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Zusammenfassung 

Der Einfluss der Schneedecke auf die Hydrologie Alpiner Einzugsgebiete ist weithin bekannt 

und in der Literatur eindrucksvoll beschrieben. Saisonale Schneedecken fungieren als 

temporäre Speicher für den Niederschlag. Das gebundene Wasser wird den Fließgewässern 

verzögert als Schmelzwasser zugeführt und bestimmt damit zumindest zeitweise deren 

Abflusshöhe und –menge. Die Modellierung von mengenmäßigem Inhalt und räumlicher 

Ausdehnung des Schneespeichers ist hilfreich für die Quantifizierung der vorhandenen 

Wasserressourcen und für die Bestimmung des Zeitpunkts, zu dem die gespeicherten 

Wassermengen verfügbar werden. Die Intensität der Schneeschmelze hängt dabei, neben der 

absoluten räumlichen Lage, auch von der räumlichen Heterogenität der Schneedecke ab. In 

der vorliegenden Arbeit wurde der Einfluss von wind-induzierten Schneetransportprozessen 

auf die Heterogenität der Alpinen Schneedecke untersucht. Als Testgebiet wurde der 

Nationalpark Berchtesgaden ausgewählt. Dieses Testgebiet kann aufgrund seiner hohen 

Reliefenergie als ideal für die durchgeführten Untersuchungen gelten, da 

Schneetransportprozesse hier besonders effektiv sind. Die Instrumentierung des Parks ist im 

Hinblick auf die verfügbaren meteorologischen Stationen außerordentlich gut. Darüber hinaus 

liegen flächendeckende Informationen über die Geländehöhe und die Vegetation in Form 

eines hoch aufgelösten (10m) Geographischen Informationssystems (GIS) vor. Für den 

Untersuchungszeitraum (Wintersaison 2003/2004 und 2004/2005, jeweils gerechnet von 

August bis Juli) liegen Daten von 5 meteorologischen Stationen, einer Feldkampagne und 

zwei Landsat ETM+ Bildern vor. 

Windinduzierter Schneetransport wird in der Literatur häufig als der bestimmende Prozess für 

die Heterogenität der Schneedecken in gebirgigen Gebieten angesehen. In starkem Kontrast 

zu der diesem Prozess zugestandenen Bedeutung, steht die Anzahl der Veröffentlichungen, 

die die numerische Untersuchung der Effektivität desselben zum Inhalt haben. Das liegt vor 

allem in der Tatsache begründet, dass die Berechnung von qualitativ hochwertigen 

Windfeldern in gebirgigem Terrain bis heute nahezu unmöglich ist. Diese allerdings sind von 

zentraler Bedeutung, um quantitative Aussagen über die Richtung der Verlagerung von 

Schneemengen zu treffen, und um die entsprechenden Erosions- wie Akkumulationsgebiete 



   
 

 
 
 
 

zu lokalisieren. Für eine möglichst genaue Charakterisierung der Windfelder im 

Untersuchungsgebiet wurden in der vorliegenden Arbeit physikalisch basierte Windfelder mit 

Hilfe des PSU-NCAR MM5 Atmosphärenmodells berechnet. Diese wurden im Anschluss in 

dem etablierten Schneemodell SnowModel als Antrieb für die Schneetransportroutine 

(SnowTran-3D) verwendet. 

Da eine direkte Kopplung von Atmosphärenmodell und Schneemodell unter den heute 

gegebenen technischen Voraussetzungen zu einer unrealistisch hohen Modell-Laufzeit geführt 

hätte, wurde eine alternative Methode gewählt: die Windfelder wurden separat berechnet und 

eine Bibliothek repräsentativer Windfelder für das Untersuchungsgebiet erzeugt. Die zeitliche 

Synchronisation zwischen Windfeldbibliothek und Schneemodell wurde über das 

operationelle, mesoskalige Wettervorhersage-Modell des Deutschen Wetterdienstes (DWD), 

das Lokalmodell hergestellt. Dies wurde aufgrund der Tatsache möglich, dass bestimmte 

Modellausgaben von Lokalmodell und MM5 im 700 hPa Niveau vergleichbar sind. Um das 

richtige Windfeld für einen Schneemodellzeitschritt aus der zuvor erzeugten MM5 

Windfeldbibliothek auszuwählen, wurden mittlere Windvektoren der MM5 Windfelder mit 

mittleren Vektoren der entsprechenden Lokalmodell Windfelder verglichen. So wurde es 

möglich, zu jedem Modellzeitschritt des Lokalmodells (eine Stunde) ein MM5 Windfeld zu 

selektieren und im Schneemodel anzuwenden. 

Die generierten MM5 Windfelder haben eine räumliche Auflösung von 200m. Für eine 

prinzipielle Überprüfung der Funktionalität des Schneemodels in Verbindung mit einer MM5 

Windfeldbibliothek, wurden erste Schneemodelläufe auf der 200m Skala initialisiert. Die 

zugehörigen Ergebnisse waren plausibel und bestätigten die Anwendbarkeit der Kombination 

von Schneemodell und MM5 Windfeldern. Die Schneewasseräquivalentverteilung im Gebiet 

wurde durch die Applikation der MM5 Windfelder weniger abhängig von der allgemeinen 

niederschlagsbedingten Zunahme des Schneewasseräquivalents mit der Höhe. Ein 

Zusammenhang mit der Exposition des Geländes konnte nun auch aufgezeigt werden. Zudem 

konnten Transportprozesse über die Bergkämme hinweg simuliert werden. Eine 

Intensitätszunahme aller Transportterme unter Anwendung der MM5 Windfelder im 

Vergleich zu interpolierten Windfeldern konnte ebenfalls festgestellt werden. Die Ergebnisse 



   
 

 
 
 
 

auf der 200m Skala machten deutlich, dass für eine ausreichende und tiefgreifende 

Beschreibung und Validierung von Schneetransportprozessen ein feineres Modellgrid 

erforderlich ist. Als Konsequenz wurden die MM5 Windfelder auf eine Auflösung von 30m 

skaliert. Durch die Skalierungsprozedur konnte eine bessere Korrelation zwischen 

Stationsmessungen und MM5 Ergebnissen erreicht werden. Die resultierenden 30m 

Windfelder wurden für hochauflösende 30m Schneemodellläufe genutzt, die auf der Basis 

von Ergebnissen der durchgeführten Feldkampagnen und Fernerkundungsdaten validiert 

werden konnten. Auch hier konnte nachgewiesen werden, dass die unter Verwendung der 

MM5 Windfeldbibiliothek generierten Resultate von höherer Validität waren, als die 

Ergebnisse die mit Hilfe von interpolierten Windfeldern erzeugt wurden.  

Im Weiteren wurden die Modellergebnisse anhand ausgewählter Resultate diskutiert. Es 

konnte gezeigt werden, dass die Effektivität von Transportprozessen unter 1800m ü. NN. zu 

vernachlässigen ist und ab 2200m ü. NN. stark zunimmt. Zudem konnte unter Nutzung der 

MM5 Windfelder der Transport von Schnee auf vergletscherte Flächen modelliert werden. 

Hohe modellierte Sublimationsraten an den Gipfeln wurden diskutiert und ihre Wichtigkeit 

im Bezug auf die alpine Wasserbilanz aufgezeigt. Im Ganzen konnte nachgewiesen werden, 

dass die Einbindung von Ergebnisdaten von Atmosphärenmodellen zu einer deutlichen 

Verbesserung der Beschreibung der Prozesse an der Erdoberfläche führt.  

In einem letzten Schritt wurden die Ergebnisse der hochaufgelösten Schneemodellläufe 

genutzt, um die Schneedeckenheterogenität im Gebiet zu parametrisieren. Ziel war es, eine 

Möglichkeit aufzuzeigen, die generierte kleinskalige Information auch für regionale 

Landoberflächenmodelle nutzbar zu machen. Infolgedessen wurde eine einfach zu 

implementierende Routine für regionale Modelle vorgestellt, die die subskalige Beschreibung 

der Schneedeckenheterogenität erlaubt. Dies kann in entsprechendem Relief zu einer 

Verbesserung der Energie- und Feuchteflüsse in regionalen Modellen und damit zu einer 

akkurateren Beschreibung der Ablationsperiode der Schneedecke und der Abflussgenerierung 

führen. 

   



   
 

 
 
 
 

Abstract 

It is widely known that the snow cover has a major influence on the hydrology of Alpine 

watersheds. Snow acts as temporal storage for precipitation during the winter season. The 

stored water is later released as snowmelt and represents an important component of water 

supply for the downstream population of large mountain-foreland river systems worldwide. 

Modelling the amount and position of the snow water stored in the headwater catchments 

helps to quantify the available water resources and to estimate the timing of their release. The 

presented work investigates wind induced snow transport processes which are considered to 

be crucial for the snow distribution in Alpine catchments. In contradiction to the importance 

that is attributed to this process, there are only a few studies available which have quantified 

the transport intensities on the catchment scale. This can be attributed to the fact that the even 

today not much is known about the spatial characteristics of wind fields which are the driving 

force for snow transport processes. The presented thesis tries to overcome this lack of 

information by using physically based wind fields predicted by an atmospheric model 

(PSU_NCAR MM5 model) for the modelling of the snow cover (simulated by SnowModel). 

All of the used models are described in great detail in the literature, validated in many 

different regions, and can be seen as applicable with regard to the goal of this work. As snow 

transport processes are particularly important on a comparatively small scale a numerical 

inclusion of the responsible processes into regional models is inadequate. Hence, while this 

study itself mainly uses smaller scale physically based models, a parameterisation scheme is 

presented at the end of this thesis that is able to incorporate its main findings into larger scale 

models. 

All of the presented work was carried out at the Berchtesgaden National Park. The site is 

highly appropriate because of the extremely rough terrain and the good accessibility. 

Furthermore, the instrumentation of the area is comparatively good and the data sources (GIS, 

field campaign data) are excellent. The thesis deals with the winter seasons (August - July) 

2003/2004 and 2004/2005. For this period, data of 5 meteorological stations, 1 field campaign 

and two Landsat ETM+ images were available.  



   
 

 
 
 
 

As mentioned before, physically based wind fields were used as input for the snow transport 

modelling. An operational coupling between atmospheric model and snow transport model 

was not pursued because of the high computational costs of the atmospheric model. Thus, a 

library of representative wind fields was produced in advance and linked to the snow transport 

model via operational German weather service Lokalmodell results. This becomes possible 

because of the comparability of a MM5 model layer with one of the  Lokalmodell model 

layers. To link the wind field library to the snow model all of the predicted MM5 wind fields 

were characterised by information available from the Lokalmodell. This enable an easy 

detection of the MM5 wind field which is closest to the real climatic wind conditions at any 

Lokalmodell time step (1 hour). 

The produced MM5 wind fields have a spatial resolution of 200 meters. As an initial check if 

the snow cover simulation of SnowModel in association with the wind field library delivers 

adequate results with respect to the snow distribution, model runs were first carried out at the 

200m scale. An analysis of the results showed that the coupled routine delivers acceptable 

results. It could be seen that with the use of the MM5 wind fields, the snow cover becomes 

more anisotropic and that transport processes over crests as well as sublimation processes are 

predicted to become more intensive. Nevertheless, a higher resolution was needed to quatify 

the effects and to validate the results. 

In a subsequent step the MM5 wind fields were downscaled to a 30m resolution. The 

downscaling procedure lead to a better agreement between modelled and measured wind 

speeds. The resulting 30m wind fields were used for high resolution model runs which were 

validated on the basis of the field campaign and remotely sensed data. A comparison with 

model runs using wind fields interpolated from station data showed that the runs performed 

with the MM5 wind fields deliver more consistent and comprehensible results.  

Subsequently, the validity of the model is discussed on the basis of selected results. High 

resolution model results indicated that snow transport processes are effective at high 

elevations but virtually negligible for regions below of 1800m a.s.l.. Furthermore, it could be 

seen that the correct estimation of snow transport from the surrounding areas to glaciers 

becomes possible by using the MM5 wind fields. Very high modelled sublimation rates at the 



   
 

 
 
 
 

mountains crests are discusses with respect to their importance on the water balance. 

Furthermore, the influence of preferential snow deposition and snow slides which were not 

numerically predicted in this work were discusses. Additionally, the applicability of 

atmospheric model results as input for land-surface models could be confirmed. 

In a final step a model scheme is presented that would make the generated information 

available for regional scale models. This model parameterization scheme which is based on 

the modelled 30m snow water equivalent distribution within the test area was used for this 

area. The scheme allows for a quick and simple description of the subscale snow 

heterogeneity in regional scale models. This can lead to considerable model improvements 

with respect to the description of the energy and moisture fluxes to and from the surface. An 

accurate description of these fluxes is essential for an accurate simulation of the melt period 

and, therefore, for an acceptable calculation of the runoff generation in larger scale models. 
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Chapter 1   Introduction 

1.1 Aim of the thesis 

The presented thesis investigates the Alpine snow cover and its spatial heterogeneity in due 

consideration of wind induced snow transport processes. An appropriate knowledge of snow 

transport, its mode of action, and its effectiveness is essential for understanding and 

predicting the spatial distribution of the snow cover and thereby the correct water balance as 

well as moisture and energy fluxes in mountainous regions. The thesis presents results of high 

resolution physically based snow model runs (for the winter seasons 03/04 and 04/05), used 

for an estimation of the effectiveness of snow transport processes within an Alpine catchment. 

Furthermore, a parameterisation scheme is presented which allows for consideration of the 

snow heterogeneity in Alpine regions within regional scale models.  

 
Figure 1: Examples for snow heterogeneity in the Arctic region, in undulating terrain and within a mountainous 
area (Photos by: M. Sturm, D. Marks) 

At the end of the 1970’s snow transport processes were not well understood, Gray et al. 

(1979) noted that: “it is evident that, at the present time, because of the lack of knowledge of 

the snow transport and deposition processes and the complex nature of the accumulation 

phenomenon, it is impossible for the hydrologist to define snow cover distribution patterns by 

a physically-based, mathematical model.” Later on in the 1990’s first numerical studies 

considering the connection between the most important transport terms, saltation and 

suspension, and wind speed as well as direction were presented by Pomeroy and Gray (1995) 

and Liston and Sturm (1998). Since this time numerous studies about snow transport and its 

influence on the water balance were carried out in flat terrain (Pomeroy et al. 1993; Déry and 

Yau 1999) or in slightly undulating terrain (Liston and Sturm 1998) (fig. 1). 
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In most of these studies it is stated that the mountainous snow cover is especially influenced 

by snow transport (e.g. Pomeroy et al. 1997; Liston 2004) but only a few studies are known 

which have numerically simulated the efficiency of this process (e.g. Pomeroy et al. 1997; 

Lehning et al. 2006; Bernhardt et al. 2008). Hence, the real impact of blowing snow processes 

in hydrological modelling of Alpine regions is still unknown. This lack of information can be 

traced back to the limited knowledge about the wind conditions in Alpine regions (Balk and 

Elder 2000; Essery 2001; Liston et al. 2006; Bernhardt et al. 2007). Liston and Sturm (1998) 

as well as Winstral and Marks (2002) stated that a reasonable description of wind fields in 

complex terrain is needed for a satisfying description of the Alpine snow cover. Fulfilling this 

demand was one of the scopes of this work. Hence, wind fields predicted by the physically 

based PSU/NCAR MM5 model (Grell et al. 2005) were used as an input for the well 

established snow model SnowModel (Liston and Elder 2006) which uses SnowTran-3D 

(Liston and Sturm 1998, Liston et al. 2006) as a snow transport routine. The produced 

SnowModel results are discussed on the basis of results calculated under usage of 

conventionally interpolated wind fields. A validation of the obtained model results will be 

achieved with the help of station and field campaign measurements of snow depth and 

remotely sensed data of the snow distribution. Finally, an approach to parameterise the snow 

heterogeneity in alpine regions as subscale input for regional models is presented. 

The thesis was funded by the GLOWA_Danube project of the German Ministry for Education 

and Research (bmb+f). 

1.2 Introduction and methodology 

1.2.1 The snow cover an important land surface feature 

Snow is defined as falling or deposited ice particles formed mainly by sublimation 

(UNESCO/IHAS/WMO 1970). Any snow cover is a product of accumulation and ablation 

processes. Their occurrence and duration is spatially and temporally variable and depends on 

the distribution of meteorological parameters, topography, and vegetation. Beside global 

trends like an increase in both snowfall and duration of the snow cover with altitude and 

latitude, there are a lot of local phenomena influencing the characteristics of the snow cover 

(Blöschl 1999; Essery and Pomeroy 2004, Liston and Elder 2006, Bernhardt et al. 2007). It 

has to be recognized that only about 5% of world’s total precipitation falls as snow (Hoinkes 
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1967). But the values can reach 50% to 100% in Arctic or Alpine regions (Winther and Hall 

1999; Strasser et al. 2007). In general one has to distinguish between permanent, seasonal, or 

temporal snow covers. A permanent snow cover is retrained for many years, seasonal and 

temporal snow covers disappear after a certain period. The difference between a seasonal and 

a temporal snow cover is that a seasonal snow cover exists for months and a temporal snow 

cover for days. The snow cover type that is the subject of this work is a seasonal one. This 

type can be observed north of 60° and in mountainous regions (Rees 2006). The appearance 

of snow has remarkable effects on the energy balance of the surface and on the hydrological 

features of an area. The seasonal snow cover leads to the largest annual and inter-annual 

variations of the land surface albedo (Armstrong and Brodzik 2002; Rees 2006) with 

respective consequences on the energy fluxes to and from the surface (fig. 2 b) and therefore 

on the large and local scale climate. From a hydrological point of view, snow is important 

because it acts as temporal storage of precipitation during the winter season. The stored water 

is later released as snowmelt and represents an important component of water supply for the 

downstream population of large mountain-foreland river systems worldwide. Modelling the 

amount and heterogeneity of the snow water storage in the headwater catchments helps to 

quantify the available water resources and estimate the timing of their entrainment.  

Snow itself is a complex body which is interacting with the atmosphere and the underlying 

surface. In response to these interactions the crystal structure of the snow pack transforms. 

Equilibrium and kinetic metamorphism can be observed. The snow pack additionally acts as a 

cushion between the underlying surface and the atmosphere. It insulates the soil and the 

underlying vegetation from low winter air temperatures and leaves them much warmer than 

they would be otherwise (Liston and Elder 2006). This means that increased snow coverage 

lowers positive fluxes of sensible heat to the atmosphere. Furthermore, melting snow reduces 

latent heat fluxes. If the snow coverage drops below of 100%, the proportion of the snow 

covered area is important for the soil moisture, the runoff generation and the energy and 

moisture fluxes between surface and atmosphere (Ellis and Lethers 1999; Liston and Elder 

2006). The snow free fraction shows a different behaviour in comparison to the snow covered 

one. First off all, the albedo of the surface decreases instantly if the snow cover is gone and a 

lot more radiative energy is absorbed in consequence. Furthermore, the surface temperature is 

able to exceed 0°C now. This and the surplus of absorbed energy lead to a rapid increase of 
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the sensible heat fluxes. The available melt energy on the other hand decreases with the snow 

covered fraction. When considering fig 2 b) it becomes obvious that all of the mentioned 

fluxes are linearly coupled. Patchy snow covers are common in high alpine regions where 

wind induced and gravitational snow transport, preferential deposition of precipitation, as 

well as hillside-inclinations of more than 50°, which prohibit the adherence of snow on the 

surface, lead to an extremely uneven snow distribution. The resulting snow coverage is 

mostly below 100% even during the high winter season. Figure 2 a) shows a Landsat ETM+ 

image (bands 5, 3, 2; 28.04.04) of the Watzmann mountain which illustrates this effect. The 

turquoise colour represents the snow covered regions. The mesh size of the Gauss/Krüger 

coordinate system is one kilometre (green coloured cells) which matches the medium 

resolution of many Soil Vegetation Atmosphere Transfer (SVAT) models. As one can 

imagine, all of these cells are partly snow free and would fall in the range of 10% to 90% 

snow coverage. Understanding the reasons for this heterogeneity and making information 

about the spatial heterogeneity of the snow cover available for regional scale models (like 

presented in Mauser and Bach 2008) is the aim of this thesis. 

a) b)

 
Figure 2: a) Snow cover at Watzmann Mountain (turquoise) superimposed by a 1km² grid. b) Interrelation 
between snow covered area and energy fluxes (Qli = incoming longwave radiation, Qle = emitted longwave 
radiation, Qh = turbulent exchange of sensible heat, Qe = turbulent exchange of latent heat, Qns = net solar 
radiative flux at the surface, Qm = energy flux available for melt) (cp. Liston 1995) 
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1.2.2 Snow cover modelling 

Over the last decades, a lot of snow models calculating the vertical and the spatial 

development of the snow cover were presented (Pomeroy et al. 1993; Liston and Sturm 1998; 

Dery and Yau 1999; Essery et al. 1999; Winstral and Marks, 2002; Lehning et al., 2006). 

According to Marsh (1999) and Liston (2004) and Liston and Elder (2006) most of these 

models tend to a more physically based description of the relevant processes. When omitting 

empirical or temperature index models the remaining physically based models can be divided 

into three different groups. The following classification gives a broad but sufficient overview 

over the most important models and their range of operation. It has to be mentioned that the 

classification is not strict; the models which are listed under 1-dimensional models could also 

be used in a distributed mode. Nevertheless, this is unusual and often impossible because of a 

lack of input data and because of the computational resources that would be needed. The 

presented classification is based on the spatial dimensions on which the models are working 

on.  

• 1-dimensional models are often used for the assessment of avalanche or flood risk. 

The aim is a precise calculation of the vertical stratification of the snow pack and of 

the metamorphism of snow and its connection to mechanical properties such as 

thermal conductivity and viscosity (Spreitzhofer et al. 1993). For an adequate 

description of the mentioned factors, complex and physically based formulations are 

needed. A numerical solution of these models is only possible if comprehensive input 

data is available. As this is commonly not the case, these models are limited to well 

instrumented sites. Very prominent representatives are: CROCUS (Brun et al. 1989; 

Brun et al. 1992), SNOWPACK (Bartelt and Lehning 2002; Lehning et al. 2002) and 

SNTHERM (Jordan 1991). The numerical model CROCUS has been developed by 

Météo-France to predict the evolution of the snow pack and its stability with respect to 

avalanches. SNOWPACK was developed by the Eidgenössisches Institut für Schnee- 

und Lawinenforschung (SLF) for supporting avalanche warning in Switzerland and 

runs operationally at approximately 100 sites. SNTHERM has a different scope and 

was developed as a routine for runoff forecasting models and is widely used both in 

the United States and in other countries. 
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• 2-dimensional models are usually used as subroutines in atmospheric models and Soil 

Vegetation Atmosphere Transfer schemes (SVAT). Stand alone models are seldom but 

known (e.g. AMUNDSEN of Strasser et al. 2007). 2-dimensional models 

conventionally dispose over one single layer and do not explicitly predict snow crystal 

metamorphism. Lateral transport processes by wind or gravity are ignored and the 

subscale snow distribution is commonly approached by a modification of the snow 

albedo (Liston 2004).  

• 3-dimensional models consist of at least two components, one which calculates the 

vertical snow cover evolution while the other simulates the snow transport processes. 

The complexity of the individual components determines whether a model can be used 

for simulating a complete snow cover period or just some individual transport events. 

Hence, they have to be divide between I) event based and II) seasonal models: 

o Event based models are usually very complex and used for basic research: 

Uematsu et al. (1991) and Sundsbø (1997) modelled snow transport rates around 

snow fences; Gauer (2001) modelled snow drift around a single crest. Lehning et 

al. (2002) coupled SNOWPACK with a snow drift routine (Doorschot 2002) and 

with the Advanced Regional Prediction System (ARPS) (Xue, et al. 2000) and 

applied it to Gaudergrat ridge (Switzerland). 

o Seasonal transport models in contrast are generally of intermediate complexity. 

They commonly use a first order approximation of the transport physics and a 

single layer snow evolution model. The first known seasonal and physically based 

transport model is the Prairie Blowing Snow Model (PBSM) (Pomeroy et al. 

1997) which has strongly influenced the latter development in this area. 

SnowTran-3D which is used in this work is one of the most prominent successors 

of PBSM. Other models like SYTRON3 (Durand et al. 2005) and ALPINE-3D 

(Lehning et al. 2006) can be found in literature but are currently not very well 

documented. 

The Snow Models Intercomparison Project (SnowMIP) (Etchevers et al. 2002) has shown that 

present-day 1-dimensional snow models are able to reproduce the snow cover evolution very 

well in close vicinity of a meteorological station. Results become less confident for spatially 
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distributed 2- or 3-dimensional models especially in areas with complex or mountainous 

terrain or in forested areas (e.g. Liston 2006). This is due to errors and uncertainties of the 

meteorological fields that drive the models and due to simplifications of the model 

formulations with respect to snow-canopy interactions, windblown snow, gravitational snow 

transport, and preferential snow deposition (e.g. Lehning et al. 2006). The extent of which an 

integration or omission of the indicated processes can improve or deteriorate the accuracy of a 

snow model depends on the observed scale and area: 

• In flat and forested environments snow-canopy interactions like snow sublimation 

from canopy stands or snow released from branches are the controlling parameters 

with respect to snow heterogeneity. The involved processes are effective at scales of 

one to hundreds of meters (Liston 2004; Strasser et al. 2007). First results of 

SnowMIP2 have shown that a misinterpretation of snow-canopy interactions can lead 

to almost unusable model results (Rutter and Essery 2006) in these areas/scales. 

• In tundra, prairies, Arctic and Alpine environments wind induced transport processes, 

which can be observed at scales of tens to hundreds of meters, are described as 

decisive (Sturm et al. 1995; Essery et al. 1999; Essery, 2001; Bernhardt et al. 2008a). 

The high frequency of blowing snow conditions (wind speeds higher than 3m/sec 

(Liston and Sturm 1998) and the lack of snow cover stabilizing vegetation (Pomeroy 

et al 1997; Pohl et al. 2007) is mentioned as the reason for the assumed large impact 

of blowing snow processes in these regions. But, to the knowledge of the author there 

is no study available which is describing the quantity of the transported snow masses 

and the areas which are mainly influenced for an Alpine region and on the catchment 

scale. 

• Finally, on scales larger than 1 kilometre, snow cover heterogeneity is mainly 

influenced by the orographic precipitation gradient (Barros et al. 1994; Liston 2004).  
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1.2.3 Model approach of the presented work 

The presented work uses a seasonal 3-dimensional model and is focused on wind induced 

snow transport in Alpine regions. For an accurate modelling of snow transport events 

knowledge about the different transport terms, the snow conditions at a given time step, and 

the driving force, namely the current wind field, are prerequisites. While the first two 

requirements can be numerically solved in a satisfying way (Marsh 1999), the calculation of 

realistic wind fields especially in alpine regions is still an open research topic (Liston and 

Sturm1998; Winstral and Marks 2002; Raderschall et al. 2002; Walter and McCool 2004; 

Liston et al. 2007).  

An literature review has shown that wind fields are commonly predicted in two different 

ways: I) simple interpolations between stations that may or may not include statistical 

approaches that incorporate information about elevation and relief (Essery 2001; Winstral and 

Marks 2002) and II) calculations using physically based models (Lehning et al. 2002; 

Bernhardt et al. 2008a). It is well known that I) is not feasible in areas with complex terrain 

(Liston and Sturm 1998; Winstral and Marks 2002; Bernhardt et al. 2008a). This is mainly 

due to the spatial characteristics of wind fields. They are extremely heterogeneous and 

unsteady because of a nonlinear relation between wind speed and height, as well as synoptic 

flow and topography dependent wind direction fields. The whole system is furthermore 

complicated by the turbulent movement of air masses. On the other hand, the hydraulic 

computation of wind fields with a meso scale or regional atmospheric model is time-

consuming and thus does not allow for the modelling of snow-transport processes over large 

areas at the spatial scales required to adequately represent the underlying physics (that operate 

at spatial scales of 200 meters or less). Furthermore, most of the available atmospheric models 

were not able to estimate high resolution wind fields for complex terrain until today due to 

unresolved numerical problems.  

For the presented work a modified version of the PSU/NCAR MM5 model (Grell et al. 1995; 

Zängl 2002; Zängl 2003) was used. The model was set up with 5 interactively nested domains 

(fig. 3). The largest covers most of Europe the smallest an Alpine area with an extent of 

400km². Due to a new formulation of the vertical diffusion term (Zängl 2003) a target 

resolution of 200 meters could be realized. Since an operational use of MM5 would reduce the 
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performance of a coupled SnowModel/MM5 algorithm significantly (the calculation of one 

200meter wind field needs three days on a high performance computer) a new approach was 

developed and applied. A static library of separately calculated MM5 wind fields was used 

instead of operational model results. The library is connected with the snow model by means 

of the German Weather Service Lokalmodell (LM) (Chapter 3). This becomes possible as LM 

produce hourly wind fields for an area comparable to one of the MM5 nesting domains (red 

rectangle in fig. 3) at the 700hpa level. Using the average wind vector of the LM wind field of 

this area as selection criteria and comparing it to the equivalent information of the available 

fields in the MM5 wind field library makes a selection of the most identical field in the library 

possible. The respective field is used in the SnowModel for the current model time step. 

Hence, the static precompiled MM5 wind field library is synchronized with the snow transport 

model over hourly information delivered by LM. The presented approach has the advantage 

that it combines modelling efficiency with a physically based description of the processes 

affecting local winds and the associated snow redistribution processes. A further advantage is 

that all of the used models are validated and have been shown to perform well.  
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Figure 3: Schematic of the five nested domains used in MM5. The largest one is nesting domain_1, the smallest 
is domain_5. Domain_3 is marked as red rectangle. 

It is well known to the author that there are atmospheric or aerodynamic models available 

which are working at finer scales than the mentioned MM5 model. Detailed studies of the 

Eidgenössisches Institut für Schnee- und Lawinenforschung (SLF) have shown the capabilities 

of ARPS (Xue et al. 2000; Xue et al. 2001) and CFX-4 (AEA, 2001) for event based 

modelling at a scale of 25 meters. The application of these models is very useful for a better 

theoretical understanding of wind induced snow transport processes including sublimation of 

turbulent suspended snow particles. Nevertheless, an operational coupling between these 

models and snow models is currently impossible because of model limitations and/or 

unrealistic computational demands.  
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At the outlook (chapter 6), the results of the high resolution model runs serve as the basis for 

the parameterization of a subscale routine which is able to predict the snow covered fraction 

of grid cells of regional models.  

The presented work deals with processes and models which are occurring and working at 

significantly different scales. Furthermore, it uses data from a coarse scale model (MM5) for 

predicting processes which are occurring at scales of 200m or less (Liston et al. 2006). So, a 

definition and explanation of the used scales is given in the following section.  

1.2.4 Scales used in this work 

Operations at three different scales were performed in connection with the presented work, so 

the used scales and their connection will be declared here. Blöschl (1999) defines three 

different scales for snow hydrology: 1) the process scale 2) the measurement scale and 3) the 

model scale. The process scale is characterized over the specific characteristic length of a 

natural process (like the correlation length of the spatial SWE variability), the measurement 

scale over the size of e.g. a snow density sample, and the model scale over the grid cell size of 

a distributed model (Blöschl 1999). The measurement and the model scale are further 

characterized with three additional terms: spacing, extent and support (Blöschl and Sivaplan 

1995). The term spacing refers to the distance between samples, the extent defines the overall 

coverage of the data and support refers to the integration volume of a sample. Following these 

terms the measurement scale is defined by the distance between the snow poles (spacing), the 

extent of the measurements (extent), and the area for which the measurement is representative 

for (support). The model scale is defined by the model resolution (spacing), the total area 

which is respected (extent) and the scale for which the model formulations are representative 

for (support). 
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Figure 4: Scales used in this thesis. The work starts at the meso scale for which the MM5 wind fields are 
representative for (200m). After than the wind fields are downscaled to a 30m resolution (micro scale). The 
SnowModel results at the micro scale are validated on the basis of field campaign and remotely sensed data. The 
information produced by the micro scale runs is used for a parameterisation scheme for the snow heterogeneity 
which can be used in regional scale Models.  

In accordance to Blöschl (1999) the measurement and the model scale should not differ too 

much from each other. Hence, the application and validation of the model was progressed at 

different scales. These scales are defined as the micro, meso and regional scale in the 

following (fig. 4). 

At the micro scale the snow model was performed with a spatial resolution of 30 meters and 

within a total area of 400km². The total area remains the same at the meso and regional scale 

but the grid size increases to 200 meters and 1000 meters respectively. As illustrated in Figure 

4 the study starts at the meso scale (200m resolution) which corresponds to the reachable 

extent and support of the meteorological model and to the upper limit of the physical 

descriptions within the snow transport model (and consequently to the upper limit of the 

support of this model). The overlap between extent and support of these models allows for a 

common usage. Hence, the general performance of the coupled wind field/snow model 

algorithm was tested at this scale and first plausibility checks were made (Chapter 4). 

Subsequently, the MM5 results were downscaled to a 30 meter resolution (micro scale) which 
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exactly fits the support and extent of the Landsat ETM+ data and which is close to the extent 

of the snow courses (Chapter 4). In a last step, the information which was obtained at the 

micro scale was parameterised to make it available for regional scale (1km) land surface 

models (Chapter 6) 

1.3 Test Sites and field measurements 

The Berchtesgaden National Park is located in southeast Germany in Bavaria, at the southern 

corner of the administrative district Berchtesgadener Land (fig. 5). The park was founded in 

1978 and comprises an area of 210 km2. For the most part, the border of the National Park is 

represented by the national boundary to Austria. Only in the north, the National Park adjoins 

the settlement areas of the communities Berchtesgaden, Schönau at the Königssee as well as 

Ramsau, all of them at the border of the National Park. The valley areas are characterized by 

extensive forests with larch, spruce and mountain pine stands, subordinated to the National 

Park Authority since 1987. The high alpine area of the National Park includes the massifs 

Watzmann (2713m a.s.l.) and Hochkalter (2606m a.s.l.) as well as parts of the massifs Hoher 

Goell, Hagengebirge, Steinernes Meer and Reiteralm, separated from each other by the deep 

valleys stretching mostly from south to north. Lakes cover an area of approximately 6 km². 

The hydrological drainage of the area is represented by the rivers Bischofswieser Ache, 

Ramsauer Ache and Königseer Ache. All of these creeks flow into the Salzach (Danube river 

system). 
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Figure 5: Test site (Berchtesgaden National Park) (Bayerisches Landesvermessungsamt 1994, modified). The 

locations of Reiteralm 1, 2 and 3, Schönau, Kühroint and Jenner are marked with arrows. The test sites at 

Reiteralm and Kühroint are displayed as chequered areas. 

As an effect of local topography, some small glaciers still exist at altitudes where their 

specific mass balance would always be negative if only the climatologically processes were 

taken into account. The Blaueisgletscher, the most northern glacier of the Alps, is shaded by 

the surrounding steep rock walls and fed by wind induced snow transport and avalanches. The 

Watzmanngletscher also receives additional accumulation by wind-blown snow originating 

from the west slopes of Watzmann. Finally, the Eiskapelle at 920m a.s.l., a perennial 

snowfield at the base of the Watzmann east face, is fed by both wind-blown snow from the 
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Watzmann crest and frequent avalanches from the east face which effectively is a snow funnel 

depositing masses of snow at a location far from where it has fallen, or been eroded. 

Nevertheless, the glaciers in the Berchtesgaden Alps have retreated dramatically during the 

past decades and it can be assumed that they will completely disappear in the near future 

(Winkler 2005). Only the Eiskapelle has shown little reaction on the changing climate. 

Because of the extremely steep topography it is very challenging to model snow processes 

and snow transport processes here. 

Table 1: Geographic position of the National Park 

 Geographical Gauss Krüger (Zone 4) 

Corner Longitude [°] Latitude [°] Easting [m] Northing [m] 

Upper Right 13° 06’ 22’’  47° 43’ 05’’ 4583001.00 5287682.00 

Lower Left 12° 45’ 17’’ 47° 27’ 23’’ 4556920.69 5258267.75 

 

The test site was selected for the following reasons:  

• The topographic characteristics which guarantee high wind speeds and therefore high 

snow transport intensities. The area can be seen as representative for high alpine 

regions.  

• The instrumentation of the site. Meteorological Networks of the Avalanche Warning 

Service (LWD) and of the German Weather Service / Berchtesgaden National Park 

(DWD / NPB) were available.  

• The availability of a high resolution GIS database including sophisticated land use 

information which allows for high resolution distributed modelling.  

• The chance to carry out field campaigns with the help of skilled National Park 

Rangers, which had long term experiences in conducting snow courses.  

• The general assistance of the partners: the Avalanche Warning Service (LWD) and the 

administration of the Berchtesgaden National Park (NPB), who have provided any 

data free of charge.  
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1.3.1 Topography 

The Berchtesgaden Alps can be seen as a solitary part of the northern limestone Alps. They 

are located between the rivers Saalach and Salzach and are characterized by the plateau type 

of the different massifs and by the petrographical attributes of the rocks. The Dachstein 

limestone is determined within the sediment sequence of this area (Institut für Landeskunde, 

1970). The area shows steep terrain which traces back to massive crust movements during the 

Eocene, 45 million years ago. The relief was additionally intensified by the glaciations of the 

last ice ages.  

The minimum elevation of the area is 514 m a.s.l located at the outlet of the Berchtesgadener 

Ache in the north-eastern part of the area whereas the maximum elevation is the crest of 

Watzmann (2713m a.s.l.) Figures 6 give an idea about the relief energy of the area. 

 
Figure 6: Profile through the National Park area which displays the rapid changes in altitude in the test area. 

1.3.2 Climate 

The climate of the National Park area is subject to significant spatial variability and strongly 

influenced by a relief gradient of more than 2000 m. Small scale local differences are caused 

by, for example, the general position in the mountainous landscape, the position in relation to  

the prevailing winds (windward or leeward), and the solar incidence angles. 

The observed mean temperature is 8.1 °C at 470m a.s.l. while for the maximum elevation of 

2713 m a.s.l a mean of -2.5 °C was calculated (Enders, 1979). The observed average gradient 
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in temperature with elevation is 0.47 °C per 100 meters (Enders 1979). According to a study 

of Frei and Schär (1998) the area is located within a wet anomaly extending along the 

northern side of the Alps. This region shows the highest frequency of days with precipitation 

(precipitation ≥ 1 mm). The annual precipitation shows measured values of 1655 mm at 500m 

a.s.l. and estimated values of 2711 mm for an elevation of 2500m a.s.l. The calculated mean 

for the total area is 1992 mm (Enders 1979). The model runs presented in this work were 

progresses from August to Juli for covering the total snow cover period. The observed winter 

seasons are on average if one compares the precipitation and temperatures measured at 

Schönau with the long term average of 1960-1990 (precipitation = 1519mm  and temperature 

= 7.2 °C). The precipitation sum of 2003/2004 was 1532mm and 1473mm in 2004/2005 and 

the average temperature was 7.1 °C for 2003/2004 and 7.8 °C for 2004/2005.  

1.3.3 Meteorological data 

Data of four different meteorological stations was available for the presented work. The 

network of meteorological stations is owned by two different institutions: the stations at 

Jenner, Kühroint and Reiteralm are operated by the Bavarian avalanche warning service 

(LWZ) whereas the Schönau station belongs to the network of the DWD. Figure 7 shows the 

location of the different stations. 

By connecting these automatic stations via wireless Global System for Mobile 

Communications (GSM) transmission with a central database a unique data pool is available 

which allows the continuous operation of distributed models with a high temporal resolution. 

Table 3 gives an overview of the parameters which are recorded at each station. All data are 

aggregated to hourly means (i.e., average for temperature, humidity, wind speed, radiation, 

and air pressure; sum for precipitation; maximum for maximum wind speed) and checked for 

plausibility. Missing values due to periods in which a sensor was out of operation are 

characterized as such. Continuous records of the meteorological parameters start in 1998. 
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Table 2 Meteorological stations which were used, their abbreviations, geographical coordinates, elevation, and 
associated meteorological fields: global radiation (GR), humidity (H), precipitation (P), snow height (SH), 
temperature (T), temperature of the snowpack 0cm above ground (TS0), 20cm above ground(TS2), 4cm above 
ground (TS4) and 60cm above ground (TS6), wind speed (WS), wind direction (WD) 
Station Elev (a.s.l.) Long Lat Resolution Parameters 
 
Kühroint 

 
1407 

 
12,57 

 
47,34 

 
10 min 

 
T,H,GR,WS, WD, P 

Reiter Alm I 1755 m 12,80 47,65 10 min WS, WD 
Reiter Alm II 1670 m 12,80 47,64 10 min H, SH, T, TS0, TS2, TS4,TS6 
Reiter Alm III 1615 m 12,81 47,64 10 min GR, H, P, SH, T 
Jenner  1200 m 13,01 47,58 10 min H, SH, T, TS0, TS2, TS4 
Schönau 617 m 12,98 47,60 10 min T, H, GR, WS, WD, P 
      
 

 
Figure 7: Location of the meteorological stations.  

1.3.4 Spatial data sets 

In addition to the meteorological data, a GIS providing information on vegetation and 

topography was used. The administration of the Berchtesgaden National Park has developed 

a wide set of GIS data over the past years. The cartographic reference system of all data is 
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Gauss Krüger (Zone 4/WGS 84 ellipsoid). The original data has a resolution of 10m x 10m 

but was resampled to 30m x 30m and 200m x 200m respectively using the mean value for the 

elevation data and the majority in the case of vegetation data. These resolutions correspond to 

the available remotely sensed data (Landsat ETM+/30m) and to the topographic information 

and grid increment used by the MM5 model (200m) (fig. 8). The elevation data set originates 

from an analysis of 20m contour line maps (personal communication H. Franz 2007). The 

individual vegetation types were classified over a hierarchical scheme presented by the 

Bundesamt für Naturschutz (1995), using colour infrared aerial photos of 1997. As the 

resulting 101 classes are too detailed for this work they were aggregated to a final of 23 

classes. This number of classes was chosen because it is slightly below the maximum number 

of classes the snow transport model (chapter 2.1.2) can process and allows for a meaningful 

aggregation of the original classes.  

a)  b)  

c)  d)  
Figure 8: GIS data used in this work. a) elevation (m a.s.l.), b) vegetation types, c) aspect (°) and d) slope (°) 
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1.3.5 Field campaigns 

To evaluate the micro scale simulations, field measurements of snow depth were carried out. 

The choice of test sites was determined mainly by the accessibility of the region during the 

winter season. Hence, areas at Kühroint and Reiteralm were chosen (fig. 9 and fig. 10). Both 

can be reached easily, the first over a logging route and the second over a cable railway. 

The Reiteralm (fig. 5, fig.9) plateau as a whole is made of Dachstein limestone and Ramsau 

dolomite and is characterized by an extensive flatland perched between 1500m a.s.l. and 

2000m a.s.l. and sharp drops around the edges. The average elevation of the part in which the 

test-site is located in is 1700m a.s.l. the minimum and maximum elevations are 1610m a.s.l. 

and 1753m a.s.l. respectively. Mountain pine is the dominant vegetation type, followed by 

meadows and spruce.  

 
Figure 9: Sample points at Reiteralm. 15 sample points were installed in the winter season 2004/05 the points are 
named 1-15. 

The mountain pasture Kühroint is located at approximately 1420m a.s.l. in the north-eastern 

part of the Watzmann massif (fig. 5). Three different land use types can be found at this site: 
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grassland, clear cut, and coniferous forest (fig. 10). The absolute difference in elevation is 

small (70 meters in total). The clear cut and the coniferous forest show undulating terrain with 

small hills of about five meters in height and an extent of 30 to 40 meters. The grassland in 

contrast is more planar and rises in a westerly direction. In 2004, the existing meteorological 

station at Kühroint was replaced with a new, fully automated, station of the Avalanche 

Warning Service of Bavaria (LWD) (the instrumentation can be found in tab. 2). Additionally, 

a snow pillow was installed but the data was not available for the winter season of 2004/05 

due to a technical problem.  

 
Figure 10: Sample points at Kühroint. 15 sample points were installed in the winter season 2004/05 the points 

are named A-O. 

More remote sites at higher elevations would be desirably but were not feasible because of the 

expected risks.  

A major problem of snow depth measurements is that every measurement influences the snow 

pack and its further development. To minimize this effect staff gauges were installed which 

can be read with the help of binoculars. The snow depth indicated by the staff gauges was 
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routinely checked with snow pole measurements. These additional controls were needed 

because of the possible drift of the staff gauges due to e.g. snow pressure.  

Measurements on 11 dates at 30 staff gauges were taken between February and April 2005 

(the exact dates of the measurements are given in Tables 7 and 8). The choice of the location 

of the sample points bases on an analysis of the GIS and of the vegetation map. The objective 

of this process was to find representative points which allow for a characterization of the total 

study area. It was our plan to carry out a continuous series of weekly measurements but in 

some cases the intended interval could not be maintained due to difficult meteorological 

conditions and high avalanche risk 
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Chapter 2   Model descriptions 

The output from four different models was used for the presented work. For the estimation of 

the snow cover evolution, and of the meteorological fields, SnowModel (Liston et al. 2006) 

was utilized. Wind fields were predicted by a modified version of the PSU/NCAR MM5 

model (Grell et al. 1995). To connect SnowModel and the MM5 wind fields during runtime, 

analysis results of DWD Lokalmodell (LM) (Adrian and Frühwald 2002) were used. As all of 

the named models are well documented in literature, only a short overview about the most 

important model formulations and modifications will be given in the next sections. 

2.1 SnowModel 

The SnowModel (Liston and Elder 2006) consists of six independent parts: 

The quasi-physically-based meteorological distribution model MicroMet (Liston and Elder 

2006) is used for the spatial interpolation of measurements of: air temperature, incoming 

longwave radiation, incoming solar radiation, precipitation, relative humidity, surface 

pressure, wind direction, and wind speed.  

In a first step a Barnes objective scheme is applied (Eq. 1, Barnes 1964, 1973; Koch et al. 

1983) to interpolate data from irregularly spaced stations to a regular grid (Liston and Elder 

2006). 

 
ݓ ൌ ݌ݔ݁ ቂ ௥²

௙ሺௗ௡ሻ
ቃ                                                                   (Eq. 1) 

Barnes interpolation scheme (Koch, et al. 1983): w = interpolation weights, r = distance between observation and 
observed grid point, f(dn) = filter parameter which defines how smooth the interpolated field will be. 
 
Afterwards different known relationships between meteorological parameters and terrain are 

used to modify the datasets (Liston and Elder 2006).  

In the case of air temperature, lapse rates between the existing meteorological stations are 

used for the spatial distribution of the point measurements (Eq. 2 and 3).  
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଴ܶ ൌ ௦ܶ௧௡ െ Γሺݖ଴ െ  ௦௧௡ሻ                                                         (Eq. 2)ݖ

ܶ ൌ ଴ܶ െ Γሺݖ െ  ଴ሻ                                                              (Eq. 3)ݖ
Calculation of the gridded air temperature: T [°C]. T0 = air temperature at reference level, Tstn = observed 
temperature at station elevation, z = topographic elevation of the topographic dataset, z0 = sea level, zstn = station 
elevation, Γ = lapse rate [C°m-1], T [°C] = gridded air temperature at the elevation of the topographic dataset.  

As the relative humidity (Eq. 4) is a non-linear function of elevation the relative linear dew 

point temperature is used for elevation adjustments. In order to do that, the station 

measurements are first converted into dew point temperatures (Eq. 6), and subsequently 

adjusted to a common reference level using the dew point temperature lapse rate (Eq. 7) 

(Kunkel 1989) which can be predicted through station measurements. The reference level data 

are then distributed using the Barnes objective scheme and converted back into relative 

humidity in a final step (Liston and Elder 2006). 

 

ܪܴ ൌ 100 ௘
௘ೞ

                                                                    (Eq. 4) 

Calculation of the relative humidity: RH = relative humidity, e = actual vapour pressure [Pa] es = saturation 
vapour pressure (Eq. 5) 
 

݁௦ ൌ ݌ݔ݁ ܽ ቀ ௕்
௖ା்

ቁ                                                              (Eq. 5) 

Calculation of the saturation vapour pressure: es[Pa] = saturation vapour pressure at temperature T [°C], for 
water (a = 611.21[Pa], b = 17.502, c= 240.97[°C]), for ice (= 611.15[Pa], b = 22.452, c= 272.55[°C]) (Buck 
1981) 

 
 

ௗܶ ൌ
௖ ௟௡ሺ௘/௔ሻ
௕ି୪୬ ሺ௘/௔ሻ

                                                                  (Eq. 6) 

Calculation of the dew point Temperature: Td = dew point temperature.  
 

Γௗ ൌ ߣ ௖
௕

                                                                        (Eq. 7) 

Calculation of the dew point temperature lapse rate (Kunkel 1989) 
 
Equation 8 was used to interpolate the measured precipitation rates to the model grid. The 

topographic reference level was calculated with the help of station elevations. This was done 

since the precipitation adjustment factor (Thornton et al. 1997) is a nonlinear function that 

uses elevation difference not total elevation.  
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ܲ ൌ ଴ܲ ቂ
ଵା ఞሺ௭ି௭బሻ
ଵିఞሺ௭ି௭బሻ

ቃ                                                              (Eq. 8) 

P is precipitation [mm h-1], P0 = interpolated station precipitation, z = topographic elevation of the topographic 
dataset, z0 = station elevation surface, χ = monthly varying factor [km-1] (Thornton et al. 1997) 

The incoming solar radiation is predicted with a set of equations, considering the influence of 

the cloud cover, direct and diffuse solar radiation, as well as slope and aspect of the respective 

pixel. The cloud fraction is predicted over the relative humidity at the 700-mb level (Eq. 9, 

Walcek 1994).  

 
௖ߪ ൌ 0.832 exp  ቀோுళబబିଵ଴଴

ସଵ.଺
ቁ                                                    (Eq. 9) 

Calculation of the cloud fraction. σc = cloud fraction [0 ≤ σc ≥ 1], RH700 relative humidity at 700hpa level which 
is predicted over the presented temperature lapse rates.  
 
The solar radiation which is striking earth’s surface is predicted via Equations 10. The direct 

and diffuse proportion of the net sky transmissivity is predicted over equations 11 and 12 

(Burridge and Gadd 1974). 

 
ܳ௦௜ ൌ ܵ כ ሺ߰ௗ௜௥cos݅ ൅ ߰ௗ௜௥cosܼሻ                                              (Eq. 10) 

߰ௗ௜௥ ൌ ሺ0.6 െ ሻሺ1.0ܼݏ݋0.2ܿ െ  ௖ሻ                                             (Eq. 11)ߪ

߰ௗ௜௙ ൌ ሺ0.3 െ ௖ߪሻܼݏ݋0.1ܿ                                                    (Eq. 12) 

Calculation of the solar radiation in dependence of the sloping and zenith angle. Qsi = solar radiation which is 
reaching earth’s surface [W m-²], i = angle between a sloping surface and solar radiation, S* =  1370 W m-2 (Kyle 
et al., 1985), Ψdir = direct net sky transmissivity, Ψdif = diffuse net sky transmissivity.   

Following Liston and Sturm (1998) wind speed and direction were spatially distributed using 

empirical wind topography relationships (Ryan 1977; Liston and Sturm 1998). To avoid the 

0/360° direction line problem when interpolating the station measurements, wind speed W 

(m/s) and direction θ were converted into zonal and meridional components u (m/s) and v 

(m/s) (Liston and Sturm, 1998; Liston and Elder 2006).  

 
ݑ ൌ െܹ݊݅ݏሺߠሻ                                                                (Eq. 13) 

ݒ ൌ െܹܿݏ݋ሺߠሻ                                                                (Eq. 14) 

Calculation of the zonal and meridional components of wind speed and direction: u = zonal component, v = 
meridional component, W = wind speed, θ = wind direction. 
 
After spatial interpolation the resulting values are converted back to speed and direction: 
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ܹ ൌ ඥ²ݑ ൅  (Eq. 15)                                                                ²ݒ

Conversion of meridional and zonal components to W = wind speed [m/sec]  
 

ߠ ൌ ଷగ
ଶ
െ tan^ െ 1 ቀ௩

௨
ቁ                                                       (Eq. 16) 

Conversion of meridional and zonal components to θ = wind direction [°]  
 
Finally, wind speed and direction are modified with respect to topography using approaches 

by Liston and Sturm (1998) and Ryan (1977). For the modification of the wind speed a scaled 

slope (Ωs) and a scaled curvature (Ωc), in combination with two weighing factors (λs and λc) 

were used (Liston and Elder (2006) give a precise description of these parameters):  

 

ௐܹ ൌ 1 ൅ ௦Ω௦ߣ ൅  ௖Ω௖                                                      (Eq. 17)ߣ

Modification of the wind speed with respect to the topography: WW = Modification value, λs and λc = empiric 
weight factors, Ωs = scaled slope, Ωc = scaled curvature. 
 
Based on this the terrain modified wind speed (Wt), is calculated from: 
 

௧ܹ ൌ ௐܹ כ ܹ                                                                (Eq. 18) 

Calculation of the terrain modified wind speed Wt [m/sec] (Liston and Sturm 1998). W = wind speed, WW = 
Modification value 
 
The wind direction is modified by the diversion factor θd (Ryan, 1977) which is added to the 
wind direction (ζ is the slope aspect): 
 

ௗߠ ൌ െ0.5Ω௦sinሾ2ሺξ െ θሻሿ                                                   (Eq. 19) 

Calculation of the diversion factor θd[°] (Ryan 1977): θ = wind direction, Ωs = scaled slope, ζ is the slope aspect. 
 
The terrain modified wind direction (θt), is calculated from:   
 

௧ߠ ൌ ߠ ൅  ௗ                                                                  (Eq. 20)ߠ

Calculation of the terrain modified wind direction θt [°] (Ryan 1977). θ = wind direction, diversion factor θd. 

Finally, the wind fields are modified with a vegetation weighting factor considering the leaf 

area index (LAI) and the vegetation height (ρ). 

 
௖ܹ௔ ൌ ݁൫ሺ଴.ଽכ௅஺ூሻሺଵ.଴ିሺ଴.଺כఘሻ/ఘሻ൯                                                (Eq. 21) 

Calculation of the wind speed in canopy stands Wca [m/sec]. LAI = leaf area index, ρ = vegetation height. 
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The snow model wind interpolation routine was identified as a limiting part of the model that 

should be improved or replaced (Liston and Sturm 1998). Hence, a MM5 wind field library 

was created in the course of this work and was used instead of the described interpolation 

routine (cp. eq. 13-20).  

Enbal is described in detail in Liston (1995) and Liston et al. (1999). It predicts the surface 

temperature of the snow pack as well as the energy and moisture fluxes to and from the snow 

pack (eq. 22). The driving meteorological fields are provided by MicroMet.  

 
ሺ1െןሻܳ௦௜ ൅ ܳ௟௜ ൅ ܳ௟௘ ൅ ܳ௛ ൅ ܳ௘ ൅ ܳ௖ ൌ ܳ௠                                 (Eq. 22) 

Basis equation of EnBal: Qsi = solar radiation, Qli incoming longwave radiation, Qle emitted longwave radiation, 
Qh = turbulent exchange of sensible heat, Qe = turbulent exchange of latent heat, Qc = conductive energy 
transport, Qm = energy flux available for melt, α = surface albedo. 
 
The formulations used within the model allow for an application in complex mountainous 

terrain (Liston 1995). In a first step the melt energy Qm is defined to be zero and Eq. 22 is 

solved in an iterative way. A resulting surface temperature greater than 0° in the presence of 

snow indicates that energy for melt is available. In this case the surface temperature is fixed to 

0°C and Eq. 22 is solved for Qm. 

SnowPack (Liston and Hall 1995): is a simple, single layer snowpack evolution model. This 

model should not confused with SNOWPACK of Bartelt and Lehning (2002) which is the 

operational snow model of Switzerland’s avalanche warning service.  

Within SnowPack the precipitation is assumed to fall as snow if the wet-bulb temperature (eq. 

23) is lower than 1°C (Liston and Hall 1995).  

 

௪ܶ௕ ൌ ௔ܶ ൅ ൫݁௔ െ ݁௦ሺ ௪ܶ௕ሻ൯ ൬
଴.଺ଶଶ
௉௔

௅ೞ
஼೛
൰                                       (Eq. 23) 

Approach for the calculation of the wet bulb temperature Twb (Rogers 1979): ea = vapour pressure of the air, es = 
vapour pressure of the surface, Ta = air temperature, Ls = specific heat of air, Ls = latent heat of sublimation, Pa 
= atmospheric pressure. 
 
The fallen precipitation is then added to the snow pack, and its new density is predicted with 

an equation of Anderson (1976): 

 
௡௦ߩ ൌ 50 ൅ 1.7ሺ ௪ܶ௕ െ 258.16ሻଵ.ହ                                          (Eq. 24) 

Calculation of the snow density ρns(Anderson 1976): Twb = wet bulb temperature. 
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As snow is, in general, a mixture of ice crystals, liquid water, and air, the snow density can 

also be modified by the liquid water content and the weight of the overlying snow. If melt 

occurs the liquid water will stay within the snow pack until a threshold density is reached. If 

this is the case any additional water will leave the snow pack (Liston and Hall 1995). All 

energy related calculations at the surface of the snow cover including ground sublimation are 

processed in EnBal. 

SnowTran3D (Liston and Sturm 1998) is a three-dimensional model, able to simulate the 

transport terms: saltation, suspension, and sublimation (fig. 11). SnowTran3D has proven its 

applicability in a wide variety of landscapes (Green et al. 1999; Liston et al. 2000; Prasad et 

al. 2001; Hiemstra et al. 2002, Hasholt et al. 2003; Bruland et al. 2004) including the 

European Alps (Bernhardt et al. 2008a). The model algorithms which are important for a 

better understanding of subsequent steps are presented in the next section. A more detailed 

documentation of the model can be found in Liston and Sturm (1998) and Liston et al. (2006).  

 
Figure 11: Schematic illustration of the transport model. Qt = mass transport rates of saltation, Qv = mass 
transport rates of turbulent suspended snow, Qs = sublimation of transported snow particles. P = water 
equivalent precipitation rate. CV = snow holding capacity. h* = top of the saltation layer.  
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Equation 25 shows the mass balance equation on which SnowTran-3D is based on. 
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ቁ ൅ ܳ௩ቃ                                 (Eq. 25) 

Mass balance equation of SnowTran-3D. ζ = snow depth (m), ρs = snow density (kg m-3), ρw = water density (kg 
m-3), P = precipitation rate (m s-1), Qs = saltation rate (kg m-1 s-1), Qt = amount of turbulent suspended snow (kg 
m-1 s-1), Qv = sublimation of transported snow particles (kg m-1 s-1), t = time (s), x = horizontal coordinates in 
west east direction (m), y = horizontal coordinates in north south direction (m). 
 
SnowTran-3D is able to predict the most effective transport terms saltation and turbulent 

suspension while creeping is neglected. The description of the saltation process follows 

Pomeroy and Gray (1990).  

 
ܳ௦_௠௔௫ ൌ

଴.଺଼
௨כ
ቀఘೌ
௚
ቁ ଶכݑ௧ሺכݑ െ ௧ଶכݑ ሻ                                            (Eq. 26) 

Estimation of the equilibrium saltation rate: Qs_max = saltation transport rate (kg m-1 s-1), ρa = air density (kg m-1), 
u* = friction velocity, g = gravity (m-1 s-2), t = time(s) u*t = 0.25 (m s-1). 
 
The amount of snow which is transported at a given time step largely depends on the shear 

stress which the wind exerts on the surface. Bagnold (1941) has defined two threshold values, 

the impact and the fluid threshold velocity, with the fluid threshold velocity exceeding the 

impact threshold velocity. Pomeroy (1988) found that the difference between the two 

threshold velocities is negligible. Based on his work, the threshold friction velocity u* (Eq. 

27) is commonly used instead of the terms defined by Bagnold. 

 
כݑ ൌ ௥ݑ

఑
௟௡ሺ௭ೝ/௭బሻ

                                                             (Eq. 27) 

Threshold friction velocity u* (m s-1) (Pomeroy, 1988): ur = wind speed at reference height (m s-1), zr = reference 
height (m), zo = roughness length, κ = Kármán’s constant.  
 
The threshold velocity which is needed for initializing the saltation can be modified by the 

roughness length of the surface (z0) (eq. 29). The roughness length mainly depends on the 

snow depth fraction (eq. 28) and on the vegetation types of an area. 

 
௦ܨ ൌ

఍
஼ೡ

                                                                       (Eq. 28) 

Estimation of the depth fraction of vegetation covered by snow Fs: ζ = snow depth (m), Cv = vegetation specific 
snow holding capacity (m). 
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The snow holding capacities are between 0m (rock) and 15m (coniferous forest) (Liston and 

Sturm 1998).  

 
଴ݖ ൌ ଴_௦௡௢௪ݖ ௦ܨ ൅ ሺ1 െ  ଴_௩௘௚                                             (Eq. 29)ݖ௦ሻܨ

Calculation surface roughness length z0. Fs = depth fraction of vegetation covered by snow, z0_snow = roughness 
length of snow (0.001), z0_vegetation_ = roughness length of a vegetation covered surface (this value is 
approximated by: 0.25 * snow holding capacity) 
 
If the wind speed is strong enough snow particles can be picked up by turbulent eddies and 

will enter into suspension. During snowdrift suspension the particle paths are fluctuating 

around a certain average height which is dependent on the immersed weight of the particles 

and on the balance between turbulent energy and gravity (Bintanja, 2000). The maximum 

thickness of the suspension layer is an object of discussion, the values in literature ranging 

from a few meters (Kobayashi, 1972; Takeuchi, 1980) to a several hundred meters (Budd et 

al., 1966). 

Saltation has to be present to initialise turbulent suspension (eq. 30) (Liston and Sturm 1998). 

The saltation layer provides the lower boundary conditions and determines whether and to 

which degree turbulent suspension occurs. The equation which defines the concentration of 

snow within the turbulent-suspension layer follows Kind (1992).  
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Concentration of blowing snow within the suspension layer (Kind 1992): øt = turbulent suspension layer (kg m-1 
s-1), ør = mass concentration at reference level (kg m-1 s-1), z = height coordinate (m), x* = horizontal coordinate 
(m), ø*= is a concentration scaling parameter, u* = wind shear velocity (m s-1), s = particle settling velocity (m s-

1), ztr = height of the reference level, k = Kármán’s constant. 
 
The concentration reference level ztr (m) corresponds to the top of the saltation layer h* (m) 

which ensures continuity between these two model layers. The horizontal particle velocity 

within the saltation layer (u*) that is needed to solve Eq. 31 is assumed to be constant with 

height and follows Pomeroy and Gray (1990) (fig. 12). 
 

כ݄ ൌ 1.6 ௨כమ

ଶ௚
                                                                    (Eq. 31) 

Particle velocity within the saltation layer (Pomeroy and Gray 1990): h* = top of the saltation layer (m), u* = 
wind shear velocity (m s-1), g = gravity (m s-2). 
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The saltation layer mass flux is defined as independent of height, which is a known 

oversimplification (McKenna-Neuman and Nickling, 1994) but has to be used in this form 

until more valid formulations are available (Liston and Sturm 1998). 

Lehning et al. (2002) criticised the presented algorithms of turbulent saltation/suspension for 

unsteady terrain because of Equation 26 which neglects advective and non-steady effects. 

This is a valid argument at the point scale but the effect at the catchment scale should be 

negligible (personal communication Liston and Pomeroy 2006) which makes the Equation 

applicable for this study.  

 
Figure 12: Connection between wind-shear velocity and transport rate (cp. Liston and Strum 1998) 

The moisture fluxes due to sublimation between a snow pack and atmosphere are 

comparatively small, but considerable fluxes can be observed if snow particles are in transport 

(Hood et al. 1999, Strasser et al. 2007). The exact explanation of the equations used in 

SnowTran-3D can be found in Schmidt (1972), Pomeroy et al. (1993), Pomeroy and Gray 

(1995) and Liston and Sturm (1998). The principle formulation of the sublimation rates are 

given in Eq. 32 for one homogenous transport layer and Eq. 33 for saltation in combination 

with turbulent suspension.  

 
ܳ௩ሺईכሻ ൌ ׬  Ψ௭೟

଴ ሺכݔ, ,כݔሻ߶ሺݖ  (Eq. 32)                                            ݖሻdݖ

Sublimation rates if only one transport layer exists: Qv = sublimated amount of transported snow per unit area of 
snow cover (kg m-1 s-1), Ψ = sublimation loss rate coefficient (s-1), ø = vertical mass distribution (kg m-3). The 
integration limits are from the surface through the upper boundary of the transport layer, x*= horizontal 
coordinate (m), vertical coordinate, zt = 
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ܳ௩ሺईכሻ ൌ  Ψୱ߶ୱhכ ൅ ׬ Ψ୲
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ሺכݔ, ,כݔሻ߶௧ሺݖ  (Eq. 33)                              ݖሻdݖ

Sublimation rates of the saltation and sublimation layer: Qv = sublimated amount of transported snow per unit 
area of snow cover (kg m-1 s-1), the nomenclature is like in Eq. 32. The subscripts s and t refer to the saltation and 
turbulent suspension layer.  
 
The calculation of the sublimation rates additionally depends on the humidity gradients 

between the snow particles and the atmosphere, conductive and advective moisture fluxes, 

snow particle size, and the intercepted solar radiation per snow particle (Liston and Sturm 

1998).The respective Equations can be found in the Appendix I. 

2.2 MM5 model 

The numerical simulations used to compile the MM5 wind field library were conducted with 

an adapted version of the Penn State University-National Center for Atmospheric Research 

MM5 model, version 3.3 (Grell et al., 1995).  

 
Figure 13: Schematic illustration of the MM5 nesting domains (the largest domain is domain_1, the smallest 
domain_5) and of the needed input parameters. 

e.g. 10  [m/sec] lowermost MM5 layer [10m]

e.g. 25 [m/sec] uppermost MM5 layer [100hpa]

Input wind direction e.g. 5 deg.
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The model solves the nonhydrostatic equations of motion in a terrain-following sigma 

coordinate system. Five interactively nested model domains were used, having a horizontal 

mesh size of 16.2 km, 5.4 km, 1.8 km, 600 m, and 200 m, respectively. The corresponding 

numbers of grid points were 148×142, 166×127, 88×88, 82×82, and 121×97, respectively. 

The area covered by the model domains is displayed in fig. 13. In the vertical, 39 full-sigma 

levels were used, corresponding to 38 half-sigma levels where all variables except the vertical 

wind are computed. The lowermost half-sigma level is located about 10 m above the ground, 

and the vertical distance between the model layers increases with height from about 20 m near 

the ground to about 700 m near the upper boundary which is located at 100 hPa. The needed 

model topography was created from US Geological Survey (USGS) terrain data with a 

horizontal resolution of 5’ for domain_1 and 30” for model domains_2-_3. For the two inner 

model domains (4 and 5), high resolution topography data with a grid spacing of 600 m and 

200 m was derived from 50 m DEM data (Ludwig et al., 2003). Information on surface 

roughness was based on land use classes derived from USGS data with a resolution of 30”. 

For the initialisation of the model information about the wind direction and wind speed for the 

lowermost (10m) and the uppermost model layer (100hpa) was needed (fig. 13). Specifically, 

the boundary conditions are defined by a wind direction, the (theoretical) geostrophic wind 

speed at sea level, and by the wind speed set for the lowermost (10m) and uppermost model 

level (100hpa) of domain_1. The ration between the wind speed used for the lowermost and 

the uppermost model layer was 1 (ground level) to 1.5 (100hpa level) which corresponds to 

the common difference in wind speed between these two layers (personal communication G. 

Zängl 2004). These three parameters constitute the backbone for setting up the computation of 

the wind field library. The target area corresponds to the MM5 nesting domain_5.  

The diurnal cycle related to radiation is not taken into account, because solar radiation 

delivers only a comparatively small amount of energy during the winter season. Hence, 

thermally induced local wind systems usually don’t induce significant snow transport 

processes. Consequently, the specified large scale fields are kept constant throughout the 

simulations, which are conducted for 24 hours so that the resulting fields represent steady 

state conditions. To keep the computational expense at a reasonable level, the first 15 hours of 

simulation are conducted with the three outer domains only. The fourth and fifth domain are 
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started at t = 15 h and at t = 21 h respectively, so that the innermost domain is active for three 

hours only. Sensitivity tests with various wind directions revealed that this is sufficient to 

reach quasi steady state in the 200 m domain. This can be explained by the fact that the 

vertical group velocity of orographic gravity waves is inversely proportional to their 

horizontal scale, so that small scale waves rapidly reach a steady state. 

The described large-scale wind field is assumed to be in geostrophic balance with the pressure 

field except for the frictional boundary layer. The Coriolis parameter is assumed to be 

constant at 10-4 1/s throughout the model domain. The large scale wind field is allowed to 

have vertical shear, as is usually the case for real flows, but is forced to be unidirectional in 

order to limit the degrees of freedom.  

The large scale temperature profile starts with a sea level temperature of 278.5 K, followed by 

a vertical temperature gradient of -6.5 K/km up to the tropopause. Above that, an isothermal 

stratosphere is assumed. Though the low level static stability is frequently higher in winter, 

this temperature profile is reasonable for our purposes because strong wind conditions (which 

are critical to this study) force vertical mixing and thus tend to reduce the low level static 

stability. Unless mentioned otherwise, the large scale relative humidity starts with 75 % at sea 

level, increases with height to reach a maximum of 90 % between 750 hPa and 650 hPa, and 

then decreases with height down to a value of 20 % at tropopause level. The motivation for 

this setting is to allow for the formation of clouds and orographic precipitation under 

northerly flow conditions which may affect flow dynamics due to the reduction of the 

effective static stability. However, sensitivity experiments with lower humidity (no more than 

60 % throughout the troposphere) indicated that the local wind pattern in the target area is 

relatively insensitive to moisture conditions. 

To properly account for the frictional processes relevant for setting up the local wind field in 

the target area, a sophisticated boundary layer parameterization with 1.5 order closure based 

on a prognostic equation for turbulent kinetic energy (TKE) was used (Shafran et al., 2000). 

Moreover, a cloud microphysics scheme of medium complexity was used to simulate cloud 

formation and precipitation processes (Reisner et al., 1998). To adapt MM5 to the extremely 

steep topography of our target area, several modifications of the model numerics were applied 

(Zängl 2002). Numerical diffusion of temperature and moisture is computed with the truly 



Chapter 2 Model descriptions
 

 
 
 

  Page 35  
   

horizontal scheme implemented by Zängl (2002), which has proved to greatly reduce 

numerical errors over steep topography. To improve the numerical accuracy of horizontal 

advection over steep topography, the generalized vertical coordinate described by Zängl 

(2003) was used. Unlike standard terrain-following coordinates, this coordinate definition 

allows for a very rapid decay of the topographic structures with height in the coordinate 

surfaces. In addition, the numerical damping of sound waves has been increased in the 

implicit sound wave solver of MM5 in order to improve the numerical stability over very 

steep slopes (slope angle > 50°). Despite this, the 200 m DEM used had to be smoothed at 

some locations to prevent numerical instability. 

2.3 Lokalmodell (LM) 

The second atmospheric model which was used is the Lokalmodell (LM) of the German 

Weather Service (DWD), serving as a link between the actual atmospheric situation and the 

MM5 wind fields. 

Launched in December 1999, LM and Globales Modell Europa (GME) represent the 

operational model chain of the DWD. GME is the operational global forecast model that 

provides the lateral boundary conditions for LM. LM itself is a nonhydrostatic model and can 

be used for forecasting as well as for analysis issues (Doms and Schättler 1999). LM is 

applicable for different areas and scales; the DWD uses it for an area of 2000x2000 km. The 

coordinate system uses rotated spherical coordinates in the horizontal and a height based 

terrain-following coordinate in the vertical (zeta) (Gal-Chen and Somerville 1975; Doms et 

al. 2002). The zeta coordinates divides the model atmosphere into 35 levels ranging from the 

earth’s surface to 20 hPa. The used mesh width of LM is 7 km, the second edition of LM has 

an improved resolution of 2.8 km becomes operational in 2007 but was not used here.  

For this study operational LM analysis data were used; the data were derived from modelling 

and continuous assimilation of observation data by a nudging system: Modelled data is shifted 

towards the observed data while maintaining dynamic and physical consistency. As a 

consequence, the analysis data reflects the actual atmospheric situation much better than the 
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forecasting results (Wergen 2002). Operational analysis data are provided at an hourly 

resolution.
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Chapter 3:   Meteorological fields 

3.1  Interpolation of meteorological parameters, capabilities and limitations. 

For a proper modelling of the snow cover, valid meteorological fields are needed as driving 

force. The following chapter will discuss I) the quality and number of the available 

measurements II) the possibility to generate adequate wind fields with the help of the 

interpolation scheme described in chapter 2 and III) the spatial characteristics of MM5 

generated wind fields. 

The horizontal and vertical distribution of the meteorological stations within the upper 

Danube catchment is used as baseline for the following discussion. The area was chosen 

because it reflects the general distribution of meteorological stations. A discussion on the 

basis of the test site Berchtesgaden National Park would be misleading because the site is 

exceptionally well equipped and is therefore not representative. Figure 14 a) shows that the 

horizontal distribution of the stations is nearly uniform but the vertical distribution shows a 

clear trend towards a lesser number of stations at higher altitudes. In the upper Danube 

catchment 313 of 360 available stations are located between 0m a.s.l. and 1000m a.s.l., 37 

between 1000m a.s.l. and 2000m a.s.l. and only 10 stations are located above 2000m a.s.l. 

(fig. 14 b)). The thinning of the network from 1000 meters on is due to the steep alpine 

topography, extreme weather conditions, problematic data transfer from the stations to the 

receptor, limited power supply, and difficult maintenance of the stations.  

a)  
b)  

Figure 14: a) Spatial distribution of the meteorological stations within the upper Danube catchment, b) Area of 
the different elevation bands and number of stations at the respective altitudes.   
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The thinning of the station network with altitude stands in direct contrast to the demands 

formulated by Barry (1992). He stated that the network of meteorological stations in 

mountainous regions should be 10 to 20 times denser than in flatlands to observe just the 

correct trend of the different meteorological parameters. The higher number is needed because 

the heterogeneous mountain terrain causes such a broad band of local weather conditions that 

the measurement at any particular station can only be seen as representative for a limited area 

(Barry 1992). That means that the spacing of the stations becomes especially wide if the 

support of the data becomes small. Furthermore, the measurements conducted in Alpine 

regions are less reliable than such in the flatlands which is due to frequent heavy weather 

conditions (Barry 1992). Apart from the measurements, the interpolation of meteorological 

parameters is a challenge in regions with remarkable elevation differences. The computation 

of continuous meteorological fields on the basis of point measurements is especially difficult 

if a meteorological variable is not directly coupled to a certain topographic parameter or if the 

topography is very complex. Furthermore, the limited number of meteorological stations from 

1000 meter on (fig. 14 b)) leads to the need of an extrapolation of the meteorological 

measurements for regions which are located above the highest available station in the 

surrounding. This procedure has no physically based background and does not respect the real 

processes of the higher regions (e.g. inversion layers). The application of a gradient of e.g. 

precipitation which was predicted under usage of lower elevation stations can lead to an 

appreciable overestimation of the precipitation in high mountain regions. This is due to the 

fact that a decreasing or steady precipitation amount at higher elevations cannot be computed 

with common interpolation techniques. Nevertheless, the procedure of applying the respective 

gradient determined from lower elevation stations to regions above the elevation of the 

highest meteorological station was chosen for this study as there is no plausible reason that 

would legitimate the fixing of the gradients to a definite value or the modification of the 

gradient  

The parameters required by the model used here are, temperature, relative humidity, 

precipitation, incoming solar radiation, wind speed and wind direction. The following 

discussion will consider just these parameters for the winter season 2003/04. For the 

validation of the interpolated values the stations at Reiteralm (fig. 5) were excluded from the 

interpolation scheme and used as the basis for comparison between model results and 
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measured values as shown in Figures 15-20. The interpolation is based on data delivered by 

the meteorological stations, Schönau, Jenner and Kühroint. Interpolation results which show a 

good correspondence to the test station Reiteralm are only discussed shortly.  

Air temperature is typically simple to interpolate because it shows a relatively stable 

correlation with height. Figure 15 shows that the temperature at Reiteralm station II can be 

reproduced in a satisfying way by the interpolation routine (eq. 2 and 3). However, the 

temperature calculations can be complicated for higher regions if inversion layers are present. 

Furthermore, the interpolation can become erroneous if the upper regions are snow covered 

while the areas with the meteorological stations are snow free.  

 
Figure 15: Temperature recordings of Reiteralm II meteorological station. Comparison of hourly modelled and 
observed data for the winter season 2003/2004. 

Figure 16 shows that the calculation of the incoming solar radiation leads to a reasonably 

good correlation between measurements and model results (R² = 0.71). However, it becomes 

obvious that model results tend to be higher than observed values. This effect is due to an 

underestimation of the cloud cover (Eq. 9). More sophisticated radiation models like the one 

used in e.g. AMUNDSEN (Strasser et al. 2007) are able to describe the radiation balance at a 

given point more accurately because they respect shading effects and reflected longwave 

radiation from the surrounding terrain and applies. Nevertheless, it could be seen that the error 

of the interpolation scheme is especially high in summer and more accurate in winter which 

allows for an application of the presented formulations.  
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Figure 16: Incoming solar radiation data from Reiteralm 3 meteorological station. Comparison of hourly 
modelled and observed data for the winter season 2003/2004. 

The interpolated humidity values show a strong correlation (R² = 0.97) between the modelled 

and measured values (fig. 17).  

 
Figure 17: Relative humidity from Reiteralm 3 meteorological station. Comparison of hourly modeled and 
observed data for the winter season 2003/2004. 

Other meteorological parameters like precipitation rates and phase as well as wind fields are 

more problematic to predict. This is due to the fact that these fields are not continuous in 

reality and that the local characteristics of these fields are caused by mechanisms which are 

not dependant on the location of their appearance.  

The error of precipitation measurements can reach up to 100% if the precipitation gauge is 

snowed in or during high wind speeds which are affecting the catch of the gauges. 
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Furthermore, the correct distinction between snow and rain is difficult because the phase of 

the precipitation is commonly not recorded and the air temperature as well as the wet bulb 

temperature can only be an indicator for the phase of the precipitation. Nevertheless, a 

comparison of modelled with measured snow depths at the meteorological stations indicates 

that these errors are small for the observed period. Figures 18 a) and b) show that the 

calculation of the precipitation rates works well if precipitation occurs at station Reiteralm 

and at the stations used for the interpolation (fig. 18b)). The precipitation calculation, 

however, is much less accurate if that is not the case (fig. 18a)) which causes a decrease in the 

overall correlation between station measurement and interpolation results (fig. 18 a) and b)).  

a) b)  
Figure 18: Correlation between measured and calculated precipitation rates (winter season 2003/2004) (mm). a) 
Including hours with precipitation at other stations but no precipitation at the validation station (Reiteralm 1) and 
b) precipitation at all stations, including Reiteralm 1. 

The interpolation results of wind speed and direction are less substantive. It can be seen that 

the wind directions at Reiteralm 1 cannot be reproduced by the interpolation scheme (eq. 13-

21). The probability to compute a correct wind direction is approximately equal to the 

probability to predict any other wind direction (fig. 19).  
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Figure 19: Accuracy of interpolated wind directions in comparison to measurements at Reiteralm I (winter 
season 2003/2004). 

 

Figure 20: Comparison of measured and interpolated wind speeds at Reiteralm 1 (winter season 2003/2004). 

The interpolated wind speeds (fig. 20) are commonly to low in comparison to the wind speeds 

measured at Reiteralm 1. Most of the situations with high wind speeds were not reproduced 

by the interpolation routine (fig. 20). This is because beside of the Reiteralm 1 station, there is 

no other meteorological station at a higher elevation which results in an even elevation wind 

speed gradient.  

To recapitulate the former section, most of the needed meteorological input parameters can be 

computed with the help of the interpolation routines presented in Chapter 2 as most of these 

routines deliver results which are representative for the excluded station. Wind speed and 
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station in the case of wind direction and can only reflect the trend but not the level of the wind 

speed measurements. As the spatial characteristics of the used wind fields are from special 

importance for this work, possible reasons for the improvable results shown in figures 19 and 

20 and general difficulties which can accrue when measuring and interpolating wind speed 

and direction are discussed in more detail in the next section. 

3.2 Calculation of wind fields in mountainous terrain 

The calculation of appropriate wind fields is a prerequisite for a more in-depth understanding 

of the patterns of erosion and accumulation areas in Alpine regions. This is due to the fact that 

any snow transport model directly “reacts” to the amount of energy supplied by the current 

wind field. The available energy determines if snow transport conditions exist or not. 

Furthermore, the wind direction given by the wind field is essential for the location of the 

modelled accumulation and erosion zones. In general, it could be stated that the difficulty of 

wind measurements and wind field calculations rise with the complexity of the terrain. The 

variables influencing the quality of the resulting wind fields are dependent on the method 

used: 

I) Influencing variables (When using interpolation scheme): 

a. The quality of wind speed and direction measurements. 

b. The ability of the interpolation scheme to factor in the underlying topography. 

II) Influencing variables (When using an atmospheric model): 

a. A sufficient spatial resolution to adequately capture the local wind situations. 

b. A numerical complexity which corresponds to the complexity of the terrain. 

3.2.1 Theoretical background 

Starting with I) a). With respect to the measurements it has to be considered that the local 

wind field is affected by the anemometer and the complete meteorological station itself as 

well as by barriers in the environment (e.g. Wieser et al. 2001). These local modifications of 

the wind field have a direct influence on the measurements and limiting their 

representativeness for the surrounding. This can be one reason for the limited accuracy of the 
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results shown in fig. 19 and 20. Furthermore, anemometers are vulnerable to freezing (fig. 21; 

tab. 3 model hours 500-1000) since they consist of many mobile parts. Table 3 compares the 

operational hours of the wind sensor with hours without measurements at the meteorological 

station Reiteralm. A comparison to other measured values shows that the anemometer has 

much more missing data than the other sensors which can make a modelling of snow transport 

processes completely impossible.  

 
Figure 21: Frozen anemometer. This picture shows a very common situation in Alpine regions. The sensor 
becomes snow covered and becomes therefore unusable. 

Table 3: Hours showing wind speed and direction recordings vs. hours with data lacks compared to recordings of 
other sensors. 

Season Operating 
hours 

Hours without 
measurement 
(anemometer) 

Hours without measurement 
(temperature) 

Hours without measurement 
(humidity) 

01/02 8760 1775 0 0 

02/03 8760 38 66 40 

03/04 7880 2920 0 0 

 

The argument mentioned under I) b) belongs to the ability of the interpolation routine to 

factor in the underlying topography. Literature analyses has shown that the interpolation 

routine used by Liston and Sturm (1998) (eq. 14 to 21) works well for gently rolling terrain 

(Liston and Elder, 2006). The results presented in 3.1 on the other hand indicating that the 

scheme is unable to reproduce the wind conditions for a meteorological station located within 

an Alpine environment (fig. 19 and 20). This can be declared by some theoretical 
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considerations. For the interpolation of the wind field measurements it is important to know 

that wind speed and direction are not directly correlated to a single topographic feature. If this 

were the case a few measurements would be enough to predict a wind speed/direction field. 

But, according to Barry (1992) wind speed is more closely coupled to the topography of a 

mountainous region than to their altitude. That means that all topographic parameters (aspect, 

slope, elevation) influence the wind field depending on the synoptic inflow. The assumption 

that wind speed increases with altitude might be correct if one is considering long term 

averages but not for a single event. Figure 22 shows a profile through a MM5 simulated wind 

field which displays the facts mentioned before. The upwind velocity is pretty much the same 

(approx. 4 m/s) over the whole south face of Watzmann (transect I), with only a small peak 

that can be observed at the crest. The situation changes at the north face were lower velocities 

(approx. 2 m/s) and a change from downwind (transect II) to upwind (transect III) conditions 

can be observed. This small example gives an idea about the complexity of air flows at one 

mountain and for one specific situation. 

 
Figure 22: Vertical profile through a MM5 wind field. a, b and c are fictive meteorological stations. The transects 
I, II, III are used for declare the wind conditions at the faces of Watzmann mountain. The wind speed is slightly 
enhanced at the windward site (transect I) as the wind direction is constant to North. Transect II and II showing 
the complex wind conditions at the leeside. The wind speeds are about 6 [m/sec] at transect II, the wind direction 
is to north. The situation changes at transect III were the wind speed is between 0 and 2 [m/sec] and the wind 
direction is to south. 
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Furthermore, if one would assume that two meteorological stations would be available at this 

mountain (fig. 22) point a) and b)), which is commonly not the case; one can imagine that it 

would be impossible to predict the wind speed and direction on point c) with the data from 

these two stations. This is because the wind speed and direction measured by these stations 

cannot include any information about a change from downwind to upwind conditions at the 

lower depths. A statistical inclusion of topographic parameters into any interpolation routine 

would not solve the problem because the phenomenon can be due to flow separation or a rotor 

(fig. 23 a) and b)) and would be caused by a large scale interaction of topography and airflow 

in this case. Such phenomena have nothing to do with the local topography and can be 

therefore not displayed with a 2D interpolation scheme which bases on point measurements at 

the 10m level and which only figures in the local topography wind speed/direction 

interactions.  

a)  b)  
Figure 23: Generalized flow behaviour over a hill: a) flow separation and b) a rotor (Barry 1992, modified). 

Another problem which complicates the interpolation of wind direction measurements can 

also be explained on the basis of Figure 22. If one would shift meteorological station b) to 

point c), the wind direction would be the exact opposite of station a). The interpolation of 

these values would lead to questionable results because the average between e.g. 180° and 

360° is not defined. Although, the described situation would never occur in flat or slightly 

undulated terrain, it is common in mountainous terrain.  

The next questions formulated at the begin of this section were if MM5 has a sufficient 

resolution for describing the prevailing wind systems in the test region and if the numerical 

complexity of MM5 is adequate with respect to the topography of the test site. These answers 

can be answered shortly. MM5 has a target resolution of 200m in the current setup. This 

resolution is the absolute maximum with respect to the model formulations of MM5 in 

combination with the very rough topography of the test-site. The ability of MM5 to deliver 
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acceptable results for a site like the National Park and the explanation that the model 

formulations of MM5 are sufficient for areas with steep topography is widely described in 

Zängl (2002) and (2003), as well as in Bernhardt et al. (2008a).  

3.2.2 Comparison of interpolated and modelled wind fields  

The MM5 wind fields shown in figures 24 a) and b) were produced using input wind 

directions of 140 and 270 degrees respectively (cp. fig. 13). The used input wind speed 

corresponds to the average in the test region (Bernhardt et al. 2008a) and was set to 10 

[m/sec] at the lowest model level (10m) and to 25 [m/sec] at the uppermost model level 

(100hpa) (cp. fig. 13). An analysis of the resulting fields reveals that the two situations have 

significantly different spatial characteristics. Most of the differences can be traced back to 

windward and leeward effects, which are particularly evident at the massifs of Watzmann and 

Hochkalter as well as at the Reiteralm plateau (fig. 24 a) and b), cp. fig. 5). In the case of an 

overflow of air masses over the crests, the relief-induced convergence of the air stream leads 

to a local increase in wind speed at the windward side (Barry, 1992) (fig. 24b). The 

interpolation routine by Liston and Sturm (1998) is not able to reproduce this effect because 

of the implemented linear increase of wind speed with height (fig. 25 a) and b)). Furthermore, 

the local variations in wind speed are much more distinctive in the MM5 field which makes it 

possible to easily identify of crest regions, windward and leeward sides and troughs at the 

north-western parts of the massifs. The interpolation routine, in contrast, produces a more 

homogenous field which is mainly dependent on the vegetation pattern (fig. 25 a) and b)). The 

interpolation routine generates a slight increase of wind speed with height which does not 

reflect the conditions observed in reality (Reiter, 1962; Barry, 1992). This is due to two 

factors: First, a lack of meteorological observations at higher elevations which would be 

necessary to generate a steeper wind speed gradient and secondly, the interpolation scheme is 

based on a Gaussian function (Barnes, 1964) and, therefore, predicts a continuous wind field 

which does not allow for an abrupt change of the magnitude of an parameter (eq. 17). With 

the help of the weight factor (eq. 17), wind speeds can be modified between 0.5 to 1.5 times 

the original value, which is by far not enough to reproduce the MM5 results. 
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a)  

b)  
Figure 24: a) MM5 wind field (input parameters: wind direction = 140° and 10 [m/sec] at 10m and 25[m/sec] at 
100hpa) b) MM5 wind field calculated with the same input wind speeds but an input wind direction of 270°.  
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Figure 25: Interpolated wind fields. a) The average wind directions at the meteorological stations are 140° and b) 
270°. 

An analysis of MM5 and interpolated wind direction fields reveals similar findings. Bendix 

(2004) stated, that wind direction is a highly variable factor in space and heavily dependent on 

the surrounding topography which modifies the synoptic flow direction. Based on this 
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assumption the MM5 input wind direction was changed to analyze the effects on the local 

wind direction field. Subsequently, the wind directions predicted by MM5 for the 

meteorological stations Schönau, Jenner, and Kühroint were interpolated via Micromet and 

compared to the MM5 results.  

Figure 26 shows MM5 wind direction fields, representative for input wind directions of 265° 

and 270° (the input wind speed was 10 [m/sec] (at 10m) and 25 [m/sec] at the uppermost 

model level (100hpa) for both model runs). Notwithstanding that the input wind direction 

differs by only 5 degrees, the resulting per pixel difference can reach up to 180° (fig. 26). It is 

obvious that both MM5 wind direction fields show approximately the same value for pixels 

which are representative for a meteorological station (marked as coloured dots in figures 26 

and 27) but the wind direction characteristics between the stations differ significantly (fig. 

26). The range of occurring wind directions lies between 1 and 360 degrees which is not the 

case when using the interpolation scheme (286 to 317 degrees) (eq. 14-21; fig. 27). An 

interpolation of the MM5 predicted wind directions for the positions of Schönau, Jenner and 

Kühroint (results displayed in fig. 26) delivers uniform results (fig. 27), which are somewhere 

between the three MM5 calculated station values. Furthermore, the field does not show a 

noticeable sensibility to the underlying topography. The uniformity of the interpolation results 

can again be attributed to the applied Barnes scheme (Barnes, 1964) and the underlying 

Gaussian function which forbids abrupt changes within the calculated wind direction field.  
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Figure 26: Spatial characteristics of MM5 wind direction fields in dependency of the synoptic inflow. The inflow 
direction is 265 degrees and 270 degrees respectively. 

 
Figure 27: Spatial characteristics of an interpolated wind direction field. The wind directions used for the 
interpolation corresponding to the wind directions produced by MM5 (fig 26) for the three indicated 
meteorological stations. 
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A similar finding can be made when analysing the change in local wind directions dependent 

on MM5 input wind speeds (fig. 28). The input wind speeds were changed from very 

moderate wind conditions (5[m/sec] at 10m to 13[m/sec] at 100hpa) to high wind conditions 

(20 [m/sec] at 10m a.s.l to 50 [m/sec] at 100hpa), while keeping the input wind direction 

constant (180°). The effect is a per pixel change in wind direction reaching up to 180 degrees 

mainly caused by a shift of local eddies. The presented interpolation routine would not reflect 

changes of wind speed in the wind direction results because both parameters are treated 

separately. This seems to be inadequate when respecting the MM5 results.  

 
Figure 28: Dependency of the calculated MM5 wind direction field on the input wind speed. The wind speeds 
used for the model setup were 05 [m/sec] for the 10m model level and 20 [m/sec] for the uppermost model level 
(cp. fig. 13) 

The examples show that the interpolation routine delivers almost uniform and therefore 

questionable results in Alpine terrain. It has to be assumed that the estimation of a detailed 

and meaningful wind field is only possible if wind speed and wind direction are treated in 

combination for the simulation of distributed wind fields. This is done within MM5 where the 

complete aerodynamic flow around mountain massifs is calculated and wind speed as well as 

wind directions are results of the local flow conditions. The analysis shows that MM5 delivers 
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highly variable and plausible wind fields, which, however, are useless if they are not taken 

within a temporal context. The next section will show how the MM5 library was compiled, 

synchronized with SnowModel, and how the MM5 wind fields performed compare to the 

measurements at the meteorological station Reiteralm. 

3.2 Creation and synchronisation of a MM5 predicted wind field library 

The concept of a pre-produced wind field library instead of conducting operational MM5 

simulations at every model time step, allows the combination of a snow model with an 

atmospheric model at a high level of computational performance. The data used and the 

corresponding scales can be seen in fig. 29. The wind field library is based on two 

assumptions: First, a specific wind field is considered representative for a defined synoptic 

situation, and second, all situations leading to significant snow transport can be described by a 

finite set of wind fields. The creation of the library comprises two steps: 1) the modelling of 

the wind fields itself, and 2) the provision of an access key which defines the most 

appropriate MM5 wind field of domain_5 (fig. 13 and fig. 29) for the current SnowModel time 

step. For the creation of the wind field library and the access key two of five MM5 nesting 

domains were used (domains_3 and _5 in fig. 13). These domains are mutually dependent and 

give information about meteorological parameters at different scales and pressure levels. 

While domain_5 provides the high resolution wind fields, domain_3 can be used to provide 

the link to the LM analysis data (fig. 13 and fig. 29). 
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Figure 29: Schematic illustration of the synchronization of MM5 wind field library and SnowModel via hourly 
DWD Lokalmodell information. 
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To determine the set of MM5 wind fields needed to cover the climatologically range of the 

test region; achieved DWD analysis data for the time period of 1991 to 2001 for an area 

approximately equivalent to MM5 nesting domain_3 were used (fig. 3 and fig. 30). However, 

an iterative approach with respect to the settings of the MM5 boundary conditions was needed 

because the resulting domain_3 fields had an average wind vector that differs from the large-

scale boundary conditions set for domain_1. This means that the input wind speed and 

direction used for the set up is not identical to the average domain_3 vector. The difference 

between setup and domain_3 values is due to the nonlinear interaction of the atmospheric 

flow with the Alpine massif. Hence, a first series of wind fields (from 0 to 360 degrees, with a 

step width of five degrees) was modelled under the assumption of a constant wind speed at 

the model boundary (10 m/s at sea level and 25 m/s at tropopause level). Based on the 

deviations of the averaged domain three vectors from the set up values, it becomes obvious 

how the boundary conditions have to be modified in order to get the required domain_3 

results. As the computation of one wind field needs about three days on a high performance 

computer the absolute number of fields had to be limited. It was determined that an adequate 

coverage of the total DWD data could be achieved with 220 computed wind fields.  

 
Figure 30: DWD historical data for the 700 hPa level (gray dots) vs. averaged MM5 domain_3 vectors (black 
dots). The DWD observations were used for defining the initialisation wind speeds and directions needed for the 
MM5 runs (cp. fig. 13).  
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It has to be taken into account that due to friction the shown 700hpa wind speeds are 

significantly smaller at the earth surface. Since snow transport events which are of relevance 

only starts when the surface wind speed exceeds a threshold value of about 3-5m/s (Barry 

1992; Liston and Sturm, 1998), wind conditions below of 3 [m/sec] were disregarded. 

Consequently, there was only few wind fields modelled for situations with wind speeds less 

than 10 [m/s] at 700 hPa at domain_3 (fig. 30) because they generally produce velocities less 

than the threshold at the surface of the National Park area (fig. 31). 

a)  b)  
Figure 31: The red coloured areas in a) and b) stand for wind speeds >3[m/sec] which would be able to initialise 
snow transport processes. The MM5 wind fields were calculated with very moderate input wind speeds (30° / 
5[m/sec] at 10m; 16[m/sec] at 100hpa and 143° / 5[m/sec] at 10m; 20[m/sec] at 100hpa).  

To extract the corresponding wind field from the library, LM and MM5 domain_3 700 hPa 

results were used as selection criterion. The 700 hPa level was chosen because it is the lowest 

standard pressure level of MM5 at which the large scale flow deflection of the Alps becomes 

negligible. Furthermore, LM results of the 700hpa layer are easily accessible. MM5 nesting 

domain_3 contains 87x87 mesh points while the corresponding LM dataset has 22x22 points. 

For each of the mesh points the two-dimensional vector ur  represents wind speed and 

direction. The average of these vectors was used as the measure for the library access key. 

Hence, the LM results were averaged for every model hour and compared to averaged MM5 

domain_3 results which were attached to the corresponding MM5 domain_5 files. This allows 

for an extraction of the one MM5 wind field that has the minimum difference between the 

averaged LM vector and the attached MM5 domain_3 vector from the library (fig. 29). 
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a)  

b)  
Figure 32: Comparison of measured and MM5 wind a) direction (01.09.03-30.08.04) and b) speed (01.09.03-
31.12.03)at Reiteralm I. A comparrison to figures 19 a) and b) clearifies the advantages in contrast to the 
interpolation routine.  

The upcoming results are extremely encouraging. The convergence of modelled MM5 wind 

direction with the measurements of Reiteralm is much better than that of the interpolation 

results. The accuracy of the model is within 10% in about 50% of all cases (the observed 

period is September 2003 to August 2004) and within 20% in about 75% of the cases (fig. 

32a). As there was nearly no connection between interpolation results and measurements 

(fig.19 and 20) this has to be seen as fundamental improvement. When analysing MM5 and 

measured wind speed (fig. 32 b)) it becomes obvious that MM5 delivers reasonable results 

here. MM5 wind speeds are on the same level as the measurements and the course of the 

measurements is reproduced very well. 
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a)  b)  
Figure 33: Wind speed provided by the interpolation procedure of Liston and Sturm (1998) (left) and MM5 
(right). The images represent the situation on January 9, 2004, 7:00. Wind direction is 270 degrees. 

 

a)  b)  
Figure 34: Wind direction (detail of the Watzmann region), derived after Ryan (1977) (left) and MM5 (right), 
respectively. The images represent the situation on January 9, 2004, 7:00. Wind direction is 270 degrees. 

Figures 33 and 34 show a comparison between interpolated and MM5 wind fields for a 

specific model step (January 9, 2004, 7:00, a cut-out of the Watzmann region cp. fig. 5 is 

shown). The reasons for the differences of the spatial characteristics of interpolated (fig. 33a) 

and 34a)) and of MM5 wind fields (fig. 33b) and 34b)) was mentioned before. An additional 

example underlines the validity of the MM5 wind fields in Alpine terrain. During the period of 

Mai 1994 through December 1999 an anemometer was installed at the Watzmannhaus at 

1918m a.s.l (fig. 35a the location of the anemometer is marked with an arrow). The available 

measurements indicate that about 600 hours per year (or 6.8% of all hours) are showing wind 

speeds of more the 10 [m/sec]. When analysing the MM5 data 634 hours (or 7.2% of all 

hours) with wind speeds of more than 10 [m/sec] were predicted for this location (fig. 35 a)), 
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whereas 0 hours with wind speeds above 10 [m/sec] could be found in the interpolated data 

(fig. 35 b)).  

a) b)  

c) 

 

Figure 35: a) Percentage of hours with wind speeds higher than 3 [m/sec] (MM5 fields). b) Percentage of hours with wind 
speeds higher than 3 [m/sec] (interpolated fields). Difference between the averaged interpolated and MM5 wind speed for the 
winter season 2003/2004 (The black line is the 1800 m a.s.l. contour). 

Finally, it can be assumed that MM5 delivers more applicable data (fig. 32 to 35) for the test 

site. As the accuracy of MM5 should be almost similar for all modelled cells, figure 32 a) and 

b) can be seen as representative for the whole area.  
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Chapter 4   Snow transport modelling 

For the simulation of snow transport, accumulation, and ablation processes the SnowModel 

(Liston and Elder, 2006) including SnowTran-3D (Liston and Sturm, 1998) was used. 

SnowTran-3D as described in section 2.1 is a three dimensional, physically based model 

which simulates the wind forcing field (which was replaced by the MM5 simulations lateron), 

the wind shear stress at the surface, the transport of snow by saltation and turbulent 

suspension, the sublimation of saltation and suspended snow, and the accumulation and 

erosion of snow. Therefore, the initial entrainment and the intensity of snow transport 

processes are dependent on the current wind conditions and on the modelled surface 

conditions.  

First, SnowTran-3D runs were performed using interpolated station data (of 

Snowmodel/Micromet), and afterwards the interpolation scheme was substituted by the 

application of the MM5 wind field library. This procedure was applied at the meso (200m) 

and micro (30m) scale. The topographic information for the meso scale runs was provided by 

the same DEM as used for the MM5 wind field generation: This implies that the smoothing of 

the DEM which was conducted to ensure numeric stability of MM5 is also reflected in the 

results of the snow model. For the succeeding micro scale runs downscaled MM5 wind fields 

and topographic information provided by the DEM of the National park authority were used.  

4.1 Results of the meso scale model runs 

The results of the SnowModel runs were studied in three different steps. First, model grid 

elements which coincide with meteorological stations were analysed and the snow cover 

development of these grid cells was compared with the measurements. Secondly, the spatial 

characteristics of the modelled snow cover were analysed for SnowModel runs with (these 

runs will be indicated by MM5 from now on) and without the MM5 wind field library (these 

runs will be indicated by INTER from now on) and thirdly the results were compared with 

remotely sensed data.  



Chapter 4 Snow transport modelling
 

 
 
 

  Page 61  
   

4.1.1 Model results at the point scale 

For checking the general model performance, modelled snow depth results were compared 

with ultrasonic snow depth measurements from meteorological stations Reiteralm II, III, and 

Jenner. Obviously a direct comparison of modelled and measured data is problematic due to 

different scales of the compared quantities: The ultrasonic measurements are representative 

for the observed point only, whereas a simulated grid cell represents the average of an area of 

40,000 m² (200x200 m). Snow water equivalent measurements or data from field campaigns 

were not available for the observed winter season. 

In general, the model reproduces the snow depth of the observed season quite well for both 

the MM5 and the INTER inputs (fig. 36a) b) c)). The overall accuracy seems to depend only 

little on the method used, which can be explained by the fact that the average wind speed 

derived from interpolated station data and the MM5 wind field library are relatively similar 

for altitudes below 1800m a.s.l. (fig. 35c). Unfortunately, there are no meteorological stations 

available above 1800m a.s.l. where such differences are much greater (fig. 35c)). However, 

the results computed for Reiteralm II and Jenner are slightly more accurate when using the 

MM5 library instead of the INTER input data, although Reiteralm II is located in the vicinity 

of a wind sensor. Further analysis also revealed, that the timing of observed transport events 

correlates very closely with those predicted by INTER and MM5 at Reiteralm II. This 

indicates that the MM5 library reflects the situation at the stations very well.  
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a) MM5 method vs. measured: r² = 0.85   INTER method vs. measured: r² = 0.73 

 
b) MM5 method vs. measured: r² = 0.88    INTER method vs. measured: r² = 0.88 

 
 

c) MM5 method vs. measured: r² = 0.73    INTER method vs. measured: r² = 0.64 

 
Figure 36: Comparison of model results and measured values for the meteorological stations a) Reiteralm II, b) III 
and c) Jenner. 

Nevertheless, the model runs produce transport rates at the observed points which are too 

small compared to observations of the Bavarian Avalanche Warning Service (LWZ) for the 
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Reiteralm stations. This is likely caused by the smoothed topography in the used DEM and its 

relatively coarse resolution of 200 m. A similar result was reported by Liston et al. (2006) 

who found that snow transport events are underestimated when using a grid spacing larger 

than 100 m. Additionally, snow depth is overestimated in most cases, which can be explained 

by a precipitation event on January 24-25 registered at Reiteralm III: This event produced a 

significant increase of snow depth within all model results though a corresponding increase in 

measured data cannot be detected. Whether this results from an error in the station data or an 

inaccuracy in the conversion of snow-water-equivalent (SWE) to snow depth cannot be 

decided here because of the lack of additional meteorological data. 

4.1.2 Spatial comparison of the model results 

As mentioned in section 3.1.3, the increase in wind speed with elevation and the 

differentiation between windward and leeward areas is more distinctive when using MM5 

wind fields. This leads to regional differences within the SWE and snow transport rates when 

comparing INTER and MM5 results (fig. 37 a) and b)). In a first step the SWE distribution in 

relation to altitude and aspect was analysed. The INTER scheme which induces less snow 

transport events with less intensity (fig. 37 a) and b)), produces a SWE distribution that is 

almost exclusively driven by the altitudinal increase of precipitation (fig. 38a)).  

a)  b)  
Figure 37: Amount of accumulated and eroded SWE within the study area and for the winter season (2003/04) 
(Please note the different scales of the legends). The accumulation zone at Blaueis glacier is marked with a black 
ellipse. The black line is the 1800m isohypsis. 
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Almost 96 % of the variance within the SWE distribution can be explained by elevation (fig. 

38a)). The scattering around the mean SWE at a given elevation zone is small (fig. 38 a)). A 

noticeable dependency of SWE on aspect could not be found when using INTER. This can be 

explained by the fact that the homogeneous wind fields predicted by the interpolation routine 

lead to almost similar transport rates for all aspects. The transport terms saltation, suspension, 

and sublimation show a slight increase with altitude, but no significant dependency on the 

aspect (fig. 38 a), c), e)).  

 

a) b)  

e)  d)  
Figure 38: a) SWE [m] – elevation dependency b) SWE - aspect dependency for the total elevation interval c) 
SWE - aspect dependency for elevations higher than 1800m a.s.l. d) SWE - aspect dependency for elevations 
higher than 2200m a.s.l. SWE is the average values for the modelled time period. The different volumes under 
the curves are due to higher sublimation losses within the MM5 runs. The illustrations belonging to the winter 
season 2003/04 
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Using the MM5 method, only 84 % of the modelled variance within the SWE distribution can 

be related to altitudinal effects. The remaining variance is due to aspect (fig. 38 b), c), d)): 

Below 1800m a.s.l. the correlation of SWE and aspect explains only 2 % of the variances, 

whereas aspect accounts for 17 % of the variance above 1800m a.s.l., and 21 % above 2200m 

a.s.l (fig. 38 b), c), d)). This dependency is caused by anisotropic transport effects which are 

represented in the Snowtran-3D model when using the MM5 wind fields of the library. The 

application of this method leads to a considerable differentiation of the windward sides with 

predominantly erosion areas and of the leeward sides where snow preferentially accumulates 

(fig 39 b), d), e)). These accumulations are especially intense at the eastern slopes of 

Watzmann and Hochkalter (cp. fig. 5). Again, it was seen that the transport and sublimation 

rates are negligible for elevations below 1800m a.s.l. (fig. 39 a)-e)) which explains the minor 

differences between the model results for the lower altitudes and in particular for the areas 

around the meteorological stations. Above 1800m a.s.l. the rates of the different transport 

terms increase greatly when using MM5 whereas the increase was minor under usage of 

INTER (fig. 39). Furthermore, measurements of De Quervain and Meister (1987) have shown 

that transport fluxes are enhanced at mountain crests and slopes perpendicular to the main 

wind direction (230 degrees for the observed winter season). This result was reproduced when 

using the MM5 model wind fields (fig. 37b). An additional effect related to the higher 

transport rates generated by the MM5 method are increased sublimation rates at elevations 

above 1800m a.s.l. (39 e) and f)). The modelled sublimation loss rate is considerable larger 

when using the MM5 method and for elevations above 1800m a.s.l. (fig. 39 f)). Sublimation 

losses can be neglected for elevations below 1800m a.s.l., but can reach 860 mm SWE or 27 

% of the total precipitation for altitudes between 2400m a.s.l. to 2500m a.s.l. (fig. 39f)). The 

results when using the INTER method are one magnitude smaller and show maximum values 

of 50mm (fig. 39 e)).  
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a)  b)  

c)  d)  

e)  f)  
Figure 39: Intensities of the different transport terms: saltation, suspension and sublimation in a) c) e) INTER and 
b) d) f) MM5 (winter season 2003/04). The black line is the 1800m isohypsis.  

4.1.3 Spatial validation of the local scale results 

For the spatial validation of the model results, remotely sensed data was used. Hence, a short 

overview about remote sensing of snow and the techniques used in this work will be given.  
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Optical and microwave remote sensing techniques are powerful tools for acquiring 

information about the spatial distribution and the physical properties of the snow cover. As in- 

situ data collection in the National Park area is both sparse and non-uniform, depends heavily on 

human observers and the accessibility of the region and data verification is almost impossible, 

remotely sensed data is needed to get a comprehensive picture of the snow distribution. The 

mapping of snow by optical systems can still be seen as the most common application in snow 

remote sensing. But there are also other applications. Knap et al. (1999) used Landsat TM 

data for the estimation of the albedo of the Arolla glacier (Switzerland) whereas the 

Multiangle Imaging SpectroRadiometer (MISR) is used for the same variable by Stroeve and 

Nolin (2002). In another work, Klein and Stroeve (2002) predicted the surface grain diameter 

of a snowpack with albedo information. Painter et al. (2003) utilized hyperspectral data for an 

improved subpixel description of the snow heterogeneity. A comprehensive overview about 

the work with microwave sensors for the estimation of the SWE can be found in Durand and 

Margulis (2005). 

For the presented work optical data was used exclusively, due to the problems of microwave 

sensors in regions with steep topography and due to the limited spatial resolution of the 

respective sensors. Landsat TM and ETM+ have shown their applicability for high resolution 

snow mapping in a lot of studies (e.g. Hall et al. 1995). The resolution of 30m and the 

arrangement of the spectral bands (fig.40 a)) make Landsat images applicable for this task. 

Two Landsat ETM+ images, April 28, 2004 and May 30, 2004, were available and analysed 

to estimate the snow cover extent for the National Park area. The data was geometrically, 

terrain and radiometrically corrected for this behaviour. Comparison of the available GIS data 

and the spatially corrected Landsat images has revealed that the displacement of the 30m 

pixels is below of one pixel.  
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a)  
b)  

Figure 40: a) Spectral bands of Landsat ETM+ and spectral characteristics of different snow types. b) spectral 
Characteristics of different land cover types 

For the estimation of the snow covered area the normalized difference snow index (NDSI) 

was used (Eq. 34). The NDSI trace back to band rationing techniques (Kyle et al. 1978; 

Dozier 1984) and is related to the NDVI (Tucker 1976).  
 

NDSI =(ETM+2 – ETM+5) / (ETM+ 2 + ETM+ 5)                                 (Eq. 34) 
 

The NDSI profits from the fact that snow reflects visible radiation much more intensively than 

it reflects radiation in middle infrared. According to Hall et al. (2001) the index achieves an 

accuracy of about 99% in non-forested areas and about 85% in forested areas under full snow 

coverage. If water bodies are present within the investigation area the inclusion of an 

additional threshold becomes necessary. Open water shows a more or less identical NDSI 

value as snow does, which can lead to a misinterpretation of the respective areas. When 

considering figure 40 b) it becomes obvious that water and snow can be differentiated by 

means of the reflectance between 0.76μm and 0.90μm. Hence, an additional inquiry was 

introduced if the NDSI exceeds 0.35. It is also checked, if the reflectance in TM channel 4 

exceeds 0.4, if both are warranted the pixel is classified as snow. The threshold of 0.35 was 

chosen on the basis of literature (Hall et al. 1995) and because of visual comparisons. At 

lower thresholds many non-snow-pixels were identified as snow, greater values lead to an 

underestimation of the snow cover especially in wooded areas. Hall et al. (1995) found that an 

additional classification error of about 3% has to be expected if the NDSI is applied to images 

without a radiometric correction. They predicted a greater snow cover when reflectance was 
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used instead of Digital Number (DNs). Thus, the used Landsat images were processed with 

the help of PULREF-H (Bach 1995).  

According to Hall et al. (1995) the detection of snow with the help of the NDSI is 

straightforward and accurate in open and fully snow covered areas. The situation changes if 

the snow coverage drops below of 100%, or if the snow is covered by e.g. trees. Snow in 

mixed pixels is widely detected by the NDSI at the 30m scale of the Landsat images and is 

therefore not a significant source of errors. The existence of dense woods on the other hand 

can make the detection of snow nearly impossible, which has to be regarded as a bigger 

limitation of optical systems than an error during analysis. It is a common approach to classify 

wooded areas as snow covered if they are completely surrounded by snow (e.g. for the NOAA 

snow product Hall et al. (1995)). Nevertheless, this procedure is only useful if one can assume 

identical melt rates for the woods and for the surrounding areas. This is often not the case due 

to the fact, that a forest canopy can lead to both less SWE and shorter duration, or more SWE 

and longer duration of the snow cover beneath the trees, depending on many factors such as 

canopy density, gap size and distribution, geographic location, and meteorological conditions 

(Pomeroy et al. 2002). This makes any conclusion drawn from the surrounding conditions to 

snow conditions within canopy stands difficult.  

Data processing has shown that the NDSI is nearly independent of the resampling sequence. 

This fact causes that the NDSI value to stay approximately the same, weather the Landsat 

image is resampled first to a 200m resolution and the NDSI is predicted afterwards or if the 

procedure is reversed. For the estimation of a cloud mask for the April scene the NDSI was 

used again. Clouds and snow are both highly reflective in Landsat ETM+ Band 2, but the 

reflectance differs at band 5 were the cloud reflectance is higher than the snow reflectance. 

An iterative adaption of the threshold value has lead to a satisfying cloud mask (pink areas in 

fig. 41a/b). As the MM5 and INTER results does not differ with respect to the snow line they 

are not separately discussed. The MM5 results can be seen as representative for both which is 

due to the fact that the snow line is located below of 1800m a.s.l. (black line in fig. 41) and 

therewith below of the region were wind induced snow transport processes significantly 

influence the snow distribution (cp. fig. 39). 
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Model and classification results are shown in fig. 41 a) to d). The analysis shows that the 

model is overestimating the snow coverage on both dates and for all of the four massifs in the 

region. The modelled snow line lies approximately 200-400 meters (1-2 pixels) in distance 

lower than the observed one. It has to be stated that an exact analysis of the model error is 

difficult due to the fact that the snow line is located in wooded regions on both observation 

dates. Furthermore a quantitative validation is impossible on the basis of optical remote 

sensing data. 

a)  b)  

c)  d)  
Figure 41: a) modelled snow cover of April 28, 2004, b) NDSI map of the same date, c) modelled snow cover of 
Mai 30, 2004 d) NDSI map of the same date. The black line is the 1800m isohypsis. 

86% of the pixels show an agreement between modelled and classification results on April 28. 

3% of the pixels are classified as snow free but are snow covered in the model results whereas 

11% of the pixels are defined as snow covered by the model but are snow free in the 

classification. The results of May 30 are very similar; the agreement is 88%, 2% of the pixels 
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show a classified snow cover but no modelled one, and 10% show a modelled snow cover but 

no classified one. The Landsat images are shown in fig. 42 a) and c), the differences between 

classification and model results in fig. 42 b) and d).  

a)  b)  

c)  d)  
Figure 42: a) c): Landsat ETM+ images (April, 28 2004 and May, 30 2004. resampled to a 200m resolution). e) 
f): Differences between model an classification results at April and May respectively (red indicates: only 
classified snow cover. Green: only modelled snow cover).  
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4.2 Downscaling of the MM5 wind fields 

It can be seen that the model delivers plausible results at the 200m scale. Nevertheless, a 

definition of the precise locations of accumulation and erosion is impossible at the meso scale 

(Liston et al. 2006).  

a)  b)
Figure 43: a) The smoothed Reiteralm area (marked with an arrow) within the MM5 DEM (200 m resolution) 
compared to b) the National Park DEM (30 m resolution). 

To determine these locations, model runs with a higher spatial resolution are needed. 

Furthermore, a finer resolution than 200m is needed to analyze the model performance by 

comparing the model results to the close meshed field campaign data and to remotely sensed 

data. The selected target resolution of 30m meets the requirement that the support, spacing, 

and extent of model results, remotely sensed data and field measurements are unitary. The 

adaption of SnowModel to a 30m resolution was unproblematic because all components are 

scale independent and permit model runs up to a resolution of 5 meters (Liston et al. 2006). 

However, to realise the 30m model runs, the MM5 wind fields had to be downscaled to this 

resolution. A downscaling and correction of the MM5 wind fields is required because of the 

smoothing of the DEM which processed in prior of the MM5 model runs. Figures 43 show the 

area around Reiteralm (marked with an arrow) within the 200m and the 30m DEM. The effect 

is apparent; Reiteralm is located at the mountains slope in the 200m DEM and not at the crest 

like in reality. Hence, the original MM5 data is not representative for the “real” location of 

Reiteralm and has to be overworked therefore. The different downscaling steps are displayed 

in figure 44. 
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Figure 44: Performed downscaling steps. The figure shows the a schematic illustration of the downscaling steps 
conducted in 4.2.1 to 4.2.3. 

4.2.1 Spatial correction 

A prerequisite for the model runs at the 30 m scale was a geometric correction of the MM5 

wind fields. This is necessary for two reasons I) the modifications at the 200 m DEM to 

guarantee numerical stability of the MM5 model (Bernhardt et al. 2008a and b) and II) 
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• The total Energy of the field is conserved 

(Tab. 4). 

• Spatial resolution = 30m. 
• The fields were overworked with respect 

to the elevation difference between 30m 
and 200 DEM. 

• The subgrid topography was respected 
over Eq. 18-20 

• The underlying vegetation type was 
respected over Eq. 21. 

 



Chapter 4 Snow transport modelling
 

 
 
 

  Page 74  
   

resolution dependent shifts of the apexes and minima between 30 m and 200 m DEM. The 

deviations resulting from the higher resolution are especially obvious at very exposed areas 

like Reiteralm (fig. 43) Watzmann, or Hochkalter (cp. fig. 5) and can be observed when 

comparing the 30m DEM with the 200 m DEM as well as the predicted wind fields. In the 

case of Reiteralm the crest of Wartsteinkopf (fig. 43 a)) still appears, but not in the position 

that it is in in reality (fig. 43 a)). Therefore, a validation of predicted data with the help of 

station measurements is complicated without a correction. Compared to the 30m DEM the 

crests of Watzmann and Hochkalter (cp. fig. 5) are shifted eastwards within the 200m DEM. 

This offset can be also detected when analyzing the wind fields itself. The topographically 

caused convergence of the airstream and the resulting acceleration of the air masses at the 

mountains crests are shifted into the eastward faces of the respective massifs under usage of 

the 30m DEM. 

For the correction a well known approach used by a number of remote sensing applications 

was used. The correction was achieved with two 2 dimensional second order polynomials: 

6**5*4*3*2*1' 22 aSZaSaZaSaZaZ +++++=                           (Eq. 35) 

6**5*4*3*2*1' 22 bSZbSbZbSbZbS +++++=                            (Eq. 36) 

Equation 35 stands for the new row coordinate and equation 36 for the new column 

coordinate. Pass points were used for the determination of the coefficients a1-a6 and b1-b6. 

Under usage of more than six control points the system of equations becomes over-

determined and could be solved with the smallest quadratic deviance between the coefficients 

a1-a6 and b1-b6. As all of the MM5 wind fields are based on the same DEM the whole library 

could be adapted to the 30 m DEM using the same set of control points. 

4.2.2 Statistical revision  

The statistical revision was done in order to prevent of artefacts of the original 200 m pixels 

in the downscaled 30 m data and in the snow model results, respectively. A Radial Basis 

Function (RBF) (eq. 37) was used to smooth the wind fields and to eliminate the coarse grid 

structure while conserving the total amount of energy of each wind field (tab 4, fig. 44)). 
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RBF is a local statistical technique, calculating predicted values from measured points within 

a defined neighbourhood that is smaller than the total area. As this approach maintains the 

total energy, the modeled 200 m pixel values are conserved. For verification, comparisons of 

mean wind speeds were made before and after applying this statistical approach between the 

original 200 m pixels and the 30 m pixels corresponding to the area of the original 200 m grid 

cell. The differences were close to zero (tab. 4).  

Table 4: Column I: Mean value of all 220 wind fields between the average value of the original and the modified MM5 wind 
speeds. Column II: Maximal observed difference between original and modified MM5. Column III: Minimal observed 
difference.  

Mean deviation Maximal deviation Minimal deviation 

0.003 [m/s] 0.02 [m/s] 0.00 [m/s] 
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φ (r) = Radial basis function, r = the Euclidean distance (r = ||si-s0|| is the distance between the estimation 
location s0 and each data location si), σ = the smoothing parameter, ln = natural logarithm, El = exponential 
integral function, CE = Euler constant. 

 

4.2.3 Inclusion of the height difference between MM5 and 30 m DEM 

The coarser resolution of the modified MM5 DEM leads to smoothed elevation minima and 

maxima. This has a direct effect on the generated wind fields, which also show over- or 

underestimated wind speeds. To address this effect, the difference between the two DEM was 

calculated for the thirty meter resolution. Subsequently, the elevation gradient of wind speed 

was calculated for each modelled wind field. It became obvious that there are two 

distinguishable elevation gradients within the datasets. There is one gradient for the interval 

from 500 to 1800m a.s.l. and another for 1800 to 2700m a.s.l.. This separation was necessary 

because the gradient above 1800m a.s.l. was considerably steeper than the gradient for the 

lower elevation interval. As a result, this analysis provides a value for the increase of wind 
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speed per meter elevation for the two intervals. In a subsequent step, these gradients were 

combined with the elevation difference of the two DEMs. As a result, higher wind speeds 

were generated at locations with positive divergences, and reduced values were computed at 

locations where MM5 DEM elevation values are higher than the ones of the 30 m DEM. 

Therefore, the resulting correction file contains a positive or negative correction value for all 

30 m pixels. These values were added to the statistically corrected MM5 wind field. 

4.2.4 Integration of subgrid topography 

Due to the relatively coarse resolution of 200 meters most of the small scale sinks and hills of 

the 30 m DEM were not considered during the MM5 modelling procedure which means that 

they had no influence on the generated wind fields. That makes a subsequent consideration of 

this subscale information necessary. The algorithms of Ryan (1977) and Liston and Sturm 

(1998) described in 2.1.2 were used for this purpose.  

Figure 44 shows a detailed view of the Watzmann region, fig. 44 (Original MM5 output) 

shows an unprocessed wind field as fig. 44 (step 1) show a wind field after application of the 

statistical revision and fig. 44 (step II) shows the final result of the downscaling process. It is 

obvious that the downscaled version shows much more details. Furthermore, it can be seen 

that the influence of the vegetation leads to very small wind speeds in forested regions 

(identifiable as black edges). 

4.4.5 Validation of the downscaled MM5 wind fields. 

The correlation between measured and modelled daily wind speeds was greatly improved by 

the downscaling procedure. The original modelled data correlated with an r² of 0.23 to the 

measurements while the downscaled set produced an r² of 0.62 for the season 2003/2004 (fig. 

45 a) and b)). The regression line is forced through the origin in both cases. It can be argued 

that the measured wind speeds could only be reproduced adequately by using the downscaling 

routine. The hourly data show a lower convergence between measurements and model results 

the r² is 0.21 here. The limited accuracy of the hourly data is mainly due to the fact that the 

measurements have a higher variability than the modelled data (fig. 32)) which is due to local 
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phenomena (like cooling or heating of some areas etc.). These temporary effects cannot and 

should not reproduced by the MM5 model when using the presented scheme, since the MM5 

model was run with the intention that the wind fields reach steady state conditions under a 

certain synoptic inflow. This was done because of the assumption that high wind speeds 

which are generating remarkable snow transport events are due to the synoptic inflow and not 

to local and micrometeorological influences. These were ignored due to their abundance and 

because of the fact that they are not the driving force for snow transport processes. To sum it 

up, the determination of the current wind field depends on the synoptic situation which 

changes less frequently than the local conditions and the results are therefore in line with 

expectations. Overall, the application of the downscaling routine leads to a considerable 

improvement of the model results which are now reflecting the local conditions much better 

than before. 

Figure 45: a) Correlation between MM5 results and station recordings before the downscaling procedure 
(Reiteralm I, daily resolution) b) Correlation between MM5 results and station recordings after the downscaling 
procedure. The regression line is forced through the origin. 

4.3 Results of the micro scale model runs 

The model runs presented within the next section cover the winter seasons of 2003/04 and 

2004/2005. Unfortunately, there was no winter season where field campaign data, remotely 

sensed data, and Lokalmodell data for the library key, were available simultaneously. Hence, 

the 30m model runs of 2003/04 were validated on the basis of remotely sensed data, while the 

runs of 2004/05 were compared to the field measurements. The required input parameters 
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were provided by the same meteorological stations as described before (tab. 2). In accordance 

to section 4.1 where model runs with MM5 wind fields were named MM5 and INTER if the 

interpolation routine was used, the different 30m runs will be also indicated by two different 

abbreviations. The runs will be called: INTER_30 (SnowModel/SnowTran-3D/interpolated 

wind fields) and MM5_30 (SnowModel/SnowTran-3D/MM5wind fields) in the following 

sections.  

The well instrumented sites Reiteralm and Kühroint were selected for this behaviour (cp. fig. 

5, fig. 46 and fig. 47). Reiteralm has an area of about 2 km². Two of the three available 

automatic stations were installed for observe snow transport processes from the higher 

situated area (meteorological station II), to the lower area around station III (fig. 5). ). This 

site was used to test the ability of the coupled MM5_30 model algorithm to reproduce the 

recorded transport events. At Kühroint, which is more sheltered from the wind, the correct 

reproduction of minimal or no transport conditions by MM5_30 was tested. 

4.3.1 Results at Reiteralm 

The results at Reiteralm showed a satisfying convergence between modelled and measured 

snow depth. However, the modelled snow depth was generally overestimated at the upper part 

of Reiteralm and underestimated at the lower parts (fig. 46). Figure 46 shows the location of 

the measuring points. The green colour indicates that the modelled snow depth was in average 

10% higher than the measured one, whereas the red colour indicates that the modelled snow 

depth was in average 10% below of the measurements. The white colour denotes measuring 

points were the model results were within these thresholds. 
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Figure 46: Comparison of model and measurements. White dots indicating that the model is within 10% of the 
measurements. Green dots stand for a model overestimation of the snow depth from more than 10%, red dots for 
a model underestimation from more than 10%. 

A comparison of model and field campaign results also reveals that differences between the 

measurements at the sample points could be reproduced by the model to some degree, but the 

modelled variability is generally too small (tab. 5). 

Table 5: The table shows the standard deviations of the measurements and of the respective model results for the 
observation dates.  

 08.02.04 15.02.04 23.02.04 02.03.04 10.03.04 14.03.04 23.03.04 30.03.04 05.04.04 
Measured 43mm 41mm 35mm 39mm 54mm 53mm 38mm 37mm 39mm 
Modelled 19mm 19mm 21mm 20mm 24mm 23mm 17mm 14mm 12mm 
 

Table 5 show the standard deviations of all measurements per date and the same information 

for the respective model results. It can be seen that the standard deviations between the 

measurements are a magnitude higher than that of the SnowModel results. Furthermore, the 

variation of the measured snow depth between the dates is higher, than that of the modelled 

values. The differences within the model results are approximately similar for the first seven 

dates and only slightly smaller for the last two dates.  
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Figure 47: a) is representative for the upper part of Reiteralm. b) For the central region and c) For the lower part. 
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Experiences of the Avalanche Warning Service of Bavaria which has observed this site for 

over 10 years indicate that considerable amounts of snow are blown from the upper 

(characterised by sample points 1-8, fig. 46) to the lower part of the site (sample points 14 and 

15, fig. 46). This experience is confirmed by the snow depth measurements of the automatic 

meteorological stations Reiteralm II and III but could not be reproduced to some degree by 

the snow transport model. Hence, the transport processes were underestimated during the first 

model run and using the existing vegetation snow holding capacities. For the first model run 

at Reiteralm the parameterisation of the vegetation classes was adopted from Liston and 

Sturm (1998). After that, the vegetation type mountain pine was introduced and adapted with 

respect to field measurements and to model results. Additionally, a vegetation type sporadic 

trees was created for areas with sparse canopy stands. For doing so the snow holding 

capacities of the vegetation type, deciduous forest were reduced. 

By adding the new vegetation types and MM5 wind fields the model results could be 

improved at the upper part of the Reiteralm (fig. 47 a)), but there are only minor changes at 

the lower part. A difference in the model results caused by the use of modelled MM5 versus 

the interpolated wind fields could only be found at the upper stations. The other stations are 

close to the forest or within the forest which causes the differences to be negligible.  

4.3.2 Results Kühroint 

The overall accuracy of the SnowModel results is very well for Kühroint. The convergence of 

modelled and measured results is good. The model is within 10% error at seven of 15 sample 

points. It underestimates the snow depth by more than 10% in average for six points and 

overestimates the snow depth by more than 10% in average for two points. The distribution of 

the sample points is visualized in fig. 48. It can be seen that the snow depth is especially 

underestimated by the model for the sample points in the north eastern part, whereas the 

results at the centre and at the western parts fitting very well to the measurements.  
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Figure 48: Comparison of model and measurements. White dots indicating that the model is within 10% of the 
measurements. Green dots stand for a model overestimation of the snow depth from more than 10%, red dots for 
a model underestimation from more than 10%. 

 

The results shown in table 6 corresponding to them found at the test site Reiteralm. The 

standard deviations of the measurements are again higher than these of the model results. The 

predicted values lie between 31mm and 43mm (tab. 6). The range of the values is smaller than 

that detected for the measurements at Reiteralm (12mm). The predicted standard deviations 

for the SnowModel results are especially small at the first five dates (around 4mm) and reach 

up to 17mm for the succeeding dates.  

Table 6: The table shows the standard deviations of the measurements and of the respective model results for the 
observation dates. 

 08.02.04 15.02.04 22.02.04 02.03.04 08.03.04 
Measured 37mm 36mm 31mm 32mm 40mm 
Modelled 4mm 5mm 4mm 4mm 4mm 

 
 15.03.04 22.03.04 29.03.04 12.04.04 19.04.04 
Measured 37mm 33mm 36mm 43mm 36mm 
Modelled 17mm 15mm 13mm 16mm 14mm 
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Figure 49: Three representative points at Kühroint. Point N) is located at the edge of the forest at the northern 
part of Kühroint; point F) is located at the clear cut area, and point K) can be found on the meadows in the 
western part of the area. 
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Figure 49 shows three sample points at Kühroint. Point N) is located at the edge of the forest 

at the northern part of Kühroint; point F) is located at the clear cut area, and point K) can be 

found on the meadows in the western part of the area. The three points represent the range of 

model results of snow depth versus observational data: maximum overestimation N), best fit 

K) and maximum underestimation F). It is important to note that there are almost no 

differences in amount and timing of snow transport between the MM5 wind fields and 

interpolated wind fields, for the observed winter season. This proves the applicability of the 

MM5 wind fields, because the wind speed and direction measured by the meteorological 

station Kühroint can be seen as representative for the whole clearance. As a result, the MM5 

wind fields can be regarded as representative for Kühroint. 

4.3.3 Spatial comparison of the model results 

The spatial comparison of the 30m results will be performed on the basis of section 4.1.2. The 

analysis will show to which extent the model raster resolution influences the general pattern 

of the snow distribution. Figure 50 a) (model results at 30m resolution) seems to be very 

similar to figure 38 a) (model results at 200m resolution) at first sight. However, other than in 

the 200m model resolution runs, the statistical correlation of elevation and SWE is 

approximately the same for INTER_30 (r²=0.94) and MM5_30 results (r²=0.93). This effect 

can also be seen in Figures 50 b) to d). Both Figures show that there is no significant 

interrelation between SWE distribution and aspect.   

The transport intensities in opposite show a similar distribution to the 200m runs with the 

application of the MM5 wind fields leading to a considerable increase of the transport rates 

(fig. 51 and fig. 52 a)-f)). But the spatial extent of the areas affected by intensive transport 

processes is smaller in the micro scale results and does therefore not significantly influence 

the absolute SWE distribution of the area. A comparison of fig. 38 and 50 illustrates this fact. 

Furthermore, in comparison to the 200m MM5 results the MM5_30 transport pattern is more 

heterogeneous and does not show the clear transport tendency from west to east (fig. 51 b) fig. 

52 b) and d)). For example, transport processes with a south to north component can now be 

observed at the small crests at the west side of Hochkalter or Watzmann which are stretching 

from west to east.  
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a) b)  

c)  d)  
Figure 50: Mean modeled SWE distribution (of INTER_30 and MM5_30) for a) the total area, b) areas above 
1800m a.s.l. and c) areas above 2200m a.s.l. The different volumes under the curves are due to higher 
sublimation losses within the MM5 runs. 

a)  b)  
Figure 51: Snow transport rates of a) INTER_30 and b) MM5_30. The black line is the 1800m isohypsis. 
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The inclusion of these transport rates in MM5_30 improves the model accuracy (cp. section 

4.4.5) in a considerable way.  

 

a)  b)  

c)  d)  

e)  f)  
Figure 52: Intensities of the different transport terms: saltation, suspension and sublimation in a) c) e) INTER_30 
and b) d) f) MM5_30. The black line is the 1800m isohypsis. 

INTER_30 saltation rates MM5_30 saltation rates

INTER_30 suspension rates MM5_30 suspension rates

INTER_30 sublimation loss MM5_30 sublimation loss
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The effect of sublimation processes within the MM5_30 results can be observed in fig. 50 b) 

to d) where the total amount of SWE declines with height compared to INTER_30 which 

produces transport and sublimation rates that are considerably lower (fig. 52 e) and f)). The 

maximum modelled sublimation rates are overall slightly higher than those of the 200m MM5 

runs (920mm to 860mm) but the total amount of sublimation for the whole area is 

significantly smaller (0.5mm to 12mm per 30m grid cell in average). This is due to the fact 

that areas with high sublimation rates are limited to the crest regions which have a smaller 

spatial extent in the high resolution DEM. Figure 53 by Strasser et al. (2008) shows a profile 

between Hochkalter and Watzmann (cp. fig. 5) with the respective sublimation losses. The 

yellow curve corresponds to MM5_30 results. It becomes obvious that the influence of 

sublimation from turbulent suspended snow is comparably small in the valley regions but 

reaches considerable amounts in the crest regions. This can be explained by the pronounced 

turbulence resulting from the wind simulations at such exposed locations (fig. 35c).  

 

 
Figure 53: Simulated contributions to annual snow sublimation (additive representation) from the ground, canopy 
intercepted snow and wind-induced, turbulent suspended snow along a cross-section from Hochkalter (2607m 
a.s.l.) through the Wimbachtal to Watzmann (2713m a.s.l.). (Strasser et al. 2008). 
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4.3.4 Spatial validation 

The 30m results correspond to the extent and support of the Landsat ETM+ data. Hence, a 

direct comparison of the data becomes possible. In a first step, the spatial extent of the 

mapped and modelled snow cover was compared for both available dates. As it is impossible 

to quantify the SWE distribution via the available optical remotely sensed data a different way 

to validate the model results was chosen. Areas which are snow free within the Landsat 

images but are predicted to be snow covered by the model were detected in a first step. After 

than INTER_30 and MM5_30 SWE depths were compared with a SnowModel stand alone 

model run (without transport routine) which is called run_baseline from now on. When using 

the run_baseline results as basis one can determine to which extent the results could be 

improved by including the blowing snow model algorithm in INTER_30 and MM5_30.  

The results of INTER_30 and MM5_30 are virtually identical with respect to the snow line 

and can be discussed on the basis of the MM5_30 results. A comparison of classified versus 

modelled snow cover from MM5_30 has shown that the model once again produced a snow 

cover that was too homogenous (fig. 54 a) to d)). This can be attributed to an inability of the 

model to reproduce the extent of the real transport rates or to the fact that the model is not 

able to predict all processes leading to the real distribution. Which of these two reasons is 

more likely to be responsible for the underestimation of the snow cover distribution will be 

discussed later on. As a first step, the extent of the predicted snow cover from MM5_30 was 

compared to the remotely sensed data. 86 percent of the model grids are in agreement with the 

produced snow map for April 28, 2004 and 88 percent for May 30, 2004. 5 percent of the 

pixels are classified as snow but do not show a snow cover within the modelled data on April 

28, 2004 (4 percent at Mai 30) while 9 percent (for both dates) of the modelled grid cells are 

predicted to be snow covered but are snow free within the classification (fig. 54 e)-f)).  
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a)  b)  

c)  d)  

e)  f)  
Figure 54: a) modelled snow cover of April 28, 2004, b) NDSI map of the same date, c) modelled snow cover of 
Mai 30, 2004  b) NDSI map of Mai  the same date, e/f) Differences between model an classification results at 
April and Mai respectively (red indicates: only classified snow cover. Green: only modelled snow cover. Pink: 
cloud mask). The black line is the 1800m isohypsis. 

In a subsequent step, nine validation areas were selected within the Landsat April image and 

six for the May image (fig. 55 and fig. 56, Table 7 and 8). The criteria for the selection was 

that the respective areas are snow free in the satellite images while they are snow covered in 
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the model results. The values shown in Table 7 and 8 are averages for the whole test areas 

Results show that run_baseline is overestimating the SWE depth significantly on April 28, 

2004 and slightly on May 30, 2004 (tab. 7 and 8). It is also obvious that INTER_30 does not 

lead to a significant improvement of the results. Moreover, it could be seen that the accuracy 

of the results can even decline in INTER_30 (tab. 7: area 7 and 9; tab. 8: area 2). MM5_30 on 

the other hand shows improvements for all results and at all dates. On April 28 the results 

were improved by approximately 23% while results on May 30 were improved 60% in 

average when using the MM5 wind fields (MM5_30).  

 
Figure 55: validation areas of April 28, 2004; Blue: Snow covered regions (Bands: 5,4,3), Red: test areas.  

 
Table 7: Comparison between SnowModel results generated with SnowTran-3D and with as well as without the 
usage of MM5. The values belonging to the areas highlighted in Figure 55. The areas are snow free in reality, 
the values within the table showing the improvement of the SnowModel results when the transport routine is 
used.  

Improvement 
when using: Area 1 Area 2 Area 3 Area 4 Area 5 Area 6 Area 7 Area 8 Area 9 

INTER_30 % 5% 3% 3% 0% 2% 2% -100% 0% -2% 

MM5_30 % 28% 26% 9% 16% 30% 26% 12% 22% 26% 

INTER_30 SWE -3mm -2mm -1mm 0 -2mm -2mm +132mm 0mm +2mm 

MM5_30 SWE -18mm -20mm -3mm -18mm -26mm -23mm -16mm -22mm -21mm 
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Figure 56: validation areas of Mai 30, 2004; Blue: snow covered regions (Bands: 5,4,3), Red: test areas.  

Table 8: Comparison between SnowModel results generated with SnowTran-3D and with as well as without the usage of 
MM5. The values belonging to the areas highlighted in Figure 56. The areas are snow free in reality, the values 
within the table showing the improvement of the SnowModel results when the transport routine is used. 

Improvement when 
using: Area 1 Area 2 Area 3 Area 4 Area 5 Area 6 

INTER_30 % 0% -2 1% 0% 1% 12% 

MM5_30 % 80% 46% 63% 55% 35% 86% 

INTER_30 SWE 0mm +2mm -1mm 0mm -1mm -2mm 

MM5_30 SWE -78mm -43mm -39mm -84mm -30mm -31mm 
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Chapter 5: Discussion of the SnowModel results 

Validating wind fields and snow transport processes in mountainous areas is a highly difficult 

and mostly impossible task (Klemes 1988). The limited accessibility of high alpine and crest 

regions, which are most interesting for model validation, leads to a remarkable lack of 

validation data which can only be overcome if one has “a team of Olympic skiing heroes 

available for the field campaign” (Klemes 1988). Remotely sensed information can balance 

this deficit to some degree but generally also shows deficiencies in areas with steep 

topography or forested regions (Klemes 1988, Hall et al. 1995). Because of these difficulties, 

a detailed validation of the spatial SWE distribution is virtually impossible. Hence, the 

performance of the model was checked where validation data was available and only the 

qualitative plausibility of the results is discussed for locations where no validation data was 

available. 

5.1 Accuracy of SnowModel at the point scale 

To evaluate the advantages of using physically based MM5 wind fields in snow transport 

modelling, SnowModel results generated with and without transport routine using interpolated 

wind fields were used as baseline. Subsequently these baseline results were compared to 

coupled SnowModel/MM5 results and to observed snow data. Furthermore, the scaling effect 

when using resolutions of 30m and 200m resolution is discussed. In a first step, the results of 

the sections 4.1.1 and 4.3.1 are summed up.  

A first validation was performed by using comparisons between measured and modelled snow 

depths. Results at the micro and meso scale have shown a good correlation to field 

measurements and remotely sensed data. The correlations between measurements and model 

results are at a satisfying level (fig. 47 a)-c)) for all available snow measuring points 

(MM5/INTER r²=0.85/0.73 [Reiteralm II], r² = 0.88/0.88 [Reiteralm III] and r² 0.73/0.64 

[Jenner]]). The overall accuracy of the results corresponds to the results presented in other 

studies (cp. Liston et al. 2007). When considering the operational snow depth measurements 

of the meteorological stations and the field campaign data, the performance of the coupled 
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MM5 and MM5_30 model was identical or better than INTER or INTER_30 results using 

interpolated fields (fig. 47 a) to c)). The validation has shown that MM5_30 is able to 

reproduce the measured snow depth at Reiteralm and Kühroint in a satisfying way but the 

modelled variability between the different measuring points was still too small (cp. section 

4.3.1 and 4.3.2, tab. 5 and 6). Transport processes from the higher to the lower part of 

Reiteralm could not be displayed. Further analysis revealed that this is due to the forest which 

subdivides Reiteralm into two parts. The model treats this forest as a physical barrier which 

blocks snow transport. The introduction of the vegetation class sporadic trees resulted in no 

improvement. This can be attributed to the general model setup. So, a simple reduction of the 

snow holding capacity (fig. 11) makes more snow available for transport but cannot solve the 

existing lack within the model formulations. The model predicts a boundary layer wind speed 

which is modified by eq. 21. The wind speed is reduced in accordance to the LAI of the 

vegetation type of the respective model grid. The used LAI has been derived from a 

combination of forest inventory data, a colour infrared photo interpretation, as well as by 

application of these relations by Hammel and Kennel (2001) and is therefore a fixed value. A 

usage of the given LAI values at Reiteralm leads to calculated wind speeds which are by far 

too low for initialising snow transport events from the higher to the lower area of this site. For 

accounting for the real process, namely snow transport over the forest land cover, two 

different wind velocity layers would be required within SnowModel but only one is available. 

The needed input wind fields would be available as the second model layer of MM5 can 

deliver the needed information. 

The results at Kühroint have demonstrated that SnowTran-3D/MM5 can reproduce no-

transport conditions at a wind sheltered site, but the variability observed between the different 

measuring points was again underestimated by the model (cp. section 4.3.2, fig. tab. 5 and 6). 

In correspondence to the results at Reiteralm, the overall variance of the modelled data is too 

small with respect to the snow depth differences between the sample points. This might be 

due to the DEM used in this study which describes Kühroint, which is undulated in reality, as 

an almost completely flat area.  

The DEM at Kühroint was checked because of model runs which produced an unexpectedly 

homogenous snow distribution. The analysis revealed some inaccuracies within the data, 
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which were unfortunately only detected after the progression of the field campaign. It became 

evident that the small knolls in the area are not displayed in the DEM even in its original 10m 

resolution. The inner area of Kühroint is portrayed as absolutely flat within the DEM which 

does not correspond to the reality.  

 
Figure 57: DEM of Kühroint test site. The area which is undulated in reality but flat in the DEM involves points 
D), K), L), M), N), O). 

Considering this, the model results are meaningful because as the DEM is used for 

distributing meteorological variables the model estimates an even distribution of the different 

meteorological variables for Kühroint. As this is the case the calculated snow cover is also 

homogenous and does not show significant differences in snow depth or SWE. However, the 

example shows that the generation of topographical input parameters can be problematic in 

Alpine regions and can therefore represent a source for deviations between model and 

measurements. A faithful investigation, if these errors are widespread within the data or if 

they are only observable at a few locations was impossible because of a lack of reference data. 

These will be available in the coming years since a 1m resolution DEM is in preparation for 

the National Park and will be available for future investigations (personal communication H. 

Franz 2007). 
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5.2 Accuracy of SnowModel with respect to remotely sensed data 

In regard to the spatial distribution of the snow cover, the inclusion of the MM5 wind fields 

leads to an overall more heterogeneous SWE distribution. The SWE becomes less dependent 

on elevation (fig. 38 a) and 50a)) and an efficient transport of snow from the windward to the 

leeward sides of mountains was predicted (fig. 39 and 52). This is in agreement with 

expectations and with the work of other authors (e.g. Barry 1992). The overall transport 

efficiency was considerably higher for all transport terms when using MM5 wind fields (fig. 

38 and 50) especially for elevations higher than 1800m a.s.l. where the MM5 wind speeds 

were significantly higher (fig. 35c).  

a) b)

c) 

 

Figure 58: a) Comparison of run_baseline and INTER_30 results on April 28, 2004, b) comparison between 
run_baseline and MM5_30 at the same date. c) Picture of a crest were the snow cover on the windward side 
(right) is reduced considerably by snow transport processes 

SWE changes between run_baseline and INTER_30 SWE changes between run_baseline and MM5_30
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The generated, more heterogenic snow cover also shows a better agreement with the remotely 

sensed data, with respect to the spatial heterogeneity of the snow cover (tab. 7 and 8). This 

was proven for areas which are snow free in the satellite pictures but snow covered in the 

model results. Analysis of these test areas shows that the reduction of the SWE depth of 

INTER_30 in comparison to run_baseline shows no clear trend or pattern over the areas (cp. 

fig 58 a); tab. 7) and 8). Moreover, it could be seen that the snow is mainly redistributed 

within the areas but not transported out of the areas when using INTER_30. This is caused by 

the comparatively low interpolated wind speeds and unrealistic wind direction fields used in 

INTER_30. Hence, the snow is sometimes transported back and forth and not into a specific 

direction. In contrast, the results of MM5_30 show a trend within the spatial pattern; the SWE 

depth is particularly reduced at higher elevations and in the direction of the next crest (fig. 

58b). This conforms to observations one can make in nature (fig, 58 c)) where it can be seen 

that the SWE depth are especially reduced on the windward side of the crest regions (fig. 55 

c)).  

The integration of the MM5 wind fields can improve the results at the point scale and in 

comparison to the satellite images, as SnowTran-3D in combination with interpolated wind 

fields can also reduce the accuracy of the results (tab. 7 and 8). This indicates that the MM5 

wind fields are more trustable at least in Alpine settings than the interpolated MicroMet fields 

which are generally used in the application of SnowModel. The more accurate wind direction 

fields provided by MM5 furthermore prevent the calculation of accumulation zones that do 

not correspond to zones that can be observed in nature (tab. 7 and 8).  

According to Hall et al. (1995) it can be stated that wooded areas are limiting the usability of 

remotely sensed data as validation tool in snow sciences. Trees obscure the underlying snow 

cover and make a reliable detection of the snow cover/line impossible. This effect is 

especially pronounced in the study area because the snow line is located in wooded areas on 

all satellite image acquisition dates.  
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a)  b)  
Figure 59: a) wooded region at Watzmann mountain (the snow covered area appears in blue). b) NDSI 
classification in gray, MM5_30 results in blue.  

A visual comparison of model and classification results indicates that an assessment if the 

model or the classification results are more accurate is difficult or simply impossible in the 

respective regions. Figure 59 can serve as an example for this dilemma. The model has 

predicted a snow cover which is of a larger expanse than the classified one (this reflects the 

situation for the whole area). A visual analysis of the satellite scene has shown that the snow 

line seems to be somewhere between the model and classification results (fig. 59 a) and b)). 

An adaption of the NDSI threshold for including these local phenomena only leads to a partial 

improvement of the results but decreases the accuracy of the total classification. It is therefore 

difficult to assess the accuracy of the model results with respect to the snow line with the help 

of the available satellite data. Nevertheless, the modelled snow line is always close to the 

classification in case which indicates that the extent of the modelled snow cover has the 

correct dimension. 

5.3 Scale effects in snow transport modelling 

The influence of wind induced snow transport on the spatial distribution of the SWE is more 

significant with respect to the total area at the meso scale. Figures 38 b) to d) indicate that the 

SWE distribution within the test site becomes heavily dependent on wind induced snow 

transport processes from 2200m a.s.l. on. This effect was not reproduced in the micro scale 

results. Rather, they suggest that wind induced snow transport can have a remarkable effect 

on the snow distribution in limited areas but do not modify the general SWE distribution in the 



Chapter 5 Discussion of the SnowModel results
 

 
 
 

  Page 97  
   

test site. This finding is in line with other studies that have stated that general transport 

intensities can be simulated adequately at coarser scales but the location of individual 

accumulation and erosion zones can be misinterpreted in a significant way (e.g. Liston et al. 

2006). The Blaueis glacier serves as an example. It was found that the amount of transported 

SWE considerably depends on the selected model scale and wind simulation method. Wind 

induced transport of SWE form surrounding areas to Alpine glaciers is mentioned as 

important for their existence (Kuhn 1993, 1995). Especially small kar glaciers like the Blaueis 

glacier (fig. 5 and fig. 60)) and many other glaciers e.g. in the Karwendel region are 

dependent on additional SWE delivered by avalanches or wind induced snow transport (Kuhn 

1995). Plattner et al. (2006) have applied a statistical analysis of the SWE distribution at 

Vernagtferner (Tirol/Austria) and have found that the SWE distribution is very likely 

dependent on the wind conditions and on wind induced snow transport. However, a 

quantitative estimation of the transported amounts was not possible. The work presented here 

shows that a numerical calculation of the transported SWE amounts is possible via the 

presented scheme. Principally, it can be stated that the use of SnowTran-3D does not lead to 

any transport rates from and to the glacier if interpolated wind fields are used. This finding is 

independent of the used scale. When MM5 wind fields are used on the other hand, significant 

transport processes can be observed. The MM5_30 30m runs produce a maximum SWE gain 

per pixel of 2140mm SWE. The average contribution of windblown snow over the total 

glacier area is 220mm SWE. The additional amount of SWE corresponds to 12% of the total 

precipitation (1850mm) and to 23% of the snow fall (950mm) within the observed period 

(03/04) (fig. 60a). The 200m runs in contrast produce considerably different results. The 

maximum per pixel gain is greatly reduced (740mm SWE) and the total average contribution 

is only 4mm SWE (fig. 60b). This can be explained by the fact that because of a scale 

dependent shift like presented at Reiteralm before (fig. 43 a) and b)) the accumulation zone of 

the glacier is located in the crest region of Hochkalter within in the 200m DEM. Hence, 

erosion prevails and the SWE is reduced and not enhanced like it is in the 30m runs. Figure 60 

a) and b) show the wind induced gain and loss of SWE for the Blaueis glacier (30m and 200m 

again). The figures further illustrate that the accurate estimation of the location of the 

accumulation and erosion zones becomes problematic at coarser scales.  
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The results show that the quantitative calculation of wind induced transport of snow from 

neighbouring areas to adjacent glacier areas becomes possible via the presented scheme at the 

micro scale. A validation of the transported snow amounts at Blaueis glacier or at other well 

instrumented glaciers like the Vernagtferner is the subject of future work. The obtained 

knowledge about gain rates is crucial for a better understanding for accurate mass balance 

calculations of the respective glaciers. 

a)  

b)  
Figure 60: Predicted loss and gain of SWE due to wind induced snow transport at Blaueis glacier a) 30m 
resolution results using MM5 wind fields, b) 200m resolution results using MM5 wind fields. (The results were 
fitted to the 30m grid for the presentation) 
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Very high modelled accumulation rates on the leeward sides of the mountains and remarkable 

sublimation rates on the mountain crests which could not be directly validated should be and 

are discussed in the next paragraphs.  

5.4 Discussion of enhanced accumulation and sublimation rates when using MM5 
wind fields 

The inclusion of MM5 wind fields leads to remarkable simulated snow depths, on the leeward 

side of the crests. At Watzmann crest region (predicted precipitation: 3100mm) a maximum 

SWE depth of about 6000mm (MM5_30 30m results) and 4500mm (MM5 method 200m 

results) were calculated for the leeward side. These values were not obtained with INTER_30 

or with INTER method (the maximum was about 3000mm here for both runs (30m and 

200m)). A direct validation of the modelled SWE depths is impossible but fig. 61 gives an 

idea about the conditions at this site and shows that 6000mm SWE could probably exist.  

 
Figure 61: Picture of the Watzmann upper east face under full snow coverage. 
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The predicted sublimation rates of up to 910mm (MM5_30) or 860mm (MM5, 200m) (fig. 39 

e) and f) and 52 e) and f)) when using the MM5 wind fields are very high and, therefore, need 

to be discussed.  

Total sublimation can be differentiated in three major sources: Sublimation from the ground 

snow cover (Weber, 2005), loss from previously intercepted snow from within the canopy 

(Essery et al., 2003), and sublimation of airborne snow particles during blowing snow 

conditions (Schmidt, 1972; Liston and Sturm, 1998; Pomeroy and Essery, 1999). Strasser et 

al. (2007) have quantified the effect of all three sublimation processes on the water balance in 

the Berchtesgaden National Park region (fig. 53 and tab. 9). While the first two of them are 

mostly driven by the amount of available radiation, the sublimation of airborne snow particles 

is mainly steered by the transport efficiency at a given place. The formulation of the 

sublimation process within SnowTran-3D follows that of Schmidt (1972), Pomeroy et al. 

(1993) and Pomeroy and Gray (1995) were the sublimation rate depends on the amount of 

snow within the saltation and suspension layer (eq. 32 and 33). The sublimation loss rate 

coefficient, describing the rate of particle mass loss as a function of height within the drifting 

snow profile, is a function of temperature-dependent humidity gradients between the snow 

particle and the atmosphere, conductive as well as advective energy and moisture transfer 

mechanisms, particle size and solar radiation intercepted by the particle. It is assumed that I) 

the mean particle size decays exponentially with height, II) the relative humidity follows a 

logarithmic vertical profile, III) the air temperature in the snow-transport layer is well mixed 

and constant with height, IV) the variables defined within the saltation layer are constant with 

height and those in the turbulent suspension layer vary with height, and V) the solar radiation 

absorbed by snow particles is a function of the solar elevation angle and fractional cloud 

cover (eq. 9). In SnowTran-3D, high sublimation rates (fig. 39 f) and 52 f)) are projected 

during blowing-snow events due to the high snow particle surface-area to mass ratios and the 

high ventilation rates achieved when the particles are in the wind stream (Schmidt 1972), and 

assuming the existence of a pool of dry air overlying the surface layer with efficient mixing 

between the two (the model belongs to the “Schmidt-type” family of sublimation models, 

Liston and Sturm 2004). Using Schmidt-type sublimation models, 15 – 50 % of the snow 

cover were found to be returned to the atmosphere by sublimation in the Arctic (e.g., Liston 

and Sturm 1998, Essery and Pomeroy 1999, Pomeroy and Essery 1999), and 15 – 41 % in the 
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Canadian prairies (Pomeroy and Gray 1995). In contrast, other studies suggest that during 

blowing-snow events, the air above the surface rapidly saturates with moisture, limiting the 

amount of snow that can sublimate (e.g. Déry and Yau 2001, King et al. 2001). As thoroughly 

discussed in Liston and Sturm (2004), there is not necessarily a contradiction between the two 

types of sublimation: both regimes may exist depending on the interaction of the surface layer 

with the overlying air mass. Above inclined snow surfaces, efficient mixing is particularly 

forced by the frequent catabatic flows and related entrainment of air masses into the shallow 

surface layer (Smeets et al. 1998). Hence, for the application here, a mixing of the surface 

layer with an overlying mass of dry air was assumed which leads to an efficient removal of 

moisture from the turbulent suspension layer during blowing-snow events. This leads to 

enhanced sublimation rates from up to 95% of the annual snowy precipitation for several crest 

regions. The overall losses which are due to sublimation of turbulent suspended snow are 

small in contrast and are only about 4.1% of the total snowfall for the whole test site (tab. 9). 

Table 9: Contributions relative to total snowfall and scale-dependent significance of the winter water balance 
components for the Berchtesgaden National Park domain for 2003/2004. The additional amount of snowmelt is 
caused by rain-on-snow (cp. Stasser et al. 2008). 

Water balance 
component: 

Seasonal amount 
[mm] 

Relative 
contribution [%] 

Local  
significance  

Regional 
significance 

Snowfall +651.1 100% high high 
Ground 

resublimation +15.8 +2.4% moderate small 

Ground sublimation -44.9 -6.9% moderate small 

Canopy sublimation -84.9 -13.0% moderate moderate 
Sublimation from 

turbulent suspension -26.5 -4.1% high small 

Snowmelt -693.1 -106.5% high high 

 

The scheme presented here has produced results which are pretty close to data measured by 

Hood et al. (1999, Nivot ridge Colorado). Their measurements are the only known and 

published sublimation measurements in Alpine regions. When comparing the meteorological 

information and SWE accumulation rates given by Hood et al. (1999) with the Berchtesgaden 

site, it becomes obvious that their measurements correspond closely to predicted values for 

the elevation zone around 2100m a.s.l. Here a mean sublimation rate of 250mm (MM5_30 

and MM5) was predicted for the National Park area, as Hood et al. (1999) measured 195mm 

for their site at Nivot ridge (Colorado). The results obtained with interpolated wind fields 
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(maximum = 47mm INTER_30 and 50mm INTER; fig. 39e) and 52 e)) were outside the range 

of this data. In which way the measurements of Hood et al. (1999) are representative for the 

Watzmann region cannot be concluded but the comparison shows that the results obtained in 

this study are within the range of data published by other authors. It is also an open question 

whether the very high sublimation rates in the crest regions are valid (e.g. fig. 53). This will 

be an open research topic until sublimation measurements from the respective regions become 

available. Nevertheless, the questionable areas are limited to the apexes of the mountains and 

should not have a significant importance for/or influence to the water balance of the overall 

catchment (tab. 9; Strasser et al. 2008). 

5.5 High interpolated precipitation rates as a possible reason for the 
underestimation of the spatial snow heterogeneity 

The spatial homogeneity of the modelled snow cover in comparison to the classification 

results was mentioned in connection with the remotely sensed data. The difference to the real 

more heterogenic snow cover can be due to an underestimation of the amounts of snow 

transported by wind or because of the negation of snow slides etc. Another possible 

explanation are to high amounts of interpolated snow fall. The interpolation results have 

demonstrated that the spatial interpolation of the precipitation measurements works well for 

the available stations (fig. 18) but produces questionably high amounts of precipitation for 

higher elevation levels within the test-site. An exact evaluation of the model error is 

impossible because of a lack of meteorological stations at the respective elevation belts. 

Nevertheless, a comparison to the values presented by Enders (1979) for the National Park 

area, who predicted an amount of 2711mm precipitation for an elevation of 2500m a.s.l. (the 

value is based on a comparison to the station Plattachferner at 2660m a.s.l., which could be 

seen as representative for this elevation belt of the National Park (Enders 1979)), indicates 

that the 3100mm (September 2003 to August 2004) predicted by MicroMet are comparatively 

high. The high values can also not be explained by extreme weather conditions since a 

comparison to the time period of 1960 to 1990 (average precipitation at Berchtesgaden = 

1519mm) reveals that the precipitation amounts of September 2003 to August 2004 

(1532mm) were close to the long term average for this region. Nevertheless, the 

overestimated precipitation rates do not justify a substitution of the respective routine as the 
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available station values are well reproduced and a conclusive calculation of the severity of the 

error in higher altitudes is impossible.  

However, based on Enders (1979) an overestimation of about 15% for the elevation belts 

above 2000 meters can be assumed. Because of low temperatures in these regions most of the 

additional precipitation falls as snow and is therefore added to the snow pack. As a result, the 

analysis, in section 4.3.4 has shown too much modelled SWE for all test areas. An effect of 

the overestimated SWE depth is that areas which are snow free in the satellite images, while 

showing lower snow depth when using the snow transport routine with MM5 compared to the 

other model schemes, are still predicted to be snow covered within the model results. Hence, 

the surplus of about 15% precipitation masks the improvements which were achieved through 

the use of the MM5 wind fields with respect to the spatial distribution of the snow cover.  

5.6 The effects of snow slides and preferential snow distribution  

It became obvious, that wind induced snow transport is not the only factor which produces the 

remarkable spatial heterogeneity of the Alpine snow cover. There are other processes which 

are occurring before, during, and after the snow accumulation process that potentially can 

have a major impact on the snow distribution. Particularly important seem to be: preferential 

snow distribution and snow slides. The influence of preferential snow distribution is so far not 

well understood but it is assumed that it can have considerable effects especially at regions 

with steep topography (Lehning et al. 2002). Reduced snow accumulations on steep slopes 

are commonly mentioned as the main effect of preferential snow distribution but where the 

snow is accumulated instead is still a subject of speculations. On the other hand, recently 

there has been remarkable progress in the calculation of snow slides and there are inspiring 

publications which are illustrating the importance of this process (Gruber 2007; Strasser et al. 

2007). Strasser et al. (2007) predicted SWE depositions due to snow slides of up to 10000mm 

per winter season for some areas in the National Park (fig. 62). This value seems to be very 

high but members of the Commission of Glaciology of the Bavarian academy of science and 

humanities have found that snow depositions by snow slides at the Icechapel (Watzmann east 

face) reach these amounts (personal communication M. Weber 2008). Furthermore, Kuhn 
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(1995) stated that an additional amount of 8000mm SWE is needed for reaching equilibrium 

conditions of the mass balance for some small avalanche fed glaciers.  

With respect to wind induced snow transport, gravitational snow transport has the effect that 

remarkable amounts of snow are shifted into regions where the wind induced processes are of 

subordinate importance because of low wind speeds (fig.35 c)). This and the fact that areas 

with slope angels of more than 50° are commonly snow free (because of gravitational 

processes), should lower the amount of wind induced snow transport in a natural setting 

because of a lack of transportable snow. As these effects are neglected in the current model 

formulations it can be argued that the real wind induced transport rates should be lower than 

the modelled ones. This would also have an effect on the very high sublimation rates (fig. 39 

f) and 52 f)) predicted in the crest areas.  

 
Figure 62: Accumulated Snow masses transported by snow slides (winter season 03/04). Strasser at al. (2008) 
modified.  

A quantification of the efficiency of gravitational snow transport processes in combination 

with wind induced transport rates is complicated by the fact that there are no coupled model 

algorithms available which account for wind induced snow transport and snow slides. This 

would be a prerequisite for predicting correct transport rates for both modes of snow transport 

because wind induced transport could make snow of adjacent catchments available for snow 

slides, while snow slides, on the other hand, can prevent snow from being included in wind 

transport processes by shifting the snow masses to lower elevation bands where wind induced 
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transport processes are far less effective. Furthermore, the estimation of the effect of snow 

slides is difficult because some available model routines, used by e.g. Strasser et al. (2007), 

are triggered at a given hour once per day and not as a result of snow pack conditions at a 

given time step. Therefore, it could only be assumed that the enhanced snow coverage in the 

valley areas (cp. Chapter 5.3) below snow free areas on steep slopes of more than 50 degrees 

are caused by this process. 

5.7 Model formulations 

This section will discuss in which way the used model schemes can deteriorate the model 

results and what improvements could be made in the model with respect to the accuracy of the 

available input data. It was mentioned before that the presented formulation of the saltation 

layer flux (eq. 26), was a subject of discussion in recent years (e.g. Lehning et al. 2006). The 

work presented here adds important points to this ongoing discussion. While very 

sophisticated model algorithms are useful and generally lead to more accurate results if 

suitable input data is available, they are useless if the input data is of less accuracy. The 

presented study shows that interpolated wind fields, routinely used in SnowModel 

applications, can decline the accuracy of the results by 100%. This error is significantly 

higher than the errors which could potentially be produced because of the oversimplification 

of the saltation process (personal communication Liston (2006) and Pomeroy (2006)). The 

results of the presented study suggest another possible model improvement which could 

greatly enhance the performance of the model. It could be observed that the inclusion of a 

second suspension layer would be very favourable to allow the transport of suspended snow 

over trees and to make the explicit calculation of snow transport rates in areas of flow 

separation possible. In the current model setup, the model accumulates the transported snow 

particles instantly if the wind speed drops below a certain threshold. Hence, significant snow 

accumulations can be observed at the wood sites or immediately beyond mountain crests. The 

inclusion of a second suspension layer driven by e.g. the second model layer of MM5 which is 

still available would lead to a better description of the transport processes at the respective 

locations and could probably lead to a better description of the accumulation and erosion 
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zones. The need for this model extension could be clearly seen at Reiteralm test site (cp. 

section 4.3.1). 

Hence, it can be stated that the snow distribution that is obtainable with the current 

SnowModel version shows some deficits which were discussed in the former sections but was 

significantly improved over the inclusion of MM5 wind fields. The inclusion of additional 

processes could definitely improve the model results in the future but currently the presented 

results have to be seen as state of the art as they are from comparable accuracy as results 

published by other authors but for less complex terrain (cp. Liston et al. 2007) and are 

therefore applicable for future studies. 
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Chapter 6   Outlook and conclusion 

6.1 Presentation of a scheme which allows for a better description of the snow cover 
in regional scale models 

The following section will present a method which allows the wider usage of the presented 

results in hydrologic modelling. As discussed in the previous chapters, the Alpine snow cover 

has a remarkable heterogeneity which is dependent on numerous factors. It was shown that in 

snow cover modelling, the explicit calculation of the transport processes and the required 

meteorological fields is time consuming and only functional at certain scales. It was also 

shown that the amounts of transported snow are dependent on the selected scale. Furthermore, 

the physically based description of snow transport processes is only valid up to a grid cell size 

of 200m (Liston 2006). As this is much lower than the resolution of regional SVAT or most 

hydrological models, an alternative method of describing the sub-grid snow distribution and 

with this accurate energy and moisture fluxes on the basis of this work is presented. Figure 63 

illustrates the representation of the snow cover in a common snow model module where the 

snow or SWE depth is considered to be constant over the entire grid cell. This simple 

assumption results in: 

• An instant snow covered or snow free effect for any grid cell during 

accumulation or ablation. 

• Energy and moisture fluxes which are representative for the snow 

covered or the snow free part of the grid cell only. 

• A general misinterpretation of the melt period (Liston 2004). 
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 a)  b)  
Figure 63: The figure shows a theoretical subscale SWE depth distribution and common model representatios. a) 
Shows a situation with full snow coverage, b) shows a situation where the model shows no snow coverage.  

A possible solution for the mentioned problems is presented here. A scheme of Liston 

(SSNOWD, 2004) is used to describe the subscale snow heterogeneity in regional scale 

models (the equations used here can be found in the Appendix II). The model is based on two 

basic assumptions that are supported by many studies over the last decades (Donald et al. 

1995; Marks et al. 1999; Faria et al. 2000; Liston 2004). First, the spatial distribution of the 

snow cover is persistent and can be seen as approximately similar over the years (fig. 64). 

Secondly, the snow water equivalent within a given area is lognormal distributed (fig. 65 a)).  

The accuracy of Subgrid Snow Distribution (SSNOWD) (2004) depends on the available 

information about the spatial heterogeneity of the snow cover. A good description of the 

spatial distribution of the SWE is crucial to parameterize the model. The parameterisation of 

SSNWOD requires the definition of a log-normal distribution (fig. 65 a)) which is 

characteristic for the snow distribution in a regional model grid cell. The general form of the 

curve is characterised by a coefficient of variation (CV) within SSNOWD (fig. 65a)). 
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a)  b)  

c)  

 

Figure 64: Landsat images of a) April 2002, b) March 2003 and c) April 2004. Channels 3,5,6 (R,G,B) are 
displayed. The snow cover is indicated by the red colour. It can be seen that the spatial characteristics of the 
snow distribution is very similar from year to year.  

The coefficient can have values between 0 and 1. CV values can be determined directly 

through extensive snow surveys as was done by Pomeroy et al. (1998) and subsequently used 

to validate blowing snow model results (Essery et al. 1999) or to create an initial snow cover 

at the start of snowmelt simulations (Pohl and Marsh 2006). The necessary detailed snow 

surveys, however, are extremely time consuming and virtually impossible to carry out in the 

difficult topography of Alpine regions. Alternative methods of obtaining CV values are 

needed therefore. Liston (2004) used a decision tree to derive CV values for the Regional 

Atmospheric modelling system (ClimRAMS, grid size 80 km) which bases on the analysis of 
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temperature, topography, and wind conditions. Since this classification scheme was designed 

for worldwide use, the predefined classes are relatively broad. An application of this scheme 

to the test site Berchtesgaden would lead to rather undifferentiated results with only a few 

different CV values. The presented work presents an alternative approach which bases on the 

SnowModel MM5_30 results presented before. As Liston (2004) defines the CV value as the 

ratio between the mean SWE depth and the standard deviation of the SWE depth of a given 

area, it is easy to predict one value for a regional scale model box (which is assumed to be 

1km² here) on the basis of the micro scale results (fig. 63 d). Hence, 1111 micro scale 

(30m*30m) SWE depths had to be analysed for the calculation of one CV value per km² box. 

The results are illustrated in fig. 65 b). 

a)  

 

b)

Figure 65: a) dependency of the log-normal distribution which is representative for the subscale per Pixel SWE 
distribution in dependency of the CV value b) results of the CV classification. Predicted on the basis of the ratio 
between per pixel mean modelled SWE and standard deviation of the SWE (30m MM5_30 results). 

The scheme of Liston (2004) bases on the assumption that if the snow depth drops below a 

given threshold one has to assume that some parts within a defined area (whether this is a 

model grid cell or a natural area like a field, a slope or a basin), become snow free while 

others stay snow covered. If the model simulates snow melt the curve shifts against the y-axis 

(fig. 66) and if the curve intersects the axis the area under the curve which is equivalent to the 

total grid cell is reduced. The remaining area, determines which fraction of the snow model 

grid cell remains covered.  
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Figure 66: If the model simulates snow melt the curve shifts against the y-axis and if the curve intersects the axis 
the area under the curve which is equivalent to the total grid cell is reduced. Any curve stands for the SWE 
distribution of the respective grid cell. 

As a first estimation whether the integration of information’s about the subscale snow 

heterogeneity can improve the calculations of a regional scale model, SSNOWD (the 

equations are presented in the Appendix II) was integrated into SnowModel. The model was 

set up with a one kilometre resolution and driven with the input parameters used for the 

INTER_30 model runs. For the validation of the results the NDSI snow cover map of May 30, 

2004 was used to determine the real snow covered fraction of the target 1km² grid cells (fig. 

67 a)). The resulting dataset was subsequently used for a comparison with the model 

simulation using subscale information (fig. 67 a) and b)). 

a)  b)  
Figure 67: Subpixel snow coverage in percent on May 30, 2004. a) Results based on a scaled NDSI map, b) 
Model results based on CV values predicted by the ratio approach with SnowTran-3D and MM5 wind fields, c) 
Model results based on CV values generated with the iterative approach. 
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Overall, the Figures show that the modelled spatial pattern of the subscale heterogeneity is 

acceptable as it is fairly similar to the pattern of the NDSI classification. However, the 

absolute values can differ greatly. In a next step, the melt energy on May 30, 2004 13:00 was 

predicted. To do so, MM5_30 results were aggregated to 1 km² grid cells and compared to 

SnowModel/SSNOWD results using a 1km² resolution. It could be seen that the average melt 

energy for the snow covered area is higher in the SnowModel/SSNOWD 1km² results (without 

the subgrid snow cover parameterization) (270 W/m²) than within the aggregated MM5_30 

results (220 W/m²). As the melt energy is linearly coupled with the snow covered fraction 

(fig. 2b)), the inclusion of a subgrid scale snow cover representation as shown in Figure 68 

should lead to a reduction of the predicted melt energy. As expected, the modelled melt 

energy using the subgrid snow cover routine is much lower and lies slightly below the 

aggregated results (200 W/m²). 

a) 

c)  

b)  
 

Figure 68: Average available melt energy per km² grid cell: a) aggregated 30m results (equivalent to MM5_30), 
(220 W/m²) b) 1km² model runs without the subgrid routine (270 W/m²), c) corrected 1km² results using the 
subgrid routine (200 W/m²). 
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Commonly there are no area wide micro scale model runs with a complexity comparable to 

the presented one available for the parameterisation of CV values. So, an alternative scheme 

for the extrapolation of the presented CV values to other, similar regions was developed. For 

this purpose, the CV dataset was coupled with a set of topographic and meteorological 

information. The CV values were inserted into a database in combination with the respective 

values of mean aspect [°], elevation[m], slope[°], wind speed[m/sec] and wind direction [°] 

for the respective 1km² box. All values are based on averaged 30m data. The generated 

database enables the extrapolation of the data to areas with characteristics similar to the test 

site (fig. 69).  

 
Figure 69: Upper Danube catchment. Red: Areas for which the parameterization results are potentially 
applicable. 

 
The application and validation of the method proposed here is subject of future work. 

Nevertheless, first results presented in fig. 68 a) and b) are encouraging and clearly show the 

potential of the presented scheme.  
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6.2 Conclusion 

Finally, it could be argued that only a few things have changed since Klemes (1988) has 

written his paper: “The modelling of mountain hydrology: the ultimate challenge”. As he has 

stated therein, the hydrological modelling in mountain regions has benefited from 

atmospheric models and remotely sensed data but problems like limited input and validation 

data and limited accessibility of the respective regions are still relevant. Hydrologic modelling 

of high mountain regions will be a challenge for the next generations of scientists. This, 

however, is no reason for a dash of sadness; because it guarantees that there will be a lot of 

challenging and interesting research in the next decades. The presented work has tried to 

answer just one of all the open questions. Its results presented in the previous chapters, 

provide some valuable answers with respect to the impact of snow transport processes on the 

snow cover in Alpine regions.  

One of the goals of the presented thesis was to evaluate the efficiency of snow transport 

processes and to investigate the relative importance of these processes for the Alpine snow 

distribution. Model runs have shown that the effect of snow transport processes on the 

modelled SWE distribution results is extremely dependent on the selected model scale. Runs 

using a 200m grid cell size have indicated that the total SWE distribution in the test site 

heavily depends on snow transport processes. However, the 30m model runs revealed that 

snow transport processes can have a significant impact on the snow distribution in limited 

areas, but not on the overall SWE distribution of catchment. The same conclusion became 

evident with respect to sublimation. Modelled SWE losses due to sublimation of turbulent 

suspended snow can reach up to 920 mm SWE at the mountains crests but are less than 50mm 

in the valley regions and in the flatlands. The effect on the total SWE budget and therefore on 

the water balance is small in consequence.  

It was also determined that the observed spatial heterogeneity of the snow cover can only 

partially be explained by the modelled processes. Hence, there have to be other mechanisms 

which are influencing the snow distribution in Alpine catchments. Strasser (2008) has shown 

that the simple inclusion of snow slides into his model environment leads to an improved 

reproduction of observed snow distribution as far as this distribution can be validated with 

optical data. Nevertheless, the quantification of the different snow transport processes (wind 



Chapter 6 Outlook and conclusion
 

 
 
 

  Page 
115 

 
   

induced and gravitational) is impossible at the moment because there are no coupled models 

that simulate both processes simultaneously. Additionally, the effect of preferential snow 

distribution is completely unknown at the moment which complicates the resulting model 

calculations because of an unknown initial snow distribution.  

The model validation at the micro and meso scale has shown that the model delivers 

acceptable data which is close to measurements at all sites (e.g. fig. 22). The used Landsat 

ETM+ data have clearly shown the limitations of optical systems for the determination of a 

snow cover in forested regions but have also revealed that the results of SnowModel could be 

improved by an inclusion of MM5 wind fields. 

The subscale snow coverage routine which was presented in Chapter 6 has produced 

encouraging initial results which will be validated in future work. 

Finally, it can be concluded that: 

• The estimation of the spatial distribution of SWE in alpine terrain using SnowModel 

was considerably improved by the use of the MM5 derived wind fields. 

• The physically based SnowModel/SnowTran-3D/MM5 couple delivers plausible 

results for distributed snow covers even in Alpine regions at the micro scale.  

• The decreased accuracy of the results at the meso scale indicates that the simulation of 

snow transport processes should preferentially use small scales, especially if 

information about the snow distribution within a smaller area is needed. Despite their 

decreased accuracy, the meso scale results still show the principle functionality of the 

SnowModel/MM5 bundle for larger areas. 

• The presented thesis illustrates that present day regional atmospheric models should 

be used instead of interpolated meteorological data as input for land surface models 

when studying snow transport in hilly terrain. 

• While the model scheme used here can simulate some of the observed snow cover 

heterogeneity within the study area, it becomes obvious that the real extent of the 

snow cover distribution cannot be reproduced fully by the model. Rather, the coupled 

model still underestimates the heterogeneity of the real snow cover. 
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It could be stated that the mountains do not give up their secrets easily (which is not only true 

for the Yeti) but the author hopes that he wrenched a little secret away from the mountains, 

which is now available in form of this thesis.  
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Appendix I 

I) Additional Equations of the snow model (the total set of formulations can be found 
in Liston and Sturm (1998) 

 
The following Equations are used for describing the sublimation process during transport: 

Sublimation during transport is described as: 

ܳ௩ሺכݔሻ ൌ ߰௦߶௦݄כ ൅ ׬ ߰௧ሺכݔ, ,כݔሻ߶௧ሺݖ ݖ݀ ሻݖ
௭೟
௛כ

                            (A-1) 
Qv (kg m-2 s-1) = sublimation rate of transported snow. Ψs / Ψt = sublimation loss rate coefficient for saltation and 
turbulent suspension. Øs (kg m-3) = saltation layer mass concentration. Øt (kg m-3) = vertical mass concentration 
within the turbulent suspension layer.  

The sublimation loss rate is defined as:  

߰ሺכݔ, ሻݖ ൌ ௗ௠ഥሺ௭ሻ/ௗ௧
௠ഥሺ௭ሻ

                                                 (A-2) 
t(s) = time, ഥ݉ሺݖሻ (kg) = mean particle mass at height z. 

The average particle mass is simulated with: 

ഥ݉ሺݖሻ ൌ ସ
ଷ
ሻଷݖ௥ഥሺݎ௜ߩߨ ቀ1 ൅

ଷ
ఈ
൅ ଶ

ఈమ
ቁ                                     (A-3) 

ρi (kg m-3) = density of ice, ݎҧ mean radius of snow particles. 

ሻݖҧ௥ሺݎ ൌ 4.6 כ 10ିହିݖ଴ିଶହ଼                                        (A-4) 
z = height 

Coefficient α is defined by: 

ߙ ൌ 4.08 ൅  (A-5)                                               ݖ12.6

Mass loss from an ice sphere is described by the combined influence of humidity gradients 

between particle and free atmosphere, as wells as intercepted solar radiation, particle size and 

ventilation influences: 

ௗ௠ഥ
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ൌ
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                                      (A-6) 

M (18.01 kg kmole-1) = molecular weight of water, R (8313 J kmole-1 K-1) = universal gas constant, Ta (K) = air 
temperature, λt (0.024J m-1 s-1 K-1) = thermal conductivity of the atmosphere, hs = latent heat of sublimation. D 
(m² s-1) = diffusivity or water vapour in the atmosphere, ρv = (kg m-3) = saturation density of water vapour. Rd 
(287 J deg-1 kg-1) = gas constant for dry air, es = vapour pressure over ice. Nu = Nusselt Number, Sh = Sherwood 
Number. 

The formulation for the radius of a snow particle ݎҧሺݖሻሺ݉ሻ, of mean particle mass ഥ݉  ሺݖሻ is:  

ሻݖҧሺݎ ൌ ቀଷ௠ഥሺ௭ሻ
ସగఘ೔ 

ቁ
భ
య                                              (A-7) 
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Nusselt and Sherwood numbers are related to the Reynolds number: 

ሻݖሺݑܰ ൌ ݄ܵሺݖሻ ൌ 1.79 ൅ 0.606ܴ݁ሺݖሻ଴.ହ                             (A-8) 

The particle Reynold’s number (Re) is defined to be:  

ܴ௘ሺݖሻ ൌ
ଶ௥ҧሺ௭ሻ௏ೇሺ௭ሻ

௩
                                                  (A-9) 

v = kinematic viscosity of the air, VV = ventilation velocity. 

The ventilation velocity consists of two components, the mean and the fluctuating velocity 

component (in the case of turbulent suspension Vt). 

௧ܸሺݖሻ ൌ ሻݖഥሺݓ ൅ ݏ݋ሻܿݖ௥ሺݔ3 ቀ
గ
ସ
ቁ                                    (A-10) 

Where the mean terminal fall velocity is given as: 

ഥ߱ሺݖሻ ൌ 1.1 כ 10଻ݎҧሺݖሻଵ.଼                                       (A-11) 

And the fluctuating component: 

ሻݖ௥ሺݔ ൌ  ሻଵ.ଷ଺                                        (A-12)ݖሺݑ0.005

For the case of saltation the formulation follows Pomeroy and Gray (1995): 

௦ܸ ൌ כݑ0.68 ൅  ௧כݑ2.3

The solar radiation absorbed by the snow particle is described by:  

ܵ௣ ൌ ሻଶ൫1ݖҧ௥ሺݎߨ െ ௣൯ሺ1ߙ ൅ ௦ሻߙ ௜ܵ                              (A-13) 

αp = smow particle albedo (assumed to be 0.5) and αs = is the snow cover albedo (assumed to be 0.8).  

Si = the incoming solar radiation and follows Liston (1995): 

௜ܵ ൌ  (A-14)                                               ߱݊݅ݏΥכܵ
S*= solar irradiance at the top of atmosphere (1370 W/m²), Υ = net sky transmissivity, sin ω = solar elevation 
angle.  
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II) Equations used for the subscale snow model used in chapter 6 

The following section will present the subscale snow distribution model presented by Liston 

(2004). The model was used in chapter 6 for describing the subscale snow heterogeneity of 

the snow cover.  

If the snow free and the snow covered fractions are known, the per grid cell energy balance 

can be weighted linearly proportionally to the percentages of snow free and snow covered 

fractions (eq 38): 

 
ܳ௚௔ ൌ  Γܳ௦௖ ൅ ሺ1 െ Γሻܳ௦௙                                                    (Eq. 38) 

Estimation of the grid averaged fluxes Qga  = Qsc = Snow covered flux, Qsf  = snow free flux, Г = snow covered 

fraction. 

The subscale snow distribution is described with a set of formulas based on the works of 

Donald et al (1995), Pomeroy et al. (1998), Faria et al. (2000) and Liston (1999 and 2004). 

Liston (1999) found that the internal grid cell snow water equivalent distribution, the average 

melt rate and the snow covered fraction are interrelated. He has also demonstrated that any of 

the three parameters can be predicted if the other two are known. Equation 38 shows that 

every model cell includes a snow free and a snow covered fraction under melt conditions. The 

two fractions sum to 1 for any pixel:  

 
׬ ݂ሺܦሻ݀ܦ ൅ ׬ ݂ሺܦሻ݀ܦ ൌ 1ஶ

஽೘
஽೘
଴                                                      (Eq. 39) 

Sum of the snow free and snow covered fraction of any grid cell. Dm = grid cell melt rate, ƒ(D) = SWE depth 
probability function. 
 
Thus the snow free fraction can be expressed by:  
 

Γሺܦ௠ሻ ൌ 1 െ ׬ ݂ሺܦሻ݀ܦ஽೘
଴                                                     (Eq. 40) 

Г(Dm) snow covered fraction in dependence of the melt rate, ƒ(D) SWE depth probability function. 
 
According to Donald et al. (1995), Pomeroy et al. (1998) and Faria et al. (2000), snow water 

equivalent depth distributions can be approximated by a two parameter log-normal 

distribution: 

݂ሺܦሻ ൌ   ଵ
஽క√ଶగ

݌ݔ݁ ൜െ ଵ
ଶ
ቂ௟௡ሺ஽ሻିఒ

క
ቃ
ଶ
ൠ                                           (Eq. 41) 

SWE distribution function ƒ(D): D = SWE depth, λ and ζ are distribution parameters (Liston 2004). 
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The description of the first distribution parameter λ is based on Pomeroy et al. (1995):  
 

ߣ ൌ ݈݊ሺߤሻ െ ଵ
ଶ
 ଶ                                                             (Eq. 42)ߦ

Distribution parameter λ: μ = mean SWE depth, ξ distribution parameter. 
 
The second distribution parameter is mainly characterized by a coefficient of variation. Liston 

(2004) defined CV as equal to the ratio of the standard deviation to the mean of the SWE 

depth of a given area. CV modifies the general form of the log-normal distribution (fig. 65a): 

 
ଶߦ ൌ ݈݊ሺ1 ൅  ଶሻ                                                            (Eq. 43)ܸܥ

Distribution parameter ξ: CV = coefficient of variation (Donald et al. 1995) 

The average SWE depth of a grid cell Da under assumption of a certain melt depth Dm is given 

by Donald et al. (1995): 

 
௠ሻܦ௔ሺܦ ൌ

ଵ
ଶ
݁൫ఒାకమ/ଶ൯erfc ቀ୸Dౣିஞ

√ଶ
ቁ െ D୫ΓሺD୫ሻ                              (Eq. 44) 

Average SWE depth of a grid cell Da in dependence on the SWE melt depth Dm: λ and ξ = distribution 
parameters, zDm = eq. 39, ГDm = snow covered fraction in dependence on Dm 
 
where zDm is defined by: 
 

஽೘ݖ ൌ   ୪୬ሺDሻି஛
క

                                                                (Eq. 45) 

zDm is the result of a change in the integration variable from D to z. D = SWE depth, λ and ξ = distribution 
parameters. 
 
Figures65a and 66 can be used to explain the operation of the presented routine. Figure 65a 

shows different log-normal functions which are representative for the sub-scale snow 

distribution of a grid element of e.g. a SVAT model. The area under the curves is 1 in any 

case. Figure 66 shows the shift of the curve in the direction of smaller SWE averages. The 

extent of the shift depends on the melt rates. If the curve intersects the y axis the area below 

of the curve will be reduced. The remaining proportion represents the snow covered fraction 

of the respective model grid.  
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III) Spatial characteristics of MM5 wind fields in dependency of the wind direction. 

This part of the appendix should give an idea about the spatial heterogeneity of the predicted 

MM5 wind fields. All of the presented wind fields were calculated under usage of identical 

input wind speeds (cp. fig 13) of 10 [m/sec] for the 10m MM5 model level and 25[m/sec] for 

the 100hpa level. The resulting differences are due to wind-topography interactions. An 

analysis of the wind fields shows that the maximum wind speeds are reached when the input 

wind direction is around 180 degrees or around 270 degrees respectively. The increased wind 

speeds when using these input wind directions can be decaled by the fact that the highest wind 

speeds are reached if the wind direction is near to, or 90 degrees to the crest orientation which 

is north to south for the main massifs and east to west for the later branches. If this is the case 

modelled wind speeds can reach up to 25 [m/sec]. This is because of the reduced cross section 

the air masses have to pass through if they are forced to overflow the mountains massif. 

Otherwise the wind speed is moderate and only around 6 [m/sec] in maximum. It could be 

also seen that the maximum wind speeds are located in the direct environment of the crests. 

Here, a nonlinear increase of the modelled wind speed can be found. Windward and leeward 

effects are observable in all of the calculated MM5 wind fields. The presented examples show 

how heterogeneous the calculated MM5 wind fields can be under a constant input energy. The 

produced heterogeneity cannot be reproduced by an interpolation routine which was shown on 

the basis of the comparison to the available station measurements.  
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IV) Some impressions of the test-site: 
 

 

Kühroint 

 

Field campaign 
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