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Chapter 1 
 

Introduction 
 
 
Cell signalling has arguably become one of the most important aspects of modern 

biochemistry and cell biology (Gomperts, 2004; Hancock, 2005). The ability of organisms to 

perceive and correctly respond to their microenvironment is crucial to their survival. The 

perception of signals such as osmotic strength, pH, oxygen, light, the availability of food, and 

the presence of predators or competitors for food is fundamental to life. These signals provoke 

appropriate responses, such as motion away from toxic substances or toward food. In 

multicellular organisms, cells with various functions process an extensive variety of signals 

ranging from variations in sunlight to the presence of growth hormones. For animal cells, the 

interdependent metabolic activities in various tissues or the concentrations of glucose in 

extracellular fluids, for example, present vital signals that have to be handled. These signals 

convey information that is detected by receptors and converted to a cellular response. In this 

context, signal transduction can be defined as the conversion of information into chemical 

change - a universal property of living cells (Nelson and Cox, 2008). 

A relatively small stimulus commonly provokes an avalanche of responses: in typical signal 

transduction processes the number of participating proteins increases tremendously as the 

process emanates from the initial stimulus, resulting in a ‘signal cascade’ (Hunter, 2000; 

Pawson and Nash, 2003). In many cases, the result of a signalling pathway is the 

posttranslational modification of target-cell proteins that change their activities. Almost all of 

the more than 200 kinds of posttranslational modifications that occur by covalent addition of 

groups to side chains are carried out by enzymes, proteins with catalytic activity. Protein 

phosphorylation may be the most common posttranslational modification, with tens of 

thousands of phosphorylation sites in the human proteome (Amanchy et al., 2005; Beausoleil 

et al., 2004; Olsen et al., 2006; Thelemann et al., 2005). At each phosphorylated protein a 

polar neutral OH side chain is converted to a tetrahedral phosphate (Figure 1.1 left panel). The 

introduction of negative charges has a notable effect on redistributing conformers in the 

microenvironment of the protein. These include conversion of unstructured regions of loops 

into helical regions that can drive and propagate conformational changes to other regions of 

the modified protein. Such conformational changes can be intramolecular or intermolecular 
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across subunit interfaces and create docking sites for partner proteins with motifs that can 

specifically recognize the tetrahedral phosphate side chains. 
 

 
 
Figure 1.1: Phosphorylation and dephosphorylation processes 

The phosphorylation of protein residues (serine, threonine or tyrosin) is catalyzed by protein kinases (left panel). 

The reaction of dephosphorylation is catalyzed by protein phosphatases (right panel) (Gomperts, 2004). 

 
Thus, intracellular phosphorylation by protein kinases, triggered in response to extracellular 

signals, provides a mechanism for the cell to switch diverse processes on or off. These 

processes include metabolic pathways, kinase cascade activation, membrane transport and 

gene transcription (Schlessinger, 2000). 

 

Two decades ago Hunter estimated that 1000 protein kinases for covalent phosphorylations of 

proteins are encoded in the human genome (Hunter, 1987). Manning et al. identified 518 

putative protein kinase genes, which is about half of what was predicted before, but is still a 

very large number, constituting about 1.7% of all human genes (Manning et al., 2002b). The 

substrates of protein kinases in general are the side chains of specific serine, threonine, or 

tyrosine residues, and specificity depends on structural constraints and on the sequence 

context surrounding a residue. In eukaryotes, each kinase typically has a number of substrates 

and is usually either a serine/threonine or tyrosine kinase. However, multiple serine and 

threonine in a protein substrate may be phosphorylated by a given protein serine/threonine 

kinase. Analogously, several tyrosines may be phosphorylated by a tyrosine kinase, for 

instance, on the activation loop of the insulin receptor. A classification of kinases into a 

hierarchy of groups, families, and subfamilies on the basis of sequence comparisons aided by 

known biological functions yields a kinome tree (Figure 1.2). 
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Figure 1.2: Human kinome tree 

Manning et al. (Manning et al., 2002b) classified more than 500 identified kinases according to their sequence 

similarities and common biological functions. 

 

In contrast, the reverse reaction of dephosphorylation (Figure 1.1 right panel) is catalyzed by 

protein phosphatases that are controlled in response to different stimuli so that 

phosphorylation and dephosphorylation are separately regulated events. Thus, protein kinase 

action is balanced by protein phosphatase action.  

 

To reveal the role of phosphorylation in the cell at the proteome level, the application of mass 

spectrometry (MS) based technologies has proven powerful (Aebersold and Mann, 2003; 

Chen and White, 2004; Ficarro et al., 2002; Mumby and Brekken, 2005; Rush et al., 2005; 

Salomon et al., 2003). MS-based proteomics has established itself as an indispensable 

technology to measure proteomes of various organisms along with their phosphorylation 

changes. By definition, ‘the basic principle of MS is to generate ions from either inorganic or 
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organic compounds by any suitable method, to separate these ions by their mass to charge 

ratio (m/z) and to detect them qualitatively and quantitatively by their respective m/z and 

abundance’ (Kienitz, 1968). Matrix-assisted laser desorption/ionization (MALDI) and 

electrospray ionization (ESI) are the two techniques most commonly used to volatize and 

ionize the peptides (Aebersold and Mann, 2003). The basic principles and instrumentations 

are discussed in Chapter 2 in more detail.  

The resulting mass spectra are two-dimensional representations of signal intensity versus 

mass to charge ratio (m/z) (Gross, 2004). The peptide or protein ‘precursor’ peak results from 

the detection of the intact ionized molecule, the molecular ion. In a separate reaction inside 

the mass spectrometer, termed tandem mass spectrometry or MS/MS, the precursor ion is 

fragmented. In the case of peptides a mass spectrum of these fragment ion peaks can be 

assigned to corresponding peptide sequences by scanning them against protein sequence 

databases (see for example (Perkins et al., 1999) for description of the popular Mascot 

algorithm). There is a large diversity of algorithms to solve this problem, which presents the 

focus of Chapter 3. However, most of these approaches are restricted to the MS based 

identification of peptide sequences. To determine posttranslational modifications at the site 

level, we constructed a probability based algorithm as described in Chapter 3.  

In MS based proteomics, the typical outcome is the identification of peptides assigned to 

proteins. The extensive detection of sub-proteomes and sub-phosphoproteomes of living cells 

demands description, storage, management and recovery of the obtained data. For this 

purpose we created PHOSIDA (http://www.phosida.com), the Phosphorylation Site Database 

(Chapter 4) (Gnad et al., 2007). The aim of PHOSIDA is to comprise high quality 

phosphoproteomic data including quantitative information, where applicable (for example 

capturing cell regulation after treatment with a stimulus) (Figure 1.3). To integrate biological 

context and to mine features of phosphorylation on a proteome-wide scale, PHOSIDA 

additionally takes into account structures and evolutionary data across a variety of species as 

well as other protein annotations. Thus, PHOSIDA provides a rich environment to the 

biologist wishing to analyze phosphorylation events of proteins of interest.  

The integrated large-scale datasets contain knowledge, but manual analysis exceeds human 

capacity. The automated computer based extraction of knowledge from comprehensive 

datasets is the objective of ‘knowledge discovery in databases’ (KDD) (Ester, 2000; Witten, 

2005). To derive general constraints of phosphorylation relating to structure and conservation, 

we applied the KDD process to determined large-scale phosphorylation sets. The 

comprehensive evolutionary study of phosphorylation is explicitly described in Chapter 9. 
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Furthermore we developed a support vector machine (SVM) based predictor for 

phosphorylation (Chapter 7) (Gnad et al., 2007). SVMs are machine learning methods used 

for classification. Two given sets of items such as phosphorylated and non-phosphorylated 

residues are separated in a multidimensional space, which reflects the features of the given 

objects. Depending on the relative orientation in the divided feature space, an unclassified 

item can then be assigned to one of the given two sets. The basic principles of SVMs are 

discussed in Chapter 7 in more detail. The phosphorylation site predictor is integrated into 

PHOSIDA and makes it possible to find putative novel phosphorylation sites that have not yet 

been experimentally identified. Predicting novel phosphosites and matching kinase motifs on 

proteins of interest should be valuable for the design of biological experiments or for 

predicting a protein’s role in a pathway.  

 

 
Figure 1.3: PHOSIDA (Phosphorylation Site Database) 

 

In addition to PHOSIDA, which focuses on the database management of phosphorylation 

sites, we created MAPU 2.0 (http://mapuproteome.com), the Max-Planck Unified Proteome 

Database (Chapter 5). The main purpose of MAPU 2.0 is the storage of high throughput 

datasets of proteomes measured in various tissues, cell types or organellar components on the 

basis of our high resolution and high accuracy MS technologies. MAPU 2.0 contains several 

body fluid proteomes including plasma, urine, and cerebrospinal fluid. In addition, cell lines 

have been mapped to a depth of several thousand proteins and the red blood cell proteome has 



6 
 

also been analyzed in depth. By employing high resolution mass spectrometry and stringent 

validation criteria, false positive identification rates in MAPU 2.0 are always lower than 1:100 

and usually lower than 1:1000. Thus, MAPU 2.0 datasets can serve as high quality reference 

proteomes, for example in biomarker discovery. 

 

Another objective of this work was the annotation of genomes on the basis of MS derived 

proteomic data. As mentioned above, MS is commonly applied to the identification of 

proteins by matching the measured spectra to sequences of known proteins that are annotated 

in public databases. Hence, this approach is limited to the detection of already predicted or 

established polypeptides. However, the original resource is the genome (Lander et al., 2001; 

Venter et al., 2001). It encodes all possible proteins and therefore represents the original 

source of the proteome. But the derivation of coding regions on the nucleotide sequence is not 

trivial. Current methods for gene prediction provide useful information but are still limited 

(Brent, 2007). It is hardly possible to predict all features of the genome from its sequence 

alone. Thus, the integration and validation of MS derived experimental data in a genomic 

context may contribute to the annotation of the genome and the identification of genes that 

have not been experimentally confirmed yet (Chapter 8) (Desiere et al., 2005; Fermin et al., 

2006). The main idea is to assign the measured spectra to translated predicted genes or even to 

all potential open reading frames instead of already known proteins. In this work we assigned 

our proteomic data directly to genes and then we linked our proteome databases with the 

genome database EnsEMBL via the DAS/Proserver technology (Birney et al., 2004; Finn et 

al., 2007; Flicek et al., 2008). 

 

Although not directly associated with the main topic of my PhD study, a further goal was the 

further development and curation of SEBIDA (www.sebida.com) – the Sex Bias Database 

(Chapter 6) (Gnad and Parsch, 2006). The database integrates results from multiple, 

independent microarray studies comparing male and female gene expression in Drosophila 

melanogaster, Drosophila simulans and Anopheles gambiae. In addition to ratios of 

male/female expression for each gene, SEBIDA also contains information useful for 

evolutionary studies, such as degree of codon bias, local recombination rates and interspecific 

divergence at synonymous and non-synonymous sites. Our laboratory is currently working on 

the quantitative evaluation of sex biased proteins on the basis of MS. This proteomic study 

has not been finished yet. However, we intend to analyse sex specific protein expression 

levels using the established SEBIDA environment in the future. 
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Thus, a variety of topics have been subjects of my PhD study in addition to the main focus on 

the bioinformatics of phosphorylation. They are tightly linked, since my study ranges from the 

identification of phosphorylation sites (Chapter 3) to their database storage (Chapter 4) along 

with other proteomic data (Chapter 5). On the basis of the created databases, which are 

accessible to the public community, we derived various general patterns (knowledge) 

(Chapter 4) with a main focus on the evolution of phosphorylation. Thus, the analysis of 

evolutionary constraints of phosphorylation is described in more detail in Chapter 9. The 

above mentioned phosphorylation site predictor that is trained on our high throughput datasets 

to recognize potential phosphosites mainly on the basis of features such as the surrounding 

sequence is described in Chapter 7. This overal workflow presents a ‘Knowledge Discovery 

in Databases’ (KDD) process as described in Chapter 4. 

 

For the mapping of proteomic data to the genome database EnsEMBL (Chapter 8), I received 

a Marie Curie Fellowship and worked at the European Bioinformatics Institute (EBI) in 

Cambridge. My adviser at EBI was Ewan Birney, founder of the EnsEMBL database.  
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Chapter 2 
 

Background: Mass Spectrometry, 
Database Systems and ASP.NET 
 
 
2.1 Mass Spectrometry based Proteomics 
 
Proteomics is a relatively new ‘post-genomic’ science that focuses on the large scale 

determination of the functional network in the cell at the protein level. It is a multifaceted 

field of research including a collection of various technical disciplines ranging from the 

experimental identification of amino acid sequences to their database storage. 

Historically, protein purification was based on crude chromatographic and then on gel 

electrophoresis methods. In one-dimensional gel electrophoresis proteins are separated so that 

all proteins lie along a lane but are separated by molecular weight. In two dimensional 

electrophoreses (Gorg et al., 2004; Gygi et al., 2000; Rabilloud, 2002), the proteins are first 

separated by isoelectric point and then by molecular weight. Although this technology proved 

to work sufficiently well for the analysis of low complexity protein mixtures, it could not 

satisfy the requirements for large scale in depth proteome analysis at current requisite quality 

standards (Mann and Kelleher, 2008). Of all contributing disciplines, MS has established 

itself as the main technology of proteomics studies. 

The development of two techniques – electrospray ionization (ESI) and matrix assisted laser 

desorption/ionization (MALDI) – in the late 1980s made essential contributions to the 

establishment of the rapidly evolving field of MS-based proteomics (Fenn et al., 1989; Karas 

and Hillenkamp, 1988). The development of these two ionization techniques encouraged the 

development of other decisive technologies including new mass analyses and complex 

multistage instruments designed to tackle the challenges of proteome analysis. In fact, it is 

amazing how rapidly MS has developed over the past decade. Ten years ago, the sequencing 

of a single protein was a remarkable achievement. Today, the determination of thousands of 

proteins in a single experiment is common practice. The lag between genomics, which already 

demonstrated the power of high-throughput analysis of biological processes, and proteomics 

is rapidly diminishing (Cox and Mann, 2007). MS can sequence tens of thousands of peptides 

from complex mixtures. Moreover, the application of quantitative proteomics using 

technologies such as SILAC (Stable Isotope Labeling by Amino Acids in Cell Culture), even 
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allows to compare the relative protein abundance between different proteomes (Ong et al., 

2002; Ong and Mann, 2005). By applying quantitative proteomics, functional information and 

temporal changes in the proteome including posttranslational modification dynamics can be 

captured by MS.  

 

Although various disciplines comprising different technologies contribute to proteomics, the 

design of MS-based proteomics experiments is quite generic (Figure 2.1) (Aebersold and 

Mann, 2003): 

First, the proteins to be investigated are obtained from cell lysates by affinity selection or 

biochemical fractionation. Sample fractionation oftentimes includes the separation into 

several subproteomes using gel electrophoresis. 

Then proteins are degraded enzymatically to peptides. The degradation step is required, as 

mass spectrometry of peptides is more sensitive than mass spectrometry of proteins, where the 

mere entire mass is not sufficient for identification. Trypsin digestion has proven to be an 

especially appropriate degradation method because it yields peptides with C-terminally 

protonated amino acids (Arg or Lys), which fragment well in tandem MS. 

Next, MS measurements are carried out in the gas phase on ionized peptides. Peptides to be 

analyzed are passed on to the three main components of the mass spectrometer: the ion 

source, the mass analyser that measures mass-to-charge (m/z) ratios of the ionized peptides 

and the detector that counts the number of ions at each m/z value. 

Consequently, the initial step for the identification of the peptide using a mass spectrometer is 

the ionization in an ion source: as mentioned above, the MALDI and ESI are the two most 

widespread ionization technologies and have had a huge impact on the rapid development of 

mass spectrometry (Fenn et al., 1989; Finn et al., 2007; Karas and Hillenkamp, 1988). 

MALDI sublimates and ionizes the peptides out of a crystalline matrix via laser pulses, 

whereas ESI ionizes the peptides out of a solution. Peptides are usually separated by liquid 

based separation techniques such as high-pressure liquid chromatography in very fine 

capillaries. After electrospray ionization the multiply protonated peptides enter the mass 

spectrometer, where the mass analyzer presents the essential component. There are four basic 

types of mass analysers, namely the ion trap, time-of-flight (TOF), quadrupole and ion 

cyclotron resonance (ICR) instruments (Hager and Le Blanc, 2003; Marshall et al., 1998; 

Martin et al., 2000; Schwartz et al., 2002; Valaskovic et al., 1996). They differ in mass 

accuracy, resolution and sensitivity. In each case, a mass spectrum of the peptides is taken 

(MS1 spectrum). A mass spectrum is the two-dimensional representation of signal intensity 
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versus m/z (Chapter 1). Then the computer generates a list of peptides for further 

fragmentation. Specified ionized peptides are isolated and fragmented by collision with an 

inert gas at low pressure, so that a tandem (MS2) spectrum is obtained.  
 

 
Figure 2.1: Generic mass spectrometry based proteomics approach (Aebersold and Mann, 2003) 
 
This generic MS-based proteomics method is then followed by computational analyses as 

described in Chapter 4.1: The MS1 and MS2 spectra are matched against protein sequence 

databases. We use the Mascot search algorithm to match given spectra with peptide sequences 

(Perkins et al., 1999). The final outcome is the identity of peptides assigned to proteins. As 

highlighted in Chapter 3, we extended the algorithm by another probability based method that 

determines posttranslational modifications within specified peptide sequences at the site level. 

The validated results are then uploaded to a database. After transforming the integrated data 

for the application of computational analyses, data mining methods are then applied to derive 

patterns (knowledge) from the data in a KDD process (Han, 2000; Witten, 1999, 2005) (Ester, 

2000). 

 



11 

The goal of quantitative proteomics is to determine the relative changes in expression of 

proteins (Ong and Mann, 2005). Translational controls and regulated degradation contribute 

to the biological function of proteins in addition to the regulation of the transcriptional 

machinery. To understand the functional impact of proteins, it is therefore indispensable to 

measure changes of protein expression levels in a whole biological system. Even though MS 

is not inherently quantitative, many techniques have been developed that supply the 

quantitative dimension to MS. For instance, Mann and colleagues have established a stable 

isotope-based technique termed stable isotope labeling by amino acids in cell culture (SILAC) 

(Ong et al., 2002). Cell populations grow in different metabolically labelled media (Figure 

2.2): one in a medium that contains a normal (‘light’) amino acid and the other in a medium 

that contains a heavy amino acid. The heavy amino acid can contain 13C instead of 12C, for 

example. Consequently, the two proteomes can be distinguished, as each peptide appears in 

two forms separated by the difference between light and heavy label. The intensity difference 

of the two forms reflects the difference in protein amount between the two cell populations. 

This method makes it possible to measure protein expression changes including 

phosphorylation dynamics after various treatments over time. Another application is the 

system-wide measurement of proteome expression differences between a normal cell and a 

cancer cell. As illustrated in Figure 2.2, SILAC experiments can even be extended by a third 

label (‘medium’). 

 

 
 

Figure 2.2: SILAC based proteome measurements (Cox and Mann, 2007) 
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2.2 Database Systems 
 
The vast increase in new technologies in biology ranging from genome sequencing to mass 

spectrometry has led to an explosion of the amount of data. This data demands efficient 

description, storage, management and recovery and efficient mining to facilitate extraction of 

biological knowledge. 

 
 
2.2.1 Components and Functions of Database Systems 
 

The term 'database' (DB) is defined as a collection of logically linked data. 'Database 

Management Systems' (DBMS) are software modules designed to manage the entire database 

(Date, 2003; Ramakrishnan, 2003). Therefore the main function of DBMSs is to describe, 

store, and regain very large amounts of data. Its hierarchical layer architecture fulfils these 

basic functions. Another task is the separate management of transactions and metadata. In 

addition, an important purpose of DBMSs is to interact with external applications in two 

directions. On the one hand, queries have to be worked on by the conversion of descriptive 

statements into procedural operations (user → DB). On the other hand, data have to be 

presented query-dependently (DB → user). 

The DB and its DBMS constitutes a 'database system' (DBS) (Figure 2.3). 

 

 

 
 

Figure 2.3: Relationship between database management system, database, and application layer 
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The online database GenBank exemplifies the importance of database systems (Benson et al., 

2008). GenBank is the NIH genetic sequence database, an annotated collection of all publicly 

available DNA sequences. It contains nearly 40 billion bases in about 40 million sequences 

(Figure 2.4a). Questions about the data must be answered efficiently, changes made to the 

data by different users must be applied consistently, and access to certain parts of the data 

must be restricted.  

 

One could try to manage the data by storing it in operating file systems, but this approach has 

many drawbacks. A database such as GenBank would have to write extra programs to answer 

each question a user may want to ask about the data. These programs would be complex 

because of the large volume of data to be searched. Furthermore, databases have to protect 

data from inconsistent changes made by different users. There are many disadvantages of 

using file systems which even make databases indispensable. DBMSs manage the data in a 

robust and efficient manner. As the volume of data and the number of users grow, support by 

DBMSs becomes indispensable. Concrete advantages of DBS are reflected by the demands on 

a database system, the so called 'Codd's Rules' (Figure 2.4b) (Begg, 2004). Cood’s rules 

demand requisite features of the databases including consistency, recovery, controlled 

accession, transactions and operations on the data. In addition, the main benefits of databases 

are physical and logical independencies (Chapter 2.2.2). These can be derived from the 

architecture of database systems. 

 

 
 
Figure 2.4: Data growth of GenBank (a) and the Codd’s rules (b) 

The exponential rise in GenBank data is indicative of the boost of biological data in general. Like all databases, 

databases managing biological data have to satisfy the Codd’s Rules. 
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2.2.2 Architecture of Database Systems 
 
A database system is divided into three separate tiers (Figure 2.5) (Date, 2003; Ramakrishnan, 

2003). The internal view determines the physical storage of data. Its specification is 

dependent on the available system and it is manipulated by the Data Storage Description 

Language (DSDL). The conceptual tier is defined as the logical entirety of all data, whereas 

the Data Definition Language (DDL) devises the entire schema. Finally the external view is 

the collection of all application specific views. Its tools are the Data Manipulation Language 

(DML) and the Data Query Language (DQL). They give instructions to read and manipulate 

the data. 

 

The main advantages of databases in comparison to file systems are independence between 

the conceptual and the internal tier (physical independence) on the one hand, and 

independence between the conceptual and the external tier (logical independence) on the other 

hand. For example, if the user asks for a sequence of a certain gene, whose descriptions and 

further information are stored in a database, the application does not have to care about the 

conceptual schema of the database. Thus, the logical independence is also called application 

independence. Moreover, the conceptual schema of the database is independent of its physical 

storage. Consequently, it is also known as implementation independence.  

 

 
 

 
 

Figure 2.5: Architecture of a database system 
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2.2.3 Relational Model 
 
There are many data models such as the hierarchical, object-oriented or the network model. 

The foremost one is the relational model, which is commonly used and widely spread (Heuer, 

2000). The main construct for representing data in the relational model is the 'relation'. Its 

schema specifies the name of the relation, the name of each column (attribute) and the set of 

associated values for each attribute. 

An instance of a relation is a set of tuples. They are also called 'records'. Each tuple has the 

same number of fields as the relation schema. A relational database can thus be defined as the 

collection of relations with distinct relation names.  

One essential element for a relation is the primary key. It is defined as the minimal set of 

attributes identifying each tuple uniquely. Besides the primary key, a foreign key is the 

minimal set of attributes which refer to a primary key of a 'foreign' relation. Thus, various 

relations within a database have precisely defined relationships. Entity Relationship Models 

(ER models) are often used in order to describe the conceptual database scheme including 

various (one-to-one, one-to-many, or many-to-many) relationships between different 

relations. The definition of keys is associated with functional dependencies. They play 

important roles in the conceptual construction of a database. An example of a relation 

containing expression information of genes is illustrated in Figure 2.6. 

 
Figure 2.6: Instance of a database relation 

The illustrated example of a relation contains data such as unique gene identifiers (CGnumber, FlyBase number 

or gene name), chromosome locations, and abundance ratios of different SILAC labels. 

 
2.2.3 Query Language SQL 
 
The Structured Query Language (SQL) is the most widely used relational database language 

(Gennick, 2006). It enables programmers to pose complex queries on datasets. It is based on 

relational algebra. Hence SQL is able to capture all possible relational expressions; it is 

relationally complete. Without the application of database systems along with a query 

language the analysis of large data sets such as those derived through MS-based proteomics 
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would be inefficient. A programmer would have to write ad hoc programs for each query on 

data that are stored in file systems. Databases instead allow formulating formulating short 

statements on the data.  

We used the open source database query language MySQL (http://www.mysql.com) (Reese, 

2002), in order to extract information and knowledge from proteomic data (Dzeroski and 

Lavrac, 2007). The only disadvantage of MySQL that we experienced is the absence of a 

direct implementation of the frequently used 'outer join' operation. To design an 'outer join' 

operation on two or more tables, it is necessary to formulate a workaround by combining a 

left outer join operation and a right outer join operation via the 'union' operation. Except for 

this disadvantage, MySQL proved to be the proper tool for data queries on a relational model 

for very large and complex proteomics data. 

 
 
2.3 Web Development in ASP.NET 
 
One of the most recently established object-oriented programming languages is C# (Chapter 

2.3.1) (Liberty, 2005a). It was designed to program the Microsoft .NET Framework (Liberty, 

2005b), which is briefly described in Chapter 2.3.2. We decided to use C# because of its 

applicability to the Windows based XcaliburTM software that provides instrument control and 

data access for the entire family of mass spectrometers of the Thermo Fisher Scientific 

company, which are used exclusively in our group. As C# is a relatively new programming 

language, it has not generally been used in bioinformatics yet. Consequently, there are 

virtually no open access class libraries that can be shared by the public community.  

However, C# provides an optimum blend of performance, simplicity and expressiveness on 

the basis of observations drawn from other languages such as Java and C++. It comprises all 

advantages of object-oriented programming and makes it possible to share self-defined classes 

and methods via class libraries.  

Regarding web programming, C# presents the underlying language of ASP.NET, which 

enables programmers to encapsulate code into web controls ranging from simple HTML 

buttons to complex list boxes. Since the implemented dynamic web sites rely on a database to 

provide content, we used the ADO.NET technology (Chapter 2.3.1) to embed data retrieved 

from a mySQL database into dynamically created web content (Hamilton, 2003). Finally, 

retrieved data are dynamically represented in a structured document (web page). Its 

representation and design is subject to the discipline of Markup languages, namely HTML for 

web representations (Chapter 2.3.3) (Goodman, 2006; Musciano, 2006). 
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2.3.1 C# Language 
 
The goal of the programming language C# is to provide a simple, safe, object-oriented, high-

performance language for .NET development (Liberty, 2005a). C# is a very modern language, 

and it draws on the lessons learned over the past decades. Experienced programmers can 

immediately see the influence of already established languages, primarily C++, Java and 

Visual Basic. C# can be ideally used as a tool for programming on the .NET platform 

(Liberty, 2005b), especially with Visual Studio (Griffiths, 2003). As a component-based, 

structured, object-oriented programming language, it includes all the support for defining and 

working with classes. It contains keywords for defining new classes along with their 

properties and methods. Furthermore, it allows the implementation of the three essential 

requirements of object-oriented programming: encapsulation, inheritance and polymorphism. 

The final compilation of programming code yields a collection of files that appear to be a 

single executable or a single dynamic link library (DLL). These compiled files are named 

‘assemblys’ and present the basic units of deployment and reuse in .NET.  

In summary, C# is a very powerful programming language comprising all the strengths of 

object-oriented programming. It is designed for developing applications on Microsoft’s .NET 

platform and provides a unique solution to write dynamic web applications. 

 
 
2.3.2 Web Development in .NET 
 
‘ASP.NET is an event-driven, control-based, object-oriented architecture that generates 

content and dynamic client-side code from server-side code using functionality described in 

the System.Web classes of the .NET Framework’ (Cazzulino, 2004; Liberty, 2005b). This 

means that ASP.NET is the technology that performs server-side processing to generate the 

page response when receiving a web page request. After the execution of server-side code 

ASP.NET sends back the created web page to the browser. The event-driven feature handles 

the reaction to events such as when a user clicks a button. This requires the usage of elements 

of visual functionality known as ‘server controls’. Server controls comprise web elements 

such as buttons or listboxes. In principle, one can configure server controls through a 

Properties browser (Figure 2.7). At runtime, ASP.NET transforms the configured server 

controls into plain HTML code that is sent to the requesting browser. However, the design of 

more complex web pages such as PHOSIDA (Chapter 4) still requires the implementation of 

HTML code. Nevertheless, the integration of server controls presents a very strong 

foundation, as elements of visual functionality conform to the .NET programming model. 
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Figure 2.7: Microsoft Visual Studio environment. 

Server controls can be easily placed via the Toolbox (on the left) and configured via the Properties Browser (on 

the right). 

 
The functionality of web elements such as server controls and web forms is contained within 

the System.Web namespace. It includes a comprehensive set of ASP.NET Framework classes 

that enables web programmers to design multiply functional web pages in a sophisticated 

way. In addition, ASP.NET brings all the advantages of object-oriented programming, as all 

classes and methods are extensible and reusable through inheritance and polymorphism.  

 
 
2.3.3 Markup Languages and HTML 
 
Each document presents an organized set of data. This PhD thesis is also an ordered set of 

headings, paragraphs, and illustrations. The data in documents are arranged visually in such a 

way that the organization of the data is clear. This makes it easier to read the document. 

Analogously, we often need our computerized applications to be able to read a document and 

derive the structure of the data contained in it. To do this, we use ‘markup’.  

Markup consists of tags that occur in the document along with the data. They specify the 

various elements of data within the document. All the data corresponding to an element are 

arranged between the opening <element> tag and the closing </element> tag. Moreover, one 

element is likely to embrace other elements along with their data. 



19 

Hypertext Markup Language (HTML) is generated by web applications and sent to the 

browser for display (Musciano, 2006). In fact, HTML is a ‘markup language’. An HTML 

document is a set of tags and data that allows the description of the structure of web page 

documents. The main purpose of the data of an HTML document is to display information in 

a browser window. Thus, the markup in an HTML document is intended to describe the way 

the browser should display the data. Figure 2.8 exemplifies an HTML document that 

describes general features of the EGF receptor gene. 

 

 

 
 
Figure 2.8: Example of the web presentation of a given HTML document describing features of the EGF 

receptor gene (as interpreted by common web browsers such as the Internet Explorer or Mozilla Firefox) 

 
 
The illustrated HTML document describes general features of the gene that encodes the 

epidermal growth factor precursor protein such as gene symbol and synonyms. In addition, it 

describes four different gene transcripts. This HTML document can be sent to a browser. As 

the browser is programmed to interpret tags, it is able to parse the logical structure of the 

document. Tags such as ‘<html>’ and ‘<b>’ are common elements that are uniformly handled 

by a variety of web browsers. In order to specify the display of data, Cascading Style Sheets 

(CSS) are used to describe a particular presentation of a document (Meyer, 2006). The 

application of CSS limits the scope of the web browser’s interpretation and enables the web 

programmer to force the browser to display the data in a defined way. In the example, the 

additions of tag classes refer to certain styles relating to colors, layouts, and fonts. The 

purpose of this chapter is not to dwell on the detailed concepts of HTML documents and 

Cascading Style Sheets. However, it should become obvious that the creation of dynamic 

user-friendly web pages is a result of the combination of the embedding of ASP server 

controls into HTML documents whose layouts are specified by CSS.  
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Chapter 3 
 

Identification of Peptides and 
Phosphorylation Sites 
 
 
3.1 Introduction 
 
Many approaches and algorithms have been described in the literature for peptide and protein 

identification by searching a sequence database using MS data (Sadygov et al., 2004). 

Although reported methods differ in their detailed implementation, the general concept is 

similar: The experimental data are compared with peptide and peptide fragment mass values 

calculated on the basis of cleavage rules applied to the protein sequences in the specified 

database.  

To assign measured spectra to peptide sequence, we use the search engine Mascot (Perkins et 

al., 1999), which is based on probability scoring. Mascot is a well established software used in 

many MS laboratories for protein identification by searching sequence databases. It is 

primarily optimized for the identification of sequence stretches (peptides) based on the 

presence of calculated fragment ions in the tandem spectra. Identified peptide sequences are 

assigned to protein entries afterwards. However, proper site specific location of 

posttranslational modifications is not a strength of Mascot but it is critical, as many biological 

processes are regulated through the modification of specific residues. 

Hence, we established a probability based algorithm that measures the probability of correct 

phosphorylation site localization. We applied our method in a fully automated fashion via the 

PHOSIDA upload system (Chapter 4.2) enabling us to investigate identified 

phosphoproteomes on the site level. 

 
 
3.2 Site-specific Posttranslational Modification Scoring 
 
The post-translational modification (PTM) score used for localization of the phosphorylation 

sites is an extension of the MS3 score described by Olsen and Mann (Olsen and Mann, 2004), 

and was described in Olsen et al. (Olsen et al., 2006). The binomial distribution score is used 

to compute the probability for all individual serine, threonine and tyrosine residues to be 

phosphorylated in a phosphopeptide identified by MASCOT. 
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In an ion trap MS/MS spectrum (e.g. from LTQ Orbitrap or LTQ-FT instruments) fragments 

are matched with a mass tolerance of +/- 0.5 Da. As a result, one fragment ion can be matched 

per m/z unit throughout the mass range and there are 100 ‘bins’ for the fragments per hundred 

m/z interval. To compute the binomial distribution score, the top most intense fragment ions 

per 100 m/z bins in a spectrum are considered. The algorithm automatically discards most of 

the ions and keeps only the top four most intense one per 100 m/z units, which therefore have 

4% chance (0.04) of matching randomly (Andersen et al., 2003). For a true match, the most 

intense fragment ions are expected to match the peptide sequence-specific b- and y-type ions.  

The binomial distribution score probability (P) is calculated as:  
 

 
 

where n over k is the number of permutations of a subset of k elements (matches) in a set of n 

elements (total number of possible b and y ions in the mass range). The probability of a 

putative b- or y-ion to match one of the experimental fragment masses by chance is simply 

4/100 or 0.04, independently of the mass range considered, because we allow four measured 

masses per 100 Da. For some applications, six instead of four peaks per 100 m/z interval are 

retained.  

To make the PTM score comparable to the probability-based MASCOT score, we compute 

the Post-Translational Modifiation (PTM) score in the same way: 

 
The algorithm calculates the PTM scores for all possible phosphorylation site combinations 

within a given phosphopeptide sequence by successively placing the number of phospho 

groups (known from the measured peptide molecular weight) on each serine, threonine or 

tyrosine in turn. To calculate the probability of phosphorylation for all candidate sites, all 

phosphorylation site combinations showing a PTM score higher than the maximum score 

minus five are taken into account. The value of five was chosen on an empirical basis as it 

turned out to retain most of the possible phosphorylation sites in the peptide. For each 

candidate combination i with a PTM score PTMi, the corresponding probability pi is given to 

all assigned phosphorylation sites. Subsequently, the p value for the phosphorylation 

probability of each candidate site is calculated as the sum of probabilities pi of all candidate 

phosphopeptides and normalized, so that the sum of all resulting site-specific localization 
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probabilities is equal to the number of phosphorylation events in the specified peptide. Table 

3.1 gives an example of phosphorylation site combinations along with the resulting 

localization probabilities of each candidate site. 
 

 
 
Table 3.1: Derivation of localization probabilities of candidate phosphorylation sites in a given 

phosphorylated peptide 

The table shows a specific example of the calculation of site-specific localization probability values (doubly 

phosphorylated peptide of Eps8). The five top scoring possibilities for phosphorylation have PTM scores from 

30.4 to 29.64. Corresponding probabilities (P) reflect the proportional probability for each phosphorylation site 

combination and add up to one. They are assigned to the two phosphorylation sites in each case. Next, 

probabilities are summed up for each candidate site. 

 
To deduce the exact localization of phosphorylation events within a given phosphopeptide 

along with the corresponding probabilities from the given spectrum, the algorithm was 

embedded into the PHOSIDA upload system. It was first applied to a large-scale study in 

which we investigated the phosphoproteome in human cells exposed to EGF stimulation 

(Chapter 4.6.1.1.1) (Olsen et al., 2006). For the first time, we were able to identify the 

phosphoproteome in a site-specific way without manual derivation of the exact position of 

phosphorylation sites. To test the algorithm for a defined set of phosphopeptides with known 

phosphorylation sites, we analyzed synthetic phosphopeptides available in our laboratory and 

phosphopeptides derived from tryptic digests of bovine caseins by LC-MS on the LTQ-

Orbitrap. The phosphorylation sites on caseins are highly validated in the literature and were 

taken from Thingholm et al. (Thingholm et al., 2008). All phosphopeptides harbored at least 

one non-phosphorylated residue. We first calculated the PTM scores for all phosphopeptide 

spectra and subsequently determined phosphorylation site probabilities. In addition, we tested 

the PTM scoring on the dataset from a previous large-scale study on the phosphoproteome 
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identified in pheromone treated yeast cells. Gruhler et al. identified 700 phosphopeptides, for 

which phosphorylated residues were manually assigned (Gruhler et al., 2005). 

 

3.3 Results 
 
In the case of synthetic peptides, 27 out of 37 phosphorylated residues were correctly assigned 

with a p value of 1, with no false positive assignment. For all phosphorylation sites with a 

probability value of 0.75 or higher, which we define as class I sites, precision was still 94%. 

Figure 3.1a presents the corresponding precision-recall curve. ’Recall’ is the proportion of 

true positives to the sum of true positives and false negatives, whereas ’precision’ describes 

the number of true positives out of all predicted positives. Briefly, an ideal precision-recall 

curve would stay at a precision value of 1 (only true positives) until all true cases have been 

‘recalled’ (recall value of 1, see also Chapter 7). Furthermore we plotted the recall, also 

termed as ‘sensitivity’, against given PTM-localization probability cutoffs (Figure 3.1b). The 

test on the basis of manually evaluated phosphopeptides determined in yeast cells yielded 

92% precision relating to the correct assignment of class I phosphorylation sites, which satisfy 

a localization probability of 0.75. The corresponding precision-recall curve and the correlation 

diagram reflecting the sensitivity of the algorithm at different probability cutoffs are 

illustrated in Figure 3.1c and Figure 3.1d respectively. 

 
 
Figure 3.1: Validation of the PTM algorithm on the basis of synthetic phosphopeptides, phosphopeptides 

derived from tryptic digests of bovine caseins (a, b) and phosphopeptides identified in pheromone treated 

yeast cells (c, d) 
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3.4 Conclusion 
 
Several algorithms have been described in the literature for protein identification by searching 

a sequence database using MS data. The probability based Mascot scoring algorithm assigns 

peptide sequences to MS/MS spectra and enables the user to judge whether the result is 

statistically significant. It has all the advantages of probability based approaches but is 

primarily optimized for the identification of peptide sequences. However, proper 

posttranslational modification location is also critical because many biological processes are 

regulated through the modification of specific residues. The entire concept of the 

phosphorylation site database (Chapter 4) also demands proper phosphorylation site 

placement. Therefore, we have developed a probability-based approach to calculate the 

likelihood of matching given ions to specific phosphorylation site locations. The algorithm is 

embedded in the PHOSIDA upload system (Chapter 4.2) and allows the calculation of 

localization-specific probability for each phosphorylation site within the given data set. The 

algorithm was originally described in the study of the human phosphoproteome upon EGF 

stimulation (Chapter 4.6.1.1.1) and enabled the automated site-specific investigation of high 

throughout phosphodata for the first time. We routinely apply the algorithm to all large scale 

studies of phosphoproteomes in our laboratory. It was originally implemented to derive site 

specific localizations of phosphorylation events on the basis of results from our open source 

MS computational platform MSQuant (www.msquant.org). Meanwhile, we have integrated 

this probability methodfully into the MaxQuant software, the current computational 

proteomics platform of our laboratory. To evaluate the method we analyzed the accuracy on 

the basis of known and manually validated phosphorylated peptides. The main finding of this 

test was that more than 90% of the phosphorylation sites were predicted correctly using a 0.75 

cutoff relating to the resulting localization probability. The evaluation – including precision-

recall curves - established that our approach is very accurate and efficiently extends the 

fragments-to-sequence-assignment from the peptide level to the residue level. We define 

phosphorylation sites, which satisfy a localization probability of 0.75, as ‘class I sites’. The 

integration of the described probability-based algorithm in the automated Phosida upload 

process allows the site specific investigation of identified phosphoproteomes. It is 

indispensable for the large scale analysis of various constraints of phosphorylation events 

including evolution (Chapter 9). In addition, the Phosida web application shows the exact 

localization probability of each determined phosphorylated site enabling web users to validate 

the residue specific assignment of posttranslational modification events within specified 

peptide sequences (Chapter 4.2.5). 
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Chapter 4 
 

PHOSIDA – Phosphorylation Site 
Database 
 
 
PHOSIDA, the phosphorylation site database, integrates thousands of high-confidence in-vivo 

phosphosites identified by MS-based proteomics in various species (Gnad et al., 2007). It 

comprises phosphoproteomes of various organisms ranging from bacteria including 

Escherichia coli and Bacillus subtilis to eukaryotes including yeast and human. It contains 

around 7000 phosphorylation sites that have been determined in human cancer cells upon 

EGF stimulation (Olsen et al., 2006). Since the objective of many of our phosphostudies was 

to quantify a given in-vivo phosphoproteome using SILAC (Chapter 2.1), PHOSIDA makes it 

possible to check phosphorylation changes after certain treatments such as growth factor 

stimulation and kinase/phosphatase inhibition by small molecules. On the protein level, 

PHOSIDA includes general information such as sequences, isoelectric points (pIs), motifs, 

active sites, binding sites, domains, gene ontology classifications and associated literature. 

These annotations are mainly derived from the SwissProt database, which is cross-linked to 

our database containing peptide identifications. On the phosphosite level, PHOSIDA provides 

information about matching kinase motifs, MS specific identification scores including 

localization probabilities, predicted secondary structures, and the residue conservation within 

a multitude of different species. Importantly, the underlying environment allows the 

automated integration of determined phosphoproteomes along with corresponding annotations 

from various sources. In addition, further information relating to evolution and structure are 

derived via a self-constructed pipeline. To establish a consistent database management, 

integrated projects have to be preprocessed and transformed in a uniform manner. This 

ensures that various projects can be compared in a very simple and fast way. Moreover, it 

allows the mining of phosphoproteomes of various organisms in a standardized way. The 

whole process constitutes a KDD process (Chapter 1). 

Chapter 4.1 gives an overview of the general process of knowledge discovery in databases. 

Chapter 4.2 provides insights into the basic concepts of PHOSIDA. The application of the 

KDD process on MS specific datasets and its implementation into PHOSIDA are described in 

chapters 4.3 – 4.6. The description of the practical implementation of the KDD process is 

rounded off by a discussion (Chapter 4.7).  
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4.1 General Process of Knowledge Discovery in Databases (KDD) 
 
The major reason that data mining has attracted a great deal of attention in the information 

industry in recent years is due to the wide availability of very large amounts of data and the 

pressing need for turning such data into useful information and knowledge (Han, 2000). 

However, the abundance and diversity of data, coupled with the need for powerful data 

analysis tools, has been described as a 'data rich but information poor' situation. The fast-

growing, tremendous amount of data that are collected and stored in databases has far 

exceeded human ability for comprehension. Thus data analysis including data mining can 

uncover important data patterns not accessible to direct inspection.  

The widening gap between data and information demands a systematic development of data 

mining tools turning data tombs into 'golden nuggets' of knowledge. For example, 

classification of biological data such as protein folds, association rules detecting metabolic 

pathways and clustering of protein structure are essential data mining applications to gain 

information (Mitchell, 1997).  

 

The KDD process is dedicated to derive knowledge from large scale datasets generated by the 

application of high throughput mass spectrometry technologies. The actual KDD process is 

applied to data that have already been processed via the typical MS data workflow and thus 

consist of assigned and quantified SILAC peptides (Chapter 2.1). These data are validated by 

manual inspection or by the specification of specific cutoffs governing the false positive rate. 

This rate of false positives can be estimated by the inclusion of reversed protein sequences in 

the database used for the identification yielding a ‘decoy database’ (Elias et al., 2005). The 

overall process can be defined as an integration process. It presents the preliminary data flow 

before the integration into the database, the first step of the actual KDD process (Figure 4.1). 

 

The KDD process is frequently equated with the term ‘data mining’ and this is definitely the 

most important and essential procedure. However, it is only one step in the whole process of 

knowledge discovery: Data integration and data selection (Chapter 4.3) are the first steps of 

KDD, followed by data transformation (Chapter 4.4). Only then can data mining methods 

(Chapter 4.5) be applied (Figure 4.1). The final step is the evaluation of the obtained results 

linked to validation and presentation of the gained knowledge (Chapter 4.6). Frequently one 

has to go some steps backward in the KDD process, if the evaluation of the results is not 

satisfactory.  
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Figure 4.1: Process of KDD applied to mass spectrometry determined (phospho-) proteomes 

 
 
 
4.2 Basic Concepts of PHOSIDA 
 
PHOSIDA was developed to retrieve and analyze phosphosites from large-scale high-

confidence phosphoproteomics experiments including quantitative data that describe the 

response of biological systems to various treatments. Thus it is the first phosphorylation site 

database to explicitely store quantitative data of site-specific phosphorylation changes. 

PHOSIDA also matches kinase motifs to phosphosites and illustrates the structural 

environments and conservation of phosphorylated residues.  

As mentioned above, the final result of an MS based proteomics approach is the identity of 

peptides. The mapping of determined peptides to protein entries is challenging, as peptides 

can match to several protein sequences. This problem is addressed in PHOSIDA by a many-

to-many mapping between phosphopeptide sequences and protein entries in the sequence 

database.  

One of the fundamental strengths of PHOSIDA lies in the high quality of the in vivo data 

contained in the database and in the very large size of its in vivo data sets. PHOSIDA presents 

the most comprehensive database storing not only phosphosites identified in eukaryotic cells, 

but also phosphosites detected in prokaryotic cells. 

 
 
 
 
 



28 
 

4.2.1 Core Database Management of Phosphorylation Sites 
 
As the primary goal of PHOSIDA is not only to make identified phosphorylation sites 

available to the public community, but also to derive biological context relating to 

phosphorylation events in the cell, there are two different PHOSIDA versions: One database 

scheme is designed to allow automated mining of phosphosets (Chapter 4.2.1.1), whereas the 

other database scheme is constructed for web usage (Chapter 4.2.1.2). 

 
 
4.2.1.1 Database Schema adapted for Mining 
 
The integration of phosphorylated peptides into PHOSIDA (version 1.1) is based on validated 

data processed via MASCOT (Perkins et al., 1999) and MSQuant (Andersen et al., 2003). The 

MASCOT software assigns measured spectra to peptide sequences (identification process), 

whereas the MSQuant software quantifies identified peptides. The final result is a list of 

detected peptides along with a variety of features such as charge status, MASCOT 

identification scores and quantitative data. Furthermore, all theoretical combinations of 

modifications of each peptide are listed along with posttranslational modification (PTM) 

scores as calculated by a probability based algorithm (Chapter 3). This combinatorial listing 

provides the basis for the derivation of the probability for each residue to be phosphorylated 

within the given peptide. 

For each peptide, its sequence, number of phosphorylated residues, Mascot score, PTM score, 

and quantitative data are uploaded to the PHOSIDA database. In some cases, the experimental 

design requires the inclusion of additional attributes such as cellular localizations. The 

PHOSIDA 1.1 upload also comprises a procedure that assigns each peptide to a specific 

protein entry of the corresponding database. The assignment of peptides that occur uniquely 

in one protein of the given database is unambiguous, however, peptides that occur in several 

proteins are assigned to the protein that shows the highest total number of identified peptides 

(this is the most likely protein form to be present in the measured proteome). The many-to-

one assignment between peptides and corresponding proteins is essential to derive general 

patterns from non-redundant data. Many-to-many relationships between non-unique peptides 

and proteins as used for the online application (Chapter 4.2.1.2) would artificially increase the 

number of identified proteins yielding misleading results. The database relation ‘peptides’ 

contains all identified peptides distinguishable by their sequence and number of 

phosphorylations (Figure 4.2). Each peptide entry is uniquely indexed by the ‘pep_id’ 

identifier. Thus, the ‘pep_id’ presents the primary key of this relation (Chapter 2.2). Usually, 
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many measured instances correspond to a single peptide entry due to varying charge states, 

duplicate experiments, etc. The database relation ‘peptides_sub’ contains each measured 

entity. Its primary key is termed ‘subpep_id’. Since there are several instances associated with 

one peptide, the relationship between ‘peptides’ and ‘peptides_sub’ is one-to-many. The 

attribute ‘pep_id’ serves as foreign key linking the table ‘peptides_sub’ to ‘peptides’. 

The SILAC technology allows the quantitation of peptides in three different conditions using 

light, medium and heavy amino acid labelling (Chapter 2.1). If one is interested in the 

intensity distribution in more than three different conditions, one has to combine multiple 

SILAC based experiments. Two SILAC experiments can compare five conditions because 

one common point is needed for normalization. To combine quantitative data from parallel 

SILAC experiments, we assign abundance levels of the top scoring peptide instances observed 

in one specified experimental condition to the associated peptide entry. Combined 

quantitative data are integrated into the relation ‘peptides’, whereas quantitative data for each 

instance are integrated into the relation ‘peptides_sub’.  

 

 
Figure 4.2: Basic database schema of PHOSIDA 1.1 
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In addition to the integration of phosphorylated peptides, associated phosphorylation sites are 

uploaded, too (Figure 4.2). For each peptide instance, the corresponding phosphorylated 

residues are stored in relation ‘sites’. Each entry contains the position of the phosphosite in 

the protein sequence, the localization probability, and the type of amino acid. Thus, there are 

many instances for each peptide instance in the case of multiple phosphorylation and 

ambiguous site phosphorylation. This results in a one-to-many relationship between the 

database relations ‘peptides_sub’ and ‘sites’. As apparent from the database schema (Figure 

4.2), PHOSIDA database version 1.1 is peptide based. Consequently, quantitative data of 

peptides are directly assigned to all residues that are phosphorylated within each peptide 

instance. 

 

In contrast to PHOSIDA version 1.1, the second database version (1.2) is predominantly 

phosphorylation site based. The upload process is also different: The upload process of 

database version 1.1 is based on a single result file generated by MSQuant. In contrast, the 

upload process of database version 1.2 is based on several result files generated by the new 

computational proteomics environment, MaxQuant. The result files list identifies peptides and 

phosphorylated residues separately. Each file is cross-linked via unique identifiers. Therefore, 

the concept of the MaxQuant result files already reflects the logical schema of the database 

(Figure 4.3). Furthermore, calculated localization p-values of phosphosites and the correct 

protein assignments are already provided by MaxQuant. The idea of a site-specific database 

schema is primarily reflected by the fact that quantitative data are directly assigned to 

phosphorylation sites in a sophisticated manner: The quantitation of posttranslationally 

modified residues is based on taking the median of the quantitative data of all peptides 

containing the given modified residue. Hence, the database relation ‘sites’ is the most 

comprehensive table including the maximum localization probabilities observed in all 

corresponding peptides, assigned protein identifiers, amino acid types, quantitative data, and 

further features. For each phosphosite, the top scoring peptide instance is stored in the relation 

‘peptides_sub’. The database relation ‘sites’ is linked to ‘peptides_sub’ via ‘subpep_id’ 

identifiers. The relationship between the tables ‘peptides’ and ‘peptides_sub’ is the same as 

the one of PHOSIDA version 1.1. 

The initial upload of identified phosphorylated peptides is followed by a number of further 

processes that contribute to the KDD process. 
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Figure 4.3: Basic database schema of PHOSIDA 1.2 
 
 
4.2.1.2 Online Database Schema 
 
The concept of the database schema providing the basis for the web applications is different 

from the one of the PHOSIDA versions described in Chapter 4.2.1. The transformation 

between the two database schemes is carried out automatically. Depending on the underlying 

quantitation software one can distinguish between a peptide-based online database schema 

(Figure 4.4) and a site-based online database schema. The only difference between the two 

online database schemas is that quantitative data are assigned to peptides in the one scheme, 

whereas quantitative data are attributed to phosphorylated residues in the other scheme. 

 

In contrast to the database schemes designed for mining, the online database schemas are 

based on the principle of many-to-many protein-peptide assignments. Hence, each peptide is 

assigned to all proteins that contain the given peptide sequence. This relationship is reflected 

in the database relation ‘idmatch__[project_id]’, as it assigns each identified peptide to all 

corresponding proteins. Therefore, each protein potentially shows a multitude of peptides 

stored in relation ‘idpower__[project_id]’. The correct peptide-protein assignment is 
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predicated on the assumption that the higher the total number of assigned peptides, the higher 

the probability that the given protein was identified. 

 

 
Figure 4.4: Online database schema 
 
 
4.2.1.3 Integration of additional Biological Data 
 
In addition to the upload of identified phosphosites along with their corresponding peptides, 

further biological data sources have to be integrated, in order to fulfil the requirements of 

mining and to enable web users to derive a biological context for any protein of interest.  

It is obvious to include general protein features that are outlined in the database that was used 

for the peptide identification. For example, in the case of the International Protein Index (IPI) 

database (Kersey et al., 2004), the downloadable files contain general descriptions, features 

such as pI and molecular weight, and gene symbols besides the sequence of each protein. 

These attributes are integrated into PHOSIDA (Figure 4.5). They are not only used for 

mining, but also for a more comprehensive illustration of each phosphorylated protein on the 

web. Therefore, the inclusion of additional protein characteristics is added to the database that 

is required for mining and to the online database as well.  
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Figure 4.5: Integration of additional protein features into the PHOSIDA database 
 
The Gene Ontology (GO) annotation is another valuable data resource (Ashburner et al., 

2000). The GO project is a collaborative effort to address the need for consistent functional 

descriptions of gene products in different databases. The three organizing principles of GO 

are molecular function, biological process and cellular component. Many gene products are 

associated with a multitude of functions, processes, or cellular localizations. The Gene 

Ontology Annotation (GOA) database (Camon et al., 2004) provides GO annotations to 

protein entries of the IPI database, for example. Its inclusion requires only one additional 

database relation (Figure 4.6).  

 
 

 
Figure 4.6: Integration of GO annotations into the database 
 
 
In addition, the protein database SwissProt provides a high level of annotation ranging from 

the domain structure of a protein to post-translational modifications and corresponding 

literature (Bairoch and Apweiler, 1996). Therefore, it constitutes an excellent resource to gain 

deeper insight into biological context. In particular, the integration of annotated post-

translational modifications makes it possible to determine if an identified phosphorylation site 
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is novel. However, the inclusion of protein annotations from various databases presents a 

challenge, since the annotations might be based on different products of the same gene. For 

example, the epidermal growth factor receptor precursor protein has only one entry in 

SwissProt, which can be uniquely identified by its accession number ‘P00533’. In contrast, 

the IPI database contains four different entries for the same protein due to various splice 

forms (IPI00018274, IPI00221346, IPI00221347, IPI00221348). Thus, comprehensive 

sequence mappings between various databases are required to combine protein annotations of 

various sources.  

To align protein sequences of various databases, we used the basic local alignment search tool 

BLAST (Altschul et al., 1990). It allows rapid sequence comparisons and creates alignments 

that optimize a measure of local similarity. BLAST searches for high scoring sequence 

alignments using a heuristic approach that approximates the Smith-Waterman algorithm 

(Smith and Waterman, 1981) but is much faster. It is the most popular bioinformatics tool in 

use today due to its speed and accuracy. To align protein sequences, we used the software 

BLASTP. It is optimized for the comparison of amino acid sequences. The automated 

comparisons between corresponding protein sequences of various databases result into the 

database relation ‘map_[organism]_[db1]_[db2]’, which stores the generated alignments 

(Figure 4.7). 

 
 
Figure 4.7: Database integration of several databases such as IPI and SwissProt requires comprehensive 

sequence alignments for a merged protein annotation 
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4.2.2 Kinase Motif Matching 
 
Protein phosphorylation levels are essential for understanding the basic principles of 

signalling pathways in both normal and diseased cell states (Chapter 1) (Pawson and Scott, 

2005). The derivation of consensus sequences (motifs) for protein kinase sites of 

phosphorylation is essential to estimate the ‘kinase affiliation’ of substrates. Consensus 

sequences are primarily deduced from in-vitro incubations of kinases with a combinatorial 

peptide library and ATP. In addition, there are many algorithms that extract motifs in-silico. 

Among these, an iterative statistical approach proved to be the best performing method to 

identify protein phosphorylation motifs from large-scale data sets (Schwartz and Gygi, 2005). 

With verified kinase motifs in hand, one is in principle able to determine the kinase 

responsible for a given protein substrate phosphorylation of interest. However, previous 

experience has shown that one has to check the matching of consensus sequences on the site 

level, as many proteins are substrates of different kinases and participate in different 

pathways. Therefore, for each phosphorylated site, the matching consensus sequences are 

illustrated in PHOSIDA (Chapter 4.2.5). PHOSIDA checks 34 different consensus sequences 

of various human kinases such as casein kinase and glycogen synthase kinase against each 

site. 

 

Besides the estimated assignments of kinases for each phosphorylated residue of interest, the 

inclusion of kinase motif matches makes it possible to check the over- and 

underrepresentation of matching consensus sequences in a given large-scale dataset of 

phosphorylation sites (Chapter 4.5.1). The significance of motif matches provides insight into 

the overall kinase distribution that initiated the phosphorylation of specified substrates. 

 
 
4.2.3 Structural Investigation of Phosphoproteomes 
 
Previous studies have already shown that phosphorylation sites are mainly located in parts of 

proteins without regular structure (Dunker et al., 2002; Iakoucheva et al., 2004). To verify this 

observation on the basis of our large-scale studies and to enable users to investigate the 

structural context of each phosphorylation site of interest (Chapter 4.2.6), we performed large-

scale solvent accessibility calculation as well as secondary structure prediction employing the 

SABLE 2.0 program (Wagner et al., 2005). The predicted structural constraints of each 

residue of a given phosphorylated protein are stored in the database relation 

‘structures_[project_id]’ (Figure 4.8). Besides the predicted secondary structures and solvent 
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accessibilities scaling from 0 (low accessibility) to 9 (high accessibility), the corresponding 

residue specific validation scores are stored. An inner join with the database relations that 

contain the identified phosphorylation yields the virtual relation ‘sites_structure_[project_id]’. 

It comprises the structural context of each identified phosphorylation site. 

 

 
Figure 4.8: Adding structural context to the PHOSIDA database 

 
 
 

4.2.4 Evolutionary Conservation of Phosphoproteomes 
 
The generation of high-throughput data of posttranslationally modified proteomes of various 

species enables us to answer the following questions relating to the conservation of 

phosphorylation events: Did an identified phosphorylated protein of a given species such as 

human already occur in distantly related species such as bacteria? Is there a highly conserved 

protein that is orthologous to a specified phosphorylated protein, and, if so, is the homologous 

protein also phosphorylated in the other organism? Can one observe any differences relating 

to the conservation on various levels ranging from the evolutionary preservation of the protein 

to the conservation of the specified phosphorylated residue? These questions and further basic 

issues relating to conservation can be answered by the application of appropriate algorithms 

that try to find the highest similarity between protein sequences by aligning them in a fast and 

accurate way: To find homologous proteins, we used BLASTP (Chapter 4.2.1.3) (Altschul et 

al., 1990). We defined proteins to be homologous, if the resulting E-values reflecting the 

significance of sequence similarities were lower than 10-5, which is a frequently used cutoff to 

determine homology. To distinguish proteins that are homologous within one species 

(paralogs) and proteins that are homologous between species (orthologs), we used a two-

directional BLASTP approach (O'Brien et al., 2005).  
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Since BLAST is a heuristic approach that approximates the Smith-Waterman algorithm 

(Smith and Waterman, 1981), it creates sequence alignments that show a very high local 

similarity. If two given sequences do not also show high overall sequence similarity, the 

resulting sequence alignment will not cover the entire lengths of both sequences. Hence, we 

used the software Needle (Rice et al., 2000), which is based on the Needleman-Wunsch 

algorithm (Needleman and Wunsch, 1970). It generates global alignments that cover the total 

lengths of protein sequences. The only disadvantage is the processing time, as the method 

involves dynamic programming. However, it is the most accurate method to align sequences 

globally and is guranteed to find the best global alignment. 

Therefore, the combination of BLASTP, which approximates homology relationships between 

proteins, and Needle, which generates global alignments of homologs, is an appropriate 

method to measure the degree of conservation of phosphorylation on various levels. The 

classified phylogenetic relationships between phosphorylated proteins and proteins of other 

selected species covering the phylogenetic tree representatively are stored in database 

relations ‘orthologs_[project_id]’ and ‘alignments_[project_id]’ (Figure 4.9). The relation 

‘orthologs_[project_id]‘ indicates the homology of each phosphoprotein (no homology, 

paralog, or ortholog), whereas relation ‘alignments_[project_id]’ stores the global aligned 

sequences along with the overall sequence similarity and the accession number of the 

homologous protein. 

 
Figure 4.9: Database integration of phylogenetic relationships and global alignments of homologous 

proteins 

 
The inclusion of derived phylogenetic relationships along with the resulting global protein 

sequence alignments allows the investigation of the conservation of phosphorylation events 

on various levels ranging from the overall protein level to the specific phosphorylated residue. 
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Given high-throughput data of phosphorylated proteomes, one is then able to draw global 

conclusions about the conservation of phosphorylation events. 

Furthermore, the internet implementation of PHOSIDA enables web users to check the 

conservation of any phosphorylated protein or phosphorylated site of interest (Chapter 4.2.5). 

A detailed report of the results regarding the evolution of phosphorylation is described in 

Chapter 9. 

 
 
4.2.5 General Web Application of PHOSIDA 
 
The web user is able to search for any protein of interest within a specified organism for 

phosphorylation sites. In the cases of mouse and human, it is possible to search via IPI 

accession number, SwissProt identifier, gene symbol, protein name, peptide sequence, protein 

sequence or any substring that matches with the description of a given protein.  

For each protein, the user is presented with general features such as isoelectric point (pI), 

molecular weight, sequence, and description at the protein level in addition to corresponding 

GO accession numbers, which are directly hyperlinked to the detailed description of the 

annotation at the Gene Ontology website (www.godatabase.org) (Figure 4.10 upper panel). In 

addition, a hyperlink to the Reactome database (Joshi-Tope et al., 2005) is provided, if the 

specified protein is annotated in Reactome (www.reactome.org). As Reactome is a curated 

knowledgebase of biological pathways, the phosphorylation events can then be associated to 

candidate pathways. Furthermore, annotated protein features such as active sites, binding 

sites, domains, and signal sequences are derived from the SwissProt database (Chapter 

4.2.1.3) and displayed, when clicking the ‘motifs/domains’ button.  

In the case of the human proteome, protein assignments were based on the IPI database, 

which is cross-referenced with the SwissProt database by PHOSIDA. Entries of both 

databases that correspond to the same proteins were aligned to derive the exact positions of 

these protein features. Already annotated phosphosites derived from SwissProt are mapped to 

the IPI sequences in the same way and listed when clicking the ‘sites (other sources)’ button. 

The aligned regions can be visualized via ‘check alignment’ buttons (Figure 4.10 lower 

panel). Furthermore, corresponding literature references are provided. 
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Figure 4.10: Illustration of general protein features in PHOSIDA 

PHOSIDA shows the description, sequence, weight, gene ontology annotation of each phosphoprotein (upper 

panel). In addition, PHOSIDA displays annotated domains, binding sites, active sites, and signaling regions 

along with the aligned sequences between the IPI database and the SwissProt database (lower panel). 
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Moreover, all phosphorylated sites that have been identified in the project are displayed on the 

left panel. This presentation allows to check immediately whether phosphorylation sites occur 

within known domains or other sequence regions potentially associated with signaling such as 

binding sites are phosphorylated. In such cases, one can link the phosphorylation event to its 

potential functional consequences. If the localization probability is lower than 0.75, it is 

enclosed in round brackets. When users click on any of the displayed phosphosites, the 

surrounding sequence and matching kinase motifs are shown (Figure 4.11). 

Often, several phosphopeptides covering the same phosphosite are measured by mass 

spectrometry. These peptides are also listed along with their localization probabilities, Mascot 

scores, and PTM scores for each instance. Depending on the experimental design, PHOSIDA 

contains quantitative data including time-resolved data, where applicable, of each 

phosphopeptide. Figure 4.11 shows corresponding ratios and clustered time courses as 

illustrated in PHOSIDA. These data are listed separately for peptides as a function of their 

sequences, degrees of phosphorylation, and further categories, such as experimental design or 

fraction (for example nuclear or cytosolic). When moving the mouse over the ‘occurences’ 

button, protein entries sharing the same phosphopeptide of interest are listed along with the 

number of unique peptides that have been measured in one experimental project. Each peptide 

is color coded according to the protein assignment: if the peptide sequence is marked in green, 

the selected protein has the maximum number of peptides in comparison to all other proteins 

that contain the same peptide. If the protein assignment is ambiguous because of another 

protein with the same number of identified peptides, the peptide is highlighted in blue. Red 

indicates that other proteins exceed the number of detected peptides in comparison to the 

selected phosphoprotein. Each feature of PHOSIDA is explained in the help menu, which is 

accessible via the ‘background’ menu or via clicking on the ‘question mark’ button at the 

page of interest. 

 

Furthermore, as depicted in Figure 4.11, the predicted structural attributes of each 

phosphorylation site are visualized in PHOSIDA. The solvent accessibility is classified into 

‘low’, ‘medium’, and ‘high’. Secondary structures are classified into ‘loop/turn’, ‘α helix’, 

and ‘β sheet’.  
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Figure 4.11: Phosphorylation site specific information in PHOSIDA 
 
The evolutionary section of PHOSIDA displays the results of the homology searches (Chapter 

4.2.5) using an approximate phylogeny of all investigated species (Figure 4.12 upper panel). 

Taxonomic divisions are displayed on-screen when the cursor is pointed at the phylogenetic 

tree. If the selected phosphoprotein is not homologous to any protein of a particular organism, 

that organism is highlighted in red. If the similarity between the sequence of the 

phosphoprotein and its homologous protein was the most significant one in both directions, 

the given organism is highlighted in green. A higher similarity between the sequence of the 

homologous protein and another protein of the organism of the selected phosphoprotein 

suggests paralogy, indicated in blue. The full global alignment between the given 

phosphoprotein and the orthologous protein of a specific organism is shown when the web 

user clicks on the organism button (Figure 4.12 upper panel). In addition, all phosphorylation 

sites that have been measured in our laboratory are listed on the right side. If users click on a 

phosphorylation site of interest, the conservation status of the selected phosphorylation site is 

indicated in red or green, whith green indicating conservation (Figure 4.12 lower panel). For 

conserved phosphosites, the alignment of the surrounding sequence is displayed. With 

alignments between the phosphorylation site of interest and protein sequences from 70 

organisms, PHOSIDA enables users to check the conservation of each site of each protein of 



42 
 

interest. Furthermore, the conservation of matching motifs can immediately be checked. This 

enables the user to distinguish conserved motifs around the phosphosite from other motifs that 

also match the phosphosite but are not conserved and may thus be less likely to be 

functionally important or have appeared only recently in evolution. 

 
Figure 4.12: Illustration of phylogenetic relationships and global alignments between phosphorylated 

proteins and homologous proteins (upper panel) and phosphosite conservation in PHOSIDA (lower panel) 
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Besides the online display of phosphorylation sites on different levels ranging from the 

protein level to the residue level under various aspects including conservation, 

phosphorylation changes, and structural constraints, PHOSIDA also contains other sections 

that are explained in detail in other chapters of this study: 

With thousands of phosphorylation sites in hands, we next trained a support vector machine 

(SVM) that distinguishes between positive and negative instances on the basis of various 

features such as the surrounding amino acid sequence. Thus, the SVM is capable of predicting 

phosphorylation sites in-silico. This enables researches to detect possible phosphorylation 

sites for any protein of interest. This application of the PHOSIDA predictor can be used as the 

first step in planning an experiment. The implementation, accuracy, field of application, and 

web usage of the prediction method are subject of Chapter 7. 

 

Finally, we used measured proteomic data to annotate the genome. This approach provides 

insight not only into the encoding of phosphorylated residues on the genome, but also enables 

to connect the Phosida databases with genome databases such as the EnsEMBL database. The 

inclusion of the online genome annotation section in PHOSIDA, the direct linkage to genome 

databases, and the integration of PHOSIDA annotated proteomic data in genome databases 

via the Distributed Annotation System (DAS) source technology are discussed in Chapter 8. 

 
 
4.2.6 Administration Tool 
 
To facilitate the administration and management of the phosphorylation site database along 

with its associated mining methods, we created three web based administration tools:  

The main maintenance application allows the automated upload of large-scale 

phosphorylation datasets to the database version of PHOSIDA that is appropriate for the 

application of mining tools (Chapter 4.2.1.1) as well as to the online database  (Chapter 

4.2.1.2). To upload the data of a specific project, the only required inputs are the file paths to 

the resulting MSQuant or MaxQuant files, the corresponding protein database, which already 

has to have been uploaded, and optional filtering criteria relating to probability scores. 

Furthermore, it is possible to upload sequences, gene symbols, accession numbers, 

descriptions, and molecular weights of proteins from various public databases such as IPI 

(Kersey et al., 2004), SwissProt (Bairoch and Apweiler, 1996), FlyBase (Grumbling and 

Strelets, 2006), TIGR (Kirkness and Kerlavage, 1997), NCBI (Benson et al., 2008), and SGD 

(Cherry et al., 1998) on the basis of given FASTA files. Then, the entries of different 

databases can be automatically cross-referenced via BLAST alignments (Chapter 4.2.1.3) 
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resulting in additional automatically generated database relations. Biological data such as 

Gene Ontology annotations and SwissProt annotations can also be uploaded in an automated 

way. Another important feature of any sequence based database is the update to the most 

current database release. To compare the results of various experiments within one species, 

the data have to be ideally predicated on the same database release. Therefore, the database 

management tool includes methods to reassign all phosphorylated peptides and 

phosphorylated sites to a newer database release. Besides the general database management, it 

is also possible to use various mining methods on the database directly. For example, this 

allows the derivation of significant patterns relating to kinase assignments and the creation of 

comprehensive tables that provide an overall overview of the large-scale data. 

Another administrative web based tool (Figure 4.13) is specialized on the derivation of 

phylogenetic relationships and the creation of global alignments between phosphorylated 

proteins and homologous proteins of more than 70 other species (Chapter 4.2.4). Moreover, it 

integrates predicted structural features (Chapter 4.2.3) and generates and integration data that 

are relevant for the evolutionary and structural analysis of phosphorylated proteins. It also 

creates input files that are used to train the support vector machine that distinguishes between 

phosphorylated and non-phosphorylated residues taking their primary sequence environment, 

structural context, and conservation into account (Chapter 7).  

Finally, the purpose of the third management tool is the application of various extensive 

analyses that assess the conservation on various levels ranging from the protein level to the 

phosphorylation site level. 

 
 
Figure 4.13: PHOSIDA administration tool 
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4.3 Data Integration and Data Selection of various 
Phosphoproteomes 
 
As already pointed out in Chapter 4.1, the initial steps of the Knowledge Discovery in 

Databases Process (KDD) are selection and integration of data. Besides the required 

integration of public protein databases and other data that are relevant to derive a biological 

context (Chapter 4.2.1.3), the most essential datasets for my thesis were large-scale 

phosphosets generated in our laboratory (Chapter 4.6). Since we are very confident that our 

mass-spectrometry based technology assures very high accuracy at a false discovery rate 

lower than 1% for peptide identification, we rely primarily on high throughout data measured 

in our group. To assess the novelty of our data and to check the overlap with other datasets, 

we also integrated phosphorylation sites that are annotated in SwissProt. As our group is 

working on a variety of projects on different organisms, our data presents an optimal resource 

to gain insight into basic biological principles ranging from the activation of certain pathways 

upon different treatments to the derivation of general constraints on phosphorylation events. 

 
 
4.4 Data Transformation of Preprocessed Data 
 
According to the general ‘knowledge discovery in databases‘ (KDD) process data selection 

and integration is followed by data transformation (Ester, 2000) into a readable format for 

data mining. In general this includes standardizing values, deleting irrelevant attributes, or 

converting numerical values into discrete values. Since we ignored irrelevant attributes in the 

data integration process, the task of attribute deletion can be omitted.  

 

In order to verify the overlaps of large-scale data between different projects, for example, 

joins of relevant relations are required. This is implemented by a single SQL statement 

demonstrating the strength of database techology. In order to avoid duplicate data, it does not 

make sense to create a ‘real’ relation for each join. The solution to this problem is given by 

the idea of ‘views’. If each ‘join’ statement yielded a real relation, data redundancy would 

increase. Avoiding data redundancy is the main purpose of virtual relations. Thus, to derive 

the number of shared identified peptides between different experiments, for instance, one has 

to join the two corresponding tables that store the peptides identified in a certain experiment. 

This results in the creation of a virtual relation that contains peptides, which are common in 

two given experiments (Figure 4.14).  
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Figure 4.14: Database join of two relation instances (‘peptides A’, ‘peptides B’) containing detected 

peptides of a given project results into the creation of a virtual relation (‘overlap’) 

 
To deduce the overlaps of phosphoproteomes between different organisms, we used the 

database relations that store evolutionary information such as homology between species for 

each integrated phosphorylated protein (Chapter 4.2.4). This simple way of dealing with data 

once stored in a consistent format once again underlines the benefit of databases. 

 

As discussed in Chapter 4.5, the PHOSIDA database schema that stores non-redundant data 

such as 1:1 assignments between peptides and proteins (Chapter 4.2.1.1) is the one used for 

data mining of phosphoproteomes. On the one hand, we implemented mining tools in the 

language C# including statistical tests such as the χ2-tests to check significant 

overrepresentations of matching kinase motifs. These self coded methods rely on a consistent 

database schema with categorical requirements for data storage and applications including 

mining tools to derive significant patterns from the managed data. Another prime example is 

the training of the support vector machine (Chapter 7). The implementation of organism-

specific predictors requires consistent database storage to obtain positive instances, namely 

phosphorylation sites along with their surrounding sequence, as training sets. On the other 

hand, we used already established public mining tools that are freely available to the 

community (Chapter 4.5). The software Cytoscape (Maere et al., 2005; Shannon et al., 2003) 

determines whether certain GO categories describing cell components, functions, or 

biological processes are significantly overrepresented in a given set of proteins in comparison 

to the whole gene ontology annotation of a specified species. Although established mining 

methods are relatively easy to handle and user friendly, the required input files have to satisfy 

certain format specifications. Such format stringencies demand conversions of accession 

numbers, combinations of various annotation sets and further formatting. Hence the 

PHOSIDA administration tool (Chapter 4.2.6) includes various C# classes that enable the 



47 

database administrator to create differently formatted files that are required as input for these 

mining tools (Figure 4.15). Underlying joins between relations storing protein annotations and 

relations containing phosphoproteome data and accession number conversions, for example, 

are executed automatically.  

 
 

 
 
Figure 4.15: The PHOSIDA administration tool allows the conversion of accession numbers, joins on 

various annotation tables, or specified formatting of files required as input for certain mining methods 

such as Cytoscape 

 
 
Besides the mining of integrated large scale data, the web application of PHOSIDA also 

demands an appropriate transformation of uploaded data. One prime example is the 

unification of different project specific subdatabases into one comprehensive organism 

specific database (Figure 4.16). Because of regularly updated versions of various databases, 

the spectrum-to-peptide assignments are often based on different database releases. For 

example, the identification of the human phosphoproteome identified upon epidermal growth 

factor stimulation (Chapter 4.6.1.1.1) was based on the human IPI database version 3.24, 

whereas the study of cell cycle dependent phosphorylation dynamics of kinases in human 

cells (Chapter 4.6.1.1.2) was based on IPI version 3.13. To unify the two subdatabases into 

one consistent database comprising both detected phosphoproteomes in human, it is 

indispensible to transfer the given data to a common database version. This is also required to 

determine the overlaps between large scale studies. Therefore, we reassigned the detected 

phosphorylated peptides to a more current database version, resulting in new peptide-to-

protein assignments. Along with the amino acid sequence of a database entry the positions of 

identified phosphosites within the protein sequence can also change. In very few cases (less 

than 1%), identified peptide sequences cannot be reassigned to a more updated database 

release. Although the number of peptides that are not present in a more current database 

version is miniscule, this shows that databases do loose correct protein sequences between 
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versions. With phosphoproteomic data assigned to a common database, it is possible to 

compare various phosphorylation changes observed under different treatments together using 

the PHOSIDA web page. The reassignment of peptides to an up-to-date database release was 

also essential to unite the different subdatabases annotated in the former version of the 

proteome database MAPU resulting in the new release of MAPU 2.0 (Chapter 5). 

 

Finally, the reassignment of identified peptides to another database was also one of the main 

underlying principles of the genome annotation study using the genomic database EnsEMBL 

as for assigning peptides to gene transcript entries (Chapter 8). 

 

 

 
Figure 4.16: To unify various large scale data, the identified phosphopeptides have to be reassigned to a 

shared and more current database version 
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4.5 Data Mining in the Compiled Database 
 
Data mining can be defined as the application of efficient algorithms that detect valid patterns 

in the data automatically (Han, 2000; Mitchell, 1997). There is nothing new about seeking 

patterns in data: Farmers seek patterns in crop growth, hunters seek patterns in animal 

migration behavior, and football managers seek weaknesses in the opponent team. However, 

we are overwhelmed with data. It has been estimated that the amount of data stored in the 

world’s databases doubles every 20 months. Many decisions in our life are recorded in 

databases ranging from buying milk in the supermarket to ordering a ‘Hed Kandi’ music CD 

via the internet. The entrepreneur then tries to find opportunities deriving patterns from the 

customer’s behavior and using this for business advantage. Association rules, for example, are 

used in ‘market basket analysis’. On the basis of a priori algorithms, this data mining 

approach tries to find out which items are frequently bought together using the cash scanner 

records. The derived information then suggests certain shop design variants. The world wide 

web has also contributed decisively to the avalanche of information. Probably much of the 

entire human knowledge is stored in databases and illustrated in the internet. Another example 

is the field of biotechnology itself: As outlined in Chapter 1, high throughput technologies 

such as the microarrays measuring the expression levels of thousands of genes and mass 

spectrometry determining thousands of proteins quantitatively produce a vast amount of data. 

The same tendency can be observed in genome sequencing, as a new completely sequenced 

eukaryotic genome is in the news nearly every month. These trends underline the need for 

automated approaches that extract information and knowledge out of these raw diamonds 

(data). Regarding phosphorylation events in the cell, statistical tests can be used to determine 

significantly overrepresented proteins that contribute to a certain biological process. As an 

example, we used the Cytoscape Plugin BINGO (Maere et al., 2005) to find overrepresented 

gene ontology annotations including cell component localization in a given set of 

phosphorylated proteins. Another statistical method, named Motif-X (Schwartz and Gygi, 

2005) and already introduced above, extracts significantly overrepresented consensus 

sequences from a set of sequences. Thus, this iterative statistical approach is suited to extract 

potential kinase motifs from a set of sequences surrounding determined phosphorylation sites. 

Furthermore, the Ka/Ks calculator also provides several statistical approaches ranging from 

the Nei and Gojobori calculation to the Goldman and Yang approach to derive the selective 

pressure on proteins (Zhang et al., 2006). Besides the application of such freely available 

mining tools, we designed various statistical mining methods implemented in C# and 

accessible via the PHOSIDA administration tool, as described above. These self implemented 
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tests comprise the χ2 tests to check the statistical significance of frequencies of identified 

phosphosites that match with a given kinase motif, and the Fisher test to test variances in 

conservation between phosphorylated residues and non-phosphorylated counterparts. Applied 

statistical tests are described in Chapter 4.5.1. 

Clustering is another data mining method that we applied to our phosphoproteomic datasets 

(Chapter 4.5.2). The main idea of clustering is to divide a given set of data into several groups 

(clusters). In each cluster, assigned members should be as similar to each other as possible, 

whereas members of different clusters should be as dissimilar as possible. With quantitative 

data describing phosphorylation changes after treatment, the clustering approach was applied 

to distinguish phosphorylation sites that are immediately affected by a specified stimulus and 

those whose response follows in the latter parts of the flow providing negative feedback. 

Support Vector Machines are part of the arsenal of ‘machine learning’ and they try to 

distinguish two given datasets according to their features, which are transformed in a high 

dimensional vector space, with each dimension reflecting a certain feature. Creation of a 

separating hyperplane the divides up the two given datasets and enables classification of new 

objects according to their position in the vector space relative to the hyperplane. This 

classification approach was used to predict phosphorylation sites (Chapter 4.5.3) and it is 

described in detail in Chapter 7. 

 
 
4.5.1 Statistical Tests 
 
The Chi Square Test is a very simple and basic method to check whether two given 

distributions are significantly different (independent) in a statistical sense. Thus, the χ2-test is 

often used to estimate whether a given distribution correlates with the expected one. In the 

case of contingency tables with one degree of freedom, χ2 is the difference between the 

expected frequency and the observed frequency squared and divided by the expected 

frequency: 

 

 
 
The formula makes clear that a high χ2 value reflects a high discrepancy from the expected 

frequency. Hence, this statistical approach can be applied to determine whether a given kinase 

motif matches significantly with the identified phosphorylation sites. To assess the number 

phosphosites matching an expected motif, we estimated the chance for each kinase motif to 
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match with a given phosphosite according to the amino acid composition of the motif and the 

relative frequencies of each amino acid in the entire specified proteome. Another application 

is the proportion of homologous phosphoproteins to non-homologous phosphoproteins in 

comparison to their non-phosphorylated counterparts.  

The χ2-test is a simple test exemplifying mathematical methods, which are integrated in the 

PHOSIDA analysis pipeline among other statistical tests. It can be applied to any given 

phosphorylation site dataset via the PHOSIDA administration interface. 

 

In contrast to the application of these statistical tests, the PHOSIDA analysis pipeline also 

comprises methods that create specified formatted files, which can be used as input for 

advanced statistical methods such as Motif-X (Schwartz and Gygi, 2005). This iterative 

statistical approach tries to derive consensus sequences that are significantly overrepresented 

in a given set of phosphorylation sites. A peptide data set is used for background probability 

calculations, and a set of detected phosphorylation sites along with their surrounding six 

amino acids is used as positive set. Both sets are converted into position weight matrices, 

where each cell presents the frequency of a certain amino acid on a specified position around 

the phosphosite. Based on the two resulting matrices, a binomial probability matrix is created 

reflecting the significance of each residue on a certain position. On the basis of a greedy 

recursive search, highly correlated position/residue pairs are then derived. After deleting all 

instances that match with the extracted motif, the method searches iteratively again until no 

significant consensus sequence can be found. We used this statistical method to extract 

potential kinase motifs from identified phosphorylation sites of various species.  

 

Cytoscape is another open source bioinformatics software platform that we used to gain 

knowledge from the derived data. It is a platform for visualizing biological pathways and 

molecular interaction networks. We used the Java-based tool BiNGO (Biological Network 

Gene Ontology tool) to determine which gene ontology categories are statistically 

overrepresented in a set of identified phosphorylated proteins (Maere et al., 2005). BiNGO is 

implemented as a plugin for Cytoscape. Using various statistical tests such as the binomial 

test and the hypergeometric test, BiNGO tries to find significantly overrepresented functions, 

biological processes, and cellular component localizations comparing the given set of 

phosphorylated proteins with the whole proteome of the investigated species. Again, the 

application of BiNGO is directly connected to the PHOSIDA analysis pipeline providing all 

required input data in the specified formats. 
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4.5.2 Clustering 
 
‘Clustering is the process of grouping the data into classes or clusters so that objects within a 

cluster have high similarity in comparison to one another, but are very dissimilar to objects in 

other clusters’ (Witten, 2005). 

The objects’ attribute values are usually transformed into a hyperdimensional feature space in 

order to calculate distance measures reflecting their dissimilarity. Figure 4.17 illustrates a two 

dimensional clustering resulting into three different groups (clusters). Each axis reflects a 

certain attribute value of a given object. The three different clusters are obvious by visual 

inspection. This visual grouping is highly intuitive because of the human brain’s highly 

evolved capacity for image and pattern recognition. Clustering analysis has been widely used 

in applications ranging from market analysis to microarray gene expression data analysis. The 

application of clustering to large scale datasets containing objects that can be described by 

multiple features has led to the design of a large number of different clustering approaches. 

Hierarchical methods, grid-based methods, density-based methods, or partitioning methods 

solve the problem of grouping given objects. Each approach has its advantages and 

disadvantages depending on the set of data.  

 

We applied the Fuzzy C-Means (FCM) algorithm (Futschik and Carlisle, 2005), a partitioning 

method, in order to group the quantitative data reflecting phosphorylation changes upon 

treatment including certain stimuli. The main idea of k-Means clustering is to group a given 

set of objects into k clusters maximizing the cluster similarity measured in regard to the mean 

value of the objects in a cluster. It proceeds as follows: First, it randomly selects k objects, 

each representing a cluster’s center. The remaining objects are assigned to the most similar 

center out of k centers by the calculated feature distance. It then derives the new mean of each 

cluster iteratively, until no new cluster assignments can be calculated. FCM is a variant of the 

K-Means approach and allows membership of data elements in multiple clusters. Thus, FCM 

offers clustering tolerant to noise by variation of the fuzzification parameter m, which limits 

the contribution of ill-behaved profiles to the clustering process.  

We applied the FCM approach to group profiles reflecting the phosphorylation dynamics 

upon EGF stimulation (Chapter 4.6.1.1.1). Consequently, each phosphorylated peptide could 

be assigned to a cluster representing upregulation or downregulation at a certain time point. 

We found optimal partitioning with six clusters and a fuzzification parameter of two. The 

corresponding resulting clusters of each identified phosphopeptide are also illustrated in the 

PHOSIDA online database (Figure 4.17 right panel). 
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Figure 4.17: Clustering in PHOSIDA 

Illustration of three clusters in a two dimensional feature space (left panel) and integration of clusters reflecting 

phosphorylation dynamics on the basis of quantitative data (right panel) in PHOSIDA. 

 
 
4.5.3 Classification 
 
Data classification is a two-step process. At first, a model is built on the basis of a set of 

objects. Each object has certain attribute values, which are transformed into a feature vector 

space. The objects’ attributes are essential to determine dissimilarities between different 

samples by appropriate distance measures. As the category of each sample is known, the 

creation of a model describing the differences between classes is named ‘supervised learning’. 

The training samples of known classes are used to build a model described by mathematical 

formula or decision trees, for instance. To evaluate the accuracy of the learning approach, one 

usually selects a subset of the training samples. The classifications of these test samples, 

which are substracted from the training set, are used to test the performance of classification 

decisions by the learned classifiers. 

 

One usually takes 90% of the specified samples for training and 10% for testing. To avoid 

scewing the evaluation of the classification performance by random selections, one applies 

this performance test iteratively (n fold cross validation), where each step comprises another 

random selection of training and test samples. If the performance of the classification 

approach is acceptable, one can use the trained model to classify uncategorized future 

samples. 
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Hence, classification is very similar to prediction. However, classification is used to predict 

discrete or nominal values. The species assignment of given organisms is a typical 

classification problem and the answers are either “dog” or “cat”. In contrast, prediction can be 

viewed as the construction of a model to assess the (continuous) value ranges of an attribute 

that a given sample is likely to take on. However, classification and prediction are very 

similar in their purpose. 

Both prediction and classification have numerous applications including selective marketing, 

medical diagnosis, and protein docking prediction. 

 

We applied a classification approach in order to predict, whether a given protein’s residue is 

likely to be phosphorylated or not. As consensus sequences are the basis for kinase specific 

phosphorylation, the surrounding sequence of a given residue is obviously decisive to predict 

the likeliness to be phosphorylated. With our determined phosphorylation sites from large-

scale phosphoproteomics, we trained a support vector machine to classify unlabeled samples 

(residues) into phosphorylated or unphosphorylated amino acids. The main principle of 

support vector machines is described in Chapter 7.  

We also tried to find additional features besides the raw sequence that enhance to the accuracy 

of classification. For example, the phosphorylation process suggests that phosphorylation 

targets (residues) have to be accessible to kinases, thus solvent accessibility is a potential 

parameter to consider.  

 

As this machine learning approach was applied to various datasets resulting in multiple 

trained models that enable prediction of phosphorylation sites in various species, its 

implementation and application is discussed in detail in Chapter 7. 
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4.6 Phosphoproteome Analysis 
 
 
4.6.1 Basic Phosphoproteome Analysis 
 
This section describes general features of different phosphoproteomes identified in various 

species. It comprises the distribution between individually identified phosphosites, the 

coverage of phosphorylated kinases, and the novelty of identified phosphorylation events. 

Additionally, the following chapters (4.6.1.1 – 4.6.1.5), which are divided according to the 

investigated organism, also describe project specific results such as phosphorylation changes 

at different stages of the cell cycle (Chapter 4.6.1.1.2). 

 
 
4.6.1.1 Homo sapiens 
 
The central organism, in which we are interested in, is our own species. One of the principal 

ideas of research is to learn more about our own organism and its biological functioning. The 

discovery of essential processes in our body not only leads to a better understanding of the 

basic biological principles, but also helps to prevent or cure diseases caused by malfunctions 

of biological processes. Traditionally, many experiments in the phosphorylation field were 

conduced outside of cells (in-vitro). However, in-vitro conditions might not reflect the real 

events in a living cell. Therefore, most of our experiments are based on in-vivo measurements 

of different cell lines. (Note that this is the biochemical definition of ‘in-vivo’. In biomedicine, 

in-vivo is frequently reserved for animal or human work.) We observed phosphorylation 

changes in HeLa cells, a human cell line, upon epidermal growth factor stimulation (Chapter 

4.6.1.1.1) (Olsen et al., 2006). In addition, we also combined kinase-selective affinity 

purification with quantitative mass spectrometry to analyze the cell cycle regulation of protein 

kinases in the same human cell type (Chapter 4.6.1.1.2) (Daub et al., 2008). 

 
 
4.6.1.1.1 Phosphorylation Dynamics induced by EGF stimulation 
 
As outlined in Chapter 1, the cell constantly receives signals from its surroundings to which it 

has to respond appropriately. Growth factors, for example, are essential signals as they are 

capable of stimulating cellular differentiation and cellular proliferation and regulate a variety 

of cellular processes (Hunter, 2000; Pawson and Nash, 2003). In our study we used integrated 

phosphoproteomic technology combining phosphopeptide enrichment, high-accuracy 

identification, and stable isotope labelling by amino acids in cell culture (SILAC) (Ong et al., 
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2002) to quantify changes in phosphopeptide levels and to investigate the global in-vivo 

phosphoproteome and its temporal dynamics upon growth-factor stimulation. The epidermal 

growth factor (EGF) acts by binding to the EGF receptor (EGFR) on the cell surface and 

stimulating its intrinsic protein-tyrosine kinase activity initiating a signal transduction 

cascade. This results in a number of biochemical changes ranging from cell proliferation to 

the increased expression of certain genes including the EGFR.  

 

The application of triple-encoding SILAC for monitoring activation profiles, SCX and TiO2 

chromatography for phosphopeptide enrichment (Gruhler et al., 2005; Larsen et al., 2005), 

and high-accuracy mass spectrometric characterization allows the investigation of the 

phosphoproteome in considerable depth. The approach is completely generic for identification 

of phosphorylation events. 

Serum-starved HeLa cells labelled with L-arginine and L-lysine, L-arginine-U-13C6
14N4 and 

L-lysine-2H4, or L-arginine-U-13C6-15N4 and L-lysine-U-13C6-15N2 were treated with EGF for 

0 min, 5 min, and 10 min. A second, identically labelled set of HeLa cells was treated with 

EGF for 1 min, 5 min, and 20 min. Then cells were combined, lysed and enzymatically 

digested. After the strong-cation exchange chromatography of digests, TiO2 enrichment of 

phosphopeptides was performed (Figure 4.18). 

 

Next, MS2 and MS3 spectra were merged into a single peak-list file and searched against the 

human IPI database. To establish a cutoff score threshold for a false-positive rate of less than 

one percent, we performed a MASCOT search against a concatenated target/decoy database 

(Elias et al., 2005) consisting of a combined forward and reverse version of the IPI human 

database including known nonhuman contaminants such as porcine trypsin. All spectra and all 

sequence assignments made by MASCOT (Perkins et al., 1999) were imported into MSQuant. 

The assignments of individual phosphosphorylation sites were automatically scored using the 

algorithm implemented in the PHOSIDA upload process (Chapter 3). The identified 

phosphorylation sites along with additional information including matching kinase motifs and 

structural constraints were then uploaded to the PHOSIDA database as described in Chapter 

4.2.1. In addition, transformed profiles reflecting phosphorylation dynamics upon EGF 

stimulation were clustered as described in Chapter 4.5.2. We classified the derived clusters 

into ‘increasing’, ‘decreasing’ and ‘not changing’ and uploaded the clustering assignments to 

PHOSIDA. 
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Figure 4.18: Quantitative and Time-Resolved Phosphoproteomics using SILAC 
 
 
This quantitative, phosphosite-specific approach to detect phosphorylation dynamics upon 

EGF stimulus on the basis of SILAC-labelling yielded the identification of 6600 

phosphorylation sites from 2244 proteins (Olsen et al., 2006).  

 

We grouped potential phosphorylation sites into three categories depending on their PTM 

localization score and motifs. In the category with highest confidence in localization (class I), 

the given site had a localization probability for the phospho-group of at least 0.75. In class II, 

the localization probability is between 0.25 and 0.75, but these sites also had to match a 

known kinase motif. Class III sites had the same localization probabilities as class II but did 

not match any of the kinase motifs. According to this categorization, we determined 5674 

class I sites, 2256 class II sites, and 1818 class III sites on mainly single phosphorylated 

peptides (Figure 4.19). In PHOSIDA, identified phosphorylation sites of a given protein of 

interest, which do not satisfy the class I criteria, are indicated in brackets (Figure 4.11).  

 

We determined the distribution between individually identified sites to be 4901 pS, 670 pT, 

and 103 pY class I sites (Figure 4.19). Thus, our data set suggests that the distribution of pS, 

pT, and pY is 86.4%, 11.8%, and 1.8%, respectively.  
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The proportion of detected phosphoserines and phosphothreonines is in concordance with the 

one observed in previous studies (Hunter, 2000). However, the percentage of determined 

phosphotyrosines is much higher (1.8%) than reported previsoulsy (0.05%).  

 
 
 

 
 
Figure 4.19: (A) Distribution of single, doubly, triply, quadruply and higher phosphorylated peptides. (B) 

Distribution of phosphorylation sites by amino acid 

 

 

To determine the novelty of our dataset, we compared it with all annotated human 

phosphosites in the SwissProt database that were based on experimental data (3262 sites in 

version 48.0) and also included four previous phosphoproteomes in our analysis.  

We found that more than 90% of our sites were novel with respect to SwissProt. In total, 691 

(37%) out of 1890 phosphorylation sites from the four previous studies that could be mapped 

to IPI version 3.13 (Chapter 4.4) were also found in our study. PHOSIDA lists all sites 

determined from the other large-scale studies or annotated in SwissProt (accessible via the 

corresponding ‘sites from other sources’ button (Figure 4.20)). As discussed in Chapters 

4.2.1.3 and 4.4, all SwissProt entries were mapped to the IPI database via BLAST, in order to 

ensure accurate comparisons.  
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Figure 4.20: (A) Overlapping phosphorylation sites between our set and SwissProt (top) and the large 

scale datasets by Gygi and co-workers, Aebersold and co-workers, Stover et al., and Amanchy et al. 

(bottom); (B) PHOSIDA: Illustration of sites determined by other mass spectrometric approaches  

 
 
In addition, we investigated the phosphorylation dynamics upon EGF stimulus: EGF 

signalling begins with activation of the EGF receptor and extends to a cascade of downstream 

kinases and other effector proteins. We derived four clusters with upregulated 

phosphopeptides and two with downregulated ones (Chapter 4.5.2). Cluster A, for example, 

embraced phosphorylation sites that can be classified as signal initiators involved in 

membrane-proximal signalling events and are enriched in phosphotyrosines. The resulting 

temporal cluster profiles are illustrated in Figure 4.21. As highlighted in Chapter 4.5.2, the 

online interface of the PHOSIDA database shows the corresponding clustering of each 

identified phosphopeptide.  

 

Notably, around 77% of phosphorylated proteins contained at least two peptides that were 

detected to show different phosphorylation dynamics upon EGF stimulation on the basis of 

our clustering approach. This suggests that phosphoproteins serve as signal integrators. 

Interestingly, transcriptional regulators made up a large class of regulated proteins. We 

identified 26 phosphosphorylated transcription factors, with 33 novel phosphorylation sites 

showing diverse phosphorylation dynamics.  
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Figure 4.21: Clustering of dynamic phosphorylation profiles. 

The y axis is log10 transformed and normalized. Each member (temporal profile) is color coded according to its 

membership value ranging from close membership (magenta) to distant membership (green) (Olsen et al., 2006). 

 
 
4.6.1.1.2 Quantitation of the Kinome across the Cell Cycle 
 
As highlighted in Chapter 1, protein kinases are essential regulators of cell signalling that 

modulate each other’s functions and activities through site-specific phosphorylation events 

(Manning et al., 2002b; Shi et al., 2006). Their low abundances make it difficult to identify 

them from complete lysates. Thus, to increase the analytical sensitivity for protein kinases, 

they have to be enriched from total cell extracts prior to MS analysis. We applied an 

experimental strategy dedicated to enrich phosphorylated peptides from kinases to analyze 

protein kinase regulation in cell cycle progression (Daub et al., 2008).  

The cell cycle comprises the progression of events leading to the replication of the eukaryotic 

cell. It can be divided into mitosis (M phase) including the nuclear and cytoplasmic division 

followed by interphase consisting of four phases: During the G1 phase the cell starts to grow 

and synthesis of enzymes required for the next phasis – the S phase – is initated. In S-phase 

DNA is replicated while rates of protein synthesis are slow except for histones, which are 
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needed for packaging of the DNA. During the G2 phase, the cell prepares for mitosis by 

producing microtubules, for instance.  

 
Figure 4.22: Schematic illustration of the cell cycle 

 
In our study, we combined efficient kinase enrichment with quantitative mass spectrometry 

using SILAC. The basic experimental design is similar to the one applied for the identification 

of the human phosphoproteome upon EGF stimulation (Chapter 4.6.1.1.1), as it is also based 

on the same cell type and mass spectrometric technologies including SCX chromatography, 

TiO2 peptide enrichment, and the SILAC labelling technique (Daub et al., 2008; Gruhler et 

al., 2005; Larsen et al., 2005; Ong et al., 2002). The statistical analysis of detected peptides 

and quantitation were also analogous. 

Two populations of HeLa cells were quantitatively labelled by growing them in medium 

containing either normal arginine and lysine or their heavy isotopic variants. The cells were 

synchronized in early S phase by a double thymidine block in suspension culture. One of the 

populations was harvested at this point, whereas cells of the second population were released 

into a mitotic arrest. Then, pooled lysates from M and S phase cells were loaded onto a series 

of affinity columns displaying different immobilized kinase inhibitors with distinct kinase 

binding profiles to enrich protein kinases. We applied both gel electrophoresis followed by 

tryptic digestion on one of the kinase enriched subfractions and SCX chromatography to the 

kinase enriched fractions. The resulting peptide fractions were then subjects to 

phosphopeptide enrichment on TiO2 beads. The combination of gel-based and gel-free MS 

separation strategies with phosphopeptide enrichment increases the overall number of 

detected phosphorylated peptides. 

The statistical analysis of assigned peptide sequences and quantitation similar as described 

above (Chapter 4.6.1.1.1) and employed MASCOT, MSQuant, and various methods provided 

by the PHOSIDA administration tools (Chapter 4.2.6). This proteomic approach enabled us to 

quantify protein kinases from S and M phase arrested human cells and to elucidate cell-cycle 

dependent protein kinase regulation. 
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We uniquely identified and quantified phosphorylated peptides from 1377 proteins (Daub et 

al., 2008). The identified peptides harbored 3144 phosphorylation sites (83.5% pS, 14.2% pT, 

2.3% pY) (Figure 4.23A). About 14% of all analyzed proteins were protein kinases: 219 

different members of the human protein kinase superfamily were detected to be 

phosphorylated in our study. The phosphorylated kinases embraced 1007 phosphosites that 

could be assigned to serine (77.5%), threonine (17.2%), and tyrosine (5.3%) residues with 

high confidence. The vast majority of these detected phosphorylation sites in protein kinases 

have not been reported earlier.  

 
 
Figure 4.23: (A) Distribution of phosphorylation sites by amino acid. (B) Overlapping phosphoproteins 

between this study (green) and the previously reported study (blue) (Chapter 4.6.1.1.1). (C) Identified 

protein kinases marked in the kinome tree as illustrated in Chapter 1. The identification of at least two-

fold differentially regulated phosphopeptides (PPs) in M versus S phase derived protein kinases is 

indicated by different colors. 

 
 
We determined the overlap between this study and the investigation of the human 

phosphoproteome upon EGF stimulation (Chapter 4.6.1.1.1) and found that 508 (37%) out of 

1377 phosphoproteins were also identified in the other large scale phosphoproteome analysis 

(Figure 4.23B). An even lower overlap was observed on the site level, as 546 (17%) out of 

3144 phosphosites had also been measured in the EGF study. Interestingly, more than half of 

all kinase phosphopeptides were upregulated at least two-fold in mitotically arrested HeLa 

cells. In comparison, only 10% showed increased S phase abundance. At the protein level, 
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regulation by factor two or more was observed for less than 10% of all protein kinases. If only 

SILAC phosphopeptide ratios are considered, apparent changes in phosphorylation could 

actually be due to a change in protein amount. Therefore, for each phosphorylated peptide the 

online application of PHOSIDA shows whether the given quantitative data describing the 

phosphorylation regulation during cell cycle could be normalized by the corresponding 

protein ratios or not. This information was stored as a special ‘feature’ attribute in the 

‘peptides_sub’ relation (Chapter 4.2.1). Overall, 75% of all detected protein kinases contained 

at least one cell cycle regulated phosphopeptide (greather than two-fold upregulated in S 

phase or M phase). Strikingly, even for intensely studied cell cycle kinases including PLK1 

and CDC2, a large number of new phosphorylation sites were found, demonstrating the high 

analytical sensitivity of our experimental approach. However, our study also covered a large 

number of other proteins that were quantitatively evaluated. For example, several regulatory 

kinase subunits such as different members of the cyclin family showed cell cycle dependent 

phosphorylation patterns.  

 

In this study the spectra of measured phosphopeptides were also integrated into PHOSIDA 

because the applied MSQuant version enabled to create and automically save an image file of 

each spectrum. The corresponding file names can be derived from the MSQuant result files. 

The corresponding image file names are another ‘feature’ tuple of each entry (peptide object) 

stored in the ‘peptides_sub’ database relation. 

 

The database storage of associated spectra and the visualization of these spectra enable web 

users to validate both identification and quantitation of each identified peptide. In PHOSIDA, 

the corresponding ‘spectrum’ buttons appear at the result page listing all detected peptides 

that contain the selected phosphorylation site (Figure 4.24). Besides the linkages to spectra, 

the cell cycle dependent phosphorylation regulation, Mascot scores, PTM scores, and further 

information are illustrated as discussed in Chapter 4.2.5. 
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Figure 4.24: For large scale phosphorylation studies using MSQuant, PHOSIDA provides linkages (A) to 

an integrated online spectrum visualizer (B). 

 
 
4.6.1.2 Mus musculus 
 
The mouse is one of the most important model organisms in biology and medicine. It is by far 

the most commonly used laboratory mammal because of its small size, short reproduction 

time and short evolutionary distance to human. The genome sequence of this organism 

suggests a relatively close phylogenetic relationship with human (Bradley, 2002). Thus, it is a 

good model for a better understanding of basic mammalian biology, human disease and 

genome evolution. In our study, we investigated the phosphoproteome of the mouse liver 

using SILAC and high resolution mass spectrometry (Chapter 4.6.1.2.1) (Pan et al., 2008). In 

addition, we investigated whether our mass spectrometric methods for proteome and 

phosphoproteome analysis can also be applied to solid tumors (Chapter 4.6.1.2.2) (Zanivan et 

al., under review). As tumor model, we used mutant mice carrying skin melanomas. 

Conclusions drawn from these two experiments are applicable to other mammals including 

human. 

 
 
4.6.1.2.1 Mouse Liver Phosphoproteome upon Phosphatase Inhibition 
 
The liver is a multifunctional organ, involved in important metabolic functions, synthesis of 

blood plasma components and detoxification of xenobiotics among many other roles. Liver 

cancer, liver cirrhosis and insulin resistance of the liver are among the most common diseases 
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associated with malfunctions of the liver. Many diseases are also caused by malfunctioning 

kinases that aparrently phosphorylate certain cellular substrates. The contrary mechanism, the 

dephosphorylation of substrates, is carried out by phosphatases (Chapter 1). Thus, 

phosphorylation regulating the activity of protein substrates is a reversible modification and 

its level is determined by the interplay of kinases and phosphatases, which add and remove 

the phosphogroups, respectively. Kinase-substrate specificity is often determined by the 

amino acid sequence surrounding the phosphosite (kinase motif). Therefore, the surrounding 

amino acid composition can be used to predict phosphorylation sites in-silico as described in 

Chapter 7. In contrast, phosphatases, especially serine/threonine phosphatases, more 

commonly rely on their targeting subunits to achieve specificity (Remenyi et al., 2006). 

Hence, phosphatases are more difficult to study than kinases resulting in a less comprehensive 

knowledge about phosphatases and their associated substrates. However, phosphatases play 

key roles in signalling and are frequently involved in diseases. Around 30 protein tyrosine 

phosphatases have been implicated in cancer, for example. The most common protein 

phosphatase inhibitors are vanadium compounds. Inhibiting the activity of phosphatases 

during cell lysis boosts the level of phosphorylation of their substrates.  

In our study, we SILAC labelled the mouse Hep1-6 cell line, in which one population was 

treated with a mixture of phosphatase inhibitors (Pan et al., 2008). Thus, resulting quantitative 

data represented the increase of phosphorylation level caused by phosphatase inhibition on the 

basis of control versus phosphatase strategy.  

 

We applied an in-depth, quantitative phosphoproteome analysis using high resolution MS-

based proteomics to determine phosphorylation sites that are affected by phosphatase 

inhibition. The experimental set up is again similar to the one applied to human HeLa cells 

stimulated with EGF (Chapter 4.6.1.1.1). Trypsin digestion, SCX chromatography and 

phosphopeptide enrichment by TiO2 beads as used as preliminary steps before MS 

measurements using LTQ-FT or LTQ-Orbitrap followed by the data integration into 

PHOSIDA (Gruhler et al., 2005; Larsen et al., 2005; Ong et al., 2002). The main difference is 

the phosphatase treatment of one population labelled with ‘heavy’ arginine and lysine (Arg10 

and Lys8), whereas the other cell population was labelled with ‘light’ arginine and lysine and 

left untreated. 
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In total, we sequenced and identified 3430 phosphopeptides from 1808 phosphoproteins. 

Based on our Posttranslational Modification Scoring algorithm (Chapter 3), we identified 

4253 phosphorylation sites with high confidence (class I sites). Out of these unambiguously 

identified phosphosites, 79.6% were serines, 9.3% were threonines, and 1.8% were tyrosines. 

The distribution of phosphorylated residues is similar to the one observed in human cells 

(Chapter 4.6.1.1). In addition, the frequency of singly and multiply phosphorylated peptides 

was also similar to the one found in human: The majority of phosphopeptides were singly 

phosphorylated (75%).  

We identified 51 phosphorylated transcription factors, 121 phosphorylated protein kinases, 

and 28 phosphorylated phosphatases. In this project, we also determined the dynamic range of 

phosphopeptide detection. Figure 4.25A shows that the detected phosphopeptides follow a 

Gaussian intensity distribution on a logarithmic x-axis reflecting the intensity. It illustrates the 

numbers of untreated phosphorylated peptides that were measured within the range of a given 

intensity bin. It also shows that the distribution after phosphatase inhibitor treatment shifted 

by a factor of two relative to the untreated population. Interestingly, only 27% of the peptides 

where induced more than two-fold by the phosphatase treatment (Figure 4.25B). Some 

phosphorylation sites (8%) even decreased after phosphatase inhibitor treatment.  

The most severe effects by phosphatase inhibition were observed for tyrosine phosphorylation 

sites. Overall, 70% of phosphotyrosines were upregulated at least two-fold. For 

phosphothreonine 41% of the sites were upregulated by this factor and for phosphoserine the 

number is 26%. This is a surprisingly low number considering that the investigated inhibitors 

are thought to block most phosphatase activity.  

Again, the implemented cross reference between the IPI database used for the assignments of 

spectra to peptide sequences and the annotation rich SwissProt database (Chapter 4.2.1.3) 

made it possible to determine the overlap of phosphosites identified in our study and 

phosphosites reported in SwissProt. In total, we found 864 phosphoproteins in our study that 

have already been shown to be phosphorylated according to SwissProt annotation (Figure 

4.25C). Therefore, 169 proteins were shown to be phosphorylated by our study for the first 

time. This is a striking overlap, given that there are more than 50000 protein entries in the 

mouse IPI database. However, our dataset has substantial novelty on the site level, since more 

than half (1428) of 2590 class I sites, whose assigned proteins are annotated in SwissProt, are 

novel (Figure 4.25D). 
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Figure 4.25: Mouse liver phosphoproteome 

(A) Number of phosphopeptides identified at certain intensity bins. Both phosphopeptides from the untreated 

population (light) and phosphopeptides from the phosphatase inhibited population (dark) are Gaussian 

distributed on a log x scale. (B) Number of phosphopeptides that show a given intensity change after 

phosphatase inhibition. (C) Overlap of phosphorylated proteins found in this study (blue) and phosphorylated 

proteins annotated in SwissProt. (D) Overlap of phosphosites identified in our analysis (blue) and phosphosites 

reported in SwissProt 

 
 
4.6.1.2.2 Solid Tumor Phosphoproteome 
 
Cancer is often caused by a disregulation of signals and tumors are characterized by multiple 

aberrations in their signalling machinery (Dhillon et al., 2007; Hanahan and Weinberg, 2000). 

This results in increased replicative potential, decreased apoptosis, growth factor indepence 

and metastatic capability. Thus, kinases and phosphatases - as key regulators in signalling - 

play prominent roles in diseases such as tumor development. It suggests the presence of 

specific underlying phosphorylation patterns during tumor development. Understanding the 

molecular mechanisms including phosphorylation events that cause deregulated signalling 

would help in understanding many aspects of tumorigenesis.  

In our study, we applied MS-based proteomics analysis to identify the phosphoproteome as 

well as the proteome of solid tumors in mice (Zanivan et al., in press). As tumor model we 

used TG3 mutant mice carrying skin melanomas. These mice ectopically express Grm1, a 



68 
 

glutamate receptor, which results in the constitutive activation of the Erk pathway. 

Consequently, they develop melanomas several months after birth. 

 

For the phosphoproteome analysis we enriched phosphopeptides with strong cation exchange 

chromatography (SCX) followed by titansphere enrichment or with TiO2 only (Gruhler et al., 

2005; Larsen et al., 2005; Ong et al., 2002). Digested proteins were analyzed using an LTQ-

Orbitrap mass spectrometer. Using Mascot, MaxQuant and the PHOSIDA environment 

(Chapter 4.2.6), the identified phosphorylation sites were uploaded to the PHOSIDA database. 

In addition, the proteomic data were uploaded to the MAPU database (Chapter 5). The 

workflow was similar to the EGF signalling study described above but no SILAC quantitation 

was performed. Furthermore, we also used the detected phosphorylation sites to train a mouse 

specific phosphosite predictor (Chapter 7). 

Because of the close evolutionary relationship to human and because of the fact that Grm1 is 

also expressed in a subset of human melanomas, this study is also of clinical interest. For the 

first time, it reveals the phosphorylation pattern of a solid tumor and therefore it might extend 

our knowledge of underlying deregulated signalling in cancer. 

The main purpose of this study was to investigate if advances in instrumentation, algorithms 

and preparation techniques applied to the other studies make the solid tumor 

phosphoproteome amenable to such an analysis. Indeed, the analysis of the phosphoproteome 

of the tumour tissue of TG3 mice proves this point: Combining data from SCX-TiO2 

enrichment and TiO2 chromatography led to the identification of 5250 phosphopeptides, 

belonging to 2250 proteins. In total, we identified 5698 class I phosphorylation sites (90% 

phosphoserines, 9% phosphothreonines, 1% phosphotyrosines). These relative abundances are 

similar to the ones observed after phosphatase inhibition (Chapter 4.6.1.2.1) and the ones 

reported for a human cancer cell line (Chapter 4.6.1.1). We also compared the identified 

phosphoproteome with published gene expression profiling studies of melanoma (Hoek, 

2007). Many of these genes were found in our melanoma proteome and phosphoproteome. 

The characterization of the functional impact of the phosphorylated proteins was performed 

by gene ontology analysis. Using Cytoscape, the results from the calculation of over- and 

underrepresented gene ontology categories describing molecular functions, biological 

processes and cellular component localization is described in Chapter 4.6.2. 

Furthermore, we found evidence for the constitutive activation of the MAPK and mTor 

signalling pathways in melanoma. It has been reported that these pathways play major roles in 

the development and progression of melanoma (Lasithiotakis et al., 2008; Meier et al., 2005). 
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We found phosphorylation sites from the mTor pathway, which regulates protein translation 

through the phosphorylation of p70 S6 kinase 1 (p70S6K), and eIF-4E binding protein 

(4EBP1), for example. In addition, we found Tsc2 phosphorylated at Serine 981, which is a 

target of Akt and induces the translocation of Tsc2 to the cytosol (Dan et al., 2002). This 

mechanism is thought to be responsible for mTor pathway activation (Cai et al., 2006). 

 
 
4.6.1.3 Drosophila melanogaster 
 
Martin Brookes mentioned in his book about Drosophila that ‘a glass of milk and a piece of 

rotting banana is enough in order to jolly 200 fruitflies along for 14 days’ (Brookes, 2002). 

This statement describes the relatively easy treatment of flies in the laboratory. Robust 

viability in laboratory environments and a short generation time of about two weeks along 

with a lifetime of 50-60 days are substantial arguments for categorizing Drosophila 

melanogaster as a ‘model organism’. Other important arguments for the Drosophila modle 

are the fact that its genome is compact (four chromosomes) and completely sequenced as well 

as its homology to humans: Around 60% of fly genes show parallels in the human genome 

(Adams et al., 2000). Many conclusions drawn from observations based on fly cells including 

those gained from cell lines have turned out to be also valid for human. 

 

Large-scale site specific Drosophila phosphoproteome studies were performed in Kc cells by 

Aebersold et al. (Bodenmiller et al., 2007). Gygi et al. characterized the phosphoproteome of 

fly embryos (Zhai et al., 2008). Both studies report more than 10000 identified 

phosphorylation sites indicating that the size of the fly phosphoproteome is comparable to the 

human phosphoproteome (Chapter 4.6.1.1).  

However, the above studies were purely qualitative. Here we applied a functional quantitative 

phosphoproteomic study in Drosophila elucidating the biological impact of the protein 

tyrosine phosphatase Ptp61F on the fly phosphoproteome using RNA interference. We also 

established a high quality basal fly phosphoproteome in the process. 

To characterize the endogenous phosphorylation sites of the embryonic Drosophila SL2 cell 

line, in the following named ‘basal phosphoproteome’, we applied SILAC-based quantitative 

proteomics, where the ‘heavy’ cell population was treated with a phosphatase inhibitor mix 

while the ‘light’ population was kept untreated. The SILAC-based quantitative strategy 

comparing endogenous phosphorylation to phosphatase inhibitor enhanced phosphorylation 

helps in triggering the identification of very low abundant phosphosites that are ‘upregulated’ 
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in response to the phosphatase inhibition. Furthermore, it effects a better identification, as 

each peptide appears in pairs (heavy and light).  

Drosophila is also a very suitable model system for loss-off function studies by RNA 

interference (RNAi) because of the highly efficient and penetrant RNAi, fewer ‘off target’ 

effects compared to mammalian models, as well as the lower degree of functional redundancy 

compared to higher vertebrates. Ptp61F is an ortholog to the human phosphatase Ptb1b, which 

is thought to be involved in type 2 diabetes, obesity and cancer. Thus, we extended our 

quantitative phosphoproteomics approach with RNA interference for the functional analysis 

of the perturbation caused by Ptp61F knock down. To normalize for expression changes and 

to elucidate proteomic changes, we also analyzed the proteome after RNAi treatment. 

 
 
Figure 4.26: Overview of the analytical workflow used in the study to detect the Drosophila 

phosphoproteome upon phosphatase inhibition (A) and Ptp61F RNAi (B) 

 
The experimental strategy was based on the one applied to human cells (Chapter 4.6.1.1.1) 

from trypsin digestion to phosphopeptide enrichment by SCX/TiO2 chromatography and high 

resolution MS (Figure 4.26). The resulting large-scale data were uploaded to PHOSIDA for 

further data mining and transformed to the PHOSIDA online database scheme. In addition, we 

uploaded the perturbated proteome to the MAPU database (Chapter 5). 

The application of the SILAC-based phosphoproteomics approach on one heavy cell 

population treated with a phosphatase inhibitor cocktail while the light population was kept 

untreated yielded the identification of 6752 phosphorylation sites on 1928 proteins. The 
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percentage of determined tyrosine phosphorylation sites increased to 4.1%. The extension of 

the experimental design with RNAi interference of the phosphatase Ptp61F led to the 

identification of 6516 phosphorylation sites on 1952 proteins. We found that the proportion of 

phosphotyrosines was 1.5% in that experiment. Importantly, phosphorylation dynamics could 

be normalized by detected proteome changes. Figure 4.27 depicts the plot of normalized 

phosphorylation changes upon phosphatase knockdown. Phosphorylation sites that are not 

affected by the treatment are highlighted in gray. Phosphorylation sites that significantly 

respond to the Ptb61F knockdown are marked in green. The phosphorylation pattern of 

STAT92E, a known target of the phosphatase, was found to be significantly affected, 

providing a positive control. The corresponding SILAC pair of the associated phosphorylated 

peptide is illustrated in Figure 4.27.  

Overall, 9749 phosphorylation sites on 2285 proteins were determined with high confidence. 

The overlaps between our dataset and the large-scale studies by Gygi et al. (Zhai et al., 2008) 

and Aebersold et al. (Bodenmiller et al., 2007) were 1506 (65.9%) phosphoproteins and 1719 

(75.2%) phosphoproteins respectively. In total, 1274 phosphorylated proteins were identified 

in all three studies, whereas 334 phosphoproteins were exclusively determined in our 

approach. On the site level, we detected 4691 (48.2%) novel phosphorylation sites, whereas 

5051 phosphorylated sites were already covered by the other two studies. 

 

 
 
Figure 4.27: Phosphorylation site changes upon phosphatase knockdown 

Phosphorylation site changes are normalized by proteome changes and plotted against the measured intensity 

(left panel). Statistically unaffected phosphorylation sites are indicated in gray, whereas significant 

phosphorylation changes are marked in green. Significantly phosphorylation up-regulation was observed for 

Stat92E, for example. The corresponding three-dimensionally represented spectrum is illustrated on the right 

panel. 
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4.6.1.4 Saccharomyces cerevisiae 
 
Yeast is another widely used model organism and has an important role in industry being 

involved in bread fermentation and ethanol production. Its genome was the first eukaryotic 

one to be completely sequenced (Cherry et al., 1998; Williams, 1996). Soon, it became 

obvious that yeast and human share a substantial number of homologous proteins. Thus, the 

yeast organism is often used to gain biological insight in the basic functioning of the 

eukaryotic cell.  

Protein phosphorylation is ubiquitous in all eukaryotes including yeast (Ptacek et al., 2005). 

The application of MS-based proteomics using immobilized metal-affinity chromatography 

(IMAC) for phosphopeptide enrichment has already proven successful in large-scale yeast 

phosphoproteomics (Ficarro et al., 2002). We applied the SILAC technology (Ong et al., 

2002) to two cell populations with normal or heavy forms of both arginine and lysine (De 

Godoy et al., under review). After lysis, 1:1 mixing and trypsin digestion, we applied two 

tinanium dioxide chromatography (TiO2) strategies to enrich phosphorylated peptides. In this 

study, the use of SILAC provides a more accurate identification of phosphopeptides, as all 

peptides are detected by the mass spectrometer as characteristic pairs. The data was searched 

against a decoy database for estimation of the false positive rate, and peptide identification 

and validation were based on the MaxQuant software. Again the experimental design is 

roughly based on the protocol established on the basis of the identification of the human 

phosphoproteome (Chapter 4.6.1.1.1). 

We identified alarge set of in-vivo phosphorylation in yeast covering even low abundant 

transcription factors and a representative set of the kinome (Hunter and Plowman, 1997). This 

data allows to draw general conclusions about phosphorylation in ‘lower’ eukaryotes 

regarding structural constraints, subcellular localization, or the occurrence of kinase motifs 

(Chapters 4.6.2 – 4.6.3). The evolutionary conservation between the yeast phosphoproteome 

and phosphoproteomes of ‘higher’ eukaryotes such as fly (4.6.1.3), mouse (4.6.1.2), and 

human (4.6.1.1) is especially interesting and is the main subject of Chapter 9. 

 

The 1:1 SILAC labelling of yeast cells combined with titanium dioxide chromatrography and 

strong cation exchange chromatography yielded the identification of 4160 phosphorylation 

sites mapping to 1192 proteins (De Godoy et al., under review). As in the other studies on 

phosphoproteomes of higher eukaryotes (Chapters 4.6.1.1 – 4.6.1.3), we determined 

phosphorylation events on proteins with less than 1% false positive rate at both peptide and 

protein levels. The unambiguously identified phosphorylation sites correspond to 3469 
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phosphoserines (83.2%), 635  phosphothreonines (15.2%) and 66  phosphotyrosines (1.6%). 

We found that around 500 phosphorylated proteins and 3000 phosphorylation sites detected in 

our study are novel compared to SwissProt, which nearly doubles the number of sites 

previously reported. Using the gene ontology annotations integrated in PHOSIDA, we found 

phosphorylation event on about one third of known yeast transcription factors including low 

abundant ones. 

A further objective of this study was to examine the yeast kinome (Hunter and Plowman, 

1997). To retrieve known protein kinases from our phosphorylation set, we used KinBase 

(Manning et al., 2002b), an open access database that includes kinases from vertebtrates, 

invertebrates, and unicellular organisms such as yeast. Overall, 45 kinases were revealed to be 

phosphorylated in our set. Since KinBase reports 124 yeast kinases in total, our set covered all 

main kinase families representatively (Figure 4.28). The identified phosphorylated kinome 

includes kinases such as AKT and CKI, which are conserved throughout eukaryotes, but also 

yeast-specific kinases such as RIM15 and RAN. Besides protein kinases, we also identified 

various phosphatases and cyclins, which are listed by KinBase. 
 

 
 
Figure 4.28: Yeast kinome tree 

Kinases that we found to be phosphorylated are indicated in green. 
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4.6.1.5 Prokaryotic Phosphoproteomes 
 
Protein phosphorylation on serine, threonine, and tyrosine is well established as a key 

regulatory posttranslational modification in eukaryotes, but little is known about its extent and 

function in prokaryotes. For some time the field of protein phosphorylation held the view that 

eukaryotes use serine/threonine/tyrosine phosphorylation, whereas bacteria instead use 

histidine and aspartate phosphorylation, mainly in their two-component systems. However, 

accumulating evidence has shown that serine/threonine/tyrosine phosphorylation also plays a 

vital role in bacteria (Deutscher and Saier, 2005). Bacteria possess both kinases and 

phosphatases that show homologous counterparts in eukaryotes (Kennelly, 2002), but also 

kinases that lack of any homology throughout the other domains of life, which supports the 

idea of the occurrence of prokaryotic specific phosphorylation (Mijakovic et al., 2005). As the 

application of MS-based proteomics to various eukaryotes has proven to be suited for the 

detection of thousands of phosphorylation events in the eukaryotic cell (Chapters 4.6.1.1 - 

4.6.1.4), we used this technology to obtain site-specific, in-vivo phosphoproteomes of Bacillus 

subtilis, Escherichia coli, and Lactococcus lactis (Figure 4.29) (Macek et al., 2008; Macek et 

al., 2007; Soufi et al., 2008). We even determined the phosphoproteome of Halobacterium 

salinarium, a member of the third domain of life (archaea) (Aivaliotis et al., under review). 

 
Figure 4.29: Overview of the analytical workflow used to detect prokaryotic phosphoproteomes 

Trypsin digestion of the whole cell lysate was followed by enrichment of phosphopeptides using two stages of 

chromatography (SCX and TiO2). Phosphopeptides were separated on nano-HPLC, mass-measured and 

fragmented in the LTQ-Orbitrap mass spectrometer 



75 

The first described prokaryotic phosphoproteome was the one of Bacillus subtilis, a model 

Gram-positive bacterium (Macek et al., 2007). In the past, investigation of B. subtilis has 

already made significant contribution to the understanding of fundamental processes such as 

carbon catabolite regulation and sporulation. In addition, it represents the most intensely 

studied bacterium regarding phosphorylation. However, before our study, a mere eight 

phosphorylated proteins have been identified in B.subtilis (Wurgler-Murphy et al., 2004). 

Thus, we intended to detect a more comprehensive set of phosphorylation events in this 

bacterium. Furthermore, we wanted to investigate a representative member of Gram-negative 

bacteria (Macek et al., 2008), which can be pathogenic. Their pathogenicity is usually 

associated with lipopolysaccharides that are constituent parts of the cell wall. The most 

prominent member of Gram-negative prokaryotes is Escherichia coli, which has been the 

model system that spawned molecular biology. It is commonly found in the intestine of warm-

blooded animals, but it is also capable of surviving outside the body. Some strains can also 

cause food poisoning in humans. The occurrence of phosphorylation in E.coli has already 

been shown: In two-dimensional gel experiments with protein extracts labeled with 

radioactive phosphorus, more than one hundred phosphorylated protein spots were observed 

(Cortay et al., 1986). However, most of them were never identified. Nevertheless, two 

Serine/Threonine kinases, namely the isocitrate dehydrogenase kinase/phosphatase (Oudot et 

al., 2001) and the YihE kinase (Zheng et al., 2007), have been well characterized. Two 

tyrosine kinases, Wzc and Etk, point to the possibility of tyrosine phosphorylation in E.coli 

(Grangeasse et al., 2007). The global and site-specific analysis of the E.coli phosphoproteome 

also established that serine/threonine phosphorylation is a general regulatory process and not 

restricted to eukaryotes.  

Furthermore, we investigated the phosphoproteome of the Gram-positive non pathogenic 

bacterium Lactococcus lactis (Soufi et al., 2008), a representative of lactic acid bacteria. 

L.lactis as starter culture is used in the production of more than ten million tons of cheese and 

it thus crucial in the dairy industry. It is also important for the proper digestion of lactose in 

human. Thus, we decided to extend our analysis on phosphorylation in bacteria to 

Lactococcus lactis. A phosphorylated serine on position 46 of the phosphocarrier protein HPr 

presents the only phosphorylation site that had been reported so far (Monedero et al., 2001). 

There are two known Serine/Threonine kinases, namely the HPr kinase and the eukaryot-like 

kinase PknB, both lacking known substrates (Bolotin et al., 2001; Monedero et al., 2001). The 

elucidation of site-specific phosphorylation might be conducive to the optimization for 

desired functions of this organism in industry and to gain more insight into its physiology. 
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Finally, we investigated if posttranslational modification by covalent phosphorylation is also 

found in archaea. Thus, we measured the phosphoproteome of Halobacterium salinarium 

(Aivaliotis et al., under review). This obligate aerobic member of archaea is a halophilic 

marine Gram-negative organism. 

In our study we performed a global, gel-free, and site-specific analysis of the four prokaryotic 

phosphoproteome using high accuracy mass spectrometry in combination with biochemical 

enrichment of phosphopeptides from digested cell lysates. Apart from the SILAC labeling 

method, the very basic experimental concept is similar to the one applied to the detection of 

the human phosphoproteome upon EGF stimulation (Chapter 4.6.1.1.1). Thus, the basic 

experimental set up provides an across-the-species protocol for large scale quantitative mass 

spectrometry analysis of in-vivo phosphoproteomes ranging from human (4.6.1.1) to bacteria 

(4.6.1.5). The underlying experimental design is illustrated in Figure 4.29. Importantly, the 

integration of identified phosphorylated sites into PHOSIDA is followed by data mining 

linking specific residues to kinase motifs (Chapter 4.2.1.3), evolutionary conservation 

(Chapter 4.2.4), protein structure (Chapter 4.2.3) and gene ontology annotations (Chapter 

4.2.1.3). Our data and analyses allows not only to derive general patterns regarding 

phosphorylation in prokaryotes, but also to gain more comprehensive biological insight for 

specific prokaryotic proteins of interest to individual researchers using the PHOSIDA online 

database. 

The site-specific and global analysis of the Bacillus subtilis phosphoproteome resulted in the 

identification of 103 unique phosphopeptides from 78 proteins (Table 4.1). In total, 78 

phosphorylation sites were determined with a probability higher than 75% (class I sites). 

Among the identified phosphosites, 54 were on serine (69.2%), 16 were on threonine (20.5%), 

and eight were on tyrosine (10.3%) (Figure 4.30). As expected, we did not detect any histidine 

or aspartate phosphorylation. Interestingly, the phosphoproteome of E.coli showed striking 

similarity in size and number of detected phosphorylation sites: we measured 105 

phosphopeptides from 79 proteins, with 81 class I phosphorylation sites. A total of 55 serines, 

19 threonines, and 7 tyrosines were found to be phosphorylated, yielding a Ser/Thr/Tyr 

phosphorylation ratio of 67.9%, 23.5%, and 8.6%, respectively. The size of the L.lactis 

phosphoproteome was also similar to the ones of B.subtilis and E.coli. We identified 102 

unique phosphopeptides in 63 proteins, with 73 phosphorylation sites. However, the 

distribution of Ser/Thr/Tyr phosphorylation differed, as we identified 34 phosphoserines 

(46.5%), 37 phosphothreonines (50.6%), and 2 phosphotyrosines (2.7%). Interestingly, the 

archaean phosphoproteome was similar in size, as we identified 115 unique phosphopeptides 
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from 69 H.salinarium proteins. We determined 81 class I phosphorylation sites, 70 on serine 

(87%), 10 on threonine (12%), and one on tyrosine (1%).  

 
 Genome Size 

(ORFs) 
Number of 

Phosphoproteins 
Number of 

Phosphopeptides 
Number of 

Phosphosites 
E.coli 4300 79 105 81 
B.subtilis 4100 78 103 78 
L.lactis 2266 63 102 73 
H.salinarium 2821 69 115 81 
 

Table 4.1: Comparison of detected prokaryotic phosphoproteomes 

 

 
 

Figure 4.30: Distribution of Ser/Thr/Tyr phosphorylation in the bacteria E.coli, B.subtilis, and L.lactis, 

and the archaean species H.salinarium 

 
In Bacillus subtilis, we detected phosphorylation sites on many glycolytic enzymes, including 

phosphohexose-isomerase, aldolase, triose-phosphate isomerase, glyceraldehydes 3-phosphate 

dehydrogenase, phosphoglycerate kinase, phosphoglycerate mutase, enolase and pyruvate 

kinase. In addition, phosphorylation sites were detected on several members of the pentose 

phosphate pathway. Furthermore, several phosphorylated proteins are involved in DNA 

metabolism and protein synthesis such as initiation factor IF-1 and elongation factor Ts. Other 

phosphoproteins were members of the phosphoenolpyruvate-dependent phosphotransferase 

(PTS) system. A significant overrepresentation of detected phosphoproteins involved in the 

main pathways of the carbohydrate metabolism was also evident in E.coli, as essential 

enzymes such as pyruvate kinase were phosphorylated. Other phosphoproteins were involved 

in protein synthesis and the PTS system.  

The functional distribution of phosphorylation events detected in L.lactis was similar to the 

ones of the other bacteria, as the majority of glycolytic enzymes were found to be 
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phosphorylated. Aminoacyl-tRNA phosphorylated proteins and ribosomal proteins in L.lactis 

were also phosphorylated. Even the more distantly related archaean organism, Halobacterium 

salinarium, showed a majority of phosphorylated proteins that play essential roles in a variety 

of metabolic pathways such as carbohydrate metabolism, amino acid metabolism, and 

nucleotide metabolism. Although the annotation of the H.salinarium proteome is not as 

comprehensive as the ones for the investigated bacteria, corresponding functions of 

determined phosphoproteins could be estimated by homology searches to other prokaryotes as 

implemented in PHOSIDA (Chapter 4.2.4). Figure 4.32 illustrates two phases of glycolysis 

and indicates phosphorylated enzymes, which were determined in our studies.  

It was important to exclude the possibility of spurious detection of phosphopeptides of 

eukaryotic origin, which might have been present in the reagents used in sample preparation. 

For this purpose, we BLASTed all detected phosphopeptides against the complete NCBI 

protein database. This analysis resulted in only three L.lactis phosphopeptides with identical 

sequence and therefore mass as in eukaryotic proteins. Furthermore, given the starting amount 

of the L.lactis cell lysate, the probability of detection of eukaryotic phosphopeptide 

contaminants, even for these three peptide cases in L.lactis, is extremely low. 

On the basis of two-directional BLAST runs (Chapter 4.2.4), we also determined the overlaps 

between the bacterial phosphoproteomes: Despite a relatively high conservation (overlap) on 

the functional protein level, on the level of phosphorylation sites the conservation was less 

pronounced (Figure 4.31). There are only a few identical phosphorylation sites detected in all 

prokaryotic species. More details about the conservation of phosphorylation events in 

prokaryotes are described in Chapter 9. 

 

 
 

Figure 4.31: Phosphoprotein and phosphosite (in brackets) overlap in E.coli, B.subtilis, L.lactis (left panel), 

and H.salinarium (right panel) 
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Figure 4.32: Schematic illustration of the glycolysis pathway (Nelson and Cox, 2008) 

Enzymes that we determined to be phosphorylated in E.coli (red), B.subtilis (blue), L.lactis (green), and 

H.salinarium (yellow) are marked accordingly. 
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4.6.2 Gene Ontology Analysis 
 
As described in Chapter 4.2.1.3, PHOSIDA stores annotation data ranging from determined 

domain structures to known active sites. The PHOSIDA administration tool enables mining of 

the data and extraction of knowledge from the data. One of the available methods is the 

automated set up of Cytoscape runs (Chapter 4.5.1), which search for significantly 

overpresented gene ontology annotations in the given phosphodataset. Here we analyze the 

functional distribution of the phosphoproteomes from the model species described above. 

We found that around half of the phosphorylation events in human cells (Chapter 4.6.1.1) 

occurred on nuclear proteins, whereas only one third of all proteins in the database were 

assigned as nuclear by GO (Figure 4.33). Based on the hypergeometric test along with 

Benjamini & Hochberg False Discovery Rate correction, this represents a significant 

enrichment of the phosphoproteome in the nucleus. This tendency was also observed in the 

phosphoproteomes of other organisms (Chapters 4.6.1.2 – 4.6.1.4): In D.melanogaster, 42% 

of the identified phosphoproteins are located in the nucleus whereas only 20.8% of all 

proteins annotated in FlyBase are localized in the nuclear section. As expected, proteins 

annotated as extracellular were significantly underrepresented in the phosphoproteome. In 

humans, a mere 3% of the determined phosphoproteins are annotated to be localized in the 

extracellular space, whereas 11% of human proteins in general are localized to this 

compartment. Although there is evidence of a mitochondrial phosphoproteome, proteins 

annotated as mitochondrial by GO were underrepresented: In fly, for example, 2.6% of 

phosphorylated proteins were detected in mitochondria. In comparison, 6.7% of all FlyBase 

proteins are located in mitochondria. 

 
 

Figure 4.33: Gene ontology component analysis of the D.melanogaster phosphoproteome 
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Regarding the functional impact and biological processes associated with proteins, we found 

evidence for a significant overrepresentation of cell signalling functions: As expected, kinase 

activity, ATPase activity, receptor signalling protein activity, transcription regulator activity, 

and translation regulator activity were all found to be highly significantly overrepresented 

functions in the measured phosphorylated eukaryotic proteins (Figure 4.34). The observations 

relating to the over- and underrepresentation of cellular component localizations and 

biological functions were similar in all investigated eukaryotic species. 
 

 
 

Figure 4.34: Gene ontology function analysis of the D.melanogaster phosphoproteome 
 
As there is virtually no gene ontology annotation for bacteria, we used the Blast2GO tool 

(Conesa et al., 2005) to extract the GO terms for prokaryotic proteins from their closest GO-

annotated orthologs in the SwissProt database. In this way, we obtained information on 

biological process for 60 out of 78 phosphorylated Bacillus subtilis proteins. In addition, we 

derived information on cellular localization for 26 phosphorylated proteins. Phosphoproteins 

were found to be present in all compartments of the bacterial cell (Figure 4.35) and distribute 

among a wide variety of metabolic and regulatory enzymes. In concordance with the 

observations described in Chapter 4.6.1.5, a GO enrichment analysis against the entire 

proteome of B.subtilis showed that protein phosphorylation is statistically overrepresented 

among enzymes involved in the main pathways of carbohydrate metabolism, DNA 

metabolism, protein synthesis and phosphoenolpyruvate-dependent phosphotransferase 

system (PTS). These results were also true for the phosphoproteomes of the other prokaryotes. 
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Figure 4.35: Gene ontology biological process analysis of the B.subtilis phosphoproteome 

 
4.6.3 Sequence Motif Analysis 
 
We next wished to infer the possible kinases responsible for the phosphoproteome using 

kinase motifs and statistical test. We employed the χ2 test via the PHOSIDA administration 

tool as described in Chapter 4.4, to check whether phosphorylation sites identified in a given 

project match significantly with known human kinase motifs integrated into PHOSIDA 

(Chapter 4.2.2). We estimated the statistical chance for each kinase motif to match with a 

given phosphosite according to the amino acid composition of the motif and the relative 

frequencies of each amino acid composition in the entire proteome of the investigated 

organism. We found that phosphorylation sites of the mouse proteome (Chapter 4.6.1.2) 

matched significantly with most of the known human kinase motifs with only a few 

exceptions such as the motif of the NEK6 kinase. As an example, the number of mouse 

phosphosites that matched with motifs of the protein kinase A (PKA) was ten times higher 

than one would expect by chance. Significantly overrepresented matches with human kinase 

motifs were also observed in phosphoproteomes of eukaryotes that are more distantly related 

to human: For phosphosites identified in fly cells (Chapter 4.6.1.3), the CDK1 motif p[ST]-P-

X-[KR] was enriched six-fold, for instance. Even in yeast, the consensus sequence of the CK2 

kinase motif was enriched by a factor of three. However, as expected, kinases that are not 

present in yeast, such as EGFR or ALK, did not show a significant overrepresentation of 

candidate substrates in the yeast phosphoproteome. Table 4.2 lists investigated human kinase 
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motifs along with the number of observed and expected yeast phosphorylation sites that 

matched with the given kinase motif. 

motif  kinase 
class 1 

(observed) 
class 1 

(expected) 
class 1 (chi‐
square) 

R.p[ST]  PKA  189  172.7  1.61 

R[RK].p[ST]  PKA  91  20.3  247.52 

KR..p[ST]  PKA  37  12.6  47.4 

S..p[ST]  CK1  678  351.3  334.05 

[ST]...pS  CK1  673  496.3  73.97 

p[ST]..E  CK2  786  250  1228.29 

pS...S  GSK3  445  300.5  76.4 

p[ST]P.[RK]  CDK2  61  19.9  85.32 

R..p[ST]  CAMK2  315  172.7  122.71 

R..p[ST]V  CAMK2  19  9.6  9.23 

P.p[ST]P  ERK  46  7.4  201.73 

V.p[ST]P  ERK  25  9.5  25.35 

PEp[ST]P  ERK  6  0.5  60.51 

R[RST].p[ST].[ST]  AKT  35  5  180.23 

R.R..p[ST]  AKT  33  7.7  83.29 

R..p[ST].R  PKC  2  7.7  4.23 

[LVI].[RK]..p[ST]  PKD  132  99  11.29 

[IEV]pY[EG][EDPN][IVL]  LCK  0  0.1  0.1 

[IVL]pY..[PF]  ABL  1  0.9  0.01 

[ED]..pY..[DEAGST]  SRC  7  2.2  10.98 

pY..[ILVM]  ALK  3  11.4  8.13 

[DPSAEN].pY[VLDEINP]  EGFR  11  7.9  1.46 

p[ST]P.[KR]  CDK1  61  19.9  85.32 

p[ST]P[KR]  CDK1  52  19.9  52.05 

[RK].p[ST][ILV]  Aurora  65  99  11.98 

[RKN]R.p[ST][MILV]  Aurora‐A  19  7.3  18.79 

[DE].p[ST][VILM].[DE]  PLK  28  13.8  14.66 

[ED].p[ST][FLIYWVM]  PLK1  105  155.3  16.97 

L..p[ST]  NEK6  174  372.3  116.83 

L.R..p[ST]  CHK1/2  40  16.6  33.13 

[MILV].[RK]..p[ST]  CHK1  143  108.6  11.21 

F..Fp[ST][FY]  PDK1  0  0.6  0.6 

[FLM][RK][RK]p[ST]  NIMA  4  8.7  2.54 

 
Table 4.2: Number of observed versus expected yeast phosphorylation sites that matched with human 

kinase motifs. A chi-square value larger than six is equivalent to a p value of 0.01.  

 
To confirm the significant overrepresentation of human kinase motifs without any a priori 

information we used Motif-X an iterative approach to derive significantly overrepresented 

motifs from large-scale datasets as described in Chapter 4.5.1. The PHOSIDA administration 

tool created query sets by pre-aligning all clearly identified phosphorylation sites along with 

their surrounding sequence of 12 residues. A probability p-value of less than 0.0001 was 

considered significant. In addition, a minimum occurrence of 20 of the sequence pattern in the 

phosphodata was required to derive a significant consensus sequence.  

The application of this unbiased statistical approach led to the same outcome as above: 

Extracted overrepresented amino acid compositions around phosphorylated residues of 

various eukaryotes were similar to known human kinase motifs. For example, the second most 
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significant consensus sequence in the fly phosphoproteome was the CDK1 motif, which was 

also proven to be significantly enriched according to the χ2 test. To expand the consensus 

sequence comparison, we applied the Motif-X approach to phosphosites detected in human 

HeLa cells exposed to EGF stimulation. In total, 20 significant sequence motifs matched 

exactly with those derived from the Drosophila phosphoproteome set. Other extracted motifs 

were similar in composition between human and fly, but varied only in one amino acid 

position. Figure 4.36 shows examples of motif logos that were found to be significantly 

overrepresented in the human phosphoproteome and in the fly phosphoproteome. In contrast, 

consensus sequences derived from the yeast phosphoproteome were found to be more 

organism-specific, as the overlap with consensus sequences of higher eukaryotes including 

human, mouse and fly was relatively low. 

We also used the χ2 test to test whether phosphorylation sites determined in prokaryotic cells 

matched significantly with human kinase motifs. However, we did not find evidence for any 

significantly overrepresented eukaryotic kinase motifs in bacteria. The application of Motif-X 

also did not yield any significant sequence motif from prokaryotic phosphoproteomes. 

As highlighted in Chapter 4.2.5, the online application of PHOSIDA lists all matching kinase 

motifs for a given phosphorylation site. The display of matching kinase motifs enables web 

users to explore possible kinases responsible for any phosphorylation site of interest. 

 
 

Figure 4.36: Consensus sequences identified in the fly phosphoproteome (left panel) and human 

phosphoproteome (right panel). Data were calculated in with identical methods. 



85 

4.6.4 Structural Constraints on Phosphorylation Sites 
 
Previous anectodatal observations had already suggested that phosphorylation sites are mainly 

located in parts of proteins without regular structure (Iakoucheva et al., 2004). To verify this 

observation on the basis of our large-scale and unbiased studies and to enable users to 

investigate the structural context of each phosphorylation site of interest, we made use of the 

secondary structure and solvent accessibility predictions integrated in PHOSIDA (Chapter 

4.2.3). As shown in Figure 4.37, the structural attributes of each phosphorylation site are 

visualized in PHOSIDA. 

 

 
 
Figure 4.37: Predicted secondary structures and solvent accessibilities of identified phosphorylation sites 

as illustrated in PHOSIDA 

 
 
To determine the overall accessibility at the protein level, we compared identified human 

phosphoproteins (Chapter 4.6.1.1.1) with random proteins from SwissProt. We found that 

phosphoproteins as a group have significantly higher accessibilities than a set of randomly 

selected proteins (t-test: σ = 0). This means that all residues that occur in phosphoproteins 

show a higher accessibility on average than all residues in non-phosphorylated proteins. 

Phosphoproteins, on average, are longer than the average of the database; thus, this effect is 

not caused by a smaller surface to volume ratio.  
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Furthermore, global analyses on all eukaryotic phosphoproteomes ranging from yeast to 

human showed that the accessibilities of phosphoserine, phosphothreonine and 

phosphotyrosine are significantly higher than the ones of non-phosphorylated serines, 

threonines or tyrosines. Non-phosphorylated residues were taken from phosphoproteins, 

excluding bias due to protein selection (Figure 4.38).  

 

 

 
 

Figure 4.38: Accessibilities of phosphorylation sites as calculated by SABLE 

The relative accessibility prediction assigns a value between 0 (fully buried) and 9 (fully exposed) to each 

residue. Accessibility is significantly higher than for their non-phosphorylated counterparts in the same proteins 

in all phosphoproteomes of eukaryotes (A: S.cerevisiae, B: D.melanogaster, C: M.musculus, D: H.sapiens) and 

for all phosphorylatable residules. 
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The high accessibility of phosphorylation sites suggests that they are largely localized in 

hinges and loops, since these structural elements are at the protein surface. In fact, this is the 

case to a striking degree for pS (yeast: 91%, fly: 93%, mouse: 93%, human: 93%), as well as 

for pT (yeast: 92%, fly: 92%, mouse: 92%, human: 88.5%). pY (yeast: 75%, fly: 78%, mouse: 

78%, human: 67.3%) is also predominantly found in these regions (Figure 4.39). To confirm 

the generality of these observations, we mapped identified in-vivo phosphorylation sites to 

three-dimensional coordinates for phosphoproteins with a solved structure in the Protein Data 

Bank (Berman et al., 2000). As is apparent from the structures, the phosphogroups were 

always located in highly accessible parts of the proteins (Figure 4.40). In many cases, the 

structure around the phosphosites was even so flexible that it could not be determined at all. 

 
 

 
 

Figure 4.39: Proportion of phosphorylation sites located in loops and hinges as determined by SABLE 

In each case (A: S.cerevisiae, B: D.melanogaster, C: M.musculus, D: H.sapiens), phosphosites are significantly 

more frequently located in flexible regions (loops, hinges). 
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Figure 4.40: Example PDB structures of phosphoproteins (phosphosites marked in green) 
 
 
 
4.7 Discussion 
 
Our group has developed a strategy combining SILAC for encoding phosphorylation changes, 

SCX and TiO2 chromatography for phosphopeptide enrichment, and high-accuracy mass 

spectrometric characterization. We applied this strategy to a several model organisms in 

different biological contexts ranging from EGF stimulation (Chapter 4.6.1.1.1) to phosphatase 

inhibition (Chapter 4.6.1.2.1) and perturbation by phosphatase RNAi knockdown (Chapter 

4.6.1.3). We even applied this strategy to the determination of different prokaryotic species 

(Chapter 4.6.1.5). The detailed implementation of the mass spectrometric approach was 

somewhat different among the specified projects: For the identification of the yeast 

phosphoproteome, for example, we applied SILAC 1:1 labeling meaning that there is no 

biological difference between the two (heavy and light) populations. For the detection of 

prokaryotic phosphoproteomes we did not apply the SILAC technology at all. Nevertheless 

the main workflow of the described strategy was basically the same in each large scale study. 
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The approach is completely generic for identification of phosphorylation events in signalling 

pathways. 

Identification of numerous phosphorylation sites on kinases and other low-abundance 

regulatory proteins demonstrates that the technology can probe the in-vivo phosphoproteome 

in considerable depth.  

As a large proportion of cellular proteins are phosphorylated and the phosphoproteome is 

therefore very large and complex, the investigation of various in-vivo phosphoproteomes 

requires consistent data management and user friendly open access interface to retrieve data. 

In addition, the determination of thousands of phosphorylation sites requires a strategy to 

derive knowledge from the raw data. These requirements motivated the conception of 

PHOSIDA, the phosphorylation site database. On the basis of mySQL, C# and the ASP.NET 

technology (Chapter 2), we created a comprehensive database management system, which 

embraces the upload of experimental data, followed by the automated application of a range 

of mining methods. The entire workflow presents a ‘Knowledge Discovery from Databases’ 

(KDD) process, one of the most important methods in database technology (Chapter 4.1). 

The large scale study of the human phosphoproteome upon EGF stimulation (Chapter 

4.6.1.1.1) showed that only a small subset of phosphorylation sites are regulated in response 

to a stimulus. The observation that individual phosphosites on a protein are typically regulated 

differently suggests that proteins generally serve as integrating platforms for a variety of 

incoming signals. Therefore global investigations of phosphorylation events have to be site 

specific and there is a need for algorithms that assign phosphorylation sites to given spectra 

with statistical rigor (Chapter 3). This pioneering study showed that detailed and time-

resolved information about numerous signalling events controlled by phosphorylation can be 

obtained by modern phosphoproteomics. About 90% of our phospohorylation sites were novel 

both compared to SwissProt and to other large scale studies. Taken together, our data 

suggested that, despite several decades of research into phosphorylation, most in-vivo 

phosphorylation sites have still not been detected.  

The focus of the second major study of the human phosphoproteome described in this thesis 

was the investigation of cell cycle dependent phosphorylation regulation of protein kinases 

(Chapter 4.6.1.1.2). Here, we established a phosphoproteomics strategy that combines SILAC 

based mass spectrometry as described above with efficient kinase enrichment. This approach 

led to the identification of more than 1000 phosphorylation sites on protein kinases, most of 

which have not been described previously. We found more than half of all phosphopeptides 

on kinases significantly upregulated in mitotic cells pointing to wide-spread regulation of the 
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kinome in mitotic cells. Interestingly, we determined novel cell cycle dependent regulation by 

phosphorylation even for the most intensely studied kinases. This approach has potential 

applications in drug research, as kinases that are potentially cell cycle dependently de-

regulated in tumours represent prime targets for anti-cancer drugs. 

Our generic phosphoproteomics strategy also proved to be successful in the mouse model. We 

used the SILAC technology to quantify basal phosphorylation against upregulated 

phosphorylation after applying a cocktail of phosphatase inhibitors (Chapter 4.6.1.2.1). 

Employing phosphatase inhibitors resulted in a boost of low level phosphorylation sites and 

made them more likely to be sequenced and identified. Again, more than half of the identified 

sites were novel suggesting that the determination of the mouse phosphoproteome is also far 

from complete. For phosphotyrosine, inhibition was effective and the majority of pY sites 

were strongly increased upon treatment. However, there was no evidence for a strong increase 

of the phosphorylation level of serines and threonines. The majority of pS and pT was 

unaffected by the inhibitors. One plausible reason for this observation could be a specificity of 

the applied inhibitors for only small classes of phosphatases.  

Cancer is predominantly a genetic disease and genome projects have already shown that more 

than hundred protein kinases are involved in human cancer. Mutations in the genome often 

lead to deregulated protein kinase activity in cancer, primarily constitutive activation. We 

used mutant mice as a skin tumor model to prove that our established mass spectrometry 

strategy is applicable to solid tumor analysis (Chapter 4.6.1.2.2). To study the global 

phosphoproteome of solid tumor tissue we used SCX-TiO2 and multiple TiO2 incubation 

which allowed mapping the position of more than 5000 phosphorylation sites in melanoma 

tissue with confidence. We found phosphosites from many pathways directly or indirectly 

involved in cancer, for example, in the mTor pathway, which regulates protein translation. 

The coverage of known melanoma associated phosphorylation sites in our pilot study 

indicates that the approach is well suited for the analysis of the tumor tissue 

phosphoproteome.  

 

The increase of identified phosphotyrosines found in the phosphatase inhibitor study in mouse 

was again observed in fly cells (Chpater 4.3.3): In total, 4.1% phosphorylated tyrosines were 

determined after phosphatase inhibitor treatment. This observation supports a more efficient 

inhibition of phosphotyrosine phosphatase compared to serine/threonine phosphatases. 

Overall, more than 6700 phosphorylation sites were found in fly cells for the phosphatase 

inhibitor experiment. The described experimental design was then extended by the 



91 

knockdown of the Ptp61F phosphatase, the homolog of the human Ptb1B phosphatase, 

important in Type II diabetes. As proof of principle, we showed that the phosphoproteome 

can be analyzed quantitatively in response to knock down of a single regulator. The RNA 

interference approach revealed a comparable number of 6515 phosphorylation sites on 1952 

proteins. Together, we detected nearly 10000 phosphorylation sites in D. melanogaster. 

Around half of all determined phosphorylation sites proved to be novel compared to other 

large-scale studies. From the technological point of view, the study also showed that it is 

required and feasible to normalize phosphorylation dynamics by measured proteome changes, 

in order to derive quantitative data that are exclusively caused by phosphorylation changes 

rather than protein changes upon the specified treatment. Besides the integration into 

PHOSIDA, the large number of phosphorylated sites allowed the implementation of the first 

fly specific phosphosite predictor (Chapter 7). In addition, the fly phosphoproteome provided 

invaluable data for the evolutionary analysis of phosphorylation (Chapter 9).  

 

The application of our MS strategy to yeast yielded the identification of more than 4000 

phosphorylation sites (Chapter 4.6.1.4). Surprisingly, we found evidence for phosphorylation 

events on 66 tyrosine residues. This was unexpected, as very little is known about tyrosine 

phosphorylation in yeast. However, even though the entire data set has a false positive rate of 

less than 1% on the protein and peptide levels, it is possible that the false positive rate for a 

subset of the data is different. In any case, the application of SILAC labelling means that all 

peptides are detected by the mass spectrometer as characteristic pairs or doublets that can be 

analyzed separately, and their sequencing in both forms increases the chance of true 

identification. Thus, we also detected low abundant proteins ranging from transcription 

factors to kinases. The project not only represents a pioneer study for the application of 

quantitative phosphoproteomics in yeast, but also contributes a large number of novel 

phosphorylation sites to the annotation of posttranslational modifications in yeast. 

 

Finally, we determined, for the first time, the in-vivo and site-specific bacterial and archaea 

phosphoproteomes (Chapter 4.6.1.5), choosing the model organisms E.coli, B.subtilis, 

L.lactis, and H.salinarium. The number of identified phosphorylation events in prokaryotic 

cells is orders of magnitudes lower than that of eukaryotes. We sequenced between 73 

(L.lactis) and 81 (E.coli) phosphorylation sites. Most of them are found on glycolytic and 

tricarboxylic acid cycle enzymes and members of the phosphoenolpyruvate-dependent 

phosphotransferase system. Despite their phylogenetic distance, phosphoproteomes of the 
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investigated prokaryotes are similar in size, classes of phosphorylated proteins, and pS/pT/pY 

distribution.  

 

All measured phosphoproteomes were analyzed for GeneOntology overrepresentation using 

the implemented mining methods that link with open source applications such as Cytoscape. 

We found that the most significantly overrepresented biological functions of eukaryotic 

phosphorylated proteins are associated with binding to targets ranging from ATP to 

transcription factors. As expected, kinase binding activity is significantly overrepresented in 

all eukaryotic phosphoproteomes. Functions that are related to general kinase activities, 

translational activation, and transcriptional regulation also proved to be significantly 

overrepresented. In contrast, mitochondria and secreted proteins proved to be significantly 

underrepresented in the phosphoproteomes. In prokaryotic phosphoproteomes, 

phosphoproteins involved in the main pathways of carbohydrate metabolism, DNA 

metabolism, protein synthesis and phosphoenolpyruvate-dependent phosphotransferase 

system (PTS) are significantly overrepresented.  

 

As each phosphorylated site identified in a given species must be the substrate of one or more 

kinases, we matched our sites to the known substrate specifities of 33 human kinases through 

motif analysis. We used human kinase motifs because the ones of other eukaryotes such as 

mouse, fly and yeast are not known and kinase substrates are generally assumed to be well 

conserved throughout higher eukaryotes. Using the PHOSIDA administration tool, the 

application of statistical methods such as the χ2 test and Motif-X indeed showed that 

phosphosites detected in eukaryotic cells match significantly to most of the known human 

kinase motifs. This observation verifies the high degree of conservation of kinases and their 

signalling pathways ranging from CDKs to ERK. Our results are concordance with a previous 

study of Manning et al. (Manning et al., 2002a): They compared the kinomes of various 

eukaryotes with known human kinases and came to the conclusion that eukaroytes share 

several kinase families involved in functions such as immunity, neuro-specifc functions and 

the cell cycle. However, the yeast phosphoproteome proved to be more distinct from the ones 

of higher eukaryotes. For individual reachers, the inclusion of matching motifs in the web 

application of PHOSIDA allows the estimation of kinase correspondences of any given 

substrate. 
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As eukaryote-like kinases have been found in bacteria, we wondered if human kinase motifs 

matched amino acid sequences surrounding the identified phosphorylation in the investigated 

prokaryotes. Although 17 phosphosites found in B.subtilis matched the target motifs for 

eukaryotic casein kinases CK1 and CK2, this distribution corresponded to expected 

frequencies of these motifs obtained by chance. Although it has been shown by previous 

studies that bacteria possess kinases and phosphatases that structurally resemble their 

eukaryotic counterparts (Kennelly, 2002) we could not find evidence for any significantly 

overrepresented consensus sequences. However, this observation does not imply that there are 

no serine/threonine protein kinases in bacteria with consensus substrate motifs. It rather 

suggests that the spectrum of substrates phosphorylated by bacterial protein kinases is not as 

large as that in eukaryotes perhaps indicating a more specific kinase-substrate association in 

prokaryotes. This is not unexpected given the relatively low number of around 80 measured 

phosphorylation events in prokaryotic cells in comparison to eukaryotic phosphoproteomes 

each comprising more than 10000 phosphorylation events. 

 

On the basis of predicted secondary structures and solvent accessibilities integrated into 

PHOSIDA, we found that phosphorylation events are not distributed along the whole protein 

structure but are instead constrained to sites of high accessibility and structural flexibility. 

Particularly in the case of serine and threonine, phosphorylation is almost completely 

restricted to loops and hinges. Tyrosine is found to some degree in regular secondary structure 

elements but overall phosphotyrosines are very likely to be in flexible regions as well. 

Mechanistically, localization of phosphorylation in flexible regions of the protein is 

advantageous as it provides access for the kinase to substrate, which needs to be positioned 

into the active site. Furthermore, functional consequences of the phosphorylation in many 

cases also depend on the flexibility of the phosphorylated sequence, such as when loops are 

repositioned after phosphorylation or when the phosphorylated loop participates in a protein-

protein interaction. However, it is important to emphasize that the secondary structural 

analysis was based on predictive methods rather than experimental data. Nevertheless, it 

stands to reason that the large size of the dataset should compensate for statistical errors 

caused by the prediction algorithm. 

 

The evolutionary sections of PHOSIDA also provide insights into the evolution of 

phosphorylation. Main results and conclusions are discussed in Chapter 9. Furthermore, we 

implemented a phosphorylation site predictor that makes it possible to find putative novel 
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phosphorylation sites that have not been experimentally identified. The concept of the 

predictor is described in Chapter 7.  

 

To make the data freely and efficiently available to the community, we also implemented an 

online application that allows the retrieval of the phosphoproteomic data 

(http://www.phosida.com) (Chapter 4.2.5). The concept of an online phosphorylation site 

database is, of course, not a novel one. PhosphoSite (Hornbeck et al., 2004) and 

Phospho.ELM (Diella et al., 2004) are already established databases containing 

phosphorylation sites from the literature. In contrast to those efforts, the aim of PHOSIDA is 

to include only very high quality input data as well as quantitative information such as 

regulation after stimuli or perturbation after phosphatase inhibition. Additionally, we take into 

account structures and evolutionary data across a variety of species, in order to integrate 

biological context into the database and to quantify constraints of phosphorylation on a 

proteome-wide scale. With a total of 289 phosphoprotein entries and 313 reported 

phosphorylation sites from four prokaryotic species (B.subtilis, E.coli, L.lactis and 

H.salinarium), PHOSIDA is currently the largest open source database of prokaryotic 

Ser/Thr/Tyr phosphorylation. Thus, PHOSIDA provides a rich environment for the biologist 

wishing to analyze phosphorylation events of proteins of interest.  
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Chapter 5 
 
 

MAPU 2.0: Max-Planck Unified 
Proteome Database 
 
The MAPU 2.0 database contains proteomes of organelles, tissues and cell type (Gnad et al., 

in press). It allows the organism-specific retrieval of proteomic data obtained by high 

accuracy MS-based proteomics. The combination and update of various experiments on the 

basis of the same underlying database version make it possible to obtain an overall idea about 

the tissue-specific or organelle-specific localization of any protein of interest. In addition, the 

new release of the MAPU database addresses mass spectrometry specific problems including 

ambiguous peptide-to-protein assignments. Furthermore it provides insight into general 

features on the protein level ranging from gene ontology classification to SwissProt 

annotation. Moreover, the derived proteomic data are used to annotate the genomes. MAPU 

2.0 is available on line at http://www.mapuproteome.com. 

 
 
5.1 Introduction 
 
The mapping of various proteomes having potential diagnostic utility presents one of the 

fundamental challenges of MS-based proteomics. Besides biotechnological problems 

including biochemical purification of organelles, the consolidated database management of 

various identified mapped proteomes is another challenge that proteomic research has to face. 

The MAPU 2.0 database provides a comprehensive proteome information system consisting 

of data integration and combination of various large-scale proteomic assays and inclusion of 

protein annotations from other databases (Gnad et al., in press). To allow the peptide-based 

retrieval of quantitatively evaluated proteomic data, we changed the basic concept of the 

previous version of the MAPU database completely compared to the original release of 

MAPU. The main modifications are the combination of various proteomic sub-databases, the 

employment of another programming language (C#), the addressing of MS specific problems 

including peptide-to-protein assignments, the inclusion of additional large-scale proteomic 

datasets, the detailed cross-reference to SwissProt annotations, and the new web design. 

Moreover, as the number of sequenced genomes increases rapidly, the integration of 

biological information on the genome sequence becomes imperative (Curwen et al., 2004; 
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Olason, 2005). Thus, it is important to map large-scale data derived from MS-based 

proteomics to the genome sequence. The EnsEMBL project provides an excellent system to 

integrate any kind of data that contributes to the annotation of the genome (Birney et al., 

2004). Therefore, we mapped the generated proteomic data to the genome and used the 

Distributed Annotation System (DAS) to vizualize key features such as the localization in 

specific cell types for each identified gene transcript. 

 
 
5.2 Implementation of MAPU 2.0 
 
The initial content and the original format of MAPU have been described in Zhang et al. 

(Zhang et al., 2007). The general format of the database has changed drastically, as the 

previous database version was divided up into several sub-databases, each containing a 

discrete proteomic dataset. The new version (MAPU 2.0; (Gnad et al., in press)) unifies all 

sub-databases by re-assigning the determined peptides along with their corresponding data of 

each experiment to proteins entries of an updated database version. This allows the organism-

specific retrieval of various cell type and organelle associated proteomic data: 

The user can query the database organism-specifically by protein name, protein description, 

gene symbol, accession number in the database used for identification (such as the 

International Protein Index (IPI)), SwissProt accession identifier, protein sequence or peptide 

sequence (Figure 5.1, left panel). 

If more than one protein entry match with the submitted query string, MAPU 2.0 will list all 

relevant proteins and mark the ones that show peptides determined in specified sub-proteomes 

in red (Figure 5.1, middle panel). Clicking on one of the red high-lighted entries leads to the 

result page (Figure 5.1, right panel). If there is only one match to the query, the web user will 

be guided directly to the result page of the protein. The left panel of the resulting web page 

displays all investigated cell types and tissues that have been explored. If the given protein 

was detected in a specific project, the corresponding button is highlighted (Figure 5.1, right 

panel). Otherwise, the image of the given tissue or cell type is illustrated in very light colors 

indicating the absence of the specified protein of interest.  
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Figure 5.1: The Max-Planck Unified Proteome Database 2.0 

The web user can search for any protein of interest via accession numbers, gene symbols, gene name, protein 

description, peptide sequence, or protein name. The final result page illustrates the occurrence of the specified 

protein in certain tissues or organelles along with general annotations. 

 
Clicking on one of the buttons on the left panel results in the complete listing of all peptides 

that have been measured in the selected cell type along with associated data such as Mascot 

scores or PTM scores (Figure 5.2). 

 

 
 
Figure 5.2: Listing of peptides that were identified in a given tissue in MAPU 2.0 

The coloration of the illustrated peptide sequences indicates the uniqueness regarding the protein assignment 
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The peptide-to-protein assignment represents one of the main problems of MS data, since a 

peptide might occur in several proteins, usually isoforms or truncated versions of the gene. 

Multiple incidences of a peptide sequence can lead to ambiguous protein assignments. This 

can partially be resolved by noting that it is more likely that a given peptide sequence 

corresponds to the candidate protein that shows the highest number of peptides in total. 

MAPU addresses this issue by color highlighting the listed peptides: Green indicates that the 

peptide sequence is found exclusively in the selected protein of interest, whereas blue 

indicates that there is another protein entry that contains the peptide and shows the same 

number of identified peptides in total. Red points to the occurrence of another protein that 

shows a higher number of detected peptides in total and thus represents the more likely 

protein present in the sample. If one points the computer mouse to one of the corresponding 

‘occurrences’ buttons, a blue colored box will pop up showing all protein entries that contain 

the given peptide along with the total number of containing peptides that have been identified 

(Figure 5.2). This fundamental principle of visualizing the ambiguity of protein assignments 

is also used in PHOSIDA – the phosphorylation site database (Chapter 4). 

 

If the experimental design of a given project also focused on the organellar localizations of 

proteins, all organelles, in which the protein of interest was detected, are listed.  

In addition to the illustration of associated cell types and organelles along with the measured 

peptides, general information about the protein is provided: Besides protein descriptions and 

full protein sequence, the corresponding GO identifiers are listed and they link to the Gene 

Ontology web site reporting full descriptions of the selected annotation. Furthermore, the 

annotations to each instance include the PubMed references and general features such as 

active sites, motifs, domains, or signaling sites derived from SwissProt (Figure 5.3). Since 

there may be several entries covering various isoforms or splice variants that corresponds to 

one SwissProt entry, we aligned the protein sequence of each SwissProt instance with the one 

of the corresponding entry of the database that was used for identification, which is usually 

the IPI database. We used BLASTP to align the protein sequences. The main purpose of this 

extensive alignment approach is to derive the exact sequence positions of relevant protein 

features that are annotated in SwissProt within the protein sequences of the entry of the other 

database.  
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Figure 5.3: Protein annotations in MAPU 2.0 based on SwissProt cross-references 
 
If the experiment is quantitative the median quantitative data of all measured assigned 

peptides are taken to describe the quantitation of the protein (provided by MaxQuant output).  

Moreover, a further essential difference to the previous database version is the underlying 

programming language. The new release is exclusively based on C# and the ASP.NET 

technology, in order to have a shared class library, which is also used for the implementation 

of PHOSIDA (Chapter 4). 

Furthermore, the concepts and web applications of MAPU 2.0 and PHOSIDA are very 

similar. This presents a great advantage for researchers that use both our in-house proteomic 

database (MAPU) as well as the phosphorylation site database (PHOSIDA). The similar web 

design also promotes the idea to have a corportate design of our group. 

Additionally, each displayed web page includes a question mark button that directs to the help 

section of MAPU 2.0 describing the format of the current page or exemplifying the web 

application guideline. These help sections are also available via the ‘background’ section of 

MAPU 2.0. They contain general descriptions of the experimental designs of various projects, 

for instance. To allow the retrieval of sub-databases that could not be established in the new 

concept, a link to the old database version is provided. This is the case for the organellar 

database as well as the red blood database, as both datasets are exclusively protein-based and 

therefore cannot be mapped to MAPU 2.0 due to the lack of peptide information.  
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Next, we wished to use the proteomic data to annotate the genome. We extracted all measured 

peptides of each proteomic dataset and reassigned the given peptide sequences to gene 

transcripts that are annotated in the EnsEMBL database. We linked our in-house proteomic 

databases with the genome database in an efficient manner via the DAS/Proserver System 

(Finn et al., 2007). The basic concepts are explained in Chapter 8. 

 
 
5.3 Discussion and Future Directions 
 
The previous version of MAPU was not integrated and only listed the proteome results in a 

project specific manner. This made it impossible to query the presence or absence of a protein 

of interest in all proteomics projects undertakine in the group. We have therefore completely 

redesigned the MAPU database and it now combines all available proteomic sub-databases 

via the organism-specific reassignments of peptide sequences to the same underlying species 

databases. Thus, the format of the MAPU database has completely changed, since the 

previous version was protein based, whereas the new database release is peptide based.  

In addition, in MAPU 2.0 we have addressed MS-specific problems such as ambiguous 

peptide-to-protein assignments by straightforward approaches such as color highlighting of 

given peptide sequences. Furthermore, MAPU 2.0 dynamically recalculated of quantitative 

protein data that are assigned to proteins on the basis of the individual peptide quantitation 

values.  

Moreover, we switched to C# and ASP.NET as the underlying programming technology, in 

order to establish a corporate web concept and class libraries shared with PHOSIDA, which is 

focussed on the management of identified phosphorylation sites. In addition, we used the 

proteomic data that are integrated in MAPU 2.0 to annotate the genome via the DAS 

technology provided by the EnsEMBL project.  

The success of the MS-based proteomic technology is a significant challenge for 

bioinformatics resources. Thus, we aim to manage and combine the available proteomic data 

generated in our department in an efficient manner. We intend to improve the underlying 

concept of MAPU continuously with the help of feedback and suggestions by the web users of 

the database. One of our major future goals is the provisions of more detailed validation 

reports of measured proteomes. This could be realized by the display of spectra images of 

each identified peptide sequence, for example. Besides the solution of MS-specific problems, 

we intend to extend our proteome database by the inclusion of measurements of additional 

proteomes on the basis of different tissues, cell types and organisms. 
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Chapter 6 
 
 

SEBIDA – Sex Bias Database 
 
In sexually reproducing species, males and females differ in many morphological and 

behavioural traits. Because sex-specific chromosomes such as the Y chromosome are 

typically highly heterochromatic and contain few genes, almost all intersexual differences 

arise through the differential expression of genes that are physically present in both sexes. 

With the advent of microarray technologies, it has become possible to detect such sexual 

dimorphism in gene expression on a genome-wide scale. For example, one of the first 

applications of microarrays in Drosophila melanogaster was to quantify expression 

differences between males and females. Since then, numerous studies have compared gene 

expression between the sexes in various insect species (Gibson et al., 2004; Hahn and 

Lanzaro, 2005; Parisi et al., 2004; Parisi et al., 2003; Ranz et al., 2003; Stolc et al., 2004). 

In addition to their obvious interest for developmental biologists studying sexual 

differentiation, genes with sex-biased expression are also of great interest to evolutionary 

biologists. This is because they may be enriched for adaptively evolving genes that are subject 

to forces such as sexual selection or intersexual co-evolution. It is well documented that sex-

biased genes, particularly those with a male expression bias, tend to evolve rapidly in both 

expression level and DNA/protein sequence and there is growing evidence that much of this 

rapid evolution may be attributable to positive selection (Ellegren and Parsch, 2007). These 

results are in keeping with the main findings of my Master’s thesis that focused on the inter- 

and intra-species evolutionary analysis of sex biased genes in Drosophila and Anopheles 

gambiae.  

To perform meta-analyses on various studies comparing male and female gene expression, we 

established Sebida (sex bias database) (Gnad and Parsch, 2006), a database that integrates 

results from multiple microarray studies comparing male versus female gene expression 

levels. In addition to the ratio of male to female expression for each gene, Sebida provides 

information useful for evolutionary studies, including measures of recombination, codon bias 

and interspecific divergence. The design of an online database was already subject to my 

‘diploma study’. However, during my PhD study we have finished the main modules that 

manage the web application and the underlying mySQL database. Moreover, we have added 

further data comprising various microarray data sets that contain male versus female gene 



102 
 

expression levels of various insect species (Goldman and Arbeitman, 2007; McIntyre et al., 

2006; Wayne et al., 2007). The results of the additional datasets are consistent with the 

outcomes of my previous on those datasets that have been considered in my Master’s thesis. 

Sebida is available on line at http://www.sebida.com.  

 
 
6.1 Introduction 
 
Sexual dimorphism is the systematic difference between individuals of different sex in the 

same species. At the most basic level, sexual dimorphism is most evident in primary sexual 

characteristics defined as the different reproductive organs of male and female. These 

differences are often referred to as sex-dichotomous differences. They are completely specific 

to one sex or the other like the uterus, for instance. In comparison, phallic size is a sex-

dimorphic difference. The sexes of many species also differ in secondary sexual characters 

that are not directly related to reproduction such as size, coloration, or behaviour (Figure 6.1). 

In mammals, the males are larger than the females whereas to the opposite is true in spiders, 

for instance. Other examples are parts of the body that are used in the struggle for dominance 

over other males such as tusks, antlers, or horns. Some cases of sexual dimorphism are so 

striking that males and females were originally taken to be members of entirely different 

species. For example, male eclectus parrots are green with an orange beak in contrast to 

scarlet female parrots with a black beak. In most cases, it is the male that shows extravagant 

or exaggerated secondary sexual characteristics.  

 

 
 

Figure 6.1: Sexual dimorphism in damselflies (www.treknature.com) 
 

Sexual selection was Darwin's solution to the problem of why conspicuous, and apparently 

non-adaptive traits such as the bright colors, horns, and displays of males of many species 

have evolved. He proposed two forms of sexual selection: contest between males for access to 
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females ("intrasexual selection") and female choice of some male phenotype over others 

("intersexual selection") (Futuyma, 1998; Ridley, 2003). 

Sexual selection exists because females produce few large gametes and males produce many 

small gametes. This creates an automatic conflict between the reproductive strategies of the 

sexes: a male can mate with many females, and often suffers little reduction in fitness if he 

should mate with an inappropriate female, whereas all a female's eggs can be fertilized by a 

single male, and fitness can be significantly lowered by inappropriate matings. 

Females are a limiting resource for males competing for mates, but males are not a limiting 

resource for females. Because a male is capable of multiple matings, variation in mating 

success is generally greater among males than among females and indeed is a measure of the 

intensity of sexual selection. In many animals, males engage in contests that determine which 

will gain access to females or to resources to which females are attracted. Therefore visual or 

vocal signals play important roles in the competition. The males of many mammals possess 

weapons such as horns or tusks that inflict injury (Figure 6.2). Consequently, sexual selection 

by male contest supports the directional selection for greater size, weaponry, or display 

features.  
 

 
 

Figure 6.2: Tragelaphus strepsiceros: a male kudus has conspicuous antlers (right) in contrast to a female 
cudus (left) (www.exto.nl, www.africantravelinc.com) 
 
 
In addition, females mate preferentially with males that have larger, more intense, or more 

exaggerated characteristics such as color patterns, ornaments, vocalizations, or display 

behaviors (Figure 6.3). 

 

In summary, differential selection pressure between the sexes has been postulated to explain 

the substantial between-sex differences observed in morphology, physiology, and behavior, 

indicating the existence of different optimal sex-dependent phenotypes. Especially traits that 

are involved in male reproduction tend to evolve fast.  
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Figure 6.3: Sexual dimorphism is ubiquitous among higher eukaryotes 

Male competition (left) and the female's preference for conspicuous male phenotypes such as the peacock's trait 

of males (right) present possible solutions to the rise of sexual dimorphism (www.classicescape.com, 

www.ellentroutzoo.com) 

 
While the evolutionary apects of sexual dimorphism have been extensively studied, the 

molecular mechanisms are much less clear. Increasing evidence suggests that molecular 

mechanisms associated with sex and reproduction change substantially faster than those more 

narrowly restricted to survival. In order to obtain gene expression levels in males and females, 

high-throughput and large-scale technologies are required. This leads to the mMicroarray 

technology is one of the results of the astonishing development in biology in recent years. It 

has been developed for studying the regulation of thousands of genes. Studies of gene 

expression during the life cycle of Drosophila melanogaster have found that, for sexually 

mature males and females, a substantial fraction of the Drosophila transcriptome displays sex-

dependent regulation. The enormously large amount of accquired data requires smart and 

efficient storage and management. Therefore, database systems become indispensable along 

with data mining algorithms that find valid patterns in the data.  

To perform meta-analyses on different studies comparing male and female gene expression, 

we established Sebida (sex bias database), a database that integrates results from multiple 

microarray studies comparing male versus female gene expression. For each gene, Sebida 

provides information about the ratio of male to female expression and further data that are 

useful for evolutionary studies such as measures of recombination, codon bias and 

interspecific divergence. Furthermore, it contains a detailed summary section that describes 

the main findings of the analyses on sex biased genes. 

 

If it is possible to study differential gene expression underlying the faster evolution of male 

biased genes with microarrays at the transcript level, it should also be possible to study 

differential regulation of the proteome by quantitative MS. This generation of male versus 
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female protein expression data represents a potentially very interesting ongoing project in our 

proteomics laboratory and this project will also be based on SEBIDA. 

 
 
6.2 Implementation of SEBIDA 
 
Ratios of gene expression levels, recombination rates (Hey and Kliman, 2002), codon bias 

estimations (Ikemura, 1981; Wright, 1990) and further evolutionary data such as dN/dS ratios 

(see Chapter 9) were integrated into the database, which is implemented in mySQL. The 

initial data integration modules that have been used in my Master’s thesis were mainly in 

Java. In contrast, the upload and normalisation of very recent datasets are in C#. To compress 

the data structure, we joined different database relations into one organism-specific 

comprehensive database relation that stores a multitude of information for each gene. Each 

tuple is identified by its primary key such as the FlyBase identifier, for example. In contrast to 

the initial database scheme, the resulting capacious tables include ‘null’ attributes, if a certain 

feature is not reported (e.g., the gene was not identified in a certain study). In the previous 

database schema, the request of this missing data tuple would have resulted into an empty join 

of several database relations. Besides HTML as the established markup language, we used 

PHP as the underlying programming language to generate dynamic web pages. 

For Drosophila melanogaster, Sebida includes male versus female gene expression data using 

eight different microarray platforms. Five of them (Gibson et al., 2004; Parisi et al., 2004; 

Parisi et al., 2003; Ranz et al., 2003; Stolc et al., 2004) have already been subject to my 

Master’s study. We have added another three data sets recently (Goldman and Arbeitman, 

2007; McIntyre et al., 2006; Wayne et al., 2007). Furthermore, we integrated microarray 

datasets for Drosophila simulans (Ranz et al., 2003) and Anopheles gambiae (Hahn and 

Lanzaro, 2005). Moreover, the additional inclusion of strain or body component specific 

expression levels provides even more insight into the occurrence of sex bias (Dorus et al., 

2006; Mikhaylova et al., 2008). 

The web user can search for male versus female expression for any gene of interest via gene 

symbol, gene name, gene description, EnsEMBL identifier, FlyBase accession, or Affymetrix 

number (Figure 6.4). The resulting web page illustrates the microarray data including 

corresponding significance p-values, dN/dS ratios and further measures useful for evolutionary 

analysis. For some studies, the displayed gene expression levels are separated according to the 

investigated strains or dissected body sections. 
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Figure 6.4: SEBIDA – Sex Bias Database 

Searching for a gene of interest (left panel) yields a comprehensive report (right panel) about male versus female 

gene expression and further information providing insight into evolutionary relationships. 

 
Besides the listings of gene specific data that contributes to a better understanding of sex bias 

along with evolutionary constraints, we integrated a comprehensive analysis section in 

SEBIDA (Figure 6.5). It describes the main findings of the study on sex biased genes 

including the observation that male biased genes evolve rapidly and therefore have less 

orthologous proteins than female biased and unbiased genes. The comprehensive analysis on 

evolutionary patterns relating to sex bias was subject of my diploma study and they can be 

looked up via the web application of Sebida, which presents one of the first projects during 

my PhD study. 

 
Figure 6.5: The analysis section of SEBIDA provides insight into the main findings of the evolutionary 

analysis of sex biased genes 
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6.3 Discussion and Future Directions 
 
The development of an online database that focuses on the storage of data related to sex bias 

makes it possible to perform meta-analyses on various studies comparing male and female 

gene expression and to derive general patterns relating to difference between sexes. Besides 

the retrieval of male versus female gene expression data on the basis of microarray 

technologies, further information relating to evolution has been added. As new large-scale 

studies are performed every year, Sebida has to be updated and administrated.  

 

To date, the addition of datasets was mainly done by specific ad hoc programs written in Java 

or C#. Therefore, one major goal is to implement administration tools similar to the ones of 

PHOSIDA (Chapter 4) and MAPU 2.0 (Chapter 5), in order allow the automated upload of 

new data and updates of the database. Another goal is the inclusion of high-throughput data 

on sex bias in species other than insects. The inclusion of other organisms would allow 

generatizing the observations made in Drosophila.  

 

Finally, the application of mass spectrometry based proteomics is particularly interesting, as 

one could show that observations on the transcript level are in keeping with findings on the 

protein level. A MS-based generation of male versus female expressions on the protein level 

would make a considerable contribution to the sex bias database. In fact, we intend to 

determine sex-specific protein expression differences in Drosophila melanogaster using 

SILAC in the near future. 
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Chapter 7 
 
 

Phosphorylation Site Prediction 
 
The major focus of machine learning is to design algorithms that allow computers to learn 

(Mitchell, 1997). The general idea is to derive patterns and rules from extensive datasets. In 

the case of prediction methods, the resulting rules can then be used to classify a given set of 

new data. Here we took advantage of the large-scale datasets of measured phosphoproteomes 

(Chapter 4.3), we took advantage of the large number of in vivo phosphosites to create a 

phosphosite predictor in PHOSIDA. The work on this predictor was carried out in 

collaboration with Shubin Ren in our department.  

 
 
7.1 Rationale 
 
One aspect of learning is to deduce rules on the basis of given instances. As massive datasets 

such as MS-based measurements of dynamic proteomes exceed the capacity of human 

learning ability, the application of computer based machine learning approaches becomes 

indispensible (Chapter 4.5). Machine learning has a wide spectrum of applications ranging 

from object recognition to the classification of DNA sequences. Concerning the 

posttranslational modifications of proteins, various algorithms have already been applied to 

the prediction of phosphorylation sites. For example, the prediction system Netphos (Nielsen 

et al., 1999) is based on neural networks, whereas Scansite (Obenauer et al., 2003) uses a 

profile method to predict phosphorylation events. We used our large-scale studies to construct 

a phosphorylation site predictor on the basis of a support vector machine (SVM) (Gnad et al., 

2007). The basic idea of SVMs is to transform observed features of a given instance into a 

vector based feature space (Noble, 2006). Each dimension of this feature space presents a 

certain attribute. Then, after the transformation of a multitude of positive and negative 

instances (such as phosphorylated and non-phosphorylated residues) into the vector space, a 

‘maximum margin hyperplane’ is created (Figure 7.1). This hyperplane is intended to separate 

the two datasets. If one intends to classify a new instance, the given sample has to be 

transformed into the feature space and categorized depending on the vector localization 

relating to the separating hyperplane. To estimate the accuracy of the SVM, one usually uses 

90% of the classified dataset to train the SVM, whereas 10% of the given data is used to test 
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the SVM. We took advantage of the large number of in vivo phosphosites from various 

species to create an organism-specific phosphosite predictor in PHOSIDA.  

 

 
 
Figure 7.1: Feature space 

A maximum margin hyperplane (magenta) separates two distinct datasets that were transformed into a 

hyperdimensional space reflecting certain features of each instance. 

 
 

7.2 Implementation of the Support Vector Machine 
 
The large-scale study on general patterns relating to phosphorylation events demonstrates that 

phosphorylated proteins are highly conserved throughout all phylogenetic kingdoms (Chapter 

9). This observation suggests that proteins that undergo posttranslational modifications 

present functionally important key players of cell signalling processes and therefore have to 

be preserved in evolution. In addition, a higher conservation of phosphorylated residues in 

comparison to their non-phosphorylated counterparts was revealed throughout higher 

eukaryotes. Besides these outcomes on the evolutionary preservation, we have noted the 

predominant localizations of phosphorylation sites in loops and turns on protein surfaces 

(Chapter 4.6.4). This finding illustrates the structural constraints of phosphorylated residues to 

be accessible to certain targets such as kinases or other interacting proteins. Therefore, we 

used these outcomes on general features of phosphorylation sites to fill the high-dimensional 

feature space on which support vector machines act.  

As shown in the study, phosphoserines, phosphothreonines and phosphotyrosines show the 

same general patterns relating to protein structure and conservation, but each to a different 

extent. Therefore, we applied the machine learning approach separately to each organism-

specific set of pS, pT and pY sites. To create a negative set of the same size, we randomly 

chose sites from proteins that were not present in the phosphoset. The positive and negative 
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datasets were split into a training set (90%) and a test set (10%). SVMs attempt to partition 

true from false sites by separating them in a high dimensional vector space with the help of 

hyperplanes and kernel functions (see Chapter 7.1). A few sites out of the negative set may 

turn out to be phosphorylation sites in future experiments. This problem was addressed by 

optimizing the ‘C parameter’ of the SVM, which controls the softness of the margin. We 

optimized the parameters C and σ by varying them from 2-10 to 210 in multiplicative steps of 

two and chose the best combination of both parameters out of the 21 × 21 possibilities. The 

optimization was based on a five-fold cross validation on the training set. To determine the 

importance of each feature in the accuracy of phosphosite prediction, we created various sets, 

which contain different information for each phosphosite: 

Set A: The primary sequence comprising the site and its 12 surrounding residues 

Set B: The surrounding primary sequence and the predicted secondary structure of the  

  site 

Set C: The surrounding primary sequence and the predicted accessibility in addition to 

the secondary structure of the site 

Set D: The surrounding primary sequence, the conservation of the phosphosite in 

mammals and the protein conservation throughout several eukaryotes 

Set E: The surrounding primary sequence, the accessibility of the phosphosite and 

secondary structure as well as its conservation in mammals, and the protein 

conservation 

This resulted in 260 to 274 dimensions that represent the features of each phosphosite. We 

investigated several common kernel functions and found that the radial basis function (RBF) 

turned out to be the most powerful compared to linear, polynomial and sigmoid Kernel 

functions. We optimized parameters C and σ, the width of the Gaussians used as the RBFs, 

and trained the optimal model for each set of each phospho amino acid). 

 

We employed the machine learning approach to each organism-specific large-scale 

phosphorylation data set. Thus, we applied the method to the human (4731 pS, 664 pT, 107 

pY), mouse (3733 pS, 437 pT, 83 pY), fly (7756 pS, 1427 pT, 325 pY), yeast (3320 pS, 562 

pT, 48 pY), archaean and bacterial phosphoproteomes separately, in order to construct 

organism-specific phosphosite predictors that are trained on high-accuracy data. 
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7.3 Results 
 
7.3.1 Homo sapiens specific Phosphosite Predictor 
 
We found that the accuracy of the prediction based on the primary sequence was already very 

high: in the case of phosphoserines, 89.85% were predicted correctly in the test set as were 

74.24% of the phosphothreonines. The accuracy of the prediction increased to 90.17% for pS 

and 77.27% for pT by adding structural information (sets b and c). For serines, the 

accessibility was slightly more important than the secondary structure information, whereas 

for threonines, the opposite was the case. The additional dimensions reflecting the 

conservation of the site and of the entire protein (set d) increased the accuracy to 90.70% (pS) 

and 81.06% (pT). By combining structural and evolutionary information (set e), we found that 

91.75% in the serine set and 81.06% in threonine set were predicted correctly. The accuracy 

of the prediction of phosphotyrosines increased from 66.67% to 76.19% when including the 

structural and conservational information. However, that increase is not significant due to the 

fact that there were only around 100 phosphotyrosines sites.  

The recall reflects the proportion of true positives to the sum of true positives and false 

negatives, whereas the precision describes the number of true positives out of all predicted 

positives. As outlined in Figure 7.2, the precision-recall curve of set e is slightly better than 

that of set a, indicating that the inclusion of evolutionary and structural information increased 

the recall and precision of the prediction to a minor degree. 

 
Figure 7.2: Human phosphorylation site prediction 

Precision-Recall Curve reflecting the accuracy of the prediction of phosphorylated serines in human on the basis 

of a support vector machine trained by the surrounding primary sequence (blue) and evolutionary as well as 

structural constraints (green) 
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The prediction accuracies of phosphorylated serines and phosphorylated threonines in human 

are depicted in Figure 7.3 a.  

 

 
 

Figure 7.3: Phosphorylation site prediction 

Precision Recall curves reflecting the prediction accuracies of phosphoserines (blue) and phosphothreonines 

(magenta) in human (a), mouse (b), fly (c) and yeast (d). 

 
 
7.3.2 Mus musculus specific Phosphosite Predictor 
 
We trained the support vector machine (SVM) separately on unambiguously identified 

phosphorylation sites (3733 pS, 437 pT, 83 pY). The essential feature of each phosphorylation 

site that was used as input for this machine learning approach was the raw sequence, as the 

main finding of the prediction of human phosphosites showed that the addition of structural 

and evolutionary information increases the performance of the prediction only slightly 

(Chapter 7.3.1). In the case of phosphoserines, 88% were predicted correctly in the test set as 

were 78% of the phosphothreonines. The accuracy of predicting phosphorylated tyrosines was 

also very high (73%), but lacks statistical significance due to the low number of sites. Figure 

7.3 b depicts the accurracy of the prediction of mouse phosphosites. It is comparable to the 

one of predicting human phosphosites. 
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7.3.3 Drosophila melanogaster specific Phosphosite Predictor 
 

We trained the SVM on 7756 pS, 1427 pT and 325 pY along with their surrounding 

sequences. We found that 89.81% in the serine set and 81.05% in the threonine set were 

predicted correctly. The accuracy of the prediction of phosphotyrosines was 63%. The 

corresponding precision recall curve is illustrated in Figure 7.3c. 

 
 
7.3.4 Saccharomyces cerevisiae specific Phosphosite Predictor 
 
We applied the machine learning approach to 3320 pS, 562 pT, and 48 pY separately. As was 

the case in the human phosphoproteome, the inclusion of structural and evolutionary 

information increased the accuracy of prediction only slightly. However the performance of 

prediction proved to be already very high without such additional information. Therefore, the 

support vector machine was exclusively trained on the primary sequence comprising the site 

and its 12 surrounding residues. In total, 92% phosphoserines were predicted correctly in the 

test set. A high accuracy was also observed for the prediction of phosphothreonines (87%) 

and phosphotyrosines (66%). Figure 7.3 d shows the Precision-Recall curves for 

phosphoserine and phosphothreonine prediction in yeast. Due to the low number of 

phosphotyrosines, a reflection of the performance of the hardly reliable prediction of 

phosphotyrosines is not demonstrated. 

 
7.3.5 Prokaryotes specific Phosphosite Predictor 
 
Using the phosphoproteomes of various prokaryotes such as Escherichia coli, Lactococcus 

lactis, Bacillus subtilis and Halobacterium salinarium, we tried to train the support vector 

machine on the basis of the primary sequences surrounding the prokaryotic phosphorylation 

sites. However, in contrast to the accuracy of the predictions of eukaryotic phosphorylation 

sites (Chapters 7.3.1 – 7.3.4), the performance of the prokaryotic specific phosphorylation site 

predictor was very poor and close to random. This could eiter be due to the low number of 

training sites (100 fold less than in eukaryotes) or it could reflect a different mode of substrate 

specificity of prokaryot vs. eukaryote kinases.  
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7.4 Integration of organism-specific Phosphosite Predictors in 
PHOSIDA 
 
To enable researchers to predict the occurrences of phosphorylation sites on any protein of 

interest, we created an online version of the predictor in PHOSIDA. It transfers all candidate 

serines and threonines of any inserted amino acid sequence into the feature space by 

transforming the site along with the surrounding sequence into a high dimensional vector. The 

SVM predicts the chance for each residue to be phosphorylated according to the vector 

orientation in the trained model along with the derived maximum margin hyperplane that 

separates phosphorylated and non-phosphorylated residues. The web application allows to set 

a desired cutoff directly on the given organism-specific precision recall curve (Figure 7.4) 

 
 

 
 

Figure 7.4 Integration of the phosphorylation site predictor in PHOSIDA 

Each predicted phosphorylated residue is checked for matching with any eukaryotic kinase motif that is included 

in PHOSIDA. Thus, the listing of all predicted phosphosites also includes all matching kinase motifs, in order to 

suggest the kinase affiliation (Figure 7.5).  
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Figure 7.5: Result of phosphorylation site prediction in PHOSDA 

Each predicted phosphosite is tested for matching with known eukaryotic kinase motif to assess the kinase 

potentially phosphorylating this site. 

 
 
7.5 Discussion 
 
The organism-specific PHOSIDA phosphorylation site predictor makes it possible to find 

putative novel phosphorylation sites that have not yet been experimentally identified in yeast, 

fly, mouse, or human. While experimental data, especially quantitative data, are the ‘gold 

standard’, predicting novel phosphosites and matching kinase motifs on proteins of interest 

should be valuable for the design of biological experiments or for predicting a protein’s role 

in a pathway. Furthermore, once predictors are trained, these prediction methods are basically 

‘free’. We provide an innovative method for setting a desired level of precision and recall. For 

example, for mutagenesis experiments one may want to set the precision very high, and for 

rationalizing the function of a protein in a pathway one may want to set it relatively low. 

Thus, in the absence of experimental data, the prediction of novel phosphosites can be taken 

as the first step in an experimental design to uncover the function of a protein of interest and 

to elucidate its involvement in signalling cascades. 

As new phosphorylation data are integrated to PHOSIDA our SVM will also be updated, 

leading to increasingly accurate predictions. 
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Chapter 8 
 
 

Genome Annotation 
 
The genome is the most comprehensive and fundamental biological resource. It encodes all 

possible proteins and comprises the entire hereditary information. However, the derivation of 

coding regions in the nucleotide sequence of the genome is not trivial. Current methods for 

gene prediction provide useful information but are still limited (Brent, 2007). Furthermore, it 

is hardly possible to predict all features of the genome from its sequence alone. Thus, the 

integration and validation of mass spectrometry derived experimental data in a genomic 

context is expected to contribute to the annotation of the genome and to the identification of 

genes for which there was no previous experimental information. 

 
 
8.1 Rationale 
 
The genome encodes the whole hereditary information of an organism. Its fundamental unit is 

the DNA comprising both genes and non-coding sequences. The first bacterial genome to be 

completed was that of Haemophilus influenzae in 1995 (Fleischmann et al., 1995). Seven 

years later, the Human Genome Project provided the complete genetic blueprint of a human 

being by sequencing the whole genome. At the present time, the database GenBank (Benson 

et al., 2008) contains nucleotide sequences for more than 240000 named organisms obtained 

primarily through submissions from large-scale sequencing projects. In total, around 2000 

eukaryotic genomes have been completely sequenced until now.  

 

These comprehensive high-throughput sequencing efforts establish a basis for the large-scale 

detection of the encoded proteome powering an organism’s life. However, a complete 

annotation and understanding of the genome requires experimental evidence ranging from the 

primary observation that a genomic sequence encodes a protein to the measurement of 

specific features such as residues that are phosphorylated and thereby essential for the 

regulation of certain biological processes. 

As the application of high-accuracy MS technologies potentially enables the measurement of 

nearly complete proteomes of given cells in-vivo along with certain features such as 

phosphorylation, it is obvious that this large-scale data represent a very valuable source to 
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annotate the genome. Therefore, we endevoured to assign measured MS sequencing 

information and associated information on posttranslational modifications to the genome.  

The simplest and fastest way is to map peptide sequences, which have been identified via the 

established approach of searching MS-information in amino acid sequence databases, to the 

genome. With the detected peptide sequences in hand, we reassigned all peptides to gene 

transcripts that are annotated in the genomic database EnsEMBL (Birney et al., 2004). The 

reassignment of sequence stretches to genes allows the usage of proteomic data to annotate 

the genome via the DAS/Proserver technology (Finn et al., 2007) in EnsEMBL. In addition, 

we added extra genome annotation sections in our proteomic databases. Thus, the genome 

database and the proteomic in-house databases PHOSIDA (Chapter 4) and MAPU (Chapter 5) 

are linked, so that proteomic data is mapped as features to the genome sequence. 

 
 
8.2 Mapping Proteomic Data to the Genome 
 
 

 
8.2.1 Assignment of MS peptide data to Genes annotated in EnsEMBL 
 
We wished to use the proteomic data to annotate the genome. Thus, we extracted all measured 

peptides of each proteomic dataset and reassigned the given peptide sequences to genes that 

are annotated in the EnsEMBL database (Figure 8.1). If a specified peptide matches with 

sequences of more than one gene transcripts, we assigned the peptide to the one transcript that 

shows the highest number of matching peptides within the associated experiment. Therefore, 

the peptide-to-gene transcript assignments result into one-to-one relationships reducing 

potential redundancy. The reassignment of all detected peptides of various projects to 

EnsEMBL gene transcripts contributes to the compilation of a new database instance stored 

on the same web servers that manage the actual MAPU 2.0 proteome database and the 

phosphorylation site database PHOSIDA. 
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Figure 8.1: Basic genome annotation concept 
 
 
8.2.2 PHOSIDA and MAPU as Annotation Source in EnsEMBL 
 
The Distributed Annotation System (DAS) allows the visualization of layers of annotation 

data for a given gene’s sequence and thereby makes it possible to gain an overview of the 

features of that sequence. It presents an excellent technology to integrate annotation data from 

multiple sources into a simple graphical view in EnsEMBL. 

We used Proserver, a Perl-based and standalone DAS Server. At the top of the ProServer 

architecture (Figure 8.2) is a daemon executable positioned between requests and the resulting 

code. ProServer comes bundled with modules for data stores ranging from flat file to MySQL. 

The major method is the source adapter that comprises the data retrieval methods. It had to be 

adjusted to the data structure of PHOSIDA and MAPU 2.0. Furthermore, it defines the view 

illustration of the requested data. Its superclass handles the transformation of data to XML. 

Moreover, the ProServer configuration files had to be set up. The architecture of ProServer is 

described in detail in Finn et al. (Finn et al., 2007).  

Besides the set up of the ProServer, we had to establish Cygwin, a linux-like environment for 

Windows. It provides a dynamic link library (DLL) acting as a LINUX API emulation layer. 
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Figure 8.2: Architecture of the ProServer technology 
 
 
 
After the installation and set-up of the DAS environment on our servers, web users are able to 

obtain the gene related data gained by mass spectrometry technologies. For each gene 

transcript, one layer shows all detected peptides stored in the MAPU 2.0 DAS source (Figure 

8.3). Clicking on one of the illustrated peptides yields a report of all the cell types in which 

the selected peptide has been measured. In addition to the MAPU 2.0 DAS source, the 

established PHOSIDA DAS source provides all phosphorylation sites that have been 

unambiguously identified (Class 1 sites), but also phosphosites that lack of precise 

identification within the phosphorylated peptide sequence due to limited fragmentation 

(ambiguous PTM localization).  

 

 

The aggregate view of all displayed features of the genome sequence enables researchers to 

obtain a summary of the genes’ sequence characteristics and can already lead to insights or 

hypotheses into the biological function of the gene.  

The background sections of PHOSIDA and MAPU 2.0 contain detailed guide lines about the 

set up of our DAS sources in EnsEMBL. 
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Figure 8.3: EnsEMBL gene report including the PHOSIDA and MAPU 2.0 DAS protocols 
 
 
8.2.3 Representation of Genome Annotations in PHOSIDA and MAPU 2.0 
 
The genome annotation section is accessible via the ‘notepad’ button located right next to the 

main ‘web book’ of MAPU 2.0 and PHOSIDA (Figure 8.4). At first, the user is required to 

select a species of interest. Then, the karyotype of the selected species is illustrated along with 

a link that connects to the EnsEMBL genome annotation webpage. Clicking on one of the 

displayed chromosomes shows a more detailed image along with general information such as 

length of the chromosome, number of known and predicted genes, number of single 

nucleotide polymorphisms (SNPs), and number of gene transcripts. Besides these annotations 

derived from the EnsEMBL database, the number of gene transcripts that have been identified 

in the proteomic data is posed.  

Furthermore, each chromosome is divided up into 93 bins: On the left side, the number of 

transcripts that are annotated in EnsEMBL is displayed. Clicking on one of the bin boxes pops 

up the EnsEMBL web page showing a detailed view of the selected chromosomal region. On 

the right side the number of transcripts that have been detected in any of the uploaded 

proteomics projects is illustrated for each bin. Clicking on one of these bin buttons lists all 

identified gene transcripts along with the descriptions of the corresponding genes and their 

exact localizations on the chromosome. Furthermore, a link is provided for each gene 

transcript that connects to the EnsEMBL homepage displaying the full annotation of the given 
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transcript. In addition to the general annotation of the given gene transcript, the popped up 

EnsEMBL page will show all peptides that have been identified by proteomics via the MAPU 

2.0 DAS source and all detected phosphorylation sites via the PHOSIDA DAS source (see 

Chapter 8.2.2).  

 

 

 
 
Figure 8.4: Genome annotation section of MAPU 2.0 
 
 
 
8.3 Results 
 
The main finding of the genome annotation approach is that nearly all peptide sequences that 

were identified on the basis of an underlying protein database could be assigned to genes 

annotated in EnsEMBL (Table 8.1). On average, less than 1% of peptide sequences did not 

match with any translated gene transcript sequence. In the case of the fly phosphoproteome 

and the yeast phosphoproteome, all peptide sequences could be assigned to translated gene 

transcripts annotated in EnsEMBL. 
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Another outcome of this method was that most of the assigned genes are known, whereas less 

than one percent of identified genes encoding phosphoproteins are annotated in EnsEMBL on 

the basis of predictive methods lacking of experimental evidence. In the case of the human 

phosphoproteome identified in cancer cells upon EGF stimulus (Chapter 4.6.1.1.1), a mere 

0.4% of determined genes were novel (predicted). In the case of yeast and fly, we did not 

detect any genes that are classified as ‘novel’ in EnsEMBL.  

 

Furthermore, we did not find evidence for significant biased distributions of identified 

phosphotranscripts encoded on the plus or minus DNA strand. The localizations of detected 

genes on the chromosomes also showed a uniform pattern. When analyzing the occurrences of 

detected genes on the different chromosomes (Figure 8.5), we noticed that none of the 

phosphopeptides mapped to the Y-chromosome. This is a good positive control, as the HeLa 

cell line is female and therefore should not express any genes from the Y-chromosome.  

Another finding of this study was that the number of assigned genes is lower than the number 

of determined proteins. For example, in total, 2200 proteins were associated to 1982 genes in 

the case of the investigated human phosphoproteome. This is due to the fact that one gene can 

give rise to several distinct proteins that are distinguishable to MS. 

The main results of the genome annotation approach applied to eukaryotic phosphoproteomes 

are shown in Table 8.1. 

 
 
Category Human 

(4.3.1.1) 
Human 
(4.3.1.2) 

Mouse 
(4.3.2.1) 

Mouse 
(4.3.2.2) 

Fly 
(4.3.3) 

Yeast 
(4.3.4) 

Phosphoproteins 2200 1377 1808 2250 2285 1192 

Genes 1982 1303 1729 2181 2280 1190 

Known genes 1974 1300 1719 2171 2280 1192 

Novel genes 8 3 10 10 0 0 

Genes located on the + 
DNA strand 

997 656 887 1105 1165 603 

Genes located on the – 
DNA strand 

985 647 842 1076 1135 587 

Phosphopeptides 5569 3898 3430 5250 8777 3000 

Phosphopeptides 
assigned to genes 

5460 3835 3378 5207 8777 3000 

 
Table 8.1: Genome annotation using identified phosphoproteomes 
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Figure 8.5: Annotation of the fly genome 

The distribution of genes that encode phosphorylated proteins (right) on fly chromosomes is similar to the one of 

all genes (left) 
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8.4 Discussion 
 
It is not surprising that almost all human and mouse phosphopeptides could be assigned to 

their genes, as the protein database used for mapping the spectra to peptide sequences was the 

IPI database comprising all translated gene transcripts of the EnsEMBL database. In the case 

of yeast and fly, the corresponding databases used for identification (SGD and FlyBase 

respectively) are completely integrated into EnsEMBL, so that all peptide sequences could be 

mapped. The observation that 2200 human phosphoproteins correspond to 1982 genes reflects 

the fact that each gene can potentially encode various transcripts and isoforms of the protein 

product. The chromosome localization of genes that encode phosphoproteins does not 

significantly deviate from the localization of all genes. This was expected, as there is no 

plausible reason for a preferred localization of phosphogenes on a certain DNA strand or 

chromosome, as is the case for sex biased genes (Chapter 6). For the human 

phosphoproteome, the absence of measured proteins, whose genes are on the Y chromosome, 

is related to the experimental design, as we used HeLa cells. The HeLa cell line was derived 

from cercival cancer cells taken from a woman named Henrietta Lacks. Thus, the derivation 

of gene products, whose origins are located on the Y chromosome, would point to 

contamination by a male mass spectrometrist such as Jesper Olsen, for example. Therefore, 

this genome annotation approach can also be used for quality control.  

 

Besides general conclusions regarding the number of detected gene transcripts on certain 

regions of the genome, the genome annotation approach makes it possible to integrate large 

scale MS based proteomic data into the genome database EnsEMBL. The compilation of 

general gene annotation extended by proteomic data on the basis of the DAS technology 

enables biologists to visualize a variety of gene features. Moreover, the linkage between our 

proteomic databases and the genome database allows the discovery of other patterns relating 

to phosphorylation. For example, below we use annotation data included in the EnsEMBL 

Compara database to elucidate the evolution of phosphorylation.  
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Chapter 9 
 

The Evolution of Phosphorylation 
 
 
As described in Chapter 4.2.4, we integrated evolutionary conservation as another dimension 

of biological information of the phosphoproteome into PHOSIDA. Phylogenetic relationships 

and global sequence alignments of homologous proteins elucidate the conservation of given 

phosphorylated proteins and phosphorylated sites of interest. It also enables the analysis of the 

evolution of phosphorylation from a global point of view. For this purpose we either used 

protein-protein alignments of phospho datasets obtained via the automated PHOSIDA 

pipeline, or the comprehensive evolutionary information that is provided by the EnsEMBL 

Compara database. In order to use the Compara database, we made use of the mapping of 

phosphopeptides to genes in PHOSIDA (Chapter 8).  

 
 
9.1 Rationale 
 
Evolution is a change in the inherited traits of a population from one generation to the next 

(Futuyma, 1998; Ridley, 2003). These traits can be classified as the ultimate effects of all 

proteins that are encoded by genes. DNA contains the genetic instructions and therefore 

presents the long-term storage of genetic information, which is passed on by reproduction. 

However, mutations in specific regions of the DNA can change the encoded traits or even 

create novel traits. If the resulting changes have a negative effect on the chance of survival or 

decreases the chance to reproduce, the genetic alteration is sorted out. This phenomenon is 

defined as ‘negative selection’. In contrast, if the changes in the DNA have a positive impact 

on the probability of survival or reproduction this is ‘positive selection’. Over many 

generations, adaptions result from the genetic preservation of positively selected traits that are 

advantageous in a given environment. In contrast, ‘genetic drift’ causes random changes in 

the frequency of traits in a population. Therefore, natural selection and genetic drift present 

the predominant forces that drive the evolution of species via mutations.  

Evolution not only advances the design and development of traits within one species, but also 

causes the generation of new species. This evolutionary process by which new biological 

species arise is termed ‘speciation’. The main cause of speciation is geographic isolation. This 

evolutionary process has yielded into a great variety of species over billions of years. With the 

availability of completely sequenced genomes of various species, one can compare the 
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genomic sequences between species, and therefore derive their evolutionary relationship and 

suggest their phylogenetic division. The overall phylogenetic relationship of all species yields 

the tree of life (Figure 9.1) (Ciccarelli et al., 2006). Evolution can be analyzed on different 

levels ranging from the evolution of entire genomes of species as a whole to the preservation 

of specified protein sequence segments. For example, the intent of my Master’s study was to 

analyze the evolution of sex biased genes integrated in the sex bias database SEBIDA 

(Chapter 6). On the basis of extensive conservation analyses on the DNA level, we came to 

the conclusion that male biased genes evolve faster in evolution than female biased genes. 

The biological reasons for this observation are the phenomena of ‘female choice’ and ‘male 

competition’. This project illustrated that evolutionary analysis on the basis of bioinformatics 

methods including extensive sequence alignment approaches enables derivation of patterns 

regarding the functional impact of proteins and their preservation over time. 

Here, we intended to study the evolution of phosphorylation. Although conservation of 

specific sites is often taken to imply biological importance, relatively little is known about the 

evolutionary constraints on the phosphoproteome. We investigated these constraints on three 

levels: conservation of phosphoproteins, regions surrounding the site and the phosphosite 

itself. We used the phylogenetic relationships derived from two-directional BLAST searches 

and pairwise global alignments created via the Needleman-Wunsch algorithm, which are 

integrated into the PHOSIDA database, to study the evolution of phosphorylation. In addition, 

we linked the PHOSIDA database containing gene assignments of phosphorylation sites with 

the EnsEMBL Compara database, which contains a very large amount of evolutionary 

information at the DNA level. Combining evolutionary annotation data from EnsEMBL with 

phosphoproteomic data managed by PHOSIDA enables the investigation of the evolution of 

phosphorylation at the genome sequence level. Conservation studies at the DNA level are 

even more comprehensive than at the protein sequence level, as one can calculate 

synonymous and non-synonymous changes of the gene sequence This makes it possible to 

learn whether a given gene is positively or negatively selected by comparing evolutionary 

rates of synomymous and non-synomymous changes in the coding sequence. 
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Figure 9.1: Tree of life (Ciccarelli et al., 2006) 

 

9.2 Derivation of Phylogenetic Relationships and Global 
Alignments 
 
The evolutionary analysis is divided up into two parts (Figure 9.2): The first part describes the 

evolutionary analysis of phosphorylation events at the DNA level.  

The EnsEMBL Compara database contains whole genome alignments, ortholog predictions, 

paralog predictions, and various phylogenetic parameters describing the inter-species and 

intra-species homology. It is freely accessible via user accounts that allow complete access to 

all associated database relations. Hence, we integrated the EnsEMBL Compara database 

access along with standard queries on required database relations into the employed C# class 

library. However, some database queries would require complex workarounds. The retrieval 

of cDNA alignments between gene transcripts would require the composition of certain 
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segments of the whole genome alignments containing associated exon regions, for instance. 

Such complex queries cannot be formulated by mySQL commands alone. Hence, EnsEMBL 

also provides access to a Perl API application, which embraces a multitude of methods that 

allow the formulation of more complex queries on the database. Therefore, we also embedded 

required methods of the EnsEMBL Perl API into the PHOSIDA analysis pipeline. The 

integrated access to the genome database enabled us to retrieve comprehensive evolutionary 

information about genes encoding proteins that we found to be phosphorylated. The 

evolutionary analysis of phosphorylation at the gene level is fully automated and accessible 

via the PHOSIDA administration tool (Chapter 4.2.6). 

In the second part, we integrated an evolutionary conservation section into PHOSIDA via a 

self-implemented pipeline (Chapter 4.2.4). We determined homologous proteins to all 

phosphoproteins across 70 species from E.coli to human. The homology search was 

performed against protein databases of 53 bacteria, nine archaea, and eight eukaryotes. These 

databases were retrieved from SwissProt in the case of archaea and bacteria. The yeast 

proteome was downloaded from SGD, D.melanogaster from FlyBase and other eukaryotic 

sequences from IPI. We defined proteins to be homologous when the resulting E-values were 

lower than 10-5. For homologous proteins, we used a bidirectional BLASTP approach to 

distinguish between paralogs and orthologs (O'Brien et al., 2005). PHOSIDA displays the 

results of the homology search using an approximate phylogeny of all investigated species 

(Chapter 4.5). In addition, we created global alignments between each phosphoprotein and its 

corresponding interspecific homolog via the Needleman-Wunsch algorithm. As the length of 

alignments presents a further criterion for homology besides bidirectional significance, web 

users are able to check the global alignments along with the proportion of identities and to 

estimate the degree of homology by themselves.  

For the global evolutionary study, we implemented various analyses that require only the 

project identifier of the given experiment and different parameters such as a minimum length 

of the pairwise alignment for defining homology. Overall, the integration of bidirectionally 

derived phylogenetic relationships and global alignments between phosphoproteins and 

homologs allows testing protein, kinase motif and phosphosite conservation on line for any 

phosphoprotein of interest. Additionally, it enables analysis of the evolutionary constraints on 

the phosphoproteome on different levels on the basis of protein-protein alignments from a 

global point of view. 



129 

 
Figure 9.2: Investigation of evolutionary constraints of the phosphoproteome 

On the one hand, inter-species and intra-species phylogenetic relationships were derived along with global 

cDNA alignments using the EnsEMBL Compara database (left panel). The comprehensive annotation describing 

the evolution and conservation of genes required the assignment of proteomic data to the genome. On the other 

hand, we derived homology relationships between phosphorylated proteins and proteins of other species via 

bidirectional BLAST alignments (right panel). To obtain global alignments of homologous proteins, we applied 

the Needleman-Wunsch algorithm. The integration of evolutionary information of phosphoproteins allows 

gaining insight into the conservation of any protein of interest on three levels ranging from the protein 

conservation as a whole to the phosphosite conservation. In addition, it enables the analysis of evolutionary 

constraints of the phosphoproteome from a global point of view. 
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9.3 Results 
 
On the basis of the EnsEMBL Compara database, we explored the conservation of 1982 

human genes, which encode proteins that we found to be phosphorylated in our study (Olsen 

et al., 2006). As shown in Figure 9.3a, phosphorylated gene transcripts (proteins) have a 

higher proportion of homologs, which are classified as ‘one to one orthologs’ by EnsEMBL, 

in comparison to the entire human proteome. We found that 65% of human genes, which 

encode non-phosphorylated proteins, were orthologous to genes in Canis familiaris (dog) in 

comparison to 85% of the phosphoset, for instance. For the comparison set, we took only 

genes into account that have been experimentally proven to code proteins. In EnsEMBL, 

experimentally verified proteins are classified as ‘known’ in the corresponding database 

relation and are therefore easily retrievable. In contrast, predicted genes, which lack of any 

experimental evidence, are defined as ‘novel’ in the EnsEMBL Compara database. 

In addition, we also examined the conservation of the kinase enriched human phospho dataset 

(Chapter 4.6.1.1.2). The genome annotation approach yielded 1303 genes encoding 

phosphorylated proteins (Chapter 8). Genes encoding proteins whose phosphorylation 

dynamics could be measured in different cell cycle phases also proved to be more conserved 

than other human genes that are annotated in the EnsEMBL database. Interestingly, in lower 

eukaryotes the phosphoproteome measured in different cell cycle phases proved to be more 

conserved than the one identified in cells exposed to EGF stimulation (Figure 9.3a). 

 
Additionally, we explored the conservation of the mouse phosphoproteome using the dataset 

of 1729 genes encoding proteins that we detected in liver cells exposed to phosphatase 

inhibition and the dataset of 2181 genes encoding proteins identified in mouse melanoma 

tissue. As observed in the case of human, the main finding of the conservation analysis at the 

protein level was that the identified mouse phosphoproteome showed significantly more 

orthologs throughout 36 other eukaryotes from rat to yeast (Figure 9.3b). In the case of 

Loxodonta africana (elephant), for example, around 70% of all phosphoproteins in both 

datasets had orthologs in comparison to 53% of all other mouse proteins. Interestingly, in the 

case of more distantly related species including several fishes, insects, worm and yeast, we 

found evidence for a higher conservation of the phosphoproteome measured in liver cells 

upon phosphatase inhibition compared to the conservation of the phosphoproteome identified 

in mouse melanoma cells (Figure 9.3b). 
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Figure 9.3: Proportions of phosphoproteins with orthologs 
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Moreover, we checked the conservation of Drosophila melanogaster genes (Chapter 4.6.1.3) 

and Saccharomyces cerevisiae genes (Chapter 4.6.1.4) that encode phosphorylated proteins. 

Similar to higher eukaryotes, we found evidence for a higher conservation of the 

phosphoproteome in both cases. Overall, 71% of identified phosphorylated proteins in fly 

showed orthologous proteins in mosquito in comparison to 51% of non-phosphorylated 

proteins.  

 

To confirm the generality of this observation on the basis of the phylogenetic relationships 

derived from the two-directional BLASTP approach, we investigated human phosphoproteins 

(Chapter 4.6.1.1.1) that had an exact sequence match in the SwissProt database. This resulted 

in a set of 1044 human phosphoproteins. As is apparent from Figure 9.3c, phosphorylated 

proteins have a higher proportion of two-directionally conserved interspecific homologs (χ2 

test, p = 0) in comparison to the entire human proteome (complete human SwissProt 

database), presumably reflecting regulatory functions that are preferentially conserved during 

evolution. For example, in the case of Danio rerio alignments, we observed that 63% of all 

human proteins had orthologs in comparison to 84% of the phospho proteins. 

 
 
Next, we wanted to measure the selective pressure on phosphorylated proteins during 

evolution. The ratio of non-synonymous to synonymous divergence (dN and dS, respectively) 

indicates whether a given gene is positively or negatively selected. Low dN/dS ratios (smaller 

than one) suggest negative selection implying that there is a high selective pressure in 

evolution to keep the specified protein unmodified and to select out any mutations changing 

the amino acid composition. High dN/dS levels point to positive selection, as non-synonymous 

changes were favoured and retained by evolution. Synonymous and non-synonymous changes 

can only be calculated on the basis of DNA sequences in the coding region, as nucleotide 

mutations that do not affect the amino acid translation (synonymous change) cannot be 

derived from protein sequences. The EnsEMBL Compara database provides dN and dS values 

for all coding sequence alignments between homologous genes. The interpretation of dN/dS 

ratios is only reasonable in the case of genes that are orthologous to each other between 

closely related species. Coding sequence alignments of homologous genes originating from 

very distantly related species potentially contain multiple silent mutations or diverged to such 

an extent that the comparison of synonymous and non-synonymous changes does not make 

sense anymore.  
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Therefore, we retrieved the dN/dS values derived from alignments between human coding 

genes and genes from closely related species ranging from chimp to mouse. Interestingly, in 

each case, the median dN/dS ratios were significantly lower for genes encoding 

phosphoproteins in comparison to genes encoding non-phosphorylated proteins (Figure 9.4). 

The median ratio of non-synonymous to synonymous divergence between human genes and 

their homologous genes in chimp was 0.29 in comparison to 0.19 in the case of genes 

encoding phosphoproteins. These findings were in concordance with observations from 

phosphoproteomes of other species. For example, the median dN/dS value derived from 

alignments between fly genes and orthologous mosquito genes was 0.33 compared to 0.25 in 

the case of genes coding phosphoproteins. 

 
 

 
Figure 9.4: Median dN/dS ratios of human genes that encode phosphorylated (red) and non-

phosphorylated proteins (blue) reflecting evolutionary selective pressure 

 
 
To investigate the high conservation of the phosphoproteome on the intra-species level, we 

analyzed the degree of paralogy in phosphorylated proteins versus non-phosphorylated 

proteins. Paralogous genes are indicated as ‘within-species paralog’ in the EnsEMBL 

database. Thus, the section of the PHOSIDA analysis pipeline that examines the conservation 

of the phosphoproteome contains embedded queries that links the phosphorylation site 

database with the Compara database and estimates the proportion of genes that show intra-

species paralogy. Except for the yeast phosphoproteome, the proportions of paralogous 
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phosphoproteins were lower in all the phosphoproteomes in PHOSIDA. In fly (Chapter 

4.6.1.3), 27% of the identified phosphoproteins were paralogous to another fly gene in 

comparison to 45% in the case of non-phosphorylated proteins (Figure 9.5). The higher 

proportion of paralogous non-phosphorylated proteins was also evident in higher eukaryotes, 

but to a minor degree: Overall, 61% of phosphorylated proteins identified in mouse cells 

exposed to phosphatase inhibition (Chapter 4.6.1.2.1), for example, proved to have at least 

one homolog within mouse. In comparison, 58% of non-phosphorylated proteins showed 

paralogy.  

 

 
Figure 9.5: Proportion of paralogous phosphoproteins (red) and non-phosphorylated proteins (blue) in fly 
 
Next we investigated the conservation of regions containing phosphorylation sites on the basis 

of global protein-protein BLASTP alignments for orthologous human phosphoproteins. We 

found that the average identity in the 40 amino acid window surrounding the aligned 

phosphorylation sites is lower for each eukaryotic species compared to the entire protein 

identity. This effect is most pronounced for serine and threonine (Figure 9.6a, b). This 

observation is in concordance with the finding that phosphorylation sites occur predominantly 

in loop and hinge regions on the surface of the phosphoprotein (Chapter 4.6.4), as the protein 

sequence of highly accessible parts of the protein evolve fast (Branden, 1999). However, it is 

also surprising considering the assumption that phosphorylation sites along with the 

surrounding kinase motif should be highly conserved to fulfil their functional roles in cell 

signalling. Therefore, we examined the conservation of the region surrounding 

phosphorylation sites in more detail: we plotted the conservation of amino acids amino- and 

carboxyl-terminal to the phosphorylation site for the three phosphorylation sites and for all 

species. As a typical example, Figures 9.6c and 9.6d show the case of serine and threonine in 

zebrafish. The figure reveals a symmetric region immediately adjacent to the phosphosite, in 

which conservation is higher than in the surrounding region. The length of this region is about 
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-5 to +5 amino acids for both serine and threonine and agrees well with the size of published 

kinase motifs. Hence, in the evolutionary section of PHOSIDA, the surrounding region of -6 

to +6 amino acids is shown, in order to check the conservation of matching motifs (Chapter 

4.6.3). 

 
 
Figure 9.6: Conservation of the sequence region surrounding phosphorylation sites 

The average identity of 40 amino acids surrounding phosphosites (red) proved to be less conserved than the 

average identity of the whole global alignment (A, B). However, the very close region (+/- 5 amino acids) 

surrounding phosphoserines (C) and phosphothreonines (D) show elevated sequence identity. Bars represent the 

proportion of identical residues in zebrafish orthologs of human phosphoproteins. The red line is the average 

identity in the region -20 to +20 amino acids surrounding the phosphosite. 
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Overall, these data suggest that the surrounding sequence regions may diverge to such an 

extent that the structural effect (fast sequence evolution) effectively competes with the 

constraining pressure of function (slow sequence evolution). In order to correctly assess the 

degree of conservation of phosphosites, it is therefore important to take the structural effect – 

fast evolution of loop regions – into account. We did this by choosing only sites located in 

loop regions according to SABLE predictions for the comparison set, which should isolate the 

functional, evolutionary constraints on the phosphosite itself. We checked the conservation of 

triplets encoding phosphosites in comparison to triplets that encode non-phosphorylated 

counterparts in phosphorylated proteins throughout 36 eukaryotes on the basis of cDNA 

alignments as provided by EnsEMBL. The main finding of the DNA conservation analysis of 

phosphoserines and phosphothreonines identified in human cells exposed to EGF stimulation 

(Chapter 4.6.1.1.1) was that human phosphorylation sites are more conserved throughout 

higher eukaryotes than their non-phosphorylated counterparts (Figure 9.7). Overall, 97% of 

phosphoserines were found to be conserved in chimp DNA alignments in comparison to 92% 

of non-phosphorylated serines, for example. In the case of rat, 70% of identified 

phosphothreonines were conserved in comparison to 61% of non-phosphorylated threonines. 

However, human phosphosites were not significantly higher conserved in lower eukaryotes 

such as worm and yeast. Due their low number, it was not possible to find any significant 

patterns regarding the conservation of highly accessible phosphotyrosines in DNA alignments 

of orthologous proteins. 

The evolutionary study on the basis of two-directional BLASTP searches and Needlemann-

Wunsch protein-protein alignments led to the same outcome: The overall conservation of 

human phosphorylation sites in orthologous eukaryotic proteins (Chapter 4.6.1.1.1) is shown 

in Figure 9.8a-d. The average amino identity for all human phosphoproteins with orthologs 

ranges from greater than 80% in mammals to about 25% in yeast based on Needleman-

Wunsch alignments (Figure 9.8a). Figure 9.8b compares the conservation of phosphoserines 

that occur in loops with all non-phosphoserines that occur in loops in the same proteins. As 

observed in EnsEMBL alignments of coding genes, in all investigated vertebtrates, 

phosphoserine is significantly more conserved than serine (χ2-test: p = 0). In Drosophila the 

effect is still observable, but is not significant (p = 0.33). In yeast this is not the case. As 

shown in Figure 9.7, these findings are in concordance with the results from the evolutionary 

study on DNA-DNA alignments. Threonine yields a similar result to serine, but this amino 

acid is generally less conserved. Tyrosine tends to occur in more conserved regions of the 

protein as mentioned above. 
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Figure 9.7 Conservation of phosphoserine (A) and phosphothreonine (B) identified in human HeLa cells 

exposed to EGF stimulation on the basis of cDNA alignments 
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Figure 9.8: Conservation of human phosphosites on the basis of protein alignments 
 
 
Analogously, phosphorylation sites that were identified in the human kinase enriched set 

(Chapter 4.6.1.1.2) were also found to be more conserved than their non-phosphorylated 

counterparts throughout higher eukaryotes  on the basis of EnsEMBL cDNA alignments (data 

not shown). The same tendency was also observed in both mouse phosphoproteome datasets 

(Chapters 4.6.1.2). For example, 59% of triplets encoding serines that were phosphorylated in 

mouse cells exposed to phosphatase inhibition were conserved in orthologous cat genes. In 

comparison, 54% of triplets that encode unmodified serines in the same genes are conserved 

in cat. Phosphothreonines (57%) also proved to be more conserved than non-phosphorylated 

threonines (46%) in coding DNA alignments between phosphorylated mouse transcripts and 

cat orthologs.  

As is apparent from Figure 9.9, the high conservation of residues phosphorylated in mouse 

cells was even apparent in the case of very closely related organisms: Overall, 86% 

phosphoserines were found to be conserved in rat, for instance, in comparison to 83% non-

phosphorylated serines. Phosphothreonines also more conserved in rat (phospho: 89%, non-

phospho: 79%). Again, the numbers of detected phosphorylated tyrosines that occur in loop 

regions on the protein surface and show an corresponding ortholog in another species were 

too few to derive any significant patterns relating to their overall conservation. Figure 9.9 
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illustrates the conservation of phosphoserines and phosphothreonines identified in mouse cells 

upon phosphatase inhibition.  

 

 

 
Figure 9.9 Conservation of phosphoserine (A) and phosphothreonine (B) identified in mouse cells exposed 

to phosphatase inhibition 
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The high conservation of phosphorylated residues was also evident in the fly 

phosphoproteome. However, phosphosites identified in yeast cells did not show a 

significantly higher evolutionary conservation (data not shown).  

Moreover, to check the dN/dS ratios on the site level, we concatenated all triplets encoding 

phosphorylated residues, so that a single sequence containing all triplets was created. The 

translated version of the resulting DNA sequence should therefore yield serine-only, 

threonine-only or tyrosine-only containing protein sequence. All triplets that are aligned to the 

given triplets in orthologous genes of the specified species built up the second sequence. This 

yields a pairwise DNA alignment, whose synonymous and non-synonymous diverge can be 

calculated on the basis of the Nei and Gojobori method (Nei and Gojobori, 1986; Zhang et al., 

2006), for example (Figure 9.10 upper panel). Throughout higher eukaryotes including 

human, mouse and fly, we found that dN/dS ratios derived from aligned phosphoserines and 

phosphothreonines were significantly lower than dN/dS ratios derived from aligned non-

phosphorylated counterparts. Figure 9.11 shows the dN/dS ratios of aligned human 

phosphoserines versus dN/dS ratios of aligned non-phosphorylated serine triplets. This 

illustration is representative for the dN/dS distribution of phosphoserines and 

phosphothreonines versus their non-phosphorylated counterparts in each identified eukaryotic 

phosphoproteome. However, it was not possible to derive synonymous and non-synonymous 

divergence from alignments between yeast phosphoproteins and their orthologs, as yeast and 

higher eukaryotes are too distantly related. 

 
Figure 9.10 Derivation of synonymous (yellow) and non-synonymous changes (blue) between phosphosites 

encoding triplets (brown) and their aligned triplets (green) in orthologous genes of a given species 

Triplets that are preserved in evolution without any mutations are also highlighted in yellow. Overall, aligned 

human phosphoserines showed lower dN/dS ratios than their non-phosphorylated counterparts (bottom). 
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Surprisingly, the evolutionary constraints on eukaryotic phosphoproteomes were also evident 

in the prokaryotic phosphoproteomes of B. subtilis, E. coli, L. lactis and H. salinarium. In 

each case, identified phosphoproteins showed more orthologs than non-phosphorylated 

proteins throughout all domains of life on the basis of the two-directional BLASTP method. 

In Eubacteria, for example, 42% of B. subtilis phosphoproteins were conserved in contrast to 

about 25% of the nonphosphorylated proteins (Figure 9.11a). In Archaea, the conservation at 

the phosphoproteome level was 21%, around twice as high as at the proteome level. In 

eukaryotes, the conservation at the phosphoproteome level was 30%, whereas at the proteome 

it was 14%. Even on the site level, phosphorylated residues were more conserved throughout 

bacteria, eukaryotes and archaea than their non-phosphorylated counterparts. In the B. subtilis 

dataset, 41% of phosphoserines were conserved throughout bacteria in comparison to 34% of 

non-phosphorylated serines (Figure 9.11b) and 47% of phosphothreonines were conserved in 

comparison to 39% of nonphosphorylated threonines. Because of their low number, we could 

not draw any statistically significant conclusions about phosphorylated tyrosines. 

 
Figure 9.11 Evolutionary Conservation of the B.subtilis phosphoproteome 

The conservation of phosphoproteins (A) and phosphoserines (B) is reported as the average conservation in all 

tested species from each domain of life. 
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9.4 Discussion 
 

The aim of PHOSIDA is to provide a rich environment to the biologist wishing to analyze 

phosphorylation events of any protein of interest. Thus, PHOSIDA includes not only very 

high quality input as well as quantitative information, but it also integrates biological context 

to quantify constraints of phosphorylation on a proteome-wide scale. 

Analyses using the evolutionary sections of PHOSIDA show that phosphoproteins have more 

orthologs than non-phosphorylated proteins on the basis of the two-directional BLASTP 

approach (Chapter 4.2.4). These results are in keeping with the evolutionary analysis of 

phosphorylated and non-phosphorylated gene transcripts on the basis of the cross-reference to 

the EnsEMBL Compara database, which provides detailed information about phylogenetic 

relationships and homologies between 37 eukaryotes. The genome annotation approach 

(Chapter 8) was a requisite to link our phosphodata with the comprehensive annotation of the 

genome including conservation as provided by EnsEMBL. The high conservation of 

phosphoproteins probably reflects important and conserved functional roles of proteins with 

this post-translational modification. However, we emphasize that our datasets might be biased 

towards abundant proteins, although we found evidence for good coverage of very low 

abundant proteins including various transcription factors in our proteomic studies. We tried to 

reduce this potential effect by selecting only non-phosphorylated proteins for the comparison 

sets that are classified as ‘known’ by the EnsEMBL database meaning that the occurrence of 

the given protein is experimentally validated. Nevertheless, the bias for detecting very 

abundant phosphoproteins cannot be excluded with absolute certainty. 

Interestingly, phosphorylated proteins of the same species that were identified in different cell 

lines and tissues after various treatments also differed to some extent with respect to 

conservation: In lower eukaryotes, for example, phosphoproteins detected in human cells 

upon EGF stimulus were less conserved than human phosphoproteins identified in different 

cell cycle phases, because of the absence of the EGF receptor in eukaryotes that are very 

distantly related to human. In the case of the mouse phosphoproteome, the lower conservation 

of phosphorylated proteins determined in skin melanomas in comparison to phosphorylated 

proteins determined in the liver may be tissue function related (liver having a more basic and 

conserved role than skin). 

As consequence of the location of phosphorylation sites in loops and hinges (Chapter 4.6.4), 

the sequence regions around phosphorylation sites evolve faster than the rest of the protein 

except for the amino acids making up the kinase motif: the region of about five amino acids 



143 

around the phosphorylation site is more conserved than the surrounding sequence context. 

This finding illustrates the evolutionary constraint that the amino acid composition framing 

the kinase motif around the phosphosite has to be preserved. Otherwise, the substrate would 

lose its kinase affinity, which would negatively affect the associated signaling cascade.  

Our analysis of the global DNA alignments of orthologs in 37 eukaryotes shows that 

phosphorylation sites are more conserved than non-phosphosites of the same proteins 

throughout higher eukaryotes including human, mouse and fly. 

 

On the site level, we found that phosphorylation sites are more highly conserved throughout 

higher eukaryotes than their non-phosphorylated counterparts. In contrast, yeast 

phosphorylation sites were not highly conserved with respect to higher eukaryotes. These 

observations are in concordance with the findings of Manning et al. (Manning et al., 2002a): 

They showed that most of the known human kinases evolved after the divergence between 

yeast and higher eukaryotes including fly. Therefore there is a considerable number of yeast 

specific kinases and eukaryotic kinases that are absent in yeast. These results are in close 

agreement with ours, obtained on the basis of global Needle protein alignments of inter-

species homologs in seven eukaryotes.  

However, we only checked the residue conservation of given phosphorylation sites. There is 

no direct experimental evidence that a conserved serine, threonine or tyrosine is also 

phosphorylated in the orthologous protein in most cases. The overlaps between determined 

phosphoproteomes of different species are comparable with the overlaps between 

phosphoproteomes identified in different experiments on the same species (Pan, 2008 in 

press). These results indicate that the identification of the entire phosphoproteome of a given 

species is far from being complete. However, we assume that most of the conserved residues, 

which were found to be phosphorylated in at least one of the specified species, are also 

phosphorylated in the other organism considering that the surrounding kinase motif is also 

conserved.  

Regardless of the fact that conserved amino acids that are phosphorylated in one species 

might not be phosphorylated in another other species, the occurrence of residues that are 

phosphorylated in the human system, for example, but not in very closely related species 

including chimp and mouse points to ‘background phosphorylation’. Although a substantial 

proportion of phosphorylation sites are more highly conserved than their non-phosphorylated 

counterparts, there is a considerable number of phosphosites that are not preserved in 

evolution. This might reflect the occurrence of sequence regions that build up a kinase motif 
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by chance, but whose phosphorylation by the corresponding kinase by an ‘innocent bystander 

mechanism’ does not have any detrimental effect on the biological system. Thus, the given 

phosphorylation site would be lost after DNA mutation, as there is no selective pressure to 

keep the residue. The occurrence of sequence stretches that make up a kinase motif by chance 

is also very likely given the fact that there are many unspecific kinase motifs such as the CKII 

motif pS-X-X-E, for example. 

We also showed that the inclusion of evolutionary constraints on the phosphoproteome could 

slightly increase the performance of the in-silico predictor (Chapter 7). 
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Chapter 10 
 

Summary and Future Directions 
 
 
Proteomics as a relatively new ‘post-genomic’ science focuses on the large scale 

determination of the functional protein network in the cell. We applied mass spectrometry 

based proteomics to determine proteomes and phosphoproteomes in different cell types 

including tumor cells and liver cells and of various organisms ranging from Escherichia coli 

to human. Using SILAC, we investigated protein and phosphorylation changes in-vivo upon 

different treatments including phosphatase inhibition and growth factor stimulation. The 

determination of thousands of proteins that contain posttranslationally phosphorylated 

residues demands description, storage, management and recovery of the obtained data. For 

this purpose, we created the phosphorylation site database PHOSIDA 

(http://www.phosida.com) (Chapter 4). Its purpose is not only to make the obtained large-

scale data public to the scientific community, but also to mine the data and to derive general 

patterns relating to phosphorylation events. By quantitative proteomics, we show that 

regulation through posttranslational modifications takes place on the site level rather than the 

level of the entire phosphoprotein. For example, many proteins contained phosphorylation 

sites that were differently regulated upon epidermal growth factor stimulation. This 

demonstrates the necessity to establish methods that extend the common approach of 

matching spectra to peptide sequences. We created a probability based algorithm to detect 

phosphorylation events on the site level (Chapter 3). Using a specified cutoff with respect to 

the localization probability of phosphorylation sites (p > 0.75), we tested the accuracy of our 

method using manually verified high confidence data of a previous phosphoproteomic study. 

We found that more than 90% of determined phosphorylation sites were correctly localized 

within the peptide sequence. 

We extended the common proteomics workflow ranging from cell preparation to matching the 

measured spectra to protein sequences by the application of the ‘Knowledge Discovery in 

Databases’ (KDD) process to extract knowledge from the obtained large-scale data. For 

example, we found that only a small subset of phosphorylation sites was regulated upon 

growth factor stimulation. All quantitative phosphoproteomic studies showed that regulation 

through phosphorylation was most apparent for tyrosine residues. Our data sets suggest that 

the distribution of pS, pT, and pY is around 85%, 13%, and 2% on average. We also observed 
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that the number of phosphorylation events in prokaryotic cells is considerably different from 

the one observed in eukaryotes. In fly, for example, we determined more than 10,000 in-vivo 

phosphorylation sites on even very low abundant proteins including kinases and transcription 

factors. In comparison, we did not detected more than 100 phosphorylation events in any 

prokaryotic cell. 

The comparison of our phosphoproteomic datasets with large-scale data from other studies, 

which were also integrated into PHOSIDA, underlined the novelty of our high accuracy data. 

Overall, around 80% of determined phosphorylation sites of each study were novel. Thus the 

determination of phosphoproteomes is far from being complete. 

Using statistical tests that are integrated into the PHOSIDA environment, we found that 

phosphorylation events are distributed over all cellular compartments. Some compartments 

such as mitochondria, however, were underrepresented, whereas phosphorylation events in 

the nucleus were overrepresented. On the basis of integrated secondary structure and solvent 

accessibility predictions, we found that phosphorylation sites were predominantly located in 

loops and hinges on the surface of the protein. We also found evidence for significantly 

overrepresented consensus sequences that surround eukaryotic phosphorylation sites and 

make up kinase motifs. In contrast, we could not derive any significant motif from 

prokaryotic phosphosites. Besides mining methods that derive general patterns regarding 

function, cell compartment localization, structural constraints, consensus sequences and 

further categories, we investigated the evolution of phosphorylation (Chapter 9). The high 

conservation of phosphorylation throughout higher eukaryotes on the protein level as well as 

on the site level underlines the functional impact of phosphorylated proteins, which play key 

roles in signalling and therefore have to be preserved in evolution. In this regard, the yeast 

phosphoproteome presents an outlier, as yeast phosphorylation sites were not significantly 

more conserved than their non-phosphorylated counterparts. This observation is in agreement 

with the fact that many kinases evolved after the speciation event that separated yeast from 

higher eukaryotes. In addition, a non-negligable proportion of amino acids that are 

phosphorylated in human, but not conserved in mouse, point to background phosphorylation 

that does not have any functional impact on the underlying system and therefore no selective 

pressure. 

Furthermore, the PHOSIDA knowledge discovery pipeline also includes a phosphorylation 

site predictor on the basis of a support vector machine (Chapter 7). The accuracy of predicting 

phosphorylated serines on the basis of the raw sequence was higher than 90% for each 

investigated eukaryotic organism. 
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The inclusion of various high confidence large scale data obtained from high accuracy 

quantitative phosphoproteomic studies along with a phosphorylation site predictor make 

PHOSIDA a rich environment to the biologist wishing to analyze phosphorylation events of 

proteins of interest. Moreover, the automated analysis pipeline based on the KDD process 

enables us to derive various patterns relating to phosphorylation.  

We also constructed a proteome database, termed ‘Max-Planck Unified Proteome Database’ 

(MAPU) that includes proteomes of different organelles, tissues and cell types (Chapter 5). 

Obtained proteomic data were also mapped to the genome (Chapter 8). The reassignment of 

identified peptide sequences to corresponding genes allows not only the assignment of 

important protein features including phosphorylation to the coding genome sequences but also 

the experimental validation of predicted genes. Using the DAS technology, we linked our 

proteome database with the genome database EnsEMBL. Finally, the update and extension of 

the sex bias database SEBIDA was a further intent of my PhD study (Chapter 6). 

 

We intend to extend the phosphorylation site database by the inclusion of other 

posttranslational modifications such as acetylation, for example. It will be interesting, whether 

the general constraints observed in phosphorylation events can also be found in other 

posttranslational modifications using the KDD process. In addition, we wish to establish the 

first machine learning approach that is capable of predicting acetylation events, on the basis of 

the raw sequence. 

Another goal is to integrate the evolutionary annotation provided by the EnsEMBL Compara 

database into the PHOSIDA web application. This will enable the web users to study the 

evolutionary conservation of any given phosphorylated protein throughout 36 eukaryotes. 

Currently, the evolutionary section of the PHOSIDA online application is restricted to 

phylogenetic information throughout seven eukaryotes on the basis of our self-coded pipeline.  

Furthermore, we intend to link our proteome databases with other online environments such 

as PRIDE and Peptide Atlas, in order to establish a broad proteomic data network. 
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