
   

 

 

Phenotypic plasticity  

from a predator perspective:  

empirical and theoretical  

investigations 

 

Dissertation  

der Fakultät für Biologie  

der Ludwig-Maximilians-Universität  

München 

 

 

vorgelegt von 

MICHAEL KOPP 

11.2.2003 



   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Erstgutachter: Prof. Dr. Wilfried Gabriel 

Zweitgutachter: Prof. Dr. Sebastian Diehl 

Datum der mündlichen Prüfung: 16. April 2003 



   

 

 

Zusammenfassung 3 

Abstract 5 

General Introduction:  A predator perspective on phenotypic plasticity 7 

Part 1. Trophic size polyphenism in Lembadion bullinum:  
costs and benefits of an inducible offense 9 

1.1 Introduction 9 

1.2 Material and methods 11 

1.3 Results 16 

1.4 Discussion 24 

Part 2. Reciprocal phenotypic plasticity in a predator prey system:   
inducible offenses against inducible defenses? 30 

2.1 Introduction 30 

2.2 Material and methods 31 

2.3 Results 36 

2.4 Discussion 39 

Part 3. Modeling a coevolving predator-prey system with  
reciprocal phenotypic plasticity 44 

3.1 Introduction 44 

3.2 The model 47 

3.3 Results 61 

3.4 Discussion 127 

Conclusions 133 

Acknowledgements 134 

Danksagungen 135 

Literature cited 136 

Curriculum vitae 147 

Lebenslauf 148 

 



Zusammenfassung   

 

3 

Zusammenfassung 

Phänotypische Plastizität ist in Räuber-Beute Beziehungen weit verbreitet. Beuteorga-

nismen setzen induzierbare Verteidigungen ein, um ihre Überlebenschancen in Zeiten 

mit hohem Prädationsrisiko zu verbessern. Räuber können ihrerseits induzierbare An-

griffsmechanismen (trophische Polyphänismen) besitzen und ihren Phänotyp an die 

vorherrschende Beute anpassen. Bisher haben induzierbare Verteidigungen deutlich 

mehr Aufmerksamkeit erhalten als induzierbare Angriffsmechanismen. In dieser Arbeit 

zeige ich drei Gebiete auf, in denen eine „Räuberperspektive“ dazu beitragen kann, un-

ser Verständnis von phänotypischer Plastizität in Räuber-Beute Systemen zu vergrö-

ßern.  

Im ersten Teil beschreibe ich einen induzierbaren Angriffsmechanismus bei dem räube-

rischen Ciliaten Lembadion bullinum: Die mittlere Zellgröße einer genetisch einheitli-

chen Lembadienpopulation nimmt mit der Größe der vorherrschenden Beuteart zu. Die-

ser Größenpolyphänismus kann als das Ergebnis eines Kompromisses zwischen den 

Kosten und Nutzen des induzierbaren Angriffsmechanismus (trade-off) erklärt werden. 

Große Lembadien sind überlegen, wenn es darum geht, große Beute zu überwältigen. 

Demgegenüber erreichen kleinen Lembadien bei Anwesenheit von kleiner Beute höhere 

Zellteilungsraten. Daher sollten induzierbare Angriffsmechanismen dann entstehen, 

wenn Räuber in einer veränderlichen Umwelt leben, in der wichtige Merkmale ihrer 

Beute räumlich oder zeitlich variieren.  

Im zweiten Teil untersuche ich das Zusammenspiel zwischen dem induzierbaren An-

griffsmechanismus von Lembadion und einer induzierbaren Verteidigung. Lembadion 

gibt ein Kairomon (einen chemischen Botenstoff) ab, der Verteidigungen bei mehreren 

Beutearten induziert. Unter anderem löst er bei dem herbivoren Ciliaten Euplotes octo-

carinatus die Bildung seitlicher „Flügel“ aus. Wie ich zeige, kann Lembadion die Wir-

kung dieser Verteidigung verringern, indem er seinen Angriffsmechanismus aktiviert. 

Dies ist eines der ersten bekannten Beispiele für reziproke phänotypische Plastizität in 

einem Räuber-Beute System. Die Gegenreaktion von Lembadion beeinträchtigt die Fit-
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ness der Beute, es konnte aber nicht nachgewiesen werden, dass sie die Fitness von 

Lembadion erhöht. Dennoch diskutiere ich die Hypothese, dass die phänotypische Plas-

tizität in beiden Arten das Ergebnis von (diffuser) Coevolution zwischen Räuber und 

Beute ist.  

Im dritten Teil verfolge ich die obige Idee weiter und entwickle ein mathematisches 

Modell eines Räuber-Beute Systems, in dem Coevolution und reziproke phänotypische 

Plastizität vorkommen und in dem der induzierbare Angriffsmechanismus des Räubers 

eine unzweifelhaft wirksame Gegenanpassung gegen die induzierbare Verteidigung der 

Beute ist. Aus dem Modell ergeben sich drei wesentliche Schlussfolgerungen: Erstens 

kann die induzierbare Verteidigung der Beute die Populationsdynamik stabilisieren. Der 

Einfluss der Gegenanpassung des Räubers ist weniger eindeutig und hängt vom Ver-

hältnis der Kosten und Nutzen des Angriffsmechanismus ab. Zweitens kann die phäno-

typische Plastizität nur dann aufrechterhalten werden, wenn sowohl die Verteidigung als 

auch der Angriffsmechanismus hinreichend effektiv sind. Drittens deuten vorläufige 

Ergebnisse darauf hin, dass ein induzierbarer Angriffsmechanismus gegenüber einem 

konstitutiven (d.h. permanent ausgebildeten) genau dann von Vorteil ist, wenn die Po-

pulationen im Modell Räuber-Beute-Zyklen vollführen. Daraus ergibt sich die Hypothe-

se, dass phänotypische Plastizität als Anpassung an zeitliche Heterogenität entstehen 

kann, die auf der internen Dynamik von Räuber-Beute Systemen beruht.  
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Abstract 

Phenotypic plasticity is common in predator-prey interactions. Prey use inducible de-

fenses to increase their chances of survival in periods of high predation risk. Predators, 

in turn, display inducible offenses (trophic polyphenisms) and adjust their phenotypes to 

the prevailing type of prey. In the past, inducible defenses have received considerably 

more attention than inducible offenses. Here, I point out three areas where taking a 

predator perspective can increase our understanding of phenotypic plasticity in preda-

tor-prey systems.  

In Part 1, I describe an inducible offense in the predatory ciliate Lembadion bullinum: 

Mean cell size in a genetically uniform Lembadion population increases with the size of 

the dominant prey species. This size polyphenism can be explained as the result of a 

trade-off: Large Lembadion are superior in feeding on large prey, whereas small Lem-

badion achieve higher division rates when small prey is available. Consequently, induc-

ible predator offenses may evolve as adaptations to environments where important prey 

characteristics vary over space or time. 

In Part 2, I investigate the interplay of Lembadion’s inducible offense with an inducible 

prey defense. Lembadion releases a kairomone (i.e. an infochemical) that induces de-

fenses in several prey species. For example, in the herbivorous ciliate Euplotes octoca-

rinatus, it triggers the production of protective lateral “wings”. I show that Lembadion 

can reduce the effect of this defense by activating its inducible offense. This is one of 

the first known examples of reciprocal phenotypic plasticity in a predator-prey system. 

While the counter-reaction of Lembadion decreases the fitness of the prey, it could not 

be shown to significantly increase the fitness of Lembadion itself. Nevertheless, I dis-

cuss the hypothesis that phenotypic plasticity in both species is a result of (diffuse) co-

evolution.  

In Part 3, I further pursue the idea of coevolution and develop a mathematical model of 

a coevolving predator-prey pair which displays reciprocal phenotypic plasticity. In this 

model, the inducible offense is a truly effective counter-adaptation to the prey’s de-
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fense. The model yields three main conclusions: First, the inducible prey defense can 

stabilize predator-prey population dynamics. The effect of the inducible counter-offense 

is less clear and depends on the relative magnitude of its costs and benefits. Second, the 

maintenance of phenotypic plasticity requires that both the defense and the offense are 

sufficiently strong. Third, preliminary results suggest that an inducible offense is fa-

vored over a constitutive (permanently expressed) one if and only if the model popula-

tions perform predator-prey cycles. This leads to the hypothesis that phenotypic plastic-

ity may evolve as an adaptation to temporal heterogeneity created by the internal dy-

namics of predator-prey systems. 
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General Introduction:  

A predator perspective on  

phenotypic plasticity  

Organisms living in variable environments can optimize their fitness by showing adap-

tive phenotypic plasticity (Stearns 1989, Pigliucci 2001). Spectacular examples have 

been described in the context of predator-prey interactions. This is not surprising, as 

foraging and predator avoidance have a large impact on fitness, and the presence of 

food or predators may vary greatly over space and time. Therefore, phenotypic plastic-

ity is common in both predators and prey. 

In prey, protective traits that are expressed only in the presence of predators are known 

as inducible defenses. These have been described in all main groups of animals as well 

as in plants, and have become a major study object during recent years (reviewed by 

Tollrian and Harvell 1999a). Inducible defenses may involve changes in a prey’s 

morphology, behavior, life-history, or chemistry. The evolution of inducible defenses is 

favored under the following conditions (Tollrian and Harvell 1999a, p. 5): (1) Predation 

risk is variable, (2) the presence of predators is indicated by a reliable cue, and (3) there 

is a functional trade-off between the benefits and costs of the defense.   

In analogy, offensive traits of predators have been called inducible offenses (Padilla 

2001) if they are expressed only in the presence of certain types of prey. The ability to 

express an inducible offense is frequently referred to as diet-induced or trophic poly-

phenism. Following Padilla (2001), I will use the term polyphenism for discrete as well 

as continuous phenotypic variation, as the difference is not essential for the discussion 

of inducible offenses. Here, I will only consider morphological offenses. Examples have 

been reported from a variety of taxa, including fishes (variation of jaw morphology: e.g. 

Meyer 1987, Mittelbach et al. 1999), amphibians (typical and cannibalistic larval 

morphs: e.g. Collins and Cheek 1983), insects (variation of jaw and head morphology: 
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e.g. Bernays 1986, Greene 1989), crabs (Smith and Palmer 1994), cladocerans (size of 

feeding basket in Leptodora: Abrusán 2003), snails (different radula types: Padilla 

2001), rotifers (trimorphisms in Asplanchna: e.g., Gilbert 1980), and protozoa (induc-

tion of “giants” or “macrostomes”, i.e. large-mouthed morphs: e.g. Williams 1961, 

Giese 1973).  

Compared to inducible defenses, inducible offenses have received considerably less 

attention. Therefore, the aim of the this study is to shed more light on the predator side 

of phenotypic plasticity. In particular, I will focus on the following general hypotheses:  

1. Like inducible defenses, inducible offenses can be discussed in a cost-benefit 

framework. 

2. Inducible defenses and inducible offenses may interact in a  reciprocal fashion. 

3. This reciprocal phenotypic plasticity might be a result of predator-prey coevolution. 

Accordingly, the present work is subdivided into three parts. In Part 1, I describe an 

inducible offense in the predatory ciliate Lembadion bullinum, and I analyze the costs 

and benefits experienced by induced predators. This part is a slightly modified version 

of a publication by Kopp and Tollrian (2003). In Part 2, I present one of the first exam-

ples of reciprocal phenotypic plasticity in a predator-prey system: Lembadion activates 

its offense in response to the inducible defense of one of its prey. Furthermore, I inves-

tigate whether this counter-reaction is adaptive. In Part 3, I develop a mathematical 

model in order to analyze the ecological and evolutionary dynamics of a predator-prey 

system with reciprocal phenotypic plasticity.  
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Part 1. Trophic size polyphenism in  

Lembadion bullinum: costs and  

benefits of an inducible offense 

1.1 Introduction 

In analogy to the conditions favoring inducible defenses (see general introduction), the 

evolution of inducible offenses should be promoted by (1) fluctuations in the quality or 

quantity of available prey, (2) reliable cues indicating the presence of certain prey types, 

and (3) a functional trade-off between the benefits and costs of the offense. However, 

few studies have tested these predictions so far. In particular, the costs of inducible of-

fenses have rarely been studied (e.g., Gilbert and Stemberger 1985, Hewett 1988, Meyer 

1989, Goldman and Dennett 1990, Trowbridge 1991, Robinson et al. 1996, Hampton 

and Starkweather 1998). Here, I describe an inducible offense in the predatory ciliate 

Lembadion bullinum and experimentally demonstrate the cost-benefit trade-off govern-

ing the fitness of the various phenotypes.  

Lembadion (Fig. 1) is a primarily benthic inhabitant of lakes, ponds and slow streams  

(Foissner et al. 1994). It is a raptorial feeding predator of large protists and has its gape 

size limited by the dimensions of a huge, but inflexible peristome (cell mouth). Lem-

badion is well known to elicit inducible defenses in several prey species (see Part 2). In 

addition, Kuhlmann (1993) described that Lembadion can form “giant cannibals”, 

which are induced in dense cultures when alternative food (in this case, Colpidium cam-

pylum) becomes scarce. Under such conditions, a few cells switch to cannibalism and 

delay their division until they are more than twice as large as the “normal” cells which 

they subsequently prey upon. This transformation is reversible: When Colpidium is 

offered again, the giants undergo several rapid divisions and regain the “normal” size.  
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The aim of the present study was two-fold: First, the polyphenism of Lembadion should 

be characterized further. In particular, it is unknown so far whether giant induction re-

quires starvation and cannibalism, or whether enlarged morphs can also be induced by 

the consumption of large non-conspecific prey, as is the case in other phenotypically 

plastic ciliates (e.g., Giese 1973). Therefore, I performed induction experiments, where 

I tried to induce different morphs by raising Lembadion with prey of different size. Sec-

ond, I investigated the benefits and costs for large morphs. Giants apparently are 

adapted to feeding on large prey. On the other hand, the quick reversal of giant forma-

tion suggests that large cells become disadvantaged once small prey is available. To test 

this hypothesis, I performed feeding experiments with various combinations of prey and 

predator size, and I estimated population growth rate of small and large Lembadion 

morphs in the presence of small prey.  

 

Fig. 1: Two individuals of the ciliate Lembadion bullinum (ventral view, anterior end 
to the right). These predators have a huge but inflexible cell mouth (the long “gap” in 
the lower half of each cell), which enables them to ingest prey of almost their own 
size. The length of the lower individual is approximately 140 µm. 
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1.2 Material and methods 

1.2.1 Study organisms 

An initially clonal strain of Lembadion was kindly provided by K. Wiackowsky (Uni-

versity of Krakow, Poland). Lembadion usually reproduce by binary fission at a maxi-

mum rate of about one division per day. Conjugation (sexual recombination) was infre-

quently observed in stock cultures, but never during experiments. Thus, while my Lem-

badion were not strictly clonal, genetic diversity was arguably very low. 

The prey organisms Colpidium campylum, Euplotes octocarinatus and Euplotes aedicu-

latus were kindly provided by H.-W. Kuhlmann (University of Münster, Germany). 

Colpidium kleini were obtained from K. Wiackowsky. 

1.2.2 Stock cultures 

Stock cultures of the different ciliate species were kept in 100 ml evaporation dishes or 

1 l Fernbach flasks at 20°C in the dark. Lembadion were raised in artificial SMB me-

dium (1.5 mM NaCl, 0.05 mM KCl, 0.4 mM CaCl2, 0.05 mM MgCl2, 0.05 MgSO4, 2.0 

mM phosphate buffer, pH 6.8; (Miyake 1981)) with Euplotes octocarinatus, Euplotes 

aediculatus or Colpidium campylum as food. Euplotes were kept in SMB and fed the 

unicellular green alga Chlorogonium elongatum. Chlorogonium was raised in SMC me-

dium (= SMB + 1.25 mM NH4NO3, 15 mM FeCl3, 0.8 mM MnCl2, slightly modified 

after Miyake 1981) at 20°C under constant light and aeration. Colpidium campylum and 

Colpidium kleini were cultured in a medium consisting of SMC + 300 mg yeast extract 

+ 1 “protozoan pellet” (Carolina Biological Supply, Burlington, NC, USA) per l. This 

medium was inoculated with Aerobacter aerogenes and incubated on a shaker for 24 h. 

The resulting bacterial suspension was then inoculated with Colpidium and incubated 

for another 2 or 3 days. Finally, Colpidium were harvested by gentle centrifugation (200 

g, using “pear-shaped” centrifuge tubes with cylindrical bottom) and re-suspended in 

fresh SMB.  
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1.2.3 General methods 

Experiments were generally conducted in 6-well tissue culture plates (with 10 ml wells) 

at 20°C in the dark. Replicates of Lembadion were taken from independent stock cul-

tures. A newly inoculated stock culture was assumed to be independent from its parent 

culture after one week. In experiments 2, 3, and 4, the following standardization proce-

dure was applied to obtain cells with a well-defined nutritional state: An appropriate 

number of well-fed Lembadion with clearly visible food vacuoles were selected from a 

stock culture, transferred to fresh medium and starved for 24 h.  

Measurements of cell dimensions were performed on fixed samples using a computer-

based image analysis system (AnalySIS, Soft Imaging Systems, Münster, Germany) 

connected to a Leitz Orthoplan microscope at 160-fold magnification. Volume of Lem-

badion was estimated as π/6*length*width2, i.e. cells were assumed to be prolonged 

spheroids. Fixation was achieved by addition of glutaraldehyde at a final concentration 

of 2 % (Sherr et al. 1989). 

For the feeding experiments (experiment 3 and 4), prey were live-stained with DAPI 

(see Lessard et al. 1996, Pfister and Arndt 1998). This yields a brightly fluorescing nu-

cleus, which can be easily detected inside the predator’s food vacuoles. To obtain 

stained Euplotes or Colpidium, the cells were incubated with 1 µg / ml DAPI for 2 h. 

After the exposure, Euplotes were filtrated over a 15 µm gauze, whereas Colpidium 

were centrifuged 3 times and subsequently re-suspended in fresh SMB. To allow the 

prey to recover from this procedure, experiments were started not earlier than 1 h after 

the removal of the stain.  

In replicated experimental treatments, measurements of individual cell properties, such 

as length, width, or number of food vacuoles, were generally done on samples of 10 to 

30 cells per replicate. The means from these samples were used for statistical tests, in 

order to avoid pseudoreplication. However, numerical results will be presented as 

means ± standard deviations of the individual data, frequently pooled over all the repli-

cates of a treatment. Statistics were calculated with STATISTICA for Windows 5.1 

(StatSoft, Inc., Tulsa, OK, USA). 
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1.2.4 Experiment 1: Size of Lembadion raised with different prey 

In experiment 1, I investigated the morphological reaction of Lembadion to four differ-

ently sized prey species: Colpidium campylum, Colpidium kleini, Euplotes octocarina-

tus, and Euplotes aediculatus. In the following, the Lembadion morphs induced with 

these prey will be referred to as the C-, K-, O-, and A-form, respectively. 

Each of the four prey species (treatments) was used as food for four Lembadion cultures 

(replicates). Prior to the experiment, the Lembadion had been raised on Euplotes octo-

carinatus. After at least 10 days of cultivation – this time span had been suggested by 

preliminary experiments – 3 samples were taken from each replicate at intervals of two 

days. From each sample, length and width of 30 cells were measured. Mean prey di-

mensions were determined from appropriate samples. The mean of prey length × width 

was computed as an index of prey size or “bulkiness”. 

1.2.5 Experiment 2: Peristome size of  Lembadion raised with different prey 

Experiment 2 was designed to determine the influence of prey size on the anatomy of 

Lembadion’s peristome (cell mouth). I measured peristome length and width both abso-

lutely and relative to cell length and width.  

In this experiment, I applied three prey treatments. Similarly to experiment 1, Lem-

badion were raised for at least 10 days with either Colpidium campylum (C-form, 3 rep-

licates), Euplotes octocarinatus (O-form, 12 replicates) or Euplotes aediculatus (A-

form, 9 replicates). Before fixation, the cells were starved for 24 h as described in the 

general methods section. Sample size per replicate varied between 15 and 30 because 

the peristome can only be measured in cells with a proper orientation on the slide.  

1.2.6 Experiment 3: Feeding rate of small and large Lembadion with large prey 

The results of the previous experiments indicated that large prey induce large-sized 

Lembadion morphs, which possess a large peristome. In the following, I investigated the 

benefits and costs experienced by these large morphs. The benefits were studied in ex-



Part 1: Inducible offense in Lembadion bullinum  Material and methods 

 

14 

periment 3, by estimating the feeding rate of small and large Lembadion feeding on 

large prey.  

In experiment 3a, the C-form (small) and the A-form (large) were fed Euplotes  aedicu-

latus. In experiment 3b, the C-form (small) and the O-form (intermediate) were fed 

Euplotes octocarinatus. In both experiments, treatments with each predator morph were 

replicated three times. Per replicate, around 100 standardized Lembadion of the respec-

tive morph were offered approximately 4000 stained prey in 1 ml of medium. After 1 h 

cells were fixed by addition of glutaraldehyde and the number of fluorescing food vacu-

oles per cell was determined immediately under an epifluorescence microscope at 160-

fold magnification. In addition, length and width of 10 cells per replicate were measured 

for calculation of volume-specific feeding rates (i.e. absolute feeding rates divided by 

mean predator volume).  

1.2.7 Experiment 4: Feeding rate of small and large Lembadion with small prey  

As a test for potential costs paid by large morphs, experiment 4 was designed to study 

the influence of cell size on Lembadion’s success in feeding on small prey. In addition, I 

also aimed to study possible interaction effects with prey density. Therefore, I compared 

the feeding rates of the C- and the A-form at various densities of Colpidium campylum. 

Accordingly, the experiment had a 2 × 4 factorial design: Each of the two predator 

morphs was offered four prey densities, two low ones and two high ones (6.25, 12.5, 

500, and 1250 per ml). Each of the resulting eight treatments was replicated 11 times.  

Preliminary experiments had shown that Lembadion needs some time to “habituate” to a 

new type of prey. Therefore, the usual standardization procedure was extended as fol-

lows: 48 h before the experiment, 200 well-fed cells were selected from each of 11 

stock cultures of both morphs and transferred to 10 ml of fresh medium containing ap-

proximately 2000 Colpidium campylum per ml (6-well tissue culture plates). For the last 

24 hours before the experiment, the cells were starved as usual. Each of the resulting 2 × 

11 cultures of standardized predators (which had reached a final number of at least 400 

cells) was then split into four aliquots and used for one block of replicates spanning the 

four prey densities.  
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Prey were live-stained as described in section 1.2.3. The experiments were carried out 

in 50 ml glass vessels. The vessels were placed horizontally into a slowly rotating 

“plankton wheel” (~35 rounds per h) to ensure homogenous mixing without turbulence. 

After 1 h, the Lembadion were filtered through a 15 µm gauze, fixed with glutaralde-

hyde, and the number of fluorescing food vacuoles per cell was determined immedi-

ately. Additionally, length and width of 30 cells from the 6.25 prey per ml treatment of 

each block (see above) were measured for calculation of volume-specific feeding rates 

(i.e. absolute feeding rates divided by mean predator volume). The data were analyzed 

with non-parametric two-way ANOVAs (Scheirer-Ray-Hare extension of Kruskal-

Wallis test, Sokal and Rohlf 1995, p. 446).  

1.2.8 Experiment 5: Maximal population growth rate of small and large Lem-

badion with small  prey 

In experiment 5, I investigated how cell size influences the maximal population growth 

rate that Lembadion can attain with small prey. This was achieved by culturing both the 

C-form and the A-form with excess Colpidium campylum as food.  

The results of experiment 1 showed that Lembadion changes its cell size in response to 

a new type of prey. Therefore, it is not possible to measure steady state growth rates of 

the A-form with Colpidium campylum as food. To correct for prey-induced changes in 

mean cell volume, I calculated population growth rates not only for cell number but also 

for total biovolume (i.e. for cell number times mean cell volume). These volume-

corrected population growth rates are the best approximation for steady-state growth 

rates available. The volume-correction applied here should not be confused with the 

calculation of volume-specific feeding rates in experiments 3 and 4.  

I did five replicates for the A-form and six for the C-form. Each replicate was started 

with 100 well-fed Lembadion selected from independent stock cultures, which were 

placed into 10 ml of medium containing approximately 5000 Colpidium campylum per 

ml (day 0). After 24 h, 100 cells were transferred to fresh medium with the same 

amount of prey to continue the experiment (day 1). The rest were counted, fixed and 

measured (length and width) in order to determine the daily population growth rate r 
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and volume-corrected growth rate rvol. This procedure was repeated for 8 days (days 1 

to 8). In the period between day 0 and day 1, the Lembadion were supposed to habituate 

to the experimental conditions. Therefore, the data from day 1 were excluded from the 

analysis. 

1.3 Results 

1.3.1 Experiment 1: Size of Lembadion raised with different prey 

The size of Lembadion remained constant over the three sampling dates and increased 

continuously with prey dimensions. The four prey species induced four distinguishable 

size morphs of Lembadion, which I refer to as the C-, K-, O-, and A-form (Fig. 2). Bio-

metrical data for these morphs and their respective prey are given in Table 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2: Results from experiment 1.  

Mean volume of four Lembadion morphs as a function of mean prey “bulkiness” (= length × width), 
showing the close correlation between predator and prey size. Prey were Colpidium campylum for the C-
form, Colpidium kleini for the K-form, Euplotes octocarinatus for the O-form and Euplotes aediculatus 

for the A-form. Data were pooled over 4 replicates and 3 sampling dates for each prey species. Error bars 
represent standard deviations. For further biometrical data, see table 1.   
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Table 1: Results from experiment 1: Length and width of four Lembadion morphs and the prey they were 

induced with. Data are means ± SD. n is the total number of measured cells (30 cells per sample × 3 sam-
ples per replicate × 4 replicates). 

Lembadion Prey 

 length (µm) width (µm) n  length (µm) width (µm) n 

C-form 100.9 ± 6.48 66.9 ± 5.70 360 C. campylum 59.1 ± 7.71 25.0 ± 4.69 70 

K-form 112.5 ± 6.71 73.6 ± 6.23 360 C. kleini 77.7 ± 14.85 37.4 ± 6.57 190 

O-form 125.5 ± 12.07 77.4 ± 11.81 360 E. octocarinatus 90.1± 6.27 65.6 ± 6.83 90 

A-form 143.1 ± 11.87 82.5 ± 14.77 360 E. aediculatus 124.4 ± 10.70 81.0 ± 10.22 260 

 

Repeated measures ANOVAs showed that prey species had a significant impact on 

mean length, width and volume of Lembadion, whereas there was no significant influ-

ence of time (Table 2). Therefore, the data from the three sampling dates could be 

pooled to yield one mean value per replicate for each parameter.  Using these values, 

there was a very close correlation between mean prey bulkiness (length × width), and 

mean length (R² = 0.96, p < 0.0001, n=16), width (R² = 0.92, p < 0.0001), and volume 

(R² = 0.96, p < 0.001) of the corresponding predator morph.  

1.3.2 Experiment 2: Peristome size of  Lembadion raised with different prey 

The dimensions of the peristome differed between the Lembadion cells from all 3 prey 

treatments (Fig. 3), with both length and width being largest in the A-form and smallest 

in the C-form (Table 3). Cell lengths and widths were similar to those recorded in ex-

periment 1. Relative peristome length (i.e. peristome length divided by cell length) was 

slightly higher in the O- and A-form than in the C-form (C-form: 0.74 ± 0.031, O-Form: 

0.80 ± 0.045, A-form: 0.82 ± 0.036; see Table 3), whereas relative peristome width did 

not differ significantly between the three morphs (C-form: 0.52 ± 0.046, O-form: 0.56 ± 

0.073, A-form: 0.55 ± 0.059; see Table 3). Thus, the peristome changes almost isomet-

rically with cell size. 
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Table 2: Results of repeated measures ANOVAs for experiment 1: The effect of prey species and time on 

mean length, width and volume of Lembadion. 

Mean cell length 

 d.f. Effect MS Effect d.f. Error MS Error F p 

Prey species  3 3866.89 12 8.51 454.60 < 0.001 

Time 2 20.93 24 6.15 3.40 0.0501 

Interaction  6 6.50 24 6.15 1.06 0.415 

Mean cell width 

 d.f. Effect MS Effect d.f. Error MS Error F p 

Prey species  3 498.12 12 10.85 45.89 < 0.001 

Time 2 3.18 24 8.61 0.37 0.695 

Interaction  6 13.99 24 8.61 1.62 0.184 

Mean cell volume 

 d.f. Effect MS Effect d.f. Error MS Error F p 

Prey species  3 1.87 ·  1011 12 2.14 ·  109 87.57 < 0.001 

Time 2 1.66 ·  108 24 1.77 ·  109 0.09 0.911 

Interaction  6 1.30 ·  109 24 1.77 ·  109 0.73 0.628 
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Fig. 3: Results from experiment 2.  

Mean length and width of the peristome 
(cell mouth) in three Lembadion morphs 

(pooled over all replicates). Large prey 
induce predators with large peristomes and, 
therefore, a large gape-size. The C-form 

was raised with Colpidium campylum 
(small prey), the O-form with Euplotes 

octocarinatus (intermediate sized prey) and 

the A-form with Euplotes aediculatus 

(large prey). Error bars represent standard 
deviations. 
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Table 3: Results of overall Kruskal-Wallis H-tests and post-hoc Mann-Whitney U-tests with Bonferroni 

correction (i.e. differences are significant for p < 0.0167)  for experiment 2: The effect of prey species on 
absolute and relative length and width of the peristome (cell mouth) of Lembadion. Relative peristome 
length = peristome length / cell leng (analogous for width). No post-hoc tests were conducted for relative 

peristome width, as the overall H-test did not indicate any significant differences. The C-form was raised 
with Colpidium campylum (small prey), the O-form with Euplotes octocarinatus (intermediate sized prey) 
and the A-form with E. aediculatus (large prey).  

Peristome length 

H = 18.9, p = 0.0001 

Relative peristome length 

H = 7.95, p = 0.0188 

 U p  U p 

C- vs. O-form 0 0.0044 C- vs. O-form 0 0.0044 

C- vs. A-form 0 0.0091 C- vs. A-form 0 0.0091 

O- vs. A-form 0 < 0.0001 O- vs. A-form 44 0.5079 

Peristome width 

H = 14.75, p = 0.0006 

Relative peristome width 

H = 1.96, p = 0.3746 

 U p  U p 

C- vs. O-form 0 0.0044 C- vs. O-form - - 

C- vs. A-form 0 0.0091 C- vs. A-form - - 

O- vs. A-form 11 0.0013 O- vs. A-form - - 

 

1.3.3 Experiment 3: Feeding rate of small and large Lembadion with large prey 

In both experiments, Lembadion raised with one of the Euplotes species achieved sig-

nificantly higher feeding rates than the smaller Lembadion raised with Colpidium cam-

pylum. In particular, the C-form was almost completely unable to feed on Euplotes 

aediculatus.  

In experiment 3a (Euplotes aediculatus as food), the C-form reached a mean feeding 

rate of 0.006 ± 0.010 ingested prey per predator per hour, whereas the A-form ingested 

0.60 ± 0.075 prey items per predator per hour (t-test, p < 0.001). Data are means ± stan-
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dard error (= standard deviation of the means from the 3 replicates). In experiment 3b 

(Euplotes octocarinatus as prey) mean feeding rates were 0.30 ± 0.120 in the C-form 

and 1.37 ± 0.172 in the A-form (t-test, p < 0.001). Calculating volume-specific feeding 

rates (number of prey consumed per h and per 106 µm3 predator volume) yielded quali-

tatively similar results (experiment 3a: C-form 0.047 ± 0.081, A-form 1.24 ± 0.309, p = 

0.003; experiment 3b: C-form 1.98 ± 0.722, A-form 4.46 ± 0.829, p = 0.018). 
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Fig. 4: Results from experiment 4.  

Mean absolute (A) and volume-specific (B) feeding rate of two Lembadion morphs feeding on stained 
Colpidium campylum (i.e. small prey) for 1 h as a function of prey density. Absolute feeding rate is num-
ber of prey consumed per predator per hour. Volume-specific feeding rate is number of prey consumed 

per 106 µm3 predator volume per hour. Dots are means from the 11 replicates, whereas bars show the 
grand mean for all replicates. Although the large A-form always consumed significantly more prey than 
the small C-form, it consumed less prey per unit volume. This is evidence that the A-form suffers fitness 
costs which become apparent in the presence of small prey. See text for statistical an alysis. 
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Experiment 4: Feeding rate of small and large Lembadion with small prey  

Both predator type and prey density had a significant effect on absolute as well as vol-

ume-specific feeding rates, with no significant interactions between the two factors (ab-

solute feeding rates: predator type H = 6.95, p = 0.008; prey density H = 70.35, p < 

0.0001; interaction H = 1.96, p = 0.58; volume-specific feeding rates: predator type H = 

9.48, p = 0.002; prey density H = 99.20, p < 0.0001; interaction H = 0.97, p = 0.81; see 

Fig. 4). At all prey densities, absolute feeding rates were higher in the A-form. Volume-

specific feeding rates, however, were higher in the C-form. This is because mean feed-

ing rates of the two morphs differed only by a factor of 1.38 (averaged over the four 

prey densities), whereas their mean volume differed by a factor of 2.38 (mean volume 

of the A-form: 554 ± 126· 10³ µm³; mean volume of the C-form: 233 ± 47· 10³ µm³). 

Both measures of feeding rate increased with prey density and nearly leveled off at 

1250 prey per ml.  

1.3.4 Experiment 5: Maximal population growth rate of small and large Lem-

badion with small prey 

Population growth rates for both cell number (r) and total biovolume (volume-corrected 

growth rates rvol) were significantly higher in the C-form than in the A-form (Table 4, 

significant effects of predator morph). These differences remained constant over the 

course of the experiment (non-significant interactions between time and predator 

morph, reflecting the parallel graphs in Fig. 5 A). Although growth rates varied signifi-

cantly over time (significant time effects), there was no consistent (increasing or de-

creasing) trend, but merely fluctuations around some constant base level.  

In the course of the experiment, the volume of the C-form remained more or less con-

stant, whereas the volume of the A-form decreased considerably but did not reach the 

level of the C-form (Fig 5 B). This is reflected by a significant effect of the interaction 

between time and predator morph on mean predator volume (Table 4).  
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Fig. 5: Results from experiment 5.  

A) Daily volume-corrected growth rates rvol (means ± SD) for the C-form (solid dots) and the A-form 
(empty dots) when fed with excess Colpidium campylum for a period of 8 days; B) mean volume of the 

two morphs over time (means ± SD of pooled individual data from all replicates); The A-form consis-
tently grows slower than the C-form. This difference does not change over time, although the volume of 
the A-form steadily decreases. Our results indicate a volume-independent cost for large morphs. For sta-
tistical analysis, see Table 4. 
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Table 4: Results of repeated measures ANOVAs for experiment 5: the effect of Lembadion morph and 

time on population growth rate r, volume-corrected population growth rate rvol and mean cell volume. 

Data for mean cell volume have been log-transformed before the analysis. 

Population growth rate r 

 d.f. Effect MS Effect d.f. Error MS Error F p 

Lembadion morph  1 0.16 9 0.01 28.56 0.0005 

Time 6 0.03 54 0.00 6.75 < 0.001 

Interaction  6 0.01 54 0.00 1.38 0.240 

Volume-corrected population growth rate rvol 

 d.f. Effect MS Effect d.f. Error MS Error F p 

Lembadion morph  1 0.55 9 0.01 105.31 < 0.001 

Time 6 0.11 54 0.01 15.28 < 0.001 

Interaction  6 0.01 54 0.01 1.46 0.209 

Mean cell volume 

 d.f. Effect MS Effect d.f. Error MS Error F p 

Lembadion morph  1 6.05 9 0.01 1011.87 < 0.001 

Time 7 0.04 63 0.00 13.97 < 0.001 

Interaction  7 0.11 63 0.00 38.30 < 0.001 
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1.4 Discussion 

1.4.1 An inducible offense 

My results show that Lembadion bullinum displays a prey-induced size polyphenism, 

that is it is able to express an inducible offense. Moreover, the polyphenism is continu-

ous. In other words, Lembadion is able to gradually adjust its size to the size of its prey: 

the larger the prey, the larger the predator (Fig. 2). This adjustment involves an isomet-

ric change in the dimensions of the peristome (cell mouth) and, thus, of gape-size (Fig. 

3). By raising Lembadion with four differently sized prey species I obtained four distin-

guishable morphs or phenotypes, which I termed the C-, K-, O- and A-form, respec-

tively. The size distributions of these morphs overlap widely. Thus, the morphs are not 

qualitatively different, but merely differ in the average expression of a phenotypically 

plastic trait, that is size. Mean size of a morph is stable as long as the size of the domi-

nant prey does not change (Table 2). Indeed, cultures of the various morphs can be 

maintained for months (personal observation). Continuous polyphenisms similar to that 

of Lembadion have been reported from Onychodromus indica (Kamra and Sapra 1994), 

Stylonychia mytilus (Giese and Alden 1938), Blepharisma americanum (Giese 1973), 

and Didinium nasutum (Hewett 1980). 

The “giant cannibals” described by Kuhlmann (1993, see introduction, section 1.1) can 

be interpreted as part of Lembadion’s continuous polyphenism. I regularly found giants 

in my stock cultures, too. Generally, they were smaller than the A-form (personal ob-

servation), which is in accordance with their feeding on smaller prey (starved C-form 

conspecifics are smaller than Euplotes aediculatus). Thus, they fit neatly into the con-

tinuum shown in Fig. 2, and do not appear to be qualitatively different from other 

morphs. I conclude that “giants” are simply the morph adjusted to feeding on small con-

specifics. Trophic polyphenisms are frequently coupled with cannibalism, in protozoa 

(reviewed in Giese 1973, Waddell 1992, Ricci and Banchetti 1993) and elsewhere 

(Gilbert 1980, Collins and Cheek 1983). 

In the following, I will discuss the inducible offense of Lembadion within the frame-

work of costs, cues, and environmental variability. Thereby, I assume that the smallest 
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Lembadion morph, the C-form, is “normal” or “non-induced”, whereas all other morphs 

are “induced” to varying degrees.  

1.4.2 Benefits and costs 

The induced large cell size of Lembadion must be expected to have benefits as well as 

costs. Without benefits, it would not be adaptive. Without costs, it should be expressed 

permanently. This trade-off between benefits and costs has been investigated in experi-

ments 3 to 5.  

The benefit for large morphs is the ability to consume large prey, which leads to an ex-

pansion of the utilized food range. The large A-form can feed on Euplotes aediculatus, 

which for the small C-form is virtually inaccessible (experiment 3a). Similarly, the in-

termediate O-form is much more successful than the C-form in capturing Euplotes octo-

carinatus (experiment 3b). These results are most easily explained as an effect of gape 

size (experiment 2, Fig. 3). Similar “gape size offenses” have been reported from other 

protozoa (Giese and Alden 1938, Williams 1961, Giese 1973, Hewett 1980, Wicklow 

1988, Gomez-Saladin and Small 1993, Ricci and Banchetti 1993, Kamra and Sapra 

1994) and the rotifer Asplanchna (Gilbert 1980).  

Costs paid by large morphs should become apparent in the presence of small prey, 

since, under these conditions, large Lembadion regularly transform to small morphs. 

Furthermore, preliminary experiments indicate that with a mixture of two prey species, 

Lembadion always adjusts its size to the smaller one (personal observation). My discus-

sion will focus on demographic costs, that is I assume that Lembadion’s fitness can be 

measured in terms of population growth rate r. This assumption seems justified because 

protozoa generally live in variable environments (Taylor and Berger 1980, Fenchel 

1982) that select for “r-strategists” specialized on rapid growth and fast exploitation of 

food resources. While r was determined directly in experiment 5, it should be also 

closely linked to the volume-specific feeding rates measured in experiment 4. 

Experiment 4 was designed to investigate the influence of cell size on Lembadion’s suc-

cess in capturing small Colpidium campylum. At all prey densities, the A-form achieved 

higher absolute feeding rates than the C-form, but lower volume-specific ones (Fig. 4). 
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In other words, the effect of their larger gape-size did not fully compensate for their 

increased cell volume. Volume-specific feeding rates should be roughly proportional to 

population growth rate r, since gross growth efficiency (yield) in protozoa is generally 

found to be independent of volume (Finlay and Fenchel 1996). In contrast to absolute 

feeding rates, volume-specific feeding rates reflect that large cells generally need more 

food than small cells, due to their higher demands of energy for growth and reproduc-

tion. Certainly, any extrapolation from short-term feeding experiments to long-term 

fitness consequences must be applied with care. In particular, my estimate of cell vol-

ume is quite rough and it is unknown how volume influences metabolic rates. Neverthe-

less, lacking more specific information, volume-specific feeding rates can serve as a 

useful first approximation to fitness (e.g. Goldman and Dennett 1990, Finlay and 

Fenchel 1996). Therefore, the results from experiment 4 indicate that the A-form ex-

periences costs in the presence of small prey.  

The mechanism leading to these costs probably differs depending on prey density. At 

low prey densities, the predators did not become satiated, and their (absolute) feeding 

rates are proportional to “success rate” (i.e. the gradient at the origin of a typical type II 

functional response curve, Jeschke et al. 2002), which is a measure of their efficiency in 

attacking and capturing prey. Volume-specific success rate might be decreased in large 

cells because they have an unfavorable ratio of peristome area to volume. Costs via de-

creased foraging efficiency with alternative prey have also been reported for some other 

inducible offenses (Ehlinger and Wilson 1988, Hewett 1988, Meyer 1989, Ehlinger 

1990, Goldman and Dennett 1990, Trowbridge 1991, Thompson 1992, Hampton and 

Starkweather 1998) 

At high prey densities, almost all predators are “digestion-limited” (Jeschke et al. 2002), 

that is their feeding rate is limited by the time needed to digest a single prey item and 

the number of prey items that can be digested simultaneously (“gut capacity”). Since the 

duration of the trials was too short for prey to become digested (prey items inside food 

vacuoles looked still almost intact; personal observation), feeding rates in the high prey 

density treatments of experiment 4 are basically a measure of gut capacity. Because the 

“gut” of a ciliate simply is its cytoplasm, my results show that, for some unknown rea-

son, food vacuoles are packed more loosely into large Lembadion cells. Under the as-

sumption that digestion time for one food vacuole is not smaller in large morphs than it 
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is in small ones, this will lead to consistently lowered volume-specific feeding rates in 

large morphs also over longer time scales (i.e. when feeding rate is determined by an 

equilibrium of ingestion and digestion).  

Finally, experiment 5 yielded direct evidence that large morphs suffer demographic fit-

ness costs. When both the C- and the A-form were cultured with excess Colpidium 

campylum, the A-form attained significantly lower population growth rates r. This result 

also holds true for volume-corrected population growth rates rvol, which take into ac-

count that the mean size of the A -form decreased over the course of the experiment. The 

mechanism behind these costs may be found in the looser packing of food vacuoles in-

dicated by experiment 4. Again, however, this extrapolation can only be tentative. In 

any case, the mechanism does not seem to be directly linked to cell volume, but rather 

to some aspect of physiology: Although, over the course of the experiment, the differ-

ence in cell volume between the two morphs decreased roughly by a factor of 3 (Table 4 

and Fig. 5 B), the difference in rvol remained constant (non-significant interaction be-

tween predator type and time, see Tables 2, 3 and Fig. 5 A). This indicates that readjust-

ing the cell physiology to a new prey species requires more time than the mere change 

in cell size. Costs in terms of lowered population growth rate have also been reported 

for large morphs of Didinium nasutum (Hewett 1988), and theoretically predicted for 

the “campanulate” morph of Asplanchna silvestrii (Gilbert and Stemberger 1985).  

In summary, expressing its inducible offense by increasing in cell size is advantageous 

for Lembadion when only large prey is present. Due to their increased gape-size, large 

morphs can exploit resources that are inaccessible to small morphs. With small prey, in 

contrast, large morphs suffer costs, as they attain lower volume-specific feeding rates 

(though higher absolute ones) and a lower maximal population growth rate. These costs 

can be characterized as environmental costs (Tollrian and Harvell 1999b) because they 

only act in a specific environment (i.e. when the large morph faces small prey). How-

ever it cannot be ruled out, that there are additional allocation costs (Tollrian and Har-

vell 1999b) for the production and operation of large cells.  
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1.4.3 Cues 

The induction of offenses requires cues that indicate various types of prey. It is not clear 

how Lembadion “measures” prey size. To my knowledge, this question has not yet fully 

been answered for any other protozoan predator with a continuous size polyphenism, 

either. Since Lembadion reacts to a physical property of prey (i.e. size), this reaction 

need not be species-specific. Therefore, the identification of prey via chemical cues (see 

e.g. Buhse 1967, Lennartz and Bovee 1980, Lennartz 1986, Gomez-Saladin and Small 

1993, Smith-Somerville et al. 2000) appears rather unlikely. Much more parsimonious 

would be the use of mechanical cues. This hypothesis is in accordance with Kuhlmann’s 

(1993) finding that the induction of giants relies on direct cell-to-cell contacts. In Oxy-

tricha bifaria, giant formation is triggered by the energy of collisions with potential 

prey (Ricci et al. 1991). Yet, Kuhlmann did not find evidence for a similar mechanism 

in Lembadion. Thus, it seems most plausible to us that Lembadion “measures” prey size 

using a mechanical cue that is directly linked to the feeding process.  

Once a change in prey size has been determined, transformation is initiated and predator 

size readjusted. Although I did not explicitly measure the rate (speed) of transformation, 

conclusions from of my results combined with the findings of Kuhlmann (1993) give 

rise to some interesting speculations, which might warrant further investigation. The 

formation of large morphs appears to be a one-step process. According to Kuhlmann, 

giant cannibals appear spontaneously in starving cultures and gain their final size within 

one generation (though only a few cells are lucky enough to swallow a large prey item 

in the first place). In contrast, the transformation from large to small morphs is effectu-

ated via multiple cell divisions and, thus, takes several generations. In experiment 5, 

transformation of the A-form fed Colpidium campylum was not fully completed after 8 

days (about 7.6 generations). This appears very slow, and may in part be explained by 

the ad libitum food conditions applied in this experiment, as in many protozoans, in-

cluding Lembadion (personal observation), cell size is positively correlated with food 

concentration (see references given in Zalkinder 1979). In experiment 1, all transforma-

tions seem to have been completed within 10 days. Kuhlmann reports that most “gi-

ants”, when fed Colpidium campylum, regain the size of “normal” cells (C-form) within 

2 or 3 days, but for some of them, the transformation may last 5 to 10 days. Taken to-

gether, these findings suggest that the formation of large morphs might be faster than 
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that of small ones. The rate of transformation might also depend on environmental con-

ditions such as food concentration. A slow, “prudent” reduction of cell size might be 

adaptive, as the risk from having the wrong morphology is greater for small cells (star-

vation) than for large ones (non-lethal demographic costs).  

1.4.4 Environmental variability  

Like other examples of phenotypic plasticity (Stearns 1989, Tollrian and Harvell 

1999a), inducible offenses can be discussed as adaptations to a variable environment, in 

particular with fluctuating food supply. While the microenvironment of Lembadion has 

not yet been the subject of any detailed field study, protozoa are generally found to live 

a “feast and famine” existence (Fenchel 1982), to which they have evolved numerous 

adaptations (apart from trophic polyphenisms e.g., high starvation resistance (Fenchel 

1982, Lynn et al. 1987), swarmer phenotypes (Nelsen and Debault 1978, Salt 1979) or 

encystation (see De Puytorac 1984)). An essential adaptation to fluctuating food supply 

is the ability to rapidly and efficiently exploit ephemeral food patches. This might be the 

reason why the highly efficient and rapidly growing small morphs are preferred once 

small prey is available in sufficient concentration. In the absence of small prey, trans-

formation to a large morph enables Lembadion to switch to alternative food sources. A 

special case of this strategy is the use of cannibalism as a “life-boat” mechanism (van 

den Bosch et al. 1988). Conspecifics are likely to be abundant after a rich food patch 

has been depleted. In summary, its continuous polyphenism allows Lembadion to fine-

tune its morphology to the prevailing environmental conditions. The evolution of induc-

ible predator offenses can be expected in situations where important prey characteristics 

vary with time or space and might be more common than generally expected. 
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Part 2. Reciprocal phenotypic plasticity 

in a predator prey system:  

inducible offenses against  

inducible defenses? 

2.1 Introduction 

Studies on phenotypic plasticity in species interactions have almost exclusively focused 

on one-sided events. In predator-prey relationships, researchers have described numer-

ous examples of inducible defenses in prey and fewer cases of inducible offenses (diet-

induced trophic polyphenisms) in predators (see citations in the general introduction). 

However, the interplay between inducible defenses and offenses remains largely unstud-

ied. Notable exceptions come from plant-herbivore systems, where plants can induce 

chemical defenses in response to herbivory (reviewed in Karban and Baldwin 1997), 

and herbivores may counter these defenses by activating detoxification mechanisms 

(Snyder and Glendinning 1996, Bernays and Chapman 2000) or expressing alternative 

digestive enzymes (Bolter and Jongsma 1995, Jongsma and Bolter 1997,  see Karban 

and Agrawal 2002 for a general review of offensive traits in herbivores). Also, behav-

ioral ecologists have started to investigate patch-selection games between predator and 

prey (Alonzo 2002, Lima 2002 and references therein). Finally, in some intraspecific 

interactions, environmentally induced cannibalistic morphs elicit morphological 

(Wicklow 1988) or behavioral (Chivers et al. 1997 with further references) defenses in 

their conspecific prey. In a recent review, Agrawal (2001) argues that such “reciprocal 

phenotypic changes in ecological time” (“ecological arms races”) might be more com-

mon than generally expected. He points out that phenotypic plasticity, as opposed to or 

in addition to fixed adaptations, is a likely outcome of coevolution. Adler and Grün-

baum (1999) as well as Lima (2002) argue that the study of reciprocal phenotypic plas-
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ticity promises new insights into the ecology and evolution of predator-prey interac-

tions. 

The system Lembadion bullinum – Euplotes octocarinatus provides an excellent oppor-

tunity for the study of reciprocal phenotypic plasticity. Both species are known to dis-

play morphological plasticity in predation-related traits. In Part 1, I have shown that 

Lembadion can express an inducible offense – an increase in cell size and gape size – 

when confronted with large prey. In addition, Lembadion elicits inducible defenses in 

several prey species (Kuhlmann and Heckmann 1985,  for review see Wicklow 1997,  

and Kuhlmann et al. 1999). In the herbivorous ciliate Euplotes octocarinatus, a kairo-

mone (info-chemical) released from Lembadion’s cell surface (Peters-Regehr et al. 

1997) induces the production of protective lateral “wings” (Kuhlmann and Heckmann 

1985), which cause the normally ovoid prey cells to adopt an almost circular shape. 

These wings inhibit ingestion by Lembadion and are also effectively employed against 

other gape-limited predators (Kuhlmann and Heckmann 1994).  

Here, I will test the hypothesis that the inducible offense of Lembadion can act as a 

counter-adaptation to the inducible defense of Euplotes octocarinatus. I have performed 

an induction experiment, where I induced a larger predator size by offering defended 

prey, and I have tested whether these induced predators can overcome the prey’s de-

fense. I will discuss whether phenotypic plasticity in both species can be viewed as a 

result of predator-prey coevolution.  

2.2 Material and methods 

For stock cultures, cultivation and general methods, see Part 1, section 1.2. 

2.2.1 Cultivation of defended prey 

Defended Euplotes octocarinatus were induced by co-culturing them with the predatory 

turbellarian Stenostomum sphagnetorum (raised with Chlorogonium) under conditions 

of abundant food. Stenostomum induces the same morphological reaction in Euplotes as 
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does Lembadion (Kuhlmann and Heckmann 1985) but can be much more easily sepa-

rated from the ciliates after exposure. 

2.2.2 Size experiment with induced versus non-induced prey 

The aim of the first experiment was to study the morphological reaction of Lembadion 

to the  inducible defense of Euplotes octocarinatus. Six replicated cultures of Lem-

badion were fed daily with defended prey, whereas six control cultures received unde-

fended prey. After two weeks, 20 well-fed cells (containing visible food vacuoles) from 

each culture were subjected to starvation for 24 h (for better standardization) and subse-

quently fixed and measured. Measurements included cell length, cell width, and length 

and width of the cell mouth (peristome).  

Undefended prey employed in this experiment averaged 82.1 ± 6.61 µm in length and 

50.0 ± 5.21 µm in width (n = 60), whereas defended prey were 102.4 ± 10.52 µm long 

and 78.2 ± 9.81 µm wide (n = 60; t-test on means of three replicates with 20 measure-

ments each: d.f. = 4, p < 0.001 for both length and width). 

In Part 1, I have termed Lembadion raised on undefended Euplotes octocarinatus the O-

form, and I have shown that these predators display an intermediate expression of the 

inducible offense (i.e. they are of intermediate size). However, as they represent the 

smallest (least induced) morph in this part, I will now refer to them as the “normal” or 

“non-induced” morph, and to Lembadion raised on defended Euplotes octocarinatus as 

the “induced” morph. While this terminology is slightly inaccurate, it greatly simplifies 

discussion.  

2.2.3 Feeding experiments 

Two short-term feeding experiments were designed to test whether a potential counter-

reaction of Lembadion is effective in overcoming the induced defense of Euplotes octo-

carinatus. In short, I measured the feeding rate of Lembadion raised with defended and 

non-defended Euplotes octocarinatus, respectively. The duration of the feeding trials 

was chosen such that the predators did not become satiated (i.e. the vast majority did not 
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consume more than one prey item, although, given enough time, they can easily ingest 

several; personal observation). Therefore, feeding rate can be interpreted as a measure 

of the predator’s efficiency in hunting a particular prey, which is an important compo-

nent of fitness.  

Since raising Lembadion with induced Euplotes octocarinatus (as in the size experi-

ment) is very laborious, I instead used non-induced Euplotes aediculatus as a substitute 

food to obtain induced predators, because non-induced Euplotes aediculatus are similar 

in size to induced Euplotes octocarinatus. This procedure is justified, as Lembadion 

most likely reacts only to prey size, not to particular prey species (see Part 1, section 

1.4.3). Furthermore, preliminary experiments had shown that the morphological reac-

tions of Lembadion to these two types of prey are similar (size of Lembadion receiving 

Euplotes aediculatus as food: length 143.0 ± 11.87 µm, width 82.5 ± 14.77 µm (n = 

360); with defended Euplotes octocarinatus as food: length 140.5 ± 11.16 µm, width 

84.8 ± 14.05 µm (n = 360); multivariate F-test (ANOVA) on means of four replicates: p 

> 0.13). Therefore, Lembadion raised on non-induced Euplotes aediculatus (the A-form 

in the terminology of Part 1) will also be called “induced”.  

Lembadion were obtained from independent stock cultures for each replicate. Well-fed 

cells with visible food vacuoles were selected 24 h before the experiments and starved 

in food free medium until exposure to the prey. Subsamples of both predators and prey 

were measured before the experiments. 

In contrast to the procedure described in section 1.2.3, the concentration of fixative used 

in the feeding experiments was only 0.25 %, which caused the cells to appear shorter 

and wider than with the usual 2 %. Therefore, the size data from the feeding experi-

ments should not be compared directly to those from the previous experiment. For the 

future, I strongly recommend the 2 % concentration.  

2.2.4 Feeding experiment 1 

The first feeding experiment had a 2 × 2 factorial design with two types of prey (in-

duced vs. non-induced), two types of predator (induced vs. non-induced), and 8 repli-

cates per treatment. In each trial, 100 Euplotes were offered to 100 Lembadion in an 
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individual well of a 12-well tissue culture plate containing 1 ml of medium. After 20 

min, feeding was stopped by addition of glutaraldehyde, and the remaining Euplotes 

were counted. I calculated both the absolute feeding rate (number of prey consumed per 

predator per hour) and the volume-specific feeding rate (absolute feeding rate divided 

by mean predator volume).  

Undefended Euplotes octocarinatus employed in the experiment had a mean length of 

80.2 ± 9.78 µm and a mean width of 54.0 ± 7.82 µm (n = 250), whereas the mean length 

of defended Euplotes octocarinatus was 98.4 ± 9.31 µm and their mean width 79.2 ± 

9.97 µm (n = 200). 

2.2.5 Feeding experiment 2 

In the second feeding experiment, I used only defended prey and offered them to either 

induced or non-induced Lembadion. In addition to comparing the mean feeding rates of 

the two predator morphs, this experiment had the aim of assessing how individual feed-

ing rates of single predators are influenced by predator size (cell length and width). This 

was achieved by the use of fluorescently labeled prey, which also allowed the use of 

much higher prey densities than in the previous experiment.  

In an attempt to further standardize initial conditions, both predator morphs were fed 

approximately 1300 non-induced Euplotes octocarinatus per ml during the last 48 h 

leading up to the starvation period preceding the trials. This caused a reduction in the 

size of the induced morph, but the difference to the normal morph remained highly sig-

nificant (see results). Fluorescent live-staining of prey was accomplished as described in 

section 1.2.3. 

Each treatment was replicated 11 times. I stained 11 cultures of independently raised 

and induced Euplotes octocarinatus, divided them into two aliquots each and used each 

pair of aliquots for one pair of replicates (induced and non-induced predator). In each 

trial, approximately 4000 Euplotes octocarinatus were offered to around 100 Lem-

badion in 1 ml of medium using 6-well tissue culture plates. For each predator, I re-

corded length, width, and the number of fluorescing food vacuoles. The induced prey 
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employed in the experiment averaged 98.5 ± 9.74 µm in length and 78.9 ± 7.70 µm in 

width (n = 1100). 

To analyze the relationship between cell dimensions and individual feeding rate I used 

multiple logistic regression. For each treatment, data from all replicates were pooled 

together. Length and width were entered as independent variables. The logistic regres-

sion model then predicts the probability that a cell of given dimensions will consume 

one or more prey items during the experiment. Pooling the classes with one or more 

consumed prey is a negligible simplification, since less than 4 % of the predators con-

sumed more than one prey. 

 

Width (µm)

50 60 70 80 90 100

L
en

g
th

 (
µm

)

100

120

140

160

180
A

Peristome width (µm)

20 25 30 35 40 45 50 55 60

P
er

is
to

m
e 

le
n

g
th

 (
µm

)

80

100

120

140

160 B

Fig. 6: The morphological reaction of 
Lembadion bullinum to the inducible 

defense of its prey Euplotes octocari-
natus.  

The inducible defense of Euplotes 

octocarinatus induces an increase in 
the cell size of Lembadion (i.e. Lem-

badion expresses an inducible of-
fense). The figures show morphomet-
ric data of two Lembadion morphs: A) 

cell dimensions and B) dimensions of 
the cell mouth (peristome). The non-
induced Lembadion morph (filled 

circles) was raised on undefended 
prey, whereas the induced morph 
(open circles) was raised on defended 
prey. 
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2.3 Results 

2.3.1 Size experiment with induced versus non-induced prey 

Feeding on defended prey induced Lembadion to undergo a transformation towards in-

creased cell sizes: Lembadion raised on defended Euplotes octocarinatus were signifi-

cantly larger and had a larger peristome than control cells raised on undefended prey 

(Fig. 6, Table 5). In both morphs, cell length was positively correlated with peristome 

length (non-induced morph: R² = 0.81, induced morph: R² = 0.88, both p < 0.001), and 

cell width was positively correlated with peristome width (non-induced morph: R² = 

0.47, induced morph: R² = 0.39, both p < 0.001).  

 

 

 

 

 

 

 

 

 

 

2.3.2 Feeding experiment 1 

Both the defense of the prey and the offense of the predator had a significant effect on 

absolute feeding rate of Lembadion, with no significant interaction between the two 

factors (Fig. 7 A, Table 6). Undefended Euplotes octocarinatus were more vulnerable to 

predation than defended ones, and induced Lembadion consumed more prey than did 
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Fig. 7: Effect of Lembadion’s counter-

reaction to the inducible prey defense 
– feeding rates of normal and induced 
Lembadion bullinum preying upon 

defended and undefended Euplotes 

octocarinatus in feeding experiment 1 
(means ± SD of eight replicates):  

A) absolute feeding rates (ingested 
prey per predator per hour) and B) 

volume-specific feeding rates (ingested 
prey per 106 µm3 predator volume per 
hour). The offense of Lembadion in-

creased absolute feeding rate, but had 
no significant influence on volume-
specific feeding rate. In contrast, the 

defense of Euplotes decreased both 
absolute and volume-specific feeding 
rate. See Table 5 for statistical analy-
sis. 
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non-induced ones. However, the offense of Lembadion only partially offset the defense 

of Euplotes octocarinatus: The number of defended prey captured by the induced 

morph was lower than the number of undefended prey captured by the non-induced 

morph. Volume-specific feeding rate was influenced significantly only by the defense 

of the prey, not by the offense of the predator (Fig. 7 B, Table 6; i.e. the effect of the 

offense on absolute feeding rate was not large enough to overcompensate for the in-

crease in predator volume). Non-induced Lembadion were on average 120.0 ± 9.78 µm 

long and 73.4 ± 7.52 µm wide (n = 240). The corresponding values for induced preda-

tors were 139.6 ± 10.91 for length and 84.1 ± 8.66 µm for width (n = 240).  

2.3.3 Feeding experiment 2 

In contrast to the previous experiment, feeding experiment 2 showed hardly any differ-

ence between absolute feeding rates of the two morphs: Non-induced Lembadion 

reached 0.21 ± 0.080 ingested prey per predator per hour, whereas induced predators 

achieved a value of 0.23 ± 0.120 (paired t-tests on the replicate means, d.f. = 10, p > 

0.45). Similarly, there was no significant difference for volume-specific feeding rates 

(non-induced morph 4.51 ± 1.774 ingested prey per 106 µm3 predator volume per hour, 

induced morph 4.21 ± 1.821; paired t-test, d.f. = 10, p > 0.45).  

Table 5: Morphometric data for  the normal and induced morph of Lembadion. The normal 

morph was raised with undefended E. octocarinatus as prey, and the induced morph was 
raised with defended E. octocarinatus. Data are means ± standard deviations from the pooled 
data sets in µm (n = 120). t-Tests were done on the mean values from six replicates. 

 Normal morph Induced morph t10 p 

Length  128.5 ±  11.77 159.1 ± 12.59 10.70 < 0.001 

Width 71.7 ± 7.63 80.3 ± 6.64 4.87 0.001 

Peristome length 100.6 ± 9.52 132.1 ± 10.12 16.27 < 0.001 

Peristome width 36.8 ± 4.59 43.9 ± 4.09 5.95 < 0.001 
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For both morphs, individual feeding rate was positively affected by cell width and nega-

tively affected by cell length (Table 7). The size difference between the two morphs was 

less than in the previous experiments (probably due to the pre-feeding of both morphs 

with non-induced Euplotes octocarinatus, see material and methods), but still highly 

significant. The non-induced cells averaged 129.6 ± 8.54 µm in length and 78.1 ± 7.66 

µm in width, whereas the induced ones reached a mean length of 140.1 ± 11.22 µm and 

a mean width of 83.5 ± 8.76 µm.  

 

 

Table 6: Results of ANOVA on the effects of predator and prey type on absolute 

and volume-specific feeding rate in feeding experiment 1. Post-hoc comparisons 
for the absolute feeding rates using the Student-Neumann-Keuls test indicate sig-
nificant pairwise differences between all treatments. 

Absolute feeding rate 

 d.f. Effect MS Effect F p 

Prey defense 1 5.556 102.048 < 0.001 

Predator offense 1 1.242 22.805 < 0.001 

Interaction  1 0.007 0.135 0.716 

Error 28 0.054   

Volume-specific feeding rate 

 d.f. Effect MS Effect F p 

Prey defense 1 31.678 95.206 < 0.001 

Predator offense 1 0.134 0.402 0.531 

Interaction  1 0.946 2.842 0.103 

Error 28 0.333   
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2.4 Discussion 

Among the current challenges in the study of phenotypic plasticity, Agrawal (2001) has 

identified the search for “reciprocal phenotypic changes in ecological time”. Here, I 

present evidence for this kind of reciprocity in the predator-prey system Lembadion 

bullinum – Euplotes octocarinatus: Lembadion reacts to the inducible defense of 

Euplotes by expressing an inducible offense, that is a plastic increase in cell size and 

gape size (Fig. 6). This counter-reaction is the best evidence so far in a predator-prey 

system for reciprocal phenotypic plasticity in predation-related morphological traits. 

Wicklow (1997) probably observed a similar “ecological arms race” involving Lem-

badion magnum, a close relative of Lembadion bullinum. In a vernal succession pool, he 

described a temporal correlation between the occurrence of an enlarged morph of Lem-

badion magnum and inducibly defended Sterkiella spec. I suggest that more examples 

of this kind can be found in systems where phenotypic plasticity is wide-spread, such as 

the microbial or metazoan plankton.  

 

 

Table 7: Results of multiple logistic regression on the effect of predator length and width on absolute 
feeding rate in feeding experiment 2.  

  B SE of B Wald statistic (1 d.f.) p 

Length -0.080 0.014 31.069 < 0.001 

Width 0.197 0.019 106.208 < 0.001 

Normal 

Morph 

(n = 910) 
Intercept -6.748 1.441 21.939 < 0.001 

Length - 0.052 0.010 27.178 < 0.001 

Width 0.118 0.014 74.663 < 0.001 

Induced 

morph 

(n = 1051) 
Intercept -4.095 1.013 16.344 < 0.001 
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Despite the clear morphological effect, the counter-reaction of Lembadion proved rather 

ineffective against the defense of Euplotes octocarinatus. In feeding experiment 1, the 

inducible offense of the predator increased absolute feeding rate for both defended and 

undefended prey, but this increase was not strong enough to fully compensate for the 

effect of the prey’s defense. In feeding experiment 2, the offense had no significant ef-

fect on feeding rate with defended prey at all. In neither experiment was the increase in 

feeding rate due to the offense large enough to more than compensate for the increase in 

mean predator volume – that is, the offense had no significant influence on volume-

specific feeding rate. The effect of the prey’s defense was only investigated in feeding 

experiment 1, where it significantly decreased absolute and volume-specific feeding 

rates of both predator morphs. 

In the following, I will use absolute feeding rate as a measure of prey fitness and vol-

ume-specific feeding rate as a measure of predator fitness. Of course, these are only 

approximations. For the prey, I measure fitness by survival and neglect demographic 

costs of the defense, which, according to Kusch and Kuhlmann (1994), are not very 

large (~ 10 % increase in generation time). For the predator, I assume that large cells 

need more food than small ones for survival and reproduction and that therefore, vol-

ume-specific feeding rate is roughly proportional to population growth rate (see Part 1, 

section 1.2.4). 

With these considerations in mind, my results give rise to the following conclusions: 

When employed against defended or undefended Euplotes octocarinatus the inducible 

offense of Lembadion may decrease the fitness of the prey (see below for a discussion 

of the discrepancies between feeding experiment 1 and 2), but I could not find a signifi-

cant increase in the fitness of Lembadion itself. Conversely, the defense of Euplotes 

octocarinatus decreased the fitness of the predator and simultaneously increased the 

fitness of the prey. Most importantly, the protective effect of the defense was weakened, 

but not totally neutralized by the offense of Lembadion. That is, despite the counter-

reaction of the predator the defense remained clearly adaptive.  

A mechanistic explanation for why the offense of Lembadion is relatively ineffective 

against the defense of Euplotes octocarinatus is offered by the biometrical results from 

the size experiment and from feeding experiment 2. The key findings are: (1) Induction 
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leads to approximately isometric changes in predator cell size (see also Part 1). In par-

ticular, an increase in width (to match defended prey) cannot be achieved without a cor-

related increase in length. (2) Within morphs, length is negatively correlated with abso-

lute feeding rate (Table 7). Under the assumption that this effect also works between 

morphs, absolute feeding rate will increase due to induction only if the increase in width 

between the two morphs is sufficiently large compared to the increase in length. Simi-

larly, volume-specific feeding rate will increase only if the increase in absolute feeding 

rate is sufficiently large compared to the increase in volume. These trade-offs limit 

Lembadion’s ability to effectively counter the defense of Euplotes octocarinatus.  

In both morphs, the absolute feeding rate of Lembadion increased with cell width but 

decreased with length. The effect of width supports the notion of gape-limitation, as cell 

width is positively correlated with peristome width. However, the negative effect of 

length was unexpected, and I can only speculate about the mechanistic basis of this re-

sult. Perhaps, long cells are handicapped in some step of the predation process. For ex-

ample, they may be less agile when attacking prey. The negative effect of length on 

feeding rate indicates the action of a factor independent of gape-size, which clearly war-

rants further investigation. 

The offense of Lembadion had a significant effect on absolute feeding rate only in feed-

ing experiment 1, but not in feeding experiment 2. This discrepancy may be explained 

by the experimental conditions: In feeding experiment 2, prey were live-stained with 

DAPI, and prey density was 40-fold higher than in feeding experiment 1. However, 

mean numbers of prey captured per predator and time were even lower in feeding ex-

periment 2 than in feeding experiment 1. This means that the success rate (number of 

prey captured per available prey) in both morphs was considerably decreased in feeding 

experiment two. This could be due to either reduced “palatability” of the stained prey, 

or a “swarming effect” (predator confusion, see Bertram 1978, Jeschke and Tollrian in 

prep.) caused by the unnaturally high prey density. In summary, the obvious effect of 

the experimental conditions on success rate has apparently also influenced the differ-

ence in feeding rate between the two morphs. As the conditions in feeding experiment 1 

were certainly more realistic, it seems safe to conclude that the offense does have an 

influence on absolute feeding rate and therefore, prey fitness, at least under some condi-

tions.  
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Predator-prey coevolution? 

Agrawal (2001) and Wicklow (1997) have suggested that reciprocal phenotypic plastic-

ity is a result of predator-prey coevolution. Before this hypothesis can be discussed in 

the light of my results, it must be carefully reformulated to match the conditions of the 

system Lembadion bullinum – Euplotes octocarinatus.  

First of all, it is important to note that the interaction between Lembadion and Euplotes 

octocarinatus is not an exclusive one. Both the defense of Euplotes octocarinatus and 

the offense of Lembadion are effectively employed against a variety of other predators 

or prey, respectively (Part 1, Kuhlmann 1993, Kuhlmann and Heckmann 1994). How-

ever, there is an important difference regarding the induction mechanisms. The defense 

of Euplotes octocarinatus is induced by a kairomone, the L-factor, which is released 

from the cell surface of Lembadion (Peters-Regehr et al. 1997)  and is different from the 

kairomones from other predators, such as Amoeba (Kusch 1993a, 1999) or Stenostomum 

(Kusch 1993b). In contrast, the offense of Lembadion seems to be triggered by a non-

specific mechanical recognition of prey size (though the precise mechanism is un-

known, see Part 1, section 1.4.3). This non-specific response indicates that  phenotypic 

plasticity in Lembadion evolved as a general adaptation to an environment with variable 

prey size.  

Arguably, however, part of this variability in prey size might stem from inducible prey 

defenses. Lembadion faces an extraordinary amount of inducible prey. Wicklow (1997) 

lists eleven species from six genera, and there are probably more examples waiting to be 

discovered by protozoologists. All of these prey species employ defenses that rely on an 

increase in size, and all of them react specifically to chemical cues from Lembadion 

(though not necessarily to the L-factor). The evolution of these specific responses im-

plies that Lembadion is (or has been) an important predator of these species. Therefore, 

it is at least plausible to assume that the combined effect of their defenses is sufficiently 

strong to reduce the fitness of Lembadion, and the resulting selection pressure might 

have contributed to the evolution of Lembadion’s plasticity by diffuse coevolution 

(Janzen 1980). In other words, the inducible offense might have evolved partly as a 

counter-adaptation to inducible prey defenses (in addition to being an adaptation to 

variation in the size between different prey species).   
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In this formulation, the coevolution hypothesis is not supported by the present data. As 

indicated by the feeding experiments, Lembadion cannot gain fitness by employing its 

inducible offense against the inducible defense of Euplotes octocarinatus. Therefore, 

the counter-reaction of Lembadion that is shown in Fig. 6 does not seem to be adaptive 

(though it is not maladaptive, either).   

Nevertheless, it is too early for the coevolution hypothesis to be rejected finally. First, 

no data are available concerning the effect of the offense against the inducible defenses 

of other prey species. Second, in a truly coevolutionary situation, the counter-reaction of 

Lembadion might in fact have been adaptive in the past. In the meantime, however, 

Euplotes octocarinatus could have improved its defense, for example by investing pri-

marily in cell width, which poses the greatest problems for Lembadion (see above). In 

other words, Euplotes octocarinatus might be currently one step ahead of Lembadion in 

a coevolutionary arms race (Krebs and Dawkins 1979). Such arms races, however, can-

not be detected by simple feeding experiments.  

In summary, although the present experiments do not yield positive evidence for the 

coevolution hypothesis, more data are needed for a definite assessment. Future work 

might shed more light on the selection pressures exerted on Lembadion and on the rela-

tive contribution by inducible defenses. Therefore, it would be desirable to test the 

benefits that the inducible offense provides against other inducibly defended prey and to 

analyze prey size variability and its sources in the field.  
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Part 3. Modeling a coevolving  

predator-prey system with  

reciprocal phenotypic plasticity 

3.1 Introduction 

In Part 2, I have studied reciprocal phenotypic plasticity in the predator-prey system 

Lembadion bullinum – Euplotes octocarinatus, and I have discussed the hypothesis that 

the inducible offense of Lembadion is a coevolutionary counter-adaptation to inducible 

prey defenses. I showed that Lembadion expresses its offense in response to the defense 

of E. octocarinatus but does not gain a measurable fitness benefit from this reaction. 

Thus, although I could indeed document reciprocal phenotypic plasticity, I was not able 

to make a strong case for the coevolution hypothesis. 

Nevertheless, the interplay between phenotypic plasticity and predator-prey coevolution 

is of general interest to evolutionary ecology and, therefore, deserves further study. In 

particular, two sets of questions arise: 

1. What is the effect of (reciprocal) phenotypic plasticity on the ecological and evolu-

tionary dynamics of a coevolving predator-prey system? As a limiting case, this in-

cludes the question for the consequences of phenotypic plasticity on the population 

dynamics in a predator-prey system without evolution.  

2. Under what conditions does reciprocal phenotypic plasticity evolve? In particular, 

when does an inducible prey defense lead to the evolution of an inducible counter-

offense? 

Here, I will present an effort to answer these questions by means of mathematical mod-

eling. My focus will be on the first question, but I will shortly discuss the second one as 

well.  



Part 3: Reciprocal plasticity and Coevolution  Introduction 

 

45 

My approach is also an attempt to bridge the gap between models of predator-prey co-

evolution and models of phenotypic plasticity. In the past, these two lines of theoretical 

research have been largely separated. Models of predator-prey coevolution (reviewed by 

Abrams 2000) typically do not involve phenotypically plastic traits. Instead, they usu-

ally focus on the possibility for evolutionary “arms races” or “Red Queen dynamics” 

(e.g. Saloniemi 1993, Dieckmann et al. 1995, Abrams and Matsuda 1997a, Gavrilets 

1997), the effect of coevolution on the stability of predator-prey interactions (Doebeli 

1997), or the direction of change in prey or predator traits in response to changes in the 

biotic or abiotic environment (Abrams 1986, 1990, 1997, 1999). Similarly, all docu-

mented cases of non-behavioral predator-prey coevolution I am aware of (reviewed by 

Vermeij 1994, Abrams 2000) focus on fixed traits (e.g. resistance / toxicity in garter 

snakes and toxic newts: Brodie and Brodie 1990, 1999; limb morphology in the evolu-

tion of large mammalian predators and their prey: Bakker 1983; claw strength / shell-

thickness in crabs and gastropods from Lake Tanganyika: West et al. 1991). On the 

other hand, models of phenotypic plasticity largely concentrate on single species – 

which, of course, precludes the study of coevolution. In the 1980s and 1990s, a strong 

effort has been made to develop a theoretical basis for the evolution of phenotypic plas-

ticity (reviewed by Scheiner 1993, Via et al. 1995, Roff 1997, de Jong and Bijma 2002), 

and the issue continues to attract the attention of mathematical biologists (e.g. Gabriel 

1999, de Jong and Gavrilets 2000, Tufto 2000, van Dooren 2001, de and Behera 2002, 

Sultan and Spencer 2002). A considerable body of literature is devoted to quantitative 

genetic models of plasticity evolution (e.g. Via and Lande 1985, Gomulkiewicz and 

Kirkpatrick 1992, Gavrilets and Scheiner 1993). Other models have been designed to 

understand the benefits of inducible as opposed to permanently expressed (constitutive) 

traits (Lively 1986a, Lynch and Gabriel 1987, Gabriel and Thomas 1988, Clark and 

Harvell 1992, Gabriel and Lynch 1992, Moran 1992, Adler and Karban 1994, Padilla 

and Adolph 1996, Gabriel 1999, Lively 1999, Vos et al. 2002). The latter question is 

frequently asked in the study of inducible defenses – with the well-known answer being 

that inducible defenses are favored if there is variation in predation risk, a reliable cue 

indicating actual predation risk, and a trade-off between costs and benefits of the de-

fense (Tollrian and Harvell 1999a). Researchers also have begun to investigate the eco-

logical effects of phenotypic plasticity (sometimes referred to as trait-mediated indirect 

effects), for example the consequences of inducible defenses on predator-prey dynamics 
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or competitive interactions (Ives and Dobson 1987, Edelstein-Keshet and Rausher 1989, 

Frank 1993, Lundberg et al. 1994, Ruxton and Lima 1997, Underwood 1999, Under-

wood and Rausher 2002; see also empirical works by e.g. Peacor and Werner 1997,  

reviewed by Lima 1998, Relyea 2000, Bernot and Turner 2001).  

In contrast, relatively few models have studied phenotypic plasticity from a coevolu-

tionary perspective, and most of these models deal with behavioral interactions. In par-

ticular, a series of papers has investigated patch-selection games between predator and 

prey (Alonzo 2002, Lima 2002 and references therein), whereupon Lima (2002) argued 

for the need to “put predators back into behavioral predator-prey interactions”. Several 

authors (e.g. van Baalen and Sabelis 1993, Brown et al. 1999, van Baalen and Sabelis 

1999) have analyzed how the mutual evolutionarily stable patch selection strategies in-

fluence the stability of predator-prey population dynamics. Adler and Grünbaum (1999) 

have modeled the optimal patch selection behavior of predators foraging on inducibly 

defended prey. To my knowledge, a recent model by Gardner and Agrawal (2002) is the 

only approach that combines phenotypic plasticity with an explicitly dynamic represen-

tation of coevolution. Based on their results, these authors suggest that inducibility of 

chemical plant defenses slows down the evolution of counter -offenses in herbivores.  

Here, I will present a model that is designed to analyze the ecological and evolutionary 

dynamics of a coevolving predator-prey system with reciprocal phenotypic plasticity. 

Although this approach has been inspired by the interaction between Lembadion bulli-

num and Euplotes octocarinatus, the model is not designed to mimic any particular 

empirical system. In contrast to the system Lembadion – Euplotes octocarinatus, my 

model is restricted to an exclusive two-species interaction, and the offense is a true ad-

aptation against the defense (i.e. its benefits can exceed the costs).   

My analysis will focus on the following questions: 

1. What are the effects of (a) an inducible defense and (b) an inducible counter-offense 

on predator-prey population dynamics? 

2. What are the effects of (a) an inducible defense and (b) an inducible counter-offense 

on predator-prey coevolutionary dynamics? In particular, what are the conditions for 

the coexistence of induced and non-induced phenotypes (morphs) in both species? 
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In addition, I will provide an outlook discussing the evolution of phenotypic plasticity in 

dynamic predator-prey systems. 

3.2 The model 

3.2.1 Overview 

I will develop my model by combining an ecological predator-prey model, which de-

scribes the between-generation population dynamics, with a quantitative genetic model, 

which describes phenotypic plasticity and evolution. The ecological model is based on 

the classical Nicholson-Bailey model (Nicholson 1933, Nicholson and Bailey 1935), 

and the genetic model is based on the environmental threshold model (Hazel et al. 1990, 

Hazel and Smock 1993), which is a variant of the threshold model of quantitative genet-

ics (Falconer and Mackay 1996, pp. 299-310, Roff 1996).  

This approach yields a discrete-time predator-prey model with no external sources of 

spatial or temporal heterogeneity. The prey have an inducible defense and the predators 

may or may not have an inducible counter-offense. Individuals may be either induced or 

non-induced, but intermediate phenotypes are not possible. This all-or-nothing type of 

reaction norm has been described for both inducible defenses (e.g. Lively 1986b) and 

inducible offenses (e.g. Collins and Cheek 1983). The plastic traits are subject to a 

trade-off, and costs for the induced phenotypes are paid in terms of reduced fecundity. 

The cue for defense induction is predator density, and the cue for offense induction is 

the proportion of defended prey. Individuals express the induced phenotypes if the cue 

exceeds a threshold. These induction thresholds are normally distributed in the popula-

tions and are subject to selection (i.e. they are modeled as quantitative genetic charac-

ters). Intermediate mean induction thresholds enable coexistence of the induced and 

non-induced phenotypes, whereas evolution towards extremely low or high induction 

thresholds leads to exclusive expression of a single phenotype. 

There are two versions of the model: In model 1, the prey have an inducible defense, but 

there is only one type of predator. In model 2, the predators possess an inducible coun-
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counter-offense to the prey’s defense. In addition, I will briefly analyze a variant of 

model 2 (model 2a) where the inducible offense of the predator is complemented by a 

constitutive offense based on a major locus allele (that is on a one-locus-two-allele 

model).   

As with all models, I was facing a trade-off between simplicity and realism. For exam-

ple, in the Nicholson-Bailey model, prey growth is potentially unlimited and predators 

never become satiated. I accepted these and other unrealistic assumptions in order to 

keep the model as simple as possible.  

3.2.2 The Nicholson-Bailey model 

I start from the classical discrete-time population model by Nicholson and Bailey  

(Nicholson 1933, Nicholson and Bailey 1935):  

))exp(1(

)exp(

1

1

ttt

ttt

aPbNP

aPNN

−−=

−λ=

+

+

 (1) 

Here, N is prey density, P predator density, λ  the fecundity of the prey, a the success 

rate (Jeschke et al. 2002) of the predator (a measure of predation efficiency), b the num-

ber of new predators produced per consumed prey, and t is an index of time in units of 

one generation (see Table 8 for an overview of my terminology). The time indices will 

be added only in the context of explicit dynamics. As is well-known, the above model 

produces dynamics that are always unstable and inevitably lead to the extinction of the 

model populations.  
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Table 8: Mathematical terminology 

Variables 

N prey density  

P predator density  

µ mean of prey induction threshold  

ν  mean of predator induction threshold  

d prey defense (d = 0: non-induced, d = 1: induced) 

o predator offense (o = 0: non-induced, o = 1: induced) 

q  frequency of offense allele +C  (model 2a) 

Parameters 

10 , aa  success rate of predators foraging on undefended and defended 
prey, respectively (model 1) 

ija  
success rate of predator with offense jo =  foraging on prey with 
defense id =  (model 2) 

b  predator conversion efficiency 

dc  costs of prey defense 

oc  costs of predator offense 

λ  prey fecundity 

2
nh  heritability of the prey’s induction threshold 

2
ph  heritability of the predators’ induction threshold  

2
nσ  variance of the prey’s induction threshold  

2
pσ  variance of the predators’ induction threshold 
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Table 8 (continued): Mathematical terminology 

Derived quantities 

1â  value of 1a  such that 10 nn ww =  at equilibrium 

ba )( 1  maximal value of 1a allowing for the existence of multiple eco-
logical equilibria (model 1) 

sa )( 1  
maximal value of 1a  allowing for the existence of a stable eco-
logical equilibrium (model 1)  

sa )( 10  
maximal value of 10a  allowing for the existence of a stable eco-

logical equilibrium (model 2) 

d  
proportion of induced prey, induction frequency of prey (popula-
tion-level reaction norm) 

o  
proportion of induced predators, induction frequency of predator 
(population-level reaction norm) 

P̂  predator density such that 10 nn ww =  

10 , nn ww  fitness of non-induced and induced prey, respectively 

10 , pp ww  fitness of non-induced and induced predators, respectively 

pn ww ,  mean fitness of prey and predator, respectively 

Indices etc. 

0, 1 non-induced, induced 

n prey 

p predator 

t time 

* equilibrium 

u  mean of quantity u 
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In the following, I will frequently use a formulation involving fitness terms: 
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+

+

1

1

 (2) 

where ttn NNw /1+= is the mean fitness of the prey and ttp PPw /1+=  is the mean fitness 

of the predator. The basic structure (2) will be preserved in all modifications of eq. (1).  

3.2.3 Model 1: Plasticity in the prey 

I assume that the prey is dimorphic with two alternative phenotypes d: undefended / 

non-induced (d = 0) or defended / induced (d = 1). The main effect of the defense is to 

decrease the predator’s success rate a. However, the defense is also costly to the prey 

and decreases fecundity by a constant proportion dc . Thus, the fitness of the unde-

fended and defended prey is 

)exp()1(

)exp(

11

00

Pacw

Paw

dn

n

−λ−=

−λ=
 (3) 

respectively, with 0a  denoting the success rate of predators foraging on undefended 

prey, and 1a  the success rate of predators foraging on defended prey ( 10 aa > ). Let d  

be the proportion of defended prey (the prey’s induction frequency). The mean fitness 

of the prey is  

dwdww nnn 10 )1( +−=  (4) 

and the (mean) fitness of the predator is 

( ))exp(1()exp(1)(1( 10
1 PadPadbNPw tp −−+−−−= − . (5) 
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The phenotype of each individual is determined once at the beginning of the generation 

and cannot be changed thereafter (i.e. plasticity is irreversible). The defense is expressed 

if predator density exceeds an threshold x, that is 

xP

xP
d

≥
<





=
,1

,0
 (6) 

The individual induction thresholds x are assumed to be normally distributed in the prey 

population (i.e. they are realizations of a random variable X) with mean µ and variance 

2
nσ . For a given predator density P, a proportion  

∫
∞−

µ=µ=
P

dxxfPFd ),(),(  (7) 

of the total prey population expresses the defense, whereas the remaining proportion 

)1( d− remains undefended (f denotes the probability density function of the normal 

distribution, and F the cumulative frequency distribution). Note that an individual with a 

low induction threshold x has a high tendency to express the defense. Accordingly, a 

low mean induction threshold µ in the population leads to a high induction frequency. 

Due to the normality assumption, both x and µ may be negative.  

To introduce evolution of the induction threshold, I assume that a positive fraction of 

2
nσ  (i.e. the heritability 2

nh ) is due to additive genetic variance. (The purely ecological 

model is regained by setting 02 =nh ). Differences in the fitness of induced and non-

induced prey cause shifts in the mean induction threshold µ, which now is function of 

time and will be referred to as tµ .  

Hazel and Smock (1993) showed that the selection differential in the environmental 

threshold model is  
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Consequently, the mean prey induction threshold in the next generation is 

nntt Sh2
1 +µ=µ + . (9) 

I assume that 2
nσ  and 2

nh  are constants, that is the heritability of the induction thresholds 

is not influenced by selection. Although this assumption is certainly a simplification, the 

work of Roff (1994) suggests that the maintenance of genetic variation is less of a prob-

lem in threshold characters than it is in continuous traits.  

Model 1 can be summarized by 

nntt
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  (10) 

3.2.4 Model 2: Plasticity in both prey and predator  

3.2.4.1 Two types of predators 

I will now introduce an inducible counter-offense of the predator which can offset, to a 

certain degree, the effect of the prey’s defense. The counter-offense relies on a quantita-

tive threshold trait similar to that in the prey and is triggered by the proportion of de-

fended prey d . In addition, it reduces predator fecundity by a proportion oc .  

In addition to the two prey phenotypes, there are now two predator phenotypes o: with-

out offense / non-induced ( 0=o ) and with offense / induced ( 1=o ). The proportion of 

predators with offense (i.e. the predators’ induction frequency) will be denoted by o .  

As there are now four possible combinations of prey and predator phenotypes, four suc-

cess rate parameters are needed. Therefore, let aij be the success rate of predators with 

phenotype jo =  foraging on prey with phenotype id =  (i, j = 0,1). My basic assump-

tions are 
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• 0010 aa < : The prey’s defense is effective against a non -induced predator. 

• 1011 aa > : The predator’s offense is effective in reducing the effect of the prey’s de-

fense. 

Additional assumptions are: 

• 0111 aa ≤ : When the predator is induced, the defense is not harmful for the prey.  

• 0001 aa ≥ : The offense does not lower success rate when the prey is undefended.  

The latter assumptions preclude scenarios where induction can both increase or decrease 

success rate, depending on the phenotype of the other species. In the following, I will 

nearly always assume that 

• 0001 aa = : The offense has no effect when the prey is undefended. 

Below, I will deduce further restrictions on the relationship between the aij, which as-

sure that the predator experiences a real trade-off.  

First, however, it is necessary to calculate the fitness of all four – prey or predator –  

phenotypes. For that purpose, one must determine how much prey of each phenotype is 

consumed by induced and non-induced predators, respectively. This can be done by 

setting up a set of differential equations that describe the within-generation dynamics 

generated by predation. The following approach is a general way to deduce the expo-

nential terms in Nicholson-Bailey type models (Mangel and Roitberg 1992), and is 

equivalent to the more common interpretation of these terms as the zero term of a Pois-

son distribution. 

It is convenient to introduce a set of auxiliary variables: Let 0N  be the density of non-

induced prey, 1N  the density of induced prey, 0P  the density of non-induced predators, 

1P  the density of induced predators, 0C  the amount (“density”) of prey consumed by 

non-induced predators, and 1C  the amount of prey consumed by induced predators. The 

within-generation dynamics of these variables can be described by 
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with the initial conditions being 
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(Note that an index t refers to the value of the respective variable at the beginning of 

generation t, whereas t in the left-hand side of a differential equation is meant to be con-

tinuous.) With ‘~’ denoting the value of a variable at the end of the generation, one gets 
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The latter two equations state that the total amount of captured prey is “shared” by the 

two predator morphs according their relative densities, weighted by the respective suc-

cess rate parameters. The fitness of the various phenotypes is then  
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and the mean fitness is 

owoww
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for the prey and predator, respectively. 

3.2.4.2 Restrictions on the range of success rate parameters 

It is now possible to deduce further restrictions on the range of success rate parameters 

ija . These restrictions shall assure that the predators experience a real fitness trade-off 

with respect to the offense. By a real trade-off, I mean that for each phenotype there is 

the theoretical possibility to be selected for in an appropriate environment. In other 

words, the benefits of the offense must outweigh the costs in some environments but not 

in others.  

Therefore, when all prey are undefended, induced predators must have a lower fitness 

than non-induced predators: 
010 =

>
dpp ww . This inequality yields  
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Similarly, when all prey are defended, induced predators must have a higher fitness than 

non-induced predators: 
110 =

<
dpp ww , which yields 
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Combining (16) and (17) with the assumptions made in the previous section leads to the 

following conditions for the range of success rate parameters: 
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When choosing actual parameter values for the model, it is easiest to follow these steps 

in the given order. Note that there is no a priori relation between 00a  and 11a .  

3.2.4.3 The inducible counter-offense 

The inducible counter-offense is triggered by the proportion of defended prey. The un-

derlying genetics are analogous to those in the prey and follow the environmental 

threshold model. Each individual predator is assumed to have an induction threshold y, 

with the offense being induced if the proportion d  of defended prey is greater than y. 

That is the predator phenotype o is  
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Like the prey threshold X, the predator threshold Y is normally distributed in the popula-

tion with mean ν, variance 2
pσ , probability density function g(y,ν), and heritability 2

ph . 

If a proportion d of the prey is defended, a corresponding proportion 

∫
∞−

ν=ν=
d

dyygdGo ),(),(  (20) 

of the predators will express the counter-offense. Note that, since prey defense depends 

on predator density, predator offense ultimately is a function of predator density, too.  

To illustrate the model assumptions one might imagine the following life cycles: The 

phenotypes of prey and predator are determined in a short period at the beginning of 

each generation. First, prey develop their defense in response to predator density. In a 

second step, predators develop their offense in response to the proportion of defended 

prey. After the initial period, both defense and offense are irreversible and cannot be 

readjusted for the rest of the generation. In particular, predators are not allowed to in-

crease their offense when the proportion of undefended prey is reduced by predation.  

The selection differentials for prey and predator are 
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and the dynamics of the model can be summarized by 
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Model 2 reduces to model 1 for ∞→ν  and 02 =ph . In this case 00a  corresponds to 0a , 

and 10a  corresponds to 1a . 

3.2.4.4 Model 2a: Combination of inducible and constitutive offense 

Model 2a is a variant of model 2 where the inducible counter-offense of the predator is 

complemented by a constitutive offense that is based on a major locus allele (i.e. on a 

one-locus-two-allele model). In this scenario, each predator has a quantitative locus de-

termining the induction threshold for the inducible offense and a major locus determin-

ing the expression of the constitutive offense.  

The major locus has two alleles, +C  and −C . I will assume that the genetics are diploid 

and that the +C  allele is dominant. Therefore, ++CC  and −+CC  genotypes express the 

offense independently of the prey’s induction frequency d . −−CC  genotypes express 

the offense only if d  exceeds their individual induction threshold y. In other words, 

++CC  and −+CC  genotypes display the offense constitutively, whereas −−CC  geno-

types are phenotypically plastic.  

The major locus alleles and the induction thresholds are assumed to evolve independ-

ently. Let q be the frequency of the +C  allele in the predator population. The fraction of 

the predator population that displays the offense constitutively due to the +C  allele is 

)1(22 qqq −+=α   (23) 

Furthermore, a fraction 

∫
∞−

ν=ν=β
d

dyygdG ),(),(  (24) 

displays the offense due to phenotypic plasticity, that is because d  exceeds the individ-

ual induction threshold y. As these two fraction overlap, the total proportion of predators 

with offense is given by  
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αβ−β+α=o . (25) 

Let αw denote the mean fitness of predators carrying the +C  allele and α−1w  the mean 

fitness of predators without this allele. Similarly, let βw  be the mean fitness of predators 

with induction thresholds below d  and β−1w  the mean fitness of predators with induc-

tion thresholds above d . Then 
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with 0pw , 1pw  and pw  defined as in eq. (14) and (15).  

The dynamics of model 2a can be described by  
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and  
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as in eq. (22).  

The equation for 1+νt  is analogous to eq. (9). The equation for 1+tq  is adopted from 

Hartl (1997, p. 219). It corresponds to “viability selection”, where fitness is proportional 

to the probability of surviving to maturity. Note that this is a very simplified way to 
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model the dynamics of allele frequencies. In contrast to the above assumption, the logic 

of the Nicholson-Bailey model implies that predator fitness is determined by the number 

of offspring produced per individual, which in turn is proportional to the number of con-

sumed prey. Similarly, costs of the offense are typically thought of as reduced reproduc-

tion. A plausible scenario reconciling this “fecundity selection” with eq. (27) might be a 

population of mass-spawners where individual reproductive success is proportional to 

the number of gametes produced per individual, which in turn is proportional to the 

number of prey consumed, corrected for costs of the offense. (This scenario eliminates 

the problem that, with distinct mating pairs, one must determine the number of joint 

offspring produced by say a male with offense and a female without offense.)  

3.2.5 Analysis and implementation 

Analytical and numerical analysis was performed using Maple V Release 4 (Waterloo 

Maple Inc., Waterloo, Ontario, Canada). In case the built-in procedures from Maple 

could not be applied, I calculated function roots using the regula falsi method described 

in Carnahan et al. (1969, pp. 179+191) and function minima using Brent’s method ac-

cording to Press et al. (Press et al. 2001, pp. 395 ff). Simulation runs were conducted by 

means of Excel spreadsheets or C++ implementations. 

3.3 Results 

3.3.1 Kinds of equilibria 

Model 1 is at equilibrium if  
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Without evolution ( 02 =nh ), an equilibrium requires  
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1== pn ww  (29) 

and will be referred to as ecological equilibrium. With evolution ( 02 >nh ), an equilib-

rium requires 

110 === pnn www  (30) 

and will be referred to as evolutionary equilibrium. In addition, there is always the triv-

ial equilibrium where both species are extinct ( 0** == PN ).   

For model 2, the general equilibrium condition (28) is complemented by *1 ν=ν=ν + tt , 

the condition for an ecological equilibrium remains 1== pn ww , and the condition for 

an evolutionary equilibrium is 11010 ==== ppnn wwww .  

Furthermore, I will use the term ecological stability for the stability of the ecological 

equilibrium, and evolutionary stability for the stability of the evolutionary equilibrium. 

Note that evolutionary stability is not used in the sense of evolutionarily stable strategies 

and that it implies stability of the population dynamics, too. Similarly, ecological dy-

namics will refer to the dynamics without evolution ( 02 =nh , 02 =ph ), and evolutionary 

dynamics to the dynamics with evolution, including the population dynamics. 

3.3.2 Some notes on the environmental threshold model  

Before presenting my results, I will point out two important properties of the environ-

mental threshold model, which tend to be counter-intuitive. My discussion will be re-

stricted to the prey, but the conclusions are equally valid for the predator.  

First, although it is easy to see that the “optimal” induction threshold for the prey would 

be  
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(because 10 nn ww ≤  for optxP ≤ , and 10 nn ww ≥  for optxP ≥ ), the mean induction thresh-

old µ does not evolve to this value. Instead, in a spatially and temporarily homogeneous 

environment, µ evolves towards ∞+  for optxP >  and towards ∞−  for optxP > . This is 

because, due to the normal distribution of induction thresholds, it is impossible for all 

individuals to have the phenotype which confers higher fitness. For a two-patch envi-

ronment with fixed predator densities opt1 xP <  and opt2 xP > , Hazel and Smock (1993) 

showed that µ evolves towards an equilibrium value  
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Here q is the probability for an individual to live in the patch with predator density 1P . 

Thus, µ* increases (and the average propensity of expressing the defense decreases) 

with increasing probability of experiencing a low risk of predation. In other words, the 

equilibrium induction threshold is biased towards the more frequent environment (for 

2/1=q , 2/)(* 21 PP +=µ ). The same principal applies if predator density varies tempo-

rally rather than spatially. However, in temporally heterogeneous environments, there 

cannot be a stable equilibrium (see below).  

Second, the environmental threshold model is discrete at the level of individuals but 

continuous at the level of populations. In the following, therefore, I will distinguish be-

tween the individual reaction norm )(Pd , which is a step function of predator density, 

and the population-level reaction norm )(Pd , which is continuous and has the shape of 

a cumulative normal distribution. As I shall show, the population-level reaction norm 

strongly influences the dynamic behavior of the model, which is governed by population 

properties such as induction frequency and mean fitness. In contrast, the discrete nature 

of the individual reaction norm is reflected in the conditions required for an evolution-

ary equilibrium. 

Furthermore, I will use the slope of the population-level reaction norm as a measure for 

the realized plasticity in the population, that is the responsiveness of the population to 

variation in the environment. This terminology is based on the notion that an individual 

with an induction threshold outside the range of environmental variation is plastic in 
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theory, but in practice it will always express the same phenotype. Thus, prey with in-

duction thresholds less than 0 will always be defended, and prey with induction thresh-

olds that exceeds the maximal possible number of predators will never be defended. If 

one of these situations applies to a large proportion of prey, the realized plasticity in the 

prey population is low.  

In two limiting cases, the realized plasticity in the population declines to zero (although 

plasticity at the individual-level is unchanged). In the first case, the mean induction 

threshold ±∞→µ , and the induction frequency d  approaches 0 or 1, respectively. In 

the second case, the variance ∞→σ2
n . Any induction frequency is possible, depending 

on the mean induction threshold µ, but d  no longer depends on predator density P. This 

is because any possible variability in P becomes negligible with respect to the variance 

of the induction thresholds and, therefore, each individual’s induction threshold is either 

always or never exceeded by the cue. (For this conclusion, it is necessary to assume that 

P is restricted to a finite interval. Note that, in order to achieve 2/1≠d , µ must di-

verge, too, if ∞→σ2
n .) Despite the loss of realized plasticity, evolution of µ and, there-

fore, adaptive change in d , remains perfectly possible for arbitrary large 2
nσ . Therefore, 

choosing a large 2
nσ  is a way to “switch off” plasticity but preserve evolution.  

Similarly, evolution can be “switched off” and phenotypic plasticity preserved by set-

ting 02 =nh . This setting implies that the variability of the induction threshold is exclu-

sively based on environmental variance and non-additive genetic variance. While such a 

scenario might appear unrealistic, there is an alternative interpretation that makes it pos-

sible to look at the model from a purely ecological point of view. In this interpretation, 

the prey population is genetically homogeneous, but induction is stochastic. The popula-

tion-level reaction norm )(Pd  is reinterpreted as an individual reaction norm that speci-

fies each prey’s probability to express the defense as a function of predator density.  
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3.3.3 Model 1: Plasticity in the prey 

3.3.3.1 Ecological equilibria 

3.3.3.1.1 Ecological equilibria and the prey’s mean fitness function 

Under the conditions of model 1 without evolution, it is not possible to derive analytical 

expressions for the equilibrium population densities N* and P*. Therefore, the follow-

ing discussion will rely largely on numerical results and graphical arguments. The non-

trivial ecological equilibria of model 1 are best discussed in terms of the prey’s mean 

fitness function )(Pwn .  

The graph of )(Pwn  is located between the graphs of )(0 Pwn  and )(1 Pwn , the fitness 

functions for undefended and defended prey, respectively. As the induction frequency 

d  increases with P, nw  is close to 0nw  if P is small, and close to 1nw  if P is large ( Fig. 

8 A).   

The equilibrium predator density P* is determined by the condition 1*)( =Pwn . If the 

population-level reaction norm is steep enough (i.e., 2
nσ  is small), there may be a range 

of P where nw  increases with predator density. This happens if the increased defense 

level in the prey population more than offsets the increased encounter rate with the 

predator. In this case, there may be three alternative ecological equilibria (Fig. 8 B): A 

low equilibrium with most of the prey undefended, an high equilibrium with most of the 

prey defended, and an intermediate equilibrium in the region where mean prey fitness 

increases with predator density. As I shall show below, the intermediate equilibrium is 

always unstable and, therefore, has no biological relevance. The high equilibrium does 

not exist for 01 =a  (complete defense), because, in this case, the fitness of the defended 

prey is independent of predator density and does not decrease to zero for large P (Fig. 8 

C). Note that the number of ecological equilibria depends solely on the number of solu-

tions for 1)( =Pwn . This is because predator fitness pw  is linear in N and, therefore, any 

predator population can be sustained by an appropriately sized prey population (i.e., 

there is always a solution to the second equilibrium condition 1=pw ).  
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Fig. 8. Model 1 without evolution: The prey’s mean fitness function.  

In each plot, the upper panel shows the proportion d  of defended prey as a function of predator 
density P. The lower panels show 0nw , the fitness of undefended prey  (dashed line), 1nw , the fit-
ness of defended prey (thin solid line), and nw , the mean fitness of the prey (thick solid line). 

In A,  the variance 2
nσ  of the prey’s induction threshold is high, and there is only one equilibrium 

predator density P*. In B, 2
nσ  is small, and there are three alternative ecological equilibria with 

predator densities *1P  (low equilibrium), *2P  (intermediate equilibrium), and *3P  (high equilib-
rium). In C, 2

nσ  is small, too. However, the prey’s defense provides complete protection ( 01 =a ), 

and the high equilibrium is missing. Model 1. Parameters: A) 4.00 =a , 04.01 =a , 4.0=b , 
5.0=dc , 02 =nh , 3=λ , 5.4=µ , 1002 =σn ; B) as in A, but 12 =σn ; C) as in A, but 01 =a , 6=µ , 

12 =σn . 12 =σn . 
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0nw  and 1nw  intersect at  

01

)1ln(ˆ
aa

c
P d

−
−=  .  (31) 

For PP ˆ<  undefended prey have higher fitness than defended prey, whereas for PP ˆ>  

defended prey have higher fitness than undefended prey ( P̂  is equivalent to optx  in sec-

tion 3.2).  
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Fig. 9. Model 1 without evolution: The fitness of undefended and defended prey at the ecological equilib-
rium. 

The relationship between the fitness of undefended and defended prey at the ecological equilibrium, de-
pending on the intersection point between 0nw  and 1nw . In A, undefended prey are favored at equilibrium, 

whereas in B, defended prey are favored at equilibrium. In C, both prey phenotypes have the same fitness 
at equilibrium. The three cases may be distinguished by the relation between 1a  and 1â  (eq. 32).  

The figures show 0nw , the fitness of undefended prey  (dashed line), 1nw , the fitness of defended prey 
(thin solid line), and nw , the mean fitness of the prey (thick  solid line) as a function of predator density P. 
Model 1. Parameters: A) 3.00 =a , 05.01 =a , 4.0=b , 6.0=dc , 02 =nh ,  2=λ , 5=µ , 642 =σn ;  B) 

25.00 =a , 05.01 =a , 4.0=b , 3.0=dc , 02 =nh , 2=λ , 5.2=µ , 492 =σn ; C) 2.00 =a , 
052606881.01 =a , 4.0=b , 4.0=dc , 02 =nh , 2=λ , 4=µ , 1002 =σn ; The P-axis scales from 0 to 10.   
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then prey fitness at the intersection point, )ˆ(Pwn , is less than 1. This implies that the 

equilibrium predator density P* is less than P̂  (because 1*)( =Pwn , but 

1)ˆ()( << PwPw nn
 for all PP ˆ> ; Fig. 9 A). Accordingly, PP ˆ* >  if 11 âa <  (Fig. 9 B). 

In consequence, defended prey are favored at equilibrium if the defense is strong, and 

are disfavored if the defense is weak. Only if 11 âa =  both predator morphs have the 

same equilibrium fitness, and this is the only case where model 1 can have an evolu-

tionary equilibrium (see below; Fig. 9 C). Note also, that multiple equilibria are only 

possible for 11 âa < , because nw  is monotonically decreasing for PP ˆ< .  

3.3.3.1.2 The effect of the defense parameters on the ecological equilibria  

In the following, I will investigate how the number of ecological equilibria and the val-

ues of N* and P* depend on the defense parameters µ, 2
nσ , dc  and 1a . First, I will ex-

plore the domain of multiple ecological equilibria.  

Fig. 10. Model 1 without evolution: Multiple ecological equilibria and the mean induction threshold. 

The number of ecological equilibria in model 1 depends on the prey’s mean induction threshold µ. The 

figures show nw , the mean fitness of the prey as a function of predator density P for various values of µ. 
An equilibrium exists whenever 1)( =Pwn . Model 1. Parameters: 4.00 =a , 02.01 =a , 4.0=b , 2.0=dc , 

02 =nh , 2=λ , 12 =σn . 

As shown in Fig.  8 B, multiple ecological equilibria require that the fitness function 

)(Pwn  has a minimum followed by a maximum (except for 01 =a ). Under this condi-

tion, the number of equilibria depends on the mean induction threshold µ (Fig. 10). If µ 

is small, the minimum of )(Pwn  is greater than 1 and only the high equilibrium exists 
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Fig. 11. Model 1 without evolution: The domain of multiple ecological equilibria. 

Schematic overview of the domain of multiple ecological equilibria (shaded area) in the 1a  versus µ 
plane. The dashed line marks ba )( 1 , the maximal value of 1a  that allows for multiple equilibria. The 

upper boundary of the domain of multiple equilibria approaches the ordinate for ∞→µ . 1a  is the suc-
cess rate of predators feeding on defended prey, and µ is the prey’s mean induction threshold. See Fig. 
10 and text. Model 1. Parameters: 4.00 =a , 4.0=b , 2.0=dc , 02 =nh , 2=λ , 252 =σn . 

( 2=µ  in Fig. 10). For intermediate µ, the minimum is less than 1 and the maximum is 

greater than 1. In consequence, the system has three alternative equilibria ( 5=µ in Fig. 

10). For large µ, the maximum becomes less than 1, too, and only the low equilibrium 

remains ( 12=µ in Fig. 10).  

Fig. 11 shows the domain of multiple equilibria as a function of µ and 1a . For each 

value of 1a , the graph shows the minimal and maximal value of µ allowing for multiple 

equilibria. The lower boundary can be determined by numerically calculating µ such 

that the minimum of )(Pwn  equals 1. Similarly, the upper boundary can be determined 

by finding µ such that the maximum of )(Pwn  equals 1. The range of µ allowing for 
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multiple equilibria decreases in size with increasing 1a . Finally, the two boundary lines 

meet at baa )( 11 = . ba )( 1  and the corresponding value of µ can be found numerically by 

considering that, at this point, the minimum of )(Pwn  merges with the maximum or, in 

other words, that )(Pwn  has a saddle point at 1=nw . For baa )( 11 > , no multiple equi-

libria are possible.  

 

 

 

Fig. 12. Model 1 without evolution: The domain of multiple ecological equilibria and the vari-
ance of  the prey’s induction threshold. 

The domain of multiple equilibria (shaded area) in the 1a  versus µ plane for three values of 
2
nσ , the variance of the prey’s induction threshold. The domain of multiple equilibria decreases 

in size as 2
nσ  increases. In particular, ba )( 1 , the maximal value of 1a  that allows for multiple 

equilibria (see Fig. 11), decreases with increasing 2
nσ . 1a  is the success rate of predators feed-

ing on defended prey, and µ is the mean induction threshold of the prey. Model 1. Parameters: 
4.00 =a , 4.0=b , 2.0=dc , 02 =nh , 2=λ . 
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Fig. 13. Model 1 without evolution: ba )( 1  as a function of 2
nσ  and dc . 

ba )( 1 , the maximal value of 1a  that allows for multiple equilibria (see Fig. 11), as a function of 2
nσ , the 

variance of the prey’s induction threshold, for various values of the defense costs dc . The value of dc  is 
indicated inside the graphs. ba )( 1  decreases with both 2

nσ  and dc . 1a  is the success rate of predators 

feeding on defended prey. Note the quadratic scale of the abscissa. Model 1. Parameters: 4.00 =a , 

4.0=b , 02 =nh , 2=λ . 

Fig. 12 shows similar diagrams for three values of 2
nσ . With decreasing 2

nσ , the domain 

of multiple equilibria is extended and ba )( 1  increases. Therefore, ba )( 1  can be used as a 

measure for the size of the domain of multiple equilibria. In Fig. 13, ba )( 1  is plotted 

against 2
nσ  for various values of dc , showing that the domain of multiple equilibria de-

creases in size with both parameters. 

The previous results can be explained in terms of the prey’s mean fitness function 

)(Pwn . A comparison of Fig. 8 A and B shows that multiple equilibria are favored by 

small values of the variance 2
nσ , which cause a rapid increase in the proportion of de-

fended prey around µ=P . Similarly, multiple equilibria are favored by low values of 

1a  and dc , because these make sure that 11 >nw  for a large range of P, increasing the 

likelihood that the maximum of nw  is greater than 1.  

I will now investigate the effect of the defense parameters on the values of P* and N*. 

Note that P* is the predator density needed for exact regulation of the prey population 

and N* is the prey density needed to sustain this predator population. Fig. 14 shows all 

possible equilibrium predator densities as a function of 1a  for various values of dc  (note 
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that µ has been chosen such that 01 =a  is inside the domain of multiple equilibria). In 

the low and high equilibrium, P* decreases with both parameters, whereas the reverse is 

true for the intermediate equilibrium. Thus, in the biologically meaningful equilibria, 

the predator density that is needed to prevent net growth of the prey population de-

creases if the defense becomes less effective or more costly. The corresponding plot for 

the equilibrium prey density N* looks qualitatively similar (not shown), reflecting the 

fact that a smaller predator population can be sustained by fewer prey (and vice versa).  
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Fig. 14. Model 1 without evolution: Predator density at the ecological equilibrium as a function 
of 1a  and dc . 

The equilibrium predator density P* as a function 1a , the success rate of the predator when feed-
ing on defended prey, for various values of the defense costs dc . The value of dc  is given inside 
the graphs. For baa )( 11 < , there are three alternative equilibria. Note that parameters have been 

chosen such that 01 =a  is inside the domain of multiple equilibria (see Fig. 11). Model 1. Pa-
rameters: 4.00 =a , 4.0=b , 02 =nh , 2=λ , 5=µ , 42 =σn .  
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Next, I will regard variation in the mean induction threshold µ. Inside the domain of 

multiple equilibria, a plot of P* against µ shows a typical hysteresis loop (Fig. 15), 

where two (potentially) stable equilibria are linked by an unstable equilibrium. At the 

low and high equilibrium, P* decreases with µ, whereas at the intermediate equilibrium, 

P* increases with µ.  

Fig. 16 shows the same type of plot for various values of 2
nσ  in the case 11 âa < . As 2

nσ  

increases, the hysteresis loop disappears, and only one equilibrium remains, where P* 

decreases with µ (see also Fig. 8). All curves in Fig. 16 intersect at a point where 

µ=*P  and 2/1=d . This point is independent of 2
nσ  due to the symmetry of the nor-

mal distribution. Above the intersection point, P* decreases with 2
nσ  at the low and high 

equilibrium, whereas it increases with 2
nσ  at the intermediate equilibrium. Below the 

intersection point, the reverse is true. For ∞→σ2
n , 2/1→d  and µ→*P  for all µ. For 

0→σn , 0nn ww →  for µ<P , and 1nn ww →  for µ>P . Therefore, the low equilibrium 

approaches the solution of 1)(0 =Pwn , the high equilibrium approaches the solution of 

1)(1 =Pwn , and the intermediate equilibrium approaches µ. Again, the corresponding 

plot for the equilibrium prey density N* looks qualitatively similar, that is a change in µ 

causes N* and P* to change into the same direction.  
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Fig. 15. Model 1 without evolution: Predator 
density at the ecological equilibrium as a func-
tion of µ. 

Alternative equilibrium predator densities P* as 
a function of the prey’s mean induction thresh-
old µ. The high and low equilibria are linked by 

the always unstable intermediate equilibrium 
(dotted line), resulting in a typical hysteresis 
loop. See Fig. 10. Model 1. Parameters: 

4.00 =a , 1.01 =a , 4.0=b , 1.0=dc , 02 =nh , 
2=λ , 12 =σn .  
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Fig. 16. Model 1 without evolution: Predator density at the ecological equilibrium as a function of µ and 
2
nσ . 

Alternative equilibrium predator densities P* as a function of the prey’s mean induction threshold µ for 

various values of the variance 2
nσ . a) 02 →σn , b) 25.02 =σn , c) 12 =σn , d) 42 =σn , e) 92 =σn , f) 162 =σn , 

g) ∞→σ2
n . For small 2

nσ , there are three alternative equilibria, and the graph shows an hysteresis loop 
(see Fig. M8). For the given value of 1a , the multiple equilibria disappear for 42 ≥σn . Model 1. Parame-
ters: 4.00 =a , 1.01 =a , 4.0=b , 1.0=dc , 02 =nh , 2=λ . 

 

However, the relation between prey and predator density at equilibrium becomes more 

complex for larger values of the defense parameter 1a . Fig. 17 shows three principal 

possibilities outside the domain of multiple equilibria. For 11 âa < , both N* and P* de-

crease with µ. For 11 âa > , P* increases with µ, whereas N* continues to decrease with 

µ. Finally, for very large 1a , N* increases with µ, too. Fig. 18 shows, how N*(µ) 

changes from a monotonically increasing to a monotonically decreasing function within 

a narrow range of 1a . The proportion of defended prey *d  always decreases from 1 to 

0 as µ increases from ∞−  to ∞+ .  
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Fig. 17. Model 1 without evolution: The relationship between predator and prey density at the ecological 
equilibrium. 

The equilibrium prey density N*, equilibrium predator density P*, and the equilibrium proportion of de-
fended predators *d  as a function of the mean induction threshold µ for three values of 1a , the success 

rate of predators feeding on defended prey. With increasing µ, N* and P* may change into the same or 
the opposite direction, depending on the relation between 1a  and 1â  (the threshold value of 1a  that de-
termines which prey type is favored at equilibrium, see eq. (32) and Fig. 9). For the chosen parameters, 

2101.01̂ =a . See text for further details. Model 1. Parameters: 4.00 =a , 4.0=b , 2.0=dc , 02 =nh , 

6.1=λ , 42 =σn . 

Biologically, these findings can be interpreted as follows. First, P* decreases with µ for 

11 âa < , because in this case, the defense is beneficial for the prey at equilibrium and, 

therefore, a decreased induction frequency means that the prey population can tolerate 

fewer predators. Similarly, P* increases with µ for 11 âa >  because, in this case, the de-

fense is detrimental for the prey and a decreased induction frequency means that the 

prey population can tolerate more predators. Second, N*, the density of prey needed to 

sustain the predator population, increases with P* and with the proportion of defended 

prey *d . For 11 âa < , both P* and *d  increase with µ, and, hence, N* decreases with 

µ, too. For 11 âa > , *d  still decreases with µ, but P* now increases with µ. Note how-

ever, that the amount of change in P* depends on 1a . P* ranges from ( ) 1/)1(ln acd−λ  
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(the solution of 1)(1 =Pwn ) for −∞→µ  to 0/)ln( aλ  (the solution of 1)(0 =Pwn ) for 

∞→µ . The magnitude of the difference between these two limits increases with 

11 âa − . Therefore, if 1a  is not too much greater than 1â  the effect of the decrease in 

*d  overrides the effect of the increase in P* and, consequently, N* decreases with µ. 

However, for very large values of 1a , the effect of P* becomes dominant over the effect 

of *d , causing N* to increase with µ.  

 

Fig. 18. Model 1 without evolution: Prey density at the ecological equilibrium as a function of µ and 1a . 

The equilibrium prey density N* as a function of the prey’s mean induction threshold µ for various values 
of 1a , the success rate of predators feeding on defended prey. The figure illustrates the transition between 
the two situations shown in Fig. 17 by demonstrating how N*(µ) changes from a monotonically increas-

ing to a monotonically decreasing function if 1a  becomes very large. See text for further explanations. 
Parameters are the same as in Fig. 17. Model 1. Parameters: 4.00 =a , 4.0=b , 2.0=dc , 02 =nh , 

6.1=λ , 42 =σn . 
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It is possible to derive an analytical expression for the smallest value of 1a  where N*(µ) 

is monotonically increasing for all µ (see Fig. 18). First, N* can be written as a function 

of P* by solving 1=nw  for )exp( 0 Pa−  and inserting the solution into 1=pw , yielding 

( )*exp(*1

*
*

1Padcb

P
N

d −λ−−λ
λ= , (33) 

where *d  is a function of P*. From 1=nw , it can be deduced that  

( )*)exp()1(*)exp(

1*)exp(
*)(*

10

0

PacPa

Pa
Pd

d −−−−λ
−−λ=  (34) 

Note that, for 11 âa > , P* increases with µ. Therefore, N* increases with µ, too, if the 

relation between P* and N* is positive. Without giving a formal proof, I infer from Fig. 

18 that, with increasing 1a , N* becomes an increasing function µ first for small µ and 

last for large µ. Therefore, in order to calculate the value of 1a  where N* increases with 

µ for all µ, it is sufficient to regard the limiting case ∞→µ , that is 0* =d  and 

0/)ln(* aP λ= .  

Taking the first derivative of N* (eq. 33), substituting 0* =d  and 0/)ln(* aP λ= , and 

eliminating all positive factors yields:  
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For 
( )

λ
−λ=>

ln

)1(ln
ˆ 011

dc
aaa , d

aaa c+−λ − 1001 /)(  is positive. Hence, the denominator on 

the right-hand side of eq. (35) can be discarded, and the numerator can be rearranged to 

yield the following condition:  

For 0/)ln(* aP λ=  there is a positive relationship between N* and P* (implying that N* 

increases with µ)  if and only if  
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It can be shown that 1
~a  is always between 1â  and 0a  for biologically reasonable pa-

rameters ( 1>λ , 00 >a , 10 << dc ). Therefore, N* will always increase with µ for suf-

ficiently small 1a  and decrease with µ for sufficiently large 1a . 

Finally, the parameter b has no influence on P* (as it has no effect on prey fitness) and 

is inversely proportional to N* (eq. 33).  

3.3.3.2 Stability of the ecological equilibria 

I will now explore the stability of the ecological equilibria of model 1. I will first pro-

vide some very general analytical results (which also apply to model 2) and then present 

a more specific numerical analysis.  

3.3.3.2.1 General analytical results for ecological stability  

It is generally not possible to deduce analytical expressions defining the domain in pa-

rameter space where the ecological equilibria are stable. Here, I will only derive some 

very general statements, based solely on the following model assumptions: (1) Prey fit-

ness is not density-dependent, and (2) mean fitness of predator and prey at equilibrium 

is equal to 1. That is, I analyze a general system of the form: 

),(

)(

1

1

ttptt

tntt

PNwPP

PwNN

=

=

+

+
 (37) 

This model structure is independent of the presence or absence of phenotypic plasticity 

in either predator or prey. It applies to the standard Nicholson-Bailey model (eq. 1) as 

well as to model 1 and model 2 of this study (for 02 =nh  and 02 =ph ).  

Using the standard technique of local linear stability analysis (e.g. Kot 2001) and skip-

ping the time indices, the Jacobian of the above system is  
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At equilibrium, this is  
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As the fitness functions only appear as derivates with respect to P, I will simplify nota-

tion by writing ( ) '*)(/ nn wPwP =∂∂  and ( ) '*)*,(/ pp wPNwP =∂∂ . Thus, J* becomes 


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An equilibrium is stable if both eigenvalues of J* have magnitude less than one. This 

condition can be verified by applying the Jury test, which uses the trace and the deter-

minant of J*: 

( )''*1*)det(

'*2*)(tr

np

p

wwPJ

wPJ

−+=

+=
 (40) 
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The Jury test states that three conditions must be satisfied for stability: 

Condition 1: 0'0*)det(*)(tr1 <⇔>+− nwJJ . 

Condition 2: ''1*)det( np wwJ <⇔< . (41) 

Condition 3:  
*

2
'

2

1
'0*)det(*)(tr1

P
wwJJ np −>⇔>++ . 

Taken together, these conditions state that stability requires 

0''
*

2
'

2

1 <<<− npn ww
P

w . (42) 

Note that the first term need not necessarily be less than the third one.  

Condition 1 states that stability is only possible if the equilibrium predator density P* is 

inside the range where an increase in P reduces the mean fitness of the prey. This proves 

that, in the case of multiple equilibria, the intermediate equilibrium can never be stable. 

Condition 2 has a very intuitive interpretation: Stability requires that the within-species 

effect of an increase in predator density (increased competition for prey) must be 

stronger than the between-species effect (increased predation pressure exerted on prey). 

This condition can never be met in the basic Nicholson-Bailey model, which is why this 

model is always unstable. However, stability is made possible by the inducible prey 

defense, which weakens the intraspecific effect of predator density and intensifies the 

interspecific effect. Condition 3, by giving a lower boundary for 'pw  relative to 'nw , 

shows that stability can be lost again if the intraspecific effect becomes too strong. As I 

shall show below, this may be the case if the prey’s population-level reaction norm is 

very steep (small 2
nσ ).  
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Fig. 19. Model 1 without evolution: The domain of ecological stability. 

A) The domain of ecological stability in the 1a  versus µ plane. In the shaded area, the ecological 
equilibrium of model 1 is locally stable. The thick line marks the boundaries of the domain of 
stability. The maximal value of 1a  that allows for stability is termed sa )( 1 . It is a measure for the 

minimal efficiency the defense must have in order to stabilize the population dynamics. The thin 
line marks the boundaries of the domain of multiple ecological equilibria, and is delimited by 

ba )( 1  (see Fig. 11). For ∞→µ , both boundary lines approach the ordinate. 

B) A detailed view on the relationship between the domain of ecological stability and the domain 
of multiple ecological equilibria. a)  low equilibrium stable, b)  high equilibrium stable, c)  low 
and high equilibrium stable, d)  stable equilibrium for baa )( 11 > .  

1a  is the success rate of predators feeding on defended prey, and µ is the prey’s mean induction 
threshold.  Model 1. Parameters: 4.00 =a , 4.0=b , 4.0=dc , 02 =nh , 2=λ , 25.62 =σn . 
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Usually, it is not possible to derive analytical results regarding the effect of the various 

model parameters on the stability of the ecological equilibrium. The one exception is the 

parameter b, the number of new predators obtained per consumed prey. It can be shown 

that b has no influence on the domain of ecological stability at all. The prove is straight-

forward and, basically, relies on the fact that nw  is independent of tN  and b, whereas 

pw  is linear in both tN  and b. This causes *N  and several components of the Jacobian 

J* to be linear in b, but in the characteristic polynomial all instances of b cancel, leaving 

the eigenvalues of J* unchanged. Note, however, that b does have an influence on non-

equilibrium dynamics.  

3.3.3.2.2 Numerical stability analysis 

In the following, I will use numerical methods to explore the domain of ecological sta-

bility as a function of the parameters µ, 1a , 2
nσ , dc , and λ . The boundaries of the do-

main of stability can be calculated by finding parameter values such that the dominant 

eigenvalue of the Jacobian J* has magnitude equal to 1.  

Fig. 19 shows the domain of ecological stability in an 1a  vs. µ plane for a rather large 

value of 2
nσ . It is delimited by a loop-shaped boundary line. For baa )( 11 < , there are 

separate stability domains for the low and the high equilibrium, respectively. The low 

equilibrium is stable if µ is not too large, and the high equilibrium is stable if µ is not 

too small. If 1a  is close to ba )( 1 , both equilibria can be stable simultaneously. For 

baa )( 11 > , the single ecological equilibrium is stable for intermediate values of µ. If 1a  

exceeds another critical value, which I will term sa )( 1 , no stable equilibrium is possible 

for any µ. As a large value of 1a  is equivalent to a weak defense, sa )( 1  can be inter-

preted as the minimum efficiency the defense must have in order to stabilize the system.  
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Fig. 20. Model 1 without evolution: The domain of ecological stability as a function of 2
nσ . 

The domain of ecological stability (shaded area) in the 1a  versus µ plane for various values of 2
nσ , the 

variance of the prey’s induction threshold. With increasing 2
nσ , the range of µ that enables stability in-

creases for small 1a , but sa )( 1 , the maximal value of 1a  where stability is possible, decreases. For an 

explanation of the diagram, see Fig. 19.  Model 1. Parameters: 4.00 =a , 4.0=b , 2.0=dc , 02 =nh , 
2=λ . 

If 2
nσ  is increased, sa )( 1  decreases (but stays positive), but for saa )( 11 < , the range of µ 

where stability is possible increases (i.e. the domain of stability becomes “shorter” but 

“higher”, Fig. 20, see also Fig. 24). However, the increase in the range of µ merely re-

flects the increased variance of the distribution of induction thresholds and has no 

deeper biological meaning. The effect disappears if µ is normalized and divided by 2
nσ  

(Fig. 21).  
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Fig. 21. Model 1 without evolution: The domain of ecological stability as a function of 2
nσ  with normal-

ized µ.  

The domain of ecological stability (shaded area) in the 1a  versus nσµ /  plane for various values of 2
nσ , 

the variance of the prey’s induction threshold. Data are the same as in Fig. 20, but the prey’s mean induc-
tion threshold µ has been divided by the standard deviation nσ  in order to achieve normalization. A com-

parison with Fig. 20 shows that the differences in the “height” of the domain of stability disappear and 
only the differences in sa )( 1  remain. sa )( 1  is the maximal value of 1a  where stability is possible. For an 
explanation of the diagram, see Fig. 19.  Model 1. Parameters: 4.00 =a , 4.0=b , 2.0=dc , 02 =nh , 

2=λ . 

 
Fig. 22 (next page). Model 1 without evolution: The domain of ecological stability as a function of the 
prey’s fecundity λ  

The domain of ecological stability (shaded area) in the 1a  versus µ plane for various values of the prey’s 
fecundity λ . With increasing λ , the range of µ that enables stability  decreases, although sa )( 1 , the maxi-
mal value of 1a  where stability is possible, increases slightly. For an explanation of the diagram, see Fig. 

19. Model 1. Parameters: 4.00 =a , 4.0=b , 4.0=dc , 02 =nh , 25.62 =σn . 

Fig. 23 (next page). Model 1 without evolution: The domain of ecological stability as a function of the 
defense costs dc  

The domain of ecological stability (shaded area) in the 1a  versus µ plane for various values of the cost 
parameter dc . With increasing defense costs, the range of µ that enables stability increases, although 

sa )( 1 , the maximal value of 1a  where stability is possible, decreases slightly. For an explanation of the 
diagram, see Fig. 19.  Model 1. Parameters: 4.00 =a , 4.0=b , 02 =nh , 2=λ , 25.62 =σn . 



Part 3: Reciprocal plasticity and Coevolution  Results 

 

85 

Fig. 22: For legend see previous page. 

Fig. 23. For legend see previous page. 



Part 3: Reciprocal plasticity and Coevolution  Results 

 

86 

Fig. 24: sa )( 1  as a function of  2
nσ  , dc  and λ  

sa )( 1 , the maximal value of 1a  that allows for a stable equilibrium, as a function of 2
nσ  , the variance of 

the prey’s induction threshold µ, for various values of the defense costs dc  (A) and the prey’s fecundity 

λ  (B). 1a  is the success rate of predators feeding on defended prey. sa )( 1  is a measure for the capacity of 
the inducible defense to stabilize the dynamics of the predator-prey system. A high value of sa )( 1  means 
that even a weak defense can stabilize the interaction, provided the mean induction threshold µ has an 

appropriate value. If 2
nσ  is increased further than shown in the figures, sa )( 1  approaches a positive limit-

ing value. The data show that the stabilizing capacity of the defense decreases strongly with increasing 2
nσ  

and decreases slightly with increasing dc  and decreasing λ . Note however, that an increase in dc  and a 

decrease in λ  causes a marked reduction in the range of µ where stability is possible for  saa )( 11 <  (see 
Fig. 23). For very small 2

nσ , sa )( 1  can no longer be calculated (see Fig. 28). Therefore, I the smallest 
value of 2

nσ  in the present figures is 0.0001. Note the quadratic scale of the abscissae. Model 1. Parame-
ters: 4.00 =a , 4.0=b , 4.0=dc  02 =nh , 2=λ  (A). 
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In contrast, there is a “real” decrease in the range of µ that enables stability if the prey 

growth rate λ  is increased (Fig. 22) or the cost parameter dc  is decreased (Fig. 23), 

although in both cases, there is also a slight increase in sa )( 1  (Fig. 24). Apparently, the 

stabilizing power of the defense decreases if the net growth rate of the prey is high (i.e. 

high fecundity, low defense costs). The concomitant increase in sa )( 1  may be due to the 

increased ability of the prey population to compensate for predator-induced mortality.  

If ∞→σ2
n , sa )( 1  approaches a positive limiting value. Thus, a strong defense can sta-

bilize the interaction even if the realized plasticity at the population-level is zero. As in 

all other cases, however, stability requires that both prey phenotypes are present at suf-

ficiently high frequency ( *d  must not be too close to 0 or 1). 

 

Fig. 25. Model 1 without evolution: The domain of ecological stability for small 2
nσ  

The domain of ecological stability (shaded area) in the 1a  versus µ plane for a small value of 2
nσ , the vari-

ance of the prey’s induction threshold. The parameters are the same as in Fig. 19, except for 2
nσ , which has 

been decreased from 6.25 to 0.01. This reduction in 2
nσ  brings about a qualitative change in the structure 

of the domain of ecological stability. The thick (“outer”) boundary line corresponds to the one in Fig. 19. 
However, the thin (“inner”) boundary line is new and delimits a region on instability in the center of the 

stable domain. Note that the present figure does not show the boundaries of the domain of multiple equi-
libria (but see Fig. 26 for additional details). Model 1. Parameters: 4.00 =a , 4.0=b , 4.0=dc  (B), 

02 =nh , 2=λ , 01.02 =σn . 
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µ 
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Fig. 26. Model 1 without evolution: The development of the “inner” stability boundary with decreasing 
2
nσ . 

Schematic representations of the domain of ecological stability, illustrating the transition from the struc-
ture shown in Fig. 19 to that shown in Fig. 25. 2

nσ , the variance of the prey’s induction threshold, de-

creases from A to F. For simplicity, the 5 graphs have been drawn together into a single coordinate sys-
tem. The thin solid line represents the boundary of the domain of multiple equilibria, the dotted line repre-
sents the “outer” boundary of the domain of stability, and the thick solid line represents the “inner” stabil-

ity boundary. (Note that these line styles differ from those in the previous figures.) A shows a situation 
analogous to that in Fig. 19. However, the inner stability boundary is just about to originate at the lower 
boundary of the domain of multiple equilibria (dot). With decreasing 2

nσ , the structure of the domain of 
ecological stability more and more resembles that in Fig. 25 (F).  
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If 2
nσ  is decreased further than in the previous examples, the pattern shown in Fig. 19 

changes qualitatively. A typical case is depicted in Fig. 25. The domain of ecological 

stability now has a second boundary line, which (in the “looped” part) is inside the first 

one. For baa )( 11 > , this means that there is a region of instability in the center of the 

stable domain. For baa )( 11 < , the low and high equilibrium now may be unstable close 

to the boundaries of the domain of multiple equilibria. (Note that these boundaries are 

not shown in Fig. 25, but see Fig. 26 for more details.)  

Fig. 26 schematically shows the intermediate stages leading from the situation in Fig. 19 

to that in Fig. 25 as 2
nσ  is successively decreased. It was necessary to use drawings that 

are not true to scale because, in the original data, the various lines are so close to each 

other that they cannot be clearly distinguished visually. Once 2
nσ  drops below a thresh-

old, the second boundary line originates from the lower boundary of the domain of mul-

tiple equilibria. The threshold value for 2
nσ  increases with increasing defense costs dc  

(Fig. 27). For 4.0=dc  (as in Fig. 25 and 26), the second boundary line originates at 

01 =a . However, if dc is decreased, the point of origin moves towards ba )( 1  (data not 

shown).  
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Fig. 27. Model 1 without evolution: The threshold value of 2
nσ  at the origin of the inner stability boun dary. 

The threshold value of 2
nσ  where the inner stability boundary originates (see Fig. 26 A), as a function of 

the defense costs dc . If the costs of the defense are high, the inner stability boundary is present already at 
relatively high values 2

nσ . Note the quadratic scale of the ordinate. Model 1. Parameters: 4.00 =a , 

4.0=b , 02 =nh , 2=λ . 
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Fig. 28. Model 1 without evolution: Fragmentation of the domain of ecological stability for very small 
2
nσ . 

The domain of ecological stability (shaded area) in the 1a  versus µ plane for a very small value of 2
nσ , the 

variance of the prey’s induction threshold. Parameters are the same as in Fig. 19 and 25, except for 2
nσ , 

which has been further decreased to 0.001225. A comparison with Fig. 19 shows that the inner stability 
boundary (thin line) has “penetrated” the outer one (thick line), such that the domain of ecological stabil-
ity has become fragmented. Note that the figure does not show the boundaries of the domain of multiple 
equilibria. Model 1. Parameters: 4.00 =a , 4.0=b , 4.0=dc , 02 =nh , 2=λ , 001225.02 =σn . 

If 2
nσ  is decreased even further than in Fig. 25, the domain of ecological stability be-

comes more and more fragmented (Fig. 28). Finally, it vanishes completely as 02 →σn . 

Stability is not possible for 02 →σn  because, in this case, all prey have the same induc-

tion threshold and, thus, there can be only one prey type at equilibrium. For *P≠µ , the 

model then reduces to the basic Nicholson-Bailey model which is always unstable. For 

*P=µ , linear stability analysis is not possible because )(Pwn  is not differentiable at 

*PP = . Numerical simulations suggest that the model is unstable in this case, too, with 

prey and predator showing chaotic oscillations but avoiding extinction.  

The two stability boundaries shown in Fig. 25 can be explained mechanistically by us-

ing the analytical results derived in the previous section (eq. 41). The outer boundary 

marks the case where the second Jury condition, '' np ww < , is violated and predator 

density at equilibrium has a stronger impact on predator fitness than on prey fitness 
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(Fig. 29). Although violation of this condition can be prevented by the inducible de-

fense, this is not possible if either the defense is too weak ( saa )( 11 > ) or the equilibrium 

induction frequency *d  is too close to 0 or 1, which is the case for extreme values of µ 

(i.e. if µ is too far from P*). In the latter case, the dynamics converges to those of the 

basic Nicholson-Bailey model, which is always unstable. The inner boundary marks the 

case where the third Jury condition, */22/'' Pww np −> , is violated and the effect of 

predator density on predator fitness is too strong relative to the effect on prey fitness 

(Fig. 29 B). This happens if the prey’s population-level reaction norm at equilibrium is 

too steep, that is for small 2
nσ  and intermediate µ (leading to intermediate *d ).  

 

Fig. 29. Model 1 without evolution: Explaining the inner and outer stability boundary.  

The two kinds of stability boundaries shown in Fig. 25 can be related to the analytical results summa-
rized in eq. (41). The figures show the equilibrium induction frequency *d , and the quantities 'nw  

(thick solid line), 'pw  (thin solid line), and */22/' Pwn −  (dotted line) on a gradient of the mean induc-
tion threshold µ. In A, the parameters are the same as in Fig. 19 at 1.01 =a , whereas in B, the parameters 
are those of Fig. 25 at 15.01 =a . The shaded area marks the range of µ where the ecological equilibrium 

is stable. The outer boundaries of this range (i.e. the outer stability boundaries) are defined by violation 
of the second Jury condition, '' np ww <  (A and B), whereas the inner boundaries are defined by viola-
tion of the third Jury condition */22/'' Pww np −>  (only A). Model 1. Parameters: A) 4.00 =a , 

1.01 =a , 4.0=b , 4.0=dc , 02 =nh , 2=λ , 25.62 =σn . B) 4.00 =a , 15.01 =a , 4.0=b , 4.0=dc , 
02 =nh , 2=λ , 01.02 =σn . 
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3.3.3.3 Non-equilibrium population dynamics 

Even if the inducible defense cannot completely stabilize the system, predator and prey 

may coexist by performing non-equilibrium population dynamics. As I shall show, these 

dynamics can be highly complex, and a full analysis is far beyond the scope of this 

study. Instead, I will present a series of figures, based on variation in µ, that give an 

overview of the possible behaviors.  

If µ crosses the “outer” stability boundary (see Fig. 25) linear stability analysis predicts 

stable limit cycles that span several generations (Fig. 30 A; Gurney and Nisbet 1998, 

pages 60f). In contrast, µ crossing the “inner” stability boundary leads to overcompensa-

tion and creates a 2-cycle with the populations alternately overshooting and undershoot-

ing the equilibrium (Fig. 30 B). If µ is moved further away from the domain of stability, 

the system may undergo further bifurcations (qualitative changes of dynamics) that lead 

to very complex and “chaotic” behavior.  

12

13

14

t
0 5 10 15 20

1

2

N
15

20

25

t
0 10 20 30 40

P

0

1

2

A B

Fig. 30: Model 1 without evolution: Simple types of non-equilibrium dynamics near the domain of eco-
logical stability. 

Close to the domain of stability, model 1 (without evolution) displays a regular dynamic behavior. The 

graphs show prey density N and predator density P as a function of time t. Parameters are those of Fig. 
25 at 15.01 =a . In A, 55.0=µ  is outside the outer stability boundary, and the system displays stable 
limit cycles with a period of several generations. In B, 8.1=µ  is inside the inner stability boundary, and 

the populations undergo regular two-cycles. Model 1. Parameters: 4.00 =a ,  4.0=b , 4.0=dc , 02 =nh , 
2=λ , 01.02 =σn . 
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Fig. 31 shows some possible attractors in the N vs. P phase plane. An attractor is the 

set of points (N, P) that the system reaches in its final dynamic state (after transient 

dynamics have been damped away). For 3=µ , which is inside the domain of stability, 

the attractor is a single point (N*, P*). After crossing the outer stability boundary, this 

equilibrium is replaced by a stable limit cycle ( 4=µ ), which may take the form of a 

closed curve if its period is an irrational multiple of generation time (i.e. the system 

never exactly returns to its starting point). A cycle of integer period is shown for 

6.4=µ . With further increase in µ, the shape of the cycle becomes distorted. Finally, 

via a series of period doublings, it evolves to a “strange attractor” that reflects chaotic 

dynamics.  
A more systematic way to display the dynamic behavior of model 1 as a function of µ is 

to use bifurcation diagrams. For each µ, these diagrams show all values of the predator 

density P that belong to the respective attractor (bifurcation diagrams using the prey 

density N instead of the predator density P look qualitatively similar). Fig. 32 shows 

bifurcation diagrams for a situation without an inner stability boundary. Furthermore, it 

illustrates the transition from the multiple to the single equilibria case. Fig. 33 shows a 

bifurcation diagram in a situation with two stability boundaries. Outside the outer stabil-

ity boundary, the behavior of the system is similar to that shown in Fig. 31. Inside the 

inner boundary, the dynamics are extremely complex.  
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Fig. 31. Model 1 without evolution: Some types of non-equilibrium dynamics on a gradient of µ. 

Phase plane diagrams for some types of non-equilibrium dynamic behavior of model 1 without evolution. 

The graphs show the combinations of prey density N and predator density P that occur in the system after 
transient dynamics have been damped away. For example, the graph shown for 4=µ  is the phase plane 
representation of a stable limit cycle similar to the one in Fig. 30 A. As the mean induction threshold µ 

increases (and, thus, moves away from the domain of ecological stability), the dynamics change from a 
stable equilibrium (single point) to stable limit cycles with either integer (distinct points) or non-integer / 
irrational (closed curve) period and, finally, to “chaos” (complex, ragged plot). Model 1. Parameters: 

4.00 =a , 1.01 =a , 4.0=b , 2.0=dc , 02 =nh , 2=λ , 42 =σn . 
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Fig. 32. For legend see next page. 
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Fig. 32. Model 1 without evolution: Bifurcation diagrams for a situation without an inner stability bound-
ary 

Bifurcation diagrams for predator density P as a function of the prey’s mean induction threshold µ. The 
graphs show the predator densities that occur in the system after transient dynamics are damped away. 

Single lines represent stable equilibria, multiple lines represent cycles with integer period, filled regions 
with clear-cut boundaries reflect cycles with non-integer or irrational period, and filled regions without 
clear boundaries point to chaotic dynamics.  

The three graphs illustrate the transition from the multiple to the single equilibrium case in a situation 
with no inner stability boundary (i.e. the domain of stability looks similar to that in Fig. 19). In the first 

two cases shown, there are two alternative equilibria (the low and the high equilibrium), which are each 
stable for a certain range of µ before they are replaced by stable limit cycles or some more complex at-
tractor. Both equilibria can be stable simultaneously for 06.01 =a , but not for 0475.01 =a . For 1.01 =a  

(which is greater than ba )( 1 ), the two equilibria have fused to yield a single equilibrium, which is stable 
for intermediate µ and unstable for low or high µ. The amplitude of the oscillations increases as µ is 
moved away from the domain of ecological stability. The arrows in the third figure point to the cases 
shown in Fig. 31. Model 1. Parameters: 4.00 =a , 4.0=b , 2.0=dc , 02 =nh , 2=λ , 42 =σn . 
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Fig. 33. For legend see next page. 
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Fig. 33. Model 1 without evolution: Bifurcation diagrams for a situation with an inner stability boundary.  

Bifurcation diagrams for predator density P as a function of the prey’s mean induction threshold µ (see 
Fig. 32) in a situation with an inner stability boundary, but outside the domain of multiple ecological 
equilibria. The graphs highlight the wealth of complex non-equilibrium behavior that may be observed 

outside the domain of ecological stability. Parameters are those of Fig. 25 at 15.01 =a . In A, the full 
range of µ is shown. B shows the range inside the inner stability boundary in greater detail, and C is a 
magnification of the “right-hand” part of this range. Model 1. Parameters: 4.00 =a , 15.01 =a , 4.0=b , 

4.0=dc , 02 =nh , 2=λ , 01.02 =σn . 
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3.3.3.4 Evolution 

3.3.3.4.1 Evolutionary stability of model 1 

As shown in section 3.3.3.1.1, model 1 has an evolutionary equilibrium only if 11 âa =  

(eq. 32), because only in this case, the condition 110 == nn ww  can be satisfied (see Fig. 

9 C). If 11 âa = , an evolutionary equilibrium exists for each value of the mean induction 

threshold µ, with )/()1ln(*ˆ
01 aacPP d −−==  being independent of µ and N* increasing 

with decreasing µ.  

Linear stability analysis for this equilibrium (see eq. 10) yields the following results: 

First, it is easy to show that at equilibrium 
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 (42) 

The first two equalities reflect the lack of density-dependence in the prey, whereas the 

last two equalities are due to the fact that at equilibrium, both prey types have the same 

fitness. Consequently, the Jacobian is of the form 



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
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J

J . (43) 

It follows directly from the characteristic polynomial that any such matrix has one ei-

genvalue equal to 1. In consequence, the linearized version of the model is either unsta-

ble, or – if the other two eigenvalues have magnitude less than 1 –  neutrally stable. In 
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the latter case, stability of the full non-linear model must be investigated by numerical 

simulations. These simulations show that an equilibrium indeed is reached, but its exact 

location (in terms of the values of N* and µ*) depends upon the initial conditions.  

3.3.3.4.2 Non-equilibrium dynamics of model 1 with evolution 

In the general case 11 âa ≠ , model 1 does not have an evolutionary equilibrium. How-

ever, non-equilibrium dynamics may lead to infinite persistence of the system if the 

mean induction threshold µ is kept at intermediate values by cyclic evolutionary dynam-

ics.  

In the following, I will give a preliminary analysis of this scenario. I will focus on pa-

rameter combinations that ensure an high overall stability of the system. In particular, I 

will consider the case 12 =σn  and .4.0=dc   

With evolution (i.e. 02 >nh ) the simplest behavior of the system is a stable limit cycle 

where predator-prey oscillations drive cyclical changes in the mean induction threshold 

µ. An example is provided in Fig. 34: µ increases when PP ˆ<  and decreases when 

PP ˆ>  ( P̂  is the predator density where both prey types have equal fitness, see eq. 31). 

The stabilizing action of this negative feedback between µ and P is further illustrated in 

Fig. 35.  
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Fig. 34. Model 1 with evolution: Stable limit cycles.  

Prey density N, predator density P, and the prey’s 

mean induction threshold µ as a function of time t. 
Phenotypic plasticity is maintained, because predator-
prey cycles drive corresponding cycles in µ. µ de-

creases when P is high, but  increases again whenever 
P drops below the threshold density P̂  (dotted line, 
see eq. 31). Model 1. Parameters: 4.00 =a , 09.01 =a , 

4.0=b , 4.0=dc , 12 =nh , 2=λ , 12 =σn . 
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Fig. 35. Model 1 with evolution: Stabilization of the prey’s induction threshold by predator-prey cycles. 

The Figure illustrates the interaction between predator-prey dynamics and the evolutionary dynamics of 

the prey’s induction threshold. Prey density N, predator density P, and the prey’s mean induction thresh-
old µ are displayed as a function of time t. At the beginning of the simulation, predator and prey are at the 
ecological equilibrium for 0=µ . When evolution is “switched on” µ starts to decrease, because defended 

prey have a higher fitness than undefended prey (as PP ˆ* > , see eq. 31). In consequence, the population 
dynamics are destabilized and the stable equilibrium is replaced by predator-prey cycles. Continuing 
decrease of µ results in an increase in the amplitude of the cycles, until predator density temporarily falls 

below P̂  (dotted line). Thus, the decrease of µ is stopped, and the dynamics converge to a stable limit 
cycle. (It should be noted that transient dynamics may be more complex than in this example!) Model 1. 
Parameters: 4.00 =a , 07.01 =a , 4.0=b , 4.0=dc , 12 =nh , 2=λ , 12 =σn . 
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Fig. 36. Model 1 with evolution: Ecological-scale cycles in µ superseded by evolutionary-scale cycles. 

Dynamics of the mean induction threshold µ as a function of time t. Parameters are those of Fig. 34, except 
for 1a  which now equals 0.01. Cycles at the time-scale of predator-prey cycles (see Fig. 34) are superim-

posed by low-amplitude cycles at a larger, evolutionary time-scale. The population dynamics of predator 
and prey (not shown) follow a similar pattern. Model 1. Parameters: 4.00 =a , 01.01 =a , 4.0=b , 

4.0=dc , 12 =nh , 2=λ , 12 =σn . 

The oscillations considered so far have been restricted to the ecological time-scale, that 

is the time scale of predator-prey cycles. However, the model may display more com-

plex dynamics, too. In particular, the ecological-scale cycles may be superimposed by 

higher-order cycles that arise at a larger, evolutionary time-scale. Two examples are 

depicted in the following figures. Fig. 36 shows low-amplitude evolutionary-scale cy-

cles that shift the location of the ecological cycles. These cycles seem to prevail if 1a  is 

either very small or very large. In Fig. 37, large-amplitude evolutionary-scale cycles 

drive the system into and out of the domain of ecological stability, leading to “pulsed” 

oscillations. Dynamics of this kind can be observed for 12 >σn  and 1a  close to 1̂a . Evo-

lutionary-scale cycles are also frequently observed in transient dynamics.  

Fig. 38 shows the location of stable limit cycles as a function of the parameter 1a . For 

11 âa < , the average value of µ is low (corresponding to high induction frequencies d ) 

and the average prey population density N is high. The cycles decrease in amplitude as 

1a  approaches 1̂a  and, for 11 âa = , converge to an equilibrium point with µ at the lower 

boundary of the region of neutral stability. When 1a  is increased further, another set of 

limit cycles starts off from the upper boundary of this stability region with high average 
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values of µ and low values of d  and N. For 1a  between about 0.03 and 0.14, the cycles 

are of the type shown in Fig. 34 (ecological time-scale only). For smaller or larger 1a , 

there are cycles like those shown in Fig. 36 (ecological and evolutionary scale). For 

01.01 <a  (not shown in Fig. 38) the dynamics are truly chaotic, with extremely high 

maximal values of N and P, and the curves delimiting the range of µ become “ragged”.  

Finally, for 01 →a  or 17.01 >a  the predator population goes extinct.  
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Fig. 37. Model 1 with evolution: Pulsed dynamics due to evolutionary-scale cycles. 

Prey density N, predator density P, and the prey’s mean induction threshold µ as a function of time t. 
Large-amplitude evolutionary-scale cycles drive the system into and out of the domain of ecological stabil-

ity, leading to “pulsed” oscillations at the ecological time-scale. Model 1. Parameters: 4.00 =a , 1.01 =a , 
4.0=b , 4.0=dc , 12 =nh , 2=λ , 25.122 =σn . 
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Fig. 38. Model 1 with evolution: Bifurcation diagrams  

Overview of the dynamic behavior of model 1 with evolution as a function of the defense parameter 1a . 

The figure shows the maximal and minimal values of N, P, and µ that occur in the system after transient 
dynamics have been damped away. N is prey density, P is predator density, and µ is the prey’s mean 
induction threshold. In most cases, the dynamics are stable limit cycles spanning the range indicated in 

the plots (see Fig. 34). For very small or very large 1a , the dynamics are more like those shown in Fig. 
36. For 01.01 <a  (not shown), the system behaves in a truly chaotic manner, and the maximal population 
densities tend towards infinity.  

The dotted line in the first two plots marks 1̂a , the value of 1a  where undefended and defended prey have 

equal fitness at the ecological equilibrium (eq. 32). This is the only case where an evolutionary equilib-
rium is possible. The evolutionary equilibrium is neutrally stable in the range of µ indicated by the dashed
line. For 11 âa < , the system displays cycles with low average µ (i.e. high average induction frequencies) 

and high average N. The reverse is true for 11 âa > . Model 1. Parameters: 4.00 =a ,  4.0=b , 4.0=dc , 
12 =nh , 2=λ , 12 =σn . 
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3.3.4 Model 2: Plasticity in both prey and predator  

3.3.4.1 Model 2 without evolution 

An in depth analysis of model 2 without evolution (i.e. 022 == pn hh ) is beyond the scope 

of this study. Here, I will only mention two aspects. 

3.3.4.1.1 Multiple ecological equilibria 

The addition of phenotypic plasticity in the predator increases the maximal number of 

alternative ecological equilibria – already three in model 1 – to five. Such a case is 

shown in Fig. 39, where 1=nw  has five solutions. However, this scenario seems to re-

quire very low values of both 2
nσ  and 2

pσ . For most other parameter combination, there 

are either three equilibria or one. I will not pursue this question in further detail here.  

 

Fig. 39. Model 2 without evolution: 5 alternative ecological equilibria  

In extreme cases, the combination of an inducible defense and an inducible counter-offense gives rise to 
five alternative ecological equilibria. The figure shows 0nw , the fitness of undefended prey  (dashed line), 

1nw , the fitness of defended prey (thin solid line), and nw , the mean fitness of the prey (thick  solid line) 
as a function of predator density P. Note that 1=nw  has five solutions. Model 2. Parameters: 4.000 =a , 

1.010 =a , 49.001 =a , 18.011 =a   4.0=b , 2.0=dc , 2.0=oc , 02 =nh , 02 =ph , 2=λ , 2=µ , 2=ν , 
01.02 =σn , 0025.02 =σ p . 
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3.3.4.1.2 Ecological stability  

In this section, I will give a brief overview of the effects that the predator’s counter-

offense can have on the stability of the predator-prey dynamics. I will focus on how the 

offense influences the capacity of the defense to stabilize the interaction.  

For model 1, I have measured this capacity by means of the quantity sa )( 1 , the maximal 

value of 1a  that permits a stable equilibrium for appropriate values of µ (see Fig. 19). 

Similarly, I now define sa )( 10  as the maximal value of 10a  that permits stability for ap-

propriate µ in model 2. In the following, I will investigate how sa )( 10  is influenced by 

the inducible offense, in particular by the parameters 11a  and oc . I will not investigate 

the effect of ν and
2
pσ , but instead restrict myself to the case 5.0=ν  and 25.02 =σ p . In 

order to keep the following discussion as simple as possible, I will temporarily relax the 

assumption )1/(111 oca −≥  (eq. 17) and only require 0011100 aaa ≤≤≤ . This does not 

change the conclusions of the analysis but avoids an additional source of complication. 

Fig. 40 A shows sa )( 10  as a function of 11a . Together with the lines 1110 aa = , 0011 aa =  

and 010 =a , the graph of sa )( 10  delimits the domain in the  11a  versus 10a  plane where 

ecological stability is possible for appropriate values of µ. sa )( 10  decreases with 11a , 

which means that stability is not possible if the defense is too weak or the counter-

offense is too strong.  

The overall effect of the offense can be seen by comparing sa )( 10  with sa )( 1  in the cor-

responding model 1 (i.e. model 1 with 000 aa =  and 101 aa = ). As shown in Fig. 40 A, 

the offense tends to increase stability (i.e. ss aa )()( 110 > ) if 11a  is small, but tends to 

decrease stability if 11a  is large. Furthermore, Fig. 40 B shows that sa )( 10 , and hence 

the stabilizing tendency, decreases as the cost parameter oc  increases.  

These results demonstrate that the inducible offense can affect stability of the predator-

prey dynamics in two different ways. On the one hand, it tends to have a destabilizing 

impact, because it reduces the stabilizing effect of the prey’s defense. On the other hand, 

it tends to stabilize the interaction by imposing fitness costs on the predator in a density 
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dependent manner ( o  ultimately is a function of P). Which of the two effects prevails 

depends on the relative magnitude of the parameters 11a  and oc . The destabilizing effect 

of predation efficiency increases with 11a , whereas the stabilizing effect of costs in-

creases with oc . Furthermore, stabilization due to the offense costs requires that the 

realized plasticity in the predator population is greater than zero. For ∞→σ2
p , 

ss aa )()( 110 ≤  for all 11a , with ss aa )()( 110 =  for 1110 aa =  (not shown in Fig. 40).  

Fig. 40. Model 2 without evolution: The impact 
of the counter-offense on the stabilizing effect 
of the prey’s defense.  

Potential stability of model 2 (without evolu-

tion) as a function of the defense parameter 10a  
and the counter-offense parameter 11a . 10a  is 
the success rate of non-induced predators feed-

ing on defended prey, and 11a  is the success 
rate of induced predators feeding on defended 
prey. Only cases where 1011 aa >  are consid-

ered. In A, the shaded area marks the domain in 
the 11a  versus 10a  plane where an ecological 
equilibrium is stable for appropriate values of 

the prey’s mean induction threshold µ. The 
thick solid line marks sa )( 10 , the maximal value 
of 10a  where stability is possible for some µ. 

The dotted line shows the same value for the 
case that the counter-offense is completely 
absent (i.e. ∞→ν ). This value is equivalent to 

sa )( 1  in the corresponding model 1 (see Fig. 
19). In B, sa )( 10  is compared for four different 
values of the offense costs oc . The results show 

that the stabilizing power of the defense is in-
creased with respect to model 1 if the counter-
offense is weak and the offense costs are high, 

and decreased if the counter-offense is strong 
and the costs are low. Model 2.  Parameters: 

4.000 =a , 4.001 =a , 4.0=b , 4.0=dc , 

4.0=oc  (A), 02 =nh , 02 =ph , 2=λ , 5.0=ν , 
12 =σn , 25.02 =σ p . 
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When interpreting the above results, it is important to keep in mind that sa )( 10  and 

sa )( 1 , respectively, do not necessarily reflect the overall size of the domain of ecologi-

cal stability. In contrast, as shown in Fig. 22 and 23, sa )( 1  may increase while the size 

of the domain of ecological stability decreases. Therefore, the results should be viewed 

as revealing two potential mechanisms affecting stability without allowing to assess 

their respective importance.  

3.3.4.2 The evolutionary equilibrium 

In contrast to model 1, model 2 generally has an evolutionary equilibrium. This equilib-

rium is possible because the existence of two prey phenotypes allows for coexistence of 

the two predator phenotypes and vice versa. The equilibrium conditions 110 == nn ww  

and 110 == pp ww  can be solved analytically to yield expressions for N*, P*, *d , and 

*o . The equilibrium induction thresholds µ* and *ν  can then be obtained numerically 

from these values and the cumulative normal distribution.   

In the following, I will frequently discuss the equilibrium in terms of the induction fre-

quencies *d  and *o , rather than the induction thresholds µ* and *ν  . Note that *d  

and *o  are independent of the genetic mechanism that creates the alternative pheno-

types in prey and predator, respectively. In particular, *d  and *o  are independent of 

the parameters 2
nσ , 2

pσ , 2
nh , and 2

ph .  

Here, I will only present analytical results for P* and *o , as the expressions for N* and 

*d  are cumbersome and non-instructive:   

)()(
*

)()(
*

0001110110

001100

10011100

0001110110

aaraar

arar
o

aaaa

aaraar
P

−−−
−

=

−
−−−

=

              with           
( ))1(ln

ln

1

0

dcr

r

−λ=

λ=
 (44)

 

  



Part 3: Reciprocal plasticity and Coevolution  Results 

 

109 

In all of the following, I will only discuss the case 0001 aa =  (no effect of the offense if 

the prey is undefended). Thus, the above expressions simplify to  

)(
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o

a
P

−
+=

λ=

 (45) 

These results allow to determine the conditions for the existence of the evolutionary 

equilibrium. The equilibrium exists if *o  is between 0 and 1, which is the case for  

11010010 / arraa ≤⋅≤ . (46) 

(Note that *d  is between 0 and 1 if the conditions given in eq. (18) are satisfied.)  

In the following, I will frequently display results in an 10a  versus  11a  plane (and for 

constant 0100 aa = ). Combining eq. (46) with the restrictions given in eq. (18) yields: 

( ) 0011000100

010010

)1/(,/max

/0

aacarra

rraa

o ≤≤−⋅

⋅≤≤
 (47) 

These conditions define the domain in the 10a  versus 11a  plane where the parameter 

values are in accordance with the basic model assumptions (in particular with regard to 

the trade-off in the predator) and an evolutionary equilibrium is possible (Fig. 41). I will 

call this domain the domain of evolutionary equilibrium.  

Fig. 42 shows how the equilibrium values N*, *d , and *o  depend on the parameters 

10a  and 11a . I will explain the results one by one:  First, as 0nw  depends only on P, 00a , 

and λ , and because P* must be the solution to 10 =nw ,  00/)ln(* aP λ=  is independent 

of both 10a  and 11a  (not shown in Fig. 42). Second, for given P*, fulfillment of the con-

dition 10 nn ww =  depends solely on the predator’s induction frequency o . The condition 

is fulfilled if the offense neutralizes the benefit of the defense. As the benefit of the de-
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fense increases with decreasing 10a  and 11a , so does *o . *o  equals 0 for 

010010 / rraa ⋅=  and equals 1 for 010011 / rraa ⋅= . Third, for given P* and *o , fulfillment 

of the condition 10 pp ww =  depends on the prey’s induction frequency *d . The benefit 

of the offense can be reduced by decreasing *d . As the benefit of the offense increases 

with increasing 10a  and increasing 11a , *d  must decrease with these parameters. *d  

equals 1 for )1/(1011 ocaa −= . (Furthermore, 0* =d  for )1/(0001 ocaa −= , but this case 

has not been investigated here.) Fourth and finally, N* is the density of prey needed to 

sustain a predator population of density P* for given *o  and *d . N* decreases with 

increasing predation efficiency, which is determined by 10a  and 11a  as well as by *o  

and *d . All effects combined, N* decreases strongly with 11a  and increases slightly 

with 10a . Thus, it is roughly proportional to *d . 

Fig. 41. Model 2 with evolution: The domain of evolutionary equilibrium 

Schematic representation of the domain in the 10a  versus 11a  plane where (1) an evolutionary equilib-
rium exists and (2) both the defense and the offense are subject to a fitness trade-off (see eq. 47; shaded 
area). In addition, extreme values of the equilibrium induction frequencies of predator and prey, *o  
and *d , are given. See text for further details. 
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Fig. 42. Model 2 with evolution: The evolutionary equilibrium 

Isoclines for the equilibrium induction frequencies of predator and prey, *o  and *d , respectively, and 
for the equilibrium prey density N* in the 10a  versus 11a  plane. Values of *o  are a) 0.0, b) 0.2, c) 0.4, 
d) 0.6, d) 0.8, f) 1.0. Values for  *d  are a) 0.4, b) 0.6, c) 0.8, d) 1.0. Values for N* are a) 15, b) 20, c) 
25, d) 30. The equilibrium density of the predator, 7329.1* =P , is independent of 10a  and 11a . 

The dotted line marks the domain of evolutionary equilibrium (see Fig. 41). 10a  is the success rate of 

non-induced predators feeding on defended prey, and 11a  is the success rate of induced predators feeding 
on defended prey. Model 2. Parameters: 4.000 =a , 4.001 =a , 4.0=b , 4.0=dc , 4.0=oc , 12 =nh , 

12 =ph , 2=λ . 

The limiting cases 010010 / rraa ⋅=  (i.e. 0* =o ) and 010011 / rraa ⋅=  (i.e. 1* =o ) can be 

reached only asymptotically, because they require ∞→ν*  or −∞→ν* , respectively. 

As, in these cases, only one predator morph is present, the model reduces to a version of 

model 1. This model 1 has parameters 000 aa =  and 101 aa =  in the first case, and 

00010 aaa == , 111 aa = , and )1(*2  model1  model ocbb −=  in the second case. In both cases, 

0100100 // rrarra ⋅=⋅  is equivalent to 1â  as defined in eq. (32). Hence, the condition 
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11 âa =  is satisfied, and an evolutionary equilibrium is possible. µ* and *d  , which are 

not uniquely defined in model 1 (see section 3.3.3.4.1), can be derived from the original 

model 2.  

The limiting case )1/(1011 ocaa −=  (i.e. 1* =d ) can be reached asymptotically if 

∞→µ* . In this case, the model reduces to a Nicholson-Bailey model with one prey and 

two predator types, but without phenotypic plasticity.  

In contrast to the ecological equilibria, the evolutionary equilibrium is unique. Further-

more, the associated ecological equilibrium (i.e. the ecological equilibrium for *µ=µ  

and *ν=ν ) is also unique. This can be seen from the fact that both 0nw  and 1nw  are 

strictly monotonically decreasing functions of P. Thus, because nw  lies between 0nw  

and 1nw , P < P* implies 1>nw  and P > P* implies 1<nw . Consequently, 1=nw  can-

not be satisfied for any *PP ≠ .  

3.3.4.3 Stability of the evolutionary equilibrium 

The evolutionary equilibrium is stable if both the population dynamics and the dynam-

ics of the induction thresholds are stable. I will investigate stability of the evolutionary 

equilibrium by focusing on the domain of stability in the 10a  versus 11a  plane. The 

boundaries of the domain of evolutionary stability can be derived by numerically calcu-

lating parameter values such that the magnitude of the dominant eigenvalue of the Jaco-

bian is equal to 1.  

Fig. 43 (next page). Model 2 with evolution: The domain of evolutionary stability as a function of 2
nσ  (next 

page). 

The domain of evolutionary stability (shaded area) in the 10a  versus 11a  plane for various values of 2
nσ , the 

variance of the prey’s induction threshold. The domain of evolutionary stability is largest for intermediate 2
nσ  

and decreases in size for both low and high 2
nσ . The dotted line marks the domain of evolutionary equilibrium 

(see Fig. 41). 10a  is the success rate of non-induced predators feeding on defended prey, and 11a  is the success 

rate of induced predators feeding on defended prey. Model 2. Parameters: 4.000 =a , 4.001 =a , 4.0=b , 
4.0=dc , 4.0=oc , 12 =nh , 12 =ph , 2=λ , 12 =σ p . 
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Fig. 43. For legend see previous page. 
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I will first discuss stability at the boundaries of the domain of evolutionary equilibrium 

(see Fig. 41). At the boundary defined by )1/(1011 ocaa −=  (i.e. 1* =d ), the equilibrium 

is always unstable. In this case, the model reduces to a one-prey-two-predator model 

without phenotypic plasticity. As the stabilizing impact of the prey’s defense is missing, 

this model is always unstable. Conversely, at the boundaries defined by 010010 / rraa ⋅=  

(i.e. 1* =o ) and 010011 / rraa ⋅=  (i.e. 0* =o ), the model reduces to a version of model 1 

(see previous section), and the dynamics may be neutrally stable, as discussed in section 

3.3.3.4.1. Finally, for 010 =a  and 0011 aa = , there are no restrictions on potential stabil-

ity.  

Fig. 43 shows the domain of stability for various values of 2
nσ , the variance of the 

prey’s induction threshold. Similar to the results for model 1 without evolution, stability 

is greatest if 2
nσ  is intermediate. For small 2

nσ , the domain of stability has a “hole” at 

intermediate values of 10a  and 11a . (For 02 →σn , d  must be either 0 or 1 and, there-

fore, an evolutionary equilibrium with intermediate *d  is not possible). The “hole” 

vanishes as 2
nσ  grows larger. With further increase in 2

nσ , however, stability is lost at 

high values of 11a  and low values of 10a . The boundaries of the domain of evolutionary 

stability are remarkably parallel to the boundary line defined by )1/(1011 ocaa −=  and, 

thus, to the isoclines of *d  (see Fig. 42). With increasing 2
nσ , the domain of evolution-

ary stability becomes more and more narrow and vanishes completely for 

32.222 >σn 44.  

Fig. 44 (next page). Model 2 with evolution: The domain of evolutionary stability as a function of 2
pσ . 

The domain of evolutionary stability (shaded area) in the 10a  versus 11a  plane for various values of 2
pσ , 

the variance of the predators’ induction threshold. For small 2
pσ , the domain of stability is reduced for 

parameter combinations where *o , the equilibrium induction frequency of the predator, is intermediate 
(see Fig. 42). The dotted line marks the domain of evolutionary equilibrium (see Fig. 41). 10a  is the suc-
cess rate of non-induced predators feeding on defended prey, and 11a  is the success rate of induced preda-

tors feeding on defended prey. Model 2. Parameters: 4.000 =a , 4.001 =a , 4.0=b , 4.0=dc , 4.0=oc , 
12 =nh , 12 =ph , 2=λ , 25.122 =σn . 
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Fig. 45. Model 2 with evolution: The domain of evolutionary stability as a function of λ . 

The domain of evolutionary stability (shaded area) in the 10a  versus 11a  plane for various values of the 
prey’s fecundity λ . With increasing λ , the domain of evolutionary stability drastically decreases in size. 
The dotted line marks the domain of evolutionary equilibrium (see Fig. 41). Note that the shape of this 

domain changes with λ . 10a  is the success rate of non-induced predators feeding on defended prey, and 

11a  is the success rate of induced predators feeding on defended prey. Model 2. Parameters: 4.000 =a , 
4.001 =a , 4.0=b , 4.0=dc , 4.0=oc , 12 =nh , 12 =ph , 25.122 =σn , 12 =σ p . 

Fig. 44. For legend see previous page.  
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Fig. 44 shows the domain of evolutionary stability for various values of 2
pσ , the vari-

ance of the predators’ induction threshold. 2
nσ  was chosen such that the domain of evo-

lutionary stability has no “hole” (see Fig. 43). The domain of evolutionary stability is 

largest if 2
pσ  is large. If 2

pσ  is decreased, stability is reduced in the region where *o  is 

intermediate (see Fig. 42). In contrast, 2
pσ  has no influence on stability in the limiting 

cases where 0* =o  or 1* =o  (because in these cases, the realized plasticity in the 

predator is zero). In consequence, a decrease in 2
pσ  causes the boundaries of the domain 

of evolutionary stability to “curve inwards”. 

The following figures explore the domain of evolutionary stability as a function of the 

parameters λ , dc , oc , 2
nh , and 2

ph . In all examples, 2
nσ  has been chosen large enough 

such that the domain of evolutionary stability has no “hole”, and 2
pσ  has been chosen 

large enough such that the boundaries of the domain of evolutionary stability are not 

“curved inwards”. The domain of evolutionary stability decreases in size if  the prey’s 

fecundity λ  increases (Fig. 45) or the cost parameters dc  (Fig. 46) and oc  (Fig. 47) 

decrease. In all cases, the boundaries remain approximately parallel to the isoclines of 

*d . Furthermore, stability is most persistent if both the defense and the counter-offense 

are comparatively weak (i.e. large for 10a  and small 11a ), that is if *d  is large, but not 

too close to 1.  

Fig. 46 (next page). Model 2 with evolution: The domain of evolutionary stability as a function of dc . 

The domain of evolutionary stability (shaded area) in the 10a  versus 11a  plane for various values of the 

defense costs dc . The domain of evolutionary stability is smallest for low values of dc . The dotted line 
encompasses the domain of evolutionary equilibrium (see Fig. 41). The shape of this domain changes as a 
function of dc . 10a  is the success rate of non-induced predators feeding on defended prey, and 11a  is the 

success rate of induced predators feeding on defended prey. Model 2. Parameters: 4.000 =a , 4.001 =a , 
4.0=b ,  4.0=oc , 12 =nh , 12 =ph , 2=λ , 25.122 =σn , 12 =σ p . 
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Fig. 46. For legend see previous page. 

Fig. 47. Model 2 with evolution: The domain of evolutionary stability as a function of oc . 

The domain of evolutionary stability (shaded area) in the 10a  versus 11a  plane for various values of the 
offense costs oc . The domain of stability is smallest for low values of oc . The dotted line encompasses the 

domain of evolutionary equilibrium (see Fig. 41). The shape of this domain changes as a function of oc . 
The shape of this domain changes as a function of dc . 10a  is the success rate of non-induced predators 
feeding on defended prey, and 11a  is the success rate of induced predators feeding on defended prey. 
Model 2. Parameters: 4.000 =a , 4.001 =a , 4.0=b ,  4.0=dc , 12 =nh , 12 =ph , 2=λ , 25.122 =σn , 12 =σ p . 
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The domain of evolutionary stability also decreases in size if the heritability of the in-

duction thresholds in both species increases (Fig. 48). As demonstrated in Fig. 49, the 

heritability 2
nh  of the prey’s induction threshold has a much stronger effect on stability 

than the heritability 2
ph  of the predator’s induction threshold. 

Fig. 48. Model 2 with evolution: The domain of evolutionary stability as a function of 2
nh  and 2

ph . 

The domain of evolutionary stability (shaded area) in the 10a  versus 11a  plane for various values of 2
nh  

and 2
ph , the heritabilities of the induction thresholds of prey and predator, respectively. In the figure, 2

nh  

and 2
ph  always have the same value. See Fig. 49 for an attempt to separate the effects of the two parame-

ters.  The domain of evolutionary stability decreases in size with increasing 2
nh  and 2

ph , that is evolution 
of the induction thresholds destabilizes the system. The dotted line encompasses the domain of evolu-

tionary equilibrium (see Fig. 41). 10a  is the success rate of non-induced predators feeding on defended 
prey, and 11a  is the success rate of induced predators feeding on defended prey. Model 2. Parameters: 

4.000 =a , 4.001 =a , 4.0=b , 4.0=dc , 4.0=oc , 2=λ , 25.122 =σn , 12 =σ p . 
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Fig. 49. Model 2 with evolution: The domain of evolutionary stability as a function of evolution in the 
prey or the predator. 

The effect of the presence or absence of evolution in the two species on the domain of evolutionary sta-
bility (shaded area) in the 10a  versus 11a  plane. Evolution in the prey ( 12 =nh ) strongly decreases stabil-

ity, whereas evolution in the predator ( 12 =ph ) only has a minor impact. 2
nh  and 2

ph  are the heritabilities 
of the induction thresholds of the prey and the predator, respectively. The dotted line encompasses the 
domain of evolutionary equilibrium (see Fig. 41). 10a  is the success rate of non-induced predators feed-

ing on defended prey, and 11a  is the success rate of induced predators feeding on defended prey.  Model 
2. Parameters: 4.000 =a , 4.001 =a , 4.0=b , 4.0=dc , 4.0=oc , 2=λ , 25.122 =σn , 12 =σ p . 

I will now summarize the previous results and offer some possible interpretations:  

1. The inducible defense of the prey stabilizes the evolutionary dynamics, provided 

that 2
nσ , the variance of the prey’s induction threshold, is not too small. 

2. The inducible counter-offense of the predator tends to destabilize the evolutionary 

dynamics, especially if the costs oc  of the offense are low.  

3. Stability seems to be very sensitive to the prey’s fecundity λ  (see also model 1). A 

slight increase in λ  causes a strong reduction in the size of the domain of stability.  
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4. High defense costs dc  tend to stabilize the evolutionary dynamics, because they 

reduce the mean fecundity of the prey population. This effect is strongest if a large 

proportion of the prey population is induced. Therefore, stability is greatest for pa-

rameter combinations where *d  is high, but not too close to 1.   

5. As shown by the previous points, many parameters have similar impacts in the mod-

els with evolution and without evolution. This suggests, that the stability of the evo-

lutionary equilibrium is largely determined by the stability of the underlying popula-

tion dynamics. 

6. Evolution of the prey’s induction threshold destabilizes interaction between predator 

and prey. The reason for this effect is unclear. Intuitively, evolutionary changes in 

the mean induction threshold µ should increase the negative feedback between 

predator density and the proportion of defended prey d , which is a key stabilizing 

mechanism in the model. However, whereas changes in d  due phenotypic plasticity 

are instantaneous, evolutionary changes involve a time lag of one generation, and 

time lags frequently have a destabilizing effect on population dynamics.  

Fig. 50. Model 2 with evolution: Stable limit cycles.  

Dynamics of prey density N, predator density P, and 
the mean induction thresholds µ and ν  of prey and 

predator, respectively, as a function of time t. The 
system persists and intermediate induction threshold 
are maintained, because predator-prey cycles drive 

corresponding cycles in µ and ν . Model 2. Parame-
ters: 4.000 =a , 06.010 =a , 4.001 =a , 24.011 =a , 

4.0=b , 4.0=dc , 4.0=oc , 12 =nh , 12 =ph , 2=λ , 
25.122 =σn , 12 =σ p . 
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3.3.4.4 Non-equilibrium dynamics 

Outside the domain of stability, the system may persist via non-equilibrium dynamics. 

The following figures depict three possible types of dynamics. In Fig. 50, predator-prey 

cycles are accompanied by cycles in the mean induction thresholds that occur at the 

same (ecological) time-scale. Fig. 51 shows cycles in the mean induction thresholds that 

span over a larger, evolutionary time-scale and drive “pulsed” oscillations in the popula-

tion dynamics.  
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Fig. 51. Model 2 with evolution: Pulsed dynamics due to evolutionary-scale cycles. 

Dynamics of prey density N, predator density P, and the mean induction thresholds µ and ν  of prey and 
predator, respectively, as a function of time t. Large-amplitude evolutionary-scale cycles in the mean 

induction thresholds drive the system into and out of the domain of ecological stability, leading to 
“pulsed” oscillations at the ecological time-scale. Model 2. Parameters: 4.000 =a , 06.010 =a , 4.001 =a , 

106.011 =a , 4.0=b , 4.0=dc , 4.0=oc , 12 =nh , 12 =ph , 2=λ , 25.62 =σn , 12 =σ p . 
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In Fig. 52, the evolutionary equilibrium is unstable, and ν , the mean induction thresh-

old of the predator, evolves towards infinity. This is because the effect of the counter-

offense (the difference between 11a  and 10a ) is very low, and this small advantage does 

not outweigh the costs of the offense, because, in the long run, the prey’s induction fre-

quency d  is not high enough. In consequence, the realized phenotypic plasticity in the 

predator reduces to zero, and the system approaches a dynamic state with pulsed dy-

namics similar to that shown in Fig. 37. The realized plasticity in the predator is also 

lost if 010010 / rraa ⋅≥  or 010010 / rraa ⋅≤  (i.e. if the equilibrium condition (46) is not 

satisfied). In the former case, ν  evolves towards plus infinity, and in the latter case, ν  

evolves towards minus infinity (no figure).  

 

 

Fig. 52. Model 2 with evolution: Loss of plasticity in the predator. 

Dynamics of prey density N, predator density P, and the mean induction thresholds µ and ν  of prey and 

predator, respectively, as a function of time t. The evolutionary equilibrium is unstable, as 11a  is close 
to )1/(10 oca −  and *d  is close to 1. The simulation is started close to the equilibrium. However, ν, the

mean induction threshold of the predator, increases towards infinity, such that phenotypic plasticity in 

the predator is lost. The system approaches pulsed dynamics similar to those shown in Fig. 37. Model 2. 
Parameters: 4.000 =a , 1.010 =a , 4.001 =a , 175.011 =a , 4.0=b , 4.0=dc , 4.0=oc , 12 =nh , 12 =ph , 

2=λ , 25.122 =σn , 12 =σ p . 
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3.3.4.5 Plastic versus constitutive offense – preliminary results for model 2a 

In model 2a, the inducible counter-offense of the predator is complemented by a consti-

tutive offense based on a major locus allele. This allows to compare the evolution of 

both types of offense. Preliminary results suggest the following co nclusions: 

First, it is important to note that in model 2a, the equilibrium is not unique. Eq. (44) 

determines only the overall proportion *o  of predators with offense, but not the propor-

tions α  and β  (see eq. 23 and 24) of predators with constitutive or inducible offense, 

respectively. At equilibrium, any combination of ν  and q (the frequency of the offense 

allele +C ) is possible if it assures *oo = .  

Numerical simulations were used to investigate which type of offense is favored by 

natural selection. Obviously, once an equilibrium is reached, there is no difference be-

tween a constitutive and an inducible offense. Therefore, within the domain of stability, 

the equilibrium values of ν  and q depend solely upon the initial conditions. (But note, 

that the domain of stability itself may be influenced by the relative frequencies of the 

two types of offense.) For parameter combinations outside the domain of stability, pre-

liminary results indicate a very clear trend. In all examples with cyclic population dy-

namics that I have encountered, the frequency of the +C  allele reduces steadily to zero, 

such that eventually only predators with inducible offense remain in the population (Fig. 

53). In other words, natural selection favors the inducible offense over the constitutive 

one if the population dynamics are not at equilibrium.  
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Fig. 53. Model 2a: Inducible versus constitutive offense. 

The figure shows an example for the dynamics of model 2a outside the domain of stability. In the 
beginning, the predators’ mean induction frequency ν  is high, and the proportion of predators ex-

pressing the inducible offense is very small (< 0.025). The system is in a nearly steady state where 
predator-prey cycles drive corresponding cycles in the prey’s mean induction threshold µ and in the 
frequency q of the offense allele +C . In the course of the simulation, ν  decreases, and more and 

more predators express the inducible offense. Simultaneously, the frequency of the +C  allele de-
creases steadily to zero. In the end, the inducible offense has completely replaced the constitutive 
one. Model 2a. Parameters: 4.000 =a , 06.010 =a , 4.001 =a , 24.011 =a ,  4.0=b , 4.0=dc , 

4.0=oc , 12 =nh , 12 =ph , 2=λ , 25.122 =σn , 12 =σ p . 
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3.3.5 Summary of model results  

3.3.5.1 Ecological dynamics )0( 22 == pn hh  

Model 1: Addition of an inducible defense to the inherently unstable Nicholson-Bailey 

model stabilizes the ecological dynamics by providing a negative feedback between 

predator density and predation efficiency. Predator and prey may coexist indefinitely 

either in a stable equilibrium or via non-equilibrium dynamics. The latter may range 

from stable limit cycles to chaos and show a variety of non-linear effects.  

A stable equilibrium requires that the defense is strong enough and that the mean induc-

tion threshold µ is neither too low nor too high. The latter condition assures that, at 

equilibrium, both prey types are present at sufficiently high frequencies. Stability may 

be lost due to overcompensation if the population-level reaction norm of the prey be-

comes too steep. If the prey’s fecundity is high or the costs of the defense are low (i.e. if 

the mean growth rate of the prey is high), stability is only possible if µ is within narrow 

boundaries. If the realized plasticity in the prey population (i.e. the slope of prey’s popu-

lation-level reaction norm) is low or absent, stability remains possible, but only if the 

defense is strong.  

If the defense is highly effective and the variance of the induction threshold is low, the 

model may have multiple ecological equilibria: At the low equilibrium, predator density 

is low and few prey are defended, whereas at the high equilibrium, predator density is 

high and many prey are defended. Both equilibria may be stable simultaneously. The 

additional intermediate equilibrium is always unstable and, therefore, has no biological 

relevance.  

Model 2: An inducible counter-offense in the predator may affect stability in two differ-

ent ways. On the one hand, it tends to destabilize the interaction by reducing the stabi-

lizing effect of the prey’s defense. On the other hand, the costs of the offense have a 

stabilizing impact because they are imposed on the predators in a density-dependent 

manner. Which of the two effects prevails depends on the relative magnitude of costs 

and benefits of the offense.  



Part 3: Reciprocal plasticity and Coevolution  Results 

 

126 

3.3.5.2 Evolutionary dynamics )0,0( 22 >> pn hh  

Model 1: If only the prey is phenotypically plastic, an evolutionary equilibrium exists 

only in a special case, and this equilibrium can be at best neutrally stable. However, the 

system may persist by performing non-equilibrium dynamics, with predator-prey cycles 

driving corresponding cycles in the mean induction threshold µ. In consequence, µ re-

mains at intermediate values and both prey phenotypes are expressed in the population.  

Model 2: If the predators possess an inducible counter-offense to the prey’s defense, an 

evolutionary equilibrium exists under a wide range of conditions. At the equilibrium, 

both phenotypes in both species coexist.  

Stability of the evolutionary equilibrium is low if the induction frequency of the preda-

tors is intermediate and 2
pσ , variance of the predators’ induction threshold, is low. If 2

pσ  

is sufficiently large, stability is highest if the equilibrium induction frequency of the 

prey is high but not too high, which is the case if neither the defense nor the counter-

offense are too strong. Under these conditions, the mean fecundity of the prey is low, 

because many prey have to pay the cost for the defense.  

Stability of the evolutionary equilibrium is lost if the variance of the prey’s induction 

threshold is either too low or too high. Furthermore, the domain of evolutionary stability 

is small if the prey’s fecundity is high or the costs of both the defense and the offense 

are low. Finally, evolution of the prey seems to destabilize the dynamics, as the domain 

of evolutionary stability is largest if the heritability 2
nh  is low. In contrast, evolution of 

the predator has only a small impact on stability.  

If the equilibrium is not stable, coexistence of predator and prey is possible via non-

equilibrium dynamics. Simulations show three types of dynamics: Predator-prey cycles 

accompanied by cycles in the mean induction thresholds of both species, large-scale 

evolutionary cycles of the mean induction thresholds that drive “pulsed” oscillations in 

the population densities, and run-away selection in the predator leading to the loss of 

one phenotype. 

Model 2a: Preliminary results suggest that a major-locus allele coding for constitutive 

expression of the offense by overriding the induction mechanism is selected against if 
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the population dynamics are cyclic. In contrast, no selection pressure is exerted at the 

evolutionary equilibrium.  

3.4 Discussion 

In the following, I will discuss the effects of phenotypic plasticity on the ecological and 

evolutionary dynamics of model 1 and 2, and I will provide an outlook on the evolution 

of inducible defenses and counter-offenses in dynamic predator-prey systems. I will not, 

however, systematically discuss the effects of individual model parameters, as this has 

already been dealt with in the Results section. 

3.4.1 Ecological dynamics 

The inducible defense of the prey is the main stabilizing factor for the ecological dy-

namics. Whereas, in the basic Nicholson-Bailey model, extinction of one or both popu-

lations is inevitable, addition of the defense enables indefinite persistence of predator 

and prey, either in a stable equilibrium or via non-equilibrium dynamics. The inducible 

defense produces a negative feedback between predator density and predation effi-

ciency, which enhances the density-dependent regulation of the predator population.  

Note, however, that also a non-plastic defense can stabilize the dynamics, provided that 

both prey phenotypes are present at sufficiently high frequencies. This case arises if the 

variance of the prey’s induction threshold, 2
nσ , tends towards infinity, that is if the real-

ized plasticity in the population (see section 3.3.2) decreases to zero. The model then 

converges to the “constant proportion refuge model” analyzed by Hassel and May 

(1973). These authors have shown that stability is possible if a constant proportion of 

the prey is in a “refuge” that provides protection from predation. Of course, the refuge 

may be substituted by any kind of defense. Hassel and May assumed that the protection 

is complete (i.e. 01 =a ) and has no costs (i.e. 0=dc ), but my own results show that 

these are not necessary conditions for stability. However, stability is increased if expres-
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sion of the defense is plastic at the population-level. The transition from model 1 to the 

constant proportion refuge model should be studied in greater detail.  

Phenotypic plasticity in the prey has been found to be stabilizing in other models, too 

(e.g. Ives and Dobson 1987, Ruxton and Lima 1997; but see McNair 1986, Houston and 

McNamara 1997, Luttbeg and Schmitz 2000). In the context of Nicholson-Bailey mod-

els, inducible defenses are a new entry in a long list of stabilizing mechanisms 

(reviewed by Hassell 1978). These include density-dependent prey growth (Beddington 

et al. 1975, 1976), predator aggregation (Hassell and May 1973), prey refuges (Hassell 

and May 1973) and genetic variation in prey characteristics (Doebeli 1997). Multiple 

equilibria like those found in model 1 are frequently observed in theory (May 1977) and 

sometimes in practice (McCauley et al. 1999, Nelson et al. 2001). The complex non-

equilibrium dynamics shown in Fig. 31-33 are typical for discrete-time ecological mod-

els (e.g. May 1974, Beddington et al. 1975, May 1976, Neubert and Kot 1991). Simi-

larly, the loss of stability associated with high prey fecundity is in accordance with re-

sults from other Nicholson-Bailey type models (see Hassell 1978). 

For model 2, a detailed analysis of ecological stability was beyond the scope of this the-

sis. However, my results are sufficient to reveal two basic motifs: On the one hand, the 

inducible counter-offense reduces the stabilizing effect of the inducible defense, but on 

the other hand, the offense has a stabilizing impact itself, because it leads to a density-

dependent reduction in predator fecundity. The relative importance of these conflicting 

mechanisms needs to be clarified in future studies. Results from models of patch selec-

tion games suggest that flexible behavior in predator and prey may be either stabilizing 

or destabilizing, depending on details of the model assumptions (van Baalen and Sabelis 

1993, Brown et al. 1999, van Baalen and Sabelis 1999).  

3.4.2 Evolutionary dynamics and the coexistence of alternative phenotypes 

The evolutionary dynamics of models 1 and 2 can be discussed by asking the following 

questions: What are the conditions and mechanisms leading to the coexistence of alter-

native phenotypes in predator and prey, and what is the role of (realized) phenotypic 
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plasticity therein? Note that, in this study, coexistence of alternative phenotypes is 

equivalent to the maintenance of intermediate induction thresholds.  

Most basically, coexistence of alternative phenotypes requires some sort of environ-

mental heterogeneity (Hazel et al. 1990, Moran 1992). In my model, this heterogeneity 

can be provided by two different mechanisms: Predator-prey cycles and phenotypic di-

versity. The former operates in model 1 and the latter in model 2.  

In model 1, for most parameter combinations, there is no evolutionary equilibrium be-

tween defended and undefended prey. This is a general property of the environmental 

threshold model in spatially homogeneous environments (Hazel et al. 1990) when there 

is no frequency-dependent selection. Nevertheless, the system can persist by performing 

predator-prey cycles that drive associated oscillations in the mean induction threshold of 

the prey. In consequence, alternative prey phenotypes coexist due to temporal heteroge-

neity created by the internal dynamics of the system.  

Notably, the above argument may be reversed. The non-existence of an equilibrium 

between the two prey phenotypes also prevents the existence of a stable equilibrium 

between the prey and predator populations – even if such an equilibrium exists in the 

model without evolution. In this sense, evolution of the induction threshold may be a 

cause for population cycles. Population cycles driven by natural selection have long 

been hypothesized (Chitty 1960, Abrams and Matsuda 1997b) and have recently been 

described in an empirical study (Sinervo et al. 2000).   

In model 2, an evolutionary equilibrium exists because phenotypic diversity – that is the 

presence of alternative phenotypes – in the prey provides the heterogeneity necessary 

for the coexistence of alternative phenotypes in the predator, and vice versa. The alter-

native phenotypes coexist if the equilibrium is stable or if it is unstable but surrounded 

by some circular attractor (e.g. a stable limit cycle). In the latter case, the system dis-

plays Red Queen dynamics (evolutionary cycling) similar to those found in other mod-

els of predator-prey coevolution (e.g. Dieckmann et al. 1995, Gavrilets 1997). Again, 

evolution in the prey may cause cycles in cases where the system would otherwise be 

stable.  
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It is essential to recognize that the evolutionary equilibrium specifies only the propor-

tions of the alternative phenotypes (see eq. 44), but is independent of the genetic 

mechanism that creates these alternative phenotypes in the first place. In particular, the 

evolutionary equilibrium does not rely on phenotypic plasticity. However, phenotypic 

plasticity – or, more precisely, the realized plasticity at the population-level – plays an 

important role in determining whether the evolutionary equilibrium can be reached and 

is stable.  

As shown in Fig. 43, the realized plasticity in the prey is essential for the stability of the 

evolutionary equilibrium. The equilibrium cannot be stable if the realized plasticity in 

the prey becomes too weak (i.e. if the variance of the prey’s induction threshold, 2
nσ , 

exceeds a maximum). This result differs markedly from the results obtained for the eco-

logical equilibrium (in model 1), which can be stable even in the absence of plasticity. 

Note, however, that stability of the ecological equilibrium requires the proportion of 

defended prey, d , to be within a certain range (Hassell and May 1973) but that d  is not 

free to vary if evolution occurs.  

In contrast, the realized plasticity in the predator (which is inversely related to 2
pσ , the 

variance of the predators’ induction threshold) has a negative impact on the stability of 

the evolutionary equilibrium. This result is surprising for at least two reasons. First, sta-

bility of the evolutionary equilibrium increases with increasing offense costs oc . How-

ever, the mechanism suggested by the analysis of the ecological equilibrium can only 

operate if there is realized plasticity in the predator population. Second, the inducible 

offense is bound to cause negative frequency-dependent selection in the prey – when 

more prey are defended, the benefit of the defense is reduced by an increase in the pro-

portion of induced predators –, and this should be expected to stabilize the dynamics of 

the induction thresholds. Indeed, the evolutionary equilibrium seems to be destabilized 

by an increase in 2
pσ  if the population densities in model 2 are kept constant (data not 

shown). However, in the presence of population dynamics, this effect is exactly re-

versed. It is difficult to suggest an intuitive explanation for these findings. Obviously, 

the interaction between the dynamics of the population densities on the one hand and 

the evolving traits on the other hand is highly complex, and giving a mechanistic, “step-

by-step” explanation for the results seems almost impossible.  
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3.4.3 Outlook  regarding the evolution of phenotypic plasticity 

Phenotypic plasticity in both model 1 and model 2 is assumed to be present a priori. 

Therefore, the models cannot predict when and how plasticity evolves in the first place. 

All they can show is adaptive adjustment of the induction thresholds and, as a limiting 

case, the practical loss of plasticity that occurs if the alternative phenotypes cannot co-

exist. 

In the predator, coexistence of alternative phenotypes is not possible if the defense or 

the offense are very weak. In these cases, either the evolutionary equilibrium does not 

exist or it is evolutionarily unstable (i.e. minor deviations from equilibrium lead to run-

away selection of the mean induction threshold; see Fig. 52). It is not possible to ob-

serve a similar process in the prey, because the model populations would go extinct be-

forehand.  

If the alternative phenotypes cannot coexist, the individual induction thresholds will 

evolve towards extremely low or high values, until they are either always or never ex-

ceeded by the inducing cue. Plasticity is then practically lost (i.e. the “realized” plastic-

ity, as defined in section 3.3.2, is lost). Furthermore, it is to be expected that selection 

will no longer maintain the induction mechanism in the individuals, either. Therefore, 

the loss of plasticity by this mechanism is inseparably linked to the loss of one pheno-

type. 

Model 2a has been designed as a preliminary attempt to investigate the evolution of 

phenotypic plasticity independent of the coexistence of alternative phenotypes. For that 

purpose, I have introduced an additional genetic basis for the predator offense: a major 

locus allele that codes for constitutive expression of the offense by overriding the induc-

tion mechanism. Again, this sort of analysis was only possible for the predator. 

Preliminary results from model 2a suggest that the major locus allele is selected against 

if and only if the system performs cyclic population dynamics. This suggests an interest-

ing hypothesis: Inducible defenses as well as inducible counter-offenses might evolve as 

an adaptation to temporal heterogeneity created by the internal dynamics of predator-

prey systems. Given the inherent tendency for cycling found in almost all predator-prey 

models (and in some natural communities, too), this mechanism might prove to be im-
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portant. However, to my knowledge, it has not been proposed before, as models of phe-

notypic plasticity typically assume some kind of externally imposed heterogeneity (e.g., 

two-patch models).  

On the other hand, once a stable equilibrium of model 2a is reached, selection has no 

influence on the frequency of the offense allele anymore. This illustrates that, although 

the evolutionary equilibrium provides a mechanism for the coexistence of alternative 

phenotypes and, thus, for the maintenance of phenotypic plasticity, it does not favor the 

evolution of plasticity. Plasticity is selected for only if the optimal phenotype for an in-

dividual varies in space or time.  

3.4.4 Future directions 

For the future, I suggest to further pursue the approach outlined in model 2a – that is to 

focus on the evolution of phenotypic plasticity in dynamic predator-prey systems. The 

key idea is to study the competition between one plastic and two coexisting non-plastic 

strategies under various dynamic regimes. A similar game-theoretic approach has been 

applied by Lively (1986a, 1999). Possibly, the plastic strategy might be “penalized” 

with a cost (van Tienderen 1997, DeWitt et al. 1998). As the preliminary results from 

model 2a suggest that plasticity might evolve in response to population oscillations, it 

will be necessary to analyze the non-equilibrium dynamics in a systematic way. 

Furthermore, a mechanism should be built into the model that prevents extinction of the 

model populations but is independent of phenotypic plasticity. This will make it possi-

ble to investigate all potential evolutionary outcomes. So far, stability depends critically 

on (realized) phenotypic plasticity in the prey. Although this facilitates the analysis of 

population dynamics – because the effects of plasticity can be studied without interfer-

ence from other mechanism – it restricts the analysis of the evolutionary dynamics. In 

the present study, it was not possible to investigate cases were the two prey phenotypes 

cannot coexist. Furthermore, potentially interesting coevolutionary dynamics are likely 

to be “masked” by the population dynamics if these are too easily destabilized. There-

fore, future models should include some alternative stabilizing mechanism, for example 

a (weak) density-dependence in the prey.  
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Conclusions 

Previous research on phenotypic plasticity in predator-prey interactions has largely fo-

cused on inducible prey defenses. However, a full understanding of predator-prey inter-

actions requires knowledge about phenotypic plasticity in both species. In this thesis, 

therefore, I have looked at plasticity from a predator perspective. I have shown that the 

inducible offense of Lembadion bullinum can be understood within a cost-benefit 

framework similar to that for inducible defenses. I have then moved on to investigate 

reciprocal phenotypic plasticity, that is the interaction between the inducible offense of 

Lembadion and an inducible prey defense. Although, in this situation, the offense did 

not yield a significant fitness benefit for the predator, my results point out that preda-

tors, like prey, can adjust their phenotype to the prevailing environmental conditions, 

and that they should not be expected to remain passive and inflexible while their prey 

devise sophisticated defense mechanisms. The results of my theoretical model show that 

reciprocal phenotypic plasticity is bound to influence the predicted reaction norms of 

predator and prey, as well as predator-prey dynamics and coevolution. Therefore, the 

combination of inducible defenses and inducible offenses offers fascinating new ques-

tions for empirical and theoretical research. 
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