
Aus dem Institut für Medizinische Mikrobiologie, 

Infektions- und Seuchenmedizin der Tierärztlichen Fakultät der 

Ludwig-Maximilians-Universität München 

Kommissarischer Vorstand: Prof. Dr. E. Märtlbauer 

 

Angefertigt unter der Leitung von PD Dr. Antonie Neubauer-Juric 

 

 

 

 

Untersuchungen über den Einfluss des Equiden Herpesvirus 1 auf 

die MHC I- und MHC II-Expression equiner Zellen 

 

 

 

 

 

Inaugural-Dissertation 

zur Erlangung der tiermedizinischen  

Doktorwürde der Tierärztlichen Fakultät der 

Ludwig-Maximilians-Universität München 

 

 

Von 

Silvia Müller 

aus München 

 

München 2008 



 

Gedruckt mit Genehmigung der Tierärztlichen Fakultät 

der Ludwig-Maximilians-Universität München 

 

 

 

 

 

Dekan:   Univ.-Prof. Dr. Braun 

Berichterstatter:   Priv.-Doz. Dr. Neubauer-Juric 

Korreferent/en:   Univ.-Prof. Dr. Handler 

 

 

 

 

 

 

Tag der Promotion: 18. Juli 2008 

 

 

 

 

 

 

 

 

       

 

 

 

 

 

 



   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Meinen Eltern 

   

 



Inhaltsverzeichnis 

I 

Inhaltsverzeichnis 

 

1.  EINLEITUNG                1 

 

2.  SCHRIFTTUM               2 

 

2.1  Die Equiden Herpesviren Typ 1 und 4 (EHV-1 und -4)          2 

2.1.1  Die Infektionen mit EHV-1 und -4             2 

2.1.2  Die Klassifizierung der Equiden Herpesviren 1 und 4          4 

2.1.3  Die Morphologie der Herpesviren             4 

2.1.4  Der Genomaufbau des Equiden Herpesvirus 1           5 

2.1.5  Die Regulation der Expression herpesviraler Gene           6 

2.1.6  Die Replikation der Alphaherpesviren            6 

2.1.6.1  Der Viruseintritt und der Transport zum Zellkern           7 

2.1.6.2  Die Replikation und Verpackung der viralen DNS           8 

2.1.6.3  Die Primäre Umhüllung der Nukleokapside             8 

2.1.6.4  Die Sekundäre Umhüllung und Ausschleusung reifer Partikel  

aus der Zelle („viral egress“)              9 

2.2  Die Immunmodulation durch Herpesviren         10 

2.2.1  Die Beeinträchtigung der Immun-Effektor-Funktionen        10 

2.2.2  Die Interferenz mit der humoralen Immunabwehr         12 

2.2.3  Die zell-vermittelte Immunität als Ziel herpesviraler Immunmodulation           13 

2.2.4  Die Interaktion mit der Antigen-Präsentation durch MHC I-Moleküle      14 

2.2.5  Die Beeinträchtigung der Funktion Natürlicher Killerzellen        17 

2.2.6  Der Einfluss auf die Antigen-Präsentation durch MHC II-Moleküle       17 

2.2.7  Das UL11-Protein bei EHV-1            20 

2.2.8  Das EHV-1-UL43-Protein            21 

 



Inhaltsverzeichnis 

II 

3.   MATERIAL UND METHODEN  

 

3.1.  Material               23 

3.1.1  Zellen               23 

3.1.2  Bakterien und Plasmide            23 

3.1.2.1  Bakterien              23 

3.1.2.2  Plasmide              23 

3.1.3  Antikörper und Antiseren            24 

3.1.3.1  Monoklonale Antikörper            24 

3.1.3.2  Polyklonale Antikörper            25 

3.1.3.3  Mit  « Alexa » konjugierte Antikörper           25 

3.1.3.4  Mit Peroxidase (POD) konjugierte Antikörper         25 

3.1.4  Puffer, Lösungen und Reagenzien           26 

3.1.6  Geräte, Laborhilfsmittel und Verbrauchsmaterialien        36 

3.2.  Methoden               38 

3.2.1  Zellen               38 

3.2.1.1  Zellkultur              38 

3.2.1.2  Kryokonservierung von Zellen           38 

3.2.1.3  Isolierung von PBMCs mittels Dichtezentrifugation         39 

3.2.1.4  Giemsa-Färbung von PBMCs             39 

3.2.1.5  Zellzählung mittels Fuchs-Rosenthal-Kammer („Lebend-tot-Färbung“)      39 

3.2.1.6  Transfektion eukaryotischer Zellen mit Lipofectin® oder PerFectin™      40 

3.2.1.7  Stabile Transfektion von Zellen zur Herstellung rekombinanter Zelllinien      40  

3.2.2  Virus               41 

3.2.2.1  Verwendete Virusstämme            41 

3.2.2.2  Vermehrung von Viren in Zellkultur           42 

3.2.2.3  Virustitration              42 

3.2.2.4  Infektion von Zellen in Zellkultur           42 



Inhaltsverzeichnis 

III 

3.2.2.5  Infektion von PBMCs             43 

3.2.3  DNS               43 

3.2.3.1  Präparation viraler DNS             43 

3.2.3.2  DNS-Konzentrationsbestimmung           44 

3.2.3.3  Spaltung der DNS durch Restriktionsendonukleasen        44 

3.2.3.4  Aufreinigung von DNS aus einem Agarosegel         45 

3.2.3.5  Ligation von DNS-Fragmenten           45 

3.2.3.6  Transformation von Bakterien mit Plasmid-DNS         45 

3.2.3.7  Schnellpräparation von Plasmid-DNS aus transformierten Bakterien      46 

3.2.3.8  Präparation größerer Mengen an Plasmid-DNS         47 

3.2.3.9  Konservierung von Bakterien mit Plasmid-DNS         47 

3.2.3.10 Quantifizierung von Genomkopien mittels Real-Time-PCR        47 

3.2.4  Proteine              48 

3.2.4.1  Herstellung von Zelllysaten für den Western Blot         48 

3.2.4.2  Proteinanalyse mittels Elektrophorese          49 

3.2.4.2.1 Natriumdodecylsulfat-Polyacrylamid-Gelelektrophorese (SDS-PAGE)      49 

3.2.4.2.2 Elektrotransfer und Immunodetektion von Proteinen (Western Blot)      50 

3.2.5  Indirekte Immunfluoreszenz (IIF)           51 

3.2.5.1  Auswertung mittels Durchflusszytometrie           51 

3.2.5.2  Fluoreszenzmikroskopische Auswertung          53 

 

4.   ERGEBNISSE             55 

 

4.1.  Der Einfluss von EHV-1 auf die MHC I-/II-Expression equiner Zellen      55 

4.1.1  Der Einfluss der EHV-1-Infektion auf die MHC I-Expression in Zellkultur       57 

4.1.2  Die Auswirkungen einer EHV-1-Infektion auf die MHC I-Expression  

equiner PBMCs              58 

4.1.3  Die Expression von MHC II-Molekülen auf equinen Zellkultur-Zellen      60 



Inhaltsverzeichnis 

IV 

4.1.4  Die EHV-1-bedingte Beeinträchtigung der MHC II-Expression auf  

Zellkultur-Zellen             61 

4.1.5  Der Einfluss der EHV-1-Infektion auf die MHC II-Expression equiner  

PBMCs              62 

4.1.6  Der Einfluss einer Infektion mit aktuellen EHV-1-Isolaten auf die MHC I-  

und MHC II-Expression in vitro           64 

4.1.6.1  Die Reduktion der MHC I-Expression nach Infektion mit Feldisolaten      64 

4.1.6.2  Der Einfluss einer Infektion mit O834 und E216 auf die MHC II-Expression   65 

4.1.7  Die Auswirkung einer Deletion der UL11- und UL43-Gene auf die  

Reduktion der MHC I-/II-Expression            66 

4.1.7.1  Die Beeinflussung der MHC I-Expression durch L11∆11 und L11∆43      66 

4.1.7.2  Die Reduktion der MHC II-Expression durch L11∆11 und L11∆43       68 

4.2  Die Beeinflussung der MHC I-/II-Expression equiner Zellen durch 

Infektion mit EHV-4              70 

4.2.1  Der Einfluss von EHV-4 auf die MHC I-Expression in Zellkultur       70 

4.2.2  Die Beeinflussung der MHC I-Expression auf PBMCs durch Infektion mit      71  

EHV-4 

4.2.3  Der Einfluss einer EHV-4-Infektion auf die MHC II-Expression in Zellkultur    72 

4.2.4  Die Auswirkung einer Infektion mit EHV-4 auf die MHC II-Expression  

equiner PBMCs             73 

4.3  Die in vitro-Infektion equiner PBMCs          74 

4.4  Der Einfluss der Deletion des UL43-Gens auf die Expression anderer 

viraler Proteine             77 

4.4.1  Der Vergleich der Expression verschiedener EHV-1-Proteine mittels 

Durchflusszytometrie             77 

4.4.2  Der Vergleich der Lokalisation verschiedener EHV-1-Proteine mittels 

Confocaler Laser Scanning-Mikroskopie          83 

4.4.3  Die Generierung einer UL43-myc-C-exprimierenden Zelllinie       89 



Inhaltsverzeichnis 

V 

4.4.4  Die Expression von EHV-1-Proteinen auf mit L11∆43 infizierten  

Rk43-myc-C-Zellen             91 

 

5.   DISKUSSION              93 

 

5.1  Der Einfluss von EHV-1 auf die MHC I- bzw. MHC II-Expression       93 

equiner Zellen 

5.2  Der Einfluss einer Infektion mit EHV-4 auf die MHC I-/II-Expression    100 

5.3.  Die in vitro-Infektion equiner PBMCs        101 

5.4   Der Einfluss der Deletion des UL43-Gens auf die Expression  

anderer viraler Proteine          103 

 

6.  ZUSAMMENFASSUNG / SUMMARY        107 

 

7.  LITERATURVERZEICHNIS          111 

 

8.   ANHANG            125 



Einleitung 
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1.   EINLEITUNG  

 

Das Equide Herpesvirus 1 (EHV-1), ein Mitglied der Subfamilie Alphaherpesvirinae, stellt 

eines der wichtigsten viralen Pathogene bei Pferden dar. Obwohl Infektionen mit EHV-1 in 

der Regel mild oder subklinisch verlaufen, können sie auch respiratorische Erkrankungen, 

Aborte, neonatalen Fohlentod und in selteneren Fällen Myeloenzephalopathien hervorrufen. 

Trotz des Einsatzes von Vakzinen sind Infektionen und Erkrankungen häufig und 

verursachen weltweit schwere wirtschaftliche Schäden. Die Tatsache, dass eine EHV-1-

Infektion trotz Vorhandenseins neutralisierender Antikörper eine Virämie verursachen kann, 

weist darauf hin, dass das Virus in der Lage ist, der Erkennung durch die Immunabwehr des 

Wirtes zu entgehen. Frühere Arbeiten zeigen, dass EHV-1 auch auf die zell-vermittelte 

Immunabwehr Einfluss nimmt, da die Präsentation viraler Antigene auf infizierten Zellen 

durch Verringerung der MHC I-Oberflächenexpression beeinträchtigt ist. Die Identifizierung 

der im Rahmen einer EHV-1-Infektion ablaufenden Immunmodulationsprozesse und der 

verantwortlichen Gene ist Voraussetzung für eine gezielte Verbesserung der Impfstrategien 

und somit für einen effektiveren Schutz der Pferde vor EHV-1-assoziierten Erkrankungen. 

Bisher konnte allerdings erst eines der in diesen Prozess involvierten viralen Genprodukte 

identifiziert werden. Ein Ziel der vorliegenden Arbeit stellte daher die Untersuchung einer 

möglichen Bedeutung der EHV-1-Proteine UL11p und UL43p für EHV-1-Immunmodulations-

mechanismen dar. Darüber hinaus sollte der mögliche Einfluss einer EHV-1-Infektion auf die 

MHC II-Expression equiner Zellen untersucht werden. In einer weiteren Reihe von 

Experimenten sollte einerseits der Einfluss einer Infektion mit dem eng verwandten Equiden 

Herpesvirus 4 (EHV-4) auf die MHC I-/II-Expression equiner Zellen abgeklärt werden. 

Andererseits sollte der Einfluss auf die Verringerung der MHC I-/II-Präsentation zwischen 

verschiedenen EHV-1-Stämmen verglichen werden, um einen möglichen Zusammenhang 

zwischen klinischer Symptomatik und viraler Immunmodulation festzustellen. 
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2.  SCHRIFTTUM 

 

2.1  Die equiden Herpesviren Typ 1 und 4 (EHV-1 und -4) 

 

2.1.1  Die Infektionen mit EHV-1 und -4 

 

Von den fünf bisher bei Pferden beschriebenen Herpesviren kommt den Equiden 

Herpesviren Typ 1 und 4 (EHV-1 und -4) sowohl klinisch als auch wirtschaftlich die größte 

Bedeutung zu. Beide Erreger sind in Pferdepopulationen weltweit endemisch verbreitet, und 

trotz intensiver wissenschaftlicher Forschung und dem Einsatz von Vakzinen sind Infektionen 

und Erkrankungen nach wie vor häufig (Stierstorfer et al., 2002; Patel und Heldens, 2005; 

Slater et al., 2006). Neben fieberhaften respiratorischen Erkrankungen, die durch beide 

Pathogene verursacht werden, kann eine Infektion mit EHV-1 zusätzlich zu Aborten, 

neonatalem Fohlentod, Myeloenzephalopathien und Chorioretinopathien führen. EHV-4-

Infektionen hingegen bleiben meist auf den Respirationstrakt beschränkt (Patel und  

Heldens, 2005; Slater et al., 2006).  

Respiratorische Erkrankungen verlaufen in der Regel mild oder subklinisch. Vor allem Fohlen 

oder Jährlinge können nach Primärinfektionen auch akut erkranken. Neben Fieber, Anorexie, 

Schwellung der Lymphknoten und serösem bis mukopurulentem Nasenausfluss kann es 

bisweilen zu viralen Bronchopneumonien in Folge bakterieller Sekundärinfektionen kommen. 

Nach Reinfektionen treten meist allenfalls milde Symptome auf (van Maanen, 2002). In 

letzter Zeit erhärtete sich der Verdacht, dass klinisch relevante respiratorische Erkrankungen 

v.a. durch EHV-4 verursacht werden (Slater et al., 2006). 

Im Rahmen einer EHV-1-Infektion entwickelt sich nach initialer Replikation im Epithel des 

oberen Respirationstrakts eine zell-assoziierte Virämie. Mit Hilfe von infizierten T-

Lymphozyten und Monozyten kann sich die Infektion auf andere Organsysteme, u.a. auf den 

trächtigen Uterus, ausbreiten. Eine Infektion der Endothelzellen endometrialer Gefäße mit 

besonders virulenten, endotheliotropen EHV-1-Stämmen kann schwere Vaskulitiden mit 
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thrombo-ischämischen Infarkten und Nekrosen verursachen (Allen et al., 1999; van Maanen, 

2002). Letztendlich kommt es infolge einer hämatogenen Virusausbreitung auf den Fetus 

oder durch weitreichende uteroplazentale Schäden ohne Infektion des Fetus zum Abort 

(Smith et al., 1992; Smith und Borchers, 2001). EHV-1-bedingte Aborte treten fast 

ausschließlich im letzten Drittel der Trächtigkeit auf, da der Uterus zu diesem Zeitpunkt 

empfänglicher für Schädigungen durch EHV-1 zu sein scheint (Allen et al., 1999). Eine 

Infektion gegen Ende der Trächtigkeit kann zur Geburt lebender, infizierter Fohlen führen, die 

allerdings meist innerhalb weniger Tage sterben (Patel und Heldens, 2005).  

Die in der Regel durch EHV-1 und nicht durch EHV-4 verursachten neurologischen 

Erkrankungen können sporadisch oder epizootisch auftreten. Die Pathogenese dieser 

Myeloenzephalopathien ist noch nicht vollständig geklärt und es werden verschiedene 

Modelle diskutiert. Unter anderem wird angenommen, dass infolge der zell-assoziierten 

Virämie eine Virusvermehrung in Endothelzellen des ZNS mit nachfolgender Vaskulitis 

stattfinden könnte. Diese könnte sekundär zur hypoxischen Degeneration des umliegenden 

neuronalen Gewebes führen (Edington et al., 1986; Stierstorfer et al., 2002). Die Symptome 

reichen von milden Ataxien, von denen sich die Tiere oft vollständig erholen, über Paresen 

bis hin zu vollständigem Festliegen. Myoeloenzephalopathien können im Zusammenhang mit 

Aborten oder respiratorischen Erkrankungen auftreten, werden aber häufig ohne weitere 

Krankheitsanzeichen beobachtet (van Maanen, 2002). 

Die Fähigkeit der Herpesviren zur Etablierung latenter Infektionen stellt ein epidemio-

logisches Problem dar. Während der Latenz liegt das herpesvirale Genom als zirkuläres 

Molekül in infizierten Zellen vor (Roizman und Pellett, 2001). Vornehmliche Orte für die 

Etablierung der Latenz durch EHV-1 stellen v.a. Zellen des Immusystems wie T-

Lymphozyten und Monozyten, aber auch neuronale Gewebe dar (Patel und Heldens, 2005). 

Es wird angenommen, dass die meisten adulten Pferde EHV-1 in latenter Form 

beherbergen. Die Tiere sind dabei allerdings klinisch unauffällig und virologisch negativ 

(Allen et al., 1999). Infolge periodischer Reaktivierung durch Stress oder Immunsuppression 

und nachfolgender Virusausscheidung über den nasalen Mukus dienen latent infizierte 
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Pferde als Reservoir für die Infektion neuer, empfänglicher Tiere (Slater et al., 2006). Es wird 

vermutet, dass sowohl Abortgeschehen als auch Myeloenzephalopathien durch 

Reaktivierung latenter Infektionen im betroffenen Tier ausgelöst werden können (Stierstorfer 

et al, 2002; Patel und Heldens, 2005). 

 

2.1.2  Die Klassifizierung der Equiden Herpesviren 1 und 4 

 

Die equiden Herpesviren lassen sich aufgrund der typischen Struktur der Viruspartikel in die 

Familie der Herpesviridae einordnen (Roizman und Pellett, 2001). Innerhalb dieser Familie 

gehören EHV-1 und -4 zum Genus Varicellovirus der Subfamilie der Alphaherpesvirinae. 

Weitere Vertreter dieses Genus sind u.a. das humanpathogene Varicella-Zoster Virus (VZV), 

das Suide Herpesvirus 1 (SuHV-1) sowie das Bovine Herpesvirus 1 (BoHV-1) (Fauquet et 

al., 2005). 

 

2.1.3  Die Morphologie der Herpesviren 

 

Herpesviren sind aus vier morphologisch differenzierbaren Strukturen aufgebaut. Ein 

typisches Viruspartikel besteht aus einem Core, das die virale Desoxyribonukleinsäure 

(DNS) in Form eines Torus enthält. Dieses wird umgeben vom ikosahedralen Kapsid, 

welches aus 162 Kapsomeren besteht und einen Durchmesser von 100 nm aufweist. Im 

Anschluss an das Kapsid befindet sich eine teilweise asymmetrische Proteinschicht, die als 

Tegument bezeichnet wird (Roizman und Pellett, 2001). Dieses wurde lange für 

unstrukturiert gehalten, zumindest der innere Teil weist aber vermutlich eine ikosahedrale 

Symmetrie auf (Zhou et al., 1999). Das Tegument interagiert einerseits mit dem Kapsid und 

andererseits mit den cytoplasmatischen Schwänzen der Hüll-Glykoproteine und sichert so 

die Integrität der Viruspartikel (Mettenleiter, 2002). Die äußerste Schicht wird von der 

Virushülle gebildet, die sich von modifizierten zellulären Membranen ableitet und virale 
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Glykoproteine in Form von Protrusionen auf der Oberfläche trägt (Roizman und Pellett, 

2001). 

 

2.1.4  Der Genomaufbau des Equiden Herpesvirus 1 

 

Das Genom von EHV-1 besteht aus einer linearen doppelsträngigen DNS. Es weist eine 

Größe von 150,223 kbp auf und kodiert für mindestens 76 verschiedene Proteine (Telford et 

al., 1992). Herpesvirale Genome lassen sich je nach Anzahl und Anordnung sog. iterativer 

Sequenzen in 6 Gruppen (A- F) einteilen, wobei die Genome der Varizelloviren der Gruppe D 

zugeordnet werden. Sie sind aus einer langen („unique long“ = UL) und einer kurzen („unique 

short“ = US) Untereinheit aufgebaut, welche durch eine iterative Sequenz getrennt werden. 

Diese wird als „internal repeat“ (IR) bezeichnet und wiederholt sich am Ende des Genoms in 

umgekehrter Orientierung als „terminal repeat“ (TR)-Region. Die Orientierung der von den 

„inverted repeats“ flankierten US-Untereinheit kann somit relativ zur UL-Untereinheit 

umgekehrt werden, wodurch zwei in äquimolaren Mengen vorhandene isomere 

Genomformen entstehen (Telford et al., 1992; Roizman und Pellett, 2001). 

Das Genom des ebenfalls zu den Alphaherpesvirinae gehörenden Herpes Simplex Virus 1 

(HSV-1) lässt sich der Gruppe E zuordnen und unterscheidet sich von den Genomen der 

Gruppe D durch Anzahl und Anordnung der IR-Regionen. Dennoch werden die offenen 

Leserahmen (ORFs) der anderen Alphaherpesviren zur leichteren Vergleichbarkeit in 

Analogie zu ihren Homologen bei HSV-1 durch Nummerierung innerhalb der UL- und US-

Regionen bezeichnet (Roizman und Pellett, 2001). Das bei EHV-1 durch das Gen 51 

kodierte Protein wird beispielweise entsprechend seines HSV-1-Homologs als UL11-Protein 

(UL11p) bezeichnet. 
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2.1.5  Die Regulation der Expression herpesviraler Gene 

 

Die Expression herpesviraler Gene wird kaskadenartig und durch gegenseitige 

Wechselwirkungen der Genprodukte reguliert. In Abhängigkeit von der zeitlichen Abfolge und 

von den Voraussetzungen für ihre Expression lassen sich die viralen Gene in vier Gruppen 

einteilen. Die α- oder „immediate-early“ (IE)-Gene werden als erstes transkribiert und 

benötigen für ihre Expression keine vorausgehende Synthese viraler Proteine. Ihre 

Genprodukte stimulieren die Expression der β- oder „early“ (E)-Gene. Diese sind unabhängig 

von der Synthese viraler DNS, bewirken jedoch den Beginn der DNS-Replikation und spielen 

u.a. eine Rolle im Nukleotid-Metabolismus. Die meisten der zuletzt exprimierten γ-Gene 

kodieren für virale Strukturproteine und lassen sich in zwei Untergruppen einteilen. Die γ1- 

oder „early-late“-Gene werden durch den Beginn der viralen DNS-Synthese verstärkt 

exprimiert, während die Transkription der γ2- oder „true late“-Gene vollkommen von der 

DNS-Synthese abhängig ist (Caughman et al., 1985; Roizman und Knipe, 2001; Roizman 

und Pellett, 2001). 

 

2.1.6  Die Replikation der Alphaherpesviren 

 

Der lytische Replikationszyklus der verschiedenen Alphaherpesviren läuft nach einem 

ähnlichen Muster ab und lässt sich in mehrere Schritte einteilen (Granzow et al., 1997; 

2001). Neben der im Folgenden beschriebenen Replikation mit Freisetzung infektiöser 

Partikel aus der Zelle spielt auch der direkte Transfer von Infektiosität von Zelle zu Zelle, der 

sog. „cell-to-cell spread“, eine wichtige Rolle im Herpesvirus-Lebenszyklus. Auf diese 

Mechanismen wird aber im Rahmen dieser Arbeit nicht weiter eingegangen. 
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2.1.6.1  Der Viruseintritt und der Transport zum Zellkern 

 

Die Adsorption des Virus an die Zielzelle erfolgt zunächst durch Interaktion des Hüll-

Glykoproteins C (gC) mit Glykosaminoglykanen der Zelloberfläche. Die Glykoproteine B und 

D vermitteln nachfolgend eine stabilere Bindung und interagieren zudem mit einem Komplex 

aus den Glykoproteinen H und L, wodurch die  Penetration des Viruspartikels durch 

Verschmelzung der Virushülle mit der Plasmamembran ausgelöst wird (Csellner, 2000; 

Roizman und Knipe, 2001). Elektronenmikroskopisch lassen sich die beiden Phasen der 

Adsorption durch den unterschiedlichen Abstand der Viruspartikel zur Plasmamembran 

unterscheiden (Granzow et al., 1997). Für die Vorgänge während der Adsorption und 

Penetration ist bei EHV-1 neben den Glykoproteinen B, C und D (Neubauer et al., 1997; 

Osterrieder, 1999; Csellner et al., 2000) auch das Produkt des Gen 71 von Bedeutung, 

welches als Glykoprotein 2 (gp2) bezeichnet wird und nur bei den equiden Herpesviren 1 

und 4 beschrieben ist. Vermutlich bedingt durch das Fehlen von gp2-Spikes adsorbieren 

gp2-deletierte Virionen weniger effektiv an Zielzellen (Sun et al., 1994; 1996). Ebenso wie 

bei den anderen Alphaherpesviren behindert die Expression von gD auf der infizierten Zelle 

zudem die Infektion derselben Zelle durch weitere EHV-1-Partikel (Campadelli-Fiume et al., 

1988; 1990). Die Penetrationsgeschwindigkeit von EHV-1 wird auch durch das Vorhanden-

sein der multipel hydrophoben Glykoproteine M und K (gM, gK), welche wichtige 

Bestandteile der Virushülle darstellen, beeinflusst (Osterrieder, 1996; Neubauer und 

Osterrieder, 2004). Im Anschluss an die Penetration werden die unbehüllten Herpeskapside 

mit einem Teil der umgebenden Tegumentproteine entlang des zellulären Mikrotubuli-

Netzwerks zum Zellkern transportiert. Dort wird die virale DNS über die Kernporen in das 

Nukleoplasma entlassen, wo sie schnell zirkularisiert (Sodeik et al., 1997; Granzow et al., 

1997; 2001; Roizman und Knipe, 2001; Mettenleiter, 2004). 

 

 

 



Schrifttum 

8 

2.1.6.2  Die Replikation und Verpackung der viralen DNS 

 

Im Kern der infizierten Zelle finden die Transkription, die Replikation viraler DNS sowie der 

Zusammenbau neu geformter Kapside statt. Die Transkription der viralen DNS durch die 

zelluläre RNA-Polymerase II erfolgt kaskadenartig. Die Virus-DNS wird zunächst in Form 

einer Theta-Replikation, später nach dem Prinzip eines „Rolling Circle“-Mechanismus amplifi-

ziert. Dies führt zur Entstehung langer konkatemerer DNS-Moleküle, die während der 

Einfädelung in vorgeformte Kapside in Genome von einheitlicher Länge geschnitten werden 

(Roizman und Knipe, 2001; Mettenleiter, 2004).  

 

2.1.6.3  Die Primäre Umhüllung der Nukleokapside  

 

Die aktuell die breiteste Unterstützung findende Hypothese über die Ausschleusung reifer 

Viruspartikel aus der Wirtszelle sieht einen sog. „envelopment-deenvelopment-

reenvelopment“-Prozess vor (Granzow et al., 2001). 

Nach ihrem Zusammenbau im Zellkern erhalten die neu geformten Nukleokapside demnach 

durch Knospung an der inneren Kernmembran zunächst eine primäre Hülle. Eine zentrale 

Rolle spielt dabei der Komplex aus den Proteinen UL31p und UL34p, der die Nukleokapside 

zum Ort der primären Umhüllung lenkt (Mettenleiter, 2004). Auch US3 ist ein wichtiger 

regulativer Faktor des Kern-„Egress“ (Mettenleiter, 2002; Reynolds et al., 2002). Das UL34-

Protein von EHV-1 lässt sich in infizierten Zellen im Randbereich des Kerns lokalisieren, ist 

offensichtlich ebenfalls von essentieller Bedeutung für die Ausschleusung von Viruskapsiden 

aus dem Kern und ist, wie bei den anderen Alphaherpesviren auch, kein Strukturprotein 

(Neubauer et al., 2002). Primär behüllte Kapside im perinukleären Raum besitzen eine glatte 

Oberfläche ohne Oberflächenprojektionen und unterscheiden sich somit auch morphologisch 

von reifen Virionen (Granzow, 1997). Durch Fusion der primären Hülle mit der äußeren 

Kernmembran kommt es nachfolgend zur Freisetzung unbehüllter Nukleokapside ins 

Zytoplasma der Zelle. Bei EHV-1 führt eine Deletion des Gen 71 zur Akkumulation von 
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Kapsiden verschiedener Reifestadien im Kern infizierter Zellen. Diese Beobachtung lässt 

darauf schließen, dass neben dem UL34p auch das gp2 eine wichtige Rolle bei der 

Ausschleusung der Viruspartikel aus dem Kern spielt (Sun et al., 1996). 

 

2.1.6.4  Die Sekundäre Umhüllung und Ausschleusung reifer Partikel aus der 

Zelle („viral egress“) 

 

Die sekundäre Umhüllung der Nukleokapside findet nach dem aktuellen Modell im Bereich 

des trans-Golgi-Netzwerks (TGN) statt, indem die Kapside nach Vervollständigung der 

Tegumentschicht im Zytoplasma der Zelle in Golgi-Vesikel knospen und damit eine finale 

Umhüllung erhalten (Granzow et al., 2001; Mettenleiter, 2002). Sekundär behüllte 

Viruspartikel besitzen im Gegensatz zu Partikeln im perinukleären Raum ein diffuses 

Tegument und elektronenmikroskopisch sichtbare Oberflächenprojektionen aus 

Glykoproteinen (Granzow et al., 2001). Bei der Steuerung des finalen Umhüllungsschrittes ist 

eine Vielzahl herpesviraler Proteine involviert und die Zusammenhänge sind noch nicht bis 

ins Detail geklärt. Sowohl UL11p als auch gM und der gE/gI-Komplex scheinen jedoch von 

entscheidender Bedeutung zu sein (Mettenleiter, 2002; Kopp et al., 2003; 2004). Ein Fehlen 

des UL11p oder des gM in Verbindung mit einer Deletion von gE und gI führt auch bei EHV-1 

zu einer massiven Beeinträchtigung der sekundären Umhüllung sowie des nachfolgenden 

Virus-„Egress“ (Seyboldt et al., 2000; Rudolph und Osterrieder, 2002; Schimmer und 

Neubauer, 2003). Im Anschluss an die finale Umhüllung sammeln sich die reifen Virionen in 

Prälysosomen, die durch Verschmelzung mehrerer TGN-Vesikel entstehen (Harley et al., 

2001). Die Ausschleusung aus der Zelle erfolgt letztendlich durch Verschmelzung dieser 

Transportvesikel mit der Plasmamembran der Zelle, wodurch die Viruspartikel in den 

Extrazellulärraum freigesetzt werden (Granzow et al., 1997). 
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2.2  Die Immunmodulation durch Herpesviren 

 

Trotz Vorhandenseins EHV-1-spezifischer Antikörper kommt es bei infizierten wie auch bei 

geimpften Pferden regelmäßig zu Infektionsdurchbrüchen mit nachfolgender Erkrankung 

(Mumford et al., 1987; Ambagala et al., 2004; van der Meulen et al., 2006b). Bereits 6 

Monate nach vorangegangener Infektion kann erneut eine zell-assoziierte Virämie auftreten 

(Edington und Bridges, 1990). Diese Beobachtungen lassen darauf schließen, dass die 

humorale Immunantwort alleine nicht ausreicht, um eine EHV-1-Infektion erfolgreich zu 

bekämpfen (Ambagala et al., 2004). Das Virus ist offensichtlich in der Lage, seiner 

Elimination durch die Immunabwehr des Wirtes zu entgehen. 

Im Verlauf der Evolution hat das Immunsystem des Wirtsorganismus eine Vielzahl an 

Möglichkeiten geschaffen, Viren und virusinfizierte Zellen zu bekämpfen. Im Gegenzug 

haben aber auch Viren, unter dem Druck der Co-Existenz mit ihrem immunkompetenten 

Wirt, vielfältige Strategien entwickelt, um ihrer Elimination durch das Immunsystem zu 

entkommen. Aufgrund der großen Kodierungskapazität ihres Genoms sind Herpesviren in 

der Lage, die Immunabwehr des Wirtsorganismus auf fast jeder Ebene zu beeinträchtigen, 

um so die Zeitspanne für Replikation und Ausbreitung des Virus zu erweitern. Die Strategien 

herpesviraler Immunmodulation lassen sich grob einteilen in Mechanismen, die einerseits 

gegen Immun-Effektor-Funktionen, wie zum Beispiel den alternativen Weg des 

Komplementsystems oder das Cytokin-Netzwerk, andererseits gegen die humorale 

Immunantwort gerichtet sind. Des Weiteren haben Herpesviren diverse Möglichkeiten 

entwickelt, die spezifische zellgebundene Abwehr zu behindern (Vossen et al., 2002; van der 

Meulen et al., 2006a). 

 

2.2.1  Die Beeinträchtigung der Immun-Effektor-Funktionen 

 

Die frühen Reaktionen auf eine herpesvirale Infektion sind unspezifisch und dienen dazu, die 

Replikation und Ausbreitung des Virus zu begrenzen, sind aber nicht in der Lage, ein 
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Fortschreiten der Erkrankung zu verhindern. Neben der Aktivierung der Natürlichen 

Killerzellen (NK-Zellen) spielt dabei unter anderem die Freisetzung von Interferon-α eine 

Rolle (Abendroth und Arvin, 2001). Auch das Komplementsystem ist früh an der Abwehr 

einer Infektion beteiligt, indem es u.a. die Opsonisierung fremder Partikel, die Rekrutierung 

von Phagozyten sowie die Lyse infizierter Zellen vermittelt (Finlay und McFadden, 2006). 

Wirtszellen sind durch Expression von sogenannten „regulators of complement activation“ 

(RCAs) vor Angriffen durch das Komplementsystem geschützt (Vanderplasschen et al., 

1998). Einige Viren sind in der Lage, Strukturproteine zu exprimieren, die die Funktion der 

zellulären RCAs nachahmen, wie zum Beispiel HSV-1 und EHV-1 über das Glykoprotein C, 

welches eine Dissoziation der C3-Konvertase bewirkt (Friedman et al., 1984; Harris et al., 

1990; Huemer et al., 1995). 

Cytokine stellen als chemische Botenstoffe wichtige Modulatoren der Immunantwort dar 

(Baggiolini et al., 1998). Aus diesem Grund haben Viren diverse Möglichkeiten entwickelt, 

um mit der Cytokin-Antwort des Immunsystems zu interferieren. Das Serum EHV-1-infizierter 

Ponies enthält beispielsweise den aktivierten „transforming growth factor β“ (TGF β), ein 

Cytokin mit vielen inhibitorischen Wirkungen auf Immunzellen, u.a. auf die Leukozyten-

Proliferation (Charan et al., 1997). Das Glykoprotein G von EHV-1 ist ebenfalls in der Lage, 

mit dem Cytokin-Netzwerk des Wirtes zu interagieren, indem es beispielsweise die Cytokine 

Interleukin 8 (IL-8) und CCL3 bindet und so eine korrekte Signalübertragung verhindert 

(Bryant et al., 2003; van de Walle et al., 2007; 2008). Einige Beta- und Gammaherpesviren, 

darunter das Equide Herpesvirus 2 (EHV-2), das Humane Cytomegalievirus (HCMV), das 

Murine Cytomegalievirus (MuHV-1) und das Epstein-Barr-Virus (EBV), kodieren für 

Homologe des Interleukin 10 (IL-10), ein wichtiges Cytokin mit starker immunsuppressiver 

und anti-inflammatorischer Wirkung (Vossen et al., 2002; van der Meulen et al., 2006a; 

Wiertz et al., 2007). Im Rahmen einer normalen Immunantwort wird IL-10 erst zu späten 

Zeitpunkten der Infektion durch aktivierte T-Zellen, B-Zellen und Monozyten sezerniert, 

vermutlich um ein Überschießen der Immunreaktion zu unterbinden. Eine frühe Induktion der 
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IL-10-Ausschüttung führt daher zu einer Blockierung des Anlaufens einer effektiven 

Immunantwort (Vossen et al., 2002; Wiertz et al., 2007). 

 

2.2.2  Die Interferenz mit der humoralen Immunabwehr 

 

Auch die Mechanismen der Antikörper-abhängigen Immunantwort können durch Herpesviren 

beeinträchtigt werden. Im Cytoplasma der Wirtszelle neu synthetisierte virale Proteine 

werden u.a. in die Plasmamembran der Zelle eingebaut (Mettenleiter, 2002) und können in 

Folge durch virusspezifische Antikörper erkannt und gebunden werden. Dies führt im 

Normalfall dazu, dass die infizierte Zelle durch verschiedene Komponenten der 

unspezifischen Immunabwehr wie phagozytierende Zellen, NK-Zellen oder das Komplement-

system erkannt und zerstört werden kann (Favoreel et al., 2003; Ficinska et al., 2005). 

Verschiedene Herpesviren sind jedoch in der Lage, die Expression viraler Epitope auf der 

Oberfläche infizierter Zellen zu begrenzen. So wurde gezeigt, dass 70 % der in vitro EHV-1-

infizierten peripheren mononukleären Blutzellen („peripheral blood mononuclear cells“, 

PBMCs), die die natürlichen Transportzellen des Virus im Blut darstellen, keine viralen 

Hüllproteine auf ihrer Oberfläche exprimieren. Auch in vivo ließen sich auf 98 % der 

nachweislich infizierten PBMCs während der zell-assoziierten Virämie EHV-1-infizierter 

Pferde keine viralen Proteine auf der Zelloberfläche nachweisen (van der Meulen et al., 

2003; 2006b). Auf der Zellmembran SuHV-1-infizierter Monozyten werden zwar virale 

Hüllproteine exprimiert, durch Binden virusspezifischer Antikörper wird allerdings eine 

Reaktion ausgelöst, die zur Internalisierung dieser Antigen-Antikörper-Komplexe führt. Die 

SuHV-1-Glykoproteine B und D, aber auch der gE/gI-Fc-Rezeptor-Komplex, spielen eine 

wichtige Rolle in diesem Endocytose-Prozess (Favoreel et al., 1999; Ficinska et al., 2005).  
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2.2.3  Die zell-vermittelte Immunität als Ziel herpesviraler Immunmodulation 

 

Für den Verlauf einer herpesviralen Infektion ist die Ausbildung einer spezifischen zellulären 

Immunantwort von entscheidender Bedeutung. Eine wesentliche Rolle spielen dabei neben 

den Antikörper-produzierenden B-Lymphozyten vor allem die T-Lymphozyten. CD8-tragende 

cytotoxische T-Zellen sind in der Lage, virale Peptide zu erkennen, die durch „major 

histocompatibility complex“ (MHC) Klasse I-Moleküle auf der Oberfläche infizierter Zellen 

präsentiert werden (Townsend und Bodmer, 1989), und nach Aktivierung die Zerstörung der 

infizierten Zelle zu bewirken. CD4-tragende T-Helferzellen können Antigene im Komplex mit 

MHC Klasse II-Molekülen erkennen. Sie dienen u.a. der Induktion und Aufrechterhaltung 

einer effektiven CD8+ T-Zell-Immunität, der Aktivierung von Makrophagen, unterstützen die 

B-Lymphozyten bei der Antikörper-Produktion und sind in der Lage, Interferon-γ (IFN-γ) zu 

produzieren (Abendroth und Arvin, 2001; Wiertz et al., 2007). 

Die essentielle Bedeutung der cytotoxischen T-Lymphozyten (CTLs) für die Virusabwehr 

macht sie zu einem lohnenden Ziel viraler Immunmodulations-Mechanismen. Die 

naheliegendste Methode, ihre Funktion zu unterbinden, besteht darin, Lymphozyten zu 

zerstören. Die Fähigkeit zur Zerstörung von CTLs wurde bereits für SuHV-1 nachgewiesen 

(Mulder et al., 1995). BoHV-1 ist in der Lage, die Apoptose von T- und B-Lymphozyten sowie 

von Monozyten einzuleiten (Hanon et al.,1996; 1998). Im Blut experimentell EHV-1-infizierter 

Pferde ist in den ersten 5 Tagen nach Infektion ein akuter Abfall der CD4+ und CD8+ T-

Lymphozyten zu beobachten, was vermuten lässt, dass auch EHV-1 eine Zerstörung von 

Lymphozyten auslösen kann (Bumgardner et al., 1982; McCulloch et al., 1993). Allerdings 

ließe sich die beobachtete Abnahme zumindest partiell auch durch eine selektive Migration 

der Zellen zu den Orten der Infektion, wie z.B. der Lunge, erklären (Kydd et al., 1996). 
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2.2.4  Die Interaktion mit der Antigen-Präsentation durch MHC I-Moleküle 

 

Die Peptid-Präsentation durch MHC I-Moleküle ist das Ergebnis eines komplexen Prozesses 

der Antigen-Verarbeitung (Pamer und Cresswell, 1998). MHC I-Moleküle werden von fast 

allen somatischen Zellen exprimiert (Ambagala et al., 2004). Sie bestehen aus einer 

schweren Kette (α), einer leichten Kette, bezeichnet als β2-Mikroglobulin (β2m), sowie dem 

gebundenen Peptid. Im Cytoplasma infizierter Zellen werden neben zellulären ständig auch 

virale Proteine synthetisiert. Ein Teil dieser Proteine wird durch zelleigene Proteasomen zu 

kurzen Peptiden zerlegt. Diese Peptide werden anschließend durch den „transporter 

associated with antigen-processing“ (TAP), ein ATP-abhängiger Peptid-Transporter, der sich 

in der Membran des Endoplasmatischen Retikulums (ER) befindet, in das Lumen des ER 

gebracht. Dort verbinden sie sich mit neu synthetisierten Heterodimeren aus schweren MHC 

I-Ketten und β2m zu einem stabilen Komplex. Dieser Komplex wird zunächst zum Golgi-

Apparat und anschließend zur Zellmembran transportiert, wo die durch MHC I-Moleküle 

präsentierten viralen Peptide von CTLs erkannt werden können (Williams et al., 2002; 

Ambagala et al., 2003; 2004). 

 

Die Komplexität dieses Prozesses bietet viralen Erregern eine Fülle an Möglichkeiten, um mit 

der Peptidpräsentation durch MHC I-Moleküle zu interferieren. Eine Verminderung der MHC 

I-Expression auf der Oberfläche infizierter Zellen wurde bereits für viele Mitglieder der 

Subfamilien der Alpha- und Betaherpesviren nachgewiesen, unter anderem auch für EHV-1 

(Cohen, 1998; Ambagala et al., 2000 (SuHV-1); Abendroth und Arvin, 2001 (VZV); Koppers-

Lalic et al., 2001 (BoHV-1); Rappocciolo et al., 2003; Ambagala et al., 2004 (EHV-1)).  

Eine Reduktion der MHC I-Oberflächenkonzentration auf EHV-1-infizierten Zellen wurde 

zuerst durch Rappocciolo et al. (2003) gezeigt. Die Herunterregulierung durch EHV-1 ist 

spezifisch für MHC I und reflektiert nicht ein generelles „shutoff“ der zellulären 

Proteinsynthese, wie z.B. für das „virion host shutoff“(vhs)-Protein von BoHV-1 gezeigt, 

welches hier zumindest partiell für den MHC I-Verlust verantwortlich gemacht werden kann 
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(Koppers-Lalic et al., 2001). Eine maximale Reduktion der MHC I-Expression wurde 24 h 

post infectionem (p.i.) beobachtet und betraf nur einen Teil der exprimierten MHC I-Moleküle; 

nur bestimmte MHC I-Typen waren drastisch vermindert, während andere in geringerer 

Konzentration detektierbar blieben. Es wurde vermutet, dass dies möglicherweise das 

Resultat eines Allel-spezifischen Mechanismus ist und dass das Virus durch Belassen 

einiger MHC I-Allele auf der Zelloberfläche die Zerstörung der infizierten Zelle durch 

Natürliche Killerzellen verhindert (Rappocciolo et al., 2003). Da eine Behandlung der Zellen 

mit dem Translations-Hemmstoff Cycloheximid oder mit Brefeldin A (zerstört den Golgi-

Apparat) einen deutlich geringeren Rückgang der MHC I-Expression bewirkte als eine 

Infektion mit EHV-1, wurde angenommen, dass die Reduktion durch Endocytose der MHC I-

Moleküle von der Zelloberfläche vermittelt wird (Rappocciolo et al., 2003). Für das Humane 

Herpesvirus 8 (HHV-8) konnte bereits nachgewiesen werden, dass es über seine Proteine 

K3 und K5 eine verstärkte Endocytose von MHC I-Molekülen von der Zelloberfläche bewirkt. 

Die Wirkungen von K3 und K5 beziehen sich unabhängig voneinander jeweils auf 

spezifische MHC I-Allele (Coscoy und Ganem, 2000; Lorenzo et al., 2002). Die vermutete 

Endocytose der MHC I-Moleküle bei EHV-1-Infektion wird über ein „early“-Protein vermittelt 

(Rappocciolo et al., 2003), allerdings wurde bisher noch kein spezifisches Genprodukt 

identifiziert.  

Unabhängig davon wiesen Ambagala et al. (2004) nach, dass EHV-1, ebenso wie zwei 

andere Mitglieder des Genus Varicellovirus, SuHV-1 (Ambagala et al., 2000) und BoHV-1 

(Hinkley et al., 1998), in der Lage ist, mit dem Peptid-Transport durch TAP zu interferieren. 

Dies geschieht ebenfalls durch Expression eines frühen Proteins. Eine Beeinträchtigung des 

Transports war bereits 2 h p.i., eine komplette Hemmung (93%) 8 h p.i. erkennbar. Die 

verringerte Verfügbarkeit von Peptiden im ER führte zudem zu einer verzögerten Reifung der 

Peptid-MHC I-β2m-Komplexe im ER. Koppers-Lalic et al. (2005) machten für diese Beobach-

tung das Produkt des UL49.5 (EHV-1 Gen10) verantwortlich.  

Das UL49.5-Homologe ist bei Herpesviren hochkonserviert und agiert als Interaktionspartner 

des Hüllproteins gM. Es ist sowohl für dessen Prozessierung als demzufolge auch für die 
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Funktion des gM bzw. des gM/UL49.5-Komplexes beim Virus-„egress“ und bei der 

Virusausbreitung direkt von Zelle zu Zelle erforderlich (Kapitel 2.1.6.4) (Osterrieder, 1996; 

Jöns et al., 1998; Rudolph et al., 2002). Eine Hemmung der Funktion des TAP scheint 

allerdings nur bei Varicellovirus-kodiertem UL49.5 aufzutreten. Das UL49.5-Protein behindert 

die Aktivität des TAP über eine zweiphasige Reaktion. Zum einen bewirkt es einen 

konformationalen Arrest des TAP, wodurch der Peptid-Transport durch die Membran des ER 

zum Erliegen kommt. Des Weiteren werden TAP-Moleküle durch das UL49.5-Protein dem 

Abbau durch Proteasomen im Cytoplasma der Zelle zugeführt. Für diese Reaktion ist der 

cytoplasmatische Schwanz des Proteins, welches anschließend zusammen mit TAP 

abgebaut wird, essentiell. 

Auch auf equinen PBMCs wurde in einem in vitro-Experiment eine Reduktion der MHC I-

Oberflächenkonzentration nach Infektion mit EHV-1  beobachtet. Diese war allerdings auf 

frühe Zeiten (6 und 9 h) p.i. beschränkt (van der Meulen, 2006a). In vivo konnte diese 

Herunterregulierung bisher dagegen nicht nachgewiesen werden (van der Meulen et al., 

2006b). 

Für verschiedene andere Herpesviren wurden bereits mehrere Genprodukte identifiziert, 

über die diese mit der zellulären MHC I-Expression interferieren. HCMV beispielsweise 

kodiert für mindestens 5 Proteine, die in den Mechanismus der Antigen-Präsentation 

eingreifen können. Es ist in der Lage, durch Expression seines pp65-Proteins einerseits die 

proteasomale Degradation einiger viraler Proteine zu verhindern (Vossen et al., 2002), 

andererseits über sein US6-Protein den Peptidtransport durch TAP zu beeinträchtigen 

(Lehner et al., 1997). Das HCMV-US3p bewirkt dagegen die Retention von MHC I-Molekülen 

im ER (Jones et al., 1996), die Expression der US2- und US11-Genprodukte führt zum 

Abbau der MHC-Moleküle im Cytosol der Zelle (Rappocciolo et al., 2003). Das ICP47-Protein 

von HSV-1 behindert den Peptid-Transport, indem es mit Peptiden um die cytosolische 

Bindungsstelle des TAP konkurriert (Tomazin et al., 1996) und vermittelt zudem eine 

Retention von MHC I-Molekülen im ER (Abendroth und Arvin, 2001). Auch MuHV-1 verfügt 
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über eine Vielzahl von Proteinen, um in sämtliche Schritte der MHC I-Präsentationskaskade 

eingreifen zu können (Vossen et al., 2002).  

Die Herpesviren des Genus Varicellovirus besitzen allerdings keine Homologe zu den o.g. 

Genprodukten (Ambagala et al., 2004). In SuHV-1-infizierten Zellen wurde zudem eine 

unspezifische Herunterregulierung der MHC I-Expression beobachtet. Es wurde gezeigt, 

dass die Internalisierung von Antigen-Antikörper-Komplexen von der Zelloberfläche mit einer 

Co-Internalisierung von MHC I-Molekülen einhergeht (Favoreel et al., 1999). 

 

2.2.5  Die Beeinträchtigung der Funktion Natürlicher Killerzellen 

 

Eine drastische Reduktion der Expression von MHC I-Molekülen auf der Oberfläche 

infizierter Zellen  im Rahmen der viralen Immunmodulation würde in Übereinstimmung mit 

der „missing-self“-Hypothese dazu führen, dass die betroffenen Zellen von Natürlichen 

Killerzellen erkannt und eliminiert würden (Ljunggren und Kärre, 1990). Virale Erreger haben 

deshalb verschiedene Strategien entwickelt, um die Erkennung durch NK-Zellen zu 

umgehen. HCMV und MuHV-1 sind beispielsweise in der Lage, MHC I-Homologe zu 

exprimieren (Fahnestock et al., 1995; Vossen et al., 2002). 

Auch eine Reduktion der Konzentration einiger, aber nicht aller MHC I-Moleküle auf der 

Oberfläche infizierter Zellen, wie es für EHV-1 (Rappocciolo et al., 2003) und SuHV-1 

(Sparks-Thissen und Enquist, 1999) beschrieben wurde, dient vermutlich dazu, die NK-

mediierte Lyse der Zelle zu verhindern (van der Meulen et al., 2006a). 

 

2.2.6  Der Einfluss auf die Antigen-Präsentation durch MHC II-Moleküle 

 

MHC II-Moleküle werden in der Regel nur auf professionellen Antigen-präsentierenden 

Zellen wie B-Lymphozyten, Monozyten, dendritischen Zellen und Thymusepithel exprimiert. 

Auf vielen anderen Zelltypen lässt sich allerdings durch Stimulation mit IFN-γ eine MHC II-

Expression induzieren (Collins et al., 1984). Peptide, die durch MHC II-Moleküle präsentiert 
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werden, stellen im Allgemeinen Bruchstücke extrazellulärer Proteine dar, die durch 

Phagocytose oder rezeptor-vermittelte Endocytose in die Zelle gelangen, wo sie durch 

endolysosomale Proteasen abgebaut werden. Aber auch intrazellulär synthetisierte Proteine 

können auf diesen Abbauweg gelangen und werden anschließend durch MHC II-Moleküle 

präsentiert (Wiertz et al., 2007). Klasse II-Moleküle bestehen aus einer α- sowie einer β-

Kette, die sich im ER mit sog. nicht-variablen („invariant“) Ketten (Іi) verbinden. Durch 

Signale im cytoplasmatischen Schwanz von Іi wird der αβ Іi-Komplex vom TGN zu speziellen 

„class II loading compartments“ transportiert. Eine Spaltung von Іi durch Proteasen 

ermöglicht anschließend die Peptidbindung, woraufhin stabile αβPeptid-Komplexe zur 

Zelloberfläche transportiert werden (Wiertz et al., 2007). Dort dienen sie der Antigen-

Erkennung durch CD4+ T-Helferzellen (Cresswell, 1994). 

Da sich aufgrund der stimulierenden Wirkung der T-Helferzellen auf andere Bereiche der 

Immunabwehr eine Beeinträchtigung ihrer Funktion u.a. auch auf die CD8+ T-Zell-Immunität 

sowie auf die Produktion von Antikörpern auswirkt (Wiertz et al., 2007), stellt auch die 

Antigen-Präsentation durch MHC II-Moleküle ein einladendes Ziel für virale 

Immunmodulationsmechanismen dar. Allerdings ist die Kenntnis derartiger Strategien bis 

dato noch sehr eingeschränkt und bezieht sich im Wesentlichen auf humanmedizinisch 

relevante Herpesviren.  

Das HCMV-US2-Protein ist eines der wenigen bisher in diesem Zusammenhang 

identifizierten Genprodukte. Indem es die Zerstörung zweier essentieller Proteine der MHC 

II-Präsentationskaskade induziert, führt seine Expression zur Reduktion der Bildung von 

Klasse II Іi-Komplexen im ER (Tomazin et al., 1999). Das HCMV-US3-Protein führt zur 

Retention von MHC II-Іi-Komplexen im Golgi-Apparat, das pp65 zum Abbau von MHC II-

Komplexen in abnormalen perinukleären Lysosomen (Wiertz et al., 2007). Außerdem ist es 

in der Lage, durch Reduktion der Expression der Janus-Kinase 1 (Jak1) in den Jak /Stat-

Signaltransduktionsweg einzugreifen (Vossen et al., 2002). HSV-1 besitzt die Fähigkeit, 

durch die Produkte seiner γ134,5- und UL41-Gene mit der MHC II-Präsentation zu 

interferieren, wobei das UL41-Protein eine starke „virion host shutoff“-Funktion ausübt 
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(Trgovich et al., 2002). Zudem reduziert HSV-1 die Expression von Stat1, Stat2 und Jak1 

(Wiertz et al., 2007). Über sein BZLF1-Genprodukt vermag EBV die Konzentration der IFN-γ-

Rezeptoren zu senken, wodurch es zu einer Stilllegung der IFN-γ-induzierten MHC II-

Präsentations-Kaskade kommt (Morrison et al., 2001).   

Nur für ein einziges Mitglied des Genus Varicellovirus, nämlich das VZV, konnte bisher eine 

Interferenz mit der MHC II-Peptid-Präsentation nachgewiesen werden. Abendroth und Arvin 

(2001) zeigten, dass sich durch IFN-γ nur auf 26% der VZV-infizierten Zellen eine Expression 

von MHC II-Molekülen induzieren ließ, während 86% der VZV-negativen Zellen nach 

Behandlung mit IFN-γ MHC II präsentierten. VZV ist in der Lage, die MHC II-Kaskade auf der 

Stufe der Transkription zu beeinträchtigen, indem es die Expression von Jak2 und 

Stat1α vermindert (Abendroth und Arvin, 2001).  

Da zu EHV-1 in diesem Zusammenhang bisher noch keine Studien durchgeführt wurden, 

stellte die Untersuchung einer möglichen Beeinflussung der MHC II-Oberflächenpräsentation 

durch EHV-1 eines der Ziele dieser Arbeit dar.                                          

 

Angesichts der Vielzahl der beschriebenen Strategien, die alle in einer Verminderung der 

Oberflächenkonzentration der MHC I- oder MHC II-Moleküle resultieren, denen aber z.T. 

völlig unterschiedliche Wirkungsweisen zugrunde liegen, erscheint es wahrscheinlich, dass 

auch EHV-1, neben der Interferenz mit dem TAP-Transporter, über zusätzliche 

Mechanismen verfügt, die zu einer Modulation der Peptid-Präsentation durch MHC I-/II-

Moleküle führen. Eine Klärung von deren Funktionsweise und die Identifizierung der 

verantwortlichen Gene könnte auf lange Sicht dazu beitragen, die Impfstrategien gegen 

EHV-1 zu verbessern. Im Rahmen der vorliegenden Arbeit sollte der mögliche Einfluss einer 

Deletion der EHV-1-Leserahmen UL11 und UL43 auf die MHC I- und /oder MHC II-

Expression in vitro untersucht werden. 

 

 

 



Schrifttum 

20 

2.2.7  Das UL11-Protein bei EHV-1 

 

Der elfte Leserahmen innerhalb der UL-Region des EHV-1-Genoms wird als UL11 

bezeichnet (Gen 51) (Telford et al., 1992). Das entsprechende Genprodukt ist ein aus 75 

Aminosäuren bestehendes, nicht-glykosyliertes Polypeptid. Es wird als Protein der „early-

late“-Expressionsklasse (γ1-Protein) exprimiert und als Bestandteil des Teguments in 

extrazelluläre Virionen inkorporiert. In infizierten und transfizierten Zellen ist es im Bereich 

des Golgi-Apparates sowie in zellulären Membranen lokalisiert (Schimmer, 2002; Schimmer 

und Neubauer, 2003).  

Das Protein ist für die Virusreplikation in Zellkultur nicht essentiell. Eine Deletion des 

entsprechenden Leserahmens führt allerdings zu einer Reduktion der extrazellulären 

Virustiter sowie der Größe entstandener Virusplaques. Diese Beobachtung lässt eine 

Funktion des UL11p im Rahmen des direkten „cell-to-cell spread“ vermuten. Die Lokalisation 

im Bereich des Golgi-Apparates infizierter Zellen weist zudem auf eine Funktion bei der 

sekundären Umhüllung der Kapside hin (Schimmer, 2002; Guggemoos, 2004). In der Zelle 

ist das EHV-1-UL11-Homologe mit Lipid-Rafts assoziiert, vermutlich vermittelt durch die 

Fettsäuremodifikationen des Proteins durch Myristylierung oder Palmitylierung. Als Lipid- 

Rafts werden stabile Mikrodomänen zellulärer Membranen bezeichnet, die einen hohen 

Gehalt an Sphingolipiden und Cholesterol aufweisen. Sie spielen eine Rolle bei der 

Signaltransduktion innerhalb der Zelle und dienen zudem als bevorzugte Orte für 

Viruszusammenbau und Umhüllung (Guggemoos, 2004). 

Für das ebenfalls myristylierte UL11-Homologe von HSV-1 wurde gezeigt, dass es, vermittelt 

durch ein saures Aminosäuremuster, zwischen der Plasmamembran der Zelle und den 

Golgi-Membranen zirkuliert (Bowzard et al., 2000; Loomis et al., 2001). Beim UL11-Protein 

von EHV-1 ist um den Aminosäurerest 35 ebenfalls ein Bereich mit sauren Seitenketten zu 

finden (Schimmer, 2002). Im Hinblick auf die nachgewiesene Lokalisation des UL11p in 

infizierten Zellen wäre auch für das EHV-1-UL11-Protein denkbar, dass es zunächst an den 

Golgi-Apparat bindet und von dort zur Plasmamembran transportiert wird. Bei seiner 
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Rückkehr zum Golgi-Apparat könnte es MHC I-Moleküle von der Membran zum TGN 

transportieren und so zu einer Reduktion der MHC I-Präsentation beitragen. Da MHC II-

Moleküle ebenso wie das UL11-Protein in Lipid-Rafts zu finden sind (Anderson et al., 2000), 

wäre es ebenfalls denkbar, dass diese durch das UL11p von der Zellmembran zu den Lipid- 

Rafts transportiert werden, was zu einer Verminderung der MHC II-Expression auf der 

Zelloberfläche führen würde.  

 

2.2.8  Das EHV-1-UL43-Protein 

 

Der UL43-Leserahmen ist innerhalb der Subfamilie der Alphaherpesviren konserviert und 

wird früh im Replikationszyklus als β-Gen exprimiert. Anhand der Aminosäuresequenz lässt 

sich für das EHV-1-UL43-Protein ein apparentes Molekulargewicht von 43 kDa berechnen 

(Carter et al., 1996). Zur Charakterisierung des UL43p wurde in einer ersten Reihe von 

Experimenten mit einer ein GFP-UL43-Fusionsprotein exprimierenden Zelllinie gearbeitet 

(Stenke, 2006). Mittels indirekter Immunfluoreszenz wurde gezeigt, dass das Fusionsprotein 

einerseits mit zellulären Membranen assoziiert ist und andererseits mit dem TGN-Protein γ-

Adaptin, in dichten polarisierten Zellverbänden zudem mit dem Adherens Junctions (AJ)-

Protein β-Catenin, kolokalisiert. Das UL43-Protein ist für die Virusreplikation in Zellkultur 

nicht essentiell, auch die Penetrationseigenschaften des Virus sind durch Fehlen des 

Proteins nicht beeinträchtigt. Allerdings führt eine Deletion des UL43-Leserahmens zu einer 

Abnahme intra- und extrazellulärer Virustiter sowie zu einer Reduktion der mittleren Plaque-

durchmesser um 25%, was auf eine Beteiligung des Proteins am „cell-to-cell spread“ 

schließen lässt (Stenke, 2006). 

Das UL43-Fusionsprotein wird als Bestandteil der Virushülle in extrazelluläre Virionen 

inkorporiert. Da die sekundäre Umhüllung der Viruspartikel im Bereich des TGN stattfindet, 

ließe sich so die Assoziation des UL43-Fusionsproteins mit diesem Zell-Kompartiment 

erklären (Stenke, 2006). Andererseits dient das TGN innerhalb der Zelle als 

Sortierungsstation, von der aus neu synthetisierte zelluläre und auch virale Proteine, in 
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Vesikel verpackt, zielgerichtet versandt werden. Es wäre daher denkbar, dass das UL43-

Fusionsprotein zunächst im TGN lokalisiert ist, um anschließend von dort zur Membran 

gesandt zu werden. Zur tatsächlichen Funktion des pUL43 ist allerdings noch nichts bekannt; 

es scheint eher eine Funktion in vivo als in vitro zu haben. Da eine frühe Expression typisch 

für Immunevasionsproteine ist, wäre für das pUL43 als „early“-Protein eine Funktion im 

Rahmen der Immunmodulation von EHV-1 denkbar. Die nachgewiesenen Lokalisationen 

lassen die Hypothese zu, dass das UL43p möglicherweise zwischen Golgi-Apparat und der 

Zellmembran zirkulieren könnte und dabei MHC I-/II-Moleküle von der Zelloberfläche zum 

TGN transportieren könnte, wie auch für das UL11p gemutmaßt wird. Die Untersuchung 

dieser Hypothesen stellte eines der Ziele der vorliegenden Arbeit dar.  
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3.   MATERIAL UND METHODEN  

 

3.1.  Material  

 

3.1.1  Zellen 

 

- Rk13 (Kaninchennierenzellen, Zelllinie) ab der 30. Passage 

- E-Derm (NBL-6) CCL-57  (equine dermale Zelllinie) ab der 22. Passage  

- EEL (equine embryonale Lungenzellen, primäre Zelllinie) ab der 10. Passage  

- 51D3 (UL11p-exprimierende Rk13) ab der 35. Passage (Schimmer, 2002) 

- Rk-gN („786 / 41“) (gN-exprimierende Rk13-Zellen) ab der 3. Hauspassage  

(zur Verfügung gestellt von J. Rudolph und N. Osterrieder) 

- ETCC („equine transitional carcinoma cells“) ab der 5. Hauspassage 

 

3.1.2  Bakterien und Plasmide 

 

3.1.2.1  Bakterien 

 

       -    E. coli-Stamm DH5αF’  (Fa. Gibco BRL, Eggenstein)  

 

 

3.1.2.2  Plasmide 

 

- pcDNA 3.1/Myc-HIS(+)C (Fa. Invitrogen, Karlsruhe) 

- pt43 (UL43-ptZ18R) (Stenke, 2006)  
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3.1.3  Antikörper und Antiseren 

 

(Gebrauchsverdünnungen jeweils in PBS ohne Ca2+ und Mg2+) 

 

3.1.3.1  Monoklonale Antikörper (MAk) 

 

- Anti-Glykoprotein B (gB): 

4B6  1:10 (FACS), 1:20 (IIF) (Meyer und Hübert, 1988) 

- Anti-Glykoprotein C (gC): 

2A2 1:10 (FACS), 1:5 (IIF) (Meyer und Hübert, 1988) 

- Anti-Glykoprotein D (gD): 

20C4 1:2000 (FACS), 1:500 (IIF) (Allen und Yeargan, 1987) 

- Anti-Glykoprotein 2 (gp2): 

3B12 1:10 (FACS), 1:2 (IIF)(Meyer und Hübert, 1988) 

- Anti-C-myc mouse monoclonal Antibody (Fa. Roche Diagnostics, Mannheim) 

1:400 (IIF, Western Blot, FACS) 

- Mouse Anti Equine MHC Class I (Fa. Serotec, Oxford)  

1:50 (FACS, IIF) 

- Mouse Anti Equine MHC Class II (Fa. Serotec, Oxford) 

1:10 (FACS, IIF) 

- PT85A (mouse anti MHC I) (Fa. VMRD, Pullman) 

1:400 (FACS, IIF) bzw. 1:800 (FACS PBMCs)  

- H58A (mouse anti MHC I) (Fa. VMRD, Pullman) 

1:800 (FACS, IIF) bzw  1:1200 (FACS PBMCs) 

- EqT2 (mouse anti equine MHC II) (Fa. VMRD, Pullman) 

1:400 (FACS) 

- H42A (mouse anti MHC II) (Fa. VMRD, Pullman) 

1:400 (FACS) 
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- WB 103/ 105 (Antibody to Pestiviruses) (Fa. CCPro, Oberdorla) 

1:500 (FACS)  

 

3.1.3.2  Polyklonale Antikörper 

 

- anti-Glykoprotein M-Kaninchenserum (gM) (Seyboldt, 2000) 

1:2000 (FACS), 1:1000 (IIF) 

- anti-UL11-Kaninchenserum (Schimmer, 2002) 

1:200 (FACS), 1:100 (IIF) 

- anti-UL34-Kaninchenserum (Neubauer et al., 2002) 

1:2000 (FACS), 1 :1000 (IIF) 

 

3.1.3.3  Mit  « Alexa » konjugierte Antikörper 

 

- anti-mouse «Alexa» 488 nm (1 :1000) (Fa. Molecular Probes, Göttingen) 

- anti-rabbit «Alexa» 488 nm   (1 :1000) (Fa. Molecular Probes, Göttingen) 

 

3.1.3.4  Mit Peroxidase (POD) konjugierte Antikörper 

 

- anti-mouse IgG ( 1:1000 ) (Fa. Sigma, München) 

- anti-rabbit IgG   ( 1:1000 ) (Fa. Sigma, München) 
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3.1.4  Puffer, Lösungen und Reagenzien 

 

- A. bidest., Aqua bidestillata 

- Acrylamidstammlösung (Rotiphoresegel 30): gebrauchsfertige, gasstabilisierte, 

wässrige 30 %ige Acrylamidstammlösung mit 0,8 % Bisacrylamid (Fa. AppliChem, 

Darmstadt) 

- A. demin., demineralisiertes Wasser 

- Agarose, peqGold Universal (Fa. PEQLAB, Erlangen) 

0,8 bis 2 % (w/v) in 0,5 x Elektrophoresepuffer TAE 

- Amper, Ammoniumpersulfat (Fa. AppliChem, Darmstadt) 

10 % (w/v)  

- Antibiotika (als Zusatz zu Zell- oder Bakterienkulturmedien und Nährbodenplatten): 

o Ampicillin, 100 mg/ml (Gebrauchsverdünnung 1:1000) (Fa. AppliChem, 

Darmstadt) 

o Chloramphenicol, 30 mg/ml in Ethanol (1:1000) (Fa. Sigma, München) 

o Geneticin, Geneticindisulfat (G418)-Lösung, 50 mg/ml (1:100) (Fa. Roth, 

Karlsruhe) 

o Kanamycin, 50 mg/ml (1:1000) (Fa. AppliChem, Darmstadt) 

o Penicillin, 119,8 mg/ml (1:2000) (Fa.Grünenthal, Aachen) 

o Streptomycin, 200 mg/ml in (1:2000) (Fa. Sanavita, Werne) 

- Arabinose (Fa. Sigma, München) 

- Bacto Agar (Fa. Becton Dickinson, Heidelberg) 

- Bacto Trypton (Fa. Becton Dickinson, Heidelberg) 

- BCA-Proteinbestimmungskit (Fa. Pierce, Illinois) 

- Blocking-Puffer für indirekte Immunfluoreszenz (IIF) 

PBS ohne Ca2+ und Mg2+ mit 3 % FKS (v/v) 

- Blocking-Puffer für Western Blot 

PBS-T mit 10 % Magermilchpulver (w/v) 
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- Bromphenolblau (Fa. Merck, Darmstadt) 

- BSA (Bovines Serumalbumin)  (Fa. New England Biolabs, Frankfurt a.M.) 

- BSE-Puffer, 10 x 

0,25 %   Bromphenolblau (w/v) 

70 mM   EDTA, pH 8,0 

     5 %   SDS (w/v) 

   50 %   Sucrose (w/v) 

- CaCl2, Calciumchlorid (Fa. Merck, Darmstadt) 

- Chlorophorm (Fa. AppliChem, Darmstadt) 

- Dabco (Fa. Sigma, München) 

- Digitonin (Fa. Sigma, München) 

0,01 %ig in PBS ohne Ca2+ und Mg2+ 

- DMF (Dimethylformamid) (Fa. Sigma, München)  

- DMSO, Dimethylsulfoxid (Fa. Roth, Karlsruhe) 

- ECL plus Western Blotting Detection System (Fa. Amersham, Freiburg) 

- EDTA, Ethylendiamintetraacetat (Fa. ICN Biomedicals, Ohio) 

- Eisessig (Fa.Roth, Karlsruhe) 

- Elektrophoresepuffer für Agarosegele, 50 x TAE, pH 7,8 

0,25 M   Na-Acetat  

2 M    Tris 

mit Eisessig auf pH 7,8 eingestellt 

- Elektrophoresepuffer für SDS-PAGE 

193 mM   Glycin 

 0,1 %   SDS (w/v) 

 25 mM    Tris 

- Ethanol absolut (Fa. neoLab, Heidelberg) 

- Ethidiumbromid (Fa. Sigma, München) 

- FKS, fetales Kälberserum (Fa. Biochrom, Berlin) 
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- Formaldehyd (Fa. Merck, Darmstadt) 

- Formamid (Fa. neoLab, Heidelberg) 

- Giemsa (Azur-Eosin-Methylenblau-Lösung) (Fa. Merck, Darmstadt) 

- Giemsa-Färbelösung 

1 ml   Phosphatpufferlösung nach Weise 

50 µl  Giemsa-Stammlösung 

- Glucose (Fa. Merck, Darmstadt) 

- L-Glutamine, γ-bestrahlt (200 mM) (Fa. Sigma, München) 

- Glycerin (Fa. Roth, Karlsruhe) 

- Glycin (Fa. AppliChem, Darmstadt) 

- Hanks’ Modified Eagle’s Medium 

 5,3 g/l  Hanks’ Medium (Fa. Sigma, München)  

 4,8 g/l  Earle’s Medium (Fa. Sigma, München)  

120 mg/l  Pyruvic Acid (Fa. Sigma, München)  

    mit NaHCO3 auf pH 7,6-7,8 eingestellt 

- Harnstoff (Fa. AppliChem, Darmstadt) 

- HCl, Salzsäure (Fa. Merck, Darmstadt) 

- Hefeextrakt, granuliert (Fa. Merck, Darmstadt) 

- Histopaque® 1077 (Dichte 1,077) (Fa. Sigma, München) 

- HMFM, Hogness´ modified freezing medium 

4 %   Glycerin (v/v) 

3,6 mM  K2HPO4 

1,6 mM  KH2PO4 

1 mM   Magnesiumsulfat 

2 mM   Natriumcitrat 

- IAC, Isoamylchloroform 

24 Teile  Chloroform 

1 Teil   Isoamylalkohol 
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- IFN-γ (rekombinantes equines Interferon-gamma) (Fa. RnD Systems, Wiesbaden) 

(Gebrauchsverdünnung 1:1000) 

- Isoamylalkohol (Fa. Merck, Darmstadt) 

- Isopropanol (Fa. neoLab, Heidelberg) 

- Kaliumacetat (Fa. Roth, Karlsruhe) 

- kb-Leiter, 100 bp, 1 kb, 12 kb und 2-Log (Fa. New England Biolabs, Frankfurth a. M.) 

- KCl, Kaliumchlorid (Fa. Merck, Darmstadt)   

- KHCO3, Kaliumhydrogencarbonat (Fa. Merck, Darmstadt) 

- K2HPO4, Kaliumhydrogenphosphat (Fa. Merck, Darmstadt) 

- KH2PO4, Kaliumdihydrogenphosphat (Fa. Merck, Darmstadt) 

- Kodak GBX Entwickler (Fa. Sigma, München) 

- Kodak GBX Fixierer (Fa. Sigma, München) 

- Kristallviolett (Fa. Merck, Darmstadt) 

- Kristallviolett-Färbelösung nach Witte 

85 ml   Ethanol, absolut 

250 ml  Formaldehyd 

15 g   Kristallviolett 

mit A. demin. auf 1000 ml 

- LB-Medium, Luria-Bertoni-Medium, pH 7,2 

10 g/l    Bacto Trypton 

 5 g/l     Hefeextrakt, granuliert 

 5 g/l     NaCl 

   mit 1 N NaOH auf pH 7,2 

- LB-Nährbodenplatten 

1,5 %   Bacto Agar in LB-Medium 

- LiCl, Lithiumchlorid 4M (Fa. Merck, Darmstadt) 

- Lipofectin® Reagent (Fa. Invitrogen, Karlsruhe) 
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- Lysis-Puffer für Durchflusszytometrie 

8,29 g  NH3Cl 

1 g   KHCO3 

0,372 g  Na2EDTA 

  mit A. demin. auf 1000 ml 

- Lysozym (Fa. Boehringer, Mannheim) 

- Magermilchpulver (Fa. AppliChem, Darmstadt) 

- MBS, Morpholinoethansulfonsäure Buffered Saline, pH 6,5 

25 mM  MES 

150 mM  NaCl 

- 2-Mercaptoethanol (Fa. Sigma, München) 

- MES (Morpholinoethansulfonsäure) (Fa. Merck, Darmstadt) 

- Methanol absolut (Fa. Merck, Darmstadt) 

- Methylcellulose (Viscosity 4000 cP) (Fa. Sigma, München) 

25 g auf 1000 ml A. demin. 

- MgCl2, Magnesiumchlorid (Fa. Merck, Darmstadt) 

- MgSO4, Magnesiumsulfat (Fa. Merck, Darmstadt) 

- MnCl2, Manganchlorid (Fa. Merck, Darmstadt) 

- Molekulargewichtsmarker, vorgefärbt (Fa. New England Biolabs, Frankfurt a.M.) 

- Molekulargewichtsmarker, Precision Prestained Broad Range (Fa. BioRad, München) 

- Na-Acetat (Fa. Roth, Karlsruhe) 

- Na2EDTA, Ethylendiamintetraacetat-Natriumsalz (Fa. Sigma, München) 

- Natriumazid, NaN3 2 % (Fa. Sigma, München) 

- Na-Citrat (Fa. Merck, Darmstadt) 

- NaCl, Natriumchlorid (Fa. Merck, Darmstadt) 

- Natriumdesoxycholat (Fa. Merck, Darmstadt) 

- NaHCO3, Natriumhydrogencarbonat 8,8 % (Fa. Merck, Darmstadt) 

- NaH2PO4, Natriumdihydrogenphosphat (Fa. Merck, Darmstadt) 
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- Na2HPO4, Dinatriumhydrogenphosphat (Fa. Merck, Darmstadt) 

- NaOH, Natronlauge (Fa. Merck, Darmstadt) 

- NEA, nicht-essentielle Aminosäuren (Fa. Biochrom, Berlin) 

- NH3Cl, Ammoniumchlorid (Fa. Roth, Karlsruhe) 

- N-Lauroyl-Sarkosin, Na-Salz, 30 % (w/v) (Fa. Sigma, München) 

- NP-40 (Nonidet P-40) (Fa. Sigma, München) 

- PBS, Phosphate Buffered Saline, pH 7,4 

0,1 g  CaCl2 

0,2 g   KCl 

0,2 g   KH2PO4 

0,1 g  MgCl2 

8,0 g  NaCl 

1,12 g  Na2HPO4 

  mit A. demin. auf 1000 ml 

- PBS ohne Ca2+ und Mg2+ (wie PBS, ohne CaCl2 und MgCl2) 

- PBS-T (PBS ohne Ca+ und Mg2+ mit 0,5 ml/l Tween 20) 

- PerFectinTM Transfektionsreagenz (Fa. Gene Therapy Systems, San Diego) 

- peqGold PCR Hot Start-Mix „Real Time“ (Fa. PeqLab, Erlangen) 

- PFA, Paraformaldehyd (4 %ige Stammlösung) 

96 ml   PBS ohne Ca2+ und Mg2+ 

  4 g   Paraformaldehyd (Fa. Roth, Karlsruhe) 

- PFA für IIF, 2 % 

- Phenol (Fa. AppliChem, Darmstadt) 

- Phenolrot, 0,1% (w/v) (Fa. Merck, Darmstadt) 

- Phosphatpufferlösung nach Weise 

0,285 g Na2HPO4 

0,1225 g KH2PO4 

  in 250 ml A. demin. 
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- Probenpuffer für SDS-PAGE (4x) 

2,5 ml  A. dest. 

0,1 ml  Bromphenolblau 5 % (w/v) 

1 ml   Glycerin 

0,4 ml   2-Mercaptoethanol 

4 ml   SDS 20 % (w/v) 

0,5 ml  Tris-HCl 0,5 M, pH 6,8 

- PI, Propidiumjodid (10-6 molar) (Fa. Sigma, München) 

- Protease inhibitor cocktail (Fa. Roche Diagnostics, Mannheim) 

- Proteinase K (Fa. AppliChem, Darmstadt) 

10 mg  in 1 ml TE-Puffer, pH 8,0 

- Pyruvic Acid (Fa. Sigma, München) 

- QIAEX® II Gel Extraction Kit (150) (Fa. Qiagen, Hilden) 

- QIAGEN® Plasmid Midi Kit (100) (Fa. Qiagen, Hilden) 

- RbCl2 , Rubidiumchlorid (Fa. Sigma, München) 

- ReddyMix™ PCR Master Mix, pre-aliquoted (Fa. ABgene, Uk) 

- Restriktionsendonukleasen (Fa. MBI, St. Leon-Roth; Fa. New England Biolabs, 

Frankfurt a.M.; Fa. Roche Diagnostics, Mannheim) 

- Ripa-Lysispuffer für Western Blot 

150 mM  NaCl 

0,5 %  Natriumdesoxycholat (w/v) 

1 %  NP-40 (v/v) 

0,1 %  SDS (w/v) 

50 mM  Tris-HCl, pH 8,0 

+ Protease inhibitor cocktail nach Anleitung des Herstellers 

- RNAse A, Ribonuklease A (Fa. Macherey-Nagel, Düren) 

100 mg  in 1 ml TE-Puffer, pH  8,0 
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- RPMI-1640 Medium (Fa. Sigma, München) 

- Saline 

1 g  Glucose 

3 mM  KCl 

1,5 mM KH2PO4 

140 mM NaCl 

10 mM  Na2HPO4 

10 ml  Phenolrot 0,1 % (w/v) 

  mit A. demin. auf 100 ml 

- Sarkosylpuffer 

25 mM  EDTA 

10 %  N-Lauroyl-Sarkosin(w/v) 

75 mM  Tris-HCl, pH 8,0 

- SDS, Natrium-Dodecylsulfat 20 % (w/v) (Fa. AppliChem, Darmstadt) 

- SOB-Medium 

2 %   Bacto Trypton 

0,5 %   Hefeextrakt 

2,5 mM KCl 

10 mM  MgCl2 

10 mM  MgSO4 

10 mM  NaCl 

- SOG-Medium 

SOB-Medium mit 1 %  Glucose 

- STET-Puffer 

1 mM   EDTA, pH 8,0 

0,1 M  NaCl 

10 mM  Tris-HCl, pH 8,0 

0,5 %  Triton X-100 (v/v) 
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- STV, Saline-Trypsin-Versene-Lösung 

100 ml  Saline 

50 ml  Trypsin 1,25 % (w/v) 

25 ml   Versene 

10 ml  NaHCO3 8,8 % 

- Sucrose (Fa. Merck, Darmstadt) 

30 % (w/v)  in PBS ohne Ca2+ und Mg2+ 

30 % (w/v)  in MES 

+ 0,5 mM EDTA 

- T4-DNA-Ligase mit 10x Ligasepuffer (Fa. MBI, St. Leon-Roth) 

- TEMED, Tetramethylethylendiamin (Fa. Merck, Darmstadt) 

- TEN-Puffer  

1 mM  EDTA 

150 mM NaCl 

20 mM  Tris-HCl, pH 7,4 

- TE-Puffer 

1 mM  EDTA 

10 mM  Tris-HCl pH 8,0 

- TE + RNAse:  

50 µg/ml  RNAse A 

  in TE-Puffer 

- TFB-I-Puffer 

10 mM  CaCl2 

15 %  Glycerin (v/v) 

30 mM  Kaliumacetat 

50 mM  MnCl2 

100 mM RbCl2 

  mit NaOH auf pH 5,8 
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- TFB-II-Puffer 

75 mM  CaCl2 

15 %   Glycerin (v/v) 

10 mM  MOPS, pH 7,0 

10 mM  RbCl2 

- Towbin-Puffer, pH 8,3 

193 mM Glycin 

20 %   Methanol (v/v) 

25 mM  Tris 

- Tris, Tris(hydroxymethyl)aminomethan (Fa. AppliChem, Darmstadt) 

- Tris-Puffer für SDS-PAGE-Sammelgel 

0,5 M  Tris-HCl, pH 6,8 

- Tris-Puffer für SDS-PAGE-Trenngel 

1,5 M  Tris-HCl, pH 8,8 

- Triton X-100 (Fa. Roche Diagnostics, Mannheim)  

- Trypsin (Fa. Serva, Heidelberg) 

- Trypanblau (Fa. Sigma, München) 

- Tween 20, Polyoxyethylensorbitan (Fa. BioRad, München)  

- Versene 

3 mM  KCl 

1,5 mM KH2PO4 

140 mM NaCl 

10 mM  Na2HPO4 

- Wizard® Genomic DNA Purification Kit (Fa. Promega, USA) 
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3.1.5  Geräte, Laborhilfsmittel und Verbrauchsmaterialien 

 

- Brutschrank HERAcell 240 (Fa. Heraeus, Hanau) 

- Brutschrank Galaxy S (Fa. Nunc, Wiesbaden) 

- Chromatographiepapier 3 MM (Fa. Whatman, Dassel) 

- CL-XPosure™ Filme (Fa. Pierce, Illinois) 

- Confocales Laser Scanning-Mikroskop Zeiss 510 (Fa. Zeiss, Jena) 

- Elektrophoresekammer Mupid-21 (Fa. Cosmo Bio Co., Tokio) 

- Elektrophoresekammer für PAGE-Gele: Mini-Protean II (Fa. BioRad, München) 

- Elektrophoretische Transferkammer: Mini-Transblot II (Fa. BioRad, München) 

- Eppendorf Reaktionsgefäß, 1,5 ml und 2 ml (Fa. Eppendorf, Hamburg) 

- FACScan Durchflusszytometer (Fa. Becton Dickinson, Heidelberg) 

- Fuchs-Rosenthal-Kammer zur Zellzählung (Fa. Superior, Lauda-Königshofen) 

- Horizontalelektrophoresekammer (Fa. Biometra, Göttingen) 

- Incubator Shaker C24 (Fa. New Brunswick Scientific, Nürtingen) 

- Kryoröhrchen CryoTube™ Vials, 2ml (Fa. Nunc, Wiesbaden)                                                               

- MicroAmp® Optical 96-Well Reaction Plates (Fa. Applied Biosystems, UK) 

- Mikroskop (Fa. Leitz, Wetzlar) 

- Mikroskop für IIF 

Axioskop 2 (Fa. Zeiss, Jena) 

Axiovert 25 (Fa. Zeiss, Jena) 

- Nitrocellulose Hybond-C (Fa. Amersham, UK) 

- Nitrocellulose Protran BA 83 

Schleicher & Schuell (Fa. Whatman, Dassel) 

- pH-Meter (Fa. VWR, Wien) 

- Photometer Uvikon xs (Fa. Bio-Tek, Bad Friedrichshall) 

- Pipetboy comfort (Fa. Integra Biosciences, Fernwald) 

- Pipetten (Fa. Abimed, Langenfeld) 
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- Power Supply Power Pac 300 (Fa. BioRad, München) 

- Präzisionswaage Navigator™ (Fa. Ohaus, Giessen) 

- PVDF, Polyvinylidenfluorid Transfermembran Hybond™-P (Fa. Amersham, UK) 

- Real-Time PCR System Mx3000P™ (Fa. Stratagene, Amsterdam) 

- Rührplattform IKA Combimag RCH (Fa. IKA, Staufen) 

- Schüttler KS250 basic (Fa. IKA, Staufen) 

- Sicherheitswerkbank HERAsafe (Fa. Heraeus, Hanau) 

- Thermomixer compact (Fa. Eppendorf, Hamburg) 

- Vortex-Genie™ (Fa. Bachofer, Reutlingen) 

- Wasserbad  WB 22 (Fa. Memmert, Schwabach) 

- Zellkulturplastikwaren 

Zellkulturflaschen (175 cm2, 75 cm2 und 25 cm2) (Fa. Nunc, Wiesbaden) 

6-, 24- und 96-Loch-Platten (Fa. Nunc, Wiesbaden) 

- Zellschaber (Fa. Nunc, Wiesbaden) 

- Zentrifugen 

Capsulefuge PMC-060 (Fa. Tomy Kogyo Co., Tokio) 

Kühlzentrifuge Heraeus Sepatech Suprafuge 22 (Fa. Heraeus, Hanau) 

 Rotor HFA 12.500 (Fa. Heraeus, Hanau) 

 Rotor Sorvall SS-34 (Fa. DuPont Sorvall, Bad Homburg) 

Kühlzentrifuge Sigma 4K10 (Fa. Sigma, München) 

Kühlzentrifuge Sigma 1-15K (Fa. Sigma, München) 

Kühlzentrifuge Sigma 202MK (Fa. Sigma, München) 

Stock-Zentrifuge (Fa. Stock, Marburg) 

Ultrazentrifuge Optima™ LE-80K (Fa. Beckman, Krefeld) 

 Rotor SW 28 

 Rotor SW 40 

  Zentrifuge Sigma 3-16 (Fa. Sigma, München) 
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3.2.  Methoden  

 

3.2.1  Zellen 

 

3.2.1.1  Zellkultur 

 

Im Rahmen der vorliegenden Arbeit wurden die Zelllinien E-Derm NBL-6, Rk13, EEL und  

ETCC, außerdem die rekombinanten Zelllinien 51D3 und Rk-gN verwendet. 51D3-Zellen 

exprimieren das EHV-1-UL11-Protein als C-myc-Fusionsprotein, Rk-gN-Zellen das EHV-1-

UL49.5-Genprodukt. Sämtliche Zelllinien wurden in Hanks’ Modified Eagle´s Medium mit 5 % 

fetalem Kälberserum (FKS) kultiviert. NBL-6 sowie EEL erhielten Zusätze von 10 % FKS, 1 

% nicht-essentieller Aminosäuren (NEA) und 1 % L-Glutamin. Die Inkubation erfolgte in 

Plastikzellkulturflaschen bzw. –platten bei 37°C in feuchter Atmosphäre mit einem CO2-

Gehalt von 5 %. 

Zur Passagierung wurden die Zellen zunächst mit Saline-Trysin-Versene-Lösung (STV) 

abgelöst, anschließend in frischem Medium resuspendiert bzw. je nach Bedarf zum Teil 

verworfen oder auf weitere Zellkulturflaschen bzw –platten verteilt. 

Isolierte Leukozyten („peripheral blood mononuclear cells“, PBMCs) konnten in Suspension 

einige Tage bei 37°C und 5 % CO2 kultiviert werden. Dazu wurden die mittels 

Dichtezentrifugation gewonnenen Zellen (Pkt. 3.2.1.3) in RPMI-1640 Medium mit 2 % FKS, 

1% NEA sowie 0,05 % Penicillin bzw. Streptomycin und 0,005 % Mercaptoethanol 

resuspendiert. 

 

3.2.1.2  Kryokonservierung von Zellen 

 

Um die Zellen längerfristig aufzubewahren, wurden ca. 1x107 am Vortag passagierte Zellen 

mit STV abgelöst und 10 Min bei 1000 rpm zentrifugiert. Das Zellpellet  wurde in Medium mit 

10 % FKS und 10 % DMSO resuspendiert und die Zellsuspension auf 4-5 Kryoröhrchen 
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verteilt. Zum Abkühlen wurden die Röhrchen 4 Stunden bei 4°C aufbewahrt und 

anschließend bei -70°C tiefgefroren. Eine langfristige Lagerung erfolgte bei -120°C. 

 

3.2.1.3  Isolierung von PBMCs mittels Dichtezentrifugation 

 

Die Isolierung der PBMCs erfolgte durch Dichtezentrifugation mittels Histopaque® 1077. 

Dazu wurden die Zellen aus  frisch gewonnenem und 2:3 mit PBS ohne Ca2+ und Mg2+ 

verdünntem EDTA-Blut in 15 ml-Probenröhrchen nach Herstelleranleitung isoliert, in RPMI-

1640 Medium mit den entsprechenden Zusätzen aufgenommen und nach Zellzählung (Pkt. 

3.2.1.5) entweder auf  6-Loch-Platten oder auf 15 ml-Probenröhrchen verteilt. Die Kultivie-

rung erfolgte bei 37°C unter CO2-Atmosphäre. 

  

3.2.1.4  Giemsa-Färbung von PBMCs   

 

Zur Differenzierung der mittels Dichtezentrifugation isolierten PBMCs wurden diese Giemsa-

gefärbt und unter dem Mikroskop betrachtet. Dazu wurde ein Tropfen der in RPMI-Medium 

resuspendierten Zellen auf einem Objektträger ausgestrichen und luftgetrocknet. Nach 

fünfminütiger Fixation in Methanol wurde dieser abpipettiert und Alkoholreste verdampfen 

lassen, um Zellverluste gering zu halten. 

Die Präparate wurden für 15 Minuten mit je 500 µl Giemsa-Färbelösung bedeckt, 

anschließend vorsichtig mit A. demin. abgespült und in Schräglage getrocknet. Die 

Betrachtung und Dokumentation erfolgte mit Ölimmersion unter 40 facher Vergrößerung. 

 

3.2.1.5  Zellzählung mittels Fuchs-Rosenthal-Kammer („Lebend-tot-Färbung“) 

 

Um bei unterschiedlichen Experimenten die Zellen mit vergleichbarer „multiplicity of infecion“ 

(MOI) infizieren zu können, wurde die Anzahl der Zellen pro Zellflasche oder 6-Loch-Platte 

mit Hilfe einer Fuchs-Rosenthal-Zählkammer bestimmt. Hierzu wurde eine 1:4 Verdünnung 
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der mit STV abgelösten Zellen hergestellt, diese mit Trypanblau (1:20) gefärbt und in die 

Kammer pipettiert. Unter Berücksichtigung nur der ungefärbten, vitalen Zellen wurden 

mindestens 4 Quadrate unter dem Mikroskop ausgezählt. Durch Multiplizieren des daraus 

errechneten Mittelwertes mit dem Verdünnungsfaktor sowie einem Faktor von 104, der sich 

aus dem Volumen der Kammer berechnet, wurde die Gesamtzellzahl bestimmt. 

 

3.2.1.6  Transfektion eukaryotischer Zellen mit Lipofectin® oder PerFectin™ 

 

Um eine Expression von Fremdgenen durch eukaryotische Zellen zu erreichen, kann mit 

Hilfe von Transfektionsreagenzien wie Lipofectin® oder PerFectin™ die entsprechend 

kodierende DNS in die Zellen eingeschleust werden. Dazu wurde der nach 

Herstelleranleitung vorbereitete Transfektionsansatz auf etwa vier Stunden vorher in 6-Loch-

Platten eingesäte, ca. 70 % konfluente Rk13-Zellen gegeben. Nach Inkubation über Nacht 

bei 37°C unter CO2-Atmosphäre wurde das Transfektionsmedium durch Hanks’ Modified 

Eagle´s Medium mit 10 % FKS ersetzt. 

 

3.2.1.7  Stabile Transfektion von Zellen zur Herstellung rekombinanter Zelllinien 

 

Für eine stabile Expression von Fremdgenen durch eukaryotische Zellen ist eine Integration 

der Fremd-DNS in das Wirtszellgenom erforderlich. Da es nach einer Transfektion nur selten 

zu einer derartigen Integration kommt, ist es nötig, auf dieses Ereignis zu selektieren. Hierzu 

wurden die Zellen mit einem Plasmid transfiziert, das neben dem gewünschten DNS-

Abschnitt ein Resistenzgen enthält, dessen Genprodukt Aminoglycosid-Antibiotika durch 

Dephosphorylierung inaktiviert. 

Nach Inkubation über Nacht wurde der Transfektionsüberstand durch ein Gemisch aus 50 % 

2 Tage altem Zellkulturüberstand und 50 % frischem Medium mit 10 % FKS ersetzt. Durch 

Zugabe von 0,5 mg/ml Geneticin zum Zellkulturmedium, welches alle 2 Tage erneuert wurde, 

konnte auf stabil transfizierte Zellen selektiert werden. Die Expression des gewünschten 
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Fremdgens wurde durch IIF nachgewiesen. Um die Fremdgenexpression aufrechtzuerhalten, 

wurden weiterhin nach jeder fünften Zellpassage 0,5 mg/ml Geneticin ins Zellkulturmedium 

gegeben. 

 

 

3.2.2  Virus 

 

3.2.2.1  Verwendete Virusstämme 

 

Gearbeitet wurde mit verschiedenen Passagestufen des EHV-1-Stammes Rac, der über 

serielle Passagierung auf embryonalen Schweinenierenzellen (ENS) attenuiert wurde. Der 

Laborstamm RacL11 stellt ein Plaqueisolat der 12. Passage dar und ist sowohl für den 

natürlichen Wirt als auch für Labortiere virulent, während der auch als Impfstamm 

verwendete RacH der 256. Passage entspricht und avirulent ist (Mayr et al., 1968; Hübert et 

al., 1996). Desweiteren wurden Mutanten der genannten Laborstämme verwendet, die 

jeweils Deletionen eines offenen Leserahmens der UL-Region tragen:  

RacL11∆11 (Schimmer, 2002) (Vermehrung auf 51D3-Zellen) 

RacL11∆43 (Stenke, 2006)  

RacH∆43 (Stenke, 2006) 

RacL11∆49.5 (zur Verfügung gestellt von J. Rudolph und N. Osterrieder) (Vermehrung auf 

Rk-gN-Zellen) 

Zudem wurde mit den Feldisolaten EHV-1 O834 (Isolat eines neurologischen Falls, 1999) 

und EHV-1 E216 (Isolat eines Abortfalls, 2006) nach Vermehrung auf NBL-6-Zellen 

gearbeitet sowie Experimente mit einem EHV-4-Rhinitisisolat (Ziegler et al., 2005) 

durchgeführt. 
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3.2.2.2  Vermehrung von Viren in Zellkultur 

  

Zur Virusvermehrung wurden 90-100 % konfluente Rk13-Zellen mit einer MOI von 0,05 bis 

0,1 der entsprechenden Virussuspension in Zellkulturmedium infiziert. Nach Auftreten eines 

cpE von über 80 % wurden die infizierten Zellen zweimal bei -70°C eingefroren und wieder 

aufgetaut, um intrazelluläre Virionen freizusetzen. Durch zehnminütige Zentrifugation bei 

1000 rpm wurden die zellulären Bestandteile vom virushaltigen Überstand getrennt und 

dieser anschließend portioniert bei -70°C gelagert. 

 

3.2.2.3  Virustitration 

 

Um den Titer der gewonnenen Virus-Stocks zu bestimmen, wurden Verdünnungen von 10-1 

bis 10-6 hergestellt und diese im Doppelansatz à 1000 µl auf 100 % konfluente Rk13-Zellen 

in 24-Loch-Platten einen Tag nach Subkultivierung gegeben. Nach 90 minütiger Inkubation 

bei 37°C wurden die Virusverdünnungen abpipettiert und die Zellen mit Methylcellulose 

überschichtet. Die sich bildenden Plaques konnten nach 3 bis 5 Tagen in je 4 Löchern 

ausgezählt und der Titer pro ml berechnet werden. 

 

3.2.2.4  Infektion von Zellen in Zellkultur 

 

Um für IIF- oder Western Blot-Analysen infizierter Zellen eine möglichst zeitgleiche Infektion 

aller Zellen einer Versuchsgruppe zu gewährleisten, wurden Zellkultur-Zellen vorgekühlt 

infiziert und zur Adsorption des Virus zunächst 90 Minuten bei 4°C inkubiert. Zur Entfernung 

nicht gebundener Viruspartikel wurde der virushaltige Überstand nachfolgend abpipettiert 

und die Zellen einmal mit Zellkulturmedium gewaschen. Nach Zugabe von frischem 

Zellkulturmedium begann die eigentliche Inkubationszeit bei 37°C (Zeitpunkt 0).  
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3.2.2.5  Infektion von PBMCs 

 

Die isolierten und in Zellkulturmedium resuspendierten Blutzellen wurden zur Infektion in 

15ml-Probenröhrchen gegeben, die, um einen Gasaustausch zu ermöglichen, locker mit 

Alufolie-Kappen verschlossen wurden. Je nach Experiment wurden die Zellen nach Zugabe 

des Virus entweder sofort bei 37°C inkubiert, wobei das Virus im Medium belassen wurde. 

Für andere Experimente wurden die Zellen zur Virusadsorption zunächst für 90 Minuten bei 

4°C unter zeitweiligem Schwenken inkubiert und anschließend bei 4°C pelletiert. Zum 

Entfernen nicht gebundener Viruspartikel wurde das Zellpellet in RPMI-Medium 

resuspendiert und erneut pelletiert. Nach Resuspension der Zellen in 2 ml eines frischen 

Mediums wurden diese bei 37°C und 5 % CO2 bis zur gewünschten Zeit p.i. inkubiert.  

 

 

3.2.3  DNS 

 

3.2.3.1  Präparation viraler DNS  

 

Zur Gewinnung von viraler DNS wurden etwa 6x106 Zellen in Zellkulturflaschen mit einer 

MOI von ca. 0,1 des jeweiligen Virus infiziert und nach Auftreten von 100 % cpE 12 Stunden 

weiterinkubiert. Die Virussuspension wurde für 90 Minuten bei 25 000 rpm und 4°C 

abzentrifugiert (Ultrazentrifuge Optima™ LE-80K, Rotor SW40), das Pellet in 300 µl TEN-

Puffer resuspendiert und nach Zugabe von 150 µl Sarkosylpuffer 15 Minuten bei 65°C unter 

leichtem Schütteln inkubiert. Anschließend wurde das Gemisch mit 1 µl RNAse A (100 

mg/ml) versetzt und 30 Minuten bei 37°C weiterinkubiert. Zur Zerstörung zellulärer und 

viraler Proteine wurden 50 µl Proteinase K in einer Konzentration von 10 mg/ml zugegeben 

und mindestens 3 Stunden bei 56°C, nachfolgend über Nacht bei 37°C inkubiert. 

Mittels Phenolextraktion können Protein- und Lipidkomponenten von der DNS getrennt 

werden. Dazu wurde der Ansatz auf Eis mit 500 µl Phenol versetzt, zum Erreichen einer 
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vollständigen Durchmischung 100 mal geschwenkt und anschließend für 20 Minuten auf Eis 

belassen. Nach zehnminütiger Zentrifugation bei 8000 rpm und 4°C wurde der DNS-haltige 

Überstand abgenommen und erneut mit Phenol ausgeschwenkt. 

Zur Entfernung von Phenolresten wurde der nun gewonnene Überstand zweimal mit IAC 

gewaschen. Dazu wurde gleiches Volumen wie Probenvolumen IAC zum Überstand 

gegeben und 100 Mal geschwenkt. Nach zehnminütiger Phasentrennung auf Eis wurde der 

Ansatz kurz zentrifugiert und der Waschvorgang mit dem gewonnenen Überstand wiederholt.  

Die Virus-DNS konnte in Folge aus dem Überstand mit eiskaltem absolutem Ethanol 

(doppeltes Probenvolumen) mit einem Zusatz von 4 M Lithiumchlorid (LiCl) (1/10 des 

Probenvolumens) durch Schwenken und anschließendes Tiefgefrieren bei -70°C (20 

Minuten) ausgefällt werden. Durch 20 minütige Zentrifugation bei 13 000 rpm und 4°C wurde 

die ausgefällte DNS pelletiert. Um eventuell vorhandene Salzreste zu entfernen, wurde das 

DNS-Pellet zweimal mit je 200 µl 70 %igem, eiskaltem Ethanol gewaschen, luftgetrocknet 

und in 20 µl TE-Puffer oder A. demin. aufgenommen. 

 

3.2.3.2  DNS-Konzentrationsbestimmung 

 

Die Bestimmung der Konzentration isolierter, in A. demin. gelöster DNS erfolgte durch 

photometrische Messung bei 280 nm. Aus der gemessenen Extinktion wurde der DNS-

Gehalt in Mikrogramm pro Milliliter berechnet, wobei eine Extinktionseinheit einem  DNS-

Gehalt von 50 µg/ml entspricht. 

 

3.2.3.3  Spaltung der DNS durch Restriktionsendonukleasen 

 

Eine Spaltung von viraler, Plasmid- oder BAC-DNS wurde durch deren Verdau mit 

Restriktionsenzymen erreicht. Dazu wurde die DNS mit 5 bis 10 Units Enzym pro µg im vom 

Hersteller mitgelieferten Puffer für 1-2 Stunden (Plasmid-DNS) bzw. 3 Stunden (virale DNS) 

bei 37°C inkubiert und die Enzyme anschließend hitzeinaktiviert. Eine Auftrennung der 
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entstandenen DNS-Fragmente erfolgte je nach erwarteter Fragmentgröße in 0,8 bis 2 %igen 

Agarosegelen bei einer Gleichspannung von 50 bis 100 V. Durch Färbung der Gele mit 

Ethidiumbromid wurden die DNS-Banden im UV-Licht (302 nm) sichtbar gemacht. 

 

3.2.3.4  Aufreinigung von DNS aus einem Agarosegel 

 

Zur Aufreinigung nach Restriktionsenzymverdau oder PCR erhaltener DNS-Abschnitte 

wurden die gewünschten Banden mit einem Skalpell aus dem Gel ausgeschnitten und 

mittels „QIAEX-II Gel-Extraction-Kit“ nach Herstelleranleitung extrahiert. Nachfolgend wurde 

die DNS in 10 mM Tris pH 8 oder A. demin. aufgenommen und bei -20°C gelagert. 

 

3.2.3.5  Ligation von DNS-Fragmenten 

 

Die Insertion eines DNS-Fragments in ein Plasmid erfolgte mit Hilfe der T4-DNS-Ligase 

(SAMBROOK und RUSSEL, 2001). Diese verbindet unter ATP-Verbrauch komplementäre 

5’-Phosphat- und 3’-OH-Enden linearer DNS-Fragmente. Um zueinander passende Enden 

zu erhalten, wurden Plasmid und Insert mit denselben Restriktionsenzymen geschnitten. 

Nach Auftrennung im Agarosegel und Reinigung der DNS wurden Plasmid und Insert im 

Verhältnis 1:4 eingesetzt und mit 10 000 U T4-DNS-Ligase pro µg zu ligierender DNS im 

mitgelieferten Puffer bei 18°C über Nacht inkubiert. Nach 10minütiger Hitzeinaktivierung bei 

99°C wurde der Ligationsansatz in kompetente Bakterien transformiert (Pkt. 3.2.3.6) oder bis 

zur weiteren Verwendung bei -20°C aufbewahrt. 

 

3.2.3.6  Transformation von Bakterien mit Plasmid-DNS 

 

Zur Amplifizierung der Plasmid-DNS wurden kompetente Bakterien mit den rekombinanten 

Plasmiden transformiert. 
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Herstellung kompetenter Bakterien 

Zur Gewinnung kompetenter Bakterien wurden 100 ml LB-Bouillon mit 1 ml Übernachtkultur 

des E.coli-Stammes DH5αF’ beimpft und bei 37°C bis zu einer OD600 von 0,4 bis 0,5 unter 

Schütteln inkubiert. Nach 15 minütigem Abkühlen auf Eis wurde die Bakteriensuspension für 

5 Minuten bei 3000 rpm und 4°C abzentrifugiert und das entstandene Pellet in 30 ml 

eiskaltem TFB-I resuspendiert. Nach weiteren 10 Minuten auf Eis wurden die Bakterien 

erneut abzentrifugiert, das Pellet in 4 ml TFB-II aufgenommen, in Aliquots zu je 60 µl 

portioniert und bei -70°C gelagert. 

 

Transformation 

Die Bakterien wurden für 1 bis 2 Minuten auf Eis aufgetaut, vorsichtig mit der Hälfte des 

hitzeinaktivierten Ligationsansatzes vermischt und für 20 Minuten auf Eis inkubiert. Durch 

Hitzeschock (2 Minuten bei 42°C) und sofortiges Abkühlen auf Eis wurde die Plasmid-DNS in 

die Bakterien eingeschleust. Nach Zugabe von 200 µl SOG-Medium wurde die 

Bakteriensuspension für 1 h bei 37°C inkubiert und anschließend zur Selektion auf 

transformierte Bakterien auf LB-Nährbodenplatten mit Antibiotika-Zusatz (Pkt. 3.1.4) 

ausgestrichen, wobei sich die Wahl des Antibiotikums nach dem Resistenzgen des 

verwendeten Plasmids richtete.  

 

3.2.3.7  Schnellpräparation von Plasmid-DNS aus transformierten Bakterien 

 

Nach Inkubation der Platten über Nacht bei 37°C wurden gewachsene Kolonien mit einer 

Pipettenspitze gepickt und die Bakterien in 2 ml LB-Bouillon mit entsprechendem 

Antibiotikazusatz (Pkt. 3.1.4) für 12 bis 16 Stunden bei 37°C unter Schütteln vermehrt. 

Je 1,5 ml der Bakteriensuspension wurden für 5 Minuten bei 8000 rpm zentrifugiert, das 

Pellet in 400 µl STET-Puffer mit einem Zusatz von 0,67 mg/ml Lysozym resuspendiert und 

für 5 Minuten bei Raumtemperatur inkubiert. Durch Kochen für 45 Sekunden wurden die 

Bakterien lysiert, die denaturierten Bakterienproteine für 10 Minuten bei 12 000 rpm 



Material und Methoden 

47 

abzentrifugiert und das Pellet mit Hilfe einer Pipettenspitze entfernt. Durch Zugabe von 400 

µl Isopropanol und 35 µl LiCl (4M) wurde die im Überstand enthaltene Plasmid-DNS durch 

Schwenken ausgefällt und für 20 Minuten bei 14 000 rpm pelletiert. Das DNS-Pellet wurde 

zum Entfernen von Salzresten mit 100 µl 70 %igem Ethanol gewaschen, erneut für 10 

Minuten zentrifugiert, anschließend bei Raumtemperatur getrocknet und in 20 µl TE-Puffer 

mit  einem Zusatz von RNAse A (0,05 mg/ml) aufgenommen. Durch Spaltung der 

gewonnenen Plasmid-DNS mit Hilfe von Restriktionsenzymen wurden nachfolgend Größe 

und Orientierung des enthaltenen Inserts überprüft. 

 

3.2.3.8  Präparation größerer Mengen an Plasmid-DNS 

 

Zur Gewinnung größerer Mengen an Plasmid-DNS wurde das „QIAGEN® Midi Kit“ nach 

Herstelleranleitung verwendet. 

 

3.2.3.9  Konservierung von Bakterien mit Plasmid-DNS 

 

Zur längerfristigen Lagerung der transformierten Bakterien wurden diese in  5 ml LB-Bouillon 

mit entsprechendem Antibiotikazusatz (Pkt. 3.1.4) über Nacht bei 37°C unter Schütteln 

vermehrt. Die Bakteriensuspension wurde in 1,5 ml-Portionen für 10 Minuten bei 4°C und 

4000 rpm zentrifugiert. Die Bakterienpellets wurden in je 1 ml HMFM-Puffer resuspendiert 

und bei -70°C gelagert. 

 

3.2.3.10 Quantifizierung von Genomkopien mittels Real-Time PCR  

 

Mit Hilfe einer quantitativen Real-Time PCR ist es möglich, die Anzahl der EHV-1-

Genomkopien pro infizierter Zelle zu bestimmen. Dazu wurde die DNS von ca. 2x105 

infizierten Zellen mit Hilfe des „Wizard® Genomic DNA Purification-Kits“ nach Hersteller-

anleitung aufgereinigt.  
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Die Sequenzen der verwendeten Primer waren zum einen spezifisch für Abschnitte des 

EHV-1-gD-Gens, zum anderen für Sequenzen des equinen β2m-Gens. Bei der Sonde für die 

EHV-1-gD-Sequenzen handelt es sich um eine „minor-groove-binder-Sonde“ (MGB-Sonde), 

die den Reporterfarbstoff 6-carboxy-fluorescein (FAM) am 5´-Ende sowie einen 

Quencherfarbstoff mit MGB-Molekül am 3´-Ende trägt. Die Sonde für das β2m-Gen ist am 5´-

Ende mit dem Reporterfarbstoff HEX sowie am 3´-Ende mit einem Quencherfarbstoff mit 

MGB-Molekül versehen. Die jeweiligen Sequenzen (siehe Tabelle 1) wurden aus Goodman 

et al. (2006) übernommen. Zur genauen Durchführung der Real-Time PCR siehe Spreyer, 

2008.  

 

Primer Sequenz 

EHV-1-gD F-Primer TCG CGA TCT TGA GCG GTT T  

EHV-1-gD R-Primer CCG CAC GCT TGG CTT T 

β2m F-Primer TCT TTC AGC AAG GAC TGG TCT TT 

β2m R-Primer CAT CCA CAC CAT TGG GAG TAA A 

   

Fluoreszenzsonde Farbstoff und Sequenz 

EHV-1-gD-probe 6-FAM-TCT CTT GTG GAA CAT GC-MGB 

β2m-probe HEX-ATC TTC TGG TCC ATA CTG A-MGB 
    
 
Tabelle 1: Sequenzen der Primer und Sonden für die Real-Time PCR 

 

 

3.2.4  Proteine 

 

3.2.4.1  Herstellung von Zelllysaten für den Western Blot 

 

Zur Gewinnung von Lysaten wurden circa 2x106 je nach Fragestellung infizierte oder nicht 

infizierte Zellen „geerntet“, indem die Zellfläschchen zunächst auf Eis gelagert und die Zellen 

vorsichtig zweimal mit kaltem PBS ohne Ca2+ und Mg2+ gewaschen wurden. Anschließend 



Material und Methoden 

49 

wurden 300 bis 500 µl Ripa-Puffer mit zugesetztem Proteinasehemmer-Cocktail auf die 

Zellen gegeben. Nach zehnminütiger Lysis auf Eis wurden die Zellen mit einem Zellschaber 

vom Boden der Zellflasche abgeschabt und die Lysate nach gründlichem Resuspendieren 

bei -20°C aufbewahrt. 

 

3.2.4.2  Proteinanalyse mittels Elektrophorese 

 

3.2.4.2.1 Natriumdodecylsulfat-Polyacrylamid-Gelelektrophorese (SDS-PAGE) 

 

Im Rahmen der SDS-PAGE kommt es zur Anlagerung stark negativ geladener SDS-

Moleküle an die Polypeptidketten von Proteinen, was dazu führt, dass diese denaturiert und 

negativ geladen werden. Während ihrer Wanderung im elektrischen Feld werden die 

Proteine ihrem Molekulargewicht entsprechend aufgetrennt. Verwendet wurde hierfür das 

Vertikalelektrophorese-System Protean II (BioRad). 

 

Herstellung der Gele 

Die für die SDS-PAGE verwendeten Gele bestanden jeweils aus Sammelgel und Trenngel, 

wobei durch Variation der Acrylamidkonzentration die Porengröße bzw. der Bereich der 

optimalen Auftrennung verändert wird. Zur Verwendung im Tris-Glycin-Puffersystem wurden 

Trenngele mit einer Acrylamidkonzentration von 12 % gegossen. Die Bestandteile der 

Elektrophorese-Apparatur wurden gereinigt, entfettet und nach Herstelleranleitung 

zusammengebaut. Nach dem Anmischen der Trenngele (siehe Tabelle 2) wurden diese in 

die Apparatur eingefüllt und zum Aushärten unter Luftabschluss mit  A. demin. überschichtet. 

In das darüber eingefüllte Sammelgel wurden zur Bildung von Vertiefungen für das Einfüllen 

der Proben Kämme gesteckt. Die ausgehärteten Gele wurden anschließend in die dafür 

vorgesehenen Behälter gestellt und diese mit Tris-Glycin-Puffer gefüllt. 
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Trenngel   12 %   Sammelgel   3 %      .               

 
A. demin.   2,54 ml  A. demin.   1,85 ml 

Tris 1,5 M, pH 8,8  1,90 ml  Tris 0,5 M, pH 6,8  0,75 ml 

SDS 20 %   37,5 µl   SDS 20 %   15,0 µl 

Acrylamid-      Acrylamid- 

Stammlösung 30%  3,03 ml  Stammlösung 30 %  0,40 ml 

Amper 10 %   37,5 µl   Amper 10 %   22,5 µl 

TEMED   3,75 µl   TEMED    3,75 µl 

 

Gesamtvolumen  7,55 ml   Gesamtvolumen   3,04 ml 

 
Tabelle 2: Zusammensetzung der Polyacrylamidgele für Tris-Glycin-Puffer 

 

Vorbereitung der Proben 

Der Proteingehalt der Zelllysate wurde mit Hilfe des BCA-Proteinbestimmungs-Kits (Pierce) 

ermittelt und durch Verdünnung einzelner Proben auf gleiche Konzentration eingestellt. 

Nachfolgend wurden die Lysate mit 1/3 des Volumens Probenpuffer versetzt, wobei die 

Zugabe von 2-Mercaptoethanol der Reduzierung von Disulfid-Brücken der Proteine dient. Je 

nach Protein wurden die Lysate entweder auf Eis belassen oder für 5 Minuten bei  99°C 

gekocht, bevor sie in die Vertiefungen des Sammelgels pipettiert wurden. Zur späteren 

Größenbestimmung der Proteine wurde zusätzlich ein Molekulargewichtsmarker eingesetzt. 

Die elektrophoretische Auftrennung der Proteine erfolgte bei 100 V im Tris-Glycin-

Elektrophoresepuffer für 2 bis 2,5 h. 

 

3.2.4.2.2 Elektrotransfer und Immunodetektion von Proteinen (Western Blot) 

 

Zum Nachweis spezifischer Proteinbanden durch Immunodetektion müssen diese zunächst 

mittels Elektrotransfer auf einer Nitrocellulosemembran fixiert werden. Dazu wurde das 
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Tankblot-Verfahren (TOWBIN et al., 1979) angewandt. Die durch SDS negativ geladenen 

und elektrophoretisch aufgetrennten Proteine werden dabei durch ein elektrisches Feld aus 

dem Polyacrylamidgel auf die Nitrocellulosemembran geblottet. Membran und Trenngel 

wurden zunächst einige Minuten in Towbin-Puffer äquilibriert, anschließend 

aufeinandergelegt und zu beiden Seiten mit in Towbin-Puffer befeuchteten Whatman-Filtern 

und Schwämmchen bedeckt. Der Stapel aus Schwämmen, Filtern, Membran und Gel wurde 

nach Anleitung des Herstellers in eine Mini-Trans-Blot-Apparatur (Fa. BioRad) eingespannt. 

Nach Füllen der Kammer mit gekühltem Towbin-Puffer wurde für 65 Minuten eine 

Gleichspannung von 100 V angelegt. Anschließend wurde die Membran zum Blocken 

unspezifischer Bindungsstellen für 1 h bei Raumtemperatur in PBS-T mit 10 % 

Magermilchpulver unter leichtem Schütteln inkubiert. Der primäre Antikörper wurde in PBS-T 

(monoklonale Antikörper) bzw in PBS-T mit 5 % Magermilchpulver (polyklonale Antikörper) 

verdünnt und über Nacht bei 4°C auf der Nitrocellulosemembran belassen. Um nicht 

gebundenen Antikörper zu entfernen, wurde die Membran am nächsten Tag dreimal je 15 

Minuten unter Schütteln mit PBS-T gewaschen. Die nachfolgende Inkubation mit dem in 

PBS-T mit 5 % Magermilchpulver verdünnten POD-gekoppelten sekundären (Anti-Spezies-

IgG)-Antikörper erfolgte für eine Stunde bei Raumtemperatur. Zur Entfernung ungebundenen 

Konjugats wurde die Membran dreimal für 20 Minuten in PBS-T gewaschen und 

anschließend zusammen mit dem nach Anleitung des Herstellers gemischten 

Chemilumineszenz-Substrat „ECL“ in Folie eingeschweißt. Zur Sichtbarmachung der 

Lumineszenz wurde ein Röntgenfilm aufgelegt und nach variabler Belichtungszeit entwickelt. 

 

3.2.5  Indirekte Immunfluoreszenz (IIF) 

 

3.2.5.1  Auswertung mittels Durchflusszytometrie  

 

Mit Hilfe der Durchflusszytometrie („fluorescence-associated cell sorting“, FACS) lassen sich 

mittels indirekter Immunfluoreszenz spezifisch markierte Zellen nach Quantität und Qualität 
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des Signals beurteilen. 1 bis 3x106 Zellen wurden hierfür 15 bis 24 Stunden nach Einsaat 

infiziert und zu bestimmten Zeiten p.i. für die Fluoreszenzfärbung gewonnen. Dazu wurden 

die Zellen mit STV abgelöst, 10 Minuten bei 1000 rpm zentrifugiert und nach Resuspension 

des Zellpellets in PBS ohne Ca2+ und Mg2+ à 50 µl auf 5 bis 8 Löcher einer auf Eis gelagerten 

96-Loch-Platte verteilt. Die Zellen wurden zweimal mit PBS ohne Ca2+ und Mg2+ gewaschen, 

indem die 96-Loch-Platte 60 Sekunden bei 2000 rpm zentrifugiert, der Überstand entfernt 

und die Zellen kurz auf dem Schüttler resuspendiert wurden. 

Zur Messung Oberflächen-ständiger Proteine erfolgten alle nachfolgenden Schritte auf Eis, 

wohingegen die Zellen zum Nachweis intrazellulärer Proteine zunächst fixiert und geöffnet 

wurden. Zur Fixation wurden pro Loch 100 µl 1 %iges PFA auf die Zellen gegeben und 10 

Minuten bei 4°C inkubiert. Nach einmaligem Waschen erfolgte das Öffnen der Zellen durch 

fünfminütige Inkubation mit 100 µl Digitonin und erneutes Waschen mit PBS. Primäre bzw. 

sekundäre Antikörper wurden jeweils in PBS ohne Ca2+ und Mg2+ verdünnt und à 50 µl auf 

die Zellen in der 96-Loch-Platte gegeben (Pkt. 3.1.3.1 und 3.1.3.2). Die optimale Verdünnung 

der jeweiligen Antikörper war in einem Vorexperiment bestimmt worden. Nach 15 minütiger 

Inkubation mit dem primären Antikörper erfolgten zwei Waschschritte mit PBS ohne Ca2+ und 

Mg2+, um nicht gebundene Antikörper zu entfernen. Mit dem sekundären Antikörper („Alexa 

488“ anti-mouse bzw „Alexa 488“ anti-rabbit) (Pkt. 3.1.3.3) wurde 20 Minuten inkubiert, 

anschließend zur Entfernung von Antikörperresten ebenfalls zweimal gewaschen. Zuletzt 

wurden die Zellen in je 100 µl Propidiumjodid (PI) (10-6 molar) resuspendiert. Durch 

Einlagerung des PI in die DNS im Kern geöffneter Zellen können diese nachfolgend von 

ungeöffneten Zellen unterschieden werden. Je Probe wurden schließlich jeweils 10 000 

Zellen ins Durchflusszytometer eingelesen. Bei Oberflächenfärbungen wurden PI-positive 

geöffnete bzw. tote Zellen nicht in die letztendliche Auswertung mit einbezogen. Angegebene 

Prozentzahlen wurden berechnet, indem im erstellten Histogramm ausgehend von der 

jeweiligen Negativkontrolle (= 98% negativ) der Prozentsatz positiver Zellen bestimmt wurde. 
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Zur Färbung der Leukozyten aus gerinnungsgehemmtem Vollblut wurde dieses à 50 µl in 96-

Loch-Platten pipettiert. Durch Zugabe von 150 µl Lysispuffer wurden zunächst die 

Erythrozyten für 2 bis 3 Minuten unter Schütteln lysiert und die verbleibenden Leukozyten 

anschließend gewaschen und gefärbt wie oben beschrieben. 

  

3.2.5.2  Fluoreszenzmikroskopische Auswertung 

 

Mittels indirekter Immunfluoreszenz markierte Zellen können neben der Durchflusszytometrie 

auch direkt im Fluoreszenzmikroskop betrachtet werden. Diese Methode erlaubt eine 

genauere Zuordnung der Lokalisation und Verteilung des Fluoreszenzsignals in zellulären 

Strukturen. Circa 1,5x106 Zellen wurden hierzu in 6-Loch-Platten auf Deckgläschen ausgesät 

und je nach Fragestellung infiziert. Um zelluläre oder virale  Proteine auf der Zelloberfläche 

nachzuweisen, wurden die Zellen nicht fixiert bzw geöffnet. Sämtliche Färbeschritte erfolgten 

auf Eis und die Waschschritte wurden äußert vorsichtig durchgeführt. Um intrazelluläre 

Proteine zu lokalisieren wurden die Zellen zunächst fixiert und geöffnet. Dazu wurde der 

Zellrasen nach der gewünschten Zeit p.i. zweimal mit kaltem PBS ohne Ca2+ und Mg2+ 

gewaschen und nachfolgend durch Zugabe von 500 µl 2 %igem PFA für 10 Minuten bei 4°C 

fixiert. Anschließend erfolgte nach 2 weiteren Waschschritten das Öffnen der Zellen mit 0,1% 

igem Triton X100  (1 ml pro 6-Loch, 15 Minuten bei RT). Die Zellen wurden erneut zweimal 

gewaschen und nachfolgend für 60 Minuten mit 5 % FKS in PBS ohne Ca2+ und Mg2+ bei 

Raumtemperatur unter leichtem Schwenken inkubiert, um unspezifische Bindungsstellen zu 

blocken. Nach einem weiteren Waschschritt wurden die primären Antikörper in PBS ohne 

Ca2+ und Mg2+ verdünnt und à 200 µl auf die Zellen pipettiert (Pkt. 3.1.3.1. und 3.1.3.2). Nach 

60 minütiger Inkubation bei RT wurden die Zellen dreimal je 15 Minuten mit PBS ohne Ca2+ 

und Mg2+ unter leichtem Schwenken gewaschen, um nicht gebundene Antikörper zu 

entfernen. Anschließend wurde der ebenfalls in PBS ohne Ca2+ und Mg2+ verdünnte 

sekundäre (anti-Spezies-IgG)-Antikörper („Alexa 488“ anti-mouse bzw. anti-rabbit) à 200 µl 

auf die Zellen gegeben (Pkt. 3.1.3.3). Nach 60 minütiger Inkubation wurden durch 
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dreimaliges 20 minütiges Waschen nicht gebundene Reste des Konjugats entfernt. Die 

Deckgläschen wurden luftgetrocknet und anschließend mit der Zellseite nach unten mit 8 µl 

PBS/Glycerin (1:1) mit einem Zusatz von 0,1 % Dabco auf Objekträger gelegt. Die Ränder 

der Deckgläschen wurden zur Fixierung mit Nagellack versiegelt. Die Betrachtung und 

Dokumentation erfolgte mittels Ölimmersion unter dem Fluoreszenzmikroskop bzw. mit Hilfe 

des Confocalen Laser Scanning-Mikroskopes. 
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4.   ERGEBNISSE 

 

4.1.  Der Einfluss von EHV-1 auf die MHC I-/II-Expression equiner Zellen 

 

Im Rahmen der vorliegenden Arbeit wurde der Einfluss einer Infektion mit EHV-1 auf die 

MHC I- und II-Expression equiner Zellen in vitro untersucht. Mit Hilfe der IIF konnten MHC I-

Moleküle auf NBL-6-, EEL- und ETCC-Zellen sowie auf equinen PBMCs in Form eines fein 

verteilten Fluoreszenzmusters auf der Zelloberfläche sichtbar gemacht werden. Nach 

Intrazellulärfärbung war die MHC I-spezifische Fluoreszenz zudem in einem Verteilungs-

muster detektierbar, das eine Lokalisation im Bereich des Golgi-Apparates vermuten lässt. 

 

 
 

Abbildung 1: Immunfluoreszenz-Analyse von MHC I auf EEL-, NBL-6-Zellen und PBMCs 

EEL- und NBL-6-Zellen wurden 20 h nach Passagierung mit PFA fixiert und mit Triton geöffnet. MHC 

I-Moleküle wurden nachfolgend mit dem anti-MHC I-Antikörper „H58A“ detektiert (grün). Zur 

Darstellung der Zellkerne wurden diese mit PI gegengefärbt (rot). MHC I-Moleküle auf der Oberfläche 

equiner PBMCs wurden 24 h nach Isolierung aus EDTA-Blut unfixiert mit „H58A“ detektiert.  

 

Als Methode der Wahl zur Darstellung der MHC I- oder II-Expression auf mittels IIF gefärbten 

EHV-1-infizierten bzw. nicht-infizierten Zellen wurde im Folgenden die Durchflusszytometrie 

(FACS) verwendet (Kapitel 3.2.5.1). Eine Oberflächenfärbung mit den anti-MHC I-Anti-

körpern „Mouse anti equine MHC class I“, „PT85A“ oder „H58A“ und einem „Alexa 488“-

gekoppelten „Anti-Mouse IgG“-Antikörper führte sowohl auf NBL-6-, EEL- und ETCC-Zellen 

als auch auf equinen PBMCs zu einem deutlichen positiven Fluoreszenz-Signal. Dabei 

EEL NBL-6 PBMCs 
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zeigten NBL-6- und EEL-Zellen zwei bzw. neun Tage nach Passagierung keine Unterschiede 

in der Intensität ihrer MHC I-Expression. Auf der Kaninchenzelllinie Rk13 ließen sich 

hingegen wie erwartet keine equinen MHC I-Moleküle detektieren. Die anti-MHC II-

Antikörper „Mouse anti equine MHC class II“, „EqT2“ und „H42A“ führten zunächst nur auf 

equinen PBMCs zu einem spezifischen Signal. Durch Zusatz von equinem Interferon-γ  (IFN-

γ) zum  Zellkulturmedium ließ sich jedoch auch auf NBL-6- und ETCC-Zellen ein positives 

MHC II-Signal induzieren (Kap. 4.1.3). 

Eine Präadsorption der Antikörper oder der jeweiligen Zellen mit Pferdeserum führte zu 

keiner Änderung des Fluoreszenzsignals, was die Spezifität der jeweiligen 

Antikörperbindungen weiterhin bestätigte. Equine PBMCs wurden mittels 

Dichtezentrifugation (Histopaque®, Fa. Sigma) aus EDTA-Blut isoliert. Bei den dabei 

gewonnenen Zellen handelte es sich um Lymphozyten und Monozyten im Verhältnis von ca. 

10:1. Eine Isolierung equiner Granulozyten war mit der verwendeten Methode nicht 

erfolgreich.  

Im Folgenden werden jeweils exemplarisch die Ergebnisse eines von mehreren identisch 

durchgeführten Experimenten gezeigt. Zur Kontrolle der Infektion wurden die auf MHC I-/II-

Expression untersuchten Zellen jeweils zugleich nach der Expression verschiedener EHV-1-

Proteine beurteilt (Abb. 2).  
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Abbildung 2: gC-Expression nach Infektion von NBL-6-Zellen mit RacL11 

NBL-6-Zellen wurden einen Tag nach Passagierung mit RacL11 infiziert (MOI von 2). Nach 8 h 

(schwarz) bzw. 16 h (grau) wurde die gC-Expression auf der Zelloberfläche mit Hilfe des anti-gC MAk 

„2A2“ in der Durchflusszytometrie bestimmt. Als Negativkontrolle dienten nicht-infizierte NBL-6-Zellen 

(gestrichelt). Die Rate der gC-exprimierenden Zellen lag 8 h p.i. bei 81,5 % und 16 h p.i. bei 98,4 %.  

 

4.1.1  Der Einfluss der EHV-1-Infektion auf die MHC I-Expression in Zellkultur   

 

Die Infektion equiner Zellen mit EHV-1 führt, wie bereits bekannt ist, in Relation zur Zeit p.i. 

zu einer zunehmenden Verringerung der MHC I-Expression auf der Zelloberfläche. Auch in 

unserem experimentellen System, auf NBL-6- (Abb. 3) oder EEL-Zellen (nicht gezeigt), 

konnte diese Beobachtung bestätigt werden. Dabei spielte es keine Rolle, welcher der anti-

MHC I-MAks verwendet wurde. Eine leichte Abnahme des MHC I-Fluoreszenz-Signals war 

bereits ab 6 h p.i. erkennbar. Im Verlauf der Infektion ließ sich eine deutliche Verstärkung 

dieser Reduktion bis hin zum spätesten untersuchten Zeitpunkt von 40 h p.i. beobachten 

(Daten nicht gezeigt).  
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Abbildung 3: Reduktion der MHC I-Expression auf NBL-6-Zellen 8, 16 und 24 h p.i. 

NBL-6-Zellen wurden einen Tag nach Einsaat mit RacL11 infiziert (MOI 2) und nach 8 h (rot), 16 h 

(dunkelblau) oder 24 h (hellblau) die MHC I-Oberflächenexpression mittels des MAks „Mouse anti 

equine MHC class I“ analysiert. Parallel wurde die MHC I-Expression auf nicht-infizierten NBL-6-Zellen 

gemessen (schwarz). Als Isotypkontrolle diente der Antikörper „WB 103/105“ (grau hinterlegt). Die 

Expression des gC  betrug 8 h p.i. 81,5 %, 16 h p.i. 98,4 % bzw. 24 h p.i. 98,9 % (vgl. Abb. 1). 

 

4.1.2  Die Auswirkungen einer EHV-1-Infektion auf die MHC I-Expression 

equiner PBMCs  

 

Auch auf equinen PBMCs konnte in vitro nach Infektion mit RacL11 eine Herunterregulierung 

der MHC I-Präsentation auf der Zelloberfläche beobachtet werden (Abb. 4a). Wie auf der 

Zellkultur war diese Abnahme ab 6 h p.i. messbar und verstärkte sich im Verlauf der Infektion 

bis hin zu 42 h p.i. Eine noch geringere MHC I-Expression war 66 h p.i. zu detektieren. 

Allerdings war zu diesem Zeitpunkt auch auf nicht-infizierten Kontrollzellen eine etwas 

geringere MHC I-Expression als auf der entsprechenden 42 h-Kontrolle messbar (Daten 

nicht gezeigt). 
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Abbildung 4a: Reduktion der MHC I-Expression auf equinen PBMCs in Relation zur Infektionszeit 

Die Zellen wurden 6, 18 und 30 h nach Isolierung mit RacL11 infiziert (MOI 2) und sofort bei 37 °C 

inkubiert. Die Inkubation mit dem anti-MHC I-Antikörper „PT85A“ und die Messung der MHC I-

spezifischen Fluoreszenz erfolgte 12 h (grün), 24 h (dunkelblau) bzw. 36 h (hellblau) nach Infektion. 

Schwarz dargestellt ist die MHC I-Expression auf nicht-infizierten Zellen, grau hinterlegt die Färbung 

mit „WB 103/105“ (Isotypkontrolle).  

 

 

Abbildung 4b: gC-Expression auf infizierten PBMCs 

Die in Abbildung 4 auf MHC I gefärbten Zellen wurden parallel mit dem anti-EHV-1-gC-Antikörper 

„2A2“ inkubiert und die Stärke der gC-Expression anschließend erfasst. 12 h p.i. (schwarz) 

exprimierten 49 %, 24 h p.i. (rot) 56 % und 36 h p.i. (blau) 57 % der analysierten Zellen gC auf ihrer 

Oberfläche. Als Kontrolle dienten nicht-infizierte Zellen (grau hinterlegt). 
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4.1.3  Die Expression von MHC II-Molekülen auf equinen Zellkultur-Zellen 

 

Durch Inkubation von unbehandelten NBL-6-Zellen mit dem anti-MHC II-Antikörper „EqT2“ 

ließ sich mittels Durchflusszytometrie kein positives Signal nachweisen. Die Antikörper 

„H42A“ sowie „Mouse anti equine MHC class II“ führten zwar zur Detektion einer schwachen 

Fluoreszenz, die MHC II-Spezifität dieses Signals ist allerdings zweifelhaft. Eine Infektion der 

Zellen mit RacL11 bewirkte keine deutliche Änderung dieser Fluoreszenz-Signale. 

Durch Zugabe von equinem IFN-γ zum Zellkulturmedium ließ sich auf NBL-6- wie auch auf 

ETCC-Zellen eine deutliche MHC II-Expression induzieren. Dabei konnte mit zunehmender 

Zeit nach IFN-γ-Zusatz eine Steigerung der MHC II-Expression beobachtet werden. So war 

beispielsweise mit „EqT2“ 12,5 h nach IFN-γ-Zugabe auf 72 % der Zellen ein positives Signal 

zu detektieren, während 16,5 h nach Zugabe bereits 89 % der Zellen MHC II-Moleküle 

exprimierten. Nicht-behandelte Zellen hingegen reagierten nur zu 14 % positiv (Abb. 5).  

 

 

Abbildung 5: Induktion der MHC II-Expression auf NBL-6-Zellen 

Das IFN-γ wurde einen Tag nach Einsaat der Zellen zum Zellkulturüberstand gegeben und bis zur IIF-

Färbung („EqT2“) 12,5 h (grau) bzw. 16,5 h (schwarz) im Medium belassen. Parallel wurde das Signal 

auf unbehandelten Zellen gemessen (gestrichelt). 
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Die Dauer der Exposition der Zellen gegenüber dem IFN-γ spielte für die Auslösung der MHC 

II-Expressionsinduktion nur eine untergeordnete Rolle. Der Prozentsatz MHC II-

exprimierender NBL-6-Zellen betrug bei Färbung mit „EqT2“ 22 h nach IFN-γ-Zugabe und 

Belassen des Interferons im Medium 96 %, 22 h nach IFN-γ-Zugabe und Entfernen des 

Interferons nach 15 Minuten durch Wechsel des Zellkulturmediums dagegen 76,4 %. 

 

4.1.4  Die EHV-1-bedingte Beeinträchtigung der MHC II-Expression auf 

Zellkultur-Zellen 

 

Durch Infektion der Zellen mit dem EHV-1-Stamm RacL11 lässt sich die Induktion der MHC 

II-Expression auf NBL-6- und ETCC-Zellen deutlich beeinträchtigen. So konnte mit dem 

Antikörper „EqT2“ 20,5 h nach Infektion nur auf 16 % der IFN-γ-behandelten Zellen eine 

MHC II-Expression detektiert werden, während 89 % der nicht-infizierten Zellen MHC II-

Moleküle exprimierten (Abb.6). Bei Verwendung des Antikörpers „H42A“ war die Expression 

von 92 % (nicht-infiziert) auf 43 % (infiziert) reduziert (Daten nicht gezeigt). Eine Analyse 

mittels des „Mouse anti equine MHC class II“-MAk lieferte ähnliche Ergebnisse. 

Möglicherweise war die Herunterregulierung mit letzteren Antikörpern aufgrund der oben 

beschriebenen Hintergrundfluoreszenz weniger gut zu detektieren als mit „EqT2“. 

 Die Frage nach einer möglichen Relation zwischen Infektionszeit und Stärke der 

Verminderung konnte im Rahmen dieser Experimente nicht beantwortet werden, da es mit 

zunehmender Inkubationszeit auch zu einer Steigerung der IFN-γ-induzierten MHC II-

Expression auf den Zellen kam und die Effekte nicht zu trennen waren (Kapitel 4.1.3). 
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Abbildung 6: Beeinträchtigung der MHC II-Expression durch Infektion mit RacL11 

NBL-6-Zellen wurden einen Tag nach Einsaat mit RacL11 infiziert (MOI 1). Die IFN-γ-Zugabe erfolgte 

4 h p.i. Gezeigt ist die MHC II-Expression („EqT2“) auf IFN-γ-behandelten, nicht-infizierten (schwarz) 

bzw. infizierten Zellen (grau) 20,5 h nach Infektion. Das Fluoreszenz-Signal unbehandelter, nicht-

infizierter Zellen ist gestrichelt dargestellt. Zur Zeit der Messung betrug der Anteil der gC-

exprimierenden Zellen 99,8 %.  

 

Um eine Beeinträchtigung der MHC II-Expression durch Infektion mit RacL11 beobachten zu 

können, musste der Zusatz des IFN-γ allerdings nach der Infektion erfolgen. Bei IFN-γ-

Zugabe vor der Infektion war keine Abnahme der MHC II-Expression, sondern sogar eine 

leichte Zunahme des positiven Signals zu beobachten. Diese war jedoch auf späte 

Zeitpunkte nach Infektion beschränkt (Daten nicht gezeigt).  

 

4.1.5  Der Einfluss der EHV-1-Infektion auf die MHC II-Expression equiner 

PBMCs 

 

Auf equinen PBMCs war mit Hilfe aller drei Antikörper eine deutliche MHC II-Expression zu 

detektieren. Eine Infektion der Zellen mit RacL11 führte auch hier zu einer leichten 

Verringerung des positiven Signals. Allerdings war diese Abnahme gering und ließ sich nicht 

in allen Experimenten in gleichem Maße reproduzieren. Zudem konnte diese Reduktion nicht 
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mit allen Antikörpern gleich detektiert werden. Eine Relation zur Infektionszeit konnte nicht 

nachgewiesen werden.  

 

 

Abbildung 7:  Einfluss der Infektion auf die MHC II-Expression equiner PBMCs 

Equine PBMCs wurden 18 h bzw. 30 h nach Isolierung mit einer MOI von 2 mit RacL11 infiziert. 

Dargestellt ist die messbare MHC II-Expression („Mouse anti equine MHC class II“) auf nicht-

infizierten Zellen (gestrichelt) sowie auf infizierten Zellen 12 h (schwarz) bzw. 24 h (grau) p.i. Als 

Isotypkontrolle diente „WB 103/105“ (grau hinterlegt). Der Anteil gC-exprimierender Zellen betrug 12 h 

p.i. 36 %, 24 h p.i. 44 %. 

 

Eine kleine Population an Zellen wies eine deutlich stärkere MHC II-Fluoreszenz auf als der 

Rest der PBMCs (Abb. 7, Kurve ganz rechts). Da diese Population aber auf nicht-infizierten 

Zellen genauso wie auf infizierten Zellen detektierbar war, ist ein Zusammenhang mit der 

Stärke der Infektion unwahrscheinlich. 
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4.1.6  Der Einfluss einer Infektion mit aktuellen EHV-1-Isolaten auf die MHC I- 

und MHC II-Expression in vitro 

 

4.1.6.1  Die Reduktion der MHC I-Expression nach Infektion mit Feldisolaten 

 

Da RacL11 ein Plaqueisolat eines 1958 aus einem abortierten Fetus isolierten EHV-1-

Stammes ist, sollte auch untersucht werden, ob neuere, niedrigpassagierte Virusisolate 

einen ähnlichen Einfluss auf die Expression von MHC I-Molekülen auf der Zelloberfläche 

zeigen. Zudem war von Interesse, ob Unterschiede zwischen Virusstämmen, die zu Abort 

geführt hatten, und solchen, die neurologische Ausfallserscheinungen verursacht hatten, zu 

beobachten waren. Dazu wurden NBL-6-Zellen parallel mit RacL11 und dem EHV-1-Isolat 

O834 (Myeloenzephalopathie, 1999) sowie dem Abortisolat E216 (2006) infiziert. Nach 

Infektion mit den genannten neueren Isolaten war die Reduzierung der MHC I-Expression 

auf der Zelloberfläche sogar noch deutlicher als nach Infektion mit RacL11. Ein Unterschied 

zwischen Abort- und Myeloenzephalopathie-Isolat war jedoch nicht festzustellen (Abb. 8). 

 

 

Abbildung 8: Einfluss der EHV-1-Isolate O834 und E216 auf die MHC I-Expression in vitro 

NBL-6-Zellen wurden mit einer MOI von 0,25 parallel mit RacL11 (rot), O834 (dunkelblau) und dem 

Abortisolat E216 (hellblau) infiziert. 22 h p.i. wurde die nach IIF-Färbung mit „Mouse anti equine MHC 

class I“ detektierbare Fluoreszenz beurteilt. Als Isotypkontrolle diente „WB 103/105“ (grau hinterlegt). 

Das MHC I-Signal auf nicht-infizierten Zellen ist schwarz dargestellt. Um eine vergleichbare Infektion 
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zu gewährleisten, wurde die gC-Expression zeitgleich kontrolliert (L11: 99,4 % / EHV-1 834: 96,9 % / 

E 216: 98,2 %)  

 

Auch auf equinen PBMCs führte eine Infektion mit O834 oder E216 zu einer deutlichen 

Herunterregulierung der MHC I-Expression (Daten nicht gezeigt). 

 

4.1.6.2  Der Einfluss einer Infektion mit O834 und E216 auf die MHC II-Expression 

 

Auch die IFN-γ-induzierte MHC II-Expression auf NBL-6-Zellen wurde durch eine Infektion 

mit O834 und E216 stark beeinträchtigt (Abb. 9). 

 

 

Abbildung 9: Beeinträchtigung der MHC II-Expression durch O834 und E216 

Gemessen wurde die MHC II-Expression („EqT2“) auf IFN-γ-behandelten NBL-6-Zellen 19 h nach 

Infektion (MOI 1) mit RacL11 (orange), O834 (hellblau) und E216 (dunkelblau) sowie auf nicht- 

infizierten Zellen ohne IFN-γ-Behandlung (grau hinterlegt) bzw. 15 h nach Zusatz von IFN-γ (schwarz). 

Die Interferon-Zugabe erfolgte 4 h p.i. Die gC-Expression der Zellen betrug für RacL11 97 %, für O834 

88 % bzw. für E216 82 %. 

 

 

 



Ergebnisse 

66 

4.1.7  Die Auswirkung einer Deletion der UL11- und UL43-Gene auf die 

Reduktion der MHC I-/II-Expression  

 

4.1.7.1  Die Beeinflussung der MHC I-Expression durch L11∆11 und L11∆43 

 

Wie in Kapitel 2.2.4 beschrieben, konnte für EHV-1 bisher nur ein einziges Genprodukt 

identifiziert werden, das eine Rolle bei der Reduktion der MHC I-Expression auf infizierten 

Zellen spielt. Dabei handelt es sich um das Produkt des UL49.5-Gens. Da für die Proteine 

UL11p und UL43p eine mögliche Beteiligung in diesem Prozess vermutet wurde, sollte im 

Rahmen dieser Arbeit der Einfluss einer Deletion der zugehörigen Leserahmen auf die 

Fähigkeit zur Verringerung der MHC I- und /oder MHC II-Expression untersucht werden. 

Dazu wurden NBL-6-Zellen parallel mit dem Ausgangs-Virus RacL11 sowie den 

rekombinanten Viren L11∆11 und  L11∆43 infiziert. Als Kontrolle dienten mit einem UL49.5-

deletierten Virus (L11∆49.5) infizierte Zellen. L11∆11 und  L11∆43 standen aus vorigen 

Arbeiten dieses Labors zur Verfügung (Schimmer, 2002; Stenke und Neubauer, 

unveröffentlicht). Das rekombinante Virus L11∆49.5 wurde von J. Rudolph und N. 

Osterrieder zur Verfügung gestellt und der Genotyp und Phänotyp vor dem Einsatz mittels 

PCR, Southern Blot und Western Blot überprüft.  

 

 

 

 



Ergebnisse 

67 

 

 

 

 
Abbildung 10: Einfluss einer Deletion des UL11, UL43 oder UL49.5 auf die Reduktion der MHC I-

Expression in Zellkultur 

NBL-6-Zellen wurden parallel mit dem Ausgangsvirus RacL11 (rot) sowie den rekombinanten Viren  

L11∆11 (dunkelblau) , L11∆43 (hellblau) und L11∆49.5 (grün) infiziert (MOI 0,25). 22 h nach Infektion 

wurde die Stärke der MHC I-Expression mit Hilfe des MAks „PT85A“ analysiert (MHC I-Expression auf 
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nicht-infizierten Zellen: schwarz / Isotypkontrolle: grau hinterlegt) (gC-Expression: RacL11: 99,4 % / 

L11∆11: 98,6 % / L11∆43: 97,7 % / L11∆49.5: 99,4 %). 

 

Wie aus Abbildung 10 ersichtlich wird, führte weder die Deletion des UL11 noch die des 

UL43 zu einer Beeinträchtigung der Fähigkeit von RacL11, eine Herunterregulierung von 

MHC I-Molekülen auf der Zelloberfläche zu bewirken. Sowohl auf L11∆11- als auch auf 

L11∆43-infizierten Zellen war 22 h p.i. eine ebenso deutliche Verringerung der MHC I-

Expression messbar wie auf RacL11-infizierten Zellen. Die mit Hilfe des MAks „PT85A“ 

detektierte MHC I-Expression betrug auf nicht-infizierten Zellen 99,1 %, nach Infektion mit 

RacL11, L11∆11 bzw. L11∆43 nur noch 57 %, 62,5 % bzw. 65,2 %. Bei Deletion des UL49.5 

hingegen war die Herunterregulierung im Vergleich zum Ausgangsvirus RacL11 deutlich 

reduziert. Hier exprimierten trotz Infektion 82,6 % der Zellen MHC I-Moleküle. Allerdings 

wurde auch bestätigt, dass die Deletion des UL49.5-Leserahmens alleine nicht ausreicht, um 

die MHC I-Expression auf den Zellen vollständig zu restaurieren. Es müssen also weitere 

virale Faktoren eine Rolle spielen. Auch zu früheren oder späteren Zeitpunkten nach 

Infektion (8 oder 32 h p.i.) konnten  keinerlei Unterschiede in der Stärke der Reduktion nach 

Infektion mit L11∆11, L11∆43 oder RacL11 festgestellt werden. Diese Ergebnisse wurden 

auch unter Verwendung der anti-MHC I-MAks „H58A“ und „Mouse anti equine MHC class I“ 

bestätigt.  

 

Um dieses Resultat auf Blutzellen zu verifizieren, wurden equine PBMCs in mehreren 

Experimenten parallel mit L11∆11, L11∆43, L11∆49.5 und RacL11 infiziert. Eine Infektion mit 

den rekombinanten Viren führte auch auf PBMCs zu einer Abnahme der MHC I-Expression.  

 

4.1.7.2  Die Reduktion der MHC II-Expression durch L11∆11 und L11∆43 

 

In einer weiteren Serie von Experimenten wurde auch der mögliche Einfluss einer Deletion 

des UL11 bzw. UL43 auf die Fähigkeit zur Verminderung der MHC II-Expression auf equinen 
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Zellen untersucht. Dazu wurden ebenfalls Zellen parallel mit RacL11 bzw. den 

rekombinanten Viren infiziert. Vier Stunden p.i. wurde durch Zugabe von IFN-γ die 

Expression von MHC II-Molekülen induziert. Die Analyse der Zellen erfolgte 20,5 h p.i. nach 

IIF-Färbung im Durchflusszytometer (Abb. 11 und 12). 

 

 

Abbildung 11: Reduktion der MHC II-Expression nach Infektion mit RacL11 und L11∆11 

Die Infektion erfolgte parallel mit einer MOI von 1. Dargestellt ist die MHC II-Expression („EqT2“) auf 

nicht-infizierten NBL6-Zellen ohne IFN-γ-Induktion (grau hinterlegt) bzw. 16,5 h nach IFN-γ-Zugabe 

(gestrichelt) sowie auf RacL11- (schwarz) und L11∆11-infizierten (grau) IFN-γ-behandelten Zellen 20,5 

h nach Infektion. 

 

 

Abbildung 12: Reduktion der MHC II-Expression nach Infektion mit RacL11 (schwarz) und L11∆43 

(grau). Infektion und Analyse der Zellen vgl. Abb. 11. 
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Es zeigte sich, dass es trotz Deletion des UL11- bzw. UL43-Gens zu einer deutlichen 

Reduktion der MHC II-Expression auf den mit dem jeweiligen rekombinanten Virus infizierten 

Zellen kam. Die Verringerung erschien ähnlich ausgeprägt wie auf mit RacL11 infizierten 

Zellen. Eine Infektion mit RacL11 bewirkte im gezeigten Experiment eine Verminderung der 

MHC II-Expression von 88,7 % (nicht-infiziert) auf 16 %, während die rekombinanten Viren 

die Expression auf 16,3 % (L11∆11)  und 30,8 % (L11∆43) reduzierten. Auch der Einsatz der 

Antikörper „H42A“ und „Mouse anti equine MHC class II“ führte zu vergleichbaren 

Ergebnissen. Zeitgleich wurde die gB-Expression („4B6“) kontrolliert. Dabei wiesen RacL11-

infizierte Zellen im gezeigten Experiment eine gB-Expressionsrate von 81 % auf, während 

L11∆11- und L11∆43-infizierte Zellen zu 78 % bzw. 85 % gB exprimierten.  

 

 

4.2  Die Beeinflussung der MHC I-/II-Expression equiner Zellen durch 

Infektion mit EHV-4  

 

4.2.1  Der Einfluss von EHV-4 auf die MHC I-Expression in Zellkultur 

 

Um der Frage nachzugehen, ob auch eine Infektion mit EHV-4 die Expression von MHC I-

Molekülen auf der Oberfläche von Zellkultur-Zellen beeinflusst, wurden Experimente 

vergleichend mit RacL11 und einem EHV-4-Rhinitis-Isolat (Ziegler et al., 2005) durchgeführt. 

Dazu wurden Zellen entsprechend infiziert und die MHC I-spezifische Fluoreszenz im 

Durchflusszytometer gemessen. Es konnte gezeigt werden, dass es auch nach Infektion  mit 

EHV-4 zu einer deutlichen Herunterregulierung der MHC I-Expression auf der Oberfläche 

infizierter Zellen kommt. Im Vergleich zur durch RacL11 bedingten Abnahme führt eine 

Infektion mit EHV-4 sogar zu einer deutlich stärkeren Reduktion der MHC I-Expression.  

 



Ergebnisse 

71 

 

Abbildung 13 : MHC I-Reduktion nach Infektion mit RacL11 oder EHV-4 in Zellkultur 

NBL-6-Zellen wurden mit einer MOI von 0,02 parallel mit RacL11 (schwarz) und EHV-4 (grau) infiziert. 

Die mit Hilfe des Antikörpers „PT85A“ detektierbare Oberflächen-MHC I-Expression wurde 24 h p.i. 

gemessen (MHC I-Konzentration auf nicht-infizierten Zellen: gestrichelt / Isotypkontrolle: grau 

hinterlegt).  

 

4.2.2  Die Beeinflussung der MHC I-Expression auf PBMCs durch Infektion mit 

EHV-4 

 

Es zeigte sich, dass eine Infektion mit EHV-4 auch auf equinen PBMCs zu einer deutlichen 

Abnahme der MHC I-Präsentation führt. 

 

 

Abbildung 14: MHC I-Expression auf PBMCs nach Infektion mit EHV-4 
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Die Messung der MHC I-Expression auf nicht-infizierten (schwarz) bzw. auf EHV-4-infizierten Zellen 

(MOI 0,2) (grau) erfolgte 21 h p.i. („Mouse anti equine MHC class I“). Die Isotypkontrolle ist grau 

hinterlegt. 

 

4.2.3  Der Einfluss einer EHV-4-Infektion auf die MHC II-Expression in Zellkultur 

 

 

Abbildung 15: MHC II-Expression auf NBL-6-Zellen nach Infektion mit EHV-4 

Die Infektion der Zellen erfolgte parallel mit RacL11 (schwarz) und EHV-4 (grau) (MOI 0,2), IFN-γ 

wurde 4 h p.i. zugegeben. Gemessen wurde das MHC II-Signal („EqT2“) auf nicht-infizierten Zellen 

ohne IFN-γ-Behandlung (grau hinterlegt) bzw. 16,5 h nach IFN-γ-Zugabe (gestrichelt) sowie auf 

infizierten, IFN-γ-behandelten Zellen 20,5 h p.i.  

 

Wie aus Abbildung 15 ersichtlich wird, führt eine Infektion mit EHV-4 zu einer deutlichen 

Verminderung der MHC II-Expression auf NBL-6-Zellen. Im gezeigten Experiment lag die 

MHC II-Expression nicht-infizierter Zellen bei 88,7 %, während sie nach Infektion mit RacL11 

auf 29,5 %, bei Infektion mit EHV-4 auf 40,1 % zurückging. Allerdings lag die gB-Expression 

nach RacL11-Infektion bei 74,5 %, während EHV-4-infizierte Zellen nur eine Expression von 

39,4 % aufwiesen. 
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4.2.4  Die Auswirkung einer Infektion mit EHV-4 auf die MHC II-Expression 

equiner PBMCs 

 
Auch auf equinen PBMCs ließ sich nach Infektion mit EHV-4 eine Verminderung der MHC II-

Expression nachweisen. 

 

 

Abbildung 16: MHC II-Expression auf PBMCs: Einfluss von EHV-4 

Equine PBMCs wurden mit einer MOI von 0,2 mit EHV-4 infiziert und die MHC II-Expression 21 h p.i. 

(„Mouse anti equine MHC class II“) gemessen. Dargestellt ist die Fluoreszenz auf nicht-infizierten 

(schwarz) bzw. auf EHV-4-infizierten Zellen (grau) sowie auf mit dem Antikörper „WB 103/105“ 

inkubierten Zellen (Isotypkontrolle) (grau hinterlegt). 
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4.3  Die in vitro-Infektion equiner PBMCs 

 

Im Verlauf der Untersuchung der MHC I-/II-Expression auf PBMCs fiel auf, dass eine in vitro-

Infektion equiner PBMCs offensichtlich deutlich anders abläuft als eine Infektion von Zellen in 

Zellkultur. Zur genaueren Untersuchung des Infektionsablaufs wurden die infizierten Zellen 

parallel mittels Durchflusszytometrie und quantitativer Real Time-PCR untersucht. Die 

Ergebnisse eines Experiments sind exemplarisch in Abbildung 17a und b dargestellt. 
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Abbildung 17a:  gC-Expression auf in vitro-infizierten PBMCs in Relation zur Infektionszeit 

Aus EDTA-Blut isolierte PBMCs wurden mit einer MOI von 2 mit RacL11 infiziert und zur Adsorption 

des Virus an die Zellen zunächst für 90 Minuten bei 4°C inkubiert. In der ersten Gruppe (schwarz) 

erfolgte im Anschluss eine Temperaturerhöhung auf 37°C (Zeitpunkt 0) ohne Entfernung des Virus-

haltigen Überstandes. In der zweiten Gruppe (grau) wurden nicht-gebundene Viruspartikel nach 90 

min durch Pelletieren und zweimaliges Waschen der Zellen bei 4°C entfernt. Nach Resuspension 

dieser Zellen in frischem Medium erfolgte die weitere Inkubation parallel zur ersten Gruppe bei 37°C. 

Nach einer Inkubationszeit von 6, 12, 24, 36 bzw. 48 h wurden die Zellen nach zweimaligem Waschen 

fixiert und geöffnet. Die Messung der Expression viraler Proteine erfolgte nach IIF-Färbung mit dem 

anti-gC MAk „2A2“ im Durchflusszytometer. Dargestellt ist der Prozentsatz der Zellen, die zur 

jeweiligen Zeit p.i. virales gC exprimierten. 
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Abbildung 17b:  Anzahl der EHV-1-Genomkopien pro Zelle in Relation zur Infektionszeit 

Von den in Abb. 17a beschriebenen infizierten Zellen wurden vor der Fixierung Aliquots entnommen 

und die daraus isolierte DNS mittels Real-Time PCR analysiert. Aus der gemessenen Gesamtzahl 

aller RacL11 gD-Genomkopien bzw. der zellulären β2m-Genomkopien wurde die Anzahl der Kopien 

pro Zelle berechnet und gegen die Zeit p.i. aufgetragen. 

 

Es wurde deutlich, dass die Infektionsmethode scheinbar eine bedeutende Rolle für den 

weiteren Verlauf der Infektion spielt, zumindest soweit wie durch die beobachteten 

Parameter beurteilbar. Nach Entfernung nicht-gebundener Viruspartikel aus dem Überstand 

und zweimaligem Waschen der Zellen kam es zu keiner weiteren Zunahme der gC-

Expression auf den Zellen relativ zur Zeit. In den ersten 12 Stunden p.i. konnte stattdessen 

sogar eine Abnahme der Fluoreszenz beobachtet werden. Zu späteren Zeitpunkten nach der 

Infektion blieb die gC-Detektion auf niedrigem Niveau konstant.  

Bei Messung der EHV-1-Genomkopien pro Zelle zeigte sich nach Entfernung des Virus-

haltigen Überstandes und Waschen der Zellen zunächst eine deutliche Abnahme der EHV-1-

Genomkopienzahl pro Zelle, ab 6 h p.i. blieb die Genomzahl auch hier bis 48 h p.i. auf dem 

erreichten Niveau konstant.  

Bei Belassen des Virus-haltigen Überstandes auf den Zellen und Temperaturerhöhung auf 

37°C ohne Waschschritte kam es hingegen zu keinem nennenswerten Abfall der gC-

Detektion auf den Zellen, die Expression blieb auf der nach 6 Stunden erreichten Höhe 
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konstant. Dagegen ließ die Messung der EHV-1-Genomkopien mittels quantitativer PCR 

ohne Abzentrifugation des Virus zumindest in den ersten Stunden der Infektion eine leichte 

Zunahme der Anzahl der Genomkopien pro Zelle erkennen. Im weiteren Verlauf kam es zwar 

auch in diesem Fall zu keiner messbaren Zunahme der Genomkopien pro Zelle, die Anzahl 

der Genomkopien blieb aber auf deutlich höherem Niveau konstant. 

 

Auch wenn die exakte Höhe der jeweiligen Messwerte zu bestimmten Zeitpunkten nach 

Infektion zwischen den einzelnen Experimenten etwas abwich, konnte in jedem der vier zu 

dieser Fragestellung durchgeführten Experimente ein ähnlicher Verlauf festgestellt werden. 

Wider Erwarten blieben sowohl Proteinexpression als auch Genomkopienzahl pro Zelle, die 

letztendlich ja auch die Gesamtkopienzahlen im Messaliquot reflektieren, mit oder ohne 

Entfernung des Virus-haltigen Überstandes im untersuchten Zeitraum von 48 Stunden auf 

dem einmal erreichten Niveau relativ konstant. Nach in vitro-Infektion equiner PBMCs 

scheint es in infizierten Zellen offensichtlich zu keiner weiteren Virusvermehrung und zu 

keiner Ausbreitung infektiöser Viruspartikel auf nicht-infizierte Zellen zu kommen. Im 

Gegensatz dazu ist nach identischer Infektion von Zellen in Zellkultur eine deutliche 

Zunahme der Proteinexpression sowie die Infektion weiterer Zellen bis hin zur Expression 

viraler Proteine auf 100 % der Zellen zu beobachten (vgl. Abb. 2).  
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4.4  Der Einfluss der Deletion des UL43-Gens auf die Expression 

anderer viraler Proteine 

 

4.4.1  Der Vergleich der Expression verschiedener EHV-1-Proteine mittels 

Durchflusszytometrie 

 

Im Rahmen der Durchführung der Experimente zur Untersuchung der MHC I-/II-Expression 

auf EHV-1-infizierten Zellen fiel auf, dass sich trotz Infektion der Zellen mit exakt gleicher 

MOI die durchflusszytometrisch messbare Expression viraler Proteine auf L11∆43-infizierten 

Zellen von der Proteinexpression auf RacL11-infizierten Zellen unterschied. Abhängig vom 

jeweils analysierten viralen Protein fiel dieser Unterschied mehr oder weniger deutlich aus. 

Um diesen Beobachtungen nachzugehen, wurden NBL-6- und Rk13-Zellen parallel mit dem 

Ausgangs-Virus RacL11 sowie mit dem UL43-deletierten Virus L11∆43 infiziert. Die 

Expression der EHV-1-Glykoproteine gB, gC, gD, gp2, gM, des Membran-assoziierten 

UL11p und des Kernmembranproteins UL34p wurde anschließend auf der Oberfläche der 

Zellen bzw. intrazellulär mittels Durchflusszytometrie beurteilt. Vergleichbare Experimente 

wurden mit dem Virusstamm RacH sowie dem entsprechenden UL43-deletierten RacH 

(H∆43) durchgeführt. 

 

Die Ergebnisse eines von drei auf NBL-6-Zellen identisch durchgeführten Experimenten sind 

in Abbildung 18a und b dargestellt. Die Zellen wurden ca. 24 h nach Einsaat mit einer MOI 

von 1 parallel mit RacL11 und L11∆43 infiziert. 14 h p.i. wurde die eine Hälfte der Zellen mit 

PFA fixiert, mit Digitonin geöffnet und anschließend zusammen mit der anderen Hälfte, den 

für die Oberflächenfärbung unfixierten Zellen, mit Antikörpern gegen die genannten EHV-1-

Proteine inkubiert.   
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Abbildung 18a: Expression von EHV-1-Proteinen 14 h nach Infektion von NBL-6-Zellen mit RacL11 

(schwarz) und L11∆43 (grau) 

 A + B:   gC:  Oberflächenfärbung (A) / Gesamtfärbung (B) mit „2A2“ 

C + D:   gp2:  Oberflächenfärbung (C) / Gesamtfärbung (D) mit „3B12“ 

E + F:  gB:  Oberflächenfärbung (E) / Gesamtfärbung (F) mit „4B6“ 

G + H:  gD:  Oberflächenfärbung (G) / Gesamtfärbung (H) mit „20C4“  

   

A B

C D

E F

G H



Ergebnisse 

79 

 

Abbildung 18b: Expression von EHV-1-Proteinen nach Infektion mit RacL11 (schwarz) bzw. L11∆43 

(grau) 

I : gM:   Intrazellulärfärbung („anti-gM-Kaninchenserum“) 

J: UL11p:   Intrazellulärfärbung („anti-UL11-Kaninchenserum“) 

K: UL34p:  Intrazellulärfärbung („anti-UL34-Kaninchenserum“) 

 

Aus Abbildung 18 a und b wird ersichtlich, dass eine Deletion des UL43-Leserahmens 

offensichtlich eine Auswirkung auf die Expression einzelner oberflächenständiger 

Glykoproteine wie das gC und das gp2 hat. Im Vergleich zur Expression der beiden Proteine 

auf der Oberfläche RacL11-infizierter Zellen war das Fluoreszenz-Signal auf L11∆43-

infizierten Zellen deutlich reduziert. Auch nach Öffnung der Zellen und anschließender IIF 

war eine verminderte Expression zu detektieren, allerdings war der Unterschied hier weniger 

ausgeprägt.  

Die Expression der EHV-1-Proteine gB und gD hingegen war auf der Oberfläche RacL11- 

und L11∆43-infizierter Zellen nahezu identisch, für gB, gM, UL11p und UL34p war auch 

intrazellulär kein Unterschied detektierbar. gD allerdings war nach Infektion mit L11∆43 

intrazellulär sogar deutlich stärker nachzuweisen. Zusammengenommen kann eine weniger 

starke Infektion L11∆43-infizierter Zellen als mögliche Ursache des beobachteten 

Phänomens ausgeschlossen werden.  

JI

K
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In Abbildung 19 sind die Mittelwerte dreier unabhängig voneinander auf NBL-6-Zellen 

durchgeführter Experimente graphisch zusammengefasst.  
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Abbildung 19: Relativer Unterschied der Proteinexpression RacL11- bzw. L11∆43-infizierter NBL-6-

Zellen (MOI 1 / 14 h p.i.) 

Die mit Hilfe der Durchflusszytometrie erhaltenen Ergebnisse wurden ausgewertet, indem im 

Histogramm 96 % des Fluoreszenz 1-Signals L11∆43-infizierter Zellen ausgegrenzt wurden und ab 

dieser Grenze das relative Fluoreszenz 1-Signal der RacL11-infizierten Zellen bestimmt wurde. Bei 

stärkerem Fluoreszenz 1-Signal auf mit L11∆43 infizierten Zellen wurde der Marker entsprechend auf 

96 % des Fluoreszenz 1-Signals der RacL11-infizierten Zellen gesetzt und ab diesem Grenzwert die 

relative Fluoreszenz 1 der L11∆43-infizierten Zellen gemessen (im Balkendiagramm als negative 

Werte dargestellt). Aus den erhaltenen Prozentzahlen wurde der Mittelwert errechnet und graphisch 

dargestellt. Die Standardabweichung ist über den jeweiligen Balken aufgetragen. 

 

Für die gC-Expression auf der Oberfläche RacL11- und L11∆43-infizierter Zellen ergab sich 

demnach, dass im Mittel 34,1 % der RacL11-Messereignisse eine höhere Fluoreszenz 

aufwiesen als 96 % der L11∆43-Messereignisse. Nach Öffnung der Zellen betrug die 

Differenz nur 23,4 %. Für die Messung der Expression des gD galt hingegen, dass 14,7 % 

der L11∆43-infizierten Zellen eine stärkere Fluoreszenz aufwiesen als der Großteil (96 %) 

der RacL11-infizierten Zellen.  
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Bei Durchführung der Experimente auf Rk13-Zellen zeigte sich ein ähnliches Bild. Allerdings 

wirkte sich hier die Deletion des UL43-Leserahmens vor allem auf die Expression des gC 

aus. 23,2 % der Messereignisse auf der Oberfläche RacL11-infizierter Zellen wiesen in 

diesem Fall eine höhere Fluoreszenz auf als 96 % der Messereignisse auf L11∆43-infizierten 

Zellen. Nach Öffnung der Zellen betrug der Unterschied immerhin noch 15 %. Das 

Fluoreszenz-Signal der anderen viralen Proteine, auch des gp2, ließ hingegen sowohl auf 

der Oberfläche als auch gesamt keine deutlichen Unterschiede zwischen RacL11- und 

L11∆43-infizierten Zellen erkennen. 
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Abbildung 20: Relativer Unterschied der Proteinexpression RacL11 bzw. L11∆43-infizierter Rk13-

Zellen (MOI 1 / 14 h p.i.) 

 

Darüber hinaus wurden Experimente mit dem EHV-1-Stamm RacH und dem rekombinanten 

Virus H∆43 durchgeführt. Auf NBL-6-Zellen zeigte sich ein ähnliches Muster wie nach 

Infektion mit RacL11 und seiner Rekombinante, allerdings waren die Unterschiede 

insgesamt moderater (Abb. 21). Bei Deletion des UL43-Leserahmens waren wie auf NBL-6 

sowohl die gC- als auch die gp2-Expression beeinträchtigt, während die übrigen Proteine ein 

vergleichbares Fluoreszenz-Signal aufwiesen. Nach Oberflächenfärbung lag der Unterschied 

der gC-Expression zwischen RacH und H∆43 bei 28,8 %, gesamt bei 13,7 %. Die gp2-
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Fluoreszenz war auf H∆43-infizierten Zellen um 9,6 % (OF) bzw. 4,1 % (gesamt) reduziert, 

während gD von diesen Zellen um 9,4 % stärker exprimiert wurde.  
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Abbildung 21: Relativer Unterschied der Proteinexpression RacH- bzw. H∆43-infizierter NBL-6-Zellen 

(MOI 1 / 14 h p.i.)   

 

Bei Infektion von Rk13-Zellen mit RacH bzw. H∆43 konnte ebenfalls ein deutlicher 

Unterschied bezüglich der gC-spezifischen Fluoreszenz beobachtet werden. 38,5 % der 

RacH-Messereignisse wiesen auf der Oberfläche eine höhere Fluoreszenz auf als der 

Großteil der H∆43-Ereignisse, intrazellulär betrug der Unterschied 31,6 %. Allerdings war in 

diesem Fall auch die Fluoreszenz der übrigen Proteine auf RacH-infizierten Zellen 

gegenüber H∆43-infizierten Zellen leicht verstärkt, so dass bisher ein Einfluss durch einen 

Replikationsvorteil des Ausgangsvirus gegenüber dem rekombinanten Virus noch nicht 

ausgeschlossen werden konnte. Zur Sicherstellung müssen weitere Experimente folgen.  
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Abbildung 22: Relativer Unterschied der Proteinexpression RacH- bzw. H∆43-infizierter Rk13-Zellen 

(MOI 1 / 14 h p.i.) 

 

 

4.4.2  Der Vergleich der Lokalisation verschiedener EHV-1-Proteine mittels 

Confocaler Laser Scanning-Mikroskopie 

 

Um die mit Hilfe der Durchflusszytometrie erhaltenen Ergebnisse zu verifizieren und die 

Verteilung der verschiedenen Protein-spezifischen Fluoreszenzen in der infizierten Zelle 

vergleichen zu können, wurden Zellen in gleicher Weise für die mikroskopische Betrachtung 

infiziert und nach Fixierung, Öffnung und IIF mittels Confocaler Laser Scanning-Mikroskopie 

analysiert. Es stellte sich heraus, dass die durch Deletion des UL43-Leserahmens 

ausgelösten Veränderungen im Muster der Proteinexpression z.T. auch mikroskopisch 

nachvollziehbar waren.  
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Abbildung 23: Confocale Laser Scanning-Mikroskopie - Darstellung viraler Proteine in RacL11- und 

L11∆43-infizierten NBL-6-Zellen  

NBL-6-Zellen wurden 2 Tage nach Einsaat mit RacL11 bzw. L11∆43 infiziert (MOI 1). 14 Stunden 

nach Infektion wurden die Zellen fixiert, geöffnet und mit gegen die EHV-1-Proteine gC, gp2, gB, gD, 

gM, UL11p oder UL34p gerichteten Antikörpern inkubiert. Die Betrachtung und Dokumentation 

erfolgte mittels Confocaler Laser Scanning-Mikroskopie (400-fache Vergrößerung). 

 

Wie aus Abbildung 23 ersichtlich wird, ist ein Unterschied im Fluoreszenzmuster der gC-

Expression nach Deletion des UL43-Gens deutlich erkennbar. Bei Infektion mit RacL11 

zeigte sich die gC-spezifische Fluoreszenz als sehr feine Pünktchen, die gleichmäßig über 

die Membran der Zellen verteilt und gelegentlich vor allem auf den Zellausläufern zu finden 

waren. Zudem deutete die Verteilung der Fluoreszenz auf eine Assoziation des 

Glykoproteins mit dem Golgi-Apparat und mit dem Netzwerk des ER hin. Nach Infektion der 

Zellen mit L11∆43 zeigte sich ein deutlich verändertes Verteilungsbild. An der Zellmembran 

        RacL11            L11∆43 

gM 

UL34p 
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der infizierten Zellen waren wesentlich gröbere Punkte auszumachen, die zudem weniger 

gleichmäßig verteilt erschienen als auf RacL11-infizierten Zellen. Wie bei RacL11 erinnerte 

die gC-Fluoreszenz-Verteilung an ER und Golgi-Apparat, allerdings schienen diese 

Organellen weniger stark zu leuchten bzw. waren bei einem Teil der Zellen nicht zu 

erkennen.  

Die gp2-spezifische Fluoreszenz war sowohl nach Infektion mit RacL11 als auch mit L11∆43 

als fein- bis grobkörnige Punktierung in der Zellmembran zu detektieren. Das Protein schien 

zudem wie gC in der Gegend des Golgi-Apparates lokalisiert zu sein. RacL11-infizierte 

Zellen wiesen eine etwas feinere Verteilung des Gesamtfluoreszenzsignals auf, die z.T. 

netzartig strukturiert war und möglicherweise auf eine ER-Lokalisation zurückzuführen ist.  

Auch das gB konnte auf der Oberfläche RacL11- bzw. L11∆43-infizierter Zellen lokalisiert 

werden. Die erkennbaren Fluoreszenz-Pünktchen waren jedoch in wesentlich geringerer 

Zahl vorhanden, deutlich kleiner als bei gC oder gp2 und v.a. auf Zellausläufern zu finden. 

Zudem war ein starkes gB-spezifisches Fluoreszenzsignal auszumachen, das aufgrund der 

Verteilung dem Golgi-Apparat zuzuordnen sein könnte, jedoch nur bei einem Teil der Zellen 

erkennbar war. Im Cytoplasma RacL11-infizierter Zellen waren, v.a. perinukleär, filamentöse 

Strukturen in Form von mehr oder weniger langen Fäden zu erkennen, die als Strukturen des 

ER interpretiert werden könnten. Diese fadenartigen Strukturen waren zum einen in L11∆43-

infizierten Zellen wesentlich seltener zu finden, zum anderen in diesen Zellen deutlich kürzer 

als bei Infektion mit RacL11. Auch wenn die durchflusszytometrisch messbare gB-

Fluoreszenzstärke insgesamt keinen Unterschied zwischen  RacL11- und L11∆43-infizierten 

Zellen erkennen ließ, hat die Deletion des UL43 offensichtlich auch einen Einfluss auf das 

Verteilungsmuster des gB in infizierten Zellen.  

Das Glykoprotein D war nach Infektion mit RacL11 sowie L11∆43 als sehr feine Pünktchen 

auf der Zelloberfläche zu detektieren. Im Cytoplasma fluoreszierten Golgi-Apparat-ähnliche 

Strukturen deutlich. Ein Grund für die deutlich verstärkt messbare Fluoreszenz in L11∆43-

infizierten Zellen war fluoreszenzmikroskopisch nicht nachvollziehbar, da keine Unterschiede 

im Fluoreszenzmuster zwischen RacL11- und L11∆43-infizierten Zellen ersichtlich wurden.  
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Die gM-spezifische Fluoreszenz war nach Infektion mit RacL11 bzw. L11∆43 in den 

Oberflächenmembranen der Zellen in Form von sehr vielen feinen punktförmigen 

Fluoreszenzherden detektierbar und schien zudem im Bereich des Golgi-Apparates 

lokalisiert zu sein. Auch hier konnte in Übereinstimmung mit den Ergebnissen der 

Durchflusszytometrie kein Unterschied zwischen der Infektion mit RacL11 oder L11∆43 

festgestellt werden.  

Das UL34-Protein war wie erwartet hauptsächlich an den Kernmembranen der mit RacL11 

und L11∆43 infizierten Zellen zu finden. Diese ließen sich zu diesem späten Zeitpunkt nach 

Infektion als scharf begrenzte Strukturen mit mehr oder weniger unterschiedlich großen, 

punktförmigen Strukturen darstellen.  

 

Die Lokalisation verschiedener viraler Proteine nach Infektion mit RacL11 bzw. L11∆43  

wurde vergleichend auch auf Rk13-Zellen analysiert. Dazu wurden die Zellen zwei Tage 

nach Einsaat mit einer MOI von 0,1 infiziert, 14 h p.i. fixiert und mit den verschiedenen 

Antikörpern inkubiert.  

Glykoprotein C war in der gesamten Membran RacL11-infizierter Zellen in Form von relativ 

feinen Pünktchen detektierbar. Ein spezifisches Fluoreszenzsignal schien auch hier vom 

Golgi-Apparat zu stammen. Auf L11∆43-infizierten Zellen hingegen waren die auf der 

Membran vorhandenen Pünktchen in ihrer Anzahl insgesamt reduziert, eher einzeln gelegen 

und deutlich gröber. Die an den Golgi-Apparat erinnernde Fluoreszenz war weniger intensiv. 

Somit konnte auch auf Rk13-Zellen der Einfluss einer UL43-Deletion auf das 

Verteilungsmuster des gC fluoreszenzmikroskopisch nachgewiesen werden. 

Bei Inkubation der Zellen mit gegen das gp2 gerichtetem Antikörper zeigte sich auf RacL11- 

und L11∆43-infizierten Zellen ein ähnliches Bild. Das Protein war in relativ groben 

Fluoreszenzherden auf der Zelloberfläche lokalisierbar, zudem schien es wiederum mit dem 

Golgi-Apparat assoziiert zu sein. 

Wie auf NBL-6-Zellen ließ sich die gB-spezifische Fluoreszenz nach Infektion mit RacL11 

bzw. L11∆43 als feine Granulierung der Membran sowie in Form einer Struktur, die 
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vermutlich den Golgi-Apparat reflektierte, detektieren. Eine Infektion der Zellen mit RacL11 

führte auch hier zu filamentösen Strukturen im Cytoplasma der Zelle. Allerdings war das 

Auftreten dieser Filamente deutlich weniger ausgeprägt als in NBL-6-Zellen, nur wenige 

Zellen wiesen ein stark filamentöses Muster auf. In L11∆43-infizierten Rk13 hingegen waren 

zum einen kaum und wenn dann sehr kurze fadenförmige Strukturen zu erkennen. Auch auf 

Rk13-Zellen hat die Deletion des UL43 offensichtlich einen Einfluss auf die Verteilung des 

gB.  

gD war fein granuliert auf der Zelloberfläche zu finden. Zudem schien es im Golgi-Apparat 

lokalisiert zu sein, wo es teilweise auch in gröberen Fluoreszenzherden angeordnet war. Ein 

Unterschied zwischen der Verteilung auf RacL11- bzw. L11∆43-infizierten Zellen war nicht 

erkennbar.  

Die Proteine gM und UL34p ließen in Rk13 ein mit ihrem Verteilungsmuster in NBL-6-Zellen 

identisches Fluoreszenzbild erkennen.   

 

Somit konnte sowohl auf NBL-6- als auch auf Rk13-Zellen eine Beeinflussung der Verteilung 

vor allem des gC und des gB nach Deletion des UL43-Gens mikroskopisch nachgewiesen 

werden. Wodurch der durchflusszytometrisch messbare Unterschied der Fluoreszenzstärke 

nach gp2-Färbung RacL11- und L11∆43-infizierter Zellen bedingt sein könnte, konnte 

allerdings mit Hilfe der Confocalen Laser Scanning-Mikroskopie nicht geklärt werden. Es ist 

aber auch fast unmöglich, mit dem bloßen Auge die Intensität eines Fluoreszenzsignals zu 

quantifizieren. Das gleiche gilt für den Fluoreszenzanstieg nach gD-Färbung L11∆43- und 

H∆43-infizierter NBL-6-Zellen. Um eine Assoziation der einzelnen Proteine mit dem Golgi-

Apparat sowie mit dem ER definitiv nachweisen zu können, müssten in weiteren 

Experimenten Co-Färbungen mit gegen Golgi- bzw. ER-Markerproteine gerichteten 

Antikörpern durchgeführt werden. Allerdings ist von vorangegangenen Arbeiten bekannt, 

dass die Glykoproteine gB, gC, gD, gp2 und gM, ebenso wie UL11p, im Laufe ihrer 

Prozessierung in RacL11-infizierten Rk13-Zellen mit dem TGN kolokalisieren. 
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4.4.3  Die Generierung einer UL43-myc-C-exprimierenden Zelllinie 

 

Um nachzuweisen, dass die beobachteten Änderungen der Fluoreszenzintensität bzw. der 

Verteilung einzelner viraler Proteine in infizierten Zellen ausschließlich auf die Nicht-

Expression des UL43-Proteins zurückzuführen sind, sollte eine Zelllinie generiert werden, die 

das UL43-Protein konstitutiv exprimiert. Es wurde ein C-myc-Fusionsprotein gewählt, da 

keine Antikörper gegen UL43p zur Verfügung stehen und so eine Selektion auf 

exprimierende Zellklone ermöglicht werden sollte. Es sollte untersucht werden, ob die 

beobachteten Veränderungen nach Deletion des UL43-Gens durch das in trans zur 

Verfügung-Stellen des UL43-myc-Fusionsproteins komplementiert werden können. Dazu 

wurde das Plasmid pcDNA3.1UL43/Myc-HIS(+)C generiert, das die Expression eines UL43-

myc-His-Fusionsproteins unter Kontrolle des HCMV-IE-Promotors erlaubt (Abb. 24). 

 

 

Abbildung 24: UL43-ORF (1205 bp) im Plasmid „pcDNA3.1/Myc-HIS(+)C“ 

 

Zur Generierung einer Zelllinie, die das gesamte UL43-C-myc-Fusionsprotein konstitutiv 

exprimiert, wurden Rk13-Zellen mit der aufgereinigten Plasmid-DNS transfiziert. Da der 

verwendete Vektor ein Resistenzgen zur Inaktivierung von Aminoglykosid-Antibiotika besitzt, 

konnte durch Zugabe von Geneticin zum Zellkulturmedium auf stabil transfizierte Zellen 

selektiert werden. Die Expression des UL43-C-myc-Fusionsproteins wurde durch IIF-

Färbung mit dem Antikörper „Anti-C-myc“ überprüft. Exprimierende Zellklone wurden isoliert 
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und nach Unterklonierung nochmals mittels IIF auf C-myc-Expression kontrolliert. Die 

entstandene Zelllinie wurde als Rk43-myc-C bezeichnet. 

 

 

Abbildung 25 A: IIF-Darstellung der Zelllinien Rk43-myc-C und 51D3 

Rk43-myc-C-Zellen wurden einen Tag nach Einsaat fixiert und mit „anti-C-myc“-Antikörper inkubiert. 

Als Positivkontrolle für den Antikörper diente die Zelllinie 51D3 (Schimmer, 2002), die das EHV-1-

UL11p als C-myc-Fusionsprotein exprimiert.   

Abbildung 25 B: Western Blot-Analyse der generierten Zelllinie 

Lysate von zwei Tage gewachsenen Rk13-, 51D3- und Rk43-myc-C-Zellen wurden im PAGE-Gel 

aufgetrennt und im Western Blot untersucht. Mit Hilfe des Antikörpers „anti-C-myc“ wurden die UL11-

C-myc- (51D3) bzw. UL43-C-myc- (Rk43-myc-C) Fusionsproteine detektiert. Rk13-Zellen dienten als 

Negativkontrolle. Spezifische Banden sind mit Pfeilen markiert. Die Größen eines Proteinstandards 

sind am rechten Bildrand in kDa angezeigt.  

 

Das im Western Blot mit Hilfe des „anti-C-myc“-Antikörpers detektierte UL43-myc-C-

Fusionsprotein erschien mit ca. 38 kDa um über 10 kDa kleiner als es das berechnete 

Molekulargewicht von 49,5 kDa erwarten ließ. Die veränderten Laufeigenschaften stehen 

vermutlich damit im Zusammenhang, dass es sich hierbei um ein multipel hydrophobes 
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Protein handelt, das sich durch SDS-Denaturierung möglicherweise nur ungenügend 

linearisieren lässt (Stenke, 2006). 

 

4.4.4  Die Expression von EHV-1-Proteinen auf mit L11∆43 infizierten Rk43-

myc-C-Zellen 

 

Um zu untersuchen, ob durch Infektion der UL43-myc-C-exprimierenden Zelllinie mit L11∆43 

eine Komplementierung der beschriebenen, auffälligen Veränderungen in der 

Fluoreszenzintensität der EHV-1-Proteine erreicht werden konnte, wurden RacL11- und 

L11∆43-infizierte Rk13- und Rk43-myc-C-Zellen parallel mit Antikörpern gegen die Proteine 

gC, gp2, gB, gD, gM, UL11p und UL34p inkubiert und mittels Durchflusszytometrie 

analysiert. Die Ergebnisse für die gC-Expression sind in Abbildung 26 gezeigt. 

 

 

Abbildung 26: gC-spezifische Fluoreszenz auf Rk43-myc-C-Zellen nach Infektion mit RacL11 bzw. 

L11∆43 

Rk43-myc-C-Zellen wurden einen Tag nach Einsaat mit RacL11 (schwarz) bzw. L11∆43 (grau) infiziert 

(MOI 1). 14 h nach Infektion wurden die Zellen mit dem anti-gC-Antikörper inkubiert 

(Oberflächenfärbung) und die Expression des gC im Durchflusszytometer bestimmt. Das 

Fluoreszenzsignal auf nicht-infizierten Zellen ist gestrichelt dargestellt.  
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Wie aus Abbildung 26 ersichtlich wird, ist der Fluoreszenzunterschied der gC-Expression 

zwischen der Infektion mit RacL11 und L11∆43 auch auf der rekombinanten Zelllinie deutlich 

erkennbar. Sowohl auf der Oberfläche als auch nach Öffnung der Zellen zeigte sich bei 

Infektion der Rk43-myc-C-Zellen mit L11∆43 eine im Vergleich zu RacL11 verringerte 

Fluoreszenz. Im dargestellten Experiment wiesen bei Oberflächenfärbung 18,6 % der L11-

Messereignisse eine stärkere Fluoreszenz auf als 96 % der L11∆43-Messereignisse. Nach 

Öffnung der Zellen betrug die prozentuale Differenz 14 %. Auf parallel infizierten Rk13-Zellen 

war auf der Oberfläche ein Fluoreszenzunterschied von 21,9 %, insgesamt von 14, 1 % 

messbar. Für die anderen untersuchten Proteine konnte sowohl auf Rk13-Zellen als auch auf 

der Zelllinie kein bedeutsamer Unterschied bezüglich der Fluoreszenzstärke zwischen 

RacL11- und L11∆43-Infektion festgestellt werden (vgl. Abb. 20).  

Eine Komplementierung der nach Infektion der Zellen mit UL43-deletiertem Virus messbaren 

Veränderungen im Fluoreszenzmuster konnte somit auf der generierten Zelllinie nicht 

nachgewiesen werden. In mit derselben Passage der Zelllinie durchgeführten IIF-Färbungen 

zeigte allerdings nur noch ca. jede fünfzigste Zelle eine C-myc-spezifische Fluoreszenz, d.h. 

nur noch ca. jede fünfzigste Zelle exprimierte das UL43-Fusionsprotein. Um eine deutliche 

Komplementierung des Defekts zu erzielen, ist eine wesentlich stärkere Expression des 

fehlenden Proteins notwendig. 
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5.   DISKUSSION  

 

Im Rahmen dieser Arbeit sollte der Einfluss von EHV-1 auf die MHC I-/II-Expression equiner 

Zellen untersucht werden. Zu diesem Zweck wurde die MHC I- und II-Oberflächenexpression 

auf equinen Zellen, Zellkulturzellen und frisch isolierten PBMCs, nach Infektion mit 

verschiedenen EHV-1 und EHV-4-Isolaten analysiert. Da erste Ergebnisse zeigten, dass die 

in vitro-Infektion von equinen PBMCs deutlich anders ablief als entsprechende Infektionen 

von  Zellkulturzellen, wurde auch die EHV-1-Infektion der PBMCs genauer charakterisiert. 

Eines der Hauptziele dieser Arbeit stellte die Abklärung der Hypothese dar, dass die EHV-1-

UL11- und UL43-Proteine für die Herunterregulierung von MHC I- und /oder MHC II-

Molekülen von der Zelloberfläche EHV-1-infizierter Zellen eine wichtige Rolle spielen 

könnten. Deshalb wurden Zellen parallel mit RacL11 und den jeweiligen Deletionsmutanten 

L11∆11 bzw. L11∆43 infiziert und die Fähigkeit zur Verringerung der MHC I- oder MHC II-

Präsentation vergleichend analysiert. 

Im Verlauf dieser Arbeiten stellte sich interessanterweise heraus, dass eine Deletion des 

UL43-Gens zwar keine Auswirkungen auf die MHC I- und II-Oberflächenexpression hat, sich 

aber offensichtlich auf die Expression anderer EHV-1-Proteine auswirkt. Auch diese 

Beobachtungen wurden in weiteren Experimenten abgeklärt. 

 

5.1  Der Einfluss von EHV-1-Infektionen auf die MHC I- bzw. MHC II-

Expression equiner Zellen 

 

Die MHC I-Expression auf equinen Zellen nach Infektion mit EHV-1 

 

Wie bereits in der Literatur beschrieben, führt eine Infektion mit EHV-1 zu einer deutlichen 

Verringerung der MHC I-Expression auf der Zelloberfläche (Rappocciolo et al., 2003; 

Ambagala et al., 2004). Diese Abnahme konnte auch im hier verwendeten experimentellen 

System nach Infektion von NBL-6- und EEL-Zellen mit dem EHV-1-Stamm RacL11 bestätigt 
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werden. Ein fast komplettes Verschwinden jeglicher MHC I-Oberflächenexpression, wie es 

durch Rappocciolo et al. ab 24 h p.i. nach Analyse von EHV-1-infizierten NBL-6-Zellen mit 

einem der auch hier verwendeten Antikörper („PT85A“) beschrieben wurde, konnte allerdings 

nicht beobachtet werden. Die Intensität der MHC I-spezifischen Fluoreszenz nahm zwar im 

Verlauf der Infektion immer deutlicher ab, im Vergleich zur Isotypkontrolle waren aber in 

verschiedenen Experimenten, abhängig vom verwendeten Antikörper, meist auch zu späten 

Zeitpunkten p.i. über 50 % der Zellen als MHC I-positiv anzusehen. Allerdings wurden die 

Zellen durch Rappocciolo et al. mit einer wesentlich höheren MOI infiziert. Darüber hinaus ist 

auch denkbar, dass eine Infektion mit dem EHV-1-Stamm AB4/14 zu einer stärkeren 

Reduktion der MHC I-Expression führt als mit dem hier verwendeten Laborstamm RacL11 

(s.u.). 

Die Verringerung der MHC I-Oberflächenexpression war mit allen drei in dieser Arbeit 

eingesetzten MHC I-Antikörpern gleichermaßen detektierbar, während Rappocciolo et al. je 

nach verwendetem Antikörper eine unterschiedliche Herunterregulierung beobachteten. Der 

Verdacht, dass der Verlust durch einen möglicherweise Allel- oder Locus-spezifischen 

Mechanismus ausgelöst wird, ließ sich durch die hier durchgeführten Experimente somit 

nicht vertiefen. Da die Allel-Spezifität der in dieser Studie verwendeten Antikörper noch nicht 

charakterisiert ist, ist es nicht auszuschließen, dass alle drei sogar an das gleiche Epitop auf 

equinen MHC I-Molekülen binden, während die von Rappocciolo et al. eingesetzten 

Antikörper vermutlich unterschiedliche Epitope erkennen. 

Auch auf isolierten equinen PBMCs ließ sich nach in vitro-Infektion mit RacL11 eine 

deutliche Verringerung der MHC I-Expression beobachten, die in Relation zur Zeit p.i. 

abnahm. Van der Meulen et al. (2006a) konnten durch Analyse der Zellen mit dem 

Antikörper „PT85A“ ebenfalls eine Reduktion der MHC I-Expression auf in vitro-infizierten 

equinen PBMCs detektieren. Allerdings war diese Verringerung nur zu früheren (6 und 9 h), 

aber nicht zu späten (12 und 24 h) Zeitpunkten nach Infektion zu beobachten. Ursächlich für 

diese abweichenden Ergebnisse könnten möglicherweise Unterschiede in der Anzahl der 

infizierten Zellen oder auch wiederum im verwendeten Virusstamm sein. Im Rahmen der in 
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dieser Arbeit durchgeführten Experimente konnte im Verlauf der Infektion eine zunehmende 

Verringerung der MHC I-Expression detektiert werden, obwohl der Prozentsatz infizierter 

Blutzellen zu späteren Zeitpunkten p.i. nicht deutlich anstieg (Kapitel 4.3).  

Die im Vergleich zu späteren Experimenten (Kapitel 4.3) hohe Infektionsrate der PBMCs in 

den für die Untersuchungen zur MHC I- und II-Herunterregulierung gezeigten Experimenten 

ist vermutlich darin begründet, dass die Blutzellen zunächst anders infiziert wurden. Auf ein 

Vorkühlen der Zellen und eine Prä-Inkubation von 90 Minuten bei 4°C wurde verzichtet, die 

Inkubation erfolgte ab dem Zeitpunkt 0 bei 37°C. Zudem wurde das Virus für die gesamte 

Inkubationszeit im Medium belassen. Da vor Inkubation der Zellen mit dem Antikörper im 

Vergleich zu den späteren Experimenten weniger Waschschritte erfolgten, ist anzunehmen, 

dass die Antigene von noch an die Zellen gebundenen, nicht-infektiösen Viruspartikeln oder 

–Bruchstücken ebenfalls erfasst wurden und somit zur Vortäuschung einer höheren 

Proteinexpression geführt haben. Um also eine sichere Aussage über die Anzahl 

Virusantigen-positiver Zellen in Relation zur MHC I-Herunterregulierung treffen zu können, 

müssten diese Experimente entsprechend der im Laufe dieser Arbeit entwickelten 

Infektionsmethoden wiederholt werden. 

 

Die MHC II-Expression auf equinen Zellen nach Infektion mit EHV-1 

 

MHC II wird nur auf professionellen Antigen-präsentierenden Zellen wie B-Lymphozyten, 

Monozyten, dendritischen Zellen und Thymusepithel konstitutiv exprimiert. Wie durch Collins 

et al. (1984) beschrieben wurde, kann aber durch Zusatz von Interferon-γ auf einer Vielzahl 

von humanen Zelltypen die Expression von MHC II-Molekülen hervorgerufen werden. Dies 

wurde in dieser Arbeit auch für equine Zellen bestätigt. Sowohl auf NBL-6- als auch auf 

ETCC-Zellen ließ sich durch Zusatz von equinem IFN-γ zum Zellkulturmedium eine deutliche 

MHC II-Expression induzieren, die mit zunehmender Zeit nach IFN-γ-Zugabe deutlich 

anstieg. Eine Infektions-bedingte Beeinträchtigung der MHC II-Oberflächenexpression auf 

Zellkultur war bisher nur für ein Mitglied des Genus Varicellovirus beschrieben worden 
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(Abendroth und Arvin, 2001). Die im Rahmen dieser Arbeit durchgeführten Experimente 

zeigten, dass auch eine Infektion mit EHV-1 zu einer deutlichen Beeinträchtigung der IFN-γ-

induzierten Expression von MHC II-Molekülen auf der Oberfläche von NBL-6- und ETCC- 

Zellen führt. Dies setzte allerdings voraus, dass die Zellen zuerst infiziert und anschließend 

mit IFN-γ behandelt wurden. Die Beobachtung, dass eine Infektion der Zellen nach Zusatz 

von Interferon-γ nicht zu einer Reduktion der MHC II-Expression führt, wurde auch durch 

Abendroth und Arvin gemacht. Dies könnte nach Wiertz et al. (2007) darauf zurückzuführen 

sein, dass aufgrund der relativ langen Halbwertszeit von MHC II-Molekülen trotz einer 

Beeinträchtigung der Präsentation viraler Antigene durch neu synthetisierte MHC II-Moleküle 

nach der Infektion zunächst eine normale Oberflächenexpression dieser Moleküle messbar 

bleibt.  

Um eine Aussage darüber zu treffen, ab welchem Zeitpunkt nach Infektion eine 

Beeinträchtigung der MHC II-Präsentation erkennbar wird, müssten weitere Experimente 

durchgeführt werden. Allerdings ist dies mit der Schwierigkeit verbunden, dass zu frühen 

Zeitpunkten nach der Infektion die IFN-γ-Zugabe aufgrund der dann noch kurzen 

Induktionszeit auch auf nicht-infizierten Zellen vermutlich noch zu keiner ausreichenden 

MHC II-Expression führen würde.  

Nach Infektion von equinen PBMCs mit RacL11 wurde deutlich, dass EHV-1 auch mit der 

MHC II-Oberflächenexpression auf PBMCs interferiert. Zu verschiedenen Zeitpunkten nach 

Infektion war eine Abnahme des MHC II-spezifischen Fluoreszenzsignals zu beobachten, die 

allerdings im Vergleich zur Reduktion der MHC I-Expression eher gering ausfiel und sich 

auch zu späten Zeitpunkten nach Infektion nicht weiter steigerte. Eventuell lässt sich auch 

diese Beobachtung mit der relativ langen Halbwertszeit von MHC II-Molekülen erklären, 

wobei eine Halbwertszeit von über 42 h äußerst unwahrscheinlich ist. Denkbar wäre jedoch, 

dass auf equinen PBMCs nach der Infektion nur eine geringe Reduktion der MHC II-

Oberflächenexpression erkennbar wird, da auf den Blutzellen möglicherweise andere MHC 

II-Allele reguliert werden als auf NBL-6-Zellen. Auch über die Allel-Spezifität der im Rahmen  

dieser Arbeit verwendeten Anti-MHC II-Antikörper liegen bisher keine Daten vor. Daher wäre 
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es möglich, dass eine deutlichere Herunterregulierung der MHC II-Oberflächenexpression 

bei Analyse der Zellen mit den verwendeten Antikörpern lediglich nicht offensichtlich wird, da 

die Verringerung eventuell hauptsächlich andere, mit diesen Antikörpern nicht detektierbare 

MHC II-Allele betrifft. Diese Vermutung ließe sich auch durch die Beobachtung stützen, dass 

die Detektion der MHC II-Expression mit den drei verschiedenen verwendeten Anti-MHC II-

Antikörpern z.T. zu unterschiedlichen Ergebnissen bezüglich der Stärke der Reduktion des 

MHC II-Signals auf den infizierten PBMCs führte (Daten nicht gezeigt). Diese Ergebnisse 

könnten ebenfalls darauf zurückzuführen sein, dass infektionsbedingt bestimmte Typen von 

MHC II-Molekülen stärker in ihrer Expression beeinträchtigt sind als andere und die drei 

verwendeten Antikörper eventuell unterschiedliche MHC II-Epitope detektieren. 

Experimente mit Brefeldin A und Cycloheximid zeigten, dass auch die meisten MHC I-

Moleküle eine relativ lange Halbwertszeit besitzen und auf der Oberfläche equiner NBL-6-

Zellen für über 24 h stabil sind (Rappocciolo et al., 2003). In Folge stellt sich daher die 

Frage, weshalb bereits ab 8 h p.i. eine deutliche Abnahme der MHC I-Expression auf EHV-1-

infizierten Zellen zu beobachten ist. Offensichtlich gibt es neben einer Hemmung der 

Oberflächenexpression neu synthetisierter MHC I-Moleküle weitere Mechanismen, die für 

eine Entfernung bereits vorhandener MHC I-Moleküle von der Zelloberfläche sorgen. 

Rappocciolo et al. schlugen dafür die Endozytose von Oberflächen-ständigen MHC I-

Molekülen vor. Nach den eigenen Ergebnissen auf equinen PBMCs scheinen derartige 

Mechanismen im Falle der MHC II-Präsentation nicht vorzukommen. Allerdings muss diese 

Hypothese durch weitere Experimente abgesichert werden. 

 

Die Auswirkungen einer Infektion mit aktuellen EHV-1-Isolaten auf die MHC I- bzw. II-

Expression equiner Zellen 

 

Bei einem Vergleich des Einflusses einer Infektion mit dem EHV-1-Stamm RacL11 (Abort, 

Polen, 1958) auf die MHC I-Expression mit dem der aktuelleren EHV-1-Isolate O834 

(Myeloencephalopathie, Bayern, 1999) und E216 (Abort, Bayern, 2006) zeigte sich 



Diskussion 

98 

interessanterweise, dass eine Infektion von NBL-6-Zellen mit den beiden neueren Isolaten zu 

einer deutlich stärkeren Herunterregulierung der MHC I-Präsentation führte. Weder das 

Genom von RacL11 noch das der neuen Isolate ist bisher komplett sequenziert, allerdings 

sind einige Abweichungen in der RacL11-Sequenz gegenüber der veröffentlichten Sequenz 

des EHV-1-Stammes AB4 bereits bekannt. Es ist wahrscheinlich, dass eine dieser 

genomischen Variationen auch ein Gen betrifft, das Einfluss auf die MHC I-Präsentation 

nimmt. Das UL49.5 kann hierbei bereits ausgeschlossen werden, so dass diese Experimente 

auch bestätigen, dass es noch weitere in die MHC I-Oberflächen-Präsentation involvierte 

virale Genprodukte geben muss. Allerdings ist RacL11 nach wie vor sowohl für 

Versuchstiere als auch für den Wirt voll pathogen (Mayr et al., 1968). Ein Unterschied in der 

Beeinflussung der MHC I-Expression zwischen den Isolaten E216 und O834 war dagegen 

nicht festzustellen. Dies lässt darauf schließen, dass durch die beiden Stämme trotz 

unterschiedlicher Krankheitsbilder identische Strategien zur Immunmodulation angewandt 

werden. Auch auf equinen PBMCs ließ sich nach Infektion mit EHV-1 O834 bzw. E216 eine 

deutliche Verminderung der MHC I-Präsentation beobachten.  

In ersten Experimenten zeigte sich, dass die MHC II-Expression auf mit IFN-γ behandelten 

NBL-6-Zellen nach Infektion mit EHV-1 O834 bzw. E216 in vergleichbarem Ausmaß 

eingeschränkt war wie nach Infektion mit RacL11. Da bereits eine Infektion mit RacL11 eine 

ausgeprägte Blockierung der MHC II-Präsentation hervorruft, ist eine wesentlich stärkere 

MHC II-Expressions-Modulation nach Infektion mit den Feldisolaten auch nicht zu erwarten.  

 

Die Auswirkungen einer Deletion der UL11- und UL43-Gene auf die MHC I-/II-Expression 

 

Ein wichtiges Ziel dieser Arbeit stellte die Beantwortung der Frage dar, ob die EHV-1-

Proteine UL11p und UL43p einen Einfluss auf die Reduktion der MHC I-/II-

Oberflächenexpression auf infizierten equinen Zellen nehmen. Durch parallele Infektion von 

NBL-6-Zellen mit RacL11 sowie mit den rekombinanten Viren L11∆11 und L11∆43 konnte 

gezeigt werden, dass eine Deletion des UL11- bzw. UL43-Gens offensichtlich keinen 
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Einfluss auf die Fähigkeit des Virus hat, eine Herunterregulierung der MHC I-Expression auf 

der Zelloberfläche zu bewirken. Darüber hinaus wurde ersichtlich, dass das Virus auch nach 

Deletion des UL11- bzw. UL43-Gens in der Lage ist, die IFN-γ-induzierte Expression von  

MHC II-Molekülen wesentlich zu beeinträchtigen.  

Diese Ergebnisse lassen darauf schließen, dass die EHV-1-Proteine UL11p und UL43p für 

die Herunterregulierung der MHC I- und II-Expression auf EHV-1-infizierten Zellen keine 

wesentliche Rolle spielen. Offensichtlich dient die dynamische Zirkulierung des UL11-

Proteins zwischen Golgi-Apparat und Plasmamembran, die für das UL11-Protein von HSV-1 

bereits nachgewiesen wurde (Bowzard et al., 2000; Loomis et al., 2001) und für das EHV-1-

UL11p vermutet wird, einem anderen Zweck als der Reduktion der MHC I- bzw. MHC II-

Oberflächenkonzentration. Da sowohl zu frühen als auch zu späten Zeitpunkten nach 

Infektion keine Unterschiede im Grad der Herunterregulierung zu erkennen waren, ist auch 

ein Einfluss der verschiedenen Genprodukte zu unterschiedlichen Zeiten p.i. 

auszuschließen. Denkbar wäre möglicherweise, dass ein in vivo bestehender 

Zusammenhang durch das Fehlen weiterer Komponenten bei in vitro- Infektion von 

Blutzellen bzw. durch Nachspielen der Verhältnisse einer EHV-1-Infektion in Zellkultur nicht 

erkennbar wird. Die eindeutigen Ergebnisse der auf Zellkultur durchgeführten Experimente 

lassen dies aber als relativ unwahrscheinlich erscheinen. Darüber hinaus könnte gemutmaßt 

werden, dass die Proteine UL11p und /oder UL43p zwar einen Einfluss auf die MHC I oder 

II-Expression nehmen, dies aber im Rahmen der durchgeführten Experimente nicht 

ersichtlich wurde, da eventuell nur bestimmte Typen von MHC I- oder II-Molekülen 

herunterreguliert werden, die durch die verwendeten Antikörper nicht erkannt werden.  

Es ist anzunehmen, dass auch EHV-1, neben dem bereits identifizierten UL49.5p, über 

weitere Proteine verfügt, die mit der Präsentation viraler Peptide durch MHC I- und /oder II-

Moleküle interferieren. Zum einen ist trotz Abwesenheit des UL49.5p auch auf L11∆49.5-

infizierten Zellen eine Abnahme der MHC I-Expression erkennbar, wenn diese auch 

schwächer ausfällt. Des Weiteren lässt sich aufgrund der langen Halbwertszeit dieser 

Moleküle die bereits zu frühen Zeiten p.i. messbare deutliche Abnahme der MHC I-
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Expression nur schwer mit einem alleinigen Block der Beladung neu synthetisierter MHC I-

Moleküle durch eine UL49.5-bedingte Hemmung des TAP erklären. Wie bereits durch 

Rappocciolo et al. (2003) vermutet, sorgt offensichtlich mindestens ein weiteres Genprodukt 

für eine Endozytose oder anderweitige Entfernung der MHC I-Moleküle von der 

Zelloberfläche. Den Ergebnissen dieser Arbeit zu Folge steht fest, dass es sich um mehrere 

zusätzliche Genprodukte handeln muss, da sowohl die Unterschiede zwischen RacL11-

Infektionen und denen mit anderen EHV-1-Isolaten festgestellt wurden, als auch feststeht, 

dass für RacL11 selbst die Deletion des UL49.5 alleine nicht ausreicht, um die MHC I-

Oberflächen-Präsentation auf infizierten Zellen vollständig zu restaurieren. Die Identifizierung 

dieser Genprodukte würde einen weiteren Schritt zum Verständnis der im Rahmen einer 

EHV-1-Infektion ablaufenden Immunmodulations-Prozesse beitragen. 

 

 

5.2  Der Einfluss einer Infektion mit EHV-4 auf die MHC I-/II-Expression 

 

EHV-4 ist ein mit EHV-1 eng verwandtes Virus, das zwar ähnliche klinische Symptome wie 

EHV-1 im Pferd auszulösen vermag, in der Regel aber auf den Respirationstrakt beschränkt 

bleibt. Es wäre also vorstellbar, dass EHV-4 das Immunsystem nicht so effektiv beeinflussen 

kann wie EHV-1. Da über Untersuchungen bezüglich möglicher Auswirkungen einer EHV-4-

Infektion auf die MHC I- und /oder MHC II-Expression equiner Zellen in der Literatur bisher 

keine Daten erarbeitet waren, sollte hier auch ein möglicher Einfluss von EHV-4 auf die MHC 

I-/II-Expression abgeklärt werden. Es zeigte sich, dass EHV-4 die MHC I und MHC II-

Präsentation sowohl auf Zellkultur als auch auf in vitro-infizierten equinen PBMCs in 

vergleichbarem Maße moduliert wie EHV-1. Die durch EHV-4 ausgelöste Verminderung der 

MHC I-Expression auf NBL-6-Zellen war dabei deutlich stärker ausgeprägt als nach Infektion 

mit RacL11 und ließ sich eher mit der durch die EHV-1-Isolate O834 und E216 bewirkten 

Reduktion vergleichen. Die Fähigkeit zur effektiven Beeinflussung der MHC I- und II-

Präsentation alleine reicht als Pathogenitätsmerkmal offensichtlich nicht aus. 
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5.3.  Die in vitro-Infektion equiner PBMCs 

 

Während der Durchführung der Experimente zur Untersuchung des Einflusses einer EHV-1-

Infektion auf die MHC I-/II-Expression equiner PBMCs wurde deutlich, dass sich der Verlauf 

einer in vitro-Infektion von PBMCs offensichtlich grundlegend von der Infektion equiner 

Zellen in Zellkultur unterscheidet. Während es nach Infektion von Zellkulturen mit der Zeit zu 

einem Anstieg der Infektionsrate bis zum Erreichen einer Infektion von 100 % der Zellen 

kommt, schien sich der Prozentsatz Antigen-exprimierender PBMCs auch zu späten 

Zeitpunkten nach Infektion nicht wesentlich zu erhöhen. Es stellte sich heraus, dass der 

Verlauf der Experimente von der Infektionsmethode abhängt. Dabei konnte beobachtet 

werden, dass es nach 90 minütiger Inkubation bei 4°C und anschließender Entfernung des 

Virus-haltigen Überstandes einschließlich zweimaligen Waschens der Zellen in den ersten 

Stunden nach der Induktion der Viruspenetration durch Temperaturerhöhung zu einem 

deutlichen Abfall sowohl der Proteinexpression als auch der Genomkopien pro Zelle kam. 

Dies ist vermutlich darauf zurückzuführen, dass während der Adsorptionsphase bei 4°C auch 

eine große Anzahl nicht-infektiöser Viruspartikel oder Virusbruchstücke an die Zellen binden, 

die nach Temperaturerhöhung allerdings nicht penetrieren können. Es wurde versucht, 

solche Partikel durch möglichst viele Waschschritte vor Fixation der Zellen bzw. Präparation 

der DNS zu entfernen, was aber offensichtlich nur begrenzt gelang. Viele dieser Partikel 

blieben offenbar zunächst gebunden und lösten sich erst allmählich während der ersten 

Stunden der Infektion. Dies wird dadurch ersichtlich, dass die Messung der Genomkopien 

pro Zelle zum Zeitpunkt 0, der dem Zeitpunkt der Temperaturerhöhung von 4° auf 37°C nach 

Abzentrifugieren und zweimaligem Waschen der Zellen entspricht, noch sehr hohe Werte 

ergab. Es ist anzunehmen, dass neben den Genomen der penetrierten Partikel auch die 

Genome und Strukturproteine dieser trotz mehrerer Waschschritte noch an den Zellen 

adhärierten, nicht-infektiösen Viruspartikel bei den Analysen der Proteinexpression bzw. der 

Kopienzahl pro Zelle mit detektiert wurden und die Ergebnisse somit in gewissem Maße 

verfälschten.  
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Die Beobachtung, dass ohne Entfernung des Virus-haltigen Überstandes in den ersten 

Stunden nach Temperaturerhöhung ein Anstieg der gemessenen Genomkopien, z.T. auch 

der Detektion viraler Glykoproteine erkennbar wurde, spricht dafür, dass in dieser Zeit 

offensichtlich weitere Viruspartikel an die Zellen adsorbierten. Dies lässt vermuten, dass in 

diesem System eine 90 minütige Adsorptionszeit bei 4°C nicht ausreichend ist, um die 

Adsorption aller Viruspartikel an equine PBMCs zu ermöglichen.  

Abgesehen von dem leichten Anstieg in der Detektion viraler Antigene bzw. der Anzahl der 

Genomkopien pro Zelle nach Temperaturerhöhung ohne Entfernung des Virus-haltigen 

Überstandes kam es aber in beiden Gruppen in keinem der durchgeführten Experimente zu 

einem Anstieg eines der Parameter über das nach wenigen Stunden erreichte Niveau 

hinaus. Nach einer in vitro-Infektion scheint es in den infizierten equinen PBMCs, zumindest 

bis 48 h p.i., offensichtlich zu keiner weiteren Vermehrung des Virus bzw. zu einer 

Ausbreitung der Infektion auf weitere, nicht-infizierte Zellen zu kommen.  

Ähnliche Ergebnisse wurden auch nach in vitro-Infektion isolierter PBMCs mit anderen 

Alphaherpesviren erzielt. So wurde beispielsweise gezeigt, dass die Replikation von SuHV-1 

in porcinen Monozyten deutlich restringiert ist. Nach Nauwynck und Pensaert (1994) 

exprimierte nur ein Bruchteil der porcinen Monozyten virale Antigene, wobei das Maximum 

dieser Expression bereits 7-8 h p.i. erreicht war. Nur 0,1 % dieser Zellen produzierten 

infektiöses Virus. Auch die Replikation von HSV-1 in humanen T-Lymphozyten und 

Monozyten ist offensichtlich stark eingeschränkt (Teute et al.,1983; Albers et al.,1989). 

Darüber hinaus wurden auch zur in vitro-Infektion equiner PBMCs mit EHV-1 bereits 

Untersuchungen durchgeführt. Van der Meulen et al. (2000) berichteten, dass 12 h nach 

Infektion isolierter equiner PBMCs mit EHV-1 der Prozentsatz infizierter Monozyten bei 8,7 % 

lag, während weniger als 1 % der Lymphozyten virale Antigene exprimierten. Infektiöses 

Virus wurde nur von 0,16 % der infizierten Monozyten und von 0,05 % der infizierten 

Lymphozyten produziert. In einer weiteren Studie wurde gezeigt, dass in infizierten PBMCs 

während der zell-assoziierten Virämie EHV-1-infizierter Ponies offensichtlich lediglich 

„immediate-early“ und ein „early“-Protein, aber keine „late“-Proteine exprimiert werden. 
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Daraus wurde geschlossen, dass die Replikation in infizierten PBMCs auch in vivo stark 

eingeschränkt ist. Es wurde gemutmaßt, dass die Replikation von EHV-1 in zirkulierenden 

PBMCs möglicherweise auf frühe Ereignisse begrenzt ist, bis Aktivierungssignale spätere 

Ereignisse induzieren (van der Meulen et al., 2006a und b). Diese Hypothese könnte 

erklären, warum es, wie auch in eigenen Experimenten deutlich wurde, in in vitro-infizierten 

PBMCs offensichtlich zu keiner weiteren Virusvermehrung kommt. Möglicherweise fehlen 

hier bestimmte Faktoren, die für spätere Ereignisse der Replikation unerlässlich sind. 

 

 

5.4   Der Einfluss der Deletion des UL43-Gens auf die Expression 

anderer viraler Proteine 

 

Im Verlauf der Untersuchungen zur EHV-1-Immunmodulation fiel auf, dass sich eine Deletion 

des UL43-Gens offensichtlich auf die Expression anderer viraler Proteine in der infizierten 

Zelle auswirkt. Um diesem Phänomen nachzugehen, wurde die Expression und subzelluläre 

Lokalisation sowohl ausgewählter Strukturproteine, der Glykoproteine gB, gC, gD, gM und 

des mit Membranen assoziierten Proteins UL11p, als auch des Nicht-Strukturproteins UL34p 

eingehend untersucht. Diese Proteine gehören sowohl der β-γ- als auch der γ-Expressions-

klasse an. Ein Vergleich von RacL11- mit L11∆43-infizierten NBL-6-Zellen mittels Durchfluss-

zytometrie zeigte, dass in der Abwesenheit der UL43-Expression vor allem die Fluoreszenz-

intensität in der gC-, aber auch in der gp2-Analyse deutlich reduziert war, während die 

Expression der Proteine gB, gM, UL11p und UL34p keine mittels FACScan detektierbaren 

Unterschiede aufwies. Das gD-spezifische Fluoreszenzsignal schließlich war nach Infektion 

mit dem rekombinanten Virus sogar leicht verstärkt. Neben der Tatsache, dass die UL43-

deletierten EHV-1 gegenüber dem Ausgangsvirus nur einen geringen Wachstumsnachteil 

aufweisen (Stenke, 2006; Stenke und Neubauer, unveröffentlicht), zeigten diese Protein-

spezifischen Ergebnisse, dass sich die Änderungen der gC- und gp2-Fluoreszenz nicht 

generell auf eine geringere Infektionsrate der mit L11∆43 infizierten Zellen zurückführen 
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lassen. Auch eine Infektion der NBL-6-Zellen mit dem EHV-1-Stamm RacH und dem 

rekombinanten Virus H∆43 führte zu einem veränderten Fluoreszenzmuster des gC und gp2, 

was weiter bestätigt, dass es sich hierbei um ein spezifisches Phänomen handelt. 

Vergleichbare Ergebnisse ergaben sich auch nach Infektion von Rk13-Zellen mit den 

entsprechenden Viren. Eine Änderung der Expression des gp2 war hier jedoch nicht 

reproduzierbar. Dies könnte im Zusammenhang damit stehen, dass die Expression viraler 

Proteine auch durch verschiedene zelluläre Faktoren beeinflusst wird, die sich zwischen der 

equinen Zelllinie NBL-6 und der Kaninchenzelllinie Rk13 sicher unterscheiden.  

Die mit Hilfe der Durchflusszytometrie erhaltenen Ergebnisse sind rein quantitativ und 

erlauben außer der Beurteilung der Oberflächenfluoreszenz keine Aussage über die 

intrazelluläre Verteilung des Fluoreszenzsignals. Deshalb wurden die infizierten Zellen 

parallel mittels Confocaler Laser Scanning-Mikroskopie analysiert. Dabei wurde ebenfalls ein 

deutlicher Unterschied im Fluoreszenzmuster des gC offensichtlich, das sich in L11∆43-

infizierten Zellen in Form von deutlich gröberen, weniger gleichmäßig verteilten 

Fluoreszenzherden darstellte als nach Infektion mit RacL11. Diese Strukturen konnten bisher 

noch nicht sicher identifiziert werden. Es ist denkbar, dass das UL43p, auch in Folge seiner 

Eigenschaft, Membranen mehrfach zu durchqueren, eine Rolle in der Aufrechterhaltung der 

gleichmäßigen Verteilung viraler Proteine in den dynamischen Zellmembranen hat. Die 

mittels Durchflusszytometrie detektierte veränderte Fluoreszenzintensität des gp2 ließ sich 

mikroskopisch nicht nachvollziehen. Dies hat aber vermutlich den Grund, dass Unterschiede 

in der Fluoreszenzstärke mit bloßem Auge schwer quantifizierbar sind. Allerdings wurden 

mikroskopisch auffällige Veränderungen im Verteilungsmuster des gB dokumentiert, die sich 

offensichtlich aber nicht auf die Gesamtintensität der Fluoreszenz auswirkten und deshalb 

durchflusszytometrisch nicht messbar waren. Die Lokalisation der anderen untersuchten 

Proteine wies bei Fehlen des UL43p hingegen auch mikroskopisch keine deutlich 

erkennbaren Veränderungen auf. 

Die Tatsache, dass das gC durch das EHV-1-UL44-Gen kodiert wird und somit in der UL-

Region des Genoms direkt neben dem UL43-Gen angesiedelt ist, könnte eine Erklärung für 
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das deutlich veränderte Verteilungsmuster des gC bei Fehlen des UL43p liefern. Es wäre 

denkbar, dass durch die Entfernung des UL43-Leserahmens aus dem Genom in diesem 

Bereich gelegene, nicht identifizierte regulatorische Elemente mit betroffen sind, so dass in 

Folge schon die effiziente Transkription des gC beeinträchtigt wäre. Dies ist allerdings relativ 

unwahrscheinlich, da zwischen dem UL43- und dem UL44-Gen ausreichend nichtkodierende 

Sequenzen auch nach Deletion der UL43-Sequenz erhalten sein sollten. Dagegen spricht 

zudem die Beobachtung, dass auch andere entfernt kodierte Proteine wie gp2 (US-Region) 

und gB (UL27) durch die UL43-Deletion beeinflusst wurden. So liegt die Vermutung nahe, 

dass das UL43p selbst für eine korrekte Expression und vor allem Verteilung der genannten 

Glykoproteine in der infizierten Zelle von Bedeutung ist. Insgesamt scheint es so, als würde 

sich eine Deletion des UL43-Gens hauptsächlich auf die Verteilung viraler, auch auf der 

zellulären Oberfläche lokalisierter Glykoproteine in der infizierten Zelle auswirken. Die 

Lokalisation intrazellulärer Proteine scheint, zumindest für hier untersuchte Genprodukte, 

nicht beeinträchtigt zu sein. Über ähnliche Funktionen des UL43p bei anderen Herpesviren 

ist bisher nichts bekannt. Allerdings zeigten Crump et al. (2004), dass das Glykoprotein M in 

SuHV-1- und HSV-1-infizierten Zellen für eine Umverteilung anderer viraler Proteine sorgt, 

indem es den Transport der Glykoproteine D, H und L von der Plasmamembran zum trans-

Golgi-Netzwerk bewirkt. Es wird vermutet, dass dieser Prozess, der zu einer Verringerung 

der Expression viraler Antigene auf der Zelloberfläche führt, möglicherweise dazu beiträgt, 

die Erkennung infizierter Zellen durch die Immunabwehr zu beeinträchtigen. Da das UL43p, 

ebenso wie das gM, ein multipel hydrophobes Transmembran-Protein darstellt, wäre es 

vorstellbar, dass das UL43p eine ähnliche Funktion besitzt und somit für eine Umverteilung 

von viralen Proteinen innerhalb der infizierten Zelle sorgt. Um diese Theorie abzusichern, 

müssen allerdings weitere Experimente folgen, unter anderem, um die zeitliche Entwicklung 

der beobachteten Änderungen des Verteilungsmusters zu untersuchen.  

Die Tatsache, dass die beobachteten auffälligen Veränderungen durch Wachstum des 

rekombinanten Virus auf einer Zelllinie, die das UL43p als UL43-C-myc-Fusionsprotein 

konstitutiv exprimiert, nicht komplementiert werden konnten, ließe vermuten, dass die 
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Unterschiede im Fluoreszenzmuster nicht allein auf ein Fehlen des UL43p zurückzuführen 

sind. Es ist allerdings prinzipiell auch möglich, dass durch die Expression des UL43p als C-

myc-His-Fusionsprotein eine für die Interaktion mit anderen viralen Proteinen wichtige 

funktionelle Domäne behindert ist. Da aber in der generierten Zelllinie nachweislich nur ca. 

jede fünfzigste Zelle das UL43p exprimierte, wäre die Komplementierung möglicherweise 

auch viel zu gering, um in den verwendeten Systemen messbar zu werden. Um eine 

deutliche Komplementierung zu erreichen, müssten wahrscheinlich wesentlich mehr Zellen 

das UL43p exprimieren. Um diese Fragestellung endgültig abzuklären, müsste eine weitere 

Zelllinie generiert werden, die das authentische UL43p in ausreichender Masse exprimiert. 

 

Im Rahmen dieser Arbeit ließ sich somit zwar die Vermutung, dass die EHV-1-Proteine 

UL11p und UL43p eine Rolle bei der Modulation der MHC I oder MHC II-Oberflächen-

expression spielen, nicht bestätigen. Es konnte jedoch gezeigt werden, dass das UL43p 

offensichtlich eine wichtige Funktion für die korrekte Verteilung anderer viraler Proteine in 

den infizierten Zellen hat. Auf diese Weise könnte UL43p indirekt doch eine entscheidende 

Rolle in der EHV-1-Immunmodulation spielen. Einerseits führt, ähnlich wie für gM bereits 

spekuliert, eine Reduktion der Oberflächenexpression viraler Proteine generell zu einer 

Verringerung der unmittelbaren Exposition infizierter Zellen gegenüber dem Immunsystem. 

Andererseits ist gerade für gC bereits eine wichtige immunmodulatorische Funktion, nämlich 

die Interaktion mit der Komplement-Kaskade, bekannt, die wiederum durch UL43p indirekt 

unterstützt würde. 
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6.  ZUSAMMENFASSUNG / SUMMARY 

 

Zusammmenfassung 

 

Neben verschiedenen anderen Alphaherpesviren ist auch das Equide Herpesvirus 1 (EHV-1) 

in der Lage, die Präsentation viraler Peptide durch MHC I-Moleküle zu beeinflussen. Bisher 

ist allerdings erst ein in diesen Prozess involviertes virales Genprodukt, das UL49.5-Protein, 

bekannt (Rappocciolo et al., 2003; Ambagala et al., 2004; Koppers-Lalic et al., 2005). 

Ziel der vorliegenden Arbeit war es, der Hypothese nachzugehen, dass die viralen 

Genprodukte UL11p und UL43p ebenfalls eine Rolle in der Immunmodulation durch EHV-1 

spielen könnten. Zu diesem Zweck musste zunächst die MHC I- und II-Expression auf 

infizierten equinen Zellen untersucht werden. In verschiedenen Experimenten konnte eine 

Verringerung der MHC I-Expression sowohl auf der Oberfläche equiner Zellkultur-Zellen als 

auch auf in vitro-infizierten PBMCs bestätigt werden. Darüber hinaus gelang es zum ersten 

Mal zu demonstrieren, dass eine Infektion mit EHV-1 zu einer deutlichen Beeinträchtigung 

der IFN-γ-induzierten MHC II-Expression auf equinen Zelllkultur-Zellen führt. Eine leichte 

Reduktion der MHC II-Expression war auch auf in vitro-infizierten PBMCs nachweisbar.  

 

Weitere Experimente zeigten, dass sich zu verschiedenen Zeitpunkten p.i. weder die 

Deletion des UL11- noch des UL43-Gens auf die Fähigkeit des Virus, die MHC I-/II-

Expression auf infizierten NBL-6-Zellen zu verringern, auswirkten. Überraschenderweise 

führte aber eine Infektion mit aktuelleren EHV-1-Isolaten (O834, Myeloenzephalopathie, 

1999 und E216, Abort, 2006) zu einer stärkeren Reduktion der MHC I-Expression als eine 

Infektion mit dem Plaqueisolat RacL11 (Abort, 1958). Einen Hinweis auf Unterschiede 

zwischen aktuellem Abort- und  Myeloenzephalopathie-Stamm gab es jedoch nicht. Die IFN-

γ-induzierte Expression von MHC II-Molekülen war dagegen nach Infektion mit allen 

untersuchten EHV-1-Stämmen in vergleichbarem Ausmaß beeinträchtigt. Darüber hinaus 

wurde demonstriert, dass auch das mit EHV-1 eng verwandte Equide Herpesvirus 4 in der 
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Lage ist, die MHC I- und MHC II-Expression auf NBL-6-Zellen und equinen PBMCs deutlich 

zu reduzieren. 

Interessanterweise konnte gezeigt werden, dass das UL43-Protein zwar keine Bedeutung für  

die Verteilung von MHC I-/II-Molekülen, dafür aber für die von weiteren viralen 

Oberflächenproteinen in der infizierten Zelle hat. Vergleichende Untersuchungen mit 

RacL11, RacH und den entsprechenden UL43-deletierten Viren ergaben, dass die Deletion 

des UL43-Gens einerseits deutliche quantitative Veränderungen in der Expression vor allem 

der EHV-1-Glykoproteine gC, gp2 und gD und andererseits Abweichungen in der mittels 

Confocaler Laser Scanning-Mikroskopie dokumentierten Verteilung der Glykoproteine gB 

und gC innerhalb der infizierten Zelle auslöst. Diese Ergebnisse lassen vermuten, dass das 

UL43p tatsächlich in vivo eine weitaus wichtigere Rolle spielt als bisher in vitro festgestellt. 
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Summary 

 

Analysis of MHC I and II presentation on Equid herpesvirus 1 infected cells 

 

Various Alphaherpesviruses are able to interfere with MHC class I presentation by reducing 

surface expression of these molecules. Equid herpesvirus 1 (EHV-1) infection also results in 

MHC I downregulation on the respective cells, but other than the involvement of the viral 

UL49.5-protein, this process is not yet very well understood (Rappocciolo et al., 2003; 

Ambagala et al., 2004; Koppers-Lalic et al., 2005). As the in vitro non essential EHV-1 

proteins UL11p and UL43p were considered as further candidate proteins for playing a role 

in interfering with MHC I or II expression, the aim of this study was to elucidate this 

supposition. In a first step, the influence of EHV-1-infection on MHC I/II surface expression 

had to be investigated.  

At various time-points p.i., a considerable reduction of MHC class I-molecules on the surface 

of EHV-1-infected cultured equine cells could indeed be confirmed and was also observed 

after in vitro-infection of equine PBMC. Moreover, it could be clearly demonstrated for the 

first time that EHV-1-infection also results in a downregulation of MHC II expression on 

equine cell culture cells following interferon-γ-induction. MHC II-expression on the surface of 

in vitro EHV-1-infected PBMC, however, was reduced slightly only. 

Previous results gave rise to the hypothesis that the EHV-1 proteins UL11p and /or UL43p 

might be involved in EHV-1-induced immunomodulation. In the course of this study, however, 

it could be demonstrated that neither a deletion of the UL11- nor of the UL43-gene had an 

impact on the downregulation of MHC I or II surface expression.  

No difference in MHC I presentation was detectable between cells infected with the recently 

isolated EHV-1 strains O834 (myeloencephalopathy, 1999) and E216 (abortion, 2006) but, 

surprisingly, MHC class I downregulation was even more pronounced than on cells infected 

with the EHV-1 strain RacL11 (abortion, 1958). The interferon-γ induced MHC II presentation, 

however, was affected similarly by all EHV-1 strains tested. 
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Interestingly, during the course of this study, it became obvious that deleting the UL43-gene 

does not influence MHC I or II surface expression, but the distribution of viral cell surface 

glycoproteins in EHV-1-infected cells. Comparative studies with cells infected with RacL11, 

RacH, and the respective UL43-deleted viruses revealed that the absence of the UL43 gene-

product resulted in quantitative changes concerning the expression of EHV-1 glycoproteins 

such as gC, gp2 and gD, as assessed by flow cytometry analysis. In addition, by confocal 

laser scanning microscopy, clear variations regarding the distribution of gB and gC were 

shown. Other glycoproteins, such as gM or membrane-associated proteins such as UL11p 

were not affected. These results give rise to the assumption that UL43p might in fact play a 

by far more important role in vivo than has yet been demonstrated in vitro.  
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8.  ANHANG 

 

Verzeichnis der verwendeten Abkürzungen: 

 

Abb.   Abbildung 

A. demin.  Aqua demineralisata 

Amper   Ammoniumpersulfat 

ATP   Adenosintriphosphat 

BAC   bacterial artificial chromosome 

β2m   β2-Mikroglobulin 

BoHV-1  Bovines Herpesvirus 1 

bp   Basenpaare 

bzw.   beziehungsweise 

ca.    circa 

°C   Grad Celsius 

Ca2+   Calcium 

CD-   cluster of differentiation 

CO2   Kohlenstoffdioxid 

CTLs   cytotoxische T-Lymphozyten 

Da   Dalton 

DMSO   Dimethylsulfoxid 

DNA   Desoxyribonukleinsäure 

DNS   Desoxyribonukleinsäure 

E   early 

EBV   Trivialabkürzung des Humanen Herpesvirus 4 (Epstein-Barr Virus)  

   offizielle Abkürzung: HHV-4 

E. coli   Escherichia coli 

EDTA   Ethylendiamintetraessigsäure 
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EEL   equine embryonale Lungenzellen 

EHV-1   Equides Herpesvirus 1 

EHV-4   Equides Herpesvirus 4 

ER   Endoplasmatisches Retikulum 

et al.   und andere Autoren 

ETCC   equine transitional carcinoma cells 

Fa.   Firma 

FKS   fetales Kälberserum 

g   Gramm 

g(p)   Glykoprotein 

h   Stunde(n) 

HCMV   Trivialabkürzung des Humanen Herpesvirus 5 (Humanes 

Cytomegalie-Virus)  

   offizielle Abkürzung: HHV-5 

HSV-1   Trivialabkürzung des Humanen Herpesvirus 1 (Herpes Simplex  

Virus 1)  

   offizielle Abkürzung: HHV-1 

IAC   Isoamylalkohol-Chloroform-Gemisch 

IE   immediate early 

IFN-γ   Interferon-γ 

Ig-   Immunglobulin- 

Ii   nicht-variable Kette 

IIF   indirekte Immunfluoreszenz 

IL-   Interleukin- 

IR   „Internal Repeat“-Region 

Jak   Janus-Kinase 

k   Kilo 

kbp   Kilobasenpaare 
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kDa   Kilodalton 

L   late 

l   Liter 

LB   Luria Bertoni 

LiCl   Lithiumchlorid 

m   Milli- 

µ   Mikro- 

M   molar 

MAk   monoklonaler Antikörper 

MGB-   minor-groove-binder- 

Mg2+   Magnesium 

MHC   Haupthistokompatibilitätskomplex (major histocompatibility complex) 

min   Minute 

mind.   mindestens 

MOI   multiplicity of infection 

MuHV-1  Murines Cytomegalie-Virus 

nm   Nanometer 

N   normal 

N-   an Stickstoff gebunden 

NBL-6   equine dermale Zelllinie 

NK-Zellen  Natürliche Killerzellen 

O-   an Sauerstoff gebunden 

o.   oben 

ODx   optische Dichte bei x nm Wellenlänge gemessen 

o.g.   oben genannt 

OH-   an Hydroxylgruppe gebunden 

ORF   offener Leserahmen (open reading frame) 

p   Protein von 
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PAGE   Polyacrylamid-Gelelektrophorese 

PBMCs  periphere mononukleäre Blutzellen (peripheral blood mononuclear  

cells) 

PBS   Phosphat-gepufferte Saline 

PBS-T   Phosphat-gepufferte Saline mit Tween20 

PCR   Polymerase-Kettenreaktion (Polymerase Chain Reaction) 

PFA   Paraformaldehyd 

pH   potentia hydrogenium 

PI   Propidiumjodid 

p.i.   post infectionem 

POD   Peroxidase 

RCAs   Regulatoren der Komplement-Aktivierung 

Rk13   Zelllinie aus Kaninchennierenzellen (Rabbit kidney-Zelllinie) 

RNA   Ribonukleinsäure 

RNS   Ribonukleinsäure 

RNAse   Ribonuklease 

rpm   Umdrehungen pro Minute (revolutions per minute) 

RT   Raumtemperatur 

s.   siehe 

SDS   Natriumdodecylsulfat 

Stat   Signaltransduktoren und Aktivatoren der Transkription 

Std.   Stunde(n) 

STV   Saline-Trypsin-Versene-Lösung 

SuHV-1  Suides Herpesvirus 1 

Tab.   Tabelle 

TAP   Transporter für die Antigen-Prozessierung (transporter  

associated with antigen-processing) 

TGN   trans-Golgi-Netzwerk 
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TEMED  Tetramethylethylendiamin 

U   Unit (Einheit) 

u.a.   unter anderem    

UL   Unique long – Region 

US   Unique short – Region  

UV   ultraviolett 

V   Volt 

v.a.   vor allem 

vhs   virion host shutoff 

v/v   Volumeneinheit pro Volumeneinheit 

VZV   Trivialabkürzung des Humanen Herpesvirus 3 (Varizella-Zoster Virus) 

   offizielle Abkürzung: HHV-3 

W   Watt 

w/v   Gewichtseinheit pro Volumeneinheit 

z.B.   zum Beispiel 

z.T.   zum Teil 
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