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Chapter 1
Introduction

Cell signalling has arguably become one of the most important aspects of modern
biochemistry and cell biology (Gomperts, 2004; Hancock, 2005). The ability of organisms to
perceive and correctly respond to their microenvironment is crucial to their survival. The
perception of signals such as osmotic strength, pH, oxygen, light, the availability of food, and
the presence of predators or competitors for food is fundamental to life. These signals provoke
appropriate responses, such as motion away from toxic substances or toward food. In
multicellular organisms, cells with various functions process an extensive variety of signals
ranging from variations in sunlight to the presence of growth hormones. For animal cells, the
interdependent metabolic activities in various tissues or the concentrations of glucose in
extracellular fluids, for example, present vital signals that have to be handled. These signals
convey information that is detected by receptors and converted to a cellular response. In this
context, signal transduction can be defined as the conversion of information into chemical
change - a universal property of living cells (Nelson and Cox, 2008).

A relatively small stimulus commonly provokes an avalanche of responses: in typical signal
transduction processes the number of participating proteins increases tremendously as the
process emanates from the initial stimulus, resulting in a ‘signal cascade’ (Hunter, 2000;
Pawson and Nash, 2003). In many cases, the result of a signalling pathway is the
posttranslational modification of target-cell proteins that change their activities. Almost all of
the more than 200 kinds of posttranslational modifications that occur by covalent addition of
groups to side chains are carried out by enzymes, proteins with catalytic activity. Protein
phosphorylation may be the most common posttranslational modification, with tens of
thousands of phosphorylation sites in the human proteome (Amanchy et al., 2005; Beausoleil
et al., 2004; Olsen et al., 2006; Thelemann et al., 2005). At each phosphorylated protein a
polar neutral OH side chain is converted to a tetrahedral phosphate (Figure 1.1 left panel). The
introduction of negative charges has a notable effect on redistributing conformers in the
microenvironment of the protein. These include conversion of unstructured regions of loops
into helical regions that can drive and propagate conformational changes to other regions of

the modified protein. Such conformational changes can be intramolecular or intermolecular



across subunit interfaces and create docking sites for partner proteins with motifs that can

specifically recognize the tetrahedral phosphate side chains.
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Figure 1.1: Phosphorylation and dephosphorylation processes
The phosphorylation of protein residues (serine, threonine or tyrosin) is catalyzed by protein kinases (left panel).

The reaction of dephosphorylation is catalyzed by protein phosphatases (right panel) (Gomperts, 2004).

Thus, intracellular phosphorylation by protein kinases, triggered in response to extracellular
signals, provides a mechanism for the cell to switch diverse processes on or off. These
processes include metabolic pathways, kinase cascade activation, membrane transport and

gene transcription (Schlessinger, 2000).

Two decades ago Hunter estimated that 1000 protein kinases for covalent phosphorylations of
proteins are encoded in the human genome (Hunter, 1987). Manning et al. identified 518
putative protein kinase genes, which is about half of what was predicted before, but is still a
very large number, constituting about 1.7% of all human genes (Manning et al., 2002b). The
substrates of protein kinases in general are the side chains of specific serine, threonine, or
tyrosine residues, and specificity depends on structural constraints and on the sequence
context surrounding a residue. In eukaryotes, each kinase typically has a number of substrates
and is usually either a serine/threonine or tyrosine kinase. However, multiple serine and
threonine in a protein substrate may be phosphorylated by a given protein serine/threonine
kinase. Analogously, several tyrosines may be phosphorylated by a tyrosine kinase, for
instance, on the activation loop of the insulin receptor. A classification of kinases into a
hierarchy of groups, families, and subfamilies on the basis of sequence comparisons aided by

known biological functions yields a kinome tree (Figure 1.2).



Figure 1.2: Human kinome tree
Manning et al. (Manning et al., 2002b) classified more than 500 identified kinases according to their sequence

similarities and common biological functions.

In contrast, the reverse reaction of dephosphorylation (Figure 1.1 right panel) is catalyzed by
protein phosphatases that are controlled in response to different stimuli so that
phosphorylation and dephosphorylation are separately regulated events. Thus, protein kinase

action is balanced by protein phosphatase action.

To reveal the role of phosphorylation in the cell at the proteome level, the application of mass
spectrometry (MS) based technologies has proven powerful (Aebersold and Mann, 2003;
Chen and White, 2004; Ficarro et al., 2002; Mumby and Brekken, 2005; Rush et al., 2005;
Salomon et al., 2003). MS-based proteomics has established itself as an indispensable
technology to measure proteomes of various organisms along with their phosphorylation

changes. By definition, ‘the basic principle of MS is to generate ions from either inorganic or
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organic compounds by any suitable method, to separate these ions by their mass to charge
ratio (m/z) and to detect them qualitatively and quantitatively by their respective m/z and
abundance’ (Kienitz, 1968). Matrix-assisted laser desorption/ionization (MALDI) and
electrospray ionization (ESI) are the two techniques most commonly used to volatize and
ionize the peptides (Aebersold and Mann, 2003). The basic principles and instrumentations
are discussed in Chapter 2 in more detail.

The resulting mass spectra are two-dimensional representations of signal intensity versus
mass to charge ratio (m/z) (Gross, 2004). The peptide or protein ‘precursor’ peak results from
the detection of the intact ionized molecule, the molecular ion. In a separate reaction inside
the mass spectrometer, termed tandem mass spectrometry or MS/MS, the precursor ion is
fragmented. In the case of peptides a mass spectrum of these fragment ion peaks can be
assigned to corresponding peptide sequences by scanning them against protein sequence
databases (see for example (Perkins et al., 1999) for description of the popular Mascot
algorithm). There is a large diversity of algorithms to solve this problem, which presents the
focus of Chapter 3. However, most of these approaches are restricted to the MS based
identification of peptide sequences. To determine posttranslational modifications at the site
level, we constructed a probability based algorithm as described in Chapter 3.

In MS based proteomics, the typical outcome is the identification of peptides assigned to
proteins. The extensive detection of sub-proteomes and sub-phosphoproteomes of living cells
demands description, storage, management and recovery of the obtained data. For this
purpose we created PHOSIDA (http://www.phosida.com), the Phosphorylation Site Database
(Chapter 4) (Gnad et al., 2007). The aim of PHOSIDA is to comprise high quality
phosphoproteomic data including quantitative information, where applicable (for example
capturing cell regulation after treatment with a stimulus) (Figure 1.3). To integrate biological
context and to mine features of phosphorylation on a proteome-wide scale, PHOSIDA
additionally takes into account structures and evolutionary data across a variety of species as
well as other protein annotations. Thus, PHOSIDA provides a rich environment to the
biologist wishing to analyze phosphorylation events of proteins of interest.

The integrated large-scale datasets contain knowledge, but manual analysis exceeds human
capacity. The automated computer based extraction of knowledge from comprehensive
datasets is the objective of ‘knowledge discovery in databases’ (KDD) (Ester, 2000; Witten,
2005). To derive general constraints of phosphorylation relating to structure and conservation,
we applied the KDD process to determined large-scale phosphorylation sets. The

comprehensive evolutionary study of phosphorylation is explicitly described in Chapter 9.
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Furthermore we developed a support vector machine (SVM) based predictor for
phosphorylation (Chapter 7) (Gnad et al., 2007). SVMs are machine learning methods used
for classification. Two given sets of items such as phosphorylated and non-phosphorylated
residues are separated in a multidimensional space, which reflects the features of the given
objects. Depending on the relative orientation in the divided feature space, an unclassified
item can then be assigned to one of the given two sets. The basic principles of SVMs are
discussed in Chapter 7 in more detail. The phosphorylation site predictor is integrated into
PHOSIDA and makes it possible to find putative novel phosphorylation sites that have not yet
been experimentally identified. Predicting novel phosphosites and matching kinase motifs on
proteins of interest should be valuable for the design of biological experiments or for

predicting a protein’s role in a pathway.
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Figure 1.3: PHOSIDA (Phosphorylation Site Database)

In addition to PHOSIDA, which focuses on the database management of phosphorylation
sites, we created MAPU 2.0 (http://mapuproteome.com), the Max-Planck Unified Proteome
Database (Chapter 5). The main purpose of MAPU 2.0 is the storage of high throughput
datasets of proteomes measured in various tissues, cell types or organellar components on the
basis of our high resolution and high accuracy MS technologies. MAPU 2.0 contains several
body fluid proteomes including plasma, urine, and cerebrospinal fluid. In addition, cell lines

have been mapped to a depth of several thousand proteins and the red blood cell proteome has



also been analyzed in depth. By employing high resolution mass spectrometry and stringent
validation criteria, false positive identification rates in MAPU 2.0 are always lower than 1:100
and usually lower than 1:1000. Thus, MAPU 2.0 datasets can serve as high quality reference

proteomes, for example in biomarker discovery.

Another objective of this work was the annotation of genomes on the basis of MS derived
proteomic data. As mentioned above, MS is commonly applied to the identification of
proteins by matching the measured spectra to sequences of known proteins that are annotated
in public databases. Hence, this approach is limited to the detection of already predicted or
established polypeptides. However, the original resource is the genome (Lander et al., 2001;
Venter et al., 2001). It encodes all possible proteins and therefore represents the original
source of the proteome. But the derivation of coding regions on the nucleotide sequence is not
trivial. Current methods for gene prediction provide useful information but are still limited
(Brent, 2007). It is hardly possible to predict all features of the genome from its sequence
alone. Thus, the integration and validation of MS derived experimental data in a genomic
context may contribute to the annotation of the genome and the identification of genes that
have not been experimentally confirmed yet (Chapter 8) (Desiere et al., 2005; Fermin et al.,
2006). The main idea is to assign the measured spectra to translated predicted genes or even to
all potential open reading frames instead of already known proteins. In this work we assigned
our proteomic data directly to genes and then we linked our proteome databases with the
genome database EnsEMBL via the DAS/Proserver technology (Birney et al., 2004; Finn et
al., 2007; Flicek et al., 2008).

Although not directly associated with the main topic of my PhD study, a further goal was the
further development and curation of SEBIDA (www.sebida.com) — the Sex Bias Database
(Chapter 6) (Gnad and Parsch, 2006). The database integrates results from multiple,
independent microarray studies comparing male and female gene expression in Drosophila
melanogaster, Drosophila simulans and Anopheles gambiae. In addition to ratios of
male/female expression for each gene, SEBIDA also contains information useful for
evolutionary studies, such as degree of codon bias, local recombination rates and interspecific
divergence at synonymous and non-synonymous sites. Our laboratory is currently working on
the quantitative evaluation of sex biased proteins on the basis of MS. This proteomic study
has not been finished yet. However, we intend to analyse sex specific protein expression

levels using the established SEBIDA environment in the future.
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Thus, a variety of topics have been subjects of my PhD study in addition to the main focus on
the bioinformatics of phosphorylation. They are tightly linked, since my study ranges from the
identification of phosphorylation sites (Chapter 3) to their database storage (Chapter 4) along
with other proteomic data (Chapter 5). On the basis of the created databases, which are
accessible to the public community, we derived various general patterns (knowledge)
(Chapter 4) with a main focus on the evolution of phosphorylation. Thus, the analysis of
evolutionary constraints of phosphorylation is described in more detail in Chapter 9. The
above mentioned phosphorylation site predictor that is trained on our high throughput datasets
to recognize potential phosphosites mainly on the basis of features such as the surrounding
sequence is described in Chapter 7. This overal workflow presents a ‘Knowledge Discovery

in Databases’ (KDD) process as described in Chapter 4.

For the mapping of proteomic data to the genome database EnsEMBL (Chapter 8), I received
a Marie Curie Fellowship and worked at the European Bioinformatics Institute (EBI) in

Cambridge. My adviser at EBI was Ewan Birney, founder of the EnsEMBL database.



Chapter 2

Background: Mass Spectrometry,
Database Systems and ASP.NET

2.1 Mass Spectrometry based Proteomics

Proteomics is a relatively new ‘post-genomic’ science that focuses on the large scale
determination of the functional network in the cell at the protein level. It is a multifaceted
field of research including a collection of various technical disciplines ranging from the
experimental identification of amino acid sequences to their database storage.

Historically, protein purification was based on crude chromatographic and then on gel
electrophoresis methods. In one-dimensional gel electrophoresis proteins are separated so that
all proteins lie along a lane but are separated by molecular weight. In two dimensional
electrophoreses (Gorg et al., 2004; Gygi et al., 2000; Rabilloud, 2002), the proteins are first
separated by isoelectric point and then by molecular weight. Although this technology proved
to work sufficiently well for the analysis of low complexity protein mixtures, it could not
satisfy the requirements for large scale in depth proteome analysis at current requisite quality
standards (Mann and Kelleher, 2008). Of all contributing disciplines, MS has established
itself as the main technology of proteomics studies.

The development of two techniques — electrospray ionization (ESI) and matrix assisted laser
desorption/ionization (MALDI) — in the late 1980s made essential contributions to the
establishment of the rapidly evolving field of MS-based proteomics (Fenn et al., 1989; Karas
and Hillenkamp, 1988). The development of these two ionization techniques encouraged the
development of other decisive technologies including new mass analyses and complex
multistage instruments designed to tackle the challenges of proteome analysis. In fact, it is
amazing how rapidly MS has developed over the past decade. Ten years ago, the sequencing
of a single protein was a remarkable achievement. Today, the determination of thousands of
proteins in a single experiment is common practice. The lag between genomics, which already
demonstrated the power of high-throughput analysis of biological processes, and proteomics
is rapidly diminishing (Cox and Mann, 2007). MS can sequence tens of thousands of peptides
from complex mixtures. Moreover, the application of quantitative proteomics using

technologies such as SILAC (Stable Isotope Labeling by Amino Acids in Cell Culture), even
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allows to compare the relative protein abundance between different proteomes (Ong et al.,
2002; Ong and Mann, 2005). By applying quantitative proteomics, functional information and
temporal changes in the proteome including posttranslational modification dynamics can be

captured by MS.

Although various disciplines comprising different technologies contribute to proteomics, the
design of MS-based proteomics experiments is quite generic (Figure 2.1) (Aebersold and
Mann, 2003):

First, the proteins to be investigated are obtained from cell lysates by affinity selection or
biochemical fractionation. Sample fractionation oftentimes includes the separation into
several subproteomes using gel electrophoresis.

Then proteins are degraded enzymatically to peptides. The degradation step is required, as
mass spectrometry of peptides is more sensitive than mass spectrometry of proteins, where the
mere entire mass is not sufficient for identification. Trypsin digestion has proven to be an
especially appropriate degradation method because it yields peptides with C-terminally
protonated amino acids (Arg or Lys), which fragment well in tandem MS.

Next, MS measurements are carried out in the gas phase on ionized peptides. Peptides to be
analyzed are passed on to the three main components of the mass spectrometer: the ion
source, the mass analyser that measures mass-to-charge (m/z) ratios of the ionized peptides
and the detector that counts the number of ions at each m/z value.

Consequently, the initial step for the identification of the peptide using a mass spectrometer is
the ionization in an ion source: as mentioned above, the MALDI and ESI are the two most
widespread ionization technologies and have had a huge impact on the rapid development of
mass spectrometry (Fenn et al., 1989; Finn et al., 2007; Karas and Hillenkamp, 1988).
MALDI sublimates and ionizes the peptides out of a crystalline matrix via laser pulses,
whereas ESI ionizes the peptides out of a solution. Peptides are usually separated by liquid
based separation techniques such as high-pressure liquid chromatography in very fine
capillaries. After electrospray ionization the multiply protonated peptides enter the mass
spectrometer, where the mass analyzer presents the essential component. There are four basic
types of mass analysers, namely the ion trap, time-of-flight (TOF), quadrupole and ion
cyclotron resonance (ICR) instruments (Hager and Le Blanc, 2003; Marshall et al., 1998;
Martin et al., 2000; Schwartz et al., 2002; Valaskovic et al., 1996). They differ in mass
accuracy, resolution and sensitivity. In each case, a mass spectrum of the peptides is taken

(MS1 spectrum). A mass spectrum is the two-dimensional representation of signal intensity



versus m/z (Chapter 1). Then the computer generates a list of peptides for further
fragmentation. Specified ionized peptides are isolated and fragmented by collision with an

inert gas at low pressure, so that a tandem (MS?) spectrum is obtained.
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Figure 2.1: Generic mass spectrometry based proteomics approach (Aebersold and Mann, 2003)

This generic MS-based proteomics method is then followed by computational analyses as
described in Chapter 4.1: The MS' and MS” spectra are matched against protein sequence
databases. We use the Mascot search algorithm to match given spectra with peptide sequences
(Perkins et al., 1999). The final outcome is the identity of peptides assigned to proteins. As
highlighted in Chapter 3, we extended the algorithm by another probability based method that
determines posttranslational modifications within specified peptide sequences at the site level.
The validated results are then uploaded to a database. After transforming the integrated data
for the application of computational analyses, data mining methods are then applied to derive
patterns (knowledge) from the data in a KDD process (Han, 2000; Witten, 1999, 2005) (Ester,
2000).
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The goal of quantitative proteomics is to determine the relative changes in expression of
proteins (Ong and Mann, 2005). Translational controls and regulated degradation contribute
to the biological function of proteins in addition to the regulation of the transcriptional
machinery. To understand the functional impact of proteins, it is therefore indispensable to
measure changes of protein expression levels in a whole biological system. Even though MS
is not inherently quantitative, many techniques have been developed that supply the
quantitative dimension to MS. For instance, Mann and colleagues have established a stable
isotope-based technique termed stable isotope labeling by amino acids in cell culture (SILAC)
(Ong et al., 2002). Cell populations grow in different metabolically labelled media (Figure
2.2): one in a medium that contains a normal (‘light’) amino acid and the other in a medium
that contains a heavy amino acid. The heavy amino acid can contain °C instead of '*C, for
example. Consequently, the two proteomes can be distinguished, as each peptide appears in
two forms separated by the difference between light and heavy label. The intensity difference
of the two forms reflects the difference in protein amount between the two cell populations.
This method makes it possible to measure protein expression changes including
phosphorylation dynamics after various treatments over time. Another application is the
system-wide measurement of proteome expression differences between a normal cell and a
cancer cell. As illustrated in Figure 2.2, SILAC experiments can even be extended by a third

label (‘medium’).

Light labeled  Medium labeled  Heavy labeled
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Trypsin & MS analysis

- =
1
— . g

Figure 2.2: SILAC based proteome measurements (Cox and Mann, 2007)
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2.2 Database Systems

The vast increase in new technologies in biology ranging from genome sequencing to mass
spectrometry has led to an explosion of the amount of data. This data demands efficient
description, storage, management and recovery and efficient mining to facilitate extraction of

biological knowledge.

2.2.1 Components and Functions of Database Systems

The term 'database’ (DB) is defined as a collection of logically linked data. 'Database
Management Systems' (DBMS) are software modules designed to manage the entire database
(Date, 2003; Ramakrishnan, 2003). Therefore the main function of DBMSs is to describe,
store, and regain very large amounts of data. Its hierarchical layer architecture fulfils these
basic functions. Another task is the separate management of transactions and metadata. In
addition, an important purpose of DBMSs is to interact with external applications in two
directions. On the one hand, queries have to be worked on by the conversion of descriptive
statements into procedural operations (user — DB). On the other hand, data have to be
presented query-dependently (DB — user).

The DB and its DBMS constitutes a 'database system' (DBS) (Figure 2.3).

DBS

Figure 2.3: Relationship between database management system, database, and application layer
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The online database GenBank exemplifies the importance of database systems (Benson et al.,
2008). GenBank is the NIH genetic sequence database, an annotated collection of all publicly
available DNA sequences. It contains nearly 40 billion bases in about 40 million sequences
(Figure 2.4a). Questions about the data must be answered efficiently, changes made to the

data by different users must be applied consistently, and access to certain parts of the data

must be restricted.

One could try to manage the data by storing it in operating file systems, but this approach has
many drawbacks. A database such as GenBank would have to write extra programs to answer
each question a user may want to ask about the data. These programs would be complex
because of the large volume of data to be searched. Furthermore, databases have to protect
data from inconsistent changes made by different users. There are many disadvantages of
using file systems which even make databases indispensable. DBMSs manage the data in a
robust and efficient manner. As the volume of data and the number of users grow, support by
DBMSs becomes indispensable. Concrete advantages of DBS are reflected by the demands on
a database system, the so called 'Codd's Rules' (Figure 2.4b) (Begg, 2004). Cood’s rules
demand requisite features of the databases including consistency, recovery, controlled
accession, transactions and operations on the data. In addition, the main benefits of databases

are physical and logical independencies (Chapter 2.2.2). These can be derived from the

architecture of database systems.

54 58
52 4 56
50 - 54
48 o 52

50 Integration
23 | a8 (consistent management of all data
42 % @ including redundance-freeness)
u 5
40 5 S
38 =4 .
% | 25 Accession control |  Concurrency control|
34 4

32 4
30 4
28 4
26 4
24 4
22 4

20

ab Consistency _ Recovery

26
24 g
22 O

2 Operations on Data dictionary
% 3 the data (description of the data)
in

Transactions| Various views)

20 4
18 4
18 4
14 4
12 4

10
1 Hm Base Pairs
—4—Sequences

8
6
4
24
0
1

Sequences (millions)

982 1986 1880 1994 1998 2002

Figure 2.4: Data growth of GenBank (a) and the Codd’s rules (b)
The exponential rise in GenBank data is indicative of the boost of biological data in general. Like all databases,

databases managing biological data have to satisfy the Codd’s Rules.
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2.2.2 Architecture of Database Systems

A database system is divided into three separate tiers (Figure 2.5) (Date, 2003; Ramakrishnan,
2003). The internal view determines the physical storage of data. Its specification is
dependent on the available system and it is manipulated by the Data Storage Description
Language (DSDL). The conceptual tier is defined as the logical entirety of all data, whereas
the Data Definition Language (DDL) devises the entire schema. Finally the external view is
the collection of all application specific views. Its tools are the Data Manipulation Language
(DML) and the Data Query Language (DQL). They give instructions to read and manipulate
the data.

The main advantages of databases in comparison to file systems are independence between
the conceptual and the internal tier (physical independence) on the one hand, and
independence between the conceptual and the external tier (logical independence) on the other
hand. For example, if the user asks for a sequence of a certain gene, whose descriptions and
further information are stored in a database, the application does not have to care about the
conceptual schema of the database. Thus, the logical independence is also called application
independence. Moreover, the conceptual schema of the database is independent of its physical

storage. Consequently, it is also known as implementation independence.

application application |
conceptual
tier logical data organisation | DDL
internal bvaicald T
g physical data organisation DSDL

Figure 2.5: Architecture of a database system
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2.2.3 Relational Model

There are many data models such as the hierarchical, object-oriented or the network model.
The foremost one is the relational model, which is commonly used and widely spread (Heuer,
2000). The main construct for representing data in the relational model is the 'relation'. Its
schema specifies the name of the relation, the name of each column (attribute) and the set of
associated values for each attribute.

An instance of a relation is a set of tuples. They are also called 'records'. Each tuple has the
same number of fields as the relation schema. A relational database can thus be defined as the
collection of relations with distinct relation names.

One essential element for a relation is the primary key. It is defined as the minimal set of
attributes identifying each tuple uniquely. Besides the primary key, a foreign key is the
minimal set of attributes which refer to a primary key of a 'foreign' relation. Thus, various
relations within a database have precisely defined relationships. Entity Relationship Models
(ER models) are often used in order to describe the conceptual database scheme including
various (one-to-one, one-to-many, or many-to-many) relationships between different
relations. The definition of keys is associated with functional dependencies. They play
important roles in the conceptual construction of a database. An example of a relation

containing expression information of genes is illustrated in Figure 2.6.

attributes, fields

CGnum FBnum name loc HMratio
CGE200 FBgn0024754  [Flo 2R 23
CG10701  [FBgn0011661  [Moe X 1 i tuple
CGEIIY FBgn0025802  |Shf IR 0.7
. CG17183  |FBgn0035149  [Trap25 3L 1.0
relation £G12013  |FBgn0035438  |PHGPx [3L 0.5

Figure 2.6: Instance of a database relation
The illustrated example of a relation contains data such as unique gene identifiers (CGnumber, FlyBase number

or gene name), chromosome locations, and abundance ratios of different SILAC labels.

2.2.3 Query Language SQL

The Structured Query Language (SQL) is the most widely used relational database language
(Gennick, 2006). It enables programmers to pose complex queries on datasets. It is based on
relational algebra. Hence SQL is able to capture all possible relational expressions; it is
relationally complete. Without the application of database systems along with a query

language the analysis of large data sets such as those derived through MS-based proteomics
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would be inefficient. A programmer would have to write ad hoc programs for each query on
data that are stored in file systems. Databases instead allow formulating formulating short
statements on the data.

We used the open source database query language MySQL (http:/www.mysql.com) (Reese,
2002), in order to extract information and knowledge from proteomic data (Dzeroski and
Lavrac, 2007). The only disadvantage of MySQL that we experienced is the absence of a
direct implementation of the frequently used 'outer join' operation. To design an 'outer join'
operation on two or more tables, it is necessary to formulate a workaround by combining a
left outer join operation and a right outer join operation via the 'union' operation. Except for
this disadvantage, MySQL proved to be the proper tool for data queries on a relational model

for very large and complex proteomics data.

2.3 Web Development in ASP.NET

One of the most recently established object-oriented programming languages is C# (Chapter
2.3.1) (Liberty, 2005a). It was designed to program the Microsoft .NET Framework (Liberty,
2005b), which is briefly described in Chapter 2.3.2. We decided to use C# because of its
applicability to the Windows based Xcalibur' ™ software that provides instrument control and
data access for the entire family of mass spectrometers of the Thermo Fisher Scientific
company, which are used exclusively in our group. As C# is a relatively new programming
language, it has not generally been used in bioinformatics yet. Consequently, there are
virtually no open access class libraries that can be shared by the public community.

However, C# provides an optimum blend of performance, simplicity and expressiveness on
the basis of observations drawn from other languages such as Java and C++. It comprises all
advantages of object-oriented programming and makes it possible to share self-defined classes
and methods via class libraries.

Regarding web programming, C# presents the underlying language of ASP.NET, which
enables programmers to encapsulate code into web controls ranging from simple HTML
buttons to complex list boxes. Since the implemented dynamic web sites rely on a database to
provide content, we used the ADO.NET technology (Chapter 2.3.1) to embed data retrieved
from a mySQL database into dynamically created web content (Hamilton, 2003). Finally,
retrieved data are dynamically represented in a structured document (web page). Its
representation and design is subject to the discipline of Markup languages, namely HTML for

web representations (Chapter 2.3.3) (Goodman, 2006; Musciano, 2006).
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2.3.1 C# Language

The goal of the programming language C# is to provide a simple, safe, object-oriented, high-
performance language for .NET development (Liberty, 2005a). C# is a very modern language,
and it draws on the lessons learned over the past decades. Experienced programmers can
immediately see the influence of already established languages, primarily C++, Java and
Visual Basic. C# can be ideally used as a tool for programming on the .NET platform
(Liberty, 2005b), especially with Visual Studio (Griffiths, 2003). As a component-based,
structured, object-oriented programming language, it includes all the support for defining and
working with classes. It contains keywords for defining new classes along with their
properties and methods. Furthermore, it allows the implementation of the three essential
requirements of object-oriented programming: encapsulation, inheritance and polymorphism.
The final compilation of programming code yields a collection of files that appear to be a
single executable or a single dynamic link library (DLL). These compiled files are named
‘assemblys’ and present the basic units of deployment and reuse in .NET.

In summary, C# is a very powerful programming language comprising all the strengths of
object-oriented programming. It is designed for developing applications on Microsoft’s .NET

platform and provides a unique solution to write dynamic web applications.

2.3.2 Web Development in .NET

‘ASP.NET is an event-driven, control-based, object-oriented architecture that generates
content and dynamic client-side code from server-side code using functionality described in
the System.Web classes of the NET Framework’ (Cazzulino, 2004; Liberty, 2005b). This
means that ASP.NET is the technology that performs server-side processing to generate the
page response when receiving a web page request. After the execution of server-side code
ASP.NET sends back the created web page to the browser. The event-driven feature handles
the reaction to events such as when a user clicks a button. This requires the usage of elements
of visual functionality known as ‘server controls’. Server controls comprise web elements
such as buttons or listboxes. In principle, one can configure server controls through a
Properties browser (Figure 2.7). At runtime, ASP.NET transforms the configured server
controls into plain HTML code that is sent to the requesting browser. However, the design of
more complex web pages such as PHOSIDA (Chapter 4) still requires the implementation of
HTML code. Nevertheless, the integration of server controls presents a very strong

foundation, as elements of visual functionality conform to the .NET programming model.
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Figure 2.7: Microsoft Visual Studio environment.
Server controls can be easily placed via the Toolbox (on the left) and configured via the Properties Browser (on

the right).

The functionality of web elements such as server controls and web forms is contained within
the System.Web namespace. It includes a comprehensive set of ASP.NET Framework classes
that enables web programmers to design multiply functional web pages in a sophisticated
way. In addition, ASP.NET brings all the advantages of object-oriented programming, as all

classes and methods are extensible and reusable through inheritance and polymorphism.

2.3.3 Markup Languages and HTML

Each document presents an organized set of data. This PhD thesis is also an ordered set of
headings, paragraphs, and illustrations. The data in documents are arranged visually in such a
way that the organization of the data is clear. This makes it easier to read the document.
Analogously, we often need our computerized applications to be able to read a document and
derive the structure of the data contained in it. To do this, we use ‘markup’.

Markup consists of tags that occur in the document along with the data. They specify the
various elements of data within the document. All the data corresponding to an element are
arranged between the opening <element> tag and the closing </element> tag. Moreover, one

element is likely to embrace other elements along with their data.
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Hypertext Markup Language (HTML) is generated by web applications and sent to the
browser for display (Musciano, 2006). In fact, HTML is a ‘markup language’. An HTML
document is a set of tags and data that allows the description of the structure of web page
documents. The main purpose of the data of an HTML document is to display information in
a browser window. Thus, the markup in an HTML document is intended to describe the way
the browser should display the data. Figure 2.8 exemplifies an HTML document that

describes general features of the EGF receptor gene.

)

<htmi>
<hody>
<h1 class='gene’>gene: ENSG00000146648</h1>
<b class="symbol'>gene symbol: EGFR</b>
<b class="syn"'>synonyms: ERBB</b>
<p class="transcripts’>
<h2 class="transcripts’>transcript: ENSTO0000275493</h2>

1 e [ s 3t (3 i e e -

PHOSIDA

gene: ENSG00000146648

</p>
<p class="transcripts’>
<h2 class="transcripts’>transcript: ENSTO0000342916</h2>

(,.fp;
=p class="transcripts’>
<h2 class="transcripts’>transcript: ENST00000344576</h2>

</ p;
<p class="transcripts>

<h2 class="transcripts’>transcript: ENSTO0000395504</h2> f b
</p>
</body=>
=fhtmi>

Figure 2.8: Example of the web presentation of a given HTML document describing features of the EGF

receptor gene (as interpreted by common web browsers such as the Internet Explorer or Mozilla Firefox)

The illustrated HTML document describes general features of the gene that encodes the
epidermal growth factor precursor protein such as gene symbol and synonyms. In addition, it
describes four different gene transcripts. This HTML document can be sent to a browser. As
the browser is programmed to interpret tags, it is able to parse the logical structure of the
document. Tags such as ‘<html>’ and ‘<b>’ are common elements that are uniformly handled
by a variety of web browsers. In order to specify the display of data, Cascading Style Sheets
(CSS) are used to describe a particular presentation of a document (Meyer, 2006). The
application of CSS limits the scope of the web browser’s interpretation and enables the web
programmer to force the browser to display the data in a defined way. In the example, the
additions of tag classes refer to certain styles relating to colors, layouts, and fonts. The
purpose of this chapter is not to dwell on the detailed concepts of HTML documents and
Cascading Style Sheets. However, it should become obvious that the creation of dynamic
user-friendly web pages is a result of the combination of the embedding of ASP server

controls into HTML documents whose layouts are specified by CSS.
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Chapter 3

Identification of Peptides and
Phosphorylation Sites

3.1 Introduction

Many approaches and algorithms have been described in the literature for peptide and protein
identification by searching a sequence database using MS data (Sadygov et al., 2004).
Although reported methods differ in their detailed implementation, the general concept is
similar: The experimental data are compared with peptide and peptide fragment mass values
calculated on the basis of cleavage rules applied to the protein sequences in the specified
database.

To assign measured spectra to peptide sequence, we use the search engine Mascot (Perkins et
al., 1999), which is based on probability scoring. Mascot is a well established software used in
many MS laboratories for protein identification by searching sequence databases. It is
primarily optimized for the identification of sequence stretches (peptides) based on the
presence of calculated fragment ions in the tandem spectra. Identified peptide sequences are
assigned to protein entries afterwards. However, proper site specific location of
posttranslational modifications is not a strength of Mascot but it is critical, as many biological
processes are regulated through the modification of specific residues.

Hence, we established a probability based algorithm that measures the probability of correct
phosphorylation site localization. We applied our method in a fully automated fashion via the
PHOSIDA upload system (Chapter 4.2) enabling us to investigate identified

phosphoproteomes on the site level.

3.2 Site-specific Posttranslational Modification Scoring

The post-translational modification (PTM) score used for localization of the phosphorylation
sites is an extension of the MS® score described by Olsen and Mann (Olsen and Mann, 2004),
and was described in Olsen et al. (Olsen et al., 2006). The binomial distribution score is used
to compute the probability for all individual serine, threonine and tyrosine residues to be

phosphorylated in a phosphopeptide identified by MASCOT.
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In an ion trap MS/MS spectrum (e.g. from LTQ Orbitrap or LTQ-FT instruments) fragments
are matched with a mass tolerance of +/- 0.5 Da. As a result, one fragment ion can be matched
per m/z unit throughout the mass range and there are 100 ‘bins’ for the fragments per hundred
m/z interval. To compute the binomial distribution score, the top most intense fragment ions
per 100 m/z bins in a spectrum are considered. The algorithm automatically discards most of
the ions and keeps only the top four most intense one per 100 m/z units, which therefore have
4% chance (0.04) of matching randomly (Andersen et al., 2003). For a true match, the most
intense fragment ions are expected to match the peptide sequence-specific b- and y-type ions.

The binomial distribution score probability (P) is calculated as:

P(k)= (E)-pk-(l-m""‘
n! k n-k
= Kitn-Kky1 P +(1-p)

_ n! . k, n-k
= Qg 0-04%(0.96)

where n over k is the number of permutations of a subset of k elements (matches) in a set of n
elements (total number of possible b and y ions in the mass range). The probability of a
putative b- or y-ion to match one of the experimental fragment masses by chance is simply
4/100 or 0.04, independently of the mass range considered, because we allow four measured
masses per 100 Da. For some applications, six instead of four peaks per 100 m/z interval are
retained.

To make the PTM score comparable to the probability-based MASCOT score, we compute

the Post-Translational Modifiation (PTM) score in the same way:

PTM Score = -10-log (P(k))
The algorithm calculates the PTM scores for all possible phosphorylation site combinations
within a given phosphopeptide sequence by successively placing the number of phospho
groups (known from the measured peptide molecular weight) on each serine, threonine or
tyrosine in turn. To calculate the probability of phosphorylation for all candidate sites, all
phosphorylation site combinations showing a PTM score higher than the maximum score
minus five are taken into account. The value of five was chosen on an empirical basis as it
turned out to retain most of the possible phosphorylation sites in the peptide. For each
candidate combination i with a PTM score PTM;, the corresponding probability p; is given to
all assigned phosphorylation sites. Subsequently, the p value for the phosphorylation
probability of each candidate site is calculated as the sum of probabilities p; of all candidate

phosphopeptides and normalized, so that the sum of all resulting site-specific localization
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probabilities is equal to the number of phosphorylation events in the specified peptide. Table
3.1 gives an example of phosphorylation site combinations along with the resulting

localization probabilities of each candidate site.

Example: peptide QNSSSSDSGGSIVR (2 pSTY) Eps8

PTIMScore P| QN S S S S D S GG S IVR
30.40 0.22 0.22 0.22
30.40 0.22 0.22] [0:22
29.64 0.19 0.19 0.19
29.64 0.19 0.19 0.19
29.64 0.19 0.19 0.19
1.00 0.79 0.22 0.44 0.19 0.37

Table 3.1: Derivation of localization probabilities of candidate phosphorylation sites in a given
phosphorylated peptide

The table shows a specific example of the calculation of site-specific localization probability values (doubly
phosphorylated peptide of Eps8). The five top scoring possibilities for phosphorylation have PTM scores from
30.4 to 29.64. Corresponding probabilities (P) reflect the proportional probability for each phosphorylation site
combination and add up to one. They are assigned to the two phosphorylation sites in each case. Next,

probabilities are summed up for each candidate site.

To deduce the exact localization of phosphorylation events within a given phosphopeptide
along with the corresponding probabilities from the given spectrum, the algorithm was
embedded into the PHOSIDA upload system. It was first applied to a large-scale study in
which we investigated the phosphoproteome in human cells exposed to EGF stimulation
(Chapter 4.6.1.1.1) (Olsen et al., 2006). For the first time, we were able to identify the
phosphoproteome in a site-specific way without manual derivation of the exact position of
phosphorylation sites. To test the algorithm for a defined set of phosphopeptides with known
phosphorylation sites, we analyzed synthetic phosphopeptides available in our laboratory and
phosphopeptides derived from tryptic digests of bovine caseins by LC-MS on the LTQ-
Orbitrap. The phosphorylation sites on caseins are highly validated in the literature and were
taken from Thingholm et al. (Thingholm et al., 2008). All phosphopeptides harbored at least
one non-phosphorylated residue. We first calculated the PTM scores for all phosphopeptide
spectra and subsequently determined phosphorylation site probabilities. In addition, we tested

the PTM scoring on the dataset from a previous large-scale study on the phosphoproteome
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identified in pheromone treated yeast cells. Gruhler et al. identified 700 phosphopeptides, for
which phosphorylated residues were manually assigned (Gruhler et al., 2005).

3.3 Results

In the case of synthetic peptides, 27 out of 37 phosphorylated residues were correctly assigned
with a p value of 1, with no false positive assignment. For all phosphorylation sites with a
probability value of 0.75 or higher, which we define as class I sites, precision was still 94%.
Figure 3.1a presents the corresponding precision-recall curve. ’Recall’ is the proportion of
true positives to the sum of true positives and false negatives, whereas ’precision’ describes
the number of true positives out of all predicted positives. Briefly, an ideal precision-recall
curve would stay at a precision value of 1 (only true positives) until all true cases have been
‘recalled’ (recall value of 1, see also Chapter 7). Furthermore we plotted the recall, also
termed as ‘sensitivity’, against given PTM-localization probability cutoffs (Figure 3.1b). The
test on the basis of manually evaluated phosphopeptides determined in yeast cells yielded
92% precision relating to the correct assignment of class I phosphorylation sites, which satisfy
a localization probability of 0.75. The corresponding precision-recall curve and the correlation
diagram reflecting the sensitivity of the algorithm at different probability cutoffs are

illustrated in Figure 3.1c and Figure 3.1d respectively.
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Figure 3.1: Validation of the PTM algorithm on the basis of synthetic phosphopeptides, phosphopeptides
derived from tryptic digests of bovine caseins (a, b) and phosphopeptides identified in pheromone treated

yeast cells (c, d)
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3.4 Conclusion

Several algorithms have been described in the literature for protein identification by searching
a sequence database using MS data. The probability based Mascot scoring algorithm assigns
peptide sequences to MS/MS spectra and enables the user to judge whether the result is
statistically significant. It has all the advantages of probability based approaches but is
primarily optimized for the identification of peptide sequences. However, proper
posttranslational modification location is also critical because many biological processes are
regulated through the modification of specific residues. The entire concept of the
phosphorylation site database (Chapter 4) also demands proper phosphorylation site
placement. Therefore, we have developed a probability-based approach to calculate the
likelihood of matching given ions to specific phosphorylation site locations. The algorithm is
embedded in the PHOSIDA upload system (Chapter 4.2) and allows the calculation of
localization-specific probability for each phosphorylation site within the given data set. The
algorithm was originally described in the study of the human phosphoproteome upon EGF
stimulation (Chapter 4.6.1.1.1) and enabled the automated site-specific investigation of high
throughout phosphodata for the first time. We routinely apply the algorithm to all large scale
studies of phosphoproteomes in our laboratory. It was originally implemented to derive site
specific localizations of phosphorylation events on the basis of results from our open source
MS computational platform MSQuant (www.msquant.org). Meanwhile, we have integrated
this probability methodfully into the MaxQuant software, the current computational
proteomics platform of our laboratory. To evaluate the method we analyzed the accuracy on
the basis of known and manually validated phosphorylated peptides. The main finding of this
test was that more than 90% of the phosphorylation sites were predicted correctly using a 0.75
cutoff relating to the resulting localization probability. The evaluation — including precision-
recall curves - established that our approach is very accurate and efficiently extends the
fragments-to-sequence-assignment from the peptide level to the residue level. We define
phosphorylation sites, which satisfy a localization probability of 0.75, as ‘class I sites’. The
integration of the described probability-based algorithm in the automated Phosida upload
process allows the site specific investigation of identified phosphoproteomes. It is
indispensable for the large scale analysis of various constraints of phosphorylation events
including evolution (Chapter 9). In addition, the Phosida web application shows the exact
localization probability of each determined phosphorylated site enabling web users to validate
the residue specific assignment of posttranslational modification events within specified

peptide sequences (Chapter 4.2.5).
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Chapter 4

PHOSIDA - Phosphorylation Site
Database

PHOSIDA, the phosphorylation site database, integrates thousands of high-confidence in-vivo
phosphosites identified by MS-based proteomics in various species (Gnad et al., 2007). It
comprises phosphoproteomes of various organisms ranging from bacteria including
Escherichia coli and Bacillus subtilis to eukaryotes including yeast and human. It contains
around 7000 phosphorylation sites that have been determined in human cancer cells upon
EGF stimulation (Olsen et al., 2006). Since the objective of many of our phosphostudies was
to quantify a given in-vivo phosphoproteome using SILAC (Chapter 2.1), PHOSIDA makes it
possible to check phosphorylation changes after certain treatments such as growth factor
stimulation and kinase/phosphatase inhibition by small molecules. On the protein level,
PHOSIDA includes general information such as sequences, isoelectric points (pls), motifs,
active sites, binding sites, domains, gene ontology classifications and associated literature.
These annotations are mainly derived from the SwissProt database, which is cross-linked to
our database containing peptide identifications. On the phosphosite level, PHOSIDA provides
information about matching kinase motifs, MS specific identification scores including
localization probabilities, predicted secondary structures, and the residue conservation within
a multitude of different species. Importantly, the underlying environment allows the
automated integration of determined phosphoproteomes along with corresponding annotations
from various sources. In addition, further information relating to evolution and structure are
derived via a self-constructed pipeline. To establish a consistent database management,
integrated projects have to be preprocessed and transformed in a uniform manner. This
ensures that various projects can be compared in a very simple and fast way. Moreover, it
allows the mining of phosphoproteomes of various organisms in a standardized way. The
whole process constitutes a KDD process (Chapter 1).

Chapter 4.1 gives an overview of the general process of knowledge discovery in databases.
Chapter 4.2 provides insights into the basic concepts of PHOSIDA. The application of the
KDD process on MS specific datasets and its implementation into PHOSIDA are described in
chapters 4.3 — 4.6. The description of the practical implementation of the KDD process is
rounded off by a discussion (Chapter 4.7).

25



4.1 General Process of Knowledge Discovery in Databases (KDD)

The major reason that data mining has attracted a great deal of attention in the information
industry in recent years is due to the wide availability of very large amounts of data and the
pressing need for turning such data into useful information and knowledge (Han, 2000).
However, the abundance and diversity of data, coupled with the need for powerful data
analysis tools, has been described as a 'data rich but information poor' situation. The fast-
growing, tremendous amount of data that are collected and stored in databases has far
exceeded human ability for comprehension. Thus data analysis including data mining can
uncover important data patterns not accessible to direct inspection.

The widening gap between data and information demands a systematic development of data
mining tools turning data tombs into 'golden nuggets' of knowledge. For example,
classification of biological data such as protein folds, association rules detecting metabolic
pathways and clustering of protein structure are essential data mining applications to gain

information (Mitchell, 1997).

The KDD process is dedicated to derive knowledge from large scale datasets generated by the
application of high throughput mass spectrometry technologies. The actual KDD process is
applied to data that have already been processed via the typical MS data workflow and thus
consist of assigned and quantified SILAC peptides (Chapter 2.1). These data are validated by
manual inspection or by the specification of specific cutoffs governing the false positive rate.
This rate of false positives can be estimated by the inclusion of reversed protein sequences in
the database used for the identification yielding a ‘decoy database’ (Elias et al., 2005). The
overall process can be defined as an integration process. It presents the preliminary data flow

before the integration into the database, the first step of the actual KDD process (Figure 4.1).

The KDD process is frequently equated with the term ‘data mining’ and this is definitely the
most important and essential procedure. However, it is only one step in the whole process of
knowledge discovery: Data integration and data selection (Chapter 4.3) are the first steps of
KDD, followed by data transformation (Chapter 4.4). Only then can data mining methods
(Chapter 4.5) be applied (Figure 4.1). The final step is the evaluation of the obtained results
linked to validation and presentation of the gained knowledge (Chapter 4.6). Frequently one
has to go some steps backward in the KDD process, if the evaluation of the results is not

satisfactory.
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Figure 4.1: Process of KDD applied to mass spectrometry determined (phospho-) proteomes

4.2 Basic Concepts of PHOSIDA

PHOSIDA was developed to retrieve and analyze phosphosites from large-scale high-
confidence phosphoproteomics experiments including quantitative data that describe the
response of biological systems to various treatments. Thus it is the first phosphorylation site
database to explicitely store quantitative data of site-specific phosphorylation changes.
PHOSIDA also matches kinase motifs to phosphosites and illustrates the structural
environments and conservation of phosphorylated residues.

As mentioned above, the final result of an MS based proteomics approach is the identity of
peptides. The mapping of determined peptides to protein entries is challenging, as peptides
can match to several protein sequences. This problem is addressed in PHOSIDA by a many-
to-many mapping between phosphopeptide sequences and protein entries in the sequence
database.

One of the fundamental strengths of PHOSIDA lies in the high quality of the in vivo data
contained in the database and in the very large size of its in vivo data sets. PHOSIDA presents
the most comprehensive database storing not only phosphosites identified in eukaryotic cells,

but also phosphosites detected in prokaryotic cells.
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4.2.1 Core Database Management of Phosphorylation Sites

As the primary goal of PHOSIDA is not only to make identified phosphorylation sites
available to the public community, but also to derive biological context relating to
phosphorylation events in the cell, there are two different PHOSIDA versions: One database
scheme is designed to allow automated mining of phosphosets (Chapter 4.2.1.1), whereas the

other database scheme is constructed for web usage (Chapter 4.2.1.2).

4.2.1.1 Database Schema adapted for Mining

The integration of phosphorylated peptides into PHOSIDA (version 1.1) is based on validated
data processed via MASCOT (Perkins et al., 1999) and MSQuant (Andersen et al., 2003). The
MASCOT software assigns measured spectra to peptide sequences (identification process),
whereas the MSQuant software quantifies identified peptides. The final result is a list of
detected peptides along with a variety of features such as charge status, MASCOT
identification scores and quantitative data. Furthermore, all theoretical combinations of
modifications of each peptide are listed along with posttranslational modification (PTM)
scores as calculated by a probability based algorithm (Chapter 3). This combinatorial listing
provides the basis for the derivation of the probability for each residue to be phosphorylated
within the given peptide.

For each peptide, its sequence, number of phosphorylated residues, Mascot score, PTM score,
and quantitative data are uploaded to the PHOSIDA database. In some cases, the experimental
design requires the inclusion of additional attributes such as cellular localizations. The
PHOSIDA 1.1 upload also comprises a procedure that assigns each peptide to a specific
protein entry of the corresponding database. The assignment of peptides that occur uniquely
in one protein of the given database is unambiguous, however, peptides that occur in several
proteins are assigned to the protein that shows the highest total number of identified peptides
(this is the most likely protein form to be present in the measured proteome). The many-to-
one assignment between peptides and corresponding proteins is essential to derive general
patterns from non-redundant data. Many-to-many relationships between non-unique peptides
and proteins as used for the online application (Chapter 4.2.1.2) would artificially increase the
number of identified proteins yielding misleading results. The database relation ‘peptides’
contains all identified peptides distinguishable by their sequence and number of
phosphorylations (Figure 4.2). Each peptide entry is uniquely indexed by the ‘pep id’
identifier. Thus, the ‘pep id’ presents the primary key of this relation (Chapter 2.2). Usually,
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many measured instances correspond to a single peptide entry due to varying charge states,
duplicate experiments, etc. The database relation ‘peptides sub’ contains each measured
entity. Its primary key is termed ‘subpep _id’. Since there are several instances associated with
one peptide, the relationship between ‘peptides’ and ‘peptides sub’ is one-to-many. The
attribute ‘pep_id’ serves as foreign key linking the table ‘peptides sub’ to ‘peptides’.

The SILAC technology allows the quantitation of peptides in three different conditions using
light, medium and heavy amino acid labelling (Chapter 2.1). If one is interested in the
intensity distribution in more than three different conditions, one has to combine multiple
SILAC based experiments. Two SILAC experiments can compare five conditions because
one common point is needed for normalization. To combine quantitative data from parallel
SILAC experiments, we assign abundance levels of the top scoring peptide instances observed
in one specified experimental condition to the associated peptide entry. Combined
quantitative data are integrated into the relation ‘peptides’, whereas quantitative data for each

instance are integrated into the relation ‘peptides_sub’.
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Figure 4.2: Basic database schema of PHOSIDA 1.1

29



In addition to the integration of phosphorylated peptides, associated phosphorylation sites are
uploaded, too (Figure 4.2). For each peptide instance, the corresponding phosphorylated
residues are stored in relation ‘sites’. Each entry contains the position of the phosphosite in
the protein sequence, the localization probability, and the type of amino acid. Thus, there are
many instances for each peptide instance in the case of multiple phosphorylation and
ambiguous site phosphorylation. This results in a one-to-many relationship between the
database relations ‘peptides sub’ and ‘sites’. As apparent from the database schema (Figure
4.2), PHOSIDA database version 1.1 is peptide based. Consequently, quantitative data of
peptides are directly assigned to all residues that are phosphorylated within each peptide

instance.

In contrast to PHOSIDA version 1.1, the second database version (1.2) is predominantly
phosphorylation site based. The upload process is also different: The upload process of
database version 1.1 is based on a single result file generated by MSQuant. In contrast, the
upload process of database version 1.2 is based on several result files generated by the new
computational proteomics environment, MaxQuant. The result files list identifies peptides and
phosphorylated residues separately. Each file is cross-linked via unique identifiers. Therefore,
the concept of the MaxQuant result files already reflects the logical schema of the database
(Figure 4.3). Furthermore, calculated localization p-values of phosphosites and the correct
protein assignments are already provided by MaxQuant. The idea of a site-specific database
schema is primarily reflected by the fact that quantitative data are directly assigned to
phosphorylation sites in a sophisticated manner: The quantitation of posttranslationally
modified residues is based on taking the median of the quantitative data of all peptides
containing the given modified residue. Hence, the database relation ‘sites’ is the most
comprehensive table including the maximum localization probabilities observed in all
corresponding peptides, assigned protein identifiers, amino acid types, quantitative data, and
further features. For each phosphosite, the top scoring peptide instance is stored in the relation
‘peptides_sub’. The database relation ‘sites’ is linked to ‘peptides sub’ via ‘subpep id’
identifiers. The relationship between the tables ‘peptides’ and ‘peptides sub’ is the same as
the one of PHOSIDA version 1.1.

The initial upload of identified phosphorylated peptides is followed by a number of further

processes that contribute to the KDD process.
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Figure 4.3: Basic database schema of PHOSIDA 1.2

4.2.1.2 Online Database Schema

The concept of the database schema providing the basis for the web applications is different
from the one of the PHOSIDA versions described in Chapter 4.2.1. The transformation
between the two database schemes is carried out automatically. Depending on the underlying
quantitation software one can distinguish between a peptide-based online database schema
(Figure 4.4) and a site-based online database schema. The only difference between the two
online database schemas is that quantitative data are assigned to peptides in the one scheme,

whereas quantitative data are attributed to phosphorylated residues in the other scheme.

In contrast to the database schemes designed for mining, the online database schemas are
based on the principle of many-to-many protein-peptide assignments. Hence, each peptide is
assigned to all proteins that contain the given peptide sequence. This relationship is reflected
in the database relation ‘idmatch [project id]’, as it assigns each identified peptide to all
corresponding proteins. Therefore, each protein potentially shows a multitude of peptides

stored in relation ‘idpower [project id]’. The correct peptide-protein assignment is
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predicated on the assumption that the higher the total number of assigned peptides, the higher
the probability that the given protein was identified.

Peputes IBdieC iy peptides sub_[project id]
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localization pep_id sites_[project id]
phosnum a subpep_id
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2 d pvalue

d e aa

e score

e e L

Figure 4.4: Online database schema

4.2.1.3 Integration of additional Biological Data

In addition to the upload of identified phosphosites along with their corresponding peptides,
further biological data sources have to be integrated, in order to fulfil the requirements of
mining and to enable web users to derive a biological context for any protein of interest.

It is obvious to include general protein features that are outlined in the database that was used
for the peptide identification. For example, in the case of the International Protein Index (IPI)
database (Kersey et al., 2004), the downloadable files contain general descriptions, features
such as pl and molecular weight, and gene symbols besides the sequence of each protein.
These attributes are integrated into PHOSIDA (Figure 4.5). They are not only used for
mining, but also for a more comprehensive illustration of each phosphorylated protein on the
web. Therefore, the inclusion of additional protein characteristics is added to the database that

is required for mining and to the online database as well.
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Figure 4.5: Integration of additional protein features into the PHOSIDA database

The Gene Ontology (GO) annotation is another valuable data resource (Ashburner et al.,
2000). The GO project is a collaborative effort to address the need for consistent functional
descriptions of gene products in different databases. The three organizing principles of GO
are molecular function, biological process and cellular component. Many gene products are
associated with a multitude of functions, processes, or cellular localizations. The Gene
Ontology Annotation (GOA) database (Camon et al., 2004) provides GO annotations to
protein entries of the IPI database, for example. Its inclusion requires only one additional

database relation (Figure 4.6).

ipi_go__[version]
ipi_id
go_id

Figure 4.6: Integration of GO annotations into the database

In addition, the protein database SwissProt provides a high level of annotation ranging from
the domain structure of a protein to post-translational modifications and corresponding
literature (Bairoch and Apweiler, 1996). Therefore, it constitutes an excellent resource to gain
deeper insight into biological context. In particular, the integration of annotated post-

translational modifications makes it possible to determine if an identified phosphorylation site
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is novel. However, the inclusion of protein annotations from various databases presents a
challenge, since the annotations might be based on different products of the same gene. For
example, the epidermal growth factor receptor precursor protein has only one entry in
SwissProt, which can be uniquely identified by its accession number ‘P00533°. In contrast,
the IPI database contains four different entries for the same protein due to various splice
forms (IPI00018274, IP100221346, I1P100221347, 1P100221348). Thus, comprehensive
sequence mappings between various databases are required to combine protein annotations of
various sources.

To align protein sequences of various databases, we used the basic local alignment search tool
BLAST (Altschul et al., 1990). It allows rapid sequence comparisons and creates alignments
that optimize a measure of local similarity. BLAST searches for high scoring sequence
alignments using a heuristic approach that approximates the Smith-Waterman algorithm
(Smith and Waterman, 1981) but is much faster. It is the most popular bioinformatics tool in
use today due to its speed and accuracy. To align protein sequences, we used the software
BLASTP. It is optimized for the comparison of amino acid sequences. The automated
comparisons between corresponding protein sequences of various databases result into the
database relation ‘map [organism] [dbl] [db2]’, which stores the generated alignments

(Figure 4.7).
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Figure 4.7: Database integration of several databases such as IP1 and SwissProt requires comprehensive

sequence alignments for a merged protein annotation
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4.2.2 Kinase Motif Matching

Protein phosphorylation levels are essential for understanding the basic principles of
signalling pathways in both normal and diseased cell states (Chapter 1) (Pawson and Scott,
2005). The derivation of consensus sequences (motifs) for protein kinase sites of
phosphorylation is essential to estimate the ‘kinase affiliation’ of substrates. Consensus
sequences are primarily deduced from in-vitro incubations of kinases with a combinatorial
peptide library and ATP. In addition, there are many algorithms that extract motifs in-silico.
Among these, an iterative statistical approach proved to be the best performing method to
identify protein phosphorylation motifs from large-scale data sets (Schwartz and Gygi, 2005).

With verified kinase motifs in hand, one is in principle able to determine the kinase
responsible for a given protein substrate phosphorylation of interest. However, previous
experience has shown that one has to check the matching of consensus sequences on the site
level, as many proteins are substrates of different kinases and participate in different
pathways. Therefore, for each phosphorylated site, the matching consensus sequences are
illustrated in PHOSIDA (Chapter 4.2.5). PHOSIDA checks 34 different consensus sequences
of various human kinases such as casein kinase and glycogen synthase kinase against each

site.

Besides the estimated assignments of kinases for each phosphorylated residue of interest, the
inclusion of kinase motif matches makes it possible to check the over- and
underrepresentation of matching consensus sequences in a given large-scale dataset of
phosphorylation sites (Chapter 4.5.1). The significance of motif matches provides insight into

the overall kinase distribution that initiated the phosphorylation of specified substrates.

4.2.3 Structural Investigation of Phosphoproteomes

Previous studies have already shown that phosphorylation sites are mainly located in parts of
proteins without regular structure (Dunker et al., 2002; lakoucheva et al., 2004). To verify this
observation on the basis of our large-scale studies and to enable users to investigate the
structural context of each phosphorylation site of interest (Chapter 4.2.6), we performed large-
scale solvent accessibility calculation as well as secondary structure prediction employing the
SABLE 2.0 program (Wagner et al., 2005). The predicted structural constraints of each
residue of a given phosphorylated protein are stored in the database relation
‘structures_[project id]’ (Figure 4.8). Besides the predicted secondary structures and solvent
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accessibilities scaling from 0 (low accessibility) to 9 (high accessibility), the corresponding
residue specific validation scores are stored. An inner join with the database relations that
contain the identified phosphorylation yields the virtual relation ‘sites_structure [project id]’.

It comprises the structural context of each identified phosphorylation site.

sites_structure [project id]

structures_[project id]

otein_id pro
p:msitit;n protein_id
secstruct -
secstruct
secstruct_val secstruct_val

accessibility

accessibility
essibility va

Figure 4.8: Adding structural context to the PHOSIDA database

4.2.4 Evolutionary Conservation of Phosphoproteomes

The generation of high-throughput data of posttranslationally modified proteomes of various
species enables us to answer the following questions relating to the conservation of
phosphorylation events: Did an identified phosphorylated protein of a given species such as
human already occur in distantly related species such as bacteria? Is there a highly conserved
protein that is orthologous to a specified phosphorylated protein, and, if so, is the homologous
protein also phosphorylated in the other organism? Can one observe any differences relating
to the conservation on various levels ranging from the evolutionary preservation of the protein
to the conservation of the specified phosphorylated residue? These questions and further basic
issues relating to conservation can be answered by the application of appropriate algorithms
that try to find the highest similarity between protein sequences by aligning them in a fast and
accurate way: To find homologous proteins, we used BLASTP (Chapter 4.2.1.3) (Altschul et
al., 1990). We defined proteins to be homologous, if the resulting E-values reflecting the
significance of sequence similarities were lower than 107, which is a frequently used cutoff to
determine homology. To distinguish proteins that are homologous within one species
(paralogs) and proteins that are homologous between species (orthologs), we used a two-

directional BLASTP approach (O'Brien et al., 2005).
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Since BLAST is a heuristic approach that approximates the Smith-Waterman algorithm
(Smith and Waterman, 1981), it creates sequence alignments that show a very high local
similarity. If two given sequences do not also show high overall sequence similarity, the
resulting sequence alignment will not cover the entire lengths of both sequences. Hence, we
used the software Needle (Rice et al., 2000), which is based on the Needleman-Wunsch
algorithm (Needleman and Wunsch, 1970). It generates global alignments that cover the total
lengths of protein sequences. The only disadvantage is the processing time, as the method
involves dynamic programming. However, it is the most accurate method to align sequences
globally and is guranteed to find the best global alignment.

Therefore, the combination of BLASTP, which approximates homology relationships between
proteins, and Needle, which generates global alignments of homologs, is an appropriate
method to measure the degree of conservation of phosphorylation on various levels. The
classified phylogenetic relationships between phosphorylated proteins and proteins of other
selected species covering the phylogenetic tree representatively are stored in database
relations ‘orthologs [project id]’ and ‘alignments [project id]’ (Figure 4.9). The relation
‘orthologs [project id]‘ indicates the homology of each phosphoprotein (no homology,
paralog, or ortholog), whereas relation ‘alignments [project id]’ stores the global aligned
sequences along with the overall sequence similarity and the accession number of the

homologous protein.

orthologs_[project_id]
protein_id
coli
flexneri
pestis

alignments_[project_id]
protein_id
hit_id
alignedseq_query
alignedseq_hit
seqsimilarity
hitorganism

Figure 4.9: Database integration of phylogenetic relationships and global alignments of homologous

proteins

The inclusion of derived phylogenetic relationships along with the resulting global protein
sequence alignments allows the investigation of the conservation of phosphorylation events

on various levels ranging from the overall protein level to the specific phosphorylated residue.
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Given high-throughput data of phosphorylated proteomes, one is then able to draw global
conclusions about the conservation of phosphorylation events.

Furthermore, the internet implementation of PHOSIDA enables web users to check the
conservation of any phosphorylated protein or phosphorylated site of interest (Chapter 4.2.5).
A detailed report of the results regarding the evolution of phosphorylation is described in
Chapter 9.

4.2.5 General Web Application of PHOSIDA

The web user is able to search for any protein of interest within a specified organism for
phosphorylation sites. In the cases of mouse and human, it is possible to search via IPI
accession number, SwissProt identifier, gene symbol, protein name, peptide sequence, protein
sequence or any substring that matches with the description of a given protein.

For each protein, the user is presented with general features such as isoelectric point (pl),
molecular weight, sequence, and description at the protein level in addition to corresponding
GO accession numbers, which are directly hyperlinked to the detailed description of the
annotation at the Gene Ontology website (www.godatabase.org) (Figure 4.10 upper panel). In
addition, a hyperlink to the Reactome database (Joshi-Tope et al., 2005) is provided, if the
specified protein is annotated in Reactome (www.reactome.org). As Reactome is a curated
knowledgebase of biological pathways, the phosphorylation events can then be associated to
candidate pathways. Furthermore, annotated protein features such as active sites, binding
sites, domains, and signal sequences are derived from the SwissProt database (Chapter
4.2.1.3) and displayed, when clicking the ‘motifs/domains’ button.

In the case of the human proteome, protein assignments were based on the IPI database,
which is cross-referenced with the SwissProt database by PHOSIDA. Entries of both
databases that correspond to the same proteins were aligned to derive the exact positions of
these protein features. Already annotated phosphosites derived from SwissProt are mapped to
the IPI sequences in the same way and listed when clicking the ‘sites (other sources)’ button.
The aligned regions can be visualized via ‘check alignment’ buttons (Figure 4.10 lower

panel). Furthermore, corresponding literature references are provided.
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Figure 4.10: Illustration of general protein features in PHOSIDA
PHOSIDA shows the description, sequence, weight, gene ontology annotation of each phosphoprotein (upper
panel). In addition, PHOSIDA displays annotated domains, binding sites, active sites, and signaling regions

along with the aligned sequences between the IPI database and the SwissProt database (lower panel).
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Moreover, all phosphorylated sites that have been identified in the project are displayed on the
left panel. This presentation allows to check immediately whether phosphorylation sites occur
within known domains or other sequence regions potentially associated with signaling such as
binding sites are phosphorylated. In such cases, one can link the phosphorylation event to its
potential functional consequences. If the localization probability is lower than 0.75, it is
enclosed in round brackets. When users click on any of the displayed phosphosites, the
surrounding sequence and matching kinase motifs are shown (Figure 4.11).

Often, several phosphopeptides covering the same phosphosite are measured by mass
spectrometry. These peptides are also listed along with their localization probabilities, Mascot
scores, and PTM scores for each instance. Depending on the experimental design, PHOSIDA
contains quantitative data including time-resolved data, where applicable, of each
phosphopeptide. Figure 4.11 shows corresponding ratios and clustered time courses as
illustrated in PHOSIDA. These data are listed separately for peptides as a function of their
sequences, degrees of phosphorylation, and further categories, such as experimental design or
fraction (for example nuclear or cytosolic). When moving the mouse over the ‘occurences’
button, protein entries sharing the same phosphopeptide of interest are listed along with the
number of unique peptides that have been measured in one experimental project. Each peptide
is color coded according to the protein assignment: if the peptide sequence is marked in green,
the selected protein has the maximum number of peptides in comparison to all other proteins
that contain the same peptide. If the protein assignment is ambiguous because of another
protein with the same number of identified peptides, the peptide is highlighted in blue. Red
indicates that other proteins exceed the number of detected peptides in comparison to the
selected phosphoprotein. Each feature of PHOSIDA is explained in the help menu, which is
accessible via the ‘background’ menu or via clicking on the ‘question mark’ button at the

page of interest.

Furthermore, as depicted in Figure 4.11, the predicted structural attributes of each
phosphorylation site are visualized in PHOSIDA. The solvent accessibility is classified into
‘low’, ‘medium’, and ‘high’. Secondary structures are classified into ‘loop/turn’, ‘a helix’,

and ‘P sheet’.
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Figure 4.11: Phosphorylation site specific information in PHOSIDA

The evolutionary section of PHOSIDA displays the results of the homology searches (Chapter
4.2.5) using an approximate phylogeny of all investigated species (Figure 4.12 upper panel).
Taxonomic divisions are displayed on-screen when the cursor is pointed at the phylogenetic
tree. If the selected phosphoprotein is not homologous to any protein of a particular organism,
that organism is highlighted in red. If the similarity between the sequence of the
phosphoprotein and its homologous protein was the most significant one in both directions,
the given organism is highlighted in green. A higher similarity between the sequence of the
homologous protein and another protein of the organism of the selected phosphoprotein
suggests paralogy, indicated in blue. The full global alignment between the given
phosphoprotein and the orthologous protein of a specific organism is shown when the web
user clicks on the organism button (Figure 4.12 upper panel). In addition, all phosphorylation
sites that have been measured in our laboratory are listed on the right side. If users click on a
phosphorylation site of interest, the conservation status of the selected phosphorylation site is
indicated in red or green, whith green indicating conservation (Figure 4.12 lower panel). For
conserved phosphosites, the alignment of the surrounding sequence is displayed. With
alignments between the phosphorylation site of interest and protein sequences from 70

organisms, PHOSIDA enables users to check the conservation of each site of each protein of
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interest. Furthermore, the conservation of matching motifs can immediately be checked. This
enables the user to distinguish conserved motifs around the phosphosite from other motifs that
also match the phosphosite but are not conserved and may thus be less likely to be

functionally important or have appeared only recently in evolution.
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Figure 4.12: lllustration of phylogenetic relationships and global alignments between phosphorylated
proteins and homologous proteins (upper panel) and phosphosite conservation in PHOSIDA (lower panel)
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Besides the online display of phosphorylation sites on different levels ranging from the
protein level to the residue level under various aspects including conservation,
phosphorylation changes, and structural constraints, PHOSIDA also contains other sections
that are explained in detail in other chapters of this study:

With thousands of phosphorylation sites in hands, we next trained a support vector machine
(SVM) that distinguishes between positive and negative instances on the basis of various
features such as the surrounding amino acid sequence. Thus, the SVM is capable of predicting
phosphorylation sites in-silico. This enables researches to detect possible phosphorylation
sites for any protein of interest. This application of the PHOSIDA predictor can be used as the
first step in planning an experiment. The implementation, accuracy, field of application, and

web usage of the prediction method are subject of Chapter 7.

Finally, we used measured proteomic data to annotate the genome. This approach provides
insight not only into the encoding of phosphorylated residues on the genome, but also enables
to connect the Phosida databases with genome databases such as the EnsEMBL database. The
inclusion of the online genome annotation section in PHOSIDA, the direct linkage to genome
databases, and the integration of PHOSIDA annotated proteomic data in genome databases

via the Distributed Annotation System (DAS) source technology are discussed in Chapter 8.

4.2.6 Administration Tool

To facilitate the administration and management of the phosphorylation site database along
with its associated mining methods, we created three web based administration tools:

The main maintenance application allows the automated upload of large-scale
phosphorylation datasets to the database version of PHOSIDA that is appropriate for the
application of mining tools (Chapter 4.2.1.1) as well as to the online database (Chapter
4.2.1.2). To upload the data of a specific project, the only required inputs are the file paths to
the resulting MSQuant or MaxQuant files, the corresponding protein database, which already
has to have been uploaded, and optional filtering criteria relating to probability scores.
Furthermore, it is possible to upload sequences, gene symbols, accession numbers,
descriptions, and molecular weights of proteins from various public databases such as IPI
(Kersey et al., 2004), SwissProt (Bairoch and Apweiler, 1996), FlyBase (Grumbling and
Strelets, 2006), TIGR (Kirkness and Kerlavage, 1997), NCBI (Benson et al., 2008), and SGD
(Cherry et al., 1998) on the basis of given FASTA files. Then, the entries of different

databases can be automatically cross-referenced via BLAST alignments (Chapter 4.2.1.3)
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resulting in additional automatically generated database relations. Biological data such as
Gene Ontology annotations and SwissProt annotations can also be uploaded in an automated
way. Another important feature of any sequence based database is the update to the most
current database release. To compare the results of various experiments within one species,
the data have to be ideally predicated on the same database release. Therefore, the database
management tool includes methods to reassign all phosphorylated peptides and
phosphorylated sites to a newer database release. Besides the general database management, it
is also possible to use various mining methods on the database directly. For example, this
allows the derivation of significant patterns relating to kinase assignments and the creation of
comprehensive tables that provide an overall overview of the large-scale data.

Another administrative web based tool (Figure 4.13) is specialized on the derivation of
phylogenetic relationships and the creation of global alignments between phosphorylated
proteins and homologous proteins of more than 70 other species (Chapter 4.2.4). Moreover, it
integrates predicted structural features (Chapter 4.2.3) and generates and integration data that
are relevant for the evolutionary and structural analysis of phosphorylated proteins. It also
creates input files that are used to train the support vector machine that distinguishes between
phosphorylated and non-phosphorylated residues taking their primary sequence environment,
structural context, and conservation into account (Chapter 7).

Finally, the purpose of the third management tool is the application of various extensive

analyses that assess the conservation on various levels ranging from the protein level to the

phosphorylation site level.
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Figure 4.13: PHOSIDA administration tool
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4.3 Data Integration and Data Selection of various
Phosphoproteomes

As already pointed out in Chapter 4.1, the initial steps of the Knowledge Discovery in
Databases Process (KDD) are selection and integration of data. Besides the required
integration of public protein databases and other data that are relevant to derive a biological
context (Chapter 4.2.1.3), the most essential datasets for my thesis were large-scale
phosphosets generated in our laboratory (Chapter 4.6). Since we are very confident that our
mass-spectrometry based technology assures very high accuracy at a false discovery rate
lower than 1% for peptide identification, we rely primarily on high throughout data measured
in our group. To assess the novelty of our data and to check the overlap with other datasets,
we also integrated phosphorylation sites that are annotated in SwissProt. As our group is
working on a variety of projects on different organisms, our data presents an optimal resource
to gain insight into basic biological principles ranging from the activation of certain pathways

upon different treatments to the derivation of general constraints on phosphorylation events.

4.4 Data Transformation of Preprocessed Data

According to the general ‘knowledge discovery in databases® (KDD) process data selection
and integration is followed by data transformation (Ester, 2000) into a readable format for
data mining. In general this includes standardizing values, deleting irrelevant attributes, or
converting numerical values into discrete values. Since we ignored irrelevant attributes in the

data integration process, the task of attribute deletion can be omitted.

In order to verify the overlaps of large-scale data between different projects, for example,
joins of relevant relations are required. This is implemented by a single SQL statement
demonstrating the strength of database techology. In order to avoid duplicate data, it does not
make sense to create a ‘real’ relation for each join. The solution to this problem is given by
the idea of ‘views’. If each ‘join’ statement yielded a real relation, data redundancy would
increase. Avoiding data redundancy is the main purpose of virtual relations. Thus, to derive
the number of shared identified peptides between different experiments, for instance, one has
to join the two corresponding tables that store the peptides identified in a certain experiment.
This results in the creation of a virtual relation that contains peptides, which are common in

two given experiments (Figure 4.14).
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Figure 4.14: Database join of two relation instances (‘peptides A’, ‘peptides B’) containing detected

peptides of a given project results into the creation of a virtual relation (‘overlap’)

To deduce the overlaps of phosphoproteomes between different organisms, we used the
database relations that store evolutionary information such as homology between species for
each integrated phosphorylated protein (Chapter 4.2.4). This simple way of dealing with data

once stored in a consistent format once again underlines the benefit of databases.

As discussed in Chapter 4.5, the PHOSIDA database schema that stores non-redundant data
such as 1:1 assignments between peptides and proteins (Chapter 4.2.1.1) is the one used for
data mining of phosphoproteomes. On the one hand, we implemented mining tools in the
language C# including statistical tests such as the y’-tests to check significant
overrepresentations of matching kinase motifs. These self coded methods rely on a consistent
database schema with categorical requirements for data storage and applications including
mining tools to derive significant patterns from the managed data. Another prime example is
the training of the support vector machine (Chapter 7). The implementation of organism-
specific predictors requires consistent database storage to obtain positive instances, namely
phosphorylation sites along with their surrounding sequence, as training sets. On the other
hand, we used already established public mining tools that are freely available to the
community (Chapter 4.5). The software Cytoscape (Maere et al., 2005; Shannon et al., 2003)
determines whether certain GO categories describing cell components, functions, or
biological processes are significantly overrepresented in a given set of proteins in comparison
to the whole gene ontology annotation of a specified species. Although established mining
methods are relatively easy to handle and user friendly, the required input files have to satisfy
certain format specifications. Such format stringencies demand conversions of accession
numbers, combinations of various annotation sets and further formatting. Hence the
PHOSIDA administration tool (Chapter 4.2.6) includes various C# classes that enable the
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database administrator to create differently formatted files that are required as input for these
mining tools (Figure 4.15). Underlying joins between relations storing protein annotations and
relations containing phosphoproteome data and accession number conversions, for example,

are executed automatically.

HasiuBap

pep_id (PK)

protein_id
sequence

Figure 4.15: The PHOSIDA administration tool allows the conversion of accession numbers, joins on
various annotation tables, or specified formatting of files required as input for certain mining methods

such as Cytoscape

Besides the mining of integrated large scale data, the web application of PHOSIDA also
demands an appropriate transformation of uploaded data. One prime example is the
unification of different project specific subdatabases into one comprehensive organism
specific database (Figure 4.16). Because of regularly updated versions of various databases,
the spectrum-to-peptide assignments are often based on different database releases. For
example, the identification of the human phosphoproteome identified upon epidermal growth
factor stimulation (Chapter 4.6.1.1.1) was based on the human IPI database version 3.24,
whereas the study of cell cycle dependent phosphorylation dynamics of kinases in human
cells (Chapter 4.6.1.1.2) was based on IPI version 3.13. To unify the two subdatabases into
one consistent database comprising both detected phosphoproteomes in human, it is
indispensible to transfer the given data to a common database version. This is also required to
determine the overlaps between large scale studies. Therefore, we reassigned the detected
phosphorylated peptides to a more current database version, resulting in new peptide-to-
protein assignments. Along with the amino acid sequence of a database entry the positions of
identified phosphosites within the protein sequence can also change. In very few cases (less
than 1%), identified peptide sequences cannot be reassigned to a more updated database
release. Although the number of peptides that are not present in a more current database

version is miniscule, this shows that databases do loose correct protein sequences between
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versions. With phosphoproteomic data assigned to a common database, it is possible to
compare various phosphorylation changes observed under different treatments together using
the PHOSIDA web page. The reassignment of peptides to an up-to-date database release was
also essential to unite the different subdatabases annotated in the former version of the

proteome database MAPU resulting in the new release of MAPU 2.0 (Chapter 5).
Finally, the reassignment of identified peptides to another database was also one of the main

underlying principles of the genome annotation study using the genomic database EnsEMBL

as for assigning peptides to gene transcript entries (Chapter 8).
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Figure 4.16: To unify various large scale data, the identified phosphopeptides have to be reassigned to a

shared and more current database version
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4.5 Data Mining in the Compiled Database

Data mining can be defined as the application of efficient algorithms that detect valid patterns
in the data automatically (Han, 2000; Mitchell, 1997). There is nothing new about seeking
patterns in data: Farmers seek patterns in crop growth, hunters seek patterns in animal
migration behavior, and football managers seek weaknesses in the opponent team. However,
we are overwhelmed with data. It has been estimated that the amount of data stored in the
world’s databases doubles every 20 months. Many decisions in our life are recorded in
databases ranging from buying milk in the supermarket to ordering a ‘Hed Kandi’ music CD
via the internet. The entrepreneur then tries to find opportunities deriving patterns from the
customer’s behavior and using this for business advantage. Association rules, for example, are
used in ‘market basket analysis’. On the basis of a priori algorithms, this data mining
approach tries to find out which items are frequently bought together using the cash scanner
records. The derived information then suggests certain shop design variants. The world wide
web has also contributed decisively to the avalanche of information. Probably much of the
entire human knowledge is stored in databases and illustrated in the internet. Another example
is the field of biotechnology itself: As outlined in Chapter 1, high throughput technologies
such as the microarrays measuring the expression levels of thousands of genes and mass
spectrometry determining thousands of proteins quantitatively produce a vast amount of data.
The same tendency can be observed in genome sequencing, as a new completely sequenced
eukaryotic genome is in the news nearly every month. These trends underline the need for
automated approaches that extract information and knowledge out of these raw diamonds
(data). Regarding phosphorylation events in the cell, statistical tests can be used to determine
significantly overrepresented proteins that contribute to a certain biological process. As an
example, we used the Cytoscape Plugin BINGO (Maere et al., 2005) to find overrepresented
gene ontology annotations including cell component localization in a given set of
phosphorylated proteins. Another statistical method, named Motif-X (Schwartz and Gygi,
2005) and already introduced above, extracts significantly overrepresented consensus
sequences from a set of sequences. Thus, this iterative statistical approach is suited to extract
potential kinase motifs from a set of sequences surrounding determined phosphorylation sites.
Furthermore, the Ka/Ks calculator also provides several statistical approaches ranging from
the Nei and Gojobori calculation to the Goldman and Yang approach to derive the selective
pressure on proteins (Zhang et al., 2006). Besides the application of such freely available
mining tools, we designed various statistical mining methods implemented in C# and

accessible via the PHOSIDA administration tool, as described above. These self implemented
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tests comprise the y* tests to check the statistical significance of frequencies of identified
phosphosites that match with a given kinase motif, and the Fisher test to test variances in
conservation between phosphorylated residues and non-phosphorylated counterparts. Applied
statistical tests are described in Chapter 4.5.1.

Clustering is another data mining method that we applied to our phosphoproteomic datasets
(Chapter 4.5.2). The main idea of clustering is to divide a given set of data into several groups
(clusters). In each cluster, assigned members should be as similar to each other as possible,
whereas members of different clusters should be as dissimilar as possible. With quantitative
data describing phosphorylation changes after treatment, the clustering approach was applied
to distinguish phosphorylation sites that are immediately affected by a specified stimulus and
those whose response follows in the latter parts of the flow providing negative feedback.
Support Vector Machines are part of the arsenal of ‘machine learning’ and they try to
distinguish two given datasets according to their features, which are transformed in a high
dimensional vector space, with each dimension reflecting a certain feature. Creation of a
separating hyperplane the divides up the two given datasets and enables classification of new
objects according to their position in the vector space relative to the hyperplane. This
classification approach was used to predict phosphorylation sites (Chapter 4.5.3) and it is
described in detail in Chapter 7.

4.5.1 Statistical Tests

The Chi Square Test is a very simple and basic method to check whether two given
distributions are significantly different (independent) in a statistical sense. Thus, the y-test is
often used to estimate whether a given distribution correlates with the expected one. In the
case of contingency tables with one degree of freedom, y* is the difference between the
expected frequency and the observed frequency squared and divided by the expected

frequency:

xz __ (observed frequency - expected frequency)’
expected frequency

The formula makes clear that a high y* value reflects a high discrepancy from the expected
frequency. Hence, this statistical approach can be applied to determine whether a given kinase
motif matches significantly with the identified phosphorylation sites. To assess the number

phosphosites matching an expected motif, we estimated the chance for each kinase motif to
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match with a given phosphosite according to the amino acid composition of the motif and the
relative frequencies of each amino acid in the entire specified proteome. Another application
is the proportion of homologous phosphoproteins to non-homologous phosphoproteins in
comparison to their non-phosphorylated counterparts.

The y*-test is a simple test exemplifying mathematical methods, which are integrated in the
PHOSIDA analysis pipeline among other statistical tests. It can be applied to any given
phosphorylation site dataset via the PHOSIDA administration interface.

In contrast to the application of these statistical tests, the PHOSIDA analysis pipeline also
comprises methods that create specified formatted files, which can be used as input for
advanced statistical methods such as Motif-X (Schwartz and Gygi, 2005). This iterative
statistical approach tries to derive consensus sequences that are significantly overrepresented
in a given set of phosphorylation sites. A peptide data set is used for background probability
calculations, and a set of detected phosphorylation sites along with their surrounding six
amino acids is used as positive set. Both sets are converted into position weight matrices,
where each cell presents the frequency of a certain amino acid on a specified position around
the phosphosite. Based on the two resulting matrices, a binomial probability matrix is created
reflecting the significance of each residue on a certain position. On the basis of a greedy
recursive search, highly correlated position/residue pairs are then derived. After deleting all
instances that match with the extracted motif, the method searches iteratively again until no
significant consensus sequence can be found. We used this statistical method to extract

potential kinase motifs from identified phosphorylation sites of various species.

Cytoscape is another open source bioinformatics software platform that we used to gain
knowledge from the derived data. It is a platform for visualizing biological pathways and
molecular interaction networks. We used the Java-based tool BiNGO (Biological Network
Gene Ontology tool) to determine which gene ontology categories are statistically
overrepresented in a set of identified phosphorylated proteins (Maere et al., 2005). BiNGO is
implemented as a plugin for Cytoscape. Using various statistical tests such as the binomial
test and the hypergeometric test, BINGO tries to find significantly overrepresented functions,
biological processes, and cellular component localizations comparing the given set of
phosphorylated proteins with the whole proteome of the investigated species. Again, the
application of BiNGO is directly connected to the PHOSIDA analysis pipeline providing all

required input data in the specified formats.
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4.5.2 Clustering

‘Clustering is the process of grouping the data into classes or clusters so that objects within a
cluster have high similarity in comparison to one another, but are very dissimilar to objects in
other clusters’ (Witten, 2005).

The objects’ attribute values are usually transformed into a hyperdimensional feature space in
order to calculate distance measures reflecting their dissimilarity. Figure 4.17 illustrates a two
dimensional clustering resulting into three different groups (clusters). Each axis reflects a
certain attribute value of a given object. The three different clusters are obvious by visual
inspection. This visual grouping is highly intuitive because of the human brain’s highly
evolved capacity for image and pattern recognition. Clustering analysis has been widely used
in applications ranging from market analysis to microarray gene expression data analysis. The
application of clustering to large scale datasets containing objects that can be described by
multiple features has led to the design of a large number of different clustering approaches.
Hierarchical methods, grid-based methods, density-based methods, or partitioning methods
solve the problem of grouping given objects. Each approach has its advantages and

disadvantages depending on the set of data.

We applied the Fuzzy C-Means (FCM) algorithm (Futschik and Carlisle, 2005), a partitioning
method, in order to group the quantitative data reflecting phosphorylation changes upon
treatment including certain stimuli. The main idea of k-Means clustering is to group a given
set of objects into k clusters maximizing the cluster similarity measured in regard to the mean
value of the objects in a cluster. It proceeds as follows: First, it randomly selects k objects,
each representing a cluster’s center. The remaining objects are assigned to the most similar
center out of k centers by the calculated feature distance. It then derives the new mean of each
cluster iteratively, until no new cluster assignments can be calculated. FCM is a variant of the
K-Means approach and allows membership of data elements in multiple clusters. Thus, FCM
offers clustering tolerant to noise by variation of the fuzzification parameter m, which limits
the contribution of ill-behaved profiles to the clustering process.

We applied the FCM approach to group profiles reflecting the phosphorylation dynamics
upon EGF stimulation (Chapter 4.6.1.1.1). Consequently, each phosphorylated peptide could
be assigned to a cluster representing upregulation or downregulation at a certain time point.
We found optimal partitioning with six clusters and a fuzzification parameter of two. The
corresponding resulting clusters of each identified phosphopeptide are also illustrated in the

PHOSIDA online database (Figure 4.17 right panel).
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phosphorylation dynamics on the basis of quantitative data (right panel) in PHOSIDA.

45.3 Classification

Data classification is a two-step process. At first, a model is built on the basis of a set of
objects. Each object has certain attribute values, which are transformed into a feature vector
space. The objects’ attributes are essential to determine dissimilarities between different
samples by appropriate distance measures. As the category of each sample is known, the
creation of a model describing the differences between classes is named ‘supervised learning’.
The training samples of known classes are used to build a model described by mathematical
formula or decision trees, for instance. To evaluate the accuracy of the learning approach, one
usually selects a subset of the training samples. The classifications of these test samples,
which are substracted from the training set, are used to test the performance of classification

decisions by the learned classifiers.

One usually takes 90% of the specified samples for training and 10% for testing. To avoid
scewing the evaluation of the classification performance by random selections, one applies
this performance test iteratively (n fold cross validation), where each step comprises another
random selection of training and test samples. If the performance of the classification
approach is acceptable, one can use the trained model to classify uncategorized future

samples.
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Hence, classification is very similar to prediction. However, classification is used to predict
discrete or nominal values. The species assignment of given organisms is a typical
classification problem and the answers are either “dog” or “cat”. In contrast, prediction can be
viewed as the construction of a model to assess the (continuous) value ranges of an attribute
that a given sample is likely to take on. However, classification and prediction are very
similar in their purpose.

Both prediction and classification have numerous applications including selective marketing,

medical diagnosis, and protein docking prediction.

We applied a classification approach in order to predict, whether a given protein’s residue is
likely to be phosphorylated or not. As consensus sequences are the basis for kinase specific
phosphorylation, the surrounding sequence of a given residue is obviously decisive to predict
the likeliness to be phosphorylated. With our determined phosphorylation sites from large-
scale phosphoproteomics, we trained a support vector machine to classify unlabeled samples
(residues) into phosphorylated or unphosphorylated amino acids. The main principle of
support vector machines is described in Chapter 7.

We also tried to find additional features besides the raw sequence that enhance to the accuracy
of classification. For example, the phosphorylation process suggests that phosphorylation
targets (residues) have to be accessible to kinases, thus solvent accessibility is a potential

parameter to consider.
As this machine learning approach was applied to various datasets resulting in multiple

trained models that enable prediction of phosphorylation sites in various species, its

implementation and application is discussed in detail in Chapter 7.
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4.6 Phosphoproteome Analysis

4.6.1 Basic Phosphoproteome Analysis

This section describes general features of different phosphoproteomes identified in various
species. It comprises the distribution between individually identified phosphosites, the
coverage of phosphorylated kinases, and the novelty of identified phosphorylation events.
Additionally, the following chapters (4.6.1.1 — 4.6.1.5), which are divided according to the
investigated organism, also describe project specific results such as phosphorylation changes

at different stages of the cell cycle (Chapter 4.6.1.1.2).

4.6.1.1 Homo sapiens

The central organism, in which we are interested in, is our own species. One of the principal
ideas of research is to learn more about our own organism and its biological functioning. The
discovery of essential processes in our body not only leads to a better understanding of the
basic biological principles, but also helps to prevent or cure diseases caused by malfunctions
of biological processes. Traditionally, many experiments in the phosphorylation field were
conduced outside of cells (in-vitro). However, in-vitro conditions might not reflect the real
events in a living cell. Therefore, most of our experiments are based on in-vivo measurements
of different cell lines. (Note that this is the biochemical definition of ‘in-vivo’. In biomedicine,
in-vivo is frequently reserved for animal or human work.) We observed phosphorylation
changes in HeLa cells, a human cell line, upon epidermal growth factor stimulation (Chapter
4.6.1.1.1) (Olsen et al., 2006). In addition, we also combined kinase-selective affinity
purification with quantitative mass spectrometry to analyze the cell cycle regulation of protein

kinases in the same human cell type (Chapter 4.6.1.1.2) (Daub et al., 2008).

4.6.1.1.1 Phosphorylation Dynamics induced by EGF stimulation

As outlined in Chapter 1, the cell constantly receives signals from its surroundings to which it
has to respond appropriately. Growth factors, for example, are essential signals as they are
capable of stimulating cellular differentiation and cellular proliferation and regulate a variety
of cellular processes (Hunter, 2000; Pawson and Nash, 2003). In our study we used integrated
phosphoproteomic technology combining phosphopeptide enrichment, high-accuracy

identification, and stable isotope labelling by amino acids in cell culture (SILAC) (Ong et al.,
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2002) to quantify changes in phosphopeptide levels and to investigate the global in-vivo
phosphoproteome and its temporal dynamics upon growth-factor stimulation. The epidermal
growth factor (EGF) acts by binding to the EGF receptor (EGFR) on the cell surface and
stimulating its intrinsic protein-tyrosine kinase activity initiating a signal transduction
cascade. This results in a number of biochemical changes ranging from cell proliferation to

the increased expression of certain genes including the EGFR.

The application of triple-encoding SILAC for monitoring activation profiles, SCX and TiO,
chromatography for phosphopeptide enrichment (Gruhler et al., 2005; Larsen et al., 2005),
and high-accuracy mass spectrometric characterization allows the investigation of the
phosphoproteome in considerable depth. The approach is completely generic for identification
of phosphorylation events.

Serum-starved HeLa cells labelled with L-arginine and L-lysine, L-arginine-U-">C¢'*N, and
L—lysine—2H4, or L—arginine—U—13C6—15N4 and L—lysine—U—13C6—l5N2 were treated with EGF for
0 min, 5 min, and 10 min. A second, identically labelled set of HeLa cells was treated with
EGF for 1 min, 5 min, and 20 min. Then cells were combined, lysed and enzymatically
digested. After the strong-cation exchange chromatography of digests, TiO, enrichment of

phosphopeptides was performed (Figure 4.18).

Next, MS2 and MS3 spectra were merged into a single peak-list file and searched against the
human IPI database. To establish a cutoff score threshold for a false-positive rate of less than
one percent, we performed a MASCOT search against a concatenated target/decoy database
(Elias et al., 2005) consisting of a combined forward and reverse version of the IPI human
database including known nonhuman contaminants such as porcine trypsin. All spectra and all
sequence assignments made by MASCOT (Perkins et al., 1999) were imported into MSQuant.
The assignments of individual phosphosphorylation sites were automatically scored using the
algorithm implemented in the PHOSIDA upload process (Chapter 3). The identified
phosphorylation sites along with additional information including matching kinase motifs and
structural constraints were then uploaded to the PHOSIDA database as described in Chapter
4.2.1. In addition, transformed profiles reflecting phosphorylation dynamics upon EGF
stimulation were clustered as described in Chapter 4.5.2. We classified the derived clusters
into ‘increasing’, ‘decreasing’ and ‘not changing’ and uploaded the clustering assignments to

PHOSIDA.
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Figure 4.18: Quantitative and Time-Resolved Phosphoproteomics using SILAC

This quantitative, phosphosite-specific approach to detect phosphorylation dynamics upon
EGF stimulus on the basis of SILAC-labelling yielded the identification of 6600
phosphorylation sites from 2244 proteins (Olsen et al., 2006).

We grouped potential phosphorylation sites into three categories depending on their PTM
localization score and motifs. In the category with highest confidence in localization (class 1),
the given site had a localization probability for the phospho-group of at least 0.75. In class II,
the localization probability is between 0.25 and 0.75, but these sites also had to match a
known kinase motif. Class III sites had the same localization probabilities as class II but did
not match any of the kinase motifs. According to this categorization, we determined 5674
class I sites, 2256 class II sites, and 1818 class III sites on mainly single phosphorylated
peptides (Figure 4.19). In PHOSIDA, identified phosphorylation sites of a given protein of

interest, which do not satisfy the class I criteria, are indicated in brackets (Figure 4.11).

We determined the distribution between individually identified sites to be 4901 pS, 670 pT,
and 103 pY class I sites (Figure 4.19). Thus, our data set suggests that the distribution of pS,
pT, and pY is 86.4%, 11.8%, and 1.8%, respectively.
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The proportion of detected phosphoserines and phosphothreonines is in concordance with the
one observed in previous studies (Hunter, 2000). However, the percentage of determined

phosphotyrosines is much higher (1.8%) than reported previsoulsy (0.05%).
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Figure 4.19: (A) Distribution of single, doubly, triply, quadruply and higher phosphorylated peptides. (B)
Distribution of phosphorylation sites by amino acid

To determine the novelty of our dataset, we compared it with all annotated human
phosphosites in the SwissProt database that were based on experimental data (3262 sites in
version 48.0) and also included four previous phosphoproteomes in our analysis.

We found that more than 90% of our sites were novel with respect to SwissProt. In total, 691
(37%) out of 1890 phosphorylation sites from the four previous studies that could be mapped
to IPI version 3.13 (Chapter 4.4) were also found in our study. PHOSIDA lists all sites
determined from the other large-scale studies or annotated in SwissProt (accessible via the
corresponding ‘sites from other sources’ button (Figure 4.20)). As discussed in Chapters
4.2.1.3 and 4.4, all SwissProt entries were mapped to the IPI database via BLAST, in order to

ensure accurate comparisons .
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Figure 4.20: (A) Overlapping phosphorylation sites between our set and SwissProt (top) and the large

scale datasets by Gygi and co-workers, Aebersold and co-workers, Stover et al.,, and Amanchy et al.

(bottom); (B) PHOSIDA: Illustration of sites determined by other mass spectrometric approaches

In addition, we investigated the phosphorylation dynamics upon EGF stimulus: EGF
signalling begins with activation of the EGF receptor and extends to a cascade of downstream
kinases and other effector proteins. We derived four clusters with upregulated
phosphopeptides and two with downregulated ones (Chapter 4.5.2). Cluster A, for example,
embraced phosphorylation sites that can be classified as signal initiators involved in
membrane-proximal signalling events and are enriched in phosphotyrosines. The resulting
temporal cluster profiles are illustrated in Figure 4.21. As highlighted in Chapter 4.5.2, the
online interface of the PHOSIDA database shows the corresponding clustering of each

identified phosphopeptide.

Notably, around 77% of phosphorylated proteins contained at least two peptides that were
detected to show different phosphorylation dynamics upon EGF stimulation on the basis of
our clustering approach. This suggests that phosphoproteins serve as signal integrators.
Interestingly, transcriptional regulators made up a large class of regulated proteins. We
identified 26 phosphosphorylated transcription factors, with 33 novel phosphorylation sites

showing diverse phosphorylation dynamics.
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Figure 4.21: Clustering of dynamic phosphorylation profiles.
The y axis is logo transformed and normalized. Each member (temporal profile) is color coded according to its

membership value ranging from close membership (magenta) to distant membership (green) (Olsen et al., 2006).

4.6.1.1.2 Quantitation of the Kinome across the Cell Cycle

As highlighted in Chapter 1, protein kinases are essential regulators of cell signalling that
modulate each other’s functions and activities through site-specific phosphorylation events
(Manning et al., 2002b; Shi et al., 2006). Their low abundances make it difficult to identify
them from complete lysates. Thus, to increase the analytical sensitivity for protein kinases,
they have to be enriched from total cell extracts prior to MS analysis. We applied an
experimental strategy dedicated to enrich phosphorylated peptides from kinases to analyze
protein kinase regulation in cell cycle progression (Daub et al., 2008).

The cell cycle comprises the progression of events leading to the replication of the eukaryotic
cell. It can be divided into mitosis (M phase) including the nuclear and cytoplasmic division
followed by interphase consisting of four phases: During the G; phase the cell starts to grow
and synthesis of enzymes required for the next phasis — the S phase — is initated. In S-phase

DNA is replicated while rates of protein synthesis are slow except for histones, which are
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needed for packaging of the DNA. During the G, phase, the cell prepares for mitosis by

producing microtubules, for instance.

s
Figure 4.22: Schematic illustration of the cell cycle

In our study, we combined efficient kinase enrichment with quantitative mass spectrometry
using SILAC. The basic experimental design is similar to the one applied for the identification
of the human phosphoproteome upon EGF stimulation (Chapter 4.6.1.1.1), as it is also based
on the same cell type and mass spectrometric technologies including SCX chromatography,
TiO; peptide enrichment, and the SILAC labelling technique (Daub et al., 2008; Gruhler et
al., 2005; Larsen et al., 2005; Ong et al., 2002). The statistical analysis of detected peptides
and quantitation were also analogous.

Two populations of HeLa cells were quantitatively labelled by growing them in medium
containing either normal arginine and lysine or their heavy isotopic variants. The cells were
synchronized in early S phase by a double thymidine block in suspension culture. One of the
populations was harvested at this point, whereas cells of the second population were released
into a mitotic arrest. Then, pooled lysates from M and S phase cells were loaded onto a series
of affinity columns displaying different immobilized kinase inhibitors with distinct kinase
binding profiles to enrich protein kinases. We applied both gel electrophoresis followed by
tryptic digestion on one of the kinase enriched subfractions and SCX chromatography to the
kinase enriched fractions. The resulting peptide fractions were then subjects to
phosphopeptide enrichment on TiO, beads. The combination of gel-based and gel-free MS
separation strategies with phosphopeptide enrichment increases the overall number of
detected phosphorylated peptides.

The statistical analysis of assigned peptide sequences and quantitation similar as described
above (Chapter 4.6.1.1.1) and employed MASCOT, MSQuant, and various methods provided
by the PHOSIDA administration tools (Chapter 4.2.6). This proteomic approach enabled us to
quantify protein kinases from S and M phase arrested human cells and to elucidate cell-cycle

dependent protein kinase regulation.
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We uniquely identified and quantified phosphorylated peptides from 1377 proteins (Daub et
al., 2008). The identified peptides harbored 3144 phosphorylation sites (83.5% pS, 14.2% pT,
2.3% pY) (Figure 4.23A). About 14% of all analyzed proteins were protein kinases: 219
different members of the human protein kinase superfamily were detected to be
phosphorylated in our study. The phosphorylated kinases embraced 1007 phosphosites that
could be assigned to serine (77.5%), threonine (17.2%), and tyrosine (5.3%) residues with
high confidence. The vast majority of these detected phosphorylation sites in protein kinases

have not been reported earlier.
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Figure 4.23: (A) Distribution of phosphorylation sites by amino acid. (B) Overlapping phosphoproteins
between this study (green) and the previously reported study (blue) (Chapter 4.6.1.1.1). (C) Identified
protein kinases marked in the kinome tree as illustrated in Chapter 1. The identification of at least two-
fold differentially regulated phosphopeptides (PPs) in M versus S phase derived protein Kinases is
indicated by different colors.

We determined the overlap between this study and the investigation of the human
phosphoproteome upon EGF stimulation (Chapter 4.6.1.1.1) and found that 508 (37%) out of
1377 phosphoproteins were also identified in the other large scale phosphoproteome analysis
(Figure 4.23B). An even lower overlap was observed on the site level, as 546 (17%) out of
3144 phosphosites had also been measured in the EGF study. Interestingly, more than half of
all kinase phosphopeptides were upregulated at least two-fold in mitotically arrested HelLa

cells. In comparison, only 10% showed increased S phase abundance. At the protein level,
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regulation by factor two or more was observed for less than 10% of all protein kinases. If only
SILAC phosphopeptide ratios are considered, apparent changes in phosphorylation could
actually be due to a change in protein amount. Therefore, for each phosphorylated peptide the
online application of PHOSIDA shows whether the given quantitative data describing the
phosphorylation regulation during cell cycle could be normalized by the corresponding
protein ratios or not. This information was stored as a special ‘feature’ attribute in the
‘peptides_sub’ relation (Chapter 4.2.1). Overall, 75% of all detected protein kinases contained
at least one cell cycle regulated phosphopeptide (greather than two-fold upregulated in S
phase or M phase). Strikingly, even for intensely studied cell cycle kinases including PLK1
and CDC2, a large number of new phosphorylation sites were found, demonstrating the high
analytical sensitivity of our experimental approach. However, our study also covered a large
number of other proteins that were quantitatively evaluated. For example, several regulatory
kinase subunits such as different members of the cyclin family showed cell cycle dependent

phosphorylation patterns.

In this study the spectra of measured phosphopeptides were also integrated into PHOSIDA
because the applied MSQuant version enabled to create and automically save an image file of
each spectrum. The corresponding file names can be derived from the MSQuant result files.
The corresponding image file names are another ‘feature’ tuple of each entry (peptide object)

stored in the ‘peptides sub’ database relation.

The database storage of associated spectra and the visualization of these spectra enable web
users to validate both identification and quantitation of each identified peptide. In PHOSIDA,
the corresponding ‘spectrum’ buttons appear at the result page listing all detected peptides
that contain the selected phosphorylation site (Figure 4.24). Besides the linkages to spectra,
the cell cycle dependent phosphorylation regulation, Mascot scores, PTM scores, and further

information are illustrated as discussed in Chapter 4.2.5.

63



ApHosioa Bpuosion

nhosphorylation site database nhosphorylation site database

IPI00029263 (P16591) FER < - (7
o O mettdomans st ok sowes) _references ]

Figure 4.24: For large scale phosphorylation studies using MSQuant, PHOSIDA provides linkages (A) to
an integrated online spectrum visualizer (B).

4.6.1.2 Mus musculus

The mouse is one of the most important model organisms in biology and medicine. It is by far
the most commonly used laboratory mammal because of its small size, short reproduction
time and short evolutionary distance to human. The genome sequence of this organism
suggests a relatively close phylogenetic relationship with human (Bradley, 2002). Thus, it is a
good model for a better understanding of basic mammalian biology, human disease and
genome evolution. In our study, we investigated the phosphoproteome of the mouse liver
using SILAC and high resolution mass spectrometry (Chapter 4.6.1.2.1) (Pan et al., 2008). In
addition, we investigated whether our mass spectrometric methods for proteome and
phosphoproteome analysis can also be applied to solid tumors (Chapter 4.6.1.2.2) (Zanivan et
al., under review). As tumor model, we used mutant mice carrying skin melanomas.
Conclusions drawn from these two experiments are applicable to other mammals including

human.

4.6.1.2.1 Mouse Liver Phosphoproteome upon Phosphatase Inhibition

The liver is a multifunctional organ, involved in important metabolic functions, synthesis of
blood plasma components and detoxification of xenobiotics among many other roles. Liver

cancer, liver cirrhosis and insulin resistance of the liver are among the most common diseases
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associated with malfunctions of the liver. Many diseases are also caused by malfunctioning
kinases that aparrently phosphorylate certain cellular substrates. The contrary mechanism, the
dephosphorylation of substrates, is carried out by phosphatases (Chapter 1). Thus,
phosphorylation regulating the activity of protein substrates is a reversible modification and
its level is determined by the interplay of kinases and phosphatases, which add and remove
the phosphogroups, respectively. Kinase-substrate specificity is often determined by the
amino acid sequence surrounding the phosphosite (kinase motif). Therefore, the surrounding
amino acid composition can be used to predict phosphorylation sites in-silico as described in
Chapter 7. In contrast, phosphatases, especially serine/threonine phosphatases, more
commonly rely on their targeting subunits to achieve specificity (Remenyi et al., 2006).
Hence, phosphatases are more difficult to study than kinases resulting in a less comprehensive
knowledge about phosphatases and their associated substrates. However, phosphatases play
key roles in signalling and are frequently involved in diseases. Around 30 protein tyrosine
phosphatases have been implicated in cancer, for example. The most common protein
phosphatase inhibitors are vanadium compounds. Inhibiting the activity of phosphatases
during cell lysis boosts the level of phosphorylation of their substrates.

In our study, we SILAC labelled the mouse Hepl-6 cell line, in which one population was
treated with a mixture of phosphatase inhibitors (Pan et al., 2008). Thus, resulting quantitative
data represented the increase of phosphorylation level caused by phosphatase inhibition on the

basis of control versus phosphatase strategy.

We applied an in-depth, quantitative phosphoproteome analysis using high resolution MS-
based proteomics to determine phosphorylation sites that are affected by phosphatase
inhibition. The experimental set up is again similar to the one applied to human HeLa cells
stimulated with EGF (Chapter 4.6.1.1.1). Trypsin digestion, SCX chromatography and
phosphopeptide enrichment by TiO, beads as used as preliminary steps before MS
measurements using LTQ-FT or LTQ-Orbitrap followed by the data integration into
PHOSIDA (Gruhler et al., 2005; Larsen et al., 2005; Ong et al., 2002). The main difference is
the phosphatase treatment of one population labelled with ‘heavy’ arginine and lysine (Argl0
and Lys8), whereas the other cell population was labelled with ‘light’ arginine and lysine and

left untreated.
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In total, we sequenced and identified 3430 phosphopeptides from 1808 phosphoproteins.
Based on our Posttranslational Modification Scoring algorithm (Chapter 3), we identified
4253 phosphorylation sites with high confidence (class I sites). Out of these unambiguously
identified phosphosites, 79.6% were serines, 9.3% were threonines, and 1.8% were tyrosines.
The distribution of phosphorylated residues is similar to the one observed in human cells
(Chapter 4.6.1.1). In addition, the frequency of singly and multiply phosphorylated peptides
was also similar to the one found in human: The majority of phosphopeptides were singly
phosphorylated (75%).

We identified 51 phosphorylated transcription factors, 121 phosphorylated protein kinases,
and 28 phosphorylated phosphatases. In this project, we also determined the dynamic range of
phosphopeptide detection. Figure 4.25A shows that the detected phosphopeptides follow a
Gaussian intensity distribution on a logarithmic x-axis reflecting the intensity. It illustrates the
numbers of untreated phosphorylated peptides that were measured within the range of a given
intensity bin. It also shows that the distribution after phosphatase inhibitor treatment shifted
by a factor of two relative to the untreated population. Interestingly, only 27% of the peptides
where induced more than two-fold by the phosphatase treatment (Figure 4.25B). Some
phosphorylation sites (8%) even decreased after phosphatase inhibitor treatment.

The most severe effects by phosphatase inhibition were observed for tyrosine phosphorylation
sites. Overall, 70% of phosphotyrosines were upregulated at least two-fold. For
phosphothreonine 41% of the sites were upregulated by this factor and for phosphoserine the
number is 26%. This is a surprisingly low number considering that the investigated inhibitors
are thought to block most phosphatase activity.

Again, the implemented cross reference between the IPI database used for the assignments of
spectra to peptide sequences and the annotation rich SwissProt database (Chapter 4.2.1.3)
made it possible to determine the overlap of phosphosites identified in our study and
phosphosites reported in SwissProt. In total, we found 864 phosphoproteins in our study that
have already been shown to be phosphorylated according to SwissProt annotation (Figure
4.25C). Therefore, 169 proteins were shown to be phosphorylated by our study for the first
time. This is a striking overlap, given that there are more than 50000 protein entries in the
mouse IPI database. However, our dataset has substantial novelty on the site level, since more
than half (1428) of 2590 class I sites, whose assigned proteins are annotated in SwissProt, are

novel (Figure 4.25D).
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Figure 4.25: Mouse liver phosphoproteome

(A) Number of phosphopeptides identified at certain intensity bins. Both phosphopeptides from the untreated
population (light) and phosphopeptides from the phosphatase inhibited population (dark) are Gaussian
distributed on a log x scale. (B) Number of phosphopeptides that show a given intensity change after
phosphatase inhibition. (C) Overlap of phosphorylated proteins found in this study (blue) and phosphorylated
proteins annotated in SwissProt. (D) Overlap of phosphosites identified in our analysis (blue) and phosphosites

reported in SwissProt

4.6.1.2.2 Solid Tumor Phosphoproteome

Cancer is often caused by a disregulation of signals and tumors are characterized by multiple
aberrations in their signalling machinery (Dhillon et al., 2007; Hanahan and Weinberg, 2000).
This results in increased replicative potential, decreased apoptosis, growth factor indepence
and metastatic capability. Thus, kinases and phosphatases - as key regulators in signalling -
play prominent roles in diseases such as tumor development. It suggests the presence of
specific underlying phosphorylation patterns during tumor development. Understanding the
molecular mechanisms including phosphorylation events that cause deregulated signalling
would help in understanding many aspects of tumorigenesis.

In our study, we applied MS-based proteomics analysis to identify the phosphoproteome as
well as the proteome of solid tumors in mice (Zanivan et al., in press). As tumor model we

used TG3 mutant mice carrying skin melanomas. These mice ectopically express Grml, a
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glutamate receptor, which results in the constitutive activation of the Erk pathway.

Consequently, they develop melanomas several months after birth.

For the phosphoproteome analysis we enriched phosphopeptides with strong cation exchange
chromatography (SCX) followed by titansphere enrichment or with TiO, only (Gruhler et al.,
2005; Larsen et al., 2005; Ong et al., 2002). Digested proteins were analyzed using an LTQ-
Orbitrap mass spectrometer. Using Mascot, MaxQuant and the PHOSIDA environment
(Chapter 4.2.6), the identified phosphorylation sites were uploaded to the PHOSIDA database.
In addition, the proteomic data were uploaded to the MAPU database (Chapter 5). The
workflow was similar to the EGF signalling study described above but no SILAC quantitation
was performed. Furthermore, we also used the detected phosphorylation sites to train a mouse
specific phosphosite predictor (Chapter 7).

Because of the close evolutionary relationship to human and because of the fact that Grm1 is
also expressed in a subset of human melanomas, this study is also of clinical interest. For the
first time, it reveals the phosphorylation pattern of a solid tumor and therefore it might extend
our knowledge of underlying deregulated signalling in cancer.

The main purpose of this study was to investigate if advances in instrumentation, algorithms
and preparation techniques applied to the other studies make the solid tumor
phosphoproteome amenable to such an analysis. Indeed, the analysis of the phosphoproteome
of the tumour tissue of TG3 mice proves this point: Combining data from SCX-TiO,
enrichment and TiO, chromatography led to the identification of 5250 phosphopeptides,
belonging to 2250 proteins. In total, we identified 5698 class I phosphorylation sites (90%
phosphoserines, 9% phosphothreonines, 1% phosphotyrosines). These relative abundances are
similar to the ones observed after phosphatase inhibition (Chapter 4.6.1.2.1) and the ones
reported for a human cancer cell line (Chapter 4.6.1.1). We also compared the identified
phosphoproteome with published gene expression profiling studies of melanoma (Hoek,
2007). Many of these genes were found in our melanoma proteome and phosphoproteome.
The characterization of the functional impact of the phosphorylated proteins was performed
by gene ontology analysis. Using Cytoscape, the results from the calculation of over- and
underrepresented gene ontology categories describing molecular functions, biological
processes and cellular component localization is described in Chapter 4.6.2.

Furthermore, we found evidence for the constitutive activation of the MAPK and mTor
signalling pathways in melanoma. It has been reported that these pathways play major roles in

the development and progression of melanoma (Lasithiotakis et al., 2008; Meier et al., 2005).
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We found phosphorylation sites from the mTor pathway, which regulates protein translation
through the phosphorylation of p70 S6 kinase 1 (p70S6K), and elF-4E binding protein
(4EBP1), for example. In addition, we found Tsc2 phosphorylated at Serine 981, which is a
target of Akt and induces the translocation of Tsc2 to the cytosol (Dan et al., 2002). This

mechanism is thought to be responsible for mTor pathway activation (Cai et al., 2006).

4.6.1.3 Drosophila melanogaster

Martin Brookes mentioned in his book about Drosophila that ‘a glass of milk and a piece of
rotting banana is enough in order to jolly 200 fruitflies along for 14 days’ (Brookes, 2002).
This statement describes the relatively easy treatment of flies in the laboratory. Robust
viability in laboratory environments and a short generation time of about two weeks along
with a lifetime of 50-60 days are substantial arguments for categorizing Drosophila
melanogaster as a ‘model organism’. Other important arguments for the Drosophila modle
are the fact that its genome is compact (four chromosomes) and completely sequenced as well
as its homology to humans: Around 60% of fly genes show parallels in the human genome
(Adams et al., 2000). Many conclusions drawn from observations based on fly cells including

those gained from cell lines have turned out to be also valid for human.

Large-scale site specific Drosophila phosphoproteome studies were performed in Kc cells by
Aebersold et al. (Bodenmiller et al., 2007). Gygi et al. characterized the phosphoproteome of
fly embryos (Zhai et al., 2008). Both studies report more than 10000 identified
phosphorylation sites indicating that the size of the fly phosphoproteome is comparable to the
human phosphoproteome (Chapter 4.6.1.1).

However, the above studies were purely qualitative. Here we applied a functional quantitative
phosphoproteomic study in Drosophila eclucidating the biological impact of the protein
tyrosine phosphatase Ptp61F on the fly phosphoproteome using RNA interference. We also
established a high quality basal fly phosphoproteome in the process.

To characterize the endogenous phosphorylation sites of the embryonic Drosophila SL2 cell
line, in the following named ‘basal phosphoproteome’, we applied SILAC-based quantitative
proteomics, where the ‘heavy’ cell population was treated with a phosphatase inhibitor mix
while the ‘light’ population was kept untreated. The SILAC-based quantitative strategy
comparing endogenous phosphorylation to phosphatase inhibitor enhanced phosphorylation

helps in triggering the identification of very low abundant phosphosites that are “upregulated’
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in response to the phosphatase inhibition. Furthermore, it effects a better identification, as
each peptide appears in pairs (heavy and light).

Drosophila is also a very suitable model system for loss-off function studies by RNA
interference (RNA1) because of the highly efficient and penetrant RNAi, fewer ‘off target’
effects compared to mammalian models, as well as the lower degree of functional redundancy
compared to higher vertebrates. Ptp61F is an ortholog to the human phosphatase Ptb1b, which
is thought to be involved in type 2 diabetes, obesity and cancer. Thus, we extended our
quantitative phosphoproteomics approach with RNA interference for the functional analysis
of the perturbation caused by Ptp61F knock down. To normalize for expression changes and

to elucidate proteomic changes, we also analyzed the proteome after RNAi treatment.
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The experimental strategy was based on the one applied to human cells (Chapter 4.6.1.1.1)
from trypsin digestion to phosphopeptide enrichment by SCX/Ti0, chromatography and high
resolution MS (Figure 4.26). The resulting large-scale data were uploaded to PHOSIDA for
further data mining and transformed to the PHOSIDA online database scheme. In addition, we
uploaded the perturbated proteome to the MAPU database (Chapter 5).

The application of the SILAC-based phosphoproteomics approach on one heavy cell
population treated with a phosphatase inhibitor cocktail while the light population was kept
untreated yielded the identification of 6752 phosphorylation sites on 1928 proteins. The
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percentage of determined tyrosine phosphorylation sites increased to 4.1%. The extension of
the experimental design with RNAi interference of the phosphatase Ptp61F led to the
identification of 6516 phosphorylation sites on 1952 proteins. We found that the proportion of
phosphotyrosines was 1.5% in that experiment. Importantly, phosphorylation dynamics could
be normalized by detected proteome changes. Figure 4.27 depicts the plot of normalized
phosphorylation changes upon phosphatase knockdown. Phosphorylation sites that are not
affected by the treatment are highlighted in gray. Phosphorylation sites that significantly
respond to the Ptb61F knockdown are marked in green. The phosphorylation pattern of
STAT92E, a known target of the phosphatase, was found to be significantly affected,
providing a positive control. The corresponding SILAC pair of the associated phosphorylated
peptide is illustrated in Figure 4.27.

Overall, 9749 phosphorylation sites on 2285 proteins were determined with high confidence.
The overlaps between our dataset and the large-scale studies by Gygi et al. (Zhai et al., 2008)
and Aebersold et al. (Bodenmiller et al., 2007) were 1506 (65.9%) phosphoproteins and 1719
(75.2%) phosphoproteins respectively. In total, 1274 phosphorylated proteins were identified
in all three studies, whereas 334 phosphoproteins were exclusively determined in our
approach. On the site level, we detected 4691 (48.2%) novel phosphorylation sites, whereas
5051 phosphorylated sites were already covered by the other two studies.
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Figure 4.27: Phosphorylation site changes upon phosphatase knockdown

Phosphorylation site changes are normalized by proteome changes and plotted against the measured intensity
(left panel). Statistically unaffected phosphorylation sites are indicated in gray, whereas significant
phosphorylation changes are marked in green. Significantly phosphorylation up-regulation was observed for
Stat92E, for example. The corresponding three-dimensionally represented spectrum is illustrated on the right

panel.
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4.6.1.4 Saccharomyces cerevisiae

Yeast is another widely used model organism and has an important role in industry being
involved in bread fermentation and ethanol production. Its genome was the first eukaryotic
one to be completely sequenced (Cherry et al., 1998; Williams, 1996). Soon, it became
obvious that yeast and human share a substantial number of homologous proteins. Thus, the
yeast organism is often used to gain biological insight in the basic functioning of the
eukaryotic cell.

Protein phosphorylation is ubiquitous in all eukaryotes including yeast (Ptacek et al., 2005).
The application of MS-based proteomics using immobilized metal-affinity chromatography
(IMAC) for phosphopeptide enrichment has already proven successful in large-scale yeast
phosphoproteomics (Ficarro et al., 2002). We applied the SILAC technology (Ong et al.,
2002) to two cell populations with normal or heavy forms of both arginine and lysine (De
Godoy et al., under review). After lysis, 1:1 mixing and trypsin digestion, we applied two
tinanium dioxide chromatography (TiO,) strategies to enrich phosphorylated peptides. In this
study, the use of SILAC provides a more accurate identification of phosphopeptides, as all
peptides are detected by the mass spectrometer as characteristic pairs. The data was searched
against a decoy database for estimation of the false positive rate, and peptide identification
and validation were based on the MaxQuant software. Again the experimental design is
roughly based on the protocol established on the basis of the identification of the human
phosphoproteome (Chapter 4.6.1.1.1).

We identified alarge set of in-vivo phosphorylation in yeast covering even low abundant
transcription factors and a representative set of the kinome (Hunter and Plowman, 1997). This
data allows to draw general conclusions about phosphorylation in ‘lower’ eukaryotes
regarding structural constraints, subcellular localization, or the occurrence of kinase motifs
(Chapters 4.6.2 — 4.6.3). The evolutionary conservation between the yeast phosphoproteome
and phosphoproteomes of ‘higher’ eukaryotes such as fly (4.6.1.3), mouse (4.6.1.2), and

human (4.6.1.1) is especially interesting and is the main subject of Chapter 9.

The 1:1 SILAC labelling of yeast cells combined with titanium dioxide chromatrography and
strong cation exchange chromatography yielded the identification of 4160 phosphorylation
sites mapping to 1192 proteins (De Godoy et al., under review). As in the other studies on
phosphoproteomes of higher eukaryotes (Chapters 4.6.1.1 — 4.6.1.3), we determined
phosphorylation events on proteins with less than 1% false positive rate at both peptide and

protein levels. The unambiguously identified phosphorylation sites correspond to 3469
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phosphoserines (83.2%), 635 phosphothreonines (15.2%) and 66 phosphotyrosines (1.6%).

We found that around 500 phosphorylated proteins and 3000 phosphorylation sites detected in

our study are novel compared to SwissProt, which nearly doubles the number of sites

previously reported. Using the gene ontology annotations integrated in PHOSIDA, we found

phosphorylation event on about one third of known yeast transcription factors including low

abundant ones.

A further objective of this study was to examine the yeast kinome (Hunter and Plowman,

1997). To retrieve known protein kinases from our phosphorylation set, we used KinBase

(Manning et al., 2002b), an open access database that includes kinases from vertebtrates,

invertebrates, and unicellular organisms such as yeast. Overall, 45 kinases were revealed to be

phosphorylated in our set. Since KinBase reports 124 yeast kinases in total, our set covered all

main kinase families representatively (Figure 4.28). The identified phosphorylated kinome

includes kinases such as AKT and CKI, which are conserved throughout eukaryotes, but also

yeast-specific kinases such as RIM15 and RAN. Besides protein kinases, we also identified

various phosphatases and cyclins, which are listed by KinBase.
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Figure 4.28: Yeast kinome tree

Kinases that we found to be phosphorylated are indicated in green.
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4.6.1.5 Prokaryotic Phosphoproteomes

Protein phosphorylation on serine, threonine, and tyrosine is well established as a key
regulatory posttranslational modification in eukaryotes, but little is known about its extent and
function in prokaryotes. For some time the field of protein phosphorylation held the view that
eukaryotes use serine/threonine/tyrosine phosphorylation, whereas bacteria instead use
histidine and aspartate phosphorylation, mainly in their two-component systems. However,
accumulating evidence has shown that serine/threonine/tyrosine phosphorylation also plays a
vital role in bacteria (Deutscher and Saier, 2005). Bacteria possess both kinases and
phosphatases that show homologous counterparts in eukaryotes (Kennelly, 2002), but also
kinases that lack of any homology throughout the other domains of life, which supports the
idea of the occurrence of prokaryotic specific phosphorylation (Mijakovic et al., 2005). As the
application of MS-based proteomics to various eukaryotes has proven to be suited for the
detection of thousands of phosphorylation events in the eukaryotic cell (Chapters 4.6.1.1 -
4.6.1.4), we used this technology to obtain site-specific, in-vivo phosphoproteomes of Bacillus
subtilis, Escherichia coli, and Lactococcus lactis (Figure 4.29) (Macek et al., 2008; Macek et
al., 2007; Soufi et al., 2008). We even determined the phosphoproteome of Halobacterium

salinarium, a member of the third domain of life (archaea) (Aivaliotis et al., under review).

SCX + TIO2
chromatography

Nano-RP-HPLC

LTQ Orbitrap Mass
spectrometry

L 4

Data analysis
Figure 4.29: Overview of the analytical workflow used to detect prokaryotic phosphoproteomes
Trypsin digestion of the whole cell lysate was followed by enrichment of phosphopeptides using two stages of
chromatography (SCX and TiO,). Phosphopeptides were separated on nano-HPLC, mass-measured and

fragmented in the LTQ-Orbitrap mass spectrometer
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The first described prokaryotic phosphoproteome was the one of Bacillus subtilis, a model
Gram-positive bacterium (Macek et al., 2007). In the past, investigation of B. subtilis has
already made significant contribution to the understanding of fundamental processes such as
carbon catabolite regulation and sporulation. In addition, it represents the most intensely
studied bacterium regarding phosphorylation. However, before our study, a mere eight
phosphorylated proteins have been identified in B.subtilis (Wurgler-Murphy et al., 2004).
Thus, we intended to detect a more comprehensive set of phosphorylation events in this
bacterium. Furthermore, we wanted to investigate a representative member of Gram-negative
bacteria (Macek et al., 2008), which can be pathogenic. Their pathogenicity is usually
associated with lipopolysaccharides that are constituent parts of the cell wall. The most
prominent member of Gram-negative prokaryotes is Escherichia coli, which has been the
model system that spawned molecular biology. It is commonly found in the intestine of warm-
blooded animals, but it is also capable of surviving outside the body. Some strains can also
cause food poisoning in humans. The occurrence of phosphorylation in E.coli has already
been shown: In two-dimensional gel experiments with protein extracts labeled with
radioactive phosphorus, more than one hundred phosphorylated protein spots were observed
(Cortay et al., 1986). However, most of them were never identified. Nevertheless, two
Serine/Threonine kinases, namely the isocitrate dehydrogenase kinase/phosphatase (Oudot et
al., 2001) and the YihE kinase (Zheng et al., 2007), have been well characterized. Two
tyrosine kinases, Wzc and Etk, point to the possibility of tyrosine phosphorylation in E.coli
(Grangeasse et al., 2007). The global and site-specific analysis of the E.coli phosphoproteome
also established that serine/threonine phosphorylation is a general regulatory process and not
restricted to eukaryotes.

Furthermore, we investigated the phosphoproteome of the Gram-positive non pathogenic
bacterium Lactococcus lactis (Soufi et al., 2008), a representative of lactic acid bacteria.
L.lactis as starter culture is used in the production of more than ten million tons of cheese and
it thus crucial in the dairy industry. It is also important for the proper digestion of lactose in
human. Thus, we decided to extend our analysis on phosphorylation in bacteria to
Lactococcus lactis. A phosphorylated serine on position 46 of the phosphocarrier protein HPr
presents the only phosphorylation site that had been reported so far (Monedero et al., 2001).
There are two known Serine/Threonine kinases, namely the HPr kinase and the eukaryot-like
kinase PknB, both lacking known substrates (Bolotin et al., 2001; Monedero et al., 2001). The
elucidation of site-specific phosphorylation might be conducive to the optimization for

desired functions of this organism in industry and to gain more insight into its physiology.
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Finally, we investigated if posttranslational modification by covalent phosphorylation is also
found in archaea. Thus, we measured the phosphoproteome of Halobacterium salinarium
(Aivaliotis et al., under review). This obligate aerobic member of archaea is a halophilic
marine Gram-negative organism.

In our study we performed a global, gel-free, and site-specific analysis of the four prokaryotic
phosphoproteome using high accuracy mass spectrometry in combination with biochemical
enrichment of phosphopeptides from digested cell lysates. Apart from the SILAC labeling
method, the very basic experimental concept is similar to the one applied to the detection of
the human phosphoproteome upon EGF stimulation (Chapter 4.6.1.1.1). Thus, the basic
experimental set up provides an across-the-species protocol for large scale quantitative mass
spectrometry analysis of in-vivo phosphoproteomes ranging from human (4.6.1.1) to bacteria
(4.6.1.5). The underlying experimental design is illustrated in Figure 4.29. Importantly, the
integration of identified phosphorylated sites into PHOSIDA is followed by data mining
linking specific residues to kinase motifs (Chapter 4.2.1.3), evolutionary conservation
(Chapter 4.2.4), protein structure (Chapter 4.2.3) and gene ontology annotations (Chapter
4.2.1.3). Our data and analyses allows not only to derive general patterns regarding
phosphorylation in prokaryotes, but also to gain more comprehensive biological insight for
specific prokaryotic proteins of interest to individual researchers using the PHOSIDA online
database.

The site-specific and global analysis of the Bacillus subtilis phosphoproteome resulted in the
identification of 103 unique phosphopeptides from 78 proteins (Table 4.1). In total, 78
phosphorylation sites were determined with a probability higher than 75% (class I sites).
Among the identified phosphosites, 54 were on serine (69.2%), 16 were on threonine (20.5%),
and eight were on tyrosine (10.3%) (Figure 4.30). As expected, we did not detect any histidine
or aspartate phosphorylation. Interestingly, the phosphoproteome of E.coli showed striking
similarity in size and number of detected phosphorylation sites: we measured 105
phosphopeptides from 79 proteins, with 81 class I phosphorylation sites. A total of 55 serines,
19 threonines, and 7 tyrosines were found to be phosphorylated, yielding a Ser/Thr/Tyr
phosphorylation ratio of 67.9%, 23.5%, and 8.6%, respectively. The size of the L.lactis
phosphoproteome was also similar to the ones of B.subtilis and E.coli. We identified 102
unique phosphopeptides in 63 proteins, with 73 phosphorylation sites. However, the
distribution of Ser/Thr/Tyr phosphorylation differed, as we identified 34 phosphoserines
(46.5%), 37 phosphothreonines (50.6%), and 2 phosphotyrosines (2.7%). Interestingly, the

archaean phosphoproteome was similar in size, as we identified 115 unique phosphopeptides
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from 69 H.salinarium proteins. We determined 81 class I phosphorylation sites, 70 on serine
(87%), 10 on threonine (12%), and one on tyrosine (1%).

Genome Size Number of Number of Number of

(ORFs) Phosphoproteins  Phosphopeptides ~ Phosphosites
E.coli 4300 79 105 81
B.subtilis 4100 78 103 78
L.lactis 2266 63 102 73
H.salinarium 2821 69 115 81

Table 4.1: Comparison of detected prokaryotic phosphoproteomes

|
M pS I
HpT | I
M pY 1 ]
2.7% 1.0%
8-6 0

E.coli B.subtilis L.lactis H.salinarium

Figure 4.30: Distribution of Ser/Thr/Tyr phosphorylation in the bacteria E.coli, B.subtilis, and L.lactis,
and the archaean species H.salinarium

In Bacillus subtilis, we detected phosphorylation sites on many glycolytic enzymes, including
phosphohexose-isomerase, aldolase, triose-phosphate isomerase, glyceraldehydes 3-phosphate
dehydrogenase, phosphoglycerate kinase, phosphoglycerate mutase, enolase and pyruvate
kinase. In addition, phosphorylation sites were detected on several members of the pentose
phosphate pathway. Furthermore, several phosphorylated proteins are involved in DNA
metabolism and protein synthesis such as initiation factor IF-1 and elongation factor Ts. Other
phosphoproteins were members of the phosphoenolpyruvate-dependent phosphotransferase
(PTS) system. A significant overrepresentation of detected phosphoproteins involved in the
main pathways of the carbohydrate metabolism was also evident in E.coli, as essential
enzymes such as pyruvate kinase were phosphorylated. Other phosphoproteins were involved
in protein synthesis and the PTS system.

The functional distribution of phosphorylation events detected in L.lactis was similar to the

ones of the other bacteria, as the majority of glycolytic enzymes were found to be
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phosphorylated. Aminoacyl-tRNA phosphorylated proteins and ribosomal proteins in L.lactis
were also phosphorylated. Even the more distantly related archaean organism, Halobacterium
salinarium, showed a majority of phosphorylated proteins that play essential roles in a variety
of metabolic pathways such as carbohydrate metabolism, amino acid metabolism, and
nucleotide metabolism. Although the annotation of the H.salinarium proteome is not as
comprehensive as the ones for the investigated bacteria, corresponding functions of
determined phosphoproteins could be estimated by homology searches to other prokaryotes as
implemented in PHOSIDA (Chapter 4.2.4). Figure 4.32 illustrates two phases of glycolysis
and indicates phosphorylated enzymes, which were determined in our studies.

It was important to exclude the possibility of spurious detection of phosphopeptides of
eukaryotic origin, which might have been present in the reagents used in sample preparation.
For this purpose, we BLASTed all detected phosphopeptides against the complete NCBI
protein database. This analysis resulted in only three L.lactis phosphopeptides with identical
sequence and therefore mass as in eukaryotic proteins. Furthermore, given the starting amount
of the L.lactis cell lysate, the probability of detection of eukaryotic phosphopeptide
contaminants, even for these three peptide cases in L.lactis, is extremely low.

On the basis of two-directional BLAST runs (Chapter 4.2.4), we also determined the overlaps
between the bacterial phosphoproteomes: Despite a relatively high conservation (overlap) on
the functional protein level, on the level of phosphorylation sites the conservation was less
pronounced (Figure 4.31). There are only a few identical phosphorylation sites detected in all
prokaryotic species. More details about the conservation of phosphorylation events in

prokaryotes are described in Chapter 9.

E.coli B.subtilis E.coli B.subtilis

63(77) 61(75)

L.lactis Hbt.salinarum

Figure 4.31: Phosphoprotein and phosphosite (in brackets) overlap in E.coli, B.subtilis, L.lactis (left panel),
and H.salinarium (right panel)
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Figure 4.32: Schematic illustration of the glycolysis pathway (Nelson and Cox, 2008)
Enzymes that we determined to be phosphorylated in E.coli (red), B.subtilis (blue), L.lactis (green), and

H.salinarium (yellow) are marked accordingly.
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4.6.2 Gene Ontology Analysis

As described in Chapter 4.2.1.3, PHOSIDA stores annotation data ranging from determined
domain structures to known active sites. The PHOSIDA administration tool enables mining of
the data and extraction of knowledge from the data. One of the available methods is the
automated set up of Cytoscape runs (Chapter 4.5.1), which search for significantly
overpresented gene ontology annotations in the given phosphodataset. Here we analyze the
functional distribution of the phosphoproteomes from the model species described above.

We found that around half of the phosphorylation events in human cells (Chapter 4.6.1.1)
occurred on nuclear proteins, whereas only one third of all proteins in the database were
assigned as nuclear by GO (Figure 4.33). Based on the hypergeometric test along with
Benjamini & Hochberg False Discovery Rate correction, this represents a significant
enrichment of the phosphoproteome in the nucleus. This tendency was also observed in the
phosphoproteomes of other organisms (Chapters 4.6.1.2 — 4.6.1.4): In D.melanogaster, 42%
of the identified phosphoproteins are located in the nucleus whereas only 20.8% of all
proteins annotated in FlyBase are localized in the nuclear section. As expected, proteins
annotated as extracellular were significantly underrepresented in the phosphoproteome. In
humans, a mere 3% of the determined phosphoproteins are annotated to be localized in the
extracellular space, whereas 11% of human proteins in general are localized to this
compartment. Although there is evidence of a mitochondrial phosphoproteome, proteins
annotated as mitochondrial by GO were underrepresented: In fly, for example, 2.6% of
phosphorylated proteins were detected in mitochondria. In comparison, 6.7% of all FlyBase

proteins are located in mitochondria.
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Figure 4.33: Gene ontology component analysis of the D.melanogaster phosphoproteome
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Regarding the functional impact and biological processes associated with proteins, we found
evidence for a significant overrepresentation of cell signalling functions: As expected, kinase
activity, ATPase activity, receptor signalling protein activity, transcription regulator activity,
and translation regulator activity were all found to be highly significantly overrepresented
functions in the measured phosphorylated eukaryotic proteins (Figure 4.34). The observations
relating to the over- and underrepresentation of cellular component localizations and

biological functions were similar in all investigated eukaryotic species.

2500
B Phosphoproteins M FlyBase
20.00

15.00 4

10.00

Proportion of proteins [%)

5.00

kinase activity ATPase activity  receptor GTPase actin binding  transcription transcription translation
zignaling regulator regulator cofactor regulatar
protein activity activity activity activity activity

Figure 4.34: Gene ontology function analysis of the D.melanogaster phosphoproteome

As there is virtually no gene ontology annotation for bacteria, we used the Blast2GO tool
(Conesa et al., 2005) to extract the GO terms for prokaryotic proteins from their closest GO-
annotated orthologs in the SwissProt database. In this way, we obtained information on
biological process for 60 out of 78 phosphorylated Bacillus subtilis proteins. In addition, we
derived information on cellular localization for 26 phosphorylated proteins. Phosphoproteins
were found to be present in all compartments of the bacterial cell (Figure 4.35) and distribute
among a wide variety of metabolic and regulatory enzymes. In concordance with the
observations described in Chapter 4.6.1.5, a GO enrichment analysis against the entire
protecome of B.subtilis showed that protein phosphorylation is statistically overrepresented
among enzymes involved in the main pathways of carbohydrate metabolism, DNA
metabolism, protein synthesis and phosphoenolpyruvate-dependent phosphotransferase

system (PTS). These results were also true for the phosphoproteomes of the other prokaryotes.
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Figure 4.35: Gene ontology biological process analysis of the B.subtilis phosphoproteome

4.6.3 Sequence Motif Analysis

We next wished to infer the possible kinases responsible for the phosphoproteome using
kinase motifs and statistical test. We employed the x* test via the PHOSIDA administration
tool as described in Chapter 4.4, to check whether phosphorylation sites identified in a given
project match significantly with known human kinase motifs integrated into PHOSIDA
(Chapter 4.2.2). We estimated the statistical chance for each kinase motif to match with a
given phosphosite according to the amino acid composition of the motif and the relative
frequencies of each amino acid composition in the entire proteome of the investigated
organism. We found that phosphorylation sites of the mouse proteome (Chapter 4.6.1.2)
matched significantly with most of the known human kinase motifs with only a few
exceptions such as the motif of the NEK6 kinase. As an example, the number of mouse
phosphosites that matched with motifs of the protein kinase A (PKA) was ten times higher
than one would expect by chance. Significantly overrepresented matches with human kinase
motifs were also observed in phosphoproteomes of eukaryotes that are more distantly related
to human: For phosphosites identified in fly cells (Chapter 4.6.1.3), the CDK 1 motif p[ST]-P-
X-[KR] was enriched six-fold, for instance. Even in yeast, the consensus sequence of the CK2
kinase motif was enriched by a factor of three. However, as expected, kinases that are not
present in yeast, such as EGFR or ALK, did not show a significant overrepresentation of

candidate substrates in the yeast phosphoproteome. Table 4.2 lists investigated human kinase
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motifs along with the number of observed and expected yeast phosphorylation sites that

matched with the given kinase motif.

R.p[ST] PKA 189 172.7 1.61
R[RK].p[ST] PKA 91 20.3 247.52
KR..p[ST] PKA 37 12.6 47.4
S..p[ST] CK1 678 351.3 334.05
[ST]...pS CK1 673 496.3 73.97
p[ST]..E CK2 786 250 1228.29
pS...S GSK3 445 300.5 76.4
p[ST]P.[RK] CDK2 61 19.9 85.32
R..p[ST] CAMK2 315 172.7 122.71
R..p[STIV CAMK?2 19 9.6 9.23
P.p[STIP ERK 46 7.4 201.73
V.p[ST]P ERK 25 9.5 25.35
PEp[ST]P ERK 6 0.5 60.51
R[RST].p[ST].[ST] AKT 35 5 180.23
R.R..p[ST] AKT 33 7.7 83.29
R..p[ST].R PKC 2 7.7 4.23
[LVI].[RK]..p[ST] PKD 132 99 11.29
[IEV]pY[EG][EDPN][IVL] LCK 0 0.1 0.1
[IVL]pY..[PF] ABL 1 0.9 0.01
[ED]..pY..[DEAGST] SRC 7 2.2 10.98
pY..[ILVM] ALK 3 11.4 8.13
[DPSAEN].pY[VLDEINP] EGFR 11 7.9 1.46
pISTIP.[KR] CDK1 61 19.9 85.32
p[STIPIKR] CDK1 52 19.9 52.05
[RK].p[STI[ILV] Aurora 65 99 11.98
[RKN]R.p[STI[MILV] Aurora-A 19 7.3 18.79
[DE].p[ST][VILM].[DE] PLK 28 13.8 14.66
[ED].p[STI[FLIYWVM] PLK1 105 155.3 16.97
L..p[ST] NEK6 174 372.3 116.83
L.R..p[ST] CHK1/2 40 16.6 33.13
[MILV].[RK]..p[ST] CHK1 143 108.6 11.21
F..Fp[STI[FY] PDK1 0 0.6 0.6
[FLM][RKI[RK]p[ST] NIMA 4 8.7 2.54

Table 4.2: Number of observed versus expected yeast phosphorylation sites that matched with human

kinase motifs. A chi-square value larger than six is equivalent to a p value of 0.01.

To confirm the significant overrepresentation of human kinase motifs without any a priori
information we used Motif-X an iterative approach to derive significantly overrepresented
motifs from large-scale datasets as described in Chapter 4.5.1. The PHOSIDA administration
tool created query sets by pre-aligning all clearly identified phosphorylation sites along with
their surrounding sequence of 12 residues. A probability p-value of less than 0.0001 was
considered significant. In addition, a minimum occurrence of 20 of the sequence pattern in the
phosphodata was required to derive a significant consensus sequence.

The application of this unbiased statistical approach led to the same outcome as above:
Extracted overrepresented amino acid compositions around phosphorylated residues of

various eukaryotes were similar to known human kinase motifs. For example, the second most
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significant consensus sequence in the fly phosphoproteome was the CDK1 motif, which was
also proven to be significantly enriched according to the % test. To expand the consensus
sequence comparison, we applied the Motif-X approach to phosphosites detected in human
HeLa cells exposed to EGF stimulation. In total, 20 significant sequence motifs matched
exactly with those derived from the Drosophila phosphoproteome set. Other extracted motifs
were similar in composition between human and fly, but varied only in one amino acid
position. Figure 4.36 shows examples of motif logos that were found to be significantly
overrepresented in the human phosphoproteome and in the fly phosphoproteome. In contrast,
consensus sequences derived from the yeast phosphoproteome were found to be more
organism-specific, as the overlap with consensus sequences of higher eukaryotes including
human, mouse and fly was relatively low.

We also used the y” test to test whether phosphorylation sites determined in prokaryotic cells
matched significantly with human kinase motifs. However, we did not find evidence for any
significantly overrepresented eukaryotic kinase motifs in bacteria. The application of Motif-X
also did not yield any significant sequence motif from prokaryotic phosphoproteomes.

As highlighted in Chapter 4.2.5, the online application of PHOSIDA lists all matching kinase
motifs for a given phosphorylation site. The display of matching kinase motifs enables web

users to explore possible kinases responsible for any phosphorylation site of interest.
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Figure 4.36: Consensus sequences identified in the fly phosphoproteome (left panel) and human

phosphoproteome (right panel). Data were calculated in with identical methods.
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4.6.4 Structural Constraints on Phosphorylation Sites

Previous anectodatal observations had already suggested that phosphorylation sites are mainly
located in parts of proteins without regular structure (Iakoucheva et al., 2004). To verify this
observation on the basis of our large-scale and unbiased studies and to enable users to
investigate the structural context of each phosphorylation site of interest, we made use of the
secondary structure and solvent accessibility predictions integrated in PHOSIDA (Chapter
4.2.3). As shown in Figure 4.37, the structural attributes of each phosphorylation site are
visualized in PHOSIDA.

PHOSIDA

phospherylation site database

IPIO0018274 (PO0533) EGFR o) rw wmarc

features motHsd domaing Si1es [other sources)

high
accessibility ~|:medium

low

Figure 4.37: Predicted secondary structures and solvent accessibilities of identified phosphorylation sites
as illustrated in PHOSIDA

To determine the overall accessibility at the protein level, we compared identified human
phosphoproteins (Chapter 4.6.1.1.1) with random proteins from SwissProt. We found that
phosphoproteins as a group have significantly higher accessibilities than a set of randomly
selected proteins (t-test: o = 0). This means that all residues that occur in phosphoproteins
show a higher accessibility on average than all residues in non-phosphorylated proteins.
Phosphoproteins, on average, are longer than the average of the database; thus, this effect is

not caused by a smaller surface to volume ratio.
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Furthermore, global analyses on all eukaryotic phosphoproteomes ranging from yeast to
human showed that the accessibilities of phosphoserine, phosphothreonine and
phosphotyrosine are significantly higher than the ones of non-phosphorylated serines,
threonines or tyrosines. Non-phosphorylated residues were taken from phosphoproteins,

excluding bias due to protein selection (Figure 4.38).

Serine Threonine Tyrosine Serine Threonine Tyrosine
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Figure 4.38: Accessibilities of phosphorylation sites as calculated by SABLE

The relative accessibility prediction assigns a value between 0 (fully buried) and 9 (fully exposed) to each
residue. Accessibility is significantly higher than for their non-phosphorylated counterparts in the same proteins
in all phosphoproteomes of eukaryotes (A: S.cerevisiae, B: D.melanogaster, C: M.musculus, D: H.sapiens) and

for all phosphorylatable residules.
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The high accessibility of phosphorylation sites suggests that they are largely localized in

hinges and loops, since these structural elements are at the protein surface. In fact, this is the

case to a striking degree for pS (yeast: 91%, fly: 93%, mouse: 93%, human: 93%), as well as
for pT (yeast: 92%, fly: 92%, mouse: 92%, human: 88.5%). pY (yeast: 75%, fly: 78%, mouse:

78%, human: 67.3%) is also predominantly found in these regions (Figure 4.39). To confirm

the generality of these observations, we mapped identified in-vivo phosphorylation sites to

three-dimensional coordinates for phosphoproteins with a solved structure in the Protein Data

Bank (Berman et al., 2000). As is apparent from the structures, the phosphogroups were

always located in highly accessible parts of the proteins (Figure 4.40). In many cases, the

structure around the phosphosites was even so flexible that it could not be determined at all.
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Figure 4.39: Proportion of phosphorylation sites located in loops and hinges as determined by SABLE

In each case (A: S.cerevisiae, B: D.melanogaster, C: M.musculus, D: H.sapiens), phosphosites are significantly

more frequently located in flexible regions (loops, hinges).
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Figure 4.40: Example PDB structures of phosphoproteins (phosphosites marked in green)

4.7 Discussion

Our group has developed a strategy combining SILAC for encoding phosphorylation changes,
SCX and TiO, chromatography for phosphopeptide enrichment, and high-accuracy mass
spectrometric characterization. We applied this strategy to a several model organisms in
different biological contexts ranging from EGF stimulation (Chapter 4.6.1.1.1) to phosphatase
inhibition (Chapter 4.6.1.2.1) and perturbation by phosphatase RNAi knockdown (Chapter
4.6.1.3). We even applied this strategy to the determination of different prokaryotic species
(Chapter 4.6.1.5). The detailed implementation of the mass spectrometric approach was
somewhat different among the specified projects: For the identification of the yeast
phosphoproteome, for example, we applied SILAC 1:1 labeling meaning that there is no
biological difference between the two (heavy and light) populations. For the detection of
prokaryotic phosphoproteomes we did not apply the SILAC technology at all. Nevertheless

the main workflow of the described strategy was basically the same in each large scale study.
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The approach is completely generic for identification of phosphorylation events in signalling
pathways.

Identification of numerous phosphorylation sites on kinases and other low-abundance
regulatory proteins demonstrates that the technology can probe the in-vivo phosphoproteome
in considerable depth.

As a large proportion of cellular proteins are phosphorylated and the phosphoproteome is
therefore very large and complex, the investigation of various in-vivo phosphoproteomes
requires consistent data management and user friendly open access interface to retrieve data.
In addition, the determination of thousands of phosphorylation sites requires a strategy to
derive knowledge from the raw data. These requirements motivated the conception of
PHOSIDA, the phosphorylation site database. On the basis of mySQL, C# and the ASP.NET
technology (Chapter 2), we created a comprehensive database management system, which
embraces the upload of experimental data, followed by the automated application of a range
of mining methods. The entire workflow presents a ‘Knowledge Discovery from Databases’
(KDD) process, one of the most important methods in database technology (Chapter 4.1).

The large scale study of the human phosphoproteome upon EGF stimulation (Chapter
4.6.1.1.1) showed that only a small subset of phosphorylation sites are regulated in response
to a stimulus. The observation that individual phosphosites on a protein are typically regulated
differently suggests that proteins generally serve as integrating platforms for a variety of
incoming signals. Therefore global investigations of phosphorylation events have to be site
specific and there is a need for algorithms that assign phosphorylation sites to given spectra
with statistical rigor (Chapter 3). This pioneering study showed that detailed and time-
resolved information about numerous signalling events controlled by phosphorylation can be
obtained by modern phosphoproteomics. About 90% of our phospohorylation sites were novel
both compared to SwissProt and to other large scale studies. Taken together, our data
suggested that, despite several decades of research into phosphorylation, most in-vivo
phosphorylation sites have still not been detected.

The focus of the second major study of the human phosphoproteome described in this thesis
was the investigation of cell cycle dependent phosphorylation regulation of protein kinases
(Chapter 4.6.1.1.2). Here, we established a phosphoproteomics strategy that combines SILAC
based mass spectrometry as described above with efficient kinase enrichment. This approach
led to the identification of more than 1000 phosphorylation sites on protein kinases, most of
which have not been described previously. We found more than half of all phosphopeptides

on kinases significantly upregulated in mitotic cells pointing to wide-spread regulation of the
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kinome in mitotic cells. Interestingly, we determined novel cell cycle dependent regulation by
phosphorylation even for the most intensely studied kinases. This approach has potential
applications in drug research, as kinases that are potentially cell cycle dependently de-
regulated in tumours represent prime targets for anti-cancer drugs.

Our generic phosphoproteomics strategy also proved to be successful in the mouse model. We
used the SILAC technology to quantify basal phosphorylation against upregulated
phosphorylation after applying a cocktail of phosphatase inhibitors (Chapter 4.6.1.2.1).
Employing phosphatase inhibitors resulted in a boost of low level phosphorylation sites and
made them more likely to be sequenced and identified. Again, more than half of the identified
sites were novel suggesting that the determination of the mouse phosphoproteome is also far
from complete. For phosphotyrosine, inhibition was effective and the majority of pY sites
were strongly increased upon treatment. However, there was no evidence for a strong increase
of the phosphorylation level of serines and threonines. The majority of pS and pT was
unaffected by the inhibitors. One plausible reason for this observation could be a specificity of
the applied inhibitors for only small classes of phosphatases.

Cancer is predominantly a genetic disease and genome projects have already shown that more
than hundred protein kinases are involved in human cancer. Mutations in the genome often
lead to deregulated protein kinase activity in cancer, primarily constitutive activation. We
used mutant mice as a skin tumor model to prove that our established mass spectrometry
strategy is applicable to solid tumor analysis (Chapter 4.6.1.2.2). To study the global
phosphoproteome of solid tumor tissue we used SCX-TiO, and multiple TiO, incubation
which allowed mapping the position of more than 5000 phosphorylation sites in melanoma
tissue with confidence. We found phosphosites from many pathways directly or indirectly
involved in cancer, for example, in the mTor pathway, which regulates protein translation.
The coverage of known melanoma associated phosphorylation sites in our pilot study
indicates that the approach is well suited for the analysis of the tumor tissue

phosphoproteome.

The increase of identified phosphotyrosines found in the phosphatase inhibitor study in mouse
was again observed in fly cells (Chpater 4.3.3): In total, 4.1% phosphorylated tyrosines were
determined after phosphatase inhibitor treatment. This observation supports a more efficient
inhibition of phosphotyrosine phosphatase compared to serine/threonine phosphatases.
Overall, more than 6700 phosphorylation sites were found in fly cells for the phosphatase

inhibitor experiment. The described experimental design was then extended by the
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knockdown of the Ptp61F phosphatase, the homolog of the human Ptb1B phosphatase,
important in Type II diabetes. As proof of principle, we showed that the phosphoproteome
can be analyzed quantitatively in response to knock down of a single regulator. The RNA
interference approach revealed a comparable number of 6515 phosphorylation sites on 1952
proteins. Together, we detected nearly 10000 phosphorylation sites in D. melanogaster.
Around half of all determined phosphorylation sites proved to be novel compared to other
large-scale studies. From the technological point of view, the study also showed that it is
required and feasible to normalize phosphorylation dynamics by measured proteome changes,
in order to derive quantitative data that are exclusively caused by phosphorylation changes
rather than protein changes upon the specified treatment. Besides the integration into
PHOSIDA, the large number of phosphorylated sites allowed the implementation of the first
fly specific phosphosite predictor (Chapter 7). In addition, the fly phosphoproteome provided
invaluable data for the evolutionary analysis of phosphorylation (Chapter 9).

The application of our MS strategy to yeast yielded the identification of more than 4000
phosphorylation sites (Chapter 4.6.1.4). Surprisingly, we found evidence for phosphorylation
events on 66 tyrosine residues. This was unexpected, as very little is known about tyrosine
phosphorylation in yeast. However, even though the entire data set has a false positive rate of
less than 1% on the protein and peptide levels, it is possible that the false positive rate for a
subset of the data is different. In any case, the application of SILAC labelling means that all
peptides are detected by the mass spectrometer as characteristic pairs or doublets that can be
analyzed separately, and their sequencing in both forms increases the chance of true
identification. Thus, we also detected low abundant proteins ranging from transcription
factors to kinases. The project not only represents a pioneer study for the application of
quantitative phosphoproteomics in yeast, but also contributes a large number of novel

phosphorylation sites to the annotation of posttranslational modifications in yeast.

Finally, we determined, for the first time, the in-vivo and site-specific bacterial and archaea
phosphoproteomes (Chapter 4.6.1.5), choosing the model organisms E.coli, B.subtilis,
L.lactis, and H.salinarium. The number of identified phosphorylation events in prokaryotic
cells is orders of magnitudes lower than that of eukaryotes. We sequenced between 73
(L.lactis) and 81 (E.coli) phosphorylation sites. Most of them are found on glycolytic and
tricarboxylic acid cycle enzymes and members of the phosphoenolpyruvate-dependent

phosphotransferase system. Despite their phylogenetic distance, phosphoproteomes of the
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investigated prokaryotes are similar in size, classes of phosphorylated proteins, and pS/pT/pY

distribution.

All measured phosphoproteomes were analyzed for GeneOntology overrepresentation using
the implemented mining methods that link with open source applications such as Cytoscape.
We found that the most significantly overrepresented biological functions of eukaryotic
phosphorylated proteins are associated with binding to targets ranging from ATP to
transcription factors. As expected, kinase binding activity is significantly overrepresented in
all eukaryotic phosphoproteomes. Functions that are related to general kinase activities,
translational activation, and transcriptional regulation also proved to be significantly
overrepresented. In contrast, mitochondria and secreted proteins proved to be significantly
underrepresented in  the phosphoproteomes. In  prokaryotic phosphoproteomes,
phosphoproteins involved in the main pathways of carbohydrate metabolism, DNA
metabolism, protein synthesis and phosphoenolpyruvate-dependent phosphotransferase

system (PTS) are significantly overrepresented.

As each phosphorylated site identified in a given species must be the substrate of one or more
kinases, we matched our sites to the known substrate specifities of 33 human kinases through
motif analysis. We used human kinase motifs because the ones of other eukaryotes such as
mouse, fly and yeast are not known and kinase substrates are generally assumed to be well
conserved throughout higher eukaryotes. Using the PHOSIDA administration tool, the
application of statistical methods such as the x2 test and Motif-X indeed showed that
phosphosites detected in eukaryotic cells match significantly to most of the known human
kinase motifs. This observation verifies the high degree of conservation of kinases and their
signalling pathways ranging from CDKs to ERK. Our results are concordance with a previous
study of Manning et al. (Manning et al., 2002a): They compared the kinomes of various
eukaryotes with known human kinases and came to the conclusion that eukaroytes share
several kinase families involved in functions such as immunity, neuro-specifc functions and
the cell cycle. However, the yeast phosphoproteome proved to be more distinct from the ones
of higher eukaryotes. For individual reachers, the inclusion of matching motifs in the web
application of PHOSIDA allows the estimation of kinase correspondences of any given

substrate.
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As eukaryote-like kinases have been found in bacteria, we wondered if human kinase motifs
matched amino acid sequences surrounding the identified phosphorylation in the investigated
prokaryotes. Although 17 phosphosites found in B.subtilis matched the target motifs for
eukaryotic casein kinases CK1 and CK2, this distribution corresponded to expected
frequencies of these motifs obtained by chance. Although it has been shown by previous
studies that bacteria possess kinases and phosphatases that structurally resemble their
eukaryotic counterparts (Kennelly, 2002) we could not find evidence for any significantly
overrepresented consensus sequences. However, this observation does not imply that there are
no serine/threonine protein kinases in bacteria with consensus substrate motifs. It rather
suggests that the spectrum of substrates phosphorylated by bacterial protein kinases is not as
large as that in eukaryotes perhaps indicating a more specific kinase-substrate association in
prokaryotes. This is not unexpected given the relatively low number of around 80 measured
phosphorylation events in prokaryotic cells in comparison to eukaryotic phosphoproteomes

each comprising more than 10000 phosphorylation events.

On the basis of predicted secondary structures and solvent accessibilities integrated into
PHOSIDA, we found that phosphorylation events are not distributed along the whole protein
structure but are instead constrained to sites of high accessibility and structural flexibility.
Particularly in the case of serine and threonine, phosphorylation is almost completely
restricted to loops and hinges. Tyrosine is found to some degree in regular secondary structure
elements but overall phosphotyrosines are very likely to be in flexible regions as well.
Mechanistically, localization of phosphorylation in flexible regions of the protein is
advantageous as it provides access for the kinase to substrate, which needs to be positioned
into the active site. Furthermore, functional consequences of the phosphorylation in many
cases also depend on the flexibility of the phosphorylated sequence, such as when loops are
repositioned after phosphorylation or when the phosphorylated loop participates in a protein-
protein interaction. However, it is important to emphasize that the secondary structural
analysis was based on predictive methods rather than experimental data. Nevertheless, it
stands to reason that the large size of the dataset should compensate for statistical errors

caused by the prediction algorithm.

The evolutionary sections of PHOSIDA also provide insights into the evolution of
phosphorylation. Main results and conclusions are discussed in Chapter 9. Furthermore, we

implemented a phosphorylation site predictor that makes it possible to find putative novel
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phosphorylation sites that have not been experimentally identified. The concept of the
predictor is described in Chapter 7.

To make the data freely and efficiently available to the community, we also implemented an
online application that allows the retrieval of the phosphoproteomic data
(http://www.phosida.com) (Chapter 4.2.5). The concept of an online phosphorylation site
database is, of course, not a novel one. PhosphoSite (Hornbeck et al., 2004) and
Phospho.ELM (Diella et al.,, 2004) are already established databases containing
phosphorylation sites from the literature. In contrast to those efforts, the aim of PHOSIDA is
to include only very high quality input data as well as quantitative information such as
regulation after stimuli or perturbation after phosphatase inhibition. Additionally, we take into
account structures and evolutionary data across a variety of species, in order to integrate
biological context into the database and to quantify constraints of phosphorylation on a
proteome-wide scale. With a total of 289 phosphoprotein entries and 313 reported
phosphorylation sites from four prokaryotic species (B.subtilis, E.coli, L.lactis and
H.salinarium), PHOSIDA is currently the largest open source database of prokaryotic
Ser/Thr/Tyr phosphorylation. Thus, PHOSIDA provides a rich environment for the biologist

wishing to analyze phosphorylation events of proteins of interest.
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Chapter 5

MAPU 2.0: Max-Planck Unified
Proteome Database

The MAPU 2.0 database contains proteomes of organelles, tissues and cell type (Gnad et al.,
in press). It allows the organism-specific retrieval of proteomic data obtained by high
accuracy MS-based proteomics. The combination and update of various experiments on the
basis of the same underlying database version make it possible to obtain an overall idea about
the tissue-specific or organelle-specific localization of any protein of interest. In addition, the
new release of the MAPU database addresses mass spectrometry specific problems including
ambiguous peptide-to-protein assignments. Furthermore it provides insight into general
features on the protein level ranging from gene ontology classification to SwissProt
annotation. Moreover, the derived proteomic data are used to annotate the genomes. MAPU

2.0 is available on line at http://www.mapuproteome.com.

5.1 Introduction

The mapping of various proteomes having potential diagnostic utility presents one of the
fundamental challenges of MS-based proteomics. Besides biotechnological problems
including biochemical purification of organelles, the consolidated database management of
various identified mapped proteomes is another challenge that proteomic research has to face.
The MAPU 2.0 database provides a comprehensive proteome information system consisting
of data integration and combination of various large-scale proteomic assays and inclusion of
protein annotations from other databases (Gnad et al., in press). To allow the peptide-based
retrieval of quantitatively evaluated proteomic data, we changed the basic concept of the
previous version of the MAPU database completely compared to the original release of
MAPU. The main modifications are the combination of various proteomic sub-databases, the
employment of another programming language (C#), the addressing of MS specific problems
including peptide-to-protein assignments, the inclusion of additional large-scale proteomic
datasets, the detailed cross-reference to SwissProt annotations, and the new web design.

Moreover, as the number of sequenced genomes increases rapidly, the integration of

biological information on the genome sequence becomes imperative (Curwen et al., 2004;
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Olason, 2005). Thus, it is important to map large-scale data derived from MS-based
proteomics to the genome sequence. The EnsEMBL project provides an excellent system to
integrate any kind of data that contributes to the annotation of the genome (Birney et al.,
2004). Therefore, we mapped the generated proteomic data to the genome and used the
Distributed Annotation System (DAS) to vizualize key features such as the localization in

specific cell types for each identified gene transcript.

5.2 Implementation of MAPU 2.0

The initial content and the original format of MAPU have been described in Zhang et al.
(Zhang et al., 2007). The general format of the database has changed drastically, as the
previous database version was divided up into several sub-databases, each containing a
discrete proteomic dataset. The new version (MAPU 2.0; (Gnad et al., in press)) unifies all
sub-databases by re-assigning the determined peptides along with their corresponding data of
each experiment to proteins entries of an updated database version. This allows the organism-
specific retrieval of various cell type and organelle associated proteomic data:

The user can query the database organism-specifically by protein name, protein description,
gene symbol, accession number in the database used for identification (such as the
International Protein Index (IPI)), SwissProt accession identifier, protein sequence or peptide
sequence (Figure 5.1, left panel).

If more than one protein entry match with the submitted query string, MAPU 2.0 will list all
relevant proteins and mark the ones that show peptides determined in specified sub-proteomes
in red (Figure 5.1, middle panel). Clicking on one of the red high-lighted entries leads to the
result page (Figure 5.1, right panel). If there is only one match to the query, the web user will
be guided directly to the result page of the protein. The left panel of the resulting web page
displays all investigated cell types and tissues that have been explored. If the given protein
was detected in a specific project, the corresponding button is highlighted (Figure 5.1, right
panel). Otherwise, the image of the given tissue or cell type is illustrated in very light colors

indicating the absence of the specified protein of interest.
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Figure 5.1: The Max-Planck Unified Proteome Database 2.0

The web user can search for any protein of interest via accession numbers, gene symbols, gene name, protein

description, peptide sequence, or protein name. The final result page illustrates the occurrence of the specified

protein in certain tissues or organelles along with general annotations.

Clicking on one of the buttons on the left panel results in the complete listing of all peptides

that have been measured in the selected cell type along with associated data such as Mascot
scores or PTM scores (Figure 5.2).
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Figure 5.2: Listing of peptides that were identified in a given tissue in MAPU 2.0

The coloration of the illustrated peptide sequences indicates the uniqueness regarding the protein assignment
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The peptide-to-protein assignment represents one of the main problems of MS data, since a
peptide might occur in several proteins, usually isoforms or truncated versions of the gene.
Multiple incidences of a peptide sequence can lead to ambiguous protein assignments. This
can partially be resolved by noting that it is more likely that a given peptide sequence
corresponds to the candidate protein that shows the highest number of peptides in total.
MAPU addresses this issue by color highlighting the listed peptides: Green indicates that the
peptide sequence is found exclusively in the selected protein of interest, whereas blue
indicates that there is another protein entry that contains the peptide and shows the same
number of identified peptides in total. Red points to the occurrence of another protein that
shows a higher number of detected peptides in total and thus represents the more likely
protein present in the sample. If one points the computer mouse to one of the corresponding
‘occurrences’ buttons, a blue colored box will pop up showing all protein entries that contain
the given peptide along with the total number of containing peptides that have been identified
(Figure 5.2). This fundamental principle of visualizing the ambiguity of protein assignments

is also used in PHOSIDA - the phosphorylation site database (Chapter 4).

If the experimental design of a given project also focused on the organellar localizations of
proteins, all organelles, in which the protein of interest was detected, are listed.

In addition to the illustration of associated cell types and organelles along with the measured
peptides, general information about the protein is provided: Besides protein descriptions and
full protein sequence, the corresponding GO identifiers are listed and they link to the Gene
Ontology web site reporting full descriptions of the selected annotation. Furthermore, the
annotations to each instance include the PubMed references and general features such as
active sites, motifs, domains, or signaling sites derived from SwissProt (Figure 5.3). Since
there may be several entries covering various isoforms or splice variants that corresponds to
one SwissProt entry, we aligned the protein sequence of each SwissProt instance with the one
of the corresponding entry of the database that was used for identification, which is usually
the IPI database. We used BLASTP to align the protein sequences. The main purpose of this
extensive alignment approach is to derive the exact sequence positions of relevant protein
features that are annotated in SwissProt within the protein sequences of the entry of the other

database.
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Figure 5.3: Protein annotations in MAPU 2.0 based on SwissProt cross-references

If the experiment is quantitative the median quantitative data of all measured assigned
peptides are taken to describe the quantitation of the protein (provided by MaxQuant output).
Moreover, a further essential difference to the previous database version is the underlying
programming language. The new release is exclusively based on C# and the ASP.NET
technology, in order to have a shared class library, which is also used for the implementation
of PHOSIDA (Chapter 4).

Furthermore, the concepts and web applications of MAPU 2.0 and PHOSIDA are very
similar. This presents a great advantage for researchers that use both our in-house proteomic
database (MAPU) as well as the phosphorylation site database (PHOSIDA). The similar web
design also promotes the idea to have a corportate design of our group.

Additionally, each displayed web page includes a question mark button that directs to the help
section of MAPU 2.0 describing the format of the current page or exemplifying the web
application guideline. These help sections are also available via the ‘background’ section of
MAPU 2.0. They contain general descriptions of the experimental designs of various projects,
for instance. To allow the retrieval of sub-databases that could not be established in the new
concept, a link to the old database version is provided. This is the case for the organellar
database as well as the red blood database, as both datasets are exclusively protein-based and

therefore cannot be mapped to MAPU 2.0 due to the lack of peptide information.
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Next, we wished to use the proteomic data to annotate the genome. We extracted all measured
peptides of each proteomic dataset and reassigned the given peptide sequences to gene
transcripts that are annotated in the EnsEMBL database. We linked our in-house proteomic
databases with the genome database in an efficient manner via the DAS/Proserver System

(Finn et al., 2007). The basic concepts are explained in Chapter 8.

5.3 Discussion and Future Directions

The previous version of MAPU was not integrated and only listed the proteome results in a
project specific manner. This made it impossible to query the presence or absence of a protein
of interest in all proteomics projects undertakine in the group. We have therefore completely
redesigned the MAPU database and it now combines all available proteomic sub-databases
via the organism-specific reassignments of peptide sequences to the same underlying species
databases. Thus, the format of the MAPU database has completely changed, since the
previous version was protein based, whereas the new database release is peptide based.

In addition, in MAPU 2.0 we have addressed MS-specific problems such as ambiguous
peptide-to-protein assignments by straightforward approaches such as color highlighting of
given peptide sequences. Furthermore, MAPU 2.0 dynamically recalculated of quantitative
protein data that are assigned to proteins on the basis of the individual peptide quantitation
values.

Moreover, we switched to C# and ASP.NET as the underlying programming technology, in
order to establish a corporate web concept and class libraries shared with PHOSIDA, which is
focussed on the management of identified phosphorylation sites. In addition, we used the
proteomic data that are integrated in MAPU 2.0 to annotate the genome via the DAS
technology provided by the EnsEMBL project.

The success of the MS-based proteomic technology is a significant challenge for
bioinformatics resources. Thus, we aim to manage and combine the available proteomic data
generated in our department in an efficient manner. We intend to improve the underlying
concept of MAPU continuously with the help of feedback and suggestions by the web users of
the database. One of our major future goals is the provisions of more detailed validation
reports of measured proteomes. This could be realized by the display of spectra images of
each identified peptide sequence, for example. Besides the solution of MS-specific problems,
we intend to extend our proteome database by the inclusion of measurements of additional

proteomes on the basis of different tissues, cell types and organisms.
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Chapter 6

SEBIDA - Sex Bias Database

In sexually reproducing species, males and females differ in many morphological and
behavioural traits. Because sex-specific chromosomes such as the Y chromosome are
typically highly heterochromatic and contain few genes, almost all intersexual differences
arise through the differential expression of genes that are physically present in both sexes.
With the advent of microarray technologies, it has become possible to detect such sexual
dimorphism in gene expression on a genome-wide scale. For example, one of the first
applications of microarrays in Drosophila melanogaster was to quantify expression
differences between males and females. Since then, numerous studies have compared gene
expression between the sexes in various insect species (Gibson et al., 2004; Hahn and
Lanzaro, 2005; Parisi et al., 2004; Parisi et al., 2003; Ranz et al., 2003; Stolc et al., 2004).

In addition to their obvious interest for developmental biologists studying sexual
differentiation, genes with sex-biased expression are also of great interest to evolutionary
biologists. This is because they may be enriched for adaptively evolving genes that are subject
to forces such as sexual selection or intersexual co-evolution. It is well documented that sex-
biased genes, particularly those with a male expression bias, tend to evolve rapidly in both
expression level and DNA/protein sequence and there is growing evidence that much of this
rapid evolution may be attributable to positive selection (Ellegren and Parsch, 2007). These
results are in keeping with the main findings of my Master’s thesis that focused on the inter-
and intra-species evolutionary analysis of sex biased genes in Drosophila and Anopheles
gambiae.

To perform meta-analyses on various studies comparing male and female gene expression, we
established Sebida (sex bias database) (Gnad and Parsch, 2006), a database that integrates
results from multiple microarray studies comparing male versus female gene expression
levels. In addition to the ratio of male to female expression for each gene, Sebida provides
information useful for evolutionary studies, including measures of recombination, codon bias
and interspecific divergence. The design of an online database was already subject to my
‘diploma study’. However, during my PhD study we have finished the main modules that
manage the web application and the underlying mySQL database. Moreover, we have added

further data comprising various microarray data sets that contain male versus female gene
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expression levels of various insect species (Goldman and Arbeitman, 2007; Mclntyre et al.,
2006; Wayne et al., 2007). The results of the additional datasets are consistent with the
outcomes of my previous on those datasets that have been considered in my Master’s thesis.

Sebida is available on line at http://www.sebida.com.

6.1 Introduction

Sexual dimorphism is the systematic difference between individuals of different sex in the
same species. At the most basic level, sexual dimorphism is most evident in primary sexual
characteristics defined as the different reproductive organs of male and female. These
differences are often referred to as sex-dichotomous differences. They are completely specific
to one sex or the other like the uterus, for instance. In comparison, phallic size is a sex-
dimorphic difference. The sexes of many species also differ in secondary sexual characters
that are not directly related to reproduction such as size, coloration, or behaviour (Figure 6.1).
In mammals, the males are larger than the females whereas to the opposite is true in spiders,
for instance. Other examples are parts of the body that are used in the struggle for dominance
over other males such as tusks, antlers, or horns. Some cases of sexual dimorphism are so
striking that males and females were originally taken to be members of entirely different
species. For example, male eclectus parrots are green with an orange beak in contrast to
scarlet female parrots with a black beak. In most cases, it is the male that shows extravagant

or exaggerated secondary sexual characteristics.

Figure 6.1: Sexual dimorphism in damselflies (www.treknature.com)

Sexual selection was Darwin's solution to the problem of why conspicuous, and apparently
non-adaptive traits such as the bright colors, horns, and displays of males of many species

have evolved. He proposed two forms of sexual selection: contest between males for access to
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females ("intrasexual selection") and female choice of some male phenotype over others
("intersexual selection") (Futuyma, 1998; Ridley, 2003).

Sexual selection exists because females produce few large gametes and males produce many
small gametes. This creates an automatic conflict between the reproductive strategies of the
sexes: a male can mate with many females, and often suffers little reduction in fitness if he
should mate with an inappropriate female, whereas all a female's eggs can be fertilized by a
single male, and fitness can be significantly lowered by inappropriate matings.

Females are a limiting resource for males competing for mates, but males are not a limiting
resource for females. Because a male is capable of multiple matings, variation in mating
success is generally greater among males than among females and indeed is a measure of the
intensity of sexual selection. In many animals, males engage in contests that determine which
will gain access to females or to resources to which females are attracted. Therefore visual or
vocal signals play important roles in the competition. The males of many mammals possess
weapons such as horns or tusks that inflict injury (Figure 6.2). Consequently, sexual selection
by male contest supports the directional selection for greater size, weaponry, or display

features.

Figure 6.2: Tragelaphus strepsiceros: a male kudus has conspicuous antlers (right) in contrast to a female
cudus (left) (www.exto.nl, www.africantravelinc.com)

In addition, females mate preferentially with males that have larger, more intense, or more
exaggerated characteristics such as color patterns, ornaments, vocalizations, or display

behaviors (Figure 6.3).

In summary, differential selection pressure between the sexes has been postulated to explain
the substantial between-sex differences observed in morphology, physiology, and behavior,
indicating the existence of different optimal sex-dependent phenotypes. Especially traits that

are involved in male reproduction tend to evolve fast.
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Figure 6.3: Sexual dimorphism is ubiquitous among higher eukaryotes
Male competition (left) and the female's preference for conspicuous male phenotypes such as the peacock's trait
of males (right) present possible solutions to the rise of sexual dimorphism (www.classicescape.com,

www.ellentroutzoo.com)

While the evolutionary apects of sexual dimorphism have been extensively studied, the
molecular mechanisms are much less clear. Increasing evidence suggests that molecular
mechanisms associated with sex and reproduction change substantially faster than those more
narrowly restricted to survival. In order to obtain gene expression levels in males and females,
high-throughput and large-scale technologies are required. This leads to the mMicroarray
technology is one of the results of the astonishing development in biology in recent years. It
has been developed for studying the regulation of thousands of genes. Studies of gene
expression during the life cycle of Drosophila melanogaster have found that, for sexually
mature males and females, a substantial fraction of the Drosophila transcriptome displays sex-
dependent regulation. The enormously large amount of accquired data requires smart and
efficient storage and management. Therefore, database systems become indispensable along
with data mining algorithms that find valid patterns in the data.

To perform meta-analyses on different studies comparing male and female gene expression,
we established Sebida (sex bias database), a database that integrates results from multiple
microarray studies comparing male versus female gene expression. For each gene, Sebida
provides information about the ratio of male to female expression and further data that are
useful for evolutionary studies such as measures of recombination, codon bias and
interspecific divergence. Furthermore, it contains a detailed summary section that describes

the main findings of the analyses on sex biased genes.

If it is possible to study differential gene expression underlying the faster evolution of male
biased genes with microarrays at the transcript level, it should also be possible to study

differential regulation of the proteome by quantitative MS. This generation of male versus

104



female protein expression data represents a potentially very interesting ongoing project in our

proteomics laboratory and this project will also be based on SEBIDA.

6.2 Implementation of SEBIDA

Ratios of gene expression levels, recombination rates (Hey and Kliman, 2002), codon bias
estimations (Ikemura, 1981; Wright, 1990) and further evolutionary data such as dy/ds ratios
(see Chapter 9) were integrated into the database, which is implemented in mySQL. The
initial data integration modules that have been used in my Master’s thesis were mainly in
Java. In contrast, the upload and normalisation of very recent datasets are in C#. To compress
the data structure, we joined different database relations into one organism-specific
comprehensive database relation that stores a multitude of information for each gene. Each
tuple is identified by its primary key such as the FlyBase identifier, for example. In contrast to
the initial database scheme, the resulting capacious tables include ‘null’ attributes, if a certain
feature is not reported (e.g., the gene was not identified in a certain study). In the previous
database schema, the request of this missing data tuple would have resulted into an empty join
of several database relations. Besides HTML as the established markup language, we used
PHP as the underlying programming language to generate dynamic web pages.

For Drosophila melanogaster, Sebida includes male versus female gene expression data using
eight different microarray platforms. Five of them (Gibson et al., 2004; Parisi et al., 2004;
Parisi et al., 2003; Ranz et al., 2003; Stolc et al., 2004) have already been subject to my
Master’s study. We have added another three data sets recently (Goldman and Arbeitman,
2007; Mclntyre et al., 2006; Wayne et al., 2007). Furthermore, we integrated microarray
datasets for Drosophila simulans (Ranz et al., 2003) and Anopheles gambiae (Hahn and
Lanzaro, 2005). Moreover, the additional inclusion of strain or body component specific
expression levels provides even more insight into the occurrence of sex bias (Dorus et al.,
2006; Mikhaylova et al., 2008).

The web user can search for male versus female expression for any gene of interest via gene
symbol, gene name, gene description, EnsEMBL identifier, FlyBase accession, or Affymetrix
number (Figure 6.4). The resulting web page illustrates the microarray data including
corresponding significance p-values, dn/ds ratios and further measures useful for evolutionary
analysis. For some studies, the displayed gene expression levels are separated according to the

investigated strains or dissected body sections.
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Figure 6.4: SEBIDA — Sex Bias Database
Searching for a gene of interest (left panel) yields a comprehensive report (right panel) about male versus female

gene expression and further information providing insight into evolutionary relationships.

Besides the listings of gene specific data that contributes to a better understanding of sex bias
along with evolutionary constraints, we integrated a comprehensive analysis section in
SEBIDA (Figure 6.5). It describes the main findings of the study on sex biased genes
including the observation that male biased genes evolve rapidly and therefore have less
orthologous proteins than female biased and unbiased genes. The comprehensive analysis on
evolutionary patterns relating to sex bias was subject of my diploma study and they can be
looked up via the web application of Sebida, which presents one of the first projects during

my PhD study.

sebida e i sebida

sebida sebida

Figure 6.5: The analysis section of SEBIDA provides insight into the main findings of the evolutionary

analysis of sex biased genes
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6.3 Discussion and Future Directions

The development of an online database that focuses on the storage of data related to sex bias
makes it possible to perform meta-analyses on various studies comparing male and female
gene expression and to derive general patterns relating to difference between sexes. Besides
the retrieval of male versus female gene expression data on the basis of microarray
technologies, further information relating to evolution has been added. As new large-scale

studies are performed every year, Sebida has to be updated and administrated.

To date, the addition of datasets was mainly done by specific ad hoc programs written in Java
or C#. Therefore, one major goal is to implement administration tools similar to the ones of
PHOSIDA (Chapter 4) and MAPU 2.0 (Chapter 5), in order allow the automated upload of
new data and updates of the database. Another goal is the inclusion of high-throughput data
on sex bias in species other than insects. The inclusion of other organisms would allow

generatizing the observations made in Drosophila.

Finally, the application of mass spectrometry based proteomics is particularly interesting, as
one could show that observations on the transcript level are in keeping with findings on the
protein level. A MS-based generation of male versus female expressions on the protein level
would make a considerable contribution to the sex bias database. In fact, we intend to
determine sex-specific protein expression differences in Drosophila melanogaster using

SILAC in the near future.
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Chapter 7

Phosphorylation Site Prediction

The major focus of machine learning is to design algorithms that allow computers to learn
(Mitchell, 1997). The general idea is to derive patterns and rules from extensive datasets. In
the case of prediction methods, the resulting rules can then be used to classify a given set of
new data. Here we took advantage of the large-scale datasets of measured phosphoproteomes
(Chapter 4.3), we took advantage of the large number of in vivo phosphosites to create a
phosphosite predictor in PHOSIDA. The work on this predictor was carried out in

collaboration with Shubin Ren in our department.

7.1 Rationale

One aspect of learning is to deduce rules on the basis of given instances. As massive datasets
such as MS-based measurements of dynamic proteomes exceed the capacity of human
learning ability, the application of computer based machine learning approaches becomes
indispensible (Chapter 4.5). Machine learning has a wide spectrum of applications ranging
from object recognition to the classification of DNA sequences. Concerning the
posttranslational modifications of proteins, various algorithms have already been applied to
the prediction of phosphorylation sites. For example, the prediction system Netphos (Nielsen
et al., 1999) is based on neural networks, whereas Scansite (Obenauer et al., 2003) uses a
profile method to predict phosphorylation events. We used our large-scale studies to construct
a phosphorylation site predictor on the basis of a support vector machine (SVM) (Gnad et al.,
2007). The basic idea of SVMs is to transform observed features of a given instance into a
vector based feature space (Noble, 2006). Each dimension of this feature space presents a
certain attribute. Then, after the transformation of a multitude of positive and negative
instances (such as phosphorylated and non-phosphorylated residues) into the vector space, a
‘maximum margin hyperplane’ is created (Figure 7.1). This hyperplane is intended to separate
the two datasets. If one intends to classify a new instance, the given sample has to be
transformed into the feature space and categorized depending on the vector localization
relating to the separating hyperplane. To estimate the accuracy of the SVM, one usually uses

90% of the classified dataset to train the SVM, whereas 10% of the given data is used to test
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the SVM. We took advantage of the large number of in vivo phosphosites from various

species to create an organism-specific phosphosite predictor in PHOSIDA.
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Figure 7.1: Feature space
A maximum margin hyperplane (magenta) separates two distinct datasets that were transformed into a

hyperdimensional space reflecting certain features of each instance.

7.2 Implementation of the Support Vector Machine

The large-scale study on general patterns relating to phosphorylation events demonstrates that
phosphorylated proteins are highly conserved throughout all phylogenetic kingdoms (Chapter
9). This observation suggests that proteins that undergo posttranslational modifications
present functionally important key players of cell signalling processes and therefore have to
be preserved in evolution. In addition, a higher conservation of phosphorylated residues in
comparison to their non-phosphorylated counterparts was revealed throughout higher
eukaryotes. Besides these outcomes on the evolutionary preservation, we have noted the
predominant localizations of phosphorylation sites in loops and turns on protein surfaces
(Chapter 4.6.4). This finding illustrates the structural constraints of phosphorylated residues to
be accessible to certain targets such as kinases or other interacting proteins. Therefore, we
used these outcomes on general features of phosphorylation sites to fill the high-dimensional
feature space on which support vector machines act.

As shown in the study, phosphoserines, phosphothreonines and phosphotyrosines show the
same general patterns relating to protein structure and conservation, but each to a different
extent. Therefore, we applied the machine learning approach separately to each organism-
specific set of pS, pT and pY sites. To create a negative set of the same size, we randomly

chose sites from proteins that were not present in the phosphoset. The positive and negative
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datasets were split into a training set (90%) and a test set (10%). SVMs attempt to partition
true from false sites by separating them in a high dimensional vector space with the help of
hyperplanes and kernel functions (see Chapter 7.1). A few sites out of the negative set may
turn out to be phosphorylation sites in future experiments. This problem was addressed by
optimizing the ‘C parameter’ of the SVM, which controls the softness of the margin. We
optimized the parameters C and o by varying them from 2 to 2'° in multiplicative steps of
two and chose the best combination of both parameters out of the 21 x 21 possibilities. The
optimization was based on a five-fold cross validation on the training set. To determine the
importance of each feature in the accuracy of phosphosite prediction, we created various sets,
which contain different information for each phosphosite:
Set A: The primary sequence comprising the site and its 12 surrounding residues
Set B: The surrounding primary sequence and the predicted secondary structure of the
site
Set C: The surrounding primary sequence and the predicted accessibility in addition to
the secondary structure of the site
Set D: The surrounding primary sequence, the conservation of the phosphosite in
mammals and the protein conservation throughout several eukaryotes
Set E: The surrounding primary sequence, the accessibility of the phosphosite and
secondary structure as well as its conservation in mammals, and the protein
conservation
This resulted in 260 to 274 dimensions that represent the features of each phosphosite. We
investigated several common kernel functions and found that the radial basis function (RBF)
turned out to be the most powerful compared to linear, polynomial and sigmoid Kernel
functions. We optimized parameters C and o, the width of the Gaussians used as the RBFs,

and trained the optimal model for each set of each phospho amino acid).

We employed the machine learning approach to each organism-specific large-scale
phosphorylation data set. Thus, we applied the method to the human (4731 pS, 664 pT, 107
pY), mouse (3733 pS, 437 pT, 83 pY), fly (7756 pS, 1427 pT, 325 pY), yeast (3320 pS, 562
pT, 48 pY), archaean and bacterial phosphoproteomes separately, in order to construct

organism-specific phosphosite predictors that are trained on high-accuracy data.
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7.3 Results
7.3.1 Homo sapiens specific Phosphosite Predictor

We found that the accuracy of the prediction based on the primary sequence was already very
high: in the case of phosphoserines, 89.85% were predicted correctly in the test set as were
74.24% of the phosphothreonines. The accuracy of the prediction increased to 90.17% for pS
and 77.27% for pT by adding structural information (sets b and c). For serines, the
accessibility was slightly more important than the secondary structure information, whereas
for threonines, the opposite was the case. The additional dimensions reflecting the
conservation of the site and of the entire protein (set d) increased the accuracy to 90.70% (pS)
and 81.06% (pT). By combining structural and evolutionary information (set ), we found that
91.75% in the serine set and 81.06% in threonine set were predicted correctly. The accuracy
of the prediction of phosphotyrosines increased from 66.67% to 76.19% when including the
structural and conservational information. However, that increase is not significant due to the
fact that there were only around 100 phosphotyrosines sites.

The recall reflects the proportion of true positives to the sum of true positives and false
negatives, whereas the precision describes the number of true positives out of all predicted
positives. As outlined in Figure 7.2, the precision-recall curve of set e is slightly better than
that of set a, indicating that the inclusion of evolutionary and structural information increased

the recall and precision of the prediction to a minor degree.
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Figure 7.2: Human phosphorylation site prediction
Precision-Recall Curve reflecting the accuracy of the prediction of phosphorylated serines in human on the basis
of a support vector machine trained by the surrounding primary sequence (blue) and evolutionary as well as

structural constraints (green)
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The prediction accuracies of phosphorylated serines and phosphorylated threonines in human

are depicted in Figure 7.3 a.
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Figure 7.3: Phosphorylation site prediction
Precision Recall curves reflecting the prediction accuracies of phosphoserines (blue) and phosphothreonines

(magenta) in human (a), mouse (b), fly (c) and yeast (d).

7.3.2 Mus musculus specific Phosphosite Predictor

We trained the support vector machine (SVM) separately on unambiguously identified
phosphorylation sites (3733 pS, 437 pT, 83 pY). The essential feature of each phosphorylation
site that was used as input for this machine learning approach was the raw sequence, as the
main finding of the prediction of human phosphosites showed that the addition of structural
and evolutionary information increases the performance of the prediction only slightly
(Chapter 7.3.1). In the case of phosphoserines, 88% were predicted correctly in the test set as
were 78% of the phosphothreonines. The accuracy of predicting phosphorylated tyrosines was
also very high (73%), but lacks statistical significance due to the low number of sites. Figure
7.3 b depicts the accurracy of the prediction of mouse phosphosites. It is comparable to the

one of predicting human phosphosites.
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7.3.3 Drosophila melanogaster specific Phosphosite Predictor

We trained the SVM on 7756 pS, 1427 pT and 325 pY along with their surrounding
sequences. We found that 89.81% in the serine set and 81.05% in the threonine set were
predicted correctly. The accuracy of the prediction of phosphotyrosines was 63%. The

corresponding precision recall curve is illustrated in Figure 7.3c.

7.3.4 Saccharomyces cerevisiae specific Phosphosite Predictor

We applied the machine learning approach to 3320 pS, 562 pT, and 48 pY separately. As was
the case in the human phosphoproteome, the inclusion of structural and evolutionary
information increased the accuracy of prediction only slightly. However the performance of
prediction proved to be already very high without such additional information. Therefore, the
support vector machine was exclusively trained on the primary sequence comprising the site
and its 12 surrounding residues. In total, 92% phosphoserines were predicted correctly in the
test set. A high accuracy was also observed for the prediction of phosphothreonines (87%)
and phosphotyrosines (66%). Figure 7.3 d shows the Precision-Recall curves for
phosphoserine and phosphothreonine prediction in yeast. Due to the low number of
phosphotyrosines, a reflection of the performance of the hardly reliable prediction of

phosphotyrosines is not demonstrated.

7.3.5 Prokaryotes specific Phosphosite Predictor

Using the phosphoproteomes of various prokaryotes such as Escherichia coli, Lactococcus
lactis, Bacillus subtilis and Halobacterium salinarium, we tried to train the support vector
machine on the basis of the primary sequences surrounding the prokaryotic phosphorylation
sites. However, in contrast to the accuracy of the predictions of eukaryotic phosphorylation
sites (Chapters 7.3.1 — 7.3.4), the performance of the prokaryotic specific phosphorylation site
predictor was very poor and close to random. This could eiter be due to the low number of
training sites (100 fold less than in eukaryotes) or it could reflect a different mode of substrate

specificity of prokaryot vs. eukaryote kinases.
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7.4 Integration of organism-specific Phosphosite Predictors in
PHOSIDA

To enable researchers to predict the occurrences of phosphorylation sites on any protein of
interest, we created an online version of the predictor in PHOSIDA. It transfers all candidate
serines and threonines of any inserted amino acid sequence into the feature space by
transforming the site along with the surrounding sequence into a high dimensional vector. The
SVM predicts the chance for each residue to be phosphorylated according to the vector
orientation in the trained model along with the derived maximum margin hyperplane that
separates phosphorylated and non-phosphorylated residues. The web application allows to set

a desired cutoff directly on the given organism-specific precision recall curve (Figure 7.4)

PHOSIDA 7\l PHOSIDA

phosphorylation site database QEHY o phosphorylation site database O 7 5

( back

Figure 7.4 Integration of the phosphorylation site predictor in PHOSIDA
Each predicted phosphorylated residue is checked for matching with any eukaryotic kinase motif that is included

in PHOSIDA. Thus, the listing of all predicted phosphosites also includes all matching kinase motifs, in order to
suggest the kinase affiliation (Figure 7.5).
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Figure 7.5: Result of phosphorylation site prediction in PHOSDA
Each predicted phosphosite is tested for matching with known eukaryotic kinase motif to assess the kinase

potentially phosphorylating this site.

7.5 Discussion

The organism-specific PHOSIDA phosphorylation site predictor makes it possible to find
putative novel phosphorylation sites that have not yet been experimentally identified in yeast,
fly, mouse, or human. While experimental data, especially quantitative data, are the ‘gold
standard’, predicting novel phosphosites and matching kinase motifs on proteins of interest
should be valuable for the design of biological experiments or for predicting a protein’s role
in a pathway. Furthermore, once predictors are trained, these prediction methods are basically
‘free’. We provide an innovative method for setting a desired level of precision and recall. For
example, for mutagenesis experiments one may want to set the precision very high, and for
rationalizing the function of a protein in a pathway one may want to set it relatively low.
Thus, in the absence of experimental data, the prediction of novel phosphosites can be taken
as the first step in an experimental design to uncover the function of a protein of interest and
to elucidate its involvement in signalling cascades.

As new phosphorylation data are integrated to PHOSIDA our SVM will also be updated,

leading to increasingly accurate predictions.
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Chapter 8

Genome Annotation

The genome is the most comprehensive and fundamental biological resource. It encodes all
possible proteins and comprises the entire hereditary information. However, the derivation of
coding regions in the nucleotide sequence of the genome is not trivial. Current methods for
gene prediction provide useful information but are still limited (Brent, 2007). Furthermore, it
is hardly possible to predict all features of the genome from its sequence alone. Thus, the
integration and validation of mass spectrometry derived experimental data in a genomic
context is expected to contribute to the annotation of the genome and to the identification of

genes for which there was no previous experimental information.

8.1 Rationale

The genome encodes the whole hereditary information of an organism. Its fundamental unit is
the DNA comprising both genes and non-coding sequences. The first bacterial genome to be
completed was that of Haemophilus influenzae in 1995 (Fleischmann et al., 1995). Seven
years later, the Human Genome Project provided the complete genetic blueprint of a human
being by sequencing the whole genome. At the present time, the database GenBank (Benson
et al., 2008) contains nucleotide sequences for more than 240000 named organisms obtained
primarily through submissions from large-scale sequencing projects. In total, around 2000

eukaryotic genomes have been completely sequenced until now.

These comprehensive high-throughput sequencing efforts establish a basis for the large-scale
detection of the encoded proteome powering an organism’s life. However, a complete
annotation and understanding of the genome requires experimental evidence ranging from the
primary observation that a genomic sequence encodes a protein to the measurement of
specific features such as residues that are phosphorylated and thereby essential for the
regulation of certain biological processes.

As the application of high-accuracy MS technologies potentially enables the measurement of
nearly complete proteomes of given cells in-vivo along with certain features such as

phosphorylation, it is obvious that this large-scale data represent a very valuable source to
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annotate the genome. Therefore, we endevoured to assign measured MS sequencing
information and associated information on posttranslational modifications to the genome.
The simplest and fastest way is to map peptide sequences, which have been identified via the
established approach of searching MS-information in amino acid sequence databases, to the
genome. With the detected peptide sequences in hand, we reassigned all peptides to gene
transcripts that are annotated in the genomic database EnsEMBL (Birney et al., 2004). The
reassignment of sequence stretches to genes allows the usage of proteomic data to annotate
the genome via the DAS/Proserver technology (Finn et al., 2007) in EnsEMBL. In addition,
we added extra genome annotation sections in our proteomic databases. Thus, the genome
database and the proteomic in-house databases PHOSIDA (Chapter 4) and MAPU (Chapter 5)

are linked, so that proteomic data is mapped as features to the genome sequence.

8.2 Mapping Proteomic Data to the Genome

8.2.1 Assignment of MS peptide data to Genes annotated in EnSEMBL

We wished to use the proteomic data to annotate the genome. Thus, we extracted all measured
peptides of each proteomic dataset and reassigned the given peptide sequences to genes that
are annotated in the EnsEMBL database (Figure 8.1). If a specified peptide matches with
sequences of more than one gene transcripts, we assigned the peptide to the one transcript that
shows the highest number of matching peptides within the associated experiment. Therefore,
the peptide-to-gene transcript assignments result into one-to-one relationships reducing
potential redundancy. The reassignment of all detected peptides of various projects to
EnsEMBL gene transcripts contributes to the compilation of a new database instance stored
on the same web servers that manage the actual MAPU 2.0 proteome database and the

phosphorylation site database PHOSIDA.
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Figure 8.1: Basic genome annotation concept

8.2.2 PHOSIDA and MAPU as Annotation Source in EnsEMBL

The Distributed Annotation System (DAS) allows the visualization of layers of annotation
data for a given gene’s sequence and thereby makes it possible to gain an overview of the
features of that sequence. It presents an excellent technology to integrate annotation data from
multiple sources into a simple graphical view in EnsEMBL.

We used Proserver, a Perl-based and standalone DAS Server. At the top of the ProServer
architecture (Figure 8.2) is a daemon executable positioned between requests and the resulting
code. ProServer comes bundled with modules for data stores ranging from flat file to MySQL.
The major method is the source adapter that comprises the data retrieval methods. It had to be
adjusted to the data structure of PHOSIDA and MAPU 2.0. Furthermore, it defines the view
illustration of the requested data. Its superclass handles the transformation of data to XML.
Moreover, the ProServer configuration files had to be set up. The architecture of ProServer is
described in detail in Finn et al. (Finn et al., 2007).

Besides the set up of the ProServer, we had to establish Cygwin, a linux-like environment for

Windows. It provides a dynamic link library (DLL) acting as a LINUX API emulation layer.
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Figure 8.2: Architecture of the ProServer technology

After the installation and set-up of the DAS environment on our servers, web users are able to
obtain the gene related data gained by mass spectrometry technologies. For each gene
transcript, one layer shows all detected peptides stored in the MAPU 2.0 DAS source (Figure
8.3). Clicking on one of the illustrated peptides yields a report of all the cell types in which
the selected peptide has been measured. In addition to the MAPU 2.0 DAS source, the
established PHOSIDA DAS source provides all phosphorylation sites that have been
unambiguously identified (Class 1 sites), but also phosphosites that lack of precise
identification within the phosphorylated peptide sequence due to limited fragmentation

(ambiguous PTM localization).

The aggregate view of all displayed features of the genome sequence enables researchers to
obtain a summary of the genes’ sequence characteristics and can already lead to insights or
hypotheses into the biological function of the gene.

The background sections of PHOSIDA and MAPU 2.0 contain detailed guide lines about the
set up of our DAS sources in EnsEMBL.

119



e.] Ensembl H uman Pretliew

@]

‘ Search>> ‘

.. EN

SPO0000342827, ENSPO0000328265

Dec 2007

Your Ensembl

= Login or Register
@ About User Accounts

ENSP00000331901

= Gene information

=™ Gene regulation info.

= Genomic sequence
alignment

= Gene splice site image

= Gene tree info

= Gene variation info.

= 1D history

= Genomic sequence

= Transcript information

= Exon information

= Protein information

= Export protein data

Chromosome 11
62,083,727 - 62,106,622

= View of Chromosome 11
= Graphical view

= Graphical overview

= Export from region...
Export Gene info in region
Export SNP info in region
# Export Vega info in region

Ensembl Archive

e/ View previous release of
page in Archive!
</ Stable Archive! link for this

Ensembl Protein Report

Peptide
Ensembl Peptide ID
Translation information

Genomic Location

Description

Prediction Method

InterPro

Protein Family

Protein Features

EEF1G {(HGNC Syrmboly Te view all Ensembl genes linked 1o the name dis here

ENSP00000331901

This protein is a franslation of transcript ENSTO0000328251, which is

This peptide can be found on Chromosome 11 at location 62,083 727

The start of this peplide is located in Confiy AP001363.4.1.58001

a product of gene ENSGO00001 8667 6

2,106,822

Elongation factor 1-gamma (EF-1-gamma) (2EF-18 gamma). Souice: Unipml/SWISSFROT P26541

Genes wers annatated by the Ensambl automatic analysis pipaling using either a Genewise/Exonarate model from a database protein of a set of aligned
cDMAs followed by an ORF prediction. Genewise/Exonerate models are further combined with available aligned cOMAs to annatate UTR's (For more

information see 'V Curwen et al, Genome Res. 2004 14:042-50)

IPRO10387 Glutathione S-transferase, C-terminal-like - [View other genes with this domain]

IPRO04046

, C-terminal - [View other genes with this domain]

IPRO01662 Translation elongation factor EF18, gamma chain, consered - [View other genes with this domain

IPRO12336 Thiokedadn-like fald - [View other genes with this domain]
IPRO04045

, N-terminal - [View other genes with this domain]

EMSFO0000001173 - ELOMGATION FACTOR 1 GAMMA EF 1 GAMMA EEF 18 GAMMA

This cluster contains 1 Enserbl gene member(s) in this species

Peptide

SNPs

WMapu

ientiied pe. - = ENSP00000331901_399_412 x

Plosida -

dems 1 phesp ' ' ID: ENSPO0000G31901_389_412

Low complex ser| TVPE: identifies! peptices
s METHCD: hass sp
Thioen-ke_id eomi2

SUPERFAMILY LINK: it ey mapUprateome com

GST G ke
o — E——NOTE: detected in semingl flid
m GST N GST Tams slong EF1G con

Prosite profies Trmre| elong EF1 G con

Scale (ag) 0 e w0 a0 M0 =m0 om0 435

SNP kgerd Syromymous  Non-Syrorymous

page

Figure 8.3: EnsEMBL gene report including the PHOSIDA and MAPU 2.0 DAS protocols

8.2.3 Representation of Genome Annotations in PHOSIDA and MAPU 2.0

The genome annotation section is accessible via the ‘notepad’ button located right next to the
main ‘web book’ of MAPU 2.0 and PHOSIDA (Figure 8.4). At first, the user is required to
select a species of interest. Then, the karyotype of the selected species is illustrated along with
a link that connects to the EnsEMBL genome annotation webpage. Clicking on one of the
displayed chromosomes shows a more detailed image along with general information such as
length of the chromosome, number of known and predicted genes, number of single
nucleotide polymorphisms (SNPs), and number of gene transcripts. Besides these annotations
derived from the EnsEMBL database, the number of gene transcripts that have been identified
in the proteomic data is posed.

Furthermore, each chromosome is divided up into 93 bins: On the left side, the number of
transcripts that are annotated in EnsEMBL is displayed. Clicking on one of the bin boxes pops
up the EnsEMBL web page showing a detailed view of the selected chromosomal region. On
the right side the number of transcripts that have been detected in any of the uploaded
proteomics projects is illustrated for each bin. Clicking on one of these bin buttons lists all
identified gene transcripts along with the descriptions of the corresponding genes and their
exact localizations on the chromosome. Furthermore, a link is provided for each gene

transcript that connects to the EnsEMBL homepage displaying the full annotation of the given
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transcript. In addition to the general annotation of the given gene transcript, the popped up
EnsEMBL page will show all peptides that have been identified by proteomics via the MAPU
2.0 DAS source and all detected phosphorylation sites via the PHOSIDA DAS source (see
Chapter 8.2.2).
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Figure 8.4: Genome annotation section of MAPU 2.0

8.3 Results

The main finding of the genome annotation approach is that nearly all peptide sequences that
were identified on the basis of an underlying protein database could be assigned to genes
annotated in EnsEMBL (Table 8.1). On average, less than 1% of peptide sequences did not
match with any translated gene transcript sequence. In the case of the fly phosphoproteome
and the yeast phosphoproteome, all peptide sequences could be assigned to translated gene

transcripts annotated in EnsEMBL.
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Another outcome of this method was that most of the assigned genes are known, whereas less
than one percent of identified genes encoding phosphoproteins are annotated in EnsEMBL on
the basis of predictive methods lacking of experimental evidence. In the case of the human
phosphoproteome identified in cancer cells upon EGF stimulus (Chapter 4.6.1.1.1), a mere
0.4% of determined genes were novel (predicted). In the case of yeast and fly, we did not

detect any genes that are classified as ‘novel’ in EnsEMBL.

Furthermore, we did not find evidence for significant biased distributions of identified
phosphotranscripts encoded on the plus or minus DNA strand. The localizations of detected
genes on the chromosomes also showed a uniform pattern. When analyzing the occurrences of
detected genes on the different chromosomes (Figure 8.5), we noticed that none of the
phosphopeptides mapped to the Y-chromosome. This is a good positive control, as the HeLa
cell line is female and therefore should not express any genes from the Y-chromosome.
Another finding of this study was that the number of assigned genes is lower than the number
of determined proteins. For example, in total, 2200 proteins were associated to 1982 genes in
the case of the investigated human phosphoproteome. This is due to the fact that one gene can
give rise to several distinct proteins that are distinguishable to MS.

The main results of the genome annotation approach applied to eukaryotic phosphoproteomes

are shown in Table 8.1.

Category Human Human Mouse Mouse Fly Yeast
(4.31.1) (4.3.1.2) (4.3.2.1) (4.3.2.2) (4.3.3) (4.3.9)

Phosphoproteins 2200 1377 1808 2250 2285 1192
Genes 1982 1303 1729 2181 2280 1190
Known genes 1974 1300 1719 2171 2280 1192
Novel genes 8 3 10 10 0 0
Genes located on the + 997 656 887 1105 1165 603
DNA strand

Genes located on the — 985 647 842 1076 1135 587
DNA strand

Phosphopeptides 5569 3898 3430 5250 8777 3000
Phosphopeptides 5460 3835 3378 5207 8777 3000

assigned to genes

Table 8.1: Genome annotation using identified phosphoproteomes
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Figure 8.5: Annotation of the fly genome
The distribution of genes that encode phosphorylated proteins (right) on fly chromosomes is similar to the one of

all genes (left)
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8.4 Discussion

It is not surprising that almost all human and mouse phosphopeptides could be assigned to
their genes, as the protein database used for mapping the spectra to peptide sequences was the
IPI database comprising all translated gene transcripts of the EnsEMBL database. In the case
of yeast and fly, the corresponding databases used for identification (SGD and FlyBase
respectively) are completely integrated into EnsEMBL, so that all peptide sequences could be
mapped. The observation that 2200 human phosphoproteins correspond to 1982 genes reflects
the fact that each gene can potentially encode various transcripts and isoforms of the protein
product. The chromosome localization of genes that encode phosphoproteins does not
significantly deviate from the localization of all genes. This was expected, as there is no
plausible reason for a preferred localization of phosphogenes on a certain DNA strand or
chromosome, as is the case for sex biased genes (Chapter 6). For the human
phosphoproteome, the absence of measured proteins, whose genes are on the Y chromosome,
is related to the experimental design, as we used HeLa cells. The HeLa cell line was derived
from cercival cancer cells taken from a woman named Henrietta Lacks. Thus, the derivation
of gene products, whose origins are located on the Y chromosome, would point to
contamination by a male mass spectrometrist such as Jesper Olsen, for example. Therefore,

this genome annotation approach can also be used for quality control.

Besides general conclusions regarding the number of detected gene transcripts on certain
regions of the genome, the genome annotation approach makes it possible to integrate large
scale MS based proteomic data into the genome database EnsEMBL. The compilation of
general gene annotation extended by proteomic data on the basis of the DAS technology
enables biologists to visualize a variety of gene features. Moreover, the linkage between our
proteomic databases and the genome database allows the discovery of other patterns relating
to phosphorylation. For example, below we use annotation data included in the EnsEMBL

Compara database to elucidate the evolution of phosphorylation.
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Chapter 9
The Evolution of Phosphorylation

As described in Chapter 4.2.4, we integrated evolutionary conservation as another dimension
of biological information of the phosphoproteome into PHOSIDA. Phylogenetic relationships
and global sequence alignments of homologous proteins elucidate the conservation of given
phosphorylated proteins and phosphorylated sites of interest. It also enables the analysis of the
evolution of phosphorylation from a global point of view. For this purpose we either used
protein-protein alignments of phospho datasets obtained via the automated PHOSIDA
pipeline, or the comprehensive evolutionary information that is provided by the EnsEMBL
Compara database. In order to use the Compara database, we made use of the mapping of

phosphopeptides to genes in PHOSIDA (Chapter 8).

9.1 Rationale

Evolution is a change in the inherited traits of a population from one generation to the next
(Futuyma, 1998; Ridley, 2003). These traits can be classified as the ultimate effects of all
proteins that are encoded by genes. DNA contains the genetic instructions and therefore
presents the long-term storage of genetic information, which is passed on by reproduction.
However, mutations in specific regions of the DNA can change the encoded traits or even
create novel traits. If the resulting changes have a negative effect on the chance of survival or
decreases the chance to reproduce, the genetic alteration is sorted out. This phenomenon is
defined as ‘negative selection’. In contrast, if the changes in the DNA have a positive impact
on the probability of survival or reproduction this is ‘positive selection’. Over many
generations, adaptions result from the genetic preservation of positively selected traits that are
advantageous in a given environment. In contrast, ‘genetic drift’ causes random changes in
the frequency of traits in a population. Therefore, natural selection and genetic drift present
the predominant forces that drive the evolution of species via mutations.

Evolution not only advances the design and development of traits within one species, but also
causes the generation of new species. This evolutionary process by which new biological
species arise is termed ‘speciation’. The main cause of speciation is geographic isolation. This
evolutionary process has yielded into a great variety of species over billions of years. With the

availability of completely sequenced genomes of various species, one can compare the
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genomic sequences between species, and therefore derive their evolutionary relationship and
suggest their phylogenetic division. The overall phylogenetic relationship of all species yields
the tree of life (Figure 9.1) (Ciccarelli et al., 2006). Evolution can be analyzed on different
levels ranging from the evolution of entire genomes of species as a whole to the preservation
of specified protein sequence segments. For example, the intent of my Master’s study was to
analyze the evolution of sex biased genes integrated in the sex bias database SEBIDA
(Chapter 6). On the basis of extensive conservation analyses on the DNA level, we came to
the conclusion that male biased genes evolve faster in evolution than female biased genes.
The biological reasons for this observation are the phenomena of ‘female choice’ and ‘male
competition’. This project illustrated that evolutionary analysis on the basis of bioinformatics
methods including extensive sequence alignment approaches enables derivation of patterns
regarding the functional impact of proteins and their preservation over time.

Here, we intended to study the evolution of phosphorylation. Although conservation of
specific sites is often taken to imply biological importance, relatively little is known about the
evolutionary constraints on the phosphoproteome. We investigated these constraints on three
levels: conservation of phosphoproteins, regions surrounding the site and the phosphosite
itself. We used the phylogenetic relationships derived from two-directional BLAST searches
and pairwise global alignments created via the Needleman-Wunsch algorithm, which are
integrated into the PHOSIDA database, to study the evolution of phosphorylation. In addition,
we linked the PHOSIDA database containing gene assignments of phosphorylation sites with
the EnsEMBL Compara database, which contains a very large amount of evolutionary
information at the DNA level. Combining evolutionary annotation data from EnsEMBL with
phosphoproteomic data managed by PHOSIDA enables the investigation of the evolution of
phosphorylation at the genome sequence level. Conservation studies at the DNA level are
even more comprehensive than at the protein sequence level, as one can calculate
synonymous and non-synonymous changes of the gene sequence This makes it possible to
learn whether a given gene is positively or negatively selected by comparing evolutionary

rates of synomymous and non-synomymous changes in the coding sequence.
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Figure 9.1: Tree of life (Ciccarelli et al., 2006)

9.2 Derivation of Phylogenetic Relationships and Global
Alignments

The evolutionary analysis is divided up into two parts (Figure 9.2): The first part describes the
evolutionary analysis of phosphorylation events at the DNA level.

The EnsEMBL Compara database contains whole genome alignments, ortholog predictions,
paralog predictions, and various phylogenetic parameters describing the inter-species and
intra-species homology. It is freely accessible via user accounts that allow complete access to
all associated database relations. Hence, we integrated the EnsEMBL Compara database
access along with standard queries on required database relations into the employed C# class
library. However, some database queries would require complex workarounds. The retrieval

of cDNA alignments between gene transcripts would require the composition of certain
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segments of the whole genome alignments containing associated exon regions, for instance.
Such complex queries cannot be formulated by mySQL commands alone. Hence, EnsEMBL
also provides access to a Perl API application, which embraces a multitude of methods that
allow the formulation of more complex queries on the database. Therefore, we also embedded
required methods of the EnsEMBL Perl API into the PHOSIDA analysis pipeline. The
integrated access to the genome database enabled us to retrieve comprehensive evolutionary
information about genes encoding proteins that we found to be phosphorylated. The
evolutionary analysis of phosphorylation at the gene level is fully automated and accessible
via the PHOSIDA administration tool (Chapter 4.2.6).

In the second part, we integrated an evolutionary conservation section into PHOSIDA via a
self-implemented pipeline (Chapter 4.2.4). We determined homologous proteins to all
phosphoproteins across 70 species from E.coli to human. The homology search was
performed against protein databases of 53 bacteria, nine archaea, and eight eukaryotes. These
databases were retrieved from SwissProt in the case of archaea and bacteria. The yeast
proteome was downloaded from SGD, D.melanogaster from FlyBase and other eukaryotic
sequences from IPI. We defined proteins to be homologous when the resulting E-values were
lower than 10°. For homologous proteins, we used a bidirectional BLASTP approach to
distinguish between paralogs and orthologs (O'Brien et al., 2005). PHOSIDA displays the
results of the homology search using an approximate phylogeny of all investigated species
(Chapter 4.5). In addition, we created global alignments between each phosphoprotein and its
corresponding interspecific homolog via the Needleman-Wunsch algorithm. As the length of
alignments presents a further criterion for homology besides bidirectional significance, web
users are able to check the global alignments along with the proportion of identities and to
estimate the degree of homology by themselves.

For the global evolutionary study, we implemented various analyses that require only the
project identifier of the given experiment and different parameters such as a minimum length
of the pairwise alignment for defining homology. Overall, the integration of bidirectionally
derived phylogenetic relationships and global alignments between phosphoproteins and
homologs allows testing protein, kinase motif and phosphosite conservation on line for any
phosphoprotein of interest. Additionally, it enables analysis of the evolutionary constraints on
the phosphoproteome on different levels on the basis of protein-protein alignments from a

global point of view.

128



phosphoprotein along with its phosphosite (B)
' . ,:\R8-35"1'RD?.'J’}'XT&'«‘F.UF\M@,‘JI.-’_:P\.'GS-S-\‘:’SA'J(:S.:‘W!LG it '

DNA sequence analysis Protein sequence analysis
(EnsEMBL Compara Database) (PHOSIDA pipeline)

YRQEVTH AV PVGSGAYGAVCSAVDG. .
Gene assignment + + ARSGFYRQEVTKTANEVRAVYRDLOPVGSGAYGAVCSAVDG

(Chapter 8)

Derivation of phylogenetic relationship
via two-directional BLASTP application

’ =

. .ARSG F‘:'FQF.'.’TK'J'HN'E‘-'RAVﬂ{Dl-Ul‘VGSGA YGAVCSAVDG. .

i
|
'
1

-

——— = Generation of pairwise global alignment between
== — the phosphoprotein and the homal protein

l’_;’/—_—‘ of the given species

+  ARSGFYRQEVTKTAWEVRAVYRDLOPVGSGAYGAVCSAVDG. o

¢ + + ARKGFYRQEVTKTAWEVRAVYQDLOPVGSGAYGAVCSAVDS, .

i _ . ARKGFYRQEVTHTAWEVRAVEQDLOPVGSGAY
Derivation of phylogenies and . - AREGFYRQEVTETAWEVRVVYQDLOPVGSGAY
Itiple al via the PerlAPL . . ~RGGFYRQELNKTVWEVPQRYQNLTEVGSGAY
+ +SRPGYFRQEINKTIWEVPDRYK

EnsEMBL . KK--FYKLDINRTEWEIPDIYQDLOPVGSGAYGQVSKAVVR. .
- . KMAKFYKLDINRTEWEI PETYONLOPVGOGAYGOVCKAVVER. .
° Compara

PHOSIDA T ——

‘abrcseryEm s dus

| -L_J_ﬂ_n__.am,unuiiii_l ikt

e ok sk e s

Figure 9.2: Investigation of evolutionary constraints of the phosphoproteome

On the one hand, inter-species and intra-species phylogenetic relationships were derived along with global
cDNA alignments using the EnsEMBL Compara database (left panel). The comprehensive annotation describing
the evolution and conservation of genes required the assignment of proteomic data to the genome. On the other
hand, we derived homology relationships between phosphorylated proteins and proteins of other species via
bidirectional BLAST alignments (right panel). To obtain global alignments of homologous proteins, we applied
the Needleman-Wunsch algorithm. The integration of evolutionary information of phosphoproteins allows
gaining insight into the conservation of any protein of interest on three levels ranging from the protein
conservation as a whole to the phosphosite conservation. In addition, it enables the analysis of evolutionary

constraints of the phosphoproteome from a global point of view.
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9.3 Results

On the basis of the EnsEMBL Compara database, we explored the conservation of 1982
human genes, which encode proteins that we found to be phosphorylated in our study (Olsen
et al., 2006). As shown in Figure 9.3a, phosphorylated gene transcripts (proteins) have a
higher proportion of homologs, which are classified as ‘one to one orthologs’ by EnsEMBL,
in comparison to the entire human proteome. We found that 65% of human genes, which
encode non-phosphorylated proteins, were orthologous to genes in Canis familiaris (dog) in
comparison to 85% of the phosphoset, for instance. For the comparison set, we took only
genes into account that have been experimentally proven to code proteins. In EnsEMBL,
experimentally verified proteins are classified as ‘known’ in the corresponding database
relation and are therefore easily retrievable. In contrast, predicted genes, which lack of any
experimental evidence, are defined as ‘novel’ in the EnsEMBL Compara database.

In addition, we also examined the conservation of the kinase enriched human phospho dataset
(Chapter 4.6.1.1.2). The genome annotation approach yielded 1303 genes encoding
phosphorylated proteins (Chapter 8). Genes encoding proteins whose phosphorylation
dynamics could be measured in different cell cycle phases also proved to be more conserved
than other human genes that are annotated in the EnsEMBL database. Interestingly, in lower
eukaryotes the phosphoproteome measured in different cell cycle phases proved to be more

conserved than the one identified in cells exposed to EGF stimulation (Figure 9.3a).

Additionally, we explored the conservation of the mouse phosphoproteome using the dataset
of 1729 genes encoding proteins that we detected in liver cells exposed to phosphatase
inhibition and the dataset of 2181 genes encoding proteins identified in mouse melanoma
tissue. As observed in the case of human, the main finding of the conservation analysis at the
protein level was that the identified mouse phosphoproteome showed significantly more
orthologs throughout 36 other eukaryotes from rat to yeast (Figure 9.3b). In the case of
Loxodonta africana (elephant), for example, around 70% of all phosphoproteins in both
datasets had orthologs in comparison to 53% of all other mouse proteins. Interestingly, in the
case of more distantly related species including several fishes, insects, worm and yeast, we
found evidence for a higher conservation of the phosphoproteome measured in liver cells
upon phosphatase inhibition compared to the conservation of the phosphoproteome identified

in mouse melanoma cells (Figure 9.3b).
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Moreover, we checked the conservation of Drosophila melanogaster genes (Chapter 4.6.1.3)
and Saccharomyces cerevisiae genes (Chapter 4.6.1.4) that encode phosphorylated proteins.
Similar to higher eukaryotes, we found evidence for a higher conservation of the
phosphoproteome in both cases. Overall, 71% of identified phosphorylated proteins in fly
showed orthologous proteins in mosquito in comparison to 51% of non-phosphorylated

proteins.

To confirm the generality of this observation on the basis of the phylogenetic relationships
derived from the two-directional BLASTP approach, we investigated human phosphoproteins
(Chapter 4.6.1.1.1) that had an exact sequence match in the SwissProt database. This resulted
in a set of 1044 human phosphoproteins. As is apparent from Figure 9.3c, phosphorylated
proteins have a higher proportion of two-directionally conserved interspecific homologs (3
test, p = 0) in comparison to the entire human proteome (complete human SwissProt
database), presumably reflecting regulatory functions that are preferentially conserved during
evolution. For example, in the case of Danio rerio alignments, we observed that 63% of all

human proteins had orthologs in comparison to 84% of the phospho proteins.

Next, we wanted to measure the selective pressure on phosphorylated proteins during
evolution. The ratio of non-synonymous to synonymous divergence (dy and ds, respectively)
indicates whether a given gene is positively or negatively selected. Low dn/ds ratios (smaller
than one) suggest negative selection implying that there is a high selective pressure in
evolution to keep the specified protein unmodified and to select out any mutations changing
the amino acid composition. High dn/ds levels point to positive selection, as non-synonymous
changes were favoured and retained by evolution. Synonymous and non-synonymous changes
can only be calculated on the basis of DNA sequences in the coding region, as nucleotide
mutations that do not affect the amino acid translation (synonymous change) cannot be
derived from protein sequences. The EnsEMBL Compara database provides dx and dgs values
for all coding sequence alignments between homologous genes. The interpretation of dx/ds
ratios is only reasonable in the case of genes that are orthologous to each other between
closely related species. Coding sequence alignments of homologous genes originating from
very distantly related species potentially contain multiple silent mutations or diverged to such
an extent that the comparison of synonymous and non-synonymous changes does not make

sense anymore.
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Therefore, we retrieved the dn/ds values derived from alignments between human coding
genes and genes from closely related species ranging from chimp to mouse. Interestingly, in
each case, the median dy/ds ratios were significantly lower for genes encoding
phosphoproteins in comparison to genes encoding non-phosphorylated proteins (Figure 9.4).
The median ratio of non-synonymous to synonymous divergence between human genes and
their homologous genes in chimp was 0.29 in comparison to 0.19 in the case of genes
encoding phosphoproteins. These findings were in concordance with observations from
phosphoproteomes of other species. For example, the median dn/ds value derived from
alignments between fly genes and orthologous mosquito genes was 0.33 compared to 0.25 in

the case of genes coding phosphoproteins.

0.3
W Phospho

B Non-Phospho

0.2 -

Figure 9.4: Median d\/ds ratios of human genes that encode phosphorylated (red) and non-

phosphorylated proteins (blue) reflecting evolutionary selective pressure

To investigate the high conservation of the phosphoproteome on the intra-species level, we
analyzed the degree of paralogy in phosphorylated proteins versus non-phosphorylated
proteins. Paralogous genes are indicated as ‘within-species paralog’ in the EnsEMBL
database. Thus, the section of the PHOSIDA analysis pipeline that examines the conservation
of the phosphoproteome contains embedded queries that links the phosphorylation site
database with the Compara database and estimates the proportion of genes that show intra-

species paralogy. Except for the yeast phosphoproteome, the proportions of paralogous
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phosphoproteins were lower in all the phosphoproteomes in PHOSIDA. In fly (Chapter
4.6.1.3), 27% of the identified phosphoproteins were paralogous to another fly gene in
comparison to 45% in the case of non-phosphorylated proteins (Figure 9.5). The higher
proportion of paralogous non-phosphorylated proteins was also evident in higher eukaryotes,
but to a minor degree: Overall, 61% of phosphorylated proteins identified in mouse cells
exposed to phosphatase inhibition (Chapter 4.6.1.2.1), for example, proved to have at least

one homolog within mouse. In comparison, 58% of non-phosphorylated proteins showed

paralogy.
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Figure 9.5: Proportion of paralogous phosphoproteins (red) and non-phosphorylated proteins (blue) in fly

Next we investigated the conservation of regions containing phosphorylation sites on the basis
of global protein-protein BLASTP alignments for orthologous human phosphoproteins. We
found that the average identity in the 40 amino acid window surrounding the aligned
phosphorylation sites is lower for each eukaryotic species compared to the entire protein
identity. This effect is most pronounced for serine and threonine (Figure 9.6a, b). This
observation is in concordance with the finding that phosphorylation sites occur predominantly
in loop and hinge regions on the surface of the phosphoprotein (Chapter 4.6.4), as the protein
sequence of highly accessible parts of the protein evolve fast (Branden, 1999). However, it is
also surprising considering the assumption that phosphorylation sites along with the
surrounding kinase motif should be highly conserved to fulfil their functional roles in cell
signalling. Therefore, we examined the conservation of the region surrounding
phosphorylation sites in more detail: we plotted the conservation of amino acids amino- and
carboxyl-terminal to the phosphorylation site for the three phosphorylation sites and for all
species. As a typical example, Figures 9.6¢ and 9.6d show the case of serine and threonine in
zebrafish. The figure reveals a symmetric region immediately adjacent to the phosphosite, in

which conservation is higher than in the surrounding region. The length of this region is about
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-5 to +5 amino acids for both serine and threonine and agrees well with the size of published
kinase motifs. Hence, in the evolutionary section of PHOSIDA, the surrounding region of -6

to +6 amino acids is shown, in order to check the conservation of matching motifs (Chapter

4.6.3).
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Figure 9.6: Conservation of the sequence region surrounding phosphorylation sites

The average identity of 40 amino acids surrounding phosphosites (red) proved to be less conserved than the
average identity of the whole global alignment (A, B). However, the very close region (+/- 5 amino acids)
surrounding phosphoserines (C) and phosphothreonines (D) show elevated sequence identity. Bars represent the
proportion of identical residues in zebrafish orthologs of human phosphoproteins. The red line is the average

identity in the region -20 to +20 amino acids surrounding the phosphosite.
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Overall, these data suggest that the surrounding sequence regions may diverge to such an
extent that the structural effect (fast sequence evolution) effectively competes with the
constraining pressure of function (slow sequence evolution). In order to correctly assess the
degree of conservation of phosphosites, it is therefore important to take the structural effect —
fast evolution of loop regions — into account. We did this by choosing only sites located in
loop regions according to SABLE predictions for the comparison set, which should isolate the
functional, evolutionary constraints on the phosphosite itself. We checked the conservation of
triplets encoding phosphosites in comparison to triplets that encode non-phosphorylated
counterparts in phosphorylated proteins throughout 36 eukaryotes on the basis of cDNA
alignments as provided by EnsEMBL. The main finding of the DNA conservation analysis of
phosphoserines and phosphothreonines identified in human cells exposed to EGF stimulation
(Chapter 4.6.1.1.1) was that human phosphorylation sites are more conserved throughout
higher eukaryotes than their non-phosphorylated counterparts (Figure 9.7). Overall, 97% of
phosphoserines were found to be conserved in chimp DNA alignments in comparison to 92%
of non-phosphorylated serines, for example. In the case of rat, 70% of identified
phosphothreonines were conserved in comparison to 61% of non-phosphorylated threonines.
However, human phosphosites were not significantly higher conserved in lower eukaryotes
such as worm and yeast. Due their low number, it was not possible to find any significant
patterns regarding the conservation of highly accessible phosphotyrosines in DNA alignments
of orthologous proteins.

The evolutionary study on the basis of two-directional BLASTP searches and Needlemann-
Wunsch protein-protein alignments led to the same outcome: The overall conservation of
human phosphorylation sites in orthologous eukaryotic proteins (Chapter 4.6.1.1.1) is shown
in Figure 9.8a-d. The average amino identity for all human phosphoproteins with orthologs
ranges from greater than 80% in mammals to about 25% in yeast based on Needleman-
Wunsch alignments (Figure 9.8a). Figure 9.8b compares the conservation of phosphoserines
that occur in loops with all non-phosphoserines that occur in loops in the same proteins. As
observed in EnsEMBL alignments of coding genes, in all investigated vertebtrates,
phosphoserine is significantly more conserved than serine (x-test: p = 0). In Drosophila the
effect is still observable, but is not significant (p = 0.33). In yeast this is not the case. As
shown in Figure 9.7, these findings are in concordance with the results from the evolutionary
study on DNA-DNA alignments. Threonine yields a similar result to serine, but this amino
acid is generally less conserved. Tyrosine tends to occur in more conserved regions of the

protein as mentioned above.
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Figure 9.7 Conservation of phosphoserine (A) and phosphothreonine (B) identified in human HeLa cells

exposed to EGF stimulation on the basis of cDNA alignments

137



£ :
3 a0 a0 =ps
E %0 : 80 ® non-pS
70 70
SE w0 £ 0
k ;? 50 _g 50
5 5
_-'§ 40 ;fg 40
30 s 30
E =
20 0
10 10
0 ]
& L€ sb‘
'8 ‘3
e‘ o é
1}_6‘ 90 @& of ‘b .@ of
C ¥ D
P == 100
3 g mpT T 90 upY
® non-pT a0 B non-pY
70
& 70
£ ¥ 0
50
£ B 8o
s 540 5 E
2t = E 40
s 0 30
x b 2
0 20
10 10
+] o
® é ¢
o & & of ¢ &
o -a rf" f" c
o &f Q.. &
< o

Figure 9.8: Conservation of human phosphosites on the basis of protein alignments

Analogously, phosphorylation sites that were identified in the human kinase enriched set
(Chapter 4.6.1.1.2) were also found to be more conserved than their non-phosphorylated
counterparts throughout higher eukaryotes on the basis of EnsEMBL ¢cDNA alignments (data
not shown). The same tendency was also observed in both mouse phosphoproteome datasets
(Chapters 4.6.1.2). For example, 59% of triplets encoding serines that were phosphorylated in
mouse cells exposed to phosphatase inhibition were conserved in orthologous cat genes. In
comparison, 54% of triplets that encode unmodified serines in the same genes are conserved
in cat. Phosphothreonines (57%) also proved to be more conserved than non-phosphorylated
threonines (46%) in coding DNA alignments between phosphorylated mouse transcripts and
cat orthologs.

As is apparent from Figure 9.9, the high conservation of residues phosphorylated in mouse
cells was even apparent in the case of very closely related organisms: Overall, 86%
phosphoserines were found to be conserved in rat, for instance, in comparison to 83% non-
phosphorylated serines. Phosphothreonines also more conserved in rat (phospho: 89%, non-
phospho: 79%). Again, the numbers of detected phosphorylated tyrosines that occur in loop
regions on the protein surface and show an corresponding ortholog in another species were

too few to derive any significant patterns relating to their overall conservation. Figure 9.9
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illustrates the conservation of phosphoserines and phosphothreonines identified in mouse cells

upon phosphatase inhibition.
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Figure 9.9 Conservation of phosphoserine (A) and phosphothreonine (B) identified in mouse cells exposed

to phosphatase inhibition
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The high conservation of phosphorylated residues was also evident in the fly
phosphoproteome. However, phosphosites identified in yeast cells did not show a
significantly higher evolutionary conservation (data not shown).

Moreover, to check the dn/ds ratios on the site level, we concatenated all triplets encoding
phosphorylated residues, so that a single sequence containing all triplets was created. The
translated version of the resulting DNA sequence should therefore yield serine-only,
threonine-only or tyrosine-only containing protein sequence. All triplets that are aligned to the
given triplets in orthologous genes of the specified species built up the second sequence. This
yields a pairwise DNA alignment, whose synonymous and non-synonymous diverge can be
calculated on the basis of the Nei and Gojobori method (Nei and Gojobori, 1986; Zhang et al.,
2006), for example (Figure 9.10 upper panel). Throughout higher eukaryotes including
human, mouse and fly, we found that dx/dg ratios derived from aligned phosphoserines and
phosphothreonines were significantly lower than dy/ds ratios derived from aligned non-
phosphorylated counterparts. Figure 9.11 shows the dn/ds ratios of aligned human
phosphoserines versus dx/ds ratios of aligned non-phosphorylated serine triplets. This
illustration is representative for the dn/ds distribution of phosphoserines and
phosphothreonines versus their non-phosphorylated counterparts in each identified eukaryotic
phosphoproteome. However, it was not possible to derive synonymous and non-synonymous
divergence from alignments between yeast phosphoproteins and their orthologs, as yeast and

higher eukaryotes are too distantly related.
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Figure 9.10 Derivation of synonymous (yellow) and non-synonymous changes (blue) between phosphosites
encoding triplets (brown) and their aligned triplets (green) in orthologous genes of a given species
Triplets that are preserved in evolution without any mutations are also highlighted in yellow. Overall, aligned

human phosphoserines showed lower dy/ds ratios than their non-phosphorylated counterparts (bottom).
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Surprisingly, the evolutionary constraints on eukaryotic phosphoproteomes were also evident
in the prokaryotic phosphoproteomes of B. subtilis, E. coli, L. lactis and H. salinarium. In
each case, identified phosphoproteins showed more orthologs than non-phosphorylated
proteins throughout all domains of life on the basis of the two-directional BLASTP method.
In Eubacteria, for example, 42% of B. subtilis phosphoproteins were conserved in contrast to
about 25% of the nonphosphorylated proteins (Figure 9.11a). In Archaea, the conservation at
the phosphoproteome level was 21%, around twice as high as at the proteome level. In
eukaryotes, the conservation at the phosphoproteome level was 30%, whereas at the proteome
it was 14%. Even on the site level, phosphorylated residues were more conserved throughout
bacteria, eukaryotes and archaea than their non-phosphorylated counterparts. In the B. subtilis
dataset, 41% of phosphoserines were conserved throughout bacteria in comparison to 34% of
non-phosphorylated serines (Figure 9.11b) and 47% of phosphothreonines were conserved in
comparison to 39% of nonphosphorylated threonines. Because of their low number, we could

not draw any statistically significant conclusions about phosphorylated tyrosines.
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Figure 9.11 Evolutionary Conservation of the B.subtilis phosphoproteome
The conservation of phosphoproteins (A) and phosphoserines (B) is reported as the average conservation in all

tested species from each domain of life.
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9.4 Discussion

The aim of PHOSIDA is to provide a rich environment to the biologist wishing to analyze
phosphorylation events of any protein of interest. Thus, PHOSIDA includes not only very
high quality input as well as quantitative information, but it also integrates biological context
to quantify constraints of phosphorylation on a proteome-wide scale.

Analyses using the evolutionary sections of PHOSIDA show that phosphoproteins have more
orthologs than non-phosphorylated proteins on the basis of the two-directional BLASTP
approach (Chapter 4.2.4). These results are in keeping with the evolutionary analysis of
phosphorylated and non-phosphorylated gene transcripts on the basis of the cross-reference to
the EnsEMBL Compara database, which provides detailed information about phylogenetic
relationships and homologies between 37 eukaryotes. The genome annotation approach
(Chapter 8) was a requisite to link our phosphodata with the comprehensive annotation of the
genome including conservation as provided by EnsEMBL. The high conservation of
phosphoproteins probably reflects important and conserved functional roles of proteins with
this post-translational modification. However, we emphasize that our datasets might be biased
towards abundant proteins, although we found evidence for good coverage of very low
abundant proteins including various transcription factors in our proteomic studies. We tried to
reduce this potential effect by selecting only non-phosphorylated proteins for the comparison
sets that are classified as ‘known’ by the EnsEMBL database meaning that the occurrence of
the given protein is experimentally validated. Nevertheless, the bias for detecting very
abundant phosphoproteins cannot be excluded with absolute certainty.

Interestingly, phosphorylated proteins of the same species that were identified in different cell
lines and tissues after various treatments also differed to some extent with respect to
conservation: In lower eukaryotes, for example, phosphoproteins detected in human cells
upon EGF stimulus were less conserved than human phosphoproteins identified in different
cell cycle phases, because of the absence of the EGF receptor in eukaryotes that are very
distantly related to human. In the case of the mouse phosphoproteome, the lower conservation
of phosphorylated proteins determined in skin melanomas in comparison to phosphorylated
proteins determined in the liver may be tissue function related (liver having a more basic and
conserved role than skin).

As consequence of the location of phosphorylation sites in loops and hinges (Chapter 4.6.4),
the sequence regions around phosphorylation sites evolve faster than the rest of the protein

except for the amino acids making up the kinase motif: the region of about five amino acids
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around the phosphorylation site is more conserved than the surrounding sequence context.
This finding illustrates the evolutionary constraint that the amino acid composition framing
the kinase motif around the phosphosite has to be preserved. Otherwise, the substrate would
lose its kinase affinity, which would negatively affect the associated signaling cascade.

Our analysis of the global DNA alignments of orthologs in 37 eukaryotes shows that
phosphorylation sites are more conserved than non-phosphosites of the same proteins

throughout higher eukaryotes including human, mouse and fly.

On the site level, we found that phosphorylation sites are more highly conserved throughout
higher eukaryotes than their non-phosphorylated counterparts. In contrast, yeast
phosphorylation sites were not highly conserved with respect to higher eukaryotes. These
observations are in concordance with the findings of Manning et al. (Manning et al., 2002a):
They showed that most of the known human kinases evolved after the divergence between
yeast and higher eukaryotes including fly. Therefore there is a considerable number of yeast
specific kinases and eukaryotic kinases that are absent in yeast. These results are in close
agreement with ours, obtained on the basis of global Needle protein alignments of inter-
species homologs in seven eukaryotes.

However, we only checked the residue conservation of given phosphorylation sites. There is
no direct experimental evidence that a conserved serine, threonine or tyrosine is also
phosphorylated in the orthologous protein in most cases. The overlaps between determined
phosphoproteomes of different species are comparable with the overlaps between
phosphoproteomes identified in different experiments on the same species (Pan, 2008 in
press). These results indicate that the identification of the entire phosphoproteome of a given
species is far from being complete. However, we assume that most of the conserved residues,
which were found to be phosphorylated in at least one of the specified species, are also
phosphorylated in the other organism considering that the surrounding kinase motif is also
conserved.

Regardless of the fact that conserved amino acids that are phosphorylated in one species
might not be phosphorylated in another other species, the occurrence of residues that are
phosphorylated in the human system, for example, but not in very closely related species
including chimp and mouse points to ‘background phosphorylation’. Although a substantial
proportion of phosphorylation sites are more highly conserved than their non-phosphorylated
counterparts, there is a considerable number of phosphosites that are not preserved in

evolution. This might reflect the occurrence of sequence regions that build up a kinase motif
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by chance, but whose phosphorylation by the corresponding kinase by an ‘innocent bystander
mechanism’ does not have any detrimental effect on the biological system. Thus, the given
phosphorylation site would be lost after DNA mutation, as there is no selective pressure to
keep the residue. The occurrence of sequence stretches that make up a kinase motif by chance
is also very likely given the fact that there are many unspecific kinase motifs such as the CKII
motif pS-X-X-E, for example.

We also showed that the inclusion of evolutionary constraints on the phosphoproteome could

slightly increase the performance of the in-silico predictor (Chapter 7).
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Chapter 10
Summary and Future Directions

Proteomics as a relatively new ‘post-genomic’ science focuses on the large scale
determination of the functional protein network in the cell. We applied mass spectrometry
based proteomics to determine proteomes and phosphoproteomes in different cell types
including tumor cells and liver cells and of various organisms ranging from Escherichia coli
to human. Using SILAC, we investigated protein and phosphorylation changes in-vivo upon
different treatments including phosphatase inhibition and growth factor stimulation. The
determination of thousands of proteins that contain posttranslationally phosphorylated
residues demands description, storage, management and recovery of the obtained data. For
this  purpose, we created the phosphorylation site database @ PHOSIDA
(http://www.phosida.com) (Chapter 4). Its purpose is not only to make the obtained large-
scale data public to the scientific community, but also to mine the data and to derive general
patterns relating to phosphorylation events. By quantitative proteomics, we show that
regulation through posttranslational modifications takes place on the site level rather than the
level of the entire phosphoprotein. For example, many proteins contained phosphorylation
sites that were differently regulated upon epidermal growth factor stimulation. This
demonstrates the necessity to establish methods that extend the common approach of
matching spectra to peptide sequences. We created a probability based algorithm to detect
phosphorylation events on the site level (Chapter 3). Using a specified cutoff with respect to
the localization probability of phosphorylation sites (p > 0.75), we tested the accuracy of our
method using manually verified high confidence data of a previous phosphoproteomic study.
We found that more than 90% of determined phosphorylation sites were correctly localized
within the peptide sequence.

We extended the common proteomics workflow ranging from cell preparation to matching the
measured spectra to protein sequences by the application of the ‘Knowledge Discovery in
Databases’ (KDD) process to extract knowledge from the obtained large-scale data. For
example, we found that only a small subset of phosphorylation sites was regulated upon
growth factor stimulation. All quantitative phosphoproteomic studies showed that regulation
through phosphorylation was most apparent for tyrosine residues. Our data sets suggest that

the distribution of pS, pT, and pY is around 85%, 13%, and 2% on average. We also observed
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that the number of phosphorylation events in prokaryotic cells is considerably different from
the one observed in eukaryotes. In fly, for example, we determined more than 10,000 in-vivo
phosphorylation sites on even very low abundant proteins including kinases and transcription
factors. In comparison, we did not detected more than 100 phosphorylation events in any
prokaryotic cell.

The comparison of our phosphoproteomic datasets with large-scale data from other studies,
which were also integrated into PHOSIDA, underlined the novelty of our high accuracy data.
Overall, around 80% of determined phosphorylation sites of each study were novel. Thus the
determination of phosphoproteomes is far from being complete.

Using statistical tests that are integrated into the PHOSIDA environment, we found that
phosphorylation events are distributed over all cellular compartments. Some compartments
such as mitochondria, however, were underrepresented, whereas phosphorylation events in
the nucleus were overrepresented. On the basis of integrated secondary structure and solvent
accessibility predictions, we found that phosphorylation sites were predominantly located in
loops and hinges on the surface of the protein. We also found evidence for significantly
overrepresented consensus sequences that surround eukaryotic phosphorylation sites and
make up kinase motifs. In contrast, we could not derive any significant motif from
prokaryotic phosphosites. Besides mining methods that derive general patterns regarding
function, cell compartment localization, structural constraints, consensus sequences and
further categories, we investigated the evolution of phosphorylation (Chapter 9). The high
conservation of phosphorylation throughout higher eukaryotes on the protein level as well as
on the site level underlines the functional impact of phosphorylated proteins, which play key
roles in signalling and therefore have to be preserved in evolution. In this regard, the yeast
phosphoproteome presents an outlier, as yeast phosphorylation sites were not significantly
more conserved than their non-phosphorylated counterparts. This observation is in agreement
with the fact that many kinases evolved after the speciation event that separated yeast from
higher eukaryotes. In addition, a non-negligable proportion of amino acids that are
phosphorylated in human, but not conserved in mouse, point to background phosphorylation
that does not have any functional impact on the underlying system and therefore no selective
pressure.

Furthermore, the PHOSIDA knowledge discovery pipeline also includes a phosphorylation
site predictor on the basis of a support vector machine (Chapter 7). The accuracy of predicting
phosphorylated serines on the basis of the raw sequence was higher than 90% for each

investigated eukaryotic organism.
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The inclusion of various high confidence large scale data obtained from high accuracy
quantitative phosphoproteomic studies along with a phosphorylation site predictor make
PHOSIDA a rich environment to the biologist wishing to analyze phosphorylation events of
proteins of interest. Moreover, the automated analysis pipeline based on the KDD process
enables us to derive various patterns relating to phosphorylation.

We also constructed a proteome database, termed ‘Max-Planck Unified Proteome Database’
(MAPU) that includes proteomes of different organelles, tissues and cell types (Chapter 5).
Obtained proteomic data were also mapped to the genome (Chapter 8). The reassignment of
identified peptide sequences to corresponding genes allows not only the assignment of
important protein features including phosphorylation to the coding genome sequences but also
the experimental validation of predicted genes. Using the DAS technology, we linked our
proteome database with the genome database EnsEMBL. Finally, the update and extension of

the sex bias database SEBIDA was a further intent of my PhD study (Chapter 6).

We intend to extend the phosphorylation site database by the inclusion of other
posttranslational modifications such as acetylation, for example. It will be interesting, whether
the general constraints observed in phosphorylation events can also be found in other
posttranslational modifications using the KDD process. In addition, we wish to establish the
first machine learning approach that is capable of predicting acetylation events, on the basis of
the raw sequence.

Another goal is to integrate the evolutionary annotation provided by the EnsEMBL Compara
database into the PHOSIDA web application. This will enable the web users to study the
evolutionary conservation of any given phosphorylated protein throughout 36 eukaryotes.
Currently, the evolutionary section of the PHOSIDA online application is restricted to
phylogenetic information throughout seven eukaryotes on the basis of our self-coded pipeline.
Furthermore, we intend to link our proteome databases with other online environments such

as PRIDE and Peptide Atlas, in order to establish a broad proteomic data network.
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