Alters-, Aktivitäts- und Krankheitsmerkmale in der menschlichen Knochenmikrostruktur: Eine vergleichende Studie einer individualaltersbekannten historischen Population mit rezenten Menschen

Dissertation der Fakultät für Biologie der Ludwig-Maximilians-Universität München

eingereicht von Stefanie Doppler

München 2008
Erstgutachter: Frau Prof. Dr. G. Grupe

Zweitgutachter: Frau Prof. Dr. S. Foitzik

Arbeit eingereicht am: 17. April 2008

Dankenswerterweise wurde die vorliegende Arbeit durch ein Promotionsabschlußstipendium der Frauenbeauftragten der Ludwig-Maximilans-Universität München gefördert.
1Einleitung .. 5
1.1Ziele der Arbeit.. 7
1.2Makro- und mikrostruktureller Aufbau von kompaktem Knochen......................... 9
 1.2.1Aufgaben des Skelettes und makrostruktureller Aufbau eines Knochens 10
 1.2.2Makrostruktureller Aufbau von menschlichem kompaktem Knochen.......... 11
 1.2.3Chemisch/Physikalische Zusammensetzung des Kompositmaterials Knochen
 .. 21
 1.2.4Organische Phase: Aufbau von Kollagen.. 22
 1.2.5Mineralische Phase: Aufbau von biogenem Apatit.. 23
1.3Knochenumbau: Modeling und Remodeling... 24
 1.3.1Modeling ... 24
 1.3.2Remodeling (Typ-I-Remodeling)... 25
 1.3.3Faktoren, die das Knochenremodeling beeinflussen..................................... 31
1.4Altersabhängige Veränderungen von kompaktem menschlichen Knochen.... 36
 1.4.1Längen- und Dickenwachstum während der Wachstumsphase.................... 36
 1.4.2Makro- und ultrastrukturelle Veränderungen im Alter............................... 37
 1.4.3Altersabhängige Veränderungen der Knochenmikростruktur..................... 38
1.5Literaturüberblick über histologische Altersbestimmungsmethoden am
 Knochenquerschnitt ... 41
1.6Degradation von Knochenmaterial.. 44
1.7Fluoreszenz am Knochen... 49
 1.7.1Physikalische Grundlagen von Lumineszenz... 49
 1.7.2Verwendung der Fluoreszenz von Knochenquerschnitten in der Forensik
 (Literaturüberblick).. 51
2Material .. 53
2.1Basel-Kollektiv vom Friedhof St. Johann (Basel, Schweiz)............................... 53
 2.1.1Geschlechts- und Altersverteilung ... 55
 2.1.2Todesursachen .. 56
 2.1.3Kurzer Überblick über die Lebensbedingungen im Basel der frühen Neuzeit 58
2.2Anatomie-Kollektiv ... 58
 2.2.1Geschlechts- und Altersverteilung ... 59
 2.2.2Body-Mass-Index ... 60
 2.2.3Todesursachen bzw. Krankheiten .. 61
2.3Diverses Knochenmaterial für die Fluoreszenzmethode (UV-Material) 61
 2.3.1Menschen- und Tierknochen vom Göbekli Tepe und vom Güricütepe 62
 2.3.2Zähne aus Großmehring und Volders ... 63
 2.3.3Anatomie-Knochen, die in die Fluoreszenz-Untersuchungen einbezogen
 wurden.. 64
 2.3.4Menschenknochen aus Minshat Abu Omar ... 64
 2.3.5Proben der Basel-Serie .. 65
3Methoden ... 66
3.1Osteometrie .. 66
3.2Histologie .. 67
3.2.1 Entnahme der Knochenproben: Archäologisches versus anatomisches Material
.. 68
3.2.2 Aufbereitung des anatomischen Materials: Mazeration und Entfettung 69
3.2.3 Herstellung der histologischen Präparate ... 71
3.2.4 Mikroskopische Untersuchung und Bearbeitung der erstellten digitalen Bilder
.. 73
3.2.5 Auswertung der digitalen Bilder und Datenerhebung 76
3.3 Fluoreszenz: „UV-Methode“ ... 87
3.3.1 Demineralisierung von Knochenscheiben... 87
3.3.2 Aufnahme makroskopischer digitaler Fotos unter langwelligem UV-Licht.... 89
3.3.3 Mikroskopische Untersuchung und Dokumentation 94
3.4 Röntgenfluoreszenzanalytik (RFA) ... 100
3.5 Extraktion von Gelatine und Apatit aus kompaktem Knochen 102
3.5.1 Extraktion der Kollagenfraktion aus kompaktem Knochen 103
3.5.2 Extraktion des mineralischen Anteils aus kompaktem Knochen 105
3.5.3 Berechnung des Kollagen- und Mineralgehaltes der Knochenproben 106
3.6 Aminosäureanalyse (ASA) ... 106
3.7 Statistik .. 108

4 Ergebnisse ... 113
4.1 Ergebnisse der Untersuchung der mikrostrukturellen Qualität des Basel-
Kollektivs .. 113
4.2 Explorative Datenanalyse der erhobenen Parameter und deren Abhängigkeit
von Individualalter, Geschlecht und Lokalisation in der Kompakta 114
4.2.1 Kompaktadicke (Komp) ... 116
4.2.2 Nicht-Havers’sche Systeme (NHav) .. 119
4.2.3 Generallamellen (Gen) ... 123
4.2.4 Typ-I-Osteone (Ost) .. 128
4.2.5 Typ-II-Osteone (OstII) .. 132
4.2.6 Intakte Osteone (Ostint) .. 135
4.2.7 Havers’sche Kanäle (Hav) .. 139
4.2.8 Volkmann’sche Kanäle (Volk) ... 142
4.2.9 Osteonaler Knochen (Ostkno) ... 145
4.2.10 Geometrische Daten der Osteone .. 150
4.2.11 Osteonfragmente (Ostfr) .. 159
4.2.12 Anteil an fragmentalem Knochen (Frgkno) .. 163
4.2.13 Osteonenpopulationsdichte (OPD) ... 167
4.2.14 Resorptionslakunen (Res) ... 172
4.2.15 Anteil an resorbiertem Knochen (Reskno) .. 176
4.2.16 Durchschnittliche Fläche einer Resorptionslakune (ResA) 181
4.2.17 Aktivierungsfrequenz (AktF) und Knochenbildungsrate (BFR) 185
4.2.18 Zusammenhang von mikrostrukturellen Parametern mit Todesursache und
Arbeitsbelastung (Basel-Kollektiv) ... 193
4.2.19 Zusammenhang der erhobenen Parameter mit dem Body-Mass-Index (BMI) im
Anatomie-Kollektiv ... 195
4.3 Explorative Datenanalyse der Stressmerkmale in der Knochenmikrostruktur
und Zusammenhänge mit anderen Stressmerkmalen 197
4.3.1 Haltelinien (LAGs) .. 197
4.3.2 Nicht regelrechter Umbau der Knochenmikrostruktur 205
4.3.3 Resorptionslakunen ... 207
4.3.4 Typ-II-Osteone und Growth-Arrest-Osteone (OstII) 219

4.4 Ergebnisse der histologischen Altersbestimmung ... 227
4.4.1 Altersbestimmung nach Thompson (1979) .. 228
4.4.2 Altersbestimmung nach Ericksen (1991) ... 233
4.4.3 Altersbestimmung nach Maat et al. (2006) ... 237
4.4.4 Vergleich der Altersbestimmungsmethoden im Basel-Kollektiv 240
4.4.5 Vergleich der Altersbestimmungsmethoden im Anatomie-Kollektiv 241

4.5 Entwicklung neuer Formeln zur histologischen Altersbestimmung an
archäologischem Knochenmaterial ... 242
4.5.1 Neue Gleichungen ... 243
4.5.2 Anwendung der neu erstellten Gleichungen auf das Anatomie-Kollektiv 244

4.6 UV-Methode .. 247
4.6.1 Auswertung der Fluoreszenzeigenschaften des UV-Materials 247
4.6.2 Ergebnisse der histologischen Untersuchung des UV-Materials 255
4.6.3 Ergebnisse der Gelatine-Extraktion .. 260
4.6.4 Ergebnisse der Aminosäureanalyse (ASA) ... 262
4.6.5 Ergebnisse der Extraktion des mineralischen Anteils 270
4.6.6 Ergebnisse der Röntgenfluoreszenzanalyse ... 271
4.6.7 Zusammenhang der untersuchten Parameter und Auswertung der
histologischen Typen ... 272

5 Diskussion .. 284
5.1 Diskussion der histologischen Erhaltung der Knochenmikrostruktur im Basel-
Kollektiv .. 285
5.2 Diskussion der erhobenen Parameter und ihre Ausprägung in den
verschiedenen Kollektiven .. 286
5.2.1 Kompaktradicke ... 286
5.2.2 Nicht umgebauter Knochen ... 289
5.2.3 Osteonaler Knochen ... 292
5.2.4 Fragmentaler Knochen ... 306
5.2.5 Resorbierter Knochen .. 311
5.2.6 Schema der Alterung von kompaktem Knochen anhand seiner vier
Komponenten ... 317
5.2.7 Aktivierungsfrequenz (AktF) und Knochenbildungsrate (BFR) 318

5.3 Einfluss weiterer Faktoren auf die Knochenmikrostruktur 324
5.3.1 Arbeitsbelastung (Basel-Kollektiv) .. 324
5.3.2 Body-Mass-Index (Anatomie-Kollektiv) ... 325
5.3.3 Stress und Krankheit (Basel- und Anatomie-Kollektiv) 326
5.3.4 Ausreißer: Beschreibung einiger auffälliger Individuen 368

5.4 Die Knochenmikrostruktur – ein multifaktoriell beeinflusster Bereich des
Körpers ... 376

5.5 Histologische Altersbestimmungsmethoden ... 378
5.5.1 Angewendete Methoden aus der Literatur .. 378
5.5.2 Neu erstellte Formeln am Basel-Kollektiv ... 390
5.5.3 Probleme und Möglichkeiten der histologischen Altersbestimmung 392

5.6 Aussagemöglichkeiten durch die UV-Methode .. 393
1 Einleitung

Dazwischen liegt die Ebene der mikromorphologischen Untersuchungen, die aufgrund ihres hohen, oftmals unterschätzten Informationsgehaltes, nicht vernachlässigt werden sollten. Umfangreiche paläohistologische Analysen werden eher selten durchgeführt, da sie in der Vorbereitung und vor Allem in der Auswertung sehr zeit- und arbeitsaufwändig sind (Thomas et al. 2000, Beauchesne & Saunders 2006). Nicht zuletzt besteht auch die Gefahr, keine hinreichenden Ergebnisse zu erhalten, falls ausgedehnte postmortale Degradationserscheinungen einen Großteil der Mikrostruktur der konservierten Weich- oder Hartgewebe zerstört und so für eine Auswertung unbrauchbar gemacht haben (geschieht in Knochen und Zähnen hauptsächlich durch Bodenbakterien: Herrmann et al. 1990, Grupe et al. 2005). In der Mikrostruktur von Knochen und Zähnen verbergen sich jedoch Informationen...

Es ist unerlässlich, die in der modernen Anthropologie zur Verfügung stehenden Methoden auf allen Ebenen zu nutzen, um ein möglichst umfassendes Bild der Lebensumstände vergangener Zeiten zu erhalten. Dabei sollten über die technischen und methodischen Neuerungen, vor Allem im molekularbiologischen Bereich, die klassischen Methoden nicht vernachlässigt werden. Denn neben den wichtigen Informationen, die sie bieten, gibt es selbst bei bereits etablierten Methoden immer noch Wege, sie zu verbessern oder sie mit modernerer Technik zu vereinfachen und weiterzuentwickeln.
1.1 Ziele der Arbeit

Bei den 103 Individuen des Basel-Kollektivs handelt es sich nicht um eine natürlich gewachsene Population, die einen Ausschnitt einer realen Bevölkerung repräsentiert, sondern um Individuen die aufgrund ihrer Todesursache (möglichst Infektionskrankheiten oder Unfälle, die das Skelett nicht beeinflussen) einzeln von einem Spitalfriedhof (St. Johann in Basel, Schweiz) ausgewählt wurden. Im Folgenden wird deshalb vermieden von einer Population zu sprechen. Stattdessen werden ausschließlich die Begriffe Skelettserie oder Kollektiv verwendet. Die Baseler Skelettserie ist Teil eines internationalen, interdisziplinären Projektes, das vom Max-Planck-Institut für demografische Forschung in Rostock initiiert und finanziert wurde. Ziel des Projektes ist es, eine zuverlässige Möglichkeit zur

Untersuchungen und vor Allem die Erstellung der Indices zur Auswertung geschehen in Zusammenarbeit mit Frau Dr. Michaela Harbeck (siehe auch Harbeck 2007).

In dieser Arbeit wird bewusst kein automatisches Analysesystem zur Erhebung der mikrostrukturellen Parameter verwendet. Denn das Ziel ist eine möglichst einfache Methode zur Auswertung und Beurteilung der Knochenmikrostruktur zu erstellen, die relativ unabhängig vom Budget einer Arbeitsgruppe ausgeführt werden kann. Wichtig sind lediglich eine Prozedur zur Anfertigung von Dünnschnitten oder –schliffen und ein herkömmliches Lichtmikroskop, was bereits für eine qualitative Untersuchung der Mikrostruktur genügt. Häufig kann eine solche, zumindest was Krankheits- und Stressmerkmale betrifft, schon sehr aussagekräftig sein. Aber auch eine Schätzung der Altersklasse wird dem erfahrenen Betrachter so ermöglicht. Dank einer Prüfungsprozedur der mikrostrukturellen Qualität mit Hilfe von langwelligem UV-Licht würde weder Material noch Arbeitszeit mit der Einbettung und Präparation von schlecht erhaltenem Knochenmaterial vergeudet. Für genauere quantitative Auswertungen ist entweder ein Okular mit integriertem Gitter oder aber, wie im vorliegenden Fall, eine dem Mikroskop angeschlossene Kamera und ein Bildbearbeitungsprogramm erforderlich. Alles in Allem sind paläohistologische Untersuchungen, zumindest was den Materialaufwand betrifft, eher kostengünstig. Doch zu vernachlässigen ist allerdings der Zeitaufwand, gerade bei quantitativen Auswertungen. Bisher existiert jedoch kein automatisches Analysesystem, das zuverlässig alle verschiedenen Strukturen der Mikrostruktur identifiziert und analysiert, wie ein trainierter und geübter Beobachter es könnte (Martin et al. 1998).

1.2 Makro- und mikrostruktureller Aufbau von kompaktem Knochen

Der Aufbau von Knochen kann laut Simmons et al. (1991) in vier hierarchische Stufen unterteilt werden. Die oberste Stufe ist die makroanatomische, innerhalb derer die Unterscheidung der Komponenten Kompakta und Spongiosa noch mit bloßem Auge möglich

1.2.1 Aufgaben des Skelettes und makrostruktureller Aufbau eines Knochens

Bei der makroskopischen Betrachtung eines Knochens lassen sich strukturell gesehen zwei Arten von Gewebe unterscheiden: kompakter oder kortikaler Knochen und spongäser oder trabekulärer Knochen (Abb. 1).
1. Einleitung

Abb. 1: Makrostrukturrell sichtbarer Aufbau eines Knochens am Beispiel eines Femur. Kompakta und Spongiosa können mit bloßem Auge unterschieden werden.

1.2.2 Mikrostruktureller Aufbau von menschlichem kompaktem Knochen

Wenn im Folgenden Zahlenwerte genannt werden, handelt es sich stets um Daten von humanem Knochen, es sei denn, es wird ausdrücklich anders vermerkt.

Grundstrukturen eines Kompaktaquerschnittes

Osteonfragmenten (Schaltlamellen) gefunden werden (siehe auch Punkt 1.4). Osteonfragmente sind als Reste einer alten Osteonen generation zu verstehen, die durch Knochenumbau (Remodeling) von neuen Osteonen überlagert wurde (siehe auch Punkt 1.3) (Herrmann et al. 1990). Die genannten Strukturen sind in Abb. 2 in einem Übersichtsbild dargestellt.

Abb. 3: Doppelbrechung (Brewster-Kreuze); dargestellt am Beispiel eines Femurquerschnittes unter polarisiertem Licht

Typen von Osteonen

In kompaktem Knochen existieren verschiedene Typen von Osteonen (Robling & Stout 2000). Im Folgenden sollen diese in ihrer beobachteten Variationsbreite in einem Bilderkatalog dargestellt werden.

Primäre Osteone

1. Einleitung

Abb. 4: oben: normales sekundäres Osteon (Typ-I-Osteon) zum Vergleich; unten: primäres Osteon oder Nicht-Havers'scher Kanal; Humerusquerschnitt unter Differentialinterferenzkontrast (Individuum von einem frühmittelalterlichen Reihengräberfeld aus Altenerding/Bayern mit der Nr. 747)

Abb. 5: Ansammlung von primären Osteonen in unterschiedlichen Ausprägungen, teilweise von einigen konzentrischen Lamellen umgeben; Femurquerschnitt unter Differentialinterferenzkontrast; (Individuum von einem frühmittelalterlichen Reihengräberfeld aus Altenerding/Bayern mit der Nr. 747)

Sekundäre Osteone

Es existieren verschiedene Typen von sekundären Osteonen in kompaktem Knochen. Ihnen gemeinsam ist die Existenz einer Zementlinie (Robling & Stout 2000).

Typ-I-Osteone

Abb. 6: reguläres Typ-I-Osteon aus einem Femurquerschnitt; Differentialinterferenzkontrast

Abb. 7: Typ-I-Osteon am unteren Ende der Größenskala, mit wesentlich weniger Lamellen als die Osteone in Abb. 6 und Abb. 8. Femurquerschnitt, Differentialinterferenzkontrast

Abb. 8: Typ-I-Osteon am oberen Ende der Größenskala. Femurquerschnitt; Differentialinterferenzkontrast

Es ist nicht immer leicht zu entscheiden, ob es sich bei einer Struktur um eine Resorptionslakune (Definition siehe später) oder ein Osteon handelt, das gerade am Anfang seiner Bildung steht (Abb. 9). Weiterhin kann am mikroskopischen Schnitt nicht festgestellt werden, ob es sich bei einem vergrößerten Havers’schen Kanal (Abb. 10) um ein Osteon handelt, das von Abbauvorgängen des Knochens betroffen ist oder um ein Osteon, das sich noch in der Bildung befinden. Auch dabei können zwei Fälle unterschieden werden. Einmal besteht die Möglichkeit, dass das Osteon noch weiter geschlossen wird und zum anderen kann die Matrixbildung bereits aufgehört haben, bevor der Havers’sche Kanal auf seine normale Größe von etwa 50 µm gebracht wurde.

Abb. 9: Sekundäres Osteon zu Beginn seiner Bildung. Gerade wurden die ersten konzentrischen Lamellen angelegt. Das Osteon wird von außen nach innen hin aufgefüllt. Femurquerschnitt; Differentialinterferenzkontrast

Abb. 10: Sekundäres Osteon während seiner Bildung. Erkennbar am stark vergrößerten Havers’schen Kanal mit glatten Rändern. Femurquerschnitt, Differentialinterferenzkontrast

Es können auch sekundäre Osteone auftreten, die definitiv nicht dem normalen Bild eines Typ-I-Osteons entsprechen (Abb. 11, Abb. 12). In Abb. 11 ist ein Typ-I-Osteon dargestellt, dass nicht genau parallel angeschnitten wurde, da es leicht abweichend von der longitudinalen
1. Einleitung

Richtung des Femurs verläuft. Der Kanal wirkt an einer Seite ausgezogen und das Osteon hat seine ovale Form verloren.

![Abb. 11: Typ-I-Osteon, das nicht genau entlang der Längsachse des Femurs verläuft und deshalb leicht schräg angeschnitten wurde, erkennbar am seitlich auslaufenden Havers'schen Kanal; Femurquerschnitt, Differentialinterferenzkontrast](image1.png)

![Abb. 12: sekundäres Osteon mit zwei Kanälen in der Mitte; Femurquerschnitt; Differentialinterferenzkontrast](image2.png)

Osteonfragmente

![Abb. 13: Osteonfragmente als Überreste vergangener Osteonengenerationen (weiße Pfeile); Femurquerschnitte, Differentialinterferenzkontrast](image3.png)

Im Folgenden werden einige Sonderfälle von sekundären Osteonen vorgestellt.

Growth-Arrest-Osteone

![Abb. 14: Growth-Arrest-Osteone; Femurquerschnitte, Differentialinterferenzkontrast](image)

Typ-II-Osteone

Driftende Osteone

Kompositosteone

Resorptionslakunen

1. Einleitung

Abb. 19: Resorptionslakune mit welligen Rändern (Howship’sche Lakunen). Das zeigt an, dass sie zum Todeszeitpunkt des Individuums noch aktiv war. Die Größe ist hier physiologisch, sie entspricht etwa der Größe der sie umgebenden Osteone. Femurquerschnitt; Differentialinterferenzkontrast

Abb. 20: Resorptionslakune, die an den Rändern bereits teilweise durch lamellären Knochen wieder aufgefüllt wurde. Die Größe ist hier nicht mehr physiologisch, sie übersteigt die Größe eines Osteons bei Weitem. Rezenter Femurquerschnitt, Differentialinterferenzkontrast

1.2.3 Chemisch/Physikalische Zusammensetzung des Kompositmaterials

Knochen

1.2.4 Organische Phase: Aufbau von Kollagen

1. Einleitung

1.2.5 Mineralische Phase: Aufbau von biogenem Apatit

Carbonat (CO_3^{2-} oder HCO_3^{-}) kann im Knochen in zwei Formen vorkommen. Als strukturelles Carbonat fungiert es hauptsächlich als Substituent für die Phosphatgruppe (PO_4^{3-}) oder auch die Hydroxylgruppe (OH^{-}) des biogenen Apatits (Saliège et al. 1995, Koch et al. 1997). Oder es kommt als adsorbiertes Carbonat auf der Kristalloberfläche vor (Lee-Thorp & van der Merwe 1991, Boskey 1999, Berna et al. 2004). Der Carbonatgehalt eines Knochens steigt mit dem Individualalter an, wobei der Anteil an adsorbiertem Carbonat abnimmt und hauptsächlich die Carbonatfraktion, welche die Phosphatgruppe ersetzt, zunimmt (Boskey 1999). Dahit enthält etwa 5% (Gewichtsprozent) an Carbonat, menschlicher Zahnschmelz etwa 3-4% (Chickerur et al. 1980, Koch et al. 1997). Im Apatit des Knochens kommen ca. 2-4% Carbonat vor (Schäuble 2005), laut Schultz (1997) sind es 6-7%.

1.3 Knochenumbau: Modeling und Remodeling

1.3.1 Modeling

1. Einleitung

1.3.2 Remodeling (Typ-I-Remodeling)

Beteiligte Knochenzellen

Die verantwortlichen Knochenzellen beim Modeling und Remodeling entsprechen sich weitgehend, wobei es sich im Wesentlichen um Osteoclasten und Osteoblasten handelt (Smit

1. Einleitung

Abb. 23: Bei einigen der Osteocyten (dunkle linsenförmige Punkte) sind noch die Canaliculi zu erkennen, über welche die Zellen miteinander in Kontakt stehen. Femurpräparate, rezent, Differentialinterferenzkontrast

Organisation der Knochenzellen und Kontrolle des Knochenremodeling

Einfach erklärt funktioniert das Knochenremodeling über BMUs (Abb. 24) folgendermaßen (Parfitt 1983, Parfitt 2002): Mehrere Osteoclasten (Ausdehnung auf einer Fläche von etwa 200µm in der Breite und etwa 400µm in der Länge) bauen den Knochen durch den vorher erwähnten Mechanismus ab. Sie werden über Havers’sche oder Volkmann’sche Kanäle an ihren Zielort transportiert und als „cutting cone“ bezeichnet. Darauf schließt sich eine Gruppe von mononuklearen Zellen an, deren genaue Funktion nicht ganz klar ist. Es wird vermutet, dass sie während einer Ruhephase von unterschiedlicher Dauer die unregelmäßige Oberfläche der Resorptionslakune glätten und so die Grundlage für die Bildung der Zementlinie schaffen (Robling & Stout 2000). Danach folgt eine große Ansammlung von Osteoblasten („closing cone“), die eine annähernd gleich große Menge an Knochen, die zuvor entfernt wurde, wieder niederlegen und so ein neues Osteon bilden. Knochenumbau erfolgt also in anatomisch diskreten Einheiten, innerhalb derer die Remodelingaktivität etwa 4-8 Monate anhält. Ungefähr 280000 aktive Remodeling Einheiten (BRUs/bone remodeling units) sind im kortikalen Knochen eines menschlichen Skelettes zu finden (0,5 pro mm², dies gilt im Durchschnitt für gesunde Erwachsene, ist aber altersabhängig). Lediglich 0,4% des kortikalen Knochenvolumens sind zur selben Zeit von Remodeling betroffen. In trabekulärem Knochen gibt es fast fünfmal so viele BRUs, da er wesentlich schneller umgebaut wird.

1. Einleitung

Ratten, bei denen auch durch extrem hohe Belastung keine Mikrofrakturen erzeugt werden konnten, diejenigen waren, bei denen man anschließend kein Remodeling fand. Die Aktivierung wird zusätzlich von Hormonen, wie Östrogen oder Parathormon, gesteuert (Parfitt 1994 gesehen in Smit et al 2002). Diese bestimmen das Ausmaß an Mikrofrakturen, welche für die Auslösung eines neuen Remodelingzyklus vorhanden sein müssen. Qiu et al. (2003) stellen die Theorie auf, dass sogar die Größe von Osteonen von der Größe der vorausgehenden Mikrofissuren abhängt. Ihre Studie an den Rippenknochen von neun Männern zeigte, dass Mikrofissuren in Rippen 20µm-200µm lang sind. Remodeling soll die Mikrofissuren abbauen, also wird durch die Osteoclasten der BMUs immer ein etwas größeres Areal um die Mikrofraktur herum abgebaut. Dies könnte auch die teilweise sehr unterschiedlich großen Osteone erklären, die manchmal direkt nebeneinander im Knochen liegen. Weiterhin wird angegeben, dass in Rippen etwa 97% der beobachteten Mikrofissuren kleiner als 150µm sind, was wiederum die eingangs erwähnte durchschnittliche Größe von Osteonen in Rippen (200µm) erklären würde.

Smit et al. (2002) erläutern ein Model, das die Mechanosensibilität der Osteocyten aufnimmt und die mögliche Initiierung des Knochenremodelings (hier ein sich selbst organisierender Prozess) folgendermaßen darstellt: Die Osteocyten fungieren über ihre Canaliculi als Sensoren für belastungsgesteuerte Stimuli durch Flüssigkeitsströme, indem die Canaliculi ein
dreidimensionales Netzwerk bilden, das bis zur Knochenoberfläche reicht und das es ihnen erlaubt, die Effektorzellen (in dem Fall die Osteoblasten) mit Signalen zu versorgen (Smit et al. 2002). Physikalische Belastung verursacht eine Stauung der extrazellulären Flüssigkeit vor dem „cutting cone“ eines sich bildenden Osteons, was dazu führt, dass die Osteocyten nicht belastet sind und somit noch mehr Osteoclasten anziehen. In der Ruhezone und dort, wo sich das Osteon zu schließen beginnt („closing cone“) findet hingegen ein erhöhter extrazellulärer Flüssigkeitsstrom statt, was die Osteocyten dazu anregt, Osteoblasten zu rekrutieren (Smit et al. 2002).

Im BMU sind die Osteoclasten etwa 100-150µm vor den Osteoblasten positioniert (Smit et al 2002). Die Osteoclasten bewegen sich mit einer Geschwindigkeit von etwa 40µm pro Tag in Hunden bzw. 36µm pro Tag in Affen fort. Man geht davon aus, dass das in Menschen ähnlich ist. Laut Parfitt (2002) gräbt sich ein BMU im Menschen mit 20µm pro Tag durch kompakten Knochen. Der „cutting cone“ benötigt also nur einige Tage, um die Resorptionslakune für ein neues Osteon zu vervollständigen (Parfitt 1983). Im Menschen dauert die Resorptionsperiode etwa 3 Wochen und die Bildungsperiode 3 Monate. So ist die Dauer einer kompletten Remodelingperiode auf etwa 4 Monate anzusetzen (Martin et al. 1998).
1. Einleitung

Die meisten Osteone im erwachsenen kompakten Knochen befinden sich bezüglich des Knochenremodelings jedoch in einer Ruhephase (Thomas et al. 2000). Im erwachsenen Menschen ersetzen BMUs jährlich etwa 5% der kompakten Knochenmasse (Martin et al. 1998, Jordan et al. 2000).

1.3.3 Faktoren, die das Knochenremodeling beeinflussen

Abb. 25: Darstellung verschiedener Tierknochenquerschnitte unter dem Mikroskop. Histologische Präparate aus dem Bestand der Arbeitsgruppe für Anthropologie und Umweltgeschichte

Klimatische Faktoren, insbesondere Temperatur und Feuchtigkeit, haben Einfluss auf den Knochen eines Menschen, indem sie die Stoffwechselraten eines Individuums beeinflussen (Collier 1989) und somit auch die Remodelingraten (Belkin et al. 1998).

Außerdem kann man in der Mikrostruktur von kompakten Knochenquerschnitten unter dem Lichtmikroskop häufig mineraldichte Linien zwischen den Generallamellen erkennen, die auf Mikroradiographien als feine röntgendichte Linien sichtbar sind (Schultz 2001).

„Layers/Lines of arrested Growth“ (LAGs) oder Haltelinien, wesentlich besser erforscht. So werden die LAGs in den erwähnten Gruppen eindeutig auf Umwelteinflüsse wie z. B. niedrigere UV-Strahlung im Winter bzw. individuelle saisonale Ereignisse wie Winterschlaf (Wachstumsstopp) zurückgeführt, wodurch eine individuelle Altersbestimmung möglich wird (Castanet et al. 2004).

1.4 Altersabhängige Veränderungen von kompaktem menschlichen Knochen

1.4.1 Längen- und Dickenwachstum während der Wachstumsphase

Ein Langknochen besteht, zumindest im Kindes- und Jugendalter, aus drei Teilen: Epiphysen, Metaphysen und Diaphysen (siehe Abb. 27).

1.4.2 Makro- und ultrastrukturelle Veränderungen im Alter

Ein Knochen weist durch seine Zusammensetzung aus verschiedenen Materialien (Kompositmaterial) und seinen mikrostrukturellen Aufbau eine gewisse Festigkeit auf, die mit steigendem jedoch Alter abnimmt. Gründe dafür liegen einerseits in der Umgestaltung der mikrostrukturellen Parameter, worauf im folgenden Absatz näher eingegangen wird, aber auch in der Veränderung der Materialien, aus denen Knochen aufgebaut ist. Dabei liegt das Hauptaugenmerk auf der kollagenen Phase. Mit steigendem Alter wandelt sich die Integrität des Kollagens insofern, als die Quervernetzungen in neu gebildetem Kollagen abnehmen (auch bei Osteoporose ein Problem). Dies verändert die Materialeigenschaften des gesamten Skelettes und lässt die Knochen brüchiger werden (Wang & Puram 2004, Nyman et al. 2006). Außerdem ist Kollagen im Alter weniger löslich, steifer und resisterter gegen enzymatischen Verdau (Schnider & Kohn 1981). Aber auch in chemisch-physikalischer Hinsicht ändert sich die Zusammensetzung des Knochens mit dem Alter. Wie bereits unter Punkt 1.2.5 erwähnt wird realer biogener Apatit im Knochenmineral durch die Formel \(\text{Ca}_{8.3}(\text{PO}_4)_{4.3}(\text{CO}_3)_x(\text{HPO}_4)_y(\text{OH})_{0.3} \) repräsentiert, wobei x mit dem Alter zu- und y abnimmt, ihre Summe jedoch konstant bleibt, wie Legros et al. (1987) an Ratten und Rindern nachwiesen. Weiterhin zeigten sie, dass die Kristallgröße, das molare Ca/P-Verhältnis und der \(\text{CO}_3^{2-} \)-Gehalt mit zunehmendem Alter ansteigen.
1.4.3 Altersabhängige Veränderungen der Knochenmikrostruktur

Durch die täglichen Belastungen des Skelettes entstehen im Knochengewebe permanent Mikrofissuren (Größe im Mikrometerbereich, siehe auch Punkt 1.3.2), die einerseits das Remodeling anregen, aber mit steigendem Alter so zunehmen, dass sie die Festigkeit des Knochen reduzieren können (Bentolila et al. 1998, Wang & Puram 2004).

1.5 Literaturüberblick über histologische
Altersbestimmungsmethoden am Knochenquerschnitt

In weiteren Studien wurden viele dieser histologischen Altersbestimmungsmethoden an verschiedenen Kollektiven (teils altersbekannt, teils altersbestimmt) mit variierenden Ergebnissen überprüft. Im Folgenden wird ein kurzer chronologischer Überblick über diese Literatur gegeben, ohne im Einzelnen darauf eingehen zu wollen.

1.6 Degradation von Knochenmaterial

postmortale Veränderungen an Knochen nach etwa fünf Jahren der Bodenlagerung, teilweise kann Knochendekomposition, in Abhängigkeit von den Liegebedingungen, aber auch schon wenige Monate nach dem Tod eintreten (Bell et al. 1996).

Der wichtigste chemische Parameter ist der pH-Wert (Tab. 1) und der Sauerstoffgehalt des Bodens. Bei saurem pH wird z. B. die Hydrolyse des Knochenminerals beschleunigt. Extremfälle sind in sauren Hochmooren zu beobachten, wo die organischen Teile (Weichgewebe) der Moorleichen durch Huminstoffe gerönt, die mineralischen Bestandteile jedoch aufgelöst werden (Herrmann et al. 1990). In moderat sauren Umgebungen kann biogener Hydroxylapatit auch zu Brushit (CaHPO$_4$·2H$_2$O, pH 4,5-6,0) oder Octa-Calciumphosphat (Ca$_4$H(PO$_4$)$_3$·2H$_2$O, pH 6,0-7,0) rekristallisieren (Piepenbrink 1989, Lee-Thorp & van der Merwe 1991, Hedges 2002). Brushit hat größere Kristalle als Hydroxylapatit und ist außerdem wasserlöslich (Piepenbrink 1989).

<table>
<thead>
<tr>
<th>pH-Wert des Bodens</th>
<th>Erhalt der mineralischen Phase von Knochen</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 8,1</td>
<td>bester Erhalt von Knochen, insbesondere wenn der Boden mit Calcit gesättigt ist</td>
</tr>
<tr>
<td>8,1 - 7,0</td>
<td>Rekristallisierungsfenster: der Knochen bleibt erhalten, aber seine mineralische Komponente wird durch Rekristallisationsvorgänge verändert (die originalen Kristalle werden durch stabilere Formen von Apatit ersetzt)</td>
</tr>
<tr>
<td>< 7,0</td>
<td>das Knochenmineral wird mehr oder weniger schnell aufgelöst</td>
</tr>
</tbody>
</table>

Tab. 1: Einfluss des Boden-pH-Wertes auf die mineralische Phase des Knochens nach Berna et al. 2004

Die vergleichsweise große Oberfläche der Apatit-Kristalle (siehe Punkt 1.2.5) ist dafür verantwortlich, dass postmortale Verunreinigungen mit sekundären Carbonaten (v.a. aus Calciumcarbonat CaCO$_3$) aus dem Grundwasser oder dem Boden sehr häufig vorkommen (Lee-Thorp & van der Merwe 1991, Ambrose 1993).

Das bei weitem größere Problem stellt aber die Zerstörung von Knochenmaterial, besonders der Proteinfraktion des Knochens, durch Mikroorganismen dar (auch als Biodegradation...

Abb. 38: Abbildung von zwei Femurquerschnitten mit bakteriell zerstörter Knochenmikrostruktur; Differentialinterferenzkontrast

Allgemein ist anzumerken, dass kalte, trockene, eher basische Liegemilieus als konservierend betrachtet werden, während zehrende Liegemilieus sauer, warm und feucht sind (z. B. Hedges 2002).

1.7 Fluoreszenz am Knochen

Frischer Knochen fluoresziert unter langwelligem UV-Licht intensiv weiß-blau (z. B. Wiethold 1926).

1.7.1 Physikalische Grundlagen von Lumineszenz

Abb. 39: Spektralbereich des Lichtes: UV-Bereich, sichtbarer Bereich, Infrarot-Bereich

Die eigentliche Ursache für die Fluoreszenz in Kristallen (laut dem Bändermodell), liegt jedoch in Fremdionen oder Störstellen eines Kristalls, auch als Aktivatoren bezeichnet. Durch
die Anwesenheit dieser Aktivatoren entstehen im Bereich der Energielücke neue mögliche Energiezustände für Elektronen. Die Elektronen der Aktivatoren werden besonders häufig angeregt und wenn ihre Elektronen vom instabilen Zustand des Leitungsbandes auf das Valenzband zurückspringen, wird die Energie als Licht abgestrahlt (Götze 2002).
Minerale mit einer ausgeprägten Fluoreszenz sind unter Anderem Fluorit, Apatit, Kalzit und Baryt. Die Fluoreszenzfärbe ist dabei abhängig vom jeweiligen Aktivator.
Weiterhin können Übergangsmetallionen (wie z. B. Fe$^{3+}$, Fe$^{2+}$, Ni$^{2+}$, Co$^{2+}$, Cr$^{3+}$, Cu$^{2+}$), die auch als Quencher (to quench = ersticken, tilgen) bezeichnet werden, Lumineszenz löschen. Dreiwertiges Eisen verhindert schon bei Konzentrationen von Bruchteilen eines Prozentes die Lumineszenz, während bei den zweiwertigen Ionen einige Prozenten notwendig sind (Fairchild 1983).

1.7.2 Verwendung der Fluoreszenz von Knochenquerschnitten in der Forensik (Literaturüberblick)

Bei Skelettfinden ist es wichtig die Liegezeit zu bestimmen, da sich daraus eine forensische (aufklärungspflichtiges Tötungsdelikt) oder eine anthropologische Zuständigkeit ergibt. Ist die Liegezeit größer als 50-100 Jahre besteht in der Regel kein kriminologisches Interesse mehr an den skeletalen Überresten (Knight & Lauder 1969).

Da die Frage, was die Ursache für die Fluoreszenz im Knochen ist, bis heute nicht geklärt ist und es sich bei ihrem „Träger“ um mindestens einen der Bestandteile von Knochen handeln muss (Wasser, organische Matrix oder mineralische Fraktion) soll in der vorliegenden Arbeit geprüft werden, ob sich die UV-Fluoreszenzanalyse am Knochen als Diageneseindikator eignet.
2. Material

2.1 Basel-Kollektiv vom Friedhof St. Johann (Basel, Schweiz)

Abb. 41: Gräberplan des St. Johann-Friedhofs (Basel); Maßstab 1:500; aus Aebi et al. 1991

Da einige Skelette sehr unvollständig erhalten waren, wurden sie nach der Dokumentation nicht aufbewahrt, sondern in einem Massengrab wiederbestattet. Lediglich 221 von insgesamt 1061 Individuen wurden für die Weiterbearbeitung geborgen. Außerdem behielt man 150 Schädel und 400 ausgewählte Pathologica.

Das Krankenhaus, zu dem der Spitalfriedhof gehörte, enthielt neben einer medizinischen und einer chirurgischen Abteilung eine „Gebäranstalt“, eine „PFrundanstalt“ für Alte (Stiftung der Stadt, in der Alte verköstigt und versorgt wurden), eine „Irrenanstalt“, das „Lazarett für Krätzige und Syphilitische“ und eine Anstalt zur Beherbergung armer Durchreisender. Der

Alle auf dem Friedhof beigesetzten Individuen sind im Spital verstorben. Es wurde ein so genanntes Sterberegister geführt, in dem die Daten der Beisetzung, der Name, das Sterbealter, das Geschlecht, die Herkunft und die Konfession, der Beruf und die Todesursache der Verstorbenen verzeichnet wurden. 80% der aufbewahrten Individuen konnten so eindeutig identifiziert werden. Damit liegt eine einmalige Referenzserie vor, die lediglich mit dem Gräberfeld in Spitalfields/London zu vergleichen ist (Molleson & Cox 1993, Reeve & Adams 1993).

2.1.1 Geschlechts- und Altersverteilung

Im Baselkollektiv ist der Männeranteil mit 61,2% (63 Individuen) deutlich höher als der Frauenanteil (38,8%, 40 Individuen).

Die Altersverteilung wird in den folgenden zwei Abbildungen verdeutlicht (Abb. 42, Abb. 43).
Der Mittelwert des Alters beträgt 49,7 Jahren (Standardabweichung 18,15). Der Median liegt bei 46 Jahren. Das jüngste Individuum ist 23,5 Jahre alt und männlich. Das älteste Individuum ist weiblich und erreichte ein Alter von 92,5 Jahren.

Die Geschlechtsverteilung in den verschiedenen Altersklassen ist generell recht ausgeglichen (Abb. 43). Lediglich zwischen 50 und 70 Jahren überwiegt der Männeranteil deutlich.

2.1.2 Todesursachen

Der Hauptteil der Individuen (24,3%) starb an Tuberkulose, 15,5% litten an anderen Erkrankungen der Lunge. Bei 19,4% war die Todesursache Typhus, eine Erkrankung des Magen-Darm-Traktes. Alle anderen Todesursachen, wie Altersschwäche, Schlaganfall, Wassersucht, Herzerkrankungen oder Krebs liegen bei einer Häufigkeit von unter 10%. Nur je etwa 4% verstarben an einem Schlaganfall (was meist auf Arterienverkalkung zurückzuführen ist) oder an Herzerkrankungen (wie Herzinfarkt). Falls diese Werte aussagekräftig für die Gesamtpopulation der frühneuzeitlichen Baseler sind, ist die Erkrankungshäufigkeit an den beiden letztgenannten Krankheiten in der heutigen Zeit dramatisch gestiegen (siehe Punkt 2.2.3).

Eine ausführliche Liste mit den vorhandenen Individualdaten des Basel-Kollektivs ist dem Anhang zu entnehmen (siehe Punkt 8.3.1)
2.1.3 Kurzer Überblick über die Lebensbedingungen im Basel der frühen Neuzeit

nach Etter & Lörcher 1994

Arbeitsbedingungen
Viele der Menschen arbeiteten in Fabriken, in denen die Arbeitszeiten lange und die Arbeitsbedingungen ungesund waren. Da es weder Arbeitsgesetze noch Versicherungen gab, führten Unfälle, Krankheiten oder Schwangerschaft meist zu Verlust von Arbeitsplatz und Einkommen.

Wohnbedingungen

Ernährung

2.2 Anatomie-Kollektiv

Bei diesem Kollektiv handelt es sich um rezentes Knochenmaterial, das freundlicherweise von Herrn Professor Dr. Dr. Putz, dem Leiter des Anatomischen Instituts der LMU, zur Verfügung gestellt wurde.

Die Individuen haben ihren Körper freiwillig der Medizin überschrieben, um so nach ihrem Tod der Forschung zu dienen, weshalb kein ethisches Problem bei der Bearbeitung der Knochen besteht. An ihnen wurde vor der Knochenentnahme bereits der Präparationskurs für Medizinstudenten durchgeführt, wofür die Leichen mit Formalin (Formaldehyd) konserviert wurden. Formalin ist ein in der Medizin sehr häufig verwendetes Fixierungs- und Konservierungsmittel für biologische Materialien. Es konserviert das Gewebe, indem es...

Haut- und Fettgewebe waren bereits weitestgehend entfernt. Lediglich Muskeln und Sehnen hafteten noch am Knochen. Während der Probenentnahme wurde ausschließlich an den Extremitäten gearbeitet, denn die Körper lagen nicht mehr im Verbund vor.

Für die Dissertation werden 36 komplette Querschnitte aus der mittleren Diaphyse des rechten oder linken Femur bearbeitet, wobei die Scheibendicke im Einzelnen etwa 2-4 cm beträgt. Die Knochenstücke stammen von 18 weiblichen und 18 männlichen Individuen. Das Geschlechterverhältnis ist somit ausgeglichen. Dabei sind Alter, Größe, Gewicht und in den meisten Fällen auch die Todesursache bekannt.

Die ausführliche Liste mit allen vorhandenen Daten zu den einzelnen Individuen ist dem Anhang (siehe Punkt 8.3.2) zu entnehmen.

2.2.1 Geschlechts- und Altersverteilung

![Abb. 45: Sterbealterverteilung des Anatomiekollektivs](image)

![Abb. 46: Sterbealtersverteilung des Anatomiekollektivs gegliedert nach Altersklassen von jeweils 10 Jahren Umfang (z. B. 50er entspricht einem Altersbereich von 50-59 Jahren; usw.) und sichtbarer Geschlechtsverteilung](image)
2.2.2 Body-Mass-Index

Im Folgenden soll ein Überblick über den Körperbau der Individuen dargestellt werden, beschrieben mit Hilfe des so genannten Body-Mass-Index (BMI). Da sowohl Körpergröße als auch Gewicht der untersuchten Individuen bekannt waren, konnte dieser mit Hilfe folgender Formel

\[BMI = \frac{\text{Körpergewicht} \times kg}{(\text{Körpergröße} \times m)^2} \]

problemlos berechnet werden. Die Einheit des BMI ist somit kg/m². In der folgenden Abbildung ist die Verteilung der BMI-Werte anhand eines Histogramms mit eingezeichneter Normalverteilungskurve dargestellt (Abb. 47).

![Histogramm der BMI-Werte](image)

Abb. 47: Verteilung der Body-Mass-Indices im Anatomie-Kollektiv, dargestellt als Histogramm mit Normalverteilungskurve

<table>
<thead>
<tr>
<th>BMI (männlich)</th>
<th>BMI (weiblich)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Untergewicht</td>
<td><20</td>
</tr>
<tr>
<td>Normalgewicht</td>
<td>20-25</td>
</tr>
<tr>
<td>Übergewicht</td>
<td>25-30</td>
</tr>
<tr>
<td>Adipositas</td>
<td>30-40</td>
</tr>
<tr>
<td>Massive Adipositas</td>
<td>>40</td>
</tr>
</tbody>
</table>

Tab. 2: Klassifikationen des Body-Mass-Index nach den Richtlinien der DGE 1992

Der geringste beobachtete Wert im Anatomie-Kollektiv liegt bei 14,0 kg/m² (männliches Individuum 127/03, 81 Jahre), der höchste bei 29,6 kg/m² (weibliches Individuum 115/02, 86 Jahre). Der Mittelwert ist 21,7 kg/m² (SW: 4,13). Ein Viertel aller Individuen befindet sich unter einem kritischen Wert von 18,0 kg/m² (entspricht laut der DGE 2004 bei beiden Geschlechtern klinisch relevantem Untergewicht; www.dge.de; Stand 3/2007) und ein weiteres Viertel liegt über einem kritischen Wert von 25,6 kg/m² (entspricht laut der DGE 2004 bei beiden Geschlechtern Übergewicht; www.dge.de; Stand 3/2007). Allerdings weist keines der Individuen einen BMI über 30 auf (Adipositas).
2.2.3 Todesursachen bzw. Krankheiten

Außerdem soll ein Überblick über die Todesursachen bzw. die vorhandenen Krankheiten geliefert werden. Für 31 der 36 Skelette ist die Todesursache bekannt, von 5 Individuen ist sie nicht bekannt. 6 der 31 Personen starben eines natürlichen Todes (16,7%). In der folgenden Abbildung (Abb. 48) ist die Verteilung der dokumentierten Krankheiten in diesem Kollektiv dargestellt, aufgeteilt nach Geschlecht. Dabei werden ausschließlich chronische Erkrankungen und Herzerkrankungen aufgeführt. Alle anderen Individuen werden mit dem Terminus „keine Krankheit“ definiert.

2.3 Diverses Knochenmaterial für die Fluoreszenzmethode (UV-Material)

Das untersuchte Material besteht aus einer großen Vielfalt unterschiedlicher Knochenarten und stammt von diversen Fundplätzen mit verschiedenen Zeitstellungen. Es liegen sowohl
Etwas ausführlicher kann hier nur auf wenige Proben eingegangen werden. Dabei handelt es sich um Fundmaterial, das teilweise bereits in anderen Arbeiten untersucht wurde.

Eine Liste aller untersuchten Knochenproben ist im Anhang unter Punkt 8.3.3 zu finden.

2.3.1 Menschen- und Tierknochen vom Göbekli Tepe und vom Gürcütepe

Die Fundorte Göbekli Tepe und Gürcütepe liegen im östlichen Teil Anatoliens (asiatischer Teil der Türkei), einige Kilometer südöstlich vom Zentrum der Provinzhauptstadt Şanlıurfa am nordwestlichen Rand der Harranebene.

Vom Gürcütepe werden vier humane und sechs tierische Knochenproben untersucht (Tab. 4). Die Funde lassen sich zwei verschiedenen Siedlungsperioden zuordnen, wobei die erste auf einen Zeitraum von 7500-7000 v. Chr. begrenzt war und die zweite in die römisch-byzantinische Zeit fällt (in Tab. 4 als subrezent bezeichnet). Aufgrund eines nahe liegenden Wasserwerks bei diesem Fundplatz, das in unregelmäßigen Abständen Teile der Grabungsfläche überflutete, lag das Knochenmaterial nicht mehr im Verbund vor und häufig sind die Fundstücke von einer millimeterdicken, grauen Kalksinterschicht überzogen (Dummler 2004). Für weitere Einzelheiten siehe Dummler (2004).

<table>
<thead>
<tr>
<th>Proben</th>
<th>Knochenotyp</th>
<th>Zeitstellung</th>
<th>Fundort</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>Bruchstück einer Langknochendiaphyse, (evtl. Humerus)</td>
<td>7500-7000 v. Chr</td>
<td>Gürcütepe</td>
</tr>
<tr>
<td>S2</td>
<td>Wahrscheinlich Humerus (evtl. auch Tibia)</td>
<td>9500-8500 v.Chr.</td>
<td>Göbekli Tepe</td>
</tr>
<tr>
<td>B2 (R)</td>
<td>Radius</td>
<td>Subrezent</td>
<td>Gürcütepe</td>
</tr>
<tr>
<td>B2 (U)</td>
<td>Ulna</td>
<td>Subrezent</td>
<td>Gürcütepe</td>
</tr>
<tr>
<td>D5</td>
<td>Humerus</td>
<td>Subrezent</td>
<td>Gürcütepe</td>
</tr>
</tbody>
</table>

Tab. 3: Menschliche Knochenproben vom Göbekli Tepe und vom Gürcütepe

<table>
<thead>
<tr>
<th>Probe</th>
<th>Knochenotyp</th>
<th>Tierart</th>
<th>Zeitstellung</th>
<th>Fundort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nr. 2</td>
<td>Humerus distal</td>
<td>Schaf</td>
<td>7500-7000 v. Chr</td>
<td>Gürcütepe</td>
</tr>
<tr>
<td>Nr. 9</td>
<td>Humerus distal</td>
<td>Ziege</td>
<td>7500-7000 v. Chr</td>
<td>Gürcütepe</td>
</tr>
<tr>
<td>Nr. 30</td>
<td>Humerus distal</td>
<td>Haus- oder Wildschwein</td>
<td>7500-7000 v. Chr</td>
<td>Gürcütepe</td>
</tr>
<tr>
<td>Nr. 43</td>
<td>Metatarsus, proximales Fragment</td>
<td>Bos</td>
<td>7500-7000 v. Chr</td>
<td>Gürcütepe</td>
</tr>
<tr>
<td>Nr. 51</td>
<td>Tibia distal</td>
<td>Gazelle</td>
<td>7500-7000 v. Chr</td>
<td>Gürcütepe</td>
</tr>
<tr>
<td>Nr. 53</td>
<td>Ulna</td>
<td>Equide</td>
<td>7500-7000 v. Chr</td>
<td>Gürcütepe</td>
</tr>
</tbody>
</table>
2.3.2 Zähne aus Großmehring und Volders

Volders war nach neuen archäologischen Erkenntnissen vermutlich eine kleine Siedlung oder eine Ansammlung von Häusern, in der eine Großfamilie lebte. Es wird auf das 5.-7. Jahrhundert n. Chr. datiert und liegt etwa 15 km östlich von Innsbruck im Inntal auf einer Höhe von 558 m ü. NN.

2.3.3 Anatomie-Knochen, die in die Fluoreszenz-Untersuchungen einbezogen wurden

Zum Vergleich mit den archäologischen Knochen- und Zahnproben werden sieben der rezenten Knochenstücke herangezogen (Tab. 7). Weitere Einzelheiten zu den Knochenproben sind dem Punkt 8.3.2 zu entnehmen.

<table>
<thead>
<tr>
<th>Probenummer</th>
<th>Knochentyp</th>
<th>Zeitstellung</th>
<th>Geschlecht</th>
<th>Alter [a]</th>
<th>Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>115/02</td>
<td>Femur</td>
<td>rezent</td>
<td>weiblich</td>
<td>86</td>
<td>formalinkonserviert</td>
</tr>
<tr>
<td>15/03</td>
<td>Femur</td>
<td>rezent</td>
<td>weiblich</td>
<td>78</td>
<td>formalinkonserviert</td>
</tr>
<tr>
<td>42/03</td>
<td>Femur</td>
<td>rezent</td>
<td>weiblich</td>
<td>96</td>
<td>formalinkonserviert</td>
</tr>
<tr>
<td>68/03</td>
<td>Femur</td>
<td>rezent</td>
<td>weiblich</td>
<td>88</td>
<td>formalinkonserviert</td>
</tr>
<tr>
<td>76/03</td>
<td>Femur</td>
<td>rezent</td>
<td>weiblich</td>
<td>80</td>
<td>formalinkonserviert</td>
</tr>
<tr>
<td>127/03</td>
<td>Femur</td>
<td>rezent</td>
<td>männlich</td>
<td>81</td>
<td>formalinkonserviert</td>
</tr>
<tr>
<td>129/03</td>
<td>Femur</td>
<td>rezent</td>
<td>männlich</td>
<td>84</td>
<td>formalinkonserviert</td>
</tr>
</tbody>
</table>

Tab. 7: Auflistung der Proben für die UV-Methode aus dem Anatomie-Kollektiv

2.3.4 Menschenknochen aus Minshat Abu Omar

<table>
<thead>
<tr>
<th>Probenummer</th>
<th>Knochentyp</th>
<th>Zeitstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>K 91.3 Sk 1</td>
<td>Femur</td>
<td>ca. 3000 v. Chr.</td>
</tr>
<tr>
<td>K 91.3 Sk 10</td>
<td>Femur</td>
<td>ca. 3000 v. Chr.</td>
</tr>
<tr>
<td>K 91.3 Sk 6</td>
<td>Humerus</td>
<td>ca. 3000 v. Chr.</td>
</tr>
<tr>
<td>K 91.3 Sk 9</td>
<td>Femur</td>
<td>ca. 3000 v. Chr.</td>
</tr>
<tr>
<td>K 91.5 KO Sk 3</td>
<td>Femur</td>
<td>ca. 3000 v. Chr.</td>
</tr>
<tr>
<td>K 91.5 KW Sk 3</td>
<td>Femur</td>
<td>ca. 3000 v. Chr.</td>
</tr>
<tr>
<td>K 91.7 KO Sk 1</td>
<td>Tibia</td>
<td>ca. 3000 v. Chr.</td>
</tr>
<tr>
<td>Probenummer</td>
<td>Knochentyp</td>
<td>Zeitstellung</td>
</tr>
<tr>
<td>------------------</td>
<td>------------</td>
<td>--------------</td>
</tr>
<tr>
<td>K 91.7 KO Sk 4</td>
<td>Femur</td>
<td>ca. 3000 v. Chr.</td>
</tr>
<tr>
<td>K 91.7 KO Sk 5</td>
<td>Femur</td>
<td>ca. 3000 v. Chr.</td>
</tr>
<tr>
<td>K 91.7 KO Sk 9</td>
<td>Femur</td>
<td>ca. 3000 v. Chr.</td>
</tr>
<tr>
<td>K 91.7 SCHACHT Sk 2</td>
<td>Femur</td>
<td>ca. 3000 v. Chr.</td>
</tr>
<tr>
<td>Sk 91.3 Sk 7</td>
<td>Femur</td>
<td>ca. 3000 v. Chr.</td>
</tr>
</tbody>
</table>

Tab. 8: Auflistung der Proben aus Minshat Abu Omar, Ägypten

2.3.5 Proben der Basel-Serie

Aus der Basel-Serie (N = 103) wurden willkürlich die ersten 53 Proben (BP 600-BP 652) in die Fluoreszenzuntersuchungen mit einbezogen.

Alle genauen Informationen dazu siehe Materialteil Punkt 2.1 bzw. Anhang Punkt 8.3.1.
3 Methoden

Die Entwicklung eines Systems zur Begutachtung der für die UV-Methode verwendeten Proben (siehe Punkt 3.3) wurde in Zusammenarbeit mit Frau Dr. Michaela Harbeck (Department Biologie I, Bereich Biodiversitätsforschung/Anthropologie, LMU München) angelegt. Dies beinhaltete sowohl die Indexerstellung für die histologischen, als auch für die makroskopisch erzeugten Fotos des UV-Probenmaterials. Auch die Aufbereitung der Proben für die Röntgenfluoreszenzanalyse erfolgte in Kooperation (siehe auch Harbeck 2007).

3.1 Osteometrie

Bei allen untersuchten Femora des Basel-Kollektivs und der Anatomie-Serie soll die Kompaktadicke auf der anterioren Seite der mittleren Femurdiaphyse bestimmt werden. Nicht zuletzt deshalb, um eine mögliche Korrelation zum Individualalter zu überprüfen und damit auch makromorphologische Kriterien in die mikromorphologische Altersbestimmung einzubeziehen, wie schon durch Thompson (1979) praktiziert.

Da bei dem Material des Basel-Kollektivs ausschließlich Stücke der anterioren Femurdiaphyse vorliegen (das Material aus dem Anatomischen Institut würde auch eine Analyse der kompletten Femurquerschnitte zulassen), wird die Kompaktadicke nur an der dünnsten Stelle auf der anterioren Seite des Femurs bestimmt (Abb. 49, vgl. auch Thompson
3. Methoden

![Abb. 49: Darstellung der Stelle, an der die Kompaktadieke der Femurquerschnitte in dieser Arbeit gemessen wurde](image)

3.2 Histologie

3.2.1 Entnahme der Knochenproben: Archäologisches versus anatomisches Material

Reinigung
Archäologisches Knochenmaterial muss zunächst grob gesäubert werden, um die durch die Bodenlagerung anhaftenden Substanzen zu entfernen. Das geschieht unter fließendem Wasser mit Hilfe von Bürsten unterschiedlicher Feinheitsgrade (z. B. handelsübliche Zahnbürsten). Die Knochen des Basel-Kollektivs liegen bereits gesäubert vor.

Probenentnahme
Die archäologischen Knochenproben werden mit einem Zahnarztbohrer (Fa. KaVO) entnommen. Dies stellt laut Herrmann et al. (1990) ein besonders schonendes Verfahren dar, da der Zahnarztbohrer mit sehr dünnen diamantbesetzten Sägeblättern bestückt ist. Um die Integrität der Skelette möglichst wenig zu verletzen, wird die Probengröße im Falle der Baseler Skelettserie sehr gering gehalten und beläuft sich maximal auf rechteckige Stücke von 1cm x 1,5cm. Je nach Fragestellung ist eine solche Größe in der Regel ausreichend (Herrmann et al. 1990).

Im Folgenden wird die Probenentnahmestelle für die Femora des Basel-Kollektivs beschrieben (Abb. 50).

![Abb. 50: Einheitliche Probenentnahmestelle an den Femora des Basel-Kollektivs; vergleichbar mit Thompson (1979)](image)

Dem Femur wird ein rechteckiges Stück in der angegebenen Größe aus dem mittleren Drittel der anterioren Diaphyse entnommen. Die Probenentnahmestelle nach Thompson (1979) wird vor allem aufgrund ihrer minimalen Invasivität gewählt, ungeachtet dessen, dass sich die geringe Probengröße negativ auf die Variabilität der Mikrostruktur des Knochens bei der Untersuchung auswirken könnte. Es besteht bei einer solchen Festlegung immer die Möglichkeit eine nicht typische Stelle des Knochenelementes zu beproben (Robling & Stout 2000).

Abb. 51: Einheitliche Probenentnahmestelle an den Anatomieskeletten

3.2.2 Aufbereitung des anatomischen Materials: Mazeration und Entfettung

Abb. 52: Schema der Soxhlet-Extraktion; Erläuterungen siehe Text
3.2.3 Herstellung der histologischen Präparate

Für die vorliegende Arbeit sind Schnittechniken die sinnvollere Alternative, wobei lediglich eine vorherige Stabilisierung des Knochenmaterials (besonders des durch Bodenlagerung etwas brüchigeren archäologischen Materials; Schultz 2001) durch Einbettung z. B. in Kunstharz benötigt wird, so dass die Knochen der Sägebelastung standhalten.

mit Sekundenkleber (Fa. Uhu) auf der Haltevorrichtung der Schneidemaschine angebracht werden kann.

Das Knochenmaterial aus Basel ist sehr gut erhalten. Die Schnittdicken müssen nur selten auf bis zu 70µm angehoben werden. Hier liegen Knochenstücke von ca. 1cm x 1cm vor. Pro Individuum werden 6-8 Schnitte hergestellt. Da es sich um ein Kollektiv von einem Spitalfriedhof handelt, wird eine erhöhte Anzahl von Schnitte angefertigt, um lokale Abweichungen, die z. B. durch Krankheiten oder aus anderen unbekannten Gründen entstehen können (Robling & Stout 2000), so gut wie möglich auszuschließen. Rechnet man mit einer durchschnittlichen Schnittdicke von 50µm und der Sägeblattdicke von 300µm, werden bei 6-8 Schnitten 1,8-2,5mm überbrückt, was in etwa der Länge eines Osteons entspricht (siehe Punkt 1.2.2). Insgesamt werden ca. 620 Schnitte produziert.

Schwierig ist die Schnittherstellung lediglich bei den sehr variabel erhaltenen UV-Knochenproben. Da der Erhaltungsgrad stark variiert, müssen teilweise Schnitte mit einer Dicke von bis zu 100µm angefertigt werden, insbesondere bei den stark sekundär mineralisierten Knochen aus Minshat Abu Omar, Ägypten. Von jeder Probe werden höchstens 2-4 Schnitte erstellt. Diese Anzahl reicht aus, um sich einen Überblick über die Besonderheiten des Erhaltungsgrades im Einzelnen zu verschaffen. Die Anzahl der erstellten Schnitte beträgt etwa 120.

Alle angefertigten Dünnschnitte werden nach kurzer Trockenzeit mit dem Kunstharzklebstoff Eukitt (Fa. Kindler GmbH & Co) auf Glasobjektträgern (76x26mm, Fa. Menzel bzw. Fa. Roth) fixiert, mit Eukitt überschichtet und mit einem Deckgläsen (24x40mm; Fa. Roth)
3. Methoden

dabeckt. Damit sind die Proben luftdicht fixiert und für die weitere Bearbeitung und Aufbewahrung haltbar.

3.2.4 Mikroskopische Untersuchung und Bearbeitung der erstellten digitalen Bilder

Die folgende Beschreibung bezieht sich ausschließlich auf die Skelettserie Basel und das Anatomie-Kollektiv, während die weitere Bearbeitung der UV-Proben (mikroskopische Untersuchung und Auswertung) gesondert unter Punkt 3.3 beschrieben wird.
Zur Altersbestimmung am Femur wird in vielen Veröffentlichungen nur der anteriore Teil betrachtet (siehe Punkt 1.5). Insofern, auch unter den Gesichtspunkten der Invasivität histologischer Techniken (siehe oben), soll die Variabilität dieses Teils und seine Aussagekraftigkeit untersucht werden.

Anschließend wird auf ein Objektiv mit 10-facher Vergrößerung zurückgegriffen (insgesamt 100-fache Vergrößerung), das mit Differentialinterferenzkontrast ausgerüstet ist (abgekürzt DIC von differential interference contrast, auch als Nomarski Kontrast bezeichnet). Dabei handelt es sich um eine Modifikation des Phasenkontrastes. Weißes Licht wird durch einen Polarisierer geschickt, so dass es nur noch in einer Ebene schwingt. Anschließend befindet sich ein so genanntes Wollastonprisma in seinem Weg, welches das Licht in 2 kohärente Teilwellen aufspaltet, die durch sehr geringe Wellenlängenunterschiede getrennt sind. Die Darstellung von Strukturen in einer untersuchten Probe beruht auf Unterschieden in deren Brechungsindex und der Objektdicke, denn Licht bewegt sich langsamer in Regionen mit

![a)](image1) ![b)](image2) ![c)](image3)

Abb. 53: Darstellung der unter dem Mikroskop untersuchten Felder; a: ausgewertete Bilder peristal; im Falle der Anatomie-Skelette wurden peristal nur drei Bilder analysiert; b: ausgewertete Bilder mittig; c: ausgewertete Bilder endostal

Die einzelnen Bilder sollen möglichst nahe nebeneinander liegen, sich aber nicht überschneiden. Im Falle der Basel-Skelettserie werden peristal je vier Bilder (Thompson 1979) von zwei möglichst weit auseinander liegenden Schnitten aufgenommen (Begründung dazu siehe Punkt 3.2.3). Bei der Auswahl von geeigneten Schnitten muss allerdings darauf geachtet werden, dass weder die Ränder beim Sägevorgang abgesplittert sind, noch Risse durch die Sägebelastung einen Teil der Mikrostruktur unkenntlich machen. Endostal werden je drei Bilder an zwei Schnitten aufgenommen, da im Verlauf der Arbeit festgestellt wird, dass die Variabilität innerhalb eines Schnittes durch drei Bilder ausreichend wiedergegeben wird (z. B. Maat et al. 2006 untersuchen auch 3 Felder). Die mittigen Aufnahmen (ebenfalls drei Bilder) werden erst nach der Auswertung des endostalen und peristalen Teils angefertigt, als bereits klar ist, dass sich auch die Variabilität im Abstand von 1,5-2mm der Längsachse des Knochens in Grenzen hält. Es ist somit nicht nötig an 2 Schnitten von nur geringem Abstand Analysen vorzunehmen. Um zuverlässig ausschließen zu können, dass lokale Veränderungen der Knochenmikrostruktur die Aussagen über ein Individuum beeinflussen, müsste man unterschiedliche Stellen des Knochens beproben, die wesentlich weiter auseinander liegen. Insgesamt werden bei der Basel-Serie etwa 1751 Bilder aufgenommen und ausgewertet.
Im Fall der Anatomieskelette verhält sich die Sache etwas anders. Hier werden an jeder anatomischen Stelle (per, mit, end) drei Bilder an nur einem Schnitt aufgenommen (angelehnt an Maat et al. 2006). Von der Anatomieserie werden somit insgesamt 324 Bilder angefertigt und ausgewertet.

Die Gesamtzahl der aufgenommenen und analysierten Bilder der beiden Skelettserien beläuft sich damit auf ca. 2075.

Gespeichert werden die Bilder als nicht komprimierte Tiff-Dateien, da in diesem Format verlustfrei gearbeitet werden kann. Es resultieren Bilddateien von etwa 3 Mb pro Bild.

Eine Weiterbearbeitung und Optimierung der Bilder erfolgt in dem kommerziellen Bildbearbeitungsprogramm Adobe Photoshop (Version 8.0). Zunächst werden die Bilder bezüglich Helligkeit und Schärfe optimiert, so dass die Strukturen für das Auge besser zu erkennen sind. Danach wird auf jedes Bild ein quadratisches weißes Gitter mit der Seitenlängen von 1 mm und 100 Kästchen kopiert (Abb. 54), das maßstabsgetreu in Photoshop erstellt wurde.

Auswertung am Computerbildschirm vorzunehmen, nachdem die Bilder für das menschliche Auge optimiert wurden. Das Gitter dient dazu, eine genau definierte Fläche von 1mm^2 zu untersuchen und die Strukturen nach den Prinzipien der Stereologie (siehe Weibel 1969) zu untersuchen.

3.2.5 Auswertung der digitalen Bilder und Datenerhebung

Auch dieser Teil bezieht sich ausschließlich auf die Skelettserie Basel und das Kollektiv aus der Anatomie. Die Auswertung der UV-Proben ist unter Punkt 3.3 beschrieben. Die Erhebung der Daten erfolgt an Hand der mit Gittern überlagerten Fotos von der Knochenmikrostruktur (Abb. 54). Es werden alle Parameter erhoben, die in der folgenden Tabelle aufgeführt und erklärt werden. Abbildungen und genaue Definitionen der Strukturen sind der Einleitung dieser Arbeit (Punkt 1.2.2) zu entnehmen.

Definition der einzelnen Parameter der Knochenmikrostruktur

In der Tabelle (Tab. 9) ist dargestellt, was bei der Erhebung jeder einzelnen Variablen beachtet werden muss. Die im weiteren Verlauf der Arbeit verwendeten Abkürzungen sind fett gedruckt.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Abkürzung</th>
<th>Einheit</th>
<th>Definition und Hinweise zur Erhebung der Daten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl der intakten Osteone</td>
<td>Ostint</td>
<td>-</td>
<td>Die Summe aus Ost und Ost II.</td>
</tr>
<tr>
<td>Osteonenpopulationsdichte</td>
<td>OPD</td>
<td>-</td>
<td>Die komplette Anzahl an sichtbaren intakten und Resten von alten Osteonen. Die Summe aus Ostint und Ostfr.</td>
</tr>
</tbody>
</table>
3. Methoden

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Abkürzung</th>
<th>Einheit</th>
<th>Definition und Hinweise zur Erhebung der Daten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl der Havers'schen Kanäle</td>
<td>Hav</td>
<td>-</td>
<td>Gezählt werden alle intakten Havers'schen Kanäle, die zu mehr als zur Hälfte im Feld liegen.</td>
</tr>
<tr>
<td>Anzahl der Volkmann'schen Kanäle</td>
<td>Volk</td>
<td>-</td>
<td>Transversal verlaufende Kanäle im Knochenquerschnitt, die zwei Havers'sche Kanäle miteinander verbinden können. Liegen sie zu mehr als zur Hälfte im Bild, werden sie mitgezählt. Eigentlich werden sie zu den Typ-I-Osteonen gezählt, aber zur genaueren Untersuchung wird ihre Zahl noch einmal separat festgehalten.</td>
</tr>
<tr>
<td>Anteil an osteonalem Knochen</td>
<td>Ostkno</td>
<td>%</td>
<td>Die Anzahl von Kästchen von insgesamt 100, die mit Osteonen (Ostint) gefüllt sind. Gewertet werden Kästchen, die zu mehr als zur Hälfte mit Osteonen gefüllt sind (Ericksen 1991).</td>
</tr>
<tr>
<td>Durchschnittliche Fläche eines Osteons</td>
<td>OstA</td>
<td>mm²</td>
<td>Der Quotient aus Ostkno/100 und Ostint</td>
</tr>
</tbody>
</table>
| Durchschnittlicher Umfang eines Osteons | OstU | mm | Wird aus OstA berechnet unter der Annahme, dass ein Osteon kreisförmig ist (laut Cohen & Harris 1958 sind Osteone kreisförmig bis oval). \[OstU = 2 \cdot \pi \cdot \sqrt{\frac{OstA}{\pi}} \]
| Durchschnittlicher Durchmesser eines Osteons | OstD | mm | Wird aus OstA berechnet unter der Annahme, dass ein Osteon kreisförmig ist (laut Cohen & Harris 1958 sind Osteone kreisförmig bis oval). \[OstD = 2 \cdot \sqrt{\frac{OstA}{\pi}} \]
<p>| Durchschnittliche Fläche einer Resorptionslakune | ResA | mm² | Der Quotient aus Reskno/100 und Res |
| Aktivierungs- frequenz | AktF | Anzahl/mm²/Jahr | Anzahl der neu gebildeten Osteone pro mm² Knochen pro Jahr (Berechnung der Aktivierungs frequenz, siehe später). Die Aktivierungs frequenz ist ein Maß dafür, wie schnell der Knochen umgebaut wird (Smit al 2002). |</p>
<table>
<thead>
<tr>
<th>Parameter Abkürzung</th>
<th>Einheit</th>
<th>Definition und Hinweise zur Erhebung der Daten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knochenbildungs-</td>
<td>BFR</td>
<td>Neu gebildete Knochenfläche pro Jahr pro mm² (Berechnung der Knochenbildungsrate, siehe später).</td>
</tr>
<tr>
<td>rate (Bone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Formation Rate)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kompaktadicke</td>
<td>Komp</td>
<td>Die Dicke der Kompakta des Femurs, gemessen an der schmalsten Stelle auf der anterioren Seite ohne Spongiosaanteil (nach Thompson 1979) (siehe Punkt 3.1).</td>
</tr>
</tbody>
</table>

Tab. 9: Darstellung der Parameter der Knochenmikrostruktur, die bei der Untersuchung des Basel-Kollektivs und des Anatomie-Kollektivs routinemäßig erhoben werden

Beschreibung der Berechnung der Aktivierungs frequenz (AktF) und der Knochenbildungsrate (BFR)

AktF und BFR sind dynamische Parameter, die bei verstorbenen Individuen nur mit Hilfe geometrischer und numerischer Daten aus deren Knochenmikrostruktur bestimmt werden können, was einmalige Einblicke in ein ansonsten statisches System gewährt (Herrmann et al. 1990). Berechnet man AktF und BFR wie hier über die Osteonenpopulationsdichte (OPD), erhält man Werte, die über das Leben eines Individuums hinweg gemittelt sind. Mit der Gewebemarkierung von Knochen (intra vitam), z. B. über Tetracyclin (siehe z. B. Frost 1969), bestimmt man hingegen die unmittelbar vorliegende Knochenbildungsrate, innerhalb eines Zeitraums von 1 bis 2 Wochen (Wu et al. 1970). Der Unterschied muss bei einem Vergleich mit Werten aus der Literatur berücksichtigt werden.

Berechnung der Aktivierungsfrequenz (AktF) und der Knochenbildungsrate (BFR) nach Cho et al. 2006

1. **BFR = AktF • OstA**

Berechnung der Aktivierungs frequenz AktF:

2.

\[
\text{AktF} = \frac{OPD.Cd}{Knochenalter} = \frac{OPD.Cd}{Individualalter - 12,5}
\]

OPD.Cd = Gesamte Osteonenpopulationsdichte (oder akkumulierte OPD), also sichtbare OPD + bereits durch Umbau verlorene OPD (Anzahl/mm²)

3. \(OPD.Cd = \beta \bullet OPD\)

4. \(\beta = \frac{1}{1 - \alpha} \)

5. \(\alpha = \frac{OPD}{OPD_{Asymptote}} \quad \text{und} \quad x = 3,5 \) (siehe Frost 1987, fester Wert)
OPD_{Asymptote} gilt als der höchste beobachtete Wert der Osteonenpopulationsdichte (OPD) in einer überalterten Population. Um diesen Wert zu bestimmen wurde in der vorliegenden Arbeit das Anatomie-Kollektiv (siehe Punkt 2.2) herangezogen. Der höchste Wert wurde periostal bei einem männlichen Individuum (85 Jahre) mit der Nummer Anat 133/03 gefunden und lag bei 60,67.

Daraus folgt also, dass für \(\alpha = \frac{\text{OPD}}{60,67} \) eingesetzt wird.

Für ein Individuum wird \(\text{OPD}_{Asymptote} \) folgendermaßen berechnet:

\[
\text{OPD}_{Asymptote} = \frac{k}{(\text{OstD})^2}
\]

Laut Pfeiffer (1998) gilt \(\text{OstA} = 0,041 \text{ mm}^2 \)

Wird angenommen, dass ein Osteon annähernd kreisförmig ist, kann aus der Fläche der Radius und damit der Durchmesser berechnet werden.

Für die Kreisfläche gilt laut mathematischer Formelsammlung (Barth et al. 1998):

\[
A = r^2 \cdot \pi
\]

Daraus folgt: \(r = \sqrt{\frac{\text{OstA}}{\pi}} = \sqrt{\frac{0,041 \text{ mm}^2}{\pi}} = 0,114 \text{ mm} \)

Also ist \(\text{OstD} = 2 \cdot r = 2 \cdot 0,114 \text{ mm} = 0,228 \text{ mm} \)

\[
k = \text{OPD}_{Asymptote} \cdot \text{OstD}^2 = 60,67 \cdot (0,228 \text{ mm})^2 = 3,15
\]

\[k = 3,15\]

Somit ergeben sich folgende Formeln:

\[
siehe \ (4) \ \beta = \frac{1}{1 - \alpha^x} = \frac{1}{1 - \left(\frac{\text{OPD}}{k} \cdot \left(\frac{\text{OstD}}{2} \right)^2 \right)^{\frac{3}{5}}}
\]

\[
siehe \ (3) \ \text{OPD.Cd} = \beta \cdot \text{OPD} = \frac{1}{1 - \left(\frac{\text{OPD}}{k} \cdot \left(\frac{\text{OstD}}{2} \right)^2 \right)^{\frac{3}{5}}} \cdot \text{OPD} = \frac{\text{OPD}}{1 - \left(\frac{\text{OPD} \cdot \text{OstD}^2}{3,15} \right)^{\frac{3}{5}}}
\]

\[
siehe \ (2) \ \text{AktF} = \frac{\text{OPD}}{\text{Individualalter} - 12,5}
\]

Das ist die Formel für die Aktivierungsfrequenz eines Individuums.
3. Methoden

siehe (1) \[
BFR = \frac{\text{OPD} \cdot \text{OstA}}{1 - \left(\frac{\text{OPD} \cdot \text{OstD}^2}{3,15}\right)^{3,5}} \cdot \text{AktF}
\]
\[
\text{OstA} = \frac{\text{OPD} \cdot \text{OstA}}{1 - \left(\frac{\text{OPD} \cdot \text{OstD}^2}{3,15}\right)^{3,5}} \cdot \text{Individualalter} - 12,5
\]

Das ist die Formel für die Knochenbildungsrate eines Individuums.

Bestimmung des Individualalters eines Individuums mit verschiedenen histologischen Formeln

Im Folgenden soll dargelegt werden, welche der Methoden aus welchen Gründen zur histologischen Altersbestimmung (bereits unter Punkt 1.5 erwähnt) auf die Basel-Serie und das Anatomie-Kollektiv angewendet werden.

Yoshino et al (1994) arbeiteten an Mikroradiographien und bezogen Strukturen in die histologische Altersbestimmung mit ein, die nur an solchen erkannt werden können (wie z. B. die Anzahl von Osteonen mit geringer Mineraldichte). Außerdem befassten sie sich mit
Humeri (nicht Femora) und erstellten ihre Altersbestimmungsformeln ausschließlich an männlichen Individuen aus Japan.

Thompson (1979)

Hinweise zu den Dimensionen der Variablen:

Die Kompaktadieke (Komp) wird in cm eingesetzt.

Der durchschnittliche Umfang eines Osteons (OstU) wird in mm eingesetzt.

Der Anteil an osteonalem Knochen (Ostkno) wird nicht als %-Wert eingesetzt sondern als normale Zahl.

Thompson unterscheidet bei seinen Formeln zwischen linken und rechten Extremitäten. Die Formeln wurden so ausgewählt, dass nur Variablen darin vorkommen, die auch erhoben werden können und trotzdem das höchstmögliche Bestimmtheitsmaß r² vorliegt.

Gesamtgruppe (G):
Links (N = 91): \(y = 28,978 + 128,557 \cdot \text{OstKno} - 7,543 \cdot \text{OstU} - 7,633 \cdot \text{OstU} \cdot \text{Ostint} + 2,688 \cdot \text{Ostint} \pm 7,1 \ r^2 = 0,74 \)
Rechts (N = 113): \(y = 35,747 + 100,985 \cdot \text{OstKno} - 26,752 \cdot \text{OstU} - 1,194 \cdot \text{Komp} - 2,791 \cdot \text{OstU} \cdot \text{Ostint} + 1,058 \cdot \text{Ostint} \pm 7,4 \ r^2 = 0,68 \)

Gesamtgruppe (nicht-pathologisch; np)
Links (N = 68): \(y = 72,761 + 131,471 \cdot \text{OstKno} - 97,270 \cdot \text{OstU} - 3,031 \cdot \text{OstU} \cdot \text{Ostint} \pm 7,2 \ r^2 = 0,71 \)
Rechts (N = 90): \(y = 57,761 + 102,74 \cdot \text{OstKno} - 64,648 \cdot \text{OstU} - 1,169 \cdot \text{Komp} - 1,014 \cdot \text{OstU} \cdot \text{Ostint} \pm 7,4 \ r^2 = 0,68 \)

Alle Männer (M):
Links (N = 53): \(y = 20,732 + 116,813 \cdot \text{OstKno} - 2,501 \cdot \text{Komp} + 12,810 \cdot \text{OstU} - 7,735 \cdot \text{OstU} \cdot \text{Ostint} \pm 6,8 \ r^2 = 0,76 \)
Rechts (N = 63): \(y = 50,783 + 90,256 \cdot \text{Ostkno} - 50,457 \cdot \text{OstU} - 1,920 \cdot \text{Komp} \pm 6,5 \ r^2 = 0,72 \)

Männer (nicht pathologisch, np):
Links (N = 41): \(y = 75,209 + 113,167 \cdot \text{OstKno} - 2,470 \cdot \text{Komp} - 78,530 \cdot \text{OstU} - 1,899 \cdot \text{OstU} \cdot \text{Ostint} \pm 6,7 \ r^2 = 0,73 \)
Rechts (N = 54): \(y = 55,007 + 87,496 \cdot \text{Ostkno} - 50,457 \cdot \text{OstU} - 1,920 \cdot \text{Komp} \pm 6,5 \ r^2 = 0,71 \)

Alle Frauen (F):
Links (N=38): \(y = 66,568 + 126,957 \cdot \text{OstKno} - 1,978 \cdot \text{Komp} - 3,077 \cdot \text{OstU} \cdot \text{Ostint} - 69,156 \cdot \text{OstU} \pm 9,4 \ r^2 = 0,76 \)
Rechts (N = 50): \(y = 1,829 + 104,755 \cdot \text{OstKno} \pm 9,4 \ r^2 = 0,69 \)

Frauen (nicht pathologisch, np):
Links (N = 27): \(y = 97,554 + 135,035 \cdot \text{OstKno} - 144,530 \cdot \text{OstU} - 1,719 \cdot (\text{Hav}+\text{NHav}) \pm 7,6 \ r^2 = 0,77 \)
Rechts (N = 36): \(y = 5,096 + 115,048 \cdot \text{OstKno} \pm 8,2 \ r^2 = 0,71 \)

Ericksen (1991)

Hinweise zu den Dimensionen der Variablen:
Prozentuale Werte werden in Prozent in die Formeln eingesetzt (≠ Thompson 1979).

I. Beide Geschlechter (N = 328)
1. $Y = 75,49 - 0,53\text{Gen}$ +/- 12,21 $r^2 = 0,51$

8. $Y = 67,43 + 1,11\text{Ost} + 2,46\text{Ost II} + 0,20\text{Ostfr} - 1,57\text{NHav} - 0,30\text{Gen} - 0,39\text{OstKno}$ +/- 10,08 $r^2 = 0,67$

10. $Y = 92,42 + 1,07\text{Ost} + 2,50\text{Ost II} + 0,25\text{Ostfr} + 0,30\text{Res} - 1,52\text{NHav} - 0,57\text{Gen} - 0,61\text{OstKno} - 0,35\text{FrgKno}$ +/- 10,08 $r^2 = 0,67$

II. Frauen (N = 154)
1. $Y = 77,91 - 0,61\text{Gen}$ +/- 11,58 $r^2 = 0,60$

8. $Y = 63,39 + 0,55\text{Ost} + 3,12\text{Ost II} + 0,20\text{Ostfr} + 0,92\text{Res} - 1,57\text{NHav} - 0,31\text{Gen} - 0,24\text{OstKno}$ +/- 10,00 $r^2 = 0,71$

10. $Y = 102,45 + 0,53\text{Ost} + 3,00\text{Ost II} + 0,27\text{Ostfr} + 0,93\text{Res} - 1,44\text{NHav} - 0,72\text{Gen} - 0,60\text{OstKno} - 0,51\text{FrgKno}$ +/- 9,96 $r^2 = 0,72$
3. Methoden

III. Männer (N = 174)
1. \(Y = 44.37 + 0.97\text{Ostfr} \quad +/-12.04 \quad r^2 = 0.48 \)
6. \(Y = 57.98 + 1.36\text{Ost} + 1.90\text{Ost II} + 0.32\text{Ostfr} - 1.62\text{NHav} - 0.17\text{Gen} - 0.33\text{OstKno} \quad +/-10.05 \quad r^2 = 0.64 \)
8. \(Y = 59.23 + 1.38\text{Ost} + 1.88\text{Ost II} + 0.30\text{Ostfr} - 0.18\text{Res} - 1.61\text{NHav} - 0.18\text{Gen} - 0.35\text{OstKno} + 0.01\text{FrgKno} \quad +/-10.11 \quad r^2 = 0.65 \)

Maat et al. (2006)

Hinweis zur Dimension der Variablen:
Der Anteil an Generallamellen (Gen) wird in Prozent eingesetzt.

Gesamtkollektiv (3 Felder): \(Y = 92.11 - 1.86\text{Gen} + 0.01239\text{(Gen)^2} \quad +/-11.006 \quad r^2 = 0.78 \)

Anwendung nur beim Anatomiekollektiv, da Körpergröße bekannt:
Gesamtkollektiv (3 Felder): \(Y= 164.08-1.69*\text{Gen}+0.01181*\text{Gen^2}-0.46*\text{Körpergröße} \quad +/-9.162 \quad r^2 = 0.75 \)

Bestimmung von Stressmerkmalen in der Femurkompakta

Dies geschieht mit Hilfe des Softwareprogramms AxioVision (Version 4.3; Fa. Zeiss, Jena) und ist in Abb. 56 dargestellt.

Weiterhin werden die Merkmale „amorphes Erscheinungsbild der Knochenmikrostruktur“ (Abb. 57a und b) und „überstürzter Umbau in der subperiostalen Schicht“ (Abb. 57c) bewertet.

Abb. 56: Darstellung der Messung der Abstände der Haltelinien vom periostalen Rand mit Hilfe des Programms AxioVision; Femurkompakta im Hellfeld

Abb. 57: Darstellung von abnormalen Umbauvorgängen in der menschlichen Knochenmikrostruktur am Beispiel von Femurkompakta
Überstürzter subperiostaler Umbau ist häufig von extrem unregelmäßigen oder sehr kleinen Osteonen gekennzeichnet und weiterhin nicht selten durch einen Streifen von Generallamellen von ansonsten sekundär osteonalem Knochen abgetrennt.

Die Bewertung erfolgt anhand eines Zahlensystems, das den Grad der Abnormalität beurteilt (Tab. 10). Dabei sollte man sich stets bewusst sein, dass die Beurteilung rein subjektiv erfolgt.

<table>
<thead>
<tr>
<th>Beschreibung</th>
<th>Amorphes Erscheinungsbild</th>
<th>Überstürzter Umbau der subperiostalen Schicht</th>
</tr>
</thead>
<tbody>
<tr>
<td>Merkmal tritt nicht auf</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Merkmal tritt in leichter Form auf</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Merkmal tritt auf</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Merkmal tritt in extrem ausgeprägter Form auf</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Tab. 10: Darstellung des Beurteilungssystems für ein abnormales Erscheinungsbild der Knochenmikrostruktur

Der Wert „Null“ steht jeweils für einen unveränderten Zustand der Knochenmikrostruktur und die Zahlenwerte 1-2 (bzw. 3) für eine mehr oder minder starke Ausprägung des Merkmals.

3.3 Fluoreszenz: „UV-Methode“

Da an dem Skelettmaterial für die UV-Untersuchungen noch andere Methoden angewendet werden sollen (Histologie, Kollagen- und Carbonatextraktion, Aminosäureanalyse, teilweise RFA, teilweise Demineralisierung), wird eine größere Menge an Knochenmaterial benötigt, als beispielsweise bei der Skelettserie aus Basel, an der hauptsächlich mikroskopische Untersuchungen durchgeführt werden.

Bei den UV-Knochen handelt es sich in jeder Hinsicht (Materialumfang, Erhaltungsgrad, Knochenart usw.) um stark variierendes Material. Teilweise liegen ganze Femora vor, in anderen Fällen ist so wenig Material vorhanden, dass es nur für die UV-Untersuchung und die mikroskopische Untersuchung ausreicht. Deshalb werden von einer Probe teilweise mehrere Knochenstücke in verschiedenen Größen entnommen.

Die Probenentnahme für die einzelnen Untersuchungen erfolgt mit Hilfe des bereits oben (siehe Punkt 3.2.1) erwähnten Zahnarztbohrers oder mit einer Bandsäge (Fa. Metabo). Dabei ist darauf zu achten, dass für alle Untersuchungen ausschließlich kompaktes Knochenmaterial verwendet wird.

3.3.1 Demineralisierung von Knochenscheiben

Eine Demineralisierung von Knochen kann durch Säurebehandlung (geringer Zeitaufwand) oder Chelatbildner wie EDTA, die Calciumionen binden (schönes Verfahren) geschehen (Collins & Galley 1998). Der Nachteil der Säurebehandlung liegt in einer möglichen
strukturellen Veränderung des Gewebes durch hydrolytische Prozesse. Im vorliegenden Fall werden beide Methoden an wenigen Knochenstücken getestet.

Zwei der rezenten Femora des Anatomie-Kollektivs (Tab. 11) werden willkürlich für die Demineralisierung durch Säurebehandlung ausgewählt.

<table>
<thead>
<tr>
<th>Nummer</th>
<th>Geschlecht</th>
<th>Alter</th>
<th>Femurseite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anatomie 98/03</td>
<td>männlich</td>
<td>68</td>
<td>links</td>
</tr>
<tr>
<td>Anatomie 114/03</td>
<td>weiblich</td>
<td>60</td>
<td>links</td>
</tr>
</tbody>
</table>

Tab. 11: Liste der Proben, die mit HCl demineralisiert werden

Nach Herrmann et al. (1990) wird üblicherweise 1- bis 2-molare Salzsäure verwendet, wobei die Flüssigkeitsmenge etwa ein 50-faches des Probenvolumens betragen sollte. Legt man die Probe lose hinein, muss das Gefäß in regelmäßigen Abständen, am besten auf einem automatischen Schüttler, aufgeschüttelt werden.

Vier andere Femora des Anatomie-Kollektivs (Tab. 12) werden für eine Demineralisierung mit EDTA ausgesucht.

<table>
<thead>
<tr>
<th>Nummer</th>
<th>Geschlecht</th>
<th>Alter</th>
<th>Femurseite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anatomie 88/03</td>
<td>weiblich</td>
<td>93</td>
<td>links</td>
</tr>
<tr>
<td>Anatomie 92/03</td>
<td>männlich</td>
<td>68</td>
<td>links</td>
</tr>
<tr>
<td>Anatomie 105/03</td>
<td>männlich</td>
<td>51</td>
<td>links</td>
</tr>
<tr>
<td>Anatomie 139/03</td>
<td>weiblich</td>
<td>81</td>
<td>links</td>
</tr>
</tbody>
</table>

Tab. 12: Liste der Proben, die mit EDTA demineralisiert werden

88
3.3.2 Aufnahme makroskopischer digitaler Fotos unter langwelligem UV-Licht

Von jeder der im Anhang aufgelisteten 133 Knochenproben (Punkt 8.3.3), den 13 Zahnproben (Punkt 2.3.2) und den 6 demineralisierten Proben (Punkt 3.3.1) werden zwei Fotos eines Knochenquerschnittes mit einer Digitalkamera unter langwelligem UV-Licht aufgenommen (insgesamt etwa 300 Fotos). Weiterhin werden von den 57 Proben, bei denen eine Gelatine- bzw. Apatitextraktion durchgeführt wurde (siehe auch Punkt 8.4.1) jeweils zwei Bilder des Knochenpulvers unter UV-Licht und nach den Extraktionen Bilder der Lyophilisate des Kollagens bzw. des Apatits angefertigt (ca. 230 Fotos). Insgesamt beläuft sich die Anzahl der Fotografien auf über 500 Bilder.

| Olympus Camedia Digital Camera C-50 Zoom; 5 Megapixel |
| Canon IXY Digital 5.4-10.8 mm 1:2.8-4.0; 3.2 Megapixel |
| Ricoh Caplio G4 wide, 28 mm wide zoom lens, 3x optischer Zoom, 3,24 Megapixel |
| Ricoh RZ1 3x optischer Zoom; 4 Megapixel |

Tab. 13: Liste der verwendeten Digitalkameras

Abb. 58: Positivkontrolle für die UV-Fotos. Probe M3: menschlicher Femurquerschnitt
Abb. 59: Negativkontrollen für die UV-Fotos. Links: Probe Extr. 14 (menschlicher Femurquerschnitt); rechts: Knochen 6 (menschlicher Femurquerschnitt)

Die Ausprägung kann von weißlich-bläulich bis zu intensivem Hellblau reichen. Dunkelblaue oder taubenblaue Farbtöne werden jedoch nicht zu dieser Farbskala gezählt.

Zunächst werden die Knochenquerschnitte aufgeteilt nach periostalem (per), mittigem (mit) und endostalem (end) Teil beurteilt (nach Garland 1987). Danach wird der Gesamtindex für die komplette Oberfläche bestimmt. Erstes dient der Erkennung von Verteilungsmustern, was zu verschiedenen Rückschlüssen auf die Knochendiagenese führen könnte. So kann die Auswertung genauer erfolgen und ein besserer Bezug zu histologischen Veränderungen hergestellt werden. Die Querschnittsfläche eines Knochens ist generell nicht von gleichmäßig verteilten diagenetischen Veränderungen betroffen, sondern die degradierenden Vorgänge schreiten vom periostalen und endostalen Rand zur Kompaktamitte hin fort (Harbeck 2007).

<table>
<thead>
<tr>
<th>Index neu</th>
<th>Index alt</th>
<th>Prozentualer Anteil an hellblauer Fluoreszenz</th>
<th>Beschreibung</th>
<th>Beispielbilder (Varianz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td><5</td>
<td>Es ist keine blaue Fluoreszenz erkennbar</td>
<td>![Example Image]</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td><15</td>
<td>Kleine Flächen blauer Fluoreszenz vorhanden</td>
<td>![Example Image]</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td><33</td>
<td>Ausgedehnte Flächen andersfarbiger Fluoreszenz vorhanden</td>
<td>![Example Image]</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td><67</td>
<td>Etwas mehr blaue Fluoreszenz, als andersfarbige Fluoreszenz vorhanden</td>
<td>![Example Image]</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td><85</td>
<td>Kleine Flächen andersfarbiger Fluoreszenz sind bei überwiegend hellblauem Querschnitt vorhanden</td>
<td>![Example Image]</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>>95</td>
<td>Hellblaue Farbgebung des gesamten Querschnittes wie bei frischem Knochen</td>
<td>![Example Image]</td>
</tr>
</tbody>
</table>

Tab. 14: Blauindex (BI) zur Beschreibung des Anteils an hellblauer Fluoreszenz im Knochenquerschnitt
Weiterhin sollen auch andere Farbausprägungen, die auf den Fotos zu erkennen sind, erfasst werden. Aus den ermittelten Farben wird eine Farbtabelle erstellt, wobei die einzelnen Farben mit Großbuchstaben abgekürzt werden. Alles Weitere ist der folgenden Tabelle zu entnehmen (Tab. 15).

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Abkürzung</th>
<th>Beschreibung</th>
<th>Beispielbild</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lila/Rosa</td>
<td>L</td>
<td>Ins lilafarbene gehender Farbton mit großer Variationsbreite. Die Varianten reichen von sehr hellem Lila bis zu intensivem Lila mit rosafarbigen oder bläulichen Anteilen, allerdings nie Dunkellila.</td>
<td></td>
</tr>
<tr>
<td>Braun</td>
<td>B</td>
<td>Hellbraune bis dunkelbraune Farbgebung, vereinzelt punktuelle hellblaue/weiße Fluoreszenz ist möglich</td>
<td></td>
</tr>
<tr>
<td>Gelb</td>
<td>G</td>
<td>Weißliche bis gelbliche Fluoreszenz, kann auch ins orangefarbene gehen</td>
<td></td>
</tr>
<tr>
<td>Dunkelblau</td>
<td>D</td>
<td>Dunkles Blau bis sehr dunkles Lila, kann fast ins Schwarze gehen; hellblaue Fluoreszenz ist sehr gering bis gar nicht vorhanden</td>
<td></td>
</tr>
<tr>
<td>Violett</td>
<td>V</td>
<td>Intensiv leuchtendes Violett (wurde ausschließlich bei kremierten Knochen beobachtet, siehe z. B. Harbeck 2007, Schleuder 2007)</td>
<td></td>
</tr>
</tbody>
</table>

Tab. 15: Farbtabelle für weitere Farbausprägungen der Knochenfluoreszenz auf den UV-Fotos

<table>
<thead>
<tr>
<th>Indexwert</th>
<th>Farben der Fluoreszenz</th>
<th>Beschreibung</th>
<th>Beispielbild</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>HB</td>
<td>Hellblaue Fluoreszenz wie in frischem Knochen (Farbausprägung weiß-blau)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>W</td>
<td>Weißlich (es können leichte Beimischungen anderer Farben vorkommen, z. B. gelblches weiß usw.)</td>
<td></td>
</tr>
</tbody>
</table>
3. Methoden

<table>
<thead>
<tr>
<th>Indexwert</th>
<th>Farben der Fluoreszenz</th>
<th>Beschreibung</th>
<th>Beispielbild</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GGr</td>
<td>Gelb-grau (bzw. gelbtaubenblau)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>GBr</td>
<td>Gelb-braun (braune Farbgebung, ins gelbliche gehend, könnte auch als ocker bezeichnet werden)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>RBr</td>
<td>Rosa-braun (braune Farbgebung ins rötliche gehen)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Br</td>
<td>Braun (kräftiges braun)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Gr</td>
<td>Grau</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>L</td>
<td>Lila</td>
<td></td>
</tr>
</tbody>
</table>

Tab. 16: Farbausprägungen von Knochenpulver (jeweils 2. Probe von links) im Vergleich mit kompaktem Knochen unter langwelligem UV-Licht

Ebenso entsteht ein Beurteilungssystem für die Einteilung der Farbgebungen von Kollagenlyophilisaten unter langwelligem UV-Licht (Tab. 17). Dabei steht der höchste Indexwert von 4 für eine hellblaue Fluoreszenz des Kollagenlyophilisates, die bei den Lyophilisaten aus frischem Knochen beobachtet wurden. Braun (Indexwert 1) steht für ein stark verändertes Lyophilisat, dass unter UV-Licht eine bräunliche Farbe aufweist. Die Extraktion der organischen Anteile aus dem Knochen ist unter Punkt 3.5.1 beschrieben.

<table>
<thead>
<tr>
<th>Indexwert</th>
<th>Beschreibung</th>
<th>Beispielbild</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Braun</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Mischfarbe aus braun, bläulich und weißlich</td>
<td></td>
</tr>
</tbody>
</table>
Weiterhin wird ein Beurteilungssystem für Apatitlyophilisate unter langwelligem UV-Licht entwickelt (siehe Tab. 18). In Lyophilisaten aus frischem Knochen beobachtet man eine violette Fluoreszenz, die in etwa der Farbe von kremiertem kompaktem Knochen entspricht (siehe auch Tab. 15). Dieser Farbausprägung wird der Indexwert 3 zugeordnet. Der Indexwert 1 steht für einen stark veränderten Mineralanteil des Knochens, kenntlich an einem Lyophilisat, das hellblau bis weißlich fluoresziert.

<table>
<thead>
<tr>
<th>Indexwert</th>
<th>Beschreibung</th>
<th>Beispielbild</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Hellblaue Fluoreszenz (kann auch weißlich sein)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Zwischen hellblau und violett (helllila)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Violette Fluoreszenz (entspricht der Farbe von kremiertem Knochen, siehe Bilder bei Harbeck 2007, Schleuder 2007)</td>
<td></td>
</tr>
</tbody>
</table>

Tab. 18: Farbausprägungen von Apatitlyophilisaten (jeweils 2. Probe von links) im Vergleich mit kompaktem Knochen unter langwelligem UV-Licht

3.3.3 Mikroskopische Untersuchung und Dokumentation

Alle Proben, die makroskopisch unter UV-Licht fotografiert sind, werden im Anschluss in Biodur eingebettet (siehe Protokoll Punkt 3.2.3) und unter dem Mikroskop untersucht. Dabei wird der Erhaltungsgrad des Knochenstückes bewertet und jeweils ein aussagekräftiger Teil (der in etwa für den Erhaltungsgrad des Knochens spricht) der Mikrostruktur fotografiert.

<table>
<thead>
<tr>
<th>Index neu</th>
<th>Index alt</th>
<th>% intakter Knochen</th>
<th>Beschreibung</th>
<th>Beispielbild</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>< 5</td>
<td>Bis auf Havers’sche Kanäle ist der Aufbau der Mikrostruktur nicht mehr erkennbar</td>
<td>![Beispielbild]</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>< 15</td>
<td>Es sind nur noch kleine Stellen mit gut erhaltener Mikrostruktur bzw. lamellären Strukturen erkennbar</td>
<td>![Beispielbild]</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>< 33</td>
<td>Zwischen den zerstörten Stellen der Knochenmikrostruktur sind noch deutlich lamelläre Strukturen erkennbar.</td>
<td>![Beispielbild]</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>< 67</td>
<td>Noch sind einige Osteocytenlakunen deutlich zu erkennen.</td>
<td>![Beispielbild]</td>
</tr>
</tbody>
</table>
Tab. 19: Histologischer Index (HI) nach Hedges et al. 1995 und in dieser Arbeit vereinfachter Index

<table>
<thead>
<tr>
<th>Index neu</th>
<th>Index alt</th>
<th>% intakter Knochen</th>
<th>Beschreibung</th>
<th>Beispielbild</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>4</td>
<td>< 85</td>
<td>Geringe Zerstörung der Knochenmikrostruktur, nur an vereinzelten Stellen</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>> 95</td>
<td>Die Mikrostruktur ist sehr gut erhalten; kein Unterschied zu frischem Knochen</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Index neu</th>
<th>Index alt</th>
<th>Beschreibung</th>
<th>Beispielbilder (Knochendünn schnitte unter polarisiertem Licht)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>Keine Doppelbrechung ist erkennbar</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0,5</td>
<td>Die Doppelbrechung ist reduziert bzw. an einigen Stellen vorhanden und an anderen nicht</td>
<td></td>
</tr>
</tbody>
</table>

Abb. 63: Mikrofissuren in einem Femurquerschnitt. Differentialinterferenzkontrast

<table>
<thead>
<tr>
<th>Index neu</th>
<th>Index alt</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>Fast alle Osteone sind von Mikrofissuren betroffen</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>Mehr als die Hälfte/viele der Osteone sind von Mikrofissuren betroffen</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Nur vereinzelte/wenige Osteone sind von Mikrofissuren betroffen</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>Es sind keine bzw. fast keine Mikrofissuren erkennbar</td>
</tr>
</tbody>
</table>

Tab. 21: Indices zur Beurteilung der Häufung der Mikrofissuren

Abschätzung des Ausmaßes an Mikrofissuren, nach dem neuen Index drei Beurteilungsstufen) erstellt. Genaueres ist der folgenden Tabelle (Tab. 22) zu entnehmen.

<table>
<thead>
<tr>
<th>Index alt</th>
<th>% der bakteriell zerstörten Fläche</th>
<th>Beschreibung</th>
<th>Beispielbild</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>> 95</td>
<td>In der Mikrostruktur sind keine ursprünglichen Strukturen mehr erkennbar, komplette Zerstörung (entspricht HI\textsubscript{alt} = 0)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>> 50</td>
<td>Mehr als die Hälfte des Knochenquerschnittes weist bakteriellen Befall auf</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>< 50</td>
<td>Weniger als die Hälfte des Knochenquerschnittes weist bakteriellen Befall auf</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>Es ist kein bakterieller Befall erkennbar (entspricht HI\textsubscript{alt} = 5)</td>
<td></td>
</tr>
</tbody>
</table>

Tab. 22: Indices zur Beurteilung des bakteriellen Befalls eines Knochenquerschnittes

Mineralisierungen unter Strukturerhalt. Das bedeutet, dass sich der Knochen auf dem Weg zum Fossil befindet und der Querschnitt sich aufgrund des höheren Mineralgehalts als nicht mehr ganz so lichtdurchlässig erweist (Pfeiffer 2000).

Die Indices werden an die vierstufigen Indices (neu: dreistufige Indices) des bakteriellen Befalls bzw. der Mikrofissuren angeglichen, siehe folgende Tabellen (Tab. 23, Tab. 24.)

<table>
<thead>
<tr>
<th>Index neu</th>
<th>Index alt</th>
<th>Beschreibung</th>
<th>Beispielbild</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>Fast alle physiologischen Hohlräume sind mit exogenem Material gefüllt</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>Mehr als die Hälfte der betrachteten physiologischen Hohlräume sind mit exogenem Material gefüllt</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>Weniger als die Hälfte der betrachteten physiologischen Hohlräume ist mit exogenem Material gefüllt</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>Fast kein physiologischer Hohlräum weist eine Füllung auf</td>
<td></td>
</tr>
</tbody>
</table>

Tab. 23: Indices zur Beurteilung der Füllung der Havers’schen Kanäle

<table>
<thead>
<tr>
<th>Index neu</th>
<th>Index alt</th>
<th>% der verfärbten Fläche</th>
<th>Beschreibung</th>
<th>Beispielbild</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>>95</td>
<td>Fast die gesamte Fläche ist unter Strukturerhalt verfärbt (meist sekundäre Mineralisierung)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>>50</td>
<td>Mehr als die Hälfte der betrachteten Fläche ist unter Strukturerhalt verfärbt (meist teilweise sekundäre Mineralisierung)</td>
<td></td>
</tr>
</tbody>
</table>
Weniger als die Hälfte der betrachteten Fläche ist unter Strukturerhalt verfärbt (häufig an den periostalen und endostalen Rändern; hier handelt es sich um Huminstoffimprägnierungen)

<table>
<thead>
<tr>
<th>Index neu</th>
<th>Index alt</th>
<th>% der verfärbten Fläche</th>
<th>Beschreibung</th>
<th>Beispielbild</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td><50</td>
<td>Weniger als die Hälfte der betrachteten Fläche ist unter Strukturerhalt verfärbt (häufig an den periostalen und endostalen Rändern; hier handelt es sich um Huminstoffimprägnierungen)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>0</td>
<td>Es ist keine bzw. fast keine Verfärbung erkennbar</td>
<td></td>
</tr>
</tbody>
</table>

Tab. 24: Indices zur Beurteilung der Verfärbung unter Strukturerhalt

3.4 Röntgenfluoreszenzanalytik (RFA)

Die Röntgenfluoreszenzanalysen werden freundlicherweise vom Bayerischen Geologischen Landesamt (BGLA) durchgeführt, wobei besonders Herrn Dr. Rast und Herrn Andres zu danken ist.

<table>
<thead>
<tr>
<th>Probenummer</th>
<th>Fundort</th>
<th>Knochenart</th>
<th>Messmethode</th>
<th>Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>K 91.3 KO Sk 9</td>
<td>Minshat Abu Omar, Ägypten</td>
<td>Femur</td>
<td>halbquantitativ</td>
<td></td>
</tr>
<tr>
<td>K 91.5 KO Sk 3</td>
<td>Minshat Abu Omar, Ägypten</td>
<td>Femur</td>
<td>halbquantitativ</td>
<td></td>
</tr>
<tr>
<td>K 91.5 KW Sk 3</td>
<td>Minshat Abu Omar, Ägypten</td>
<td>Femur</td>
<td>halbquantitativ</td>
<td></td>
</tr>
<tr>
<td>K 91.7 KO Sk 5</td>
<td>Minshat Abu Omar, Ägypten</td>
<td>Femur</td>
<td>halbquantitativ</td>
<td></td>
</tr>
<tr>
<td>Referenzproben</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anat 114/03</td>
<td>Sektionssaal/Formalinleiche</td>
<td>Femur</td>
<td>halbquantitativ</td>
<td></td>
</tr>
<tr>
<td>Anat 98/03</td>
<td>Sektionssaal/Formalinleiche</td>
<td>Femur</td>
<td>halbquantitativ</td>
<td></td>
</tr>
<tr>
<td>Anat 114/03</td>
<td>Sektionssaal/Formalinleiche</td>
<td>Femur</td>
<td>halbquantitativ</td>
<td></td>
</tr>
<tr>
<td>Anat 114/02</td>
<td>Sektionssaal/Formalinleiche</td>
<td>Femur</td>
<td>halbquantitativ</td>
<td>2 Tage gekocht</td>
</tr>
<tr>
<td>Anat 114/02</td>
<td>Sektionssaal/Formalinleiche</td>
<td>Femur</td>
<td>halbquantitativ</td>
<td>16 Tage gekocht</td>
</tr>
<tr>
<td>Anat 89/03</td>
<td>Sektionssaal/Formalinleiche</td>
<td>Femur</td>
<td>halbquantitativ</td>
<td>25 Tage gekocht</td>
</tr>
</tbody>
</table>

Tab. 25: Proben, die für die RFA ausgewählt werden

Die Hauptelemente (Si, Ti, Al, Fe, Mn, Mg, Ca, Na, K, P) werden als Elementoxide in % angegeben, wohingegen ausgewählte Spurenelemente (wie Ba, Cr, Nb, Ni, Rh, Sr, V, Y, Zr) in ppm des Trockengewichtes notiert werden. Fe wird nur als Gesamteisen, nicht differenziert nach Fe^{2+} und Fe^{3+} gemessen.

Bei der Röntgenfluoreszenzanalytik handelt es sich um eine vergleichende Untersuchungsmethode. Deshalb ist die Aufnahme einer Kalibrierkurve notwendig, um aus der gemessenen Intensität der Röntgenstrahlung auf die Konzentration des Elementes in der Probe schließen zu können. Als Referenzproben werden Elementoxide (Breitländer Eichproben und Labormaterial GmbH) benutzt.

Vier der Proben werden halbquantitativ an einem Knochenstück analysiert, nur eine Probe wird quantitativ anhand einer Schmelztablette untersucht (siehe Tab. 25).

Vorbereitung der Proben

Für die halbquantitative Analyse werden mechanisch gereinigte Knochenquerschnitte ohne weitere Aufbereitung eingesetzt. Die Messung erfolgt hier an der Querschnittsfläche. Dabei wird die Probe in einem Probenbecher über eine Maske mit einem Durchmesser von 6mm mit handelsüblichem Tesafilm fixiert. Der entsprechende Ausschnitt wird dann mit polychromatischer Röntgenstrahlung bestrahlt.
Durchführung der Messungen
Die Messungen werden in einem Labor des BGLA an einem wellenlängendispersiven Röntgenfluoreszenzspektrometer (MagiX PRO, Fa. PANalytical) durchgeführt und die Ergebnisse an uns weitergeleitet.

Hinweise zu den Ergebnissen
Die absoluten Elementkonzentrationen werden in Prozent angegeben. Die Konzentrationen der häufigsten Elemente (siehe oben), die ursprünglich als Oxide angegeben sind, werden durch Multiplizieren mit den molaren Massen in die Konzentration des jeweiligen Elementes umgerechnet.
Beispiel Na₂O:
M (Na) = 23 g/mol und M (O) = 16 g/mol
M (Na₂O) = 2*23 g/mol + 16 g/mol = 62 g/mol → w (Na) = 46g/mol : 62 g/mol = 74,2%
Na₂O enthält demnach 74,2% Natrium.

3.5 Extraktion von Gelatine und Apatit aus kompaktem Knochen
Es soll darauf geachtet werden, dass ausschließlich kompakter Knochen (Gewicht etwa 2-3g) für die Extraktionen eingesetzt wird. Im Fall von Spongiosa wird die organische Phase des Knochens während der Bodenlagerung auf Grund der viel größeren Oberfläche wesentlich leichter herausgelöst. Zusätzlich besteht die Gefahr von physikalischen Verunreinigungen (Ambrose 1993, Johnsson 1997).
Die Anzahl der Knochenproben, die für die Kollagen- und Apatitextraktion verwendet werden können ist auf 57 begrenzt. Von vielen Knochen ist so wenig Material vorhanden, dass neben den UV-Fotos an den Knochenquerschnitten lediglich die Histologie durchgeführt werden kann. Eine Auflistung der untersuchten Proben ist im Anhang unter Punkt 8.4.1 zu finden.
Vorbereitung des Gefäßmaterials für die Extraktionen

Generell geht die Extraktion der organischen und der anorganischen Phase von Knochenmaterial verschiedenen Isotopenuntersuchungen oder Spurenelementmessungen voraus. Dafür ist höchste Reinheit bei jedem Vorbereitungsschritt geboten, was eine aufwändige Reinigung des bei den Extraktionen verwendeten Gefäßmaterials einschließt. Auch wenn in dieser Arbeit keine Messungen von Isotopen oder Spurenelementen am UV-Probenmaterial geplant ist, so ist nicht auszuschließen, dass entsprechende Untersuchungen in der Zukunft noch durchgeführt werden.

Vorbereitung der Knochen

Danach wird mit einer Feinanalysenwaage (Fa. Ohaus, Analytical Plus) die benötigte Menge an Knochenmehl eingewogen. Für die Gelatineextraktion hat sich in vorangegangenen Untersuchungen in unserem Labor ein Wert zwischen 250-500mg bewährt, je nach vermutetem Kollagengehalt der Probe. Im Falle der Extraktion der Mineralfraktion benötigt man lediglich etwa 100mg des Knochenmehls.

3.5.1 Extraktion der Kollagenfraktion aus kompaktem Knochen

Vorgehen

3.5.2 Extraktion des mineralischen Anteils aus kompaktem Knochen

Pro Probe werden etwa 100mg Knochenmehl eingewogen. Anschließend wird auf jede Probe 5ml 4%ige NaOCl (Fa. Sigma-Aldrich) gegeben. Nach dem Vortexen (Vortexer: Fa. Neolab) werden die Proben mit leicht geöffnetem Deckel für ca. 1,5-4 Tage auf einem Rollschüttler (Fa. IKA-Vibrax, Typ VXR) inkubiert. Der organische Anteil der Probe wird so mittels Oxidation entfernt. Falls extreme Bläschenbildung auftritt, muss das NaOCl im Abstand von einigen Stunden ausgewechselt werden, bis diese aufhört. Die Röhrchen werden vom Schüttler genommen und in die Zentrifuge gestellt. Zentrifugiert wird 5min bei 2100rpm. Mit Aqua dest. wird bis zur Neutralität gewaschen (ca. 5-6mal). Danach werden die Pellets in 5ml 1M Calcium-Acetat-Essigsäurepuffer (pH 4,75; 158,17g Calcium-Acetat-x-Hydrat (Fa. Roth)

3.5.3 Berechnung des Kollagen- und Mineralgehaltes der Knochenproben

Um den Anteil an Kollagen bzw. Mineralsubstanz einer Probe zu ermitteln, bestimmt man die relativen Gewichtsprozente der Kollagen- bzw Apatitlyophilisate, was als Anhaltspunkt für den organischen bzw. anorganischen Anteil dient. Die Ausbeute (in mg) der jeweiligen Extraktion (Kollagenlyophilisat oder Apatitlyophilisat) wird auf das Ausgangsgewicht des eingesetzten Knochenpulvers bezogen.

3.6 Aminosäureanalyse (ASA)

106
werden 25 Proben für die ASA ausgewählt. Eine Liste mit den Probennummern ist im Anhang unter Punkt 8.4.2 zu finden.

Vorbehandlung der Proben für die Aminosäureanalyse

Je 2mg des Kollagenlyophilisates werden in Teflonröhrchen (Fa. Fischer) mit 1ml 6 N HCl versetzt und bei 115°C im Wärmeschrank (Fa. Memmert) für 11-15 Stunden hydrolysiert. Nachdem die Säure abgeraucht ist, wird der Rest in 1ml 0,2 M Lithium-Citrat-Puffer (pH=2; Fa. Pharmacia Biotech) aufgenommen.

Aminosäureanalyse

Die Untersuchungen werden freundlicherweise vom Stoffwechsellabor des Dr.-Haunerschen Kinderklinikums der LMU München durchgeführt. Vielen Dank an Frau Prof. Dr. Ensenauer und das Laborpersonal (namentlich Frau Annette Diem).

Bewertung der Ergebnisse

Die Ergebnisse der Aminosäureanalyse liegen in der Einheit µmol/l vor. Um die Werte zumindest untereinander vergleichen zu machen, wird die Menge der einzelnen Aminosäure in einer Probe auf die Gesamtmenge der bei 570nm detektierten Aminosäuren bezogen. Das so erhaltene Ergebnis wird als Konzentration der jeweiligen Aminosäure bezeichnet.

Zunächst erfolgt ein Vergleich der 25 eingesetzten Proben mit drei rezenten humanen Knochenproben (HV 0,5; HV 1 und HV 2, siehe Harbeck 2002 und Harbeck 2007, hier bezeichnet als TE I 0,5; TE I 1 und TE I 2), die als Referenzen analysiert werden. Eine qualitative Bewertung des Kollagens erfolgt nach den Kriterien verschiedener Autoren (Tab. 26).

<table>
<thead>
<tr>
<th>Guter Kollagenerhalt</th>
<th>Schlechter Kollagenerhalt</th>
</tr>
</thead>
</table>

Tab. 26: Qualitätskriterien zur Beurteilung des Kollagens nach Gelatineextraktion

3.7 Statistik

Alle vorhandenen Daten werden zunächst in das Microsoft Office Programm Excel (Windows XP) eingegeben. Das schließt sowohl die bekannten Individualdaten zu den einzelnen Kollektiven ein, sowie die erhobenen Daten bei der mikroskopischen Auswertung, der Auswertung der makroskopischen Fotos und die berechneten Daten, wie z. B. die Bestimmung der Knochenbildungsrate oder des histologischen Individualalters.

Die endgültige statistische Auswertung erfolgt mit SPSS (Superior Perfor ming Software System, SPSS 14.0 und 15.0 für Windows) einem relativ leicht zu bedienendem Statistik-Programmpaket, das weltweit sehr häufig vor Al lem in Wirtschafts- und Sozialwissenschaften eingesetzt wird (Labuske 2007).

Deskriptive Statistik

Zu Beginn werden alle erhobenen Daten, die allen Skalenniveaus entsprechen können (nominal, ordinal und metrisch) mit Hilfe einer Explorativen Datenanalyse im Fall von metrischen Daten (Bestimmung von Mittelwerten, Standardabweichungen, Medianen, 95%-igen Konfidenzintervallen, Extremwerten) und Häufigkeitsanalysen im Fall von ordinalen bzw. nominalen Daten untersucht und beurteilt.

Vergleich von Mittelwerten oder Verteilungen von zwei oder mehreren Gruppen

Alle Tests auf den Vergleich von Mittelwerten funktionieren nach demselben Prinzip. Eigentlich handelt es sich dabei um den Vergleich zweier Hypothesen. Die Nullhypothese gibt an, dass die Mittelwerte von zwei oder mehr Gruppen gleich sind und zwar auf einem Niveau von 0,05. Liegt der Wert der Signifikanz also über dem Wert von 0,05 ist die Nullhypothese bestätigt und die Mittelwerte von zwei oder mehr Gruppen unterscheiden sich nicht signifikant. Liegt der Wert der Signifikanz unter 0,05 muss die Nullhypothese abgewiesen werden und die Mittelwerte der zwei oder mehr getesteten Gruppen sind signifikant verschieden.

Korrelationen von metrischen Daten

Bestimmung von „Ausreißern“

Zur Bestimmung von Ausreißern im Fall von metrischen Daten (wie die erhobenen Daten der Knochenmikrostruktur im Basel-Kollektiv und im Anatomie-Kollektiv) werden die einzelnen Variablen aufgeteilt in Gruppen (z. B. Altersklassen, Geschlecht, Lokalisation in der Kompakta) als Boxplots dargestellt (Beispiel in Abb. 65).

Die Interpretation eines Boxplots geschieht folgendermaßen: Der Querstrich in den Boxen (grün und blau) ist der Median, was bedeutet, dass 50% der Fälle höhere und 50% der Fälle niedrigere Werte haben als dieser Medianwert. 50% aller Fälle liegen in der Box. Der obere Rand der Box halbiert wiederum die obere Hälfte der Stichprobe (es handelt sich dabei um das 75. Perzentil). Entsprechendes gilt für die untere Hälfte. Der untere Rand der Box entspricht dem 25. Perzentil. Die kleinen Kreise zeigen Ausreißer an. Das sind Werte, die um mehr als 1,5 Box-Längen vom 75. Perzentil oder 25. Perzentil entfernt liegen. Noch extremere Werte werden als Sternchen dargestellt. Sie liegen mehr als 3 Boxlängen vom 75. bzw. 25. Perzentil entfernt. Die waagrechten Linien am Ende der Striche, zeigen die höchsten bzw. niedrigsten beobachteten Werte an, die noch keine Ausreißer sind (Brosius 1998).
Identifizierung von Typen bzw. Gruppen bei nominalen und ordinalen Daten
Im Falle des UV-Materials werden mit Hilfe von Kreuztabellen und Mehrfachantworttabellen Typen und Gruppen identifiziert, in denen auf das gemeinsame Vorkommen von Eigenschaften untersucht wird.

Korrelationen im Fall von ordinalen Daten

Erstellung von Regressionsgleichungen zur Altersbestimmung anhand von Variablen aus der Knochenmikrostruktur
4 Ergebnisse

Im Folgenden werden die Ergebnisse der einzelnen Untersuchungen und der statistischen Auswertungen präsentiert. Da die Daten sehr umfangreich sind, wird häufig auf eine ausführliche Beschreibung von Einzelwerten verzichtet. Die Daten werden anstatt dessen möglichst anschaulich und komprimiert mit Hilfe von Diagrammen dargestellt.

4.1 Ergebnisse der Untersuchung der mikrostrukturellen Qualität des Basel-Kollektivs

71 Knochenproben von 103 (69%) sind mikrostrukturell sehr gut erhalten und nur zwei Proben (BP 613, BP 629) sind so stark dekomponiert, dass weder periostal, noch mittig oder endostal eine histologische Auswertung erfolgen kann (lediglich 1,9%). Der Rest der Proben hat sowohl Stellen mit gutem, als auch Stellen mit schlechtem mikrostrukturellen Erhaltungsgrad. Je nach Verteilung und Ausprägung der Zerstörung können jedoch noch bestimmte mikrostrukturelle Parameter erhoben werden.

In der folgenden Abbildung (Abb. 66) ist die mikrostrukturelle Qualität der Proben des Basel-Kollektivs, gegliedert nach periostalem, mittigem und endostalem Teil, dargestellt.

<table>
<thead>
<tr>
<th>a) periostal</th>
<th>b) mittig</th>
<th>c) endostal</th>
<th>Legende</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>schlecht erhalten, teils gut, teils gut erhalten</td>
</tr>
</tbody>
</table>

Abb. 66: Mikrostruktureller Erhaltungsgrad der Femurstücke des Basel-Kollektivs, aufgeteilt nach periostalem, mittigem und endostalem Teil
Man kann deutlich erkennen, dass der Erhaltungsgrad im mittleren Teil der Mikrostruktur am besten ist. 82,5% der untersuchten Femurstücke sind in diesem Teil gut erhalten und entsprechen damit einem Histologischen Index (HI, siehe 3.3.3) von 3. Periostal und endostal erfüllen jeweils nur etwa 69% dieses Kriterium. Endostal (14,6%) sind deutlich mehr Knochenstücke als periostal (3,9%) oder mittig (1,9%) so schlecht erhalten, dass keine histologische Auswertung mehr möglich ist. Dieser Erhaltungsgrad entspricht einem HI von 1. Ist ein Knochenstück des Basel-Kollektivs periostal und endostal gut erhalten, zeigt es immer auch in seinem mittleren Teil sehr gute Erhaltung der Mikrostruktur.

![Abb. 67: Zusammenhang der histologischen Qualität eines Femurpräparates mit dem Individualalter im Basel-Kollektiv](image)

Aus Abb. 67 geht hervor, dass zwischen der histologischen Qualität eines Femurpräparates und dem Alter eines Individuums ein Zusammenhang besteht. Können die einzelnen Parameter der Knochenmikrostruktur nicht mehr einwandfrei identifiziert werden, weil der Knochen eine schlechte Erhaltung aufweist, ist dies hauptsächlich in älteren Individuen der Fall.

Da es sich beim Anatomie-Kollektiv um rezepte Knochen handelt, wird kein Absatz über die histologische Erhaltung verfasst. Alle Knochen sind formalinkonserviert (siehe Punkt 2.2).

4.2 Explorative Datenanalyse der erhobenen Parameter und deren Abhängigkeit von Individualalter, Geschlecht und Lokalisation in der Kompakta

Dabei handelt es sich um eine sehr große Datenmenge. Für jedes Individuum wurden generell 20 verschiedene Variablen erhoben für jeweils drei Abschnitte des Knochens (periostal, mittig

Die folgende Darstellung der Daten ist eine möglichst knappe Zusammenfassung der explorativen Datenanalyse, die mit Hilfe des Statistik-Programms SPSS vorgenommen wurde. Zunächst wird in einer Tabelle der Mittelwert der jeweiligen Variable für das gesamte Kollektiv und gemittelt über alle Bereiche des anterioren Femurstückes (periostal, mittig und endostal), bezeichnet als Gesamtquerschnitt, angegeben. In der Tabelle werden zusätzlich weitere Basisdaten wie Standardabweichung, Median, Extremwerte, u. a. angegeben. Auf die Extremwerte wird erst im Diskussionsteil (5.3.4) näher eingegangen.

Einen genaueren Überblick der Anzahl der Individuen in den einzelnen Altersklassen des Basel-Kollektivs gibt Tab. 27. Dabei kann sich die Anzahl der Individuen pro Altersklasse bei der Auswertung der verschiedenen mikroskopischen Parameter aufgrund von Dekompositionserscheinungen weiter verringern.

<table>
<thead>
<tr>
<th>Altersklasse</th>
<th>gesamt</th>
<th>männlich</th>
<th>weiblich</th>
</tr>
</thead>
<tbody>
<tr>
<td>20er</td>
<td>15</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td>30er</td>
<td>20</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>40er</td>
<td>22</td>
<td>13</td>
<td>9</td>
</tr>
<tr>
<td>50er</td>
<td>13</td>
<td>11</td>
<td>2</td>
</tr>
<tr>
<td>60er</td>
<td>12</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>70er</td>
<td>16</td>
<td>9</td>
<td>7</td>
</tr>
<tr>
<td>80er</td>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>90er</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Tab. 27: Verteilung der Individuen des Basel-Kollektivs auf die verschiedenen Altersklassen
In der folgenden Tabelle ist die Verteilung der Individuenzahlen des Anatomie-Kollektivs auf die einzelnen Altersklassen aufgeführt (Tab. 28).

<table>
<thead>
<tr>
<th>Altersklasse</th>
<th>gesamt</th>
<th>männlich</th>
<th>weiblich</th>
</tr>
</thead>
<tbody>
<tr>
<td>50er</td>
<td>3</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>60er</td>
<td>5</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>70er</td>
<td>5</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>80er</td>
<td>17</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>90er</td>
<td>6</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>

Tab. 28: Verteilung der Individuen des Anatomie-Kollektivs auf die einzelnen Altersklassen

Tab. 29 stellt einen Überblick über die Altersklassen und ihre Bezeichnungen in den verwendeten Tabellen, im Text und in den Diagrammen dar.

<table>
<thead>
<tr>
<th>Altersbereich in Jahren</th>
<th>Altersklasse (Bezeichnung in den Tabellen und im Text)</th>
<th>Altersklasse (Bezeichnung in den Excel-Diagrammen)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-20</td>
<td>10er</td>
<td>10</td>
</tr>
<tr>
<td>21-30</td>
<td>20er</td>
<td>20</td>
</tr>
<tr>
<td>31-40</td>
<td>30er</td>
<td>30</td>
</tr>
<tr>
<td>41-50</td>
<td>40er</td>
<td>40</td>
</tr>
<tr>
<td>51-60</td>
<td>50er</td>
<td>50</td>
</tr>
<tr>
<td>61-70</td>
<td>60er</td>
<td>60</td>
</tr>
<tr>
<td>71-80</td>
<td>70er</td>
<td>70</td>
</tr>
<tr>
<td>81-90</td>
<td>80er</td>
<td>80</td>
</tr>
<tr>
<td>91-100</td>
<td>90er</td>
<td>90</td>
</tr>
</tbody>
</table>

Tab. 29: Bezeichnungen der Altersklassen in Tabellen und Diagrammen

4.2.1 Kompaktadieke (Komp)

Basel-Kollektiv

<table>
<thead>
<tr>
<th>Ausgewertete Fälle in %</th>
<th>gesamt (100%)</th>
<th>männlich (100%)</th>
<th>weiblich (100%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mittelwert</td>
<td>0,471cm</td>
<td>0,508cm</td>
<td>0,412cm</td>
</tr>
<tr>
<td>Standardabweichung (SD)</td>
<td>0,0977</td>
<td>0,0872</td>
<td>0,0842</td>
</tr>
<tr>
<td>95%iges Konfidenzintervall des Mittelwertes</td>
<td>Untergrenze 0,452cm, 0,486cm, 0,385cm</td>
<td>Obergrenze 0,490cm, 0,530cm, 0,439cm</td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>0,457cm</td>
<td>0,500cm</td>
<td>0,400cm</td>
</tr>
<tr>
<td>Minimum</td>
<td>0,200cm</td>
<td>0,300cm</td>
<td>0,200cm</td>
</tr>
<tr>
<td>Maximum</td>
<td>0,675cm</td>
<td>0,675cm</td>
<td>0,575cm</td>
</tr>
<tr>
<td>Spannweite</td>
<td>0,475cm</td>
<td>0,375cm</td>
<td>0,375cm</td>
</tr>
</tbody>
</table>

Tab. 30: Explorative Datenanalyse der Kompaktadieke im Basel-Kollektiv
Im Mittel beträgt der Wert der Kompaktadicke (n=103) bezogen auf das Gesamtkollektiv 0,47cm (SD: 0,098) und der Median 0,46cm. Der minimale Wert in diesem Kollektiv liegt bei 0,20cm (BP 669, weiblich; 74,0 Jahre), der maximale Wert von 0,68cm wird bei einem männlichen Individuum (BP 636; 83,0 Jahre) gefunden (Spannweite = 0,48cm). Bei den Männern beträgt der Mittelwert der Kompaktadicke (n=63) 0,51cm (SD: 0,0872). Der minimale Wert ist 0,30cm (BP 674; 62,5 Jahre), der maximale Wert 0,68cm (BP 636; 83,0 Jahre) (Spannweite = 0,38cm). Der Mittelwert der Kompaktadicke (n=40) bei den Frauen beträgt 0,41cm (SD: 0,0842), wobei der minimale Wert der Kompaktadicke bei nur 0,20cm (BP 669; 74,0 Jahre) liegt und sich der maximale Wert mit 0,58cm (BP 601; 27,0 Jahre) bereits deutlich über dem Mittelwert der Männer befindet (Spannweite = 0,38cm).

Die Obergrenze des 95%igen Konfidenzintervalls der Frauen ist 0,44cm, was noch deutlich unter der Untergrenze des Intervalls bei den Männern (0,49cm) liegt. Dies deutet auf einen signifikanten Unterschied der Kompaktadicke bezüglich der Geschlechter in diesem Kollektiv hin (siehe Tab. 30; Brosius 1998). Eine einfaktorielle ANOVA in SPSS auf dem 0,05%igen Signifikanzniveau bestätigt diese Vermutung (p = 0,000).

Im Gesamtkollektiv nimmt die Kompaktadicke mit dem Alter tendenziell ab (Abb. 68). In der Altersklasse „20er“ liegt die durchschnittliche Kompaktadicke bei 0,53cm, ab einem Alter von 60 ist sie im Mittel 0,44cm oder geringer. Die Unterschiede zwischen den Geschlechtern sind auch aufgeteilt nach Altersklassen an den Kurven deutlich erkennbar. Unregelmäßigkeiten ab der Altersklasse „60er“ sind wahrscheinlich auf die teilweise geringen Individuenzahlen in den höheren Altersklassen zurückzuführen.

Anatomie-Kollektiv

<table>
<thead>
<tr>
<th>Ausgewertete Fälle in %</th>
<th>gesamt</th>
<th>männlich</th>
<th>weiblich</th>
</tr>
</thead>
<tbody>
<tr>
<td>36 (100%)</td>
<td>18 (100%)</td>
<td>18 (100%)</td>
<td></td>
</tr>
<tr>
<td>Mittelwert</td>
<td>0,439cm</td>
<td>0,535cm</td>
<td>0,342cm</td>
</tr>
<tr>
<td>Standardabweichung (SD)</td>
<td>0,148</td>
<td>0,118</td>
<td>0,108</td>
</tr>
<tr>
<td>95%iges Konfidenzintervall des Mittelwertes</td>
<td>Untergrenze</td>
<td>0,389cm</td>
<td>0,476cm</td>
</tr>
<tr>
<td></td>
<td>Obergrenze</td>
<td>0,489cm</td>
<td>0,594cm</td>
</tr>
<tr>
<td>Median</td>
<td>0,400cm</td>
<td>0,540cm</td>
<td>0,350cm</td>
</tr>
<tr>
<td>Minimum</td>
<td>0,100cm</td>
<td>0,300cm</td>
<td>0,100cm</td>
</tr>
<tr>
<td>Maximum</td>
<td>0,700cm</td>
<td>0,700cm</td>
<td>0,500cm</td>
</tr>
<tr>
<td>Spannweite</td>
<td>0,600cm</td>
<td>0,400cm</td>
<td>0,400cm</td>
</tr>
</tbody>
</table>

Tab. 31: Explorative Datenanalyse der Kompaktadicke im Anatomie-Kollektiv

Im Fall der Kompaktadicke können 100% (d.h. alle 36 Individuen) des Anatomie-Kollektivs ausgewertet werden.

Der Mittelwert des Gesamtkollektivs liegt bei 0,44cm (SD: 0,15). Der Median ist 0,40cm. Der niedrigste Wert wird in einem weiblichen Individuum beobachtet und beträgt nur 0,10cm (Anat 103/03, siehe auch 5.3.4). Den höchsten Wert von 0,70cm findet man in zwei männlichen Individuen (Spannweite 0,60cm).

Werden ausschließlich die männlichen Individuen betrachtet, liegt der Mittelwert bei 0,54cm (SD: 0,12). Der Median ist ebenfalls 0,54cm. Bei den Frauen beträgt der durchschnittliche Wert der Kompaktadicke nur 0,34cm (SD: 0,11). Der Median ist 0,35cm. Da sich die Grenzen der 95%igen Konfidenzintervalle des Mittelwertes nicht überschneiden (Männer: 0,48cm-0,59cm; Frauen: 0,29cm-0,40cm), kann davon ausgegangen werden, dass sich die Kompaktadicke zwischen Männern und Frauen signifikant unterscheiden. Eine ANOVA bestätigt diese Annahme mit einer Signifikanz von 0,000.

Zwischen der Altersklasse der 60jährigen und der Altersklasse der 70jährigen ist ein starker Abfall der Kompaktadicke zu beobachten (Abb. 69). Sie sinkt um fast 0,2cm, von 0,59cm auf 0,41cm. Dieser Trend ist sowohl bei den Männern, als auch bei den Frauen im selben Alter nachvollziehbar. Danach ändert sich die Kompaktadicke nicht mehr stark, sondern pendelt in allen Altersklassen (70er-90er) etwa um den Wert der bei den 70jährigen erreicht wurde.

Abb. 69: Darstellung der Kompaktadicke in cm in Abhängigkeit von den Altersklassen des Anatomie-Kollektivs

Zwischen der Altersklasse der 60jährigen und der Altersklasse der 70jährigen ist ein starker Abfall der Kompaktadicke zu beobachten (Abb. 69). Sie sinkt um fast 0,2cm, von 0,59cm auf 0,41cm. Dieser Trend ist sowohl bei den Männern, als auch bei den Frauen im selben Alter nachvollziehbar. Danach ändert sich die Kompaktadicke nicht mehr stark, sondern pendelt in allen Altersklassen (70er-90er) etwa um den Wert der bei den 70jährigen erreicht wurde.
Nach Pearson liegt der lineare Korrelationskoeffizient bei -0,444 und ist hochsignifikant. Werden männliche und weibliche Individuen getrennt voneinander betrachtet, zeigt sich in keiner der beiden Gruppen ein signifikanter Zusammenhang zum Alter.

4.2.2 Nicht-Havers’sche Systeme (NHav)

Basel-Kollektiv

<table>
<thead>
<tr>
<th>Ausgewertete Fälle in %</th>
<th>98,1%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mittelwert</td>
<td>1,43</td>
</tr>
<tr>
<td>Standardabweichung</td>
<td>2,99</td>
</tr>
<tr>
<td>Median</td>
<td>0,17</td>
</tr>
<tr>
<td>Minimum</td>
<td>0,00</td>
</tr>
<tr>
<td>Maximum</td>
<td>20,75</td>
</tr>
<tr>
<td>Spannweite</td>
<td>20,75</td>
</tr>
</tbody>
</table>

Tab. 32: Explorative Datenanalyse der Anzahl an Nicht-Havers’schen Systemen pro mm² des Gesamtquerschnittes im Basel-Kollektiv

Die Anzahl von Nicht-Havers’schen Systemen pro mm² kann in 98,1% der Fälle bestimmt werden. Im Mittel werden 1,43 primäre Osteone pro mm² beobachtet (SD: 2,99). Das Maximum liegt bei 20,75 (Spannweite 20,75).

Abb. 70: Anzahl an Nicht-Havers’schen Kanälen pro mm² in Abhängigkeit von den Altersklassen im Basel-Kollektiv

Endostal können im Basel-Kollektiv bezüglich der Anzahl an Nicht-Havers’schen Kanälen pro mm² 98,1% der Fälle ausgewertet werden (Männer: 98,4%; Frauen: 97,5%). Im Mittel findet man im Gesamtkollektiv 0,056 Nicht-Havers’sche Kanäle pro mm² (SD: 0,15). Der Median ist 0. Bei den männlichen Individuen liegt der Mittelwert bei 0,035 (SD: 0,10), bei den weiblichen Individuen bei 0,090 (SD: 0,21). Die Mediane besitzen in beiden Geschlechtern ebenfalls einen Wert von 0. Die 95%igen Konfidenzintervalle der Geschlechter überschneiden sich teilweise (Männer: 0,0083-0,061; Frauen: 0,024-0,16), so dass man nicht von einem unterschiedlichen Wert zwischen Männern und Frauen ausgeht. Da der Levene-Test ergibt, dass die Varianzen der beiden Gruppen nicht homogen sind (p = 0,012), wird statt
einer ANOVA der Welch-Test bzw. der Brown-Forsythe-Test durchgeführt. Diese sagen aus, dass die Mittelwerte der beiden Geschlechter nicht signifikant verschieden sind (p = 0,125). Im endostalen Bereich ist keine Abhängigkeit der Anzahl der Nicht-Havers’schen Kanäle pro mm² zum Alter erkennbar (Abb. 70a). Bei dem Peak der Kurve der weiblichen Individuen in der Altersklasse der 50jährigen (0,67), handelt es sich eigentlich um keinen sehr hohen Wert, da er noch unter 1 liegt. In allen anderen Individuen kommen einfach nur noch seltener Nicht-Havers’sche Kanäle im endostalen Bereich vor. Die Mittelwerte der Altersklassen liegen alle unter einem Wert von 0,10, außer bei der genannten Ausnahme.

Mittig können bezüglich der Nicht-Havers’schen Kanäle alle Individuen des Basel-Kollektivs ausgewertet werden. Der Mittelwert des Gesamtkollektivs beträgt 0,78 (SD: 1,40). Der Median ist 0, ebenso wie in beiden Geschlechtern. Bei den Männern zeigt die Anzahl der Nicht-Havers’schen Systeme pro mm² einen durchschnittlichen Wert von 0,70 (SD: 1,52) und bei den Frauen 0,89 (SD: 1,20). Da sich die Mittelwerte der 95%igen Konfidenzintervalle der beiden Geschlechter stark überschneiden (Männer: 0,32-1,09; Frauen: 0,51-1,28) ist davon auszugehen, dass kein signifikanter Geschlechtsunterschied besteht. Durch eine einfaktorielle ANOVA wird diese Vermutung mit einer Signifikanz von 0,511 bestätigt.

Eine eindeutige Abhängigkeit vom Individualalter ist aus Abb. 70b nicht zu entnehmen. Im Gesamtkollektiv besteht eine Tendenz zur Abnahme der Anzahl an Nicht-Havers’schen Kanälen pro mm² mit den Altersklassen, die in mehreren Stufen verläuft. Bei den 20- und 30jährigen liegt der Wert bei über 1, bei den 40- und 50jährigen sinkt er auf etwa 0,8 und ab den 70jährigen liegt der Wert zwischen 0,25 und 0,42. Nach Pearson zeigt sich eine signifikante Korrelation mit schwach linearer Ausprägung zum Alter (-0,211) im Gesamtkollektiv. Bei den männlichen Individuen ergibt sich nach Pearson kein Zusammenhang zwischen der Anzahl der Nicht-Havers’schen Systeme pro mm² und dem Alter. Werden nur die Frauen betrachtet, ist eine signifikante Korrelation von -0,327 zu beobachten. In der weiblichen Altersklasse der 50jährigen findet sich, wie schon im endostalen Bereich, ein stark erhöhter Wert. Da in dieser Altersklasse jedoch nur zwei Individuen sind, ist dies wahrscheinlich auf eine ungewöhnliche Erhöhung des Wertes in einem Individuum zurückzuführen.

Periostal werden insgesamt 96,1% der Fälle ausgewertet (Männer: 95,2%; Frauen: 97,5%). Im Mittel zählt man 3,53 Nicht-Havers’sche Kanäle pro mm² im Gesamtkollektiv (SD: 4,32). Der Median ist 1,38. Werden nur die männlichen Individuen betrachtet, liegt der Durchschnittswert bei 3,90 (SD: 4,61) und der Median bei 2,00. Bei den Frauen zeigt sich ein durchschnittlicher Wert von 2,95 (SD: 3,82) und ein Median von 1,13. Es ist wahrscheinlich, dass keine signifikanten Unterschiede zwischen den Geschlechtern bestehen, da sich die 95%igen Konfidenzintervalle des Mittelwertes stark überschneiden (Männer: 2,71-5,09; Frauen: 1,72-4,19). Dies wird durch eine einfaktorielle ANOVA mit einer Signifikanz von 0,291 bestätigt.
Im periostalen Bereich ist eine Abnahme der Anzahl an Nicht-Havers’schen Systemen mit dem Alter zu verzeichnen (Abb. 70c). Diese Abnahme verläuft regelmäßig bis zur Altersklasse der 40jährigen, um dann bis zu den 50jährigen auf einem Plateau zu bleiben (bei etwa 3,4) und in der Altersklasse der 60jährigen weiter zu fallen (auf etwa 1,0). Dieser Wert bleibt dann bis zu den 80jährigen konstant erhalten. Der lineare Korrelationskoeffizient nach Pearson ist hochsignifikant und beträgt -0,479. In beiden Geschlechtern ergeben sich ebenfalls hochsignifikante Korrelationen nach Pearson (Männer: -0,499; Frauen: -0,482).

Bei einem Vergleich der drei verschiedenen Lokalisationen (periostal, mittig und endostal) wird festgestellt, dass die Anzahl der Nicht-Havers’schen Systeme von endostal nach periostal hin zunimmt. Da sich die 95%igen Konfidenzintervalle nicht überschneiden (end: 0,026-0,087; mit: 0,50-1,05; per: 2,66-4,39), ist davon auszugehen, dass sich die Mittelwerte signifikant voneinander unterscheiden. Der Levene-Test zeigt, dass die Varianzen der verschiedenen Gruppen nicht homogen sind. So muss statt einer ANOVA auf den Welch-Test bzw. auf den Brown-Forsythe-Test zurückgegriffen werden. Beide ergeben einen signifikanten Unterschied zwischen den Lokalisationen (p = 0,000). Durch die Post-Hoc-Tests T₃ nach Dunnett und Games-Howell kann nachgewiesen werden, dass sich alle drei Lokalisationen signifikant voneinander unterscheiden (p = 0,000).

Anatomie-Kollektiv

<table>
<thead>
<tr>
<th>Ausgewertete Fälle in %</th>
<th>98,1%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mittelwert</td>
<td>0,15</td>
</tr>
<tr>
<td>Standardabweichung</td>
<td>0,40</td>
</tr>
<tr>
<td>Median</td>
<td>0,00</td>
</tr>
<tr>
<td>Minimum</td>
<td>0,00</td>
</tr>
<tr>
<td>Maximum</td>
<td>2,67</td>
</tr>
<tr>
<td>Spannweite</td>
<td>2,67</td>
</tr>
</tbody>
</table>

Tab. 33: Explorative Datenanalyse der Anzahl der Nicht-Havers’schen Kanäle pro mm² in Abhängigkeit von den Altersklassen im Basel-Kollektiv

Insgesamt werden von 108 Fällen 106 ausgewertet (98,1%). Die beiden fehlenden Fälle sind Frauen, bei denen die Kompaktadicke so gering ist, dass der endostale Teil nicht mehr ausgewertet werden konnte. Dies gilt für alle der erhobenen mikrostrukturellen Variablen, außer den geometrischen Daten der Osteone und den daraus berechneten Parametern. Im Mittel sind nur 0,15 Nicht-Havers’sche Systeme im anterioren Femurquerschnitt des Anatomie-Kollektivs zu finden (SD: 0,40). Der Median ist 0,00. Der maximal beobachtete Wert liegt bei 2,67 (Spannweite = 2,67).
Im Gesamtkollektiv sind im Mittel 0,039 Nicht-Havers’sche Systeme im endostalen Bereich der Kompakta zu finden (SD: 0,14). Der Median beträgt 0. In den männlichen Individuen liegt der Mittelwert bei 0,018 (SD: 0,078) und in den weiblichen Individuen bei 0,063 (SD: 0,18). Beide Mediane zeigen einen Wert von 0. Da die Untergrenzen der 95%-igen Konfidenzintervalle der beiden Geschlechter negative Werte aufweisen, macht es keinen Sinn sie zu vergleichen. Eine ANOVA ergibt jedoch, dass sich die Mittelwerte der Geschlechter nicht signifikant unterscheiden.

Aus der Abb. 71a lässt sich keine Abhängigkeit der Anzahl an Nicht-Havers’schen Systemen pro mm² vom Alter ablesen.

Im mittleren Bereich der Kompakta zeigt sich ein Durchschnittswert von 0,092 (SD: 0,25) und ein Median von 0. Sowohl in den männlichen, als auch in den weiblichen Individuen liegt der Mittelwert bei 0,092 (SD: m: 0,15; w: 0,32). Die Mediane der beiden Geschlechter haben je einen Wert von 0. Der Abb. 71b ist zu entnehmen, dass die Anzahl der Nicht-Havers’schen Kanäle in den männlichen Individuen mit zunehmendem Alter abnimmt. Die Korrelation nach Pearson ist signifikant und liegt bei -0,524. Allerdings ist die Abnahme von 0,22 in den 50ern auf 0,00 in den 80ern und 90ern sehr gering. Im Gesamtkollektiv bzw. bei den Frauen ist kein Zusammenhang mit dem Alter zu finden.

Periostal werden im Durchschnitt 0,32 Nicht-Havers’sche Systeme pro mm² beobachtet (SD: 0,59). Der Median ist 0. Betrachtet man nur die männlichen Individuen, beträgt der Mittelwert 0,52 (SD: 0,75) und der Median 0,16. Bei den weiblichen Individuen zeigt sich eine mittlere Anzahl von 0,13 Nicht-Havers’schen Systemen pro mm² (SD: 0,28) und ein Median von 0,00. Da die Untergrenze des 95%-igen Konfidenzintervales des Mittelwertes bei den Frauen negativ ist (physiologisch nicht sinnvoll), erfolgt der Vergleich der Mittelwerte nur über statistische Tests. Eine ANOVA kann nicht durchgeführt werden, da die Varianzen der beiden Gruppen nicht homogen sind (Levene-Test: 0,003). Der Welch-Test und der Brown-Forsythe-
4. Ergebnisse

Test ergeben beide eine Signifikanz von 0,053. Das bedeutet, dass die Mittelwerte der beiden Geschlechter (eher) nicht signifikant verschieden sind.

In der Abb. 71c ist für die beiden Geschlechter keine Abhängigkeit zum Alter erkennbar. Die Berechnung der Pearson-Korrelation für das Gesamtkollektiv ergibt eine signifikante Abnahme der Anzahl der Nicht-Havers’schen Kanäle mit steigendem Alter (r = -0,334).

Die Anzahl der Nicht-Havers’schen Kanäle pro mm² nimmt von endostal nach periostal zu. Da insgesamt jedoch sehr wenig primäre Osteone vorkommen, ist der Unterschied zwischen den Lokalisationen sehr gering. Zusätzlich ist die Untergrenze des 95%igen Konfidenzintervales im endostalen Bereich negativ, was physiologisch keinen Sinn ergibt. Ein Vergleich der Mittelwerte kann daher nur über statistische Tests erfolgen. Da die Varianzen der drei Gruppen nicht homogen sind (Levene-Test: 0,000) kann keine ANOVA durchgeführt werden. Der Welch-Test bzw. der Brown-Forsythe-Test zeigen jedoch, dass sich zumindest eine der Lokalisationen signifikant von den anderen abhebt (Welch-Test: 0,020; Brown-Forsythe: 0,006). Laut den Post-Hoc-Tests T₃ nach Dunnett und dem Test nach Games-Howell unterscheidet sich der endostale Teil der anterioren Femurkompakta signifikant vom periostalen Teil (p = 0,02).

4.2.3 Generallamellen (Gen)

Basel-Kollektiv

<table>
<thead>
<tr>
<th>Ausgewertete Fälle in %</th>
<th>91,9%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mittelwert</td>
<td>28,26%</td>
</tr>
<tr>
<td>Standardabweichung</td>
<td>26,09%</td>
</tr>
<tr>
<td>Median</td>
<td>20,33%</td>
</tr>
<tr>
<td>Minimum</td>
<td>0,00%</td>
</tr>
<tr>
<td>Maximum</td>
<td>99,38%</td>
</tr>
<tr>
<td>Spannweite</td>
<td>99,38%</td>
</tr>
</tbody>
</table>

Tab. 34: Explorative Datenanalyse des Anteils an Generallamellen des Gesamtquerschnittes des Basel-Kollektivs

In 91,9% der Fälle konnte der Anteil an Generallamellen bestimmt werden. Der mittlere Anteil an Generallamellen im anterioren Bereich der mittleren Femurdiaphyse des Basel-Kollektivs beträgt 28,26% (SD: 26,09%). Der Median ist 20,33%. Der relativ große Unterschied zum Mittelwert zeigt, dass es wohl einige „Ausreißer“ gibt. Dabei ist die Bezeichnung „Ausreißer“ hier nicht statistisch zu bewerten, sondern lediglich als Altersvariabilität zu interpretieren. Der höchste beobachtete Wert liegt bei 99,38% (Spannweite = 99,38%).
Endostal können bezüglich des Anteils an Generallamellen 81,6% der Fälle ausgewertet werden (Männer: 77,8%; Frauen: 87,5%).

Im Mittel zeigt sich ein Anteil an Generallamellen von 10,45% (SD: 14,08%). Der Median liegt bei 5,59%. Bei den männlichen Individuen ist der Mittelwert 10,42% (SD: 15,96%) und der Median 4,67%. Werden nur die weiblichen Individuen betrachtet, beobachtet man einen Durchschnittswert von 10,47% (SD: 11,13%) und einen Median von 7,33%. Der Unterschied zwischen den Mittelwerten der beiden Geschlechter ist gering und wahrscheinlich nicht signifikant, da sich die 95%igen Konfidenzintervalle fast vollständig überschneiden (Männer: 5,84%-15,01%; Frauen: 6,65%-14,30%). Dies wird durch eine einfaktorielle ANOVA bestätigt (p = 0,988).

Im mittleren Teil können 98,1% der Fälle ausgewertet werden (Männer: 96,8%; Frauen: 100,0%). Der Mittelwert des Gesamtkollektivs liegt bei 26,93% (SD: 21,60%) und der Median bei 21,67%. Werden ausschließlich die männlichen Individuen betrachtet, zeigt sich ein durchschnittlicher Anteil der Generallamellen von 24,58% (SD: 19,51%) und ein Median von 20,33%. Bei den weiblichen Individuen wird ein Durchschnittswert von 30,51% (SD: 24,27%) und ein Median von 25,67% beobachtet. Die 95%igen Konfidenzintervalle überschneiden sich teilweise (Männer: 19,58%-29,57%; Frauen: 22,75%-38,27%), so dass nicht eindeutig klar ist, ob ein signifikanter Unterschied zwischen den Geschlechtern vorliegt. Da ein Levene-Test zeigt, dass die Varianzen der beiden Gruppen nicht homogen sind (p =
0,020), wird statt einer ANOVA der Welch-Test und der Brown-Forsythe-Test durchgeführt. Dabei ergibt sich mit einer Signifikanz von 0,199, dass die Mittelwerte nicht signifikant verschieden sind.

In Abb. 72b ist zu erkennen, dass der Anteil an Generallamellen zwar mit dem Alter abnimmt, jedoch in keiner regelmäßigen Art und Weise. Bei den Männern bildet sich ab den 40jährigen ein Plateau bei etwa 20%, in den 20- und 30jährigen lag der Wert noch bei etwa 30%. Bei den weiblichen Individuen hingegen liegen die Werte bis zur Altersklasse der 50jährigen sehr hoch (ca. 40%), um dann ab der Altersklasse der 60jährigen extrem abzusinken (auf Werte um 10% und weniger). Im Gesamtkollektiv ist eine hochsignifikante, schwach lineare Korrelation von -0,348 (nach Pearson) zu finden. Bei den Männern zeigt sich keine Korrelation des Anteils an Generallamellen zum Individualalter. In den weiblichen Individuen beobachtet man jedoch wiederum eine hochsignifikante Korrelation von -0,517.

Periostal können 96,1% der Fälle ausgewertet werden (Männer: 95,2%; Frauen: 97,5%). Im Mittel werden 44,73% an Generallamellen beobachtet (SD: 27,82%). Der Median ist 37,50%. Werden ausschließlich die männlichen Individuen betrachtet, zeigt sich ein Mittelwert von 45,93% (SD: 27,16%) und ein Median von 40,32%. Bei den weiblichen Individuen liegt der Durchschnittswert bei 42,87% (SD: 29,05%) und der Median bei 31,88%. Ein signifikanter Unterschied zwischen den Geschlechtern scheint aufgrund der Überschneidung der 95%igen Konfidenzintervalle (Männer: 38,91%-52,95%; Frauen: 33,45%-52,29%) nicht vorzuliegen. Diese Vermutung wird durch eine einfaktorielle ANOVA mit einer Signifikanz von 0,596 bestätigt.

Wie aus Abb. 72c ersichtlich, fällt der Anteil an Generallamellen mit zunehmendem Individualalter ab. Anfänglich ist der Abstieg stärker (von 73% auf 53% zwischen 20ern und 30ern), später wird er dann etwas langsamer (von 48% in den 40ern auf 21% in den 80ern), wobei hier der Anteil an Generallamellen von Lebensjahrzehnt zu Lebensjahrzehnt immer um weniger als 10% abnimmt. Im Gesamtkollektiv ist ein hochsignifikanter Korrelationskoeffizient von -0,586 nach Pearson zu finden. In beiden Geschlechtern ist der Zusammenhang vom Anteil an Generallamellen zum Individualalter nach Pearson ebenfalls hochsignifikant (Männer: -0,564; Frauen: -0,621).

Der Anteil an Generallamellen nimmt von endostal nach periostal zu. Dabei scheint es sich um eine signifikante Zunahme zu handeln, da sich die 95%igen Konfidenzintervalle der Mittelwerte nicht überschneiden (end: 7,39%-13,50%; mit: 22,66%-31,19%; per: 39,18%-50,28%). Aufgrund der unterschiedlichen Varianzen in den Gruppen (Levene-Test = 0,000) wird statt einer ANOVA der Welch-Test und der Brown-Forsythe-Test durchgeführt. Diese ergeben einen signifikanten Unterschied des Anteils an Generallamellen zwischen den drei Lokalisationen der Kompakta (p = 0,000). Post-Hoc-Tests (T₃-Dunnett und Games-Howell) zeigen jeweils mit einer Signifikanz von p = 0,000, dass sich alle drei Lokalisationen signifikant unterscheiden.
Anatomie-Kollektiv

<table>
<thead>
<tr>
<th>Ausgewertete Fälle in %</th>
<th>98,1%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mittelwert</td>
<td>9,96%</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>11,49%</td>
</tr>
<tr>
<td>Median</td>
<td>6,50%</td>
</tr>
<tr>
<td>Minimum</td>
<td>0,00%</td>
</tr>
<tr>
<td>Maximum</td>
<td>66,00%</td>
</tr>
<tr>
<td>Spannweite</td>
<td>66,00%</td>
</tr>
</tbody>
</table>

Tab. 35: Explorative Datenanalyse des Anteils an Generallamellen des Gesamnquerschnittes des Anatomie-Kollektivs

Im Mittel werden 9,96% an Generallamellen pro Querschnitt im Anatomie-Kollektiv beobachtet (SD: 11,49%). Der Median ist 6,50%. Der maximale Wert liegt bei 66,00% (Spannweite = 66,00%).

Im endostalen Bereich findet man im Durchschnitt einen Anteil von 7,00% an Generallamellen (SD: 8,64%). Der Median ist 2,00%. Bei den männlichen Individuen beträgt der Mittelwert 6,78% (SD: 9,88%) und der Median 1,00%. Werden nur die weiblichen Individuen betrachtet, zeigt sich ein Durchschnittswert von 7,25% (SD: 7,31%) und ein Median von 5,00%. Da sich die 95%igen Konfidenzintervalle der beiden Geschlechter extrem überschneiden (Männer: 1,87%-11,69%; Frauen: 3,36%-11,14%), ist davon auszugehen, dass der Unterschied zwischen den Mittelwerten nicht signifikant ist. Dies wird durch eine einfaktorielle ANOVA mit einer Signifikanz von 0,876 bestätigt.

Der Abb. 73a ist kein eindeutiger Zusammenhang des Anteils an Generallamellen zum Individualalter zu entnehmen. Nur in den männlichen Individuen zeigt sich nach Pearson eine signifikante, schwach lineare Korrelation zum Individualalter (-0,475).

Im mittleren Bereich der Kompakta zeigt sich im Durchschnitt ein Anteil von 8,83% (SD: 9,26%) und ein Median von 5,50%. Etwas höher liegt der Mittelwert beim männlichen Geschlecht: 9,61% (SD: 10,59%). Der Median beträgt 6,00%. Bei den Frauen findet sich ein durchschnittlicher Anteil an Generallamellen von 8,06% (SD: 7,94%) und ein Median von 5,50%. Da sich die 95%igen Konfidenzintervalle fast vollständig überschneiden (Männer:...
4,34%-14,88%; Frauen: 4,10%-12,01%), ist nicht davon auszugehen, dass der Unterschied der Mittelwerte der beiden Geschlechter signifikant ist. Diese Annahme wird durch eine einfaktorielle ANOVA bestätigt (p = 0,621).

Im Gesamtkollektiv und den männlichen Individuen nimmt der Anteil an Generallamellen mit dem Alter, zumindest bis zur Altersklasse der 80jährigen, tendenziell ab (von 22% in den 50ern auf 4%-6% in den 80ern). Bei den Frauen ist dieser Effekt nicht zu beobachten (Abb. 73b). Berechnet man die linearen Korrelationskoeffizienten nach Pearson, ergibt sich sowohl für das Gesamtkollektiv, als auch für die männlichen Individuen ein signifikanter Wert (ges: -0,330; m: -0,581). Bei den Frauen lässt sich kein Zusammenhang zum Alter nachweisen.

Im periostalen Bereich beträgt der Anteil an Generallamellen im Durchschnitt 13,89% (SD: 14,64%) und der Median 9,00%. Betrachtet man nur die männlichen Individuen beobachtet man einen Mittelwert von 16,89% (SD: 18,92%) und einen Median von 8,50%. Der durchschnittliche Anteil an Generallamellen bei den Frauen liegt etwas niedriger bei 10,89% (SD: 8,03%) und der Median bei 9,00%. Allerdings scheint der Mittelwert der Frauen nicht signifikant geringer zu sein, als derjenige der Männer, da sich die 95%igen Konfidenzintervalle stark überschneiden (Männer: 7,48%-26,30%; Frauen: 6,90%-14,88%). Aufgrund der Tatsache, dass die Varianzen der beiden Gruppen nicht homogen sind (Levene-Test: 0,009), kann keine ANOVA durchgeführt werden. Der Welch-Test bzw. der Brown-Forsythe-Test ergeben keine signifikanten Unterschiede zwischen den Geschlechtern (p = 0,228).

Der Abb. 73c ist zu entnehmen, dass auch im periostalen Teil der Anteil an Generallamellen bis zur Altersklasse der 80jährigen tendenziell abnimmt (von 30% in den 50ern auf 8% in den 80ern). Bei den männlichen Individuen ist der Verlauf extrem unregelmäßig. Wird die Korrelation nach Pearson berechnet, ergibt sich für das Gesamtkollektiv ein signifikanter Wert von -0,415. Betrachtet man die beiden Geschlechter getrennt voneinander zeigen sich jedoch keine Korrelationen zum Alter.

Der Anteil an Generallamellen nimmt von endostal nach periostal hin leicht zu. Da sich die 95%igen Konfidenzintervalle jedoch gering bis stark überschneiden (end: 3,99%-10,00%; mit: 5,70%-11,97%; per: 8,93%-18,84%), kann nicht von einer signifikanten Zunahme ausgegangen werden. Laut einer ANOVA unterscheiden sich zumindest zwei der Lokalisationen signifikant (p = 0,032). Die Post-Hoc-Tests nach Tukey-HSD (p = 0,031) und nach Bonferroni (p = 0,035) zeigen, dass es sich dabei um die endostale und die periostale Lokalisation handelt.
4.2.4 Typ-I-Osteone (Ost)

Basel-Kollektiv

<table>
<thead>
<tr>
<th>Ausgewertete Fälle in %</th>
<th>94,2%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mittelwert</td>
<td>8,39</td>
</tr>
<tr>
<td>Standardabweichung</td>
<td>4,55</td>
</tr>
<tr>
<td>Median</td>
<td>8,67</td>
</tr>
<tr>
<td>Minimum</td>
<td>0,00</td>
</tr>
<tr>
<td>Maximum</td>
<td>21,25</td>
</tr>
<tr>
<td>Spannweite</td>
<td>21,25</td>
</tr>
</tbody>
</table>

Tab. 36: Explorative Datenanalyse der Anzahl der Typ-I-Osteone pro mm² des Gesamtquerschnittes des Basel-Kollektivs

Die Anzahl der Typ-I-Osteone (Ost) konnte insgesamt in 291 Fällen von 309 (94,2%) bestimmt werden, was sowohl die periostalen, wie auch die mittigen und endostalen Lokalisationen mit einschließt (Tab. 36). Im Mittel werden 8,39 Typ-I-Osteone pro mm² (SD: 4,55) im anterioren Bereich des Femurs im Basel-Kollektiv gezählt. Der Median beträgt 8,67. In einigen Fällen werden keine Typ-I-Osteone beobachtet, also liegt der minimale Wert bei 0. Der höchste beobachtete Wert beträgt 21,25 (Spannweite = 21,25).

![Abbildung 74: Anzahl der Typ-I-Osteone pro mm² in Abhängigkeit von den Altersklassen im Basel-Kollektiv](image)

Auf der endostalen Seite der Kompaktaquerschnitte konnten in 91 von 103 Fällen (88,3%) Typ-I-Osteone ausgezählt werden. Der Mittelwert liegt bei 4,77 (SD: 3,11). Der Median ist 4,25. Werden ausschließlich die männlichen Individuen betrachtet (ausgewertet: 87,3%), ist mit 5,31 (SD: 3,24) ein etwas höherer Mittelwert als im Gesamtkollektiv zu finden. Der Median ist 5,00. Bei den weiblichen Individuen können 90% der Fälle ausgewertet werden, wobei der Mittelwert hier mit 3,93 (SD: 2,74) hinter dem der männlichen Individuen zurückbleibt. Der Median ist 3,50.

Die 95%igen Konfidenzintervalle von Männern (4,44–6,19) und Frauen (3,00–4,86) überschneiden sich nur geringfügig, was auf einen signifikanten Unterschied der endostalen Anzahl der Typ-I-Osteone zwischen den Geschlechtern hindeutet. Eine einfaktorielle ANOVA auf dem 0,05%igen Niveau bestätigt dies (p = 0,38).
Eine Altersabhängigkeit ist in Abb. 74a nicht zu erkennen.

Im mittleren Bereich der Kompakta wurden 101 von 103 Fällen (98,1%) ausgewertet. Der Mittelwert der Anzahl der Typ-I-Osteone beträgt hier 9,42 (SD: 3,18). Der Median ist 9,33. Von den männlichen Individuen wurden 96,8% der Fälle ausgewertet, wobei der Mittelwert hier 9,84 beträgt (SD: 3,01). Der Median ist 9,33. In der Mitte der Kompakta konnten von den weiblichen Individuen 100% der Fälle ausgewertet werden. Der Mittelwert liegt bei 8,77 Typ-I-Osteone pro mm² (SD: 3,36) und der Median ist auch hier 9,33. Das 95%ige Konfidenzintervall des Mittelwerts bei den Männern hat seine Grenzen bei 9,07 und 10,61. Unter- und Obergrenze (7,70 und 9,84) des 95%igen Konfidenzintervalls der Frauen sind nicht absolut überschneidungsfrei zu dem der Männer, deshalb kann nicht automatisch von einem signifikanten Unterschied der Zahl der Typ-I-Osteone pro mm² in den Geschlechtern ausgegangen werden. Mit Hilfe einer einfaktoriellen ANOVA (0,05%iges Niveau) wird kein signifikanter Unterschied zwischen den Geschlechtern festgestellt (p = 0,100).

Eine Altersabhängigkeit der Typ-I-Osteone im mittleren Bereich der anterioren Femurkompakta ist in Abb. 74b nicht zu erkennen. Der Wert pendelt in allen Altersklassen (20er – 80er) ungefähr zwischen 8,5 und 10,5.

Periostal konnten in 99 von 103 Fällen (96,1%) Typ-I-Osteone ausgezählt werden. Der Mittelwert beträgt hier 10,68 Typ-I-Osteone pro mm² (SD: 4,85). Der Median ist 11,00. Von den männlichen Individuen wurden in 95,2% der Fälle die Anzahl der Typ-I-Osteone bestimmt. Der Mittelwert liegt bei 10,73 (SD: 4,98). Der Median ist 10,90. Bei den Frauen konnten 97,5% der Fälle ausgewertet werden, wobei der Mittelwert mit 10,60 (SD: 4,71) fast so hoch ist wie jener der Männer. Der Median ist 11,00.

Die Untergrenze des 95%igen Konfidenzintervalls der Männer liegt bei 9,45 und die Obergrenze bei 12,02. Das 95%ige Konfidenzintervall der Frauen mit den Grenzen 9,07 und 12,12 überschneidet sich extrem mit dem der männlichen Individuen, was auf keinen Unterschied bezüglich der Anzahl der Typ-I-Osteone pro mm² zwischen den Geschlechtern hindeutet. Eine einfaktorielle ANOVA bestätigt dies (p = 0,892).

Tendentiell nimmt die Anzahl der Typ-I-Osteone laut Abb. 74c mit steigendem Individualalter zu. In der Altersklasse der 20jährigen ist eine durchschnittliche Anzahl von etwa 5 Typ-I-Osteonen pro mm² zu finden, in der Altersklasse der 80jährigen ist diese Anzahl auf etwa 14 Typ-I-Osteone pro mm² gestiegen. Der lineare Korrelationskoeffizient nach Pearson liegt für das Gesamtkollektiv bei 0,552 und ist hochsignifikant. Betrachtet man ausschließlich die männlichen Individuen ist der lineare Zusammenhang sogar noch stärker ausgeprägt (r = 0,620). Bei den weiblichen Individuen ist die Korrelation nach Pearson zum Alter zwar immer noch hochsignifikant, aber etwas schwächer linear (0,462).
Die Untergrenze des 95%igen Konfidenzintervalls der periostalen Untersuchungsfelder des Gesamtkollektivs ist 9,71, die Obergrenze 11,65. Somit überschneiden sich die Wertebereiche mittig (Grenzen bei 8,79 und 10,04) und periostal. Beide Lokalisationen heben sich in der Anzahl ihrer Typ-I-Osteone pro mm² jedoch deutlich vom endostalen Teil ab (Grenzen bei 4,12 und 5,42). Eine einfaktorielle ANOVA ist nicht möglich, da sich die Varianzen der drei Gruppen im Levene-Test signifikant voneinander unterscheiden (p = 0,00). Sowohl der Welch-Test, als auch der Brown-Forsythe-Test ergeben jedoch einen signifikanten Unterschied (p = 0,00) zwischen dem endostalen Bereich und den beiden anderen Lokalisationen (mittig und periostal). Statistisch bewiesen wurden diese Ergebnisse mit Post-Hoc-Tests (T₃-Dunnett und Games-Howell).

Anatomie-Kollektiv

<table>
<thead>
<tr>
<th>Ausgewertete Fälle in %</th>
<th>98,1%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mittelwert</td>
<td>10,45</td>
</tr>
<tr>
<td>Standardabweichung</td>
<td>6,609</td>
</tr>
<tr>
<td>Median</td>
<td>10,67</td>
</tr>
<tr>
<td>Minimum</td>
<td>0,00</td>
</tr>
<tr>
<td>Maximum</td>
<td>30,33</td>
</tr>
<tr>
<td>Spannweite</td>
<td>30,33</td>
</tr>
</tbody>
</table>

Tab. 37: Explorative Datenanalyse der Anzahl der Typ-I-Osteone pro mm² des Gesamtquerschnittes des Anatomie-Kollektivs

Im Mittel sind in diesem überalterten Kollektiv 10,45 Typ-I-Osteone pro mm² zu finden (SD: 6,61). Der Median ist 10,67. Der maximal beobachtete Wert liegt bei 30,33 (Spannweite = 30,33).

Abb. 75: Anzahl der Typ-I-Osteone pro mm² in Abhängigkeit von den Altersklassen im Anatomie-Kollektiv

Endostal wird ein durchschnittlicher Wert von 6,58 Osteonen pro mm² beobachtet (SD: 5,03). Der Median ist 6,00. Werden ausschließlich die männlichen Individuen betrachtet, liegt der Mittelwert bei 6,22 (SD: 4,44) und der Median bei 5,84. Bei den Frauen zeigt sich ein Durchschnittswert von 6,94 (SD: 5,74) und ein Median von 6,34. Da sich die 95%igen Konfidenzintervalle der Mittelwerte stark überschneiden (Männer: 4,01-8,43; Frauen: 3,88-
10,00), ist davon auszugehen, dass sich die beiden Geschlechter in der Anzahl ihrer Typ-I-Osteone nicht signifikant unterscheiden. Dies wird durch eine einfaktorielle ANOVA mit einer Signifikanz von 0,685 bestätigt.

In Abb. 75a ist lediglich beim männlichen Geschlecht eine Altersabhängigkeit erkennbar. Hier nimmt die Anzahl der Typ-I-Osteone mit dem Alter ab (50er: 8,9; 90er: 2,2). Wird der lineare Korrelationskoeffizient nach Pearson berechnet, ergibt sich für die männlichen Individuen eine signifikante Korrelation von -0,472. Im Gesamtkollektiv und bei den Frauen zeigt sich kein Zusammenhang zum Alter.

Im mittleren Bereich der Kompakta liegt der Mittelwert der Typ-I-Osteone bei 9,55 (SD: 6,00) und der Median bei 10,33. Werden nur die männlichen Individuen betrachtet, zeigt sich ein Mittelwert von 10,19 (SD: 5,55) und ein Median von 10,50. Bei den Frauen ist eine durchschnittliche Anzahl von 8,91 Typ-I-Osteonen (SD: 6,52) und ein Median von 10,00 zu finden. Der Unterschied zwischen den Mittelwerten der beiden Geschlechter scheint nicht signifikant zu sein, da sich die 95%igen Konfidenzintervalle (Männer: 7,43-12,94; 5,66-12,15) stark überschneiden. Dies wird durch eine einfaktorielle ANOVA bestätigt (p = 0,530).

Periostal wird eine mittlere Anzahl von 15,03 Osteonen (SD: 5,83) pro mm² beobachtet. Der Median ist 13,84. Beim Männern ist ein Mittelwert von 14,85 (SD: 5,82) und ein Median von 13,17 zu finden. Werden nur die weiblichen Individuen betrachtet, liegt der Durchschnittswert bei 15,22 (SD: 6,01) und der Median bei 14,50. Der Unterschied zwischen den Mittelwerten der beiden Geschlechter scheint nicht signifikant zu sein, da sich die 95%igen Konfidenzintervalle (Männer: 11,96-17,74; Frauen: 12,23-18,21) stark überschneiden. Eine einfaktorielle ANOVA bestätigt diese Vermutung mit einer Signifikanz von 0,851.

In Abb. 75c ist keine Altersabhängigkeit der Anzahl der Typ-I-Osteone pro mm² erkennbar.

Die Anzahl der Typ-I-Osteone nimmt von endostal nach periostal hin zu. Da sich die 95%igen Konfidenzintervalle der Mittelwerte endostal und mittig kaum und mittig und periostal gar nicht überschneiden (end: 4,80-8,31; mit: 7,52-11,58; per: 13,06-17,01), ist von einem signifikanten Unterschied zwischen den verschiedenen Lokalisationen der Kompakta auszugehen. Bestätigt wird die Vermutung durch eine einfaktorielle ANOVA mit einer Signifikanz von 0,000. Laut der Post-Hoc-Tests (Tukey-HSD und Bonferroni) sind nur der endostale und der mittlere Teil der Kompakta nicht signifikant verschieden.
4.2.5 Typ-II-Osteone (OstII)

Basel-Kollektiv

Ausgewertete Fälle in % 94,5%
Mittelwert 0,69
Standardabweichung 0,87
Median 0,33
Minimum 0,00
Maximum 5,33
Spannweite 5,33

Tab. 38: Explorative Datenanalyse der Anzahl der Typ-II-Osteone pro mm² des Gesamtquerschnittes des Basel-Kollektivs

Abb. 76: Anzahl der Typ-II-Osteone pro mm² in Abhängigkeit von den Altersklassen im Basel-Kollektiv

Vom endostalen Teil konnten insgesamt 88,3% der Fälle ausgewertet werden, 87,3% bei den männlichen Individuen und 90,0% bei den Frauen. Im Durchschnitt sind 0,33 Typ-II-Osteone pro mm² im endostalen Bereich des anterioren Femurs beim Basel-Kollektiv zu finden (SD: 0,43). Der Median ist 0,17. Bei den Männern liegt der Mittelwert bei 0,36 (SD: 0,49) und bei den Frauen bei 0,28 (SD: 0,32). Der Median ist 0,17 (männlich) bzw. 0,21 (weiblich). Die 95%igen Konfidenzintervalle von Männern (0,23-0,49) und Frauen (0,18-0,39) überschneiden sich deutlich, weshalb wahrscheinlich keine signifikanten Geschlechtsunterschiede existieren (ANOVA p = 0,421).

In Abb. 76a ist keine Abhängigkeit der Typ-II-Osteone vom Alter erkennbar.

Im mittleren Bereich des anterioren Femurs liegt die durchschnittliche Anzahl der Typ-II-Osteone bei 1,18 (SD: 1,09). Der Median ist 1,00. Es konnten 99,0% der Fälle ausgewertet

132
werden (Männer: 98,4%, Frauen: 100,0%). Bei den Männern ist ein Mittelwert von 1,21 (SD: 1,15) und bei den Frauen von 1,13 (SD: 1,01) zu finden. Die Mediane liegen bei 1,00 (männlich) und 0,67 (weiblich). Die 95%igen Konfidenzintervalle der Geschlechter überschneiden sich zu fast 100% (männlich: 0,92-1,50; weiblich: 0,80-1,44), also liegt auch im mittleren Teil kein Geschlechtsunterschied vor (ANOVA p = 0,696).

In Abb. 76b kann ebenfalls keine Altersabhängigkeit der Typ-II-Osteone festgestellt werden.

Periostal werden insgesamt 96,1% der Fälle ausgewertet (Männer: 95,2%; Frauen 97,5%). Der Mittelwert der Anzahl der Typ-II-Osteone pro mm² liegt bei 0,53 (SD: 0,68) und der Median ist 0,25. Bei den Männern ist ein Durchschnittswert von 0,51 (SD: 0,70) und bei den Frauen von 0,57 (SD: 0,66) zu finden. Die Mediane betragen 0,14 (männlich) und 0,38 (weiblich). Die 95%igen Konfidenzintervalle des Mittelwertes überschneiden sich stark (Männer: 0,33-0,69, Frauen 0,36-0,79), somit liegen auch periostal keine Geschlechtsunterschiede bezüglich der Anzahl der Typ-II-Osteone pro mm² vor (ANOVA p = 0,641).

Periostal ist eine Tendenz erkennbar, dass die Anzahl der Typ-II-Osteone pro mm² mit dem Alter zunimmt (Abb. 76c). Die Werte steigen von etwa 0,07 in der Altersklasse der 20jährigen auf etwa 1,7 in der Altersklasse der 80jährigen. Der Korrelationskoeffizient nach Pearson ist hochsignifikant und zeigt einen Wert von 0,652. In den männlichen Individuen liegt die Korrelation bei 0,567 (hochsignifikant) und bei den Frauen ist die lineare Korrelation noch ausgeprägter und hat einen hochsignifikanten Wert von 0,786.

Der höchste Anteil an Typ-II-Osteonen ist definitiv im mittleren Teil des anterioren Femurs zu finden (Grenzen des 95%igen Konfidenzintervalles: 0,96-1,34). Darauf folgt der periostale Teil (0,40-0,67) und die geringste durchschnittliche Anzahl an Typ-II-Osteonen pro mm² weist der endostale Teil auf (0,24-0,42). Da sich die Grenzen der 95%igen Konfidenzintervalle der einzelnen Lokalisationen nicht bzw. kaum überschneiden liegen mit großer Sicherheit signifikant unterschiedliche Mittelwerte vor. Im Levene-Test zeigt sich keine Homogenität der Varianzen (p = 0,00), so kann keine einfaktorielle ANOVA angewendet werden, um die Mittelwerte zu vergleichen. Laut Welch-Test und Brown-Forsythe-Test liegt ein signifikanter Unterschied zwischen mindestens zwei der Lokalisationen vor (p = 0,00). Post-Hoc-Tests deuten darauf hin, dass sich alle drei Lokalisationen signifikant voneinander unterscheiden, wobei der geringste Unterschied zwischen der periostalen und der endostalen Lokalisation berechnet wird (T₃-Dunnett: 0,041; Games-Howell: 0,037).
Anatomie-Kollektiv

<table>
<thead>
<tr>
<th>Ausgewertete Fälle in %</th>
<th>98,1%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mittelwert</td>
<td>0,58</td>
</tr>
<tr>
<td>Standardabweichung</td>
<td>0,74</td>
</tr>
<tr>
<td>Median</td>
<td>0,33</td>
</tr>
<tr>
<td>Minimum</td>
<td>0,00</td>
</tr>
<tr>
<td>Maximum</td>
<td>3,67</td>
</tr>
<tr>
<td>Spannweite</td>
<td>3,67</td>
</tr>
</tbody>
</table>

Tab. 39: Explorative Datenanalyse der Anzahl der Typ-II-Osteone pro mm² des Gesamtquerschnittes des Anatomie-Kollektivs

Der Mittelwert der Anzahl der Typ-II-Osteone beträgt 0,58 (SD: 0,74). Der Median ist 0,33. Maximal wird ein Wert von 3,67 beobachtet (Spannweite = 3,67).

Endostal sind durchschnittlich nur 0,40 Typ-II-Osteone pro mm² zu finden (SD: 0,67). Der Median hat einen Wert von 0,33. Beim männlichen Geschlecht liegt der Mittelwert bei 0,33 (SD: 0,36) und der Median ebenfalls bei 0,33. Bei den Frauen findet man einen Durchschnittswert von 0,48 (SD: 0,91) und einen Median von 0,17. Es ist im vorliegenden Fall nicht sinnvoll einen Vergleich der 95%igen Konfidenzintervalle vorzunehmen, da dieses bei den weiblichen Individuen in den negativen Bereich hineinreicht. Eine einfaktorielle ANOVA zeigt mit einer Signifikanz von 0,533 keinen signifikanten Unterschied.

In der Abb. 77a ist keine Abhängigkeit der Anzahl der Typ-II-Osteone vom Alter erkennbar.

Abb. 77: Anzahl der Typ-II-Osteone pro mm² in Abhängigkeit von den Altersklassen im Anatomie-Kollektiv

Im mittleren Bereich der Kompakta ergibt sich eine durchschnittliche Anzahl an Typ-II-Osteonen von lediglich 0,65 (SD: 0,84) und ein Median von 0,33. Bei den männlichen Individuen wird ein Mittelwert von 0,83 (SD: 0,96) und ein Median von 0,67 beobachtet. Werden nur die weiblichen Individuen betrachtet, liegt der Durchschnittswert bei 0,46 (SD: 0,68) und der Median bei 0,17. Der Unterschied zwischen den Mittelwerten der beiden Geschlechter scheint nicht signifikant zu sein, da sich die 95%igen Konfidenzintervalle
überschneiden (Männer: 0,36-1,31; Frauen: 0,13-0,80). Bestätigt wird diese Vermutung durch eine einfaktorielle ANOVA mit einer Signifikanz von 0,187. Der Abb. 77b ist keine Abhängigkeit der Anzahl der Typ-II-Osteone pro mm² vom Individualalter zu entnehmen.

Periostal sind im Durchschnitt 0,67 Typ-II-Osteone pro mm² zu finden (SD: 0,68). Der Median ist ebenfalls 0,67. In den männlichen Individuen zeigt sich ein Mittelwert von 0,84 (SD: 0,88) und in den weiblichen Individuen ein Wert von 0,50 (SD: 0,37). Die Mediane liegen in beiden Geschlechtern bei 0,67. Die 95%igen Konfidenzintervalle überschneiden sich gering (Männer: 0,40-1,28; Frauen: 0,32-0,68), aber eine einfaktorielle ANOVA zeigt keinen signifikanten Unterschied zwischen den Mittelwerten der beiden Geschlechter (p = 0,140). Abb. 77c lässt keine Altersabhängigkeit erkennen.

Die Anzahl der Typ-II-Osteone pro mm² unterscheidet sich an den verschiedenen Lokalisationen der Kompakta kaum. Da sich die 95%igen Konfidenzintervalle überschneiden (end: 0,17-0,63; mit: 0,36-0,93; per: 0,44-0,90) ist davon auszugehen, dass der Unterschied nicht signifikant ist. Diese Annahme wird durch eine einfaktorielle ANOVA mit einer Signifikanz von 0,244 bestätigt.

4.2.6 Intakte Osteone (Ostint)

Basel-Kollektiv

<table>
<thead>
<tr>
<th>Ausgewertete Fälle in %</th>
<th>94,5%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mittelwert</td>
<td>9,08</td>
</tr>
<tr>
<td>Standardabweichung</td>
<td>4,91</td>
</tr>
<tr>
<td>Median</td>
<td>9,33</td>
</tr>
<tr>
<td>Minimum</td>
<td>0,00</td>
</tr>
<tr>
<td>Maximum</td>
<td>21,38</td>
</tr>
<tr>
<td>Spannweite</td>
<td>21,38</td>
</tr>
</tbody>
</table>

Tab. 40: Explorative Datenanalyse der Anzahl der intakten Osteone pro mm² des Gesamtquerschnittes des Basel-Kollektivs

292 von 309 Fällen (94,5%) konnten bezüglich der intakten Osteone ausgewertet werden (Tab. 40). Durchschnittlich sind 9,08 (SD: 4,91) intakte Osteone auf der anterioren Seite des Femurs zu finden. Der Median ist 9,33. Maximal wurden 21,38 intakte Osteone beobachtet (Spannweite = 21,38).
In den endostalen Bereichen der Kompaktaquerschnitte konnten in 91 von 103 Fällen (88,3%) intakte Osteone ausgezählt werden. Der Mittelwert liegt bei 5,12 (SD: 3,35). Der Median ist 4,33. Werden ausschließlich die männlichen Individuen betrachtet (ausgewertet: 87,3%), ist mit 5,71 (SD: 3,50) ein etwas höherer Mittelwert zu finden als im Gesamtkollektiv. Der Median ist 5,00. Bei den weiblichen Individuen konnten 90% der Fälle ausgewertet werden, wobei der Mittelwert hier mit 4,22 (SD: 2,94) hinter dem der männlichen Individuen zurückbleibt. Der Median ist 3,71.

Die 95%igen Konfidenzintervalle von Männern (4,76–6,66) und Frauen (3,22-5,21) überschneiden sich nur geringfügig, was auf einen signifikanten Unterschied der endostalen Anzahl der intakten Osteone (pro mm²) zwischen den Geschlechtern hindeutet. Eine einfaktorielle ANOVA bestätigt dies (p = 0,037).

Eine Altersabhängigkeit scheint laut Abb. 78a nicht vorzuliegen.

Im mittleren Bereich der Kompakta konnten 99,0% der Fälle ausgewertet werden. Der Mittelwert der Anzahl der intakten Osteone beträgt hier 10,56 (SD: 3,50). Der Median ist 10,67. Von den männlichen Individuen wurden 98,4% der Fälle ausgewertet, wobei der Mittelwert hier 10,98 beträgt (SD: 3,33). Der Median ist ebenfalls 10,67. In der Mitte der Kompakta konnten von den weiblichen Individuen 100% der Fälle ausgewertet werden. Der Mittelwert liegt bei 9,90 intakten Osteonen pro mm² (SD: 3,70) und der Median bei 10,00. Das 95%ige Konfidenzintervall des Mittelwerts bei den Männern hat seine Grenzen bei 10,14 und 11,83. Unter- und Obergrenze (8,72 und 11,08) des 95%igen Konfidenzintervalls der Frauen sind nicht überschneidungsfrei zu dem der Männer, deshalb kann nicht automatisch von einem signifikanten Unterschied der Zahl der intakten Osteone pro mm² in den Geschlechtern ausgegangen werden. Eine einfaktorielle ANOVA findet keinen signifikanten Unterschied zwischen den Geschlechtern (p = 0,128).

Bezüglich der intakten Osteone ist im mittleren Bereich der anterioren Femurkompakta in Abb. 78b keine Altersabhängigkeit erkennbar.
Periostal konnte in 96,1% der Fälle die Anzahl der intakten Osteone bestimmt werden. Der Mittelwert beträgt hier 11,21 intakte Osteone pro mm² (SD: 5,22). Der Median ist 11,71. Bei den männlichen Individuen wurden in 95,2% der Fälle intakte Osteone ausgezählt. Der Mittelwert liegt bei 11,24 (SD: 5,34). Der Median ist 11,73. Bei den Frauen konnten 97,5% der Fälle ausgewertet werden, wobei der Mittelwert mit 11,17 (SD: 5,10) fast so hoch ist wie jener der Männer. Der Median ist 11,29.

Die Untergrenze des 95%igen Konfidenzintervalls der Männer liegt bei 9,86 und die Obergrenze bei 12,62. Das 95%ige Konfidenzintervall der Frauen mit den Grenzen 9,51 und 12,82 überschneidet sich extrem mit dem der männlichen Individuen, was auf keinen Unterschied bezüglich der Anzahl der intakten Osteone pro mm² zwischen den Geschlechtern hindeutet. Eine einfaktorielle ANOVA bestätigt dies (p = 0,948).

Tendenziell nimmt die Anzahl der intakten Osteone laut Abb. 78c mit dem Alter zu. In der Altersklasse der 20jährigen ist eine durchschnittliche Anzahl von etwa 5 intakten Osteonen pro mm² zu finden. In der Altersklasse der 80jährigen ist diese Anzahl auf etwa 15,6 intakte Osteone pro mm² gestiegen. Nach Pearson korreliert das Alter hochsignifikant mit der Anzahl der intakten Osteone pro mm² (0,598). In den männlichen Individuen liegt ein hochsignifikanter Zusammenhang zum Alter von 0,652 und in den weiblichen von 0,529 vor.

Die Untergrenze des 95%igen Konfidenzintervalls ist periostal 10,17 und die Obergrenze 12,25. Somit überschneiden sich die Wertebereiche der mittigen (Grenzen bei 9,87 und 11,24) und periostalen Felder. Beide Lokalisationen heben sich in der Anzahl ihrer intakten Osteone pro mm² jedoch deutlich vom endostalen Teil ab (Grenzen bei 4,42 und 5,82). Der Levene-Test zeigt, dass die Varianzen der drei Gruppen nicht homogen sind (p = 0,000), deshalb kann in diesem Fall keine ANOVA angewendet werden. Sowohl der Welch-Test, als auch der Brown-Forsythe-Test weisen mit einer Signifikanz von 0,000 einen Unterschied zwischen mindestens zwei der Lokalisationen nach. Der endostale Teil zeigt eine signifikant geringere Anzahl an intakten Osteonen, als der mittige und der periostale Teil (p = 0,000). Allerdings besteht kein signifikanter Unterschied zwischen mittigem und periostalem Bereich (p > 0,5). Die endgültigen Nachweise erfolgten durch die Post-Hoc-Tests T₃-Dunnett und Games-Howell.

Anatomie-Kollektiv

<table>
<thead>
<tr>
<th>Ausgewertete Fälle in %</th>
<th>98,1%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mittelwert</td>
<td>10,82</td>
</tr>
<tr>
<td>Standardabweichung</td>
<td>6,63</td>
</tr>
<tr>
<td>Median</td>
<td>11,00</td>
</tr>
<tr>
<td>Minimum</td>
<td>0,00</td>
</tr>
<tr>
<td>Maximum</td>
<td>30,00</td>
</tr>
<tr>
<td>Spannweite</td>
<td>30,00</td>
</tr>
</tbody>
</table>

Tab. 41: Explorative Datenanalyse der Anzahl der intakten Osteone pro mm² des Gesamtquerschnittes des Anatomie-Kollektivs
Der Mittelwert der intakten Osteone pro mm² im Anatomie-Kollektiv beträgt 10,82 (SD: 6,63). Der Median ist 11,00. Maximal wird ein Wert von 30,00 beobachtet (Spannweite 30,00).

Endostal liegt der Mittelwert der Anzahl der intakten Osteone pro mm² bei 6,90 (SD: 5,26) und der Median bei 6,00. Der Durchschnittswert der männlichen Individuen ist 6,50 (SD: 4,51) und der Median ebenfalls 6,00. Werden nur die weiblichen Individuen betrachtet, zeigt sich eine durchschnittliche Anzahl von 7,35 intakten Osteonen pro mm² (SD: 6,11) und ein Median von 6,34. Der Unterschied der Mittelwerte der beiden Geschlechter scheint nicht signifikant zu sein, da sich die 95%-igen Konfidenzintervalle stark überschneiden (Männer: 4,26-8,75; Frauen: 4,10-10,61). Da die Varianzen zwischen den zwei Gruppen nicht homogen sind (Levene-Test: 0,048), muss anstatt einer ANOVA der Welch-Test bzw. der Brown-Forsythe-Test für einen Mittelwertvergleich herangezogen werden. Beide bestätigen mit einer Signifikanz von 0,651, dass die Mittelwerte der beiden Geschlechter nicht signifikant verschieden sind.

Die Anzahl der intakten Osteone pro mm² hängt nur bei den männlichen Individuen vom Alter ab. Es zeigt sich eine signifikante Abnahme mit einer Pearson-Korrelation von -0,472. Im Gesamtkollektiv und bei den weiblichen Individuen ist keine Abhängigkeit zum Alter erkennbar (Abb. 79a).

Im mittleren Bereich der Kompakta findet man eine durchschnittliche Anzahl von 9,96 intakten Osteonen pro mm² (SD: 6,12) und einen Median von 11,00. Bei den männlichen Individuen liegt der Mittelwert bei 10,81 (SD: 5,60) und der Median ebenfalls bei 11,00. Werden nur die weiblichen Individuen betrachtet, zeigt sich ein Durchschnittswert von 9,11 (SD: 6,65) und ein Median von 10,67. Da sich die 95%-igen Konfidenzintervalle stark überschneiden (Männer: 8,03-13,60; Frauen: 5,80-12,42), ist der Unterschied zwischen den Mittelwerten der beiden Geschlechter wahrscheinlich nicht signifikant. Bestätigt wird diese Annahme durch eine einfaktorielle ANOVA mit einer Signifikanz von 0,411.
Eine Altersabhängigkeit der Anzahl der intakten Osteone pro mm² liegt laut Abb. 79b nicht vor.

Periostal zeigt sich im Gesamtkollektiv ein mittlerer Wert von 15,38 (SD: 5,59) und ein Median von 14,00. Bei den männlichen Individuen liegt ein Mittelwert von 15,31 (SD: 5,40) und ein Median von 13,34 vor. Werden nur die weiblichen Individuen betrachtet, ist ein durchschnittlicher Wert von 15,44 (SD: 5,92) und ein Median von 14,67 zu beobachten. Der geringe Unterschied zwischen den Mittelwerten der beiden Geschlechter scheint nicht signifikant zu sein, da sich die 95%igen Konfidenzintervalle fast vollständig überschneiden (Männer: 12,62-17,99; Frauen: 12,50-18,39). Eine ANOVA sichert diese Aussage statistisch ab (p = 0,943).

In der Abb. 79c zeigt sich keine Abhängigkeit der Anzahl der intakten Osteone pro mm² vom Individualalter.

Die Anzahl der intakten Osteone nimmt von endostal nach periostal hin zu. Dabei scheint der Unterschied der Mittelwerte signifikant zu sein, da sich die 95%igen Konfidenzintervalle kaum bzw. gar nicht überschneiden (end: 5,07-8,74; mit: 7,89-12,03; per: 13,49-17,28). Eine einfaktorielle ANOVA mit einer Signifikanz von 0,000 zeigt, dass sich zumindest zwei der Lokalisationen in ihrer Anzahl an intakten Osteonen pro mm² signifikant unterscheiden. Keinen signifikanten Unterschied findet man zwischen dem mittigen und dem endostalen Bereich (Post-Hoc-Tests: Tukey HSD: p = 0,067; Bonferroni: p = 0,079).

4.2.7 Havers’sche Kanäle (Hav)

Basel-Kollektiv

<table>
<thead>
<tr>
<th>Ausgewertete Fälle in %</th>
<th>94,5%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mittelwert</td>
<td>8,77</td>
</tr>
<tr>
<td>Standardabweichung</td>
<td>4,78</td>
</tr>
<tr>
<td>Median</td>
<td>9,00</td>
</tr>
<tr>
<td>Minimum</td>
<td>0,00</td>
</tr>
<tr>
<td>Maximum</td>
<td>21,00</td>
</tr>
<tr>
<td>Spannweite</td>
<td>21,00</td>
</tr>
</tbody>
</table>

Tab. 42: Explorative Datenanalyse der Anzahl der Havers’schen Kanäle pro mm² des Gesamtquerschnittes des Basel-Kollektivs

Die Auswertung der Anzahl der Havers’schen Kanäle erfolgte in 292 von 309 Fällen (94,5%) (Tab. 42). Im Mittel werden 8,77 Havers’sche Kanäle pro Querschnitt beobachtet (SD: 4,78). Der Median ist 9,00. Maximal sind 21,00 Havers’sche Kanäle pro mm² in einem Querschnitt zu finden (Spannweite 21,00).
Endostal konnten insgesamt 88,3% der Fälle ausgewertet werden (Männer: 87,3%, Frauen: 90,0%). Die durchschnittliche Anzahl von Havers’schen Kanälen pro mm² beträgt 4,97 (SD: 3,27). Der Median ist 4,33. Bei den Männern liegt ein Mittelwert von 5,56 (SD: 3,44) und bei den Frauen ein Durchschnittswert von 4,08 (SD: 2,80) vor. Die Mediane betragen 4,83 (Männer) und 3,71 (Frauen). Die 95%igen Konfidenzintervalle der Mittelwerte (Männer: 4,63-6,49; Frauen: 3,13-5,03) überschneiden sich nur wenig, somit könnte ein signifikanter Geschlechtsunterschied gegeben sein. Eine einfaktorielle ANOVA bestätigt den Unterschied zwischen den Geschlechtern (p = 0,035).

In Abb. 80a ist kein Zusammenhang zum Alter erkennbar.

Im mittleren Bereich des anterioren Femurs können 99,0% der Fälle ausgewertet werden (Männer: 98,4%, Frauen: 100,0%). Im Durchschnitt sind 10,31 Havers’sche Kanäle pro mm² zu finden (SD: 3,52). Der Median zeigt einen Wert von 10,33. Bei den Männern ist der Mittelwert 10,75 (SD: 3,41) und bei den Frauen 9,63 (SD: 3,60). Die Mediane liegen bei 10,50 (Männer) und 9,67 (Frauen). Die 95%igen Konfidenzintervalle (Männer: 9,88-11,61, Frauen: 8,47-10,78) überschneiden sich stark, somit liegt kein signifikanter Unterschied zwischen den Geschlechtern vor (ANOVA p = 0,116).

Laut Abb. 80b existiert kein Zusammenhang zwischen der Anzahl der Havers’schen Kanäle und dem Alter.

Periostal konnten 96,1% der Fälle ausgewertet werden (Männer: 95,2%, Frauen: 97,5%). Im Mittel sind 10,69 Havers’sche Kanäle pro mm² im periostalen Bereich zu finden (SD: 5,07). Der Median ist 10,88. Der Durchschnittswert bei den Männern beträgt 10,78 (SD: 5,21) und bei Frauen 10,54 (SD: 4,91). Die Mediane sind 10,87 (Männer) und 10,88 (Frauen). Anhand der 95%igen Konfidenzintervalle (Männer: 9,43-12,12; Frauen: 8,95-12,14) ist erkennbar, dass sich die Mittelwerte nicht signifikant unterscheiden, was eine ANOVA (p = 0,824) bestätigt.
Der Abb. 80c ist zu entnehmen, dass die Anzahl der Havers’schen Kanäle pro mm² mit dem Alter tendenziell ansteigt. In der Altersklasse der 20jährigen ist ein Wert von 4,6 zu finden, der bis zur Altersklasse der 80jährigen auf einen Wert von 14,6 ansteigt. Die Korrelation nach Pearson zwischen Alter und Havers’schen Kanälen im Gesamtkollektiv liegt bei 0,603 und ist hochsignifikant. In den männlichen Individuen zeigt sich eine hochsignifikante Korrelation von 0,657 und in den weiblichen Individuen von 0,533.

Von den drei verschiedenen Lokalisationen scheint sich nur der endostale Teil signifikant abzuheben. Die Grenzen der 95%igen Konfidenzintervalle des mittigen (9,62-11,00) und des periostalen (9,68-11,70) Teils überschneiden sich nahezu vollständig. Im endostalen Bereich ist jedoch eine signifikant geringere Anzahl an Havers’schen Kanälen pro mm² zu finden (95%iges Konfidenzintervall: 4,29-5,65). Da der Levene-Test eine Signifikanz von 0,000 aufweist (Varianzen der drei Gruppen sind nicht homogen), kann keine ANOVA durchgeführt werden. Laut Welch-Test und Brown-Forsythe-Test (p = 0,000) hebt sich zumindest eine der Lokalisationen, wahrscheinlich der endostale Teil, signifikant ab. Der T₃-Test nach Dunnett und der Games-Howell-Test (Post-Hoc-Tests) bestätigen diese Vermutung. Mittiger und periostaler Teil unterscheiden sich fast gar nicht (p > 0,8).

Anatomie-Kollektiv

<table>
<thead>
<tr>
<th>Ausgewertete Fälle in %</th>
<th>98,1%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mittelwert</td>
<td>10,82</td>
</tr>
<tr>
<td>Standardabweichung</td>
<td>6,62</td>
</tr>
<tr>
<td>Median</td>
<td>11,00</td>
</tr>
<tr>
<td>Minimum</td>
<td>0,00</td>
</tr>
<tr>
<td>Maximum</td>
<td>30,00</td>
</tr>
<tr>
<td>Spannweite</td>
<td>30,00</td>
</tr>
</tbody>
</table>

Tab. 43: Explorative Datenanalyse der Anzahl der Havers’schen Kanäle pro mm² des Gesamtquerschnittes des Anatomie-Kollektivs

Der beobachtete durchschnittliche Wert der Anzahl der Havers’schen Kanäle pro mm² liegt bei 10,82 (SD: 6,62). Der Median ist 11,00. Maximal wird ein Wert von 30,00 Havers’schen Kanälen pro mm² gefunden (Spannweite 30,00).

Abb. 81: Anzahl der Havers’schen Kanäle pro mm² in Abhängigkeit von den Altersklassen im Anatomie-Kollektiv
Die Auswertung der Anzahl der Havers’schen Kanäle pro mm² entspricht der Auswertung der Anzahl der intakten Osteone pro mm² und ist somit dem Punkt 4.2.6 analog.

4.2.8 Volkmann’sche Kanäle (Volk)

Basel-Kollektiv

<table>
<thead>
<tr>
<th>Ausgewertete Fälle in %</th>
<th>99,7%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mittelwert</td>
<td>0,29</td>
</tr>
<tr>
<td>Standardabweichung</td>
<td>0,37</td>
</tr>
<tr>
<td>Median</td>
<td>0,17</td>
</tr>
<tr>
<td>Minimum</td>
<td>0,00</td>
</tr>
<tr>
<td>Maximum</td>
<td>2,33</td>
</tr>
<tr>
<td>Spannweite</td>
<td>2,33</td>
</tr>
</tbody>
</table>

Tab. 44: Explorative Datenanalyse der Anzahl der Volkmann’schen Kanäle pro mm² des Gesamtquerschnittes des Basel-Kollektivs

Es wurden 308 von 309 Fällen ausgewertet (99,7%). Im Mittel sind 0,29 Volkmann’sche Kanäle pro mm² zu finden (SD: 0,37). Der Median ist 0,17. Maximal werden 2,33 Volkmann’sche Kanäle pro mm² beobachtet (Spannweite 2,33).

Abb. 82: Anzahl der Volkmann’schen Kanäle pro mm² in Abhängigkeit von den Altersklassen im Basel-Kollektiv

Endostal konnten 100% der Fälle ausgewertet werden. Weder die Mittelwerte, noch die Standardabweichung unterscheiden sich stark (gesamt: 0,12/0,17; Männer: 0,13/0,16; Frauen: 0,11/0,18). Alle Mediane sind 0. Es gibt keine signifikanten Geschlechtsunterschiede (ANOVA p = 0,630) und auch keine ersichtlichen Zusammenhänge zum Individualalter (siehe Abb. 82a).

Auch im mittleren Bereich können 100% der Fälle ausgewertet werden. Und ebenso wie im endostalen Bereich sind auch hier die Mittelwerte und die Standardabweichungen annähernd identisch (gesamt: 0,27/0,41; Männer: 0,28/0,41; Frauen: 0,26/0,40). Die Mediane liegen ebenfalls alle bei 0,00. Die Signifikanz der einfaktoriellen ANOVA beträgt 0,792, somit liegt
definitiv kein signifikanter Unterschied zwischen den Geschlechtern vor. Eine Abhängigkeit vom Individualalter ist in Abb. 82b nicht erkennbar.

Periostal werden 99,0% der Fälle ausgewertet (Männer: 98,4%, Frauen: 100,0%). Die durchschnittliche Anzahl von Volkmann’schen Kanälen pro mm² im periostalen Bereich ist 0,49 (SD: 0,40). Bei den Männern liegt ein Mittelwert von 0,44 (SD: 0,36) und bei den Frauen ein Mittelwert von 0,56 (SD: 0,44) vor. Die Mediane betragen alle 0,38. Die weiblichen Individuen haben tendenziell etwas höhere Werte aufzuweisen (95%ige Konfidenzintervalle: Männer: 0,35-0,53; Frauen: 0,42-0,70). Eine einfaktorielle ANOVA ergibt jedoch keine signifikanten Geschlechtsunterschiede (p = 0,137).

Auch periostal kann kein Zusammenhang zum Individualalter erkannt werden (siehe Abb. 82c). Laut Pearson existiert allerdings eine signifikante Korrelation der Anzahl der Volkmann’schen Kanäle zum Alter, die jedoch nur schwach linear ausgeprägt ist (0,207). Ein Zusammenhang zum Alter existiert jedoch nur im Gesamtkollektiv und nicht in den einzelnen Geschlechtern.

Bezüglich der Lokalisationen im Knochen nimmt die Anzahl von Volkmann’schen Kanälen pro mm² von endostal nach periostal hin zu. Die Grenzen der sich nicht überschneidenden 95%igen Konfidenzintervalle bestätigen diesen Trend (endostal: 0,091-0,16; mitte: 0,19-0,35; periostal: 0,41-0,57). Da die Varianzen der drei Gruppen nicht homogen sind (Levene Test p = 0,000), kann keine ANOVA durchgeführt werden. Aber sowohl der Welch-, als auch der Brown-Forsythe-Test zeigen mit p = 0,000 einen signifikanten Unterschied zwischen den Lokalisationen an. Beide Post-Hoc-Tests (T₃-Dunnett, Games-Howell) bestätigen, dass sich alle drei Lokalisationen signifikant voneinander unterscheiden.

Anatomie-Kollektiv

<table>
<thead>
<tr>
<th>Ausgewertete Fälle in %</th>
<th>98,1%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mittelwert</td>
<td>0,21</td>
</tr>
<tr>
<td>Standardabweichung</td>
<td>0,33</td>
</tr>
<tr>
<td>Median</td>
<td>0,00</td>
</tr>
<tr>
<td>Minimum</td>
<td>0,00</td>
</tr>
<tr>
<td>Maximum</td>
<td>2,00</td>
</tr>
<tr>
<td>Spannweite</td>
<td>2,00</td>
</tr>
</tbody>
</table>

Tab. 45: Explorative Datenanalyse der Anzahl der Volkmann’schen Kanäle pro mm² des Gesamtquerschnittes des Anatomie-Kollektivs

Der Mittelwert der Anzahl der Volkmann’schen Kanäle pro mm² im Gesamtkollektiv beträgt lediglich 0,21 (SD: 0,33). Der Median ist 0. Der höchste beobachtete Wert liegt bei 2,00 Volkmann’schen Kanälen pro mm² (Spannweite 2,00).
Endostal sind im Durchschnitt nur 0,059 Volkmann’sche Kanäle pro mm² zu finden (SD: 0,15). Der Median liegt bei 0. Bei den männlichen Individuen zeigt sich ein Mittelwert von 0,055 (SD: 0,13) und bei den Frauen ein Durchschnittswert von 0,063 (SD: 0,18). Die Mediane betragen in beiden Geschlechtern 0. Die 95%-igen Konfidenzintervalle beider Geschlechter weisen negative Werte auf, die physiologisch nicht sinnvoll sind (Männer: -0,0079-0,12; Frauen: -0,034-0,16). Laut einer ANOVA unterscheiden sich die Mittelwerte der beiden Geschlechter nicht signifikant (p = 0,889).

Mittig zeigen sich durchschnittlich 0,23 Volkmann’sche Kanäle pro mm² (SD: 0,30). Der Median hat einen Wert von 0. Bei den männlichen Individuen findet man einen Durchschnittswert von 0,20 (SD: 0,23) und einen Median von 0,17. Werden nur die weiblichen Individuen betrachtet, liegt der Mittelwert bei 0,26 (SD: 0,35) und der Median bei 0. Der Unterschied zwischen den Geschlechtern scheint angesichts der Überschneidung ihrer 95%-igen Konfidenzintervalle nicht signifikant zu sein (Männer: 0,087-0,32; Frauen: 0,083-0,43). Eine ANOVA bestätigt diese Annahme (p = 0,578).

Im periostalen Bereich ist ein Durchschnittswert von 0,33 (SD: 0,42) und ein Median von ebenfalls 0,33 zu finden. Bei den männlichen Individuen zeigt sich ein Mittelwert von 0,38 (SD: 0,52) und bei den weiblichen Individuen ein durchschnittlicher Wert von 0,28 (SD: 0,29). Die Mediane sind in beiden Fällen 0,33. Der Unterschied der Mittelwerte zwischen den Geschlechtern scheint nicht signifikant zu sein, da sich die 95%-igen Konfidenzintervalle stark überschneiden (Männer: 0,12-0,64; Frauen: 0,14-0,42). Bestätigt wird dies durch eine einfaktorielle ANOVA (p = 0,471).

Bei Betrachtung der Abb. 83a, b und c, ist in keiner der drei Lokalisationen eine Abhängigkeit der Anzahl der Volkmann’schen Kanäle pro mm² zum Alter erkennbar.
Die Anzahl der Volkmann’schen Kanäle nimmt von endostal nach periostal hin zu, wobei sich nur der endostale Wert signifikant abheben scheint (95%-ige Konfidenzintervalle: end: 0,0053-0,11; mit: 0,13-0,33; per: 0,19-0,47). Eine ANOVA kann aufgrund der nicht homogenen Varianzen (Levene-Test: 0,001) nicht durchgeführt werden. Deshalb wird auf den Welch-Test (p = 0,000) und den Brown-Forsythe-Test (p = 0,002) zurückgegriffen, die bestätigen, dass sich zumindest zwei der Lokalisationen signifikant unterscheiden. Die Post-Hoc-Tests Dunnett-T$_3$ und Games-Howell bestätigen, dass sich nur der endostale Teil signifikant von den anderen beiden unterscheidet, nicht jedoch der mittlere vom periostalen (p > 0,5).

4.2.9 Osteonaler Knochen (Ostkno)

Basel-Kollektiv

<table>
<thead>
<tr>
<th>Ausgewertete Fälle in %</th>
<th>90,9%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mittelwert</td>
<td>33,16%</td>
</tr>
<tr>
<td>Standardabweichung</td>
<td>18,07%</td>
</tr>
<tr>
<td>Median</td>
<td>34,83%</td>
</tr>
<tr>
<td>Minimum</td>
<td>0,00%</td>
</tr>
<tr>
<td>Maximum</td>
<td>72,88%</td>
</tr>
<tr>
<td>Spannweite</td>
<td>72,88%</td>
</tr>
</tbody>
</table>

Tab. 46: Explorative Datenanalyse des Anteils an osteonalem Knochen des Gesamtquerschnittes des Basel-Kollektivs

Der Anteil an osteonalem Knochen konnte in 90,9% der Fälle bestimmt werden (281 von 309 Fällen). Der Mittelwert des Basel-Kollektivs liegt bei 33,16% (SD: 18,07%). Der Median ist 34,83%. Der maximale Wert des Anteils an osteonalem Knochen beträgt 72,88% (Spannweite 72,88%).

Abb. 84: Anteil an osteonalem Knochen in Abhängigkeit von den Altersklassen im Basel-Kollektiv

Endostal können insgesamt 80,6% der Fälle bezüglich des Anteils an osteonalem Knochen ausgewertet werden (Männer: 76,2%, Frauen: 87,5%). Der Mittelwert im Gesamtkollektiv liegt bei 17,59% (SD: 12,16%). Der Median ist 16,17%. Werden nur die männlichen
Individuen betrachtet, beträgt der Mittelwert 19,83% (SD: 12,57%). Der Median ist 18,42%. Bei den weiblichen Individuen zeigt sich ein geringerer Mittelwert von 14,51% (SD: 11,02%). Der Median liegt hier bei 10,17%. Werden die 95%igen Konfidenzintervalle zwischen Männern und Frauen verglichen (Männer: 16,19%-23,48%, Frauen: 10,73%-18,30%), überschneiden sich diese kaum. Es scheint demnach ein signifikanter Unterschied des Anteils an osteonalem Knochen im endostalen Bereich des anterioren Femurs zwischen den Geschlechtern vorzuliegen. Eine ANOVA bestätigt dies knapp mit einer Signifikanz von 0,048.

Eine direkte Altersabhängigkeit des Anteils an osteonalem Knochen im endostalen Bereich scheint laut Abb. 84a nicht vorzuliegen. Die Werte steigen von etwa 14% (20er und 30er) auf über 20% (40er und 50er), um danach wieder auf den Ausgangswert zu fallen (70er und 80er).

Mittig konnten 98,1% der Fälle ausgewertet werden (Männer: 96,8%, Frauen: 100,0%). Der Mittelwert des Gesamtkollektivs beträgt 40,93% (SD: 14,11%). Der Median ist 42,33%. Bei den männlichen Individuen liegt ein Mittelwert von 44,17% (SD: 11,35%) und ein Median von 45,00% vor. Werden nur die weiblichen Individuen betrachtet, zeigt sich ein Mittelwert von 35,98% (SD: 16,44%) und ein Median von 38,17%. Ein Vergleich der Grenzen der 95%igen Konfidenzintervalle des Mittelwerts von Männern und Frauen (Männer: 41,27%-47,08%, Frauen: 30,72%-41,23%) ergibt, dass diese sich nicht überschneiden. Demnach existieren wahrscheinlich Geschlechtsunterschiede bezüglich des Anteils an osteonalem Knochen im mittleren Bereich der anterioren Femurkompakta. Da sich die Varianzen zwischen Männern und Frauen aber stark unterscheiden (Levene-Test p = 0,020), kann keine ANOVA durchgeführt werden. Sowohl der Welch-Test, als auch der Brown-Forsythe-Test zeigen mit einer Signifikanz von 0,008, dass die weiblichen Individuen im Mittel einen niedrigeren Anteil an osteonalem Knochen aufweisen, als die Männer.

Laut Abb. 84b existiert kein Zusammenhang mit dem Alter. Der Wert für den Anteil an osteonalem Knochen bewegt sich permanent etwa zwischen 38% und 46%. Lediglich in der Altersklasse der 70jährigen fällt er auf ca. 30%. Dieser starke Abfall wird hauptsächlich durch die weiblichen Individuen verursacht, deren Wert in dieser Altersklasse durchschnittlich nur bei 22% liegt.

Im periostalen Bereich erfolgte eine Auswertung in 94,2% der Fälle (Männer: 92,1%, Frauen: 97,5%). Der Mittelwert des Gesamtkollektivs beträgt 38,39% (SD: 17,85%). Der Median ist 42,17%. Bei den Männern zeigt der Mittelwert einen Betrag von 38,66% (SD: 18,49%) und der Median einen Wert von 43,00%. Im Fall der weiblichen Individuen liegt der Mittelwert bei 37,99% (SD: 17,07%) und der Median bei 40,75%. Schon bei Betrachtung dieser Werte wird klar, dass kaum Geschlechtsunterschiede existieren. So überschneiden sich auch die 95%igen Konfidenzintervalle des Mittelwertes zu fast 100% (Männer: 33,79%-43,52%, Frauen: 32,45%-43,52%). Eine einfaktorielle ANOVA (p = 0,857) bestätigt, dass kein signifikanter Geschlechtsunterschied vorliegt.
In Abb. 84c ist ein tendenzieller Anstieg des Anteils an osteonalem Knochen mit dem Alter zu erkennen. Die Werte steigen von etwa 22% (20er) auf etwa 46% (80er), wobei sich der Anstieg ab der Altersklasse der 40jährigen verlangsamt. Nach Pearson wird ein hochsignifikanter Zusammenhang des Anteils an osteonalem Knochen mit dem Alter festgestellt, der allerdings nur schwach linear ausgeprägt ist (0,402). Werden die Geschlechter getrennt voneinander betrachtet, ist bei den Männern eine hochsignifikante Korrelation von 0,499 und bei den Frauen kein Zusammenhang des Anteils an osteonalem Knochen zum Individualalter zu finden.

Werden die 95%igen Konfidenzintervalle des Mittelwertes der drei Lokalisationen betrachtet (endostal: 14,93%-20,24%, mitte: 38,14%-43,71%, periostal: 34,79%-41,98%), fällt auf, dass sich der mittlere und der peristale Teil stark überschneiden. Der endostale Teil zeigt jedoch einen Anteil an osteonalem Knochen, der deutlich unter den Untergrenzen des mittigen und des periostalen Teils liegt. Da die Varianzen der drei Gruppen nicht homogen verteilt sind (Levene Test p = 0,001), kann keine ANOVA durchgeführt werden. Aber der Welch-Test und der Brown-Forsythe-Test weisen mit einer Signifikanz von 0,000 einen signifikanten Unterschied zwischen den Lokalisationen endostal und peristal bzw. mittig nach. Die Post-Hoc-Tests nach Dunnett (T₃) und Games-Howell ergeben, dass sich der endostale Teil signifikant von mittigem und peristalem Teil abhebt (p = 0,000), aber dass sich der mittige und der peristale Teil nicht signifikant voneinander unterschieden (p > 0,5).

Anatomie-Kollektiv

<table>
<thead>
<tr>
<th>Ausgewertete Fälle in %</th>
<th>98,1%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mittelwert</td>
<td>29,10%</td>
</tr>
<tr>
<td>Standardabweichung</td>
<td>16,40%</td>
</tr>
<tr>
<td>Median</td>
<td>28,00%</td>
</tr>
<tr>
<td>Minimum</td>
<td>0,00%</td>
</tr>
<tr>
<td>Maximum</td>
<td>66,00%</td>
</tr>
<tr>
<td>Spannweite</td>
<td>66,00%</td>
</tr>
</tbody>
</table>

Tab. 47: Explorative Datenanalyse des Anteils an osteonalem Knochen des Gesamtquerschnittes des Anatomie-Kollektivs

Im Mittel beträgt der Anteil an osteonalem Knochen im Anatomie-Kollektiv 29,10% (SD: 16,40%). Der Median ist 28,00%. Maximal wird ein Wert von 66,00% beobachtet (Spannweite 66,00%).
Im endostalen Bereich der Kompakta des Anatomie-Kollektivs zeigt sich ein durchschnittlicher Anteil von 18,44% (SD: 12,94%) und ein Median von 18,50%. Die männlichen Individuen haben einen Mittelwert von 18,67% (SD: 10,13%) und einen Median von ebenfalls 18,50%. Bei den Frauen liegt der Durchschnittswert bei 18,19% (SD: 15,88%) und der Median bei 16,50%. Der Unterschied zwischen den Mittelwerten der beiden Geschlechter scheint jedoch nicht signifikant zu sein, da sich die 95%-igen Konfidenzintervalle stark überschneiden (Männer: 13,63%-23,70%; Frauen: 9,73%-26,65%). Eine ANOVA kann aufgrund der nicht-homogenen Varianzen nicht durchgeführt werden (Levene-Test: 0,014). Der Welch-Test und der Brown-Forsythe-Test zeigen jedoch mit einer Signifikanz von 0,918, dass die Mittelwerte der beiden Geschlechter fast identisch sind.

Im mittleren Bereich ergibt sich ein durchschnittlicher Anteil an osteonalem Knochen von 29,81% (SD: 17,65%) und ein Median von 27,00%. Werden nur die männlichen Individuen betrachtet, liegt der Mittelwert bei 36,28% (SD: 15,56%) und der Median bei 40,00%. Bei den weiblichen Individuen ist ein Durchschnittswert von 23,33% (SD: 17,62%) und ein Median von 21,00% zu beobachten. Aufgrund der geringen Überschneidung der 95%-igen Konfidenzintervalle der Mittelwerte (Männer: 28,54%-44,02%; Frauen: 14,57%-32,10%) kann davon ausgegangen werden, dass der Anteil an osteonalem Knochen in Frauen über 60 Jahren signifikant geringer ist, als bei Männern über 50 Jahren. Diese Annahme wird durch eine einfaktorielle ANOVA mit einer Signifikanz von 0,026 bestätigt.

Aus Abb. 85b wird ersichtlich, dass der Anteil an osteonalem Knochen ab der Altersklasse der 60jährigen stark abnimmt. Aufgrund der geringen Individuenzahlen in den jüngeren Altersklassen der Frauen (50er, 60er) nicht klar wird, ob sich dort zunächst wie bei den
4. Ergebnisse

Männern eine Art Plateau befindet, das dann später stark abnimmt. Der Verlauf der Abnahme des Anteils an osteonalem Knochen mit zunehmendem Individualalter scheint in den Geschlechtern auf jeden Fall unterschiedlich zu verlaufen. Bei den männlichen Individuen findet bis zur Altersklasse der 70jährigen nur eine schwache Abnahme statt (50er: 47%; 70er: 44%), um danach bis zu den 90jährigen drastisch abzusinken (20%). Bei den Frauen ist der Verlauf umgekehrt. Bis zu den 70jährigen liegen nicht genügend Daten vor, um genauere Aussagen machen zu können (nur ein Individuum in der Altersklasse der 60jährigen). Aber ab der Altersklasse der 70jährigen verlangsamt sich die Abnahme des Anteils an osteonalem Knochen sehr (70er: 24%; 90er: 21%). Der lineare Korrelationskoeffizient nach Pearson ist für das Gesamtkollektiv hochsignifikant (-0,539). Betrachtet man die Geschlechter getrennt voneinander, ergibt sich für die weiblichen Individuen keine Korrelation zum Alter und für die männlichen Individuen eine signifikante Korrelation von -0,569.

Periostal liegt der Mittelwert des Gesamtkollektivs bei 38,47% (SD: 11,69%) und der Median bei 37,50%. Bei den männlichen Individuen ist ein durchschnittlicher Anteil an osteonalem Knochen von 41,67% (SD: 10,87%) und ein Median von 39,00% zu finden. Bei den Frauen beträgt der Mittelwert 35,28% (SD: 11,90%) und der Median 33,50%. Die 95%-igen Konfidenzintervalle der Mittelwerte der beiden Geschlechter überschneiden sich teilweise (Männer: 36,26%-47,07%; Frauen: 29,36%-41,20%). Der Unterschied der Mittelwerte ist laut einer ANOVA nicht signifikant (p = 0,102).

Der Verlauf der Kurven in Abb. 85c zeigt deutlich, dass in den Altersklassen der 60- bzw. 70jährigen ein maximaler Wert des Anteils an osteonalem Knochen erreicht wird (etwa 45-48%). Davor ist der Wert niedriger und bis zur Altersklasse der 80jährigen sinkt er auch wieder stark ab (36%), um dann wieder eine Art Plateau zu erreichen (90er: 34%). Berechnet man die Korrelationen nach Pearson ergibt sich weder für das Gesamtkollektiv, noch für eines der beiden Geschlechter eine signifikante Korrelation.

Der Anteil an osteonalem Knochen nimmt von endostal nach periostal hin zu. Wahrscheinlich sind die Unterschiede der Mittelwerte signifikant, da sich die 95%-igen Konfidenzintervalle kaum bzw. gar nicht überschneiden (end: 13,93%-22,96%; mit: 23,83%-35,78%; per: 34,52%-42,43%). Die Varianzen der drei Gruppen sind nicht homogen (Levene-Test: 0,006), weshalb zum Vergleich der Mittelwerte der Welch-Test bzw. der Brown-Forsythe-Test angewendet wird. Mit beiden Tests ergibt sich ein signifikanter Unterschied von zumindest zwei der Gruppen (p = 0,000). Die Post-Hoc-Tests nach Dunnett (T₃) und Games-Howell ergeben signifikante Unterschiede von der endostalen Lokalisation zur mittigen und periostalen Lokalisation. Allerdings liegt der Unterschied zwischen mittigem und periostalem Teil an der Grenze zur Signifikanz (Dunnett-T₃: 0,050; Games-Howell: 0,044).
4.2.10 Geometrische Daten der Osteone

Obwohl der Durchmesser und der Umfang aus der Fläche der Osteone berechnet wurden, werden im Folgenden diese beiden Größen der Vollständigkeit halber mit aufgeführt. Vor Allem soll dadurch die Vergleichbarkeit mit Werten aus der Literatur gewährleistet werden. Bei allen Auswertungen, die sich auf geometrische Daten der Osteone beziehen, was auch die Aktivierungsfrequenz und die Knochenbildungsrate beinhaltet, werden lediglich diejenigen Fälle zur Auswertung herangezogen, in deren Querschnitt an einer Lokalisation mindestens 25 Osteone zur Berechnung der durchschnittlichen geometrischen Daten herangezogen werden konnten (Cho et al. 2006).

Die Auswertung der drei Kenngrößen Fläche, Umfang und Durchmesser der Osteone, erfolgt in großen Teilen gemeinsam, da alle diese Werte über Formeln voneinander abhängen (siehe 3.2.5) und sich somit die Zusammenhänge der Werte zu Alter und Geschlecht nicht unterscheiden.

Baseline-Kollektiv

Lediglich für 68,0% der Fälle (210 von 309) konnten im Baseline-Kollektiv sinnvolle Werte berechnet werden.

Durchschnittliche Fläche eines Osteons (OstA)

Die durchschnittliche Fläche eines Osteons wird, wie im Materialteil beschrieben (Punkt 3.2.5), aus der Anzahl der Osteone pro mm² und der prozentual von osteonalem Knochen eingenommenen Fläche berechnet.

<table>
<thead>
<tr>
<th>Ausgewertete Fälle in %</th>
<th>68,0%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mittelwert</td>
<td>0,0375mm²</td>
</tr>
<tr>
<td>Standardabweichung</td>
<td>0,0101</td>
</tr>
<tr>
<td>Median</td>
<td>0,0368mm²</td>
</tr>
<tr>
<td>Minimum</td>
<td>0,0154mm²</td>
</tr>
<tr>
<td>Maximum</td>
<td>0,0774mm²</td>
</tr>
<tr>
<td>Spannweite</td>
<td>0,0620mm²</td>
</tr>
</tbody>
</table>

Tab. 48: Explorative Datenanalyse der durchschnittlichen Fläche eines Osteons des Gesamtquerschnittes des Baseline-Kollektivs

Die durchschnittliche Fläche eines Osteons im anterioren Bereich des Femurs im Baseline-Kollektiv beträgt 0,0375mm² (SD: 0,0101). Der Median ist 0,0368mm². Die kleinsten Osteone haben eine durchschnittliche Fläche von 0,0154mm², die größten Osteone zeigen eine durchschnittliche Fläche von 0,0774mm² (Spannweite 0,0620mm²).

Durchschnittlicher Umfang eines Osteons (OstU)

Der Umfang wird unter der Annahme aus der Fläche berechnet, dass ein Osteon kreisförmig ist (siehe Punkt 3.2.5).
4. Ergebnisse

<table>
<thead>
<tr>
<th>Ausgewertete Fälle in %</th>
<th>68,0%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mittelwert</td>
<td>0,6769mm</td>
</tr>
<tr>
<td>Standardabweichung</td>
<td>0,0902</td>
</tr>
<tr>
<td>Median</td>
<td>0,6787mm</td>
</tr>
<tr>
<td>Minimum</td>
<td>0,4391mm</td>
</tr>
<tr>
<td>Maximum</td>
<td>0,9862mm</td>
</tr>
<tr>
<td>Spannweite</td>
<td>0,5471mm</td>
</tr>
</tbody>
</table>

Tab. 49: Explorative Datenanalyse des durchschnittlichen Umfangs eines Osteons des Gesamtquerschnittes des Basel-Kollektivs

Der durchschnittliche Umfang eines Osteons aus dem Basel-Kollektiv beträgt 0,677mm (SD: 0,0902). Der Median ist 0,679mm. Der minimale durchschnittliche Umfang eines Osteons beträgt 0,439mm, der maximale 0,986mm (Spannweite 0,547).

Durchschnittlicher Durchmesser eines Osteons (OstD)

Der Durchmesser eines Osteons ist die am häufigsten verwendete Kenngröße und wird in der Literatur generell in Mikrometern (µm) angegeben, weshalb auch in dieser Arbeit so verfahren wird. Er wird, unter der Annahme, dass ein Osteon kreisförmig ist, mit Hilfe der Kreisformel aus der Fläche eines Osteons berechnet (siehe Methodenteil, Punkt 3.2.5).

<table>
<thead>
<tr>
<th>Ausgewertete Fälle in %</th>
<th>68,0%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mittelwert</td>
<td>216µm</td>
</tr>
<tr>
<td>Standardabweichung</td>
<td>28,7</td>
</tr>
<tr>
<td>Median</td>
<td>216µm</td>
</tr>
<tr>
<td>Minimum</td>
<td>140µm</td>
</tr>
<tr>
<td>Maximum</td>
<td>314µm</td>
</tr>
<tr>
<td>Spannweite</td>
<td>174µm</td>
</tr>
</tbody>
</table>

Tab. 50: Explorative Datenanalyse des durchschnittlichen Durchmessers eines Osteons des Gesamtquerschnittes des Basel-Kollektivs

Der durchschnittliche Durchmesser der Osteone des Basel-Kollektivs beträgt 216 µm (SD: 28,7). Der Median ist ebenfalls 216 µm. Die kleinsten Osteone haben einen durchschnittlichen Durchmesser von 140µm, die größten messen etwa 314µm im Durchmesser (Spannweite 174µm).

Da der Verlauf der Kurven bezüglich der Altersabhängigkeit der geometrischen Daten der Osteone, bis auf unterschiedliche Skalierungen der Y-Achse, absolut identisch ist, soll hier lediglich die Altersabhängigkeit der durchschnittlichen Fläche eines Osteons exemplarisch dargestellt werden.
Im endostalen Bereich konnten bezüglich der Fläche, des Umfangs und des Durchmessers jeweils lediglich für 39 von 103 Individuen (37,9%) sinnvolle geometrische Daten erhoben werden (Männer: 41,3%, Frauen: 32,5%).

Der Mittelwert der Fläche eines Osteons liegt endostal bei 0,0368mm² (SD: 0,00851). Der Median ist 0,0360mm². Werden ausschließlich die männlichen Individuen betrachtet, zeigt sich ein Mittelwert von 0,0367mm² (SD: 0,00919) und ein Median von 0,0351mm². Bei den weiblichen Individuen ist die durchschnittliche Fläche eines Osteons 0,0372mm² (SD: 0,00731) und der Median 0,0380mm².

Im Durchschnitt liegt der Umfang eines Osteons endostal bei 0,671mm (SD: 0,0719) und der Median bei 0,673mm. In den männlichen Individuen ist der Mittelwert 0,669mm (SD: 0,0777) und der Median 0,663mm. Werden die weiblichen Individuen betrachtet, zeigt der Umfang eines Osteons den durchschnittlichen Wert von 0,674mm (SD: 0,0615) und der Median einen Wert von 0,688mm.

Der mittlere Wert des Durchmessers eines Osteons beträgt 214µm (SD: 22,9) und der Median 214µm. Werden ausschließlich die männlichen Individuen betrachtet, liegt der Mittelwert bei 213µm (SD: 24,7) und der Median bei 211µm. Bei den weiblichen Individuen zeigt der Durchmesser eines Osteons einen Wert von 215µm (SD: 19,6) und der Median einen Wert von 219µm.

Die 95%igen Konfidenzintervalle von Männern und Frauen überschneiden sich im Falle der Fläche, des Umfangs und des Durchmessers stark (die Grenzen sollen hier im Einzelnen nicht angegeben werden). Somit scheinen keine signifikanten Größenunterschiede der Osteone in den verschiedenen Geschlechtern im endostalen Bereich des anterioren Femurs zu existieren. Eine einfaktorielle ANOVA bestätigt dies (Signifikanzen: OstA: 0,864; OstU: 0,824; OstD: 0,826).

Bezüglich der geometrischen Daten der Osteone im endostalen Bereich ist kein Zusammenhang zum Alter erkennbar (siehe Abb. 86a). Die Werte in den einzelnen Altersklassen schwanken mehr oder weniger stark um den jeweiligen Mittelwert.
4. Ergebnisse

Mittig konnten in 78,6% der Fälle sinnvolle geometrische Daten der Osteone erhoben werden (Männer: 81,0%, Frauen: 69,8%).
Der durchschnittliche Wert der Fläche eines Osteons liegt bei 0,0397mm² (SD: 0,0109) und der Median bei 0,0390mm². Bei den Männern beträgt der Mittelwert 0,0403mm² (SD: 0,0101) und der Median 0,0390mm². Werden die weiblichen Individuen betrachtet, ist ein Durchschnittswert von 0,0386mm² (SD: 0,0122) und ein Median von 0,0389mm² zu finden.
Im Mittel hat der Umfang eines Osteons einen Wert von 0,698mm (SD: 0,0959) und der Median den Wert 0,697mm. Bei den Männern ist der Mittelwert 0,704mm (SD: 0,0895) und der Median 0,700mm. Werden nur die Frauen betrachtet, liegt der durchschnittliche Umfang eines Osteons bei 0,687mm (SD: 0,107) und der Median bei 0,695mm.
Der Mittelwert des Durchmessers eines Osteons beträgt 222µm (SD: 30,5) und der Median ebenfalls 222µm. Werden nur die männlichen Individuen betrachtet, ist ein durchschnittlicher Durchmesser von 224µm (SD: 28,5) und ein Median von 223µm zu finden. Der Durchschnittswert bei den Frauen liegt bei 219µm (SD: 33,9) und der Median bei 221µm. Die 95%igen Konfidenzintervalle des Mittelwertes von Männern und Frauen überschneiden sich für die geometrischen Daten eines Osteons sehr (die Grenzen der Intervalle sollen hier im Einzelnen nicht aufgeführt werden). Somit scheint kein signifikanter Geschlechtsunterschied bezüglich der Größenverhältnisse der Osteone im mittigen Bereich der anterioren Femurkompakta des Basel-Kollektivs vorzuliegen. Statistisch bestätigt wird dies durch eine einfaktorielle ANOVA (Signifikanzen: OstA: 0,497; OstU: 0,431; OstD: 0,431).
Bezüglich der geometrischen Daten eines Osteons ist mittig eine tendenzielle Abnahme der Mittelwerte zu erkennen, allerdings verläuft diese Abnahme nicht konstant, sondern schwankt vor Allem zwischen den Altersklassen der 40er und 60er weit über den Mittelwert nach oben (siehe Abb. 86b). Nach Pearson ergeben sich für die Fläche, den Umfang und den Durchmesser keine signifikanten Korrelationen zum Alter.

Periostal konnten insgesamt 87,4% der Fälle bezüglich der geometrischen Daten der Osteone ausgewertet werden (Männer: 84,1%, Frauen: 86,0%).
Der Mittelwert der Fläche eines Osteons liegt bei 0,0358mm² (SD: 0,00975) und der Median bei 0,0344mm². Werden ausschließlich die männlichen Individuen betrachtet, zeigt sich ein durchschnittlicher Wert von 0,0359mm² (SD: 0,00909) und ein Median von 0,0362mm². Bei den weiblichen Individuen ist der Mittelwert 0,0356mm² (SD: 0,0108) und der Median 0,0336mm².
Im Durchschnitt beträgt der Umfang eines Osteons 0,661mm (SD: 0,0891) und der Median 0,654mm. Bei den männlichen Individuen ergibt sich ein Mittelwert von 0,663mm (SD: 0,0852) und ein Median von 0,671mm. Werden nur die Frauen betrachtet, ist der durchschnittliche Umfang eines Osteons 0,658mm (SD: 0,0956) und der Median 0,649mm. Der mittlere Wert des Durchmessers eines Osteons ist 210µm (SD: 28,4) und der Median 208µm. Werden ausschließlich die männlichen Individuen betrachtet, zeigt sich ein Mittelwert von 211µm (SD: 27,1) und ein Median von 214µm. Bei den weiblichen Individuen
beträgt der durchschnittliche Durchmesser eines Osteons 209µm (SD: 30,4) und der Median 207µm.

Die 95%-igen Konfidenzintervalle der Mittelwerte der geometrischen Daten der Osteone von Männern und Frauen überschneiden sich extrem (die Grenzen sollen im Einzelnen nicht angegeben werden). Aus der Überschneidung ist zu schließen, dass kein signifikanter Geschlechtsunterschied bei den Größenverhältnissen der Osteone im periostalen Bereich der anterioren Femurkompakta vorliegt. Dies bestätigt eine einfaktorielle ANOVA (Signifikanzen: OstA: 0,869, OstU: 0,794, OstD: 0,795).

Periostal ist in den Größenverhältnissen der Osteone eine tendenzielle Abnahme mit dem Alter zu erkennen (siehe Abb. 86c). Die Abnahme verläuft relativ gleichmäßig. In den Altersklassen der 20er und 30er sinken die Werte etwas schneller und ab den 40ern etwas langsamer, um ab den 70ern annähernd zu stagnieren. Berechnet man die Korrelationskoeffizienten nach Pearson erhält man hochsignifikante Korrelationen für die Größe der Osteone zum Alter. Diese sind allerdings nur schwach linear ausgeprägt (OstA: -0,344; OstU: -0,315; OstD: -0,315). Für die einzelnen Geschlechter ergibt sich jeweils eine signifikante Korrelation der geometrischen Daten der Osteone mit dem Individualalter (Männer: OstA: -0,308; OstU: -0,277; OstD: -0,277; Frauen: OstA: -0,382; OstU: -0,358; OstD: -0,359).

Innerhalb der drei verschiedenen Lokalisationen scheint die Fläche eines Osteons in der Mitte am größten zu sein (0,0397mm²). Endostal und periostal sind die Osteone kleiner (end: 0,0368mm²; per: 0,0358mm²). Ebenso verhält es sich mit dem Umfang eines Osteons (mitte: 0,698mm; end: 0,671mm; per: 0,661mm) und seinem Durchmesser (mitte: 222µm; end: 214µm; per: 210µm). Die Obergrenzen der 95%-igen Konfidenzintervalle der Mittelwerte endostaler und periostaler Felder überschneiden sich jeweils etwas mit den Untergrenzen der 95%-igen Konfidenzintervalle mittiger Felder (die Einzelwerte sollen hier nicht angegeben werden). Daraus kann ein signifikanter Unterschied vermutet werden, der durch eine einfaktorielle ANOVA bestätigt wird (Signifikanzen: OstA: 0,036; OstU: 0,023; OstD: 0,023). Beide angewendete Post-Hoc-Tests (Tukey-HSD und Bonferroni) ergeben, dass sich nur der mittlere und der periostale Bereich signifikant unterscheiden. Die Größe der endostal liegenden Osteone hebt sich weder signifikant vom mittleren, noch vom periostalen Bereich ab.

Anatomie-Kollektiv

Insgesamt konnten nur 68 von 108 Fällen (63,0%) ausgewertet werden. Diese Werte gelten ebenso für die Bestimmung der Aktivierungsfrequenz und der Knochenbildungsrate unter Punkt 4.2.17.
Endostal wurden jeweils nur 30,6% der Fälle ausgewertet (Männer: 27,8%; Frauen: 33,3%). Mittig sind es 63,9% (Männer: 72,2%; Frauen: 55,6%) und peristomal 94,4% (Männer: 100,0%; Frauen: 88,9%), bei denen summiert mehr als 25 Osteone gezählt werden konnten.

Durchschnittliche Fläche eines Osteons (OstA)

<table>
<thead>
<tr>
<th>Ausgewertete Fälle in %</th>
<th>63,0%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mittelwert</td>
<td>0,0261mm²</td>
</tr>
<tr>
<td>Standardabweichung</td>
<td>0,00748</td>
</tr>
<tr>
<td>Median</td>
<td>0,0252mm²</td>
</tr>
<tr>
<td>Minimum</td>
<td>0,0132mm²</td>
</tr>
<tr>
<td>Maximum</td>
<td>0,0471mm²</td>
</tr>
<tr>
<td>Spannweite</td>
<td>0,0339mm²</td>
</tr>
</tbody>
</table>

Tab. 51: Explorative Datenanalyse der durchschnittlichen Fläche eines Osteons in mm² des Gesamtquerschnittes des Anatomie-Kollektivs

Im Mittel beträgt die Fläche eines Osteons im anterioren Bereich des Femurs 0,0261mm² (SD: 0,00748). Der Median ist 0,0252mm². Die kleinsten Osteone haben eine Fläche von 0,0132mm², die größten von 0,0471mm² (Spannweite 0,0339mm²).

Durchschnittlicher Umfang eines Osteons (OstU)

<table>
<thead>
<tr>
<th>Ausgewertete Fälle in %</th>
<th>63,0%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mittelwert</td>
<td>0,565mm</td>
</tr>
<tr>
<td>Standardabweichung</td>
<td>0,0803</td>
</tr>
<tr>
<td>Median</td>
<td>0,562mm</td>
</tr>
<tr>
<td>Minimum</td>
<td>0,408mm</td>
</tr>
<tr>
<td>Maximum</td>
<td>0,768mm</td>
</tr>
<tr>
<td>Spannweite</td>
<td>0,361mm</td>
</tr>
</tbody>
</table>

Tab. 52: Explorative Datenanalyse des durchschnittlichen Umfangs eines Osteons in mm des Gesamtquerschnittes des Anatomie-Kollektivs

Der durchschnittliche Umfang eines Osteons beträgt in diesem Kollektiv im Mittel 0,565mm (SD: 0,0803). Der Median ist 0,562mm. Die kleinsten Osteone haben einen Umfang von 0,408mm, der größte Umfang beträgt 0,768mm (Spannweite 0,361mm).

Durchschnittlicher Durchmesser eines Osteons (OstD)

<table>
<thead>
<tr>
<th>Ausgewertete Fälle in %</th>
<th>63,0%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mittelwert</td>
<td>180µm</td>
</tr>
<tr>
<td>Standardabweichung</td>
<td>25,6</td>
</tr>
<tr>
<td>Median</td>
<td>179µm</td>
</tr>
<tr>
<td>Minimum</td>
<td>130µm</td>
</tr>
<tr>
<td>Maximum</td>
<td>245µm</td>
</tr>
<tr>
<td>Spannweite</td>
<td>115µm</td>
</tr>
</tbody>
</table>

Tab. 53: Explorative Datenanalyse des durchschnittlichen Durchmessers eines Osteons in µm des Gesamtquerschnittes des Anatomie-Kollektivs
Der durchschnittliche Wert für den Durchmesser eines Osteons des Anatomie-Kollektivs beträgt 180µm (SD: 25,6) und der Median ist 179µm. Der minimale Durchmesser ist 130µm und der maximal beobachtete Wert liegt bei 245µm (Spannweite 115µm).

Wie schon beim Baselkollektiv erfolgt die graphische Darstellung des Zusammenhangs der geometrischen Daten der Osteone zum Individualalter exemplarisch am Beispiel der durchschnittlichen Fläche eines Osteons.

Abb. 87: Durchschnittliche Fläche eines Osteons in mm² in Abhängigkeit von den Altersklassen im Anatomie-Kollektiv

Im endostalen Bereich der Kompakta beträgt die Fläche eines Osteons im Mittel 0,0235mm² (SD: 0,00610) und der Median 0,0230mm². Im Durchschnitt hat der Umfang eines Osteons dabei einen Wert von 0,537mm (SD: 0,0715) und der Median ist 0,538mm. Für den Durchmesser eines Osteons ist ein Mittelwert von 171µm (SD: 22,7) und ein Median von 171µm zu beobachten.

Werden ausschließlich die männlichen Individuen betrachtet, zeigt sich eine durchschnittliche Fläche von 0,0221mm² pro Osteon (SD: 0,00739) und ein Median von 0,0223mm². Im Mittel weist der Umfang eines Osteons einen Wert von 0,519mm auf (SD: 0,0890). Der Median beträgt 0,529mm. Für den Durchmesser eines Osteons ist ein Durchschnittswert von 165µm (SD: 28,3) zu finden. Der Median ist 168µm.

Bei den weiblichen Individuen beträgt der Mittelwert für die Fläche eines Osteons 0,0247mm² (SD: 0,00520) und der Median 0,0241mm². Für den Umfang eines Osteons ist ein durchschnittlicher Wert von 0,553mm (SD: 0,0568) und ein Median von 0,550mm zu beobachten. Der Durchmesser eines Osteons weist einen mittleren Wert von 176µm (SD: 18,1) und einen Median von 175µm auf.

Bei den durchschnittlichen Werten der geometrischen Daten der Osteone (OstA, OstU, OstD) besteht kein signifikanter Unterschied zwischen Männern und Frauen. Die 95%igen Konfidenzintervalle überschneiden sich stark, wobei die Grenzen im Einzelnen nicht angegeben werden sollen. Eine ANOVA bestätigt diese Vermutung (Signifkanzen: OstA: 0,509; OstU: 0,456; OstD: 0,456).
4. Ergebnisse

In Abb. 87a ist keine Abhängigkeit der geometrischen Maße eines Osteons zum Individualalter erkennbar. Allerdings muss bedacht werden, dass hier die Individuenzahlen in den einzelnen Altersgruppen sehr gering sind. In der Altersklasse der 70jährigen, die stark nach oben abweicht, befindet sich beispielsweise nur ein Individuum.

Im mittleren Bereich der Kompakta liegt der Mittelwert der Fläche eines Osteons bei 0,0294mm² (SD: 0,00884) und der Median bei 0,0281mm². Für den Umfang eines Osteons ist ein durchschnittlicher Wert von 0,600mm zu beobachten (SD: 0,0904). Der Median hat einen Wert von 0,590mm. Bezüglich des Durchmessers eines Osteons ist ein mittlerer Wert von 191µm (SD: 28,8) und ein Median von 188µm zu finden.

Bei den männlichen Individuen zeigt sich ein Durchschnittswert von 0,0334mm² (SD: 0,00824) und ein Median von 0,0337mm² für die Fläche eines Osteons. Der Mittelwert für den Umfang liegt bei 0,642mm (SD: 0,0798) und der Median bei 0,648mm. Für den Durchmesser eines Osteons ist ein durchschnittlicher Wert von 204µm (SD: 25,4µm) und ein Median von 206µm zu finden.

Werden ausschließlich die weiblichen Individuen betrachtet, ist ein mittlerer Wert von 0,0241mm² (SD: 0,00679) und ein Median von 0,0214mm² für die Fläche eines Osteons. Bezüglich des Umfangs zeigt sich ein Mittelwert von 0,545mm (SD: 0,0750) und ein Median von 0,518mm. Der Durchschnittswert des Durchmessers eines Osteons beträgt 174µm (SD: 23,9) und der Median 165µm.

Da sich die 95%igen Konfidenzintervalle der Mittelwerte in beiden Geschlechtern nur sehr wenig überschneiden (die Werte sollen im Einzelnen nicht aufgeführt werden), ist es möglich, dass die Größe der Osteone im mittleren Bereich der Kompakta in den männlichen Individuen signifikant höher liegt als bei den Frauen. Eine einfaktorielle ANOVA bestätigt diese Vermutung (Signifikanzen: OstA: 0,009; OstU: 0,008; OstD: 0,008).

Im mittleren Bereich der Kompakta zeigt sich ein leichter Trend dahingehend, dass die Größe der Osteone mit steigendem Individualalter abnimmt (siehe Abb. 87b). Dabei geht diese Abnahme nicht regelmäßig vor sich (OstA: 0,0384mm² (50er)-0,0198mm²(90er); OstU: 0,687mm (50er)-0,496mm (90er); OstD: 219µm (50er)-158µm (90er)). Nach Pearson ergeben sich hochsignifikante lineare Korrelationskoeffizienten (OstA: -0,618; OstU: -0,617; OstD: -0,617) für das Gesamtkollektiv. Werden beide Geschlechter getrennt voneinander betrachtet, zeigen sich bei den männlichen Individuen keine Korrelationen zum Alter, bei den weiblichen Individuen dagegen signifikante Korrelationen (OstA: -0,711; OstU: -0,700; OstD: -0,700).

Die durchschnittliche Fläche eines Osteons im periostalen Bereich des Gesamtkollektivs beträgt 0,0247mm² (SD: 0,00619) und der Median 0,0247mm². Im Mittel hat der Umfang eines Osteons einen Wert von 0,550mm (SD: 0,0692) und der Median einen Wert von 0,555mm. Für den durchschnittlichen Durchmesser eines Osteons wird ein Wert von 175µm (SD: 22,1) und ein Median von 177µm errechnet.
Werden nur die männlichen Individuen betrachtet, ist ein Mittelwert von 0,0269mm² (SD: 0,00675) und ein Median von 0,0272mm² für die Fläche eines Osteons zu finden. Der durchschnittliche Umfang eines Osteons zeigt einen Wert von 0,573mm (SD: 0,0749) und einen Median von 0,584mm. Im Durchschnitt beträgt der Durchmesser eines Osteons in den männlichen Individuen 182µm (SD: 23,9) und der Median 186µm. Bei den Frauen zeigt sich ein Durchschnittswert von 0,0222mm² (SD: 0,00451) und ein Median von 0,0218mm² für die Fläche eines Osteons. Der Mittelwert des Umfangs eines Osteons beträgt 0,525mm (SD: 0,0542) und der Median 0,523mm. Für den durchschnittlichen Durchmesser eines Osteons ist ein Wert von 167µm (SD: 17,2) und ein Median von 166µm zu finden.

Da sich die 95%igen Konfidenzintervalle der Mittelwerte bei den beiden Geschlechtern etwas überschneiden, wobei auf die Angabe der genauen Werte verzichtet wird, muss mit einer ANOVA geprüft werden, ob die Osteone der männlichen Individuen im periostalen Bereich der Kompakta wirklich signifikant grösser sind, als die Osteone der weiblichen Individuen. Eine ANOVA zeigt, dass der Unterschied zwischen Männern und Frauen signifikant ist (Signifikanzwerte: OstA: 0,026; OstU: 0,046; OstD: 0,045).

Wird das Gesamtkollektiv betrachtet, scheint die Größe der Osteone mit zunehmendem Individualalter leicht abzunehmen (z. B. OstD: 191µm (50er)-166µm (90er)). Erkennbar ist dies in Abb. 87c. In keinem der beiden Geschlechter zeigt sich jedoch ein eindeutiger Trend. Bei den Frauen nimmt die Größe der Osteone eher ab (z. B. OstU: 0,613mm (60er)-0,478mm(90er)), bei den Männern schwanken die Werte großräumig um den Mittelwert. Im Gesamtkollektiv zeigen sich nach Pearson signifikante, schwach lineare Korrelationen zum Alter (OstA: -0,354; OstU: -0,340; OstD: -0,340). Bei den männlichen Individuen findet sich keine Bezug zum Alter. Werden nur die weiblichen Individuen betrachtet, sind signifikante Korrelationen zu beobachten (OstA: -0,584; OstU: -0,573; OstD: -0,572).

Die Osteone scheinen im mittleren Bereich der Kompakta am grössten zu sein. Ob dieser Unterschied jedoch signifikant ist, muss mit einer ANOVA überprüft werden, denn die 95%igen Konfidenzintervalle der Mittelwerte der geometrischen Daten der verschiedenen Lokalisationen überschneiden sich etwas. Laut einer ANOVA unterscheiden sich zumindest zwei Lokalisationen signifikant voneinander (Signifikanzwerte: OstA: 0,028; OstU: 0,032; OstD: 0,032). Die Post-Hoc-Tests nach Tukey (HSD) und Bonferroni ergeben, dass lediglich der mittlere Teil signifikant größere Osteone aufweist als der periostale Teil. Der endostale Teil hebt sich weder vom periostalen, noch vom mittigen Teil signifikant ab.
4.2.11 Osteonfragmente (Ostfr)

Basel-Kollektiv

<table>
<thead>
<tr>
<th>Ausgewertete Fälle in %</th>
<th>90,9%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mittelwert</td>
<td>12,70</td>
</tr>
<tr>
<td>Standardabweichung</td>
<td>7,236</td>
</tr>
<tr>
<td>Median</td>
<td>12,67</td>
</tr>
<tr>
<td>Minimum</td>
<td>0,00</td>
</tr>
<tr>
<td>Maximum</td>
<td>34,00</td>
</tr>
<tr>
<td>Spannweite</td>
<td>34,00</td>
</tr>
</tbody>
</table>

Tab. 54: Explorative Datenanalyse der Anzahl der Osteonfragmente pro mm² des Gesamtquerschnittes des Basel-Kollektivs

In 281 von 309 Fällen (90,9%) konnte die Anzahl der Osteonfragmente bestimmt werden. Durchschnittlich sind 12,70 Osteonfragmente pro mm² zu finden (SD: 7,24). Der Median beträgt 12,67. Ein maximaler Wert von 34 Osteonfragmenten pro mm² führt zu einer Spannweite von 34,00.

Endostal konnten 79,6% der Fälle ausgewertet werden (Männer: 76,2%; Frauen: 85,0%). Der Mittelwert der Anzahl an Osteonfragmenten pro mm² liegt bei 16,52 (SD: 6,10) und der Median bei 16,59. Werden nur die männlichen Individuen betrachtet, ergibt sich ein durchschnittlicher Wert von 17,11 Osteonfragmenten pro mm² (SD: 6,66). Der Median ist 17,42. Bei den Frauen zeigt sich ein Durchschnittswert von 15,68 (SD: 5,20) und ein Median von 16,50. Ein Vergleich der Grenzen der 95%igen Konfidenzintervalle des Mittelwertes (Männer: 15,18-19,05; Frauen: 13,86-17,49) ergibt, dass sich diese zumindest zum Teil überschneiden. Eine einfaktorielle ANOVA zeigt, dass sich die Mittelwerte der Geschlechter nicht signifikant unterscheiden (p = 0,297).

Die Anzahl an Osteonfragmenten scheint mit dem Individualalter tendenziell zuzunehmen (siehe Abb. 88a). Der Wert steigt mit einigen Schwankungen von 11,5 auf 23,8. Der Ausreißer nach unten bei den weiblichen Individuen in der Altersklasse der 50jährigen mag daran liegen, dass sich in dieser Altersklasse nur zwei Individuen befinden, die
möglicherweise altersuntypische Werte aufweisen. Die Berechnung des Korrelationskoeffizienten nach Pearson zeigt einen hochsignifikanten Zusammenhang zwischen der Anzahl an Osteonfragmenten pro mm² und dem Individualalter (0,392), die allerdings nur schwach linear ausgeprägt ist. Für die Männer ist eine hochsignifikante Korrelation von 0,432 und für die Frauen eine signifikante Korrelation von 0,358 zu finden.

Mittig konnte in 98,1% der Fälle die Anzahl an Osteonfragmenten pro mm² bestimmt werden (Männer: 96,8%, Frauen: 100,0%). Im Durchschnitt werden 13,80 Osteonfragmente pro mm² gezählt (SD: 6,64). Der Median ist 12,67. In den männlichen Individuen liegt der Mittelwert bei 13,35 (SD: 5,82) und der Median bei 12,67. Bei den Frauen beträgt die durchschnittliche Anzahl an Osteonfragmenten 14,47 (SD: 7,75) und der Median 12,50. Die Grenzen der 95%igen Konfidenzintervalle überlappen stark (Männer: 11,86-14,84; Frauen: 12,00-16,96), somit unterscheiden sich die Mittelwerte von Männern und Frauen wahrscheinlich nicht signifikant. Eine ANOVA kann nicht durchgeführt werden, da die Varianzen der beiden Geschlechter nicht homogen sind (Levene-Test: p = 0,020). Sowohl der Welch-Test, als auch der Brown-Forsythe-Test zeigen jedoch mit einer Signifikanz von 0,433, dass sich die Mittelwerte der Geschlechter nicht signifikant unterscheiden.

Laut Abb. 88b existiert eine leichte Abhängigkeit vom Individualalter. Ab der Altersklasse der 60jährigen steigt die Anzahl der Osteonfragmente stark an. In den 20ern bis zu den 50ern pendelt der Wert zwischen 11 und 12, um danach bis auf etwa 23 in den 80jährigen anzusteigen. Der Korrelationskoeffizient nach Pearson gibt eine hochsignifikante Korrelation der Anzahl an Osteonfragmenten zum Individualalter an (0,522). In den männlichen Individuen liegt die Korrelation bei 0,312 und ist signifikant bei p = 0,05. In den Frauen dagegen zeigt sich eine hochsignifikante Korrelation von 0,740.

Periostal konnten 95,1% der Fälle ausgewertet werden (Männer: 93,7%, Frauen: 97,5%). Der Mittelwert des Gesamtkollektivs liegt bei 8,38 (SD: 6,50) und der Median bei 7,19. Werden ausschließlich die Männer betrachtet, zeigt sich eine durchschnittliche Anzahl an Osteonfragmenten von 7,65 pro mm² (SD: 5,28) und ein Median von 6,88. Bei den Frauen beträgt der Durchschnittswert 9,62 (SD: 7,92) und der Median 7,50. Da sich die Grenzen der 95%igen Konfidenzintervalle des Mittelwertes nur wenig überschneiden (Männer: 6,19-8,94; Frauen: 7,05-12,19) könnte ein signifikanter Unterschied zwischen den Mittelwerten bestehen. Eine einfaktorielle ANOVA kann zur Überprüfung nicht angewendet werden, da der Levene-Test nicht homogene Varianzen ergibt (p = 0,002). Mit dem Welch-Test und dem Brown-Forsythe-Test kann jedoch nachgewiesen werden, dass der Unterschied der Mittelwerte zwischen den Geschlechtern nicht signifikant ist (p = 0,159).

Im periostalen Bereich ist deutlich ein tendenzieller Anstieg der Anzahl der Osteonfragmente pro mm² mit dem Individualalter erkennbar (Abb. 88c). In der Altersklasse der 20jährigen sind nur etwa 2,4 Osteonfragmente pro mm² zu finden. Bei den 30- und 40jährigen sind es zwischen 5 und 6. Und ab der Altersklasse der 50jährigen erfolgt ein deutlicher Anstieg von
9,3 auf 16,4. Dieser extreme Anstieg rührt hauptsächlich von den weiblichen Individuen her (in den 80ern etwa 22 Osteonfragmente pro mm²), denn bei den Männern bildet sich ein Plateau, dessen Werte sich bei etwa 11 Osteonfragmenten pro mm² einpendeln. Es scheint, als ob sich die Zahl der Osteonfragmente zwischen Männern und Frauen vor allem im Alter unterscheidet. Nach der Berechnung des Korrelationskoeffizienten nach Pearson korreliert die Anzahl der Osteonfragmente hochsignifikant mit dem Individualalter (0,700). Bei den Männern und bei den Frauen sind die Korrelationen jeweils ebenfalls hochsignifikant und liegen bei 0,602 (Männer) und 0,818 (Frauen).

Die Anzahl an Osteonfragmenten pro mm² im anterioren Teil des Femurs der Basel-Serie nimmt von endostal nach periostal ab. Da sich die Grenzen der 95%igen Konfidenzintervalle des Mittelwertes nicht überschneiden (end: 15,18-17,86; mitte: 12,49-15,11; per: 7,08-9,69), ist von einem signifikanten Unterschied auszugehen. Eine einfaktorielle ANOVA bestätigt diesen Eindruck (\(p = 0,000 \)). Nach Tukey-HSD und Bonferroni (Post-Hoc-Tests) unterscheiden sich alle drei Lokalisationen signifikant voneinander.

Anatomie-Kollektiv

<table>
<thead>
<tr>
<th>Ausgewertete Fälle in %</th>
<th>98,1%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mittelwert</td>
<td>21,47</td>
</tr>
<tr>
<td>Standardabweichung</td>
<td>6,79</td>
</tr>
<tr>
<td>Median</td>
<td>21,17</td>
</tr>
<tr>
<td>Minimum</td>
<td>2,67</td>
</tr>
<tr>
<td>Maximum</td>
<td>36,00</td>
</tr>
<tr>
<td>Spannweite</td>
<td>33,33</td>
</tr>
</tbody>
</table>

Tab. 55: Explorative Datenanalyse der Anzahl der Osteonfragmente pro mm² des Gesamtquerschnittes des Anatomie-Kollektivs

In 98,1% der Fälle konnte die Anzahl an Osteonfragmenten pro mm² bestimmt werden. Im Mittel werden 21,47 Osteonfragmente pro mm² gefunden (SD: 6,79) und der Median ist 21,17. Der geringste Wert beträgt 2,67, der höchste Wert 36,00 Osteonfragmente (Spannweite = 33,33).

Abb. 89: Anzahl an Osteonfragmenten pro mm² in Abhängigkeit von den Altersklassen im Anatomie-Kollektiv
Endostal ist im Gesamtkollektiv eine durchschnittliche Anzahl von 21,12 Osteonfragmenten pro mm² zu finden (SD: 6,08). Der Median beträgt 22,17. Werden lediglich die männlichen Individuen betrachtet, liegt der Mittelwert bei 20,96 (SD: 4,82) und der Median bei 20,67. Bei den Frauen zeigt sich ein Durchschnittswert von 21,29 (SD: 7,41) und ein Median von 23,34. Der Unterschied zwischen den Mittelwerten der beiden Geschlechter scheint nicht signifikant zu sein, da sich die 95%igen Konfidenzintervalle stark überschneiden (Männer: 18,56-23,36; Frauen: 17,34-25,24). Aufgrund der Tatsache, dass die Varianzen der beiden Gruppen nicht homogen sind (Levene-Test: 0,046), werden anstatt einer ANOVA der Welch-Test und der Brown-Forsythe-Test durchgeführt. Beide ergeben, dass sich die Zahl der Osteonfragmente pro mm² zwischen den Geschlechtern nicht signifikant unterscheidet (p = 0,881).

In Abb. 89a ist keine Altersabhängigkeit der Anzahl der Osteonfragmente pro mm² erkennbar. Der Wert schwankt in den verschiedenen Altersklassen kaum (Spannweite: 19,7-21,8).

Im mittleren Bereich sind durchschnittlich 21,77 Osteonfragmente pro mm² (SD: 7,39) und ein Median von 21,17 zu beobachten. Bei den männlichen Individuen zeigt sich ein Mittelwert von 20,43 (SD: 4,39) und ein Median von 20,17. Werden nur die weiblichen Individuen betrachtet, weisen diese mit 23,11 (SD: 9,45) einen etwas höheren Durchschnittswert als die Männer auf. Der Median beträgt 25,00. Der Unterschied scheint allerdings nicht signifikant zu sein, da sich die 95%igen Konfidenzintervalle stark überschneiden (Männer: 18,24-22,61; Frauen: 18,41-27,81). Die Varianzen der beiden Gruppen sind nicht homogen (Levene-Test: 0,009). So können zum Vergleich der Mittelwerte nur der Welch-Test bzw. der Brown-Forsythe-Test angewendet werden. Beide ergeben, dass sich die Mittelwerte der Geschlechter nicht signifikant voneinander unterscheiden (p = 0,285).

Betrachtet man die Abb. 89b ist für die weiblichen Individuen und das Gesamtkollektiv keine eindeutige Abhängigkeit vom Alter erkennbar. Bei den männlichen Individuen hingegen steigt die Anzahl der Osteonfragmente mit dem Individualalter an (14,33 (50er)-24,50 (90er)). Wird die Korrelation nach Pearson errechnet, ergibt sich für das Gesamtkollektiv eine signifikante Korrelation von 0,412. Betrachtet man die Geschlechter getrennt voneinander, ist bei den männlichen Individuen eine hochsignifikante Korrelation von 0,752, bei den weiblichen Individuen jedoch keine Korrelation zum Alter zu finden.

Periostal wird für die Anzahl der Osteonfragmente pro mm² ein Mittelwert von 21,50 beobachtet (SD: 6,99). Der Median beträgt 20,84. Werden nur die männlichen Individuen betrachtet, zeigt sich ein Mittelwert von 18,75 (SD: 6,56) und ein Median von 18,50. Bei den weiblichen Individuen ist ein höherer Durchschnittswert von 24,24 (SD: 6,45) zu finden. Der Median hat einen Wert von 23,67. Da sich die 95%igen Konfidenzintervalle der Mittelwerte der beiden Geschlechter kaum überschneiden, ist der Mittelwert bei den weiblichen Individuen wahrscheinlich signifikant höher als bei den Männern. Diese Annahme wird durch eine einfaktorielle ANOVA bestätigt (p = 0,016).
Der Abb. 89c ist zu entnehmen, dass die Anzahl der Osteonfragmente pro mm² mit dem Individualalter ansteigt. Lediglich bei den männlichen Individuen ist dieser Anstieg nicht besonders regelmäßig. Laut Pearson-Korrelation ist der Anstieg der Zahl der Osteonfragmente mit dem Alter hochsignifikant ($r = 0,602$). Bei den männlichen Individuen zeigt sich eine signifikante Korrelation von 0,550 und bei den weiblichen Individuen ist ebenfalls eine signifikante Korrelation von 0,537 zu finden.

Die Anzahl der Osteonfragmente unterscheidet sich im Mittel im endostalen, mittigen und periostalen Bereich kaum. Da sich auch die 95%igen Konfidenzintervalle fast vollständig überschneiden (end: 19,00-23,24; mit: 19,27-24,27; per: 19,13-23,86), ist der geringe Unterschied wahrscheinlich nicht signifikant. Bestätigt wird dies durch eine ANOVA mit einer Signifikanz von 0,924.

4.2.12 Anteil an fragmentalem Knochen (Frgkno)

Basel-Kollektiv

<table>
<thead>
<tr>
<th>Ausgewertete Fälle in %</th>
<th>90,9%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mittelwert</td>
<td>28,06%</td>
</tr>
<tr>
<td>Standardabweichung</td>
<td>17,07%</td>
</tr>
<tr>
<td>Median</td>
<td>28,00%</td>
</tr>
<tr>
<td>Minimum</td>
<td>0,00%</td>
</tr>
<tr>
<td>Maximum</td>
<td>67,17%</td>
</tr>
<tr>
<td>Spannweite</td>
<td>67,17%</td>
</tr>
</tbody>
</table>

Tab. 56: Explorative Datenanalyse des Anteils an fragmentalem Knochen des Gesamtquerschnittes des Basel-Kollektivs

Der Anteil an fragmentalem Knochen konnte in 90,9% (281 von 309) der Fälle bestimmt werden. Im Mittel sind 28,06% fragmentaler Knochen im anterioren Femurquerschnitt des Baselkollektivs zu finden (SD: 17,07%). Der Median ist 28,00%. Der maximale Wert liegt bei 67,17% (Spannweite 67,17%).

Abb. 90: Anteil an fragmentalem Knochen in Abhängigkeit von den Altersklassen im Basel-Kollektiv
Die Auswertung des Anteils an fragmentalem Knochen im endostalen Bereich des Basel-Kollektivs konnte in 80,6% der Individuen durchgeführt werden (Männer: 76,2%; Frauen: 87,5%). Im Mittel findet man 42,35% fragmentalen Knochen (SD: 12,29%). Der Median liegt bei 44,67%. Werden ausschließlich die Männer betrachtet, zeigt sich ein Mittelwert von 43,68% (SD: 12,94%). Der Median beträgt 45,75%. Bei den Frauen ist der Anteil an fragmentalem Knochen durchschnittlich 40,53% (SD: 11,25%) und der Median 40,83%. Die Grenzen der 95%igen Konfidenzintervalle (Männer: 39,92%-47,44%; Frauen: 36,66%-44,39%) überschneiden sich zu einem großen Teil und eine einfaktorielle ANOVA bestätigt die Annahme, dass es keine signifikanten Geschlechtsunterschiede gibt (p = 0,251).

Eine Altersabhängigkeit ist laut Abb. 90a nicht erkennbar. Nach der Altersklasse der 20jährigen (37%) bleiben die Werte zwischen etwa 41% und 46%. Der extreme Ausreißer nach unten in der Altersklasse der 50jährigen bei den Frauen (Anteil an fragmentalem Knochen bei 28,0%), rührt daher, dass sich darin nur zwei Individuen befinden, die möglicherweise sehr untypische Werte für ihre Altersklasse aufweisen.

In 98,1% der Fälle konnte im mittleren Teil der Femurkompakta eine Auswertung des Anteils an fragmentalem Knochen erfolgen (Männer: 96,8%, Frauen: 100,0%). An dieser Lokalisation beträgt der Anteil an fragmentalem Knochen durchschnittlich 28,41% (SD: 14,34%). Der Median ist 28,00%. Bei den Männern liegt der Mittelwert bei 29,16% (SD: 13,33%) und der Median bei 29,33%. Werden ausschließlich die Frauen betrachtet, zeigt der Anteil an fragmentalem Knochen einen Wert von 27,26% (SD: 15,87%) und der Median einen Wert von 23,67%. Nachdem sich die 95%igen Konfidenzintervalle der Mittelwerte fast vollständig überschneiden (Männer: 25,75%-32,58%; Frauen: 22,19%-32,34%), kann man davon ausgehen, dass die Mittelwerte nicht signifikant verschieden sind. Eine einfaktorielle ANOVA bestätigt die Vermutung (p = 0,517).

In Abb. 90b ist zu erkennen, dass ab der Altersklasse der 50jährigen ein Anstieg des Anteils an fragmentalem Knochen zu verzeichnen ist (20-40jährige: etwa 24%, danach Anstieg bis auf etwa 41% in den 80jährigen). Dabei muss beachtet werden, dass der starke Anstieg in den höheren Altersklassen hauptsächlich von den Frauen des Kollektivs herrührt, denn bei den Männern ist die Zunahme eher gering. Nach Pearson besteht eine hochsignifikante Korrelation zum Individualalter, die allerdings nur schwach linear ausgeprägt ist (0,376). Betrachtet man nur die männlichen Individuen, fehlt hier eine Korrelation zwischen Anteil an fragmentalem Knochen und Alter. Bei den Frauen hingegen liegt eine hochsignifikante Korrelation von 0,638 vor.

Insgesamt konnten im periostalen Bereich 94,2% der Fälle ausgewertet werden (Männer: 92,1%; Frauen: 97,5%). Der durchschnittliche Anteil an fragmentalem Knochen liegt bei 15,46% (SD: 13,02%). Der Median ist 12,88%. Werden nur die männlichen Individuen betrachtet, beträgt der Mittelwert 13,63% (SD: 10,41%) und der Median 12,19%. Bei den Frauen zeigt sich ein Durchschnittswert von 18,19% (SD: 15,90%) und ein Median von
13,00%. Die 95%igen Konfidenzintervalle des Mittelwertes überschneiden sich etwas (Männer: 10,89%-16,36%; Frauen: 13,03%-23,34%). Da die Varianzen der beiden Gruppen nicht homogen sind (Levene-Test: p = 0,001), kann keine ANOVA durchgeführt werden. Laut Welch-Test und Brown-Forsythe-Test ist der Mittelwert der Frauen nicht signifikant größer, als derjenige der Männer (p = 0,120).

Der Anteil an fragmentalem Knochen steigt mit dem Alter an (Abb. 90c). Dabei ist er bei den 20jährigen relativ niedrig (ca. 3%), um in den 30- und 40jährigen auf Werte um 10% anzusteigen. Ab der Altersklasse der 50jährigen findet ein konstanter Anstieg des Anteils an fragmentalem Knochen statt. Wie auch schon im mittleren Teil rührt dieser Anstieg hauptsächlich von den Werten der weiblichen Individuen her (Anstieg von etwa 14% in den 50jährigen auf etwa 41% bei den 80jährigen). Bei den Männern erreicht der Anstieg in der Altersklasse der 60jährigen wieder ein Plateau bei etwa 20%. Wird der Korrelationskoeffizient nach Pearson berechnet, zeigt sich eine hochsignifikante Korrelation zwischen dem Anteil an fragmentalem Knochen und dem Individualalter (r = 0,656). Betrachtet man das Kollektiv nach Geschlechtern getrennt, ergibt sich für beide Gruppen ebenfalls eine hochsignifikante Korrelation zum Alter (Männer: 0,541; Frauen: 0,788).

Der Anteil an fragmentalem Knochen nimmt von endostal nach periostal hin ab (end: 42,35%; mit: 28,41%; per: 15,46%). Da sich die 95%igen Konfidenzintervalle des Mittelwertes nicht überschneiden (endostal: 39,67%-45,03%; mittig: 25,58%-31,24%; peristal: 12,84%-18,08%), sind die Unterschiede in den Mittelwerten wahrscheinlich signifikant. Eine einfaktorielle ANOVA bestätigt diese Vermutung mit einer Signifikanz von 0,000. Die beiden in dieser Arbeit angewendeten Post-Hoc-Tests nach Tukey (HSD) und Bonferroni bestätigen jeweils mit p = 0,000, dass sich alle drei Lokalisationen hinsichtlich ihres Anteils an fragmentalem Knochen signifikant unterscheiden.

Anatomie-Kollektiv

<table>
<thead>
<tr>
<th>Ausgewertete Fälle in %</th>
<th>98,1%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mittelwert</td>
<td>41,06%</td>
</tr>
<tr>
<td>Standardabweichung</td>
<td>12,66%</td>
</tr>
<tr>
<td>Median</td>
<td>41,00%</td>
</tr>
<tr>
<td>Minimum</td>
<td>9,00%</td>
</tr>
<tr>
<td>Maximum</td>
<td>71,00%</td>
</tr>
<tr>
<td>Spannweite</td>
<td>62,00%</td>
</tr>
</tbody>
</table>

Tab. 57: Explorative Datenanalyse des Anteils an fragmentalem Knochen des Gesamtquerschnittes des Anatomie-Kollektivs

Durchschnittlich sind 41,06% an fragmentalem Knochen im anterioren Teil der Femora des Anatomie-Kollektivs zu finden (SD: 12,66%). Der Median ist 41,00%. Der minimale Wert liegt bei 9,00%, der maximal beobachtete Wert beträgt 71,00% (Spannweite 62,00%).
Im endostalen Bereich der Kompakta ist ein durchschnittlicher Anteil von 40,82% an fragmentalem Knochen zu finden (SD: 10,13%). Der Median beträgt 40,50%. Bei den männlichen Individuen zeigt sich ein Mittelwert von 42,50% (SD: 10,68%) und ein Median von 41,00%. Werden nur die weiblichen Individuen betrachtet, ist ein Durchschnittswert von 38,94% (SD: 9,44%) und ein Median von 38,50% zu beobachten. Da sich große Bereiche der 95%igen Konfidenzintervalle überschneiden (Männer: 24,00%-47,81%; Frauen: 33,91%-43,97%) ist nicht davon auszugehen, dass der Unterschied signifikant ist, was durch eine ANOVA mit einer Signifikanz von 0,313 bestätigt wird.

In der Abb. 91a ist keine Abhängigkeit des Anteils an fragmentalem Knochen vom Individualalter erkennbar.

Mittig wird für den Anteil an fragmentalem Knochen ein Durchschnittswert von 42,42% (SD: 13,66%) und ein Median von 42,00% beobachtet. Werden nur die männlichen Individuen betrachtet, liegt der Mittelwert bei 41,22% (SD: 9,55%) und der Median bei 41,00%. Bei den weiblichen Individuen zeigt sich ein durchschnittlicher Anteil an fragmentalem Knochen von 43,61% (SD: 17,04%) und ein Median von 42,50%. Der Mittelwert der Proben von Frauen scheint nicht signifikant höher zu sein, als jener von Männern, da sich die 95%igen Konfidenzintervalle stark überschneiden (Männer: 36,48%-45,97%; Frauen: 35,14%-52,08%). Da sich die Varianzen der beiden Gruppen zu stark unterscheiden (Levene-Test: 0,036), muss statt einer ANOVA der Welch-Test bzw. der Brown-Forsythe-Test zum Vergleich der Mittelwerte herangezogen werden. Mit einer Signifikanz von 0,608 zeigt sich, dass die Mittelwerte der beiden Geschlechter nicht signifikant verschieden sind.

Der Abb. 91b ist lediglich bei den männlichen Individuen ein deutlicher Zusammenhang zum Alter zu entnehmen. Es besteht die Tendenz, dass der Anteil an fragmentalem Knochen mit dem Individualalter zunimmt (29,7% (50er)-46% (80er und 90er)). Wird die Korrelationen nach Pearson berechnet, wird nur für die männlichen Individuen ein Zusammenhang zum Alter gefunden ($r = 0,619$, hochsignifikant).
Im periostalen Bereich der Kompakta wird ein durchschnittlicher Anteil von 39,92% (SD: 13,95%) an fragmentalem Knochen beobachtet. Der Median beträgt 40,00%. Bei den männlichen Individuen zeigt sich ein Mittelwert von 34,00% (SD: 12,08%) und ein Median von 36,50%. Die weiblichen Individuen weisen im Durchschnitt einen Wert von 45,83% (SD: 13,43%) und einen Median von 48,50% auf. Der mittlere Anteil an fragmentalem Knochen der weiblichen Individuen scheint signifikant höher zu sein, als jener der männlichen Individuen, da sich die 95%-igen Konfidenzintervalle kaum überschneiden (Männer: 27,99%-40,01%; Frauen: 39,15%-52,51%). Diese Annahme wird durch eine einfaktorielle ANOVA mit einer Signifikanz von 0,009 statistisch abgesichert.

Der Anteil an fragmentalem Knochen nimmt mit steigendem Individualalter zu (siehe Abb. 91c). Der lineare Korrelationskoeffizient nach Pearson ist für das Gesamtkollektiv hochsignifikant und beträgt 0,467. Besonders deutlich ist der Anstieg des Anteils an fragmentalem Knochen bei den weiblichen Individuen zu erkennen (32% (50er)-49% (90er)). Bei den männlichen Individuen schwankt der Anteil stark. In beiden Geschlechtern zeigt sich nach Pearson jedoch keine signifikante Korrelation zum Alter.

Die Mittelwerte der drei Lokalisationen der Kompakta unterscheiden sich nur wenig und da sich auch die 95%-igen Konfidenzintervalle stark überschneiden (end: 37,29%-44,36%; mit: 37,79%-47,04%; per: 35,20%-44,64%), scheinen die Unterschiede nicht signifikant zu sein. Bestätigt wird diese Vermutung durch eine ANOVA (p = 0,702).

4.2.13 Osteonenpopulationsdichte (OPD)

Die Osteonenpopulationsdichte setzt sich aus der Anzahl der Osteone und der Anzahl der Osteonfragmente pro mm² zusammen.

Basel-Kollektiv

<table>
<thead>
<tr>
<th>Ausgewertete Fälle in %</th>
<th>90,9%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mittelwert</td>
<td>21,79</td>
</tr>
<tr>
<td>Standardabweichung</td>
<td>9,412</td>
</tr>
<tr>
<td>Median</td>
<td>21,88</td>
</tr>
<tr>
<td>Minimum</td>
<td>0,25</td>
</tr>
<tr>
<td>Maximum</td>
<td>46,33</td>
</tr>
<tr>
<td>Spannweite</td>
<td>46,08</td>
</tr>
</tbody>
</table>

Tab. 58: Explorative Datenanalyse der Osteonenpopulationsdichte pro mm² des Gesamtquerschnittes des Basel-Kollektivs

In 90,9% der Fälle (281 von 309 Fällen) konnte ein Wert für die Osteonenpopulationsdichte bestimmt werden. Der Mittelwert beträgt im Basel-Kollektiv 21,79 (SD: 9,412). Der Median ist 21,88. Der kleinste Wert ist 0,25, der höchste Wert 46,33 (Spannweite 46,08).
Endostal kann in 79,6% der Fälle die Osteonenpopulationsdichte bestimmt werden (m: 76,2%, w: 85,0%). Der Mittelwert des Gesamtkollektivs beträgt 21,25 (SD: 8,32). Der Median ist 20,75. Bei den männlichen Individuen ist ein durchschnittlicher Wert von 22,26 (SD: 6,43) und der Median bei 20,08. Die 95%igen Konfidenzintervalle von Frauen und Männern überschneiden sich stark (m: 19,54-24,98; w: 17,58-22,07) und durch eine ANOVA wird eindeutig nachgewiesen, dass kein signifikanter Unterschied zwischen den Mittelwerten besteht (p = 0,193).

In Abb. 92a ist kein eindeutiger Bezug zum Alter erkennbar. Zwar steigt die Osteonenpopulationsdichte von 15,5 auf etwa 28,0; dies geschieht aber nicht in einer regelmäßigen Art und Weise, sondern die Werte schwanken stark. Die Korrelation nach Pearson gibt einen hochsignifikanten, aber schwach linear ausgeprägten Zusammenhang zwischen dem Individualalter und der Osteonenpopulationsdichte an (0,301). Nach Geschlechtern getrennt ist bei den Männern eine hochsignifikante Korrelation von 0,403, bei den weiblichen Individuen jedoch keine Korrelation zum Alter zu finden.

In der Mitte der anterioren Femurkompakta konnten 98,1% der Fälle ausgewertet werden (m: 96,8%, w: 100,0%). Der Mittelwert des Gesamtkollektivs ist 24,39 (SD: 8,14). Der Median liegt bei 23,67. Bei den Männern ist eine durchschnittliche Osteonenpopulationsdichte von 24,40 (SD: 7,55) und ein Median von 23,67 zu finden. Werden nur die weiblichen Individuen betrachtet, beträgt der Mittelwert 24,36 (SD: 9,07) und der Median 23,17. Die Mittelwerte bei Männern und Frauen unterscheiden sich kaum und die 95%igen Konfidenzintervalle überschneiden sich extrem (m: 22,47-26,34; w: 21,46-27,26). Eine ANOVA bestätigt, dass die Mittelwerte fast identisch sind (p = 0,979).

Laut Abb. 92b besteht eine Altersabhängigkeit der Osteonenpopulationsdichte. Bis zur Altersklasse der 50jährigen liegt die Osteonenpopulationsdichte auf einem Plateau, das etwa zwischen 21 und 23 schwankt. Danach zeigt sich ein starker, relativ konstanter Anstieg der Werte, die in der Altersklasse der 80jährigen etwa 36 erreichen. Nach Pearson korreliert die Osteonenpopulationsdichte hochsignifikant, jedoch nur schwach linear mit dem Alter (0,431).
Bei beiden Geschlechtern zeigt sich ebenfalls eine hochsignifikante Korrelation zum Alter (Männer: 0,352; Frauen: 0,518).

Periostal können bezüglich der Osteonenpopulationsdichte im Gesamtkollektiv 95,1% der Fälle ausgewertet werden (m: 93,7%; w: 97,5%). Der Mittelwert hat eine Größe von 19,58 (SD: 10,84) und der Median von 18,94. Bei den Männern ist ein durchschnittlicher Wert von 18,87 (SD: 9,98) und ein Median von 19,50 zu finden. Werden nur die weiblichen Individuen betrachtet, zeigt sich im Mittel ein Wert von 20,79 (SD: 12,05) und ein Median von 18,25. Da sich die 95%igen Konfidenzintervalle des Mittelwertes stark überschneiden (m: 16,18-21,38; w: 16,88-24,69) ist davon auszugehen, dass sich die Mittelwerte nicht signifikant unterscheiden. Bestätigt wird dies durch eine einfaktorielle ANOVA mit einer Signifikanz von 0,373.

In Abb. 92c ist zu erkennen, dass die Osteonenpopulationsdichte mit dem Alter relativ regelmäßig ansteigt: von etwa 7 in der Altersklasse der 20jährigen auf etwa 32 in der Altersklasse der 80jährigen. Bei den Männern wird ab der Altersklasse der 60jährigen ein Plateau erreicht, das bei einem Wert von ca. 26,5 liegt. Die Korrelation nach Pearson ist im Gesamtkollektiv hochsignifikant und liegt bei 0,709. Bei beiden Geschlechtern ist ebenfalls eine hochsignifikante Korrelation zum Individualalter zu finden (m: 0,671; w: 0,761).

Die Werte für die Osteonenpopulationsdichte sind im mittleren Bereich der anterioren Femurkompakta des Basel-Kollektivs am höchsten. Endostal und periostal findet man annähernd die gleichen Mittelwerte. Die 95%igen Konfidenzintervalle des Mittelwertes überschneiden sich endostal und periostal stark (end: 19,42-23,08; per: 17,41-21,75), der mittlere Teil hebt sich etwas mehr ab (mit: 22,78-25,99). Da sich im Levene-Test zeigt, dass die Varianzen der verschiedenen Gruppen nicht homogen sind (p = 0,000), muss anstatt einer einfaktoriellen ANOVA der Welch-Test und der Brown-Forsythe-Test angewendet werden. Dabei zeigt sich, dass sich zumindest eine Gruppe signifikant von den anderen unterscheidet (p = 0,001). Betrachtet man die Ergebnisse der Post-Hoc-Tests nach Dunnett-T₃ und Games-Howell zeigt sich, dass sich tatsächlich nur der mittlere Teil signifikant vom endostalen und vom periostalen Teil unterscheidet. Endostaler und periostaler Teil hingegen unterscheiden sich nicht signifikant (p > 0,5).

Anatomie-Kollektiv

<table>
<thead>
<tr>
<th>Ausgewertete Fälle in %</th>
<th>98,1%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mittelwert</td>
<td>32,29</td>
</tr>
<tr>
<td>Standardabweichung</td>
<td>10,46</td>
</tr>
<tr>
<td>Median</td>
<td>33,50</td>
</tr>
<tr>
<td>Minimum</td>
<td>2,67</td>
</tr>
<tr>
<td>Maximum</td>
<td>60,67</td>
</tr>
<tr>
<td>Spannweite</td>
<td>58,00</td>
</tr>
</tbody>
</table>

Tab. 59: Explorative Datenanalyse der Osteonenpopulationsdichte pro mm² des Gesamtquerschnittes des Anatomie-Kollektivs
Die durchschnittliche Osteonenpopulationsdichte pro mm² (OPD) im Anatomie-Kollektiv liegt bei 32,29 (SD: 10,46). Der Median ist 33,50. Minimal wird ein Wert von 2,67 beobachtet, der maximale Wert beträgt 60,67 (Spannweite 58,00).

Abb. 93: Osteonenpopulationsdichte pro mm² in Abhängigkeit von den Altersklassen im Anatomie-Kollektiv

In der Abb. 93a ist nur für die männlichen Individuen eine regelmäßige Abnahme mit dem Alter erkennbar (30,1 (50er)-21,7 (90er)). Die Werte der weiblichen Individuen bzw. des Gesamtkollektivs schwanken stark. Berechnet man die Korrelationskoeffizienten nach Pearson ergibt sich allerdings weder für das Gesamtkollektiv, noch für eines der beiden Geschlechter ein signifikanter Zusammenhang zum Alter.

ANOVA konnte aufgrund nicht-homogener Varianzen (Levene-Test: 0,019) nicht durchgeführt werden.

Der Abb. 93b ist keine Abhängigkeit der OPD vom Alter zu entnehmen. Bei den männlichen Individuen bleiben die Werte z. B. ab der Altersklasse der 60jährigen relativ konstant (zwischen 32 und 33), bei den weiblichen hingegen liegen starke Schwankungen vor (zwischen 27 und 40).

Periostal zeigt sich im Gesamtkollektiv ein Mittelwert von 36,87 (SD: 9,20) und ein Median von 37,34. Werden nur die männlichen Individuen betrachtet, liegt der Durchschnittswert bei 34,06 (SD: 9,71) und der Median bei 33,34. Bei den weiblichen Individuen beträgt die durchschnittliche OPD 39,69 (SD: 7,96) und der Median 41,67. Aufgrund der Überschneidung der 95%igen Konfidenzintervalle der beiden Geschlechter (Männer: 29,23-38,88; Frauen: 35,73-43,64), kann jedoch nicht davon ausgegangen werden, dass der Mittelwert in den weiblichen Individuen signifikant höher ist. Bestätigt wird diese Annahme durch eine einfaktorielle ANOVA mit einer Signifikanz von 0,066.

In Abb. 93c ist zu erkennen, dass die Werte für die OPD im Gesamtkollektiv mit steigendem Individualalter tendenziell zunehmen (25,3 (50er)-40,5 (90er)). Bei den männlichen und auch bei den weiblichen Individuen schwanken die Werte stärker. Der lineare Korrelationskoeffizient nach Pearson ist für das Gesamtkollektiv hochsignifikant und liegt bei 0,447. Bei beiden Geschlechtern ergibt sich nach Pearson kein signifikanter Zusammenhang zum Alter.

4.2.14 Resorptionslakunen (Res)

Basel-Kollektiv

<table>
<thead>
<tr>
<th>Ausgewertete Fälle in %</th>
<th>100,0%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mittelwert</td>
<td>1,11</td>
</tr>
<tr>
<td>Standardabweichung</td>
<td>0,971</td>
</tr>
<tr>
<td>Median</td>
<td>0,88</td>
</tr>
<tr>
<td>Minimum</td>
<td>0,00</td>
</tr>
<tr>
<td>Maximum</td>
<td>5,33</td>
</tr>
<tr>
<td>Spannweite</td>
<td>5,33</td>
</tr>
</tbody>
</table>

Tab. 60: Explorative Datenanalyse der Anzahl an Resorptionslakunen pro mm² des Gesamtquerschnittes des Basel-Kollektivs

Die Anzahl an Resorptionslakunen pro mm² konnte in allen 309 Fällen (100%) bestimmt werden. Im Mittel treten 1,11 Resorptionslakunen pro mm² auf (SD: 0,971). Der Median ist 0,88. Maximal wurde ein Wert von 5,33 beobachtet (Spannweite 5,33).

Im endostalen Bereich der Kompakta sind im Durchschnitt 2,01 Resorptionslakunen pro mm² zu finden (SD: 0,74). Bei den Männern beträgt der Mittelwert 1,91 (SD: 0,72) und bei den Frauen 2,16 (SD: 0,77). Der Median liegt in beiden Geschlechtern bei 2,00. Bezüglich der Anzahl der Resorptionslakunen scheint zwischen den Geschlechtern kein signifikanter Unterschied zu existieren, da sich die 95%igen Konfidenzintervalle stark überschneiden (m: 1,73-2,09; w: 1,91-2,41). Eine einfaktorielle ANOVA bestätigt dies mit einer Signifikanz von 0,102.

In Abb. 94a ist eine Abhängigkeit der Anzahl der Resorptionslakunen vom Individualalter erkennbar. Es ist ein Anstieg der Resorptionslakunen von der Altersklasse der 20jährigen auf die Altersklasse der 30jährigen zu finden. Von den 40ern bis zu den 60ern erreicht der Wert ein Plateau, das um einen Wert von 2,0 schwankt. Ab der Altersklasse der 70jährigen steigt die Anzahl der Resorptionslakunen wieder stark an, bis auf einen Wert von etwa 2,9. Nach Pearson korreliert die Anzahl der Resorptionslakunen pro mm² hochsignifikant mit dem Alter.
4. Ergebnisse

Bei beiden Geschlechtern ist die Korrelation zum Individualalter ebenfalls hochsignifikant (m: 0,555; w: 0,533).

Im mittleren Bereich der Kompakta findet man im Gesamtkollektiv eine durchschnittliche Anzahl von 0,71 Resorptionslakunen pro mm² (SD: 0,88). Der Median ist 0,33. Werden nur die männlichen Individuen betrachtet, liegt der Mittelwert bei 0,61 (SD: 0,71) und der Median ebenfalls bei 0,33. Bei den Frauen zeigt sich im Mittel ein Wert von 0,88 (SD: 1,10) und ein Median von 0,50. Anhand der 95%igen Konfidenzintervalle (Männer: 0,43-0,78; Frauen: 0,53-1,23) lässt sich nicht eindeutig feststellen, ob sich die Mittelwerte in den Geschlechtern signifikant unterscheiden. Da die Varianzen der beiden Gruppen laut einem Levene-Test (p = 0,031) nicht homogen sind, kann an dieser Stelle keine ANOVA durchgeführt werden. Laut Welch-Test und Brown-Forsythe-Test sind die Mittelwerte der beiden Geschlechter nicht signifikant verschieden (p = 0,163).

Eine eindeutige Altersabhängigkeit ist der Abb. 94b nicht zu entnehmen. Trotzdem sind die Werte in der Altersklasse der 20jährigen geringer (etwa 0,11), als in der Altersklasse der 80jährigen (etwa 1,17). Interessant ist, dass bei den weiblichen Individuen ab der Altersklasse der 50jährigen sehr viel höhere Werte, als bei den männlichen Individuen vorliegen. Nach dem Korrelationskoeffizienten von Pearson (0,541) ist die Korrelation zwischen der Anzahl an Resorptionslakunen pro mm² und dem Alter hochsignifikant. Werden die beiden Geschlechter getrennt voneinander betrachtet, findet sich in beiden Gruppen ebenfalls eine hochsignifikante Korrelation zum Alter (m: 0,416; w: 0,693).

Periostal liegt der Mittelwert des Gesamtkollektivs bei 0,59 (SD: 0,52) und der Median bei 0,50. Die durchschnittliche Anzahl der Resorptionslakunen pro mm² zeigt in den männlichen Individuen einen Wert von 0,56 (SD: 0,45) und ebenfalls einen Median von 0,50. Bei den Frauen ist ein Mittelwert von 0,64 (SD: 0,62) und ein Median von 0,38 zu finden. Da das 95%ige Konfidenzintervall der männlichen Individuen innerhalb der Grenzen des 95%igen Konfidenzintervales der weiblichen Individuen liegt (m: 0,45-0,68; w: 0,45-0,84) ist nicht von einem signifikanten Unterschied der Mittelwerte auszugehen. Bestätigt wird dies durch eine einfaktorielle ANOVA mit einer Signifikanz von 0,448.

Abb. 94c zeigt die Altersabhängigkeit der Anzahl der Resorptionslakunen pro mm². Die Werte der männlichen Individuen in den verschiedenen Altersklassen pendeln mehr oder weniger stark um den Mittelwert (0,34-0,72; MW = 0,56). Nur bei den Frauen ist ab der Altersklasse der 50jährigen ein starker Anstieg der Anzahl der Resorptionslakunen pro mm² zu erkennen (von 0,63 bei den 50ern auf 1,63 bei den 80ern). Die Korrelation zum Alter, berechnet nach Pearson, liegt bei 0,435 für das Gesamtkollektiv und ist hochsignifikant. Werden die Geschlechter getrennt voneinander betrachtet, ergibt sich keine Korrelation im Fall der Männer, jedoch eine hochsignifikante Korrelation von 0,698 bei den weiblichen Individuen.
Die Anzahl der Resorptionslakunen nimmt von endostal nach peristal stark ab, wobei sich die Werte mittig und peristal kaum unterscheiden. Werden die Grenzen der 95%ige Konfidenzintervalle des Mittelwertes betrachtet, hebt sich auch nur der endostale Bereich deutlich ab (end: 1,86-2,15; mit: 0,54-0,89; per: 0,49-0,70). Da ein Levene-Test ergibt, dass die Varianzen nicht homogen sind (p = 0,010), kann an dieser Stelle keine ANOVA durchgeführt werden. Der Welch-Test und der Brown-Forsythe-Test zeigen, dass sich mindestens eine Lokalisation, wahrscheinlich die endostale, signifikant von den anderen abhebt (p = 0,000). Post-Hoc wird mit einem Dunnett-T3-Test und einem Games-Howell-Test bestätigt, dass sich lediglich der endostale Teil signifikant von mittigem und peristalem Bereich unterscheidet. Die peristionale und die mittige Lokalisation ähneln sich mehr (p > 0,5).

Anatomie-Kollektiv

<table>
<thead>
<tr>
<th>Ausgewertete Fälle in %</th>
<th>98,1%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mittelwert</td>
<td>2,91</td>
</tr>
<tr>
<td>Standardabweichung</td>
<td>1,47</td>
</tr>
<tr>
<td>Median</td>
<td>2,67</td>
</tr>
<tr>
<td>Minimum</td>
<td>0,00</td>
</tr>
<tr>
<td>Maximum</td>
<td>6,67</td>
</tr>
<tr>
<td>Spannweite</td>
<td>6,67</td>
</tr>
</tbody>
</table>

Tab. 61: Explorative Datenanalyse der Anzahl an Resorptionslakunen pro mm² des Gesamtquerschnittes des Anatomie-Kollektivs

Im Mittel sind 2,91 Resorptionslakunen pro mm² im anterioren Bereich des Femurs des Anatomie-Kollektivs zu finden (SD: 1,47). Der Median ist 2,67. Der maximal beobachtete Wert liegt bei 6,67 Resorptionslakunen pro mm² (Spannweite 6,67).

Abb. 95: Anzahl an Resorptionslakunen pro mm² in Abhängigkeit von den Altersklassen im Anatomie-Kollektiv

Im endostalen Bereich findet man im Durchschnitt 3,25 Resorptionslakunen pro mm² (SD: 1,01). Der Median ist 3,33. Bei den Männern zeigen sich im Mittel 3,22 Resorptionslakunen pro mm² (SD: 0,98). Hier beträgt der Median ebenfalls 3,33. Werden nur die weiblichen Individuen betrachtet, liegt der Mittelwert bei 3,29 (SD: 1,07) und der Median bei 3,17. Der geringe Unterschied zwischen den beiden Geschlechtern ist wohl nicht signifikant, da sich die 95%igen Konfidenzintervalle der Mittelwerte fast vollständig überschneiden (Männer: 2,74-
3,71; Frauen: 2,71-3,86). Dies wird durch eine ANOVA mit einer Signifikanz von 0,844 bestätigt.

In Abb. 95a ist der Zusammenhang mit dem Alter dargestellt. Tendenziell nimmt die Anzahl der Resorptionslakunen pro mm² mit steigendem Alter zu (2,67 (50er)–3,33 (90er)). Nach Pearson besteht jedoch keine Korrelation zum Alter.

Im mittleren Bereich der Kompakta zeigen sich im Mittel 2,95 Resorptionslakunen pro mm² (SD: 1,76). Der Median beträgt 2,50. Bei den männlichen Individuen ist ein Durchschnittswert von 2,56 (SD: 1,67) und ein Median von 2,00 zu beobachten. Werden ausschließlich die weiblichen Individuen betrachtet, liegt der Mittelwert bei 3,35 (SD: 1,81) und der Median bei 3,33. Die 95%igen Konfidenzintervalle der Mittelwerte der beiden Geschlechter überschneiden sich teilweise (m: 1,73-3,39; w: 2,45-4,25) und eine ANOVA bestätigt, dass die Anzahl der Resorptionslakunen pro mm² bei den weiblichen Individuen nicht signifikant höher ist, als bei den männlichen (p = 0,179).

In der Abb. 95b ist deutlich zu erkennen, dass die Anzahl der Resorptionslakunen mit zunehmendem Alter ansteigt (1,33 (50er)–4,39 (90er)). Nach Pearson beträgt der lineare Korrelationskoeffizient 0,544 (hochsignifikant). Bei den weiblichen Individuen zeigt sich keine Korrelation zum Alter, aber bei den männlichen Individuen ist eine hochsignifikante Pearson-Korrelation von 0,617 zu finden.

Periostal liegt der Mittelwert des Gesamtkollektivs bei 2,55 (SD: 1,47) und der Median bei 2,33. Werden nur die männlichen Individuen betrachtet, beträgt der durchschnittliche Wert für die Anzahl der Resorptionslakunen pro mm² 2,07 (SD: 1,09) und der Median 2,00. Bei den weiblichen Individuen beobachtet man einen Durchschnittswert von 3,04 (SD: 1,66) und einen Median von 2,84. Die 95%igen Konfidenzintervalle der beiden Geschlechter überschneiden sich nur wenig (m: 1,53-2,61; w: 2,21-3,86) und eine ANOVA bestätigt knapp (p = 0,045), dass der Mittelwert der weiblichen Individuen höher liegt, als derjenige der Männer.

In Abb. 95c ist ein Anstieg der Anzahl an Resorptionslakunen pro mm² ab der Altersklasse der 70jährigen zu erkennen (1,00 (70er)–3,56 (90er)). Davor liegen die Werte auch höher (2,00 (50er) und 1,5 (60er)). Nach Pearson besteht im Gesamtkollektiv ein hochsignifikanter, schwach linearer Zusammenhang zum Individualalter (0,470). Bei den männlichen Individuen alleine zeigt sich keine Korrelation zum Alter und bei den weiblichen Individuen ist eine signifikante Korrelation von 0,477 (nach Pearson) zu beobachten.

Werden die verschiedenen Lokalisationen miteinander verglichen, ist eine Abnahme der Anzahl der Resorptionslakunen pro mm² von endostal nach periostal zu erkennen. Die 95%igen Konfidenzintervalle überschneiden sich jedoch stark (end: 2,90-3,61; mit: 2,36-3,55; per: 2,06-3,05), weshalb nicht davon auszugehen ist, dass die Abnahme signifikant ist. Zur statistischen Überprüfung der These muss der Welch-Test bzw. der Brown-Forsythe-Test
angewendet werden, da die Varianzen der drei Gruppen nicht homogen sind (Levene-Test: 0,001). Beide Tests zeigen, dass die Abnahme nicht signifikant ist (Welch: p = 0,071; Brown-Forsythe: p = 0,129).

4.2.15 Anteil an resorbiertem Knochen (Reskno)

Basel-Kollektiv

<table>
<thead>
<tr>
<th>Ausgewertete Fälle in %</th>
<th>100,0%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mittelwert</td>
<td>11,05%</td>
</tr>
<tr>
<td>Standardabweichung</td>
<td>16,92%</td>
</tr>
<tr>
<td>Median</td>
<td>1,88%</td>
</tr>
<tr>
<td>Minimum</td>
<td>0,00%</td>
</tr>
<tr>
<td>Maximum</td>
<td>75,17%</td>
</tr>
<tr>
<td>Spannweite</td>
<td>75,17%</td>
</tr>
</tbody>
</table>

Tab. 62: Explorative Datenanalyse des Anteils an resorbiertem Knochen des Gesamtquerschnittes des Basel-Kollektivs

Der Anteil an resorbiertem Knochen konnte in 100% der Fälle (309 Fälle) ausgewertet werden. Im Mittel sind 11,05% an resorbiertem Knochen im anterioren Teil des gesamten Femurquerschnittes der Individuen des Basel-Kollektivs zu finden (SD: 16,92%). Der Median ist 1,88%. Maximal wird ein Wert von 75,17% beobachtet (Spannweite 75,17%).

Abb. 96: Anteil an resorbiertem Knochen in Abhängigkeit von den Altersklassen im Basel-Kollektiv

Im endostalen Bereich der Kompakta werden im Durchschnitt 28,13% des Knochens resorbiert (SD: 18,13%). Der Median ist 26,33%. Bei den männlichen Individuen beträgt der Mittelwert 25,21% (SD: 16,97%) und der Median 22,50%. Werden ausschließlich die weiblichen Individuen betrachtet, ist ein durchschnittlicher Wert von 32,73% (SD: 19,16%) und ein Median von 32,25% zu finden. Ein Vergleich der 95%-igen Konfidenzintervalle der beiden Geschlechter ergibt (m: 20,93%-29,48%; w: 26,60%-38,85%), dass sie sich nur geringfügig überschneiden. Mit einer einfaktoriellen ANOVA wird nachgewiesen, dass der Mittelwert der Proben von Frauen signifikant höher ist, als jener von Männern (p = 0,040).
Bezüglich der Altersabhängigkeit des Anteils an resorbierter Knochen ist festzustellen, dass bis zur Altersklasse der 60jährigen ein etwa konstanter Wert zwischen 23% und 26% eingehalten wird (Abb. 96a). Erst danach erfolgt ein rasanter Anstieg auf Werte von etwa 40%. In den verschiedenen Geschlechtern besteht ein Altersunterschied bezüglich des Beginns des Anstiegs. Bei den Frauen sind bereits in der Altersklasse der 60jährigen stark erhöhte Werte zu beobachten, bei den Männern erst in der Altersklasse der 70jährigen. Die Werte des Anteils an resorbierter Knochen sind in den höheren Altersklassen bei den Frauen (bis etwa 45%) außerdem höher als bei den Männern (bis etwa 36%). Im Gesamtkollektiv zeigt sich nach Pearson eine hochsignifikante Korrelation zwischen dem Individualalter und dem Anteil an resorbierter Knochen von 0,327, die allgemein nur schwach linear ausgeprägt ist. Werden nur die männlichen Individuen betrachtet, ist die Korrelation signifikant weniger linear (0,256). Bei den weiblichen Individuen ist der lineare Zusammenhang zwischen Alter und Anteil an resorbierter Knochen stärker ausgeprägt und außerdem hochsignifikant (0,452).

Mittig ist ein Durchschnittswert von 4,01% (SD: 9,36%) und ein Median von 0,67% zu finden. Werden die Geschlechter getrennt voneinander betrachtet, zeigt sich in den männlichen Individuen ein Mittelwert von 2,59% (SD: 6,42%). Der Median liegt ebenfalls bei 0,67%. In den weiblichen Individuen findet man durchschnittlich einen Wert von 6,24% (SD: 12,46%) und einen Median von 0,84%. Ein Vergleich der 95%igen Konfidenzintervalle des Mittelwerts (m: 0,97%-4,21%; w: 2,26%-10,23%) zeigt eine geringe Überschneidung. Eine ANOVA kann nicht durchgeführt werden, da die Varianzen laut dem Levene-Test nicht homogen sind (p = 0,001). Der Welch-Test und der Brown-Forsythe-Test ergeben jedoch, dass sich die Mittelwerte der beiden Geschlechter nicht signifikant unterscheiden (p = 0,092). Im Gesamtkollektiv sind bis zur Altersklasse der 60jährigen relativ konstante Werte zwischen 1% und 2% zu finden (siehe auch Abb. 96b). Der extrem hohe Wert in der Altersklasse der 70jährigen (von 15,5%) kann nicht als Ausreißer betrachtet werden, da sowohl in Männern, als auch in Frauen ein starker Anstieg zu verzeichnen ist und auch die Individuenzahl in dieser Gruppe relativ hoch ist (n = 16). Bei den weiblichen Individuen beginnt bereits bei den 50jährigen ein leichter Anstieg der Werte für den Anteil an resorbierter Knochen. Nach Pearson wird ein linearer hochsignifikanter Zusammenhang von 0,512 zwischen Alter und Anteil an resorbierter Knochen berechnet. Bei den männlichen Individuen ist die Korrelation ebenfalls hochsignifikant, aber schwächer linear ausgeprägt (0,349). Werden nur die weiblichen Individuen betrachtet, ergibt sich eine hochsignifikante lineare Korrelation von 0,693 nach Pearson.

Der periostale Teil zeigt einen Mittelwert von 1,01% (SD: 1,34%), wobei der Median 0,50% beträgt. Bei den Männern liegt der Mittelwert ebenfalls bei 1,01% (SD: 1,23%) und bei den Frauen bei 1,02% (SD: 1,52%). Die Mediane haben Werte von 0,50% (Männer) und 0,44% (Frauen). Die 95%igen Konfidenzintervalle der beiden Geschlechter überschneiden sich.
extrem (m: 0,70%-1,13%; w: 0,53%-1,50%), weshalb anzunehmen ist, dass die Mittelwerte der beiden Gruppen tatsächlich annähernd gleich sind. Eine einfaktorielle ANOVA bestätigt diese Annahme (p = 0,974).

Wie aus Abb. 96c ersichtlich, ist beim Gesamtkollektiv für den Anteil an resorbiertem Knochen im periostalen Bereich ein leichter, aber relativ konstanter Anstieg mit dem Individualalter zu verzeichnen (20er: 0,58%; 80er: 1,57%). Werden die Geschlechter jedoch einzeln betrachtet, pendeln die Werte der Männer mehr oder weniger stark um den Mittelwert von 1,01% (in den niedrigeren Altersklassen mehr, später weniger). Bei den Frauen hingegen, liegt der Anteil an resorbiertem Knochen bis zur Altersklasse der 50jährigen weit unter dem Mittelwert und steigt dafür ab den 60jährigen über den Mittelwert hinaus an (bis auf etwa 2%). Im Gesamtkollektiv ist eine hochsignifikante Pearson-Korrelation von 0,324 zwischen Alter und Anteil an resorbiertem Knochen zu finden. Bei den männlichen Individuen ist die Korrelation nicht signifikant, bei den Frauen hingegen ist der Zusammenhang zwischen Alter und Anteil an resorbiertem Knochen hochsignifikant und stärker linear ausgeprägt (0,558) als im Gesamtkollektiv.

Werden der endostale, der mittige und der periostale Teil der Kompakta miteinander verglichen, ist zu erkennen, dass der Anteil an resorbiertem Knochen von endostal nach periostal hin stark abnimmt. Die 95%igen Konfidenzintervalle des Mittelwertes überschneiden sich nicht (end: 24,58%-31,67%; mit: 2,18%-5,84%; per: 0,75%-1,27%). Deshalb ist davon auszugehen, dass ein signifikanter Unterschied zwischen den Mittelwerten besteht. Da die Varianzen nicht homogen sind (Levene-Test: p = 0,000), kann keine ANOVA zur Überprüfung durchgeführt werden. Laut Welch-Test und Brown-Forsythe-Test ist die Abnahme des Anteils an resorbiertem Knochen von endostal nach periostal, signifikant (p = 0,000). Auch beide Post-Hoc-Tests (Dunnett-T3 und Games-Howell) bestätigen, dass sich alle drei Lokalisationen signifikant voneinander unterscheiden.

Anatomie-Kollektiv

<table>
<thead>
<tr>
<th>Ausgewertete Fälle in %</th>
<th>98,1%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mittelwert</td>
<td>19,57%</td>
</tr>
<tr>
<td>Standardabweichung</td>
<td>20,95%</td>
</tr>
<tr>
<td>Median</td>
<td>12,00%</td>
</tr>
<tr>
<td>Minimum</td>
<td>0,00%</td>
</tr>
<tr>
<td>Maximum</td>
<td>91,00%</td>
</tr>
<tr>
<td>Spannweite</td>
<td>91,00%</td>
</tr>
</tbody>
</table>

Tab. 63: Explorative Datenanalyse des Anteils an resorbiertem Knochen des Gesamtquerschnittes des Anatomie-Kollektivs

Im Durchschnitt sind 19,57% an resorbiertem Knochen im anterioren Bereich des Femurs im Anatomie-Kollektiv zu finden (SD: 20,95%). Der Median ist 12,00%. Der maximal beobachtete Wert liegt bei 91,00% (Spannweite 91,00%).
4. Ergebnisse

Abb. 97: Anteil an resorbiertem Knochen in Abhängigkeit von den Altersklassen im Anatomie-Kollektiv

Endostal zeigt sich ein durchschnittlicher Anteil von 33,50% an resorbiertem Knochen (SD: 21,79%). Der Median ist 33,50%. Bei den männlichen Individuen liegt der Mittelwert bei 31,72% (SD: 18,12%) und der Median bei 33,50%. Werden nur die weiblichen Individuen betrachtet, sind im Durchschnitt 35,50% an resorbiertem Knochen zu finden (SD: 25,79%). Der Median beträgt hier 31,50%. Die 95%igen Konfidenzintervalle überschneiden sich stark (Männer: 22,71%-40,73%; Frauen: 21,76%-49,24%), weshalb davon auszugehen ist, dass die Mittelwerte der beiden Geschlechter nicht signifikant verschieden sind. Aufgrund der unterschiedlichen Varianzen (Levene-Test: p = 0,047), werden statt einer ANOVA der Welch-Test und der Brown-Forsythe-Test angewendet. Dabei zeigt sich mit p = 0,629, dass sich die beiden Geschlechter nicht signifikant unterscheiden.

In der Abb. 97a ist zu erkennen, dass der Anteil an resorbiertem Knochen mit steigendem Alter zunimmt (10,67% (50er)-41,83% (90er)). Bei beiden Geschlechtern ist die Tendenz ebenfalls vorhanden, aber der Verlauf ist nicht so regelmäßig. Der lineare Korrelationskoeffizient nach Pearson beträgt im Gesamtkollektiv 0,404 und ist signifikant. Bei den weiblichen Individuen kann keine signifikante Korrelation gefunden werden, bei den männlichen Individuen zeigt sich jedoch ein hochsignifikanter Bezug zum Alter (r = 0,636, nach Pearson).

Im mittleren Bereich der Kompakta findet man im Gesamtkollektiv einen Mittelwert von 18,92% (SD: 21,75%) und einen Median von 13,00%. Werden nur die männlichen Individuen betrachtet, liegt der Anteil an resorbiertem Knochen im Durchschnitt bei 12,83% (SD: 15,32%) und der Median bei 4,00%. Bei den weiblichen Individuen kann ein mittlerer Wert von 25,00% (SD: 25,70%) und ein Median von 17,00% beobachtet werden. Da sich die 95%-igen Konfidenzintervalle zum Teil überschneiden (Männer: 5,21%-20,45%; Frauen: 12,22%-37,78%), ist davon auszugehen, dass sich die Mittelwerte der beiden Geschlechter nicht signifikant unterscheiden. Zur statistischen Überprüfung werden der Welch-Test und der Brown-Forsythe-Test angewendet, da die Varianzen der beiden Gruppen nicht homogen sind (Levene-Test: 0,000). Beide Tests bestätigen die oben gemachte Annahme mit einer Signifikanz von 0,096.
In Abb. 97b ist zu erkennen, dass der Anteil an resorbiertem Knochen im Gesamtkollektiv bis zur Altersklasse der 80jährigen ansteigt (1,67% (50er)-29,12% (80er)). Der Korrelationskoeffizient nach Pearson ist schwach linear, aber signifikant (0,395). Bei den weiblichen Individuen zeigt sich kein Zusammenhang mit dem Alter. Aber bei den männlichen Individuen ist ein signifikanter Korrelationskoeffizient von 0,588 (nach Pearson) zu beobachten. Die stärkere Linearität ist auch in der Abb. 97b zu erkennen.

Periostal zeigt sich im Durchschnitt ein Anteil von 7,06% an resorbiertem Knochen (SD: 6,77%). Der Median hat einen Wert von 4,50%. Bei den männlichen Individuen beträgt der Mittelwert 6,56% (SD: 6,78%) und der Median 4,00%. Werden nur die weiblichen Individuen betrachtet, ist ein Durchschnittswert von 7,56% (SD: 6,91%) und ein Median von 5,50% zu beobachten. Da sich die 95%igen Konfidenzintervalle stark überschneiden (Männer: 3,19%-9,93%; Frauen: 4,12%-10,99%), ist davon auszugehen, dass sich die Mittelwerte der beiden Geschlechter nicht signifikant unterscheiden. Eine ANOVA bestätigt diese Vermutung mit einer Signifikanz von 0,664.

In der Abb. 97c ist kein regelmäßiger Zusammenhang des Anteils an resorbiertem Knochen mit dem Alter zu erkennen. Lediglich zwischen der Altersklasse der 70jährigen zur Altersklasse der 80jährigen erfolgt ein starker Anstieg [0,80% (70er) auf 10,53% (80er)]. Laut Pearson ist die Korrelation zum Alter zwar signifikant, aber nur schwach linear (0,360). Werden die Geschlechter getrennt voneinander betrachtet, ergibt sich nach Pearson kein signifikanter Bezug zum Alter.

4. Ergebnisse

4.2.16 Durchschnittliche Fläche einer Resorptionslakune (ResA)

Basel-Kollektiv

<table>
<thead>
<tr>
<th>Ausgewertete Fälle in %</th>
<th>87,1%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mittelwert</td>
<td>0,0792mm²</td>
</tr>
<tr>
<td>Standardabweichung</td>
<td>0,109</td>
</tr>
<tr>
<td>Median</td>
<td>0,0300mm²</td>
</tr>
<tr>
<td>Minimum</td>
<td>0,0000mm²</td>
</tr>
<tr>
<td>Maximum</td>
<td>0,621mm²</td>
</tr>
<tr>
<td>Spannweite</td>
<td>0,621mm²</td>
</tr>
</tbody>
</table>

Tab. 64: Explorative Datenanalyse der durchschnittlichen Fläche einer Resorptionslakune in mm² des Gesamtquerschnittes des Basel-Kollektivs

In 87,1% der Fälle konnte ein Mittelwert für die Fläche einer Resorptionslakune bestimmt werden. Die durchschnittliche Größe einer Resorptionslakune beträgt 0,0792mm² (SD: 0,109). Der Median ist 0,0300mm². Die größte durchschnittliche Fläche einer Resorptionslakune liegt bei 0,621mm² (Spannweite 0,621mm²).

Abb. 98: Durchschnittliche Fläche einer Resorptionslakune in mm² in Abhängigkeit von den Altersklassen im Basel-Kollektiv

Endostal konnten 99,0% der Fälle bezüglich der durchschnittlichen Fläche einer Resorptionslakune ausgewertet werden (m: 98,4%; w: 100,0%). Die durchschnittliche Größe einer Resorptionslakune beträgt 0,168mm² (SD: 0,126) und der Median 0,121mm². Werden die Geschlechter getrennt voneinander betrachtet, ist bei den Männern ein Mittelwert von 0,156mm² (SD: 0,122) und bei den Frauen ein Durchschnittswert von 0,185mm² zu beobachten (SD: 0,131). Die Mediane sind 0,111mm² (m) und 0,128mm² (w). Die 95%-igen Konfidenzintervalle des Mittelwerts überschneiden sich für beide Geschlechter etwas (m: 0,125mm²-0,187mm²; w: 0,143mm²-0,227mm²). Eine einfaktorielle ANOVA zeigt, dass sich die Mittelwerte von Männern und Frauen nicht signifikant unterscheiden (p = 0,265).

Aus Abb. 98a ist keine Abhängigkeit vom Alter erkennbar. Die Werte schwanken stark und willkürlich um die jeweiligen Mittelwerte.
Im mittleren Teil der Kompakta können 71,8% der Fälle ausgewertet werden (m: 69,8%; w: 75,0%). Der Mittelwert des Gesamtkollektivs ist 0,0399mm² (SD: 0,0580) und der Median ist 0,0232mm². Bei den Männern ist ein Durchschnittswert von 0,0315mm² (SD: 0,0382) und ein Median von 0,0213mm² zu finden. Werden nur die weiblichen Individuen betrachtet, liegt der Mittelwert bei 0,0523mm² (SD: 0,0777) und der Median bei 0,0250mm². Die 95%-igen Konfidenzintervalle überschneiden sich teilweise (m: 0,0199mm²-0,0431mm²; w: 0,0233mm²-0,0813mm²). Da die Varianzen der beiden Gruppen jedoch nicht homogen sind (Levene-Test: p = 0,006), kann keine Überprüfung durch eine ANOVA stattfinden. Laut Welch-Test und Brown-Forsythe-Test sind die Mittelwerte zwischen den beiden Geschlechtern nicht signifikant verschieden (p = 0,183).

Die Altersabhängigkeit der durchschnittlichen Fläche einer Resorptionslakune im mittleren Bereich der Kompakta ist der Abb. 98b zu entnehmen. In der Altersklasse der 70jährigen, in welcher schon der Anteil an resorbiertem Knochen sehr groß war, zeigt sich ein extrem hoher Wert für ResA (0,0959mm²). Davor liegen die Werte relativ konstant unter dem Mittelwert (bei etwa 0,0200mm²). Bei den weiblichen Individuen ist ab der Altersklasse der 50jährigen ein leichter Anstieg der Werte zu verzeichnen. Für das Gesamtkollektiv wird durch Pearson ein hochsignifikanter linearer Korrelationskoeffizient von 0,449 für den Zusammenhang zwischen dem Alter und der Fläche einer Resorptionslakune berechnet. Bei den männlichen Individuen ist keine Korrelation zu finden. Bei den Frauen hingegen ist die Korrelation zum Alter hochsignifikant und stärker linear als im Gesamtkollektiv (0,596).

Periostal können 90,3% der Fälle ausgewertet werden (m: 88,9%; w: 92,5%). Der Mittelwert des Gesamtkollektivs liegt bei 0,0136mm² (SD: 0,0108) und der Median bei 0,0100mm². Werden ausschließlich die männlichen Individuen betrachtet, ist eine durchschnittliche Fläche von 0,0145mm² für eine Resorptionslakune (SD: 0,0110) und ein Median von 0,0129mm² zu beobachten. Bei den Frauen zeigt sich ein Mittelwert von 0,0121mm² (SD: 0,0105) und ein Median von 0,0100mm². Die 95%-igen Konfidenzintervalle des Mittelwerts überschneiden sich (m: 0,0116mm²-0,0175mm²; w: 0,00860mm²-0,0156mm²) und eine einfaktorielle ANOVA (p = 0,294) bestätigt, dass kein signifikanter Unterschied zwischen den Mittelwerten besteht.

Im periostalen Bereich ist kein Zusammenhang zwischen der durchschnittlichen Fläche einer Resorptionslakune und dem Alter erkennbar (Abb. 98c).

Die durchschnittliche Fläche einer Resorptionslakune nimmt von endostal nach periostal ab. Dabei überschneiden sich die 95%-igen Konfidenzintervalle des Mittelwerts nicht (end: 0,143mm²-0,192mm²; mit: 0,0265mm²-0,0534mm²; per: 0,0113mm²-0,0158mm²), was darauf hindeutet, dass tatsächlich signifikante Unterschiede zwischen den Mittelwerten bestehen. Da der Levene-Test ergibt, dass die Varianzen der Gruppen nicht homogen sind (p = 0,000), kann keine ANOVA durchgeführt werden. Allerdings wird der signifikante Unterschied durch den Welch-Test und den Brown-Forsythe-Test mit einer Signifikanz von 0,000 bestätigt. Durch
die Post-Hoc-Tests (Dunnett-T$_3$ und Games-Howell) zeigt sich, dass sich tatsächlich alle drei Lokalisationen signifikant voneinander unterscheiden.

Anatomie-Kollektiv

<table>
<thead>
<tr>
<th>Ausgewertete Fälle in %</th>
<th>96,3%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mittelwert</td>
<td>0,0741mm²</td>
</tr>
<tr>
<td>Standardabweichung</td>
<td>0,0933</td>
</tr>
<tr>
<td>Median</td>
<td>0,0383mm²</td>
</tr>
<tr>
<td>Minimum</td>
<td>0,000mm²</td>
</tr>
<tr>
<td>Maximum</td>
<td>0,403mm²</td>
</tr>
<tr>
<td>Spannweite</td>
<td>0,403mm²</td>
</tr>
</tbody>
</table>

Tab. 65: Explorative Datenanalyse der durchschnittlichen Fläche einer Resorptionslakune in mm² des Gesamtquerschnittes des Anatomie-Kollektivs

Im Mittel hat eine Resorptionslakune des anterioren Bereichs des Femurs des Anatomie-Kollektivs eine Fläche von 0,0741mm² (SD: 0,0933). Der Median ist 0,0383mm². Der maximale Wert liegt bei 0,403mm² (Spannweite 0,403mm²).

In den endostalen Bereichen beträgt die durchschnittliche Fläche einer Resorptionslakune 0,126mm² (SD: 0,104) und der Median 0,0973mm². Werden nur die männlichen Individuen betrachtet, liegt der Mittelwert bei 0,123mm² (SD: 0,0945) und der Median bei 0,104mm². Bei den weiblichen Individuen wird im Mittel ein Wert von 0,130mm² (SD: 0,116) und ein Median von 0,0896mm² beobachtet. Da sich die 95%igen Konfidenzintervalle stark überschneiden, ist davon auszugehen, dass die Mittelwerte der beiden Geschlechter nicht signifikant verschieden sind. Eine ANOVA bestätigt diese Vermutung mit einer Signifikanz von 0,853.

Mit zunehmendem Alter ist eine stetige Zunahme der durchschnittlichen Fläche einer Resorptionslakune (0,0399mm² (50er)-0,166mm² (90er)) im Gesamtkollektiv zu erkennen. Die Korrelation nach Pearson ist signifikant (r = 0,378). Bei den männlichen Individuen ist diese Tendenz ebenfalls vorhanden, bei den weiblichen Individuen weniger (Abb. 99a). Nach Pearson zeigt sich in den weiblichen Individuen keine Korrelation zum Alter. Bei den männlichen Individuen liegt der Korrelationskoeffizient bei 0,564 und ist signifikant.
Mittig findet sich ein durchschnittlicher Wert von 0,0715mm² für die Fläche einer Resorptionslakune (SD: 0,102). Der Median beträgt 0,0386mm². Werden nur die männlichen Individuen betrachtet, liegt der Mittelwert bei 0,0414mm² (SD: 0,0428) und der Median bei 0,0333mm². Bei den weiblichen Individuen ist im Mittel ein Wert von 0,100mm² (SD: 0,132) und ein Median von 0,0412mm² zu beobachten. Die 95%-igen Konfidenzintervalle der Mittelwerte überschneiden sich teilweise (m: 0,0194mm²-0,0634mm²; w: 0,0343mm²-0,1656mm²), was darauf hindeutet, dass keine signifikanten Geschlechtsunterschiede existieren. Da die Varianzen der beiden Gruppen nicht homogen sind (Levene-Test: p = 0,001), werden zum statistischen Mittelwertvergleich der Welch-Test und der Brown-Forsythe-Test herangezogen, die bestätigen, dass sich die Mittelwerte nicht signifikant unterscheiden (p = 0,089).

In Abb. 99b ist nur für die männlichen Individuen ein schwacher, aber regelmäßiger Anstieg der Fläche einer Resorptionslakune mit dem Alter zu erkennen (r nach Pearson = 0,488, signifikant). Die Werte steigen von 0,0119mm² (50er) auf 0,0471mm² (90er). Für das Gesamtkollektiv und die weiblichen Individuen zeigt sich nach Pearson kein Zusammenhang mit dem Alter. In der Gruppe der Frauen zeigt sich in der Altersklasse der 80jährigen ein extrem hoher Wert (0,152mm²), der sogar größer ist als der Wert dieser Altersklasse im endostalen Bereich.

Periostal ist im Gesamtkollektiv ein Durchschnittswert von 0,0260mm² (SD: 0,0206) und ein Median von 0,0202mm² beobachtbar. Bei den männlichen Individuen ist im Mittel eine Fläche von 0,0280mm² pro Resorptionslakune (SD: 0,0209) und ein Median von 0,0214mm² zu finden. Werden nur die weiblichen Individuen betrachtet, beträgt der Mittelwert 0,0241mm² (SD: 0,0208) und der Median 0,0193mm². Da sich die 95%-igen Konfidenzintervalle der Mittelwerte stark überschneiden (m: 0,0172mm²-0,0388mm²; w: 0,0137mm²-0,0344mm²), bestehen wahrscheinlich keine signifikanten Geschlechtsunterschiede. Diese Annahme wird durch eine einfaktorielle ANOVA mit einer Signifikanz von 0,581 bestätigt.

Aus der Abb. 99c geht kein erkennbarer Zusammenhang mit dem Individualalter hervor.

Bei einem Vergleich der drei Lokalisationen der Kompakta wird deutlich, dass die durchschnittliche Fläche von endostal nach periostal abnimmt. Die 95%-igen Konfidenzintervalle überschneiden sich gar nicht oder nur wenig (end: 0,0902mm²-0,162mm²; mit: 0,0364mm²-0,107mm²; per: 0,0189mm²-0,0331mm²). Laut Welch-Test und Brown-Forsythe-Test unterscheiden sich zumindest zwei der Lokalisationen signifikant voneinander (p = 0,000). Eine ANOVA kann nicht angewendet werden, da die Varianzen der Gruppen nicht homogen sind (Levene-Test: p = 0,000). Post-Hoc-Tests (Dunnett-T₃ und Games-Howell) zeigen, dass sich die Größe der Resorptionslakunen mittig und endostal nicht signifikant voneinander unterscheiden (p > 0,08).
4.2.17 Aktivierungs frequenz (AktF) und Knochenbildungsr ate (BFR)

Da die Aktivierungs f requenz, die man auch als Remodelingrate bezeichnen könnte, linear in die Berechnung der Knochenbildungsr ate einfl üßt (Formel siehe Punkt 3.2.5), sollen die beiden Größen hier gemeinsam ausgewertet werden. Wie bei den geometrischen Daten der Osteone dient die Aufl istung beider Größen vor Al lem dem Vergleich mit Werten der themenbezogenen Literatur.

Basel-Kollektiv

Da in die Berechnung von Aktivierungs frequenz und Knochenbildungsr ate der Durchmesser der Osteone mit einfl üßt, sind die auswertbaren Fallzahlen, vor Al lem im endostalen Bereich sehr beschränkt (nur 32,5% bei weiblichen Individuen). Auf die Gesamtzahl der Fälle bezogen wurden 67,6% ausgewertet.

Aktivierungs frequenz (AktF)

<table>
<thead>
<tr>
<th>Ausgewertete Fälle in %</th>
<th>67,6%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mittelwert</td>
<td>0,756/mm²/Jahr</td>
</tr>
<tr>
<td>Standardabweichung</td>
<td>0,456</td>
</tr>
<tr>
<td>Median</td>
<td>0,631/mm²/Jahr</td>
</tr>
<tr>
<td>Minimum</td>
<td>0,134/mm²/Jahr</td>
</tr>
<tr>
<td>Maximum</td>
<td>3,664/mm²/Jahr</td>
</tr>
<tr>
<td>Spannweite</td>
<td>3,530/mm²/Jahr</td>
</tr>
</tbody>
</table>

Tab. 66: Explorative Datenanalyse der Aktivierungs frequenz des Gesamtquerschnittes des Basel-Kollektivs

Der Mittelwert der Aktivierungs frequenz liegt im Basel-Kollektiv bei 0,756/mm²/Jahr (SD: 0,456) und der Median bei 0,631/mm²/Jahr. Der geringste Wert des Kollektivs beträgt 0,134/mm²/Jahr. Den höchsten Wert findet man bei 3,664/mm²/Jahr (Spannweite 3,530).

Knochenbildungsr ate (BFR)

<table>
<thead>
<tr>
<th>Ausgewertete Fälle in %</th>
<th>67,6%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mittelwert</td>
<td>0,0278 mm²/mm²/Jahr</td>
</tr>
<tr>
<td>Standardabweichung</td>
<td>0,0178</td>
</tr>
<tr>
<td>Median</td>
<td>0,0221 mm²/mm²/Jahr</td>
</tr>
<tr>
<td>Minimum</td>
<td>0,00280 mm²/mm²/Jahr</td>
</tr>
<tr>
<td>Maximum</td>
<td>0,106 mm²/mm²/Jahr</td>
</tr>
<tr>
<td>Spannweite</td>
<td>0,103 mm²/mm²/Jahr</td>
</tr>
</tbody>
</table>

Tab. 67: Explorative Datenanalyse der Knochenbildungsr ate des Gesamtquerschnittes des Basel-Kollektivs

Der Mittelwert der Knochenbildungsr ate in der Basel-Serie beträgt 0,0278 mm²/mm²/Jahr (2,78%) mit einer Standardabweichung von 0,0178 (1,78%). Der Median ist 0,0221 mm²/mm²/Jahr. Die kleinste BFR liegt bei 0,00280 mm²/mm²/Jahr, die höchste bei 0,106 mm²/mm²/Jahr (Spannweite 0,103).
Im endostalen Bereich konnten nur 36,9% der Fälle ausgewertet werden (m: 39,7%; w: 32,5%). Dabei sind für die weiblichen Altersklassen der 70- und 80jährigen gar keine Werte zu bestimmen, da keine geometrischen Daten für die Osteone vorliegen (Ost_{sum} < 25).

Die Aktivierungsfrequenz beträgt im Mittel 0,928/mm²/Jahr (SD: 0,575) und der Median 0,772/mm²/Jahr. Werden nur die männlichen Individuen betrachtet, liegt der Durchschnittswert bei 0,929/mm²/Jahr (SD: 0,600) und der Median bei 0,760/mm²/Jahr. Bei den Frauen zeigt sich ein Mittelwert von 0,925/mm²/Jahr (SD: 0,550) und ein Median von 0,859/mm²/Jahr.

Die Knochenbildungsrate hat einen Mittelwert von 0,0318 mm²/mm²/Jahr (SD: 0,0203) und einen Median von 0,0264 mm²/mm²/Jahr. Bei den Männern zeigt sich ein durchschnittlicher Wert von 0,0316 mm²/mm²/Jahr (SD: 0,0196) und ein Median von 0,0249 mm²/mm²/Jahr. Werden ausschließlich die weiblichen Individuen betrachtet, liegt die Knochenbildungsrate im Mittel bei 0,0323 mm²/mm²/Jahr (SD: 0,0223) und der Median bei 0,0284 mm²/mm²/Jahr.

Die Mittelwerte der beiden Geschlechter scheinen sich aufgrund der starken Überschneidung der 95%igen Konfidenzintervalle nicht signifikant zu unterscheiden (die Grenzwerte sollen hier im Einzelnen nicht angegeben werden). Bestätigt wird dies durch eine einfaktorielle ANOVA (Signifkanzen: AktF: 0,983; BFR: 0,915).
Die Aktivierungs frequenz und die Knochenbildungsrate nehmen mit dem Alter ab, wobei der Abstieg bis zur Altersklasse der 50jährigen schneller vonstatten geht und ab der Altersklasse der 60jährigen nur noch langsamer voranschreitet (Abb. 100a, Abb. 101a). Der Verlauf gleicht einer logarithmischen Kurve. Wird der lineare Korrelationskoeffizient nach Pearson berechnet, ergibt sich eine hochsignifikante Abnahme von AktF und BFR mit dem Alter (AktF: -0,772; BFR: -0,749). Bei den männlichen und weiblichen Individuen zeigen sich ebenfalls hochsignifikante Korrelationen zum Alter (Männer: AktF: -0,802; BFR: -0,790; Frauen: AktF: -0,862; BFR: -0,810). Da das Individualalter allerdings in die Berechnung mit einfließt, sollten die Korrelationen kritisch betrachtet werden (siehe auch Diskussion Punkt 5.2.7).

Im mittleren Bereich konnten 78,6% der Fälle ausgewertet werden (m: 81,0%; w: 69,8%). Der Mittelwert der Aktivierungs frequenz liegt bei 0,831/mm²/Jahr (SD: 0,511) und der Median bei 0,673/mm²/Jahr. Bei männlichen Individuen ist ein Durchschnittswert von 0,786/mm²/Jahr (SD: 0,553) und ein Median von 0,622/mm²/Jahr zu finden. Bei den Frauen wird eine mittlere Aktivierungs frequenz von 0,908/mm²/Jahr (SD: 0,428) und ein Median von 0,749/mm²/Jahr beobachtet.

Die Knochenbildungsrate weist einen durchschnittlichen Wert von 0,0321 mm²/mm²/Jahr auf (SD: 0,0198). Der Median ist 0,0246 mm²/mm²/Jahr. Werden ausschließlich die männlichen Individuen betrachtet, zeigt sich ein Mittelwert von 0,0305 mm²/mm²/Jahr (SD: 0,0200) und ein Median von 0,0237 mm²/mm²/Jahr. Bei den Frauen hat die Knochenbildungsrate einen durchschnittlichen Wert von 0,0347 mm²/mm²/Jahr (SD: 0,0196) und der Median einen Wert von 0,0281 mm²/mm²/Jahr.

Die Mittelwerte der Geschlechter unterscheiden sich wahrscheinlich weder bezüglich der AktF noch der BFR signifikant, da sich die 95%igen Konfidenzintervalle überschneiden (auf die Angabe der Grenzwerte im Einzelnen wird hier verzichtet). Dies wird durch eine einfaktorielle ANOVA bestätigt (Signifikanzen: AktF: 0,305; BFR: 0,362).

Im periostalen Bereich konnten 87,4% der Fälle ausgewertet werden (m: 84,1%; w: 92,5%). Der Mittelwert der Aktivierungs frequenz liegt bei 0,617/mm²/Jahr (SD: 0,277) und der Median bei 0,577/mm²/Jahr. Werden nur die männlichen Individuen betrachtet, ergibt sich ein Durchschnittswert von 0,578/mm²/Jahr (SD: 0,230) und ein Median von 0,530/mm²/Jahr. Bei
den weiblichen Individuen zeigt sich eine mittlere Aktivierungs frequenz von 0,673/mm²/Jahr (SD: 0,329) und ein Median von 0,608/mm²/Jahr.

Die Knochenbildungsrate zeigt im periostalen Teil des Gesamtkollektivs einen durchschnittlichen Wert von 0,0223 mm²/mm²/Jahr (SD: 0,0128) und einen Median von 0,0198 mm²/mm²/Jahr. Bei den Männern beobachtet man einen Mittelwert von 0,0210 mm²/mm²/Jahr (SD: 0,0107) und einen Median von 0,0187 mm²/mm²/Jahr. Werden nur die weiblichen Individuen betrachtet, liegt der Durchschnittswert bei 0,0242 mm²/mm²/Jahr (SD: 0,0153) und der Median bei 0,0206 mm²/mm²/Jahr.

Es scheint, als ob sich die Mittelwerte der beiden Geschlechter bezüglich AktF und BFR nicht signifikant unterscheiden, da sich die 95%igen Konfidenzintervalle stark überschneiden. Diese Annahme wird durch eine einfaktorielle ANOVA bestätigt (Signifikanzen: AktF: 0,109; BFR: 0,255).

Die Abhängigkeit der Aktivierungs frequenz und der Knochenbildungsrate von Individualalter ist den Abbildungen Abb. 100c und Abb. 101c zu entnehmen. Dabei wird ersichtlich, dass die Knochenbildungsrate mit dem Alter langsam, aber konstant abnimmt (zwischen den 30- und den 40jährigen ist ein etwas größerer Sprung). Bei der Aktivierungs frequenz sind die Verhältnisse nicht ganz so eindeutig. Die Werte in den 20ern und den 30ern liegen relativ hoch (bei etwa 0,8/mm²/Jahr), um dann ab den 40ern ein Plateau bei etwa 0,55/mm²/Jahr zu erreichen. Das Plateau in der Kurve des Gesamtkollektivs entsteht dadurch, dass die Werte der Altersklassen in den beiden Geschlechtern genau gegenläufig sind. Z. B. ist bei den 40jährigen der Wert bei den Frauen niedrig (0,44/mm²/Jahr) und bei den Männern hoch (0,62/mm²/Jahr). In der Altersklasse der 70jährigen hat sich das Verhältnis dann genau umgekehrt (Frauen: 0,65/mm²/Jahr, Männer: 0,45/mm²/Jahr). Und erst in der Altersklasse der 80jährigen sinkt der Wert des Gesamtkollektivs weiter (0,48/mm²/Jahr).

Werden die Korrelationskoeffizienten nach Pearson berechnet, ergeben sich hochsignifikante Korrelationen zum Alter, die allerdings nur schwach linear ausgeprägt sind (AktF: -0,380; BFR: -0,482). Bei den männlichen Individuen zeigen sich ebenfalls hochsignifikante Korrelationen (AktF: -0,404; BFR: -0,488). Werden nur die weiblichen Individuen betrachtet, ist für die Aktivierungs frequenz eine signifikante Korrelation von -0,358 und für die Knochenbildungsrate eine hochsignifikante Korrelation von -0,476 zu beobachten.

Die Aktivierungs frequenz und die Knochenbildungsrate liegen periostal niedriger als mittig und endostal. Dieser Unterschied scheint auch signifikant zu sein, da sich die 95%igen Konfidenzintervalle der Mittelwerte zwar mittig und endostal stark überschneiden, periostal jedoch nicht. Aufgrund der Tatsache, dass die Varianzen nicht homogen sind (Levene-Test: AktF: 0,001; BFR: 0,007), muss anstatt einer ANOVA der Welch-Test und der Brown-Forsythe-Test durchgeführt werden. Dabei zeigt sich, dass sich mindestens eine Gruppe signifikant von den anderen abhebt (Signifikanzen im Welch-Test beide bei 0,000 und im Brown-Forsythe-Test bei 0,001). Post-Hoc-Tests (Dunnett-T_3 und Games-Howell) zeigen, dass sich nur der periostale Teil signifikant von den anderen beiden Lokalisationen
unterscheidet. Sowohl die Aktivierungs frequenz, als auch die Knochenbildungs rate sind dort am niedrigsten.

Anatomie-Kollektiv

Zur Auswertung der Aktivierungs frequenz und der Knochen bildungsrate werden ausschließlich Fälle herangezogen, in denen die durchschnittliche Größe eines Osteons an 25 oder mehr Osteonen berechnet werden kann (Cho et al. 2006). Da die Knochenbildungsrate aus der Aktivierungs frequenz berechnet wird, erfolgt die Auswertung der beiden Parameter gemeinsam (genauere Begründung siehe oben bei Basel-Kollektiv).

Aktivierungs frequenz (AktF)

<table>
<thead>
<tr>
<th>Ausgewertete Fälle in %</th>
<th>63,0%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mittelwert</td>
<td>0,598/mm²/Jahr</td>
</tr>
<tr>
<td>Standardabweichung</td>
<td>0,120</td>
</tr>
<tr>
<td>Median</td>
<td>0,595/mm²/Jahr</td>
</tr>
<tr>
<td>Minimum</td>
<td>0,292/mm²/Jahr</td>
</tr>
<tr>
<td>Maximum</td>
<td>0,897/mm²/Jahr</td>
</tr>
<tr>
<td>Spannweite</td>
<td>0,605/mm²/Jahr</td>
</tr>
</tbody>
</table>

Tab. 68: Explorative Datenanalyse der Aktivierungs frequenz in Anzahl/mm²/Jahr des Gesamtquerschnittes des Anatomie-Kollektivs

Im Mittel beträgt die Aktivierungs frequenz im Anatomie-Kollektiv 0,598/mm²/Jahr (SD: 0,1203). Der Median ist 0,595/mm²/Jahr. Die geringste Aktivierungs frequenz liegt bei 0,292/mm²/Jahr, die höchste bei 0,897/mm²/Jahr (Spannweite 0,605).

Knochenbildungsrate (BFR)

<table>
<thead>
<tr>
<th>Ausgewertete Fälle in %</th>
<th>63,0%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mittelwert</td>
<td>0,0156 mm²/mm²/Jahr</td>
</tr>
<tr>
<td>Standardabweichung</td>
<td>0,00578</td>
</tr>
<tr>
<td>Median</td>
<td>0,0149 mm²/mm²/Jahr</td>
</tr>
<tr>
<td>Minimum</td>
<td>0,00770 mm²/mm²/Jahr</td>
</tr>
<tr>
<td>Maximum</td>
<td>0,0357 mm²/mm²/Jahr</td>
</tr>
<tr>
<td>Spannweite</td>
<td>0,0279 mm²/mm²/Jahr</td>
</tr>
</tbody>
</table>

Tab. 69: Explorative Datenanalyse der Knochenbildungsrate in mm²/mm²/Jahr des Gesamtquerschnittes des Anatomie-Kollektivs

Im Mittel beträgt die Knochenbildungs rate des Anatomie-Kollektivs 0,0156mm²/mm²/Jahr (SD: 0,00578). Der Median ist 0,0149mm²/mm²/Jahr. Die kleinste Knochenbildungs rate liegt bei 0,00770mm²/mm²/Jahr, der maximale beobachtete Wert ist 0,0357mm²/mm²/Jahr (Spannweite 0,0279).
Durchschnittlich kann endostal eine Aktivierungs frequenz von 0,617/mm²/Jahr (SD: 0,127) beobachtet werden. Der Median beträgt 0,566/mm²/Jahr. Werden nur die männlichen Individuen betrachtet, zeigt sich ein Mittelwert von 0,648/mm²/Jahr (SD: 0,163) und ein Median von 0,557/mm²/Jahr. Bei den weiblichen Individuen liegt der Durchschnittswert bei 0,592/mm²/Jahr (SD: 0,0975) und der Median bei 0,597/mm²/Jahr.

Die mittlere Knochenbildungsrate im endostalen Teil des Anatomie-Kollektivs liegt bei 0,0145mm²/mm²/Jahr (SD: 0,00489) und der Median bei 0,0143mm²/mm²/Jahr. Bei den männlichen Individuen beläuft sich der Mittelwert auf 0,0140mm²/mm²/Jahr (SD: 0,00486) und der Median auf 0,0153mm²/mm²/Jahr. Werden lediglich die Frauen betrachtet, zeigt sich ein Durchschnittswert von 0,0149mm²/mm²/Jahr (SD: 0,00535) und ein Median von 0,0135mm²/mm²/Jahr.

Da sich die 95%igen Konfidenzintervalle der Mittelwerte beider Geschlechter stark überschneiden, kann man davon ausgehen, dass kein signifikanter Unterschied besteht. Eine ANOVA bestätigt diese Vermutung (Signifikanzen: AktF: 0,496; BFR: 0,784).

Die Altersabhängigkeit der Aktivierungs frequenz und der Knochenbildungsrate sind den Abbildungen Abb. 102a und Abb. 103a zu entnehmen. Da im endostalen Bereich nur sehr wenige Individuen ausgewertet werden können, sind die Werte eher kritisch zu betrachten. Trotzdem sieht es so aus, als ob sowohl bei den männlichen Individuen (z. B. AktF: 190
0,897/mm²/Jahr (50er)–0,528/mm²/Jahr (80er)), als auch bei den weiblichen Individuen (z. B. BFR: 0,0240mm²/mm²/Jahr (70er)–0,0101mm²/mm²/Jahr (90er)) eine Abnahme der Aktivierungs frequenz und der Knochenbildungsrate mit zunehmendem Alter zu verzeichnen ist. Allerdings liegen bei den weiblichen Individuen kaum Werte in den Altersklassen 50er-70er vor und in den männlichen Individuen fehlen dafür die Werte in den hohen Altersklassen (70er und 90er). Werden die linearen Korrelationskoeffizienten nach Pearson berechnet, zeigt sich für das Gesamtkollektiv nur für die Aktivierungs frequenz eine hochsignifikante Abnahme mit dem Alter (-0,749). Für die Knochenbildungsr ate ist kein Zusammenhang zum Alter nachzuweisen. Bei den männlichen Individuen ist weder für AktF noch für BFR ein signifikanter Zusammenhang mit dem Alter zu finden. Bei den weiblichen Individuen zeigt sich für AktF eine hochsignifikante Korrelation zum Individualalter (-0,934, nach Pearson) und für BFR zumindest eine signifikante Korrelation (-0,863, nach Pearson). Die Zusammenhänge zum Alter müssen aufgrund der Berechnungsgrundlage kritisch betrachtet werden (siehe auch Diskussion, Punkt 5.2.7).

Im mittleren Bereich der Kompakta kann eine mittlere Aktivierungsfrequenz von 0,603/mm²/Jahr (SD: 0,107) und ein Median von 0,617/mm²/Jahr beobachtet werden. Werden nur die männlichen Individuen betrachtet, zeigt sich ein Mittelwert von 0,614/mm²/Jahr (SD: 0,108) und ein Median von 0,644/mm²/Jahr. Bei den Frauen beträgt der Durchschnittswert 0,588/mm²/Jahr (SD: 0,108) und der Median 0,568/mm²/Jahr. Der mittlere Wert der Knochenbildungsrate liegt im Gesamtkollektiv bei 0,0178mm²/mm²/Jahr (SD: 0,00663) und der Median bei 0,0175/mm²/Jahr. Werden nur die männlichen Individuen betrachtet, zeigt sich ein Durchschnittswert von 0,0204mm²/mm²/Jahr (SD: 0,00626) und ein Median von 0,0182/mm²/Jahr. Bei den weiblichen Individuen beträgt der Mittelwert 0,0144mm²/mm²/Jahr (SD: 0,00572) und der Median 0,0131/mm²/mm²/Jahr.

Da sich die 95%-igen Konfidenzintervalle der Mittelwerte stark bzw. teilweise überschneiden muss mit einer ANOVA überprüft werden, ob sich die Mittelwerte der Geschlechter signifikant unterscheiden. Im Fall der Aktivierungsfrequenz liegt kein signifikanter Unterschied vor (p = 0,576). Bezüglich der Knochenbildungsrate ist der Mittelwert der männlichen Individuen jedoch signifikant höher, als derjenige der Frauen (p = 0,028).

Die Altersabhängigkeiten der Aktivierungsfrequenz und der Knochenbildungsrate sind Abb. 102b und Abb. 103b zu entnehmen. Für das Gesamtkollektiv ist sowohl für AktF (0,693/mm²/Jahr (50er)–0,507/mm²/Jahr (90er)) als auch für BFR (0,0264mm²/mm²/Jahr (50er)–0,0100/mm²/mm²/Jahr (90er)) eine relativ stetige Abnahme mit steigendem Alter zu erkennen. Bei der Aktivierungsfrequenz zeigt sich bei den weiblichen Individuen ein Ausreißer in der Altersklasse der 70jährigen, der wohl darauf zurückzuführen ist, dass sich in dieser Gruppe nur ein Individuum befindet. Im Fall der Knochenbildungsrate hingegen, verlaufen die Kurven beider Geschlechter sehr ähnlich. Nach Pearson zeigen sich sowohl für die Aktivierungsfrequenz (-0,613), als auch für die Knochenbildungsrate (-0,810)
hochsignifikante Korrelationen für das Gesamtkollektiv. Werden die beiden Geschlechter einzeln betrachtet, ist für die Aktivierungsrate bei den Männern eine signifikante Korrelation nach Pearson von -0,662, bei den Frauen jedoch keine Korrelation zu finden. Für die Knochenbildungsrate wird bei beiden Geschlechtern eine hochsignifikante Korrelation zum Alter beobachtet (m: -0,750; w: -0,800).

Im periostalen Bereich liegt der Mittelwert der Aktivierungsrate im Gesamtkollektiv bei 0,588/mm²/Jahr (SD: 0,129) und der Median bei 0,589/mm²/Jahr. Werden nur die männlichen Individuen betrachtet, zeigt sich ein durchschnittlicher Wert von 0,577/mm²/Jahr (SD: 0,154) und ein Median von 0,590/mm²/Jahr. Bei den weiblichen Individuen beträgt der Durchschnittswert 0,601/mm²/Jahr (SD: 0,0975) und der Median 0,589/mm²/Jahr. Bezuglich der Knochenbildungsrate beobachtet man einen mittleren Wert von 0,0144/mm²/mm²/Jahr (SD: 0,00510) und einen Median von 0,0142/mm²/mm²/Jahr. Bei den männlichen Individuen zeigt sich ein Mittelwert von 0,0155/mm²/mm²/Jahr (SD: 0,00622) und ein Median von 0,0149/mm²/mm²/Jahr. Werden nur die weiblichen Individuen betrachtet, beträgt der Durchschnittswert 0,0133/mm²/mm²/Jahr (SD: 0,00328) und der Median 0,0131/mm²/mm²/Jahr. Die 95%igen Konfidenzintervalle der beiden Geschlechter überschneiden sich stark, also ist nicht davon auszugehen, dass die Mittelwerte von AktF und BFR in den Geschlechtern signifikant verschieden sind. Eine ANOVA bestätigt diese Vermutung (Signifikanzen: AktF: 0,597; BFR: 0,224).

Die Altersabhängigkeiten der Aktivierungsrate und der Knochenbildungsrate sind Abb. 102c und Abb. 103c zu entnehmen. Für das Gesamtkollektiv erkennt man sowohl für die Aktivierungsrate (0,644/mm²/Jahr (50er)–0,521/mm²/Jahr (90er)), als auch für die Knochenbildungsrate (0,0205/mm²/mm²/Jahr (50er)–0,0111/mm²/mm²/Jahr (90er)) eine Abnahme mit steigendem Individualalter. Wird die Korrelation nach Pearson berechnet, ist die Abnahme im Gesamtkollektiv allerdings nur für die Knochenbildungsrate hochsignifikant (-0,529), für die Aktivierungsrate ergibt sich keine Korrelation. Für die männlichen Individuen besteht ebenfalls weder für die BFR noch für die AktF eine Korrelation nach Pearson. Werden nur die weiblichen Individuen betrachtet, zeigt sich immerhin für die Knochenbildungsrate eine hochsignifikante Korrelation von -0,637 (nach Pearson).

Werden die drei Lokalisationen der Kompakta miteinander verglichen, ist erkennbar, dass die Aktivierungsrate von endostal nach periostal leicht abnimmt. Da sich die 95%igen Konfidenzintervalle jedoch alle überschneiden, kann davon ausgegangen werden, dass diese Abnahme nicht signifikant ist. Die Vermutung wird durch eine einfaktorielle ANOVA bestätigt (p = 0,763).

Bei der Knochenbildungsrate verhält es sich etwas anders. Die Mittelwerte im endostalen und periostalen Bereich sind fast identisch, nur die BFR im mittleren Teil ist erhöht. Allerdings
scheint der Unterschied des mittleren Bereichs zu den anderen beiden Teilen der Kompakta nicht signifikant zu sein, da sich die 95%-igen Konfidenzintervalle der Mittelwerte stark überschneiden. Durch eine ANOVA wird diese Vermutung mit einer Signifikanz von 0.073 bestätigt.

4.2.18 Zusammenhang von mikrostrukturellen Parametern mit Todesursache und Arbeitsbelastung (Basel-Kollektiv)

Todesursache

Mit den angewandten statistischen Methoden wurde kein Zusammenhang zwischen den Todesursachen und den erhobenen Variablen der Knochenmikrostruktur unter Einbeziehung des Individualalters gefunden. Keines der sechs Krankheitsbilder beeinflusst demnach die

In einem späteren Teil dieser Arbeit werden spezifische Stressmerkmale mit einzelnen Krankheitsbildern in Verbindung gebracht (siehe Punkt 4.3).

Das Problem bei der Auswertung des Zusammenhangs zwischen Todesursache und Ausprägung der mikrostrukturellen Variablen im Anatomie-Kollektiv ist, dass dort einige Individuen mehrere Krankheitsbilder aufweisen und somit keiner eindeutigen Todesursache zugeordnet werden können. Außerdem ist die Anzahl von Individuen im Anatomie-Kollektiv noch wesentlich geringer als im Basel-Kollektiv, weshalb eine statistische Auswertung für sieben Gruppen (siehe Punkt 2.2.3) keinen Sinn macht.

Arbeitsbelastung

werden, wofür ebenfalls eine Einteilung der Berufe in Gruppen mit schwerer und geringer körperlicher Belastung vorgenommen wurde (Einteilung der Berufsgruppen: siehe Anhang 8.5.1).

In 87,4% der Fälle (90 von 103 Individuen) kann von dem angegebenen Beruf auf die körperliche Aktivität geschlossen werden. Die Verteilung der Arbeitsbelastung in den beiden Geschlechtern ist der Abb. 104 zu entnehmen.

Mit statistischen Methoden können keine Zusammenhänge zwischen der Arbeitsbelastung und einer der erhobenen mikrostrukturellen Variablen nachgewiesen werden.

Für die Individuen des Anatomie-Kollektivs ist keine Angabe der Berufe vorhanden, weshalb keine Auswertung der Arbeitsbelastung stattfinden kann.

4.2.19 Zusammenhang der erhobenen Parameter mit dem Body-Mass-Index (BMI) im Anatomie-Kollektiv

Es wird vermutet, dass der BMI einen beschränkten Einfluss auf die Knochenmikrostruktur ausübt, besonders wenn Individuen stark unter- oder übergewichtig sind (Thomas et al. 2002). Ein höheres Körpergewicht wird mit höherer Mineraldichte assoziiert (Salamone et al. 1999), weswegen schwerere Frauen dazu tendieren ein geringeres Osteoporoserisiko zu haben als sehr schlank Frauen. Bei starker Gewichtsabnahme geht die Knochendichte zurück und es findet Knochenresorption statt (Salamone et al. 1999). Laut Compston et al. (1981) birgt Fettleibigkeit ein erhöhtes Risiko für Vitamin-D-Mangel oder Stoffwechselerkrankungen, was sich definitiv ebenfalls auf den Knochenstoffwechsel auswirken würde.

Eine Auswertung des Body-Mass-Index (Berechnung siehe Punkt 2.2.2) konnte bei 100% der Anatomie-Individuen erfolgen. Der niedrigste Wert des Kollektivs mit 14,02 ist in einem männlichen Individuum zu finden, der höchste mit 29,59 in einer Frau. Werden männliche
und weibliche Individuen getrennt betrachtet, sind folgende Mittelwerte zu finden: 21,60 (m, SD: 4,13) und 21,81 (w, SD: 4,24). Die Mittelwerte sind laut einer einfaktoriellen ANOVA nicht signifikant verschieden (p = 0,881).

Eine regelmäßige Altersabhängigkeit des Body-Mass-Index ist nicht erkennbar (Abb. 105), wobei die Individuen unter der Altersklasse der 70jährigen tendenziell etwas höhere Werte (etwa 24,0) aufweisen. Berechnet man den Korrelationskoeffizienten nach Pearson ergibt sich kein signifikanter Zusammenhang mit dem Alter.

In der folgenden Abbildung (Abb. 106) ist die Verteilung der Klassen des BMI im Anatomie-Kollektiv nach Geschlechtern aufgeteilt dargestellt. Es wird deutlich, dass sich die Individuen relativ gleichmäßig auf die drei Klassen verteilen.

Die Mittelwerte der mikrostrukturellen Variablen und der Kompaktadicke werden anhand einer einfaktoriellen ANOVA in den drei Gruppen „Untergewicht“, „Normalgewicht“ und „Übergewicht“ verglichen. Im endostalen und im periostalen Bereich ergeben sich keinerlei signifikante Unterschiede zwischen den Gruppen. Im mittleren Bereich der Kompakta zeigt sich, dass die durchschnittliche Fläche einer Resorptionslakune bei den untergewichtigen Personen (ResA = 0,144mm²) signifikant größer ist, als bei den normalgewichtigen bzw. übergewichtigen Personen [ResA: 0,0321mm² (normg.); 0,0352mm² (überg.)]. Für den prozentualen Anteil an resorbiertem Knochen zeigt sich dieselbe Tendenz [Reskno: 30,23% (unterg.); 12,7% (normg.); 12,3% (überg.)], der Unterschied ist aber laut Welch-Test nicht
signifikant \((p = 0,166) \) und laut Brown-Forsythe-Test ebenfalls gerade nicht mehr signifikant \((p = 0,056) \).

Bezüglich der Kompaktadicke steigen die Mittelwerte von der Klasse der Untergewichtigen bis zur Klasse der Übergewichtigen an \[\text{Komp: 0,38 (unterg.); 0,45 (normg.); 0,49 (überg.)} \]. Der Unterschied ist allerdings nicht signifikant \((\text{ANOVA: } p = 0,148) \). In Abb. 107 ist zu erkennen, dass sich vor Allem die Klasse der Übergewichtigen abhebt.

4.3 Explorative Datenanalyse der Stressmerkmale in der Knochenmikrostruktur und Zusammenhänge mit anderen Stressmerkmalen

4.3.1 Haltelinien (LAGs)

Basel-Kollektiv

In 68 Individuen (66,0%) des Basel-Kollektivs werden Haltelinien im anterioren Teil der Femurkompakta beobachtet. Der leichte Unterschied in der Anzahl der betroffenen Individuen zu den Veröffentlichungen von Doppler et al. (2006a) und Doppler et al. (2006b) (N=54), rührt daher, dass zu diesem Zeitpunkt nur die periostalen Bereiche der Basel-Serie ausgewertet waren und in die nun vorliegende Untersuchung auch der endostale und der mittlere Bereich der Kompakta einbezogen wurden. Zwischen den Geschlechtern gibt es bezüglich des Auftretens von LAGs kaum Unterschiede (m: 65,1%; w: 67,5%).

Im Mittel werden 3,22 LAGs pro Individuum im gesamten Basel-Kollektiv beobachtet (SD: 4,27). Der maximal beobachtete Wert ist in einem männlichen Individuum zu finden und liegt bei 20 Haltelinien über den gesamten Querschnitt der anterioren Femurkompakta verteilt. In männlichen Individuen werden durchschnittlich 2,81 LAGs (SD: 3,72) gefunden und in weiblichen Individuen beträgt der Mittelwert 3,88 (SD: 5,00). Da bezüglich der Anzahl der Haltelinien eine starke Abweichung von einer Normalverteilung vorliegt (siehe Abb. 109), wird einer ANOVA zum Mittelwertvergleich, ein nichtparametrischer Mann-Whitney-Test zum Vergleich der zentralen Tendenzen vorgezogen (siehe auch 3.7). Dabei stellt sich heraus, dass sich die Anzahl der LAGs in weiblichen Individuen nicht signifikant von derjenigen der männlichen Individuen unterscheidet (p = 0,524).

4. Ergebnisse

Allerdings ist die Anzahl der Haltelinien ebenso hochsignifikant, aber mit stärkerer linearer Korrelation \(r = 0,621 \) vom Anteil der Generallamellen in der Femurkompakta abhängig (Abb. 111). Da dieser wiederum hochsignifikant mit dem Individualalter korreliert \(r = -0,537 \), ist die Altersabhängigkeit der Anzahl der LAGs nur eine Scheinkorrelation. Denn der Effekt der niedrigeren Anzahl der Haltelinien mit zunehmendem Alter ist vor Allem darauf zurückzuführen, dass Haltelinien nur in Bereichen beobachtet werden können, in denen noch Generallamellen existieren. Mit zunehmendem Remodeling der Knochenkompakta, werden auch die Haltelinien umgebaut (siehe Abb. 112). Liegt der Anteil der Generallamellen unter 10\%, ist es sehr unwahrscheinlich, dass noch LAGs beobachtet werden können (siehe Abb. 111).

Entstehungsalter der Haltelinien

Der folgenden Abbildung (Abb. 113) ist zu entnehmen, wie viele Individuen im jeweiligen Alter noch sichtbare Haltelinien ausgebildet haben.

Zusammenhang von LAGs und Schmelzhypoplasien

Die Anzahl der Schmelzhypoplasien liegt von 53 Individuen des Basel-Kollektivs vor ($n_{\text{männlich}} = 34$, $n_{\text{weiblich}} = 19$). In 94,3% der 53 Individuen werden Schmelzhypoplasien beobachtet (m: 91,2%, w: 100%). Durchschnittlich zeigen sich 2,42 Schmelzhypoplasien pro Individuum (SD: 1,31). Maximal wird eine Anzahl von 5 Hypoplasien gefunden. Bei den Männern liegt der Mittelwert bei 2,35 (SD: 1,41) und bei den Frauen bei 2,53 (SD: 1,12). Die Mittelwerte der Geschlechter unterscheiden sich laut einer einfaktoriellen ANOVA nicht
signifikant voneinander (p = 0,648). Da die Anzahl der Schmelzhypoplasien annähernd normal verteilt ist, kann eine ANOVA angewendet werden. Die Anzahl der Schmelzhypoplasien korreliert weder mit der Anzahl der Haltelinien in der Knochenmikrostruktur, noch mit der Anzahl der Harris-Linien im distalen Bereich der Tibia.

Zusammenhang von LAGs und Harris-Linien

Für 51 Individuen des Basel-Kollektivs liegt ein Wert für die Anzahl der Harris-Linien vor (n männlich = 32, n weiblich = 19). Dabei werden in 62,7% dieser Individuen Harris-Linien gefunden. Es zeigt sich, dass der Prozentsatz bei den Frauen (73,7%) etwas höher liegt, als bei den Männern (56,3%). Durchschnittlich werden 1,92 Harris-Linien am distalen Ende der Tibia beobachtet (SD: 2,39). Der maximale Wert liegt bei 10 Harris-Linien und ist in einem weiblichen Individuum zu finden. Für die männlichen Individuen liegt der Mittelwert bei 1,81 (SD: 2,32) und für die weiblichen bei 2,11 (SD: 2,56). Da die Anzahl der Harris-Linien in diesem Kollektiv nicht normal verteilt ist, wird zum Vergleich der zentralen Tendenzen ein nichtparametrischer Test herangezogen (siehe auch 3.7). Laut des Mann-Whitney-Tests liegt kein signifikanter Unterschied zwischen den Geschlechtern vor (p = 0,462). Die Anzahl der Harris-Linien korreliert nach Pearson signifikant mit der Anzahl der Haltelinien. Die Korrelation ist allerdings nur schwach linear ausgeprägt (r = 0,324, siehe hierzu auch Abb. 114).

![Abb. 114: Abhängigkeit der Anzahl der Harris-Linien pro Tibia von der Anzahl der Haltelinien in der Knochenmikrostruktur des Femurs im Basel-Kollektiv](image)

Überprüft man den Zusammenhang zu den Generallamellen in den Individuen, die Harris-Linien aufweisen, zeigt sich, dass auch in den Individuen, die einen hohen Anteil von Generallamellen haben, teilweise keine LAGs vorkommen, wohl aber Harris-Linien. Es gibt ebenfalls Individuen, die keine Harris-Linien haben, dafür aber LAGs.
Auftreten von Haltelinien in Individuen mit einer Krümmung der Langknochen der unteren Extremität

Bei BP 635 (m) sind zwei Haltelinien zu finden, die in etwa einem Alter von 20 Jahren gebildet wurden. Bei BP 639 (w) sind es vier Haltelinien im Alter von etwa 18 Jahren und bei BP 687 (w) handelt es sich um eine Haltelinie ebenfalls im Alter von 18 Jahren. Die Individuen BP 618 und BP 648 waren zusätzlich von einer der allgemeinen Hungersnöte im Baseler Raum betroffen (siehe folgender Punkt). Da aber beide Individuen einen zu geringen Anteil an Generallamellen in ihrem Femur aufweisen, um noch LAGs erkennen zu können, kann zu diesem Zeitpunkt noch nicht differenziert werden, ob LAGs eher durch Hungerkrisen oder Krankheiten entstehen.

Abb. 115: Abhängigkeit der Anzahl der Haltelinien von dem Anteil an Generallamellen in Individuen mit einer Krümmung der Langknochen der unteren Extremität im Basel-Kollektiv
Zusammenhang der LAGs mit Hungerkrisen

<table>
<thead>
<tr>
<th>Zeit</th>
<th>Betroffener Bereich</th>
<th>Beschreibung der Krise</th>
<th>Zitat</th>
</tr>
</thead>
<tbody>
<tr>
<td>1770 - 1772</td>
<td>Europa</td>
<td>Große Hungerkatastrophe mit einer enormen Sterblichkeit durch „Hungerepidemien“</td>
<td>Haidle 1997</td>
</tr>
<tr>
<td>1806</td>
<td>Schweiz</td>
<td>Einfuhrverbot englischer Waren in die Schweiz im Zuge des Wirtschaftskrieges Napoleon vs. England → Ernährungskrise</td>
<td>Haidle 1997</td>
</tr>
</tbody>
</table>

Tab. 70: Krisen in Basel und Umgebung zu Lebzeiten der Individuen des Basel-Kollektivs

Um zu gewährleisten, dass das Auftreten von Haltelinien nicht durch Knochenremodeling unkenntlich gemacht wurde, werden alle Individuen, die einen Generallamellenanteil von weniger als 10% aufweisen, aus dieser Untersuchung ausgenommen (siehe Punkt 4.3.1). Dabei handelt es sich um fünf Individuen (BP 618, BP 648, BP 655, BP 669, BP 679), womit 26 Individuen zur Untersuchung verbleiben.

Anatomie-Kollektiv

Eine Auswertung der Anzahl der Haltelinien macht im Fall des überalterten Anatomie-Kollektivs wenig Sinn, da LAGs hauptsächlich in Knochen zu erkennen sind, in denen noch

4.3.2 Nicht regelrechter Umbau der Knochenmikrostruktur

Basel-Kollektiv

Im Basel-Kollektiv treten zwei verschiedene Erscheinungsbilder eines nicht regelrechten Knochenumbaus auf. Einerseits sind häufig Stellen mit amorphen Strukturen zu beobachten und andererseits ist nicht selten überstürzter subperiostaler Umbau zu finden, der oft auf eine Schicht von nicht umgebauten Generallamellen folgt.

Amorphes Erscheinungsbild der Knochenmikrostruktur

Dieses Merkmal kann in 98,1% des Basel-Kollektivs untersucht werden (m: 96,8%; w: 100,0%). 31,7% der Individuen des Gesamtkollektivs zeigen keine Anzeichen einer amorphen Formation ihrer Knochenmikrostruktur. In 65,3% der Fälle ist eine geringfügige bis starke Ausprägung des Merkmals „amorphes Erscheinungsbild der Knochenmikrostruktur“ zu finden. Nur bei 3,0% ist die Knochenmikrostruktur extrem amorph (chaotisch). Unterschiede in den Häufigkeiten des Merkmals zu Doppler (2006a und b) sind wie schon bei den Haltelinien darauf zurückzuführen, dass in die Veröffentlichungen nur die Auswertung der periostalen Bereiche der anterioren Femurkompakta einflloss.

Es besteht kein Zusammenhang zwischen dem amorphen Erscheinungsbild der Knochenmikrostruktur und dem Geschlecht (Mann-Whitney-Test: p = 0,169) oder dem Individualalter. Es wird jedoch ein Zusammenhang zwischen der Anwesenheit von Harris-
Linien im distalen Schaft der Tibia und dem amorphen Erscheinungsbild der Knochenmikrostruktur beobachtet (siehe Abb. 117)

Abb. 117: Zusammenhang zwischen dem Vorkommen von Harris-Linien im distalen Schaft der Tibia und dem Vorkommen eines amorphen Erscheinungsbildes der Knochenmikrostruktur im Femur des Basel-Kollektivs

Überstürzter Umbau in der subperiostalen Schicht

Das Merkmal „überstürzter Umbau in der subperiostalen Schicht“ kann in 91,3% der Fälle ausgewertet werden (m: 88,9%; w: 95,0%). In 62,8% der untersuchten Fälle ist kein überstürzter Umbau in der subperiostalen Schicht erkennbar. Nur bei 37,2% der Baseler Individuen tritt dieses Merkmal auf, wobei es in etwa einem Drittel der Fälle nur schwach ausgeprägt ist.

Abb. 118: Zusammenhang zwischen dem Vorkommen einer durchlebten allgemeinen Krise in der Jugendzeit und dem Auftreten von überstürztem subperiostalem Umbau

Hat ein Individuum in seiner Jugendzeit eine der allgemeinen Krisen in der Schweiz (erwähnt unter Punkt 4.3.1) miterlebt, kommt es in mehr als doppelt so vielen Fällen zu einem überstürzten Umbau der subperiostalen Schicht, häufig mit einem nicht umgebauten Streifen an Generallamellen davor. Allerdings zeigen 26 Individuen, die eine der Krisen im Baseler
Raum in ihrer Jugend erlebten, keinen überstürzten subperiostalen Umbau in ihrer Femurkompakta.

Anatomie-Kollektiv

Das Merkmal „amorphes Erscheinungsbild der Knochenmikrostruktur“ kann in allen Individuen des Anatomie-Kollektivs untersucht werden. 41,7% der Individuen zeigen kein amorphes Erscheinungsbild der Knochenmikrostruktur. In 58,3% ist eine geringfügige bis starke Ausprägung des Merkmals zu finden, aber kein Individuum zeigt eine Knochenmikrostruktur, die extrem amorph ist.

Ein überstürzter Umbau der subperiostalen Schicht wurde im Anatomie-Kollektiv nicht beobachtet.

4.3.3 Resorptionslakunen

Die ausführliche explorative Datenanalyse zu den Merkmalen der Resorptionslakunen ist unter den Punkten 4.2.14, 4.2.15 und 4.2.16 zu finden. Im folgenden Kapitel soll der Zusammenhang von Merkmalen der Resorptionslakunen mit Stresssituationen, die sich auf die Knochen eines Individuums auswirken können, wie beispielsweise Vitaminmangel, Krankheiten oder Hunger, überprüft werden.

Die unter den Punkten 4.2.14, 4.2.15 und 4.2.16 beschriebenen Merkmale der Resorptionslakunen werden zur Auswertung als Stressmerkmale in Klassen eingeteilt, um sie mit anderen nominal bzw. ordinal skalierten Stressfaktoren besser vergleichen zu können. Die Einteilung erfolgt wie in Tab. 72 dargestellt.

<table>
<thead>
<tr>
<th>Klasse</th>
<th>Index</th>
<th>Anzahl der Resorptionslakunen (Res)</th>
<th>Anteil an resorbiertem Knochen (Reskno)</th>
<th>Durchschnittliche Fläche einer Resorptionslakune (ResA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nicht pathologisch</td>
<td>1</td>
<td><1,5</td>
<td><7,5%</td>
<td><0,075mm²</td>
</tr>
<tr>
<td>Pathologisch</td>
<td>2</td>
<td>>1,5</td>
<td>7,5%-50%</td>
<td>0,075mm²-0,50mm²</td>
</tr>
<tr>
<td>Extrem pathologisch</td>
<td>3</td>
<td>-</td>
<td>>50%</td>
<td>>0,50mm²</td>
</tr>
</tbody>
</table>

Tab. 72: Einteilung der verschiedenen Merkmale der Resorptionslakunen in die Klassen „nicht pathologisch“, „pathologisch“ und „extrem pathologisch“

Im Folgenden soll die Einteilung kurz erläutert werden. Auf einer Fläche von 1mm² ist es normal, dass maximal eine Resorptionslakune zu finden ist (Parfitt 1983, siehe auch Punkt 1.2.2). Deswegen wird angenommen, dass eine Anzahl von 1,5 Resorptionslakunen pro mm²
oder weniger als nicht pathologisch anzusehen ist. Alle höheren Werte gelten als pathologisch. In diesem Fall muss von einer erhöhten Resorptionsrate in der Kompakta ausgegangen werden.

Beim Anteil an resorbiertem Knochen orientiert man sich an der Fläche eines Osteons. Der durchschnittlichen Durchmesser eines Osteons beträgt etwa 250µm (siehe Einleitung, Verweis), so dass daraus eine Fläche von ungefähr 0,05mm² pro Osteon resultiert. Dies entspricht 5% der Fläche von 1mm² (Größe eines Untersuchungsfeldes). Wird dieser Wert mit 1,5 multipliziert (Nicht pathologische Anzahl von Resorptionslakunen), ergibt sich für Reskno ein Grenzwert von 7,5%, der als Trennwert zwischen einem nicht pathologischen und einem pathologischen Anteil an resorbiertem Knochen gilt. Einleitend wurde kompakter Knochen so definiert, dass er eine Porosität von 5-10% aufweist (Punkt 1.2.1). Die Porosität eines Knochens setzt sich aus all seinen Hohlräumen zusammen. Zu den Resorptionslakunen kommen also noch Havers’sche Kanäle, Volkmann’sche Kanäle und Nicht-Havers’sche Kanäle hinzu. Somit erweist sich der Trennwert von 7,5% als gute Näherung. Ab einem Prozentwert von 50% (entspricht 10mal der Fläche eines durchschnittlichen Osteons) für Reskno kann von einem extrem pathologischen Anteil an resorbiertem Knochen gesprochen werden.

Basel-Kollektiv

<table>
<thead>
<tr>
<th>a) Res endostal</th>
<th>b) Res mittig</th>
<th>c) Res peristal</th>
</tr>
</thead>
<tbody>
<tr>
<td>nicht pathologisch</td>
<td>pathologisch</td>
<td>nicht pathologisch</td>
</tr>
<tr>
<td>33,56%</td>
<td>86,44%</td>
<td>24,72%</td>
</tr>
</tbody>
</table>

Abb. 119: Anzahl der Resorptionslakunen pro mm² im Basel-Kollektiv aufgeteilt in die Kategorien "pathologisch" und "nicht-pathologisch"

Im Basel-Kollektiv zeigen 66% der Individuen im endostalen Bereich der Kompakta eine pathologische Ausprägung der Anzahl an Resorptionslakunen (mehr als 1,5 Resorptionslakunen pro mm²). Das Verhältnis unterscheidet sich in den Geschlechtern
(Männer: 60% pathologisch; Frauen: 75% pathologisch). Mittig werden nur 15,5% als pathologisch eingestuft (männlich: 11,1%, weiblich: 22,5%) und peristomal liegt der Prozentsatz sogar noch niedriger bei 5,8%, wobei hier auch kaum noch Unterschiede zwischen den Geschlechtern erkennbar sind (männlich: 4,8%; weiblich: 7,5%) (siehe auch Abb. 119). Nach einem Mann-Whitney-Test unterscheiden sich die Geschlechter an keiner Lokalisation der Kompakta signifikant (p > 0,1).

Im endostalen Bereich zeigt sich in 72,8% der Individuen ein pathologischer Anteil an resorbiertem Knochen (mehr als 7,5%) und in 13,6% ein extrem pathologischer Wert (mehr als 50% resorbierter Knochen). Mittig findet man in keiner Person einen Anteil > 50%, aber in 11,7% der Individuen zeigt sich ein pathologisch ausgeprägtes Merkmal. Bei beiden Lokalisationen (endostal und mittig) zeigt sich bei den weiblichen Individuen eine Tendenz zu einem höheren Anteil an resorbiertem Knochen, als bei den Männern. Peristomal ist bei keinem Individuum ein pathologischer Wert zu finden (Abb. 120). Im Mann-Whitney-Test unterscheiden sich Männer und Frauen nur im mittleren Bereich der Kompakta signifikant (p = 0,036). Endostal wurde eine Signifikanz des Unterschieds knapp verfehlt (p = 0,054).

Da die Fläche einer Resorptionslakune aus dem Anteil an resorbiertem Knochen und der Anzahl an Resorptionslakunen pro mm² berechnet wird und somit bezüglich der Einordnung in Klassen in etwa dieselben Ergebnisse liefert, erfolgt an dieser Stelle keine gesonderte Auswertung der pathologischen Ausprägung.

Osteoporose

210

24.10.2003). Im Folgenden sollen Individuen identifiziert werden, die krankhaften Knochenabbau (Osteoporose) aufweisen.

Abbildungen

Abb. 121: Addierte Werte der Klassifizierung des Anteils an resorbiertem Knochen in Abhängigkeit von den Altersklassen im Basel-Kollektiv
In obiger Abbildung (Abb. 121) zeigt sich, dass im Basel-Kollektiv insgesamt 19 Individuen pathologische Werte über 5 aufweisen. Die genauen Nummern sind Tab. 73 zu entnehmen.

<table>
<thead>
<tr>
<th>Nr</th>
<th>Sex</th>
<th>Alter</th>
<th>dokumentierte Todesursachen</th>
</tr>
</thead>
<tbody>
<tr>
<td>604</td>
<td>w</td>
<td>25</td>
<td>Lungenentzündung</td>
</tr>
<tr>
<td>613</td>
<td>m</td>
<td>76,5</td>
<td>Altersschwäche, Brustfellentzündung</td>
</tr>
<tr>
<td>620</td>
<td>m</td>
<td>35</td>
<td>Auszehrung</td>
</tr>
<tr>
<td>622</td>
<td>w</td>
<td>71,5</td>
<td>Schlagfluss</td>
</tr>
<tr>
<td>630</td>
<td>w</td>
<td>79,5</td>
<td>Schwindsucht</td>
</tr>
<tr>
<td>631</td>
<td>w</td>
<td>92,5</td>
<td>Schwindsucht</td>
</tr>
<tr>
<td>638</td>
<td>w</td>
<td>70,5</td>
<td>Wassersucht</td>
</tr>
<tr>
<td>642</td>
<td>m</td>
<td>23,5</td>
<td>Lungenschwindsucht</td>
</tr>
<tr>
<td>643</td>
<td>w</td>
<td>40</td>
<td>Lungenschwindsucht</td>
</tr>
<tr>
<td>645</td>
<td>m</td>
<td>33,5</td>
<td>Schwindsucht</td>
</tr>
<tr>
<td>649</td>
<td>m</td>
<td>77</td>
<td>Altersschwäche</td>
</tr>
<tr>
<td>660</td>
<td>w</td>
<td>49,5</td>
<td>Pneumonia lat. sin.</td>
</tr>
<tr>
<td>665</td>
<td>w</td>
<td>60</td>
<td>Karies</td>
</tr>
<tr>
<td>666</td>
<td>m</td>
<td>39</td>
<td>Beinfrass</td>
</tr>
<tr>
<td>669</td>
<td>w</td>
<td>74</td>
<td>Apoplexia</td>
</tr>
<tr>
<td>681</td>
<td>w</td>
<td>82</td>
<td>Altersschwäche</td>
</tr>
<tr>
<td>684</td>
<td>w</td>
<td>70,5</td>
<td>Lungenentzündung</td>
</tr>
<tr>
<td>685</td>
<td>m</td>
<td>77,5</td>
<td>Nieren-, Leber- u. Lungenkrebs</td>
</tr>
<tr>
<td>687</td>
<td>w</td>
<td>32</td>
<td>Lungenschwindsucht</td>
</tr>
</tbody>
</table>

Tab. 73: Individuen des Basel-Kollektivs, die definitiv von einer osteoporotischen Erkrankung betroffen sind (sie weisen nach obiger Definition die Werte 5 oder 6 auf)

Die Werte 7, 8 oder 9, welche auf extremen pathologischen Knochenabbau hindeuten, da mindestens zwei Lokalisationen von extremem Abbau betroffen sein müssen, kommen im Basel-Kollektiv nicht vor. In den niedrigeren Altersklassen (bis 50er) findet man eher Werte von 5, die etwas häufiger in weiblichen Individuen anzutreffen sind (m: 5; w: 7). Werte von 6 zeigen sich im Basel-Kollektiv erst in Individuen, die älter als 60 Jahre sind, wobei Frauen hier ebenfalls häufiger betroffen sind als Männer (m: 2; w: 5). Der Mann-Whitney-Test (p = 0,026) zeigt, dass Männer und Frauen sich bezüglich des Knochenabbaus im gesamten Querschnitt signifikant unterscheiden.

Wu et al. (1970) untersuchten die 11. Rippe bei 17 Frauen mit Osteoporose zwischen 36 und 74 Jahren. Die durchschnittliche Fläche eines Osteons ist bei diesen Personen geringer, als bei gesunden Personen. Außerdem werden in den osteoporotischen Frauen weniger intakte Osteone, dafür aber mehr Fragmente als normal, gefunden. Die Autoren vermuten, dass der Grund in den ausgedünnten Cortices liegt. Weiterhin waren die Knochenbildungs raten bei den Osteoporose-Patienten niedriger als bei Gesunden (0,065 mm²/mm²/Jahr zu 0,080 mm²/mm²/Jahr). Aufgrund dieser Ergebnisse soll im Folgenden für das Basel-Kollektiv ein Vergleich zwischen den Individuen (n = 19), bei denen „osteoporotischer“ Knochenverlust diagnostiziert wurde, und denen ohne solche Diagnose (n = 84) bezüglich der angesprochenen Parameter vorgenommen werden. Mittelwertvergleiche wurden entweder mit einer einfaktoriellen ANOVA oder mit dem Welch- oder Brown-Forsythe-Test bei nicht homogenen Varianzen durchgeführt. Die Ergebnisse sind der folgenden Tabelle (Tab. 74) zu entnehmen. Bei dieser Untersuchung werden auch diejenigen Individuen einbezogen, die an

<table>
<thead>
<tr>
<th>Variable</th>
<th>„Gesunde“ Individuen</th>
<th>„Osteoporotische“ Individuen</th>
<th>Signifikanz</th>
<th>Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alter [Jahre]</td>
<td>48</td>
<td>58</td>
<td>0,061</td>
<td>W, B-F</td>
</tr>
<tr>
<td>Komp [cm]</td>
<td>0,48</td>
<td>0,42</td>
<td>0,016</td>
<td>ANOVA</td>
</tr>
<tr>
<td>Ostint end</td>
<td>5,9</td>
<td>2,1</td>
<td>0,000</td>
<td>W, B-F</td>
</tr>
<tr>
<td>Ostint mit</td>
<td>11,1</td>
<td>8,4</td>
<td>0,003</td>
<td>ANOVA</td>
</tr>
<tr>
<td>Ostint per</td>
<td>11,2</td>
<td>11,3</td>
<td>0,938</td>
<td>ANOVA</td>
</tr>
<tr>
<td>Ostfr end</td>
<td>17,3</td>
<td>13,6</td>
<td>0,026</td>
<td>ANOVA</td>
</tr>
<tr>
<td>Ostfr mit</td>
<td>12,8</td>
<td>18,2</td>
<td>0,002</td>
<td>ANOVA</td>
</tr>
<tr>
<td>Ostfr per</td>
<td>7,6</td>
<td>12,0</td>
<td>0,044</td>
<td>W, B-F</td>
</tr>
<tr>
<td>OstA end [mm²]</td>
<td>0,0395</td>
<td>0,0293</td>
<td>0,037</td>
<td>W, B-F</td>
</tr>
<tr>
<td>OstA mit [mm²]</td>
<td>0,0412</td>
<td>0,0367</td>
<td>0,188</td>
<td>ANOVA</td>
</tr>
<tr>
<td>OstA per [mm²]</td>
<td>0,0349</td>
<td>0,0356</td>
<td>0,794</td>
<td>ANOVA</td>
</tr>
<tr>
<td>AktF end [#/mm²/Jahr]</td>
<td>0,899</td>
<td>0,591</td>
<td>0,049</td>
<td>ANOVA</td>
</tr>
<tr>
<td>AktF mit [#/mm²/Jahr]</td>
<td>0,766</td>
<td>0,812</td>
<td>0,720</td>
<td>ANOVA</td>
</tr>
<tr>
<td>AktF per [#/mm²/Jahr]</td>
<td>0,586</td>
<td>0,560</td>
<td>0,742</td>
<td>ANOVA</td>
</tr>
<tr>
<td>BFR end [mm²/mm²/Jahr]</td>
<td>0,0362</td>
<td>0,0164</td>
<td>0,015</td>
<td>ANOVA</td>
</tr>
<tr>
<td>BFR mit [mm²/mm²/Jahr]</td>
<td>0,0313</td>
<td>0,0290</td>
<td>0,682</td>
<td>ANOVA</td>
</tr>
<tr>
<td>BFR per [mm²/mm²/Jahr]</td>
<td>0,0211</td>
<td>0,0203</td>
<td>0,828</td>
<td>ANOVA</td>
</tr>
</tbody>
</table>

Tab. 74: Vergleich einiger mikrostruktureller Parameter zwischen den „osteoporotischen“ Individuen und dem Rest des Basel-Kollektivs. Bedeutung der Druckstärke in der Spalte „Signifikanz“: Fett = signifikanter Unterschied (p < 0,05); Normal = Unterschied gerade nicht mehr signifikant (0,05 < p < 0,1); Grau: kein signifikanter Unterschied (p > 0,1).

Die für Osteoporose typische Ausdünnung der Kompakta ist hier deutlich zu beobachten. Die Werte der osteoporotischen Individuen liegen signifikant unter denen der anderen Baseler.

Resorbierter Knochen und Tuberkulose

Laut Herrmann et al. (1990) und Mays et al. (2001) kann sich Tuberkulose, deren Auslöser *Mycobacterium tuberculosis* ist, durch hämatogene Streuung von einem Weichgewebs herd (z.

212
4. Ergebnisse

Es können keine einheitlichen Effekte beobachtet werden, da sich die Tuberkulose gewiss nicht bei allen Individuen im Knochen manifestiert hat. Aber es gibt Hinweise darauf, dass einige der an Tuberkulose erkrankten Individuen von Abbauvwöändern in der Kompakta ihres Femurs betroffen waren. Am deutlichsten werden die Effekte der Krankheit im mittigen und periostalen Teil, nur teilweise auch im endostalen Teil der Kompakta sichtbar. Bei von Knochen tuberkulose betroffenen Femora zeigen sich deutlich mehr, aber auch größere Resorptionslakunen. Die Werte liegen dabei nicht unbedingt in dem als pathologisch eingestuften Bereich (siehe Tab. 72), heben sich aber von den nicht an Tuberkulose erkrankten Individuen ab. Beispielsweise liegt die Anzahl an Resorptionslakunen im periostalen Bereich in der Altersklasse der 50jährigen bei den an Tuberkulose erkrankten Individuen bei 1,1 und in der übrigen Gruppe bei 0,41 (siehe auch Abb. 122).

Bei der Betrachtung der Daten fällt auf, dass sich die Individuen, die in den Altersklassen der 30jährigen, 50jährigen und 60jährigen an Tuberkulose gestorben sind, am häufigsten bezüglich der Merkmale ihrer Resorptionslakunen von gleichaltrigen Personen abheben. Möglicherweise lag in diesen Individuen besonders häufig eine Infiltrierung des Femurknöchens mit Tuberkelbakterien vor.

Vergleicht man die Merkmale der Resorptionslakunen jedes einzelnen Individuums, das an Tuberkulose erkrankt ist, mit den Durchschnittswerten seiner Altersklasse, zeigt sich in 10 von 25 Fällen (40%) ein erhöhter Abbau der Knochenkompakta (ersichtlich an erhöhten Anzahlen von Resorptionslakunen und auch vergrößerten Resorptionslakunen). Im Einzelnen sind die Nummern BP 601, BP 642, BP 620, BP 645, BP 687, BP 643, BP 609, BP 606, BP
630 und BP 631 (geordnet nach Altersklassen) betroffen. Dabei ist der Knochenabbau nicht auf eine Lokalisation des Knochens beschränkt, sondern kann sowohl endostal, als auch mittig oder periostal auftreten.

Resorbierter Knochen und chronische Nierenerkrankungen

Eine Nierenerkrankung, die sich über einen längeren Zeitraum hinzieht, wirkt sich über einen ansteigenden Serum-Parathormon-Spiegel auf den Knochenstoffwechsel aus, was zu sekundärem Hyperparathyreoidismus führen kann (Krempien et al. 1972, Jokihara et al. 2006). Das Parathormon ist für die Aktivierung von Osteoclasten und somit für den Abbau von Knochensubstanz (erkennbar an Resorptionslakunen) verantwortlich (z. B. Grube et al. 1995).

Im Basel-Kollektiv sind drei Individuen an einer schweren Erkrankung der Niere gestorben (BP 671, BP 685, BP 692). Jedoch nur im Individuum BP 685 (m; 77,5 Jahre) sind für seine Altersklasse untypische Merkmale der Resorptionslakunen zu finden. Endostal weist der Mann einen sehr hohen Anteil an resorbiertem Knochen auf (62,50% = extrem pathologisch) und auch eine große durchschnittliche Fläche seiner Resorptionslakunen (0,231mm²).

Resorbierter Knochen und chronische Lebererkrankungen

Resorbierter Knochen und Rachitis bzw. Osteomalazie

Es wäre demnach zu erwarten, dass in den Individuen, die von einer Krümmung der Langknochen der unteren Extremitäten betroffen sind, pathologische Resorptionslakunen vorliegen. Besonders starken endostalen Abbau findet man in den Individuen BP 680 (m; 42,5 Jahre) und BP 687 (w; 32,0 Jahre). Bei ihnen liegt der Anteil an resorbiertem Knochen weit über dem Durchschnitt ihrer jeweiligen Altersklasse [BP 680: 37,17% (normal: 23,7%); BP 687: 55,83% (normal: 25,8%)]. Etwas schwächer ausgeprägt ist der endostale Abbau in BP 635 (m; 41,0 Jahre; 31,2%). Ein abnormaler periostaler Knochenabbau ist in BP 618 zu finden (m; 57,5 Jahre). Die anderen beiden Individuen (BP 639, BP 648) zeigen keine Auffälligkeiten in der Ausprägung ihrer Resorptionslakunen.

Anatomie-Kollektiv

Es folgt die Auswertung der Merkmale der Resorptionslakunen bezüglich Hinweisen auf physiologischen Stress im Anatomie-Kollektiv.

<table>
<thead>
<tr>
<th>Merkmal</th>
<th>Prozent</th>
<th>pathologisch</th>
<th>nicht pathologisch</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Res endostal</td>
<td>0,00%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b) Res mittig</td>
<td>22,22%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c) Res periostal</td>
<td>22,22%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abb. 123: Anzahl der Resorptionslakunen pro mm2 im Anatomie-Kollektiv aufgeteilt in die Kategorien "pathologisch" und "nicht-pathologisch"

Im endostalen Teil zeigen sich in jedem Individuum mehr als 1,5 Resorptionslakunen, was laut Definition zu Beginn des Kapitels (Tab. 72) als pathologisch eingestuft wird (Abb. 123a). Mittig und periostal sind jeweils in 22% eine nicht pathologische Anzahl an Resorptionslakunen pro mm2 und in 78% der Fälle eine pathologische Zahl von Resorptionslakunen zu beobachten (Abb. 123b und c). Zwischen männlichen und weiblichen Individuen gibt es laut dem Mann-Whitney-Test keine signifikanten Unterschiede (p > 0,5).

<table>
<thead>
<tr>
<th>Merkmal</th>
<th>Prozent</th>
<th>pathologisch</th>
<th>nicht pathologisch</th>
<th>extrem pathologisch</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Reskno endostal</td>
<td>2,08%</td>
<td></td>
<td></td>
<td>22,4%</td>
</tr>
<tr>
<td>b) Reskno mittig</td>
<td>3,87%</td>
<td></td>
<td></td>
<td>22,9%</td>
</tr>
<tr>
<td>c) Reskno periostal</td>
<td>3,87%</td>
<td></td>
<td></td>
<td>22,9%</td>
</tr>
</tbody>
</table>

Abb. 124: Anteil an resorbiertem Knochen im Anatomie-Kollektiv aufgeteilt in die Kategorien "nicht-pathologisch", "pathologisch" und "extrem pathologisch"
Aus der Abb. 124a geht hervor, dass der Großteil der Individuen des Anatomie-Kollektivs im endostalen Teil einen pathologischen Anteil an resorbiertem Knochen aufweist (ca. 68%). Nur 6% zeigen einen nicht pathologischen Anteil und 26% einen extrem pathologischen Anteil an resorbiertem Knochen. Im mittleren Bereich wird bei 42% der Individuen ein nicht-pathologischer Anteil an resorbiertem Knochen gefunden. 47% haben allerdings einen pathologischen Anteil und 11% der Fälle einen extrem pathologischen Anteil (Abb. 124b). Periostal zeigt sich in keinem Individuum ein extrem pathologischer Anteil, aber in 36% der Individuen ist immerhin noch ein pathologischer Anteil an resorbiertem Knochen zu finden (Abb. 124c). Ein signifikanter Geschlechtsunterschied kann laut dem Mann-Whitney-Test nicht nachgewiesen werden (p > 0,055).

Aus dem gleichen Grund wie schon beim Basel-Kollektiv wird auch hier auf die graphische Darstellung der klassifizierten Werte für die durchschnittliche Fläche einer Resorptionslakune verzichtet.

Osteoporose

Wie für das Basel-Kollektiv erklärt, wird auch im Anatomie-Kollektiv ein Index für den gesamten Querschnitt (endostal, mittig und periostal) des klassifizierten Anteils an resorbiertem Knochen (siehe Tab. 72) erstellt, um die Individuen mit einer osteoporotischen Erkrankung zu identifizieren. Im Anatomie-Kollektiv sind zwei weibliche Individuen, deren Femurkompakta so dünn ist, dass ihr endostaler Bereich in allen vorausgehenden Untersuchungen als fehlend behandelt wurde. Für diese Untersuchung wird dem endostalen Bereich ihrer anterioren Femurkompakta jeweils ein Wert von 4 zugeordnet, der in Tab. 72 nicht erwähnt ist, welcher aber für den totalen Verlust eines Knochenbereichs stehen soll.

![Graphik 125: Addierte Werte der Klassifizierung des Anteils an resorbiertem Knochen in Abhängigkeit von den Altersklassen im Anatomie-Kollektiv](image_url)

Aus Abb. 125 geht hervor, dass im Anatomie-Kollektiv alle Werte von 3 (kein Teil der Kompakta weist pathologische Werte auf) bis 9 (alle Werte der Kompakta weisen extrem pathologische Werte auf) vorkommen. Im Gesamt-Kollektiv zeigen 24 Individuen (67%) Werte über 5, was sie als osteoporotisch klassifiziert (siehe auch Basel-Kollektiv). Die
genauen Nummern der betroffenen Individuen sind der folgenden Tabelle zu entnehmen (Tab. 75).

<table>
<thead>
<tr>
<th>Nummer</th>
<th>Sex</th>
<th>Alter</th>
<th>Todesursache und dokumentierte Erkrankungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>15/03</td>
<td>w</td>
<td>78</td>
<td>Mitralklappenendokarditis; meningealer Aussaat; Vulva-Ca</td>
</tr>
<tr>
<td>42/03</td>
<td>w</td>
<td>96</td>
<td>-</td>
</tr>
<tr>
<td>67/04</td>
<td>w</td>
<td>82</td>
<td>respiratorische Insuffizienz bei ausgeprägtem Lungenemphysem</td>
</tr>
<tr>
<td>68/03</td>
<td>w</td>
<td>88</td>
<td>natürlicher Tod</td>
</tr>
<tr>
<td>76/03</td>
<td>w</td>
<td>80</td>
<td>natürlicher Tod (Hepathopathie; Herznisstifizienz, chronisch obstruktive Atemwegserkrankung)</td>
</tr>
<tr>
<td>86/03</td>
<td>m</td>
<td>76</td>
<td>natürlicher Tod (Hypopharynx Carcinom)</td>
</tr>
<tr>
<td>87/03</td>
<td>w</td>
<td>78</td>
<td>Pneumonie; Blasenperforation; Chronische Zystitis; Lungenfibrose</td>
</tr>
<tr>
<td>88/03</td>
<td>w</td>
<td>93</td>
<td>Lungenembolie</td>
</tr>
<tr>
<td>91/03</td>
<td>w</td>
<td>85</td>
<td>Re-Apoplex nach multiplen cerebralen Insulten</td>
</tr>
<tr>
<td>92/03</td>
<td>m</td>
<td>68</td>
<td>Herz-Kreislaufversagen; schwere koronare Herzerkrankung; akuter Hirnwandinfarkt; gen. Arteriosklerose</td>
</tr>
<tr>
<td>97/03</td>
<td>m</td>
<td>92</td>
<td>Re-Apoplex (Cerebralsklerose, allg. Gefäßsklerose bei Hypertonie)</td>
</tr>
<tr>
<td>103/03</td>
<td>w</td>
<td>89</td>
<td>Atemlähmung</td>
</tr>
<tr>
<td>104/03</td>
<td>m</td>
<td>82</td>
<td>Rechtsherzversagen</td>
</tr>
<tr>
<td>105/03</td>
<td>m</td>
<td>51</td>
<td>Varizenblutung bei Leberzirrhose</td>
</tr>
<tr>
<td>106/03</td>
<td>m</td>
<td>89</td>
<td>Herz-Kreislauf-Versagen</td>
</tr>
<tr>
<td>111/03</td>
<td>m</td>
<td>90</td>
<td>Herzversagen</td>
</tr>
<tr>
<td>115/02</td>
<td>w</td>
<td>86</td>
<td>-</td>
</tr>
<tr>
<td>115/03</td>
<td>w</td>
<td>91</td>
<td>Multiorganversagen</td>
</tr>
<tr>
<td>118/03</td>
<td>m</td>
<td>84</td>
<td>Panzytopenie</td>
</tr>
<tr>
<td>129/03</td>
<td>m</td>
<td>84</td>
<td>Multiorganversagen, natürlicher Tod laut Todesbescheinigung</td>
</tr>
<tr>
<td>130/03</td>
<td>w</td>
<td>81</td>
<td>Kammerflimmern</td>
</tr>
<tr>
<td>131/03</td>
<td>w</td>
<td>85</td>
<td>Pneumonie</td>
</tr>
<tr>
<td>138/03</td>
<td>w</td>
<td>93</td>
<td>-</td>
</tr>
<tr>
<td>140/03</td>
<td>w</td>
<td>88</td>
<td>Sekundenherztoad bei metastasierendem Colon-Carcinom</td>
</tr>
</tbody>
</table>

Tab. 75: Individuen des Anatomie-Kollektivs, die definitiv an einer osteoporotischen Erkrankung litten (Werte über 5)

Lokalisation der Kompakta ausgewertet werden konnten. Andernfalls würde die Anzahl der auswertbaren Individuen zu gering werden.

<table>
<thead>
<tr>
<th>Variable</th>
<th>„Gesunde“ Individuen</th>
<th>„Osteoporotische“ Individuen</th>
<th>Signifikanz</th>
<th>Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alter [Jahre]</td>
<td>71,4</td>
<td>83,7</td>
<td>0,002</td>
<td>ANOVA</td>
</tr>
<tr>
<td>Komp [cm]</td>
<td>0,52</td>
<td>0,40</td>
<td>0,023</td>
<td>ANOVA</td>
</tr>
<tr>
<td>BMI</td>
<td>21,7</td>
<td>21,7</td>
<td>0,972</td>
<td>ANOVA</td>
</tr>
<tr>
<td>Ostint end</td>
<td>10,4</td>
<td>5,0</td>
<td>0,002</td>
<td>ANOVA</td>
</tr>
<tr>
<td>Ostint mit</td>
<td>15,9</td>
<td>7,0</td>
<td>0,000</td>
<td>ANOVA</td>
</tr>
<tr>
<td>Ostint per</td>
<td>19,6</td>
<td>13,3</td>
<td>0,001</td>
<td>ANOVA</td>
</tr>
<tr>
<td>Ostfr end</td>
<td>21,5</td>
<td>20,9</td>
<td>0,777</td>
<td>ANOVA</td>
</tr>
<tr>
<td>Ostfr mit</td>
<td>20,3</td>
<td>22,5</td>
<td>0,312</td>
<td>W, B-F</td>
</tr>
<tr>
<td>Ostfr per</td>
<td>18,2</td>
<td>23,2</td>
<td>0,041</td>
<td>ANOVA</td>
</tr>
<tr>
<td>OstA end [mm²]</td>
<td>0,0307</td>
<td>0,0291</td>
<td>0,664</td>
<td>ANOVA</td>
</tr>
<tr>
<td>OstA mit [mm²]</td>
<td>0,0309</td>
<td>0,0319</td>
<td>0,793</td>
<td>ANOVA</td>
</tr>
<tr>
<td>OstA per [mm²]</td>
<td>0,0239</td>
<td>0,0254</td>
<td>0,481</td>
<td>ANOVA</td>
</tr>
<tr>
<td>AktF end [#/mm²/Jahr]</td>
<td>0,580</td>
<td>0,415</td>
<td>0,029</td>
<td>ANOVA</td>
</tr>
<tr>
<td>AktF mit [#/mm²/Jahr]</td>
<td>0,660</td>
<td>0,458</td>
<td>0,000</td>
<td>W, B-F</td>
</tr>
<tr>
<td>AktF per [#/mm²/Jahr]</td>
<td>0,659</td>
<td>0,537</td>
<td>0,009</td>
<td>ANOVA</td>
</tr>
<tr>
<td>BFR end [mm²/mm²/Jahr]</td>
<td>0,170</td>
<td>0,124</td>
<td>0,129</td>
<td>ANOVA</td>
</tr>
<tr>
<td>BFR mit [mm²/mm²/Jahr]</td>
<td>0,2021</td>
<td>0,0143</td>
<td>0,014</td>
<td>ANOVA</td>
</tr>
<tr>
<td>BFR per [mm²/mm²/Jahr]</td>
<td>0,0156</td>
<td>0,0135</td>
<td>0,240</td>
<td>ANOVA</td>
</tr>
</tbody>
</table>

Tab. 76: Vergleich verschiedener mikrostruktureller Parameter der „osteoporotischen“ Individuen des Anatomie-Kollektivs mit dem Rest des Kollektivs. Bedeutung der Druckstärke in der Spalte „Signifikanz“: Fett = signifikanter Unterschied (p < 0,05); Normal = Unterschied gerade nicht mehr signifikant (0,05 < p < 0,1); Grau: kein signifikanter Unterschied (p > 0,1). Abkürzungen in der Spalte „Test“: W, B-F = Welch-Test und Brown-Forsythe-Test

Zusammenhang von resorbiertem Knochen mit Krankheiten

Da die verschiedenen Merkmale der Resorptionslakunen eine mehr oder weniger starke Abhängigkeit vom Individualalter im Anatomie-Kollektiv zeigen (siehe 4.2.14, 4.2.15, 4.2.16), werden die Werte der jeweils untersuchten Individuen mit den Durchschnittswerten der jeweiligen Altersklasse verglichen.

218
4. Ergebnisse

Periostaler Abbau von kompaktem Knochen

Häufigkeit des periostalen Abbaus in den Altersklassen

<table>
<thead>
<tr>
<th>Altersklasse</th>
<th>Prozentsatz</th>
</tr>
</thead>
<tbody>
<tr>
<td>50er</td>
<td>0,0%</td>
</tr>
<tr>
<td>60er</td>
<td>80,0%</td>
</tr>
<tr>
<td>70er</td>
<td>60,0%</td>
</tr>
<tr>
<td>80er</td>
<td>40,0%</td>
</tr>
<tr>
<td>90er</td>
<td>20,0%</td>
</tr>
</tbody>
</table>

Abb. 126: Zusammenhang des periostalen Abbaus mit den Altersklassen im Anatomie-Kollektiv

Es kann kein Zusammenhang zu anderen Stressmerkmalen im Querschnitt der Kompakta nachgewiesen werden.

4.3.4 Typ-II-Osteone und Growth-Arrest-Osteone (OstII)

Beide Arten von Osteonen gelten gemeinhin als Stressmerkmale (siehe Punkt 1.2.2). Unter Punkt 4.2.5 wurde bisher lediglich die Anzahl der Typ-II-Osteone pro Lokalisation und ihr
Zusammenhang zu Geschlecht und Alter betrachtet. Hier werden nun alle drei Bereiche der Kompakta zusammengefasst, indem die durchschnittlichen Werte pro Lokalisation für ein Individuum addiert werden.

Basel-Kollektiv

Da im Basel-Kollektiv selten alle drei Lokalisationen der untersuchten Femurquerschnitte gleichzeitig von Dekomposition betroffen sind, können bezüglich der Anzahl an Typ-II-Osteonen im Gesamtquerschnitt 102 Individuen untersucht werden. Im Durchschnitt sind im Gesamtbereich des anterioren Femurs des Basel-Kollektivs 2,0 Typ-II-Osteone pro mm² (SD: 1,6) zu finden. Der maximal beobachtete Wert liegt bei 7,75 (BP 650; m; 66,5 Jahre). Eine einfaktorielle ANOVA zeigt keinen Geschlechtsunterschied bezüglich der Anzahl an Typ-II-Osteonen pro mm² im Gesamtquerschnitt (p = 0,883).

Die Anzahl der Typ-II-Osteone im Gesamtquerschnitt korreliert nach Pearson hochsignifikant mit dem Alter (r = 0,386; schwach linear). Der tendenzielle Anstieg der Anzahl an Typ-II-Osteonen pro mm² bezogen auf den Gesamtquerschnitt mit dem Alter ist auch in Abb. 127 erkennbar.

Um den Effekt des Alters auf die Anzahl der Typ-II-Osteone pro mm² im Gesamtquerschnitt für die weiteren Auswertungen etwas zu relativieren, wird ihre Zahl auf die Anzahl der intakten Osteone pro mm² im Gesamtquerschnitt bezogen (OstII\textsubscript{ges}/Ostint\textsubscript{ges}). Diese Zahl (Ostint\textsubscript{ges}) korreliert nach Pearson ebenfalls hochsignifikant mit dem Individualalter (r = 0,334). Wenn also ein Individuum im Verhältnis zur Anzahl an intakten Osteonen einen erhöhten Wert an Typ-II-Osteonen aufweist, liegt eine erhöhte Anzahl an Typ-II-Osteonen unabhängig vom Individualalter vor. Die Angabe erfolgt in Prozent der Gesamtzahl von Osteonen und die so entstehende neue Variable wird als OstII% bezeichnet.

Bezüglich dieses neuen Parameters können im Basel-Kollektiv 102 Individuen ausgewertet werden. Der mittlere Anteil an Typ-II-Osteonen im Gesamtquerschnitt des Basel-Kollektivs liegt bei 7,4% (SD: 5,3%). Der maximal beobachtete Wert von 22,0% zeigt sich bei einem weiblichen Individuum (BP 693; 28,5 Jahre). Es besteht kein signifikanter Geschlechtsunterschied für OstII% (einfaktorielle ANOVA: p = 0,452).
Allerdings liegt immer noch eine hochsignifikante Korrelation des Anteils an Typ-II-Osteonen bezogen auf den Anteil der intakten Osteone im Gesamtquerschnitt zum Alter vor (nach Pearson 0,293). Diese Tatsache ist auch in Abb. 129 erkennbar. Individuen, die an Altersschwäche gestorben sind, weisen erhöhte Werte bezüglich OstII% auf.

Typ-II-Osteone und Hungerkrisen

Im Folgenden soll der Zusammenhang von OstII% mit regionalen Hungerkatastrophen (beschrieben unter Punkt 4.3.1) untersucht werden, da Richman et al. (1979) eine Abhängigkeit des Auftretens von Typ-II-Osteonen vom Proteingehalt der Nahrung proklamieren.

Der prozentuale Anteil der Typ-II-Osteone im Gesamtquerschnitt korreliert nach Pearson hochsignifikant mit der Anzahl der durchlebten Krisen (r = 0,334). Da die Anzahl der durchlebten Krisen jedoch mit höherem Individualalter ansteigt (nach Pearson: r = 0,858; hochsignifikant) ist fraglich, ob hier nur eine Scheinkorrelation vorliegt. Um dies zu prüfen wird in SPSS eine so genannte partielle Korrelation berechnet, bei der als Kontrollvariable das Alter eingesetzt wird. Bei diesem Vorgehen stellt sich der Zusammenhang zwischen der Anzahl der durchlebten Krisen und OstII% als nicht mehr signifikant heraus.

Typ-II-Osteone und Krankheiten

129 ist der Zusammenhang zwischen dem Anteil an Typ-II-Osteonen im Gesamtquerschnitt (OstII%) und den Todesursachen im Basel-Kollektiv dargestellt.

Bei den Individuen, die aus dem Basel-Kollektiv an einer Herzerkrankung gestorben sind (BP 608, BP 644, BP 673, BP 675), können keine erhöhten Werte des Anteils der Typ-II-Osteone bezogen auf den Gesamtquerschnitt festgestellt werden. Wird der Zusammenhang zu Infektionskrankheiten wie Tuberkulose (n = 25) oder Typhus (n = 20) untersucht, kann ebenfalls keine Erhöhung des Anteils an Typ-II-Osteonen im Gesamtquerschnitt beobachtet werden.

Im Folgenden werden die Mittelwerte für OstII% für die verschiedenen Krankheiten mit erhöhten OstII%-Werten angegeben. Altersschwäche (9,7%), Schlaganfall (6,7%), Krebs (7,3%), chronische Nierenerkrankungen (7,3%), chronische Lebererkrankungen (7,0%), Lungen- und nicht Tuberkulose (8,8%) und Wassersucht (13,2%) zeigen deutlich höhere Werte als die „gesunden“ Individuen.

Individuen, die aufgrund der Krümmung der Langknochen ihrer unteren Extremitäten (Erläuterung und Nummern der betroffenen Individuen siehe Punkt 4.3.1) in ihrer Kindheit wahrscheinlich an Rachitis oder im Erwachsenenalter an Osteomalazie litten, sollen hier ebenfalls untersucht werden (siehe Abb. 130). Sie werden gesondert betrachtet, da dieses Krankheitsbild nicht wie die Todesursachen im Sterberegister aufgeführt ist, sondern lediglich aufgrund morphologischer Hinweise angenommen wird.

Die betroffenen Individuen weisen nur einen geringfügig erhöhten Median gegenüber den gesunden Individuen auf. Der Mittelwert von OstII% der rachitischen Individuen beträgt 7,7%, was jedoch durchaus höher als der Wert der unbeeinflussten Individuen (4,7%) liegt.

Für die Gruppen Schlaganfall ($p_A = 0,344$, $p_{MW} = 0,445$), Krebserkrankungen ($p_A = 0,077$, $p_{MW} = 0,057$), chronische Nierenerkrankungen ($p_A = 0,254$, $p_{MW} = 0,249$), chronische Lebererkrankungen ($p_A = 0,263$, $p_{MW} = 0,223$) und Rachitis ($p_A = 0,082$, $p_{MW} = 0,245$) zeichnet sich keine signifikante Erhöhung von OstII% gegenüber den „gesunden“ Individuen ab. Allerdings sind die Individuenzahlen in den einzelnen Krankheitsgruppen auch sehr gering (jeweils weniger als 10 Individuen).
Eine signifikante Erhöhung des Anteils der Typ-II-Osteone im Gesamtquerschnitt kann allerdings in den Gruppen Altersschwäche ($p_A = 0,003$, $p_{MW} = 0,012$), Lungenerkrankungen/nicht Tuberkulose ($p_A = 0,001; p_{MW} = 0,003$) und Wassersucht ($p_A = 0,000, p_{MW} = 0,000$) vermutet werden, wobei die Individuen, welche an Wassersucht litten die deutlichste Erhöhung von OstII% zeigen (13,2%).

Anatomie-Kollektiv

Im Durchschnitt zeigen sich im gesamten anterioren Femurquerschnitt des Anatomiekollektivs 1,7 Typ-II-Osteone (SD: 1,5) pro mm². Bei den männlichen Individuen liegt der Mittelwert bei 2,0 (SD: 1,7) und bei den weiblichen bei 1,4 (SD: 1,3). Der Unterschied zwischen beiden Geschlechtern ist laut einer einfaktoriellen ANOVA jedoch nicht signifikant ($p = 0,236$). Der höchste beobachtete Wert ist bei einem Mann zu finden und beträgt 6,33 Typ-II-Osteone pro mm² (Anat 86/03).

Wird der Quotient aus der Anzahl der Typ-II-Osteone pro mm² und der Anzahl der intakten Osteone pro mm² bezogen auf den Gesamtquerschnitt (OstII%) berechnet, ergibt sich für das Anatomie-Kollektiv ein Mittelwert von 5,3% (SD: 4,3%). Der maximale Wert stammt von einem männlichen Individuum und beträgt 22,6% (Anat 86/03; 76 Jahre). Es besteht kein signifikanter Geschlechtsunterschied im Anatomie-Kollektiv (ANOVA: $p = 0,110$).

Weder bezüglich der Anzahl an Typ-II-Osteonen pro mm² im Gesamtquerschnitt, noch bezüglich des Anteils der Typ-II-Osteonen im Gesamtquerschnitt, zeigt sich im Anatomie-Kollektiv eine signifikante Korrelation zum Alter nach Pearson.

Typ-II-Osteone und Hungerkrisen

Im Basel-Kollektiv wurde ein Zusammenhang zwischen dem Anteil der Typ-II-Osteone und durchlebten regionalen Nahrungskrisen hergestellt (siehe oben).

Typ-II-Osteone und BMI

Bezüglich des Zusammenhangs von Typ-II-Osteonen mit Nahrungsbestandteilen (Richman et al. 1979) wird auch untersucht, ob ein Zusammenhang zwischen dem BMI und der Anzahl an Typ-II-Osteonen im Anatomie-Kollektiv besteht. Es wäre zu erwarten, dass sich in der Klasse der Untergewichtigen höhere Werte von OstII% zeigen. Allerdings ergibt sich keinerlei

Typ-II-Osteone und Krankheiten

Hier können nur 31 Individuen des Anatomie-Kollektivs ausgewertet werden, da von fünf Personen keine Todesursache bekannt ist.

[Graphik: Abhängigkeit des Anteils von Typ-II-Osteonen im Gesamtquerschnitt (OstII%) von verschiedenen Erkrankungen im Anatomie-Kollektiv; Die schwarze Linie stellt den Wert von OstII% dar, den die unbeeinflussten Individuen im Anatomie-Kollektiv im Mittel aufweisen.]

Der Abb. 131 ist der Zusammenhang des Anteils an Typ-II-Osteonen im Gesamtquerschnitt mit verschiedenen Erkrankungen zu entnehmen.

Wie im Basel-Kollektiv werden die Individuen, welche bezüglich des Gesamtkollektivs keine erhöhten Werte von OstII% aufweisen zum Vergleich mit den anderen Individuen herangezogen. Im Anatomie-Kollektiv zeigen insgesamt 13 Individuen, die entweder an einer Herzerkrankung (n = 11) oder an einer Erkrankung ihrer Lunge (n = 5) gelitten haben, keine erhöhten Werte bezüglich OstII%. Zwei Individuen wiesen gleichzeitig eine Lungen- und eine Herzerkrankung auf. In der folgenden Auswertung werden diese Individuen als gesund (unbeeinflusst) bezeichnet, zumindest bezüglich der Werte von OstII%. Ihr Mittelwert von OstII% liegt bei 4,0% (SD: 3,0%). Dieser Wert ist in Abb. 131 als Trennwert zwischen normalen und erhöhten Werten von OstII% als schwarze Linie dargestellt.

Bei Individuen des Anatomie-Kollektivs, die an einer Krebskrankung starben (n = 4), werden erhöhte Werte des Anteils an Typ-II-Osteonen im Gesamtquerschnitt (9,9%) gefunden. Es ist auffällig, dass die Abweichungen vom Median in allen anderen Kategorien wesentlich geringer sind, als in der Gruppe der Krebskranken. Obwohl im Anatomie-Kollektiv nur zwei Individuen an einem chronischen Nierenleiden erkrankt waren, zeigt sich

Dabei zeigen chronische Lebererkrankungen ($p_A = 0,175; p_{MW} = 0,195$), Krebskrankungen ($p_A = 0,320$ im Welch-Test und im Brown-Forsythe-Test, da Levene-Test $p = 0,006; p_{MW} = 0,316$) und Alkoholismus bzw. Nikotinsucht ($p_A = 0,106; p_{MW} = 0,093$) keine signifikante Erhöhung des Anteils an Typ-II-Osteonen im Gesamtquerschnitt im Vergleich mit den unbeeinflussten Individuen.
Als signifikant deuten sich jedoch die Unterschiede der Gruppen chronische Nierenerkrankung ($p_A = 0.025; p_{MW} = 0.076$) und Arteriosklerose ($p_A = 0.034; p_{MW} = 0.026$) im Vergleich mit den „gesunden“ Individuen an. Dabei ist die Signifikanz bei den Nierenerkrankungen nur in der ANOVA gegeben, nicht jedoch im Mann-Whitney-Test und ist somit nicht besonders aussagekräftig, zumal sich nur zwei Individuen in dieser Gruppe befinden.

4.4 Ergebnisse der histologischen Altersbestimmung

4.4.1 Altersbestimmung nach Thompson (1979)

Basel-Kollektiv

Endostal

Im Mittel wird mit allen angewendeten Altersbestimmungsformeln nach Thompson (1979) (siehe Punkt 3.2.5) ein durchschnittliches Alter von 28,5 Jahren (SD: 12,8) für das Basel-Kollektiv berechnet (realer Mittelwert: 49,7 Jahre, SD: 18,2). Der Median liegt bei 29,2 Jahren und der mittlere Fehler beträgt 24,1 Jahre (SD: 18,3). Die größte Abweichung nach oben zeigt einen Wert von 26,2 Jahren und die stärkste Abweichung nach unten einen Wert von -95,8 Jahren. Bei der Berechnung des histologischen Knochenalters nach Thompson (1979) im endostalen Bereich der Femurkompakta können sich teilweise auch solche nicht realistische, negative Werte für das Alter ergeben. Insgesamt werden 24,9% der Fälle korrekt in einem Bereich von +/- 10 Jahren altersbestimmt. 5,8% werden in ihrem Alter um mehr als 10 Jahre überschätzt und 69,4% der Individuen werden um mehr als 10 Jahre zu jung geschätzt (Abb. 132a).

Mit der Formel für rechte Femora und männlichen Individuen (MR) können im endostalen Bereich der Kompakta 33 von 81 Individuen (40,7%) korrekt (in einem Bereich von +/- 10 Jahren) altersbestimmt werden. Der Fehler liegt bei 17,4 Jahren. Diese Formel funktioniert für den endostalen Bereich des Basel-Kollektivs am besten.

Am schlechtesten arbeitet die Formel für rechte Femora und weiblichen Individuen (FR), die sich ausschließlich auf den Anteil an osteonalem Knochen stützt. Hierbei können nur 11 von 83 Individuen (13,3%) in einem Bereich von +/-10 Jahren richtig altersbestimmt werden. Der Fehler beträgt 30,8 Jahre.
4. Ergebnisse

Mitte
Für den Mittelwert des Alters wird mit den histologischen Altersbestimmungsformeln nach Thompson (1979) ein Wert von 47,7 Jahren (SD: 13,0) bestimmt (realer Mittelwert: 49,7 Jahren, SD: 18,2). Der Median ist 49,1 Jahre und der mittlere Fehler liegt bei 17,7 Jahren (SD: 15,0). Die größte Abweichung nach oben zeigt einen Wert von 54,1 Jahren und die stärkste Abweichung nach unten einen Wert von -93,1 Jahren. Auch bei der Anwendung der Formeln im mittleren Bereich, kann es zu solch unlogischen, negativen Werten für das Individualalter kommen. Insgesamt werden 39,2% der Fälle innerhalb des Bereiches +/- 10 Jahre richtig in ihrem Alter bestimmt. 29,9% hingegen werden um mehr als 10 Jahre in ihrem Alter unterschätzt und 30,9% werden um mehr als 10 Jahre überschätzt (Abb. 132b).

Im mittleren Bereich der Femurkompakta des Basel-Kollektivs funktioniert die geschlechtsunabhängige Formel für den linken Femur (GL) am besten. Dabei wird der Anteil an osteonalem Knochen (Ostkno), der Osteonenumfang (OstU), die Anzahl an intakten Osteonen (Ostint) und die Kompaktadicke (Komp) einbezogen. Mit dieser Formel werden 43 von 101 Individuen (42,6%) im Bereich +/- 10 Jahre richtig altersbestimmt. Der Fehler liegt bei 16,1 Jahren.

Insgesamt funktionieren im mittleren Bereich die meisten Formeln eher gut, wie man an den geringen Unterschieden zwischen bester und schlechtester Formel erkennen kann.

Periostal
Der Mittelwert des Alters für das Basel-Kollektiv wird mit den Formeln von Thompson (1979) auf 46,6 Jahre (SD: 16,2) geschätzt (realer Mittelwert: 49,7 Jahren, SD: 18,2). Der Median beträgt 49,4 Jahre und der mittlere Fehler hat einen Wert von 15,3 (SD: 10,9). Die stärkste Abweichung nach oben ist 56,8 Jahre, die größte Abweichung nach unten -56,8 Jahre. Periostal entstehen bei der Schätzung des Alters keine negativen Werte. Korrekt bestimmt (in einem Bereich von +/- 10 Jahren) werden 39,1% der Fälle. 35,4% werden um mehr als 10 Jahre unterschätzt und 25,6% werden um mehr als 10 Jahre überschätzt (Abb. 132c).

Im periostalen Bereich arbeitet die geschlechtsneutrale Formel für rechte nicht-pathologische Femora (GR np) am besten. Damit können 49 von 97 Individuen (50,5%) im Bereich +/-10 Jahre korrekt bestimmt werden. Der Fehler liegt bei 12,8 Jahren. In die Berechnungen einbezogen werden der Anteil an osteonalem Knochen (Ostkno), der Osteonenumfang (OstU), die Anzahl an intakten Osteonen (Ostint) und die Kompaktadicke (Komp). Ein Vergleich der Ergebnisse der histologischen Altersbestimmung nach Thompson (1979) mit dem realen Alter, ist exemplarisch für diese Formel (GR np) dargestellt (Abb. 133)

Anatomie-Kollektiv

Abb. 134: Fehler der gesamten ausgewerteten Daten der verschiedenen Formeln zur histologischen Altersbestimmung nach Thompson (1979) im Anatomie-Kollektiv
Endostal

Im Mittel wird mit allen angewendeten Altersbestimmungsformeln nach Thompson (1979) (siehe Punkt 3.2.5) ein durchschnittliches Alter von 31,5 Jahren (SD: 13,5) für das Anatomie-Kollektiv berechnet (realer Mittelwert: 79,6 Jahre; SD: 11,73). Der Median liegt bei 32,4 Jahren und der mittlere Fehler beträgt 47,9 Jahre (SD: 19,4). Die größte Abweichung nach oben zeigt einen Wert von 10,4 Jahren und die stärkste Abweichung nach unten einen Wert von -91,7 Jahren. Bei der Berechnung des histologischen Knochenalters nach Thompson (1979) im endostalen Bereich der Femurkompakta können sich teilweise auch nicht sinnvolle, negative Werte für das Alter ergeben. Insgesamt werden nur 2,8% der Fälle korrekt in einem Bereich von +/- 10 Jahren altersbestimmt. 0,1% werden in ihrem Alter um mehr als 10 Jahre überschätzt und 97,1% der Individuen werden um mehr als 10 Jahre zu jung geschätzt (Abb. 134a).

Für den endostalen Bereich des Anatomie-Kollektivs kann weder eine Formel, die am besten, noch eine Formel, die am schlechtesten funktionierte, gefunden werden. Denn bei jeder Formel wird jeweils nur ein Individuum im Bereich +/- 10 Jahre richtig altersbestimmt. Die Fehler der Formeln reichen von 21,3 Jahren bis zu 52,2 Jahren. Grundsätzlich werden in diesem Bereich der Femurkompakta annähernd alle Individuen des Anatomie-Kollektivs viel zu jung eingeschätzt.

Mitte

Für den Mittelwert des Alters wird mit den histologischen Altersbestimmungsformeln nach Thompson (1979) ein Wert von 40,9 Jahren (SD: 16,9) bestimmt (realer Mittelwert: 79,6 Jahre; SD: 11,73). Der Median ist 42,1 Jahre und der mittlere Fehler liegt bei 39,3 (SD: 22,9). Die größte Abweichung nach oben zeigt einen Wert von 15,8 Jahren und die stärkste Abweichung nach unten einen Wert von -111,3 Jahren. Auch bei der Anwendung der Formeln im mittleren Bereich, kann es zu unlogischen negativen Werten für das Individualalter kommen. Insgesamt werden 16,8% der Fälle innerhalb des Bereiches +/- 10 Jahren richtig in ihrem Alter bestimmt. 82,1% hingegen werden um mehr als 10 Jahre in ihrem Alter unterschätzt. Lediglich 1,1% werden um mehr als 10 Jahre überschätzt (Abb. 134b).

Die Formel von Thompson (1979) für den linken Femur (Frauen FL) funktioniert für den mittleren Bereich der Femurkompakta des Anatomie-Kollektivs am besten. Dabei wird der Anteil an osteonalem Knochen (Ostkno), der Osteonenumfang (OstU), die Anzahl an intakten Osteonen (Ostint) und die Kompaktadicke (Komp) in die Berechnung einbezogen. Mit dieser Formel werden immerhin 9 von 35 Individuen (25,7%) im Bereich +/- 10 Jahre richtig altersbestimmt. Der Fehler liegt bei 36,4 Jahren.

Besonders schlecht arbeitet in diesem Bereich die geschlechtsspezifische Altersbestimmung, wobei jedem Individuum die korrekte Formel ausgewählt nach Femurseite und Geschlecht zugewiesen wird, und die Formel für nicht-pathologische linke Femora (Frauen FL np). In beiden Fällen kann jeweils nur ein Individuum korrekt im Bereich von +/- 10 Jahren
altersbestimmt werden. Die Fehler liegen im ersten Fall bei 38,1 Jahren und im zweiten bei 47,5 Jahren.

Periostal

Im periostalen Bereich arbeiten jeweils die Formeln für männliche Individuen am besten. Mit den Formeln für rechte Femora (Männer MR) und für nicht-pathologische rechte und linke Femora (Männer, MR np und ML np) können jeweils 9 von 36 Individuen (25,0%) im Bereich +/-10 Jahre korrekt bestimmt werden. Die Fehler liegen zwischen 22 und 24 Jahren. In die Berechnungen einbezogen werden der Anteil an osteonalem Knochen (Ostkno), der Osteonenumfang (OstU), die Anzahl an intakten Osteonen und die Kompaktadicke (Komp). Ein Vergleich der Ergebnisse der histologischen Altersbestimmung nach Thompson (1979) mit dem realen Alter, ist exemplarisch für die Formel für rechte Femora in männlichen Individuen (MR) dargestellt (Abb. 135).

![Abb. 135: Vergleich der Ergebnisse der histologischen Altersbestimmung nach Thompson (1979) mit der Formel MR mit dem realen Alter](image)

4. Ergebnisse

4.4.2 Altersbestimmung nach Ericksen (1991)

Basel-Kollektiv

Abb. 136: Fehler der gesamten ausgewerteten Daten der angewendeten Formeln zur histologischen Altersbestimmung nach Ericksen 1991 im Basel-Kollektiv

Endostal

Endostal wird durch alle Formeln von Ericksen (1991) im Mittel ein Alter von 66,6 Jahren (SD: 8,3) bestimmt (realer Mittelwert: 49,7 Jahren, SD: 18,2). Der Median ist 65,9 Jahre und der mittlere Fehler beträgt 19,7 Jahre (SD: 13,0). Die stärkste Abweichung vom Individualalter nach oben zeigt einen Wert von 64,1 Jahren und die größte Unterschätzung liegt bei -38,1 Jahren. Es werden etwa 29,7% der Individuen in einem Bereich von +/- 10 Jahren richtig altersbestimmt. 5,4% werden um mehr als 10 Jahre unterschätzt und 64,9% werden um mehr als 10 Jahre überschätzt (Abb. 136a).

Die Formel II/8 (6 Variablen, Frauen) ergibt im endostalen Bereich die besten Ergebnisse. Sie liefert in 28 von 81 Fällen (34,6%) ein korrektes Alter im Bereich +/-10 Jahre. Der Fehler von II/8 liegt bei +/-18,1 Jahre. Individuen unter 50 Jahren werden in ihrem Alter meist um mehr als 10 Jahre überschätzt und nur die drei ältesten Individuen des Kollektivs werden um mehr als 10 Jahre unterschätzt.

Am schlechtesten funktioniert die Formel II/10 (8 Variablen, Frauen). Damit können nur 16 von 81 Individuen (19,8%) im Bereich +/- 10 Jahre richtig altersbestimmt werden. Der Fehler liegt bei 23,4 Jahren. Alle restlichen Individuen werden mit dieser Formel in ihrem Alter um mehr als 10 Jahre überschätzt.
Mittig

Im mittleren Teil der Femurkompakta wird durch alle Formeln von Ericksen ein Mittelwert des Alters von 58,1 Jahren (SD: 10,1) bestimmt (realer Mittelwert: 49,7 Jahren, SD: 18,2). Der Median ist 57,6 Jahre und der mittlere Fehler beträgt 14,5 Jahre (SD: 11,1). Die stärkste Abweichung vom Individualalter nach oben zeigt einen Wert von 52,4 Jahren, die stärkste Abweichung nach unten ist -33,0 Jahre. In einem Bereich von +/-10 Jahre können 44,2% der Fälle des Basel-Kollektivs richtig altersbestimmt werden. 10,1% werden um mehr als 10 Jahre unterschätzt und 45,7% werden um mehr als 10 Jahre überschätzt (Abb. 136b).

Im mittleren Bereich liefern die Formeln II/8 (6 Variablen, Frauen) und II/10 (8 Variablen, Frauen) die besten Ergebnisse. Jeweils 49 von 101 Individuen (48,5%) werden damit im Bereich von +/-10 Jahre korrekt altersbestimmt. Der Fehler liegt bei der Formel II/8 bei 13,8 Jahren und bei der Formel II/10 bei 13,0 Jahren.

Am schlechtesten wird das Alter in der Mitte der Kompakta mit Hilfe der Formel III/8 (6 Variablen, Männer) bestimmt. Damit werden 39 von 101 Individuen (38,6%) korrekt in einem Bereich von +/-10 Jahren altersgeschätzt. Der Fehler beträgt 14,7 Jahre. Außerdem arbeiten die beiden anderen Formeln, die nur für Männer entwickelt wurden, für das Gesamtkollektiv eher schlecht (Formeln III/1 und III/6). Dabei können jeweils nur 40 von 101 Individuen im Bereich +/-10 Jahre altersbestimmt werden (Fehler bei etwa 14,5-14,7 Jahre).

Periostal

Periostal ergibt sich durch alle Formeln von Ericksen ein Mittelwert des Alters von 48,8 Jahren (SD: 14,6) für die Individuen des Basel-Kollektivs (realer Mittelwert: 49,7 Jahren, SD: 8,2). Der Median ist 50,6 Jahre und der mittlere Fehler zeigt einen Wert von 11,7 Jahren (SD: 8,5). Dabei liegt die stärkste Abweichung nach oben bei 40,7 Jahren und die größte Abweichung nach unten bei -47,4 Jahren. In Abb. 136c zeigt sich, dass 49,1% der Fälle im Bereich von +/-10 Jahren richtig eingeschätzt werden. 25,2% werden um mehr als 10 Jahre unterschätzt und 25,6% werden um mehr als 10 Jahre überschätzt (Abb. 136c).

Periostal arbeitet die Formel I/1 (Anteil an Generallamellen, nicht nach Geschlechtern getrennt) am besten (Abb. 137). Mit ihr können 53 von 99 Individuen (53,5%) in einem Bereich von +/-10 Jahren richtig altersbestimmt werden. Der Fehler liegt bei 12,1 Jahren. Auch sehr gut arbeiten die Formeln I/8 [51 von 97 (52,6%) Individuen im Bereich +/-10 Jahre, Abb. 138] und I/10 [50 von 97 Individuen (51,5%) im Bereich +/-10 Jahre] mit Fehlern von 11,0 bzw. 11,2 Jahren.
Am schlechtesten funktionieren im peristalen Teil die Formeln II/10 (8 Variablen, Frauen) und III/1 (Anzahl der Osteonfragmente, Männer). In beiden Fällen können aber immerhin noch 45 Individuen im Bereich +/- 10 Jahre korrekt altersbestimmt werden (etwa 46%). Die Fehler liegen bei ca. 12 Jahren.

Anatomie-Kollektiv

Abb. 139: Fehler der gesamten ausgewerteten Daten aller angewendeten Formeln zur histologischen Altersbestimmung nach Ericksen (1991) im Anatomie-Kollektiv

Endostal

Endostal wird durch alle Formeln von Ericksen im Mittel ein Alter von 81,1 Jahren (SD: 17,4) bestimmt (realer Mittelwert: 79,6 Jahre; SD: 11,73). Der Median ist 75,5 Jahre und der mittlere Fehler beträgt 16,8 Jahre (SD: 12,4). Die stärkste Abweichung vom Individualalter nach oben beträgt 66,9 Jahre. Die größte Unterschätzung liegt bei -39,3 Jahren. Es werden etwa 32,8% der Individuen in einem Bereich von +/- 10 Jahren richtig altersbestimmt. 35,3%
werden um mehr als 10 Jahre unterschätzt und 31,9% werden um mehr als 10 Jahre überschätzt (Abb. 139a).

Die besten Ergebnissen im endostalen Bereich bringen die Formel I/8 (6 Variablen, nicht nach Geschlechtern getrennt) und Formel II/1 (Anteil an Generallamellen, Frauen). Beide liefern in 17 Fällen von 34 (50,0%) ein korrektes Alter im Bereich +/-10 Jahre. Der Fehler von I/8 liegt bei 12,0 Jahren, der Fehler von II/1 sogar nur bei 10,6 Jahren.

Am schlechtesten funktioniert die Formel II/10 (8 Variablen, Frauen). Damit kann kein Individuum im Bereich +/- 10 Jahre richtig altersbestimmt werden. Der Fehler liegt bei 36,6 Jahren.

Mittig

Mittig wird durch alle Formeln von Ericksen ein Mittelwert des Alters von 83,5 Jahren (SD: 18,2) bestimmt (realer Mittelwert: 79,6 Jahre; SD: 11,73). Der Median ist 77,9 und der mittlere Fehler beträgt 17,2 Jahre (SD: 12,8). Die stärkste Abweichung vom Individualalter nach oben zeigt einen Wert von 65,5 Jahren, die stärkste Abweichung nach unten ist -42,0 Jahre. In einem Bereich von +/-10 Jahre können 32,2% der Individuen das Alter korrekt bestimmen. Ebenfalls 32,2% werden um mehr als 10 Jahre unterschätzt und 35,7% werden um mehr als 10 Jahre überschätzt (Abb. 139b).

Im mittleren Bereich liefert die Formel II/1 (Anteil an Generallamellen, Frauen) die besten Ergebnisse. 18 Individuen von 36 (50,0%) werden in einem Bereich von +/-10 Jahren korrekt altersbestimmt. Der Fehler liegt bei 11,2 Jahren. Auch sehr gut funktioniert die Formel I/8 (6 Variablen, Gesamtkollektiv). Damit können 17 Individuen von 36 (47,2%) im Bereich von +/-10 Jahren altersbestimmt werden. Der Fehler liegt hier bei 12,4 Jahren.

Am schlechtesten wird das Alter in der Mitte der Kompakta mit Hilfe der Formeln I/10 (8 Variablen, Gesamtkollektiv) und II/10 (8 Variablen, Frauen) bestimmt. Im ersten Fall kann nur 1 Individuum im Bereich +/- 10 Jahre altersbestimmt werden (Fehler: 30,5 Jahre), im zweiten Fall gar keins (Fehler: 37,9 Jahre).

Periostal

Periostal ergibt sich durch alle Formeln von Ericksen ein Mittelwert des Alters von 86,0 Jahren (reale Mittelwert des Anatomie-Kollektivs 79,6 Jahre; SD: 11,73) (SD: 19,7). Der Median ist 81,0. Der mittlere Fehler zeigt einen Wert von 17,6 Jahren (SD: 13,7). Dabei liegt die stärkste Abweichung nach oben bei 64,7 Jahren und die größte Abweichung nach unten bei -38,3 Jahren. In Abb. 139c erkennt man, dass 33,1% der Individuen im Bereich von +/-10 Jahren richtig eingeschätzt werden. 27,6% werden um mehr als 10 Jahre unterschätzt und 39,4% werden um mehr als 10 Jahre überschätzt (Abb. 139c).

Periostal arbeitet die Formel II/8 (6 Variablen, Frauen) am besten (Abb. 140). Mit ihr können 24 von 36 Individuen (66,7%) in einem Bereich von +/- 10 Jahren richtig altersbestimmt werden. Der Fehler liegt bei nur 8,7 Jahren.
Am schlechtesten funktionieren auch im periostalen Teil die Formeln mit 8 Variablen I/10 (keine Geschlechtertrennung) und II/10 (Frauen). In beiden Fällen kann kein Individuum im Bereich +/- 10 Jahre korrekt altersbestimmt werden. Die Fehler liegen bei 35,8 Jahren (I/10) und 40,0 Jahren (II/10).

4.4.3 Altersbestimmung nach Maat et al. (2006)

Basel-Kollektiv

Endostal können mit der Formel nach Maat et al. (2006) 84 von 103 Individuen (81,6%) des Basel-Kollektivs altersbestimmt werden. Im mittleren Bereich beläuft sich die Zahl auf 101 von 103 (98,1%) und periostal sind es 98 von 103 (95,1%) auswertbare Femora.

Endostal

Im Mittel wird mit der Formel nach Maat et al. (2006) ein Alter von 76,5 Jahren (SD: 16,6) bestimmt (realer Mittelwert: 49,7 Jahren, SD: 18,2). Der Median ist 82,2 Jahre und der mittlere Fehler beträgt 27,6 Jahre (SD: 17,3). Die stärkste Abweichung nach oben zeigt einen Wert von 66,5 Jahre, die größte Abweichung nach unten hat einen Wert von -21,0 Jahre. 14,3% der Fälle werden innerhalb eines Bereich +/-10 Jahre richtig altersbestimmt. 84,5%
werden um mehr als 10 Jahre überschätzt und nur 1,2% werden mehr als 10 Jahre unterschätzt (Abb. 141a).

Mitte

Es wird ein mittleres Alter von 56,7 Jahren (SD: 21,2) für das Basel-Kollektiv bestimmt (realer Mittelwert: 49,7 Jahren, SD: 18,2). Der Median ist 57,6 Jahre. Der mittlere Fehler beträgt 18,3 Jahre (SD: 13,0). Die größte Abweichung nach oben liegt bei 62,5 Jahren, die höchste Abweichung nach unten bei -50,0 Jahren. 43,6% der Fälle werden in einem Bereich von +/- 10 Jahren um das wahre Individualalter richtig bestimmt. Insgesamt 37,6% werden mehr als 10 Jahre zu alt eingeschätzt und etwa 18,8% der Fälle zeigen nach der Berechnung des Alters mit der Formel von Maat et al. (2006) ein um 10 Jahre zu junges Alter (Abb. 141b). Die graphische Darstellung des Vergleichs der Altersschätzung nach Maat et al. (2006) mit dem chronologischen Alter ist Abb. 142 zu entnehmen.

![Graphik zu den Altersschätzungen](image142)

Periostal

Es wird ein mittleres Alter von 43,1 Jahren (SD: 19,1) für das Basel-Kollektiv berechnet (realer Mittelwert: 49,7 Jahren, SD: 18,2). Der Median ist 38,9 Jahre und der mittlere Fehler zeigt einen Wert von 15,1 Jahren (SD: 11,8). Die höchste Abweichung nach oben liegt bei 42,0 Jahren. Die größte Abweichung nach unten bei -54,7 Jahren. Insgesamt werden 40,8% der Fälle in einem Bereich von +/- 10 Jahren um das wahre Individualalter richtig eingeschätzt. Ebenfalls 40,8% der Fälle werden durch die Formel von Maat et al. (2006) um mehr als 10 Jahre in ihrem Alter unterschätzt und für 18,4% wird ein um mehr als 10 Jahre zu hohes Individualalter berechnet (Abb. 141c).

Anatomie-Kollektiv

a) endostal

b) mitte

c) periostal

Abb. 143: Fehler der histologischen Altersbestimmungsformeln nach Maat et al. (2006) im Anatomie-Kollektiv (Ergebnisse beider Formeln ausgewertet)

Endostal

Durch beide Formeln gemeinsam wird im Mittel ein Alter von 78,9 Jahren (SD: 13,4) bestimmt (realer Mittelwert: 79,6 Jahre; SD: 11,73). Der Median ist 84,2 Jahre und der mittlere Fehler beträgt 11,3 Jahre (SD: 9,8). Die stärkste Abweichung nach oben zeigt einen Wert von 41,1 Jahre, die größte Abweichung nach unten hat einen Wert von -35,2 Jahre. 54,4% der Fälle werden innerhalb eines Bereich +/-10 Jahre richtig altersbestimmt. 22,1% werden um mehr als 10 Jahre überschätzt und 23,5% werden mehr als 10 Jahre unterschätzt (Abb. 143a).

Im endostalen Bereich funktioniert die Formel, bei der die Körpergröße als Faktor mit einbezogen wird etwas besser als die Formel, in der nur der Anteil an Generallamellen eingesetzt wird [20 Individuen im Bereich von +/-10 Jahren korrekt altersbestimmt (58,8%), Fehler: 11,0]. Eine graphische Darstellung des Verhältnisses von realem Alter zu den Ergebnissen mit der Formel unter Einbeziehung der Körpergröße ist in Abb. 144 dargestellt. Bei einem Vergleich der Verteilung der Ergebnisse der Altersschätzung mit der Verteilung des chronologischen Alters ist zu erkennen, dass diese recht ähnlich sind. Eine einfaktorielle ANOVA bestätigt zumindest, dass die Mittelwerte der beiden Verteilungen nicht signifikant verschieden sind (p = 0,423).

Mitte

Periostal

Werden die Ergebnisse von beiden Formeln zusammengenommen, wird ein mittleres Alter von 70,0 Jahren (SD: 17,2) für das Anatomie-Kollektiv berechnet (realer Mittelwert: 79,6 Jahre; SD: 11,73). Der Median ist 76,0 Jahre und der mittlere Fehler zeigt einen Wert von 14,0 Jahren (SD: 12,7). Die höchste Abweichung nach oben liegt bei 33,9 Jahren. Die größte Abweichung nach unten bei -55,0 Jahren. Insgesamt werden 44,4% der Fälle in einem Bereich von +/-10 Jahren richtig eingeschätzt. 47,2% der Fälle werden durch die Formeln von Maat et al. (2006) um mehr als 10 Jahre in ihrem Alter unterschätzt und für nur 8,3% wird ein um mehr als 10 Jahre zu hohes Individualalter berechnet (Abb. 143c). Periostal verhält es sich umgekehrt wie beim endostalen Teil. Hier werden bessere Ergebnisse erzielt, wenn die Körpergröße in die Berechnung nicht mit einbezogen wird. Dann werden 17 Individuen im Bereich +/-10 Jahre richtig altersbestimmt (Fehler 14,0 Jahre).

4.4.4 Vergleich der Altersbestimmungsmethoden im Basel-Kollektiv

4. Ergebnisse

4.4.5 Vergleich der Altersbestimmungsmethoden im Anatomie-Kollektiv

In den vorhergehenden Kapiteln erfolgte eine ausführliche Analyse der einzelnen Formeln der verschiedenen Autoren (Thompson 1979, Ericksen 1991, Maat et al. 2006) für das Anatomie-
Kollektiv. Unter diesem Punkt sollen nun die jeweils besten Formeln miteinander verglichen werden.

Thompson MR per: Formel für den rechten Femur von männlichen Individuen, angewendet im periostalen Bereich; Ericksen II/8 per: Formel mit 6 Variablen für weibliche Individuen, angewendet im periostalen Bereich; Maat et al. mit Körpergröße, end: Formel, die den Anteil an Generallamellen und die Körpergröße mit einbezieht, angewendet im endostalen Bereich.

4.5 Entwicklung neuer Formeln zur histologischen Altersbestimmung an archäologischem Knochenmaterial

Dieser Teil der statistischen Analyse wurde vom STABLAC der Ludwig-Maximilians-Universität München bzw. einer Praktikumsgruppe des statistischen Praktikums am Institut...
für Statistik der LMU München durchgeführt. Erstmals wurden so Formeln zur Altersbestimmung von archäologischen Skeletten an bodengelagertem Material erstellt.

4.5.1 Neue Gleichungen

Es wurden zwei verschiedene statistische Ansätze für eine Aufstellung verschiedener Altersbestimmungsformeln gewählt.

Im ersten Fall wurden über Variablenselektion mit Hilfe des AIC-Kriteriums und biologischem Fachwissen Regressionsgleichungen zur histologischen Altersbestimmung an bodengelagertem Knochenmaterial erstellt (siehe Punkt 3.7). Zunächst wurden lineare Terme erstellt, später auch quadratische.

Der zweite Ansatz war die Erstellung eines Modells zur Altersschätzung mit Hilfe des Elastic Net (siehe Punkt 3.7), wobei die Variablen hier ausschließlich computergestützt ausgewählt wurden, ohne weitere biologische Informationen zu berücksichtigen.

Es wurden Formeln für den endostalen, den mittleren und den periostalen Bereich der anterioren Femurkompakta erstellt. Innerhalb dieser Aufteilung wird in dieser Arbeit jeweils eine Gleichung für das Gesamtkollektiv, eine für Männer und eine für Frauen präsentiert.

Lineare Gleichungen durch Regressionsanalyse

Endostal

Gesamtkollektiv: Alter = 49,660 + 9,184*Res + 8,032*Frgkno – 55,744*Komp + 14,052*Reskno

Fehler: +/- 14,34 Jahre; \(r^2 = 0,387 \)

Männer: Alter = 37,0395 + 0,9781*Ostfr + 27,2863*Reskno – 50,4078*Komp + 7,5390*Res

Fehler: +/- 12,6 Jahre; \(r^2 = 0,494 \)

Fehler: +/- 14,86; \(r^2 = 0,502 \)

Mitt

Gesamtkollektiv: Alter = 46,3406 + 0,9004*Ostfr + 72,8591*Reskno – 45,9117*Komp + 0,8613 *Ostint

Fehler: +/- 13,57; \(r^2 = 0,449 \)

Männer: Alter = 49,2706 + 9,3436*Res + 1,4629*Ostint + 0,4659*Ostfr – 54,4448*Komp

Fehler: +/- 14,23; \(r^2 = 0,335 \)

Frauen: Alter = 51,9530 + 1,3153*Ostfr + 53,2063*Reskno – 62,2916*Komp

Fehler: +/- 9,671; \(r^2 = 0,776 \)

Periostal

Gesamtkollektiv: Alter = 51,702 – 52,076*Komp + 1,990*Ostint

Fehler: +/- 13,79; \(r^2 = 0,4357 \)

Männer: Alter = 662,93-61,06*Komp + 45,07*Ostkno

Fehler: +/- 14,07; \(r^2 = 0,341 \)

Frauen: Alter = 61,247 – 73,871*Komp + 11,741*Res + 56,846*Frgkno

Fehler: +/- 9,182; \(r^2 = 0,803 \)
Quadratische Gleichungen

Da die quadratischen Gleichungen keine verbesserten Zusammenhänge mit dem Alter, kenntlich an der Größe des Fehlers und an der Höhe von r^2 ergaben, sollen sie hier nicht aufgeführt werden.

Gleichungen mit Elastic Net

Endostal

Gesamtkollektiv:
\[\text{Alter} = 64,34 - 42,83 \times \text{Komp} + 1,36 \times \text{Ostfr} - 11,13 \times \text{Volk} + 4,87 \times \text{Res} + 2,63 \times \text{Reskno} - 32,69 \times \text{Gen} - 55,00 \times \text{Frgkno} \]

Fehler: +/-12,33

Männer:
\[\text{Alter} = 59,32 - 54,58 \times \text{Komp} + 1,52 \times \text{OstII} + 0,86 \times \text{Ostfr} + 5,1 \times \text{Res} + 10,8 \times \text{Reskno} - 9,18 \times \text{Gen} - 21,49 \times \text{Frgkno} \]

Fehler: +/-11,99

Frauen:
\[\text{Alter} = 53,9 - 72,05 \times \text{Komp} - 0,03 \times \text{Ost} - 2,38 \times \text{OstII} + 1,37 \times \text{Ostfr} - 0,06 \times \text{Hav} + 20,92 \times \text{NHav} - 27,55 \times \text{Volk} + 5,6 \times \text{Res} + 19,76 \times \text{Reskno} - 49,65 \times \text{Gen} + 31,78 \times \text{Ostkno} - 29,69 \times \text{Frgkno} \]

Fehler: +/-13,49

Mittig

Gesamtkollektiv:
\[\text{Alter} = 49,89 - 35,95 \times \text{Komp} + 1,1 \times \text{OstII} + 0,7 \times \text{Ostfr} + 0,12 \times \text{Hav} + 4,32 \times \text{Res} + 40,72 \times \text{Reskno} - 3,95 \times \text{Gen} + 1,75 \times \text{Frgkno} \]

Fehler: +/-14,19

Männer:
\[\text{Alter} = 49,49 - 39,47 \times \text{Komp} + 0,25 \times \text{Ost} + 1,3 \times \text{OstII} + 0,36 \times \text{Ostfr} + 0,68 \times \text{Hav} + 5,23 \times \text{Res} + 35,69 \times \text{Reskno} \]

Fehler: +/-16,51

Frauen:
\[\text{Alter} = 40,12 - 27,36 \times \text{Komp} + 0,67 \times \text{Ostfr} + 3,91 \times \text{Res} + 34,55 \times \text{Reskno} - 3,38 \times \text{Gen} + 20,11 \times \text{Frgkno} \]

Fehler: +/-12,57

Periostal

Gesamtkollektiv:
\[\text{Alter} = 48,24 - 37,35 \times \text{Komp} + 0,14 \times \text{Ost} + 7,67 \times \text{OstII} + 1,32 \times \text{Hav} - 2,5 \times \text{Volk} - 0,43 \times \text{Res} + 226,55 \times \text{Reskno} - 16,51 \times \text{Ostkno} + 29,55 \times \text{Frgkno} \]

Fehler: +/-12,07

Männer:
\[\text{Alter} = 51,23 - 43,44 \times \text{Komp} + 0,55 \times \text{Ost} + 5,21 \times \text{OstII} + 0,25 \times \text{Ostfr} + 0,83 \times \text{Hav} + 7,26 \times \text{Frgkno} \]

Fehler: +/-12,68

Frauen:
\[\text{Alter} = 46,77 - 38,62 \times \text{Komp} + 6,03 \times \text{OstII} + 0,5 \times \text{Ostfr} + 4,9 \times \text{Res} + 122,89 \times \text{Reskno} - 0,07 \times \text{Gen} + 28,9 \times \text{Frgkno} \]

Fehler: +/-10,63

4.5.2 Anwendung der neu erstellten Gleichungen auf das Anatomie-Kollektiv

Lineare Gleichungen durch Regressionsanalyse

In Tab. 77 sind die Ergebnisse der Berechnung des histologischen Alters mit den am Basel-Kollektiv neu erstellten linearen Regressionsgleichungen im Vergleich mit dem realen Alter dargestellt. Angegeben sind sowohl der mittlere Fehler, als auch der Anteil an Individuen, die im Bereich von +/- 10 Jahren richtig altersbestimmt wurden.

<table>
<thead>
<tr>
<th>Formel (Lineare Regression)</th>
<th>Chronologisches Alter in Jahren</th>
<th>Berechnetes Alter in Jahren</th>
<th>Fehler in Jahren</th>
<th>Anteil der Individuen, bei denen der Fehler geringer als +/-10 Jahre ist</th>
<th>Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamtkollektiv</td>
<td>79,6</td>
<td>62,13</td>
<td>+/-18,3</td>
<td>20,6%</td>
<td>Es wird ein größerer Anteil der Individuen (94%) im Alter unterschätzt</td>
</tr>
<tr>
<td>Männer</td>
<td>75,3</td>
<td>63,5</td>
<td>+/-14,5</td>
<td>22,2%</td>
<td>Es wird ein größerer Anteil der Individuen (78%) im Alter unterschätzt</td>
</tr>
<tr>
<td>Frauen</td>
<td>83,9</td>
<td>64,1</td>
<td>+/-20,5</td>
<td>12,5%</td>
<td>Es wird ein größerer Anteil der Individuen (94%) im Alter unterschätzt</td>
</tr>
<tr>
<td>Gesamtkollektiv</td>
<td>79,6</td>
<td>68,2</td>
<td>+/-14,1</td>
<td>30,6%</td>
<td>Es wird ein größerer Anteil der Individuen (78%) im Alter unterschätzt</td>
</tr>
<tr>
<td>Männer</td>
<td>75,3</td>
<td>69,4</td>
<td>+/-8,7</td>
<td>66,7%</td>
<td>Es wird ein größerer Anteil der Individuen (94%) im Alter unterschätzt</td>
</tr>
<tr>
<td>Frauen</td>
<td>83,9</td>
<td>74,4</td>
<td>+/-12,0</td>
<td>50,0%</td>
<td>Es wird ein größerer Anteil der Individuen (94%) im Alter unterschätzt</td>
</tr>
<tr>
<td>Gesamtkollektiv</td>
<td>79,6</td>
<td>59,5</td>
<td>+/-21,7</td>
<td>25,0%</td>
<td>Es wird ein größerer Anteil der Individuen (94%) im Alter unterschätzt</td>
</tr>
<tr>
<td>Männer</td>
<td>75,3</td>
<td>49,0</td>
<td>+/-26,2</td>
<td>16,7%</td>
<td></td>
</tr>
<tr>
<td>Frauen</td>
<td>83,9</td>
<td>97,7</td>
<td>+/-17,1</td>
<td>38,9%</td>
<td></td>
</tr>
</tbody>
</table>

Tab. 77: Anwendung der neu erstellten linearen Regressionsgleichungen auf das Anatomie-Kollektiv

Die besten Ergebnisse zeigen sich im mittleren Bereich der Kompakta. Nach Geschlechtern getrennt ergibt sich für die männlichen Individuen ein Fehler von +/-8,7 Jahren (66,7% können im Bereich +/- 10 Jahre richtig altersbestimmt werden) und für die weiblichen ein Fehler von +/-12,0 Jahren (50,0% können im Bereich +/- 10 Jahre richtig altersbestimmt werden). Es fällt auf, dass die geschlechtsspezifischen Formeln gerade im mittleren Bereich besser arbeiten, als die Formeln für das Gesamtkollektiv.

Elastic Net-Gleichungen

Tab. 78 vergleicht reale Alter und Alter, die mit den durch Elastic Net erstellten Gleichungen berechnet wurden. Der Mittelwert des Betrags des Fehlers und der Anteil der Individuen, deren Alter im Bereich +/- 10 Jahre richtig bestimmt wurde, sind ebenfalls angegeben.
<table>
<thead>
<tr>
<th></th>
<th>Formel (Elastic Net)</th>
<th>Chronologisches Alter in Jahren</th>
<th>Berechnetes Alter in Jahren</th>
<th>Fehler in Jahren</th>
<th>Anteil der Individuen, bei denen der Fehler geringer als +/-10 Jahre ist</th>
<th>Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>endostal</td>
<td>Gesamtkollektiv</td>
<td>79,6</td>
<td>64,8</td>
<td>+/-15,8</td>
<td>26,5%</td>
<td>Es wird ein größerer Anteil der Individuen (89%) im Alter unterschätzt</td>
</tr>
<tr>
<td></td>
<td>Männer</td>
<td>75,3</td>
<td>58,5</td>
<td>+/-18,4</td>
<td>22,2%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Frauen</td>
<td>83,9</td>
<td>70,5</td>
<td>+/-14,4</td>
<td>43,8%</td>
<td></td>
</tr>
<tr>
<td>mittel</td>
<td>Gesamtkollektiv</td>
<td>79,6</td>
<td>72,1</td>
<td>+/-9,5</td>
<td>63,9%</td>
<td>Es wird ein größerer Anteil der Individuen (78%) im Alter unterschätzt</td>
</tr>
<tr>
<td></td>
<td>Männer</td>
<td>75,3</td>
<td>64,7</td>
<td>+/-11,7</td>
<td>50,0%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Frauen</td>
<td>83,9</td>
<td>76,5</td>
<td>+/-9,7</td>
<td>66,7%</td>
<td></td>
</tr>
<tr>
<td>peristal</td>
<td>Gesamtkollektiv</td>
<td>79,6</td>
<td>59,1</td>
<td>+/-22,8</td>
<td>19,4%</td>
<td>Es wird ein größerer Anteil der Individuen (94%) im Alter unterschätzt</td>
</tr>
<tr>
<td></td>
<td>Männer</td>
<td>75,3</td>
<td>60,4</td>
<td>+/-15,9</td>
<td>50,0%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Frauen</td>
<td>83,9</td>
<td>86,2</td>
<td>+/-12,3</td>
<td>55,6%</td>
<td></td>
</tr>
</tbody>
</table>

Tab. 78: Anwendung der mit Elastic Net erstellten Gleichungen auf das Anatomie-Kollektiv

Wie schon bei den Formeln der linearen Regressionsanalyse, zeigen sich auch bei den Elastic-Net-Gleichungen die besten Ergebnisse bei der Altersbestimmung im mittleren Bereich der Kompakta. Die geschlechtsspezifischen Formeln arbeiten vor Allem im peristalen Bereich und für Frauen im endostalen Bereich besser, als die Formeln für das Gesamtkollektiv.

Welche der 18 Gleichungen funktioniert für das Anatomie-Kollektiv am besten?

4. Ergebnisse

4.6 UV-Methode

Für die Auswertung der Röntgenfluoreszenzanalyse, der Gelatineextraktion bzw. der Extraktion der mineralischen Phase des Knochens und der Aminosäureanalyse werden die Ergebnisse mit einem durchschnittlichen Wert (über den gesamten Querschnitt gemittelt) der Fluoreszenz- bzw. der histologischen Eigenschaften in Beziehung gesetzt.

4.6.1 Auswertung der Fluoreszenzeigenschaften des UV-Materials

Im folgenden Abschnitt werden die Ergebnisse aller Untersuchungen unter langwelligem UV-Licht dargestellt. Dabei handelt es sich um die Fluoreszenzausprägung in Zahn- und Knochenquerschnitten, in Knochenpulver und in Kollagen- und Apatitlyophilisaten.

Fluoreszenz in Zähnen

In Abb. 147 wird deutlich, dass Zähne im Querschnitt die gleiche charakteristische hellblaue Fluoreszenz wie Knochenmaterial aufweisen. Bei dem fotografierten Zahnwurzelquerschnitt handelt es sich um einen bodengelagerten Zahn, der weder makroskopisch noch mikroskopisch von diagenetischen Veränderungen betroffen ist.
Ein Zahn besteht zu einem großen Teil aus Dentin (siehe Abb. 148), welches annähernd die gleiche Materialzusammensetzung wie kompakter Knochen zeigt (Reiche et al. 2002: ca. 60-70% anorganisches Material, 20-30% organisches Material, 10% Wasser). Die Mikrostruktur von Knochen und Zähnen unterscheidet sich jedoch erheblich (siehe Abb. 149 und zum Vergleich Punkt 1.2.2). Demnach ist davon auszugehen, dass die Fluoreszenz durch die Bestandteile der Knochen und Zähne selbst entsteht und nicht durch ihre Anordnung auf mikrostruktureller Ebene.

Fluoreszenz in demineralisiertem Knochen

4. Ergebnisse

a) Mit EDTA demineralisiert
b) Mit HCl demineralisiert

Abb. 150: Vergleich der Fluoreszenz einer formalinkonservierten rezenten Knochenprobe (jeweils links im Bild) mit der entsprechenden demineralisierten Knochenprobe (jeweils rechts im Bild). am Beispiel Anatomie 92/03 (linke Abbildung) und Anatomie 98/03 (rechte Abbildung)

Auswertung der UV-Eigenschaften der Knochenquerschnitte, des Knochenpulvers und der Lyophilisate

Blauindex (BI) bei den Knochenstücken

Abb. 151: Verteilungsmuster des Blauindex in den UV-Proben

Insgesamt weisen 50,4% (201 von 399 Fällen) der Fälle einen Blauindex von 3 (Fluoreszenz wie bei frischem Knochen auf). Werden die Lokalisationen getrennt voneinander betrachtet (endostal, mitte und periostal), sind in der Mitte die meisten Fälle mit einem BI von 3 (54,1%) zu finden sind. Periostal sind es etwas weniger (50,4%) und endostal am wenigsten (46,6%). Eine durchgängig hellblaue Fluoreszenz (BI=3) im gesamten untersuchten Knochenquerschnitt ist bei 63 Proben zu beobachten.
Braunanteile bei den Knochenstücken

Abb. 152: Verteilungsmuster der Braunanteile in den UV-Proben

Insgesamt zeigen 67,7% der Fälle keine bräunliche Färbung unter langwelligem UV-Licht. Werden die ausgewerteten Fälle getrennt nach den Lokalisationen endostal, mitte und periostal betrachtet, sind in der Mitte der Kompakta generell die wenigsten Braunanteile zu finden (24,8%), endostal etwas mehr (33,8%) und periostal am häufigsten (38,4%).

Lilaanteile bei den Knochenstücken

Abb. 153: Verteilungsmuster der Lilaanteile in den UV-Proben

Insgesamt zeigen 67,7% der Fälle keine lila Farbanteile in ihrer Fluoreszenz unter langwelligem UV-Licht. Werden die verschiedenen Lokalisationen endostal, mitte und periostal getrennt voneinander betrachtet, sind keine wesentlichen Unterschiede zu erkennen.
Ergebnisse

Gelbanteile bei den Knochenstücken

<table>
<thead>
<tr>
<th></th>
<th>a) endostal</th>
<th>b) mitte</th>
<th>c) periostal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>gelb</td>
<td>kein gelb</td>
<td>gelb</td>
</tr>
<tr>
<td></td>
<td>18,8%</td>
<td>18,8%</td>
<td>18,7%</td>
</tr>
</tbody>
</table>

Abb. 154: Verteilungsmuster der Gelbanteile in den UV-Proben

80,7% aller Fälle (399) zeigen weder eine gelbliche, noch eine weiße Verfärbung an. Endostal, mittig oder periostal gibt es keine auffälligen Unterschiede, denn das Verhältnis von Proben mit gelben Anteilen zu solchen ohne gelbe Anteilen ändert sich kaum.

Dunkelblau- und Violetanteile bei den Knochenstücken

Sowohl Dunkelblau- als auch Violetanteile kommen im Fluoreszenz des UV-Materials sehr selten vor, weshalb auf eine graphische Darstellung verzichtet wird.

Insgesamt sind in 95,5% der Fälle (381 von 399) keine dunkelblauen Anteile zu finden. Zwischen endostalen, mittleren und periostalen Anteilen ergeben sich kaum Unterschiede.

In der weiteren Auswertung wird der Anteil von Violett nicht mehr mit einbezogen, da er nur in einer Probe auftritt.

Erkennung von Farbmustern

Bei der Auswertung der Fotos von den Knochenschnitten unter UV-Licht fällt auf, dass verschiedene Farbausprägungen auf einem Knochen gleichzeitig vorkommen können. Dies soll im folgenden Abschnitt näher untersucht werden (siehe auch Tab. 79).

<table>
<thead>
<tr>
<th>BI</th>
<th>Kein G</th>
<th>Kein L</th>
<th>B</th>
<th>Kein L</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>BI=1</td>
<td>0 0 5 0</td>
<td>5 1 3 0</td>
<td>G</td>
<td>2 0 1 0</td>
<td>6 0 0 1</td>
</tr>
<tr>
<td>BI=2</td>
<td>0 0 6 2</td>
<td>4 0 22 0</td>
<td>G</td>
<td>1 1 6 0</td>
<td>2 0 1 1</td>
</tr>
<tr>
<td>BI=3</td>
<td>47 2 2 0</td>
<td>1 0 4 0</td>
<td>G</td>
<td>3 0 0 0</td>
<td>3 0 0 1</td>
</tr>
</tbody>
</table>

Tab. 79: Darstellung der Verteilung der Farbmuster der Fluoreszenz in den Knochen des UV-Materials.
BI=Blauindex, G=Gelb, B=Braun, L=Lila, D=Dunkelblau,

In 47 von 133 Fällen (35,3%) ist über den gesamten Knochenquerschnitt eine ausschließlich hellblaue Fluoreszenz ohne Beimischung anderer Farbausprägungen zu finden. Der zweithäufigste Fall ist das Farbmuster BI=2 mit Beimischungen von Lila und Braun (22 Fälle, 16,5%). Alle anderen Verteilungen kommen in geringerer Fallzahl vor. Jeweils sechs Fälle zeigen die Farbmischungen BI=2 mit Lila, BI=2 mit Lila und Gelb und BI=1 mit Gelb und Braun. Die Farbkombinationen BI=1 mit Lila und BI=1 mit Braun sind in je 5 Proben zu erkennen. Alle anderen Kombinationen kommen in weniger als 5 Fällen vor.

Es gibt keine Zweier-Farbkombination von Braun, Lila, Gelb und Dunkelblau, die nicht vorkommt. Am häufigsten findet man Braun gemeinsam mit Lila (33 Proben), dann Braun mit Gelb (15 Proben) und Lila mit Gelb (11 Proben). Da Dunkelblau an sich sehr selten vorkommt (insgesamt in 5 Proben) sind die Fallzahlen für Farbkombinationen gering.

UV-Farbindex des Knochenpulvers

Eine Auswertung kann bei 55 von 57 Proben (Proben, die für eine Gelatine- bzw. Apatitextraktion vorgesehen sind; siehe auch Anhang Punkt 8.4.1) erfolgen. Bei der Probe Knochen 5 wurde das Knochenpulver bereits für die RFA aufgebraucht (Punkt 4.6.6) und bei der Probe UV 7 war nach den Extraktionen von Gelatine und Mineralphase nicht mehr genügend Material vorhanden.

Bei der Untersuchung der Fluoreszenz des Knochenpulvers zeigt sich ein breites Farbspektrum (siehe Tab. 16). In der folgenden Abbildung (Abb. 155) ist das Auftreten der Farben in Prozentanteilen dargestellt. Der Haupteil der Proben weist eine hellblaue Fluoreszenz wie frischer Knochen auf (23,6%). Weiterhin sind sehr oft eine weißliche Fluoreszenz (wobei hier andere Farbteile mit hineinspielen können) und eine gelbräunliche Farbe (je 18,2%) zu finden. Rosa-Braun und Braun treten in je 10,9% der Fälle auf. Graue, Lila und Gelb-graue Farbgebungen unter UV-Licht zeigen sich jeweils in weniger als 10% der Proben.
Für die weitere Auswertung, besonders hinsichtlich der Zusammenhänge der Fluoreszenz mit mikrostrukturellen und ultrastrukturellen Merkmalen eines Knochens, werden alle Farben von Gelb-Grau bis Lila zu dem Indexwert 1 zusammengefasst. Hellblau (Indexwert 3) und weiß (Indexwert 2) bleiben eigenständig (siehe auch Tab. 16). 58,2% der Proben entsprechen damit dem Indexwert 1 und weisen ein von hellblau und weiß abweichendes Farbprofil auf.

In Abb. 156 ist deutlich zu erkennen, dass die Fluoreszenz des Knochenpulvers eng mit dem Blauindex (BI) korreliert (Spearman: \(r = 0.719 \)). Fluoresziert der Knochenquerschnitt hellblau (BI = 3), fluoresziert in den meisten Fällen auch das Knochenpulver hellblau (Indexwert 3). Proben mit einem BI von 1 (hellblaue Fluoreszenzanteile auf weniger als 15% des Querschnittes) zeigen als Knochenpulver immer einen Indexwert von 1 unter langwelligem UV-Licht. Das bedeutet, dass sie nie in den Farben weiß oder hellblau fluoreszieren.

Es bleibt zu klären, ob die Fluoreszenz des Knochenquerschnittes oder des Knochenpulvers enger mit den Materialeigenschaften eines Knochens verknüpft ist. Diese Frage wird später in diesem Kapitel unter Punkt 4.6.7 abgehandelt.

UV-Index für Kollagenlyophilisate

In Abb. 157 ist zu erkennen, dass fast die Hälfte der Proben (48,3%) die typische hellblaue Fluoreszenz für frischen Knochen aufweist. Gleiche Anteile (20,7%) der Fälle zeigen eine braune oder weiße Farbe unter langwelligem UV-Licht. Am seltensten sieht man bei den
Lyophilisaten eine Mischfarbe aus braun, weiß und bläulich unter UV-Licht. Die kleine Anzahl von braunen bzw. bräunlichen Proben liegt möglicherweise zum Teil auch daran, dass in solchen Fällen meist zu wenig Kollagenmaterial gewonnen werden kann, um ein Lyophilisat unter UV-Licht zu betrachten.

UV-Index für Apatitlyophilisate

Eine Auswertung kann bei 56 Apatitlyophilisaten erfolgen (siehe Anhang Punkt 8.5.3). Bei der Probe UV 7 war nach der Kollagenextraktion nicht mehr genügend Knochenpulver für eine Apatitextraktion übrig.

51,8% der Proben zeigen eine violette Fluoreszenz ihres Apatitlyophilisates, welche am ehesten der Fluoreszenzfarbe von kremiertem Knochen gleicht. 35,7% weisen eine eher helllila Farbgebung auf und nur 12,5% zeigen eine hellblau-weißliche Fluoreszenz.

Zusammenhänge der Fluoreszenzeigenschaften untereinander

Interessant ist weiterhin, dass die Fluoreszenz der Kollagenlyophilisate mit dem Blauindex (Spearman: r = 0,500), der Fluoreszenz des Knochenpulvers (Spearman: r = 0,549) und der Fluoreszenz des Apatitlyophilisates (Spearman: r = 0,531) korreliert.
4. Ergebnisse

Es ist deutlich ersichtlich (Abb. 159), dass der Hauptteil der Proben, die bei ihrem Kollagenlyophilisat eine hellblaue Fluoreszenz unter langwelligem UV-Licht aufweisen, eine violette Fluoreszenz des Mineralanteils zeigt.

4.6.2 Ergebnisse der histologischen Untersuchung des UV-Materials

Histologischer Index (HI)

Insgesamt überwiegen bei dem in dieser Arbeit verwendeten Material die Fälle mit HI=3, die in ihrem Erscheinungsbild frischem Knochen gleichen. Von 399 Fällen sind 235 (58,9%) mikrostrukturell gut erhalten (HI = 3). Erfolgt ein Vergleich des periostalen, des mittleren und des endostalen Teils (Abb. 160), weisen im mittleren Bereich der Kompakta 86 Proben (64,7%), periostal 77 Proben (57,9%) und endostal nur 72 Proben (54,1%) einen HI von 3 auf. Den niedrigsten HI von 1 (weniger als 15% der ursprünglichen Knochenstruktur sind
erhalten) zeigen in der Mitte 27 Proben (20,3%), periostal 36 Proben (27,1%) und endostal 43 Proben (32,3%).

Doppelbrechungsindex (DBI)

- **a) endostal**
- **b) mitte**
- **c) periostal**

Abb. 161: Verteilungsmuster des Doppelbrechungsindex im UV-Material

41,6% der Fälle zeigen eine Doppelbrechung wie frischer Knochen (DBI=3). Endostal ist bei 36,8% der Proben ein DBI von 3 zu finden (DBI = 1 bei 42,1%). Mittig liegt der Anteil von Fällen mit DBI=3 bei 46,6% (DBI=1 nur bei 28,6%). Periostal zeigt sich in 41,4% der Proben eine Doppelbrechung wie in frischem Knochen und in 33,8% kann keine Doppelbrechung (DBI = 1) identifiziert werden.

Mikrofissurenindex (MI)

Abb. 162: Verteilungsmuster der Mikrofissuren im UV-Material

Zwischen 76% (endostal) und 79% (mittig) der Proben weisen einen Mikrofissurenindex von 2 auf. Den Extremfall von MI = 1 (fast alle Osteone von Mikrofissuren betroffen) sind
endostal und periostal nur in ca. 4% der Fälle, mittig sogar nur bei 2,3%, zu finden (Abb. 162).

Index für Bakterienbefall

![Bakterienbefall Index](image)

Insgesamt zeigen 51,6% der Fälle so gut wie keinen Bakterienbefall (Index = 3). Endostal ist in 49,6% kaum Bakterienbefall zu finden. Bei einem Anteil von 34,6% liegt starker Bakterienbefall vor (Index = 1). In den mittleren Bereichen der Proben zeigt sich in 54,9% der Fälle kein Bakterienbefall und bei 22,6% ist starker Bakterienbefall zu beobachten. Im periostalen Bereich zeigen 50,4% der Proben keinen und 26,3% starker Bakterienbefall.

Exogenes Material in physiologischen Hohlräumen

![Exogenes Material Index](image)

In den meisten Fälle (77,2%) ist eine durchschnittliche Füllung der physiologischen Hohlräume mit exogenem Material zu beobachten (Index = 2). Endostal zeigen 82,7% eine intermediäre Ausprägung des Merkmals, mittig nur in 69,9%. Mittig sind in 24,8% fast alle physiologischen Hohlräume mit exogenem Material gefüllt (Index = 1). Periostal weisen 78,9% der Proben einen Indexwert von 2 auf (Abb. 164).
Der Hauptteil der untersuchten Fälle weist keine Verfärbung unter Strukturerhalt auf (63,7%). Endostal ist in 64,7% keine Verfärbung unter Strukturerhalt (Index = 3) zu finden, mittig in 67,7% der Fälle und periostal bei 58,6% der Proben. Eine starke Verfärbung unter Strukturerhalt (Index = 1) liegt in allen drei Bereichen des Knochens jeweils in etwa 9% der Fälle vor.

Anhand eines Vergleichs der zentralen Tendenzen der Ausprägung der mikrostrukturellen Eigenschaften in den verschiedenen Lokalisationen des Knochens (end, mit, per) nach Kruskal-Wallis ergeben sich keine signifikanten Unterschiede. Deshalb wird im Folgenden mit den Indexwerten für den Gesamtquerschnitt gearbeitet.

Zusammenhänge der histologischen Merkmale untereinander

Bezüglich des Histologischen Index ergeben sich hochsignifikante lineare Korrelationen mit dem Doppelbrechungsindex (0,78) und dem Bakterienbefall (0,92). Die Doppelbrechung korreliert ebenfalls hochsignifikant mit dem Bakterienbefall (0,77). Bezüglich des Ausmaßes der Füllung der physiologischen Hohlräume eines Knochens können keinerlei signifikante Korrelationen mit einer der anderen histologischen Variablen gefunden werden. Ebenso verhält es sich mit dem Mikrofissurenindex und der Verfärbung unter Strukturerhalt.

Histologische Typen nach Harbeck (2007)

Harbeck definiert in ihrer Dissertation (2007) aufgrund der Korrelationen zwischen HI, DBI und Bakterienbefall, welche auch in der vorliegenden Arbeit gefunden werden, drei Typen

In der vorliegenden Arbeit wird die Bezeichnung der Typen nach Harbeck (2007) beibehalten.

Typ A

51 Proben von 133 (38,3%) können dem histologischen Typ A zugeordnet werden. Nur drei dieser Proben (BP 610, BP 633, BP 639) weisen dabei sehr geringen Bakterienbefall auf. Bezüglich des Anteils an Mikrofissuren (MI) und Füllung der physiologischen Hohlräume (FPH) zeigen die meisten Proben intermediäre Werte (MI=75%, FPH=80%), wie auch schon bei Betrachtung des Gesamtkollektivs beobachtet. Nur eine Probe (BP 641) weist einen MI-Wert von 1 auf (fast alle Osteone sind von Mikrofissuren betroffen). Bei 60,8% ist keine Verfärbung unter Strukturerhalt und bei 19 Proben (37,3%) eine anteilige Verfärbung des Querschnittes zu finden.

Typ B

33 Proben von 133 (24,8%) können dem histologischen Typ B zugeordnet werden. Eine reduzierte Doppelbrechung ist bei 3 der Proben (Extr.5, Extr.15 und UV2) zu finden. Bei allen anderen ist keine Doppelbrechung erkennbar. Alle Proben weisen gemäß Definition einen starken bakteriellen Befall (Indexwert 1) auf. Die Ausnahme bilden 2 Proben (Extr.15, UV1), die einen intermediären Wert (Indexwert 2) zeigen. Aber auch bei diesen Proben ist ein relativ großer Anteil der Querschnittsfläche bereits von Bakterien befallen. Eine Auswertung des Anteils an Mikrofissuren kann bei diesem Erhaltungsgrad nicht erfolgen. In dieser Gruppe ist in 90,9% der Fälle eine intermediäre Ausprägung des Merkmals Füllung der
physiologischen Hohlräume mit exogenem Material zu beobachten. Verfärbung unter Strukturerhalt kommt in 3 Proben in sehr geringem Ausmaß vor (Extr.16, Knochen 10, UV1). Diese Verfärbungen befinden sich ausschließlich an den periostalen und endostalen Rändern, wobei es sich wahrscheinlich um Imprägnierungen mit Huminstoffen aus dem Boden handelt.

Typ C

24 Proben von 133 (18,0%) können dem histologischen Typ C zugeordnet werden. Dabei zeigen 19 Proben eine reduzierte Doppelbrechung und nur 5 Proben gar keine Doppelbrechung mehr. 7 Proben weisen einen geringen Bakterienbefall auf, 17 zeigen keinen Bakterienbefall. In etwa 80% der Fälle ist auch in dieser Gruppe eine intermediäre Ausprägung des Merkmals Füllung der physiologischen Hohlräume mit exogenem Material zu finden. Das gleiche Bild ergibt sich bei den Mikrofissuren (MI = 2 bei 87,5% der Proben). Ein interessantes Ergebnis ist allerdings, dass in dieser Gruppe nur 3 Proben ohne Verfärbung unter Strukturerhalt (UV11, BP 603, BP 605) vorkommen. Alle anderen weisen mehr oder weniger starke Verfärbungen der Querschnittsfläche auf (87,5%).

Undefinierter Typ

25 Proben des UV-Materials können keinem der drei histologischen Merkmalsstypen nach Harbeck (2007) zugeordnet werden. 80% davon weisen eine reduzierte Doppelbrechung auf und bei 20% fehlt sie ganz. Bei 92,0% der Fälle liegt ein Indexwert von 2 bezüglich des bakteriellen Befalls vor. Wie auch bei den anderen histologischen Typen ist in 80,0% der Proben eine intermediäre Ausprägung des Merkmals Füllung der physiologischen Hohlräume zu finden. Der Anteil an Mikrofissuren kann hier nicht ausgewertet werden. In 68,0% der Querschnitte ist keine Verfärbungen unter Strukturerhalt zu beobachten.

4.6.3 Ergebnisse der Gelatine-Extraktion

In 41 von 57 Fällen (71,9%) kann bei der Gelatineextraktion ein Proteinanteil aus dem Knochen extrahiert werden. Auch wenn zu diesem Zeitpunkt noch nicht feststeht, ob es sich bei der extrahierten Fraktion tatsächlich um Kollagen handelt, wird im weiteren Textfluss ausschließlich von Kollagen gesprochen.

Der Anteil von Kollagen in den Knochenproben wird näherungsweise durch den prozentualen Gewichtsanteil der extrahierten organischen Phase bestimmt. Durchschnittlich werden nur 1,4
4. Ergebnisse

mol% Kollagen aus den Proben extrahiert (SD: 1,8%). Dieser Mittelwert beinhaltet allerdings auch die Proben aus denen keine Proteinfraktion extrahiert werden konnte. Entfernt man diese aus der Statistik, erhält man einen durchschnittlichen Wert von 1,9 mol% Kollagen (SD: 1,8%). Der Median liegt hier bei 1,7%. Die höchste Ausbeute an Kollagen ist in der Probe Mensch 3 mit 8,2 mol% zu finden (Positivkontrolle bei den UV-Licht-Experimenten). Ebenfalls hoch ist der Anteil an Kollagen in der Probe Extr. 2 mit 6,5 mol%. Unter den 16 Proben, aus denen kein Kollagen extrahiert werden konnte, befinden sich alle Proben aus Minshat Abu Omar (n = 12). Es liegt nahe, dass der Kollagenverlust in diesen Fällen auf die speziellen Bedingungen des dortigen Liegemilieus zurückzuführen ist. Darauf wird in der Diskussion näher eingegangen.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Kritischer Kollagenerhalt</td>
</tr>
<tr>
<td>Guter Kollagenerhalt</td>
</tr>
<tr>
<td>Sehr guter Kollagenerhalt</td>
</tr>
</tbody>
</table>

In die Auswertung bezüglich des Kollagengehaltes fließen nun auch die Werte der Proben aus Göbekli Tepe und Gürçütepe ein (Werte erhoben von Dummler 2004). Die Gesamtanzahl der Proben beläuft sich folglich auf 72.

In 73,6% der Proben sind weniger als 2 mol% Kollagen zu finden. Dies sind Proben, bei denen der Kollagenerhalt als kritisch betrachtet werden muss. Ein guter Erhalt liegt in 23,6% der Proben vor und ein sehr guter Erhalt ist nur bei zwei Proben zu beobachten (beide vom selben Individuum D5, jeweils etwa 35,0 mol%). In der weiteren Auswertung werden diese
beiden, viel zu hoch erscheinenden Werte (gemessen von Dummler 2004) bei der Auswertung ausgenommen.

4.6.4 Ergebnisse der Aminosäureanalyse (ASA)

Eine Durchführung der ASA erfolgt lediglich bei 25 Proben (Punkt 8.4.2). Die Auswahlkriterien sind im Methodenteil beschrieben (Punkt 3.6). Die Untersuchungen werden im Stoffwechsellabor des Dr. Haunerschen Kinderklinikums der LMU München durchgeführt. Hierfür vielen Dank an Prof. Dr. Ensenauer und das Laborpersonal (namentlich Frau Annette Diem).

Im folgenden Diagramm ist die Gesamtkonzentration der mit dem Aminosäureanalysator gemessenen Aminosäuren in \(\mu \text{mol} \) pro Liter angegeben (Abb. 168). Es zeigt sich, dass die Konzentration in zwei Proben dieser Arbeit (Knochen 5, Extr 11) sehr niedrig liegt (<3000\(\mu \text{mol/l} \)). Die Referenzproben (n=3) weisen im Durchschnitt eine Konzentration von 6816\(\mu \text{mol/l} \) auf.

Für die weitere Auswertung werden die Konzentrationen der einzelnen Aminosäuren auf die Gesamtkonzentration der Aminosäuren bezogen.

Zunächst erfolgt eine quantitative Auswertung der Konzentrationen der einzelnen vorkommenden Aminosäuren gegliedert nach Abbauprodukten und nicht proteinogenen Aminosäuren (Phosphoserin, Taurin, Sarcosin, Cystathionin, \(\beta \)-Alanin, GABA, Ornithin, Cystin), Aminosäuren, die in geringer physiologischer Konzentration vorliegen (<2%: Cystin, Methionin, Isoleucin, Tyrosin, Histidin) und Aminosäuren, die in mittlerer (2-5%: Threonin, Serin, Valin, Leucin, Phenylalanin, Lysin) oder hoher physiologischer Konzentration (>5%: Asparaginsäure, Glutaminsäure, Glycin, Alanin, Arginin) auftreten.
Abbauprodukte und nicht proteinogene Aminosäuren

Im Falle der Abbauprodukte und nicht proteinogenen Aminosäuren zeigen sich bei den UV-Proben für Cystathionin, GABA und Phosphoserin keine Auffälligkeiten. Es gibt keine Ausreißer und die Werte liegen etwa im gleichen Bereich wie bei den Referenzproben oder etwas niedriger, wie bei GABA der Fall. Cystin zeigt in den untersuchten Proben ähnliche Konzentrationen wie in den Referenzproben. Lediglich Knochen 8 weist einen signifikant erhöhten Wert auf. Ornithin kommt in allen Proben in sehr geringer Konzentration (<0,1%) vor. Lediglich Anat 76/03 und Extr 5 zeigen erhöhte Werte. In den Referenzproben ist, ebenso wie in vielen der archäologischen Proben, Taurin in geringer Konzentration zu finden. In 8 der 25 untersuchten Proben liegt Taurin in Konzentrationen unter 0,07% vor. Dabei gibt es drei Ausreißer, welche die höchsten Werte zeigen: Knochen 10, Anat 76/03 und Knochen 5. Sarcosin kommt nur in vier Knochenproben vor (Knochen 12, Knochen 11, Extr 13 und Anat 76/03). Dabei weist Anat 76/03 bei Weitem den höchsten Wert (0,4%) auf. Die Konzentration für β-Alanin ist in den drei Referenzproben kleiner als 0,1%. Die UV-Proben weisen generell kein β-Alanin auf. Lediglich Knochen 5 und Extr 11 zeigen erhöhte Werte (>0,3%).
Aminosäuren geringer physiologischer Konzentration (<2%)

Abb. 170: Konzentration der Aminosäuren geringer physiologischer Konzentration in den UV-Proben im Vergleich mit den Referenzproben (n = 3)

Histidin (His), Methionin (Met) und Tyrosin (Tyr) werden mit Konzentrationen von weniger als einem Prozent in den rezenten Referenzproben detektiert. In den untersuchten archäologischen Proben liegen die Konzentrationen erwartungsgemäß meist im gleichen Bereich oder etwas niedriger. In wenigen Fällen zeigt sich eine leicht erhöhte Konzentration. Zum Beispiel Knochen 11, 247/10, UV 5 und Extr 2 im Fall von Tyrosin bzw. UV5, Knochen 8, Extr 2 und 247/10 (Werte, die über 0,5% liegen) im Fall von Methionin. Diese Werte sind in der Abb. 170 nicht als Ausreißer kenntlich gemacht. Bei Histidin sind für Extr 10, Extr 11 und Knochen 5 stark erniedrigte Konzentrationen zu beobachten. Alle archäologischen Proben weisen gegenüber den Referenzproben erhöhte Werte für die Konzentration von Isoleucin (Ile) auf. Am höchsten liegt jedoch die Konzentration der formalinfixierten rezenten Probe Anat 76/03.

Aminosäuren mittlerer physiologischer Konzentration (2-5%)

Abb. 171: Konzentration der Aminosäuren mittlerer physiologischer Konzentration (zwischen 2 und 5%) in den UV-Proben im Vergleich mit den Referenzproben (n = 3)

Leucin (Leu), Lysin (Lys), Phenylalanin (Phe), Serin (Ser) und Threonin (Thr) sind in ihrer Konzentration in den archäologischen Proben gegenüber den Referenzwerten generell etwas

Aminosäuren hoher physiologischer Konzentration (>5%)

Abb. 172: Konzentrationen der Aminosäuren hoher physiologischer Konzentration (>5%) in den UV-Proben im Vergleich mit den Referenzproben (n = 3)

Zusammenhänge der Anteile von Aminosäuren untereinander (Korrelationen nach Pearson)
Wenn im folgenden Text von Zusammenhängen oder Korrelationen zwischen Aminosäuren gesprochen wird, bezieht sich dies stets auf die Anteile der Aminosäuren.
Es besteht ein hochsignifikanter Zusammenhang zwischen Glycin und Alanin (0,68). Auch β-Alanin steht mit beiden Aminosäuren in positiver hochsignifikanter Korrelation (mit Glycin: 0,85; mit Alanin: 0,78). Valin korreliert mit Alanin (0,69) und β-Alanin (0,55), nicht jedoch mit Glycin. Viele der anderen Aminosäuren des Kollagens (Asp, Thr, Ser, Glu, Phe, His) korrelieren sowohl mit Glycin, Alanin, als auch mit β-Alanin hochsignifikant negativ. Die Korrelationen liegen zwischen -0,69 und -0,96. Aspartat, Threonin, Serin, Glutamat, Phenylalanin und Histidin korrelieren auch untereinander sehr stark (Korrelationen stets hochsignifikant und >0,75). Weiterhin sind Cystin und Methionin über eine positive Korrelation mit den eben genannten Aminosäuren verbunden (Korrelationen von 0,55-0,67) und eine negative mit Glycin (Korrelationen: Cys-Gly: -0,67; Met-Gly: -0,65). Somit kristallisieren sich zunächst zwei Gruppen von Aminosäuren heraus. Sofern Glycin, Alanin

Quotient Glycin/Glutamat

Abb. 175: Gly/Glu-Quotient der ASA-Proben. Rezente Vergleichswerte werden von HV 0,5; HV 1 und HV 2 geliefert. Der rot hinterlegte Bereich gibt Referenzwerte aus der Literatur wieder (Taylor et al. 1989).
und β-Alanin (1. Gruppe) in erhöhter Konzentration vorliegen, zeigen sich Asp, Thr, Ser, Glu, Phe, His, Cys und Met (2. Gruppe) in erniedrigter Konzentration. Tyrosin und Ornithin sind die einzigen beiden Aminosäuren, die mit keiner der anderen Aminosäure korrelieren.

4.6.5 Ergebnisse der Extraktion des mineralischen Anteils

Eine Extraktion der mineralischen Phase des Knochens (biogener Apatit) wird in 56 Fällen erfolgreich durchgeführt (Begründung siehe Punkt 3.5.2). Von der Probe UV 7 liegt nach der Gelatineextraktion nicht mehr ausreichend Knochenpulver vor.

Durchschnittlich wird ein Mineralanteil von 60,3mol% extrahiert (SD: 15,5%). Dies entspricht zumindest näherungsweise dem Wert von rezentem Knochen (etwa 70mol%). Der höchste Wert des UV-Kollektivs von 80,9mol% ist in der Probe K 91.7 SCHACHT Sk2 aus Minshat Abu Omar zu finden, die kein Kollagen mehr enthält. Der niedrigste Wert (10,75mol%) ist in der Probe K 91.5 KO Sk 3 aus dem gleichen Probenkollektiv vorhanden. Da sich die Proben des Minshat Abu Omar-Kollektivs in allen anderen untersuchten Merkmalen stark homogen verhalten, ist davon auszugehen, dass es sich bei diesem extrem niedrigen Wert um einen Fehler bei der Extraktion handelt. Möglicherweise wurde beim Spülen nach der Säurebehandlung ein Teil des Mineral-Pellets versehentlich verworfen. Der Wert wird insofern in die Auswertung nicht mit einbezogen. Ansonsten zeigen sich die niedrigsten Werte von etwa 38mol% in den Proben UV 4 (543 a Can) und Anatomie 129/03 (rezeante Probe).

Um Zusammenhänge mit den verschiedenen histologischen Typen bzw. mit den Fluoreszenzeigenschaften herstellen zu können, wird der Gewichtsprozentanteil des mineralischen Anteils dazu genutzt, den Erhalt der mineralischen Phase in 3 Klassen einzuteilen (siehe Tab. 81). Dabei geht es ausschließlich um die Menge des anorganischen Anteils. Der normale Apatitanteil von frischem Knochen liegt bei etwa 70% oder etwas darunter (siehe auch Punkt 1.2.3). Bei der Extraktion geht grundsätzlich eher Substanz verloren, weshalb alle Werte über 70mol% als hoher Mineralanteil eingestuft werden. Werte zwischen 55mol% und 70mol% werden als normaler Mineralanteil und Werte, die niedriger als 55mol% sind, als niedriger Apatitanteil klassifiziert.

<table>
<thead>
<tr>
<th>Niedriger Mineralanteil</th>
<th><55%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normaler Mineralanteil</td>
<td>55-70%</td>
</tr>
<tr>
<td>Hoher Mineralanteil</td>
<td>>70%</td>
</tr>
</tbody>
</table>

Tab. 81: Mineralanteil des Knochens klassifiziert in Prozent

In die Auswertung des Apatitgehaltes fließen auch die Werte der Proben aus Göbekli Tepe und Gürcütepe ein (erhoben von Dummler 2004). Dabei finden sich zwei Proben (vom selben Individuum D5) mit Werten des Mineralanteils von etwa 1%. Auch hier werden von
Aufbereitungs- oder Messfehler vermutet und die Werte bei der weiteren Auswertung deshalb nicht berücksichtigt. Die Anzahl der Proben beläuft sich folglich auf 68.

In 45,6% der Proben ist ein normaler Anteil der anorganischen Phase zu finden. Ein niedriger Apatitanteil liegt in 32,4% der Proben und ein hoher in 22,1% der Fälle vor.

4.6.6 Ergebnisse der Röntgenfluoreszenzanalyse

Fünf Proben wurden exemplarisch einer Röntgenfluoreszenzanalyse unterzogen. Dafür vielen Dank an das Bayerische Geologische Landesamt (BGLA) für die Durchführung der Messungen. Die genauen Werte für die einzelnen Elemente sind dem Anhang (Punkt 8.5.3) zu entnehmen.

Die Bestimmung des Ca/P-Quotienten bietet eine Möglichkeit zur Abschätzung des Erhaltungszustandes des mineralischen Anteils eines Knochens. Herrmann et al. (1990) geben an, dass der Ca/P-Quotient für rezente Knochen (Trockengewicht) zwischen 2,1 und 2,3 liegt (grau hinterlegter Bereich in Abb. 177). Der Mittelwert der fünf Referenzproben aus der Anatomie-Serie (schwarze Linie bei 2,25) liegt perfekt innerhalb des von Herrmann et al. (1990) vorgegebenen Bereiches. Auch Tütken (2003) schreibt, dass das Ca/P-Verhältnis in Säugetierknochen bei etwa 2,26 liegt. Laut Hunger & Leopold (1978) ist in frischem, fettfreiem Knochen ein Ca/P-Wert von 2,2 zu finden. Zwei der gemessenen Proben (K 91.3 KO Sk9 und K 91.5 KW Sk3) liegen mit Werten bei 2,17 und 2,18 ebenfalls im Referenzbereich. K 91.5 KO Sk3 fällt mit 2,08 an die untere Grenze des Bereichs. K 91.7 KO Sk5 und Knochen 5 hingegen weisen stark erhöhte Ca/P-Quotienten auf (>2,7).
In der folgenden Abbildung (Abb. 178) werden für alle gemessenen Proben jeweils die einzelnen Elemente bezogen auf den Calciumgehalt dargestellt und mit dem Mittelwert der Referenzproben verglichen.

![Referenzwerte (MW)](image_url)

Abb. 178: Anteile der einzelnen Elemente des Knochenminerals bezogen auf den Calciumgehalt in %; UV-Proben im Vergleich mit dem Mittelwert der 5 Referenzproben

In allen vier Proben aus Minshat Abu Omar (K 91.) zeigen sich stark erhöhte Werte für die Elemente Natrium, Chlor und Schwefel. Zink und Kalium hingegen sind erniedrigt bzw. gar nicht vorhanden.

Die Besonderheit von Knochen 5 sind seine erhöhten Eisen-, Mangan- und Kupferwerte. Auch K 91.5 KO Sk3 und K 91.7 KO Sk5 zeigen erhöhte Eisen-Werte.

Aufgrund der geringen Anzahl der Proben kann keine statistische Analyse durchgeführt werden, es muss stattdessen bei einer rein deskriptiven Auswertung bleiben.

4.6.7 Zusammenhang der untersuchten Parameter und Auswertung der histologischen Typen

Zusammenhänge der Fluoreszenz- mit den histologischen Eigenschaften

Im Folgenden wird die Fluoreszenz der UV-Proben in verschiedenen Stadien (Querschnitt, Pulver, organischer und anorganischer Anteil) mit den histologischen Eigenschaften in Beziehung gesetzt.
Aus Tab. 82 geht deutlich hervor, dass eine hochsignifikante lineare Korrelation zwischen der hellblauen Fluoreszenz des Knochenquerschnittes und den histologischen Indices (HI, DBI und Bakterienbefall) besteht. Die Korrelationen der histologischen Merkmale zur Fluoreszenz des Knochenpulvers und zur Fluoreszenz des Kollagenlyophilisates sind ebenfalls hochsignifikant, jedoch nicht so stark linear ausgeprägt.

Der Zusammenhang der Farbausprägungen der Fluoreszenz des Knochenquerschnittes unter langwelligem UV-Licht mit den histologischen Eigenschaften soll hier nur knapp erläutert werden, da es sich um subjektive Farbeindrücke handelt. Wie schon weiter oben bemerkt, sind die Farbausprägungen dunkelblau und violett jeweils nur auf wenige bzw. eine Probe beschränkt, weshalb auf sie nicht näher eingegangen wird.

In histologisch gut erhaltenem Knochen (HI = 3; DBI = 3; kein Bakterienbefall) sind in den meisten Fällen keine braunen oder lila Farbanteile unter UV-Licht zu finden. Sind braune oder lila Farbanteile in der Fluoreszenz eines Knochenquerschnitts zu erkennen, ist dies hauptsächlich in Knochenproben, die von bakterieller Dekomposition betroffen sind, der Fall. Allerdings gibt es auch viele von Bakterien befallene Knochen, die keine lila oder braune Farbausprägung ihrer Fluoreszenz aufweisen.

Gelbe Farbanteile der Fluoreszenz sind meist in Knochen zu beobachten, die eine reduzierte (DBI = 2) oder keine Doppelbrechung (DBI = 1) mehr aufweisen (siehe auch Tab. 84). Viele dieser Proben zeigen außerdem eine Verfärbung unter Strukturerhalt, was in den hier untersuchten Proben nahezu immer auf eine Sekundärmineralisation, nicht auf Imprägnierung mit Huminstoffen, zurückzuführen ist.
Zusammenhänge der Fluoreszenzeigenschaften mit den Bestandteilen eines Knochens

Dieser Vergleich soll klären, ob mit Hilfe der Fluoreszenz etwas über organische und anorganische Anteile eines Knochens ausgesagt werden kann. Dabei ist zunächst der Gehalt an Apatit und Kollagen gemeint, sowie dessen Zusammensetzung aus bestimmten Aminosäuren.

<table>
<thead>
<tr>
<th>Kollagenanteil in %</th>
<th>Kollagenanteil in Klassen</th>
<th>Apatitanteil in %</th>
<th>Apatitanteil in Klassen</th>
</tr>
</thead>
<tbody>
<tr>
<td>BI</td>
<td>0,417 0,411</td>
<td>-0,369 -0,467</td>
<td>-0,467 -0,467</td>
</tr>
<tr>
<td>Fluoreszenz des Knochenpulvers</td>
<td>0,463 0,369</td>
<td>-0,542 -0,530</td>
<td></td>
</tr>
<tr>
<td>Fluoreszenz des Kollagenlyophilisates</td>
<td>0,614 -</td>
<td>-</td>
<td>-0,512</td>
</tr>
<tr>
<td>Fluoreszenz des Apatitlyophilisates</td>
<td>0,487 0,350</td>
<td>-0,443 -0,458</td>
<td></td>
</tr>
</tbody>
</table>

Tab. 85: Zusammenhang der Fluoreszenzeigenschaften der verschiedenen Bestandteile einer Probe mit dem Anteil an Kollagen und Apatit

Bezüglich des Apatitanteils ist die Korrelation der Fluoreszenzeigenschaften der verschiedenen Bestandteile des Knochens zu dem in Klassen geteilten Apatitanteil höher als zum Apatitanteil in Prozent. Ist der Apatitanteil niedrig, ist beim Knochenquerschnitt, im Knochenpulver und im Kollagenlyophilisat meist hellblaue Fluoreszenz zu finden, im Apatitlyophilisat hingegen die charakteristische violette Fluoreszenz.

Der Zusammenhang des Kollagenanteils und des Apatitanteils mit den Farbepigenschaften der Fluoreszenz des Knochenquerschnittes ist in der folgenden Tabelle (Tab. 86) dargestellt.

<table>
<thead>
<tr>
<th>Kollagenanteil in %</th>
<th>Kollagenanteil in Klassen</th>
<th>Apatitanteil in %</th>
<th>Apatitanteil in Klassen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Braune Fluoreszenz</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Lila Fluoreszenz</td>
<td>-</td>
<td>0,594</td>
<td>0,602</td>
</tr>
<tr>
<td>Gelbe Fluoreszenz</td>
<td>-0,440</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Tab. 86: Korrelation der Farbausprägung der Fluoreszenz des Knochenquerschnittes unter langwelligem UV-Licht mit dem Kollagen- bzw. Apatitanteil eines Knochens

Zuletzt werden noch die Zusammenhänge der Fluoreszenzeigenschaften mit einzelnen Aminosäurenkonzentrationen dargestellt (Tab. 87).

Knochenquerschnittes lila Farbanteile, sind geringere Anteile von Isoleucin im Kollagen zu finden als in Proben, die keine lila Farbanteile aufweisen.

Auftreten von Merkmalskombinationen bei den verschiedenen histologischen Typen

Typ A (51 Proben)

Der histologische Typ A (definiert unter Punkt 4.6.2) zeigt in 50 Fällen (98,0%) einen BI von 3, was bedeutet, dass die Fluoreszenz fast wie in frischem Knochen ist. Lediglich eine Probe zeigt einen leicht reduzierten Wert der Fluoreszenz (BI=2). Ein Großteil der Proben (84,0%) zeigt ausschließlich die hellblaue Fluoreszenz mit keiner weiteren Mischfarbe. Bei vier Knochen ist eine Beimischung von Braun, bei fünf von Lila, bei zwei von Gelb und bei drei eine Beimischung von Dunkelblau in der Fluoreszenz zu erkennen.

Nach der Gelatineextraktion liegt der Gehalt an Kollagen in 10 Proben (76,9%) bei mehr als 2mol% (guter Kollagenerhalt). Der Durchschnittswert beträgt 4,4mol% (SD: 1,8%). Der minimale Wert ist 2,5%, der maximale 8,2% (Probe Mensch 3, Positivkontrolle bei den UV-Versuchen). Nur drei Proben weisen einen Kollagengehalt unter 2mol% auf (kritischer Kollagenerhalt). Dabei handelt es sich um die drei rezenten Proben aus dem Anatomie-Kollektiv.

Eine Kollagenausbeute nach der Gelatineextraktion liegt nur in 12 Proben vor (fehlende Probe: Anatomie 127/03). In 10 von 12 Fällen (83,3%) zeigt sich bei der Betrachtung der Kollagenlyophilisate unter langwelligem UV-Licht eine hellblaue Fluoreszenz (ähnlich wie bei einem frischen Knochenquerschnitt, Indexwert 4). In zwei Fällen findet man eine bräunliche Farbe der Lyophilisate vor (Indexwert 1). Eine davon ist die Probe Anatomie 129/03, die andere ist Knochen 5.

Bei zehn Proben wurde eine Aminosäureanalyse durchgeführt.
Abb. 179: Ergebnisse der Aminosäureanalyse der Typ-A-Proben im Vergleich mit dem Mittelwert der drei Referenzproben

Der Apatitanteil liegt bei allen 13 Proben unter 55mol%, was in dieser Arbeit als niedriger Mineralanteil klassifiziert wird (MW: 45,5%, SD: 5,7%). Bei den 10 Proben mit einem hohen Kollagengehalt ist der Mittelwert des anorganischen Anteils 47,0% (SD: 5,6%), bei den rezenten Anatomie-Proben liegt der durchschnittliche Wert hingegen nur bei 40,5% (SD: 2,6%). In 12 von 13 Fällen zeigt sich bei Bestrahlung der Apatityophilisate mit langwelligem UV-Licht eine ausgeprägte violette Fluoreszenz (wie in kremiertem Knochen, Indexwert 3). Nur eine Probe weist eine eher hellblaue Fluoreszenz auf (Anatomie 129/03).

Eine einzige Probe des histologischen Typs A wurde einer Röntgenfluoreszenzanalyse unterzogen. Dabei ergaben sich als Besonderheiten erhöhte Eisen-, Mangan- und Kupferwerte. Außerdem zeigte sich ein erhöhter Wert für den Ca/P-Quotienten, was generell als ein Hinweis auf eine veränderte Mineralphase gilt (siehe z. B. Herrmann et al. 1990).
Typ B (33 Proben)

Die Untersuchung der Fluoreszenz des Knochenpulvers kann in 29 Fällen erfolgen (von UV 7 ist zu wenig Material vorhanden). Die Farbausprägungen sind dabei in dieser Gruppe sehr vielfältig. Alle Farben kommen jeweils in Häufigkeiten unter 10 vor. Lila (L) kommt als einzige Farbe überhaupt nicht vor. Eine hellblaue Fluoreszenz ist nur in zwei Fällen zu beobachten (Knochen 11 und UV 6). Weißliche Fluoreszenz (Indexwert 2) tritt in sechs Fällen auf und in 21 Proben (72,4%) sind andere Farben zu finden (Indexwert 1).

Werte für den Kollagenanteil liegen in 30 Fällen vor, Werte für den Mineralanteil in 29 Fällen.

In 24 Proben (80%) ist ein kritischer Kollagenerhalt von unter 2% nachzuweisen. Ein guter Kollagenerhalt zwischen 2 und 10% zeigt sich nur in sechs Typ-B-Proben (MW: 2,3%, SD: 0,16%). Der maximale Wert bei den gut erhaltenen Proben liegt bei 2,6%. Die Werte des Kollagenanteils befinden sich beim histologischen Typ B also auch bei gutem Kollagenerhalt (Klasse 2) eher an der Untergrenze zu den kritischen Werten. Bei der Untersuchung der Kollagenlyophilisate dieser Gruppe (16 Proben von 30 auswertbar) unter UV-Licht ist bei drei Proben (Extr.5, Knochen 9, Knochen 11) eine hellblaue Fluoreszenz zu erkennen (Indexwert 4). In sechs Fällen ist die Fluoreszenz weißlich (Indexwert 3) und in den restlichen Proben zeigen sich die Farbmuster bräunlich/bläulich/weiß (Indexwert 2) bzw. braun (Indexwert 1). Bei 14 der Proben vom histologischen Typ B kann eine Aminosäureanalyse durchgeführt werden.
4. Ergebnisse

Abb. 180: Ergebnisse der Aminosäureanalyse für die Typ-B-Proben im Vergleich mit dem Mittelwert der drei Referenzproben

Bei der Betrachtung des mineralischen Gehalts der Proben sind sowohl Werte unter 55% (allerdings nur 2 Proben), Werte im Normalbereich (zwischen 55% und 70%, 18 Proben), als auch Werte über 70% (9 Proben) zu finden. Der durchschnittliche anorganische Anteil in den 29 untersuchten Proben ist 66,6% (SD: 6,9%). Der minimal beobachtete Wert liegt bei 50,0%, der maximale bei 77,8%. Die Auswertung der Fluoreszenz des Apatitanteils kann in dieser Gruppe an 29 Proben vorgenommen werden. Jeweils etwa die Hälfte der Lyophilisate weisen eine helllila (Indexwert 2) bzw. eine violette (Indexwert 3) Fluoreszenz auf. Hellblaue Fluoreszenz fehlt in den Apatitlyophilisaten der Typ-B-Proben. Keine Probe vom histologischen Typ B wurde einer Röntgenfluoreszenzanalyse unterzogen.

Typ C (24 Proben)

Im histologischen Typ C ist bei sieben Proben ein BI von 1 (kleine Flächen blauer Fluoreszenz), bei neun Proben ein BI von 2 und bei acht Proben ein BI von 3 (hellblaue Fluoreszenz ähnlich wie in frischem Knochen) zu beobachten. Bei sechs Proben sind Braunanteile, in neun Proben Lilaanteile und in fünf Proben Dunkelblauanteile in der Fluoreszenz des Knochenquerschnittes zu finden. Bemerkenswert ist die hohe Anzahl von Proben mit Gelbanteilen in der Fluoreszenz (n = 14, entspricht 58,3%). Bei Typ A war dies in
3,9% und bei Typ B in 24,2% der Fall. Fünf Proben zeigen eine ausschließlich hellblaue Fluoreszenz ohne Beimischung anderer Farbanteile.

Eine Auswertung der Farbe des Knochenpulvers unter UV-Licht kann nur in 11 Fällen erfolgen. Dabei zeigt sich in keiner Probe eine hellblaue Fluoreszenz (Indexwert 1). In drei Fällen (27,3%) wird eine weiße Fluoreszenz (Indexwert 2) beobachtet. Weiterhin kommen gelb-braune, gelb-graue, rosa-braune, braune und lilafarbenes Aussehen vor. Das heißt der Anteil des Indexwertes 3 beträgt 72,7% in dieser Gruppe.

In 19 Fällen liegt ein Wert für den Anteil an Kollagen vor und in 18 Fällen ein Wert für den anorganischen Anteil.

Der Anteil an Kollagen befindet sich bei allen 19 untersuchten Proben unter der kritischen Grenze von 2%. Im Mittel können nur 0,18% Kollagen aus den Knochen extrahiert werden (SD: 0,38%). Der maximale Wert liegt bei 1,66% (Probe D5) und wurde von Dummler (2004) im Zuge ihrer Diplomarbeit erhoben. Aus 11 Proben (alle aus Minshat Abu Omar) kann keine Gelatinephase extrahiert werden. Von den Typ-C-Proben liegen keine Kollagenlyophilisate vor, da bei keiner dieser Proben die Gelatineextraktion erfolgreich war. Eine Auswertung der Fluoreszenzfarbe der Lyophilisate unter UV-Licht kann also nicht erfolgen.

Und ebenso muss eine Auswertung der Aminosäureanalyse in den Proben des histologischen Typs C unterbleiben.

In vier Knochen ist ein Mineralanteil von unter 55% zu finden. Acht Proben weisen einen normalen Apatitanteil zwischen 55% und 70% auf und sechs Proben zeigen einen erhöhten Mineralanteil von über 70%. Im Durchschnitt liegt ein anorganischer Anteil von 63,3% (SD: 12,5%) vor. Der minimale Wert ist in der Probe D5 mit 36,6% zu finden (die Probe mit dem höchsten Kollagenanteil unter den Proben des histologischen Typ C), der maximale Wert von 80,9% zeigt sich bei der Probe K 91.7 SCHACHT Sk2. Das ist zugleich der höchste Wert des gesamten UV-Kollektivs. Der durchschnittliche anorganische Anteil der Typ C-Proben liegt etwas unter dem Anteil der Typ B-Proben, aber deutlich über dem der Typ A-Proben. Wie schon bei Knochenpulver, eignen sich auch im Fall der Apatitlyophilisate 11 Proben für eine Beurteilung unter UV-Licht. Dabei ist bei sechs Proben (54,5%) eine hellblaue Fluoreszenz (Indexwert 1), bei drei Proben eine helllila (Indexwert 2) und nur bei zwei Proben eine violette Fluoreszenz (Indexwert 3, 18,2%) zu finden.

Vier der fünf Proben, die einer Röntgenfluoreszenzanalyse unterzogen werden, entstammen dem histologischen Typ C. In einer Probe zeigt sich ein stark erhöhter Ca/P-Quotient (2,7), in den anderen Proben entweder leicht erniedrigte oder normale Werte. Auffällig sind in allen vier Proben die erhöhten Natrium-, Schwefel- und Chlorgehalte, die sehr wahrscheinlich auf die Lagerungsbedingungen zurückzuführen sind (siehe auch Diskussion Punkt 5.6.2).

Undefinierter Typ (25 Proben)

Bezüglich der hellblauen Fluoreszenz ist in dieser Gruppe bei sechs Proben ein BI von 1, bei 15 Proben ein BI von 2 (60,0%) und bei 4 Proben einen BI von 3 (hellblaue Fluoreszenz wie
in frischem Knochen) zu finden. In keiner Probe kann ein Dunkelblauanteil festgestellt werden und in nur vier Fällen wird Gelb in der Fluoreszenz beobachtet. Auffällig ist, dass ein hoher Prozentsatz der Knochenproben in dieser Gruppe Braun- (84,0%) bzw. Lilaanteile (72,0%) aufweisen, am ehesten vergleichbar mit Typ-B-Proben. Die häufigste Merkmalskombination bei den Fluoreszenzfarben ist BI=2 mit Braun und Lila (12 Fälle). Die Auswertung von Knochenpulver unter UV-Licht kann nur in drei Fällen erfolgen. Eine Probe zeigt eine gelb-braune Farbe, eine ist braun und die dritte Probe ist lila. Alle untersuchten Proben weisen also einen Indexwert von 3 auf.

Ergebnisse für den Anteil an Kollagen und Apatit liegen in 8 von 25 Fällen vor. In sieben der untersuchten Proben ist ein kritischer Kollagenerhalt von unter 2% zu finden, nur in einer Probe liegt der Anteil an Kollagen über dem kritischen Wert (3,0% bei Extr 12). Durchschnittlich werden 0,64% Kollagen extrahiert (SD: 0,99%). Das Minimum liegt bei 0% und ist in der einzigen Probe aus Minshat Abu Omar zu finden, die nicht dem histologischen Typ C zugeordnet werden konnte. Das Kollagenlyophilisat dieser Gruppe (Extr.12), das unter UV-Licht betrachtet wurde, zeigt eine hellblaue Fluoreszenz (Indexwert 4).

Abb. 181: Ergebnisse der Aminosäureanalyse von Extr 12 im Vergleich mit dem Mittelwert der drei Referenzproben

Die Probe Extr 12 weist für Aspartat, Threonin, Serin und Glutamat etwas erniedrigte Werte gegenüber der Referenz auf. Glycin und Arginin sind hingegen leicht erhöht. Im Wesentlichen entspricht das Aminosäureprofil jedoch noch Kollagen Typ I.

können bezüglich der Farbe ihres Apatityophilisates unter UV-Licht ausgewertet werden. Zwei Proben zeigen eine helllila Fluoreszenz (Indexwert 2) und 1 Probe eine violette Fluoreszenz (Indexwert 3). Für keine der Proben des histologisch undefinierten Typs wurde eine RFA durchgeführt.

Lassen sich die Unterschiede der vier histologischen Typen statistisch bestätigen?

<table>
<thead>
<tr>
<th>Merkmal</th>
<th>Signifikanz im Kruskal-Wallis-Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exogenes Material in physiologischen Hohlräumen</td>
<td>0,701</td>
</tr>
<tr>
<td>BI</td>
<td>0,000</td>
</tr>
<tr>
<td>Braune Fluoreszenz</td>
<td>0,000</td>
</tr>
<tr>
<td>Lila Fluoreszenz</td>
<td>0,000</td>
</tr>
<tr>
<td>Gelbe Fluoreszenz</td>
<td>0,000</td>
</tr>
<tr>
<td>Fluoreszenz des Knochenpulvers</td>
<td>0,000</td>
</tr>
<tr>
<td>Fluoreszenz des Kollagenlyophilisates</td>
<td>0,019</td>
</tr>
<tr>
<td>Fluoreszenz des Apatityophilisates</td>
<td>0,001</td>
</tr>
<tr>
<td>Kollaganteil in %</td>
<td>0,000</td>
</tr>
<tr>
<td>Kollaganteil in Bereiche geteilt</td>
<td>0,000</td>
</tr>
<tr>
<td>Apatitanteil in %</td>
<td>0,000</td>
</tr>
<tr>
<td>Apatitanteil in Bereiche geteilt</td>
<td>0,000</td>
</tr>
<tr>
<td>Prozent Taurin</td>
<td>0,029</td>
</tr>
<tr>
<td>Prozent Isoleucin</td>
<td>0,009</td>
</tr>
<tr>
<td>Prozent Arginin</td>
<td>0,006</td>
</tr>
</tbody>
</table>

Von den Aminosäuren sind in Tab. 88 nur diejenigen aufgeführt, die einen signifikanten Unterschied zwischen mindestens zwei der vier histologischen Typen zeigen. Die Füllung der physiologischen Hohlräume ist außer einigen Aminosäuren das einzige Merkmal, das keine signifikanten Unterschiede zwischen allen vier histologischen Typen aufweist. Da durch den Kruskal-Wallis-Test nicht näher spezifiziert werden kann, welche der histologischen Typen sich bezüglich jeden Merkmals im Einzelnen unterscheiden, wird ein weiterer statistischer Test (Mann-Whitney-Test) mit jeweils nur zwei Typen durchgeführt. Die Ergebnisse des Mann-Whitney-Tests sind der Tabelle Tab. 89 zu entnehmen.
4. Ergebnisse

<table>
<thead>
<tr>
<th>Merkmal</th>
<th>A vs B</th>
<th>A vs C</th>
<th>A vs UD</th>
<th>B vs C</th>
<th>B vs UD</th>
<th>C vs UD</th>
</tr>
</thead>
<tbody>
<tr>
<td>BI</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,086</td>
<td>0,181</td>
<td>0,565</td>
</tr>
<tr>
<td>Braune Fluoreszenz</td>
<td>0,000</td>
<td>0,043</td>
<td>0,000</td>
<td>0,000</td>
<td>0,312</td>
<td>0,000</td>
</tr>
<tr>
<td>Lila Fluoreszenz</td>
<td>0,000</td>
<td>0,004</td>
<td>0,000</td>
<td>0,017</td>
<td>0,850</td>
<td>0,016</td>
</tr>
<tr>
<td>Gelbe Fluoreszenz</td>
<td>0,005</td>
<td>0,000</td>
<td>0,024</td>
<td>0,010</td>
<td>0,704</td>
<td>0,006</td>
</tr>
<tr>
<td>Fluoreszenz des Knochenpulvers</td>
<td>0,000</td>
<td>0,000</td>
<td>0,001</td>
<td>0,892</td>
<td>0,305</td>
<td>0,325</td>
</tr>
<tr>
<td>Fluoreszenz des Kollagenlyophilisates</td>
<td>0,009</td>
<td>-</td>
<td>0,670</td>
<td>-</td>
<td>0,168</td>
<td>-</td>
</tr>
<tr>
<td>Fluoreszenz des Apatityophilisates</td>
<td>0,015</td>
<td>0,001</td>
<td>0,038</td>
<td>0,002</td>
<td>0,627</td>
<td>0,156</td>
</tr>
<tr>
<td>Kollagenanteil in %</td>
<td>0,000</td>
<td>0,000</td>
<td>0,001</td>
<td>0,000</td>
<td>0,266</td>
<td>0,042</td>
</tr>
<tr>
<td>Kollagenanteil in Bereiche geteilt</td>
<td>0,000</td>
<td>0,000</td>
<td>0,005</td>
<td>0,039</td>
<td>0,631</td>
<td>0,123</td>
</tr>
<tr>
<td>Apatitanteil in %</td>
<td>0,000</td>
<td>0,000</td>
<td>0,277</td>
<td>0,569</td>
<td>0,002</td>
<td>0,024</td>
</tr>
<tr>
<td>Apatitanteil in Bereiche geteilt</td>
<td>0,000</td>
<td>0,000</td>
<td>0,001</td>
<td>0,590</td>
<td>0,013</td>
<td>0,116</td>
</tr>
<tr>
<td>Prozent Taurin</td>
<td>0,003</td>
<td>-</td>
<td>0,257</td>
<td>-</td>
<td>0,789</td>
<td>-</td>
</tr>
<tr>
<td>Prozent Isoleucin</td>
<td>0,010</td>
<td>-</td>
<td>0,206</td>
<td>-</td>
<td>1,000</td>
<td>-</td>
</tr>
<tr>
<td>Prozent Arginin</td>
<td>0,004</td>
<td>-</td>
<td>0,206</td>
<td>-</td>
<td>0,105</td>
<td>-</td>
</tr>
</tbody>
</table>

Tab. 89: Ergebnisse des Mann-Whitney-Tests: Signifikante Unterschiede der 4 histologischen Typen sind fett gedruckt. A = histologischer Typ A; B = histologischer Typ B; C = histologischer Typ C; UD = undefinierter histologischer Typ; vs = versus

5 Diskussion

5.1 Diskussion der histologischen Erhaltung der Knochenmikrostruktur im Basel-Kollektiv

Endostal (14,6%) sind deutlich mehr Knochenstücke als peristal (3,9%) oder mittig (1,9%) so schlecht erhalten, dass keine histologische Auswertung mehr möglich ist. Das liegt wahrscheinlich an der größeren Oberfläche des endostalen Bereiches, was durch die höhere Porosität dieses Teils verursacht wird (siehe Ergebnisteil Punkt 4.2.15). So können Mikroorganismen, die großteils für die Zerstörung der Knochenmikrostruktur verantwortlich sind (siehe Einleitung Punkt 1.6), leichter eindringen. Außerdem steht für die abbauenden Prozesse eine größere Angriffsfläche zur Verfügung. Es ist bekannt, dass Mikroorganismen hauptsächlich von den endostalen und peristalen Rändern in den kompakten Knochen eindringen und die Degradation von dort zur Mitte der Kompakta fortschreitet (z. B. Harbeck 2007). Im Basel-Kollektiv zeigt sich dies sehr deutlich, da in keinem Kompaktastück ausschließlich der mittlere Teil von Dekomposition betroffen ist. Auch Aiello & Molleson (1993) stellen fest, dass diagenetische Faktoren die Peripherie eines Knochens stets mehr beeinflussen als die mittleren Bereiche.

5.2 Diskussion der erhobenen Parameter und ihre Ausprägung in den verschiedenen Kollektiven

5.2.1 Kompaktadicke

Im Basel-, wie auch im Anatomie-Kollektiv wird eine Abnahme der Kompaktadicke mit zunehmendem Individualalter verzeichnet (Korrelationen nach Pearson: Basel: -0,303; Anatomie: -0,444). Die Korrelation zum Alter im Anatomie-Kollektiv ist möglicherweise nur eine Scheinkorrelation. Denn in den einzelnen Geschlechtern findet man keine signifikanten Zusammenhänge mit dem Individualalter. Die Korrelation kann darauf zurückzuführen sein, dass die Frauen im Anatomie-Kollektiv im Durchschnitt älter sind als die Männer, aber

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>20-29</td>
<td>6.06 +/-1,0</td>
<td>-</td>
<td>-</td>
<td></td>
<td>5.27 +/-0.8</td>
<td>-</td>
</tr>
<tr>
<td>30-39</td>
<td>6.38 +/-1,0</td>
<td>-</td>
<td>-</td>
<td></td>
<td>4.94 +/-0.7</td>
<td>-</td>
</tr>
<tr>
<td>40-49</td>
<td>6.29 +/-0.6</td>
<td>-</td>
<td>-</td>
<td></td>
<td>4.76 +/-0.8</td>
<td>-</td>
</tr>
<tr>
<td>50-59</td>
<td>5.92 +/-0.8</td>
<td>5.53 +/-1.17</td>
<td>4.84 +/-1.55</td>
<td>5.19</td>
<td>4.62 +/-0.9</td>
<td>5.83 +/-1.6</td>
</tr>
<tr>
<td>60-69</td>
<td>5.46 +/-0.4</td>
<td>5.09 +/-1.15</td>
<td>3.35 +/-0.69</td>
<td>4.22</td>
<td>4.23 +/-0.8</td>
<td>5.90 +/-1.1</td>
</tr>
<tr>
<td>70-79</td>
<td>5.83 +/-0.6</td>
<td>5.01 +/-2.97</td>
<td>3.13 +/-0.77</td>
<td>4.07</td>
<td>4.36 +/-1.4</td>
<td>4.10 +/-1.1</td>
</tr>
<tr>
<td>80-90</td>
<td>5.59 +/-0.4</td>
<td>4.52 +/-0.97</td>
<td>3.39 +/-0.94</td>
<td>3.96</td>
<td>4.44 +/-1.6</td>
<td>3.88 +/-1.5</td>
</tr>
<tr>
<td>90-100</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>4.00 +/-0.0</td>
<td>4.08 +/-0.8</td>
</tr>
</tbody>
</table>

Tab. 90: Kompaktadicke des Basel-Kollektivs und des Anatomic-Kollektivs im Vergleich mit Literaturwerten

Aus der Tab. 90 geht eindeutig hervor, dass die Kompaktadicke im Basel-Kollektiv insgesamt, aber vor allem in den jüngeren Altersklassen, niedriger liegt als bei Jowsey (1966). Der Hauptgrund dafür ist wahrscheinlich in der Dekomposition der Kompakta durch die

5. Diskussion

5.2.2 Nicht umgebauter Knochen

Hier werden die Merkmale von nicht umgebautem Knochen diskutiert. Das schließt einerseits den Anteil an Generallamellen in Prozent ein und andererseits die Anzahl seiner Blutgefäße (Nicht-Havers’sche Systeme).

Mögliche Fehlerquellen bei der Erhebung der Daten

Bezüglich der Generallamellen besteht lediglich die Gefahr, dass große Osteonfragmente, deren Lamellen zufällig parallel zu eventuell vorhandenen Generallamellen verlaufen, versehentlich als Reste von Generallamellen identifiziert werden (Maat et al. 2006). Generallamellen können häufig auch bei teilweise dekomponiertem Knochen noch relativ gut identifiziert werden.
Nicht-Havers’sche Systeme (NHav)

Im Anatomie-Kollektiv, in dem alle Individuen älter als 50 Jahre sind, ist die Diskussion dieses Merkmals in Zusammenhang mit dem Individualalter nicht zielführend. Im periostalen Bereich liegt die durchschnittliche Anzahl der Nicht-Havers’schen Systeme immer unter 1,2. Laut Kerley (1965) sind in Individuen ab 55 Jahren keine Nicht-Havers’schen Systeme mehr zu finden. In den Individuen des Basel-Kollektivs (periostaler Bereich) ergibt sich ein linearer Korrelationskoeffizient (r) zum Individualalter von -0,48 im Gesamtkollektiv. Ericksen (1991) gibt in ihrem Kollektiv ein Bestimmtheitsmaß (r²) von -0,66 an (ausführliche Beschreibung des Kollektivs unter Punkt 5.5.1), was einen wesentlich engeren Bezug zum Alter darstellt. Im periostalen Bereich des Basel-Kollektivs ist von der Altersklasse der 60jährigen an nur noch eine geringe Anzahl (< 2) primärer Osteone pro mm² zu finden, wie auch bei dem von Kerley (1965) untersuchten Material und im Anatomie-Kollektiv.

Beim Vergleich der über 50jährigen Individuen des Basel-Kollektivs mit denen des Anatomie-Kollektivs zeigen sich im periostalen Bereich der Kompakta des Anatomie-Kollektivs signifikant geringere Zahlen von Nicht-Havers’schen Systemen (Anat: 0,32) als im
Basel-Kollektiv (1,7). Die Ursache dafür liegt wahrscheinlich darin, dass die 46 Individuen des Basel-Kollektivs, die über 50 Jahre alt sind, im Mittel trotzdem noch wesentlich jünger sind (durchschnittliches Alter 67,2 Jahre), als die Personen des Anatomie-Kollektivs (durchschnittliches Alter 79,6 Jahre). Das durchschnittliche Alter der über 50jährigen aus dem Basel-Kollektiv ist signifikant geringer als das der Anatomie-Personen (ANOVA: p = 0,000).

Generallamellen (Gen)

Bezüglich des Anteils an Generallamellen werden in keinem der beiden Kollektive signifikante Geschlechtsunterschiede beobachtet.

Im Basel-Kollektiv nimmt der Generallamellenanteil von periostal nach endostal hin signifikant ab. Wie schon bei den Nicht-Havers’schen Systemen diskutiert, ist dies ein Hinweis darauf, dass sich der Knochenumbau vom mittleren Bereich schneller in Richtung
des Endosts ausdehnt, als in Richtung des Periosts. Im Anatomie-Kollektiv zeigt sich lediglich ein signifikanter Unterschied zwischen dem endostalen und dem periostalen Teil der Kompakta. Die p-Werte liegen jedoch alle unter 0,1, was bedeutet, dass auch in diesem Kollektiv der Anteil an Generallamellen von periostal nach endostal hin abnimmt.

Fazit

5.2.3 Osteonaler Knochen

Hier werden alle Variablen diskutiert, die mit intaktem osteonalem Knochen zu tun haben. Dazu zählen die Anzahl an Typ-I-Osteonen, Typ-II-Osteonen, intakten Osteonen, Havers’schen Kanäl en und Volkmann’schen Kanälen und weiterhin der Anteil an osteonalem Knochen. Dabei werden so viele Variablen wie möglich zusammengefasst und gemeinsam diskutiert.
Mögliche Fehlerquellen bei der Erhebung der Daten

Typ-I-Osteone (Ost) und intakte Osteone (Ostint)

In der Einleitung wird in den Kapiteln 1.4 und 1.5 mehrmals auf den Wert der Osteone für die Altersschätzung verwiesen. Dabei beziehen sich die meisten Autoren auf die Anzahl der intakten Osteone und nicht ausschließlich auf Typ-I-Osteone. Die Anzahl der Havers’schen Systeme entspricht im Wesentlichen der Anzahl der intakten Osteone und wird deshalb hier nicht separat diskutiert.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>20-29</td>
<td>5,46 +/- 3,9</td>
<td>4,96 +/- 4,2</td>
<td>6,67 +/- 3,9</td>
<td>3,79 +/- 3,2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>30-39</td>
<td>7,34 +/- 2,8</td>
<td>7,35 +/- 4,1</td>
<td>9,96 +/- 5,9</td>
<td>7,62 +/- 3,5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>40-49</td>
<td>11,39 +/- 3,0</td>
<td>11,78 +/- 4,0</td>
<td>9,38 +/- 4,2</td>
<td>11,97 +/- 4,5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>50-59</td>
<td>13,16 +/- 3,0</td>
<td>12,14 +/- 3,2</td>
<td>12,94 +/- 7,9</td>
<td>12,19 +/- 3,6</td>
<td>-</td>
<td>11,33 +/- 1,5</td>
</tr>
<tr>
<td>60-69</td>
<td>13,71 +/- 3,9</td>
<td>12,30 +/- 2,9</td>
<td>12,30 +/- 0,7</td>
<td>13,49 +/- 3,4</td>
<td>12,67</td>
<td>17,50 +/- 3,8</td>
</tr>
<tr>
<td>70-79</td>
<td>12,15 +/- 2,9</td>
<td>14,19 +/- 2,9</td>
<td>14,16 +/- 2,4</td>
<td>14,17 +/- 3,1</td>
<td>21,11 +/- 8,0</td>
<td>15,00 +/- 9,4</td>
</tr>
<tr>
<td>80-89</td>
<td>12,34 +/- 2,9</td>
<td>14,33 +/- 3,8</td>
<td>13,13 +/- 0,9</td>
<td>14,57 +/- 3,3</td>
<td>13,20 +/- 5,8</td>
<td>15,42 +/- 7,7</td>
</tr>
<tr>
<td>90-99</td>
<td>12,45 +/- 2,8</td>
<td>15,69 +/- 1,8</td>
<td>10,43</td>
<td>-</td>
<td>16,50 +/- 3,0</td>
<td>12,67 +/- 3,3</td>
</tr>
</tbody>
</table>

Tab. 91: Vergleich der Anzahl der Typ-I-Osteone pro mm² im periostalen Bereich nach Ericksen (1991) mit dem Basel-Kollektiv und dem Anatomie-Kollektiv

5. Diskussion

Im Basel-Kollektiv differieren der mittige und der periostale Bereich kaum in der Anzahl der Typ-I- bzw. der intakten Osteone. Lediglich der endostale Teil weist signifikant geringere
Werte gegenüber den anderen beiden Lokalisationen auf. Im Anatomie-Kollektiv nehmen die
Werte von periosstal nach endostal hin signifikant ab. Diese Tatsache ist in beiden Kollektiven
wahrscheinlich auf den von endostal fortschreitenden Abbau der Kompakta zurückzuführen.
In beiden Kollektiven nimmt der Anteil an resorbiertem Knochen von periosstal nach endostal
signifikant zu, wobei der Knochenabbau im Anatomie-Kollektiv bereits weiter fortgeschritten
is als im Basel-Kollektiv.

Die alten Individuen des Basel-Kollektivs (über 50 Jahre) unterscheiden sich weder in der
Anzahl der Typ-I-Osteone noch in der Anzahl der intakten Osteone signifikant von den
Individuen des Anatomie-Kollektivs. Lediglich im endostalen Bereich der weiblichen
Individuen zeigt sich im Anatomie-Kollektiv ein signifikant höherer Wert an Typ-I-Osteonen
und intakten Osteonen, als im Basel-Kollektiv. Eine Möglichkeit wäre, dass die weiblichen
Individuen des Basel-Kollektivs in ihrem endostalen Bereich stärkeren Knochenabbau
aufweisen, als die „Anatomie-Frauen“ und deshalb weniger Osteone zeigen. Bei
osteoporotischen Individuen kann die Osteondichte aufgrund der hohen endostalen
Porosität und der stark ausgedünnten Cortices reduziert sein (Walker et al. 1994). Werden
doch die Merkmale der Resorptionslakunen im endostalen Bereich der weiblichen
Individuen beider Kollektive verglichen, zeigen sich keine signifikanten Unterschiede. Die
Osteone der „Anatomie-Frauen“ sind im endostalen Bereich auch nicht signifikant kleiner, als
bei den Basel-Frauen, so dass die höhere Anzahl dadurch auch nicht erklärt werden kann.
Möglich wäre aber, dass eine Kombination von etwas größeren Resorptionslakunen und
gleichzeitig größeren Osteonen im endostalen Bereich der Basel-Frauen zur der geringeren
Anzahl von Osteonen führt.

Anzahl der Typ-II-Osteone (OstII)

Insgesamt kommen im gesamten untersuchten Bereich des anterioren Femurs, sowohl im
Basel- als auch im Anatomie-Kollektiv sehr wenig Typ-II-Osteone vor. Bezogen auf den
gesamten Femurquerschnitt ist es im Mittel weniger als ein Typ-II-Osteon pro mm². Simmons
(1985) beschreibt Typ-II-Osteone als sehr selten in kompaktem Knochen. Sie würden
normalerweise nur etwa 1-3% der gesamten Osteonzahl ausmachen.

Typ-II-Osteone zeigen nur im periosstalen Bereich der Femurkompakta im Basel-Kollektiv
eine hochsignifikante Abhängigkeit zum Individualalter ($r = 0,65$). Im Anatomie-Kollektiv
kann kein Zusammenhang festgestellt werden. Ericksen (1991) beobachtete bei ihrem
Kollektiv im periosstalen Bereich eine Korrelation von $r^2 = 0,55$ zum Alter. Sowohl im Basel-
Kollektiv (m: $r = 0,57$; w: $r = 0,79$), als auch im Kollektiv von Ericksen (m: $r^2 = 0,52$; w: $r^2 =
0,59$) ist der Zusammenhang zum Alter bei den weiblichen Individuen etwas ausgeprägter als
bei den männlichen Individuen. Watanabe et al. (1998) untersuchten in ihrer Studie nur den
mittleren Teil der anterioren Femurkompakta von 72 japanischen rezenten Individuen und
fanden in diesem Bereich einen signifikanten Zusammenhang der Typ-II-Osteone zum
Individualalter von 0,74. Yoshino et al. (1994) studierten ebenfalls eine Serie von rezenten

schon sehr stark forgeschritten, so dass neben dem endostalen Teil auch dieser Bereich von großen Resorptionsläkunen betroffen ist. Zum Vergleich: Im mittleren Bereich des Anatomi-Kollektivs zeigt sich ein durchschnittlicher Wert von 19% an resorbiertem Knochen, im Basel-Kollektiv sind es lediglich 4%.

Osteonengröße (OstA, OstU, OstD)

Tab. 92: Vergleich der Größe der Osteone des Basel- und des Anatomie-Kollektivs mit Literaturwerten

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>OstA in mm²</td>
<td>0.02-0.07</td>
<td>0.0378 +/- 0.0129</td>
<td>0.0375 +/- 0.0101</td>
<td>0.0261 +/- 0.00748</td>
</tr>
<tr>
<td>OstU in mm</td>
<td>-</td>
<td>0.551 +/- 0.102</td>
<td>0.677 +/- 0.0902</td>
<td>0.565 +/- 0.0803</td>
</tr>
<tr>
<td>OstD in µm</td>
<td>150-300</td>
<td>max. 264 +/- 61</td>
<td>216 +/- 29</td>
<td>180 +/- 26</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Alter</th>
<th>nach Jowsey 1966</th>
<th>Basel-Kollektiv, Daten mittig</th>
<th>Anatomie-Kollektiv, Daten mittig</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-29</td>
<td>252 +/- 24</td>
<td>235 +/- 46</td>
<td>-</td>
</tr>
<tr>
<td>30-39</td>
<td>243 +/- 12</td>
<td>216 +/- 33</td>
<td>-</td>
</tr>
<tr>
<td>40-49</td>
<td>226 +/- 21</td>
<td>234 +/- 33</td>
<td>-</td>
</tr>
<tr>
<td>50-59</td>
<td>235 +/- 13</td>
<td>230 +/- 34</td>
<td>219 +/- 29</td>
</tr>
<tr>
<td>60-69</td>
<td>247 +/- 14</td>
<td>221 +/- 28</td>
<td>213 +/- 22</td>
</tr>
<tr>
<td>70-79</td>
<td>245 +/- 15</td>
<td>209 +/- 33</td>
<td>192 +/- 23</td>
</tr>
<tr>
<td>80-90</td>
<td>258 +/- 47</td>
<td>206 +/- 10</td>
<td>200 +/- 36</td>
</tr>
</tbody>
</table>

Im Basel-Kollektiv werden keine signifikanten Unterschiede zwischen den Größen der Osteone bezüglich der Geschlechter festgestellt. Im Anatomie-Kollektiv weisen die männlichen Individuen jedoch sowohl im mittleren, als auch im periostalen Bereich

Zusammengefasst scheint es, als ob der Hauptteil der Geometrie eines Osteons durch den genetischen Bauplan eines Individuums festgelegt ist. Die Tatsache, dass die Osteone in alten Individuen kleiner werden, mag tatsächlich mit Veränderungen in Lebensdauer oder Aktivität

Osteonaler Knochen (Ostkno)

<table>
<thead>
<tr>
<th>Alter</th>
<th>Ericksen (1991) w</th>
<th>Ericksen (1991) m</th>
<th>Basel w</th>
<th>Basel m</th>
<th>Anatomie w</th>
<th>Anatomie m</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-29</td>
<td>20,08 +/- 21</td>
<td>21,27 +/- 19</td>
<td>31,15 +/- 19</td>
<td>16,27 +/- 14</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>30-39</td>
<td>27,40 +/- 12</td>
<td>34,07 +/- 23</td>
<td>34,84 +/- 23</td>
<td>30,45 +/- 19</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>40-49</td>
<td>44,62 +/- 10</td>
<td>50,59 +/- 14</td>
<td>36,02 +/- 17</td>
<td>45,29 +/- 20</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>50-59</td>
<td>47,01 +/- 9</td>
<td>46,02 +/- 14</td>
<td>42,19 +/- 30</td>
<td>43,18 +/- 15</td>
<td>-</td>
<td>36,33 +/- 15</td>
</tr>
<tr>
<td>60-69</td>
<td>47,78 +/- 11</td>
<td>48,13 +/- 8</td>
<td>47,21 +/- 1</td>
<td>46,02 +/- 8</td>
<td>41,00</td>
<td>46,50 +/- 13</td>
</tr>
<tr>
<td>70-79</td>
<td>41,33 +/- 10</td>
<td>48,02 +/- 8</td>
<td>44,02 +/- 7</td>
<td>47,27 +/- 12</td>
<td>48,67 +/- 10</td>
<td>46,50 +/- 9</td>
</tr>
<tr>
<td>80-89</td>
<td>43,28 +/- 10</td>
<td>47,43 +/- 9</td>
<td>43,50 +/- 4</td>
<td>49,57 +/- 4</td>
<td>32,20 +/- 12</td>
<td>40,29 +/- 11</td>
</tr>
<tr>
<td>90-99</td>
<td>40,31 +/- 13</td>
<td>50,50 +/- 2</td>
<td>36,86</td>
<td>-</td>
<td>31,50 +/- 9</td>
<td>40,00 +/- 7</td>
</tr>
</tbody>
</table>

Der prozentuale Anteil an osteonalem Knochen zeigt im periostalen Bereich der Femurkompakta des Basel-Kollektivs einen hochsignifikanten Zusammenhang mit dem Alter von 0,40 (schwach linear). Ericksen (1991) beobachtet ebenfalls ein niedriges Bestimmtheitsmaß von nur 0,36. Bei ihr ist der Zusammenhang für die männlichen Individuen enger (r² = 0,41), als für die weiblichen (r² = 0,34). Im Basel-Kollektiv ist der Zusammenhang bei den männlichen Individuen hochsignifikant (r = 0,50), bei den Frauen besteht jedoch kein Zusammenhang mit dem Alter. Im Anatomie-Kollektiv zeigt sich nur im mittleren und im endostalen Teil eine Korrelation zum Alter. Der Anteil an osteonalem Knochen nimmt dort mit zunehmendem Alter signifikant ab. Wie schon bei der Anzahl der intakten Osteone pro mm² dargelegt, nimmt der Anteil an osteonalem Knochen so lange zu, bis ein Großteil der Kompakta daraus besteht. Dann beginnen sich die Osteone gegenseitig zu überlagern und der Anteil an fragmentalem Knochen steigt zu Ungunsten des osteonalen

Fazit

Merkmale, die mit intakten Osteonen zu tun haben, sowohl die Anzahl an intakten Osteonen, als auch der Anteil an osteonalem Knochen, erreichen im Laufe des Lebens eines Individuums irgendwann einen maximalen Wert. Dies geschieht meist zwischen einem Alter von 40 und 70 Jahren (z. B. Wu et al. 1970: OPD in Rippen bildet Asymptote ab 60 Jahren). Danach nimmt die Anzahl der intakten Osteone und der Anteil an osteonalem Knochen wieder ab oder bleibt höchstens auf demselben Level. Deswegen ist auch keine bzw. eine

Volkmann’sche Kanäle (Volk)

Außer in der periostalen Schicht des Basel-Kollektivs ergibt sich kein signifikanter Zusammenhang mit dem Individualalter. Der Korrelationskoeffizient in der periostalen Schicht des Basel-Kollektivs liegt jedoch nur bei 0,207 und ist zwar signifikant, aber nur schwach linear ausgeprägt.

Werden die über 50jährigen des Basel-Kollektivs mit den Individuen des Anatomie-Kollektivs verglichen, ergeben sich kaum signifikante Unterschiede. Lediglich periostal
weisen die Individuen des Anatomie-Kollektivs signifikant geringere Werte bezüglich der Anzahl an Volkmann’schen Kanälen auf als die Individuen des Basel-Kollektivs. Da keine eindeutige Funktion der Volkmann’schen Kanäle bekannt ist, kann keine Aussage darüber gemacht werden, was dieser Unterschied für die Population bedeutet. Es kann nicht nachgewiesen werden, das Volkmann’sche Kanäle eine Verbindung von Resorptionslakunen zum Periost oder zum Endost herstellen.

5.2.4 Fragmentaler Knochen

Dabei geht es in erster Linie um die Anzahl der Osteonfragmente und den Anteil an fragmentalem Knochen. Zusätzlich wird hier jedoch auch die Osteonenpopulationsdichte, die sich aus der Anzahl von Osteonen und Osteonfragmenten pro mm² zusammensetzt, diskutiert.

Mögliche Fehlerquellen bei der Erhebung der Daten

Oft liegen um ein Osteon mehrere sehr kleine Osteonfragmente, die wie eine Art Schweif am Osteon hängen. Hier ist die Frage, ob dieser Schweif als mehrere Fragmente gezählt, oder ob er zum Osteon gerechnet wird, das möglicherweise im Knochen gewandert ist (siehe Einleitung: Drifting Osteon, Punkt 1.2.2).

Da in dieser Arbeit auch diejenigen Osteonfragmente, die am Rand nur teilweise im untersuchten Feld liegen, mitgezählt werden, wird die Anzahl an Osteonfragmenten pro mm² wohl eher etwas überschätzt. Dies muss beim Vergleich mit Literaturwerten berücksichtigt werden.

Wenn endostal, vor allem im Alter, ein sehr hoher Anteil an resorbiertem Knochen vorliegt und der kompakte Knochen durch riesige Resorptionslakunen annähernd trabekularisiert ist, kann an dem verbleibenden Knochen teilweise nicht mehr eindeutig erkannt werden, ob es sich um Generallamellen handelt oder um Osteonfragmente.

Osteonfragmente (Ostfr)

<table>
<thead>
<tr>
<th>Alter</th>
<th>Ericksen (1991) w</th>
<th>Ericksen (1991) m</th>
<th>Basel w</th>
<th>Basel m</th>
<th>Anatomie w</th>
<th>Anatomie m</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-29</td>
<td>3,02 +/- 3</td>
<td>1,58 +/- 2</td>
<td>2,80 +/- 2</td>
<td>2,14 +/- 2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>30-39</td>
<td>4,66 +/- 3</td>
<td>3,26 +/- 3</td>
<td>6,30 +/- 4</td>
<td>6,11 +/- 4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>40-49</td>
<td>14,17 +/- 6</td>
<td>10,75 +/- 7</td>
<td>3,61 +/- 3</td>
<td>5,96 +/- 4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>50-59</td>
<td>16,46 +/- 9</td>
<td>12,20 +/- 7</td>
<td>9,38 +/- 1</td>
<td>9,31 +/- 5</td>
<td>-</td>
<td>13,89 +/- 6</td>
</tr>
<tr>
<td>60-69</td>
<td>24,05 +/- 11</td>
<td>18,80 +/- 11</td>
<td>15,04 +/- 3</td>
<td>11,18 +/- 5</td>
<td>14,67</td>
<td>15,92 +/- 5</td>
</tr>
<tr>
<td>70-79</td>
<td>32,12 +/- 11</td>
<td>23,34 +/- 8</td>
<td>20,11 +/- 6</td>
<td>11,38 +/- 7</td>
<td>22,56 +/- 6</td>
<td>14,17 +/- 3</td>
</tr>
<tr>
<td>80-89</td>
<td>40,82 +/- 14</td>
<td>31,95 +/- 13</td>
<td>22,26 +/- 2</td>
<td>10,63 +/- 4</td>
<td>24,47 +/- 6</td>
<td>23,36 +/- 5</td>
</tr>
<tr>
<td>90-99</td>
<td>51,37 +/- 19</td>
<td>31,60 +/- 3</td>
<td>17,29</td>
<td>27,34 +/- 8</td>
<td>20,17 +/- 12</td>
<td></td>
</tr>
</tbody>
</table>

Tab. 95: Anzahl der Osteonfragmente pro mm² im periostalen Bereich der anterioren Femurkompakta nach Ericksen (1991) im Vergleich mit dem Basel- und dem Anatomie-Kollektiv getrennt nach Altersklassen und Geschlechtern

Im Basel-Kollektiv zeigen sich keine signifikanten Geschlechtsunterschiede. Lediglich im periostalen Bereich des Anatomie-Kollektivs weisen die männlichen Individuen signifikant geringere Werte auf als die Frauen. Ansonsten zeigen sich auch im Anatomie-Kollektiv keine deutlichen Unterschiede zwischen den Geschlechtern. Im Basel-Kollektiv werden im periostalen Bereich ab der Altersklasse der männlichen 70jährigen deutlich niedrigere Werte beobachtet als bei gleichaltrigen Frauen (siehe Tab. 95), was dem Bild entspricht, welches auch im Anatomie-Kollektiv beobachtet wird. Laut einer einfaktoriellen ANOVA ist bei den Baselern über 50 Jahre die Anzahl an Osteonfragmenten pro mm² im periostalen Bereich bei Männern und Frauen signifikant verschieden (p = 0,000). Mulhern & Van Gerven (1997)

Im Basel-Kollektiv ist ein Anstieg der Osteonfragmente pro mm² vom periostalen hin zum endostalen Teil der anterioren Femurdiaphyse zu finden. Wie schon bei nicht umgebautem und osteonalem Knochen diskutiert, ist diese Tatsache darauf zurückzuführen, dass das Knochenremodeling im endostalen Bereich schneller fortschreitet als im mittleren oder periostalen Bereich. Im Anatomie-Kollektiv unterscheiden sich die drei Lokalisationen nicht signifikant in der Anzahl ihrer Osteonfragmente. Wahrscheinlich wurden die möglicherweise ursprünglich vorhandenen höheren Anzahlen an Osteonfragmenten im endostalen und im mittleren Bereich bereits durch Knochenresorption reduziert.

Im Anatomie-Kollektiv sind mittig und periostal signifikant höhere Werte der Osteonfragmente als bei den „alten“ Individuen des Basel-Kollektivs zu finden. Angesichts der starken Altersabhängigkeit der Anzahl an Osteonfragmenten pro mm² ist diese Tatsache nicht weiter verwunderlich. Die Individuen des Basel-Kollektivs über 50 (Durchschnittsalter 67 Jahre) sind immer noch deutlich jünger als diejenigen des Anatomie-Kollektivs (Durchschnittsalter 80 Jahre). Der Unterschied ist statistisch signifikant (ANOVA p = 0.000).

Osteonenpopulationsdichte (OPD)

Die Osteonenpopulationsdichte ist die Summe aus intakten Osteonen und Osteonfragmenten. Der Bezug zum Alter im periostalen Bereich des Basel-Kollektivs liegt bei 0,71. Dies ist die höchste Korrelation einer Variablen zum Alter, die im Gesamtkollektiv aus Basel erreicht wurde. Auch im mittleren und im endostalen Bereich besteht jedoch jeweils ein hochsignifikanter Zusammenhang von immerhin 0,43 und 0,40. Bis auf den endostalen Bereich zeigen die weiblichen Individuen jeweils einen engeren Zusammenhang zum Alter, als die männlichen Individuen. Im Anatomie-Kollektiv ist nur im periostalen Bereich eine hochsignifikante Korrelation (0,45) ersichtlich. Einige Autoren geben an, dass die OPD in einem gewissen Alter eine Asymptote erreicht (Wu et al. 1970, Cho et al. 2006), was aber in verschiedenen Skelettelementen zu unterschiedlichen Zeiten geschieht. Bei Untersuchungen von Turban-Just & Grupe (1995) an einem Kollektiv von frühmittelalterlichen Individuen wurde in männlichen Mittelfußknochen die maximal sichtbare OPD zwischen 30 und 55 Jahren erreicht. Laut Wu et al. (1970) wird in Rippen im Alter von etwa 60 Jahren eine Asymptote bezüglich der OPD erlangt. Knochen, die eine geringere Remodelingrate als die Rippen zeigen, wie Femur oder Tibia, sollten den maximalen Wert ihrer OPD erst später
zeigen. In den Femora des Basel-Kollektivs liegt die maximale OPD im periostalen Bereich bei etwa 30 und wird erst in der Altersklasse der 70jährigen erreicht. Im periostalen Bereich des Anatomie-Kollektivs zeigt die OPD ihren maximalen Wert ebenfalls in der Altersklasse der 70jährigen. Allerdings liegt dieser Wert im Bereich zwischen 38 und 40, was denjenigen des Basel-Kollektivs deutlich übersteigt. Die Ursache für den höheren Wert liegt zumindest anteilig in den signifikant kleineren Osteonen der Individuen des Anatomie-Kollektivs gegenüber denen des Basel-Kollektivs (siehe Punkt 5.2.3).

Im Basel-Kollektiv ist die höchste Osteonenpopulationsdichte im mittleren Bereich der Kompakta zu finden. In der Literatur (siehe Punkt 1.4.3) wird davon ausgegangen, dass der Umbau eines Knochens von der Mitte zum periostalen und zum endostalen Rand hin fortschreitet, weshalb diese Beobachtung durchaus Sinn machen würde. Da allerdings sowohl für die Anzahl der intakten Osteone als auch für die Anzahl der Osteonfragmente pro mm² die höchsten Werte im endostalen Bereich gefunden werden, ist dieses Ergebnis im vorliegenden Fall nicht erklärbar. Die endostalen und periostalen Bereiche des Basel-Kollektivs entsprechen sich weitgehend. Im Anatomie-Kollektiv nimmt die OPD hingegen vom periostalen zum endostalen Bereich hin ab, wobei der Unterschied lediglich zwischen endostalem und periostalem Bereich signifikant ist. Diese Abnahme ist wahrscheinlich auf den Abbau des Knochens vom endostalen Bereich her zurückzuführen. Denn der Anteil von resorbier tem Knochen nimmt von periostal nach endostal hin signifikant zu.

Fragmentaler Knochen (FrKno)

Der Anteil an fragmentalem Knochen ist etwas leichter zu erheben, als die Anzahl der Osteonfragmente pro mm². Denn hierbei ist es immerhin nicht nötig, jedes einzelne kleine Fragment zu identifizieren, sondern es geht nur darum den Gesamtanteil zu bestimmen.

<table>
<thead>
<tr>
<th>Alter</th>
<th>Ericksen (1991) w</th>
<th>Ericksen (1991) m</th>
<th>Basel w</th>
<th>Basel m</th>
<th>Anatomie w</th>
<th>Anatomie m</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-29</td>
<td>7,96 +/- 8</td>
<td>3,23 +/- 3</td>
<td>4,42 +/- 3</td>
<td>2,79 +/- 3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>30-39</td>
<td>9,73 +/- 9</td>
<td>10,96 +/- 10</td>
<td>11,61 +/- 11</td>
<td>13,47 +/- 11</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>40-49</td>
<td>22,02 +/- 12</td>
<td>20,58 +/- 10</td>
<td>7,36 +/- 6</td>
<td>10,80 +/- 8</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>50-59</td>
<td>25,18 +/- 12</td>
<td>21,37 +/- 11</td>
<td>13,76 +/- 7</td>
<td>15,88 +/- 10</td>
<td>-</td>
<td>28,67 +/- 18</td>
</tr>
<tr>
<td>60-69</td>
<td>31,39 +/- 14</td>
<td>30,31 +/- 14</td>
<td>33,29 +/- 11</td>
<td>19,69 +/- 9</td>
<td>32,00</td>
<td>31,75 +/- 15</td>
</tr>
<tr>
<td>70-79</td>
<td>41,41 +/- 11</td>
<td>35,07 +/- 12</td>
<td>38,09 +/- 10</td>
<td>20,35 +/- 13</td>
<td>42,00 +/- 11</td>
<td>28,50 +/- 6</td>
</tr>
<tr>
<td>80-89</td>
<td>47,45 +/- 10</td>
<td>39,44 +/- 13</td>
<td>41,44 +/- 3</td>
<td>20,57 +/- 7</td>
<td>47,10 +/- 13</td>
<td>40,29 +/- 6</td>
</tr>
<tr>
<td>90-99</td>
<td>49,48 +/- 14</td>
<td>38,20 +/- 1</td>
<td>30,86</td>
<td>-</td>
<td>49,00 +/- 18</td>
<td>30,00 +/- 20</td>
</tr>
</tbody>
</table>

In beiden Kollektiven werden nach Pearson signifikante Korrelationen zum Alter nachgewiesen. Periostal liegt der Zusammenhang im Basel-Kollektiv bei 0,66, mittig nur noch bei 0,38. Im Anatomie-Kollektiv verhält es sich umgekehrt. Periostal zeigt sich ein Zusammenhang von 0,47, mittig hingegen von 0,62. Ericksen beobachtet in ihrem Kollektiv im periostalen Bereich ein Bestimmtheitsmaß von 0,69, was einen etwas engeren Zusammenhang mit dem Alter demonstriert als in den beiden hier untersuchten Kollektiven.

Im periostalen Bereich weisen die männlichen Individuen des Anatomie-Kollektivs einen signifikant geringeren Anteil an fragmentalem Knochen auf als die weiblichen Individuen. Im Basel-Kollektiv ergeben sich keine Geschlechtsunterschiede. Werden jedoch lediglich die Individuen über 50 Jahre betrachtet, ist auch im periostalen Bereich des Basel-Kollektivs bei den Männern ein signifikant geringerer Anteil an fragmentalem Knochen zu finden (ANOVA: p = 0,000). Wie auch schon bei der Anzahl der Osteonfragmente pro mm² zeigt sich hier deutlich der erhöhte Knochenumbau der weiblichen Individuen nach der Menopause gegenüber den Männern.

Im Basel-Kollektiv nimmt der Anteil an fragmentalem Knochen von endostal nach periostal signifikant ab. Auch hier zeigt sich wieder die erhöhte Remodelingrate im endostalen Bereich der Kompakta. Im Anatomie-Kollektiv sind keine Unterschiede zwischen den drei Lokalisationen zu erkennen. Da aber im Anatomie-Kollektiv der resorbierte Knochen von
endostal nach periostal hin abnimmt, könnte dies den im Basel-Kollektiv beobachteten Effekt verschleiern.

Fazit

Obwohl von einigen Autoren bemängelt wird, dass die Identifikation der Osteonfragmente schwierig sei (siehe oben), weisen sie im periostalen Bereich beider Kollektive mit die höchsten Korrelationen zum Individualalter auf, die in dieser Arbeit gefunden werden. Osteonfragmente stellen also auch für hohe Lebensalter noch ein relativ zuverlässiges Merkmal zur Altersschätzung dar (siehe überaltertes Anatomie-Kollektiv). Auch die Osteonenpopulationsdichte und der Anteil an fragmentalem Knochen weisen in beiden Kollektiven gute Korrelationen zum Alter auf, die jedoch nicht ganz so eng sind, wie bei der Anzahl an Osteonfragmenten. Für zukünftige Altersschätzungen mit Hilfe der Knochenmikrostruktur ist die Auszählung der Osteonfragmente demnach dringend zu empfehlen.

5.2.5 Resorbierter Knochen

Anzahl von Resorptionslakunen (Res)

Im Basel-Kollektiv zeigen sich für alle drei Lokalisationen der anterioren Femurkompakta hochsignifikante Zusammenhänge mit dem Alter. Es ist der engste Zusammenhang (r = 0,53) von allen erhobenen Parametern im endostalen Bereich. Mittig zeigt sich ein ähnlich enger Zusammenhang wie endostal (r = 0,54) und auch an dieser Lokalisation ist dies die engste Korrelation der mikrostrukturell erhobenen Parameter mit dem Alter. Im periostalen Bereich ist der Zusammenhang zum Alter am geringsten (r = 0,44). Interessant ist, dass bei den weiblichen Individuen ab der Altersklasse der 50jährigen meist sehr viel höhere Werte für die
Anzahl der Resorptionslakunen vorliegen, als bei den männlichen Individuen. Dies gilt besonders für den periostalen Bereich. Die Werte der männlichen Individuen in den verschiedenen Altersklassen pendeln mehr oder weniger stark um den Mittelwert (0,34-0,72; MW = 0,56) und nur bei den Frauen ab der Altersklasse der 50jährigen ist ein Anstieg der Anzahl der Resorptionslakunen pro mm² zu erkennen (von 0,63 bei den 50ern auf 1,63 bei den 80ern). Dies hängt wohl mit den Änderungen des Hormonspiegels der Frauen in der Menopause zusammen. Durch ein Absinken des Östrogenspiegels werden mehr Osteoclasten aktiviert, denn Östrogen hemmt normalerweise die resorbierenden Knochenzellen und fördert deren Apoptose (Robling & Stout 2000, Deetjen et al. 2006). Im Anatomie-Kollektiv zeigt sich nur im periostalen und im mittleren Bereich eine Abhängigkeit vom Alter (per: 0,47; mit: 0,54). Ericksen beobachtete im periostalen Bereich ihres Kollektivs nur ein Bestimmtheitsmaß (r^2) von 0,17. Als Ortner (1975) den Kortex von 100 menschlichen Tibiae untersuchte, stellte er einen Zusammenhang zwischen dem Alter und der Anzahl der Resorptionslakunen fest. Im Folgenden wird die Anzahl der Resorptionslakunen pro mm² im mittleren Drittel der 6. Rippe (Frost 1969) mit der im gesamten anterioren Bereich der mittleren Femurdiaphyse verglichen (siehe Tab. 97). Im Basel- und im Anatomie-Kollektiv werden dazu die Mittelwerte der drei untersuchten Lokalisationen endostal, mittig und periostal zusammengefasst. Frost (1969) untersuchte ausschließlich gesunde Menschen ohne Stoffwechselerkrankungen. Seine Daten wurden am lebenden Menschen durch Tetracyclincharakterisierung des Knochens erhoben.

<table>
<thead>
<tr>
<th>Altersklasse</th>
<th>20er</th>
<th>30er</th>
<th>40er</th>
<th>50er</th>
<th>60er</th>
<th>70er-80er</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resges in Rippen, nach Frost (1969)</td>
<td>0,32 +/-0,17</td>
<td>0,25 +/-0,33</td>
<td>0,45 +/-0,28</td>
<td>0,51 +/-0,29</td>
<td>0,60 +/-0,20</td>
<td>0,84 +/-0,46</td>
</tr>
<tr>
<td>Resges im Basel-Kollektiv</td>
<td>0,57 +/-0,18</td>
<td>0,91 +/-0,36</td>
<td>0,98 +/-0,27</td>
<td>1,1 +/-0,29</td>
<td>1,2 +/-0,46</td>
<td>1,77 +/-0,72</td>
</tr>
<tr>
<td>Resges im Anatomie-Kollektiv</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2,0 +/-0,38</td>
<td>2,1 +/-0,31</td>
<td>2,9 +/-1,2</td>
</tr>
</tbody>
</table>

Tab. 97: Anzahl der Resorptionslakunen pro mm² im mittleren Drittel der 6. Rippe nach Frost (1969) im Vergleich mit der Anzahl der Resorptionslakunen pro mm² im anterioren Bereich der Femurkompakta im Basel- und im Anatomie-Kollektiv

Knochenstatus zeigen und aufgrund dieser Tatsache eine höhere Anzahl von Resorptionslakunen pro mm² aufweisen. Wie bereits bei dem Punkt Kompaktadieke (Punkt 5.2.1) diskutiert wurde, trifft diese Möglichkeit mit großer Wahrscheinlichkeit zu.

Anteil an resorbiertem Knochen (Reskno)

<table>
<thead>
<tr>
<th>Altersklassen</th>
<th>Intrakortikale Porosität nach Feik et al. (1997)</th>
<th>Reskno<sub>ges</sub> Basel</th>
<th>Reskno<sub>ges</sub> Anatomie</th>
</tr>
</thead>
<tbody>
<tr>
<td>20er</td>
<td>5,8% 4,6%</td>
<td>6,0% 10,8%</td>
<td>-</td>
</tr>
<tr>
<td>30er</td>
<td>5,2% 5,9%</td>
<td>9,8% 8,7%</td>
<td>-</td>
</tr>
<tr>
<td>40er</td>
<td>6,1% 5,2%</td>
<td>8,5% 8,5%</td>
<td>-</td>
</tr>
<tr>
<td>50er</td>
<td>6,7% 7,1%</td>
<td>9,1% 9,2%</td>
<td>6,0% -</td>
</tr>
<tr>
<td>60er</td>
<td>6,9% 7,9%</td>
<td>8,1% 14,7%</td>
<td>10,8% 6,3%</td>
</tr>
<tr>
<td>70er</td>
<td>8,2% 7,6%</td>
<td>15,9% 23,3%</td>
<td>10,5% 18,2%</td>
</tr>
<tr>
<td>80er</td>
<td>9,2% 9,5%</td>
<td>12,7% 17,9%</td>
<td>23,6% 27,5%</td>
</tr>
<tr>
<td>90er</td>
<td>7,5% 9,6%</td>
<td>- 43,8% 29,7%</td>
<td>19,5%</td>
</tr>
</tbody>
</table>

Vergleicht man die alten Individuen des Basel-Kollektivs mit denen des Anatomie-Kollektivs zeigt sich, dass der Anteil an resorbiertem Knochen nur im mittleren und periostalen Bereich
im Anatomie-Kollektiv signifikant höher ist. Im endostalen Bereich ergeben sich jedoch keine signifikanten Unterschiede. Dies scheint zunächst dem Ergebnis, das unter Punkt 5.2.1 diskutiert wurde, zu widersprechen. Dort ergab sich der Schluss, dass die Individuen des Anatomie-Kollektivs einen schlechteren Knochenstatus aufgrund dünnerer Kompakta im Alter haben. Allerdings ist die Tatsache des erhöhten Knochenverlustes in den mittigen und periostalen Bereichen bei modernen Individuen ebenfalls ein deutliches Indiz dafür, dass der Knochenabbau größere Ausmaße aufweist, da er bereits weiter in mittlere und periostale Bereich vorgedrungen ist.

Fazit zu Resorptionslakunen

Die Merkmale der Resorptionslakunen, sowohl deren Anzahl als auch ihr Anteil an der untersuchten Fläche, nehmen definitiv mit dem Alter zu. Selbst im endostalen Bereich zeigen sich meist Zusammenhänge mit dem Individualalter, was bezüglich einer histologischen Altersbestimmung interessant erscheint.

<table>
<thead>
<tr>
<th>Korrelationen (nach Pearson) mit dem Alter im Anatomie-Kollektiv</th>
<th>periostal</th>
<th>mittig</th>
<th>endostal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>nicht korrigiert</td>
<td>korrigiert</td>
<td>nicht korrigiert</td>
</tr>
<tr>
<td>Gen</td>
<td>-0,415</td>
<td>-0,399</td>
<td>-0,330</td>
</tr>
<tr>
<td>Ostkno</td>
<td>-</td>
<td></td>
<td>-0,539</td>
</tr>
<tr>
<td>Frgkno</td>
<td>0,467</td>
<td>0,504</td>
<td>0,520</td>
</tr>
</tbody>
</table>

Gerade im endostalen Bereich wäre auf eine Verbesserung des Zusammenhangs zum Individualalter zu hoffen gewesen. So erscheint der zusätzlich Aufwand nicht gerechtfertigt.
5.2.6 Schema der Alterung von kompaktem Knochen anhand seiner vier Komponenten

Zum Abschluss der Diskussion der histologisch bestimmten Parameter sollen die vier Anteile von kompaktem Knochen (Gen, Ostkno, Frgkno und Reskno) so dargestellt werden, dass künftig das Alter eines zu untersuchenden menschlichen kompakten Femurstückes bereits bei der ersten Betrachtung unter dem Lichtmikroskop grob beurteilt werden kann. So wird es ermöglicht, eine histologische Altersklasse festzulegen, ohne eine zeitraubende, quantitative Analyse eines Knochenquerschnittes vornehmen zu müssen. Auch unerfahrenen Beobachtern wird damit eine Hilfestellung gegeben. Es zeigt sich, dass der Alterungsvorgang von kompaktem Knochen durch seine vier Anteile/Komponenten gut nachvollzogen werden kann.

<table>
<thead>
<tr>
<th>a) endostal</th>
<th>b) mitte</th>
<th>c) periostal</th>
</tr>
</thead>
</table>

70 Jahre generell resorbierten Knochen in Größenordnungen zwischen 5 und 15%. Größere Resorptionslakunen im mittleren oder gar im periostalen Bereich deuten jedoch in jedem Fall auf pathologische Knochenabbauprozesse hin. Weitere Hinweise auf ein hohes Individualalter können beispielsweise eine sehr geringe Kompaktadicke, durchgehend sehr kleine Osteone oder eine hohe Anzahl von Osteonfragmenten geben. Auch Knochenabbau von der periostalen Seite scheint ein Indiz für hohes Alter zu sein (siehe Punkt 5.3.3), was allerdings bei bodengelagertem Knochen aufgrund des Abblätterns periostaler Schichten grundsätzlich nicht mehr beobachtet werden kann. Schwierig ist die genaue Identifizierung der Altersklassen der 30- bis 60jährigen. Hier kann lediglich vermutet werden, dass ein Individuum eher in seinen 50ern oder 60ern ist, wenn sein Generallamellenanteil im periostalen Bereich auf etwa ein Drittel gesunken ist und gleichzeitig der Anteil an fragmentalem Knochen zugenommen hat. In den Altersklassen der 30- bis 40jährigen liegt der Generallamellenanteil im periostalen Bereich noch bei bis zu 50%. Allerdings wird der Rest des Knochens hauptsächlich von Osteonen und nur zu einem geringen Teil von Osteonfragmenten eingenommen.

Bei der Anwendung der Diagramme (Abb. 182) ist darauf zu achten, dass eine vergleichbare Population bezüglich der Lebensumstände untersucht wird.

5.2.7 Aktivierungsfrequenz (AktF) und Knochenbildungsrate (BFR)

Mögliche Fehlerquellen bei der Berechnung von AktF und BFR

AktF und die BFR für die Mittelfußknochen einer frühmittelalterlichen Population bestimmen, und erzielten Resultate in sinnvollen Größenordnungen.

Aktivierungs frequenz (AktF)

Im Basel-Kollektiv ist die Aktivierungsfrequenz im periostalen Bereich signifikant kleiner als im mittigen und im endostalen Bereich. Dies zeigt, dass der Knochenumbau im periostalen Bereich am langsamsten vonstatten geht. Diese Tatsache wurde bereits bei der Diskussion der histologisch erhobenen Parameter immer wieder festgestellt (Punkte 5.2.2, 5.2.3, 5.2.4 und 5.2.5). Dadurch soll wahrscheinlich die Stabilität des Knochens trotz Umbauaktivität so gut wie möglich erhalten bleiben, da dort die höchsten Randspannungen herrschen (Pauwels 1954, Martin et al. 1998). Da ein großer Teil der Remodelingaktivität zielgerichtet wirkt (siehe Punkt 1.3.2) ist es dem Körper möglich, den Knochen hauptsächlich vom endostalen Bereich her umzubauen, an dem es für die Stabilität des Knochens am wenigsten ausmacht. Im Anatomie-Kollektiv zeigen sich keine Unterschiede von AktF bezüglich der Lokalisation. Hierzu muss bedacht werden, dass die Berechnung der Aktivierungsfrequenz im mittigen und endostalen Bereich des Anatomie-Kollektivs eigentlich nicht sinnvoll ist, da die OPD keine Altersabhängigkeit zeigt (Burr 1992).

Die Aktivierungsfrequenz unterscheidet sich in den alten Individuen des Basel-Kollektivs an keiner Lokalisation des anterioren Femurbereichs signifikant von den Individuen des Anatomie-Kollektivs. Somit ist davon auszugehen, dass sich die Remodelingraten von der frühen Neuzeit bis heute kaum verändert haben.

Knochenbildungsrate (BFR)

Die Einheit der Knochenbildungsrate ist mm²/mm²/Jahr oder der jährlich neu gebildete Knochen pro mm² bereits bestehender Kompakta (Wu et al. 1970). Sie kann auch in Prozent

Alter ab. Die Ergebnisse in der themenbezogenen Literatur stützen also die Annahme einer sinkenden Knochenbildungsrate mit zunehmendem Alter.

Fazit zu AktF und BFR

Das Problem bei der Berechnung von Aktivierungsfrequenz und BFR ist, dass sie von der Größe der Osteone und zusätzlich vom Individualalter abhängen (vgl. auch Wu et al. 1970). Hat eine Person, genetisch bedingt, sehr große oder sehr kleine Osteone, kann es sein, dass die Aktivierungsfrequenz oder die BFR Ergebnisse liefern, die nicht die Realität widerspiegeln. Sehr kleine Osteone würden die Werte für die Aktivierungsfrequenz und die Knochenbildungsrate erhöhen. Bei extrem großen Osteonen ist der Sachverhalt umgekehrt. Auch die Tatsache, dass für die Berechnung des Osteonendurchmessers auf die Annahme zurückgegriffen werden muss, dass ein Osteon kreisförmig ist, birgt Fehlerquellen. Denn nicht selten weichen menschliche Osteone von einer Kreisform ab und sind eher polygonal

5.3 Einfluss weiterer Faktoren auf die Knochenmikrostruktur

Wie bereits einleitend erwähnt (Punkt 1.3.3) wirken sich neben dem Alter noch verschiedene andere Faktoren, wie beispielsweise die physikalische Aktivität, Krankheiten oder die Ernährung auf die Ausprägung der Knochenmikrostruktur aus. Meist hängen diese Einflussgrößen mit den individuellen Lebensumständen einer Person zusammen und können die Parameter der Knochenmikrostruktur teilweise mehr verändern als das Alter. Das Bestimmtheitsmaß r² (Quadrat des Korrelationskoeffizienten) gibt an, in welchem Maße eine Variable von einem Faktor abhängig ist. Der Wert, 100 minus das Bestimmtheitsmaß, zeigt genau an, wie viel Einfluss von anderen Größen ausgeht. Im vorhergehenden Kapitel wurden die Zusammenhänge der einzelnen Parameter mit dem Alter diskutiert. Nicht selten lagen die Korrelationskoeffizienten nach Pearson bei etwa 0,4 (entspricht r² = 0,16), was bedeuten würde, dass etwa 84% des betroffenen Merkmals nicht vom Alter, sondern von anderen Einflussgrößen determiniert wird. Dies soll im folgenden Kapitel diskutiert werden.

5.3.1 Arbeitsbelastung (Basel-Kollektiv)

5.3.2 Body-Mass-Index (Anatomie-Kollektiv)

5.3.3 Stress und Krankheit (Basel- und Anatomie-Kollektiv)

können dadurch berücksichtigt werden. Außerdem ist es möglich, neue Erkenntnisse bezüglich der Differentialdiagnose von Krankheitskomplexen an histologischen, archäologischen Knochenpräparaten zu gewinnen.

Haltelinien (LAGs)

Probleme und Fehlerquellen bei der Untersuchung von Haltelinien in adulter Femurkompakta

Ein Problem bei der Untersuchung von Haltelinien in erwachsenen Individuen zeigt sich in der vorliegenden Arbeit ganz deutlich (siehe Abb. 112). Haltelinien können durch Remodeling umgebaut werden und gehen so mit sinkendem Generallamellenanteil verloren. Im Basel-Kollektiv wird eine Abnahme der Anzahl der Haltelinien mit steigendem Individualalter beobachtet, welche allerdings eindeutig auf die Abnahme des Anteils an Generallamellen in der anterioren Femurkompakta zurückgeführt werden kann. Für das vorliegende Kollektiv wird daraufhin definiert, dass für eine Analyse der Haltelinien

Entstehungsalter der Haltelinien

Zusammenhänge von LAGs mit Schmelzhypoplasien und Harris-Linien

LAGs und Schmelzhypoplasien

LAGs und Harris-Linien

Letztendlich ist jedoch bemerkenswert, dass trotz aller Abweichungen bei Erhebung und Genese beider hier diskutierter Stressmarker noch eine signifikante Korrelation besteht. Dies lässt darauf schließen, dass die Ursachen für die Entstehung von Harris-Linien und Haltelinien sehr ähnlich, möglicherweise sogar identisch sind.
Mögliche Ursachen von Haltelinien

In der vorliegenden Arbeit bestand, aufgrund der bekannten Individualdaten des Basel-Kollektivs, die Möglichkeit, Zusammenhänge der LAGs im anterioren Femur mit einer Vitamin-D-Mangelerkrankung oder mit allgemeinen Nahrungskrisen im Baseler Raum zu untersuchen und so die Theorien der verschiedenen Autoren zu prüfen.

LAGs und Vitamin-D-Mangel

LAGs und Hungerkrisen

erwarteten LAGs finden sollte, liegt der Wert bei BP 619, BP 628 und BP 683 jedoch unter 1%, womit eindeutig klar wird, warum Haltelinien fehlen. Bei BP 623 sind im endostalen Bereich aber 20,33% an Generallamellen zu finden. Allerdings ist der Anteil an resorbiertem Knochen dort mit 23,33% ebenfalls relativ hoch. So ist es möglich, dass ursprünglich vorhandene LAGs durch Knochenabbau verloren gingen.

Aufgrund der Beobachtungen scheint ein direkter Zusammenhang zwischen dem Auftreten von Haltelinien und Hungerkrisen zu bestehen. Dass in einigen der 26 Individuen zusätzliche Haltelinien vorkommen, ist wahrscheinlich auf individuelle Stresssituationen zurückzuführen.

Vermuteter Entstehungsmechanismus von Haltelinien in der menschlichen Knochenmikrostruktur

In der vorliegenden Studie lässt sich der Zusammenhang zwischen LAGs und Vitamin-D-Mangel (Rachitis oder Osteomalazie) weder nachweisen noch ausschließen. Wird jedoch davon ausgegangen, dass durch Vitamin-D-Mangel Haltelinien entstehen können, so scheint eher der zweite Mechanismus zutreffend. Da aufgrund der mangelnden Calcium-Resorption im Darm bei Rachitis oder Osteomalazie ein Mineralmangel im Skelett entsteht, ist während einer solchen Krise kaum die Anlage hochmineralisierter Linien durch ausschließliche Präzipitation mineralischer Substanz zu erwarten.

den Organismus schneller wieder ihr ursprüngliches Niveau erreicht als die Osteoidproduktion.

Da es sich sowohl bei Harris-Linien als auch bei Haltelinien in der Knochenmikrostruktur um Erholungslinien handelt (Herrmann et al. 1990), deutet dies darauf hin, dass sie erst gebildet werden, wenn der Körper eine Krise überstanden hat, was wiederum für den zweiten Mechanismus spricht.

In der vorliegenden Arbeit wurden keine wesentlichen Unterschiede bezüglich der Dicke der Haltelinien beobachtet. Bezüglich ihrer Mineraldichte wäre eine Untersuchung anhand von Mikroradiographien notwendig.

Der genaue Entstehungsmechanismus der Haltelinien kann in der vorliegenden Arbeit somit nicht eindeutig festgestellt werden. Obwohl alle Hinweise in Richtung des zweiten Mechanismus deuten, bedarf es diesbezüglich weiterer Forschung.

Vergleich mit Literaturwerten

können, muss davon ausgegangen werden, dass in den Individuen beider Kollektive ursprünglich weitere Haltelinien vorhanden waren, die bei einer Untersuchung der Knochenmikrostruktur nicht mehr beobachtet werden konnten. Es ist somit wahrscheinlich, dass der Prozentsatz der von Haltelinien betroffenen Individuen in beiden Kollektiven real höher als 60% bzw. 66% liegt. Mehr als 66% der Individuen im Basel-Kollektiv waren damit in ihrer Jugend von Wachstumsstress (Wachstumshemmungen oder Wachstumsstopps) betroffen. Die Ursachen des Wachstumsstresses der Baseler Bevölkerung sind wohl hauptsächlich auf die schlechte Ernährungssituation der Baseler Stadtbevölkerung in der frühen Neuzeit zurückzuführen (siehe Punkt 2.1.3).

Im Basel-Kollektiv konnten keine signifikanten Geschlechtsunterschiede bezüglich der Anzahl der Haltelinien in der anterioren Femurkompakta festgestellt werden. Auch bei Kaserer (2006) zeigten sich bei Männern (60%) und Frauen (56%) ähnliche Frequenzen.

Aussagewert der Untersuchungen von Haltelinien bei adulten Individuen auf Populationsebene

Nicht regelgerechter Umbau der Knochenmikrostruktur

Mögliche Fehlerquellen bei der Datenerhebung

Die hier untersuchten Merkmale geben in erster Linie einen subjektiven Eindruck wieder. Es werden verschiedene Stadien bestimmt. Je chaotischer und unorganisierter der Querschnitt der Kompakta wirkt, umso höher ist der zugeordnete Wert. Dadurch besteht immer die
Möglichkeit größerer Variabilität, als bei objektiv zu beurteilenden Merkmalen wie beispielsweise der Anzahl eines Parameters oder seiner Größe.

Amorphes Erscheinungsbild der Knochenmikrostruktur und Harris-Linien im Basell-Kollektiv

In einigen Individuen treten, trotz eines amorphe Erscheinungsbildes der Knochenmikrostruktur, keine Harris-Linien auf. Dies kann einerseits daran liegen, dass die Harris-Linien durch Knochenumbau bereits wieder verschwunden sind oder dass sich eine Stresssituation nicht in Femur und Tibia manifestiert hat. Ein weiterer Grund wäre, dass sich eine schwerwiegende Stresssituation erst nach Abschluss des Längenwachstums der Tibia ergeben hat, welche sich dann zwar als amorphes Erscheinungsbild im Femur niederschlagen würde, nicht jedoch als Harris-Linie in der Tibia. Damit besteht die Möglichkeit, dass der

Aussagemöglichkeiten des Merkmals „amorphes Erscheinungsbild der Knochenmikrostruktur“ auf Populationsebene

Überstürzter Umbau der subperiostalen Schicht im Basel-Kollektiv

In den Veröffentlichungen von Doppler et al. (2006a und b) wurde noch davon ausgegangen, dass sich der überstürzte Umbau in der subperiostalen Schicht auf Ereignisse kurz vor dem Tod bezieht. Der Zusammenhang zu Krisen in der Jugend relativiert diese Überlegung und deutet in eine andere Richtung. Ohne unmittelbare Belege bleiben die hier gefundenen Erklärungen jedoch ebenfalls spekulativ.

Fazit

Resorptionslakunen

Vergleich des Knochenabbaus im Basel- und Anatomie-Kollektiv

Diskussion

Postmenopausaler und seniler Knochenverlust im Alter scheint nach den hier vorliegenden Ergebnissen tatsächlich ein physiologischer Prozess zu sein, der aufgrund des sich ändernden Hormonstatus mit großer Wahrscheinlichkeit ab einem bestimmten Alter auftritt. Lediglich
auf das Ausmaß des Knochenverlustes kann individuell Einfluss genommen werden. Dies gelingt vor allem durch gesunde Ernährung und ausreichend Bewegung. Wichtig ist mit diesen Maßnahmen so früh wie möglich zu beginnen, nicht erst im hohen Alter.

Osteoporose

Es ist möglich, dass sich in einigen Individuen, zusätzlich zu dem altersphysiologischen Knochenabbau, weitere Faktoren negativ auf die Qualität der Kompakta auswirkten. Beispiele hierfür wären Medikamente wie Glucocorticoid (Glucocorticoidinduzierte Osteoporose) oder auch Immobilisation (Immobilisationsosteooporose). Im Anatomie-Kollektiv zeigen beispielsweise zwei der von Osteoporose betroffenen weiblichen Individuen sehr geringe Kompaktadicken von 0,10cm (Anat 103/03, 89 Jahre) und 0,20cm (Anat 91/03, 85 Jahre). Die Daten für die Variablen der Knochenmikrostruktur im endostalen Bereich konnten in diesen Fällen nicht erhoben werden, da der Knochenabbau zu weit fortgeschritten war. Beide Frauen
In den jüngeren Individuen des Basel-Kollektivs (n=7: BP 604, BP 620, BP 642, BP 643, BP 645, BP 666, BP 687) ist mit großer Wahrscheinlichkeit von sekundären Osteoporosen auszugehen. Fünf Individuen (BP 620, BP 642, BP 643, BP 645 und BP 687) starben an Tuberkulose. Laut Herrmann et al. (1990) kann bei Tuberkulose der Weichgewebs herd in der Lunge streuen, so dass *Mycobacterium tuberculosis* über die Blutbahn auch in den Knochen gelangt. Dort können dadurch osteomyelitische Defekte (große Resorptionslakunen) verursacht werden. BP 666 (m; 39,0 Jahre) starb laut Sterberegister an Beinfräß, wobei es sich nach Rauschmann et al. (2004) um eine Knocheninfektion (Osteomyelitis) handelt, was zu pathologischen Resorptionslakunen führt. Lediglich bei einem weiblichen Individuum (BP 604; 25,0 Jahre) können die pathologischen Resorptionslakunen nicht so einfach durch die Todesursache erklärt werden, denn sie starb an Lungenentzündung. Bei ihr müssen demnach andere unbekannte Ursachen für den pathologischen Knochenverlust vorgelegen haben. Möglicherweise litt die Frau an Mangelernährung (Hungerosteoporose) und starb aufgrund eines supprimierten Immunsystems an Lungenentzündung. In einem Alter von 25 Jahren sollten normalerweise ausreichend Abwehrkräfte gegen eine Infektionskrankheit vorhanden sein.

Resorbierter Knochen und Krankheiten

Tuberkulose (Basel-Kollektiv)

BP 609, BP 620, BP 630, BP 631, BP 642, BP 643, BP 645, BP 687), können Anzeichen eines pathologischen Knochenabbaus beobachtet werden. Dies würde einem Prozentsatz von 40% der tuberkulösen Individuen entsprechen. Laut Mays et al. (2001) ist ein Befall des Skelettes bei einer tuberkulösen Erkrankung generell eher selten. Nur 5-7% der an Tuberkulose erkrankten Individuen zeigen auch Veränderungen am Knochen. Diese Daten beziehen sich jedoch auf äußerliche morphologische Untersuchungen, nicht auf mikrostrukturelle Daten, was die Vergleichbarkeit stark abschwächt. Außerdem sind bei den hier untersuchten tuberkulösen Individuen des Basel-Kollektivs alle Individuen an der Erkrankung gestorben, was auf einen schweren Verlauf der Krankheit schließen lässt. Falls die Daten des Basel-Kollektivs bezüglich der Knochentuberkulose jedoch repräsentativ sind, könnte darauf geschlossen werden, dass sich Knochentuberkulose auf der mikroskopischen Ebene früher manifestiert als auf der makromorphologischen.

Der tuberkulöse Knochenabbau findet nicht, wie z. B. bei seniler und postmenopausaler Osteoporose, hauptsächlich endostal statt, sondern kann in allen Lokalisationen des Kompaktaquerschnittes auftreten. Dies zeigt sich beispielsweise deutlich in Abb. 122 im Ergebnisteil unter Punkt 4.3.3, in der die Anzahl der Resorptionslakunen im periostalen Bereich von tuberkulösen und nicht tuberkulösen Individuen verglichen wird.

Rachitis oder Osteomalazie (Basel-Kollektiv)

Lungenentzündung bzw. an Typhus. Bei diesen Erkrankungen ist nicht davon auszugehen, dass sie sich in starkem Knochenabbau bemerkbar machen.

Chronische Leber- und Nierenerkrankungen und Alkoholismus

Nur eines der drei von chronischen Nierenerkrankungen betroffenen Individuen des Basel-Kollektivs zeigt für seine Altersklasse untypische Merkmale seiner Resorptionslakunen (BP 685). Laut Krempien et al. (1972) wird der Serum-Parathormonspiegel im Menschen schon bei geringer Unterfunktion der Niere gesteigert. Es ist also zunächst nicht begründbar, warum in den Individuen BP 671 und BP 692 keine Merkmale für verstärkten Knochenabbau im Vergleich mit den Mittelwerten ihrer Altersklasse gefunden werden konnten. Eine mögliche Erklärung ist, dass der Abbau von Knochensubstanz nicht sofort in Resorptionslakunen resultiert, sondern auch über eine Erweiterung der Havers’schen Kanäle stattfindet (z. B. Grampp et al. 1997). Bei einer Gegenregulation des Körpers würden diese wieder aufgefüllt, was zur Entstehung von Typ-II-Osteonen führt. In BP 671 (m; 65,0 Jahre; OstII%: 11,57%) und BP 692 (m; 40,5 Jahre; OstII%: 5,89%) zeigen sich erhöhte Werte des Anteils an Typ-II-Osteonen im Vergleich mit gleichaltrigen Individuen. Außerdem liegen die Anteile für die Typ-II-Osteone über dem Grenzwert von 4,7% für gesunde Individuen im Basel-Kollektiv.
Von den vier Individuen des Basel-Kollektivs, die von einer Lebererkrankung betroffen waren, litten zwei außerdem an einer Nierenerkrankung (BP 671 und BP 685) und wurden deshalb bereits oben diskutiert. Bei BP 661 und BP 694 sind keine Anzeichen für pathologischen Knochenabbau in Form von Resorptionslakunen zu beobachten. In BP 661 (m; 64,5 Jahre) wird ein Anteil von 8,11% an Typ-II-Osteonen gefunden, was deutlich über dem Wert für „gesunde“ Individuen im Basel-Kollektiv (4,7%) liegt. Typ-II-Osteone sind gewissermaßen eine moderatere Form von Knochenabbau als Resorptionslakunen (siehe auch nächster Punkt: Typ-II-Osteone). Lediglich in BP 694 (w; 35,0 Jahre) liegt der Anteil an Typ-II-Osteonen im Gesamtquerschnitt mit 3,60% unter dem Trennwert zwischen gesund und pathologisch.

Periostaler Knochenabbau (Anatomie-Kollektiv)

Fazit

Typ-II-Osteone und Growth-Arrest-Osteone

Mögliche Fehlerquellen bei der Auswertung
Die Probleme der Unterscheidung zwischen Growth-Arrest-Osteonen und Typ-II-Osteonen wurden bereits unter Punkt 5.2.3 diskutiert.

OstII% und Hungerkrisen

OstII% und Krankheiten

Im Folgenden wird der Zusammenhang der Typ-II- und Growth-Arrest-Osteone für jedes in dieser Arbeit untersuchte Krankheitsbild diskutiert.

Herzerkrankungen

Infektionskrankheiten wie Typhus oder Tuberkulose (Basel-Kollektiv)

Bei einer Tuberkulose-Erkrankung besteht die Möglichkeit, dass der Knochen von den krankheitsauslösenden Mycobakterien angegriffen wird. Unter Punkt 4.3.3 zeigt sich, dass es im Basel-Kollektiv durchaus tuberkulöse Individuen gibt, deren kompakter Femurknochen

Chronische Nierenkrankung

Im Anatomie-Kollektiv weisen die Individuen mit einer chronischen Nierenerkrankung bzw. einer Krebserkrankung der Niere signifikant höhere Werte der Typ-II-Osteone (OstII%) im Gegensatz zu den als gesund bezeichneten Individuen auf. Da es sich bei den Erkrankten allerdings nur um zwei Individuen handelt, ist das Ergebnis der statistischen Signifikanz kritisch zu betrachten und kann nur als Hinweis gesehen werden. Im Basel-Kollektiv zeigen Individuen mit chronischer Nierenerkrankung zwar im Mittel auch höhere Werte als die gesunden Individuen, der Unterschied ist jedoch auch dort nicht signifikant.

Beide männlichen Individuen des Anatomie-Kollektivs, die von einem chronischen Nierenleiden betroffen sind (Anat 79/03: 60 Jahre, Anat 98/03: 68 Jahre), zeigen deutlich erhöhte Werte von OstII% gegenüber dem Mittelwert der gesunden Individuen des Kollektivs (MW = 4,0%). Dabei liegt der Wert von Anat 79/03 (OstII% = 11,72%) noch wesentlich höher als der Wert von Anat 98/03 (OstII% = 7,85%). Beide Individuen waren zusätzlich zur Erkrankung ihrer Niere von einer chronischen Lebererkrkrankung betroffen. Anat 79/03 litt an chronischer Hepatitis C (mit hepatocellulärem Carcinom) und hatte bereits zwei Lebertransplantationen. Anat 98/03 wies höchstwahrscheinlich aufgrund von Alkoholmissbrauch eine Leberzirrhose und ein hepatocelluläres Carcinom auf. Der Anteil an resorbiertem Knochen im Gesamtquerschnitt liegt bei Anat 79/03 bei 14,0% und bei Anat 98/03 bei 9,3% (MW (60er) bei den Männern: 11%). Es ist demnach davon auszugehen, dass der Knochenstoffwechsel in Anat 79/03 stärker betroffen war, als in Anat 98/03.

Chronische Lebererkrankungen

Laut Ericksen (1991) zeigen sich bei Leberzirrhose Auswirkungen auf den Knochenstoffwechsel. Sowohl im Basel-Kollektiv, als auch im Anatomie-Kollektiv beobachtet man eine Erhöhung der Typ-II-Osteone in Individuen, die an einer chronischen...

Im Basel-Kollektiv sind insgesamt vier Individuen von einer chronischen Erkrankung der Leber betroffen (BP 661, BP 671, BP 685, BP 694), wobei BP 671 und BP 685 zugleich an einer chronischen Erkrankung der Niere litten. Deshalb wurden diese Individuen bereits im vorhergehenden Absatz diskutiert. BP 661 (m; 64,5 Jahre; OstII%: 8,1%) zeigt ebenso wie BP 671 einen stark erhöhten Wert für OstII%. Der OstII%-Wert von BP 694 (w; 35,0 Jahre; OstII%: 3,60%) liegt allerdings, wie bei BP 685, sogar unter jenem der gesunden Individuen des Basel-Kollektivs. BP 685 weist jedoch extrem hohe Anteile an resorbiertem Knochen auf, so dass man davon ausgehen muss, dass eventuell vorhandene Typ-II-Osteone schon abgebaut wurden bzw. der Knochenabbau schon stärkere Ausmaße angenommen hat. Bei BP 694 ist dies allerdings nicht der Fall und es findet sich keine Erklärung, warum sich in diesem Individuum keine Anzeichen für Knochenabbau zeigen.

Rachitis und Osteomalazie (Basel-Kollektiv)

Im Basel-Kollektiv gibt es sechs Individuen, die aufgrund ihrer gekrümmt langen langen Knochen der unteren Extremitäten als rachitisch bzw. osteomalazisch eingestuft werden. Dies bedeutet, dass diese Individuen an einem starken Vitamin-D-Mangel litten. Laut Herrmann et al. (1990) sind die Osteone bei diesem Krankheitsbild einer fortschreitenden Demineralisierung durch den Blutstrom ausgesetzt und können ihr Lumen sogar zu großen Resorptionslakunen erweitern. Weiterer Knochenabbau kann durch Osteoclasten aber auch an anderen Stellen erfolgen. Im mikroskopischen Bild von Rachitis oder Osteomalazie sind meist ausgedehnte

Krebs

Tödliche Krebserkrankungen wirken sich generell auf den gesamten Organismus aus und nehmen somit auch Einfluss auf den Stoffwechsel. Laut Pfeiffer (2000) betrifft eine Krebserkrankung deshalb meist auch den Knochen. Sowohl im Basel- als auch im Anatomie-Kollektiv weisen Individuen, die an Krebs gestorben sind, erhöhte Werte von Typ-II-Osteonen im Vergleich zu den gesunden Individuen in ihrer anterioren Femurkompakta auf. Dabei muss berücksichtigt werden, dass einige der krebskranken Individuen an Leber- oder Nierenkrebs gestorben sind, was die Erhöhung von OstII% in diesen Fällen bereits erklären würde (siehe oben). Jedoch zeigen einige der...
Individuen, die an anderen Krebsarten erkrankt bzw. gestorben sind, ebenfalls erhöhte Werte. BP 677 (w; 60,0 Jahre; OstII%: 12,4%) und BP 689 (w; 40,5 Jahre; OstII%: 8,04%) starben an Gebärmutterkrebs und BP 683 (m; 50,0 Jahre; OstII%: 8,39%) an Magenkrebs. Anat 86/03 (m; 76 Jahre) litt an einem Hypopharynx-Carcinom und weist mit 22,61% einen sehr hohen Wert für OstII% auf. Möglicherweise war die Nahrungsaufnahme dieses Mannes durch das Carcinom in der Speiseröhre so stark beeinträchtigt, dass der extrem hohen Anteil an Typ-II-Osteonen erklärt würde. Nur BP 628 (m; 47,0 Jahre; OstII%: 1,99%), der an Zungenkrebs starb, und Anat 140/03 (w; 88; OstII%: 4,03%), die aufgrund eines metastasierenden Colon-Carcinoms verstarb, offenbaren keinen erhöhten Anteil an Typ-II-Osteonen gegenüber den gesunden Individuen ihres Kollektivs.

Wassersucht bzw. Ödembildung (Basel-Kollektiv)

Growth-Arrest-Osteone entstehen (siehe „OstII% und Hungerkrisen“). Somit zeigt sich hier erneut ein unmittelbarer Zusammenhang zwischen OstII% und Proteinmangel.

„Altersschwäche“ (Basel-Kollektiv)

Nach der Gruppe der Individuen, die an Wassersucht gestorben sind, weisen die an „Altersschwäche“ verstorbenen Individuen (n = 9) des Basel-Kollektivs den zweithöchsten Mittelwert (9,7%) von OstII% auf. Der Unterschied zu den gesunden Individuen des Basel-Kollektivs ist signifikant. Die genauen Autopsieberichte der Basel-Individuen liegen nicht vor, so kann leider nicht näher spezifiziert werden, ob diese Individuen an irgendwelchen Krankheiten gelitten haben. Wenn ein Individuum sehr alt war und keine nach außen hin auffällige Erkrankung zeigte, lag es früher wahrscheinlich nahe, in das Sterberegister die Todesursache „Altersschwäche“ einzutragen.

Ein möglicher Erklärungsansatz für die hohen OstII%-Werte bei den alten Individuen des Basel-Kollektivs wäre, dass altersphysiologischer Knochenabbau bekanntlich nicht nur von der endostalen Seite her stattfindet, sondern ebenfalls über die Havers’schen Kanäle erfolgt (Ahlborg et al. 2003). So könnten sich Typ-II-Osteone bilden. Weiterhin lassen in hohem Alter die Funktionen der Organe, also auch die Funktion von Leber und Niere, sowie die Resorptionsfähigkeit des Darms, nach (Frassetto et al. 1998). Dies könnte zu einem Mangel an Vitamin D führen und somit erhöhte Werte von Typ-II-Osteonen nach sich ziehen. Außerdem durchlebte jedes der neun an Altersschwäche gestorbenen Individuen mindestens zwei (n = 4) oder auch drei (n = 5) der allgemeinen Hungerkrisen in Basel, was zur Akkumulation von Typ-II-Osteonen beigetragen haben kann.

Erkrankungen der Lunge (nicht Tuberkulose)

Durchblutungsstörungen

In diesem Absatz werden sowohl Arteriosklerosen im Allgemeinen, als auch die periphere arterielle Verschlusskrankheit und nicht zuletzt Schlaganfälle diskutiert.

Im Basel-Kollektiv zeigen die Individuen, die an einem Schlaganfall verstorben sind (n = 4) erhöhte Werte von OstII% (6,7%) gegenüber den gesunden Individuen (4,7%). Die Erhöhung ist jedoch statistisch nicht signifikant.

Im Anatomie-Kollektiv litten sechs Individuen an schwerer Arteriosklerose. Dabei sind hier Individuen zusammengefasst, die an generalisierter Arteriosklerose oder an pAVK litten. Aber auch diejenigen, welche an einem Schlaganfall starben, werden einbezogen. Sie zeigen gegenüber den gesunden Personen des Anatomie-Kollektivs einen statistisch signifikant höheren Anteil an Typ-II-Osteonen im Gesamtquerschnitt (6,3%) als die gesunden Personen (4,0%). Die statistische Signifikanz ist trotz eines Ausreißers, der einen Wert von 0,00 für OstII% aufweist (Anat 76/03), gegeben. Anat 76/03 ist ein weibliches Individuum, das im Alter von 80 Jahren eines natürlichen Todes starb. Bei einer Autopsie wurde allerdings festgestellt, dass sie an schwerem Raucherhusten, an einer Lebererkrankung und außerdem an Herzinsuffizienz litt, wobei Arteriosklerose als eine der Hauptursachen für Herzinsuffizienz gilt. Die zusätzliche Lebererkrankung (siehe oben) macht es schwer verständlich, warum dieses Individuum keine erhöhten Werte für OstII% aufweist. Ein Blick auf die weiteren Ergebnisse der knochenhistologischen Untersuchung zeigt jedoch, dass sich bei diesem Individuum bereits schwerster Knochenverlust in Form von Resorptionslakunen zeigt. Endostal sind 80% des Knochens resorbiert und mittig ebenfalls 55%. Vorhandene Typ-II-Osteone gingen demnach möglicherweise durch den Knochenabbau verloren.

Alkohol und Nikotin (Anatomie-Kollektiv)

Diejenigen Individuen des Anatomie-Kollektivs, die wahrscheinlich Missbrauch bezüglich Alkohol oder Nikotin betrieben, zeigen zwar im Mittel erhöhte Werte (7,9%) gegenüber den gesunden Individuen (4,0%), jedoch ist diese Abweichung statistisch nicht signifikant. Bei diesen Individuen bleibt zudem ungeklärt, ob die Erhöhung des Anteils an Typ-II-Osteonen im Gesamtquerschnitt tatsächlich durch die toxischen Effekte von Alkohol und Nikotin auf den Körper zustande kam oder ob chronische Leber- und Nierenerkrankungen bzw. Durchblutungsstörungen die Hauptursachen sind.

Vergleich von Basel- und Anatomie-Kollektiv

Werden die beiden untersuchten Kollektive miteinander verglichen, zeigt sich im Basel-Kollektiv ein Wert von 7,4% für die Variable OstII% und im Anatomie-Kollektiv ein Wert von 5,3%. Laut Brown-Forsythe-Test und Welch-Test ist der Anteil der Typ-II-Osteone im Basel-Kollektiv signifikant höher als im Anatomie-Kollektiv (p = 0,026). Eine ANOVA wird aufgrund der nur schwach homogenen Varianzen kritisch betrachtet (Levene-Test: p = 0,093), ergibt aber noch einen signifikanten Unterschied zwischen den beiden Gruppen (p = 0,041). Beim Vergleich der zentralen Tendenzen im Mann-Whitney-Test zeigt sich ebenfalls ein signifikanter Unterschied (p = 0,038). Werden im Basel-Kollektiv lediglich die Individuen über 50 Jahre betrachtet, zeigt sich ein noch deutlicherer Unterschied zum Anatomie-Kollektiv. Der Mittelwert von OstII% beträgt nun 9,1% im Basel-Kollektiv, woraufhin sich bei einer ANOVA ein eindeutig signifikanter Unterschied (p = 0,000) darlegt.

Weiterhin erfolgt ein Vergleich der „gesunden“ Individuen beider Kollektive. Im Basel-Kollektiv handelt es sich dabei um 47 Individuen (gestorben an Herzerkrankungen, Tuberkulose oder Typhus) mit OstII% = 4,7%. Im Anatomie-Kollektiv sind es nur 12 Individuen (mit Herz- oder Lungenerkrankungen) mit OstII% = 4,0%. Hier ist der
Unterschied zwischen Basel-Kollektiv und Anatomie-Kollektiv nicht mehr signifikant (einfaktorielle ANOVA: p = 0,352).

Ausgehend von den vorausgehenden Ausführungen über die Ursachen der Entstehung von Typ-II-Osteonen, insbesondere was Proteinmangel in der Ernährung betrifft, ist davon auszugehen, dass die Individuen des Basel-Kollektivs unter einem höheren Stresslevel gelitten haben, als die Individuen des Anatomie-Kollektivs.

Fazit

Hier zeigt sich deutlich, dass die genaue Ursache für ein Stressmerkmal nicht einfach herauszufiltern ist, da meist mehrere Faktoren Einfluss nehmen. Im Fall der Typ-II-Osteone handelt es sich dabei um das Alter, Hungerkrisen (sowohl Vitamin- als auch Proteinmangel) und verschiedene Krankheiten. Eine Hauptursache kann in der vorliegenden Untersuchung nicht ermittelt werden, da viele Individuen von zwei oder mehreren Faktoren, welche die Anzahl an Typ-II-Osteonen erhöhen können, betroffen sind.

Modell der Manifestierung von Stress in der menschlichen kompakten Mikrostruktur

Der Knochenstoffwechsel des menschlichen Körpers ist dermaßen komplex, dass es schwierig ist, die Größe des Einflusses eines bestimmten Faktors auf ein Merkmal festzulegen. Diese...
Tatsache wurde bei der Diskussion der verschiedenen Stressmerkmale in der menschlichen Knochenmikrostruktur deutlich.

Für hohe Alter müssen die Stressmerkmale im Knochen etwas anders beurteilt werden. Dies gilt nicht für Haltelinien, Growth-Arrest-Osteone, Typ-II-Osteone oder ein amorphes

In der folgenden Tabelle (Tab. 100) ist im Überblick dargestellt, welche Rückschlüsse die einzelnen Stressmerkmale, in verschiedenen Altersklassen beobachtet, zulassen.

<table>
<thead>
<tr>
<th></th>
<th>Infans</th>
<th>Adult-Matur</th>
<th>Senilis</th>
<th>beobachtbar in dekomponiertem Knochen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haltelinien</td>
<td>überwundene Wachstumsstoppss (wahrscheinlich aufgrund von Proteinmangel)</td>
<td>überwundene Wachstumsstoppss (wahrscheinlich aufgrund von Proteinmangel) zwischen 12 und 20 Jahren</td>
<td>nein</td>
<td></td>
</tr>
<tr>
<td>Amorphes Erscheinungsbild der Knochenmikrostruktur</td>
<td>nein</td>
<td>überwundene Situation von starkem Mineralverlust des Knochens oder von Entzündungsreaktionen (wiederaufgefüllte Resorptionslakunen)</td>
<td>nein</td>
<td></td>
</tr>
<tr>
<td>überstürzter subperiostaler Umbau</td>
<td>nein</td>
<td>Überwundene Hemmung des Remodelings während der Jugend bis etwa 30 Jahre</td>
<td>nein</td>
<td></td>
</tr>
<tr>
<td>Growth-Arrest-Osteone</td>
<td>nein</td>
<td>überwundene Wachstumsstoppss bei der Osteoidabscheidung (wahrscheinlich aufgrund von Proteinmangel)</td>
<td>nein</td>
<td></td>
</tr>
<tr>
<td>Typ-II-Osteone</td>
<td>nein</td>
<td>überwundener moderater Abbau von Knochenmineral über die Havers’schen Kanäle (z. B. aufgrund von Vitaminmangel, metabolischer Azidose)</td>
<td>nein</td>
<td></td>
</tr>
<tr>
<td>Resorptionslakunen in erhöhter Anzahl oder Größe</td>
<td>starker Mineralbedarf des Körpers (z. B. aufgrund von Vitaminmangel, metabolischen Azidosen) oder entzündliche pathologische Prozesse in der Kompakta</td>
<td>altersphysiologischer Abbau von Knochensubstanz, kann durch starken Mineralbedarf des Körpers oder entzündliche Prozesse verstärkt werden</td>
<td>ja</td>
<td></td>
</tr>
</tbody>
</table>

Tab. 100: Aussagemöglichkeiten, die anhand der in dieser Arbeit untersuchten Stressmerkmale getroffen werden können

5.3.4 Ausreißer: Beschreibung einiger auffälliger Individuen

Basel-Kollektiv

Die Individuen werden in der Reihenfolge der ihnen zugeordneten Nummern beschrieben.

BP 614 und ähnliche Fälle

5. Diskussion

Außerdem weist die Frau für ihre Altersklasse im mittleren und im periostalen Bereich zu viele Nicht-Havers’sche Systeme auf. Die Werte liegen so hoch, dass sie die Mittelwerte aller anderen Altersklassen weit überschreiten. Auch dies entspricht der Annahme, dass die Knochenmikrostruktur im Verhältnis zum angegebenen Alter sehr viel zu jung ist.

Möglicherweise konnte die Frau das Gleichgewicht zwischen Knochenabbau und -aufbau gerade so aufrechterhalten, denn es zeigen sich weder signifikante Anzeichen für verstärkten Knochenabbau, noch für Knochenumbau.

Es gibt weitere Individuen im Basel-Kollektiv, bei denen für ihr Alter zu wenig Knochenumbau stattgefunden hat und die demnach durch ihre Knochenmikrostruktur jünger wirken, als sie tatsächlich waren. Beispiele sind BP 635 (m; 41,0 Jahre; Lungenentzündung),
BP 637 (m; 77,0 Jahre; Schlaganfall) und BP 693 (w; 28,5 Jahre; Typhus und Gebärmutterblutung). Bei BP 635 und BP 637 sind jeweils die endostalen Teile zu stark dekomponiert, um eine genaue Auswertung der Mikrostruktur vorzunehmen. Mittig und periostal zeigen die Altersprofile der beiden Männer jedoch Anteile an Generallamellen wie man sie in der Altersklasse der 20jährigen erwarten würde (Abb. 184a, b). Bei BP 693 wird aufgrund ihres Alters von knapp 30 Jahren erwartet, dass ihr Knochen noch relativ jung wirkt, allerdings besteht sowohl der mittlere, als auch der periostale Teil ihres Knochens annähernd vollständig aus Generallamellen (Abb. 184c). Dies ist sonst eher in jugendlichen Individuen zu beobachten. Ohne im Einzelnen auf die Individuen einzugehen, kann wohl starker Proteinmangel in der Nahrung für die Hemmung des Remodelings verantwortlich gemacht werden (genauere Erklärungen, siehe oben).

Abb. 184: Histologische Altersprofile von BP 635, BP 637 und BP 693 anhand der vier Anteile von kompaktem Knochen

BP 642 und ähnliche Fälle

Hier handelt es sich um ein männliches Individuum, das 23,5 Jahre alt ist und damit zu den jüngsten Individuen des Basel-Kollektivs gehört. Er wuchs als Missionarszögling auf und starb an Lungentuberkulose. Der junge Mann zeigt ein Erscheinungsbild seiner Knochenmikrostruktur, das man zumindest im mittleren und im endostalen Bereich mit einer wesentlich älteren Person in Verbindung bringen würde (Abb. 185).

Abb. 185: Histologisches Altersprofil von BP 642 anhand der vier Anteile von kompaktem Knochen

Im periostalen Bereich entspricht dieses Individuum noch eindeutig der Altersklasse der 20jährigen, zu der er gehört. Mittig stimmt seine Knochenmikrostruktur mit einem Individuum aus der Altersklasse der 60jährigen und endostal sogar eher mit einem Individuum zwischen 70 und 90 Jahren überein. Im mittleren Teil der Femurkompakta zeigen
sich 26 Osteonfragmente pro mm². Die höchsten Werte an Osteonfragmenten im Basel-Kollektiv werden ansonsten fast ausschließlich bei Individuen über 65 Jahre gefunden (von 20,13 im periostalen Bereich eines männlichen Individuums bis zu 34,00 im mittleren Bereich eines weiblichen Individuums). Im mittleren Bereich der Femurkompakta weist BP 642 mit 46,33 sogar die höchste Osteonenpopulationsdichte unter allen männlichen Individuen auf.

Welche Ursachen kommen für eine frühzeitige Alterung der endostalen und mittleren Teile der Femurkompakta in BP 642 in Frage?

Ein ähnliches Erscheinungsbild einer deutlich zu alten Knochenmikrostruktur ist im endostalen und periostalen Bereich bei den Individuen BP 604 (w; 25,0 Jahre; Lungenentzündung) und BP 605 (m; 24,5 Jahre; Typhus und Peritonitis) zu finden. Der periostale Bereich entspricht jeweils etwa dem realen Alter (siehe Abb. 186a, b).
Wie bei BP 642 ist auch bei diesen Individuen davon auszugehen, dass sie an Hyperparathyreoidismus aufgrund von Ernährungsdefiziten litten (Ausführungen, siehe oben).

BP 900

Weiterhin sind in diesem Individuum erhöhte Werte von OstII% (9,42%) zu finden, was mit großer Sicherheit auf ihre Todesursache (Wassersucht) zurückzuführen ist (siehe Punkt 4.3.4). Nicht zuletzt muss noch bemerkt werden, dass die Mikrostruktur von BP 900 als extrem amorph eingestuft wird, was darauf hindeutet, dass die überwundene Tuberkulose möglicherweise auch im linken Femur ihre Spuren hinterlassen hat. Durch Mycobakterien im Knochen könnten große Resorptionslakunen entstanden sein, die nach Genesung wieder aufgefüllt wurden und anschließend Remodelingvorgängen unterlagen.

Anatomie-Kollektiv

Wie schon beim Basel-Kollektiv werden die Individuen in der Reihenfolge ihrer Nummern beschrieben.

Anat 83/03

Die Anzahl ihrer intakten Osteone im periostalen und auch im endostalen Bereich bei Anat 83/03 bildet in der Altersklasse der weiblichen 70jährigen einen Ausreißer nach oben. Im periostalen Bereich zeigt sie 30 intakte Osteone pro mm², was die höchste beobachtete Anzahl von Osteonen bei den weiblichen Individuen des Anatomie-Kollektivs darstellt. Im endostalen
Bereich findet man auch die Typ-II-Osteone, den Anteil an osteonalem Knochen und ihre Osteonenpopulationsdichte stark erhöht gegenüber den anderen Frauen ihrer Altersklasse. Das Altersprofil des Individuums (Abb. 188) belegt, dass für ein weibliches Individuum von 77 Jahren erstaunlich wenig Knochenabbau stattgefunden hat. Der Resorptionslakunenindex des Gesamtquerschnittes hat in diesem Individuum einen Wert von 3, was dem geringst möglichen Wert entspricht.

Abb. 188: Histologisches Altersprofil von Anat 83/03 anhand der vier Anteile von kompaktem Knochen

Allerdings beträgt die Kompaktadicke nur noch 0,25cm. Der Knochenstatus ist also eigentlich nicht so gut, wie er aufgrund der geringen Porosität der Kompakta scheint. Und auch der Anteil an Typ-II-Osteonen liegt mit 8,2% im pathologischen Bereich. Es sieht so aus, als ob bei diesem Individuum irgendwann die Remodelingrate nachgelassen hätte, so dass der Anteil an osteonalem Knochen nicht so stark von fragmentalem Knochen verdrängt wurde. Die Ursache dafür war möglicherweise die periphere arterielle Verschlusskrankheit, die mit Durchblutungsstörungen der Beine einhergeht. Die geringe Kompaktadicke des Individuums ist eventuell nicht auf aktiven Knochenverlust im Alter zurückzuführen, da in der Kompakta kaum Anzeichen für Knochenabbau zu erkennen sind. Vielleicht hatte diese Frau nie besonders robuste Knochen.

Anat 103/03

Bei dieser Person handelt es sich um ein weibliches Individuum, das ein Alter von 89 Jahren erreichte. Der anteriore Bereich ihrer Kompakta wies nur noch eine Dicke von 0,1cm auf (siehe Abb. 189). Ein solches Individuum war mit großer Wahrscheinlichkeit nicht mehr mobil, da die Knochen das Körpergewicht nicht mehr getragen hätten.

Abb. 189: Femur des Individuums Anat 103/03 im Querschnitt. Der gesamte ehemalige Kompaktbereich ist extrem trabekularisiert.

Currey (1964) beschreibt, dass in einer 73-jährigen Frau, die seit 35 Jahren bettlägerig war, nur noch eine Kompaktadicke von 1,8mm gemessen werden konnte. Allerdings ist bei diesem
Wert der Spongiosaanteil inbegriffen. Denkbar ist, dass Anat 103/03 ebenfalls seit langer Zeit bettlägerig oder anderweitig immobilisiert war. Periostal wird eine sehr geringe Osteonenpopulationsdichte im Vergleich mit den anderen weiblichen Individuen ihrer Altersklasse gefunden. Weiterhin zeigt sich hier eine außergewöhnlich große durchschnittliche Fläche der Resorptionslakunen und eine stark erniedrigte Aktivierungsfrequenz, ebenfalls im Vergleich mit Gleichaltrigen ihres Geschlechts. Im mittleren Bereich wurden 90% des Knochens bereits resorbiert (höchster Wert des Anatomie-Kollektivs) und auch periostal wurden 25% des kompakten Knochens abgebaut (siehe auch Abb. 190).

Anat 128/03

5.4 Die Knochenmikrostruktur – ein multifaktoriell beeinflusster Bereich des Körpers

Viele verschiedene Faktoren nehmen Einfluss auf die Knochenmikrostruktur. Dazu werden generell das Alter, das Geschlecht, die genetische Prädisposition, die Ernährung, der Gesundheitszustand und die physische Aktivität gezählt (siehe auch Punkt 1.3.3). Das Ausmaß der Zusammenhänge der mikrostrukturellen Parameter mit anderen Faktoren wird in dieser Arbeit jeweils als Korrelationskoeffizient (r) angegeben. Um auszudrücken, wie viel Prozent der abhängigen Variable von der unabhängigen Variable determiniert werden, muss das Bestimmtheitsmaß (r²) herangezogen werden. Diese Größe kann sehr einfach durch die Quadrierung des Korrelationskoeffizienten berechnet werden. Die geringsten linearen Korrelationen zum Alter sind zwar hochsignifikant, liegen aber nur bei einem Wert von r = 0,3. Beispiele hierfür sind jeweils für die Gesamtpopulation des Basel-Kollektivs etwa die Kompaktadickce oder auch der Anteil an resorbiertem Knochen pro mm² im periostalen Bereich. Das bedeutet, dass in diesen Fällen lediglich 9% der betroffenen Variablen durch das Alter determiniert werden. Zu 91% haben andere Faktoren Einfluss. Die höchsten
mikrostrukturellem Erscheinungsbild Hinweise auf Stressfaktoren im Leben eines Individuums geben.
Trotz der vielfältigen Einflüsse auf die Knochenmikrostruktur soll im folgenden Abschnitt geprüft werden, in welchen Fällen eine Altersbestimmung anhand der Knochenmikrostruktur möglich und vor allem zuverlässig ist.

5.5 Histologische Altersbestimmungsmethoden

Im Folgenden wird die Genauigkeit der histologischen Altersbestimmung anhand einiger Methoden aus der themenbezogenen Literatur und der neu erstellten Altersbestimmungsformeln diskutiert.

5.5.1 Angewendete Methoden aus der Literatur

Altersbestimmung nach Thompson (1979)

Mögliche Fehlerquellen bei Thompsons Altersbestimmung

Anwendung der Altersbestimmung nach Thompson auf das Basel-Kollektiv

Die von Thompson empfohlenen Gleichungen, welche sich ausschließlich auf den Anteil an osteonalem Knochen stützen, arbeiten verglichen mit den Formeln, die mindestens drei oder vier Variablen zur Altersbestimmung benutzen, eher schlecht im periostalen Bereich. Dies ist wohl hauptsächlich darauf zurückzuführen, dass von Thompson (1979) eine grundsätzlich andere Definition für Osteone verwendet wurde als in dieser Arbeit (siehe oben) und damit der Anteil an osteonalem Knochen im Vergleich mit Thompson unterschätzt wurde. Hinzu kommt die Tatsache, dass die lineare Korrelation des Alters zum Anteil an osteonalem Knochen im periostalen Bereich im Basel-Kollektiv nicht besonders eng ist (r = 0,40).

Anwendung der Altersbestimmung nach Thompson auf das Anatomie-Kollektiv

Insgesamt funktionieren die Formeln nach Thompson (1979) für das Anatomie-Kollektiv sehr schlecht. Im endostalen Bereich werden fast alle Individuen (97%), gleichgültig mit welcher
Formel gearbeitet wird, um mehr als 10 Jahre in ihrem Alter unterschätzt. Thompsons Formeln beinhalten entweder nur den Anteil an osteonalem Knochen (Ostkno) oder verschiedene Kombinationen der Variablen Komp, OstU, Ostint und Ostkno. Da im Anatomie-Kollektiv die Anzahl an intakten Osteonen (Ostint) und der Anteil an osteonalem Knochen (Ostkno) von periostal nach endostal signifikant abnimmt (siehe Punkt 4.2.6 und 4.2.9), wird das Alter eines Individuums somit unterschätzt. Sowohl Ostkno, als auch Ostint gehen in jede der Formeln mit positivem Vorzeichen ein. Es ist demnach nicht sinnvoll die Formeln von Thompson im endostalen Bereich der Anatomie-Serie anzuwenden. Das beste erzielte Ergebnis ist eine „korrekte“ Altersbestimmung in 9 Individuen (25,0%) mit einem Gesamtfehler von über 20 Jahren im periostalen Bereich. Im mittigen Bereich werden die Altersschätzungen wieder schlechter als im periostalen Bereich, was die Anwendung auf bodengelagertes Material erschweren kann (siehe oben). Ist es bei einer archäologischen Skelettserie aufgrund morphologischer Hinweise wahrscheinlich, dass ein Individuum bereits sehr alt war, ist die Altersbestimmung nach Thompson (1979) nicht die Methode der Wahl.

Altersbestimmung nach Ericksen (1991)

Mögliche Fehlerquellen bei Ericksens Altersbestimmung

Anwendung der Altersbestimmung nach Ericksen auf das Basel-Kollektiv

Insgesamt funktioniert beim Basel-Kollektiv die Anwendung der Formeln zur histologischen Altersbestimmung nach Ericksen (1991) im endostalen Teil der Femurkompakta eher schlecht. Die meisten Individuen werden in ihrem Lebensalter um mehr als 10 Jahre überschätzt. Dies gilt sowohl für die Formel, welche in diesem Bereich am schlechtesten funktioniert (II/10) als auch für die beste (II/8). Einige der Variablen, die in den beiden Formeln verwendet werden, zeigen im endostalen Bereich keinen Zusammenhang mit dem Alter (Ost, OstII, NHav, Ostkno, Frgkno). Hinzu kommt, dass im endostalen Bereich der Kompakta die Variablen, welche mit positivem Vorzeichen in die Berechnung eingehen, zum Teil mit einem zu hohen Wert, bzw. die Variablen, welche mit einem negativen Vorzeichen eingehen (II/8: NHav, Gen, Ostkno; II/10: NHav, Gen, Ostkno, Frgkno) mit zu niedrigen Werten auftreten. Außerdem ist der erste Faktor, der in den Formeln vorkommt, schon eine relativ hohe Zahl (II/8: 63,39; II/10: 102, 45). Wenn die Werte, die mit einem negativen Vorzeichen in die Formeln eingehen (siehe oben) nicht groß genug sind, wird das Alter automatisch zu hoch eingeschätzt. Aufgrund der großen Anzahl an Variablen, kann die genaue Ursache für eine Fehleinschätzung des Lebensalters nicht ausfindig gemacht werden.

Im mittleren und im periostalen Bereich funktioniert die Altersbestimmung nach Ericksen besser, als im endostalen Bereich, wobei mittig etwas mehr Individuen zu alt geschätzt werden als periostal. Da die Formeln von Ericksen für den periostalen Bereich der Kompakta entwickelt wurden, war dieses Resultat zu erwarten. Mittig arbeiten die Formeln für weibliche Individuen (II/8 und II/10) am besten und die Formeln für männliche Individuen (III/1, III/6, III/8) am schlechtesten. Periostal funktioniert, entgegen Ericksens Empfehlung zur Verwendung von geschlechtsspezifischen Formeln, die Formel für das Gesamtkollektiv (I/8) am besten. Dabei werden hauptsächlich Individuen unter 50 Jahren in ihrem Alter um mehr als 10 Jahre überschätzt, was sicherlich daran liegt, dass diese Individuen einen Teil der äußeren Knochenschichten durch die Bodenlagerung verloren haben und somit auch einen Teil ihrer Nicht-Havers’schen Systeme und Generallamellen, die beide mit negativem
5. Diskussion

Generell wird das Alter der Individuen über 60 Jahre, auch mit den am besten arbeitenden Formeln nach Ericksen (1991), eher unterschätzt. Ein möglicher Grund dafür ist die unter Punkt 5.2.4 diskutierte geringere Zahl bestimmter Osteonfragmente in der vorliegenden Arbeit gegenüber Ericksens Kollektiv ab einem Alter von etwa 40 Jahren, für die bisher keine Ursache erkennbar ist.

Es kann nicht nachvollzogen werden, wieso bei Ericksen Variablen wie Ostkno und Frgkno, die eigentlich beide mit steigendem Individualalter zunehmen, in ihre Regressionsformeln mit negativem Vorzeichen eingehen (Zusammenhang mit dem Individualalter im Gesamtkollektiv nach Ericksen 1991: Ostkno: 0,36; Frgkno: 0,69). Diese Tatsache trägt mit Sicherheit dazu bei, dass vor allem die Formeln mit der höchsten Anzahl an Variablen in den meisten Fällen nicht mit Erfolg anzuwenden sind.

Anwendung der Altersbestimmung nach Ericksen auf das Anatomie-Kollektiv

Bei Betrachtung aller angewendeten Formeln zusammen, können in allen Teilen der Kompakta jeweils nur etwa ein Drittel der Individuen in einem Bereich von +/-10 Jahren korrekt altersbestimmt werden. Dabei werden jeweils ungefähr gleich viele Individuen in ihrem Alter um mehr als 10 Jahre zu jung oder zu alt geschätzt. Es zeigen sich also nicht so einseitig ausgeprägte Effekte, wie bei der Methode nach Thompson (1979), mit der ein Großteil der Individuen zu jung eingeschätzt wurde.

geht die Tendenz dahin, dass die Individuen unter 70 in ihrem Alter eher überschätzt und die Individuen über 90 in ihrem Alter mehr unterschätzt werden. Wie in Punkt 5.3 der Diskussion aufgezeigt, unterliegt die Knochenhistologie im Laufe des Lebens eines Individuums nicht nur Alterseinflüssen. Je älter ein Individuum wird, umso mehr Faktoren und Ereignisse können den Zustand seiner Knochenmikrostruktur beeinflusst haben, so dass eine genaue Altersbestimmung im höheren Alter immer unwahrscheinlicher wird. Deswegen muss eine korrekte Altersbestimmung im Bereich von +/- 10 Jahren in 2/3 der Fälle als durchaus positives Ergebnis angesehen werden.

Am schlechtesten arbeiten die Formeln mit 8 Variablen (I/10, II/10, III/8). Wie schon oben beim Basel-Kollektiv diskutiert, stört an diesen Formeln vor allem die Tatsache, dass Ostkno und Frkgno mit negativen Vorzeichen eingehen, obwohl sie mit dem Alter auch in Ericksens Kollektiv positiv korrelieren.

Altersbestimmung nach Maat et al. (2006)

Mögliche Fehlerquellen bei der Altersbestimmung nach Maat et al.

Anwendung der Altersbestimmung nach Maat et al. auf das Basel-Kollektiv

Anwendung der Altersbestimmung nach Maat et al. auf das Anatomie-Kollektiv

Vergleich der drei Altersbestimmungsmethoden aus der Literatur

Welche Methode ist am einfachsten anwendbar?

Am besten anwendbar ist eine Methode, die möglichst wenige, leicht zu erhebende Parameter erfordert. Weiterhin sollten diese auch bei geringfügig dekomponierter Knochenmikrostruktur

Weiterhin ist der Zeitaufwand zur Erhebung des Anteils an nicht umgebautem Knochen, der sehr einfach mit der Gittermethode geschätzt werden kann, wesentlich geringer als die genaue Bestimmung einzelner Strukturen auf einem Bild.

Welche Methode liefert in welchem Fall die beste Altersbestimmung?

Bei Lebensaltern unter 50 Jahren ist diese Methode hingegen nicht ratsam, da ein Großteil der Individuen dadurch um mehr als 10 Jahre zu alt eingeschätzt wird.

Anhand der folgenden Abbildung (Abb. 192) kann, ausgehend vom Erhaltungsgrad der Mikrostruktur, die bestmögliche Formel zur histologischen Altersbestimmung gewählt werden (Erläuterungen: siehe Text).

![Erhaltungsgrad der Knochenmikrostruktur vs. Empfohlene Methode vs. Bemerkung](image)

Abb. 192: Empfohlene Methoden zur histologischen Altersbestimmung bei verschiedenen Erhaltungsgrad der Knochenmikrostruktur
5.5.2 Neu erstellte Formeln am Basel-Kollektiv

Da die histologischen Parameter der Knochenmikrostruktur jedoch alle biologische, häufig multifaktoriell determinierte Parameter sind, ist nicht zu erwarten, dass die Zusammenhänge zum Alter besonders eng sind. Wie in der vorliegenden Arbeit gezeigt werden kann, wirken sich neben dem Alter vor allem Krankheiten und Ernährung, aber sicherlich auch mechanische Belastung auf die Knochenmikrostruktur aus. Bei manchen Parametern spielt außerdem das Geschlecht eine Rolle. Bei fünf der neun neuen linearen Gleichungen liegt r^2 >0,5, was demnach für ihre Anwendbarkeit in der Altersbestimmung spricht.

Anwendung der neuen Gleichungen auf das Anatomie-Kollektiv

Erstmals erfolgt hier eine Anwendung von Formeln, die anhand von bodengelagertem Material (Basel-Kollektiv) erstellt wurden, auf eine rezeente Skelettserie. Bisher war die umgekehrte Vorgehensweise üblich.

Wegen die neuen Formeln bezüglich der Lokalisation und des Geschlechts korrekt auf das Anatomie-Kollektiv angewendet, ergeben sich nur für die geschlechtspezifischen linearen Gleichungen im mittleren Bereich der Kompakta zufrieden stellende Ergebnisse. Mit der neuen Gleichung „mitte Männer“ können 67% der männlichen Individuen korrekt im Bereich +/-10 Jahren altersbestimmt werden. Bei den Frauen sind es immerhin noch 50% mit der Gleichung „mitte Frauen“. Dies ist leicht dadurch erklärbar, dass die Individuen des Basel-Kollektivs (Grundlage für die neuen Formeln) ihre periostalen Schichten grobteils verloren
haben, die Individuen des Anatomie-Kollektivs jedoch nicht. Zusätzlich ist zu bedenken, dass in älteren Individuen teilweise fortgesetzte perios late Apposition (CPA) auftreten kann, so dass die Individuen des Anatomie-Kollektivs bezüglich ihres periosalen Bereichs jünger eingeschätzt würden, als sie eigentlich sind.

Für die neuen, mit Elastic Net erstellten Gleichungen, ergibt sich ein ähnliches Bild wie für die neuen linearen Gleichungen. Allerdings funktioniert hier auch die Formel für das Gesamtkollektiv im mittleren Bereich sehr gut (korrekte Altersbestimmung bei 64% der Anatomie-Individuen im Bereich +/-10 Jahre). Bei den Frauen können im mittleren Bereich damit sogar 67% korrekt altersbestimmt werden, bei den Männern noch 50%. Mit den neuen Elastic-Net-Gleichungen werden aber auch mit den geschlechtsspezifischen Gleichungen für den periosalen Bereich gute Ergebnisse erzielt. Hier können 50% der Männer und 56% der Frauen im Bereich von +/-10 Jahren korrekt bestimmt werden.

5.5.3 Probleme und Möglichkeiten der histologischen Altersbestimmung

Am sinnvollsten ist es jedoch, makroskopische und mikroskopische Techniken so weit wie möglich miteinander zu kombinieren. In jedem Fall kann so die allgemeine Alterungsrate einer Bevölkerung festgestellt werden. Bei auffälligen Differenzen zwischen histologischen und morphologischen Altersmerkmalen besteht sogar die Möglichkeit die individuelle Alterungsrate zu bestimmen, was wiederum Rückschlüsse auf die Lebensumstände eines Individuums zulässt.

5.6 Aussagemöglichkeiten durch die UV-Methode

Im folgenden Abschnitt sollen zunächst die Entstehung der hellblauen Fluoreszenz des Knochenquerschnittes und andere mögliche Farbausprägungen der Fluoreszenz unter langwelligem UV-Licht diskutiert werden. Weiterhin wird die Fluoreszenz von Knochenpulver, den Kollagen- und Apatityophilisaten erörtert. Die Zusammenhänge aller auf das UV-Material angewendeten Methoden werden besprochen. Zuletzt erfolgt die Diskussion
der Merkmale der drei Diagenesetypen und der Anwendbarkeit der UV-Methode als Auswahlkriterium für Proben zur Untersuchung nach verschiedenen Methoden.

5.6.1 Fluoreszenzeigenschaften des Knochens und seiner Bestandteile

Entstehung der hellblauen Fluoreszenz

5. Diskussion

Beim Vergleich der formalinfixierten Knochenquerschnitte aus der Anatomie mit der Positivkontrolle M3, weisen die Femurquerschnitte aus der Anatomie unter langwelligem UV-Licht eine intensivere hellblaue Fluoreszenz auf, als die Positivkontrolle M3 (Beispiel siehe Abb. 193).

Demineralisierte Knochenscheiben zeigen unter langwelligem UV-Licht ein intensiv blau UV-Erscheinungsbild (siehe Punkt 4.6.1 und auch Abb. 193), das der hellblauen Fluoreszenz von frischem Knochen sehr ähnlich ist. Allerdings wirkt die Fluoreszenz nicht so intensiv, da das

Die vorausgehenden Ausführungen deuten darauf hin, dass die hellblaue Fluoreszenz von frischem Knochen mit größerer Wahrscheinlichkeit auf den organischen Anteil des Knochens zurückzuführen ist, denn auf den mineralischen Anteil. Diese Tatsache könnte Untersuchungen der Fluoreszenz am Knochenquerschnitt oder an verschiedenen anderen
Bestandteilen des Knochens zu einer wertvollen Screeningmethode bezüglich des Diagenesegrades von Knochen und seinen Bestandteilen machen (siehe auch später).

Entstehung der Farbausprägungen

<table>
<thead>
<tr>
<th>Kristall-Typ</th>
<th>Beschreibung</th>
<th>Entstehung</th>
<th>geochemische Bedingungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typ I</td>
<td>dünne Plättchen</td>
<td>partielle Auflösung des Knochenminerals; Kristallwachstum findet an den verbleibenden Körnchen mit Hilfe von Calcium und Phosphationen statt, die im Wasser in den Poren gelöst sind</td>
<td>verschieden, aber nahe am chemischen Gleichgewicht</td>
</tr>
<tr>
<td>Typ II</td>
<td>nadelförmig, lang (bis zu 200nm)</td>
<td>wahrscheinlich zunächst komplette Auflösung einiger Apatit-Kristalle mit anschließender Rekristallisierung in einer thermodynamisch stabilen Form (nadelförmig)</td>
<td>tief im Boden liegende, stagnierende Umgebungen bei ziemlich sicherem Kontakt mit Grundwasser</td>
</tr>
<tr>
<td>Typ III</td>
<td>polygonal, groß (100-1000nm)</td>
<td>zunächst Entfernung der organischen Phase, ab 500-600°C Zusammenlagerung der kleinen plättchenförmigen Kristalle zu größeren</td>
<td>große Hitzeinwirkung (wie bei Kremierungen oder Feuerbestattungen)</td>
</tr>
</tbody>
</table>

Tab. 101: Diagenetisch entstandene Kristall-Typen von biogenem Apatit nach Reiche et al. (2002)

Am häufigsten liegt diagenetisch verändertes Knochenmineral in nadelförmiger Struktur vor (Reiche et al. 2002, Berna et al. 2004). Nun ist die Frage, ob die höhere Kristallinität oder die Einlagerung von Fremdelementen in den Knochen für die Änderung der Farbsprägung bei den Apatitlyophilisaten der Typ-B- und der Typ-C-Proben verantwortlich sind. Eine Umgestaltung der Kristallstruktur des biogenen Apatits in den Kristallen des Typ III (Tab. 101) bewirkt keine Änderung der violetten Fluoreszenz (siehe Schleuder 2007). Nun besteht zwar die Möglichkeit, dass die nadelförmige Kristallstruktur die Fluoreszenzeigenschaften der Kristalle verändert, wahrscheinlicher scheint jedoch die Farbänderung aufgrund der

Dass Bakterien eine Veränderung der Fluoreszenzfärbung in verschiedenen Geweben bewirken können, wurde bereits 1911 von Stübel festgestellt. Er schreibt, dass normalerweise blau fluoreszierende Gewebe, bei beginnender Fäulnis ein eher grünliches Licht zeigen.

Am häufigsten sind braune Farbanteile der Fluoreszenz in den periostalen (38%) und endostalen Bereichen (34%) eines Knochens zu finden. Im mittleren Bereich der untersuchten Knochenstücke zeigen sich nur in 25% der Proben braune Anteile der Fluoreszenz. Diese Tatsache stimmt mit der Beobachtung überein, dass mikrobieller Befall häufiger in den Randbereichen eines kompakten Knochens auftritt als in der Mitte (z. B. Harbeck 2007). Allerdings ist Bakterienbefall im endostalen Bereich des UV-Untersuchungsmaterials häufiger (35%) als im periostalen (26%). Deshalb muss davon

Andererseits könnten die Korrelationen der braunen und der lila Fluoreszenz mit dem Bakterienbefall auch einfach darauf zurückzuführen sein, dass ein wesentlich größerer Anteil der hier untersuchten Proben dem histologischen Typ B zuzuordnen sind als dem histologischen Typ C. Und da die meisten der bakterienbefallenen Knochen durch Kontamination mit exogenem Material und Kollagenabbau gekennzeichnet sind, ist im Gesamtmaterial die braune und die lila Fluoreszenz am häufigsten in Typ-B-Proben zu finden.

Eine Entscheidung zwischen den verschiedenen Methoden ist mit dem aktuellen Forschungsstand nicht möglich. Weitere Untersuchungen sind erforderlich (siehe Punkt 5.6.5).

Wahrscheinlich tritt die gelbliche Fluoreszenz des Knochens an den Stellen auf, an denen kein Kollagen mehr vorhanden ist und an denen das Knochenmineral bereits von diagenetischen Veränderungen betroffen ist. Nicht diagenetisch verändertes Knochenmineral scheint violett zu fluoreszieren (siehe oben). Da Bioapatit aber durch eine Vielzahl von Substitutionen gekennzeichnet sein und je nach anwesenden Elementen seine Fluoreszenzfärbe ändern kann (Reisfeld et al. 1996), ist es wahrscheinlich, dass gelbe Fluoreszenzanteile auf eine veränderte Mineralphase hindeuten. Es besteht die Möglichkeit, dass die gelbe Fluoreszenz durch den Einbau von Substituenten in die mineralische Matrix zustande kommt, im Gegensatz zur braunen Fluoreszenz, die eher auf die Anwesenheit von Fremdelementen hindeutet, die frei im Knochen vorliegen oder auf ein Vorkommen von exogenem Material.

Werden die Farbausprägungen der Fluoreszenz am Knochenquerschnitt mit den Farbausprägungen des Knochenpulvers verglichen, zeigen sich gewisse Ähnlichkeiten. Es muss bedacht werden, dass die Fluoreszenzerscheinungen durch die Pulverisierung homogener wirken als am Knochenquerschnitt. Das Knochenpulver zeigt häufig eine braune Fluoreszenz, die auf das Auge entweder ausschließlich braun wirkt oder Beimischungen von gelb oder rosa zeigt (40% der untersuchten Fälle). Eine ausschließlich hellblaue Fluoreszenz ist in 24% der untersuchten Proben zu finden. Weißliche Fluoreszenz mit leichten Beimischungen anderer Farben in 18% der Fälle zu beobachten. Grau ist in 14% der Fälle zu
sehen, wobei es auch Beimischungen von Gelb enthalten kann. Die seltenste Farbausprägung des Knochenpulvers ist ein reines Lila (4%). Die Vielfalt der Mischfarben ist jedoch zu komplex, um die genauen Ursachen herauszufiltern zu können. Hierzu wäre zunächst ein objektives System zur Beurteilung der Fluoreszenzfärben nötig und weiterhin eine genaue Untersuchung der mineralischen Phase jeder Probe auf die Menge der in ihr enthaltenen Elemente (siehe auch später unter Punkt 5.6.5).

5.6.2 Diskussion der Ergebnisse auf mikro- und ultrastruktureller Ebene und ihre Zusammenhänge

Im folgenden Kapitel sollen die Ergebnisse der Untersuchungen auf den verschiedenen Ebenen miteinander verknüpft und ihre Zusammenhänge diskutiert werden. Dazu folgt zunächst eine Diskussion der Ergebnisse der mikrostrukturellen Untersuchungen und anschließend der Ergebnisse der Gelatine- und Apatitextraktionen, der Aminosäureanalyse und der Röntgenfluoreszenzanalyse (ultrastrukturelle Ebene).

Mikrostrukturelle Ebene

Auf mikrostruktureller Ebene wurden der Histologische Index (HI), der Doppelbrechungsindex (DBI), der Bakterienbefall, das Auftreten von Mikrofissuren in mikrostrukturell gut erhaltenem Knochen und von Verfärbungen unter Strukturverlust untersucht.

Histologischer Index (HI)

Rändern stärker ist als in der Mitte (siehe Punkt 4.1), was ebenfalls für diese Theorie spricht. Weiterhin zeigen einige Proben aus Gürütepe und Göbekli Tepe intermediäre Werte bezüglich des histologischen Index. Dabei handelt es sich um Knochenproben, die fast 10000 Jahre im Boden liegen. Hier muss eine andere Ursache als die Unterbrechung der bakteriellen Dekomposition durch die Ausgrabung angenommen werden.

Doppelbrechungsindex (DBI)

Bakterienbefall

Allerdings ist bei 6 von 10 Tierknochen (60%) in dieser Arbeit nur ein histologischer Index von 1 (schlechter Erhaltungsgrad) zu finden und lediglich zwei der Tierknochen zeigen einen HI von 3 (20%), so dass die Aussage von Jans et al. (2004) hier nicht bestätigt werden kann.

Mikrofissuren und Verfärbung unter Strukturerhalt

Die andere Möglichkeit sind Verfärbungen durch sekundäre Mineralisierungen, was unter dem Lichtmikroskop zu einem bräunlichen, häufig wenig lichtdurchlässigen Erscheinungsbild führt (Piepenbrink 1986). Diese Art von Verfärbungen zeigen sich am deutlichsten in den Knochenproben aus Minshat Abu Omar, die ihren organischen Anteil weitgehend verloren haben und wahrscheinlich eine stark veränderte mineralische Phase aufweisen. Näheres dazu später unter dem Punkt „Röntgenfluoreszenzanalyse“. Die braunen Verfärbungen in diesen Knochen sind deckungsgleich mit den Stellen, an denen keine Doppelbrechung mehr vorliegt (siehe Abb. 34).
Ultrastrukturelle Ebene: Auswertung der Kollagen- und Apatiteigenschaften

Kollagengehalt aus Gelatineextraktion

Kontaminierung durch Mikroorganismen entspricht. In den Proben, die dem histologischen Typ B zugeordnet werden ist in 80% der Fälle ein kritischer Kollagenerhalt unter 2% zu finden. Und auch in den Proben des anfänglich undefineden Typs, der später dem Typ B zugeordnet werden konnte, liegt der Kollagengehalt in 7 von 8 untersuchten Proben unter 2%. In insgesamt 7 Proben der beiden Gruppen wird der Kollagengehalt aufgrund der Menge des extrahierten organischen Anteils als gut eingestuft (>2%). Allerdings liegt der Wert nie höher als 3%.

wurden die Gräber in Minshat Abu Omar jahreszeitenabhängig regelmäßig vom Nil überflutet (siehe Punkt 2.3.4), was wahrscheinlich zusammen mit hohen Temperaturen und und dem hohen Salzgehalt des Bodens zu oben beschriebener Auslaugung des chemisch degradierten Kollagens führte (Grupe 1995).

Kollagenerhalt zufolge Aminosäureanalyse

Verlust und Erhaltung einzelner Aminosäuren in bodengelagertem Knochen

Bei der Untersuchung der Korrelation zwischen den Konzentrationen der verschiedenen Aminosäuren kristallisieren sich zwei große Gruppen von Aminosäuren heraus. Liegen Glycin, Alanin und β-Alanin in erhöhter Konzentration vor, sind dafür die Konzentrationen von Aspartat, Threonin, Serin, Glutamat, Phenylalanin, Histidin, Cystin und Methionin erniedrigt. Tyrosin und Ornithin sind die einzigen Aminosäuren, deren Konzentration mit keiner der anderen korreliert. Es ist also davon auszugehen, dass Asp, Thr, Ser, Glu, Phe, His, Cystin und Met im untersuchten UV-Material zuerst verloren gingen, während Glycin, Alanin

Beginn der Arbeit keinem der histologischen Typen zugeordnet werden konnte, wird hier zum histologischen Typ B gezählt. Bei Extr 12 liegt wie bei den Typ-B-Proben Bakterienbefall vor und außerdem weist der undefinierte histologische Typ die größeren Ähnlichkeiten mit Typ B auf.

Die Aminosäureanalyse ergibt also folgendes Bild: Isoleucin, Valin und Glycin liegen in allen untersuchten Proben häufig in erhöhter Konzentration vor, was darauf hindeutet, dass diese

<table>
<thead>
<tr>
<th></th>
<th>Gly</th>
<th>Ala</th>
<th>Val</th>
<th>Ile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gly</td>
<td>1</td>
<td>0,68</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ala</td>
<td>0,68</td>
<td>1</td>
<td>0,69</td>
<td>-</td>
</tr>
<tr>
<td>Val</td>
<td>-</td>
<td>0,69</td>
<td>1</td>
<td>0,54</td>
</tr>
<tr>
<td>Ile</td>
<td>-</td>
<td>-</td>
<td>0,54</td>
<td>1</td>
</tr>
</tbody>
</table>

Tab. 102: Korrelationen der Konzentrationen von Glycin, Alanin, Valin und Isoleucin nach Pearson.

Sarcosin tritt bis auf einige Ausnahmen weder im Probenmaterial noch im Referenzmaterial auf. Sarcosin ist ein Methylierungsprodukt von Glycin und kommt ebenfalls in Actinomycinen vor. Actinomycine sind Peptidantibiotika, die von Actinobakterien hergestellt werden. Da der höchste Wert von Sarcosin in Anat 76/03 zu finden ist (rezenter Knochen, in

Wann entspricht die organische Phase einer Probe trotz diagenetischer Vorgänge noch Kollagen Typ I?

Proben mit abweichenden Aminosäureprofilen und ein weiterer „Ausreißer“

Bei Betrachtung der Konzentrationen der einzelnen Aminosäuren in den Boxplots des Ergebnisteils (Punkt 4.6.4) heben sich vier Proben stets deutlich vom Rest des Probenmaterials ab und werden häufig als „Ausreißer“ klassifiziert: Knochen 5, Extr 10, Extr 11 und Anat 76/03. Diese sollen im Folgenden näher diskutiert werden.

Fazit

chemische Ursache gefunden werden. Eine andere Möglichkeit wäre der Vorgang, dass Aminosäuren üblicherweise geringer Konzentration nachgewiesen werden können, in Komplexbildungen oder Kondensationsreaktionen mit exogenen oder auch endogenen Stoffen verwickelt sind, so dass sie nicht im vollen Umfang hydrolysiert werden.
Es muss immer bedacht werden, dass bei bodengelagerten Proben lediglich der Status quo des Diagenesestatus festgestellt werden kann und nicht mehr die Prozesse nachvollzogen werden, die dazu geführt haben.

Mineralanteil aus der Apatitextraktion

Der Anteil von Apatit in Gewichtsprozent eröffnet nicht besonders viele Aussagemöglichkeiten. Er gibt lediglich in sehr begrenztem Maße Hinweise auf den

Abb. 195: Kristallbildung in einem physiologischen Hohlraum der Probe 111 (Wildrind), die dem histologischen Typ C zugeordnet ist. Differentialinterferenzkontrast.
Zusammensetzung der Mineralphase nach RFA

Auch bei anderen Apatit-Extraktionen in unserem Labor traten die charakteristischen rosa-pinken Verfärbungen auf. Da Mangan häufig durch Sicker- oder Grundwasser in bodengelagerten Knochen gelangt, sind erhöhte Manganwerte sicherlich keine Seltenheit.
5.6.3 Diagenesetypen und ihre Eigenschaften im vorliegenden Untersuchungsmaterial

In der folgenden Tabelle (Tab. 103) sind alle in der vorliegenden Arbeit untersuchten Eigenschaften für alle Ebenen des Knochens den oben genannten Diagenesetypen zugeordnet.

<table>
<thead>
<tr>
<th>Merkmal</th>
<th>Typ A (n=51)</th>
<th>Typ B (n=58)</th>
<th>Typ C (n=24)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HI</td>
<td>Mehr als 2/3 eines Knochenquerschnittes sind gut erhalten (100%)</td>
<td>Weniger als 2/3 eines Knochenquerschnittes sind gut erhalten (100%)</td>
<td>Mehr als 2/3 eines Knochenquerschnittes sind gut erhalten (100%)</td>
</tr>
<tr>
<td>DBI</td>
<td>Doppelbrechung wie in frischem Knochen (100%)</td>
<td>Keine oder reduzierte Doppelbrechung (100%)</td>
<td>Keine oder reduzierte Doppelbrechung (100%)</td>
</tr>
<tr>
<td>Bakterienbefall</td>
<td>Weniger als 1/3 eines Knochenquerschnittes ist von Bakterienbefall betroffen (94%)</td>
<td>Mehr als 1/3 des Knochenquerschnittes ist von Bakterienbefall betroffen (100%)</td>
<td>Meist weniger als 1/3 eines Knochenquerschnittes ist von Bakterienbefall betroffen (71%)</td>
</tr>
<tr>
<td>BI</td>
<td>Mehr als 2/3 des Knochenquerschnittes zeigen hellblaue Fluoreszenz wie in frischem Knochen (98%)</td>
<td>weniger als 2/3 des Knochenquerschnittes zeigen hellblaue Fluoreszenz wie in frischem Knochen (91,4%)</td>
<td>Alle Werte von BI sind etwa gleich oft vertreten (BI =1 bei 29%; BI = 2 bei 38%; BI = 3 bei 33%)</td>
</tr>
<tr>
<td>Braune Fluoreszenz</td>
<td>Meist keine brauen Farbemischungen der Fluoreszenz unter UV-Licht (92%)</td>
<td>Sehr häufig braune Farbemischungen unter UV-Licht (78%)</td>
<td>Meist keine brauen Farbemischungen unter UV-Licht (75%)</td>
</tr>
<tr>
<td>Lila Fluoreszenz</td>
<td>Meist keine lila Farbemischungen unter UV-Licht (90%)</td>
<td>Sehr häufig lila Farbemischungen unter UV-Licht (71%)</td>
<td>Meist keine lila Farbemischungen unter UV-Licht (63%)</td>
</tr>
<tr>
<td>Gelbe Fluoreszenz</td>
<td>Meist keine gelben Farbemischungen unter UV-Licht (96%)</td>
<td>Meist keine gelben Farbemischungen unter UV-Licht (78%)</td>
<td>Gelbe Farbemischung (58%) unter UV-Licht etwa so häufig wie keine gelbe Farbemischung (42%)</td>
</tr>
<tr>
<td>Fluoreszenz des Knochenpulvers</td>
<td>Hellblaue Fluoreszenz des Knochenpulvers (92%)</td>
<td>Meist andere Farben (75%) als weiß oder hellblau; selten weiße Fluoreszenz (19%)</td>
<td>Weiße Fluoreszenz (27%) oder andere Farben (73%); nie hellblau</td>
</tr>
<tr>
<td>Fluoreszenz des Kollagenlyophilisates</td>
<td>Meist hellblaue Fluoreszenz (83%)</td>
<td>Alle Typen der Fluoreszenz des Kollagenlyophilisates vertreten</td>
<td>- (kein Kollagen gewinnbar)</td>
</tr>
<tr>
<td>Merkmal</td>
<td>Typ A (n=51)</td>
<td>Typ B (n=58)</td>
<td>Typ C (n=24)</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Fluoreszenz des Apatitlyophilisates</td>
<td>Meist violette Fluoreszenz (92%)</td>
<td>Violette (53%) und helllila Fluoreszenz (47%) in gleichen Anteilen, keine hellblaue Fluoreszenz</td>
<td>Häufig hellblaue (55%), seltener helllila (27%) oder violette Fluoreszenz (18%)</td>
</tr>
<tr>
<td>Durchschnittlicher Kollagenanteil in %</td>
<td>3,6% (+/-2,1%)</td>
<td>0,9% (+/-0,9%)</td>
<td>0,2% (+/-0,4%)</td>
</tr>
<tr>
<td>Kollagenanteil in Bereiche geteilt</td>
<td>Meist guter Erhalt >2% (77%)</td>
<td>Meist kritischer Erhalt <2% (82%)</td>
<td>kritischer Erhalt <2% (100%); oft gar kein Kollagen (58%)</td>
</tr>
<tr>
<td>Durchschnittlicher Apatitanteil in %</td>
<td>45% (+/-5,7%)</td>
<td>63% (+/-11%)</td>
<td>63% (+/-12%)</td>
</tr>
<tr>
<td>Apatitanteil in Bereiche geteilt</td>
<td>Niedriger Mineralanteil <55% (100%)</td>
<td>Meist normaler Mineralanteil 55-70% (62%), aber auch niedriger (14%) und hoher (24%) Mineralanteil</td>
<td>Alle Klassen von Mineralanteilen in etwa gleicher Häufigkeit; geringer Mineralanteil <55% am seltensten (22%)</td>
</tr>
<tr>
<td>Durchschnitt. Anteil an Taurin in %</td>
<td>0,021% (+/-0,024%)</td>
<td>0,003% (+/-0,010%)</td>
<td>-</td>
</tr>
<tr>
<td>Durchschnitt. Anteil an Isoleucin in %</td>
<td>1,6% (+/-0,12%)</td>
<td>1,5% (+/-0,08%)</td>
<td>-</td>
</tr>
<tr>
<td>Durchschnitt Anteil an Arginin in %</td>
<td>8,5% (+/-0,62%)</td>
<td>7,6% (+/-0,79%)</td>
<td>-</td>
</tr>
</tbody>
</table>

5.6.4 Aussagemöglichkeiten der Fluoreszenzuntersuchungen

Wie bereits mehrfach erwähnt, werden umfangreiche paläohistologische Analysen an großen Skelettserien eher selten durchgeführt. Das liegt unter Anderem daran, dass mit der Herstellung der Präparate ein zu großer Arbeitsaufwand verbunden ist, nur um anschließend möglicherweise festzustellen, dass die Aussagekraft der Untersuchung aufgrund mikrostruktureller Dekomposition sehr gering ist. Auch für andere Analysen, die an der kollagenen oder der mineralischen Phase des Knochens vorgenommen werden, wie beispielsweise Spurenelementuntersuchungen oder Isotopenuntersuchungen, wäre eine Möglichkeit wichtig, den Erhaltungsgrad des Knochens bzw. seiner Hauptanteile vor solchen zeit- und materialaufwändigen Untersuchungen abzuschätzen.
Die diesbezügliche Erforschung der UV-Fluoreszenz des Knochens und seiner Bestandteile steht noch ganz am Anfang und muss gerade hinsichtlich ihrer Ursachen noch erheblich vertieft werden. Doch schon jetzt liefert die Untersuchung der UV-Fluoreszenz wichtige Hinweise auf den Erhaltungsgrad der verschiedenen Bestandteile eines Knochens. Es lassen sich zumindest Anhaltspunkte für die Durchführbarkeit bestimmter Analysen gewinnen. Das Testen der UV-Fluoreszenz am Knochenquerschnitt ist zudem eine sehr einfache und schnelle Methode. Die Aussagemöglichkeiten der hier vorgenommenen UV-Untersuchungen sollen im Folgenden dargestellt werden.

Aussagemöglichkeiten der UV-Fluoreszenz am Knochenquerschnitt bezüglich der mikrostrukturellen Merkmale eines Knochens

Der Blauindex (BI) der Fluoreszenz am Knochenquerschnitt korreliert relativ eng mit verschiedenen histologischen Indices ($r = 0.58-0.80$). Dazu zählen der Histologische Index (HI), der Doppelbrechungsindex (DBI) und der Bakterienbefall. Die höchste Korrelation von 0,80 ist zwischen BI und DBI zu finden. Diese Tatsache zeigt, wie eng der Zusammenhang zwischen dem Kollagenanteil eines Knochens und der hellblauen Fluoreszenz eines Knochens sein muss, da eine intakte Doppelbrechung im mikrostrukturellen Querschnitt nur bei einer ausreichenden Menge Kollagen im Knochen auftritt. Fluoresziert der Knochen hellblau, ist demnach sehr sicher davon auszugehen, dass seine Mikrostruktur diagenetisch weitgehend unverändert vorliegt. Die Knochen könnten darüber hinaus dem histologischen Typ A zugeordnet werden, da intakte Doppelbrechung fast nur in diesem Diagenesetyp auftritt.

Aussagemöglichkeiten der UV-Fluoreszenz bezüglich der ultrastrukturellen Eigenschaften eines Knochens

5.6.5 Forschungsbedarf auf dem Gebiet der UV-Fluoreszenz von Knochen

Wie sich in der vorliegenden Arbeit immer wieder zeigt, gibt es bezüglich der Fluoreszenzerscheinung am Knochen und seinen Bestandteilen noch großen Erklärungsbedarf. Die Ursache der hellblauen Fluoreszenz konnte hier zwar durch die sich mit den Ergebnissen aus verschiedenen Untersuchungen ergebenden Zusammenhänge mit großer Wahrscheinlichkeit auf den Kollagenanteil zurückgeführt werden, aber was das Auftreten anderer Farben betrifft, muss es bei Vermutungen bleiben. Zukünftig bedarf es also weiterer Forschung über die Fluoreszenz des Knochens. Da sich in der vorliegenden Arbeit deutlich zeigt, dass die verschiedenen Fluoreszenzerscheinungen wertvolle Hinweise auf den Erhaltungszustand eines Knochens liefern können (siehe Punkt 5.6.4), ist die Eignung der UV-Methode als Screening-Instrument nicht zu bestreiten. Schon jetzt kann sie die Auswahl von Knochenproben aus großen Skelettserien erleichtern, wenn es
darum geht, eine intakte Mikrostruktur bzw. eine ausreichende Ausbeute an Kollagen oder DNA in einem bodengelagerten Knochen vorab zu erkennen (siehe auch Harbeck 2007). Weitere Forschungen können vielleicht ermöglichen, die Qualität der organischen und der anorganischen Phase genauer zu beurteilen, was enorme Vorteile bezüglich der Planung aufwändiger Isotopenanalysen aus der Gelatinephase bzw. aus dem strukturellen Carbonat des Knochens bringen würde.

Um den Einfluss von Bakterienbefall eines Knochens auf die Fluoreszenz zu untersuchen, sollten Knochen künstlich mit Bakterien besiedelt und anschließend ebenfalls Fluoreszenzuntersuchungen aller Bestandteile vorgenommen werden.

5.7 Schlussfolgerung

Die Paläohistologie gilt heute gewissermaßen als „unmoderne“ Methode in der Anthropologie. Sie bleibt weit hinter populären Methoden wie DNA-Analysen zurück. Mit dieser Dissertation sollen die klassischen mikroskopischen Techniken in die moderne

Mit der Anwendung von UV-Licht sollte zunächst lediglich eine Methode zur vorgezogenen Feststellung des mikrostrukturrellen Erhaltungsgrades eines Knochens entwickelt werden. Jedoch zeigte sich während der Ursachenforschung der charakteristischen Fluoreszenzerscheinungen, dass die Fluoreszenz des Knochenquerschnittes weitere wichtige Hinweise auf die diagenetischen Veränderungen eines Knochens bezüglich seines Kollagenanteils und seiner DNA (siehe auch Harbeck 2007) liefern kann. Somit gewinnt die Untersuchung der Knochenfluoreszenz in der Anthropologie große Bedeutung als Screeningmethode, welche die Anwendung kostenintensiver Analysemethoden auf diagenetisch stark verändertes, also ungeeignetes Material, verhindern hilft.
Zusammenfassung

Mit den erhobenen mikrostrukturellen Parametern werden drei etablierte histologische Altersbestimmungsmethoden überprüft und erstmals Regressionsgleichungen zur Berechnung des Individualalters an archäologischem, bodengelagerten Material erstellt.

zuverlässigen Merkmalen für ein hohes Lebensalter in der menschlichen Knochenmikrostruktur, die zukünftig bei der Identifikation und Altersbestimmung von alten archäologischen Individuen helfen können. Für die Untersuchung der Fluoreszenz von kompaktem Knochen unter langwelligem UV-Licht wird zusätzlich verschiedenes Knochenmaterial verwendet, dessen Herkunft oder Liegezeit teilweise unbekannt sind.

7 Literatur

Brenton BP, Paine RR (2005): The paleopathology of pellagra and malnutrition: investigating the impact of prehistoric and historical dietary transitions to maize. American Journal of Physical Anthropology 40(Suppl.): 77-78

Collier S: The influence of economic behaviour and environment upon robusticity of the post-cranial skeleton: a comparison of Australian Aborigines and other populations. Archaeology in Oceania 24: 13-16

Evans FG (1976): Mechanical Properties and Histology of Cortical Bone from Younger and Older Men. The Anatomical Record 185: 1-12

442

Labuske K (2007): Einführung in die Datenanalyse mit SPSS. Skript zum PC-Kurs an der Eberhard Karls Universität Tübingen

Lippitsch A (2007): Funktionsmorphologischer Einfluss auf die Ausprägung und Charakteristika der menschlichen Zementapposition in Bezug auf die Anwendung der TCA-Methode. Diplomarbeit an der Fakultät für Biologie an der Ludwig-Maximilians-Universität München

Stout SD 1982: The Effects of Long-Term Immobilization on the Histomorphology of Human Cortical Bone. Calcified Tissue International 34: 337-342

8.1 Alphabetisches Verzeichnis der Abkürzungen

AkF Aktivierungsfrequenz
Ala Alanin
ANOVA Analysis of Variance
Arg Arginin
ASA Aminosäureanalyse
Asp Asparaginsäure/Aspartat
B Braun
Ba Barium
b-Ala ß-Alanin
BFR Knochenbildungsrate
BLM Blauindex
BMU Body-Mass-Index
BREN basic multicellular unit
BRU bone remodelling unit
BSU basic structural unit
C Cyanid
Cys Cystein
D Dunkelblau
DGE Deutsche Gesellschaft für
End endostal
F Fluor
FLU Fluorid
G Gelb
GABA γ-Amino-Buttersäure
Glu Glutaminsäure/Glutamat
Gly Glycin
HavA Fläche eines Havers’schen Kanals
HI Histologischer Index
HIST Histidin
Ile Isoleucin
Jhd Jahrhundert
Komp Kompaktadicke
L Lila
LAG Layer of arrested growth
Leu Leucin
Lys Lysin
M männlich
MW Mittelwert
NCP Nicht-kollagenes-Protein
Nr. Nummer
O Oxydant
ODD Osteonenpopulationsdichte
p Signifikanz
ppm parts per million
r Korrelationskoeffizient
r² Bestimmtheitsmaß
S CO2 Carbonat
SD Standardabweichung
Ser Serin
Sr Strontium
SÜ Sauerstoff
T Tyr Tyrosin
TOD Tod
U Uran
W weiblich
WBG Wasserwage
WWD Wasserdauer
X Xylophansäure
Z Zellverquellung
Zub Versuchsbereitung
ZUS Zusatz
ZUS Zusatztabelle

8.2 Herstellung der Lösungen bzw Puffer

250 ml 0,5 molare EDTA-Lösung (pH = 7,2)
46,53g EDTA-Pulver (Fa. ROTH) in 250ml Aqua dest. geben (Lösung ist milchig weiß)
Anschließend mit NaOH-Plätzchen (Fa MERCK) auf einen pH-Wert von 7,2 einstellen

8.3 Listen zum Materialteil

8.3.1 Tabellarisches Verzeichnis der Individualdaten der Basel-Serie

<table>
<thead>
<tr>
<th>Nr</th>
<th>Sex</th>
<th>Verifizierung des Geburtsdatums</th>
<th>Geburt</th>
<th>Tod</th>
<th>Alter</th>
<th>Femurseite</th>
<th>Stand</th>
<th>Krankheiten bzw. Todesursachen</th>
</tr>
</thead>
<tbody>
<tr>
<td>600</td>
<td>m</td>
<td>Geburtsdatum 1785,7</td>
<td>1854,3</td>
<td>68,5</td>
<td>rechts</td>
<td>Pfründer 1° Cl., vormals Grieser</td>
<td>Wassersucht</td>
<td></td>
</tr>
<tr>
<td>601</td>
<td>w</td>
<td>Geburtsdatum 1827,2</td>
<td>1854,1</td>
<td>27</td>
<td>rechts</td>
<td>Zettlerin</td>
<td>Lungenschwindsucht</td>
<td></td>
</tr>
<tr>
<td>602</td>
<td>m</td>
<td>Geburtsdatum 1798,7</td>
<td>1854,7</td>
<td>56</td>
<td>rechts</td>
<td>Schuhmacher</td>
<td>Nervenfieber</td>
<td></td>
</tr>
<tr>
<td>603</td>
<td>m</td>
<td>Geburtsdatum 1827,6</td>
<td>1854,8</td>
<td>27</td>
<td>rechts</td>
<td>Seidenfärb.</td>
<td>Lungenschwindsucht</td>
<td></td>
</tr>
<tr>
<td>604</td>
<td>w</td>
<td>Geburtsdatum 1829,7</td>
<td>1854,8</td>
<td>25</td>
<td>links</td>
<td>Magd</td>
<td>Lungentzündung</td>
<td></td>
</tr>
<tr>
<td>605</td>
<td>m</td>
<td>Geburtsdatum 1841,4</td>
<td>1865,7</td>
<td>24,5</td>
<td>rechts</td>
<td>Spengler</td>
<td>Typhus, Peritonitis</td>
<td></td>
</tr>
<tr>
<td>606</td>
<td>m</td>
<td>keine Verifizierung</td>
<td>1786,7</td>
<td>1853,5</td>
<td>67</td>
<td>rechts</td>
<td>Pfründer, vorm. Schneid.</td>
<td>Auszehrung</td>
</tr>
<tr>
<td>607</td>
<td>w</td>
<td>Geburtsdatum 1806,6</td>
<td>1853,5</td>
<td>45</td>
<td>links</td>
<td>Pfründerin, Tochter Heinrich Hess, Papierer</td>
<td>Auszehrung, Herzvergrösserung</td>
<td></td>
</tr>
<tr>
<td>608</td>
<td>w</td>
<td>Geburtsdatum 1824,2</td>
<td>1854,1</td>
<td>30</td>
<td>rechts</td>
<td>Dienstmagd</td>
<td>Herzfehler</td>
<td></td>
</tr>
<tr>
<td>609</td>
<td>m</td>
<td>Geburtsdatum 1790,1</td>
<td>1848,6</td>
<td>58,5</td>
<td>rechts</td>
<td>Steinhaugeress.</td>
<td>Schwindsucht</td>
<td></td>
</tr>
<tr>
<td>610</td>
<td>w</td>
<td>Geburtsdatum 1817,0</td>
<td>1846,8</td>
<td>30</td>
<td>links</td>
<td>Lohnarbeiterin und Näherin</td>
<td>Nervenfieber</td>
<td></td>
</tr>
<tr>
<td>611</td>
<td>m</td>
<td>Geburtsdatum 1829,8</td>
<td>1853,5</td>
<td>23,5</td>
<td>rechts</td>
<td>Schuhmacher</td>
<td>Nervenfieber</td>
<td></td>
</tr>
<tr>
<td>612</td>
<td>m</td>
<td>keine Verifizierung</td>
<td>1781,5</td>
<td>1854,4</td>
<td>73</td>
<td>rechts</td>
<td>Landmann</td>
<td>Altersschwäche</td>
</tr>
<tr>
<td>613</td>
<td>m</td>
<td>Geburtsdatum 1777,8</td>
<td>1854,0</td>
<td>76,5</td>
<td>rechts</td>
<td>Pfründer, vorm. Fabrikarbeiter</td>
<td>Altersschwäche, Brustfellentzündung</td>
<td></td>
</tr>
<tr>
<td>614</td>
<td>w</td>
<td>Taufdatum 1799,7</td>
<td>1853,8</td>
<td>54</td>
<td>links</td>
<td>Ehefrau von</td>
<td>Vereiterung u. Brand der</td>
<td></td>
</tr>
<tr>
<td>Nr</td>
<td>Sex</td>
<td>Verifizierung des Geburtsdatums</td>
<td>Geburt</td>
<td>Tod</td>
<td>Alter</td>
<td>Femursseite</td>
<td>Stand</td>
<td>Krankheiten bzw. Todesursachen</td>
</tr>
<tr>
<td>-----</td>
<td>-----</td>
<td>---------------------------------</td>
<td>--------</td>
<td>-----</td>
<td>-------</td>
<td>-------------</td>
<td>-------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>615</td>
<td>m</td>
<td>Geburtsdatum 1792,8 1854,3</td>
<td>61,5</td>
<td>rechts Scherenschleifer</td>
<td>Lungentzündung</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>616</td>
<td>m</td>
<td>Geburtsdatum 1799,4 1859,1</td>
<td>59,5</td>
<td>rechts Pfründer, vorm.Hafner</td>
<td>Lungenschwindsucht</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>617</td>
<td>m</td>
<td>keine Verifizierung 1826,8 1861,0</td>
<td>34,5</td>
<td>rechts Kutscher</td>
<td>Narbenfieber</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>618</td>
<td>m</td>
<td>Geburtsdatum 1796,4 1854,0</td>
<td>57,5</td>
<td>rechts Metzer, später Pflastergeselle</td>
<td>Lungenschwindsucht</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>619</td>
<td>m</td>
<td>Taufdatum 1803,4 1854,0</td>
<td>50,5</td>
<td>links Handlungsscommus</td>
<td>Hirnverwirrung</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>620</td>
<td>m</td>
<td>Geburtsdatum 1818,5 1853,5</td>
<td>35</td>
<td>links Steinhauser</td>
<td>Auszehrung</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>621</td>
<td>m</td>
<td>keine Verifizierung 1817,5 1855,1</td>
<td>37,5</td>
<td>links Steinhauser</td>
<td>Lungentzündung</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>622</td>
<td>w</td>
<td>keine Verifizierung 1783,5 1855,1</td>
<td>71,5</td>
<td>links Wittwe von Joh.Wagn.</td>
<td>Schlagfluss</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>623</td>
<td>m</td>
<td>keine Verifizierung 1804,5 1850,3</td>
<td>46</td>
<td>rechts Seiler</td>
<td>Lungenschwindsucht</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>624</td>
<td>m</td>
<td>keine Verifizierung 1780,5 1855,5</td>
<td>75</td>
<td>rechts Maurer</td>
<td>Unfall: Kopfverletzung</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>625</td>
<td>w</td>
<td>keine Verifizierung 1816,5 1846,3</td>
<td>30</td>
<td>links Dienstmagd</td>
<td>Narbenfieber</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>626</td>
<td>m</td>
<td>Taufdatum 1806,8 1848,5</td>
<td>41,5</td>
<td>rechts früher Steindrucker, dann Taglöüber</td>
<td>Schwindsucht</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>627</td>
<td>w</td>
<td>Taufdatum 1789,6 1848,1</td>
<td>58,5</td>
<td>rechts Rathboten-Wittwe</td>
<td>Lungentzündung</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>628</td>
<td>m</td>
<td>Geburtsdatum 1805,4 1852,4</td>
<td>47</td>
<td>links Buchbinder</td>
<td>Zangenkrebs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>629</td>
<td>m</td>
<td>Taufdatum 1772,1 1849,3</td>
<td>77</td>
<td>links Pfründer, vorm. Trosteur und Stübenverwalter Zum Bären</td>
<td>Altersschwäche</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>630</td>
<td>w</td>
<td>Geburtsdatum 1784,9 1864,5</td>
<td>79,5</td>
<td>links Magd</td>
<td>Schwindsucht</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>631</td>
<td>w</td>
<td>Geburtsdatum 1756,7 1849,2</td>
<td>92,5</td>
<td>links Schnederswittwe</td>
<td>Schwindsucht</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>632</td>
<td>w</td>
<td>Geburtsdatum 1804,8 1848,0</td>
<td>43</td>
<td>links Tochter v. Joh. Peter Meyer sel., Strumpfwieber (war stumm)</td>
<td>Schwindsucht</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>633</td>
<td>m</td>
<td>Taufdatum 1812,9 1855,3</td>
<td>42,5</td>
<td>links Knecht</td>
<td>Lungentzündung</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>634</td>
<td>w</td>
<td>keine Verifizierung 1807,5 1852,3</td>
<td>45</td>
<td>links Fabrikarbeiterin</td>
<td>Lungenschwindsucht</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>635</td>
<td>m</td>
<td>keine Verifizierung 1806,5 1847,5</td>
<td>41</td>
<td>links pensionirter Militair der Standestreppen, verheiratet</td>
<td>Lungentzündung</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>636</td>
<td>m</td>
<td>Taufdatum 1763,2 1846,3</td>
<td>83</td>
<td>links Klingenthalarbeiter, Pfründer</td>
<td>Altersschwäche</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>637</td>
<td>m</td>
<td>Taufdatum 1769,5 1846,4</td>
<td>77</td>
<td>links Fabrikarbeiter</td>
<td>Schlagfluss</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>638</td>
<td>w</td>
<td>keine Verifizierung 1776,5 1847,0</td>
<td>70,5</td>
<td>links Fegerswittwe</td>
<td>Wasserseuche</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>639</td>
<td>w</td>
<td>Geburtsdatum 1829,4 1865,7</td>
<td>36,5</td>
<td>rechts Näherin</td>
<td>Hirnentzündung</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>640</td>
<td>w</td>
<td>keine Verifizierung 1826,4 1850,6</td>
<td>39</td>
<td>links Tabakarbeiterin</td>
<td>Oedema pulmonum</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>641</td>
<td>w</td>
<td>Geburtsdatum 1802,9 1851,7</td>
<td>49</td>
<td>rechts Bernhard,Taglöüberin</td>
<td>Lungenbrand</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>642</td>
<td>m</td>
<td>Geburtsdatum 1829,2 1852,6</td>
<td>23,5</td>
<td>rechts Missionarszögling</td>
<td>Lungenschwindsucht</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>643</td>
<td>w</td>
<td>Geburtsdatum 1812,7 1852,4</td>
<td>40</td>
<td>rechts Bandputzerin</td>
<td>Lungenschwindsucht</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>644</td>
<td>w</td>
<td>keine Verifizierung 1811,1 1852,2</td>
<td>41</td>
<td>links Seidenfarbervers</td>
<td>Horizontzündung</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>645</td>
<td>m</td>
<td>Geburtsdatum 1812,8 1846,3</td>
<td>33,5</td>
<td>links Steinhaugersel</td>
<td>Schwindsucht</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>646</td>
<td>m</td>
<td>Geburtsdatum 1819,2 1848,2</td>
<td>29</td>
<td>links Buchbinder</td>
<td>Narbenfieber</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>647</td>
<td>w</td>
<td>Taufdatum 1772,2 1852,6</td>
<td>80,5</td>
<td>rechts Wittwe von Jakob Bienz, Kornmesser, Pfründerin 1° Cl.</td>
<td>Altersschwäche</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>648</td>
<td>m</td>
<td>Geburtsdatum 1793,1 1852,6</td>
<td>59,5</td>
<td>rechts Klingenthalarbeiter, früher Papierer</td>
<td>Lungentzündung</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>649</td>
<td>m</td>
<td>Taufdatum 1775,2 1852,2</td>
<td>77</td>
<td>links Pfründer, vorm. Kaufhausarbeiter</td>
<td>Altersschwäche</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>650</td>
<td>m</td>
<td>Geburtsdatum 1788,7 1855,3</td>
<td>66,5</td>
<td>rechts Knecht</td>
<td>Schwindsucht</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>651</td>
<td>m</td>
<td>Geburtsdatum 1816,4 1846,3</td>
<td>30</td>
<td>rechts Maurgesell</td>
<td>Schwindsucht</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>652</td>
<td>m</td>
<td>Taufdatum 1777,1 1848,2</td>
<td>71</td>
<td>rechts Holzhauser</td>
<td>Lungentzündung</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>653</td>
<td>m</td>
<td>keine Verifizierung 1811,5 1852,3</td>
<td>41</td>
<td>links Bäcker</td>
<td>Lungentzündung</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>654</td>
<td>w</td>
<td>Geburtsdatum 1778,0 1852,7</td>
<td>74,5</td>
<td>rechts Seilerswittwe</td>
<td>Altersschwäche</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>655</td>
<td>m</td>
<td>Geburtsdatum 1800,1 1852,8</td>
<td>53</td>
<td>rechts Schuster, später Militair</td>
<td>Uninfesten</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>656</td>
<td>m</td>
<td>Taufdatum 1795,1 1855,1</td>
<td>60</td>
<td>links Taglöfner</td>
<td>Lungenbrand</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>657</td>
<td>w</td>
<td>Geburtsdatum 1824,3 1851,8</td>
<td>27,5</td>
<td>rechts Tochter von Joh.Jak.M.</td>
<td>Unterleibsentzündung</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>658</td>
<td>w</td>
<td>Geburtsdatum 1839,4 1865,7</td>
<td>26,5</td>
<td>rechts Magd</td>
<td>Typhus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>659</td>
<td>w</td>
<td>Geburtsdatum 1820,7 1861,0</td>
<td>40,5</td>
<td>links Magd</td>
<td>Schwindsucht</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>660</td>
<td>w</td>
<td>keine Verifizierung 1816,2 1856,7</td>
<td>49,5</td>
<td>links Fabrikarbeiterin</td>
<td>Pneumonia lat. sin.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>661</td>
<td>m</td>
<td>keine Verifizierung 1788,5 1853,1</td>
<td>64,5</td>
<td>rechts Hausschneiter</td>
<td>Magen- und Leberkrebs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>662</td>
<td>m</td>
<td>Geburtsdatum 1823,2 1856,6</td>
<td>42,5</td>
<td>rechts Maler</td>
<td>Tuberculosis pulmon</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>663</td>
<td>m</td>
<td>Geburtsdatum 1842,1 1865,6</td>
<td>23,5</td>
<td>rechts Zimmermann</td>
<td>Typhus abdominalis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>664</td>
<td>m</td>
<td>keine Verifizierung 1817,8 1865,7</td>
<td>48</td>
<td>links Ausläufer</td>
<td>Typhus abdominalis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>665</td>
<td>w</td>
<td>keine Verifizierung 1793,5 1853,4</td>
<td>60</td>
<td>links Klingenthalarbeiterin</td>
<td>Karies</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>666</td>
<td>m</td>
<td>keine Verifizierung 1812,0 1852,0</td>
<td>39</td>
<td>rechts Steinhauser</td>
<td>Beinfluss</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nr</td>
<td>Sex</td>
<td>Verifizierung des Geburtsdatums</td>
<td>Geburt</td>
<td>Tod</td>
<td>Alter</td>
<td>Femurseite</td>
<td>Krankheiten bzw. Todesursachen</td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>-----</td>
<td>---------------------------------</td>
<td>--------</td>
<td>-----</td>
<td>-------</td>
<td>------------</td>
<td>--------------------------------</td>
<td></td>
</tr>
<tr>
<td>667</td>
<td>m</td>
<td>Geburtsdatum</td>
<td>1831,8</td>
<td>1866,3</td>
<td>34,5</td>
<td>links Posamenten</td>
<td>Typhus abdominalis</td>
<td></td>
</tr>
<tr>
<td>668</td>
<td>m</td>
<td>Geburtsdatum</td>
<td>1829,9</td>
<td>1861,1</td>
<td>31</td>
<td>links Kutscher, gewesener Reitknecht bei H Oser, Tierarzt</td>
<td>Nervenfieber</td>
<td></td>
</tr>
<tr>
<td>669</td>
<td>w</td>
<td>Geburtsdatum</td>
<td>1791,8</td>
<td>1865,6</td>
<td>74</td>
<td>rechts Condukteursfrau</td>
<td>Apoplexia</td>
<td></td>
</tr>
<tr>
<td>670</td>
<td>m</td>
<td>Taufdatum</td>
<td>1834,3</td>
<td>1865,6</td>
<td>31,5</td>
<td>links Fabrikarbeiterin</td>
<td>Typhus abdominalis (Pneumonia)</td>
<td></td>
</tr>
<tr>
<td>671</td>
<td>m</td>
<td>Taufdatum</td>
<td>1783,9</td>
<td>1848,9</td>
<td>65</td>
<td>rechts Tagelöhner</td>
<td>Leber-, Lungen- u. Nierenkrebs</td>
<td></td>
</tr>
<tr>
<td>672</td>
<td>m</td>
<td>keine Verifizierung</td>
<td>1811,8</td>
<td>1863,8</td>
<td>52</td>
<td>links Knecht</td>
<td>Rothlauf</td>
<td></td>
</tr>
<tr>
<td>673</td>
<td>m</td>
<td>Geburtsdatum</td>
<td>1811,5</td>
<td>1862,2</td>
<td>50,5</td>
<td>rechts</td>
<td>Magenleiden, Herzatrophie</td>
<td></td>
</tr>
<tr>
<td>674</td>
<td>m</td>
<td>keine Verifizierung</td>
<td>1789,5</td>
<td>1851,8</td>
<td>62,5</td>
<td>links</td>
<td>vormals Schuster, dann Klingenthalarbeiter, starb in Fischingen in Baden, wo er vom Spital verkostgeldet war.</td>
<td>Stickfluss</td>
</tr>
<tr>
<td>675</td>
<td>w</td>
<td>keine Verifizierung</td>
<td>1828,2</td>
<td>1853,3</td>
<td>25</td>
<td>rechts</td>
<td>Dienstmagd</td>
<td>Herzfehler</td>
</tr>
<tr>
<td>676</td>
<td>w</td>
<td>Taufdatum</td>
<td>1816,8</td>
<td>1846,5</td>
<td>30</td>
<td>links</td>
<td>Dienstmagd</td>
<td>Neuenfieber</td>
</tr>
<tr>
<td>677</td>
<td>m</td>
<td>Geburtsdatum</td>
<td>1801,3</td>
<td>1861,4</td>
<td>60</td>
<td>links</td>
<td>Wittwe</td>
<td>Cancer uteri</td>
</tr>
<tr>
<td>678</td>
<td>m</td>
<td>Geburtsdatum</td>
<td>1780,9</td>
<td>1853,5</td>
<td>72,5</td>
<td>links</td>
<td>Pfründer, vorm. Bäcker</td>
<td>Schlagfluss</td>
</tr>
<tr>
<td>679</td>
<td>w</td>
<td>keine Verifizierung</td>
<td>1794,7</td>
<td>1862,4</td>
<td>68</td>
<td>links</td>
<td>Pfründerin</td>
<td>Lungenentzündung</td>
</tr>
<tr>
<td>680</td>
<td>m</td>
<td>Geburtsdatum</td>
<td>1820,6</td>
<td>1862,9</td>
<td>42,5</td>
<td>links</td>
<td>Holzhauber, Sohn des H Jak. V. u. der Elis. Weber</td>
<td>Nervenfieber, Lungenentzündung</td>
</tr>
<tr>
<td>681</td>
<td>w</td>
<td>Taufdatum</td>
<td>1770,0</td>
<td>1851,9</td>
<td>82</td>
<td>rechts</td>
<td>Müllerswittwe</td>
<td>Altersschwäche</td>
</tr>
<tr>
<td>682</td>
<td>m</td>
<td>Geburtsdatum</td>
<td>1826,3</td>
<td>1855,4</td>
<td>29</td>
<td>links</td>
<td>Knecht</td>
<td>Nervenfieber</td>
</tr>
<tr>
<td>683</td>
<td>m</td>
<td>Geburtsdatum</td>
<td>1804,3</td>
<td>1854,0</td>
<td>50</td>
<td>links</td>
<td>Dekorations- und Landschaftsmaler</td>
<td>Magenkrebs</td>
</tr>
<tr>
<td>684</td>
<td>w</td>
<td>Geburtsdatum</td>
<td>1779,7</td>
<td>1850,1</td>
<td>70,5</td>
<td>rechts</td>
<td>Wittwe von H Matthias Schardt, Rothgerber, (Pfründerin 1° Cl.)</td>
<td>Lungenentzündung</td>
</tr>
<tr>
<td>685</td>
<td>m</td>
<td>Taufdatum</td>
<td>1785,2</td>
<td>1862,4</td>
<td>77,5</td>
<td>rechts</td>
<td>gew. Knecht, Pfründer</td>
<td>Nieren-, Leber- u. Lungenkrebs</td>
</tr>
<tr>
<td>686</td>
<td>m</td>
<td>Taufdatum</td>
<td>1789,2</td>
<td>1849,5</td>
<td>60,5</td>
<td>rechts</td>
<td>Braunwascher</td>
<td>Lungenenschwindung</td>
</tr>
<tr>
<td>687</td>
<td>w</td>
<td>Geburtsdatum</td>
<td>1820,2</td>
<td>1851,9</td>
<td>32</td>
<td>rechts</td>
<td>Fabrikarbeiterin</td>
<td>Lungenenschwindung</td>
</tr>
<tr>
<td>688</td>
<td>m</td>
<td>Geburtsdatum</td>
<td>1814,0</td>
<td>1853,8</td>
<td>40</td>
<td>rechts</td>
<td>Knecht</td>
<td>Nervenfieber</td>
</tr>
<tr>
<td>689</td>
<td>w</td>
<td>Geburtsdatum</td>
<td>1825,3</td>
<td>1865,6</td>
<td>40,5</td>
<td>links</td>
<td>Schneidersfrau</td>
<td>Carcinoma uteri hydronephrosis</td>
</tr>
<tr>
<td>690</td>
<td>m</td>
<td>Geburtsdatum</td>
<td>1829,6</td>
<td>1854,7</td>
<td>25</td>
<td>links</td>
<td>Sattlerer</td>
<td>Lungenenschwindung</td>
</tr>
<tr>
<td>691</td>
<td>m</td>
<td>keine Verifizierung</td>
<td>1826,0</td>
<td>1854,0</td>
<td>27</td>
<td>rechts</td>
<td>Portier</td>
<td>Nervenfieber</td>
</tr>
<tr>
<td>692</td>
<td>m</td>
<td>Geburtsdatum</td>
<td>1814,8</td>
<td>1855,1</td>
<td>40,5</td>
<td>links</td>
<td>Kutscher</td>
<td>Nierenkrankheit</td>
</tr>
<tr>
<td>693</td>
<td>w</td>
<td>keine Verifizierung</td>
<td>1837,5</td>
<td>1865,9</td>
<td>28,5</td>
<td>rechts</td>
<td>Musikersfrau</td>
<td>Typhus, Metrorrhagie ex abortus (Gebärmutterblutung)</td>
</tr>
<tr>
<td>694</td>
<td>w</td>
<td>Geburtsdatum</td>
<td>1820,7</td>
<td>1855,5</td>
<td>35</td>
<td>rechts</td>
<td>Dienstmagd</td>
<td>Leberkrebs</td>
</tr>
<tr>
<td>695</td>
<td>m</td>
<td>Geburtsdatum</td>
<td>1809,1</td>
<td>1863,3</td>
<td>54,5</td>
<td>rechts</td>
<td>Schreiner, (Sohn) des Jonas und der Fr. Maria, geb. Roth</td>
<td>Brustwassersucht</td>
</tr>
<tr>
<td>696</td>
<td>w</td>
<td>Geburtsdatum</td>
<td>1776,2</td>
<td>1848,1</td>
<td>72</td>
<td>links</td>
<td>Buchbinderswittwe</td>
<td>Lungenentzündung</td>
</tr>
<tr>
<td>697</td>
<td>m</td>
<td>Geburtsdatum</td>
<td>1828,3</td>
<td>1866,0</td>
<td>38</td>
<td>rechts</td>
<td>Landmann</td>
<td>Typhus abdominalis</td>
</tr>
<tr>
<td>698</td>
<td>m</td>
<td>keine Verifizierung</td>
<td>1816,5</td>
<td>1853,7</td>
<td>37</td>
<td>rechts</td>
<td>Fabrikarbeiter</td>
<td>Lungenenschwindung</td>
</tr>
<tr>
<td>699</td>
<td>m</td>
<td>Geburtsdatum</td>
<td>1806,7</td>
<td>1854,7</td>
<td>48</td>
<td>links</td>
<td>Maurer</td>
<td>Lungenentzündung</td>
</tr>
<tr>
<td>700</td>
<td>w</td>
<td>Geburtsdatum</td>
<td>1815,7</td>
<td>1847,0</td>
<td>31,5</td>
<td>links</td>
<td>Schneiderin</td>
<td>Wassersucht</td>
</tr>
<tr>
<td>701</td>
<td>m</td>
<td>Geburtsdatum</td>
<td>1806,1</td>
<td>1851,4</td>
<td>45,5</td>
<td>links</td>
<td>Schneider</td>
<td>Lungenenschwindung</td>
</tr>
<tr>
<td>702</td>
<td>m</td>
<td>keine Verifizierung</td>
<td>1767,3</td>
<td>1851,5</td>
<td>84</td>
<td>rechts</td>
<td>Kürschnier, Pfründer</td>
<td>Altersschwäche</td>
</tr>
</tbody>
</table>
8.3.2 Tabellarisches Verzeichnis der Individualdaten der Anatomieserie

<table>
<thead>
<tr>
<th>Nummer</th>
<th>entnommenes Femurstück</th>
<th>Sex</th>
<th>Alter (Jahre)</th>
<th>Größe (cm)</th>
<th>Gewicht (kg)</th>
<th>BMI (kg/m²)</th>
<th>Todesursache und dokumentierte Erkrankungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>15/03</td>
<td>links</td>
<td>w</td>
<td>78</td>
<td>164</td>
<td>55</td>
<td>20,45</td>
<td>Mitralklappenendokarditis; meningaler Aussaat; Vulva-Ca</td>
</tr>
<tr>
<td>42/03</td>
<td>rechts</td>
<td>w</td>
<td>96</td>
<td>158</td>
<td>65</td>
<td>26,04</td>
<td>respiratorische Insuffizienz bei ausgeprägtem Lungenemphysem</td>
</tr>
<tr>
<td>67/04</td>
<td>rechts</td>
<td>w</td>
<td>82</td>
<td>163</td>
<td>44</td>
<td>16,56</td>
<td>natürlicher Tod</td>
</tr>
<tr>
<td>68/03</td>
<td>links</td>
<td>w</td>
<td>88</td>
<td>156</td>
<td>63</td>
<td>25,89</td>
<td>natürlicher Tod</td>
</tr>
<tr>
<td>76/03</td>
<td>links</td>
<td>w</td>
<td>80</td>
<td>154</td>
<td>42</td>
<td>17,71</td>
<td>Chronische Nierenschädigung; chronisch obstruktive Atemwegserkrankung</td>
</tr>
<tr>
<td>79/03</td>
<td>rechts</td>
<td>m</td>
<td>60</td>
<td>163</td>
<td>50</td>
<td>18,82</td>
<td>chronische Nierenschädigung; chronische Niereninsuffizienz</td>
</tr>
<tr>
<td>83/03</td>
<td>rechts</td>
<td>w</td>
<td>77</td>
<td>163</td>
<td>45</td>
<td>16,94</td>
<td>natürlicher Tod; Bauchaortenaneurysma; 2-fache Lebertransplantation</td>
</tr>
<tr>
<td>86/03</td>
<td>links</td>
<td>m</td>
<td>76</td>
<td>165</td>
<td>55</td>
<td>20,20</td>
<td>natürlicher Tod (Hypopharynx Carcinom)</td>
</tr>
<tr>
<td>87/03</td>
<td>links</td>
<td>w</td>
<td>78</td>
<td>163</td>
<td>56</td>
<td>21,08</td>
<td>Pneumonie; Blasenperforation; Chronische Zystitis; Lungenfibrose</td>
</tr>
<tr>
<td>88/03</td>
<td>links</td>
<td>w</td>
<td>93</td>
<td>159</td>
<td>47</td>
<td>18,59</td>
<td>Lungennebeneolie</td>
</tr>
<tr>
<td>89/03</td>
<td>rechts</td>
<td>m</td>
<td>79</td>
<td>166</td>
<td>45</td>
<td>16,33</td>
<td>Re-Apoplex nach multiplen zerebralen Insulten</td>
</tr>
<tr>
<td>91/03</td>
<td>links</td>
<td>w</td>
<td>85</td>
<td>149</td>
<td>39</td>
<td>17,57</td>
<td>Herz-Kreislauversagen; schwere koronare Herzerkrankung; akuter Hirninfarkt</td>
</tr>
<tr>
<td>92/03</td>
<td>links</td>
<td>m</td>
<td>68</td>
<td>169</td>
<td>75</td>
<td>26,26</td>
<td>Re-Apoplex (Cerebralsklerose, allg. Gefäßsklerose bei Hypertonie)</td>
</tr>
<tr>
<td>95/03</td>
<td>rechts</td>
<td>m</td>
<td>59</td>
<td>170</td>
<td>74</td>
<td>25,61</td>
<td>Re-Apoplex (Cerebralsklerose, allg. Gefäßsklerose bei Hypertonie)</td>
</tr>
<tr>
<td>97/03</td>
<td>links</td>
<td>m</td>
<td>92</td>
<td>169</td>
<td>47</td>
<td>16,46</td>
<td>Metabolische Azidose; Sepsis, Leberzirrhose, hepatozelluläres Carcinom (z.N. Aszites)</td>
</tr>
<tr>
<td>98/03</td>
<td>links</td>
<td>m</td>
<td>68</td>
<td>175</td>
<td>86</td>
<td>28,08</td>
<td>terminale Nierenschädigung; Ösophagusverzweigungsblutung, Lactazidose</td>
</tr>
<tr>
<td>103/03</td>
<td>rechts</td>
<td>w</td>
<td>89</td>
<td>160</td>
<td>45</td>
<td>17,58</td>
<td>Atemlähmung</td>
</tr>
<tr>
<td>104/03</td>
<td>rechts</td>
<td>m</td>
<td>82</td>
<td>174</td>
<td>70</td>
<td>23,12</td>
<td>Rechtsherzversagen</td>
</tr>
<tr>
<td>105/03</td>
<td>links</td>
<td>m</td>
<td>51</td>
<td>175</td>
<td>78</td>
<td>25,47</td>
<td>Varizenblutung bei Leberzirrhose</td>
</tr>
<tr>
<td>106/03</td>
<td>links</td>
<td>m</td>
<td>89</td>
<td>178</td>
<td>81</td>
<td>25,56</td>
<td>Herz-Kreislauversagen; Alkalose</td>
</tr>
<tr>
<td>111/03</td>
<td>links</td>
<td>m</td>
<td>90</td>
<td>166</td>
<td>55</td>
<td>19,96</td>
<td>Rechtsherzversagen</td>
</tr>
<tr>
<td>114/03</td>
<td>links</td>
<td>w</td>
<td>60</td>
<td>169</td>
<td>83</td>
<td>29,06</td>
<td>Rechtsherzversagen; fulminante Langeninsuffizienz</td>
</tr>
<tr>
<td>115/02</td>
<td>links</td>
<td>w</td>
<td>86</td>
<td>156</td>
<td>72</td>
<td>29,59</td>
<td>-</td>
</tr>
<tr>
<td>115/03</td>
<td>links</td>
<td>w</td>
<td>91</td>
<td>167</td>
<td>69</td>
<td>24,74</td>
<td>Multiorganversagen</td>
</tr>
<tr>
<td>118/03</td>
<td>links</td>
<td>m</td>
<td>84</td>
<td>178</td>
<td>61</td>
<td>19,25</td>
<td>Panzytopenie</td>
</tr>
<tr>
<td>127/03</td>
<td>links</td>
<td>m</td>
<td>81</td>
<td>185</td>
<td>48</td>
<td>14,02</td>
<td>Kachexie</td>
</tr>
<tr>
<td>128/03</td>
<td>links</td>
<td>m</td>
<td>51</td>
<td>175</td>
<td>67</td>
<td>21,88</td>
<td>Schwerstoßmangel bei epileptischem Anfall</td>
</tr>
<tr>
<td>129/03</td>
<td>rechts</td>
<td>m</td>
<td>84</td>
<td>172</td>
<td>51</td>
<td>17,24</td>
<td>Multiorganversagen; natürlicher Tod laut Todesbescheinigung</td>
</tr>
<tr>
<td>Nummer</td>
<td>entnommenes Femurstück</td>
<td>Sex</td>
<td>Alter</td>
<td>Größe (cm)</td>
<td>Gewicht (kg)</td>
<td>BMI (kg/m²)</td>
<td>Todesursache und dokumentierte Erkrankungen</td>
</tr>
<tr>
<td>--------</td>
<td>------------------------</td>
<td>-----</td>
<td>-------</td>
<td>------------</td>
<td>--------------</td>
<td>-------------</td>
<td>--</td>
</tr>
<tr>
<td>130/03</td>
<td>links</td>
<td>w</td>
<td>81</td>
<td>164</td>
<td>63</td>
<td>23,42</td>
<td>Kammerflimmern</td>
</tr>
<tr>
<td>131/03</td>
<td>links</td>
<td>w</td>
<td>85</td>
<td>169</td>
<td>59</td>
<td>20,66</td>
<td>Pneumonie</td>
</tr>
<tr>
<td>132/03</td>
<td>links</td>
<td>m</td>
<td>69</td>
<td>170</td>
<td>63</td>
<td>21,80</td>
<td>Leberkoma, Leberzirrhose</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Alkoholismus arterielle Hypertonie</td>
</tr>
<tr>
<td>133/03</td>
<td>links</td>
<td>m</td>
<td>85</td>
<td>163</td>
<td>58</td>
<td>21,83</td>
<td>Asystolie</td>
</tr>
<tr>
<td>135/03</td>
<td>rechts</td>
<td>m</td>
<td>87</td>
<td>170</td>
<td>78</td>
<td>26,99</td>
<td>laut Todesursache natürlicher Tod</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Linksherzinsuffizienz</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lungenödem</td>
</tr>
<tr>
<td>138/03</td>
<td>links</td>
<td>w</td>
<td>93</td>
<td>154</td>
<td>62</td>
<td>26,14</td>
<td></td>
</tr>
<tr>
<td>139/03</td>
<td>links</td>
<td>w</td>
<td>81</td>
<td>155</td>
<td>45</td>
<td>18,73</td>
<td></td>
</tr>
<tr>
<td>140/03</td>
<td>rechts</td>
<td>w</td>
<td>88</td>
<td>157</td>
<td>54</td>
<td>21,91</td>
<td>Sekundenherztod bei metastasierendem Colon-Carcinom</td>
</tr>
</tbody>
</table>

8.3.3 Tabellarisches Verzeichnis der Basisdaten der Knochen des „UV-Materials“

<table>
<thead>
<tr>
<th>Probennummer</th>
<th>Fundort</th>
<th>Zeitstellung</th>
<th>Knochenart</th>
<th>Seite</th>
<th>Sex</th>
<th>Alter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extr. 1</td>
<td>?</td>
<td>?</td>
<td>Humerus</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Extr. 10</td>
<td>?</td>
<td>?</td>
<td>Femur</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Extr. 11</td>
<td>?</td>
<td>?</td>
<td>Femur</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Extr. 15</td>
<td>?</td>
<td>?</td>
<td>Femur</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Extr. 16</td>
<td>?</td>
<td>?</td>
<td>Femur</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Extr. 3</td>
<td>?</td>
<td>?</td>
<td>Femur</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Extr. 5</td>
<td>?</td>
<td>?</td>
<td>Femur</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Extr. 6 Husse 36</td>
<td>Husse</td>
<td>?</td>
<td>Femur</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Extr. 7 Nr. 9</td>
<td>Neuburg</td>
<td>Neuburg</td>
<td>Femur</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Extr. 8 Neuburg 86</td>
<td>Neuburg</td>
<td>?</td>
<td>Femur</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Extr. 9</td>
<td>?</td>
<td>?</td>
<td>Femur</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>M 1</td>
<td>?</td>
<td>?</td>
<td>Femur</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>UV 10</td>
<td>?</td>
<td>?</td>
<td>Femur</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Probenummer</td>
<td>Fundort</td>
<td>Zeitstellung</td>
<td>Knochenart</td>
<td>Seite</td>
<td>Sex</td>
<td>Alter</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------------------</td>
<td>--------------</td>
<td>------------</td>
<td>-------</td>
<td>-----</td>
<td>-------</td>
</tr>
<tr>
<td>UV 2</td>
<td>?</td>
<td>?</td>
<td>Femur</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>UV 3</td>
<td>?</td>
<td>?</td>
<td>Femur</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>UV 5 63</td>
<td>?</td>
<td>?</td>
<td>Femur</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>UV 11</td>
<td>?</td>
<td>?</td>
<td>Femur</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>K 91.3 Sk 1</td>
<td>Minshat Abu Omar, Ägypten</td>
<td>ca. 3000 v. Chr.</td>
<td>Femur</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>K 91.3 Sk 10</td>
<td>Minshat Abu Omar, Ägypten</td>
<td>ca. 3000 v. Chr.</td>
<td>Femur</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>K 91.3 Sk 6</td>
<td>Minshat Abu Omar, Ägypten</td>
<td>ca. 3000 v. Chr.</td>
<td>Humerus</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>K 91.3 Sk 9</td>
<td>Minshat Abu Omar, Ägypten</td>
<td>ca. 3000 v. Chr.</td>
<td>Femur</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>K 91.5 KO Sk 3</td>
<td>Minshat Abu Omar, Ägypten</td>
<td>ca. 3000 v. Chr.</td>
<td>Femur</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>K 91.5 KW Sk 3</td>
<td>Minshat Abu Omar, Ägypten</td>
<td>ca. 3000 v. Chr.</td>
<td>Femur</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>K 91.7 KO Sk 1</td>
<td>Minshat Abu Omar, Ägypten</td>
<td>ca. 3000 v. Chr.</td>
<td>Tibia</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>K 91.7 KO Sk 4</td>
<td>Minshat Abu Omar, Ägypten</td>
<td>ca. 3000 v. Chr.</td>
<td>Femur</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>K 91.7 KO Sk 5</td>
<td>Minshat Abu Omar, Ägypten</td>
<td>ca. 3000 v. Chr.</td>
<td>Femur</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>K 91.7 KO Sk 9</td>
<td>Minshat Abu Omar, Ägypten</td>
<td>ca. 3000 v. Chr.</td>
<td>Femur</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>K 91.7 SCHACHT Sk 2</td>
<td>Minshat Abu Omar, Ägypten</td>
<td>ca. 3000 v. Chr.</td>
<td>Femur</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Sk 91.3 Sk 7</td>
<td>Minshat Abu Omar, Ägypten</td>
<td>ca. 3000 v. Chr.</td>
<td>Femur</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>S2 (GTW)</td>
<td>Göbekli Tepe, Anatolien</td>
<td>9500-8500 v.Ch.</td>
<td>Tibia</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>S1 (GU II)</td>
<td>Gürçütepe, Anatolien</td>
<td>7500-7000 v.Ch.</td>
<td>Diaphyse (Humerus?)</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>D5 (GU II)</td>
<td>Gürçütepe, Anatolien</td>
<td>subrezent Humerus</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>2, Schaf</td>
<td>Gürçütepe, Anatolien</td>
<td>7500-7000 v.Ch.</td>
<td>Humerus distal</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>9, Ziege</td>
<td>Gürçütepe, Anatolien</td>
<td>7500-7000 v.Ch.</td>
<td>Humerus distal</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>30, Schwein</td>
<td>Gürçütepe, Anatolien</td>
<td>7500-7000 v.Ch.</td>
<td>Humerus distal</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>43, Bos</td>
<td>Gürçütepe, Anatolien</td>
<td>7500-7000 v.Ch.</td>
<td>Metatarsus, prox Fr</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>51, Gazelle</td>
<td>Gürçütepe, Anatolien</td>
<td>7500-7000 v.Ch.</td>
<td>Tibia distal</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>111, Wild drind</td>
<td>Göbekli Tepe, Anatolien</td>
<td>9500-8500 v.Ch.</td>
<td>Tibia</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>120, Equide</td>
<td>Göbekli Tepe, Anatolien</td>
<td>9500-8500 v.Ch.</td>
<td>Metacarpus</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>121, Wild drind</td>
<td>Göbekli Tepe, Anatolien</td>
<td>subrezent Scapula</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Anatomie 115/02</td>
<td>Sektionssaal/Formalinleiche</td>
<td>rezent/2002</td>
<td>Femur</td>
<td>rechts w</td>
<td>86</td>
<td></td>
</tr>
<tr>
<td>Anatomie 15/03</td>
<td>Sektionssaal/Formalinleiche</td>
<td>rezent/2003</td>
<td>Femur</td>
<td>links w</td>
<td>78</td>
<td></td>
</tr>
<tr>
<td>Anatomie 42/03</td>
<td>Sektionssaal/Formalinleiche</td>
<td>rezent/2003</td>
<td>Femur</td>
<td>rechts w</td>
<td>96</td>
<td></td>
</tr>
<tr>
<td>Anatomie 68/03</td>
<td>Sektionssaal/Formalinleiche</td>
<td>rezent/2003</td>
<td>Femur</td>
<td>links w</td>
<td>88</td>
<td></td>
</tr>
<tr>
<td>Anatomie 76/03</td>
<td>Sektionssaal/Formalinleiche</td>
<td>rezent/2003</td>
<td>Femur</td>
<td>links w</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>Anatomie 127/03</td>
<td>Sektionssaal/Formalinleiche</td>
<td>rezent/2003</td>
<td>Femur</td>
<td>links m</td>
<td>81</td>
<td></td>
</tr>
<tr>
<td>Anatomie 129/03</td>
<td>Sektionssaal/Formalinleiche</td>
<td>rezent/2003</td>
<td>Femur</td>
<td>rechts m</td>
<td>84</td>
<td></td>
</tr>
<tr>
<td>Basel 600</td>
<td>Basel, Schweiz (Spitalfriedhof)</td>
<td>19. Jhd. n. Chr.</td>
<td>Femur</td>
<td>rechts m</td>
<td>68,5</td>
<td></td>
</tr>
<tr>
<td>Basel 601</td>
<td>Basel, Schweiz (Spitalfriedhof)</td>
<td>19. Jhd. n. Chr.</td>
<td>Femur</td>
<td>rechts m</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>Basel 602</td>
<td>Basel, Schweiz (Spitalfriedhof)</td>
<td>19. Jhd. n. Chr.</td>
<td>Femur</td>
<td>rechts m</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>Basel 603</td>
<td>Basel, Schweiz (Spitalfriedhof)</td>
<td>19. Jhd. n. Chr.</td>
<td>Femur</td>
<td>rechts m</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>Basel 604</td>
<td>Basel, Schweiz (Spitalfriedhof)</td>
<td>19. Jhd. n. Chr.</td>
<td>Femur</td>
<td>rechts m</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Basel 605</td>
<td>Basel, Schweiz (Spitalfriedhof)</td>
<td>19. Jhd. n. Chr.</td>
<td>Femur</td>
<td>rechts m</td>
<td>24,5</td>
<td></td>
</tr>
<tr>
<td>Basel 606</td>
<td>Basel, Schweiz (Spitalfriedhof)</td>
<td>19. Jhd. n. Chr.</td>
<td>Femur</td>
<td>rechts m</td>
<td>67</td>
<td></td>
</tr>
<tr>
<td>Basel 607</td>
<td>Basel, Schweiz (Spitalfriedhof)</td>
<td>19. Jhd. n. Chr.</td>
<td>Femur</td>
<td>rechts w</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>Basel 608</td>
<td>Basel, Schweiz (Spitalfriedhof)</td>
<td>19. Jhd. n. Chr.</td>
<td>Femur</td>
<td>rechts m</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Basel 609</td>
<td>Basel, Schweiz (Spitalfriedhof)</td>
<td>19. Jhd. n. Chr.</td>
<td>Femur</td>
<td>rechts m</td>
<td>58,5</td>
<td></td>
</tr>
<tr>
<td>Basel 610</td>
<td>Basel, Schweiz (Spitalfriedhof)</td>
<td>19. Jhd. n. Chr.</td>
<td>Femur</td>
<td>rechts w</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Basel 611</td>
<td>Basel, Schweiz (Spitalfriedhof)</td>
<td>19. Jhd. n. Chr.</td>
<td>Femur</td>
<td>rechts m</td>
<td>23,5</td>
<td></td>
</tr>
<tr>
<td>Basel 612</td>
<td>Basel, Schweiz (Spitalfriedhof)</td>
<td>19. Jhd. n. Chr.</td>
<td>Femur</td>
<td>rechts m</td>
<td>73</td>
<td></td>
</tr>
<tr>
<td>Basel 613</td>
<td>Basel, Schweiz (Spitalfriedhof)</td>
<td>19. Jhd. n. Chr.</td>
<td>Femur</td>
<td>rechts m</td>
<td>76,5</td>
<td></td>
</tr>
<tr>
<td>Basel 614</td>
<td>Basel, Schweiz (Spitalfriedhof)</td>
<td>19. Jhd. n. Chr.</td>
<td>Femur</td>
<td>links w</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>Basel 615</td>
<td>Basel, Schweiz (Spitalfriedhof)</td>
<td>19. Jhd. n. Chr.</td>
<td>Femur</td>
<td>rechts m</td>
<td>61,5</td>
<td></td>
</tr>
</tbody>
</table>
8.4 Tabellen zum Methodenteil

8.4.1 Proben, die für eine Gelatine- und Apatit-Extraktion eingesetzt werden

<table>
<thead>
<tr>
<th>Probenummer</th>
<th>Fundort</th>
<th>Zeitstellung</th>
<th>Knochenart</th>
<th>Seite</th>
<th>Sex</th>
<th>Alter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basel 616</td>
<td>Basel, Schweiz (Spitalfriedhof)</td>
<td>19. Jhd. n. Chr.</td>
<td>Femur</td>
<td>rechts</td>
<td>m</td>
<td>59,5</td>
</tr>
<tr>
<td>Basel 617</td>
<td>Basel, Schweiz (Spitalfriedhof)</td>
<td>19. Jhd. n. Chr.</td>
<td>Femur</td>
<td>rechts</td>
<td>m</td>
<td>34,5</td>
</tr>
<tr>
<td>Basel 618</td>
<td>Basel, Schweiz (Spitalfriedhof)</td>
<td>19. Jhd. n. Chr.</td>
<td>Femur</td>
<td>rechts</td>
<td>m</td>
<td>57,5</td>
</tr>
<tr>
<td>Basel 619</td>
<td>Basel, Schweiz (Spitalfriedhof)</td>
<td>19. Jhd. n. Chr.</td>
<td>Femur</td>
<td>links</td>
<td>m</td>
<td>50,5</td>
</tr>
<tr>
<td>Basel 620</td>
<td>Basel, Schweiz (Spitalfriedhof)</td>
<td>19. Jhd. n. Chr.</td>
<td>Femur</td>
<td>links</td>
<td>m</td>
<td>35</td>
</tr>
<tr>
<td>Basel 621</td>
<td>Basel, Schweiz (Spitalfriedhof)</td>
<td>19. Jhd. n. Chr.</td>
<td>Femur</td>
<td>links</td>
<td>m</td>
<td>37,5</td>
</tr>
<tr>
<td>Basel 622</td>
<td>Basel, Schweiz (Spitalfriedhof)</td>
<td>19. Jhd. n. Chr.</td>
<td>Femur</td>
<td>links</td>
<td>w</td>
<td>71,5</td>
</tr>
<tr>
<td>Basel 623</td>
<td>Basel, Schweiz (Spitalfriedhof)</td>
<td>19. Jhd. n. Chr.</td>
<td>Femur</td>
<td>rechts</td>
<td>m</td>
<td>46</td>
</tr>
<tr>
<td>Basel 624</td>
<td>Basel, Schweiz (Spitalfriedhof)</td>
<td>19. Jhd. n. Chr.</td>
<td>Femur</td>
<td>rechts</td>
<td>m</td>
<td>75</td>
</tr>
<tr>
<td>Basel 625</td>
<td>Basel, Schweiz (Spitalfriedhof)</td>
<td>19. Jhd. n. Chr.</td>
<td>Femur</td>
<td>links</td>
<td>w</td>
<td>30</td>
</tr>
<tr>
<td>Basel 626</td>
<td>Basel, Schweiz (Spitalfriedhof)</td>
<td>19. Jhd. n. Chr.</td>
<td>Femur</td>
<td>rechts</td>
<td>m</td>
<td>41,5</td>
</tr>
<tr>
<td>Basel 627</td>
<td>Basel, Schweiz (Spitalfriedhof)</td>
<td>19. Jhd. n. Chr.</td>
<td>Femur</td>
<td>rechts</td>
<td>w</td>
<td>58,5</td>
</tr>
<tr>
<td>Basel 628</td>
<td>Basel, Schweiz (Spitalfriedhof)</td>
<td>19. Jhd. n. Chr.</td>
<td>Femur</td>
<td>links</td>
<td>m</td>
<td>47</td>
</tr>
<tr>
<td>Basel 629</td>
<td>Basel, Schweiz (Spitalfriedhof)</td>
<td>19. Jhd. n. Chr.</td>
<td>Femur</td>
<td>links</td>
<td>m</td>
<td>77</td>
</tr>
<tr>
<td>Basel 630</td>
<td>Basel, Schweiz (Spitalfriedhof)</td>
<td>19. Jhd. n. Chr.</td>
<td>Femur</td>
<td>links</td>
<td>w</td>
<td>79,5</td>
</tr>
<tr>
<td>Basel 631</td>
<td>Basel, Schweiz (Spitalfriedhof)</td>
<td>19. Jhd. n. Chr.</td>
<td>Femur</td>
<td>links</td>
<td>w</td>
<td>92,5</td>
</tr>
<tr>
<td>Basel 632</td>
<td>Basel, Schweiz (Spitalfriedhof)</td>
<td>19. Jhd. n. Chr.</td>
<td>Femur</td>
<td>links</td>
<td>w</td>
<td>43</td>
</tr>
<tr>
<td>Basel 633</td>
<td>Basel, Schweiz (Spitalfriedhof)</td>
<td>19. Jhd. n. Chr.</td>
<td>Femur</td>
<td>links</td>
<td>m</td>
<td>42,5</td>
</tr>
<tr>
<td>Basel 634</td>
<td>Basel, Schweiz (Spitalfriedhof)</td>
<td>19. Jhd. n. Chr.</td>
<td>Femur</td>
<td>links</td>
<td>w</td>
<td>45</td>
</tr>
<tr>
<td>Basel 635</td>
<td>Basel, Schweiz (Spitalfriedhof)</td>
<td>19. Jhd. n. Chr.</td>
<td>Femur</td>
<td>links</td>
<td>m</td>
<td>41</td>
</tr>
<tr>
<td>Basel 636</td>
<td>Basel, Schweiz (Spitalfriedhof)</td>
<td>19. Jhd. n. Chr.</td>
<td>Femur</td>
<td>links</td>
<td>m</td>
<td>83</td>
</tr>
<tr>
<td>Basel 637</td>
<td>Basel, Schweiz (Spitalfriedhof)</td>
<td>19. Jhd. n. Chr.</td>
<td>Femur</td>
<td>links</td>
<td>m</td>
<td>77</td>
</tr>
<tr>
<td>Basel 638</td>
<td>Basel, Schweiz (Spitalfriedhof)</td>
<td>19. Jhd. n. Chr.</td>
<td>Femur</td>
<td>links</td>
<td>w</td>
<td>70,5</td>
</tr>
<tr>
<td>Basel 639</td>
<td>Basel, Schweiz (Spitalfriedhof)</td>
<td>19. Jhd. n. Chr.</td>
<td>Femur</td>
<td>rechts</td>
<td>w</td>
<td>36,5</td>
</tr>
<tr>
<td>Basel 640</td>
<td>Basel, Schweiz (Spitalfriedhof)</td>
<td>19. Jhd. n. Chr.</td>
<td>Femur</td>
<td>rechts</td>
<td>w</td>
<td>39</td>
</tr>
<tr>
<td>Basel 641</td>
<td>Basel, Schweiz (Spitalfriedhof)</td>
<td>19. Jhd. n. Chr.</td>
<td>Femur</td>
<td>rechts</td>
<td>w</td>
<td>49</td>
</tr>
<tr>
<td>Basel 642</td>
<td>Basel, Schweiz (Spitalfriedhof)</td>
<td>19. Jhd. n. Chr.</td>
<td>Femur</td>
<td>rechts</td>
<td>m</td>
<td>23,5</td>
</tr>
<tr>
<td>Basel 643</td>
<td>Basel, Schweiz (Spitalfriedhof)</td>
<td>19. Jhd. n. Chr.</td>
<td>Femur</td>
<td>rechts</td>
<td>w</td>
<td>40</td>
</tr>
<tr>
<td>Basel 644</td>
<td>Basel, Schweiz (Spitalfriedhof)</td>
<td>19. Jhd. n. Chr.</td>
<td>Femur</td>
<td>links</td>
<td>w</td>
<td>41</td>
</tr>
<tr>
<td>Basel 645</td>
<td>Basel, Schweiz (Spitalfriedhof)</td>
<td>19. Jhd. n. Chr.</td>
<td>Femur</td>
<td>links</td>
<td>m</td>
<td>33,5</td>
</tr>
<tr>
<td>Basel 646</td>
<td>Basel, Schweiz (Spitalfriedhof)</td>
<td>19. Jhd. n. Chr.</td>
<td>Femur</td>
<td>rechts</td>
<td>m</td>
<td>29</td>
</tr>
<tr>
<td>Basel 647</td>
<td>Basel, Schweiz (Spitalfriedhof)</td>
<td>19. Jhd. n. Chr.</td>
<td>Femur</td>
<td>rechts</td>
<td>w</td>
<td>80,5</td>
</tr>
<tr>
<td>Basel 648</td>
<td>Basel, Schweiz (Spitalfriedhof)</td>
<td>19. Jhd. n. Chr.</td>
<td>Femur</td>
<td>rechts</td>
<td>m</td>
<td>59,5</td>
</tr>
<tr>
<td>Basel 649</td>
<td>Basel, Schweiz (Spitalfriedhof)</td>
<td>19. Jhd. n. Chr.</td>
<td>Femur</td>
<td>links</td>
<td>m</td>
<td>77</td>
</tr>
<tr>
<td>Basel 650</td>
<td>Basel, Schweiz (Spitalfriedhof)</td>
<td>19. Jhd. n. Chr.</td>
<td>Femur</td>
<td>rechts</td>
<td>m</td>
<td>66,5</td>
</tr>
<tr>
<td>Basel 651</td>
<td>Basel, Schweiz (Spitalfriedhof)</td>
<td>19. Jhd. n. Chr.</td>
<td>Femur</td>
<td>rechts</td>
<td>m</td>
<td>30</td>
</tr>
<tr>
<td>Basel 652</td>
<td>Basel, Schweiz (Spitalfriedhof)</td>
<td>19. Jhd. n. Chr.</td>
<td>Femur</td>
<td>rechts</td>
<td>m</td>
<td>71</td>
</tr>
<tr>
<td>Probenummer</td>
<td>Fundort</td>
<td>Zeitstellung</td>
<td>Knochenart</td>
<td>Seite</td>
<td>Sex</td>
<td>Alter</td>
</tr>
<tr>
<td>------------</td>
<td>----------------</td>
<td>--------------</td>
<td>------------</td>
<td>-------</td>
<td>-----</td>
<td>-------</td>
</tr>
<tr>
<td>Extr. 3</td>
<td>?</td>
<td>?</td>
<td>Femur</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Extr. 5</td>
<td>?</td>
<td>?</td>
<td>Femur</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Extr. 6 Hussex 36</td>
<td>Hussex</td>
<td>?</td>
<td>Femur</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Extr. 7 Nr. 9</td>
<td>?</td>
<td>?</td>
<td>Femur rechts</td>
<td>?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extr. 8 Neuburg 86</td>
<td>Neuburg</td>
<td>?</td>
<td>Femur</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Extr. 9</td>
<td>?</td>
<td>?</td>
<td>Femur</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Knochen 5</td>
<td>?</td>
<td>?</td>
<td>Femur</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>UV 10</td>
<td>?</td>
<td>?</td>
<td>Femur</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>UV 2</td>
<td>?</td>
<td>?</td>
<td>Femur</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>UV 3</td>
<td>?</td>
<td>?</td>
<td>Femur</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>UV 5 63</td>
<td>?</td>
<td>?</td>
<td>Femur</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>K 91.3 Sk 1</td>
<td>Minshat Abu Omar, Ägypten</td>
<td>ca. 3000 v. Chr.</td>
<td>Femur</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>K 91.3 Sk 10</td>
<td>Minshat Abu Omar, Ägypten</td>
<td>ca. 3000 v. Chr.</td>
<td>Femur</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>K 91.3 Sk 6</td>
<td>Minshat Abu Omar, Ägypten</td>
<td>ca. 3000 v. Chr.</td>
<td>Humerus</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>K 91.3 Sk 9</td>
<td>Minshat Abu Omar, Ägypten</td>
<td>ca. 3000 v. Chr.</td>
<td>Femur</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>K 91.5 KO Sk 3</td>
<td>Minshat Abu Omar, Ägypten</td>
<td>ca. 3000 v. Chr.</td>
<td>Femur</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>K 91.5 KW Sk 3</td>
<td>Minshat Abu Omar, Ägypten</td>
<td>ca. 3000 v. Chr.</td>
<td>Femur</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>K 91.7 KO Sk 1</td>
<td>Minshat Abu Omar, Ägypten</td>
<td>ca. 3000 v. Chr.</td>
<td>Tibia</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>K 91.7 KO Sk 4</td>
<td>Minshat Abu Omar, Ägypten</td>
<td>ca. 3000 v. Chr.</td>
<td>Femur</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>K 91.7 KO Sk 5</td>
<td>Minshat Abu Omar, Ägypten</td>
<td>ca. 3000 v. Chr.</td>
<td>Femur</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>K 91.7 KO Sk 9</td>
<td>Minshat Abu Omar, Ägypten</td>
<td>ca. 3000 v. Chr.</td>
<td>Femur</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>K 91.7 SCHACHT Sk 2</td>
<td>Minshat Abu Omar, Ägypten</td>
<td>ca. 3000 v. Chr.</td>
<td>Femur</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Sk 91.3 Sk 7</td>
<td>Minshat Abu Omar, Ägypten</td>
<td>ca. 3000 v. Chr.</td>
<td>Femur</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Anatomie 76/03</td>
<td>Sektionssaal/Formalinleiche</td>
<td>rezent/2003</td>
<td>Femur links</td>
<td>m</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>Anatomie 127/03</td>
<td>Sektionssaal/Formalinleiche</td>
<td>rezent/2003</td>
<td>Femur links</td>
<td>m</td>
<td>81</td>
<td></td>
</tr>
<tr>
<td>Anatomie 129/03</td>
<td>Sektionssaal/Formalinleiche</td>
<td>rezent/2003</td>
<td>Femur rechts</td>
<td>m</td>
<td>84</td>
<td></td>
</tr>
</tbody>
</table>

8.4.2 Proben, mit denen eine ASA durchgeführt wird

Messung im Dr. Haunerschen Kinderklinikum, München

<table>
<thead>
<tr>
<th>Probenummer</th>
<th>Fundort</th>
<th>Zeitstellung</th>
<th>Knochenart</th>
<th>Seite</th>
<th>Sex</th>
<th>Alter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extr. 1</td>
<td>?</td>
<td>?</td>
<td>Humerus</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Extr. 10</td>
<td>?</td>
<td>?</td>
<td>Femur</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Extr. 11</td>
<td>?</td>
<td>?</td>
<td>Femur</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Extr. 15</td>
<td>?</td>
<td>?</td>
<td>Femur</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Extr. 16</td>
<td>?</td>
<td>?</td>
<td>Femur</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>
8. Anhang

<table>
<thead>
<tr>
<th>Probenummer</th>
<th>Fundort</th>
<th>Zeitstellung</th>
<th>Knochenart</th>
<th>Seite</th>
<th>Sex</th>
<th>Alter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extr. 3</td>
<td>?</td>
<td>?</td>
<td>Femur</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Extr. 5</td>
<td>?</td>
<td>?</td>
<td>Femur</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Extr. 7 Nr. 9</td>
<td>?</td>
<td>?</td>
<td>Femur</td>
<td>rechts</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Knochen 5</td>
<td>?</td>
<td>?</td>
<td>Femur</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>UV 5 63</td>
<td>?</td>
<td>?</td>
<td>Femur</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Anat. 76/03</td>
<td>Sektionssaal/Formalinleiche</td>
<td>rezent/2003</td>
<td>Femur</td>
<td>links</td>
<td>w</td>
<td>80</td>
</tr>
</tbody>
</table>

Referenzproben

- HV 0,5: Siehe Harbeck 2002, 2007 rezent Femur
- HV 1: Siehe Harbeck 2002, 2007 rezent Femur
- HV 2: Siehe Harbeck 2002, 2007 rezent Femur

8.4.3 Proben, mit denen eine RFA durchgeführt wird

Messung im Bayerischen Geologischen Landesamt, München

<table>
<thead>
<tr>
<th>Probenummer</th>
<th>Fundort</th>
<th>Zeitstellung</th>
<th>Knochenart</th>
<th>Messmethode</th>
<th>Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>K 91,3 KO Sk 9</td>
<td>Minshat Abu Omar, Ägypten</td>
<td>ca. 3000 v. Chr</td>
<td>Femur</td>
<td>halbquantitativ</td>
<td></td>
</tr>
<tr>
<td>K 91,5 KO Sk 3</td>
<td>Minshat Abu Omar, Ägypten</td>
<td>ca. 3000 v. Chr</td>
<td>Femur</td>
<td>halbquantitativ</td>
<td></td>
</tr>
<tr>
<td>K 91,7 KO Sk 5</td>
<td>Minshat Abu Omar, Ägypten</td>
<td>ca. 3000 v. Chr</td>
<td>Femur</td>
<td>halbquantitativ</td>
<td></td>
</tr>
</tbody>
</table>

Referenzproben

- Anat 114/03: Sektionssaal/Formalinleiche rezent/2003 Femur halbquantitativ
- Anat 98/03: Sektionssaal/Formalinleiche rezent/2003 Femur halbquantitativ
- Anat 114/03: Sektionssaal/Formalinleiche rezent/2003 Femur halbquantitativ 2 Tage gekocht
- Anat 115/02: Sektionssaal/Formalinleiche rezent/2002 Femur halbquantitativ 16 Tage gekocht
- Anat 89/03: Sektionssaal/Formalinleiche rezent/2003 Femur halbquantitativ 25 Tage gekocht

8.5 Tabellen zum Ergebnisteil

8.5.1 Basel-Kollektiv

Ergebnisse der histologischen Untersuchung der anterioren Femurkompakta im Bereich der mittleren Diaphyse

Der beiliegenden CD zu entnehmen (enthält die gesamten erhobenen Rohdaten und die daraus erstellten Mittelwerte für jedes Individuum)

Ergebnisse der verschiedenen histologischen Altersbestimmungsmethoden im Basel-Kollektiv

Der beiliegenden CD zu entnehmen

Ergebnisse der Untersuchung der Stressmerkmale im Basel-Kollektiv

Der beiliegenden CD zu entnehmen (enthält die Rohdaten zur Erhebung der Haltelinien und die Tabelle mit allen Stressmerkmalen)
8.5.2 Anatomie-Kollektiv

Ergebnisse der histologischen Untersuchung der anterioren Femurkompakta im Bereich der mittleren Diaphyse

Der beiliegenden CD zu entnehmen (enthält die gesamten erhobenen Rohdaten und die daraus erstellten Mittelwerte für jedes Individuum)

Ergebnisse der verschiedenen histologischen Altersbestimmungsmethoden im Anatomie-Kollektiv

Der beiliegenden CD zu entnehmen; beinhaltet auch die Altersbestimmung mit den neu erstellten Altersformeln

Ergebnisse der Untersuchung der Stressmerkmale im Anatomie-Kollektiv

Der beiliegenden CD zu entnehmen

8.5.3 Ergebnisse der UV-Methode

Tabelle zu den Untersuchungen der Fluoreszenzeigenschaften des UV-Materials: Einzelwerte getrennt nach endostal, mittig und periostal

<table>
<thead>
<tr>
<th>Probe</th>
<th>Ort</th>
<th>Blauindex</th>
<th>Braunanteile</th>
<th>Lilaanteile</th>
<th>Gelbanteile</th>
<th>Dunkelblauanteile</th>
<th>Violettanteile</th>
</tr>
</thead>
<tbody>
<tr>
<td>111, Wildrind</td>
<td>end</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>111, Wildrind</td>
<td>mitte</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>111, Wildrind</td>
<td>per</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>112, Wildrind</td>
<td>end</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>112, Wildrind</td>
<td>mitte</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>112, Wildrind</td>
<td>per</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>120, Equide</td>
<td>end</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>120, Equide</td>
<td>mitte</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>120, Equide</td>
<td>per</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>121, Wildesel</td>
<td>end</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>121, Wildesel</td>
<td>mitte</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>121, Wildesel</td>
<td>per</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2, Schaf</td>
<td>end</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2, Schaf</td>
<td>mitte</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2, Schaf</td>
<td>per</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>30, Schwein</td>
<td>end</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>30, Schwein</td>
<td>mitte</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>30, Schwein</td>
<td>per</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>43, Bos</td>
<td>end</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>43, Bos</td>
<td>mitte</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>43, Bos</td>
<td>per</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>51, Gazelle</td>
<td>end</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>51, Gazelle</td>
<td>mitte</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>51, Gazelle</td>
<td>per</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>53, Equide</td>
<td>end</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Probe</td>
<td>Ort</td>
<td>Blauindex</td>
<td>Braunanteile</td>
<td>Lilaanteile</td>
<td>Gelbanteile</td>
<td>Dunkelblauanteile</td>
<td>Violettanteile</td>
</tr>
<tr>
<td>---------------</td>
<td>------</td>
<td>-----------</td>
<td>--------------</td>
<td>-------------</td>
<td>-------------</td>
<td>-------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>53, Equide</td>
<td>mitte</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>53, Equide</td>
<td>per</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9, Ziege</td>
<td>end</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9, Ziege</td>
<td>mitte</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>9, Ziege</td>
<td>per</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B2 (GU II), R</td>
<td>end</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B2 (GU II), R</td>
<td>mitte</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B2 (GU II), R</td>
<td>per</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B2 (GU II), U</td>
<td>end</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B2 (GU II), U</td>
<td>mitte</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B2 (GU II), U</td>
<td>per</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>D5 (GU II)</td>
<td>end</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>D5 (GU II)</td>
<td>mitte</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>D5 (GU II)</td>
<td>per</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>S1 (GU II)</td>
<td>end</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>S1 (GU II)</td>
<td>mitte</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>S1 (GU II)</td>
<td>per</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>S2 (GTW)</td>
<td>end</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>S2 (GTW)</td>
<td>mitte</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>S2 (GTW)</td>
<td>per</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>247/10</td>
<td>per</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>247/11</td>
<td>per</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>247/12</td>
<td>end</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>248/10</td>
<td>per</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>248/11</td>
<td>per</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>248/12</td>
<td>end</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>249/10</td>
<td>per</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>249/11</td>
<td>per</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>249/12</td>
<td>end</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Anatomie 115/02</td>
<td>end</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Anatomie 115/02</td>
<td>mitte</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Anatomie 115/02</td>
<td>per</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Anatomie 127/03</td>
<td>end</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Anatomie 127/03</td>
<td>mitte</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Anatomie 127/03</td>
<td>per</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Anatomie 129/03</td>
<td>end</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Anatomie 129/03</td>
<td>mitte</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Anatomie 129/03</td>
<td>per</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Anatomie 15/03</td>
<td>end</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Anatomie 15/03</td>
<td>mitte</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Anatomie 15/03</td>
<td>per</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Anatomie 42/03</td>
<td>end</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Anatomie 42/03</td>
<td>mitte</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Anatomie 42/03</td>
<td>per</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Anatomie 68/03</td>
<td>end</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Anatomie 68/03</td>
<td>mitte</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Anatomie 68/03</td>
<td>per</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Anatomie 76/03</td>
<td>end</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Anatomie 76/03</td>
<td>mitte</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Anatomie 76/03</td>
<td>per</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 600</td>
<td>end</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Probe</td>
<td>Ort</td>
<td>Blauanteil</td>
<td>Braunanteil</td>
<td>Lilanteil</td>
<td>Gelbanteil</td>
<td>Dunkelblauanteil</td>
<td>Violettanteil</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>------------</td>
<td>-------------</td>
<td>-----------</td>
<td>------------</td>
<td>-----------------</td>
<td>--------------</td>
</tr>
<tr>
<td>BP 600</td>
<td>mitte</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 600</td>
<td>per</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 601</td>
<td>end</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 601</td>
<td>mitte</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 601</td>
<td>per</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 602</td>
<td>end</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 602</td>
<td>mitte</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 602</td>
<td>per</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 603</td>
<td>end</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 603</td>
<td>mitte</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 603</td>
<td>per</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 604</td>
<td>end</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 604</td>
<td>mitte</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 604</td>
<td>per</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 605</td>
<td>end</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 605</td>
<td>mitte</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 605</td>
<td>per</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 606</td>
<td>end</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 606</td>
<td>mitte</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 606</td>
<td>per</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 607</td>
<td>end</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>BP 607</td>
<td>mitte</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>BP 607</td>
<td>per</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 608</td>
<td>end</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 608</td>
<td>mitte</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 608</td>
<td>per</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 609</td>
<td>end</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 609</td>
<td>mitte</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 609</td>
<td>per</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 610</td>
<td>end</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 610</td>
<td>mitte</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 610</td>
<td>per</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 611</td>
<td>end</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 611</td>
<td>mitte</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 611</td>
<td>per</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 612</td>
<td>end</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 612</td>
<td>mitte</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 612</td>
<td>per</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 613</td>
<td>end</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 613</td>
<td>mitte</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 613</td>
<td>per</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 614</td>
<td>end</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 614</td>
<td>mitte</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 614</td>
<td>per</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 615</td>
<td>end</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 615</td>
<td>mitte</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 615</td>
<td>per</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 616</td>
<td>end</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 616</td>
<td>mitte</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 616</td>
<td>per</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 617</td>
<td>end</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Probe</td>
<td>Ort</td>
<td>Blauindex</td>
<td>Braunanteile</td>
<td>Lilaanteile</td>
<td>Gelbanteile</td>
<td>Dunkelblauanteile</td>
<td>Violetanteile</td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td>-----------</td>
<td>--------------</td>
<td>-------------</td>
<td>-------------</td>
<td>-------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>BP 617</td>
<td>mitte</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 617</td>
<td>per</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 618</td>
<td>end</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 618</td>
<td>mitte</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 618</td>
<td>per</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 619</td>
<td>end</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 619</td>
<td>mitte</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 619</td>
<td>per</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 620</td>
<td>end</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 620</td>
<td>mitte</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 620</td>
<td>per</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 621</td>
<td>end</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 621</td>
<td>mitte</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 621</td>
<td>per</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 622</td>
<td>end</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 622</td>
<td>mitte</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 622</td>
<td>per</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 623</td>
<td>end</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 623</td>
<td>mitte</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 623</td>
<td>per</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 624</td>
<td>end</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 624</td>
<td>mitte</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 624</td>
<td>per</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 625</td>
<td>end</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 625</td>
<td>mitte</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 625</td>
<td>per</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 626</td>
<td>end</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 626</td>
<td>mitte</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 626</td>
<td>per</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 627</td>
<td>end</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 627</td>
<td>mitte</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 627</td>
<td>per</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 628</td>
<td>end</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 628</td>
<td>mitte</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 628</td>
<td>per</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 629</td>
<td>end</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 629</td>
<td>mitte</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 629</td>
<td>per</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 630</td>
<td>end</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 630</td>
<td>mitte</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 630</td>
<td>per</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 631</td>
<td>end</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 631</td>
<td>mitte</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 631</td>
<td>per</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 632</td>
<td>end</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 632</td>
<td>mitte</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 632</td>
<td>per</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 633</td>
<td>end</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 633</td>
<td>mitte</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 633</td>
<td>per</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 634</td>
<td>end</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Probe</td>
<td>Ort</td>
<td>Blauanteil</td>
<td>Braunanteil</td>
<td>Lilaanteil</td>
<td>Gelbanteil</td>
<td>Dunkelblauanteil</td>
<td>Violettanteil</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>------------</td>
<td>-------------</td>
<td>------------</td>
<td>------------</td>
<td>------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>BP 634</td>
<td>mitte</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 634</td>
<td>per</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 635</td>
<td>end</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 635</td>
<td>mitte</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 635</td>
<td>per</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 636</td>
<td>end</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 636</td>
<td>mitte</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 636</td>
<td>per</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 637</td>
<td>end</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 637</td>
<td>mitte</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 637</td>
<td>per</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 638</td>
<td>end</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 638</td>
<td>mitte</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 638</td>
<td>per</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 639</td>
<td>end</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 639</td>
<td>mitte</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 639</td>
<td>per</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 640</td>
<td>end</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 640</td>
<td>mitte</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 640</td>
<td>per</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 641</td>
<td>end</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 641</td>
<td>mitte</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 641</td>
<td>per</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 642</td>
<td>end</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 642</td>
<td>mitte</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 642</td>
<td>per</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 643</td>
<td>end</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 643</td>
<td>mitte</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 643</td>
<td>per</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 644</td>
<td>end</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 644</td>
<td>mitte</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 644</td>
<td>per</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 645</td>
<td>end</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 645</td>
<td>mitte</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 645</td>
<td>per</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 646</td>
<td>end</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 646</td>
<td>mitte</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 646</td>
<td>per</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 647</td>
<td>end</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 647</td>
<td>mitte</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 647</td>
<td>per</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 648</td>
<td>end</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 648</td>
<td>mitte</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 648</td>
<td>per</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 649</td>
<td>end</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 649</td>
<td>mitte</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 649</td>
<td>per</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 650</td>
<td>end</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 650</td>
<td>mitte</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 650</td>
<td>per</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 651</td>
<td>end</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Probe</td>
<td>Ort</td>
<td>Blauanteile</td>
<td>Braunanteile</td>
<td>Lilaanteile</td>
<td>Gelbanteile</td>
<td>Dunkelblauanteile</td>
<td>Violetteanteile</td>
</tr>
<tr>
<td>-----------</td>
<td>-------</td>
<td>-------------</td>
<td>--------------</td>
<td>-------------</td>
<td>-------------</td>
<td>-------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>BP 651</td>
<td>mitte</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 651</td>
<td>per</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 652</td>
<td>end</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 652</td>
<td>mitte</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 652</td>
<td>per</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Extr.1</td>
<td>end</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Extr.1</td>
<td>mitte</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Extr.1</td>
<td>per</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Extr.10</td>
<td>end</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Extr.10</td>
<td>mitte</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Extr.10</td>
<td>per</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Extr.11</td>
<td>end</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Extr.11</td>
<td>mitte</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Extr.11</td>
<td>per</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Extr.12</td>
<td>end</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Extr.12</td>
<td>mitte</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Extr.12</td>
<td>per</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Extr.13</td>
<td>end</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Extr.13</td>
<td>mitte</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Extr.13</td>
<td>per</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Extr.14</td>
<td>end</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Extr.14</td>
<td>mitte</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Extr.14</td>
<td>per</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Extr.15</td>
<td>end</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Extr.15</td>
<td>mitte</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Extr.15</td>
<td>per</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Extr.16</td>
<td>end</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Extr.16</td>
<td>mitte</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Extr.16</td>
<td>per</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Extr.2</td>
<td>end</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Extr.2</td>
<td>mitte</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Extr.2</td>
<td>per</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Extr.3</td>
<td>end</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Extr.3</td>
<td>mitte</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Extr.3</td>
<td>per</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Extr.4</td>
<td>end</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Extr.4</td>
<td>mitte</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Extr.4</td>
<td>per</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Extr.5</td>
<td>end</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Extr.5</td>
<td>mitte</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Extr.5</td>
<td>per</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Extr.6 Hussex 36</td>
<td>end</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Extr.6 Hussex 36</td>
<td>mitte</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Extr.6 Hussex 36</td>
<td>per</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Extr.7 Nr.9</td>
<td>end</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Extr.7 Nr.9</td>
<td>mitte</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Extr.7 Nr.9</td>
<td>per</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Extr.8 Neuburg 86</td>
<td>end</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Extr.8 Neuburg 86</td>
<td>mitte</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Extr.8 Neuburg 86</td>
<td>per</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Extr.9</td>
<td>end</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Probe</td>
<td>Ort</td>
<td>Blauindex</td>
<td>Braunanteile</td>
<td>Lilaanteile</td>
<td>Gelbanteile</td>
<td>Dunkelblauanteile</td>
<td>Violettanteile</td>
</tr>
<tr>
<td>---------------</td>
<td>----------</td>
<td>-----------</td>
<td>--------------</td>
<td>-------------</td>
<td>-------------</td>
<td>-------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Extr.9</td>
<td>mitte</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Extr.9</td>
<td>per</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>K 91.3 Sk 1</td>
<td>end</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>K 91.3 Sk 1</td>
<td>mitte</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>K 91.3 Sk 1</td>
<td>per</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>K 91.3 Sk 10</td>
<td>end</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>K 91.3 Sk 10</td>
<td>mitte</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>K 91.3 Sk 10</td>
<td>per</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>K 91.3 Sk 6</td>
<td>end</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>K 91.3 Sk 6</td>
<td>mitte</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>K 91.3 Sk 6</td>
<td>per</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>K 91.3 Sk 9</td>
<td>end</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>K 91.3 Sk 9</td>
<td>mitte</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>K 91.3 Sk 9</td>
<td>per</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>K 91.5 KO Sk 3</td>
<td>end</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>K 91.5 KO Sk 3</td>
<td>mitte</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>K 91.5 KO Sk 3</td>
<td>per</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>K 91.5 KW Sk 3</td>
<td>end</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>K 91.5 KW Sk 3</td>
<td>mitte</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>K 91.5 KW Sk 3</td>
<td>per</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>K 91.7 KO Sk 1</td>
<td>end</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>K 91.7 KO Sk 1</td>
<td>mitte</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>K 91.7 KO Sk 1</td>
<td>per</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>K 91.7 KO Sk 4</td>
<td>end</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>K 91.7 KO Sk 4</td>
<td>mitte</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>K 91.7 KO Sk 4</td>
<td>per</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>K 91.7 KO Sk 5</td>
<td>end</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>K 91.7 KO Sk 5</td>
<td>mitte</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>K 91.7 KO Sk 5</td>
<td>per</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>K 91.7 KO Sk 9</td>
<td>end</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>K 91.7 KO Sk 9</td>
<td>mitte</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>K 91.7 KO Sk 9</td>
<td>per</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>K 91.7 SCHACHT Sk 2</td>
<td>end</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>K 91.7 SCHACHT Sk 2</td>
<td>mitte</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>K 91.7 SCHACHT Sk 2</td>
<td>per</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sk 91.3 Sk 7</td>
<td>end</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sk 91.3 Sk 7</td>
<td>mitte</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sk 91.3 Sk 7</td>
<td>per</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Knochen 1</td>
<td>end</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Knochen 1</td>
<td>mitte</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Knochen 1</td>
<td>per</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Knochen 10</td>
<td>end</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Knochen 10</td>
<td>mitte</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Knochen 10</td>
<td>per</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Knochen 11</td>
<td>end</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Knochen 11</td>
<td>mitte</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Knochen 11</td>
<td>per</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Knochen 12</td>
<td>end</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Knochen 12</td>
<td>mitte</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Knochen 12</td>
<td>per</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Knochen 13</td>
<td>end</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Probe</td>
<td>Ort</td>
<td>Blauindex</td>
<td>Braunanteile</td>
<td>Lilaanteile</td>
<td>Gelbanteile</td>
<td>Dunkelblauanteile</td>
<td>Violettanteile</td>
</tr>
<tr>
<td>--------------</td>
<td>-----</td>
<td>-----------</td>
<td>--------------</td>
<td>-------------</td>
<td>-------------</td>
<td>------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Knochen 13</td>
<td>mitte</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Knochen 13</td>
<td>per</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Knochen 2</td>
<td>end</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Knochen 2</td>
<td>mitte</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Knochen 2</td>
<td>per</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Knochen 3</td>
<td>end</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Knochen 3</td>
<td>mitte</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Knochen 3</td>
<td>per</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Knochen 4</td>
<td>end</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Knochen 4</td>
<td>mitte</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Knochen 4</td>
<td>per</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Knochen 5</td>
<td>end</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Knochen 5</td>
<td>mitte</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Knochen 5</td>
<td>per</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Knochen 6</td>
<td>end</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Knochen 6</td>
<td>mitte</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Knochen 6</td>
<td>per</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Knochen 7</td>
<td>end</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Knochen 7</td>
<td>mitte</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Knochen 7</td>
<td>per</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Knochen 8</td>
<td>end</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Knochen 8</td>
<td>mitte</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Knochen 8</td>
<td>per</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Knochen 9</td>
<td>end</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Knochen 9</td>
<td>mitte</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Knochen 9</td>
<td>per</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Mensch 1</td>
<td>end</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Mensch 1</td>
<td>mitte</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Mensch 1</td>
<td>per</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Mensch 2</td>
<td>end</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Mensch 2</td>
<td>mitte</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Mensch 2</td>
<td>per</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Mensch 3 319</td>
<td>end</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Mensch 3 319</td>
<td>mitte</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Mensch 3 319</td>
<td>per</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>UV 1</td>
<td>end</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>UV 1</td>
<td>mitte</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>UV 1</td>
<td>per</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>UV 10</td>
<td>end</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>UV 10</td>
<td>mitte</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>UV 10</td>
<td>per</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>UV 11</td>
<td>end</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>UV 11</td>
<td>mitte</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>UV 11</td>
<td>per</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>UV 2</td>
<td>end</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>UV 2</td>
<td>mitte</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>UV 2</td>
<td>per</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>UV 3</td>
<td>end</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>UV 3</td>
<td>mitte</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>UV 3</td>
<td>per</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>UV 4 543a Can</td>
<td>end</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Probe</td>
<td>Ort</td>
<td>Blauindex</td>
<td>Braunanteile</td>
<td>Lilaanteile</td>
<td>Gelbanteile</td>
<td>Dunkelblauanteile</td>
<td>Violettanteile</td>
</tr>
<tr>
<td>------------------</td>
<td>-----</td>
<td>-----------</td>
<td>--------------</td>
<td>-------------</td>
<td>-------------</td>
<td>------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>UV 4 543a Can</td>
<td>mitte</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>UV 4 543a Can</td>
<td>per</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>UV 5 63</td>
<td>end</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>UV 5 63</td>
<td>mitte</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>UV 5 63</td>
<td>per</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>UV 6</td>
<td>end</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>UV 6</td>
<td>mitte</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>UV 6</td>
<td>per</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>UV 7</td>
<td>end</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>UV 7</td>
<td>mitte</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>UV 7</td>
<td>per</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>UV 8</td>
<td>end</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>UV 8</td>
<td>mitte</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>UV 8</td>
<td>per</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>UV 9</td>
<td>end</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>UV 9</td>
<td>mitte</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>UV 9</td>
<td>per</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Tabelle zu den Untersuchungen der Fluoreszenzeigenschaften der UV-Knochenstücke: Darstellung der Mittelwerte

<table>
<thead>
<tr>
<th>Probe</th>
<th>Blauindex</th>
<th>Braunanteile</th>
<th>Lilaanteile</th>
<th>Gelbanteile</th>
<th>Dunkelblauanteile</th>
<th>Violettanteile</th>
</tr>
</thead>
<tbody>
<tr>
<td>247/13</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>248/13</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>249/13</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Anatomie 127/03</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Anatomie 129/03</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Anatomie 76/03</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Anatomie 115/02</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Anatomie 15/03</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Anatomie 42/03</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Anatomie 68/03</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Extr.1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Extr.10</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Extr.11</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Extr.12</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Extr.13</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Extr.14</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Extr.15</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Extr.16</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Extr.2</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Extr.3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Extr.4</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Extr.5</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Extr.6 Husse 36</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Extr.7 Nr.9</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Extr.8 Neuburg 86</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Extr.9</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>K 91.3 Sk 1</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Probe</td>
<td>Blauanteile</td>
<td>Braunanteile</td>
<td>Lilaanteile</td>
<td>Gelbanteile</td>
<td>Dunkelblauanteile</td>
<td>Violetteanteile</td>
</tr>
<tr>
<td>---------------</td>
<td>-------------</td>
<td>--------------</td>
<td>-------------</td>
<td>-------------</td>
<td>-------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>K 91.3 Sk 10</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>K 91.3 Sk 6</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>K 91.3 Sk 9</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>K 91.5 KO Sk 3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>K 91.5 KW Sk 3</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>K 91.7 KO Sk 1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>K 91.7 KO Sk 4</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>K 91.7 KO Sk 5</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>K 91.7 KO Sk 9</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>K 91.7 SCHACHT Sk 2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sk 91.3 Sk 7</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Knochen 1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Knochen 10</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Knochen 11</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Knochen 12</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Knochen 13</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Knochen 3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Knochen 4</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Knochen 5</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Knochen 6</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Knochen 7</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Knochen 8</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Knochen 9</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Mensch 3 319</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>UV 1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>UV 10</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>UV 2</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>UV 3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>UV 4 543a Can</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>UV 5 63</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>UV 6</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>UV 7</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>UV 8</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>UV 9</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>S2 (GTW)</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>S1 (GU II)</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B2 (GU II), R</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B2 (GU II), U</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>D5 (GU II)</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>UV 11</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Mensch 2</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Mensch 1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Knochen 2</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9, Ziege</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>51, Gazelle</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2, Schaf</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>30, Schwein</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>53, Equide</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>120, Equide</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>112, Wildrind</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>121, Wildesel</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>43, Bos</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Probe</td>
<td>Blauanteile</td>
<td>Braunanteile</td>
<td>Lilaanteile</td>
<td>Gelbanteile</td>
<td>Dunkelblauanteile</td>
<td>Violettanteile</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
<td>--------------</td>
<td>-------------</td>
<td>-------------</td>
<td>------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>111, Wildrind</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 600</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 601</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 602</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 603</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 604</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 605</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 606</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 607</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>BP 608</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 609</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 610</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 611</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 612</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 613</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 614</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 615</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 616</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 617</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 618</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 619</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 620</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 621</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 622</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 623</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 624</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 625</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 626</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 627</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 628</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 629</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 630</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 631</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 632</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 633</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 634</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 635</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 636</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 637</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 638</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 639</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 640</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 641</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 642</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 643</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 644</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 645</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 646</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 647</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 648</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 649</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 650</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Probe</td>
<td>Blau-anteile</td>
<td>Braun-anteile</td>
<td>Lila-anteile</td>
<td>Gelb-anteile</td>
<td>Dunkelblau-anteile</td>
<td>Violett-anteile</td>
</tr>
<tr>
<td>----------</td>
<td>--------------</td>
<td>---------------</td>
<td>--------------</td>
<td>--------------</td>
<td>--------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>BP 651</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP 652</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Tabelle zur Untersuchung der Fluoreszenzeigenschaften des Knochenpulvers, der Kollagenlyophilisate und der Apatitlyophilisate

<table>
<thead>
<tr>
<th>Probe</th>
<th>Farben der Fluoreszenz des Knochenpulvers</th>
<th>Index der Fluoreszenz des Knochenpulvers</th>
<th>Fluoreszenz der Kollagenlyophilisate</th>
<th>Fluoreszenz der Apatitlyophilisate</th>
</tr>
</thead>
<tbody>
<tr>
<td>247/13</td>
<td>HB</td>
<td>1</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>248/13</td>
<td>GBr</td>
<td>3</td>
<td>.</td>
<td>2</td>
</tr>
<tr>
<td>249/13</td>
<td>RBr</td>
<td>3</td>
<td>.</td>
<td>2</td>
</tr>
<tr>
<td>Anatomie 127/03</td>
<td>HB</td>
<td>1</td>
<td>.</td>
<td>3</td>
</tr>
<tr>
<td>Anatomie 129/03</td>
<td>HB</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Anatomie 76/03</td>
<td>HB</td>
<td>1</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Extr.1</td>
<td>RBr</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Extr.10</td>
<td>HB</td>
<td>1</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Extr.11</td>
<td>GGr</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Extr.12</td>
<td>GBr</td>
<td>3</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Extr.13</td>
<td>HB</td>
<td>1</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Extr.14</td>
<td>GBr</td>
<td>3</td>
<td>.</td>
<td>2</td>
</tr>
<tr>
<td>Extr.15</td>
<td>Br</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Extr.16</td>
<td>GBr</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Extr.2</td>
<td>HB</td>
<td>1</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Extr.3</td>
<td>Br</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Extr.4</td>
<td>Gr</td>
<td>3</td>
<td>.</td>
<td>3</td>
</tr>
<tr>
<td>Extr.5</td>
<td>Gr</td>
<td>3</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Extr.6</td>
<td>Br</td>
<td>3</td>
<td>.</td>
<td>2</td>
</tr>
<tr>
<td>Extr.7</td>
<td>Gr</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Extr.8</td>
<td>GBr</td>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Extr.9</td>
<td>GBr</td>
<td>3</td>
<td>.</td>
<td>2</td>
</tr>
<tr>
<td>K 91.3 Sk 1</td>
<td>GBr</td>
<td>3</td>
<td>.</td>
<td>1</td>
</tr>
<tr>
<td>K 91.3 Sk 10</td>
<td>W</td>
<td>2</td>
<td>.</td>
<td>2</td>
</tr>
<tr>
<td>K 91.3 Sk 6</td>
<td>W</td>
<td>2</td>
<td>.</td>
<td>2</td>
</tr>
<tr>
<td>K 91.3 Sk 9</td>
<td>GBr</td>
<td>3</td>
<td>.</td>
<td>1</td>
</tr>
<tr>
<td>K 91.5 KO Sk 3</td>
<td>GBr</td>
<td>3</td>
<td>.</td>
<td>3</td>
</tr>
<tr>
<td>K 91.5 KW Sk 3</td>
<td>L</td>
<td>3</td>
<td>.</td>
<td>3</td>
</tr>
<tr>
<td>K 91.7 KO Sk 1</td>
<td>Br</td>
<td>3</td>
<td>.</td>
<td>1</td>
</tr>
<tr>
<td>K 91.7 KO Sk 4</td>
<td>GBr</td>
<td>3</td>
<td>.</td>
<td>1</td>
</tr>
<tr>
<td>K 91.7 KO Sk 5</td>
<td>L</td>
<td>3</td>
<td>.</td>
<td>3</td>
</tr>
<tr>
<td>K 91.7 KO Sk 9</td>
<td>GBr</td>
<td>3</td>
<td>.</td>
<td>1</td>
</tr>
<tr>
<td>K 91.7 SCHACHT Sk 2</td>
<td>RBBr</td>
<td>3</td>
<td>.</td>
<td>2</td>
</tr>
<tr>
<td>Sk 91.3 Sk 7</td>
<td>W</td>
<td>2</td>
<td>.</td>
<td>1</td>
</tr>
<tr>
<td>Knochen 1</td>
<td>W</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Knochen 10</td>
<td>RBBr</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Knochen 11</td>
<td>HB</td>
<td>1</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Knochen 12</td>
<td>HB</td>
<td>1</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Knochen 13</td>
<td>GBGr</td>
<td>3</td>
<td>.</td>
<td>2</td>
</tr>
<tr>
<td>Knochen 3</td>
<td>W</td>
<td>2</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Probe</td>
<td>Farben der Fluoreszenz des Knochenpulvers</td>
<td>Index der Fluoreszenz des Knochenpulvers</td>
<td>Fluoreszenz der Kollagenlyophilisate</td>
<td>Fluoreszenz der Apatitlyophilisate</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>--</td>
<td>-------------------------------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>Knochen 4</td>
<td>RBr</td>
<td>3</td>
<td>.</td>
<td>3</td>
</tr>
<tr>
<td>Knochen 5</td>
<td></td>
<td>1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Knochen 6</td>
<td>RBr</td>
<td>3</td>
<td>.</td>
<td>2</td>
</tr>
<tr>
<td>Knochen 7</td>
<td>W</td>
<td>2</td>
<td>.</td>
<td>3</td>
</tr>
<tr>
<td>Knochen 8</td>
<td>HB</td>
<td>1</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Knochen 9</td>
<td>W</td>
<td>2</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Mensch 3 319</td>
<td>HB</td>
<td>1</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>UV 1</td>
<td>Br</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>UV 10</td>
<td>Br</td>
<td>3</td>
<td>.</td>
<td>2</td>
</tr>
<tr>
<td>UV 2</td>
<td>Gr</td>
<td>3</td>
<td>.</td>
<td>3</td>
</tr>
<tr>
<td>UV 3</td>
<td>W</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>UV 4 543a Can</td>
<td>HB</td>
<td>1</td>
<td>.</td>
<td>2</td>
</tr>
<tr>
<td>UV 5 63</td>
<td>W</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>UV 6</td>
<td>HB</td>
<td>1</td>
<td>.</td>
<td>2</td>
</tr>
<tr>
<td>UV 7</td>
<td></td>
<td>.</td>
<td>.</td>
<td></td>
</tr>
<tr>
<td>UV 8</td>
<td>W</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>UV 9</td>
<td>Gr</td>
<td>3</td>
<td>.</td>
<td>3</td>
</tr>
</tbody>
</table>

Tabelle zu den histologischen Untersuchungen des UV-Materials:

Einzelwerte getrennt nach endostal, mittig und periostal

<table>
<thead>
<tr>
<th>Probe</th>
<th>Ort</th>
<th>HI</th>
<th>Doppelbrechungs-</th>
<th>Mikro-</th>
<th>Bakterien-</th>
<th>Einschlüsse in</th>
<th>Verfärbung unter Strukturenhalt</th>
</tr>
</thead>
<tbody>
<tr>
<td>111, Wildrind</td>
<td>end</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>111, Wildrind</td>
<td>mitte</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>111, Wildrind</td>
<td>per</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>112, Wildrind</td>
<td>end</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>112, Wildrind</td>
<td>mitte</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>112, Wildrind</td>
<td>per</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>120, Equide</td>
<td>end</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>120, Equide</td>
<td>mitte</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>120, Equide</td>
<td>per</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>121, Wildesel</td>
<td>end</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>121, Wildesel</td>
<td>mitte</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>121, Wildesel</td>
<td>per</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2, Schaf</td>
<td>end</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2, Schaf</td>
<td>mitte</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>30, Schwein</td>
<td>end</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>30, Schwein</td>
<td>mitte</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>43, Bos</td>
<td>end</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>43, Bos</td>
<td>mitte</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>51, Gazelle</td>
<td>end</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>51, Gazelle</td>
<td>mitte</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>53, Equide</td>
<td>end</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>53, Equide</td>
<td>mitte</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

478
<table>
<thead>
<tr>
<th>Probe</th>
<th>Ort</th>
<th>HI</th>
<th>Doppelbrechungsindex</th>
<th>Mikrofissuren</th>
<th>Bakterienbefall</th>
<th>Einschlüsse in Hohlräumen</th>
<th>Verfärbung unter Strukturerhalt</th>
</tr>
</thead>
<tbody>
<tr>
<td>9, Ziege</td>
<td>end</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>9, Ziege</td>
<td>mitte</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>9, Ziege</td>
<td>per</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>B2 (GU II), R</td>
<td>end</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>B2 (GU II), R</td>
<td>mitte</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>B2 (GU II), U</td>
<td>end</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>B2 (GU II), U</td>
<td>mitte</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>B2 (GU II), U</td>
<td>per</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>D5 (GU II)</td>
<td>end</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>D5 (GU II)</td>
<td>mitte</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>S1 (GU II)</td>
<td>end</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>S1 (GU II)</td>
<td>mitte</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>S1 (GU II)</td>
<td>per</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>S2 (GTW)</td>
<td>end</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>S2 (GTW)</td>
<td>per</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>247/10</td>
<td>per</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>247/11</td>
<td>mitte</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>247/12</td>
<td>end</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>248/10</td>
<td>per</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>248/11</td>
<td>mitte</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>248/12</td>
<td>end</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>249/10</td>
<td>per</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>249/11</td>
<td>mitte</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>249/12</td>
<td>end</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Anatomie 115/02</td>
<td>end</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Anatomie 115/02</td>
<td>mitte</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Anatomie 115/02</td>
<td>per</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Anatomie 127/03</td>
<td>end</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Anatomie 127/03</td>
<td>mitte</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Anatomie 127/03</td>
<td>per</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Anatomie 129/03</td>
<td>end</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Anatomie 129/03</td>
<td>mitte</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Anatomie 129/03</td>
<td>per</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Anatomie 15/03</td>
<td>end</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Anatomie 15/03</td>
<td>mitte</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Anatomie 15/03</td>
<td>per</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Anatomie 42/03</td>
<td>end</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Anatomie 42/03</td>
<td>mitte</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Anatomie 42/03</td>
<td>per</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Anatomie 68/03</td>
<td>end</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Anatomie 68/03</td>
<td>mitte</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Anatomie 68/03</td>
<td>per</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Anatomie 76/03</td>
<td>end</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Anatomie 76/03</td>
<td>mitte</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>BP 600</td>
<td>end</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>BP 600</td>
<td>mitte</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>BP 600</td>
<td>per</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>BP 601</td>
<td>end</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Probe</td>
<td>Ort</td>
<td>HI</td>
<td>Doppelbrechungsindex</td>
<td>Mikrofissuren</td>
<td>Bakterienbefall</td>
<td>Einschlüsse in Hohlräumen</td>
<td>Verfärbung unter Strukturerhalt</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
<td>----</td>
<td>----------------------</td>
<td>---------------</td>
<td>----------------</td>
<td>--------------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>BP 601</td>
<td>mitte</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>BP 601</td>
<td>per</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>BP 602</td>
<td>end</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>BP 602</td>
<td>mitte</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>BP 603</td>
<td>end</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>BP 603</td>
<td>mitte</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>BP 603</td>
<td>per</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>BP 604</td>
<td>end</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>BP 604</td>
<td>mitte</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>BP 604</td>
<td>per</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>BP 605</td>
<td>end</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>BP 605</td>
<td>mitte</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>BP 605</td>
<td>per</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>BP 606</td>
<td>end</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>BP 606</td>
<td>mitte</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>BP 606</td>
<td>per</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>BP 607</td>
<td>end</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>BP 607</td>
<td>mitte</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>BP 607</td>
<td>per</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>BP 608</td>
<td>end</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>BP 608</td>
<td>mitte</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>BP 608</td>
<td>per</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>BP 609</td>
<td>end</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>BP 609</td>
<td>mitte</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>BP 609</td>
<td>per</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>BP 610</td>
<td>end</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>BP 610</td>
<td>mitte</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>BP 610</td>
<td>per</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>BP 611</td>
<td>end</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>BP 611</td>
<td>mitte</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>BP 611</td>
<td>per</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>BP 612</td>
<td>end</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>BP 612</td>
<td>mitte</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>BP 612</td>
<td>per</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>BP 613</td>
<td>end</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>BP 613</td>
<td>mitte</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>BP 613</td>
<td>per</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>BP 614</td>
<td>end</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>BP 614</td>
<td>mitte</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>BP 614</td>
<td>per</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>BP 615</td>
<td>end</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>BP 615</td>
<td>mitte</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>BP 615</td>
<td>per</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>BP 616</td>
<td>end</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>BP 616</td>
<td>mitte</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>BP 616</td>
<td>per</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>BP 617</td>
<td>end</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>BP 617</td>
<td>mitte</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>BP 617</td>
<td>per</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>BP 618</td>
<td>end</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>BP 618</td>
<td>mitte</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

480
<table>
<thead>
<tr>
<th>Probe</th>
<th>Ort</th>
<th>HI</th>
<th>Doppelbrechungsindex</th>
<th>Mikrofissuren</th>
<th>Bakterienbefall</th>
<th>Einschlüsse in Hohlräumen</th>
<th>Verfärbung unter Strukturenhalt</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP 618</td>
<td>per</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>BP 619</td>
<td>end</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>BP 619</td>
<td>mitte</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>BP 620</td>
<td>per</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>BP 620</td>
<td>end</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>BP 620</td>
<td>mitte</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>BP 621</td>
<td>per</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>BP 621</td>
<td>end</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>BP 621</td>
<td>mitte</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>BP 622</td>
<td>per</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>BP 622</td>
<td>end</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>BP 622</td>
<td>mitte</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>BP 623</td>
<td>per</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>BP 623</td>
<td>end</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>BP 623</td>
<td>mitte</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>BP 623</td>
<td>per</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>BP 624</td>
<td>end</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>BP 624</td>
<td>mitte</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>BP 624</td>
<td>per</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>BP 625</td>
<td>end</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>BP 625</td>
<td>mitte</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>BP 625</td>
<td>per</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>BP 626</td>
<td>end</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>BP 626</td>
<td>mitte</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>BP 626</td>
<td>per</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>BP 627</td>
<td>end</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>BP 627</td>
<td>mitte</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>BP 627</td>
<td>per</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>BP 628</td>
<td>end</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>BP 628</td>
<td>mitte</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>BP 628</td>
<td>per</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>BP 629</td>
<td>end</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>BP 629</td>
<td>mitte</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>BP 629</td>
<td>per</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>BP 630</td>
<td>end</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>BP 630</td>
<td>mitte</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>BP 630</td>
<td>per</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>BP 631</td>
<td>end</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>BP 631</td>
<td>mitte</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>BP 631</td>
<td>per</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>BP 632</td>
<td>end</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>BP 632</td>
<td>mitte</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>BP 632</td>
<td>per</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>BP 633</td>
<td>end</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>BP 633</td>
<td>mitte</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>BP 633</td>
<td>per</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>BP 634</td>
<td>end</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>BP 634</td>
<td>mitte</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>BP 634</td>
<td>per</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>BP 635</td>
<td>end</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>BP 635</td>
<td>mitte</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>BP 635</td>
<td>per</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

8. Anhang
<table>
<thead>
<tr>
<th>Probe</th>
<th>Ort</th>
<th>HI</th>
<th>Doppelbrechungs-</th>
<th>Mikrofissuren</th>
<th>Bakterienbefall</th>
<th>Einschlüsse in Hohlräumen</th>
<th>Verfärbung unter Strukturverlust</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP 636</td>
<td>end</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>BP 636</td>
<td>mitte</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>BP 636</td>
<td>per</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>BP 637</td>
<td>end</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>BP 637</td>
<td>mitte</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>BP 637</td>
<td>per</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>BP 638</td>
<td>end</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>BP 638</td>
<td>mitte</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>BP 638</td>
<td>per</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>BP 639</td>
<td>end</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>BP 639</td>
<td>mitte</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>BP 639</td>
<td>per</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>BP 640</td>
<td>end</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>BP 640</td>
<td>mitte</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>BP 640</td>
<td>per</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>BP 641</td>
<td>end</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>BP 641</td>
<td>mitte</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>BP 641</td>
<td>per</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>BP 642</td>
<td>end</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>BP 642</td>
<td>mitte</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>BP 642</td>
<td>per</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>BP 643</td>
<td>end</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>BP 643</td>
<td>mitte</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>BP 643</td>
<td>per</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>BP 644</td>
<td>end</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>BP 644</td>
<td>mitte</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>BP 644</td>
<td>per</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>BP 645</td>
<td>end</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>BP 645</td>
<td>mitte</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>BP 645</td>
<td>per</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>BP 646</td>
<td>end</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>BP 646</td>
<td>mitte</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>BP 646</td>
<td>per</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>BP 647</td>
<td>end</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>BP 647</td>
<td>mitte</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>BP 647</td>
<td>per</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>BP 648</td>
<td>end</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>BP 648</td>
<td>mitte</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>BP 648</td>
<td>per</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>BP 649</td>
<td>end</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>BP 649</td>
<td>mitte</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>BP 649</td>
<td>per</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>BP 650</td>
<td>end</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>BP 650</td>
<td>mitte</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>BP 650</td>
<td>per</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>BP 651</td>
<td>end</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>BP 651</td>
<td>mitte</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>BP 651</td>
<td>per</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>BP 652</td>
<td>end</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>BP 652</td>
<td>mitte</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>BP 652</td>
<td>per</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Extr.1</td>
<td>end</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Probe</td>
<td>Ort</td>
<td>HI</td>
<td>Doppelbrechungsindex</td>
<td>Mikrofissuren</td>
<td>Bakterienbefall</td>
<td>Einschlüsse in Hohlräumen</td>
<td>Verfärbung unter Struktherhalt</td>
</tr>
<tr>
<td>------------</td>
<td>-------</td>
<td>---------</td>
<td>----------------------</td>
<td>---------------</td>
<td>----------------</td>
<td>---------------------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>Extr.1</td>
<td>mitte</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Extr.1</td>
<td>per</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Extr.10</td>
<td>end</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Extr.10</td>
<td>mitte</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Extr.11</td>
<td>end</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Extr.11</td>
<td>mitte</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Extr.12</td>
<td>end</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Extr.12</td>
<td>mitte</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Extr.13</td>
<td>end</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Extr.13</td>
<td>mitte</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Extr.13</td>
<td>per</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Extr.14</td>
<td>end</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Extr.14</td>
<td>mitte</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Extr.15</td>
<td>end</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Extr.15</td>
<td>mitte</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Extr.15</td>
<td>per</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Extr.16</td>
<td>end</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Extr.16</td>
<td>mitte</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Extr.16</td>
<td>per</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Extr.2</td>
<td>end</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Extr.2</td>
<td>mitte</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Extr.2</td>
<td>per</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Extr.3</td>
<td>end</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Extr.3</td>
<td>mitte</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Extr.3</td>
<td>per</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Extr.4</td>
<td>end</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Extr.4</td>
<td>mitte</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Extr.4</td>
<td>per</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Extr.5</td>
<td>end</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Extr.5</td>
<td>mitte</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Extr.5</td>
<td>per</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Extr.6</td>
<td>end</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Extr.6</td>
<td>mitte</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Extr.6</td>
<td>per</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Extr.7</td>
<td>end</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Extr.7</td>
<td>per</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Extr.7</td>
<td>mitte</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Extr.7</td>
<td>per</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Extr.8</td>
<td>end</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Extr.8</td>
<td>mitte</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Extr.8</td>
<td>per</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Extr.9</td>
<td>end</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Extr.9</td>
<td>mitte</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Extr.9</td>
<td>per</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>K 91.3 Sk 1</td>
<td>end</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>K 91.3 Sk 1</td>
<td>mitte</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>K 91.3 Sk 1</td>
<td>per</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>K 91.3 Sk 10</td>
<td>end</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>K 91.3 Sk 10</td>
<td>mitte</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Probe</td>
<td>Ort</td>
<td>HI</td>
<td>Doppelbrechungsindex</td>
<td>Mikrofissuren</td>
<td>Bakterienbefall</td>
<td>Einschlüsse in Hohlräumen</td>
<td>Verfärbung unter Strukturerhalt</td>
</tr>
<tr>
<td>------------</td>
<td>-------</td>
<td>----</td>
<td>----------------------</td>
<td>--------------</td>
<td>----------------</td>
<td>---------------------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>K 91.3 Sk 10</td>
<td>per</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>K 91.3 Sk 6</td>
<td>end</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>K 91.3 Sk 6</td>
<td>mitte</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>K 91.3 Sk 6</td>
<td>per</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>K 91.3 Sk 9</td>
<td>end</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>K 91.3 Sk 9</td>
<td>mitte</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>K 91.5 KO Sk 3</td>
<td>end</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>K 91.5 KO Sk 3</td>
<td>mitte</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>K 91.5 KO Sk 3</td>
<td>per</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>K 91.5 KW Sk 3</td>
<td>end</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>K 91.5 KW Sk 3</td>
<td>mitte</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>K 91.7 KO Sk 4</td>
<td>per</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>K 91.7 KO Sk 4</td>
<td>mitte</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>K 91.7 KO Sk 5</td>
<td>end</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>K 91.7 KO Sk 5</td>
<td>mitte</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>K 91.7 KO Sk 5</td>
<td>per</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>K 91.7 KO Sk 9</td>
<td>end</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>K 91.7 KO Sk 9</td>
<td>mitte</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>K 91.7 KO Sk 9</td>
<td>per</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>K 91.7 KO Sk 9</td>
<td>end</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>K 91.7 KO Sk 9</td>
<td>mitte</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>K 91.7 SCHACHT Sk 2</td>
<td>end</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>K 91.7 SCHACHT Sk 2</td>
<td>mitte</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>K 91.7 SCHACHT Sk 2</td>
<td>per</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Sk 91.3 Sk 7</td>
<td>end</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Sk 91.3 Sk 7</td>
<td>mitte</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Sk 91.3 Sk 7</td>
<td>per</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Knochen 1</td>
<td>end</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Knochen 1</td>
<td>mitte</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Knochen 1</td>
<td>per</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Knochen 10</td>
<td>end</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Knochen 10</td>
<td>mitte</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Knochen 10</td>
<td>per</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Knochen 11</td>
<td>end</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Knochen 11</td>
<td>mitte</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Knochen 11</td>
<td>per</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Knochen 12</td>
<td>end</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Knochen 12</td>
<td>mitte</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Knochen 12</td>
<td>per</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Knochen 13</td>
<td>end</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Knochen 13</td>
<td>mitte</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Knochen 13</td>
<td>per</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Knochen 2</td>
<td>end</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Knochen 2</td>
<td>mitte</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Knochen 2</td>
<td>per</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Knochen 3</td>
<td>end</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Knochen 3</td>
<td>mitte</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Knochen 3</td>
<td>per</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Probe</td>
<td>Ort</td>
<td>HI</td>
<td>Doppelbrechungsindex</td>
<td>Mikrofissuren</td>
<td>Bakterienbefall</td>
<td>Einschlüsse in Hohlräumen</td>
<td>Verfärbung unter Strukturerhalt</td>
</tr>
<tr>
<td>-----------</td>
<td>--------</td>
<td>-----</td>
<td>----------------------</td>
<td>---------------</td>
<td>-----------------</td>
<td>---------------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>Knochen 4</td>
<td>end</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Knochen 4</td>
<td>mitte</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Knochen 4</td>
<td>per</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Knochen 5</td>
<td>end</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Knochen 5</td>
<td>mitte</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Knochen 6</td>
<td>end</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Knochen 6</td>
<td>mitte</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Knochen 7</td>
<td>end</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Knochen 7</td>
<td>mitte</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Knochen 8</td>
<td>end</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Knochen 8</td>
<td>mitte</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Knochen 8</td>
<td>per</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Knochen 9</td>
<td>end</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Knochen 9</td>
<td>mitte</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Knochen 9</td>
<td>per</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Mensch 1</td>
<td>end</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Mensch 1</td>
<td>mitte</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Mensch 1</td>
<td>per</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Mensch 2</td>
<td>end</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Mensch 2</td>
<td>mitte</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Mensch 2</td>
<td>per</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Mensch 3 319</td>
<td>end</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Mensch 3 319</td>
<td>mitte</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Mensch 3 319</td>
<td>per</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>UV 1</td>
<td>end</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>UV 1</td>
<td>mitte</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>UV 1</td>
<td>per</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>UV 10</td>
<td>end</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>UV 10</td>
<td>mitte</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>UV 10</td>
<td>per</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>UV 11</td>
<td>end</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>UV 11</td>
<td>mitte</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>UV 11</td>
<td>per</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>UV 2</td>
<td>end</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>UV 2</td>
<td>mitte</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>UV 2</td>
<td>per</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>UV 3</td>
<td>end</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>UV 3</td>
<td>mitte</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>UV 3</td>
<td>per</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>UV 4 543a Can</td>
<td>end</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>UV 4 543a Can</td>
<td>mitte</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>UV 4 543a Can</td>
<td>per</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>UV 5 63</td>
<td>end</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>UV 5 63</td>
<td>mitte</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>UV 5 63</td>
<td>per</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>UV 6</td>
<td>end</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>UV 6</td>
<td>mitte</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>UV 6</td>
<td>per</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>UV 7</td>
<td>end</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>
Tabelle zu den histologischen Untersuchungen des UV-Materials:
Darstellung der Ausprägung der Merkmale betrachtet am Gesamtquerschnitt

<table>
<thead>
<tr>
<th>Probe</th>
<th>Ort</th>
<th>HI</th>
<th>Doppelbrechungsindex</th>
<th>Mikrofissuren</th>
<th>Bakterienbefall</th>
<th>Einschlüsse in Hohlräumen</th>
<th>Verfärbung unter Strukturerhalt</th>
</tr>
</thead>
<tbody>
<tr>
<td>UV 7</td>
<td>mitte</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>UV 7</td>
<td>per</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>UV 8</td>
<td>end</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>UV 8</td>
<td>mitte</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>UV 9</td>
<td>end</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>UV 9</td>
<td>mitte</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>UV 9</td>
<td>per</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Probe</th>
<th>HI</th>
<th>Doppelbrechungsindex</th>
<th>Mikrofissuren</th>
<th>Bakterienbefall</th>
<th>Einschlüsse in Hohlräumen</th>
<th>Verfärbung unter Strukturerhalt</th>
</tr>
</thead>
<tbody>
<tr>
<td>247/13</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>248/13</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Anatomie 127/03</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Anatomie 129/03</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Anatomie 76/03</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Anatomie 115/02</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Anatomie 15/03</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Anatomie 42/03</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Anatomie 68/03</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Extr.1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Extr.10</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Extr.11</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Extr.12</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Extr.13</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Extr.14</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Extr.15</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Extr.16</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Extr.2</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Extr.3</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Extr.4</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Extr.5</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Extr.6 Hussex 36</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Extr.7 Nr.9</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Extr.8 Neuburg 86</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Extr.9</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>K 91.3 Sk 1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>K 91.3 Sk 10</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>K 91.3 Sk 6</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>K 91.3 Sk 9</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>K 91.5 KO Sk 3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>K 91.5 KW Sk 3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>K 91.7 KO Sk 1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>K 91.7 KO Sk 4</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Probe</td>
<td>HI</td>
<td>Doppelbrechungsindex</td>
<td>Mikrofissuren</td>
<td>Bakterienbefall</td>
<td>Einschlüsse in Hohlräumen</td>
<td>Verfärbung unter Struktureinhalt</td>
</tr>
<tr>
<td>---------------</td>
<td>----</td>
<td>----------------------</td>
<td>---------------</td>
<td>----------------</td>
<td>--------------------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>K 91.7 KO Sk 5</td>
<td>2 2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>K 91.7 KO Sk 9</td>
<td>3 2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>K 91.7 SCHACHT Sk 2</td>
<td>3 2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Sk 91.3 Sk 7</td>
<td>3 1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Knochen 1</td>
<td>1 1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Knochen 10</td>
<td>1 1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Knochen 11</td>
<td>1 1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Knochen 12</td>
<td>3 3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Knochen 13</td>
<td>1 1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Knochen 3</td>
<td>3 3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Knochen 4</td>
<td>1 1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Knochen 5</td>
<td>3 3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Knochen 6</td>
<td>1 1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Knochen 7</td>
<td>1 1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Knochen 8</td>
<td>3 3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Knochen 9</td>
<td>1 1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Mensch 3319</td>
<td>3 3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>UV 1</td>
<td>1 1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>UV 10</td>
<td>1 1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>UV 2</td>
<td>1 2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>UV 3</td>
<td>1 1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>UV 4543a Can</td>
<td>3 3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>UV 563</td>
<td>1 1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>UV 6</td>
<td>1 1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>UV 7</td>
<td>1 1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>UV 8</td>
<td>1 1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>UV 9</td>
<td>1 1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>S2 (GTW)</td>
<td>2 1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>S1 (GU II)</td>
<td>2 1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>B2 (GU II), R</td>
<td>3 2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>B2 (GU II), U</td>
<td>3 2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>D5 (GU II)</td>
<td>3 2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>UV 11</td>
<td>3 2</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Mensch 2</td>
<td>2 2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Mensch 1</td>
<td>1 1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Knochen 2</td>
<td>1 1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>9, Ziege</td>
<td>3 2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>51, Gazelle</td>
<td>3 2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2, Schaf</td>
<td>3 2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>30, Schwein</td>
<td>3 2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>53, Equide</td>
<td>3 2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>120, Equide</td>
<td>2 2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>1112, Wilddrind</td>
<td>2 1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>121, Wildesel</td>
<td>2 1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>43, Bos</td>
<td>3 2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>111, Wilddrind</td>
<td>3 2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>BP 600</td>
<td>3 3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>BP 601</td>
<td>2 2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>BP 602</td>
<td>2 2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>BP 603</td>
<td>3 2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>BP 604</td>
<td>3 3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Probe</td>
<td>HI</td>
<td>Doppelbrechungsindex</td>
<td>Mikrofissuren</td>
<td>Bakterienbefall</td>
<td>Einschlüsse in Hohlräumen</td>
<td>Verfärbung unter Strukturenhalt</td>
</tr>
<tr>
<td>--------</td>
<td>----</td>
<td>----------------------</td>
<td>--------------</td>
<td>----------------</td>
<td>---------------------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>BP 605</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>BP 606</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>BP 607</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>BP 608</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>BP 609</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>BP 610</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>BP 611</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>BP 612</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>BP 613</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>BP 614</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>BP 615</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>BP 616</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>BP 617</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>BP 618</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>BP 619</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>BP 620</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>BP 621</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>BP 622</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>BP 623</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>BP 624</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>BP 625</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>BP 626</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>BP 627</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>BP 628</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>BP 629</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>BP 630</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>BP 631</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>BP 632</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>BP 633</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>BP 634</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>BP 635</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>BP 636</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>BP 637</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>BP 638</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>BP 639</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>BP 640</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>BP 641</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>BP 642</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>BP 643</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>BP 644</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>BP 645</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>BP 646</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>BP 647</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>BP 648</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>BP 649</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>BP 650</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>BP 651</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>BP 652</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>
Gelatineextraktion

<table>
<thead>
<tr>
<th>Probenummer</th>
<th>Knochenart</th>
<th>Einwaage Knochenmehl in mg</th>
<th>Ausbeute Kollagen in mg</th>
<th>Ausbeute Kollagen in %</th>
<th>Kollagen Konsistenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>247/10</td>
<td>Humerus</td>
<td>493,59</td>
<td>22,63</td>
<td>4,58</td>
<td>weiß, flockig</td>
</tr>
<tr>
<td>248/10</td>
<td>Femur</td>
<td>499,02</td>
<td>1,33</td>
<td>0,27</td>
<td>braun, klebrig</td>
</tr>
<tr>
<td>249/10</td>
<td>?</td>
<td>494,69</td>
<td>0,05</td>
<td>0,01</td>
<td>braun, klebrig</td>
</tr>
<tr>
<td>Anatomie 127/03</td>
<td>Femur</td>
<td>500,92</td>
<td>6,23</td>
<td>1,24</td>
<td>braun, klebrig</td>
</tr>
<tr>
<td>Anatomie 129/03</td>
<td>Femur</td>
<td>502,5</td>
<td>5,23</td>
<td>1,04</td>
<td>braun, klebrig</td>
</tr>
<tr>
<td>Anatomie 76/03</td>
<td>Femur</td>
<td>497,24</td>
<td>6,66</td>
<td>1,34</td>
<td>klebrig</td>
</tr>
<tr>
<td>Extr. 1</td>
<td>Humerus</td>
<td>506,49</td>
<td>11,25</td>
<td>2,22</td>
<td>weiß, flockig, gelb klebrig</td>
</tr>
<tr>
<td>Extr. 10</td>
<td>Femur</td>
<td>501,67</td>
<td>15,37</td>
<td>3,06</td>
<td>weiß, flockig</td>
</tr>
<tr>
<td>Extr. 11</td>
<td>Femur</td>
<td>502,01</td>
<td>11,7</td>
<td>2,33</td>
<td>gelb, klebrig</td>
</tr>
<tr>
<td>Extr. 12</td>
<td>Femur</td>
<td>502,47</td>
<td>15,05</td>
<td>3,00</td>
<td>gelblich, flockig</td>
</tr>
<tr>
<td>Extr. 13</td>
<td>Femur</td>
<td>499,59</td>
<td>23,89</td>
<td>4,78</td>
<td>weiß, flockig</td>
</tr>
<tr>
<td>Extr. 14</td>
<td>Femur</td>
<td>497,82</td>
<td>0</td>
<td>0,00</td>
<td>-</td>
</tr>
<tr>
<td>Extr. 15</td>
<td>Femur</td>
<td>488,23</td>
<td>11,95</td>
<td>2,45</td>
<td>klebrig</td>
</tr>
<tr>
<td>Extr. 16</td>
<td>Femur</td>
<td>502,55</td>
<td>8,76</td>
<td>1,74</td>
<td>weiß, flockig</td>
</tr>
<tr>
<td>Extr. 2</td>
<td>Fibula</td>
<td>500,64</td>
<td>32,4</td>
<td>6,47</td>
<td>weiß, flockig</td>
</tr>
<tr>
<td>Extr. 3</td>
<td>Femur</td>
<td>504,08</td>
<td>4,6</td>
<td>0,91</td>
<td>gelblich, flockig</td>
</tr>
<tr>
<td>Extr. 4</td>
<td>?</td>
<td>496,97</td>
<td>4,01</td>
<td>0,81</td>
<td>braun, klebrig</td>
</tr>
<tr>
<td>Extr. 5</td>
<td>Femur</td>
<td>499,96</td>
<td>9,92</td>
<td>1,98</td>
<td>weiß, flockig</td>
</tr>
<tr>
<td>Extr. 6 Hussex 36</td>
<td>Femur</td>
<td>495,45</td>
<td>1,17</td>
<td>0,24</td>
<td>braun, klebrig</td>
</tr>
<tr>
<td>Extr. 7 Nr. 9</td>
<td>Femur</td>
<td>503,58</td>
<td>10,64</td>
<td>2,11</td>
<td>gelblich, flockig</td>
</tr>
<tr>
<td>Extr. 8 Neuburg 86</td>
<td>Femur</td>
<td>499,3</td>
<td>1,63</td>
<td>0,33</td>
<td>braun, klebrig</td>
</tr>
<tr>
<td>Extr. 9</td>
<td>Femur</td>
<td>496,48</td>
<td>0,13</td>
<td>0,03</td>
<td>braun, klebrig</td>
</tr>
<tr>
<td>K 91.3 Sk 1</td>
<td>Femur</td>
<td>497,74</td>
<td>0</td>
<td>0,00</td>
<td>-</td>
</tr>
<tr>
<td>K 91.3 Sk 10</td>
<td>Femur</td>
<td>501,49</td>
<td>0</td>
<td>0,00</td>
<td>-</td>
</tr>
<tr>
<td>K 91.3 Sk 6</td>
<td>Humerus</td>
<td>498,02</td>
<td>0</td>
<td>0,00</td>
<td>-</td>
</tr>
<tr>
<td>K 91.3 Sk 9</td>
<td>Femur</td>
<td>497,84</td>
<td>0</td>
<td>0,00</td>
<td>-</td>
</tr>
<tr>
<td>K 91.5 KO Sk 3</td>
<td>Femur</td>
<td>505,08</td>
<td>0</td>
<td>0,00</td>
<td>-</td>
</tr>
<tr>
<td>K 91.5 KW Sk 3</td>
<td>Femur</td>
<td>493,65</td>
<td>0</td>
<td>0,00</td>
<td>-</td>
</tr>
<tr>
<td>K 91.7 KO Sk 1</td>
<td>Tibia</td>
<td>499,44</td>
<td>0</td>
<td>0,00</td>
<td>-</td>
</tr>
<tr>
<td>K 91.7 KO Sk 4</td>
<td>Femur</td>
<td>503,2</td>
<td>0</td>
<td>0,00</td>
<td>-</td>
</tr>
<tr>
<td>K 91.7 KO Sk 5</td>
<td>Femur</td>
<td>489,99</td>
<td>0</td>
<td>0,00</td>
<td>-</td>
</tr>
<tr>
<td>K 91.7 KO Sk 9</td>
<td>Femur</td>
<td>508,22</td>
<td>0</td>
<td>0,00</td>
<td>-</td>
</tr>
<tr>
<td>K 91.7 SCHACHT Sk 2</td>
<td>Femur</td>
<td>496,12</td>
<td>0</td>
<td>0,00</td>
<td>-</td>
</tr>
<tr>
<td>Sk 91.3 Sk 7</td>
<td>Femur</td>
<td>492,71</td>
<td>0</td>
<td>0,00</td>
<td>-</td>
</tr>
<tr>
<td>Knochen 1</td>
<td>?</td>
<td>494,05</td>
<td>8,33</td>
<td>1,69</td>
<td>gelblich, flockig</td>
</tr>
<tr>
<td>Knochen 10</td>
<td>Tibia?</td>
<td>501,67</td>
<td>9,81</td>
<td>1,96</td>
<td>gelblich, flockig</td>
</tr>
<tr>
<td>Knochen 11</td>
<td>Femur</td>
<td>500,62</td>
<td>11,69</td>
<td>2,34</td>
<td>gelblich, flockig</td>
</tr>
<tr>
<td>Knochen 12</td>
<td>?</td>
<td>503,3</td>
<td>14,54</td>
<td>2,89</td>
<td>gelblich weiß, flockig</td>
</tr>
<tr>
<td>Knochen 13</td>
<td>?</td>
<td>501,29</td>
<td>3,83</td>
<td>0,76</td>
<td>etwas gelblich, flookig</td>
</tr>
<tr>
<td>Knochen 3</td>
<td>Femur?</td>
<td>507,15</td>
<td>18,26</td>
<td>3,60</td>
<td>weiß, flockig</td>
</tr>
<tr>
<td>Knochen 4</td>
<td>Ulna</td>
<td>494,88</td>
<td>1,71</td>
<td>0,35</td>
<td>braun, klebrig</td>
</tr>
<tr>
<td>Knochen 5</td>
<td>Femur?</td>
<td>495,62</td>
<td>12,72</td>
<td>2,57</td>
<td>braun, klebrig</td>
</tr>
<tr>
<td>Knochen 6</td>
<td>Femur?</td>
<td>509,25</td>
<td>2,37</td>
<td>0,47</td>
<td>braun, klebrig</td>
</tr>
<tr>
<td>Knochen 7</td>
<td>?</td>
<td>501,35</td>
<td>0</td>
<td>0,00</td>
<td>-</td>
</tr>
<tr>
<td>Knochen 8</td>
<td>?</td>
<td>494,72</td>
<td>23,97</td>
<td>4,85</td>
<td>weiß, flockig</td>
</tr>
<tr>
<td>Knochen 9</td>
<td>?</td>
<td>499,92</td>
<td>4,64</td>
<td>0,93</td>
<td>weiß, flockig, gelb klebrig</td>
</tr>
<tr>
<td>Mensch 3 319</td>
<td>Femur</td>
<td>502,33</td>
<td>41,18</td>
<td>8,20</td>
<td>weiß, flockig</td>
</tr>
<tr>
<td>UV 1</td>
<td>Radius?</td>
<td>502,44</td>
<td>12,91</td>
<td>2,57</td>
<td>braun, flockig</td>
</tr>
</tbody>
</table>
UV 0,5; HV 1 und HV 2 sind rezente Proben und werden als Referenz genutzt.

Die Menge der Aminosäuren ist in µmol/l angegeben.

<table>
<thead>
<tr>
<th>Aminosäure</th>
<th>Extrak 3</th>
<th>Extrak 4</th>
<th>Extrak 5</th>
<th>Extrak 6</th>
<th>Extrak 7</th>
<th>Extrak 8</th>
<th>Extrak 9</th>
<th>Extrak 10</th>
<th>Extrak 11</th>
<th>Extrak 12</th>
<th>Extrak 13</th>
<th>Extrak 14</th>
<th>Extrak 15</th>
<th>Extrak 16</th>
<th>Extrak 17</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phosphoserin</td>
<td>4,5</td>
<td>3,6</td>
<td>3,8</td>
<td>3,9</td>
<td>2,9</td>
<td>9,91</td>
<td>4,32</td>
<td>4,44</td>
<td>4,28</td>
<td>3,18</td>
<td>3,08</td>
<td>2,48</td>
<td>2,98</td>
<td>3,08</td>
<td>3,28</td>
</tr>
<tr>
<td>Taurin</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1,87</td>
<td>0</td>
<td>0,85</td>
<td>0,95</td>
<td>0,95</td>
<td>0,95</td>
<td>0,95</td>
<td>0,95</td>
<td>0,95</td>
<td>0,95</td>
</tr>
<tr>
<td>Asparaginsäure</td>
<td>347,99</td>
<td>309,91</td>
<td>344,42</td>
<td>366,49</td>
<td>399,7</td>
<td>352,24</td>
<td>277,49</td>
<td>392,21</td>
<td>411,3</td>
<td>411,3</td>
<td>411,3</td>
<td>411,3</td>
<td>411,3</td>
<td>411,3</td>
<td>411,3</td>
</tr>
<tr>
<td>Threonin</td>
<td>152,16</td>
<td>134,38</td>
<td>136,05</td>
<td>152,02</td>
<td>154,68</td>
<td>143,02</td>
<td>114,54</td>
<td>160,3</td>
<td>161,3</td>
<td>161,3</td>
<td>161,3</td>
<td>161,3</td>
<td>161,3</td>
<td>161,3</td>
<td>161,3</td>
</tr>
<tr>
<td>Glutaminsäure</td>
<td>575,96</td>
<td>534,13</td>
<td>544,86</td>
<td>597,89</td>
<td>706,56</td>
<td>598,62</td>
<td>507,94</td>
<td>631,02</td>
<td>664,4</td>
<td>664,4</td>
<td>664,4</td>
<td>664,4</td>
<td>664,4</td>
<td>664,4</td>
<td>664,4</td>
</tr>
</tbody>
</table>

Ergebnisse der Aminosäureanalyse

Die Menge der Aminosäuren ist in µmol/l angegeben.
HV 0,5; HV 1 und HV 2 sind rezente Proben und werden als Referenz genutzt.
<table>
<thead>
<tr>
<th>Aminosäure</th>
<th>Extr 3</th>
<th>Extr 5</th>
<th>Extr 7</th>
<th>HV 0,5</th>
<th>HV 2</th>
<th>Knochen 1</th>
<th>Knochen 10</th>
<th>Knochen 11</th>
<th>Knochen 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sarcin</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2.54</td>
<td>2.01</td>
</tr>
<tr>
<td>Glycin</td>
<td>1955.32</td>
<td>1844.86</td>
<td>1831.91</td>
<td>1903.37</td>
<td>2044.78</td>
<td>1915.86</td>
<td>1780.08</td>
<td>1965.6</td>
<td>1943.48</td>
</tr>
<tr>
<td>Alanin</td>
<td>919.7</td>
<td>843.19</td>
<td>833.2</td>
<td>919.5</td>
<td>1102.05</td>
<td>926.63</td>
<td>791.85</td>
<td>964.82</td>
<td>1033.84</td>
</tr>
<tr>
<td>Valin</td>
<td>196.76</td>
<td>190.98</td>
<td>183.07</td>
<td>163.39</td>
<td>199.7</td>
<td>199.43</td>
<td>171.13</td>
<td>212.36</td>
<td>232.41</td>
</tr>
<tr>
<td>Cystein</td>
<td>2.79</td>
<td>3.11</td>
<td>5.19</td>
<td>4.49</td>
<td>7.36</td>
<td>2.45</td>
<td>2.75</td>
<td>5.7</td>
<td>4.97</td>
</tr>
<tr>
<td>Cystathionin</td>
<td>2.93</td>
<td>4.18</td>
<td>6.72</td>
<td>13</td>
<td>0</td>
<td>4.23</td>
<td>4.26</td>
<td>7.67</td>
<td>0</td>
</tr>
<tr>
<td>Methionin</td>
<td>5.77</td>
<td>9.67</td>
<td>15.26</td>
<td>21.97</td>
<td>0</td>
<td>12.62</td>
<td>5.67</td>
<td>22.88</td>
<td>22.6</td>
</tr>
<tr>
<td>Isoleucin</td>
<td>82.24</td>
<td>75.78</td>
<td>74.55</td>
<td>72.43</td>
<td>79.47</td>
<td>84.24</td>
<td>64.52</td>
<td>81.7</td>
<td>93.91</td>
</tr>
<tr>
<td>Leucin</td>
<td>195.25</td>
<td>181.1</td>
<td>183.76</td>
<td>221.58</td>
<td>262.08</td>
<td>215.14</td>
<td>166.63</td>
<td>212.8</td>
<td>233.93</td>
</tr>
<tr>
<td>Tyrosin</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4.74</td>
<td>5.24</td>
<td>0</td>
<td>0</td>
<td>17.94</td>
<td>0</td>
</tr>
<tr>
<td>Phenylalanin</td>
<td>102.92</td>
<td>90.89</td>
<td>96.73</td>
<td>117.56</td>
<td>136.28</td>
<td>113.49</td>
<td>86.46</td>
<td>118.19</td>
<td>129.27</td>
</tr>
<tr>
<td>b_ALanin</td>
<td>0.99</td>
<td>0</td>
<td>6.33</td>
<td>22.26</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Histidin</td>
<td>22.29</td>
<td>19</td>
<td>15.84</td>
<td>41.59</td>
<td>42.9</td>
<td>33.06</td>
<td>19.02</td>
<td>37.02</td>
<td>37.09</td>
</tr>
<tr>
<td>Ornithin</td>
<td>3.16</td>
<td>15.78</td>
<td>3.4</td>
<td>2.67</td>
<td>4.66</td>
<td>4.19</td>
<td>0</td>
<td>3.41</td>
<td>4.42</td>
</tr>
<tr>
<td>Lysin</td>
<td>199.15</td>
<td>191.2</td>
<td>179.91</td>
<td>230.96</td>
<td>283</td>
<td>229.12</td>
<td>189.95</td>
<td>244.16</td>
<td>271.79</td>
</tr>
<tr>
<td>Arginin</td>
<td>405.99</td>
<td>358.31</td>
<td>352.1</td>
<td>415.9</td>
<td>506.5</td>
<td>493.21</td>
<td>337.22</td>
<td>456.53</td>
<td>570.65</td>
</tr>
<tr>
<td>Total</td>
<td>5457.49</td>
<td>5059.09</td>
<td>5073.72</td>
<td>5568.37</td>
<td>6263.87</td>
<td>5627.15</td>
<td>4749.48</td>
<td>5857.19</td>
<td>6115.9</td>
</tr>
<tr>
<td>Gly_durch_Glu</td>
<td>3.39</td>
<td>3.45</td>
<td>3.36</td>
<td>3.18</td>
<td>2.89</td>
<td>3.2</td>
<td>3.5</td>
<td>3.11</td>
<td>2.93</td>
</tr>
<tr>
<td>Gly_durch_Asp</td>
<td>5.62</td>
<td>5.95</td>
<td>5.32</td>
<td>5.19</td>
<td>5.12</td>
<td>5.44</td>
<td>6.41</td>
<td>5.01</td>
<td>4.73</td>
</tr>
</tbody>
</table>
Extraktion der Mineralphase

<table>
<thead>
<tr>
<th>Probenummer</th>
<th>Knochenart</th>
<th>Knochenmehleinwage in mg</th>
<th>Ausbeute Apatitan teil in mg</th>
<th>Ausbeute Apatitan teil in %</th>
</tr>
</thead>
<tbody>
<tr>
<td>247/10</td>
<td>Humerus</td>
<td>99,41</td>
<td>46,25</td>
<td>46,52%</td>
</tr>
<tr>
<td>248/10</td>
<td>Femur</td>
<td>99,41</td>
<td>52,51</td>
<td>52,82%</td>
</tr>
<tr>
<td>249/10</td>
<td>?</td>
<td>99,27</td>
<td>76,25</td>
<td>76,81%</td>
</tr>
<tr>
<td>Anatomie 127/03</td>
<td>Femur</td>
<td>100,56</td>
<td>42,7</td>
<td>42,46%</td>
</tr>
<tr>
<td>Anatomie 129/03</td>
<td>Femur</td>
<td>100,9</td>
<td>37,85</td>
<td>37,51%</td>
</tr>
<tr>
<td>Anatomie 76/03</td>
<td>Femur</td>
<td>100,19</td>
<td>41,58</td>
<td>41,50%</td>
</tr>
<tr>
<td>Extr. 1</td>
<td>Humerus</td>
<td>102,56</td>
<td>69,75</td>
<td>68,01%</td>
</tr>
<tr>
<td>Extr. 10</td>
<td>Femur</td>
<td>99,91</td>
<td>49,79</td>
<td>49,83%</td>
</tr>
<tr>
<td>Extr. 11</td>
<td>Femur</td>
<td>100,39</td>
<td>63,54</td>
<td>63,29%</td>
</tr>
<tr>
<td>Extr. 12</td>
<td>Femur</td>
<td>99,39</td>
<td>66,77</td>
<td>67,18%</td>
</tr>
<tr>
<td>Extr. 13</td>
<td>Femur</td>
<td>99,9</td>
<td>44,95</td>
<td>44,99%</td>
</tr>
<tr>
<td>Extr. 14</td>
<td>Femur</td>
<td>100,84</td>
<td>60,64</td>
<td>60,13%</td>
</tr>
<tr>
<td>Extr. 15</td>
<td>Femur</td>
<td>100,25</td>
<td>67,35</td>
<td>67,18%</td>
</tr>
<tr>
<td>Extr. 16</td>
<td>Femur</td>
<td>104,47</td>
<td>69,16</td>
<td>66,20%</td>
</tr>
<tr>
<td>Extr. 2</td>
<td>Fibula</td>
<td>100,64</td>
<td>40,03</td>
<td>39,78%</td>
</tr>
<tr>
<td>Extr. 3</td>
<td>Femur</td>
<td>100,92</td>
<td>69,19</td>
<td>68,56%</td>
</tr>
<tr>
<td>Extr. 4</td>
<td>?</td>
<td>99,26</td>
<td>73,83</td>
<td>74,38%</td>
</tr>
<tr>
<td>Extr. 5</td>
<td>Femur</td>
<td>101,34</td>
<td>62,12</td>
<td>61,30%</td>
</tr>
<tr>
<td>Extr. 6 Husse 36</td>
<td>Femur</td>
<td>99,49</td>
<td>54,95</td>
<td>55,23%</td>
</tr>
<tr>
<td>Extr. 7 Nr. 9</td>
<td>Femur</td>
<td>99,85</td>
<td>65,77</td>
<td>65,87%</td>
</tr>
<tr>
<td>Extr. 8 Neuburg 86</td>
<td>Femur</td>
<td>100,47</td>
<td>59,03</td>
<td>58,75%</td>
</tr>
<tr>
<td>Extr. 9</td>
<td>Femur</td>
<td>100,58</td>
<td>69,86</td>
<td>69,86%</td>
</tr>
<tr>
<td>K 91.3 Sk 1</td>
<td>Femur</td>
<td>98,67</td>
<td>65,02</td>
<td>65,90%</td>
</tr>
<tr>
<td>K 91.3 Sk 10</td>
<td>Femur</td>
<td>100,43</td>
<td>76,31</td>
<td>75,98%</td>
</tr>
<tr>
<td>K 91.3 Sk 6</td>
<td>Humerus</td>
<td>102,05</td>
<td>76</td>
<td>74,47%</td>
</tr>
<tr>
<td>K 91.3 Sk 9</td>
<td>Femur</td>
<td>102,58</td>
<td>70,13</td>
<td>68,37%</td>
</tr>
<tr>
<td>K 91.5 KO Sk 3</td>
<td>Femur</td>
<td>99,35</td>
<td>10,68</td>
<td>10,75%</td>
</tr>
<tr>
<td>K 91.5 KW Sk 3</td>
<td>Femur</td>
<td>99,15</td>
<td>64,24</td>
<td>64,79%</td>
</tr>
<tr>
<td>K 91.7 KO Sk 1</td>
<td>Tibia</td>
<td>100,23</td>
<td>74,57</td>
<td>74,40%</td>
</tr>
<tr>
<td>K 91.7 KO Sk 4</td>
<td>Femur</td>
<td>100,72</td>
<td>71,69</td>
<td>71,18%</td>
</tr>
<tr>
<td>K 91.7 KO Sk 5</td>
<td>Femur</td>
<td>101,62</td>
<td>63,99</td>
<td>62,97%</td>
</tr>
<tr>
<td>K 91.7 KO Sk 9</td>
<td>Femur</td>
<td>98,94</td>
<td>66,61</td>
<td>67,32%</td>
</tr>
<tr>
<td>K 91.7 SCHACHT Sk 2</td>
<td>Femur</td>
<td>100,9</td>
<td>81,63</td>
<td>80,90%</td>
</tr>
<tr>
<td>Knochen 1</td>
<td>Femur</td>
<td>97,47</td>
<td>73,87</td>
<td>75,79%</td>
</tr>
<tr>
<td>Knochen 10</td>
<td>?</td>
<td>99,24</td>
<td>64,5</td>
<td>64,99%</td>
</tr>
<tr>
<td>Knochen 11</td>
<td>Tibia?</td>
<td>99,32</td>
<td>49,42</td>
<td>49,76%</td>
</tr>
<tr>
<td>Knochen 12</td>
<td>Femur</td>
<td>98,99</td>
<td>50,82</td>
<td>51,34%</td>
</tr>
<tr>
<td>Knochen 13</td>
<td>?</td>
<td>100,46</td>
<td>78,2</td>
<td>77,84%</td>
</tr>
<tr>
<td>Knochen 3</td>
<td>?</td>
<td>99,73</td>
<td>54,68</td>
<td>54,83%</td>
</tr>
<tr>
<td>Knochen 4</td>
<td>Femur?</td>
<td>102,08</td>
<td>68,91</td>
<td>67,51%</td>
</tr>
<tr>
<td>Knochen 5</td>
<td>Ulna</td>
<td>99,31</td>
<td>52,1</td>
<td>52,46%</td>
</tr>
<tr>
<td>Knochen 6</td>
<td>Femur?</td>
<td>99,75</td>
<td>75,84</td>
<td>76,03%</td>
</tr>
<tr>
<td>Knochen 7</td>
<td>Femur?</td>
<td>99,74</td>
<td>69,11</td>
<td>69,29%</td>
</tr>
<tr>
<td>Knochen 8</td>
<td>?</td>
<td>100,36</td>
<td>44,27</td>
<td>44,11%</td>
</tr>
<tr>
<td>Knochen 9</td>
<td>?</td>
<td>99,93</td>
<td>70,34</td>
<td>70,39%</td>
</tr>
<tr>
<td>Mensch 3 319</td>
<td>?</td>
<td>100,32</td>
<td>48,8</td>
<td>48,64%</td>
</tr>
<tr>
<td>Sk 91.3 Sk 7</td>
<td>Femur</td>
<td>101,17</td>
<td>74,3</td>
<td>73,44%</td>
</tr>
<tr>
<td>UV 1</td>
<td>Radius?</td>
<td>98,38</td>
<td>68,96</td>
<td>70,10%</td>
</tr>
<tr>
<td>Probenummer</td>
<td>Knochenart</td>
<td>Knochenmehleinwaage in mg</td>
<td>Ausbeute Apatitanteil in mg</td>
<td>Ausbeute Apatitanteil in %</td>
</tr>
<tr>
<td>-------------</td>
<td>------------</td>
<td>---------------------------</td>
<td>-----------------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>UV 10</td>
<td>Femur</td>
<td>99,05</td>
<td>57,33</td>
<td>57,88%</td>
</tr>
<tr>
<td>UV 2</td>
<td>Femur</td>
<td>99,68</td>
<td>68,1</td>
<td>68,32%</td>
</tr>
<tr>
<td>UV 3</td>
<td>Femur</td>
<td>101,74</td>
<td>71,7</td>
<td>70,47%</td>
</tr>
<tr>
<td>UV 4 543 a Can</td>
<td>Femur</td>
<td>100,41</td>
<td>37,52</td>
<td>37,37%</td>
</tr>
<tr>
<td>UV 5 63</td>
<td>Femur</td>
<td>99,43</td>
<td>60,41</td>
<td>60,76%</td>
</tr>
<tr>
<td>UV 6</td>
<td>?</td>
<td>100,57</td>
<td>62,87</td>
<td>62,51%</td>
</tr>
<tr>
<td>UV 7</td>
<td>?</td>
<td>8,99</td>
<td>0</td>
<td>0,00%</td>
</tr>
<tr>
<td>UV 8</td>
<td>?</td>
<td>101,21</td>
<td>64,71</td>
<td>63,94%</td>
</tr>
<tr>
<td>UV 9</td>
<td>?</td>
<td>99,48</td>
<td>71,89</td>
<td>72,27%</td>
</tr>
</tbody>
</table>

Ergebnisse der Röntgenfluoreszenzanalyse

<table>
<thead>
<tr>
<th>Element</th>
<th>Knochen 5</th>
<th>K 91,3 KO Sk 9</th>
<th>K 91,5 KO Sk 3</th>
<th>K 91,5 KW Sk 3</th>
<th>K 91,7 KO Sk 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na₂O (%)</td>
<td>0,45</td>
<td>1,1</td>
<td>1,6</td>
<td>1,4</td>
<td>2,3</td>
</tr>
<tr>
<td>MgO (%)</td>
<td>0,17</td>
<td>0,37</td>
<td>0,35</td>
<td>0,38</td>
<td>0,49</td>
</tr>
<tr>
<td>Al₂O₃ (%)</td>
<td>0,13</td>
<td>0,22</td>
<td>0,052</td>
<td>0,16</td>
<td>0,29</td>
</tr>
<tr>
<td>SiO₂ (%)</td>
<td>0,45</td>
<td>0,56</td>
<td>0,29</td>
<td>0,23</td>
<td>0,67</td>
</tr>
<tr>
<td>P₂O₅ (%)</td>
<td>24,5</td>
<td>39</td>
<td>41</td>
<td>40</td>
<td>34</td>
</tr>
<tr>
<td>SO₃ (%)</td>
<td>0,15</td>
<td>2,6</td>
<td>3,4</td>
<td>3,2</td>
<td>4,8</td>
</tr>
<tr>
<td>CaO (%)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>K₂O (%)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cl (%)</td>
<td>-</td>
<td>3</td>
<td>1,5</td>
<td>1,4</td>
<td>1,1</td>
</tr>
<tr>
<td>Fe₂O₃ (%)</td>
<td>0,14</td>
<td>-</td>
<td>0,14</td>
<td>-</td>
<td>0,3</td>
</tr>
<tr>
<td>MnO (%)</td>
<td>0,039</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Zn (ppm)</td>
<td>24</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Sr (ppm)</td>
<td>285</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cu (ppm)</td>
<td>103</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ca/P (berechnet)</td>
<td>2,18</td>
<td>2,18</td>
<td>2,08</td>
<td>2,17</td>
<td>2,70</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Element</th>
<th>Anat 114/03</th>
<th>Anat 98/03</th>
<th>Anat 114/03, 2 Tage gekocht</th>
<th>Anat 115/02, 16 Tage gekocht</th>
<th>Anat 89/03, 25 Tage gekocht</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na₂O (%)</td>
<td>0,670</td>
<td>0,680</td>
<td>0,660</td>
<td>0,54</td>
<td>0,780</td>
</tr>
<tr>
<td>MgO (%)</td>
<td>0,450</td>
<td>0,690</td>
<td>0,570</td>
<td>0,43</td>
<td>0,430</td>
</tr>
<tr>
<td>Al₂O₃ (%)</td>
<td>0,080</td>
<td>-</td>
<td>0,100</td>
<td>-</td>
<td>0,081</td>
</tr>
<tr>
<td>SiO₂ (%)</td>
<td>0,100</td>
<td>-</td>
<td>0,093</td>
<td>0,58</td>
<td>0,170</td>
</tr>
<tr>
<td>P₂O₅ (%)</td>
<td>38,0</td>
<td>40,0</td>
<td>44,0</td>
<td>43</td>
<td>42,0</td>
</tr>
<tr>
<td>SO₃ (%)</td>
<td>0,170</td>
<td>0,300</td>
<td>0,090</td>
<td>0,11</td>
<td>0,160</td>
</tr>
<tr>
<td>K₂O (%)</td>
<td>0,090</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CaO (%)</td>
<td>60,0</td>
<td>58,0</td>
<td>54,0</td>
<td>55</td>
<td>56,0</td>
</tr>
<tr>
<td>Sr (ppm)</td>
<td>0,030</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Fe₂O₃ (%)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MnO (%)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Zn (ppm)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cu (ppm)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ca/P (berechnet)</td>
<td>2,59</td>
<td>2,37</td>
<td>2,01</td>
<td>2,09</td>
<td>2,18</td>
</tr>
</tbody>
</table>
9 Lebenslauf

Name Stefanie Doppler
Geboren am 26.10.1978 in Starnberg
Staatsangehörigkeit deutsch

Ausbildung

Mai 1998: Abitur am Dominikus-Zimmermann-Gymnasium in Landsberg am Lech
Betreuung: Frau Prof. Dr. Gisela Grupe
März 2004: Diplom der Biologie an der Fakultät für Biologie der Ludwig-Maximilians-Universität München
Juni 2004: Beginn des Dissertationsprojektes mit dem Titel: Alters-, Aktivitäts- und Krankheitsmerkmale in der menschlichen Knochenmikrostruktur:
Eine vergleichende Studie einer individualaltersbekannten historischen Population mit rezenten Menschen
Arbeitsgruppe für Prähistorische Anthropologie und Umweltgeschichte an der Fakultät für Biologie der Ludwig-Maximilians-Universität München
Betreuung: Frau Prof. Dr. Gisela Grupe
Publikationen

Beiträge in Zeitschriften

Vorträge

Poster

10 Danksagung

In erster Linie möchte ich meiner Doktormutter Frau Prof. Dr. G. Grupe für die Bereitstellung des Themas, das große Vertrauen in meine Arbeit und ihre allgegenwärtige Unterstützung danken. Vielen Dank auch für Ihren Einsatz für das Gutachten meines Stipendiums.

Ein herzliches Dankeschön an Frau Prof Dr. S. Foitzik für die Übernahme des Zweitgutachtens trotz des großen Umfangs dieser Arbeit.

Weiterhin möchte ich den Mitgliedern der Prüfungskommission und denen des Umlaufes für ihren Aufwand danken.

Vielen Dank an die Mitarbeiter des Anatomischen Institutes der Ludwig-Maximilians Universität München für die Erlaubnis der Probenentnahme an rezenten Individuen und die dabei erhaltene Unterstützung. Im Einzelnen möchte ich dabei Herrn Prof. Dr. Dr. Reinhard Putz (Vorstand der Anatomischen Anstalt der LMU) für die Erlaubnis zur Probenentnahme, Frau Prof. Dr. Magdalena Müller-Gerbl (Leiterin des Präp-Kurses) für die persönliche Unterstützung und Zeit, Herrn Axel Unverzagt (Präparator) für die praktische Hilfe bei der Probenentnahme und Herrn Michael Becker (Präparator) danken.

Vielen Dank an Heidi Herbst (Doktorandin in der AG Grupe) und Wiebke Walter (Medizinerin) für die Unterstützung bei der Probenentnahme.

Ein großes Dankeschön auch an die Mitarbeiter des Bayerischen geologischen Landesamtes, welche die RFA (Röntgenfluoreszenzanalysen) für uns durchführten, namentlich Herr Dr. Uli Rast, der uns sein Labor zur Verfügung stellte und Herr Armin Andres, der die Messungen durchführte und uns alle wichtigen Informationen zum technischen Ablauf und den Hintergründen zukommen ließ. In diesem Zusammenhang möchte ich auch meinem Vater Herrn Dr. Gerhard Doppler danken, der die Zusammenarbeit mit dem Bayerischen Geologischen Landesamt überhaupt erst ermöglicht hat.

Ganz besonderen Dank möchte ich den Mitarbeitern des STABLAB (Statistisches Beratungslabor) am Statistischen Institut der Ludwig-Maximilians-Universität München aussprechen, die mir bei der statistischen Auswertung der erhobenen Daten in dieser Arbeit behilflich waren, insbesondere bei der Erstellung der Regressionsgleichungen zur Altersbestimmung. In erster Linie sei dabei Herr Prof. Dr. Helmut Küchenhoff als Leiter des STABLAB erwähnt, aber auch Anne Kunz als meine direkten Ansprechpartnerin und Sonja Greven, die weitere Hilfestellung leistete.

Vielen Dank an Frau Dr. Regina Ensenauer von der Abteilung Stoffwechselkrankheiten und Ernährungsmedizin der Dr. Haunerschen Kinderklinik München, die alle Aminosäureanalysen in ihrem Stoffwechsellabor für mich durchführen ließ. In Zusammenhang damit auch ganz herzlichen Dank an das Laborpersonal, meine direkte Ansprechpartnerin Frau Annette Diem.

Herzlichen Dank auch an die Mitarbeiter des Paläoanatomischen Instituts der LMU für die Hilfe bei der Mazerierung der rezenten Knochenproben.

Vielen Dank an Frau Dr. Michaela Harbeck für die ausgezeichnete Zusammenarbeit in allen Belangen der „UV-Methode“.

Herzlichen Dank an Andrea Czermak für die Bereitstellung einiger histologischer Zahnpräparate des Gräberfeldes Großmehring, an George McGlynn für die Bereitstellung einiger histologischer Zahnpräparate des Gräberfeldes Volders und an Sara Dummler für einige Knochenstücke vom Gürcütepe und vom Göbekli Tepe.

Besonderen Dank an Frau Angela Hilz (TA) für jegliche Unterstützung im Labor und bei methodischen Fragen.

Ganz herzlichen Dank an die gesamte Arbeitsgruppe Grupe für Diskussionsanregungen und netten Austausch.

Zum Schluss möchte ich mich bei der Ludwig-Maximilians-Universität bedanken, die meine Dissertation im Rahmen eines Promotionsabschlussstipendiums der Frauenbeauftragten im Abschlussjahr finanziell unterstützte und es mir so ermöglichte mich ausschließlich auf meine Forschungsarbeit zu konzentrieren.

„Last but not least“ möchte ich meinen Eltern dafür danken, dass sie mir durch ihre Unterstützung, sowohl persönlich als auch finanziell, die Möglichkeit eröffnet haben, meine Dissertation abzuschließen.
11 Erklärung

Ehrenwörtliche Versicherung

Ich versichere hiermit ehrenwörtlich, dass die vorgelegte Dissertation von mir selbständig und ohne unerlaubte Hilfe angefertigt wurde.

München, den

Stefanie Doppler