be given in Section 5.2. That section also contains
a summary of all non-vanishing dipoles contributing to the real-emission subprocesses of
the four gauge-boson-pair assignments in pp/pp — VV + jet + X.
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With the dipole terms subtracted from the real corrections and re-added in the inte-
grated form partially to the virtual corrections and to the collinear-subtraction counter-
term, the NLO cross section can again be written as a sum of three contributions, which
are separately finite now in contrast to Eq. (5.10) if the four-dimensional limit is taken,

N (Das o titact) = O A (paspo) + 60 (Day 25) + 55 (Da, D) - (5.16)

The first term labelled by ‘R — A’ contains the real corrections and the unintegrated dipole
terms. Since the D-dimensional definitions only lead to terms of O(¢) in both parts, the
- da—(ﬁ) (pa7 pb)

limit € — 0 can be performed separately,
Gay (PasPb) = / [d?fﬁ% (Pas Pb) }
m+1 e= e=0
- Z dq)(m+1) (pm pb) {Ej(eT+1) (pa: Pos - - - Dis pj) |M¢(;,T+1) (pa7 Pos - - - Dis p]) |2
m—+1

= > (D F™)(pa, py; - --api;pj)} : (5.17)

dipoles

where the shorthand in the last line stands for the expression in curly brackets of Eq. (5.14).
The distribution of the integrated dipoles between virtual corrections and collinear-sub-
traction counterterm is indicated symbolically by d64 = d6*v + dé?e.

The term labelled by ‘V 4+ A’ contains the virtual corrections and those parts of the
integrated subtraction terms with LO kinematics. Since the poles é and 5% cancel between
the two contributions, they have to be combined before the limit ¢ — 0 is performed,

a-(\z/b—i—A(paapb) :/ |:da-(\1/b(pa7pb) +/da-fbv(paapb):|‘ . (518)
m 1

e=0

Details on the calculation of the virtual corrections and the contribution d&fb\’ (Pas pp) Will
be given in Section 5.3.

The remaining contribution with the label ‘C + A’ contains the collinear-subtraction
counterterm and the remaining collinear singularities related to initial-state partons. Here,
the integration over the one-parton phase space is not fully performed analytically, but only
up to a momentum fraction of the incoming parton, which is in analogy to the definitions of
the collinear-subtraction counterterm in Eq. (5.13). Since the singularities arising in terms
of poles % are process-independent and cancel between the two contributions, the matrix
elements of the specific subprocesses factorize and can be evaluated in four dimensions.

Details on this part of the cross section, which can symbolically be written as

a'fb—l—A (pa ) pb) = /

m

[dﬁfb(pa,pb)+/d6fbc(pa,pb)H : (5.19)
1

e=0

will be given in Section 5.4.
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5.2 Real-correction contributions

The real-emission subprocesses, whose matrix elements are calculated in the previous chap-
ter, in general contain both soft and collinear singularities in phase-space regions where one
of the outgoing partons has low momentum or is collinear to another initial- or final-state
parton. If the process class pp/pp — VV + 2jets + X is considered, the respective regions
are cut away via phase-space constraints. This is justified from an experimental point
of view, because neither partons with very low momentum nor such ones with momenta
nearly parallel to other partons can be resolved in the detector. However, when considering
the process class pp/pp — VV + jet + X, exactly these phase-space regions with only one
resolvable jet are relevant, because their signature is just that of VV+jet production, and
their order in perturbation theory is that of the virtual corrections. Moreover, virtual and
real corrections are each individually infrared divergent. Apart from process-independent
divergences that can be absorbed into the PDFs of the incoming partons, the Kinoshita—
Lee—Nauenberg theorem [75, 76| states that these singularities completely cancel for suffi-
ciently inclusive quantities. As described in the previous section, a rearrangement of the
infrared singularities is performed by application of the dipole subtraction formalism [62].
As shown there, the calculation of both real-correction matrix elements and dipole terms,
which are discussed in this section, can be calculated in four dimensions.

5.2.1 Relevant dipole factorization formulae

All dipole factorization formulae used in this thesis are defined in Ref. [62]. Since only
four external QCD partons are involved in the process class pp/pp — VV + jet + X, three
different kinds of subtraction terms are relevant for the present calculation. A brief overview
of these situations, namely that of final-state singularities with initial-state spectators and
those of initial-state singularities with final- or initial-state spectators, is presented in the
following paragraphs.

Final-state singularities with initial-state spectator

a
Vij

M(a,...—ij,...)

Figure 5.1: Effective diagram for the dipole formulae treating final-state singularities with
initial-state spectators: The big circle stands for the LO matrix element—with all remain-
ing external particles that do not contribute to the singularity omitted in the illustration,
but indicated by dots in the labelling—, and the small one for the process-independent
dipole. The emitter parton is labelled by (ij) and the spectator parton by a.
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In case of final-state singularities, only initial-state spectators appear in the observed
process class pp/pp — VV + jet + X, since there are no further final-state QCD partons.
With the labelling of Figure 5.1, the momenta in the deformed subtraction-term phase
space are defined as

PiPa + PjDa — PiPj
(pi +Pj)Pa

Dy = Tijalhy » Dy =0 0§ — (1= 250Dk, Tija = ; (5.20)

while the remaining momenta remain unchanged. The redefinition of the momentum of
the spectator parton is needed in order to guarantee both momentum conservation and the
on-shellness of the emitter parton (ij). The evaluation of the LO amplitudes is performed
with these deformed momenta of emitter and spectator partons in the whole section.

The dipole terms are given by

D?j (a[pa], blpe] — Vilk1], Valkal, ips], j[p;))

_ L1 Jsym
T 9 - T Nca No'achb N, Z Z Z Z

2pz *Pj Tija
J 0a,0p,0i5,01,02 agj CaCh,Cij CZ:CZ:%

o~ c, ) ~ ng (Ta)g&ca (Tz'j)g;j%-
.M a (;Z b gz _) V1 Ioc-i VQ k2 IJ pzy T2 (50201)

X <O':] |V;1](ZZ, :L‘ij,a) |O'Z']> <a|:Pa:| |: :| -V |:k1:| VQ |:1;2:| 1!]|:IUC’;:|>
_ 1 1 *Ta " Lij xra -~
=T (M =2 Ve M| (@, = Vi, Vadj) (5.21)

where a,b,1,7 denote any possible QCD partons, N. and N, the averaging factors for
colours and spins of initial-state particles, and fy, the symmetry factor from identical
outgoing particles in the real-correction subprocess. The last line introduces an abbrevia-
tion where the particle momenta, their colour and spin indices as well as sums including all
additional factors are omitted. They are understood as automatically included if the short
notation is used. A tilde set over a particle name means that the deformed momentum
with a tilde has to be used in the evaluation of the amplitude. The definitions of the
colour charge operators T are collected in App. A.1. The splitting kernels V{, contain-
ing all final-state singularities are constructed in D = 4 — 2¢ dimensions. In the present
calculation of the subtraction terms, where the integration over the dipole phase space is
performed numerically, only their four-dimensional limit (¢ — 0) is needed, namely

2
1-— Zz + (1 - xij,a)

<0'|V‘qligj (Zi; Tija)|0) = 8masCr [ -1+ ZZ)} Opo’ (5.22)

a (3 1
(| V g, (Fis i) 1) = 1670, { —
]
! ]_ 1
-9 5 T3 —2)|, (5.23
! <1_Zi+(1_$iﬂ',a) 1= 2+ (1 = ij0) ﬂ (5:23)




5.2 Real-correction contributions 85

- 2 - - ’ - ’ ’
(W' Vaq, (Zis wija) ) = 8masTr o (Zip} — Zjp})(Zip} — Zp5 ) — ¢ |, (5.24)
iPj
where
5 = PiPa _ ?ip:z , Zj _ PjPa _ ?jpjz , 5+ 2]' —1. (525)
PiPa + PjPa  PijPa DPiPa + PjPa  DPijPa

In Eq. (5.22), 0 and o' label the helicity of the emitter (anti-)quark (ij) that splits into the
(anti-)quark 7 and the gluon j in the LO amplitude and its complex conjugate, respectively.
In Egs. (5.23) and (5.24), p and 4 label the polarization vector of the emitter gluon (ij),
i.e. the LO amplitude is understood as

M()) = M, ()) (5.26)

where £*#(\) is the polarization vector of the emitter gluon. In the calculation of the dipoles
from the LO amplitudes, the product *#(\)e* (\'), which is split off the amplitude and its
complex conjugate, is replaced by the expressions of Egs. (5.23) and (5.24), respectively.
However, the vector-valued amplitudes M, do not have to be evaluated explicitly, but the
resulting dipole can be expressed from the known helicity amplitudes via application of
the polarization sum

krEH p2 +_nﬂkﬂ’+—nwku
(kn)? kn ’

S etk N (k,A) = —g" -

A=+~

(5.27)

where n is an arbitrary vector with kn # 0.
Using this identity, the term proportional to —g#* can be written as

M (=g VM = MM,y < > e (Bigs N (i, A) +

S ! st 1 s
PisPij WPy T Dy
A=+,—

(Pign)? pin
= D Mt (i, N My (5, )
A=t

= 3 MO, (5.2)

A=+,—

where p;; is the momentum and A the polarization of the emitter gluon, while the remaining
arguments of the amplitude are suppressed. In the second equation, gauge invariance is
used to eliminate all terms but those proportional to the polarisation vectors by the Ward
identity

MPpt =0 (5.29)

The terms in Egs. (5.23) and (5.24) that are not proportional to g"* can also be expressed in
terms of LO amplitudes: Inserting the four-dimensional metric tensor into the expressions
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that are not proportional to ¢”* and replacing it by means of the polarization sum from
Eq. (5.27) gives

M (Zipy — Zp ) Gpl — 2l )My
2 T T S T

=M, < > e (Biy N (Big \) + = — ——= ) (Zipiv — Zpj,)

Nl (ijn)? Pijn
~N’ ~ u/ ~/ v ”‘MI
XM, E e (Pij, N)e” (Pig, N) + =—5 — = LN (Zipi — 204,
u <X ~ (Dij, A)e” (Dijs A') (Biy1)? B (Zipi — ZiDj,)
= E M (Dig, M (Zipiy, — Z5p5,)e™ (Dijs A)

A=+,—

X Z Mue™ (ig, N) (Zipiy = 205 ,)e" (Bigs N)

— Z |M WPl (Bigs A) - (Zapi — Zipj)|?

A=+,—
+2Re {M*(+) M (=) [e* (Bij, +) - (Zipi — Zp;)] [eBij» —) - Gapi — Zjp3)] } - (5-30)
Besides the Ward identity (5.29), the orthogonality relation
(Zipiy — 2jpj,)P5; = 0, (5.31)

which follows from the construction of p;;, is used in the second line of Eq. (5.30). Thus,
only helicity amplitudes are needed, but their phase conventions must be known.

Initial-state singularities with final-state spectator

M(ai,... = k,...)

Figure 5.2: Effective diagram for the dipole formulae treating initial-state singularities
with final-state spectators: The big circle stands for the LO matrix element, the small one
for the process-independent dipole. The label (ai) stands for the emitter and & for the
spectator parton. The remaining external particles are not explicitly shown, but indicated
by dots in the labelling.

In case of initial-state singularities, both final-state and initial-state spectators appear
in the process class pp/pp — VV + jet + X . In this paragraph the formulae for the case
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of a final-state spectator are discussed. With the labelling of Figure 5.2 the momenta in
the deformed subtraction-term phase space are defined as

Poi = Tinaly s Py =P 07 — (1 = Zika)Py s Tika = pkpa(;k ﬁ];)papzpk
with the remaining momenta unchanged. As in the situation discussed before, both mo-
mentum conservation and the on-shell relation for emitter and spectator are guaranteed
by these momentum definitions. While the momentum of the emitter parton p~ is parallel
to p,, the momentum of the spectator parton p; is not parallel to p, in general. All LO
amplitudes in this section are evaluated with these deformed momenta.

The dipole terms are given by

Dgi (a[pa]a b[pb] - vl[kl]a VZ[kQ]J i[pz']a k[pk])

B 1 1 Jsym
2P0 Di Tika 8 NCaiNU'a}i,NCbNUb Z Z Z Z

TaiTb,0k,01,02 0'(’”- CaiyChCk C[”-,CE,,CGC

~|c; c ~|¢ (Tai)g’ ¢ (T )(ci’c
M*(ai{ﬁfi} b{pi} — V1|:k1:|V2|:k2:|k|:ﬁZ:|> ) B Sty

i ap o1 T2 Ok

: (5.32)

. ~ | Cai c ~le
(0! [V (1is; Zig.0) | 0ai) M <ai{ﬁm} b{pi] — le V, H kH)

Oai Tp g1 02 O
_ 1 1 [ M*T’“ -T
2Pa - Di Tik,a T2,
where a, b, k, i denote any possible QCD partons. The same abbreviation as in the pre-
vious paragraph is used in the amplitudes on the right-hand side, and the colour charge
operators T are given in Section A.1. The splitting kernels V& describing the initial-state
singularities are formulated in D = 4 — 2¢ dimensions. Again, the four-dimensional limit

of the formulae can be taken in the present calculation, which results in

ai i M] (c?z bV, VQ,%) , (5.33)

<O'I|V2agi (.'L'Z'k7a; UZ)|O'> == 87TOZSCF {m - (1 + .'L'Z']g7a):| 60’0” s (534)
<O—I|V]%a(_1i (xik,a)|o—> — 87raSTR [1 - 2$ik,a(1 - xik,a)] 500’ 3 (535)

(W V3% (2403 us) ) = 8masCp {—g““’xik,a

1 — Do 2ui(1 — uy) (pf b v “I

Tik.a DiDk u; 1 —wuy up 1=y

, / 1
G IVES (i) = 1670, | <0 (T = 1 a1 = )
ik,a i

1 — 20 uwi(1—w) (P k v v

Tika DiDk u; 1 —wy u; 1 —wy

where
PiPa

wy = — e (5.38)
PiPa + DikPa
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In Egs. (5.34) and (5.35), 0 and ¢’ label the helicity of the emitter (anti-)quark (a7) in the
LO amplitude and its complex conjugate, respectively. In Eqgs. (5.36) and (5.37), o and
i’ label the polarization vector of the emitter gluon (ai). Since this gluon is an incoming
particle in the LO amplitude, the amplitude is defined by contraction of the vector-valued
amplitude with the polarization vector of the incoming gluon, #(\), namely

M()) = M, ()) . (5.39)

As in the previous section, the vector-valued amplitudes are understood as LO amplitudes
with the polarization vector of the emitter gluon extracted. The vector-valued amplitudes
can again be eliminated by application of the polarization sum (5.27), the Ward identity
(5.29), and an orthogonality relation similar to the one in Eq. (5.31) that reads

<Zﬂ _ Dry ) =0 (5.40)

U; 1—u
Explicitly, the terms proportional to ¢** can be written as

M (=g" WMy =) IMVP, (5.41)

A=+,—

in the dipole term, the remaining parts that are not proportional to ¢ give

N Y
Pl i , 42
M“(ui 1_Uz><uz 1—Ui MM (5 )
2
= )\ 2 Ni‘ )\ ° &_ pk
5 MO e (2- 2

+2Re {M*(+)M(—) {5(ﬁija+) : (% 1 fku)] [5*(@7’ ) <5_ZZ 1 piku)] } '

Initial-state singularities with initial-state spectator

Mai,b — 7))

Figure 5.3: Effective diagram for the dipole formulae treating initial-state singularities with
initial-state spectators: The big circle stands for the LO matrix element, the small one for
the process-independent dipole. The emitter parton is labelled by (ai) and the spectator
parton by b. The remaining outgoing particles are indicated by dots in the labelling.
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The formulae for the case of initial-state singularities with an initial-state spectator,
which is the remaining one needed for the real corrections of the process class pp/pp —
VV +jet + X, are given in this paragraph. With the labelling of Figure 5.3, the momentum
of the emitter parton in the deformed phase space is defined by

P = Tyt ) Teas = PaPb 7+ PiPa = Pilb (5.43)
PaPb

Differing from the two situations discussed before, the momentum of the incoming spectator

parton is not deformed. Instead, the momenta of all outgoing particles—mnot only those

of the QCD partons—are deformed in a way to guarantee both momentum conservation

and on-shellness of all particles in the subtraction-term phase space. This deformation is

described by a proper Lorentz transformation,

2(K + K)"(K +K), 2K'K,

K= N (K KK, AY(KCK) = gty —

(K + K)? K2
K" =pb+p) —pi' | f(“:ﬁgi+pg. (5.44)
It is applied to all outgoing particles but the QCD parton 7 involved in the initial-state

singularity.
The dipole terms are given by

DU (a[py], b[ps] — Vilki], Va[ka], i[ps], j[ps])

11 foym
ST v D DI DR DIED D

caitVo o
ai” " Oai Y 04i,04,0%,01,02 0, CaisCh,Ch i) Cl

~[c, c < (Tai)g’ c (T )z’c
M*<al|:15¢’u:| b|:Pll::| — Vi |:l~c1:| VQ|:I~€2:| k|:15::|> aiCei 2" VG0 602%

Tai Tp o1 o9 ok ng
(ot Voo M (a5 o] Vil | Vel ]
Oai ap o1 o9 o

_ 1 1 [ M*Tb -T

2Pa - Di Tijab T2,
where a, b, i, j stand for any possible QCD partons. The same abbreviations as in the previ-
ous paragraph are applied on the right-hand side of the equation, and all deformed momenta
are marked by a tilde again. The colour charge operators T are given in Section A.1. The
splitting functions V®? describing the initial-state singularities are presented after taking
the four-dimensional limit of the D = 4 — 2¢ expressions, namely

V‘”’”’M} (Ez bV, \72,}) , (5.45)

2
<UI|angi’b(xi,ab)|O—> = 87TOASCF |:17 — (1 + xi,ab):| 6001 , (546)
— Zi,ab
(o' |VEBUP (2 ) |o) = 8maTR [1 — 22505 (1 — i 1)) S0 (5.47)

(VST (1, ) ) = 8, {—g

1 _ x. 2 . . 7 . !
4 i,ab Pa * Po <pé¢ . DPiPa pg) <pé¢ . DPiPa pg >:| , (548)

Tijab  Pi - PaPi - Pb PovPa PovPa
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. / Ti.a
<M’|Vg“g“b($i,ab)|ﬂ> = 167TO(SCA |:—g“# (1_71‘[)[) + wi,ab(l — xi,ab))

1-— Tiab  Pa Do PiPa ' DiPa
+ Pl — Py ) — Py )| - (5.49)

Liab  Pi " PaPi " Pb PoPa PoPa

In Egs. (5.46) and (5.47), 0 and o' label the helicity of the emitter (anti-)quark (ai) in the
LO amplitude and its complex conjugate, respectively. In Eqs. (5.48) and (5.49), p and
p' label the polarization vector of the emitter gluon (ai). As in the previous paragraphs,
the polarization vectors of emitter gluons are understood to be extracted from the LO
amplitudes, and the resulting product of polarization vectors is replaced by the expressions
in the respective splitting kernels. The remaining vector-valued amplitudes are defined in
Eq. (5.39) for incoming gluon emitters. They can, however, be expressed in terms of the
known LO amplitudes via application of the polarization sum (5.27), the Ward identity
(5.29), and an orthogonality relation analogous to those in the previous cases,

PiPa ~
(pi# - —pbu> P =0. (5.50)
p
Explicitly, the terms proportional to g““' yield

M (=g" )My = Y IMOVP (5.51)

A=+,—

in the dipole term. The expressions that are not proportional to g read

PiPa ! PiPa !
M <p£¢ _ pu> <pf _ o >M , 0.52
8 Poba ppa )" (5:52)
2
~ PiPa
= > MW e A) - (Pz'— pb)‘
A=t,— PvPa

PoPa PoPa

+2Re {M*(+)M(—) {5(1517'7 +) - (Pi — pb)} [5*@”’ ) (pi o pbﬂ } '

5.2.2 Overview of the contributing subtraction counterterms

The diagrams shown in this paragraph give a representative set of real-emission diagrams in
order to illustrate the different infrared singularities appearing in the various subprocesses.
The kinematical limits leading to these divergences in the particular phase-space regions
are the soft limit, i.e. the momentum of one parton approaches zero in the sense of p; = Aq,
A — 0, where ¢ is an arbitrary light-like momentum and p; the momentum of the soft
parton, and the collinear limit, i.e. two partons become collinear, which is approached
when p; - p; — 0 with the momenta p; and p; of the two collinear partons.

The filled circles indicate the phase-space regions leading to the divergences, which are
to be cancelled against subtraction terms, the so-called dipoles. In this sense, the given
diagrams can also be understood as illustrations of the subtraction terms themselves, where



5.2 Real-correction contributions 91

the part of the diagram lying inside the filled circle stands for the universal splitting kernel
and the part lying outside represents one diagram of the LO subprocess, whose matrix
elements deliver the process-dependent component of the subtraction terms.

In the following, the dipoles for all real-emission subprocesses of the generic process
class pp/pp — VV + jet + X are given, where specific gauge-boson assignments are only
used if the singularity structures differ between the different process classes. This is not
the case for subprocesses with external gluons.

Real-emission subprocesses with external gluons

q192 — V1Vagg The matrix elements for the real-emission subprocesses with two outgo-
ing gluons are given in Eqgs. (4.76), (4.80), and (4.84) for all gauge-boson and (anti-)quark
assignments. The singularity structure, which is illustrated in Figure 5.4, requires ten
dipole terms due to the fact that each of the three diagrams accounts for two local sub-
traction terms from the two possible spectator partons. The central and the right one
have to be taken into account for the two possible momentum assignments of the outgoing
gluons. With the amplitude abbreviations introduced in Eq. (5.21), the dipole terms read

Do L1 [M*Tq“ Lo v M} ( Gy — ViV ) (5.53a)
@ = % d192 1Vag | , -908
J 2p1p] Tij.a Tél] 8ig
pr—_ b 1 [M*Tq” Lo v M} (q@ = v1v2g) (5.53b)
K 2pipj Lijb Tg;ij B8 ,
Do L1 e ts Loy, g'M} ( dG — ViV ) (5.53¢)
;o= = oo q192 1Vaeg ), -09C
! 2DaPi Tija L TZ &
ai,b 1 I * TCIb ) T‘lai qagi>q ~ 7 N7 ~
D = M e v M| (3 — ViVag) (5.53d)
PaPi Tiab b Jai
i 1 17, T, T, 4 - ~
Dij = —2 M* fI‘Q = ngg]M] ((h(IQ — V1V2g> , (5536)
PaPj Tija b Gaj
Vi g Vi Vi
a1 a1 q1
q, g q/ q/
/ 7 & ] &
) q g ~ q ~ q
q2 q2 q2
Vs V, g Vs

Figure 5.4: Representative diagrams illustrating the different infrared singularities appear-
ing in the subprocesses q,q, — V1 Vagg. The left diagram shows a final-state singularity,
whereas the central diagram and the right one represent initial-state singularities.
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Vi
a1 )
q
Vo
92
g g
92
Vi g Vi Vi
q1 q1 q1
q q q
g Vo Vo
q d2 d2
g g g
q2 V, q2 q2

Figure 5.5: Representative diagrams illustrating the different infrared singularities appear-
ing in the subprocesses q;g — V1Vaq,g. The upper diagram shows a final-state singularity,
whereas the ones in the lower row represent initial-state singularities.

j,b 1 1 T(_lb Tq 7 X
DY’ = — [M* L Vet qu} (511(_12 — V1V2§) ; (5.53f)
2papj Tj,ab Tqa]
Dl = [M* g Ta quglM] (Ch(:lz _ v1v2g) : (5.53g)
2pbpz Lijb
Dbi’a — [M* Jda sz Vnguani| <(I1(212 — v1v2g) , (553}1)
2pbpz Lijab
DY = [M* s Ta, Vng]M] (Ch(:h — V1V2g) ; (5.531)
2pbpg Tijp
bj.a 1 1 * Qa TQb] ~ Sy o~ .
phie — _ [M - Vi %M] <q1q2 = V1V2g) , (5.53j)
2pDj T ab T3
where the omitted arguments of the dipoles read
D = DI (a1 [pa] G2 [pe] = Vi[ki] Vo ko] g[pi] g[ps]) - (5.54)

a418 — V1Vaqeg The real-emission matrix elements of the subprocesses with a quark—
gluon initial state can be taken from Egs. (4.77), (4.81), and (4.85) for all gauge-boson
and quark assignments. The singularity structure shown in Figure 5.5 causes eight non-
vanishing local subtraction terms (two for each singularity from the two possible spectator
partons in each case), namely

D¢ = — 1 1 *Tqa 'QT%‘
2pipj Tija T,

Vg?ng} (fhg - V1V2(~12) : (5.55a)
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q2
& g
q2
! V1
q
qi
V,
g d2 d2
g g
q2 2
! VI ! VI
q q
qi qi
Vo g Vo

g2 V1
q/
/ g
q
Vs

Figure 5.6: Representative diagrams illustrating the different infrared singularities appear-
ing in the subprocesses gq, — V1Vagq,. The upper diagram shows a final-state singularity,
whereas the ones in the lower row represent initial-state singularities.
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2pap; Tija T2
11 T T o
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2pbp7, :L‘z

i

* da ) CIln ngq“an:| (qlaz — \’71\72@) )

2pbpz Ti,ab [

E

Ta T, nggJM] (%g — V1V2<~12) ;
2pbp] Tijb

i

[ * Qa gb] V&v8i ,an:| <q1g — \71\72612) ’
2pbpj Tj,ab Ta,

where the omitted arguments of the dipoles are

D

gq; — V1Vagae

= D (q1[pal glps] = Vilk1] Valks] a2 [pi] glps]) -

(5.55b)
(5.55¢)
(5.55d)
(5.55¢)
(5.55f)

(5.55g)

(5.55h)

(5.56)

The matrix elements of the real-emission subprocesses with an initial

state consisting of gluon—antiquark are given in Eqs. (4.78), (4.82), and (4.86) for all gauge-

boson and antiquark assignments.

The singularity structure shown in Figure 5.6 causes
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eight non-vanishing local subtraction terms as in the previous paragraph. The resulting
dipoles read

a

b
ai

D;
Dai,b
aj

Di
Daj,b
bi

D;

Dbi,a

1 1 [ Tg q q
B M* a ij 8a i| ( qr — A% q ) )
2DiD; Tija T?l” Veia; 1Vaq2
1 1 [ Tqb a
B M* uVCIb :|<q—)vvq);
pips Tins T?l” gid; g41 1V2Q2
1 1, Te T q
B MY _ Bai Vgagl } ( — V1V2(_12) 5
2DaPi Tija L T,
1 17, T, T, g V1 Vs
B M* Qdp - Zai Vgagi:QbM] (g(_h — V1V2(_12> )
2papz xi,ab - Tgaz
1 17 Tg' Tq a g
B M* i 2 aj VgaCI]M] (q1q2 — V1V2g> )
2papj Tija b T,
1 1 r T— ‘ T . ~. A YRV
B M* db ; Qaj Vgaqjaqui| (qqu — VIVQQ) )
2pap] xj,ab - TCIa]
1 1 [ To, Ta e q q
TR ).
2pbpi Ziih T%M q; 1 1V242
1 1 T, - T. _ _ = VAR
_ |:M>k Za 5 9bi qugizgaM:| (g(h — V1VQ(~12) )
2DuDi Tiab T3,

where the omitted arguments of the dipoles read

D =D (glpal @i [ps]) = Vilki] Valks] glpi] G2[p;]) -

gg — V1Vaqi1Q2

(5.57a)
(5.57D)
(5.57¢)
(5.57d)
(5.57¢)
(5.57f)
(5.57g)

(5.57h)

(5.58)

The matrix elements of the real-emission subprocesses with the gluon—

gluon initial state can be found in Eqs. (4.79), (4.83), and (4.87) for all gauge-boson and
(anti-)quark assignments. The initial-state singularities, which are the only ones to appear,
are illustrated in Figure 5.7. They require the following eight local subtraction terms,

ai

Dj
Dai,b
DY

Daj,b

DY = —

B 1 1 —,/\/l* Tq]. . Tqai V/&edi M] <(:hg — VIVQaQ)
2Dapi Tija b Téai v
1 1, ,T,-T V1 Vad
_2 M* gb - Qai Vgaq”ng] (qlg — V1V2(I2> )
PaPi Tiab - Tq'“
1 17 *T i a q
 2pap; i M qu VR M ]( g—>V1V2(h> 7
ar’y <~iy,a - aj
1 1 r T * T . = 7\
_2 M* g:,I‘Z aj Vgan,ngi| (q2g — V1VQ(~11) )
pap] J/‘j,ab - Jaj
1 1 Tq] ) T(_lb' j G q
' VM| (gd - Vivad) |
2pepi Tijp T?Jun v o o

(5.59)
(5.59b)
(5.59¢)
(5.59d)

(5.59¢)
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Figure 5.7: Representative diagrams illustrating the infrared singularities appearing in the
subprocesses gg — V;1Vaq,q,. All diagrams represent initial-state singularities.

bi 1 1 *Tg * Tq . =~ (7 N7 =
phia — _ [M i ngq“gaM} (gq1 SN V1V2qg) , (5.59f)
2DuDi Tiab Tqbi
: 1 1 T, T, _
'D?] _ [ et g db; Vg?q]' M} (gfh - Vl\/z(h) , (5.59g)
2puDj Tijp T3,
y 1 Te Tay 0 <
Db = — [M* — ngqi’g“./\/l] <g(~12 — V1V2511) ; (5.59h)
2DsP; T jab Ta,

where again the omitted arguments of the dipoles are

D =D (glpal glps] — Vilki] Valka] ai[pi] d2(p;]) - (5.60)

Real-emission subprocesses without external gluons: WW-+jet and ZZ+jet

Considering the infrared singularities in the real-emission subprocesses without external
gluons, all divergent configurations contain g — qq splittings leading to final-state singu-
larities or crossed variants of these splittings that cause initial-state singularities. The two
process classes with a neutral gauge-boson pair—WW or ZZ—and those with a charged
gauge-boson pair—WTZ and W~Z-—have to be treated separately.

As far as the external partons are concerned, exactly the same subprocesses of WW+jet
and ZZ+jet production contain infrared singularities. Therefore, these two process classes
can be discussed simultaneously. The subprocesses of pp/pp = WW + jet + X with con-
tributions solely from diagrams with the two gauge bosons coupling to different fermion
chains, do not show divergences in any region of phase space, since no g — qq splittings
arise.
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Vi
q1
q g2
B q 2
q1
Vy

Figure 5.8: Representative diagram illustrating the final-state infrared singularity appear-
ing in the subprocesses q,q;, — WW /ZZq,q,.

The subprocesses with quark—antiquark initial and final states show two kinds of diver-
gences: For subprocesses of the type q1G; — V1VaqaQs, a final-state singularity appears
due to a g — qq splitting. In the q;G, — V1V2q;qs situation, two initial-state singulari-
ties arise due to crossed variants of this splitting, namely q — qg* and q — qg*, where g*
signals the off-shellness of the gluon in these splittings. If all (anti-)quarks belong to the
same flavour both types of singularities appear in the same subprocess.

4191 — V1V2q2G2 The matrix elements for this kind of subprocesses with q; # o
can be found in Eqs. (4.92), (4.96), and (4.97) for the respective parton assignments to
WW-jet production and in Eq. (4.111) in case of ZZ+jet production. An illustration of
the arising final-state singularity is given in Figure 5.8, the two resulting local subtraction
terms are

Dii 1 1 [M* Tqa . Tgij Ve M] <~ G s V.V ~) (5 61 )
- . 6la

“ 2piPj Tij,a Téij 49y R L1V28)

Dy =~ L [T v ] () - Vi Vi) (5.61b)
’ 2piP;j Tijb T, o ’

where the omitted arguments of the dipoles read

D =D (q1[pa) Q1 [po] = Vilki] Valka] g2 [pi] @2 [pj]) - (5.62)

q192 — V1V2qi1G2 The matrix elements for this kind of subprocesses with q; # gy are
given in Eqs. (4.93), (4.98), and (4.99) for the respective parton assignments to WW+jet
production and in Eq. (4.112) for ZZ+jet production. The initial-state singularities of this
subprocess class are illustrated in Figure 5.9, and the local subtraction terms are

DY — _ 1 1 [M* TQj 'Tgai Vdadi M] (g(_l VLV 61 ) (5 63a)
J 2PaPi Tija Téai qj 2 1VoQa ) , '
- 11 T, T, B L
Db — [M* b ai VQanaQbM] <gq2 N V1V2q2> 7 (5‘63b)
2DaPi Tiab Tém_
bj 1 1 T, Ty
DY — _ [M* Ly M} (qlg N vlvggh) , (5.63¢)
2pupj Tijb T2, i
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Figure 5.9: Representative diagram illustrating the initial-state infrared singularities ap-
pearing in the subprocesses q,q, — WW/ZZq,q,.

L1 Lo T v O -
M 5 quqj’an] ((hg — V1V2q1> , (563(1)

phia — _
2pyP;j T jab TS,

where the omitted arguments of the dipoles are

D = D= (q1[pa) G2 [po] = Vilki] Valke] ai[pi] @2 [ps]) - (5.64)

qd — V1V2qq The matrix elements for the real-emission subprocesses with all external
(anti-)quarks belonging to the same flavour can be taken from Eq. (4.89) for WW+jet
production and from Eq. (4.108) for ZZ+jet production. In this case, both initial- and final-
state singularities arise, since the subprocesses contain diagrams of the two types illustrated
in Figures 5.8 and 5.9 with q; = qy = q, respectively. Therefore, the local subtraction terms
are those of Eqs. (5.61) and (5.63), again with q; = q2 = ¢, and the omitted arguments of
the dipoles now are

D =D (qlpa] dlps) = Vilki] Valka] alpi] alp;]) - (5.65)

In case of four external quarks or antiquarks, only initial-state singularities arise, since
the configuration of a gluon splitting into two outgoing partons does not appear in these
subprocesses. The two subprocess classes are charge conjugated to each other. Neverthe-
less, the needed dipoles are presented for both classes.

d192 — V1V2q2q; The matrix elements for this kind of subprocesses with q; # gy are
given in Egs. (4.94) and (4.100) for WW+jet production and in Eq. (4.113) in case of
ZZ+jet production. The arising initial-state singularities are illustrated in Figure 5.10,
and the corresponding four local subtraction terms read

Do _ 1 1 [M*Tqi Ty, Ve M] (gq — V1 Vag ) (5.66a)
‘ TN Téaj a 2 1V2Qz ) , )
. 11 Ty, - Ty, Sy
Daj’b _ [M* ) . Baj VQan;QbM:| <gq2 — vlvzqz) , (566b)
2DaP;j Tjab T..,
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qi q2 Vi
q1 q
q2 q
Vi Vs
q ai
g2 g2
Vo q2 a1

Figure 5.10: Representative diagram illustrating the initial-state infrared singularities ap-
pearing in the subprocesses q,q, — WW/ZZq,q,.

prio 1 [M*qu TRV M| (g > Vivoa) (5.66¢)
J 2pypi Tijb Té,n & ,
bi,a 1 1 *Tqa'Tgbi q»9:,9 ~ 7 \7 ~
D = — [M A GM} (qlg = vlvqu) , (5.66d)
PoPi Tiab Ehi

where the omitted arguments of the dipoles read

D =D (q1 [pal a2 [pe] = Vilki] Valka] qo[pi] ai[p;]) - (5.67)

qq — V1V2qq The real-emission matrix elements of the subprocesses with four identi-
cally flavoured quarks can be taken from Eq. (4.90) in case of WW+jet-production and
from Eq. (4.109) for ZZ+jet production. The appearing singularities are those illustrated
in Figure 5.10 with q; = q2 = q. Each of the singularities has to be taken into account with
the two possible momentum assignments of the identical outgoing quarks. This leads to
four more local subtraction terms in addition to those given in Eq. (5.66) with ¢ = q; = qq,
namely

. 1
'D(.” — |: >k gaz quqi :| <~ — V v ~) , 568
J 2papz xz] a M @ M Bl e ( a)
paish _ [M* aw " Lgas anq“qu] (gq — \71\72q) 7 (5.68b)
2papz Lj.ab
D — [ e Yo T Vi M} <qg o v1v2q) , (5.68¢)
2pbpg xm b
Dbj’a _ M* da gb] AVALRY QaM:| (qg N \71\7261) , (568d)
2pbp] Lj,ab gzu

where the omitted arguments of all eight dipoles are

D =D (qlpa] alps) = Vilki] Valka] alpi] alp;]) - (5.69)
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_ Q1 {2 _ Vi
41 Q1
J2 q
Vi Vs
q qi
2 2 s B
Vs 92 q1

Figure 5.11: Representative diagram illustrating the initial-state infrared singularities ap-
pearing in the subprocesses q,q, — WW/ZZq,q,.

d192 — V1V2q2q:  The matrix elements for this kind of subprocesses with q; # gy are
given in Egs. (4.95) and (4.101) for WW+jet production and in Eq. (4.114) for ZZ+jet
production. The arising initial-state singularities are illustrated in Figure 5.11, and the
corresponding local subtraction terms read

, 1 1 T -T ~
Dy = — [M* LV M] (gfh — V1V2(12> ; (5.70a)
2DaPj Tija Téaj :
b L1 To Tow vraua, - & X =
DWI — _ [M* 5 2\ 9ad; aQbMi| (g(—h - V1V2(_12) , (570b)
2DaPj Tj,ab T,
. 1 1 T. -T, = __ -
Dl?z — _ |: * 9 8bi Vgl?ql ] <_ & V,V.é& ) 5.70
J 2Dupi Tijb M Tébi aj Mq@1g 1vVaQe |, ( c)
bi 1 1 Tq-Tg, o o L
phia — _ [M* a bi VQbQuQaM:| (qlg — V1VQq2) , (570d)
2puPi Tiab T2,

where the omitted arguments of the dipoles read
D1 = D (a1 [pal Q2[ps] — Vi[ki] Vo ko] Q2 [pi] @i [ps]) - (5.71)

qq — V1V2qq The matrix elements of the subprocesses with four identically flavoured
antiquarks are given in Eq. (4.91) in case of WW-jet-production and in Eq. (4.110) for
Z7+jet production. The arising initial-state singularities are those of Figure 5.11 with
q1 = 2 = q, again with two different momentum assignments due to the identical outgoing
antiquarks. In addition to the dipoles of Eq. (5.70), four further local subtraction terms
contribute, namely

Do _ 1 1 [M* TQj 'Tgai AVAILE M] (g(—l S V.V (:1> (5 72&)
! 2DaPi Tija Téai o S '
b I 1 s Yo Toui vrautn S
Dot = M = syt M| (g Vi Vo) | (5.72b)
2paDi Tiab T2
. 1 1 T, -T, __ -
DY — _ M= B VY M| (gg - ViVad) (5.72¢)
2puDj Tijp T%,
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1 1 T, -T, o~
M= B v | (gg = ViVad ) (5.72d)

Dbjra e
2pyP;j T jab T3,

where the omitted arguments of all eight dipoles are
DI =D (d[pa] alpe] = Vi[ki] Valko] alpil alp]) - (5.73)

Real-emission subprocesses without external gluons: WZ+jet

Since each subprocess of pp/pp — WTZ + jet + X has its charge-conjugate counterpart in
pp/pp — W~Z + jet + X, both process classes show the same singularity structure. Again,
all singularities in the real-emission subprocesses without external gluons arise from g — qq
splittings or crossed versions. Consequently, fermion chains with the W boson attached do
not cause divergences, which leads to at most four dipole terms per subprocess.

In the subprocesses with quark—antiquark initial and final states, both final- and initial-
state singularities arise depending on the respective parton assignments. The discussion
starts with the subprocesses showing only one singular phase-space region, which all contain
(anti-)quarks of three different flavours or an identically flavoured quark—antiquark pair in
the initial state.

4192 — W Z qsqs The matrix elements of this kind of subprocesses with q3 # q; and
a3 # q2 are given in Eq. (4.123). The initial-state singularity is illustrated in Figure 5.12,
and the corresponding local subtraction terms are

De 1 1 [ *Tqa 'Tgij Ve M] <~ W7 ~) (5 3 )
.. = — « | a
Y 2plp] xijya Tél] q:4q; QIQQ g ,
1 1 Ty Ty . ~
Pi=- M Vi, M (e > W2g) 5.74b
Y 2pip; Tijp Téj q;q; M| d1q2 g, ( )

where the omitted arguments of the dipoles are

D = D= (q1[pa) G2 [po] = W k1] Z[k2] a3 [pi] @3 [p;]) - (5.75)
%
q1
q2 q3
2 ds
d2
7

Figure 5.12: Representative diagram illustrating the final-state infrared singularity appear-
ing in the subprocesses q,q, = WZq;qs.
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W
q1
3
Z
g3
d2
d2 qs

Figure 5.13: Representative diagram illustrating the initial-state infrared singularity ap-
pearing in the subprocesses q;q, — WZq;Q,.

4192 — W Zqsqz The matrix elements of this kind of subprocesses with q3 # q; and
a3 # (2 can be obtained from Eqs. (4.116) and (4.125) for q; = q2 and q; # qy, respectively.
The arising initial-state singularity is illustrated in Figure 5.13, and the two corresponding
local subtraction terms are

bj 1 1 TQ"Tgb- b5
DY — M= v ] (g > W2, | (5.76a)
2DuDj Tijp T3, i
j 1 1 Tq 'Tgb- ang =~
Db],a - _ [M* a - J V%Qjaan] (qlg N WZ(ng) , (576b)
2pyP;j T jab TS,

where the omitted arguments of the dipoles are
DI = D (a1 [pa] Q2 [ps] = Wki] Z[ k] a3 [pi] G2 [p;]) - (5.77)

q192 = W Zq;Gs The matrix elements of these subprocesses with q3 # q; and q3 # qq
are given in Eqgs. (4.120) and (4.126) for q; = q2 and q; # q, respectively. Analogously
to the previous case, an initial-state singularity arises, which is illustrated in Figure 5.14,
and the two corresponding local subtraction terms are

poi 1 1 *qu . Tgai Vi M} <g(l2 N Wza3) (5.78a)
J 2DaPi Tija T3, v |
q1 s
qd1
g3
W%
q2
d2
Y/

Figure 5.14: Representative diagram illustrating the initial-state infrared singularity ap-
pearing in the subprocesses q,q, = WZq; ;.
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1 1 *TQb'Tgai a6 ~ P~
- M? =8Bty M} (gqg = qu3) . (5.78b)
2paDi Tiab T .

Dai,b —

The omitted arguments of the dipoles read

D> = D= (q1 [pa) G2 [po] = W k1] Z[k2] qu [pi] @3 [p;]) - (5.79)

Q192 = W Zq2q2 The matrix elements of this kind of subprocesses are provided in
Eq. (4.119). Since this subprocess class contains diagrams like those shown in Figures 5.12
and 5.13 with q3 = qs, both final- and initial-state singularities arise. The four correspond-
ing local subtraction terms are given in Eqs. (5.74) and (5.76), again with q3 = gz, where
the arguments of the dipoles are

D = D= (q1[pa) G2 [po] = W k1] Z[k2] g2 [pi] @2 [p;]) - (5.80)

Q192 = WZq:q: The matrix elements of these real-emission subprocesses are taken
from Eq. (4.115). Analogously to the previously discussed case, diagrams leading to two
different types of singularities are contained in this subprocess class, namely those illus-
trated in Figures 5.12 and 5.14 with q3 = q;. The resulting final- and initial-state singu-
larities require four local subtraction terms, which are known from Eqs. (5.74) and (5.78),
again with q3 = q; and the arguments of the dipoles as follows,

D = D (q1[pa G2 [ps]) = W k1] Z[k2] a1 [pi] ai [ps]) - (5.81)

In the subprocesses with only external quarks or antiquarks, only initial-state singu-
larities can show up, as in the case of WW+jet and ZZ+jet production. The external
parton content is three up-type and one down-type (anti-)quark (or vice versa) in each
subprocess. The W boson always couples to the fermion chain with the down-type (up-
type) (anti-)quark. Therefore, only one generic divergence type arises in each subprocess,
namely from diagrams with both gauge bosons coupling to that fermion chain. If only
two external flavours are involved, this singularity shows up in two different phase-space
regions due to the two possibilities to close the fermion chains.

q193 = W Zqsqz The matrix elements of this kind of subprocesses with q3 # q; and
a3 # qo are given in Eq. (4.127). The appearing initial-state singularity is depicted in
Figure 5.15, and the corresponding local subtraction terms read

Db 1 1 [M*qu 'Tgbi V Ldi M] ( o — WZq ) (5.82a)
= — . q q ’ ‘ !
J 2pyp; Tijb Tg;bi v . 2
' 1 1 T T 377
Dbz,a _ _2 |: * q:;rZ 8bi VQbQiaan] (qlg — W th) s (582b)
PoPi Tiab 8bi

where the omitted arguments of the dipoles are

D =D (a[pa] as[ps] = WIki1] Z[ka] as[pi] g2 [ps]) - (5.83)
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W
q1
q2
7
q2
ds
qs q2

Figure 5.15: Representative diagram illustrating the initial-state infrared singularity ap-
pearing in the subprocesses q,q; — WZqsqs,.

Q192 = W Z qz2q2 The real-emission matrix elements of the subprocesses with two iden-
tical quarks in the final state are provided in Eq. (4.121). The initial-state singularities
showing up are those of Figure 5.15 with q3 = q2, where two possible momentum assign-
ments for the identical outgoing quarks have to be taken into account. In addition to the
two dipoles of Eq. (5.82), the following two local subtraction terms contribute,

bi 1 1 T, Ty, .
DY = - M=t v M (g - WZa) | (5.842)
2puDj Tijp TS, '
. 11 Ty, Ty, o
Db],a — _ [ x _ Qa y 8bj VQb‘lj,an] <q1g — WZ(ND) s (584b)
2pepj Tjab T,

where the arguments of all four dipoles are

D =D (a0 [pa] a2[ps] = WIk1] Z[k2] az[pi] g2 [p;]) - (5.85)

q191 = W Zqi1q2 The matrix elements of the real-emission subprocesses with two iden-
tical quarks in the initial state are taken from Eq. (4.117). The arising initial-state singu-
larities are illustrated in Figure 5.15 with q3 = q;. In this subprocess class, divergences
related to the two identical initial-state quarks appear, which leads to further dipoles in
addition to those of Eq. (5.82), namely

Do L1 [M*T‘“'Tg“iquM}( ~—>WZ~) (5.86a)
= — aH , . a
J 2DaPi Tija Téai qj q18 q2
ai,b L1 Lo  Toui yraearas 5 V76
Dot = [M ey M} <q1g—>Wqu) , (5.86D)
PaPi Tiab Sai

where the arguments of all four dipoles are

D =D (a0 [pa] ai[ps] = WIk1] Z[ka] aq [pi] g2 [p]) - (5.87)
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B qs3 q2
ds
q2
! V1
q
qi
V,

Figure 5.16: Representative diagram illustrating the initial-state infrared singularity ap-
pearing in the subprocesses q;q; — WZq,qs;.

dsq: — W Zq2qs The matrix elements of this kind of subprocesses with q3 # q; and
a3 # q2 can be found in Eq. (4.128). The appearing initial-state singularity is illustrated
in Figure 5.16. The corresponding local subtraction terms are

. 1 1 T. -T, __ ~
DY = - M= VEY M| (g — W2 (5.882)
2papj Tij,a T, '
. 1 1 T .T -
Da],b _ [M* db - 8aj anQj,QbMi| (g(—h N WZqZ) , (588b)
2DaPj Tj.ab Ts..

where the omitted arguments of the dipoles are

D = D (q3[pa) @1 [pe) = W k1] Z[k2] G2 [pi] as[p;]) - (5.89)

q201 & W Zq2q2 The real-emission matrix elements of the subprocesses with two iden-
tical antiquarks in the final state are obtained from Eq. (4.118). The arising initial-state
singularities are already given in Figure 5.16 with q3 = q. As in the analogous case with
four external quarks, two possible momentum assignments for the identical outgoing anti-
quarks have to be taken into account. This leads to two further local subtraction terms in
addition to those of Eq. (5.88), namely

D(u _ 1 1 |:M* Tq] . Tgai V(:laqi Mi| (g(ll — W Z (:12) (5 90&)
J 2DaDi Tija T3, v
) 1 1 T -T. .~
S — % o Lo o M| (g > W2d) | (5.90D)
PaPi Tiab 8ai

where the arguments of all four dipoles are
D = D (G [pa) i [p] = Wki] Z[ko] G2 [pi] G [p]) - (5.91)

4191 > WZq2q: The matrix elements of the real-emission subprocesses with two iden-
tical antiquarks in the initial state are given in Eq. (4.122). The appearing initial-state
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singularities are shown in Figure 5.16 with q3 = q;. This subprocess class shows diver-
gences related to both identical initial-state antiquarks, leading to the following additional
dipoles besides those of Eq. (5.88),

: 1 1 T, T, .. -
DY = — M= B Y M| (g — W23 | (5.92a)
26D Tijb Ts,
. 1 1 T . -T, U
Db],a — _ [M* Ya y 8bj VOIbOU,an] <q1g — WZEIQ) s (592b)
2pepj Tjap T,

where the arguments of all four dipoles are

D =D (qQ1 [pa) @1 [po] = W k1] Z[k2] G2 [pi] @1 [ps]) - (5.93)

5.3 Virtual corrections to VV+jet production

5.3.1 Evaluation with FOrRMCALCc/LoopPToOLS

In this thesis, the one-loop diagrams are evaluated by means of the FORMCALC/ LOOP-
TooLs package [78]. More precisely, the generation of all loop diagrams is performed
with FEYNARTS 3.2 [79]. The output is further manipulated by means of FORMCALC
5.2 [78] leading to FORTRAN code for the amplitude calculation. FORMCALC neglects
rational terms of IR origin, because a mass regularization is assumed for IR divergences.
This approach is justified also in case of dimensional regularization, since no such rational
terms of IR origin arise from the (D — 4)-dimensional part, as shown in Ref. [80]. Ra-
tional terms arising from UV divergences are properly calculated by FORMCALC. The
whole tensor reduction is done by means of the LooPToOLS library [78], which employs
the Denner—Dittmaier reduction scheme of Ref. [81] for five-point functions and Passarino—
Veltmann reduction [82] for the lower-point tensors. For the evaluation of regular scalar
integrals, the FF package 83, 84] is applied. The dimensionally regularized IR-divergent
integrals are linked to this library. All the divergent integrals needed for the calculations
to pp/pp — VV + jet + X are collected in App. B. Which scalar one-loop diagrams ac-
tually contain IR singularities is explained in Ref. [76]: Collinear singularities appear if a
massless external particle splits into two massless internal particles of a loop diagram, and
soft singularities arise if two external particles exchange a massless boson. All IR-divergent
parts of integrals can be expressed in terms of three-point functions only, which is spelled
out in Ref. [85].

In dimensional regularization, s is treated as implemented in FORMCALC, i.e. with the
pure anticommutation relation {vs,7,} = 0 as in four space-time dimensions and keeping
the four-dimensional expression for Tr {777,775} which is proportional to €,g,5. The
expressions containing 75 show up in identically ordered fermion chains both in the vir-
tual and the real corrections, between which the IR divergences cancel. This situation is
illustrated in Figure 5.17 where two related interference diagrams are depicted that only
differ in the position of the cut indicated by the dashed lines. In the calculation it must
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Figure 5.17: Interference diagrams illustrating the cancellation of IR divergences: The
left-hand side shows a virtualxborn diagram contributing at NLO, the right-hand side a
real xreal diagram. The two diagrams are obtained from each other by a shift of the cut.

be guaranteed that 75 is treated identically in both cases, i.e. with the same terms aris-
ing if 5 is shifted in the evaluation of fermion chains. One way to do so is using the
four-dimensional anticommutation relation with no extra terms arising at all. For UV di-
vergences, the FORMCALC approach is justified in Ref. [86]. An alternative procedure with
anticommutation relations for the four-dimensional part of 75, but commutation relations
for a split-off (D — 4)-dimensional part is suggested in Ref. [87, 88]. At NLO, however, this
method and the simpler approach applied in this thesis can be shown to deliver identical
results. This agreement between the results is numerically confirmed in the comparison of
virtual corrections to WW-jet production in Ref. [40].

The virtual corrections to the subprocesses of VV+jet can in general be subdivided
into two parts, which are the bosonic corrections with all one-loop diagrams containing at
least one additional virtual gluon and the fermionic corrections containing a closed quark
loop. The counterterm contribution, which can also be decomposed into a bosonic and
a fermionic part, stems from the renormalization procedure and cancels the ultraviolet
singularities in the loop diagrams.

5.3.2 Bosonic corrections from virtual-gluon exchange

For all gauge-boson assignments of pp/pp — VV + jet + X, the bosonic diagrams can—as
in the LO case—be subdivided into a group of diagrams with the two weak gauge bosons
coupling directly to the fermion chain and another group containing an intermediate gauge
boson and a three-vector-boson vertex. The latter does again not contribute to the ZZ+jet
case, because no three-gauge-boson vertex with two Z bosons attached exists in the SM.

As in the previous chapters, exemplary diagrams are given only for the quark—antiquark
initial state, because all other diagrams can be obtained by crossing the outgoing gluon
with one of the incoming partons.
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Figure 5.18: Self-energy diagrams with the two weak gauge bosons coupling directly to the
fermion chain.

Diagrams without intermediate electroweak gauge bosons

The self-energy diagrams without intermediate electroweak gauge bosons are depicted in
Figure 5.18. As for all other bosonic corrections with direct gauge-boson coupling to the
fermion chain, each diagram contributing to ZZ-+jet and WZ+jet production has to be
taken into account for the two possible orders of the weak gauge bosons. In case of WW+jet
production, the order of the two W bosons is determined by the charges of the external
(anti-)quarks in the same way as in the LO diagrams.

Self-energy contributions to external partons can be omitted, since the renormalization
conditions in the applied on-shell scheme for the wave functions are chosen in such a way
that these contributions exactly cancel against the respective counterterm diagrams, which
are consequently left out as well.

The vertex-correction diagrams are shown in Figure 5.19. Here, the vertices of both the
massive gauge bosons and the gluon to the fermion chain receive NLO QCD corrections.
The quark—gluon vertex receives further contributions involving a three-gluon-vertex due
to the non-Abelian structure of QCD.

Also the box corrections contain diagrams with an exchange of a virtual gluon between
two points on the fermion chain and further diagrams with a three-gluon vertex. These
diagrams are depicted in Figure 5.20.

The same is true for the pentagon diagrams contributing to VV+jet production, which
are shown in Figure 5.21.

Apart from the case of external bottom (anti-)quarks in WW+jet production, all in-
ternal masses appearing in the loop integrals vanish. On the one hand, this significantly
simplifies the evaluation of the respective integrals. On the other side, the integrals show
more infrared divergences, which are treated in dimensional regularization. All necessary
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Figure 5.19: Vertex-correction diagrams with the two weak gauge bosons coupling directly
to the fermion chain.

scalar integrals containing infrared singularities are collected in App. B.1 for vanishing in-
ternal masses. In case of external bottom (anti-)quarks, top propagators appear in the
loops of some diagrams. However, due to the fact that the electroweak gauge bosons do
not couple to gluons, the number of massive quark propagators in each loop is limited to
no more than two neighbouring ones in all contributions up to pentagon diagrams. For the
situation of an incoming bb pair, the needed divergent integrals with external masses are
provided in App. B.2. Since the internal top quark does not show up in resonant propa-
gators, no decay width has to be introduced, and hence all masses showing up in the loop
integrals are real. This situation changes if a bottom—gluon or gluon-antibottom initial
state is considered, where internal top-quark resonances arise making the introduction of
a top width necessary. As a consequence, scalar integrals with up to two internal complex
masses would be needed. Since the respective subprocesses are excluded in the analysis
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Figure 5.20: Box diagrams with the two weak gauge bosons coupling directly to the fermion

chain.
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of this thesis, because they actually contribute to the off-shell continuation of W*t or
Wt production with a decaying top (anti-)quark, these integrals are not given here. If,
however, these processes should be added to the WW+jet analysis later on, the respective
scalar integrals with complex internal masses have to be used.

Diagrams with an intermediate electroweak gauge boson

In the group of diagrams with the two outgoing gauge bosons coupling to the fermion chain
by means of an intermediate vector boson and a three-gauge-boson vertex, only self-energy,
vertex, and box corrections are present, because the virtual gluon does not couple to the
electroweak gauge bosons. Since all internal masses vanish in the relevant loop integrals,
the same scalar integrals as in the previous paragraph are needed.

As before, all self-energy corrections with respect to external particles are omitted due
to the renormalization conditions. The remaining ones are presented in Figure 5.22.

The vertex diagrams, shown in Figure 5.23, deliver corrections to the couplings of both
the electroweak gauge boson and the gluon to the quark chain. In the latter case, three-
gluon vertices arise due to the non-Abelian structure of QCD.

Also the box corrections, which are depicted in Figure 5.24, receive contributions from
simple gluon exchange between two points on the quark chain and from diagrams with a
three-gluon vertex.

5.3.3 Fermionic corrections from closed quark loops

In the fermionic contributions, the major differences show up between the four gauge-boson
assignments in pp/pp — VV + jet + X , which is mainly due to the gauge-boson charges.

Independent of these charges, for all gauge-boson assignments self-energy corrections
to external gluons may be omitted, since the renormalization conditions are chosen to
compensate these corrections of external wave functions.

WWHHjet

The only fermionic vertex corrections arise from diagrams with an intermediate electroweak
gauge boson, which are depicted in Figure 5.25. Diagrams with both W bosons attached
directly to the loop are excluded by colour-charge conservation, such with only one W
boson by electric charge conservation.

The box corrections containing both W bosons coupling directly to the quark loop are
shown in Figure 5.26, where all diagrams contribute for the three quark generations. Both
up- and down-type quarks are present in each loop, due to the two charged W bosons,
and their order is again determined by the W charges. As in all previous cases with
two W bosons coupling to the same fermionic chain, the CKM matrix can be treated
as diagonal according to the unitarity argument in Eq. (3.2), which holds at least in the
applied approximation of vanishing mixing between the two light quark generations and
the third one.
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Figure 5.22: Self-energy diagrams with an intermediate electroweak gauge boson.
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Figure 5.23: Vertex-correction diagrams with an intermediate electroweak gauge boson.
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Figure 5.24: Box diagrams with an intermediate electroweak gauge boson.
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Figure 5.25: Fermionic vertex-correction diagrams to WW-+jet production involving an
intermediate Z boson/photon.
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Figure 5.26: Fermionic box diagrams in WW+jet-production.

While the massive-quark loops in the vertex corrections do not lead to singular dia-
grams, those in the boxes do in case of a five-flavour calculation, where the mass of the
bottom quark is set to zero. The resulting infrared-divergent scalar 4-point integrals with
one or two neighbouring internal masses—those with more than two internal masses do
not contain divergences—are collected in App. B.2 as well as the divergent lower-point
functions arising in the tensor reduction of the boxes.

77+ jet

Since both gauge bosons are neutral in case of ZZ+jet production, the vertex corrections
have one of the outgoing Z bosons and the external gluon attached. The respective diagrams
are given in Figure 5.27. All six quark insertions contribute to the loops. Diagrams with
both Z bosons coupling to the quark loop, which are allowed by electric charge conservation,
have to vanish due to colour-charge conservation, since the intermediate gluon cannot decay

into colourless particles only.
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Figure 5.27: Fermionic vertex-correction diagrams contributing to ZZ+jet and WZ-+jet
production for the respective gauge-boson assignments.

Figure 5.28: Fermionic box diagrams in ZZ+jet-production.

The box diagrams contributing to ZZ+jet production are depicted in Figure 5.28, where
each diagram has to be taken into account for the two possible permutations of the Z
bosons. Again, all six quark insertions have to be included for each diagram. Care has to
be taken with respect to double-counting of diagrams, since an exchange of the direction
of the fermion chain in the loop leads to exactly the same diagrams as exchanging the mo-
mentum assignments of the Z bosons. Consequently, only six instead of twelve diagrams
contribute for each internal quark flavour.

The virtual corrections of both WW+jet and ZZ-+jet production receive a further con-
tribution including a heavy-quark loop and the weak-gauge-boson pair coupling by an
intermediate Higgs boson, which are shown in Figure 5.29. In the five-flavour-scheme cal-
culation, only the top-quark loop contributes, whereas in the four-flavour case with the
bottom quark treated as a massive particle both quark loops of third-generation quarks
show non-vanishing couplings to the Higgs boson. One could argue that these contribu-
tions should not be taken into account for WW+jet and ZZ-+jet production, since these are
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Figure 5.29: Fermionic vertex-correction diagrams with an intermediate Higgs boson con-
tributing to WW+jet and ZZ-+jet production, respectively.

both relevant as background processes to H+jet production with a subsequent decay of the
Higgs boson to the respective gauge-boson pair. Therefore, the diagrams of Figure 5.29
should better be assigned to the signal process in this case. However, their numerical
impact turns out to be so small that the distinction is of no phenomenological meaning
anyway.

WZ+jet

Due to the non-vanishing charge of the gauge-boson pair in WZ+jet production, only dia-
grams with the Z boson attached to the closed quark loop and the W boson coupling to the
external fermion chain contribute. These diagrams are depicted in Figure 5.27. The non-
zero charge of the gauge-boson pair naturally forbids contributions with an intermediate
Higgs boson.

5.3.4 Counterterm contribution

The counterterm contributions resulting from the renormalization procedure deliver a fur-
ther contribution to the virtual corrections. Since the renormalization conditions are chosen
in such a way that external self-energy and counterterm diagrams cancel, the respective
contributions are omitted—as in the self-energy corrections described in the two previous
subsections. The remaining diagrams can again be subdivided into diagrams with and
without an intermediate gauge-boson and a three-gauge-boson vertex, whereat the for-
mer are not present in ZZ+jet production. In both groups, counterterms contribute to
the quark propagators, which are depicted in Figures 5.30 and 5.32, respectively. Fur-
ther on, the vertices for massive gauge bosons and gluons coupling to a quark chain are
renormalized leading to vertex counterterms, which are shown in Figures 5.31 and 5.33, re-
spectively. As the virtual corrections, the counterterm contributions can be subdivided into
bosonic and fermionic parts. However, not each diagram can be assigned to the bosonic or
the fermionic corrections: Whereas the propagator-counterterm diagrams and the vertex-
counterterm diagrams of the electroweak couplings contain only bosonic corrections, the
vertex-counterterm diagrams of the strong couplings receive both bosonic and fermionic
contributions.
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Figure 5.30: Propagator-counterterm diagrams without three-gauge-boson vertex.
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Figure 5.31: Vertex-counterterm diagrams without three-gauge-boson vertex.
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Figure 5.32: Propagator-counterterm diagrams with three-gauge-boson vertex.
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Figure 5.33: Vertex-counterterm diagrams with three-gauge-boson vertex.

If only massless quarks are involved, each counterterm diagram can be written as a
factor times the respective LO diagram. If the sum is taken over all counterterm diagrams
based on the same LO diagram, the resulting prefactor depends only on the external parti-
cles and the number of strong couplings, which are identical for all diagrams. (This selection
corresponds to embracing the five diagrams in each column of Figures 5.30 and 5.31 for the
case of direct gauge-boson coupling and the three diagrams in each column of Figures 5.32
and 5.33 for the contributions involving a three-gauge-boson vertex.) Therefore, the whole
counterterm amplitude can be expressed as

1
Mab,ct(Pas Db; - - - Pi) = <<5Zq + 502, +0Z > Mab,10(Pa; Pos - - - Pi) - (5.94)
The renormalization constants are calculated as follows,

Crog
07y = === (A% (1) - A (p)) , (5.95)

as | (Ne 5 uv IR 1 IR M

Iy=—|l——-—=](A —A — A In —- .

67, %[(3 2)( () = A1) +3 30 (A +m g )| (590

mq#0
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L.e., an on-shell renormalization of the wave functions of the external QCD partons and a
MS renormalization for the strong coupling is performed with the massive-quark loops in
the gluon self-energy subtracted at zero momentum. Hence, the sum over q runs over all
massive quarks, namely q = t in the five-flavour scheme and q = b,t in the four-flavour
scheme. In contrast to the usual dimensional regularization scheme, IR and UV divergences
are distinguished in the scheme applied in this thesis. Otherwise, the renormalization
constant of the quark wave function (5.95) would be zero.

If massive quarks are involved as internal particles, as the top quark is for WW+jet sub-
processes with external bottom (anti-)quarks, the LO amplitude does not simply factorize.
Instead, additional contributions arise from all diagrams involving a top-mass counterterm,
which are shown in Figure 5.30 for ¢ = t. With the contribution proportional to ¢ Z; omit-
ted, because it always cancels against the respective vertex-counterterm diagrams, this
additional term reads

Mab,&mt (pa;pb; e -pi)
_omy < 2m?

— g Mab.1.0 t-diag (Pa> Poi - - - Pi) + Mab .10 t-diag (Pa> Db - - - Di)
t — My

) , (5.98)

my XMy

where £, denotes the momentum of the top propagator and My t.qiag the amplitude of
the respective LO diagram. The second term in brackets means only the part of the LO
amplitude that is proportional to m; from the top propagator, which arises—in terms of
the WvdW formalism—from the diagonal elements of the fermionic propagator given in
Table 4.3. This term turns out to contribute only in diagrams with two top propagators,
namely those in the left column of Figure 5.30, because the contribution proportional to
my vanishes otherwise. The top-mass counterterm is given by

Oy _ 05 (3AUV () 4 4. (5.99)

o 3

With the results from the two previous sections, the one-loop matrix elements in

Eq. (5.18) can be evaluated via

. fsym * .
|Mab,1—100p(pa7pb7 .- pz) 2= NcaNaaNchab Z Z 2 1:{e{'/\/tLO (paapba .- pl)

0a50by--+30i Ca;Ch,Ci

X (Mab,virt(paapb; .. -pi) + Mab,ct(paapb; . pz))} ) (5100)

where o0,,0p,...,0; are the spins of all external particles and ¢, ¢, ¢; the colours of the
QCD partons. N, and N, are spin- and colour-averaging factors of the initial-state partons,
and fgm is the symmetry factor for identical outgoing particles, which are all identical to
those in the LO matrix elements.
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5.3.5 Contribution from integrated subtraction counterterms

The infrared divergences contained in Eq. (5.100) in terms of poles % and E% cancel against
the respective parts of the dipole terms integrated over the one-particle phase space. This
dipole contribution can be written as the averaged LO matrix element times a factor con-
taining the infrared poles, which can be determined from the general formulae in Ref. [62].
The symbolic term in Eq. (5.18) then reads

N Qg 1
/d(fﬁ\bv(pa,pb; CDi) = 5. 2.7 MO (Day s - - i) |2
! {m}
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IR IR
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) Cr {2A2 (u) + A7 () [ 3—1n M2 —1In 2,
1 2Papi 2pypi 2papi 2pypi 472
+7 <ln2 Pali 12 p”f) —§<1n Pl 4 1n p"f>+10—i]
2 M2, M2, 2 M2, M2, 3
1 IR IR 2paDb 9 2DaDb 2pab 472
+§CF [2A2 (u) + A7 () [ 3—2In M2, +1In M2, —3In M2, +10_T
4 2 2papi 2pyp; 32
—IN; Ty |—=AlR Z (1 1 - = O 5.101
(T [-38000 + 5 (w22 2) 2T L o, (5.101)

where simplifications between different contributions are not performed in order not to
hide the origin of the respective terms. The factor i in front of the LO matrix element
compensates the colour factor contained in Eq. (4.58). This factor must not appear here,
because the SU(3) generators from the LO amplitudes are to be combined with those aris-
ing from the dipole terms, leading to the numerical factors in front of each colour charge

in Eq. (5.101). The divergences A*(u) and Af(p) are defined in App. B.

The sum of the expressions in Egs. (5.100) and (5.101) is both ultraviolet and infrared
finite. Therefore, the four-dimensional limit can be taken in Eq. (5.18) after cancelling the
divergences, which is done either analytically or numerically, where the latter means setting
the divergences technically to an arbitrary value. Since the result must be independent of
this value, its variation can be used as a numerical check on the finiteness of the result.

Since initial and final states of the virtual-correction subprocesses are identical to those
in the LO case, the numerical phase-space integration can be performed in the same way,
as described in Chapter 7.
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5.4 Collinear-subtraction counterterms

The collinear-subtraction counterterm accounts for contributions from collinear emission
off one of the incoming partons before entering the hard scattering process. Such emis-
sions are included in the real corrections in a perturbative way, leading to initial-state
singularities that actually originate from the non-applicability of perturbation theory for
low momentum transfers. The factorization scale denotes the scale up to which such an
emission is understood as collinear and, therefore, is assigned to the non-perturbatively
described hadron structure. This contribution can be written in terms of a PDF redefi-
nition to compensate for the divergences, as described in the following subsection. The
PDF, however, receives an additional dependence on the factorization scale. Since its value
is chosen arbitrarily, the dependence on it is artificial and must decrease when going to
higher orders in perturbation theory.

5.4.1 Redefinition of PDF's

As mentioned in the beginning of this chapter, the remaining infrared divergences, which
do not cancel between virtual and real corrections, are process independent and can there-
fore be absorbed into the structure of the incoming hadrons, which is described non-
perturbatively via PDFs. How this absorption can be understood as a redefinition of
PDFs is illustrated by considering the contribution of the first term in Eq. (5.13) to the
NLO cross section, which is—taken alone—infrared divergent and correspondingly con-
tains poles 1 in D =4 — 2¢ dimensions. As shown in Ref. [62], this contribution can—up
to terms of O(e)—be written as

1
> / 0, fol(i, ptnee) 65 (s o)
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& 2m € Hiact

= Z/ dwy [ (€1, ftace; €) A0 (21Da, T2p3)
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Lz x , as T(1+4¢) [Amu®\°
ff(xlaﬂfact;5):/ —12fa'<_17/ifact)Paa(Z1)2— ( ) ( 2,&) , (5.102)
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where the first equation just repeats the definition, and a transformation of the integration
variables is performed in the second equation. In the third equation, the sums over a and
a' are interchanged, and a definition for the NLO correction to the PDF is introduced,
accompanied by a renaming of summation indices and integration variables. The functions
P are the Altarelli-Parisi splitting functions, which are given in App. A.2, and figpe
denotes the factorization scale.
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5.4.2 Combined contribution of collinear terms and integrated
dipoles

The cancellation of divergences between the collinear-subtraction counterterms and the
second part of the re-added subtraction terms, where the integration over the longitudinal
momentum fraction carried by one of the incoming partons is not performed analytically,
can be performed generically as discussed in Ref. [62]. The result for the sum of both
contributions on the right-hand side of Eq. (5.19), which is finite and can therefore be
evaluated in four dimensions, is given by

1
T’ osn) = 7 Nfsyjn\} DI Z/O *
catVoatVepiVay

0a,y0bs-++30i CaCpsCi  C
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+dd™ (p,, zpb)FjE;”) (Pa> 2003 - - > Pi) Mer.0(Pas 205 - - - Pi)
x (K"(2) + P" (2P0, 2 ffact)) Mac,o(Pas 2Po; - - -pz')} ; (5.103)

where o,,04,...,0; are the spins of the external particles, ¢,, ¢, ¢; the colour indices of
the QCD partons, N, and N, the averaging factors for initial-state partons and fs, the
symmetry factor for identical final-state particles. The colour-charge operators K and P
are collected in Section A.2.

The numerical integration of this contribution is performed as for the LO subprocesses
in general, but with an additional integration over the longitudinal momentum fraction
carried by one of the incoming partons, which is denoted by z in Eq. (5.103). Since some
of the colour-charge operators K and P contain both J-functions and +-distributions,
namely those containing gg, qq, or qq splittings, the numerical integration becomes more
involved. The treatment of the arising complications is shifted to Chapter 7.



Chapter 6

Inclusion of gauge-boson decays

In the previous chapter, the calculation of pp/pp — VV + jet + X at NLO QCD accuracy
is described with the respective gauge bosons treated as stable particles. Naturally, this
is not the situation in real experiments, so the inclusion of gauge-boson decays has to be
considered.

In Section 6.1, different strategies for the description of gauge-boson decays are dis-
cussed. First, the full calculation with intermediate off-shell gauge bosons is considered.
Consequently, further diagrams contributing to the same leptonic final state, which only
contain one resonant gauge-boson propagator, have to be taken into account for reasons of
gauge invariance. Since all diagrams without a doubly-resonant structure should be sig-
nificantly suppressed and also off-shell effects are not expected to play a decisive role, two
approximations are applied to simplify the calculation: In the so-called “narrow width ap-
proximation” (NWA), unpolarized gauge bosons are produced as on-shell particles, which
then decay isotropically in their respective rest frames. Afterwards, an improved version
of the NWA is introduced, where the spin information of the produced gauge bosons is
kept for the description of the decays, but the gauge bosons are still treated as on-shell
particles.

In Section 6.2, the additional building blocks needed for the evaluation of helicity am-
plitudes including gauge-boson decays are presented both for the improved NWA and for
the full calculation. For performing the simple NWA, no further calculations are needed.

In Section 6.3, the generic way how to implement the building blocks describing the
gauge-boson decays into the matrix-element calculation of Chapter 4 is explained. In
the improved NWA, the NLO QCD calculation of Chapter 5 is not affected at all apart
from some trivial changes. In the full calculation, a number of additional singly-resonant
diagrams has to be introduced, which does, however, not lead to a significant complication
of the singularity structure.
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6.1 Strategies for the description of leptonic gauge-
boson decays

Since the massive gauge bosons are unstable particles, their decays should be included
into the analysis. In this context, especially the cases of both gauge bosons decaying into
as many charged leptons as possible—i.e. W bosons decay to lepton—neutrino pairs, Z
bosons to two charged leptons—is of interest due to its clean signature in the detector.
Besides, the appearance of quarks and antiquarks in case of a semileptonic or even purely
hadronic decay of the gauge-boson pair would render the calculation of NLO QCD correc-
tions much more complicated, since the decay products would have to be implicated into
the NLO calculation leading, e.g., to hexagon or even heptagon diagrams in the virtual cor-
rections. From a phenomenological point of view, those processes whose signature would
be V(— 2leptons) + 3jets in the semi-leptonic case and only 5jets in the purely hadronic
case are dominated by large backgrounds from jet production via pure QCD processes.
For these reasons, only leptonic gauge-boson decays are considered in this thesis. The
inclusion of the decays is performed by means of three different strategies for the LO
processes, which are presented in the following paragraphs. From a comparison of these
LO results, which will be presented in Section 8.5, the improved NWA turns out to be
an appropriate compromise between complexity of the calculations and accuracy of the
results. Therefore, the NLO calculation is performed by means of the improved NWA.

6.1.1 Full calculation with off-shell gauge bosons

In the calculation of full amplitudes for the processes of pp/pp — VV + jet + X, the
diagrams contributing to the subprocesses can be subdivided into two classes, namely dia-
grams showing two gauge-boson propagators that can become resonant and other diagrams
containing less resonances.

The generic doubly-resonant diagrams are presented in Figure 6.1 for one generic LO
subprocess. All other subprocesses can be obtained from this by means of crossing sym-
metry. The doubly-resonant diagrams contain all the VV+jet-production diagrams of
Figures 3.6 and 3.7 with the two massive gauge bosons decaying to leptons. Moreover,
further diagrams showing the same structure contribute in case of WZ+jet and ZZ+jet
production, since each intermediate Z boson can be replaced by a photon. The resulting
diagrams even show divergences if the virtuality of an intermediate photon approaches
zero. These phase-space regions are, however, excluded by cuts on the invariant masses of
lepton—antilepton pairs. Such cuts are justified experimentally, since both the lepton and
the antilepton are detected. It is convenient to restrict these invariant masses to the region
around the mass of the Z boson, since the phase-space region where the process is actually
interesting—e.g. as a background process for H(— ZZ*) + jet production—contains only
outgoing leptons from resonant Z bosons.

Aside from this doubly-resonant group, a number of diagrams that in general con-
tain only one or even no resonant gauge-boson propagator contribute to the subprocesses.
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Figure 6.1: Generic diagrams with two resonant gauge-boson propagators (referred to
as “doubly-resonant” diagrams) contributing to the partonic process q,q, — lLilolslg at
LO. The second row only contributes if a non-vanishing three-gauge-boson vertex exists.
Diagrams for all possible assignments of (anti-)leptons and gauge bosons leading to the
same final state contribute.

Their topologies are characterized by the situation that one gauge boson decays to a
lepton—antilepton pair with the second pair attached to this leptonic fermion chain by
means of a second gauge boson. Generic diagrams illustrating this situation are given in
Figure 6.2. For WZ+jet and ZZ+jet with leptonic decays, infrared singularities show up
from v — (71" splittings, which are again cut away by restricting the invariant mass of the
lepton—antilepton pair to the region around the Z-boson mass.

The singularities appearing at the poles of the LO gauge-boson propagators are treated
by introduction of a decay width arising from a partial Dyson resummation of self-energy
contributions to the propagator. The gauge-boson widths are introduced in terms of com-
plex gauge-boson masses according to the complex-mass scheme at LO, which is described
in Ref. [69]. For the LO amplitudes considered here, this means replacing

My, — My —iTwMy ,  M; — My —iT, My . (6.1)

To preserve gauge invariance, the gauge-boson masses have to be treated as complex quan-
tities everywhere, in particular in the definition of the weak mixing angle,
M3, . MZ; — iTw My

M? M? —il'yMy

cos By = (6.2)

and all couplings derived from this quantity. The values of the gauge-boson widths are
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Figure 6.2: Generic diagrams with only one resonant gauge-boson propagator (referred to
as ”singly-resonant” diagrams) contributing to the generic partonic process q,q, — lilslslsg
at LO. Further permutations of the leptons l;, 13 and antileptons l,, I; contribute depending
on the specific lepton and gauge-boson assignments. All intermediate particles have to be
summed over all possible insertions.

calculated at NLO QCD level with vanishing fermion masses,

L = 2oy [Z(CWV - gcwud)? (1+ M)] , (63
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In Eq. (6.3), the sums run over all three lepton generations and the two light-quark families,
in Eq. (6.4) over the three charged leptons and neutrinos and the five light quarks.

The rules for a consistent treatment of unstable particles in the complex-mass scheme
at NLO are collected in Refs. [70, 71]. They are not presented in detail in this thesis, since
an NLO calculation using full amplitudes is not necessary for obtaining hadron-collider
accuracy, since the improved NWA turns out to be an appropriate approximation.

6.1.2 Narrow-width approximation

In the NWA, the produced gauge bosons are treated as on-shell particles in the production
process. The leptonic decays are understood as isotropic in the rest frames of the respective
gauge bosons, because their spin information from the production process is dropped.
Therefore, the matrix elements of the VV+jet-production subprocesses can be used without
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Figure 6.3: NWA diagrams with two on-shell gauge-boson propagators for the generic par-
tonic process q,qy — Vi(— Lila)Va(— I314)g at LO. The on-shell propagators are denoted
by the dash perpendicular to the propagator line. In the first row, the order of gauge
bosons is prescribed by the charges of the external quark—antiquark pair in WW+jet pro-
duction. In WZ+jet and ZZ+jet production, the diagrams also contribute for V; and V,
with their respective decay leptons interchanged.

modifications by only introducing the respective branching ratios for the Z- and W-boson
decays, which are given by

Fw+_,l,11+ FZ—»I—H‘

BRyy+ 1+ = St BRy- 15, = waivj . BRy, 1+ = T (6.5)
The partial widths for leptonic gauge-boson decays are

Pw+smt = I'w-51-5, = %MW(CV_VW)? ; (6.6)

Pyt = =Mz (Cho)? + (Cpan)?) (6.7)

6

since the leptonic gauge-boson decays do not receive NLO QCD corrections.

Consequently, the approximation of on-shell gauge bosons restricts the diagrams con-
tributing to the respective subprocesses of pp/pp — VV + jet + X to those containing
two resonant gauge-boson propagators, which stand in one-to-one correspondence to the
pure gauge-boson pair production diagrams in Figures 3.6 and 3.7. The analogous NWA
diagrams are collected in Figure 6.3 for one LO subprocess.
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6.1.3 Improved narrow-width approximation

In the comparison that will be presented in Section 8.5 for LO calculations, the simple
NWA turns out to deliver only a rough approximation of the full evaluation. Whereas the
integrated cross sections show modest deviations between the full amplitude calculation
and the simple NWA, discrepancies of up to 20% arise in some phase-space regions if
differential cross sections are considered.

An appropriate compromise between full calculation and naive NWA is yielded by an
improved version of the NWA. Here, the gauge bosons are still treated as on-shell particles,
but their spin information is kept. This information is known from the fact that helicity
amplitudes have been used for calculating the production amplitudes. It is used to improve
the description of the leptonic gauge-boson decays, which are not isotropic in the respective
gauge-boson rest frames anymore.

The diagrams contributing to the LO subprocesses are again given by Figure 6.3 for
one specific channel, while the others can be obtained from this by application of crossing
symmetry. The modification of amplitudes is essentially the same for LO subprocesses and
all contributions to the NLO QCD cross section: the polarization vector/bispinor of each
of the outgoing gauge bosons is replaced by the leptonic currents of its decay products. For
the rest of the amplitude, the momenta of the gauge bosons are set on shell. The Breit—
Wigner propagators arising in the absolute square of the amplitudes are separated. They
are replaced by delta functions with an appropriate normalization obtained by integrating
over the Breit—Wigner propagator in the limit ['y — 0. Details on this procedure will be
given in the following section and in Section 7.2.

Since the improved NWA turns out to reproduce the full calculation to sufficient accu-
racy in the LO comparison of Section 8.5, this strategy for describing the leptonic decays
is applied for the NLO QCD calculations in this thesis.

6.2 Building blocks for leptonic gauge-boson decays

Analogously to Section 4.2, the building blocks needed for the extension of the helicity am-
plitudes in the WvdW formalism to decaying gauge bosons are provided. In addition to the
assignments of Tables 4.5 and 4.6, the definitions of Table 6.1 are used in the description
of the outgoing leptons.

(Anti-)lepton momentum vector spinor momentum bispinor
outgoing lepton iy A Ly g
outgoing antilepton 15 " Ly i
outgoing lepton i €A L; ip
outgoing antilepton I & L, ip

Table 6.1: Notation of momenta, spinors and bispinors of the outgoing (anti-)leptons.
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For calculating the doubly-resonant amplitudes shown in Figure 6.1, only the following
block is needed to describe the decay of a gauge boson into two leptons, which is—apart
from the colour structure—identical to the subdiagram described in Eq. (4.19), namely

A(V l1112:|—)11|:11:|i2|:l2:|> =V
| v A N

( — !
2eCyp,, N B

ly

for \=L,\N =R,

(I1 + 13)? — M
~ ) 260t )\~)\’V (6:8)
Vil “ATYB

for \= R, N = L.

L (0 +15)2 — M2

Since these subdiagrams show up in the evaluation of full decay amplitudes with intermedi-
ate off-shell gauge bosons, the pole of the gauge-boson propagator is treated as prescribed
by the complex-mass scheme explained above, i.e. the gauge-boson mass and also the elec-
troweak coupling are treated as complex quantities according to Egs. (6.1) and (6.2).

The only additional subdiagrams needed for the improved NWA are the currents of the
decay leptons. The resulting expression is

A <V|:l1il2:|—)11|}1:|12|:l2:|> =V
NW v A N

2 60\71112 Nidp  for A=L N =R,
2¢Cy;,, AiNg  for A=R,N =1L,

(6.9)

which replaces the polarization bispinors of the weak gauge bosons in the improved NWA
amplitudes. The amplitudes are evaluated in the limit I'y — 0, i.e. all masses and cou-
plings can be treated as real quantities in the improved NWA, apart from the gauge-boson
mass in the propagator. Taking the limit naively here would lead to the well-known di-
vergence if the gauge boson becomes on shell. Therefore, the propagator is extracted from
the amplitude. Its treatment will be discussed in Section 7.2.

Also for the calculation of singly-resonant diagrams, only building blocks regarding the
decay leptons have to be evaluated anew. The necessary subdiagrams for the production
of a single gauge-boson in association with one or two jets are already known from the
subdiagrams involving an intermediate electroweak gauge boson, namely in the building
blocks in Eqs. (4.21) and (4.24). Instead of a three-gauge-boson vertex, a gauge-boson
decay to four leptons with their fermion chains connected by a second intermediate gauge
boson is needed for the singly-resonant diagrams. To this end, the following building block
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describing the decay of a gauge boson to a lepton—antilepton pair and a second gauge boson
is calculated,

11 11
1
A<V|: :|—)VQ|:192:| 11|:l/{:| 12|:f\2:|> — V1 VQ + V1 V2 3
U1 ’U2
|
1y 1y
(6.10)
22 uk
V Volka|1 lli lo = QGH 6.10
A vlepoleld]) = e (5100
co. Co Cco-.Co
X [ 7(}/1112 kvihl N (Ly + K2) Ve AT + 7(}/1111 kv;uz )\IG(Lz + Kz) 6U1'<)\L] ;
1+ Ko 2 + Ko
2% p*
Al Vo | = Vol ke | 1|0 | Lle] ) = 2,GH 6.10b
el i) = e @100
ct_CFf ct_Ct )
X [ 7(}/11112 k\Shl )\G(L1 + Kz) GUK)\IL + 7(};1111 k\;;llz A (Lg + K2)GV6VL)\'H] .

Contracting Eq. (6.10) with Eq. (6.8) for a second lepton—antilepton pair leads to the
needed four-lepton decay of a gauge boson. Which of the two outgoing lepton—antilepton
pairs couples to the primary gauge boson is not prescribed in general by the respective
VV+jet-production subprocess, so permutations of the two outgoing lepton—antilepton
pairs have to taken into account. In case of two identical (anti-)leptons, further contri-
butions arise from interchanging the two (anti-)leptons. In the latter case, relative minus
signs result from the changed fermion-number flow. The generic subamplitudes read

11 11

1 I3 v I3

SORT MM - et e T
I I

+(X“;:Z}—X[llng}—/'\f[l2<—>l4 ]) {]
= Al oyl ) Al vl ]

+< “;:Z}_X[hHl?’}_x[l?Hh]){---}, (6.11)

=
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The expression {...} always refers to the whole term given ahead. For most assignments
of (anti-)leptons only some of the terms deliver non-vanishing contributions, since a large
number of coupling constants C7;, is zero. This holds in particular in any case where 1 and
1 do not belong to the same lepton family.
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6.3 Implementation of decays into the production ma-
trix elements

By means of the VV+jet production building blocks taken from Section 4.2 and those
describing the leptonic decays, which are calculated in the previous section, the matrix ele-
ments for all subprocesses including leptonic gauge-boson decays can be easily constructed
by some replacements that are discussed in this section. Including leptonic decays into
the NLO QCD calculation does not change the structure of singularities. Therefore, the
dipole subtraction formalism can be applied as described in Chapter 5 with the necessary
replacements in the amplitudes explained in this section.

6.3.1 Full calculation with off-shell gauge bosons

In the approach with full off-shell decays of the gauge bosons, the arising poles in the gauge-
boson propagators are treated as explained in Section 6.1.1 by means of the complex-mass
scheme. The respective replacements of masses and couplings according to Eqgs. (6.1)
and (6.2) are to be performed. No new symbols for the resulting complex quantities are
introduced here.

The amplitudes for the full calculations receive two different kinds of contributions,
namely the doubly-resonant diagrams, where both gauge-boson propagators can become
resonant at the same time, and the singly-resonant diagrams, where only one resonant
propagator appears. If all four outgoing leptons and antileptons belong to the same gen-
eration, a larger amount of diagrams contributes. For WZ-+jet and ZZ+jet, these dia-
grams are obtained by adding the particular amplitudes with the identical (anti-)leptons
crossed. In the case of WW+jet, no such crossed contributions arise. However, the final
state 1717y +jet can also result from ZZ+jet production with one Z boson decaying to a
charged lepton—antilepton pair, and the other one to a neutrino—antineutrino pair. These
diagrams have to be included as well for gauge-invariance reasons. However, the interfer-
ence of WW+jet and ZZ+jet is a pure off-shell effect and thus suppressed. Moreover, the
signature “2leptons + pr migs + jet” is also received if the neutrino pair belongs to a differ-
ent generation as the charged leptons. For completeness, also these processes should be
added. However, the numerical calculations discussed in this thesis are only performed for
leptons of different generations. Therefore, no specific results are provided for the others
if they cannot be produced as a simple byproduct.

Doubly-resonant contributions

The doubly-resonant diagrams to WW+jet, ZZ—+jet, and WZ+jet production are illustrated
in Figures 6.4, 6.5, and 6.6, respectively, for one specific LO channel with a quark—antiquark
initial state and the two lepton—antilepton pairs belonging to different families.

The doubly-resonant contributions are directly derived from the contributions already
present in VV+jet production by replacing the polarization bispinors of the outgoing gauge
bosons by a gauge-boson propagator and the leptonic current of their decay products. In
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Figure 6.4: Diagrams with two simultaneously resonant W propagators of the partonic
subprocess ut — vee u~v,g contributing to pp/pp — veeT v, + jet + X.

Figure 6.5: Diagrams with two resonant Z propagators of the subprocess uu — e ety pu*g
contributing to pp/pp — e et ™ + jet + X. One or both Z bosons can be replaced by
photons leading to the same final state.
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Figure 6.6: Diagrams with a resonant W propagator and a resonant Z propagator
of the subprocess ud — veet = putg, which contributes to pp/pp — veetu~put +jet + X.
The subprocess gets also contributions form diagrams with the intermediate Z bosons
replaced by photons. The diagrams for the respective subprocess contributing to
pp/pPp — € Dy put 4 jet + X can be obtained by exchanging all particles by the corre-
sponding antiparticles and vice versa.

the process classes WZ+jet and ZZ~+jet, further contributions arise from replacing the Z
boson by an intermediate photon, which are actually not doubly-resonant but show the
same topology and are therefore also calculated here. The corresponding amplitudes are
constructed as follows, where the sum over the intermediate gauge bosons Vo refers to
the Z-boson—photon replacements described before,

o LA )

B AR

Vi V»

x {A(\/IH%hHL[;D A(\/g[x;ﬂ%l?,[zg}h[?b —x[boulf. }} . (6.12)
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with the building blocks for the leptonic gauge-boson decay defined in Eq. (6.10). The
expression {...} again refers to the prevenient expression with the minus sign arising from
the changed fermion-number flow. The crossed term only contributes to WZ+jet and
Z7+jet subamplitudes if all (anti-)leptons belong to the same generation. The expression
"+X’ in the particle content refers to all possible insertions of QCD partons, which are used
for the evaluation of the LO and real-emission subamplitudes /}(/l, X =Q,V,F, collected

in Section 4.3. Analogous replacement rules also hold for the evaluation of the remaining
NLO QCD contributions in Chapter 5, which is due to the fact that the outgoing leptons
do not affect the structure of singularities that has to be controlled there.

Singly-resonant contributions

Since the selection of contributing diagrams is not very transparent for specified lepton
assignments in the generic form used in the definition of Eq. (6.11), the singly-resonant
contributions to the off-shell continuations of WW+jet, ZZ+jet, and WZ+jet production
with leptonic decays are shown in Figures 6.7, 6.8, and 6.9, respectively, for the quark—
antiquark initial state and lepton—antilepton pairs of different generations in the final state.

For WW+jet subprocesses, the configuration with both the Z and the W propagator
being resonant is kinematically allowed, but does not significantly contribute because the
corresponding phase-space region is too small. Since in all cases a W boson couples to the
quark chain in WZ+jet subprocesses, not even small phase-space regions with both W and
Z propagators being resonant simultaneously can arise.

The singly-resonant contributions to the process classes WW+jet and WZ+jet are ob-
tained from the known production subamplitudes by only considering those containing
an intermediate electroweak gauge boson. The respective gauge-boson propagator and
the three-vector-boson vertex with polarization bispinors attached is replaced by the po-
larization bispinor of the intermediate gauge boson. This defines subamplitudes actually
corresponding to V+jet production, namely

AN R I R A T

by the replacement
Cvyv )
ey mvm — vk, (6.14)
v
With the V+jet subamplitude defined in Eq. (6.13) and the building block for the descrip-

tion of a gauge-boson decay into four fermions without a three-gauge-boson vertex given
in Eq. (6.11), the subamplitudes describing the singly-resonant contributions read

S -
SN AR P YA N
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Figure 6.7: Diagrams with only one resonant W propagator of the partonic subprocess
ull = vee o, g contributing to pp/pp — veet "7, + jet+X.

where ‘+X’ again denotes all relevant parton configurations for LO and real-emission sub-
amplitudes.

For ZZ+jet production, this procedure does not work, because no contributions with
an intermediate gauge-boson arise there due to the absence of a respective three-gauge-
boson vertex with two Z bosons attached. Singly-resonant contributions, however, exist.
They are identical to those contributing to WW+jet production apart from exchanging
the outgoing leptons.

The calculation of matrix elements for LO and real-emission subprocesses, which are
described in Section 4.4, is performed by replacing each subamplitude there with the re-
spective doubly-resonant subamplitude from Eq. (6.12). Each subamplitude containing an
intermediate gauge boson, denoted by M, gets an additional contribution from a respec-

tive singly-resonant amplitude in the WW4jet and WZ-+jet contributions. The absence
of such subamplitudes in ZZ+jet contribution requires a different proceeding. Here, the
singly-resonant amplitudes are to be added to Eq. (4.38) for the case of external gluons
and to the abbreviation in Eq. (4.49) for the subprocesses with two fermion chains. When
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Figure 6.8: Diagrams with only one resonant Z propagator of the subprocess
ui — e~etp~ ptg contributing to pp/pp — e"eT " uT + jet+X. Asin the doubly-resonant
case, also diagrams with one or both intermediate Z bosons replaced by photons contribute.

summing over the spins of external particles, the sum over the polarizations of the two
gauge bosons is replaced by a sum over the helicities of the outgoing (anti-)leptons. The
number of non-vanishing helicity configuration is reduced by the fact that all (anti-)leptons
are treated as massless particles. Besides, lepton—antilepton pairs coupling to intermedi-
ate W bosons only contribute in the channel with left-handed leptons and right-handed
antileptons. The symmetry factor % due to the two identical outgoing gauge bosons in
Z7Z+jet production is to be removed from the amplitudes. If the two lepton—antilepton
pairs belong to different generations, no new symmetry factors arise from the leptonic part
of the final state. If they belong to the same generation, a factor % has to be added for
WZ+jet and a factor i in the ZZ-+jet case due to two pairs of identical particles.
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Figure 6.9: Diagrams with at most one resonant W or Z propagator of the subprocess
ud — veeTpu~ ptg contributing to pp/pp — vee uTpt + jet+X.

6.3.2 Improved narrow-width approximation

The amplitudes contributing in the improved NWA correspond to the doubly-resonant ones
of the full amplitude calculation discussed in the previous subsection. In all subamplitudes
contributing to the LO and real-emission subprocesses in Section 4.3, the gauge-boson
polarization bispinors are replaced by the currents of the decay leptons. The Breit—Wigner
propagator is extracted and integrated over. It is replaced by a suitably normalized o-
function. Details on this will be explained in Section 7.2. The remainder of the amplitude
reads

S I ) -] -3
b ACEL )

with the building block describing the gauge-boson decays in improved NWA defined in
Eq. (6.9). Differing from the full amplitude calculation, no sum is taken over intermediate
gauge-boson states because only the contributions from resonant massive gauge bosons are
taken into account in this approximation. In the NLO QCD calculations in Chapter 5, the
analogous replacement rules are applied.

As in the full amplitude calculation, the sum over external spins in the calculation
of matrix elements runs over the (anti-)lepton helicities here instead of the gauge-boson
polarizations.

The symmetry factor % arising from the two identical gauge bosons in the final state of
ZZ+jet production has to be dropped as in the full amplitude calculation. However, care
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has to be taken if both lepton—antilepton pairs from the decays belong to the same gener-
ation. Naively, a symmetry factor % in the WZ+jet case and a factor i for ZZ+jet would
be introduced. This is, however, in contradiction to the fact that the indistinguishability
of the (anti-)leptons is spoiled by the on-shell condition of the intermediate gauge bosons.
Assuming that 1, and 1, are identical antileptons, the preselection that the leptons ; and
1, stem from the decay of Z; and not, for instance, 1; and 1,, has to be taken into account
in the determination of symmetry factors. This leads to the situation that symmetry fac-
tors may not be introduced for each pair of identical particles, but only for each identical
lepton—antilepton pair. The resulting symmetry factors are 1 for WZ+jet and % in the
Z77+jet case, which are the same factors as in the VV+jet-production processes without
decays.

In the full amplitude calculation, this factor 2 can be assigned to the two terms in
brackets in Eq. (6.12). Assuming again that 1, and I, are identical antileptons, the first term
therein dominates if the gauge-boson propagator related to 1; and 1, and simultaneously
that one related to 13 and 1, are resonant. The second term does if the roles of 1, and 1,
are interchanged. Since the overlap between the two resonant phase-space regions is small,
interferences between the two terms are negligible. Thus, the integration over the whole
phase space leads to roughly twice the cross section one would obtain if one of the terms
was absent.






Chapter 7

Numerical phase-space integration

In the previous chapters, analytic formulae for the LO and NLO cross sections are eval-
uated. The phase-space integrations therein are, however, by far too complicated to be
performed analytically. Furthermore, a numerical calculation is even more convenient for
the implementation of phase-space cuts, and also the evaluation of differential cross sections
is simplified by this approach.

In Section 7.1, the multi-channel Monte Carlo method for performing a numerical
phase-space integration is introduced.

A generic way how to construct an n-particle phase space from three generic building
blocks is discussed in Section 7.2.

Section 7.3 provides some improvements of the LO phase-space generator to face the
challenges of a numerical integration of NLO contributions in the dipole subtraction method.

7.1 Multi-channel Monte Carlo integration

The phase-space volume applied in the cross sections of Section 5.1 is defined as
(27r)4—3n
2 (pa + pb)2

dS™ (Do, po; 1, - - - b)) = [H d'k; 6(k? — mf)e(k;?)] 5 <pa +p— ) k) : (7.2)
i=1 i=1

d®™ (po, py; K1y ..o k) = dd™ (pa, po; ks - - oK) (7.1)

for an n-particle phase space with outgoing momenta k;, 7 = 1,...,n. Generic properties
of phase spaces are discussed in Ref. [89]. The quantities to be evaluated are cross sections,

Gas(Pas P1) = / 4™ (o, o) f (D Do s -+ Fin) - (73)

where f collects both #-functions in order to realize phase-space cuts applied on the out-
going particles and the transition matrix elements of the respective subprocesses. In the
NLO calculations, the function f in general contains additional contributions from dipole
terms which are, however, also built from LO matrix elements.
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The functions f in general show—already in LO cross sections—a complicated peak
behaviour mainly due to the propagator structure of squared diagrams, which are contained
in the matrix elements. To improve the performance of the numerical integration, phase-
space mappings according to this propagator structure are introduced,

0®(r)
or

) = [ dyns D) L k(@ (r)) \ , (7.4

g(@(r)) " g(®(r))
where f,, delivers a brief notation of the former function f with the phase-space prefactor
absorbed into it. ® denotes the mapping between appropriate phase-space variables and
the momenta of the outgoing particles, and p is the respective phase-space density. For
a random generation of phase-space points, it is convenient to express these phase-space
variables, which can be selected in a generic way as discussed in Section 7.2, in terms
of uniform integration variables » = (ry,...rs, 4) defined on the unit hypercube, i.e.
r; € (0,1). These mappings r — ®(r) can be chosen in such a way that the probability
density ¢(®(r)) mimics the peak behaviour of the integrand, which is called “importance
sampling”.

Using one phase-space mapping only facilitates the treatment of one or at most a small
group of diagrams showing similar structures. A more sophisticated approach is provided
by the multi-channel Monte Carlo method [90, 91]. This method allows the combination of
different mappings—the so-called channels—in one probability density ¢i,; and therefore
to smooth the integrand simultaneously in the whole integration region. Which of the M
channels is used for the determination of a specific phase-space point in the numerical in-
tegration is chosen randomly. By introducing so-called “a-priori weights” ay, bk =1,..., M
(o, >0, 21]:4:1 ay = 1), the probability of choosing an individual channel k£ can be adapted
to further improve the integrator performance. Introducing these extensions, the integral
of Eq. (7.4) can be written as

Tab(Pas D) = /0 dr Z O(r— B1)0(B — 1) /0 >y fagbt(ol?(;]::)(g)))) , (7.5)

Giot (Pr(ry (1)) = Zalgl(q)k(r) (7)), (7.6)

where (; is a partition of unity,
! M
Bo=0, B=> o, l=1L...M-1, By=> a=1, (7.7)
Jj=1 =1

and k(r) denotes the channel that is used to determine the respective phase-space point.
It is selected by the sum over #-functions in a way that is appropriate for the numeric
realization of the integral. g;(®y (7)) is the probability density of the specific channel
[, evaluated at the phase-space point delivered from the mapping of channel k(r). For a
more detailed derivation of these formulae, the reader is referred, e.g., to Refs. [73, 92].
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The numerical evaluation of Eq. (7.5) is performed by randomly choosing the values of
the integration variables r and 7, which are all defined on the interval (0, 1), to first select
one channel and then determine one phase-space point where the integrand is evaluated
according to the respective mapping. Repeating this /N times delivers an approximation
of the cross section by averaging over the obtained results,

N
1 . . fao (ki (@rir;)(75)))
Oq > N Wi Wi = : 7.8
b(PasP2) & 5 Z: T g0 (Rrry) () e

The standard deviation of the integral is given by

S0t - (T 6)
N(N —1) '

60 ab (Pas D) = (7.9)

In the beginning of an integration, the a-priori weights are chosen to be equal for all
channels. It is, however, sometimes convenient to modify them in order to minimize the
Monte Carlo error. For improving the set of new weights, the adaptive optimization method
presented in Ref. [93] is applied. This method suggests to calculate a new set of weights
after Ny, evaluated phase-space points via

new 1 o gl(ik(’"j)(rj)) ~2 S new
x apy Wi(a) Wi(a) = N Z w5, Zak =1. (7.10)

wo Sy gtot(q)k(rj)(rj)) k=1

This procedure is repeated several times using the respective new sets of weights in every
optimization step. Since—as shown in Ref. [93]—the theoretically optimal set of ay obeys
the condition Wy (a) = Wi(e) for all channels k,1 =1,..., M, the quality of weights used
in each optimization step is measured by the variable

D = max|[Wi(a) ~ Wi(e) (7.11)

After a reasonable number of steps—which is in general reached if the weights do not
differ considerably between succeeding ones—the set of weights from the optimization step
leading to the minimal value of D in Eq. (7.11) is kept for the rest of the integration.

It is convenient to introduce a lower limit on the size of these weights, because too
small weights for single channels might spoil the numerical stability of the integration. If
a weight calculated according to Eq. (7.10) becomes smaller than the limit, it is set onto
the value of this limit by hand. The remaining weights are rescaled in order to obey the
fundamental normalization > | ¥ = 1.

7.2 Generic phase-space construction

Each n-particle phase space can be composed from three different building blocks, namely

e integration over time-like invariants,
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e phase spaces of two-particle decays, and
e phase spaces for t-channel-like 2 — 2 scattering processes,

which can be described generically. The decomposition of the phase space in Eq. (7.1) is
performed by expressing the J-function therein as an integration over a momentum intro-
duced anew. This momentum is fixed as the sum over outgoing momenta by J-functions, e.g.

o (p +p =) /-c) = / 'z 0 0 (p+p' — k1 — ko) 6 </€2 -y k) . (112)
=1 =2

The non-negativity of its energy component is trivially guaranteed by construction,
O(ky) - 0(ky,) = 0(k3) -+ 0(ky) x O(k3_,) - (7.13)

In a last step, a time-like invariant is introduced as an integration variable that determines
the square of the new integration momentum,

/ T dsyn (50 — K2 Y. (7.14)

$2...n,min

This procedure is repeated (n — 2) times, resulting in the phase-space decomposition sug-
gested before. Here, the phase space of a 2-particle decay D(pay) — A(kq) + B(ks) is
defined by

/de(Sab, Sas Sb) :/d4l€ad4kb 6(]{2 - sa)H(kS) (5(]{2 - sb)H(k,?) (5(4) (pab - ka - kb) s (715)
with s, = p?,, and the t-channel phase space for C(p,) + D(py) — A(k,) + B(k;) by

/de(pa,pb, Say Sp) = /d4kad4kb S(k2 — 5)0(k2) 6 (k2 — 53)0(kD) 0 (po + po — ka — ks)
(7.16)

where s; = m? for external particles in both definitions. The respective mappings applied
to the two phase spaces, which can be evaluated in the rest frame of the total incom-
ing momentum, and all rotations and boosts needed to build the whole phase space are
explained in Refs. [73, 92, 94]. At this point, only the mapping of time-like invariants is
explained in more detail, because the peak structure of the integrand mainly arises from
the respective propagators. (The mappings introduced here can also be used for smoothing
the Mandelstam variable ¢ in 2 — 2 scattering phase spaces with adequate sign changes.)
The integral over the time-like invariant is mapped via

Smax 1 d,,,. 9
ds = ,  s(r) = h(r,m*, v, Smin, Smax) ; (7.17)

Suin o 9s(s(r), Mm%, v, Smin, Smax)

dh(r,m?, v, Smin, Smax)
dr ’

with the functions h and ¢, defined according to the diagram to be smoothed. If the

mapped time-like invariant corresponds to a propagator in the particular diagram, the

following mappings are used with respect to the propagator type.

(7.18)

Js (S(T)a m27 V, Smin, Smax) —



7.2 Generic phase-space construction 143

Propagator with vanishing width: f oc 1/(s — m?)2

Propagators for stable particles or particles that are non-resonant and therefore their widths
are treated as zero—Ilike the intermediate gauge-boson propagators in case of the produc-
tion of stable gauge bosons—are mapped via

) = [ )01 )]
1—v

[(Smax o m2)1—u o (Smin o m2)1—u} (S _ m2)y )

(7.19)

2
gs(sa m=, V, Smin, Smax) —

for v # 1. In the actual calculations, v = 1.1 turns out to be an appropriate choice. As
suggested in Ref. [92], a small negative value of m? is introduced for massless propagators to
avoid numerical instabilities. For the Mandelstam variable ¢ arising in the 2 — 2 scattering
phase spaces, this mapping is used with the respective sign changes,

t = —h(r,—m?, v, ~tmin, —tmax) - (7.20)

Breit—Wigner propagator: f o 1/((s — m?)? 4+ m?I'?)
For resonant propagators showing the Breit—Wigner form, the mapping

h(r, m? —imI, 2, Smin, Smax) = m? + mI' tan [y1 + (y2 — y1)r]

2 mI

s\9 —1 F,2, min; Smax) = 5 7.21
95, = ImD, 2, i Smas) = 1 N ) 4 ) (7.21)
with

Sminmax_m2
Y1,2 = arctan <T> (7.22)

is applied. Such propagators arise both for gauge bosons in the full amplitude calculations
including decays and for top resonances.

In case of the NWA used for the description of massive gauge-boson decays, these
propagators are replaced by J-functions with the respective trivial integration performed
analytically. The appropriate normalization results from integrating over the Breit-Wigner
propagator with the limit I'y — 0 taken wherever possible,

/smax ds T (7 23)
(S — M\Z/)Z + M\Z/F%/ Fv—=0 M\/FV ' '

Smin

In order to implement this approximation into the generic framework for the phase-space
generation, a “pseudo-mapping” is defined, where g, should not be understood as the
Jacobi determinant of the mapping here, contrary to Eq. (7.18),

MLy

s =M, g (s(r)) = =%

(7.24)
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For all time-like invariants that do not correspond to propagators in a diagram and all
angles, which are calculated in the rest frames of the respective two-particle phase spaces,
linear mappings are applied,

$ = Smax” + Smin(l—7), ¢=2mr, cos=2r—1. (7.25)

By the approach discussed in this section, the integral over each n-particle phase space
can in general be decomposed as follows,

n—2 ng
/ Ao (pas o) = [ | / dsO T / 0y
i=1 j=1

n—ng—1

11 / Q| (7.26)
k=1

where ngy < n — 1 is the number of two-particle decays arising in the described channel.
The arguments of the respective elements are to be restored according to the specific
phase-space decomposition.

7.3 Improvements of the integrator performance

While the methods described in the foregoing sections are generally appropriate for the
numerical evaluation of any 2 — n scattering cross sections at LO, the NLO contributions
to cross sections—in particular the real corrections—require some improvements. The
virtual part does not lead to numerical instabilities arising from the phase-space integration,
since the cancellation of singularities is performed analytically. The problems to be solved
in the integration of virtual corrections are related to a stable evaluation of loop integrals
in exceptional phase-space regions. Apart from a few events, this problem is solved by
using the Denner—Dittmaier reduction scheme [81] for five-point functions. The remaining
events that are not evaluated in a stable way are thrown away by applying a technical cut.
Since only a handful out of a million events are thrown away in each channel, the results
are not significantly influenced by this action.

7.3.1 Extra channels for subtraction terms in the real corrections

In the real-correction contributions, the function f in Eq. (7.3) contains both matrix el-
ements and dipole terms, whereas the phase-space parametrizations described so far are
only adapted to the first. The multi-channel approach, however, provides a convenient
way to extend the procedure by simply adding additional channels adapted to the peak
structure of the dipole terms. The (m + 1)-particle phase space of the real corrections can
be decomposed into an m-particle phase space and a description of the remaining parton,
which can be used for the phase-space generation.

For the dipoles describing final-state singularities with an initial-state spectator, such
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a decomposition can be achieved via

1
/d¢(m+1)(pa7pb;k17"'7km—17pi7pj) :/ dxl?,a/d(b(m)(ﬁaapb;kla"'ka-l-laﬁij)
0

X /d¢(2)(pi+pj;pi,pj) X 2pq(pi +pj) ., (7.27)

where the relations between the momenta of real-correction and dipole phase spaces are
given in Eq. (5.43). The situation of initial-state singularities with a final-state spectator
can be treated analogously with p, — Dei, P; — Di, and the momentum relations of
Eq. (5.32). It turns out, however, to be convenient to use different mappings for the two-
parton phase space dp®, which is discussed at the end of this subsection.

For the dipoles describing initial-state singularities with an initial-state spectator, a
different decomposition is used,

1
1
/d¢<m“>(pa,pb;k1,...,km_l,pz-,pj) =/ dfﬂl,ab/dﬁi(m) X PV Pat )
0

X/d(é(m)(ﬁaiapb;l%l;-A-J-;l%m—laﬁj); (728)

with the momenta of the two phase spaces related via Eq. (5.43). The solid angle of the
momentum p; is denoted by d€2;(p;), and p? is its energy component in the rest frame of
the incoming momenta p, and p,.

In general, the lower integration limit of the variables x;;, and z; 4, can be chosen as
Tmin > 0 from kinematical constraints. For the variable transformation of the respective
integral,

/Il = /0 | % ’ (7.29)

the following mappings turn out to be convenient,

2(r) =14 2pim —exp (rinzmm),  ge(z(r)) = ) = (xminl+ I (7.30)
and
2(r) = (1= 2mn) (L= 1) + 2in , gala(r)) = ! . (731)

(#(r) = amin)' 701 = T 7

In the case of Eq. (7.27), the mapping in Eq. (7.30) is applied, for Eq. (7.28) the one

in Eq. (7.31) with n = 4. In principle, the variables Z; or u; defined in Eqs. (5.25) and
(5.38), respectively, could be used in the mapping of d¢® in Eq. (7.27), and an analogously
defined quantity for d€2;(p;) in Eq. (7.28). In the numerical calculations of this thesis, they
are, however, not used. These quantities would mainly be useful to construct mappings
that populate the regions around the singularities described by the dipoles. Exactly these
regions, however, do not deliver large contributions in the sum over real corrections and

dipoles, since the singularities cancel between the two contributions. Instead, angles are
used for the mappings of d¢® in Eq. (7.27) and d2\” in Eq. (7.28).
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7.3.2 Improving numerics in critical phase-space regions

The main problems concerning the stability of the phase-space integration arise where
numerical cancellations take place between contributions that are defined on different phase
spaces. This is obviously the case for the real-correction contributions, but also in the
collinear-subtraction terms. Since the cuts on outgoing momenta, which are included in
the jet functions defined in Section 5.1, are to be applied to the respective phase spaces,
large integrands can result from single phase-space points if some contributions are cut
away while the others pass the cuts. Improvements can be achieved here in the range of
the transverse-momentum cut on the hadronic jet, since it is present in all calculated cross
sections and quite easily accessible via mappings.

To this end, further channels are added to the multi-channel integrator. These are
constructed according to diagrams containing a ¢t-channel propagator with the two incoming
partons and an outgoing parton involved. The usual ¢-channel mapping for this propagator
is replaced by a new mapping that is constructed to populate the phase-space region
where the transverse momentum of the outgoing parton is roughly equal to the transverse-
momentum cut imposed on the jet. Mainly phase-space points with this property, namely
PTi A DTjetcus if ¢ i an outgoing parton, turn out to cause instabilities if numerical
cancellations take place between contributions evaluated at different phase-space points.
For this purpose, the t-channel phase space is decomposed as follows,

\Pi|
/de(pa,pb;psz Srest) =/ dp?
|

|p;

o 1 (pa + pb)2 — Srest

dp; ———, |p;| =
0 4/ (pa + p)? 2v/(pa + 11)?
1 1
= / d7“1/ dry d 3 ) (7.32)
0 0 2+/ (Pa + 1)? 9-(p} (1))

where p; is the light-like momentum of the outgoing parton, p? its component in beam
direction, and s, the squared momentum of the remaining outgoing particles. For the
mapping of p;(r), the following composition of rational functions is used if |p;| > pr jet.cut,

( _Imt\l;aT (a—7)" —ar forr <a,
ar _q)" — fora <r <0.5
0.5_a)" (r—a) ar ’
R0 = s
i (@ =) bar for05<r<l-a,
\\m(ll;aT (r—(1—a))"+ay forr>1—a,
( _q " forr <a,
n(lp;|—ar) @ (=(p+ar))' ™7
: )l0(~53—+a = fora<r<0.5,
3 n(ar)n™ (p;t+ar "
T 7.34
gz(pz( )) . 0.5—a — fOI' 0.5<7“<1—CL, ( )
n(at) ™ (—(pj—ar))' " n
= — forr>1—a,
\ n(|pi|-ar)® (p}—ar)' "
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Figure 7.1: Illustration of the mapping for p?(r) if [p;| > P jet.cut as defined in Eq. (7.33).
The units for 1/g,(p?(r)) (left-hand plot) and g.(p(r)) (right-hand plot) are arbitrary.
The choice of parameter values is given in the text.

where

ar = /1P = P o - (7.35)

The parameters n > 0 and 0 < a, < 0.5 can be chosen arbitrarily. For the actual
calculations and in the illustration shown in Figure 7.1, we set n = 8 and a, = 0.25, which
turns out to be an appropriate choice by trial and error. For [p;| < prjetcut, @r is set to
zero and a, = 0.5, so only the first and the last line in the definition of the mapping are
applied in this case. From Eq. (7.35) it is straightforward to see that |p}| ~ ar corresponds
to Pi;T & PTjet,cut- Hence, the described mapping is useful to populate this critical region.

In the ‘C 4+ A’ contributions to the NLO cross section, which is discussed in Section 5.4,
this mapping is used for all subprocesses with gg, qq, or qq splittings. These subprocesses
contain plus-distributions with respect to the momentum fraction z that one of the incom-
ing partons carries, leading to two different phase-space points contributing, the one with
the CM energy /2§ and the other with v/5. The mappings for both points, which are gen-
erated simultaneously, are chosen to match in the limit 2 — 1, where both contributions
tend to infinity, but with a finite value of their sum. Away from that limit, a numerical
cancellation takes place. This cancellation is, however, spoiled if one of the two contribu-
tions is cut away and the other one passes the cuts, leading to very large weights of single
events. These events can be identified as the jumps in the evolution of the integration error
on the left-hand side of Figure 7.2. A remarkable improvement is achieved by adding some
extra channels including the mapping of Eq. (7.33), which can be seen on the right-hand
side of Figure 7.2.
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pp(ug) — WTW~ + jet (ug) pp(ug) = WTW~ + jet (ug)
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Figure 7.2: Performance of the numerical integration: The evolution of the relative inte-
gration error 0o /o with the number of evaluated events is depicted. As an example, a
set of subprocesses of the C+A contribution to the hadronic cross section for WW-+jet
production is shown, namely those with an up-quark—gluon initial state. Extra channels
as explained in the text are only implemented in the integration that corresponds to the
error evolution in the right-hand plot.

In the ‘R — A’ contributions to the NLO cross section, a similar problem arises for
all real-correction subprocesses containing singularities, which are defined on an (m + 1)-
particle phase space. The singularities are cured numerically by means of the dipole terms
defined on m-particle phase spaces, where the different phase spaces are degenerate again
only if the respective limits—collinear or soft—are taken. Away from these limits, as in the
case discussed before, the cancellation is spoiled if at least one of the relevant contributions
is cut away, whereas the others pass all cuts. The additional channels to improve the sta-
bility of the numerical integration are constructed by using the phase-space decomposition
of Eq. (7.27). For all diagrams involving ¢-channel-like situations with both initial-state
partons and a final-state parton, the usual ¢-channel mapping is replaced by the mapping
of Egs. (7.32) — (7.35), which refers to the outgoing parton in the dipole phase space here.
Its transverse momentum coincides with the transverse part of the summed momenta of
the two outgoing partons in the respective real-correction phase space. The improvement
resulting from this procedure is in general not as strong as in the ‘C 4+ A’ case, but the
achieved numerical stability is already acceptable.

For all these contributions with numerical cancellations between different phase spaces,
it turns out to be convenient not to apply the adaptive weight optimization described in
Section 7.1. The reason is that single events with high weights—which can still show up
despite all improvements—would possibly disturb the optimization procedure. Therefore,
the weights of all channels remain unchanged in the whole integration.



Chapter 8

Numerical results

In this chapter, numerical results are presented for the generic process class pp/pp —
VV + jet + X. In Section 8.1, the values of the input parameters and the setup used for
all calculations are given.

Section 8.2 describes the numerical checks applied to ensure the correctness of the
given results. Moreover, for WW+jet production comparisons with the calculations of two
independent groups have been performed, which is briefly reported on.

In Section 8.3, the scale dependence of all partonic subprocesses to the LO cross sections
for the four weak-gauge-boson assignments are presented in order to give an overview which
partonic channels yield the main contributions in the respective process classes.

As discussed in Section 3.3, the cross-section calculations are performed using the four-
and the five-flavour schemes. In Section 8.4, both LO and NLO cross sections are com-
pared between the two approaches, showing good agreement within the expected errors.
Therefore, all further numerics are discussed only in the five-flavour approach. Moreover,
the scale variations of the cross sections are considered for LHC and Tevatron. Finally, the
influence of a variation of the transverse-momentum cut applied on the jet is discussed for
the VV+jet production cross sections.

Corresponding to Section 6.1, the inclusion of gauge-boson decays is considered by a full
amplitude calculation, in the NWA, and in an improved version of the NWA. In Section 8.5,
the cross sections for all gauge-boson assignments are presented at LO. Especially if dis-
tributions are taken into account, the improved NWA turns out to provide a significantly
better approximation of the full results than the simple one.

Therefore, the improved NWA is applied for the NLO QCD calculations presented in
Section 8.6. First, an overview is given over the size of the VV+jet cross sections including
decays and additional cuts on the outgoing leptons. Afterwards, differential cross sections
are presented for WW+jet at the LHC and the Tevatron. Since the cross sections for
WZ+jet and ZZ+jet are quite small at the Tevatron, distributions are only discussed here
for the LHC.
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8.1 Setup and input parameters

For the numerical calculations, the following SM parameters [95] are used,
My = 80.425GeV , My =91.1876 GeV, Gy =1.16637 x 10> GeV 2. (8.1)
The electromagnetic coupling « is evaluated from these via

2Gp M3 sin® 6
OZZOAG#:\/_ FMw St W, (82)
™

where 6y is the electroweak mixing angle defined in Eq. (2.14). This choice of « already
respects basic corrections to the electroweak coupling from higher orders of perturbation
theory, which is explained, e.g., in Ref. [96]. The widths of the weak gauge bosons are
calculated—in case of the production of stable weak gauge bosons they are, of course,
set to zero—from all decay channels at NLO QCD with the fermion masses neglected,
according to Egs. (6.3) and (6.4). With the value of the strong coupling at the scale My
taken from Ref. [97],

ag(My) = 0.1176 , (8.3)
the calculated widths are
['w =2.0996 GeV , I'y =2.5097GeV . (8.4)

The SM parameters already used in the publications on WW+jet production (see
Refs. [40, 98, 99, 100]) are not replaced by the more recent values [97] in order to facil-
itate comparisons; the numerical impact of the slightly changed central value of Myy is,
however, negligible anyway at the required accuracy.

The values for the strong coupling in the amplitude calculation are evaluated according
to a 1-loop-running at LO and a 2-loop-running at NLO as described in Ref. [60],

1

as,l—loop(ﬂren) = 33_2N; I R (85)
12m Adop
ln (ln l“?en )
6(153 — 19V, A2
as,Zfloop(,uren) - Oés,lfloop(,uren) 1— ( f) e ) (86)

(33 — 2Ng)? In A@i

QCD
where i, is the renormalization scale, Ny the number of active light quark flavours and
Aqcep the QCD scale parameter. The values of Aqcp are chosen as prescribed by the applied
PDF sets: In the five-flavour scheme, the PDFs of CTEQ6 [101, 102] are used with Ny = 5,
namely CTEQG6L1 with Aqcp = 165 MeV at LO and CTEQ6M with Agep = 226 MeV at
NLO. In the four-flavour scheme, the PDFs of MRST2004 (see Ref. [103]) with Ny = 4
are taken, namely MRST2004F4LO with Aqcp = 220 MeV at LO and MRST2004F4NLO
with Aqep = 347MeV at NLO. The renormalization of oy is performed as described in

Section 5.3.4, i.e. with the heavy-quark loops in the gluon self-energy decoupled: In the
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five-flavour scheme only the top loop is decoupled, in the five-flavour scheme both the top
and the bottom loop.
The Cabbibo angle in the applied approximation for the CKM matrix is set to

fc = 0.227 (8.7)

the explicit entries are calculated from this according to Eq. (3.1).

In the calculations of VV+jet production, only a cut on the transverse momentum
of the hadronic jet is applied, which is necessary since the cross sections would diverge
without such a restriction already at LO. Different values are used for pr e cut Which are
explicitly given for the respective results. In this thesis, the successive combination jet
algorithm of Ref. [77] with R = 1 is applied to decide whether two final-state partons
can be resolved as two separated jets or whether they have to be combined to only one
jet. For VV+jet production, a dependence on the specific jet algorithm only arises in the
real-emission subprocesses because the LO and all other NLO contributions contain only
one parton in the final state.

If the weak-gauge-boson decays are included, a set of further cuts is applied which is
in general not necessary for the finiteness of cross sections, but provides results which are
closer to the experimental situation. These additional cuts are

|77jet| <45 ) pT,lepton > 25 Gev ; |771ept0n| <25 ) (88)

where 7 is the rapidity and py the transverse momentum of the respective particle. All
leptonic cuts are applied only to charged leptons, of course. In the process classes with out-
going neutrinos, which are WW+jet and WZ+jet production with the considered decays,
as an additional condition the missing transverse momentum is required to obey

PT,miss > 25 GeV . (8.9)

The missing transverse momentum is particularly of interest if WW-jet or WZ-+jet are
considered as background processes for SUSY searches. Here, the missing transverse mo-
mentum is due to the LSP that also leaves the detector unseen.

Furthermore, isolation cuts in order to separate all visible leptons from each other and
from hadronic jets are applied,

Rlepton,jet > 04 ) Rlepton,lepton > 0.2 ) (810)

where R = /(Ap)2 + (An)2. The angle between the two particles in the transverse plane
is denoted by Ay, and An is the difference of their rapidities.

In the full amplitude calculations of WZ+jet or ZZ+jet production, a further cut is
applied to the two leptons resulting from Z decays. Since the processes we are actually
interested in contain resonant Z bosons, the invariant mass of the lepton—antilepton pair
is restricted to the region around My,

|M1—1+ — Mz| <xzly, (811)

where x can be adapted. From diagrams with the intermediate Z boson replaced by a
photon, infrared singularities might arise due to v — 171 splittings in the limit of vanishing
photon virtualities. By the invariant-mass cut, however, such singularities are excluded.
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8.2 Survey of numerical checks

8.2.1 Comparison with available tools

In order to ensure the correctness of the results calculated in this thesis, a number of
checks has been performed using publicly available tools: All LO and real-emission matrix
elements are checked against the package MADGRAPH [104] which is based on the HELAS
library [105] for the evaluation of helicity amplitudes. Since the applied version of MAD-
GRAPH does not support a non-trivial CKM matrix, the checks are done with a trivial one,
leading in general to an agreement of more than 13 digits.

To provide a check also for integrated cross sections, a detailed comparison with
WHIZARD 1.50 [106] and SHERPA 1.0.8 [107] has been performed for WW+jet, both
for the LO and the real-emission subprocesses. The latter are made finite by demanding a
minimal invariant mass of the two jets, i.e. the checks are actually performed for the LO
subprocesses of pp/pp — WW + 2jets + X. All these comparisons lead to full agreement
in the range of the integration errors. A detailed survey of the individual subprocesses is
provided in Ref. [73]. In the remaining process classes of VV+jet production, only com-
parisons of the LO cross sections are performed, leading again to full numerical agreement
in the range of the integration errors.

8.2.2 Independent NLO QCD calculations for WW+jet

For WW+jet production, a second full NLO QCD calculation based on, as far as possible,
different techniques or at least different implementations has been performed, leading to
full numerical agreement with the calculation provided in this thesis. Some results on
WW+jet production are presented in Ref. [98]. The evaluation of the virtual corrections of
this second version is performed essentially in the same way as described in Refs. [108, 109]
where the processes of ttH and tt+jet production are discussed, respectively. Point-wise
comparisons between the two calculations are performed for the different subprocesses at
some phase-space points, leading to an agreement of at least 7 digits for all compared events,
which is acceptable since numerical cancellations occur in the complex evaluation of the
loop integrals. The real-emission subprocesses and the collinear-subtraction counterterms
are also compared with a second version, which is based on MADGRAPH matrix elements
extended to support a non-trivial CKM matrix and a dipole library developed for the
tt+jet calculation [109]. Again, the results at individual phase-space points turn out to be
consistent at the level of the computational accuracy. For all integrated contributions to
the cross section, an agreement typically in the range of one or two standard deviations is
obtained as expected from statistics.

Independently of the calculations of Ref. [98], two further groups have performed NLO
QCD calculations on WW-jet production. The results of one of these groups are given in
Ref. [110], whereas those of the second group are not published yet. In Ref. [40], a tuned
comparison of the three calculations is provided for the integrated LO cross section, which
agree again within statistical errors, and of the virtual corrections at one specific phase-
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space point. Here, the renormalized matrix elements are subdivided to bosonic corrections
and fermionic corrections with only the two light generations included. They are given in
terms of the coefficients to the poles E% and %, and the constant part, i.e. in a way that is
independent of the specific treatment of the infrared singularities. (An external comparison
of our results for the third-generation loops could unfortunately not be performed so far.)
Agreement is achieved between all three results at an accuracy level comparable to the

internal checks of our group.

8.3 Discussion of VV-jet cross sections at LO

The LO cross sections for all weak-gauge-boson assignments get contributions from qq, qg,
and gq initial states. In this section, the relevance of the respective partonic channels is
discussed both for results of proton—proton collisions at /s = 14 TeV (LHC setup) and
of proton—antiproton collisions at /s = 1.96 TeV (Tevatron setup). Scale variations of a
factor 10 around the central scale, which is chosen to be My for WW+jet and WZ+jet
production and My for ZZ+jet production, are considered. Here and in the following
sections, the common scale j1 = fien = pfact 1S used, i.e. renormalization and factorization
scale are set equal and are varied simultaneously.

Without specifying the weak-gauge-boson assignments, some general remarks can be
made about the relevance of the specific channels. At the LHC, each partonic process
involves at most one valence quark from one of the protons. Therefore, the gluon flux,
which is essentially larger at the LHC compared to Tevatron, leads to in general larger
contributions from qg channels compared to qq channels, whereas the gq initial states
contribute significantly less since no valence partons are involved here. The situation at
Tevatron is essentially different because the proton—antiproton collisions provide qq contri-
butions with two valence partons that dominate the cross sections. The scale dependence
of the cross sections turns out to be stronger at Tevatron than at LHC, which is due to
the factorization-scale variation. While the renormalization-scale variation only reflects
the running of the strong coupling ay, which is the same in both cases, the factorization
scale dependence is quite flat for nearly all channels at LHC in the considered range. At
Tevatron, however, an increase of roughly the same order as the one arising from the
renormalization-scale dependence is found in the direction of lower scales. A detailed anal-
ysis of the scale dependence of LO cross sections to WW+jet production is provided in
Ref. [73].

Figure 8.1 shows the results for WW+jet production. In case of the LHC, the partonic
contributions with up-type quarks prevail those with down-type quarks, which can be
understood by comparing the valence-quark PDF's in the protons. The antiquark PDFs of
the lightest generation result in an inverted order of the gq channels at the LHC where the
gd channel prevails the gii contribution. For Tevatron, the described valence-PDF effect
occurs twice in the qq channel, leading roughly to a factor 4 between u@ and dd. The
channels qg and gq deliver exactly the same contribution to the integrated cross sections
due to the charge-conjugation-invariant hadronic initial state. Naturally, the channels
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Figure 8.1: Partonic contributions to the LO cross section of WW+jet at the LHC (left-
hand side) and the Tevatron (right-hand side): A scale variation with g = figact = fhren 1S
shown for all channels. If more then one curve with identical colours is given, the first one
mentioned in the key corresponds to the upper curve. The contribution named ‘total” does
not contain bottom contributions.

involving valence-(anti-)quarks dominate, and therefore the described PDF effect leads
again to larger contributions from ug/gti compared to dg/gd.

In addition, for both colliders the channels involving bottom flavours are shown in the
plots. As expected, bb is numerically negligible in both cases, whereas the bg channel and
the gb channel-—whose contributions to the integrated cross section are the same—each
account roughly for the same amount as all the subprocesses involving (anti-)quarks of
the two light generations at LHC. As already explained in Section 3.2, this is due to the
fact that these subprocesses actually describe resonant and non-resonant tW— and tW
production, respectively, with the top decays included. Therefore, these channels—and the
respective NLO corrections concerning these channels containing top resonances—are not
taken into account in the following sections. For Tevatron, their numerical impact is not
that large, since the energy to produce top resonances in addition to a W boson is rarely
available. The respective channels are, however, treated in the same way here as for the
LHC. The different shapes of the scale-variation curves with bottom flavours result from
a strong decrease of the bottom PDF's for smaller values of the factorization scale.

For ZZ+jet production, the PDF effects explained in the prevenient passage still hold,
but are overcompensated by the coupling strength of the Z bosons to quark chains that
favours down-type (anti-)quarks in general, as depicted in Figure 8.2. For the LHC, this
results in an inverted order of the channels involving valence quarks, with the down-type
subprocesses contributing more now. In the case of Tevatron, this effect is not strong
enough to invert the order, but the dominance of the uu channel over the dd channel
is weakened, whereas the subprocesses ug/gu and dg/gd contribute roughly the same to
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Figure 8.2: As in Figure 8.1, but for ZZ+jet production.

the LO cross section. The channels involving bottom flavours are not enhanced by top
resonances in ZZ-+jet production. For LHC, their sum accounts for about 4% of the LO
cross section only involving the two other generations. Therefore, an LO calculation for the
external bottom flavours would be enough for the required level of accuracy. Since the NLO
corrections to these channels are essentially the same as for the other light flavours, the
NLO calculations could also be simply performed. However, taking into account a further
suppression of bottom channels via ant-b-tagging justifies to omit all external bottom
contributions in the following NLO calculations. For Tevatron, the respective contributions
are beneath the per-mille level and can therefore be neglected anyway.

The respective results for WZ+jet production are collected in Figure 8.3. The partonic
initial states shown there contribute either to W Z+jet or W~ Z+jet, depending on their
charge. The PDF effects discussed for WW+jet explain the situation that the contributions
to WTZ+jet are larger than the respective ones to W~Z+jet at LHC, since both up-quark
and down-antiquark initial states are favoured in proton-proton collisions. Both are only
present in the W*Z+jet case, which simply results from charge conservation. For proton—
antiproton collisions at Tevatron, the two processes are connected by CP symmetry on
the hadronic level, yielding the same integrated cross sections for the two process classes.
The dominance of the ud/da channel as well as the predominance of ug/gii over dg/gd is
again understood from the PDFs. Bottom flavours do not contribute at all in the applied
approximation for the CKM matrix.

8.4 NLO QCD cross sections for VV+jet production

After analyzing the individual contributions to the LO cross section in the previous section,
the effects of NLO QCD corrections on the VV+jet cross sections are discussed here. For
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Figure 8.3: As in Figure 8.1, but for WZ+jet production. In the key, the first entry refers
to WHZ-+jet, the second one to W~ Z+jet, where the latter channels are in addition marked
by dotted lines for LHC.

most of the numerical results of this and the following sections, two different definitions
of the NLO observables are used. The one observable is defined more inclusively by only
requiring at least one hard jet with a minimum transverse momentum after application
of a jet algorithm. The more exclusively defined observable applies a veto on a second
separable hard jet and describes therefore genuine VV+jet production. To this end, real-
correction events with two jets fulfilling the pr je; cut condition that are not combined by the
jet algorithm are not counted in the more exclusive observable. The phase-space regions in
the real-correction subprocesses that are relevant for curing infrared singularities from the
virtual corrections are not influenced, since the applied restriction only refers to genuine
VV+2jets events. Therefore, the difference between the results for the two NLO observables
is precisely given by the respective LO observable of VV+2jets production—evaluated,
however, with NLO PDFs.

8.4.1 Four-flavour versus five-flavour scheme

Before the scale dependence of the NLO cross sections is discussed in the next paragraph,
a comparison between the results obtained in the four-flavour and the five-flavour scheme,
respectively, as described in Section 3.3, is provided. The NLO QCD cross sections for
all four gauge-boson assignments to VV-+jet production are presented in Figure 8.4 for
the LHC setup with prjetcut = 50 GeV and in Figure 8.5 for the Tevatron setup with
PTjet,cut = 20 GeV, both for the four-flavour calculations with MRST2004F4 PDFs and the
five-flavour calculations with CTEQ6 PDFs.

In case of the LHC, the relative deviations between the two approaches show a qualita-
tively similar behaviour: whereas the deviation significantly increases in direction of lower
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Figure 8.4: Comparison of VV+jet-production cross sections at the LHC: The straight
lines show the results calculated with the five-flavour PDFs CTEQ6—mnamely CTEQ6L1
in LO cross sections and CTEQ6M in NLO—, the dashed lines those calculated with the
respective LO and NLO four-flavour PDFs of MRST2004. Contributions from external
bottom (anti-)quarks are omitted in the CTEQG case, as described in Section 3.3.
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Figure 8.5: As in Figure 8.4, but for the Tevatron setup.
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scales at LO, which leads, however, to relative deviations of less than 4% in the whole
range, it is nearly flat for both NLO observables where the results deviate by less than
2% for all process classes. For the Tevatron, the comparison between the two approaches
delivers deviations of less than 2% at LO over the full scaling range. The NLO cross sec-
tions turn out to be slightly larger in the CTEQ6 approach, but on a level of less than
4% for the whole range of interest. The smallest scales depicted may be ignored, because
they obviously describe a region where the NLO calculation is not a good approximation
any more, as one can see from the steep decline of the absolute values for the NLO cross
sections in that range of scales.

Since the results evaluated with different PDF sets can in general not be expected
to agree exactly—not only in the present case where different descriptions of the bottom
(anti-)quark are applied—this analysis can be seen as a confirmation that the approxima-
tion that is applied in the five-flavour calculation delivers fully acceptable results. More-
over, the deviations between the two approaches are far below the expected experimental
errors. The good agreement has been further confirmed by performing the same com-
parison for prjetcut = 100GeV at LHC and prjet,cur = 50 GeV at Tevatron, yielding the
same results qualitatively. In addition, also differential cross sections have been compared
with no significant deviations showing up in any phase-space regions. Numerical results of
these further comparisons are omitted here, because they are not supposed to provide new
insight.

8.4.2 Scale dependence of NLO QCD cross sections

Considering the scale dependence in the transition from LO to NLO at the LHC (see
Figure 8.4), only a modest reduction is observed if gauge-boson pairs in association with
two hard jets are taken into account. This large residual scale dependence is mainly due to
the qg channels, followed by contributions with two valence quarks in the initial state, which
are present in the real corrections, but not at LO. The scale dependence can be significantly
suppressed upon applying the veto of having “no 2"¢ separable jet”. The relevance of a
jet veto in order to suppress the scale dependence at NLO was also realized for genuine
W-pair production at hadron colliders [111]. A reduction of the difference between the two
curves, which represents—as mentioned in the beginning of this section—the contribution
of genuine VV+2jets events, is also achieved by increasing the value of the cut on pr jes,
which is illustrated in Figure 8.6 for WW+-jet production with pr jetcut > 100 GeV in the
LHC setup and pr jet,cus > 90 GeV for the Tevatron.

In general, the influence of the restriction on genuine VV+jet production via the de-
scribed jet veto is not that large in the Tevatron setup (see Figure 8.5). This can be un-
derstood from the lower CM energy at Tevatron: The energy for producing a second hard
jet is available more rarely here, so a stronger suppression of VV—+2jets events is obtained.
The fact that the difference between the two NLO observables strongly decreases when
going to higher pr jetcut values—as shown on the right-hand side of Figure 8.6—confirms
this interpretation.

For all VV+jet-production processes, a significant reduction of the scale dependence is
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Figure 8.6: Scale dependence of the WW+jet cross sections with p = pigaet = firen, Where
Pr,jet > 100 GeV is applied for the LHC, and prje; > 50 GeV for the Tevatron.

achieved by calculating the NLO corrections to the respective cross sections—at the LHC,
however, only if a veto on a second hard jet is applied. Therefore, a summary plot for
the scale dependence of all four gauge-boson-pair assignments is provided in Figure 8.7
for the LO and the more exclusive NLO cross sections, with two different pr jetcut values,
respectively, both for the LHC and Tevatron.

8.4.3 Dependence on the transverse-momentum cut on the jet

To close the discussion of the NLO cross sections for VV+jet with stable weak gauge bosons,
their dependence on the cut applied to the transverse momentum of the jet is considered
here. In Figures 8.8 and 8.9, the prjetcut dependence is shown for all four gauge-boson
assignments in the LHC and the Tevatron setup, respectively. In order to introduce a
measure for the scale uncertainties of the cross sections, bands are depicted that correspond
to a variation of p = firen = et by a factor 2 around the central scale. A crossing of the
curves for differing scale values leads to vanishing band widths at some points, which is an
artifact of how the results are depicted and should not be misinterpreted as a vanishing
scale uncertainty. In the plots of Figure 8.9, the band corresponding to the more inclusive
cross section is partially covered by the more exclusive one. Both curves are, however,
shown here in order to confirm the statement that the effect of genuine VV+2jets events
decreases with an increasing value of prjetcut- This becomes manifest in the overlap of
the two bands especially for large cut values at the Tevatron, but is also evident in the
plots for the LHC setup (see Figure 8.8) from the convergence of the two NLO bands when
going to larger values for pr jetcut. Eventually, the pr et cur variation reflects the behaviour
discussed in the previous paragraph: For Tevatron, a considerable reduction of the scale
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Figure 8.9: As in Figure 8.8, but for the Tevatron setup.
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Figure 8.10: Differential cross section with respect to the invariant mass of the decay
leptons for W' Z+jet. No cut is applied on their invariant mass in the left-hand plot. The
invariant-mass cut applied in the right-hand plot is chosen such that the Z peak is included,
but the contribution of photons with low virtuality is cut away.

uncertainty is achieved when going from LO to NLO, whereas this reduction is only mild
for LHC unless VV+2jets events are vetoed.

8.5 LO analysis of the different decay descriptions

Up to now, the massive gauge bosons are treated as stable particles, which is, of course,
not the actual situation in experiment. An inclusion of leptonic decays into the calculation
of VV+jet production can be performed in different ways. In this section, a comparison
of LO results for the three strategies discussed in Section 6.1 is performed, which are a
full amplitude calculation, the simple NWA, and an improved version of the NWA that
treats the weak gauge bosons as on-shell particles, but keeps spin correlations. The aim
of this discussion is to find an adequate approximation in order to avoid performing the
full amplitude calculation but still to obtain an appropriate description of the decays. In
the processes ZZ-+jet and WZ+jet, a cut is applied on the invariant mass of the leptons
from the Z decays, which is illustrated in Figure 8.10. The right-hand plot indicates that
the cut value is chosen such that the main part of the Z peak is included. The increase for
low invariant masses, however, which is due to photons with small invariant masses, is cut
away. The cut value used for the calculation corresponds to x = 20 in Eq. (8.11). If no
lepton-separation cut was applied, the cross section would even be divergent in the limit of
a vanishing invariant mass of the lepton—antilepton pair. If a smaller region around the Z
peak is considered, i.e. a more typical cut, e.g. x = 5 is applied, the NWAs systematically
overestimate the cross sections compared to the respective full amplitude calculation. This
is due to the fact that the normalization of the J-function replacing the Breit-Wigner
propagator in the improved NWA is calculated in the limit 'y — 0, i.e. for an infinite
range of Z virtualities. Using finite limits in the evaluation of the normalization factor
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yields corrections of roughly 7% for each Z propagator if the limits corresponding to x = 5
are inserted. The corrections corresponding to x = 20, however, are in the per-cent region
and can thus be neglected. If an experimental cut on the invariant mass of the leptons
should be applied, such a correction factor would have to be included in the improved NWA,
and the branching ratios that are used for the simple NWA would have to be modified by
such a correction factor as well.

In Figure 8.11, the cross-section results are shown for the full amplitude calculation
and the two approximations in the LHC setup with prjet.cat > 50 GeV. Considering only
integrated cross sections, both approximations reproduce the full results at the expected
accuracy of O(I'y /My). For WW+jet production, we find a deviation of about 3% for the
simple NWA and of +1% for the improved version. For the process classes with Z-boson
decays involved, the full amplitude calculation depends on the invariant-mass cut, as dis-
cussed above. By using x = 20 in this comparison, it is justified not to include a correction
factor into the NWA calculations. For ZZ+jet production, the deviation is roughly +2%
for the simple NWA and —1% for the improved NWA. For WZ+jet production, it accounts
for +4% and +6% for the simple NWA in WtZ+jet and W~ Z+jet, respectively, whereas
the improved NWA reproduces the full amplitude calculation better than on the 1% level
for both charge assignments. The differences between the two approximations are due to
the ignored spin correlations in the simple NWA, which leads to different distributions of
the decay leptons over the phase space. These changes become manifest in the integrated
cross sections if cuts are applied. For the calculations depicted in Figure 8.11, the cuts
described in Egs. (8.8) — (8.11) are used with x = 20. In general, both the simple and the
improved version of the NWA would give the same integrated cross sections if no leptonic
cuts were applied. This is due to the fact that taking the spin correlations into account
only causes a redistribution between the contributions arising from different gauge-boson
polarizations, which does not influence the integrated result.

Distributions in specific variables are, however, strongly affected, which can be seen
from the differential cross sections given in Figures 8.12 and 8.13 for WW+jet. Only
the distributions for decay leptons are shown there because these are, naturally, mainly
affected by the different decay descriptions. Considering the distributions of transverse
momentum pr and rapidity 7 of each of the two decay leptons, the improved NWA delivers
a very accurate reproduction of the full calculation, whereas the simple version deviates by
up to 15% in some phase-space regions. The distributions of the angles between the two
leptons—¢ denotes the angle in the transverse plane and cos # the solid angle between the
two leptons—resulting from the full amplitude calculation are also in general reproduced
more precisely by the improved NWA. No explicit distributions are shown for the other
gauge-boson assignments, but the general statement holds also for these.

The analysis of this section motivates the application of the improved NWA for the
NLO QCD calculations to pp/pp — VV + jet + X with leptonic decays, at least in a
first step. To include an experimental cut on the invariant mass of the leptons from a Z
decay into the calculation, a respective factor could be used to rescale the improved NWA
results, as discussed in this section. Such a factor is, however, not implemented in the
results presented in the following.
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Figure 8.11: Comparison of different decay descriptions for VV+jet at LO in the LHC
setup: Scale variations with 1 = pigaet = piren are depicted for the full amplitude calculation,
the simple NWA | and the improved NWA (iNWA). The iNWA curve is sometimes covered
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Figure 8.13: As in Figure 8.12, but for the cosine of the solid angle cosf# and the angle ¢
in the transverse plane between the two leptons.

8.6 VV+4jet with decays in improved NWA at NLO
QCD

After proving the applicability of the improved NWA to approximate the full amplitude
calculation results at LO in the previous section, the NLO QCD corrections are discussed
here in this framework.

8.6.1 Integrated NLO QCD cross sections

In Figure 8.14, the analogous scale variations as in Figure 8.7 for stable gauge bosons are
depicted for VV-+jet with leptonic decays included. As described in Chapter 6, the decay
channels with as many charged leptons as possible are considered, i.e. all W bosons decay
leptonically and the Z bosons decay into a charged lepton—antilepton pair. The analysis
given here is restricted to the case that both gauge bosons decay to leptons of different
generations. For a simplified notation, the first gauge boson mentioned decays to leptons of
the first generation and the second one to those of the second. Since all lepton masses are
neglected, exchanging the generations yields identical results. In the NWA| the integrated
cross sections would not even change if all decay leptons belong to the same generation
1

apart from a symmetry factor 5 in the ZZ+jet case, which is explained in Section 6.3

in detail. For leptonic distributions, however, the distinction of identical particles would
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Figure 8.14: Asin Figure 8.7, but for VV+jet production with leptonic gauge-boson decays

included by application of the improved NWA.
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require an ordering of the identical leptons, e.g. by their transverse momenta. This is
due to the fact, that the assignment of leptons to the decaying gauge bosons is artificially
determined in the NWA by their on-shell condition, which is no more fixed for the full
amplitude calculation. Therefore, the discussion here is restricted to leptons of different
generations from each decay.

Considering the scale dependence for the various process classes, the results obtained
from pure VV+jet production analysis are confirmed: The scale dependence of the cross
sections for all process classes is significantly reduced when going from LO to NLO if—
at least in the LHC setup—a second hard jet is vetoed. Whereas for the production
processes the WW+jet cross section exceeds that one of ZZ+jet by roughly one order of
magnitude, this difference is amplified by another order of magnitude when leptonic decays
are considered. This is mainly due to the fact that the branching ratios of W+ — vIT and
W~ — 177 exceed that of Z — 1717 by more than a factor 3. The integrated cross sections
for WZ+jet and ZZ+jet at the Tevatron turn out to be significantly below 1tb for each
leptonic channel for the applied set of cuts. A factor 9 for WZ+jet and % for Z7Z+jet,
respectively, can be obtained by summing over all three lepton generations, but still not
enough statistics is expected for these channels from Tevatron data. Therefore, a detailed
investigation of differential cross sections for these process classes is dropped.

8.6.2 Differential cross sections at NLO QCD

After giving an overview over the integrated cross sections of VV-+jet production with
leptonic decays in Figure 8.14, the step from LO to NLO in differential cross sections is
considered in this section.

WWHjet

A survey of distributions for differential WW+-jet cross sections with leptonic decays is
given in Figures 8.15 — 8.17 for the LHC setup with prje.cat = 50 GeV and g = firen =
Iiact = M. In general, the jet distributions are understood as distributions of the harder
jet in the more inclusive definition of the NLO observables. Figure 8.15 provides transverse-
momentum distributions for the hadronic jet and the missing transverse momentum due to
(anti-)neutrinos leaving the detector unseen (upper plots) and for the two charged decay
leptons (lower plots). For all pr distributions, a tendency of the more exclusive NLO cross
section to decrease faster than the LO cross section when going to higher values is evident.
This can be understood from the fact that a fixed value is used for the renormalization
scale in the running of the strong coupling. If, instead, the transverse momentum of
the jet is understood as the relevant scale of the considered process, which might be a
good choice since the only arising strong coupling concerns this jet, using as(Myy) in the
LO calculation overestimates the contributions for large prjes values due to the ignored
decrease of the QCD coupling. Besides, an underestimation for lower pr je; values follows
from the same arguments, which can explain the behaviour observed in the respective
plots of Figure 8.15. Since the remaining transverse momenta are connected to prje; by
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Figure 8.15: Differential cross sections for WW+jet with decays included in the improved
NWA at the LHC: The LO and NLO distributions are shown for p = jigact = fhren = Mw.
The two different NLO observables are defined as before. The distributions for the trans-
verse momenta pr of the jet and of the decay leptons, and for the missing transverse
momentum pr miss are depicted. The start pr’s are determined by the respective cuts.
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momentum conservation, the same argumentation also holds for these distributions. The
effect is, however, much stronger for the jet compared to the leptons due to the tendency of
coloured particles to radiate further QCD partons. For the more inclusive NLO observable,
this effect is overcompensated by genuine WW+-2jets events which are—being actually LO
contributions—also influenced by the same effect. In the pr distributions for the two decay
leptons, a slight tendency to harder jets can be found for the lepton. That a difference
arises at all can be understood from the defined order of the W bosons coupling to the
fermion chain, because t-channel-like emissions of the W bosons cause large contributions.
Whereas a t-channel-like emission of a W can only arise in case of an incoming up quark
or down antiquark, an analogous emission of a W™ always stems from an incoming down
quark or up antiquark. The antilepton always results from the W' decay and the lepton
from the W~ decay. Since especially the subprocesses initiated by an incoming up-quark
are boosted in the direction of the up quarks, the different PDF's of the incoming partons
are expected to cause the observed difference.

This boost effect can also be seen in the upper plots of Figure 8.16 where distributions
of the rapidities of the leptons are depicted. Here, the antilepton shows a slightly larger
tendency to small angles against the beam axes than the lepton. Naturally, due to the
symmetric hadronic initial state in proton—proton collisions the rapidity distributions are
symmetric. The size of the relative NLO corrections turns out to be nearly independent
of these quantities. The symmetry property still holds for the rapidity of the hadronic jet,
which is shown in the lower plot of Figure 8.16. The NLO corrections to this quantity,
however, become large for very small angles against the beam axes. Apart from this small
phase-space region, which is negligible anyway if the total amount of events is considered,
the NLO corrections turn out to be nearly independent of the jet rapidity as well.

The two distributions in Figure 8.17 depict the angle correlations between the two de-
cay leptons. The angle between the two leptons in the transverse plane is represented by
@, which is a quantity invariant under boosts in the beam direction. By cosf the opening
angle between these two leptons in the laboratory frame is denoted. Considering the ¢ dis-
tribution, i.e. ignoring the boost effect along the beam axes, the two charged leptons turn
out to fly preferentially into opposite directions. This is not surprising, since momentum
conservation forces the two W bosons at least to show a tendency to opposite directions
which is mediated to their decay products by boost effects. This angle between the leptons
is, however, important for the distinction of the background process WW-jet from the
signal process H(— WW*)+jet in Higgs searches. This is due to the fact that the decay
leptons of a W-boson pair arising from the decay of a scalar Higgs particle show the—on
the first view non-intuitive—tendency to fly into the same direction. This property results
from the spin correlation of the W W~ system, which is discussed in detail in Ref. [112]:
Since, in the rest frame of the Higgs boson, the spins of the W bosons are anti-correlated,
and only a left-handed charged lepton and a right-handed charged antilepton can arise
from the decays, their emission in the same direction is favoured. This correlation effect
is, of course, smeared in H(— WW*)+jet, since the Higgs boson is not only boosted in
direction of the beam axes here due to the emitted jet, but a remainder of the effect should
still be measurable. For WW+jet production, however, the spins of the two W bosons are
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Figure 8.16: As in Figure 8.15, but for the rapidity 1 of the charged decay leptons (upper
plots) and the rapidity of the jet (lower plot).
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Figure 8.17: As in Figure 8.15, but for the angle ¢ in the transverse plane and the cosine
of the solid angle cos f between the two leptons.

not correlated in such a way, as depicted in Figure 8.17, but tend to opposite directions.
In the cos @ distribution, this preference is overcompensated by the boost effect along the
beam axes, leading to a tendency in direction of small opening angles. The dependence of
the size of NLO corrections on both angles turns out, however, to be modest.

Considering the same quantities for WW+jet production in the Tevatron setup, most
of the effects can be explained by the fact that proton—antiproton collisions take place here
instead of proton—proton collisions. Besides, the lower CM energy compared to the LHC
plays an important role. We start again with the discussion of transverse-momentum dis-
tributions of the hard jet, the decay leptons, and the missing transverse momentum, which
are shown in Figure 8.18. Here, the behaviour of the more exclusive NLO observables can
in principle be explained in the same way as for LHC: The LO results overestimate the
cross section at high scales and underestimate it at low scales due to the fixed renormaliza-
tion scale used in the calculation. As already observed when considering integrated cross
sections, the difference between the two NLO observables is quite small at the Tevatron,
which can be understood from the smaller CM energy: In most cases, not enough energy
is available for the production of a second hard jet. Therefore, the LO contributions of
pp — WW + 2jets + X contained in the more inclusive NLO observable only weaken this
effect, but do not overcompensate it as for the LHC setup. The pt distributions of the two
decay leptons are identical up to numerical fluctuations. This results from the fact that
the hadronic process pp — WW + jet + X is invariant under CP transformations. Thus,
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Figure 8.18: As in Figure 8.15, but for the Tevatron setup.
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in contrast to proton—proton collisions, PDF effects do not cause differences between the
pr distributions of the leptons, since the quark PDFs of the proton equal the antiquark
PDF's of the antiproton, and vice versa.

The distributions of the rapidities n of the leptons, which are depicted in Figure 8.19,
are not symmetric with respect to 7 = 0 due to the different hadronic initial states. Instead,
the distributions of the lepton and the antilepton are identical if one of the distributions is
mirrored around the n = 0 axis. In the Tevatron setup, the positive beam axis corresponds
to the direction of the proton beam, and the negative axis to the antiproton beam. Cor-
respondingly, positive 7 values describe momenta tending in the direction of the proton
beam and vice versa.

The difference between proton—proton and proton—antiproton collisions in the leptonic
distributions is explained as follows: In the proton—proton case, each partonic subprocess
with a non-symmetric initial state has its counterpart yielding exactly the same contribu-
tion in opposite direction, e.g. the initial states u,(p1)g,(p2) and g,(p1)uy(p2) with p; and py
labelling the proton momenta in positive and negative beam directions, respectively. (Sym-
metric initial states as e.g. uy(p1)up(pe2) deliver symmetric cross sections, anyway.) Thus,
the sum over all contributions is symmetric with respect to n = 0. In proton—antiproton
collisions, however, the corresponding subprocesses u,(p1)gs(p2) and gy (p1)up(p2) do not
yield symmetric contributions due to the different PDF's of proton and antiproton. Instead,
each partonic initial state has a counterpart due to the CP symmetry of the hadronic pro-
cess. Hence, pairs of subprocesses as e.g. u,(p1)gp(p2) and gy(p1)up(p2) deliver identical
contributions to integrated cross sections. The pair-wise appearance of CP symmetric
subprocesses, however, results in identical distributions for charge-conjugate particles if in
addition a space inversion is performed.

Applied to the present case, this explains that the rapidity distributions of the lepton
and the antilepton are the same up to a space inversion. Their transverse momenta are,
however, invariant under a space inversion. Thus, the corresponding distributions are
identical.

Considering the non-symmetric rapidity distributions, a tendency of the antilepton
to the positive beam direction and, correspondingly, of the lepton to the negative beam
direction is evident. To explain this, the argument of t-channel-like emission of W bosons
can again be applied. As discussed in the LHC case, the W+ boson, and consequently the
antilepton, can only be emitted in this way from an up quark or a down antiquark. Since
the qq channels dominate at the Tevatron, only these have to be taken into account for a
qualitative discussion. In the average, these subprocesses do not produce boosted events
in a distinguished direction due to the fact that the quark PDF's in the proton are equal
to the respective antiquark PDF's in the antiproton. The contributions u,(p1)up(p2) and
d,,(p1)dp(p2) dominate over the contributions 1, (p;)up(pe) and dy(p;)dy(p2). Due to the
effect of ¢t-channel-like W' emission, the first tends to antilepton emission in the positive
beam direction, the latter to the negative direction, as depicted in Figure 8.20. Since the
ull channel exceeds the dd channel roughly by a factor 4 in total, a tendency to the positive
beam direction results. The same argumentation holds, mutatis mutandis, for the lepton
and the W~ boson.
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Figure 8.19: As in Figure 8.16, but for the Tevatron setup.
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Figure 8.20: As in Figure 8.19, but only the LO distributions for the rapidities n of the
lepton and the antilepton are depicted. In addition, the two dominating partonic contri-
butions utu and dd to the hadronic cross section are shown.

The rapidity of the jet, which is depicted in the lower plot of Figure 8.19, is symmetric
with respect to n = 0. This is due to the fact that no distinction can be made between
hadronic jets arising from gluons, quarks, or antiquarks. Therefore, the sum over all
contributions, which are CP symmetric in pairs, yields a symmetric distribution. As in the
case of LHC, the size of NLO corrections turns out to be only slightly dependent on the
rapidities both of the jet and the leptons. Considering the absolute rapidity dependence of
the cross sections, a tendency to events that are not strongly boosted in the direction of the
beam axes is observed. This can be understood from the fact that the dominating partonic
channels with initial states of valence quark and valence antiquark are not strongly boosted
in general.

Finally, the angle correlations between the two decay leptons are considered. The
angle in the transverse plane is again labelled by ¢, cos6 is the solid angle between the
two leptons. The corresponding distributions are depicted in Figure 8.21. These angle
correlations are very important also at Tevatron to distinguish the background process
WW-jet from the signal process H(— WW*)+jet. Details on this topic are given in the
discussion of the respective LHC distributions. Also in the Tevatron setup, the two leptons
tend to fly into opposite directions in the transverse plane. In contrast to the situation
at the LHC, this tendency is still observed if boost effects are taken into account, which
can be read off the distribution of the opening angle cos#. This is again understood from
the fact that no tendency to strongly boosted events arises in the dominantly contributing
partonic channels.

77+ jet

A survey of distributions for differential ZZ+jet cross sections with decays to charged
leptons is given in Figures 8.22 — 8.25 for the LHC setup with pr jet,cut = 50 GeV and p =
fren = Miact = My. In Figure 8.22, the transverse-momentum distribution of the hadronic
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Figure 8.21: As in Figure 8.17, but for the Tevatron setup.

jet and its rapidity n are depicted. As discussed for WW-+jet production, the quantities
with respect to the harder jet are taken into account in the case of the more inclusive NLO
observable. The shape of the pr je; distribution reflects that of the corresponding WW-jet
distribution. The influence of the NLO corrections is already explained in that context as
well.

The effect of the NLO corrections on the rapidity distribution of the jet is also similar to
the situation of WW+jet production: The relative correction is nearly flat for low rapidities
and becomes larger if the jet is boosted more strongly in the direction of the beam axes.
These large positive corrections in the region of large rapidities can be understood by a
simple statistical effect: NLO corrections in general redistribute events. Since most events
show jets in the region of lower rapidities, it is just more likely to redistribute events from
the low-rapidity region to the high-rapidity region than the other way round.

The differential cross sections with respect to the momenta of the decay leptons are,
naturally, the same for e~, = on the one side and e™, 4™ on the other side. The distri-
butions for transverse momenta and rapidities of the leptons are presented in Figure 8.23.
Size and direction of the NLO corrections to the pr distributions can again be explained by
the fixed scale of the strong coupling, as described in the previous paragraph on WW+jet
production. The NLO corrections turn out to be independent of the leptonic rapidities.
At first sight, the distributions for leptons and antileptons seem to be identical. This is,
however, not exactly true, but the deviations are extremely small and hardly noticeable.
The hadronic process does not provide a symmetry to produce identical distributions for
the leptons and the antileptons arising from the Z decays.
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Figure 8.22: As in Figure 8.15, but for ZZ+jet with p = pitacy = ptren = Mz. The distribu-
tions for the transverse momentum pr and the rapidity n of the jet are depicted. The start
pr is determined by the applied cut.

For proton—antiproton collisions, however, the respective distributions are identical,
because the hadronic process is CP symmetric in this case. Analogously to WW+jet, one
finds also identical rapidity contributions for leptons and antileptons if one of the two
distributions is mirrored with respect to the n = 0 axis for the Tevatron setup.

In Figures 8.24 and 8.25, the angles between the decay leptons are depicted, namely
both the angle ¢ in the transverse plane and the cosine of the opening angle in the lab-
oratory frame, cosf. In all distributions, a decline is observed if the angles between the
leptons become very small. This is simply explained by the applied lepton-separation cuts.
Of course, the angles between lepton pairs from one and the same Z boson are quite dif-
ferent compared to the angles between leptons arising from the decays of two different Z
bosons. We start with the first case that is shown in the upper plots of Figure 8.24. Since
both leptons result from the two-particle decay of one Z boson, the angle between the lep-
tons in the transverse plane is always equal to 7 if the momentum of the decaying lepton
is parallel to the beam axis. The larger the angle between the decaying Z boson and the
beam axis is, the more probable are events with a small angle ¢ between the decay leptons.
Therefore, small transverse angles between the decay leptons correspond to Z bosons with
large transverse momenta and vice versa. This correlation delivers a possible explanation
for the observation that the NLO corrections are negative in the region of small angles in
the transverse plane and positive for large ones. The shape of the relative correction in
the more inclusive NLO observable is roughly the same as for the more exclusive one. The
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Figure 8.23: As in Figure 8.22, but the distributions for the transverse momenta pr and
the rapidities n of the leptons are shown.
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Figure 8.24: As in Figure 8.22, but the angle ¢ in the transverse plane and the cosine of
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angles for leptons from the same Z decay. In the lower plots, the angles between a lepton
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and an antilepton stemming from different Z decays are given.
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Figure 8.25: As in Figure 8.24, but the respective angles between two leptons (upper plots)

and two antileptons (lower plots) are shown.
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described effect is, however, smoothed a bit. This could again be explained by the fact that
the difference between the two NLO observables is an LO contribution itself. Thus, it also
tends to mimic the behaviour of the LO approximation to overestimate low-pt regions and
vice versa. The distribution of the solid angle in the laboratory frame, cos#, also shows
the tendency to be overestimated for small angles between the decay leptons, and to be
underestimated for large angles.

In contrast to this, the angles between leptons from different Z decays reflect the be-
haviour already observed in the discussion of WW+jet production: Due to momentum
conservation, the two Z bosons show a tendency to fly into opposite directions. This
tendency is carried over to their decay leptons due to boost effects. Therefore, the ¢ distri-
butions on the left-hand side of Figure 8.24 (lower plot) and Figure 8.25 have their maxima
at ¢ = m. Deviations are found here between the distribution for the angles between a
lepton and an antilepton on the one side, and the distributions for the angles between two
leptons or two antileptons on the other side. A slight tendency to lower angles is observed
for the latter situation, which might originate from the spin correlations between the two Z
decays. It is, however, not evident, how the direction of this deviation could be explained.
For the distributions of angles between two leptons on the one hand and two antileptons
on the other hand, no evidence to be different is found. However, we do not have a good
reason for them to be identical. The distributions for the cosine of the solid angle cos 6
reflect again the behaviour observed for WW+jet: The tendency of the two leptons to fly
into opposite directions is overcompensated by boost effects. Finally, the dependence of
the NLO corrections on all angles between leptons from different Z-boson decays turns out
to be only modest.

WZ+jet

The discussion of differential cross sections for WZ+jet is performed for both charge as-
signments of the W boson simultaneously. All distributions for W*Z+jet are provided in
the plots on the left-hand side of Figures 8.26 — 8.33. On the right-hand side, the respec-
tive differential cross sections for W~Z+jet are depicted. The pairs of plots shown side by
side are combined in order to compare the corresponding quantities of the two processes,
e.g. the charged leptons resulting from the W bosons, etc. As discussed before, the cross
sections for the two processes are not about the same size in proton—proton collisions, be-
cause different partonic initial states contribute. Therefore, the comparison is not so much
based on the absolute size of the cross sections, but on the shapes of the distributions.
For the transverse momenta, which are shown in Figures 8.26 — 8.28, we find a similar
behaviour as already observed in WW+jet and ZZ+jet production: The LO approxima-
tions tend to overestimate the cross sections at high transverse momenta and to underes-
timate it for low momenta, as discussed for the other VV+jet processes. Considering the
transverse momenta of the leptons arising from the W decays in Figure 8.27—the missing
transverse momentum represents the neutrino resulting from this decay—a tendency to
lower values is found for the antilepton in W*Z+jet and for the antineutrino in W~ Z+jet.
In comparison to that, the lepton in W*Z+jet and the neutrino in W~ Z+jet tend to
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Figure 8.26: As in Figure 8.15, but for WHZ+jet (left-hand plot) and W~ Z+jet (right-hand
plot) with g = pifact = piren = My . The distributions for the transverse momenta py of the
jet are depicted.

higher transverse momenta. If the analogous distributions for proton—antiproton collisions
are considered, we find identical results for neutrino and antineutrino, and for charged
lepton and antilepton, respectively. This is due to the fact that the hadronic processes
pp = WZ+jet + X and pp — W~ Z+jet + X are charge conjugated to each other, which
is not the case for WZ+jet in proton—proton collisions.

For the decay leptons stemming from the Z decays, which are shown in Figure 8.28,
again slight differences arise between leptons and antileptons, as already observed for
Z7+jet.

The rapidity distributions of the jet and the decay leptons are depicted in Figures 8.29
and 8.30. As for the previously discussed VV+jet processes, the NLO corrections to the
cross sections are nearly independent of these rapidities. Again, a strong overestimation
of the LO predictions for strongly boosted jets is observed. This is, however, the same
situation as for the other VV+jet processes and can be understood from statistics again.

The most obvious discrepancy between WZ+jet and W~ Z+jet in the rapidity dis-
tributions is observed for the charged leptons from the W decays. Here, the antilepton
in the WHZ+jet case shows the strong tendency to be boosted in direction of the beam
axis, whereas the respective lepton in the W~Z-+jet case tends to populate the central
region. This situation can again—as for WW+jet—be explained by large contributions
arising from ¢-channel-like emission of the W boson: For W*Z+jet, the partonic channels
yielding the main part to the cross sections contain an initial-state up quark. Due to its
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Figure 8.27: As in Figure 8.26, but for the distributions of the transverse momenta of the
lepton from the W decay (upper plots) and the missing transverse momenta (lower plots).
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Figure 8.28: Asin Figure 8.26, but the transverse momenta of the leptons from the Z decay
are shown.
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Figure 8.29: As in Figure 8.26, but for the rapidity distributions of the jet (upper plots)
and of the lepton from the W decay (lower plots).
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Figure 8.30: As in Figure 8.26, but the rapidities of the leptons from the Z decay are

depicted.
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large PDF at high momenta, the resulting events are strongly boosted. By means of the
t-channel-like emission of the W boson, this boost is carried over to the antilepton from
the W decay. For W™Z+jet, however, no up-quark initial states contribute due to charge
conservation. The partonic channels with an incoming down quark are not that strongly
boosted. Thus, t-channel-like W emission off this quark leads to decay leptons that show
preferentially larger angles against the beam axes.

The correlations between the decay leptons are presented in Figures 8.31 — 8.33, where
the angles in the transverse plane and the cosines of the solid angles between pairs of decay
leptons are given. The angles between the leptons arising from the same Z boson decay,
which are depicted in Figure 8.31, show similar shapes of the differential cross sections
compared to the respective case in ZZ+jet production. Since this statement holds for both
gauge-boson assignments considered here, we refer to the explanations for these distribu-
tions and the role of the NLO corrections provided in the context of ZZ+jet production.

The angles between leptons resulting from different gauge-boson decays also lead to
distributions with similar shapes as observed for the respective quantities in WW-+jet and
Z7+jet production. These distributions are given in Figures 8.32 and 8.33: The tendency
of pairs of such decay leptons to fly into opposite directions in the transverse plane is over-
compensated by boost effects. Therefore, the distributions of the solid angle between two
such decay leptons show maxima at small opening angles. A slightly stronger boost effect
can be observed for WtZ+jet. This can again be understood from the involved partonic
channels: The contributions with initial-state up quarks show the strongest tendency to
events boosted in direction of the beam axes. Such channels are, however, only present in
W*Z+jet production, but not for W~ Z+jet. Finally, we compare the angle correlations
between two leptons or two antileptons for W~ Z+jet and WTZ+jet, respectively, with
those between a lepton from one gauge-boson decay and an antilepton from the other.
In both process classes, a slight tendency to small opening angles is found for the angles
between two identically charged leptons. Such a tendency is also observed in the discussion
of the ZZ+jet production process. The reason for this effect might be found in the spin
correlations of the leptons again.
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Figure 8.31: As in Figure 8.26, but the angle ¢ in the transverse plane (upper plots) and
the cosine of the solid angle cos @ (lower plots) between the leptons from the Z decay are

given.
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Figure 8.32: As in Figure 8.31, but for the angles between the two antileptons (left-hand
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plots) and the two leptons (right-hand plots) from different gauge-boson decays.
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Figure 8.33: As in Figure 8.31, but for the angles between the lepton and the antilepton

from different gauge-boson decays.






Chapter 9

Summary and outlook

In this thesis, the NLO QCD cross sections for the process classes pp/pp — VV + jet + X
are evaluated. The Catani—Seymour dipole subtraction formalism is applied to control the
IR divergences, which cancel between the different contributions. The matrix elements for
the real corrections are evaluated in terms of helicity amplitudes by applying the Weyl-
van-der-Waerden formalism. The loop integrals in the virtual corrections are calculated
by means of the FORMCALC/LOOPTOOLS package with the regular scalar integrals taken
from the F'F' library. The needed IR-divergent scalar integrals in dimensional regularization
are linked to this library. The phase-space integration is performed by a multi-channel
Monte Carlo integrator with weight optimization written in C++. In order to improve
the integration, additional channels are included for the integration of the difference of the
real-emission matrix elements and the subtraction terms.

For all allowed assignments of the weak-gauge-boson pair, namely WW~, ZZ, W+Z,
and W~Z, the NLO corrections to the integrated cross sections stabilize the dependence
on renormalization and factorization scales significantly. For proton—proton collisions at
the LHC, this reduction is only modest if inclusive VV+jet production is considered. This
is due to the fact that additional VV+2jets events contribute here. These are LO pro-
cesses by themselves and, thus, suffer from the strong scale dependence that is in general
present in LO QCD calculations. Applying a veto on a second hard jet improves the situ-
ation remarkably and, hence, leads to a considerable stabilization of the scale dependence.
For proton-antiproton collisions at the CM energy of Tevatron, the influence of genuine
VV+2jets events is modest. Therefore, the scale dependence is strongly improved here
with or without a veto on a second hard jet.

The cross-section calculations are performed both in the five-flavour scheme and in
the four-flavour scheme, where the PDF sets of CTEQG6 are applied in the first case, and
those of MRST2004 in the latter case. The deviations between the two evaluations are
typically of the order of some per cent, as it is expected for different PDF sets. Besides,
this comparison is performed to show the validity of the approximation concerning bottom
(anti-)quarks applied in the five-flavour calculation: Only their infrared-divergent part
is included in the calculation, whereas contributions with top resonances are neglected,
because they should be assigned to distinguished process classes, namely tt, tW~, or tW
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with off-shell effects of the top (anti-)quark. The good agreement with the four-flavour
calculation, where no external bottom quarks are taken into account at all, confirms the
validity of the applied approximation. However, contributions from these process classes
with off-shell top quarks could be taken into account in an advanced study of WW+jet
production. A reason to do so might be that, for leptonic W decays, an invariant-mass cut
on the decay products of the top could not be applied due to the decay neutrinos leaving
the detector unseen. Assuming that anti-b-tagging only works with an efficiency of about
50%, sizeable tW* and tW~ contributions show up that can not easily be distinguished
from WW+jet events. To take this into account, it should be useful to have a five-flavour
calculation that includes external bottom (anti-)quarks and also provides PDFs for them.
In the remaining process classes of VV+jet, no top resonances show up at all. The good
agreement of the two calculations also confirms the validity of the approximation to omit
external bottom (anti-)quarks here.

Beyond the VV+jet production processes, leptonic decays are included to improve
the analysis. A full amplitude calculation including resonant and non-resonant diagrams
is performed at LO. In a comparison of LO results, an improved version of the NWA
that takes spin correlations into account is proven to deliver a good approximation of the
full amplitude calculation. Thus, the NLO QCD calculation with leptonic gauge-boson
decays is performed by application of the improved NWA. The analysis of differential cross
sections in this framework suggests that the main effect of the NLO corrections could
probably be used to improve the LO predictions by evaluating the strong coupling at a
phase-space dependent scale. The choice of this scale could be fine-tuned by means of the
NLO distributions provided here.

Although a full amplitude calculation for VV+jet with leptonic decays is not performed
at NLO QCD in this thesis, the necessary building blocks are provided. Whether such a
calculation makes sense has to be decided from an experimental point of view. There are,
however, no theoretical obstacles to extending the presented calculations to an NLO QCD
calculation using full amplitudes instead of the improved NWA.

Moreover, a number of building blocks is provided for more complicated NLO QCD
calculations, especially also for 2 — 4 processes. These are, in particular, pp/pp — VV +
2jets + X and pp/pp — WHW~bb+X, where the latter is especially interesting as the off-
shell continuation of tt production at hadron colliders. The amplitudes for all necessary
LO subprocesses are already provided, as well as a set of building blocks that can be used
to calculate also the real-correction amplitudes. Besides, the methods used to implement
gauge-boson decays could be applied in the same way. Moreover, a phase-space generator
has been written that is easily extendable to these process classes and provides a method
for a stable numerical integration of NLO cross sections. The bottleneck in this kind of
calculations are still the virtual corrections with up to hexagon integrals that have to be
evaluated—both in a numerically stable way and in reasonable time. However, lots of
progress has been achieved on this in the last time [80], so that NLO QCD calculations for
2 — 4 processes seem definitely feasible.



Appendix A

Definitions used in the dipole
subtraction formalism

All definitions provided in this appendix are taken from Ref. [62]. Here, only quantities
that are not given in the main text are collected.

A.1 Colour charges

The definition of the matrix-valued colour-charge operators T describing gluon emission is

given in the following. For an outgoing parton ¢, the colour-charge operator is defined as
1 fe;an; if 7 = gluon ,

T, —» (T,)¢,, =4 T, if i = quark , (A1)
—T¢,  if i = antiquark ,

and for an incoming parton a as
i fe b, if @ = gluon ,

T, = (T,)%, =< -T¢,  if a = quark, (A.2)
Tgﬂba if @ = antiquark .

The SU(3)c generators T® can be chosen as the Gell-Mann matrices, T* = %, fabe are

the totally antisymmetric structure constants of SU(3)c. The squares of these operators
applied to a parton ¢ are the respective Casimir operators,
N, =Cyr=3 ifi=gluon,
T} =Ci=1{ N2-1 4 (A.3)
- = (Cy = - if 1 = (anti-)quark ,
2N, 73 (anti-)q

where N, stands for the number of colours. The SU(3)¢ generators are normalized accord-
ing to

Tr {TT"} = Txé®, Tx = % : (A.4)
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A.2 Operators in the collinear-subtraction counter-
terms

In the MS scheme, the insertion operators K® (z) and P (xp, x, jizact) in the relevant
case with two incoming partons a, b and only one outgoing parton 7 are

Ko (1) = %{f‘“'(x) 4 gae's, Ti Lo [( L )+ +4(1 —x)} - Tb'Ta'f(‘“"(x)} :

Cor Tzz L—z TZ'
(A.5)
/ Qg / T,-T, M%t T, - T, M%t
Pa,a . ., _ —Paa 1 a l ac a 1 ac . A6
(Do Pis TP, T, flgact) om (@) [ Tz, " 2Tpapi TZ, ! 22paps (A6)

These definitions are taken from Eqs. (10.24) and (10.25) in Ref. [62], respectively. The
colour operators are defined in the previous section, and the constants ; are

11 2
5 O3 Ty N; if i = (anti-)quark ,
= ; (A.7)
3 Cr if 7 = gluon .

The regularized Altarelli-Parisi splitting functions [61] in four dimensions read

P%(z) = P%(z) = CF %ﬂ”)z , (A.8)
P#i(z) = P8i(z) = Ty [0 + (1 — 2)?], (A.9)
PY(z) = PY(z) = Cf (11+_9;2>+ —Cp <_(1 +)+ (&X + g 5(1— :1:)) , (A.10)
ng(x):2CA{<1ix>++1;$—1+x(1—x)} (A.11)

+6(1 — ) (% Ca — %NfTR> , (A.12)

PY(z) = PY(z) = 0. (A.13)

It is also convenient to introduce the regular parts P;gbg of the Altarelli-Parisi splitting

functions. Their regular parts are obtained as follows,
1
P = P®(x) — 6% [2T§ (1—> + 746(1 — x)} : (A.14)
-
+

where the colour operators are provided in the previous section and 7; in Eq. (A.7). In the
non-trivial case a = b, the explicit results read

PY(z) = PY(z) = —C (1 + 1), (A.15)

reg reg
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1 —
P () =20, |——

reg

—1+z(1-1)|. (A.16)

The flavour kernels K** (z) arising in Eq. (A.5) are given by the following expressions
for explicit flavour assignments,

K1) = () = PE(x)In =% 4 Cpa | (A7)
T2) = Rx) = P9 () In ——% 4+ Tp 22(1 — 2) , (A.18)
K%)= K%) = Cr {<1Exln1;x>+ ~F T —x)]
—6(1—2) (5—7°) Cr, (A.19)
K (2) = 20 [<1ixln1;x>++ (1;.@ —l—i-x(l—x)) 1n1;x}
—6(1 — ) [(% — 7r2> Ch — 19—6TRNf} : (A.20)
EK%2)=K"@x)=0. (A.21)

The correlation terms K (z) arise due to the parton-parton correlations in the initial
state. These functions are given by

K®(z) = P® (2)In(1 — z) + 0°°T?2 Kli

reg —

In(1 — x)) . %25(1 - x)] . (A.22)

+

The plus-distribution [...]; is defined by its action on a generic test function g(x),

| o), = [ drlae) - g0V (A.23)






Appendix B

Dimensionally regularized scalar
integrals

The IR-divergent integrals are treated by mass regularization in the FF package that is
implemented in LoorPTooLs. However, for the NLO QCD calculations performed here,
dimensionally regularized scalar integrals are needed. To this end, all divergent integrals
used in the calculations are collected, where the UV and IR divergences are distinguished.
The following parametrization of the divergences is chosen,

AW () = (47w2>5 L(l+e)

M3, £
4rp?\° T(1+¢) 42\ (1 +¢)
AIR — AIR — )
o= () T e = (S5 ) TS

The following definition for the scalar two-, three-, and four-point functions, which are
denoted as By, Cy, and Dy, respectively, is applied,

2m )P . R Tt
Butor = Ksmi,ms) = O [y {7 w0 + k)7 - mi 410} (B)
2mp) P
Co(s1, 89, 835 M1, My, M3) = %
-1
x/qu{(qZ—m%iO) ((g+ k) = m3 +i0) (g + ko) = mi+i0)} . (B2)
(2mp)* "

D0(81782783784;S7t;mlym27m37m4) = i

f/qu{(QZ —m%+i0)
~1
x ((g+k1)* —m3 +10) ((q + k2)> — m3 +10) ((¢ + ks)* — mi + 10)} . (B.3)
where all quantities in use are defined in Figure B.1, and D =4 — 2¢.

In Section B.1, the needed integrals with vanishing internal masses are collected. In
Section B.2, we provide all the integrals with internal masses arising in closed fermion loops
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k% = S3 (k‘g — k‘g)Q = S3 S4 = k?z)
q+ks
q —
> ma
q+k2T sy = k? g+ke|ms  mi| e ¢
[ m2
q+ k1 —
q+ k1
(k‘g — kl)Q = S9 (k‘g — k‘l)Q = S9 § S1 = k%

Figure B.1: Notation applied to three-point integrals (left-hand side) and four-point inte-
grals (right-hand side).

with third-generation quarks and in contributions with incoming bottom (anti-)quarks.
Note that the given integrals are only valid for real masses in general.

Overlined virtualities are understood to obtain an infinitesimal imaginary part, i.e.
5 = s 410, etc. Overlined mass squares arising in App. B.2 get a negative imaginary part,
m? = m? —i0. For logarithms and dilogarithms one has to guarantee that continuations
over all possible cuts are continuous. Therefore, a proper analytic continuation is per-
formed.

B.1 Integrals with vanishing internal masses

In the notation used for the massless integrals, the arguments concerning internal masses
are dropped, since they are trivially zero.

B.1.1 Two-point functions

In terms of the massless two-point functions, two cases have to be discussed: For a vanishing
incoming virtuality, a scaleless integral results, which is defined to be zero in dimensional
regularization. It makes sense, however, to distinguish between IR and UV divergences
here, since this zero arises from a cancellation between the two here,

By(0) = A (1) — AT (n) - (B.4)

The integral with a non-vanishing scale is only UV divergent,

By(s) = A" (u) — In <]Q—§v> +24+0(e) . (B.5)

B.1.2 Three-point functions

The three-point functions with vanishing masses contain two divergent cases, namely those
with one or two incoming virtualities equal to zero. The results for these IR-divergent
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integrals, which can be found, e.g., in Ref. [85], read
1 —§3 1 —53 7T2
Co(0,0,53) = B {AlzR(M) — A () IH<M—V2V> t5n (M—v2v> -5t 0(5)} : (B.6)

Col0,52,50) = ! = {A{R(u) m(%) %{hﬁ ﬁ) —ln2<;4—§$>] +0(5)}. (B.7)

B.1.3 Four-point functions

All divergent four-point functions with vanishing internal masses are taken from Ref. [114]
with appropriate analytical continuations,

Dy(0,0,0,0;5,t) = {4AIR(M)—2AIR( )( (&—;) +1In (&—é))
b ln? ( ) - In? (—) Cn? (;) - gﬁ +0(s)}, (B.8)
Do(0.0.0,s555,1) =  §288 )+ 22500 i (5 ) <o () =1 ()|
() () ()

oL, (1 . E) 9Ly (1 - Sté) - %H + (’)(6)} , (B.9)

2 5 -5 t
Dofs1, 0,53, 035, 1) = ———— {AIIR(M) [m (%1) +In (Sté’)} +In (M—j> In (W)
W W

3)
Du0,055:50.6) = - {30+ A [ (2) 10 (2) 1 (53]

+5 {1112 (MVQV> I’ (i—i)] —In (A;—;;V) [1n (73) +1n (2]
9 [ng (1 - %) + Li, (1 - iﬂ*)} . éﬁ + 0(5)} , (B.11)
D0 52505058 = {0 [ (2) 1 (3)] - 5 o (57

i (;4_)]+ 0 (2) 41w (21)] [m (_) i (M_W)]
[czz (S—Z St—) +Lip (1- %) +Lip (1- 825—4)} + 0(5)}. (B.12)
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The dilogarithm with two arguments arising in Eqs. (B.10) and (B.12) is defined as follows,
Lis (z,y) = Lis (1 — 2y) + In (1 — zy) [In(zy) — In(z) — In(y)] . (B.13)
B.2 Integrals with internal masses

B.2.1 Two-point functions

Since the massive two-point functions do not contain IR divergences, those implemented
in the FF package [83, 84] are used.

B.2.2 Three-point functions

The only IR-divergent three-point function with a non-vanishing mass that is needed in
this thesis can be obtained again, e.g., from Ref. [85],

1 m? — 3 m? m?— 5
Cy(0 0,0, m?) = AR 1 )~ — )1 3
0( y 52,535 U, 7m) 82—83{ 1 (:u) I m2_§2 n M\%V n m2_§2
_ 9 — — 92 =
of ™M™ — S9 of ™ — S3
—i—ln( — )—ln< —3 )

—2 = —2 =
+Li (1 - me 82) — Liy (1 - me SB) +0(5)} . (B.14)

B.2.3 Four-point functions

The divergent four-point integrals with real internal masses are taken from Ref. [115].
Numerical checks have been performed with Ref. [116]. The following integrals are used in
the calculation,

1

s(t —m?)

{0+ a0 fim(55) e D]

2 m? — §3)(m? — 34)

-2 _ 3 =2 _ = -2 _ .72 _ &
_2Li<1—m2 S;’>—2Li<1—m2 S:>—L1<1—m S3m284>
m- — m- — —S m
1.,/ —5 1, ,(—5 m? —t —5
m? — 33 m? — 5y m? — 34 m? — 5, w2
—1 1 —1 | —— 4+ 0
()" (T () - e
1

st — m?2s — 8984 + Mm2sy

X{A{R(ﬂ)lnw—kLi(l— m2—s3m2—f> —Li(l— m2—83m2—84>

(m? — 1)t —8y  m?

Dy(0,0, 83, 543 5,1;0,0,0, m?) = (B.15)

DO(Oa 52, 53, 5S4, S, tu 07 07 07 m2) =
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_2__ _
o1 T Copi(1- 22 yom 1—8—_”” 54
m2 — 54 3 5 m?2—t
Mwm (m? — 54)59
21 -1 .
+ n<m2_t> n( (=13 + O(e)

. . 2 2\
DO(Oa 52,53, 54, S, tu 07 07 mg, m4) -

1

(m3 — s)(m? —t) m3 — 59)(m3 — s4)
=2 = =2 = 2 _
IR (3 — 5y) (1M — 54) 4—84

X{A1 (M)ln<(fn2—§)(fn2—f) —21Li —21Li
3 2 4

mi—1t 3 —1 —5 75— 1 N Var —
—Li(l—mg_EZ V34 >—Li<1—_ _54 Va3 ) 1 2( V34 )
mi_t%;;_l — sy —1 2 Vaq — 1
M3 — 5912 — 54 m2 —3 m2 — 3y

2Li[1— 4 2ln| —3 ] —1 3

" ( mz—mz—t>+ (MW><MW> (MW)

m2 — 54 m2 — 59 m2 m2 — 5, ma

—In?( ] 3 ) In| —= 1 1 1 O

() (et ) () oo (e ) (i) 00

1 m? —m? m2—m2\*  4m?
where 5 = 1—731\/<1—73> N (B.18)

(B.17)

1
Do(0, 59,0, 545 5,;0,0,m3,m3) =
0( ,82,U, 84, 5,1V, 7m37m4) (mg_s)(mi_t)_ (mg_SZ)(mi_S4)

=2 e V(2 _ & =2 & =2 &
x4 AR (1)) In (”f?’z 8_2)("342 Y oy [ Ry R} FY (e S
(M3 — 82)(mf — 1) mi — 5§ mi —t

—Li(l— o S?) —Li<1 - 84)
my —t ms — S

m2 — 59 M2 — 84 m2 — s m2 —1 m2 — 59
2Li[1 - =2 i 21 3 ] 1 —In? ===
i ( mz—smz—t>+ ( MW>< sz ) T,

mi — 54 M3 — 59 ma m3 — 54 ma
—In*( — In( —5——= ) In{ — ] +In{ — In{—-)+0
() () n(i ) (=2 ) mla) o

where (B.19) is obtained from (B.17) by taking the limit s3 — 0.

(B.19)
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